content
stringlengths
5
1.05M
from .model import SpecDir, create_spec_dict from .app import create_app from . import tasks, monkey_patch __all__ = ( "SpecDir", "create_spec_dict", "create_app", "tasks", "monkey_patch", ) __author__ = """Ian Maurer""" __email__ = "[email protected]" __version__ = "0.8.2" __uri__ = "http://www.github.com/genomoncology/specd" __copyright__ = "Copyright (c) 2018 genomoncology.com" __description__ = "specd: Swagger Specification Directories" __doc__ = __description__ + " <" + __uri__ + ">" __license__ = "MIT" __title__ = "specd"
""" Scrapy core exceptions These exceptions are documented in docs/topics/exceptions.rst. Please don't add new exceptions here without documenting them there. """ # Internal class NotConfigured(Exception): """Indicates a missing configuration situation""" pass class _InvalidOutput(TypeError): """ Indicates an invalid value has been returned by a middleware's processing method. Internal and undocumented, it should not be raised or caught by user code. """ pass # HTTP and crawling class IgnoreRequest(Exception): """Indicates a decision was made not to process a request""" class DontCloseSpider(Exception): """Request the spider not to be closed yet""" pass class CloseSpider(Exception): """Raise this from callbacks to request the spider to be closed""" def __init__(self, reason='cancelled'): super(CloseSpider, self).__init__() self.reason = reason # Items class DropItem(Exception): """Drop item from the item pipeline""" pass class NotSupported(Exception): """Indicates a feature or method is not supported""" pass # Commands class UsageError(Exception): """To indicate a command-line usage error""" def __init__(self, *a, **kw): self.print_help = kw.pop('print_help', True) super(UsageError, self).__init__(*a, **kw) class ScrapyDeprecationWarning(Warning): """Warning category for deprecated features, since the default DeprecationWarning is silenced on Python 2.7+ """ pass class ContractFail(AssertionError): """Error raised in case of a failing contract""" pass
from setuptools import setup setup( name='connect-migration', version='1.0', py_modules=['connect_migration'], url='https://github.com/ingrammicro/connect-python-sdk-migration-framework', license='Apache Software License', author='Ingram Micro', description='Small middleware to ease the service migration from legacy to Connect.' )
# Copyright 2021 Christian Schneider Pedersen <[email protected]>, Helene Bach Vistisen, Julian Teule, Mikkel Filt Bengtson, Victor Büttner <[email protected]> # # SPDX-License-Identifier: Beerware OR MIT import ad_path from antenna_diversity.channel import channel_models from antenna_diversity.diversity_technique import egc from antenna_diversity.encoding import SymbolEncoder from antenna_diversity import modulation import numpy as np from antenna_diversity.protocols import dect ad_path.nop() # Create DECT packet payload = b'0123456789012345678901234567890123456789' dect_packet = dect.Full(payload) # Modulate DECT packet my_pam = modulation.PSK(2) my_symbols = SymbolEncoder(2).encode_msb(dect_packet.to_bytes()) modulated_symbols = my_pam.modulate(my_symbols) N = 3 # Creating the channel with N antennas and 10 snr chnl = channel_models.RayleighAWGNChannel(N, 10) r, h = chnl.run(modulated_symbols) # Using the diversity scheme and demodulate the signal recv = egc(r) my_demodulate = my_pam.demodulate(recv) print(my_demodulate) if np.array_equal(my_demodulate, my_symbols): print("it good") else: print("it not good")
import requests import re from urllib.parse import urljoin target_url = input("Enter the full target URI: \n") def extract_links(url): response = requests.get(url) return re.findall('(?:href=")(.*?)"', response.content.decode('utf-8')) href_link = extract_links(target_url) for link in href_link: link = urljoin(target_url,link) print(link)
# -*- coding: utf-8 -*- # # Podcastparser: A simple, fast and efficient podcast parser # Copyright (c) 2012, 2013, 2014, 2018, 2020 Thomas Perl <[email protected]> # Copyright (c) 2016, 2017, 2018, 2019, 2020 Eric Le Lay <[email protected]> # Copyright (c) 2020 E.S. Rosenberg <[email protected]> # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY # AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, # INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR # OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR # PERFORMANCE OF THIS SOFTWARE. # """ Simplified, fast RSS parser """ # Will be parsed by setup.py to determine package metadata __author__ = 'Thomas Perl <[email protected]>' __version__ = '0.6.5' __website__ = 'http://gpodder.org/podcastparser/' __license__ = 'ISC License' from xml import sax import re import os import time try: # Python 2 from htmlentitydefs import entitydefs entitydefs = dict((key, value.decode('latin-1')) for key, value in entitydefs.iteritems()) chr = unichr except ImportError: # Python 3 from html.entities import entitydefs try: # Python 2 import urlparse except ImportError: # Python 3 from urllib import parse as urlparse try: # Python 2 from rfc822 import parsedate_tz import calendar # This is taken from Python 3's email._parseaddr, since it handles # pre-epoch dates better than what Python 2 does (time.mktime()) def mktime_tz(data): if data[9] is None: # No zone info, so localtime is better assumption than GMT return time.mktime(data[:8] + (-1,)) else: t = calendar.timegm(data) return t - data[9] except ImportError: # Python 3 from email.utils import mktime_tz, parsedate_tz import logging logger = logging.getLogger(__name__) class Target(object): WANT_TEXT = False def __init__(self, key=None, filter_func=lambda x: x.strip(), overwrite=True): self.key = key self.filter_func = filter_func self.overwrite = overwrite def start(self, handler, attrs): pass def end(self, handler, text): pass class RSS(Target): def start(self, handler, attrs): if 'xml:base' in attrs.keys(): handler.set_base(attrs.get('xml:base')) class PodcastItem(Target): def end(self, handler, text): by_published = lambda entry: entry.get('published') order = 'type' not in handler.data or handler.data['type'] != 'serial' handler.data['episodes'].sort(key=by_published, reverse=order) if handler.max_episodes: episodes = handler.data['episodes'][:handler.max_episodes] handler.data['episodes'] = episodes class PodcastAttr(Target): WANT_TEXT = True def end(self, handler, text): handler.set_podcast_attr(self.key, self.filter_func(text)) class PodcastAttrType(Target): WANT_TEXT = True def end(self, handler, text): value = self.filter_func(text) if value in ('episodic', 'serial'): handler.set_podcast_attr(self.key, value) class PodcastAttrRelativeLink(PodcastAttr): def end(self, handler, text): text = urlparse.urljoin(handler.base, text) super(PodcastAttrRelativeLink, self).end(handler, text) class PodcastAttrFromHref(Target): def start(self, handler, attrs): value = attrs.get('href') if value: value = urlparse.urljoin(handler.base, value) handler.set_podcast_attr(self.key, self.filter_func(value)) class EpisodeItem(Target): def start(self, handler, attrs): handler.add_episode() def end(self, handler, text): handler.validate_episode() class EpisodeAttr(Target): WANT_TEXT = True def end(self, handler, text): if not self.overwrite and handler.get_episode_attr(self.key): return handler.set_episode_attr(self.key, self.filter_func(text)) class EpisodeAttrRelativeLink(EpisodeAttr): def end(self, handler, text): text = urlparse.urljoin(handler.base, text) super(EpisodeAttrRelativeLink, self).end(handler, text) class EpisodeGuid(EpisodeAttr): def start(self, handler, attrs): if attrs.get('isPermaLink', 'true').lower() == 'true': handler.set_episode_attr('_guid_is_permalink', True) else: handler.set_episode_attr('_guid_is_permalink', False) def end(self, handler, text): def filter_func(guid): guid = guid.strip() if handler.get_episode_attr('_guid_is_permalink'): return urlparse.urljoin(handler.base, guid) return guid self.filter_func = filter_func EpisodeAttr.end(self, handler, text) class EpisodeAttrFromHref(Target): def start(self, handler, attrs): value = attrs.get('href') if value: value = urlparse.urljoin(handler.base, value) handler.set_episode_attr(self.key, self.filter_func(value)) class Enclosure(Target): def __init__(self, file_size_attribute): Target.__init__(self) self.file_size_attribute = file_size_attribute def start(self, handler, attrs): url = attrs.get('url') if url is None: return url = parse_url(urlparse.urljoin(handler.base, url.lstrip())) file_size = parse_length(attrs.get(self.file_size_attribute)) mime_type = parse_type(attrs.get('type')) handler.add_enclosure(url, file_size, mime_type) class AtomLink(Target): def start(self, handler, attrs): rel = attrs.get('rel', 'alternate') url = parse_url(urlparse.urljoin(handler.base, attrs.get('href'))) mime_type = parse_type(attrs.get('type', 'text/html')) file_size = parse_length(attrs.get('length', '0')) if rel == 'enclosure': handler.add_enclosure(url, file_size, mime_type) elif rel == 'payment': handler.set_episode_attr('payment_url', url) elif mime_type == 'text/html': if rel in ('self', 'alternate'): if not handler.get_episode_attr('link'): handler.set_episode_attr('link', url) class PodcastAtomLink(AtomLink): def start(self, handler, attrs): rel = attrs.get('rel', 'alternate') url = parse_url(urlparse.urljoin(handler.base, attrs.get('href'))) mime_type = parse_type(attrs.get('type')) # RFC 5005 (http://podlove.org/paged-feeds/) if rel == 'first': handler.set_podcast_attr('paged_feed_first', url) elif rel == 'next': handler.set_podcast_attr('paged_feed_next', url) elif rel == 'payment': handler.set_podcast_attr('payment_url', url) elif mime_type == 'text/html': if rel in ('self', 'alternate'): handler.set_podcast_attr('link', url) class AtomContent(Target): WANT_TEXT = True def __init__(self): self._want_content = False def start(self, handler, attrs): self._mime_type = attrs.get('type', 'text') def end(self, handler, text): if self._mime_type == 'html': handler.set_episode_attr('description_html', text) elif self._mime_type == 'text': handler.set_episode_attr('description', squash_whitespace(text)) class RSSItemDescription(Target): """ RSS 2.0 almost encourages to put html content in item/description but content:encoded is the better source of html content and itunes:summary is known to contain the short textual description of the item. So use a heuristic to attribute text to either description or description_html, without overriding existing values. """ WANT_TEXT = True def __init__(self): self._want_content = False def end(self, handler, text): if is_html(text): if not handler.get_episode_attr('description_html'): handler.set_episode_attr('description_html', text.strip()) elif not handler.get_episode_attr('description'): # don't overwrite itunes:summary? handler.set_episode_attr('description', squash_whitespace(text)) class PodloveChapters(Target): SUPPORTED_VERSIONS = ('1.1', '1.2') def start(self, handler, attrs): version = attrs.get('version', '1.1') if version not in PodloveChapters.SUPPORTED_VERSIONS: logger.warning('Possible incompatible chapters version: %s', version) class PodloveChapter(Target): def start(self, handler, attrs): # Both the start and title attributes are mandatory if attrs.get('start') is None or attrs.get('title') is None: logger.warning('Invalid chapter (missing start and/or and title)') return chapter = { 'start': parse_time(attrs.get('start')), 'title': attrs.get('title'), } for optional in ('href', 'image'): value = attrs.get(optional) if value: chapter[optional] = value handler.get_episode_attr('chapters').append(chapter) class Namespace(): # Mapping of XML namespaces to prefixes as used in MAPPING below NAMESPACES = { # iTunes Podcasting, http://www.apple.com/itunes/podcasts/specs.html 'http://www.itunes.com/dtds/podcast-1.0.dtd': 'itunes', 'http://www.itunes.com/DTDs/Podcast-1.0.dtd': 'itunes', # Atom Syndication Format, http://tools.ietf.org/html/rfc4287 'http://www.w3.org/2005/Atom': 'atom', 'http://www.w3.org/2005/Atom/': 'atom', # Media RSS, http://www.rssboard.org/media-rss 'http://search.yahoo.com/mrss/': 'media', # From http://www.rssboard.org/media-rss#namespace-declaration: # "Note: There is a trailing slash in the namespace, although # there has been confusion around this in earlier versions." 'http://search.yahoo.com/mrss': 'media', # Podlove Simple Chapters, http://podlove.org/simple-chapters 'http://podlove.org/simple-chapters': 'psc', 'http://podlove.org/simple-chapters/': 'psc', # Purl RSS Content module 'http://purl.org/rss/1.0/modules/content/': 'content', } def __init__(self, attrs, parent=None): self.namespaces = self.parse_namespaces(attrs) self.parent = parent @staticmethod def parse_namespaces(attrs): """Parse namespace definitions from XML attributes >>> expected = {'': 'example'} >>> Namespace.parse_namespaces({'xmlns': 'example'}) == expected True >>> expected = {'foo': 'http://example.com/bar'} >>> Namespace.parse_namespaces({'xmlns:foo': ... 'http://example.com/bar'}) == expected True >>> expected = {'': 'foo', 'a': 'bar', 'b': 'bla'} >>> Namespace.parse_namespaces({'xmlns': 'foo', ... 'xmlns:a': 'bar', 'xmlns:b': 'bla'}) == expected True """ result = {} for key in attrs.keys(): if key == 'xmlns': result[''] = attrs[key] elif key.startswith('xmlns:'): result[key[6:]] = attrs[key] return result def lookup(self, prefix): """Look up a namespace URI based on the prefix""" current = self while current is not None: result = current.namespaces.get(prefix, None) if result is not None: return result current = current.parent return None def map(self, name): """Apply namespace prefixes for a given tag >>> namespace = Namespace({'xmlns:it': ... 'http://www.itunes.com/dtds/podcast-1.0.dtd'}, None) >>> namespace.map('it:duration') 'itunes:duration' >>> parent = Namespace({'xmlns:m': 'http://search.yahoo.com/mrss/', ... 'xmlns:x': 'http://example.com/'}, None) >>> child = Namespace({}, parent) >>> child.map('m:content') 'media:content' >>> child.map('x:y') # Unknown namespace URI '!x:y' >>> child.map('atom:link') # Undefined prefix 'atom:link' """ if ':' not in name: # <duration xmlns="http://..."/> namespace = '' namespace_uri = self.lookup(namespace) else: # <itunes:duration/> namespace, name = name.split(':', 1) namespace_uri = self.lookup(namespace) if namespace_uri is None: # Use of "itunes:duration" without xmlns:itunes="..." logger.warning('No namespace defined for "%s:%s"', namespace, name) return '%s:%s' % (namespace, name) if namespace_uri is not None: prefix = self.NAMESPACES.get(namespace_uri) if prefix is None and namespace: # Proper use of namespaces, but unknown namespace # logger.warning('Unknown namespace: %s', namespace_uri) # We prefix the tag name here to make sure that it does not # match any other tag below if we can't recognize the namespace name = '!%s:%s' % (namespace, name) else: name = '%s:%s' % (prefix, name) return name def file_basename_no_extension(filename): """ Returns filename without extension >>> file_basename_no_extension('/home/me/file.txt') 'file' >>> file_basename_no_extension('file') 'file' """ base = os.path.basename(filename) name, extension = os.path.splitext(base) return name def squash_whitespace(text): """ Combine multiple whitespaces into one, trim trailing/leading spaces >>> squash_whitespace(' some\t text with a lot of spaces ') 'some text with a lot of spaces' """ return re.sub('\s+', ' ', text.strip()) def parse_time(value): """Parse a time string into seconds See RFC2326, 3.6 "Normal Play Time" (HH:MM:SS.FRACT) >>> parse_time('0') 0 >>> parse_time('128') 128 >>> parse_time('00:00') 0 >>> parse_time('00:00:00') 0 >>> parse_time('00:20') 20 >>> parse_time('00:00:20') 20 >>> parse_time('01:00:00') 3600 >>> parse_time(' 03:02:01') 10921 >>> parse_time('61:08') 3668 >>> parse_time('25:03:30 ') 90210 >>> parse_time('25:3:30') 90210 >>> parse_time('61.08') 61 >>> parse_time('01:02:03.500') 3723 >>> parse_time(' ') 0 """ value = value.strip() if value == '': return 0 hours = minutes = seconds = fraction = 0 parsed = False m = re.match(r'(\d+)[:](\d\d?)[:](\d\d?)([.]\d+)?$', value) if not parsed and m: hours, minutes, seconds, fraction = m.groups() fraction = float(fraction or 0.0) parsed = True m = re.match(r'(\d+)[:](\d\d?)([.]\d+)?$', value) if not parsed and m: minutes, seconds, fraction = m.groups() fraction = float(fraction or 0.0) parsed = True m = re.match(r'(\d+)([.]\d+)?$', value) if not parsed and m: seconds, fraction = m.groups() fraction = float(fraction or 0.0) parsed = True if not parsed: try: seconds = int(value) except ValueError: logger.warning('Could not parse time value: "%s"', value) return 0 return (int(hours) * 60 + int(minutes)) * 60 + int(seconds) def parse_url(text): return normalize_feed_url(text.strip()) def parse_length(text): """ Parses a file length >>> parse_length(None) -1 >>> parse_length('0') -1 >>> parse_length('unknown') -1 >>> parse_length('100') 100 """ if text is None: return -1 try: return int(text.strip()) or -1 except ValueError: return -1 def parse_type(text): """ "normalize" a mime type >>> parse_type('text/plain') 'text/plain' >>> parse_type('text') 'application/octet-stream' >>> parse_type('') 'application/octet-stream' >>> parse_type(None) 'application/octet-stream' """ if not text or '/' not in text: # Maemo bug 10036 return 'application/octet-stream' return text def parse_pubdate(text): """Parse a date string into a Unix timestamp >>> parse_pubdate('Fri, 21 Nov 1997 09:55:06 -0600') 880127706 >>> parse_pubdate('2003-12-13T00:00:00+02:00') 1071266400 >>> parse_pubdate('2003-12-13T18:30:02Z') 1071340202 >>> parse_pubdate('Mon, 02 May 1960 09:05:01 +0100') -305049299 >>> parse_pubdate('') 0 >>> parse_pubdate('unknown') 0 """ if not text: return 0 parsed = parsedate_tz(text) if parsed is not None: try: pubtimeseconds = int(mktime_tz(parsed)) return pubtimeseconds except(OverflowError,ValueError): logger.warning('bad pubdate %s is before epoch or after end of time (2038)',parsed) return 0 try: parsed = time.strptime(text[:19], '%Y-%m-%dT%H:%M:%S') if parsed is not None: m = re.match(r'^(?:Z|([+-])([0-9]{2})[:]([0-9]{2}))$', text[19:]) if m: parsed = list(iter(parsed)) if m.group(1): offset = 3600 * int(m.group(2)) + 60 * int(m.group(3)) if m.group(1) == '-': offset = 0 - offset else: offset = 0 parsed.append(offset) return int(mktime_tz(tuple(parsed))) else: return int(time.mktime(parsed)) except Exception: pass logger.error('Cannot parse date: %s', repr(text)) return 0 # If you modify the mapping, don't forget to also update the documentation # section "Supported XML Elements and Attributes" in doc/index.rst MAPPING = { 'rss': RSS(), 'rss/channel': PodcastItem(), 'rss/channel/title': PodcastAttr('title', squash_whitespace), 'rss/channel/link': PodcastAttrRelativeLink('link'), 'rss/channel/description': PodcastAttr('description', squash_whitespace), 'rss/channel/image/url': PodcastAttrRelativeLink('cover_url'), 'rss/channel/itunes:image': PodcastAttrFromHref('cover_url'), 'rss/channel/itunes:type': PodcastAttrType('type', squash_whitespace), 'rss/channel/atom:link': PodcastAtomLink(), 'rss/channel/item': EpisodeItem(), 'rss/channel/item/guid': EpisodeGuid('guid'), 'rss/channel/item/title': EpisodeAttr('title', squash_whitespace), 'rss/channel/item/link': EpisodeAttrRelativeLink('link'), 'rss/channel/item/description': RSSItemDescription(), 'rss/channel/item/itunes:summary': EpisodeAttr('description', squash_whitespace), 'rss/channel/item/media:description': EpisodeAttr('description', squash_whitespace), 'rss/channel/item/itunes:subtitle': EpisodeAttr('subtitle', squash_whitespace), 'rss/channel/item/content:encoded': EpisodeAttr('description_html'), 'rss/channel/item/itunes:duration': EpisodeAttr('total_time', parse_time), 'rss/channel/item/pubDate': EpisodeAttr('published', parse_pubdate), 'rss/channel/item/atom:link': AtomLink(), 'rss/channel/item/itunes:image': EpisodeAttrFromHref('episode_art_url'), 'rss/channel/item/media:content': Enclosure('fileSize'), 'rss/channel/item/enclosure': Enclosure('length'), 'rss/channel/item/psc:chapters': PodloveChapters(), 'rss/channel/item/psc:chapters/psc:chapter': PodloveChapter(), # Basic support for Atom feeds 'atom:feed': PodcastItem(), 'atom:feed/atom:title': PodcastAttr('title', squash_whitespace), 'atom:feed/atom:subtitle': PodcastAttr('description', squash_whitespace), 'atom:feed/atom:icon': PodcastAttrRelativeLink('cover_url'), 'atom:feed/atom:link': PodcastAtomLink(), 'atom:feed/atom:entry': EpisodeItem(), 'atom:feed/atom:entry/atom:id': EpisodeAttr('guid'), 'atom:feed/atom:entry/atom:title': EpisodeAttr('title', squash_whitespace), 'atom:feed/atom:entry/atom:link': AtomLink(), 'atom:feed/atom:entry/atom:content': AtomContent(), 'atom:feed/atom:entry/content:encoded': EpisodeAttr('description_html'), 'atom:feed/atom:entry/atom:published': EpisodeAttr('published', parse_pubdate), 'atom:feed/atom:entry/atom:updated': EpisodeAttr('published', parse_pubdate, overwrite=False), 'atom:feed/atom:entry/media:group/media:description': EpisodeAttr('description', squash_whitespace), 'atom:feed/atom:entry/psc:chapters': PodloveChapters(), 'atom:feed/atom:entry/psc:chapters/psc:chapter': PodloveChapter(), } # Derive valid root elements from the supported MAPPINGs VALID_ROOTS = set(path.split('/')[0] for path in MAPPING.keys()) class FeedParseError(sax.SAXParseException, ValueError): """ Exception raised when asked to parse an invalid feed This exception allows users of this library to catch exceptions without having to import the XML parsing library themselves. """ pass class PodcastHandler(sax.handler.ContentHandler): def __init__(self, url, max_episodes): self.url = url self.max_episodes = max_episodes self.base = url self.text = None self.episodes = [] self.data = { 'title': file_basename_no_extension(url), 'episodes': self.episodes } self.path_stack = [] self.namespace = None def set_base(self, base): self.base = base def set_podcast_attr(self, key, value): self.data[key] = value def set_episode_attr(self, key, value): self.episodes[-1][key] = value def get_episode_attr(self, key, default=None): return self.episodes[-1].get(key, default) def add_episode(self): self.episodes.append({ # title 'description': '', # url 'published': 0, # guid 'link': '', 'total_time': 0, 'payment_url': None, 'enclosures': [], '_guid_is_permalink': False, 'chapters': [], }) def validate_episode(self): entry = self.episodes[-1] if len(entry['chapters']) == 0: del entry['chapters'] # Ensures `description` does not contain HTML if is_html(entry['description']): if 'description_html' not in entry: entry['description_html'] = entry['description'] entry['description'] = '' # Sets `description` to stripped `description_html` when empty if 'description_html' in entry and not entry['description']: entry['description'] = remove_html_tags(entry['description_html']) if 'guid' not in entry: if entry.get('link'): # Link element can serve as GUID entry['guid'] = entry['link'] else: if len(set(enclosure['url'] for enclosure in entry['enclosures'])) != 1: # Multi-enclosure feeds MUST have a GUID or the same URL for all enclosures self.episodes.pop() return # Maemo bug 12073 entry['guid'] = entry['enclosures'][0]['url'] if 'title' not in entry: if len(entry['enclosures']) != 1: self.episodes.pop() return entry['title'] = file_basename_no_extension( entry['enclosures'][0]['url']) if not entry.get('link') and entry.get('_guid_is_permalink'): entry['link'] = entry['guid'] del entry['_guid_is_permalink'] def add_enclosure(self, url, file_size, mime_type): self.episodes[-1]['enclosures'].append({ 'url': url, 'file_size': file_size, 'mime_type': mime_type, }) def startElement(self, name, attrs): self.namespace = Namespace(attrs, self.namespace) name = self.namespace.map(name) if not self.path_stack and name not in VALID_ROOTS: raise FeedParseError( msg='Unsupported feed type: {}'.format(name), exception=None, locator=self._locator, ) self.path_stack.append(name) target = MAPPING.get('/'.join(self.path_stack)) if target is not None: target.start(self, attrs) if target.WANT_TEXT: self.text = [] def characters(self, chars): if self.text is not None: self.text.append(chars) def endElement(self, name): target = MAPPING.get('/'.join(self.path_stack)) if target is not None: content = ''.join(self.text) if self.text is not None else '' target.end(self, content) self.text = None if self.namespace is not None: self.namespace = self.namespace.parent self.path_stack.pop() def parse(url, stream, max_episodes=0): """Parse a podcast feed from the given URL and stream :param url: the URL of the feed. Will be used to resolve relative links :param stream: file-like object containing the feed content :param max_episodes: maximum number of episodes to return. 0 (default) means no limit :returns: a dict with the parsed contents of the feed """ handler = PodcastHandler(url, max_episodes) try: sax.parse(stream, handler) except sax.SAXParseException as e: raise FeedParseError(e.getMessage(), e.getException(), e._locator) return handler.data def normalize_feed_url(url): """ Normalize and convert a URL. If the URL cannot be converted (invalid or unknown scheme), None is returned. This will also normalize feed:// and itpc:// to http://. >>> normalize_feed_url('itpc://example.org/podcast.rss') 'http://example.org/podcast.rss' If no URL scheme is defined (e.g. "curry.com"), we will simply assume the user intends to add a http:// feed. >>> normalize_feed_url('curry.com') 'http://curry.com/' It will also take care of converting the domain name to all-lowercase (because domains are not case sensitive): >>> normalize_feed_url('http://Example.COM/') 'http://example.com/' Some other minimalistic changes are also taken care of, e.g. a ? with an empty query is removed: >>> normalize_feed_url('http://example.org/test?') 'http://example.org/test' Leading and trailing whitespace is removed >>> normalize_feed_url(' http://example.com/podcast.rss ') 'http://example.com/podcast.rss' Incomplete (too short) URLs are not accepted >>> normalize_feed_url('http://') is None True Unknown protocols are not accepted >>> normalize_feed_url('gopher://gopher.hprc.utoronto.ca/file.txt') is None True """ url = url.strip() if not url or len(url) < 8: return None # Assume HTTP for URLs without scheme if '://' not in url: url = 'http://' + url scheme, netloc, path, query, fragment = urlparse.urlsplit(url) # Schemes and domain names are case insensitive scheme, netloc = scheme.lower(), netloc.lower() # Normalize empty paths to "/" if path == '': path = '/' # feed://, itpc:// and itms:// are really http:// if scheme in ('feed', 'itpc', 'itms'): scheme = 'http' if scheme not in ('http', 'https', 'ftp', 'file'): return None # urlunsplit might return "a slighty different, but equivalent URL" return urlparse.urlunsplit((scheme, netloc, path, query, fragment)) HTML_TEST = re.compile('<[a-z][a-z0-9]*(?:\s.*?>|\/?>)', re.IGNORECASE | re.DOTALL) def is_html(text): """Heuristically tell if text is HTML By looking for an open tag (more or less:) >>> is_html('<h1>HELLO</h1>') True >>> is_html('a < b < c') False """ return bool(HTML_TEST.search(text)) def remove_html_tags(html): """ Remove HTML tags from a string and replace numeric and named entities with the corresponding character, so the HTML text can be displayed in a simple text view. """ if html is None: return None # If we would want more speed, we could make these global re_strip_tags = re.compile('<[^>]*>') re_unicode_entities = re.compile('&#(\d{2,4});') re_html_entities = re.compile('&(.{2,8});') re_newline_tags = re.compile('(<br[^>]*>|<[/]?ul[^>]*>|</li>)', re.I) re_listing_tags = re.compile('<li[^>]*>', re.I) result = html # Convert common HTML elements to their text equivalent result = re_newline_tags.sub('\n', result) result = re_listing_tags.sub('\n * ', result) result = re.sub('<[Pp]>', '\n\n', result) # Remove all HTML/XML tags from the string result = re_strip_tags.sub('', result) # Convert numeric XML entities to their unicode character result = re_unicode_entities.sub(lambda x: chr(int(x.group(1))), result) # Convert named HTML entities to their unicode character result = re_html_entities.sub(lambda x: entitydefs.get(x.group(1), ''), result) # Convert more than two newlines to two newlines result = re.sub('([\r\n]{2})([\r\n])+', '\\1', result) return result.strip()
#!/usr/bin/python from setuptools import setup # SaltPY v0.1 setup.py setup( name = "SaltPY", version = "0.1", author = "Riley", author_email = "[email protected]", url = "https://github.com/sadminriley/", license = "MIT", install_requires=['paramiko'], dependency_links=[ "git+https://github.com/sadminriley/saltpy.git#egg=saltpy-0.1" ] )
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from .work_item_tracking_resource_reference import WorkItemTrackingResourceReference class WorkItemUpdate(WorkItemTrackingResourceReference): """WorkItemUpdate. :param url: :type url: str :param fields: :type fields: dict :param id: :type id: int :param relations: :type relations: :class:`WorkItemRelationUpdates <work-item-tracking.v4_0.models.WorkItemRelationUpdates>` :param rev: :type rev: int :param revised_by: :type revised_by: :class:`IdentityReference <work-item-tracking.v4_0.models.IdentityReference>` :param revised_date: :type revised_date: datetime :param work_item_id: :type work_item_id: int """ _attribute_map = { 'url': {'key': 'url', 'type': 'str'}, 'fields': {'key': 'fields', 'type': '{WorkItemFieldUpdate}'}, 'id': {'key': 'id', 'type': 'int'}, 'relations': {'key': 'relations', 'type': 'WorkItemRelationUpdates'}, 'rev': {'key': 'rev', 'type': 'int'}, 'revised_by': {'key': 'revisedBy', 'type': 'IdentityReference'}, 'revised_date': {'key': 'revisedDate', 'type': 'iso-8601'}, 'work_item_id': {'key': 'workItemId', 'type': 'int'} } def __init__(self, url=None, fields=None, id=None, relations=None, rev=None, revised_by=None, revised_date=None, work_item_id=None): super(WorkItemUpdate, self).__init__(url=url) self.fields = fields self.id = id self.relations = relations self.rev = rev self.revised_by = revised_by self.revised_date = revised_date self.work_item_id = work_item_id
import re def p1(inp): bots = {} plan = {} for line in inp: if line.startswith('value'): val, bot = re.findall('bot \d+|\d+', line) bots.setdefault(bot, []).append(int(val)) elif line.startswith('bot'): source, low, high = re.findall('\w+ \d+', line) plan[source] = (low, high) while plan: ready = [k for k, v in bots.items() if len(v) == 2] for r in ready: chips = bots.pop(r) target_low, target_high = plan.pop(r) bots.setdefault(target_low, []).append(min(chips)) bots.setdefault(target_high, []).append(max(chips)) return bots with open('input_10.txt') as f: out = p1(f) print out['output 0'][0] * out['output 1'][0] * out['output 2'][0]
import argparse import gzip import sys def find_peaks(chrom, chunk, w, d): # create a contiguous array from chunks offset = chunk[0][1] last = chunk[-1][2] cov = [0] * (last - offset) ave = [0] * (last - offset) for c, b, e, v in chunk: for i in range(b, e): idx = i - offset cov[i-offset] = v if len(cov) < w: return None # happens sometimes # first window win = cov[:w] tot = sum(win) ave[w//2] = tot/w # other windows for i in range(1, len(cov) -w): lose = cov[i-1] gain = cov[i+w-1] tot -= lose tot += gain ave[i + w//2] = tot/w # report peaks beg = 0 while True: if beg >= len(ave): break if ave[beg] >= d: end = beg while True: end += 1 if ave[end] < d: break ac = sum(ave[beg:end]) / (end - beg +1) yield (chrom, beg+offset, end+offset, ac) beg = end + 1 else: beg += 1 def overlap(peak, blacklist): chrom = peak[0] beg = peak[1] end = peak[2] if chrom not in blacklist: return 0 for b, e in blacklist[chrom]: if b >= beg and b <= end: return 1 if e >= beg and e <= end: return 1 if b <= beg and e >= end: return 1 return 0 def output(peak): print(peak[0], peak[1], peak[2], f'{peak[3]:.1f}') parser = argparse.ArgumentParser(description='Windowing threshold finder') parser.add_argument('bed', type=str, metavar='<bedfile>', help='path to bed file') parser.add_argument('--blacklist', required=False, type=str, metavar='<path>', help='list of regions to ignore') parser.add_argument('--window', required=False, type=int, default=100, metavar='<int>', help='window size [%(default)i]') parser.add_argument('--depth', required=False, type=int, default=10, metavar='<int>', help='minimum read depth [%(default)i]') arg = parser.parse_args() # get blacklist if there is one blacklist = {} if arg.blacklist: with open(arg.blacklist) as fp: for line in fp.readlines(): if line.startswith('#'): continue if line.startswith('\n'): continue f = line.split() chrom = f[0] beg = int(f[1]) end = int(f[2]) if chrom not in blacklist: blacklist[chrom] = [] blacklist[chrom].append( (beg, end) ) if arg.bed.endswith('.gz'): fp = gzip.open(arg.bed, 'rt') else: fp = open(arg.bed) # separate into chunks of windowsize chunk_chrom = None chunk_start = 1 chunk_end = 1 chunk = [] while True: line = fp.readline() if line == '': break if line.startswith('#'): continue if line.startswith('\n'): continue chrom, beg, end, cov = line.split() cov = float(cov) beg = int(beg) end = int(end) gap = beg - chunk_end if chunk_chrom != chrom or gap > arg.window: # finish previous chunk if len(chunk) > 0: for peak in find_peaks(chrom, chunk, arg.window, arg.depth): if peak is None: continue if overlap(peak, blacklist): continue output(peak) # start new chunk chunk_chrom = chrom chunk_start = beg chunk_end = end chunk = [] chunk.append( (chrom, beg, end, cov) ) else: chunk_end = end chunk.append( (chrom, beg, end, cov) ) # report last chunk for peak in find_peaks(chrom, chunk, arg.window, arg.depth): if peak is None: continue if overlap(peak, blacklist): continue output(peak)
print("Hello, {{greeting_recipient}}!")
# 3-8 Seeing The World bucket_list = ['japan', 'france', 'spain', 'america'] print(sorted(bucket_list)) print(bucket_list) print(sorted(bucket_list)) print(bucket_list) print(" ") bucket_list.reverse() print(bucket_list) bucket_list.reverse() print(bucket_list) bucket_list.sort() print(bucket_list) bucket_list.sort() print(bucket_list)
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-11-13 21:39:26 # @Author : Yafei ([email protected]) # @Link : http://www.cnblogs.com/mar-q/ # @Version : $Id$ import os import sys from django.http import HttpResponse from django.conf import settings from django.conf.urls import url from django.core.wsgi import get_wsgi_application def index(req): return HttpResponse('HelloWorld') urlpatterns=[ url(u'^$',index), ] DEBUG = os.environ.get('DEBUG','on')=='on' SECRET_KEY = os.environ.get('SECRET_KEY','{{secret_key}}') ALLOWED_HOSTS=['*'] settings.configure( DEBUG=DEBUG, SECRET_KEY=SECRET_KEY, ROOT_URLCONF=__name__, ALLOWED_HOSTS=ALLOWED_HOSTS, MIDDLEWARE=[ 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ) application = get_wsgi_application() if __name__ == "__main__": from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from kgan.models.GAN import GAN from kgan.layers.BatchNormalization import BatchNormalization import tensorflow as tf import tensorflow.keras.layers as layers import tensorflow.keras.models as models from tensorflow.keras.optimizers import RMSprop import numpy as np class WGANGP(GAN): @classmethod def name(cls): return ('wgangp') def __init__(self, input_shape, latent_dimension): super(WGANGP, self).__init__(input_shape, latent_dimension) self._gradient_penalty_weight = 10. def _create_discriminator(self): discriminator = models.Sequential(name='discriminator') discriminator.add( layers.Conv2D( filters=64, kernel_size=(4, 4), strides=(2, 2), padding='same', kernel_initializer=tf.keras.initializers.TruncatedNormal( stddev=0.02), use_bias=True, bias_initializer=tf.keras.initializers.Constant(value=0.0), input_shape=self.input_shape())) discriminator.add(layers.LeakyReLU(alpha=0.2)) discriminator.add( layers.Conv2D( filters=128, kernel_size=(4, 4), strides=(2, 2), padding='same', kernel_initializer=tf.keras.initializers.TruncatedNormal( stddev=0.02), use_bias=True, bias_initializer=tf.keras.initializers.Constant(value=0.0))) discriminator.add(BatchNormalization(is_training=True)) discriminator.add(layers.LeakyReLU(alpha=0.2)) discriminator.add(layers.Flatten()) discriminator.add( layers.Dense( units=1024, kernel_initializer=tf.keras.initializers.RandomNormal( stddev=0.02), bias_initializer=tf.keras.initializers.Constant(value=0.0))) discriminator.add(BatchNormalization(is_training=True)) discriminator.add(layers.LeakyReLU(alpha=0.2)) discriminator.add( layers.Dense( units=1, kernel_initializer=tf.keras.initializers.RandomNormal( stddev=0.02), bias_initializer=tf.keras.initializers.Constant(value=0.0))) self._discriminator = discriminator self._discriminator.summary() return (True) def _create_generator(self): generator_shape = (7, 7, 128) generator_size = np.prod(generator_shape) generator = models.Sequential(name='generator') generator.add( layers.Dense( units=generator_size, kernel_initializer=tf.keras.initializers.RandomNormal( stddev=0.02), bias_initializer=tf.keras.initializers.Constant(value=0.0), input_shape=(self.latent_dimension(), ), )) generator.add(BatchNormalization(is_training=True)) generator.add(layers.ReLU()) generator.add(layers.Reshape(generator_shape)) generator.add( layers.Conv2DTranspose( filters=64, kernel_size=(4, 4), strides=(2, 2), padding='same', kernel_initializer=tf.keras.initializers.RandomNormal( stddev=0.02), use_bias=True, bias_initializer=tf.keras.initializers.Constant(value=0.0))) generator.add(BatchNormalization(is_training=True)) generator.add(layers.ReLU()) generator.add( layers.Conv2DTranspose( filters=1, kernel_size=(4, 4), strides=(2, 2), padding='same', kernel_initializer=tf.keras.initializers.RandomNormal( stddev=0.02), use_bias=True, bias_initializer=tf.keras.initializers.Constant(value=0.0))) generator.add(layers.Activation(tf.keras.activations.tanh)) self._generator = generator self._generator.summary() return (True) def _create_generator_optimizer(self, learning_rate): optimizer = RMSprop(learning_rate=5 * learning_rate) return (optimizer) def _create_discriminator_optimizer(self, learning_rate): optimizer = RMSprop(learning_rate=learning_rate) return (optimizer) def set_gradient_penalty_weight(self, gradient_penalty_weight): self._gradient_penalty_weight = gradient_penalty_weight def gradient_penalty_weight(self): return (self._gradient_penalty_weight) def _discriminator_loss(self, real_predictions, fake_predictions): # Compute discriminator loss. real_image_loss = -tf.reduce_mean(real_predictions) fake_image_loss = tf.reduce_mean(fake_predictions) discriminator_loss = real_image_loss + fake_image_loss return (discriminator_loss) def _generator_loss(self, fake_predictions): # Compute generator loss. generator_loss = -tf.reduce_mean(fake_predictions) return (generator_loss) def _create_generator_inputs(self, input_batch, number_of_samples): generator_inputs = tf.random.uniform( [number_of_samples, self.latent_dimension()], minval=-1, maxval=1) return (generator_inputs) def _gradient_penalty(self, real_images, fake_images): with tf.GradientTape() as gp_tape: alpha = tf.random.uniform([self.batch_size()], 0., 1., dtype=tf.float32) alpha = tf.reshape(alpha, (-1, 1, 1, 1)) sample_images = real_images + alpha * (fake_images - real_images) gp_tape.watch(sample_images) sample_predictions = self._discriminator( sample_images, training=False) if isinstance(sample_predictions, tuple): sample_predictions = sample_predictions[0] gradients = gp_tape.gradient(sample_predictions, sample_images) gradients_l2_norm = tf.sqrt( tf.reduce_sum(tf.square(gradients), axis=[1, 2, 3])) gradient_penalty = tf.reduce_mean((gradients_l2_norm - 1)**2) return (gradient_penalty) def _update_discriminator(self, input_batch): real_images, _ = input_batch # Sample random points in the latent space. generator_inputs = self._create_generator_inputs( input_batch, self.batch_size()) # Generate fake images using these random points. fake_images = self._generator(generator_inputs) # Train the discriminator. with tf.GradientTape() as tape: # Compute discriminator's predictions for real images. real_predictions = self._discriminator(real_images) # Compute discriminator's predictions for generated images. fake_predictions = self._discriminator(fake_images) #discriminator_loss = tf.reduce_mean(-real_predictions) + tf.reduce_mean(fake_predictions) discriminator_loss = self._discriminator_loss( real_predictions, fake_predictions) # Compute gradient penalty using real and fake images. gradient_penalty = self._gradient_penalty(real_images, fake_images) # Update discriminator loss using gradient penalty value. discriminator_loss = discriminator_loss + self.gradient_penalty_weight( ) * gradient_penalty gradients_of_discriminator = tape.gradient( discriminator_loss, self._discriminator.trainable_variables) self._discriminator_optimizer.apply_gradients( zip(gradients_of_discriminator, self._discriminator.trainable_variables)) return (discriminator_loss)
"""Define tests for the Acmeda config flow.""" import aiopulse from asynctest.mock import patch import pytest from homeassistant import data_entry_flow from homeassistant.components.acmeda.const import DOMAIN from homeassistant.config_entries import SOURCE_USER from homeassistant.const import CONF_HOST from tests.common import MockConfigEntry DUMMY_HOST1 = "127.0.0.1" DUMMY_HOST2 = "127.0.0.2" CONFIG = { CONF_HOST: DUMMY_HOST1, } @pytest.fixture def mock_hub_discover(): """Mock the hub discover method.""" with patch("aiopulse.Hub.discover") as mock_discover: yield mock_discover @pytest.fixture def mock_hub_run(): """Mock the hub run method.""" with patch("aiopulse.Hub.run") as mock_run: yield mock_run async def async_generator(items): """Async yields items provided in a list.""" for item in items: yield item async def test_show_form_no_hubs(hass, mock_hub_discover): """Test that flow aborts if no hubs are discovered.""" mock_hub_discover.return_value = async_generator([]) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "all_configured" # Check we performed the discovery assert len(mock_hub_discover.mock_calls) == 1 async def test_show_form_one_hub(hass, mock_hub_discover, mock_hub_run): """Test that a config is created when one hub discovered.""" dummy_hub_1 = aiopulse.Hub(DUMMY_HOST1) dummy_hub_1.id = "ABC123" mock_hub_discover.return_value = async_generator([dummy_hub_1]) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == dummy_hub_1.id assert result["result"].data == { "host": DUMMY_HOST1, } # Check we performed the discovery assert len(mock_hub_discover.mock_calls) == 1 async def test_show_form_two_hubs(hass, mock_hub_discover): """Test that the form is served when more than one hub discovered.""" dummy_hub_1 = aiopulse.Hub(DUMMY_HOST1) dummy_hub_1.id = "ABC123" dummy_hub_2 = aiopulse.Hub(DUMMY_HOST1) dummy_hub_2.id = "DEF456" mock_hub_discover.return_value = async_generator([dummy_hub_1, dummy_hub_2]) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" # Check we performed the discovery assert len(mock_hub_discover.mock_calls) == 1 async def test_create_second_entry(hass, mock_hub_run, mock_hub_discover): """Test that a config is created when a second hub is discovered.""" dummy_hub_1 = aiopulse.Hub(DUMMY_HOST1) dummy_hub_1.id = "ABC123" dummy_hub_2 = aiopulse.Hub(DUMMY_HOST2) dummy_hub_2.id = "DEF456" mock_hub_discover.return_value = async_generator([dummy_hub_1, dummy_hub_2]) MockConfigEntry(domain=DOMAIN, unique_id=dummy_hub_1.id, data=CONFIG).add_to_hass( hass ) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == dummy_hub_2.id assert result["result"].data == { "host": DUMMY_HOST2, } async def test_already_configured(hass, mock_hub_discover): """Test that flow aborts when all hubs are configured.""" dummy_hub_1 = aiopulse.Hub(DUMMY_HOST1) dummy_hub_1.id = "ABC123" mock_hub_discover.return_value = async_generator([dummy_hub_1]) MockConfigEntry(domain=DOMAIN, unique_id=dummy_hub_1.id, data=CONFIG).add_to_hass( hass ) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == "abort" assert result["reason"] == "all_configured"
class Point(object): x = None y = None tuple = tuple() def __init__(self, x, y): if x < 0: raise ValueError('Point::new - X must be positive instead of {}'.format(x)) if y < 0: raise ValueError('Point::new - Y must be positive instead of {}'.format(y)) self.x = x self.y = y self.tuple = (x, y) def __str__(self): return str([self.x, self.y]) def __repr__(self): return str([self.x, self.y]) def __eq__(self, other): if other is None: return False return self.x == other.x \ and self.y == other.y
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for translate ops.""" import numpy as np import pytest import scipy import tensorflow as tf from PIL import Image from tensorflow_addons.image import translate_ops from tensorflow_addons.utils import test_utils _DTYPES = { tf.dtypes.uint8, tf.dtypes.int32, tf.dtypes.int64, tf.dtypes.float16, tf.dtypes.float32, tf.dtypes.float64, } @pytest.mark.usefixtures("maybe_run_functions_eagerly") @pytest.mark.parametrize("dtype", _DTYPES) def test_translate(dtype): image = tf.constant( [[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1]], dtype=dtype ) translation = tf.constant([-1, -1], dtype=tf.float32) image_translated = translate_ops.translate(image, translation) np.testing.assert_equal( image_translated.numpy(), [[1, 0, 1, 0], [0, 1, 0, 0], [1, 0, 1, 0], [0, 0, 0, 0]], ) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_translations_to_projective_transforms(): translation = tf.constant([-1, -1], dtype=tf.float32) transform = translate_ops.translations_to_projective_transforms(translation) np.testing.assert_equal(transform.numpy(), [[1, 0, 1, 0, 1, 1, 0, 0]]) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_translate_xy(): image = np.random.randint(low=0, high=255, size=(4, 4, 3), dtype=np.uint8) translate = np.random.randint(low=0, high=4, size=(2,), dtype=np.uint8) translate = tf.constant(translate) color = tf.constant([255, 0, 255], tf.dtypes.uint8) tf_image = tf.constant(image) pil_image = Image.fromarray(image) translated = translate_ops.translate_xy( image=tf_image, translate_to=tf.constant(translate), replace=color ) expected = pil_image.rotate( angle=0, resample=Image.NEAREST, translate=tuple(translate.numpy()), fillcolor=tuple(color.numpy()), ) np.testing.assert_equal(translated.numpy(), expected) @pytest.mark.usefixtures("maybe_run_functions_eagerly") @pytest.mark.parametrize("dtype", _DTYPES - {tf.dtypes.float16}) def test_translate_xy_scalar_replace(dtype): image = np.random.randint(low=0, high=128, size=(4, 4, 3)).astype( dtype.as_numpy_dtype ) translate_to = np.random.randint(low=0, high=4, size=(2,)) result = translate_ops.translate_xy( image=image, translate_to=translate_to, replace=1 ) expected = scipy.ndimage.shift( input=image, shift=(translate_to[1], translate_to[0], 0), order=0, mode="constant", cval=1, ) test_utils.assert_allclose_according_to_type(result.numpy(), expected)
from Queue import Queue def get_input(): first_line = map(int, raw_input().split()) second_line = map(int, raw_input().split()) return first_line[0], first_line[1], second_line def process_data(N, K, data): counter = 0 all = 0 stack = [] Q = Queue(maxsize = 1000000) for i in range(len(data)): stack.append(data[i]) for i in range(N): shift = (3 - (stack[i] + counter) % 3) % 3 all += shift if not i <= K - 2: counter -= Q.get() counter += shift Q.put(shift) return all def main(): N, K, data = get_input() print process_data(N, K, data) if __name__ == '__main__': main()
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Tests teachers + agent implementations, assuming parser to conversations format has already been done and teachers/agents already created. `test_agents.py` includes functions for generating the raw data used in this file as well as the data parser. """ import unittest import copy import parlai.core.tod.tod_core as tod_core import parlai.core.tod.tod_test_utils.test_agents as test_agents class TestTodAgentsAndTeachersBase(unittest.TestCase): """ Base class with convenience functions for setting up agents, dumping text, etc. """ def setup_agent_or_teacher(self, class_type, round_opt, opt): full_opts = {**round_opt, **opt} full_opts["datatype"] = "DUMMY" full_opts["datafile"] = "DUMMY" full_opts["episodes_randomization_seed"] = -1 # no random here return class_type(full_opts) def dump_single_utt_per_episode_agent_text(self, class_type, round_opt, opt): """ Continuously dumps data from an agent until it's done. """ agent = self.setup_agent_or_teacher(class_type, round_opt, opt) result = [] while not agent.epoch_done(): result.append(agent.act()["text"]) agent.reset() return result def dump_teacher_text(self, class_type, round_opt, opt): """ Array where [episode_idx][turn_idx][text=0,label=1] """ teacher = self.setup_agent_or_teacher(class_type, round_opt, opt) data = [] here = [] for x, new in teacher.setup_data("dummy"): if new and len(here) > 0: data.append(copy.deepcopy(here)) here = [] here.append([x["text"], x["label"]]) if len(here) > 0: data.append(here) return data def _test_roundDataCorrect(self): """ Convenience function that runs on different episode setups. Prefix with `_` since not all tests necessarily need this """ self._test_roundDataCorrect_helper(test_agents.EPISODE_SETUP__UTTERANCES_ONLY) self._test_roundDataCorrect_helper(test_agents.EPISODE_SETUP__SINGLE_API_CALL) self._test_roundDataCorrect_helper(test_agents.EPISODE_SETUP__MULTI_ROUND) self._test_roundDataCorrect_helper(test_agents.EPISODE_SETUP__MULTI_EPISODE) def _test_roundDataCorrect_helper(self, config): """ Implement this in downstream classes to define what is "correct" for a round (Ie checking serialization data for a given class vs only checking utterances) """ raise RuntimeError("Not implemented") class TestSystemTeacher(TestTodAgentsAndTeachersBase): def test_apiSchemas_with_yesApiSchemas(self): """ Tests to make sure that data from first turn is correct when we include API Schemas. """ values = self.dump_teacher_text( test_agents.SystemTeacher, test_agents.EPISODE_SETUP__SINGLE_API_CALL, {"api_schemas": True}, ) self.assertEqual( values[0][0][0], "APIS: " + tod_core.SerializationHelpers.list_of_maps_to_str( test_agents.make_api_schemas_machine(2) ), ) def test_apiSchemas_with_noApiSchemas(self): """ Tests to make sure that data from first turn is correct when we do not include API Schemas. """ values = self.dump_teacher_text( test_agents.SystemTeacher, test_agents.EPISODE_SETUP__SINGLE_API_CALL, {"api_schemas": False}, ) self.assertEqual(values[0][0][0], "APIS: ") def _test_roundDataCorrect_helper(self, config): max_rounds = config[test_agents.TEST_NUM_ROUNDS_OPT_KEY] values = self.dump_teacher_text(test_agents.SystemTeacher, config, {}) for episode_idx, episode in enumerate(values): utts = test_agents.get_round_utts(episode_idx, max_rounds) comp = [] for utt in utts: comp.append([utt[0], utt[1]]) comp.append([utt[2], utt[3]]) # Skip grounding turn cause we check it in the other teachers self.assertEqual(episode[1:], comp) def test_roundDataCorrect(self): self._test_roundDataCorrect() class TestUserTeacher(TestTodAgentsAndTeachersBase): def _test_roundDataCorrect_helper(self, config): """ Make sure that all of the User teacher data is correct relative to ground truth, including grounding turn. """ max_rounds = config[test_agents.TEST_NUM_ROUNDS_OPT_KEY] values = self.dump_teacher_text(test_agents.UserSimulatorTeacher, config, {}) for episode_idx, episode in enumerate(values): utts = test_agents.get_round_utts(episode_idx, max_rounds) comp = [] comp.append( [ "GOAL: " + tod_core.SerializationHelpers.list_of_maps_to_str( test_agents.make_goal_calls_machine(max_rounds) ), utts[0][0], ] ) last_sys = utts[0][3] for i in range(1, len(utts)): comp.append([last_sys, utts[i][0]]) last_sys = utts[i][3] self.assertEqual(episode, comp) def test_roundDataCorrect(self): self._test_roundDataCorrect() class TestGoalAgent(TestTodAgentsAndTeachersBase): def _test_roundDataCorrect_helper(self, config): """ Make sure goal agent data is correct with (possibly) multiple goals. """ max_rounds = config[test_agents.TEST_NUM_ROUNDS_OPT_KEY] max_episodes = config[test_agents.TEST_NUM_EPISODES_OPT_KEY] values = self.dump_single_utt_per_episode_agent_text( test_agents.GoalAgent, config, {} ) goal_text = [ "GOAL: " + tod_core.SerializationHelpers.list_of_maps_to_str( test_agents.make_goal_calls_machine(max_rounds) ) for _ in range(max_episodes) ] self.assertEqual(values, goal_text) def test_roundDataCorrect(self): self._test_roundDataCorrect() class TestApiSchemaAgent(TestTodAgentsAndTeachersBase): def _test_roundDataCorrect_helper(self, config): """ Make sure api schema information is correct with (possibly) multiple goals. """ max_rounds = config[test_agents.TEST_NUM_ROUNDS_OPT_KEY] max_episodes = config[test_agents.TEST_NUM_EPISODES_OPT_KEY] values = self.dump_single_utt_per_episode_agent_text( test_agents.ApiSchemaAgent, config, {} ) apis_texts = [ "APIS: " + tod_core.SerializationHelpers.list_of_maps_to_str( test_agents.make_api_schemas_machine(max_rounds) ) for _ in range(max_episodes) ] self.assertEqual(values, apis_texts) def test_roundDataCorrect(self): self._test_roundDataCorrect() class TestSingleGoalAgent(TestTodAgentsAndTeachersBase): def _test_roundDataCorrect_helper(self, config): """ Make sure single goal agent correctly splits conversations with multiple goals into single goals for the agent. """ max_rounds = config[test_agents.TEST_NUM_ROUNDS_OPT_KEY] max_episodes = config[test_agents.TEST_NUM_EPISODES_OPT_KEY] values = self.dump_single_utt_per_episode_agent_text( test_agents.SingleGoalAgent, config, {} ) goal_text = [] for _ in range(max_episodes): goals = test_agents.make_goal_calls_machine(max_rounds) for x in goals: goal_text.append( "GOAL: " + tod_core.SerializationHelpers.list_of_maps_to_str([x]) ) self.assertEqual(values, goal_text) def test_roundDataCorrect(self): self._test_roundDataCorrect() class TestSingleApiSchemaAgent(TestTodAgentsAndTeachersBase): def _test_roundDataCorrect_helper(self, config): """ Make sure single api schema agent correctly splits conversations with multiple goals into single goals for the agent. """ max_rounds = config[test_agents.TEST_NUM_ROUNDS_OPT_KEY] max_episodes = config[test_agents.TEST_NUM_EPISODES_OPT_KEY] values = self.dump_single_utt_per_episode_agent_text( test_agents.SingleApiSchemaAgent, config, {} ) apis_text = [] for _ in range(max_episodes): apis = test_agents.make_api_schemas_machine(max_rounds) for x in apis: apis_text.append( "APIS: " + tod_core.SerializationHelpers.list_of_maps_to_str([x]) ) self.assertEqual(values, apis_text) def test_roundDataCorrect(self): self._test_roundDataCorrect() class TestSingleGoalWithSingleApiSchemaAgent(TestTodAgentsAndTeachersBase): """ Make sure the SingleGoal + SingleApiSchema agents correspond. """ def _test_roundDataCorrect_helper(self, config): goals = self.dump_single_utt_per_episode_agent_text( test_agents.SingleGoalAgent, config, {} ) apis = self.dump_single_utt_per_episode_agent_text( test_agents.SingleApiSchemaAgent, config, {} ) for i in range(len(goals)): goal = tod_core.SerializationHelpers.str_to_goals(goals[i][len("GOALS:") :]) api = tod_core.SerializationHelpers.str_to_api_schemas( apis[i][len("APIS:") :] ) self.assertEqual( goal[0].get("api_name", None), api[0].get("api_name", None) ) def test_roundDataCorrect(self): self._test_roundDataCorrect() class TestLowShot(TestTodAgentsAndTeachersBase): FEW_SHOT_SAMPLES = [0, 1, 5, 15] PERCENTAGES = [0, 0.1, 0.3, 0.5] def setup_agent_or_teacher(self, class_type, round_opt, opt): full_opts = {**round_opt, **opt} full_opts["datatype"] = "DUMMY" full_opts["datafile"] = "DUMMY" return class_type(full_opts) def test_few_shot_lengths_correct(self): def helper(n_shot): values = self.dump_teacher_text( test_agents.SystemTeacher, test_agents.EPISODE_SETUP__MULTI_EPISODE_BS, {"episodes_randomization_seed": 0, "n_shot": n_shot}, ) self.assertEqual(len(values), n_shot) for i in self.FEW_SHOT_SAMPLES: helper(i) def _test_subsets(self, data_dumps): for i in range(len(data_dumps) - 1): small = data_dumps[i] larger = data_dumps[i + 1] for i, episode in enumerate(small): self.assertEqual(episode, larger[i]) def test_few_shot_subset(self): """ Make sure specifying few-shot by n-shot works correctly. """ def helper(n_shot, seed): return self.dump_teacher_text( test_agents.SystemTeacher, test_agents.EPISODE_SETUP__MULTI_EPISODE, {"episodes_randomization_seed": seed, "n_shot": n_shot}, ) data_dumps_seed_zero = [helper(i, 0) for i in self.FEW_SHOT_SAMPLES] self._test_subsets(data_dumps_seed_zero) data_dumps_seed_three = [helper(i, 3) for i in self.FEW_SHOT_SAMPLES] self._test_subsets(data_dumps_seed_three) self.assertNotEqual(data_dumps_seed_zero[-1], data_dumps_seed_three[-1]) def test_percent_shot_lengths_correct(self): """ Make sure specifying few-shot by percentages works correctly. """ def helper(percent_shot, correct): values = self.dump_teacher_text( test_agents.SystemTeacher, test_agents.EPISODE_SETUP__MULTI_EPISODE_BS, # 35 episodes {"episodes_randomization_seed": 0, "percent_shot": percent_shot}, ) self.assertEqual(len(values), correct) helper(0, 0) helper(0.1, 3) helper(0.3, 10) def test_percent_shot_subset(self): """ Make sure specifying few-shot by percentages works correctly. """ def helper(percent_shot, seed): return self.dump_teacher_text( test_agents.SystemTeacher, test_agents.EPISODE_SETUP__MULTI_EPISODE_BS, # 35 episodes {"episodes_randomization_seed": seed, "percent_shot": percent_shot}, ) data_dumps_seed_zero = [helper(i, 0) for i in self.PERCENTAGES] self._test_subsets(data_dumps_seed_zero) data_dumps_seed_three = [helper(i, 3) for i in self.PERCENTAGES] self._test_subsets(data_dumps_seed_three) def test_correct_throw_when_both_shots_defined(self): self.assertRaises( RuntimeError, self.dump_teacher_text, test_agents.SystemTeacher, test_agents.EPISODE_SETUP__MULTI_EPISODE_BS, # 35 episodes {"episodes_randomization_seed": 0, "percent_shot": 0.3, "n_shot": 3}, ) if __name__ == "__main__": unittest.main()
""" *Simple-Attribute-Select* """
# -*- coding: utf-8 -*- from copy import copy from pandas import Grouper from shapely.geometry import LineString from .trajectory import Trajectory from .trajectory_collection import TrajectoryCollection from .geometry_utils import measure_distance_spherical, measure_distance_euclidean class TrajectorySplitter: """ Splitter base class """ def __init__(self, traj): """ Create TrajectoryGeneralizer Parameters ---------- traj : Trajectory/TrajectoryCollection """ self.traj = traj def split(self, **kwargs): """ Split the input Trajectory/TrajectoryCollection. Parameters ---------- kwargs : any type Split parameters, differs by splitter Returns ------- TrajectoryCollection Split trajectories """ if isinstance(self.traj, Trajectory): return self._split_traj(self.traj, **kwargs) elif isinstance(self.traj, TrajectoryCollection): return self._split_traj_collection(**kwargs) else: raise TypeError def _split_traj_collection(self, **kwargs): trips = [] for traj in self.traj: for x in self._split_traj(traj, **kwargs): if x.get_length() > self.traj.min_length: trips.append(x) result = copy(self.traj) result.trajectories = trips return result def _split_traj(self, traj, **kwargs): return traj class TemporalSplitter(TrajectorySplitter): """ Split trajectories into subtrajectories using regular time intervals. Parameters ---------- mode : str Split mode Examples -------- >>> mpd.TemporalSplitter(traj).split(mode="year") """ def _split_traj(self, traj, mode='day'): result = [] if mode == 'day': grouped = traj.df.groupby(Grouper(freq="D")) elif mode == 'month': grouped = traj.df.groupby(Grouper(freq="M")) elif mode == 'year': grouped = traj.df.groupby(Grouper(freq="Y")) else: raise ValueError('Invalid split mode {}. Must be one of [day, month, year]'.format(mode)) for key, values in grouped: if len(values) > 1: result.append(Trajectory(values, '{}_{}'.format(traj.id, key))) return TrajectoryCollection(result) class ObservationGapSplitter(TrajectorySplitter): """ Split trajectories into subtrajectories whenever there is a gap in the observations. Parameters ---------- gap : datetime.timedelta Time gap threshold Examples -------- >>> mpd.ObservationGapSplitter(traj).split(gap=timedelta(hours=1)) """ def _split_traj(self, traj, gap): result = [] temp_df = traj.df.copy() temp_df['t'] = temp_df.index temp_df['gap'] = temp_df['t'].diff() > gap temp_df['gap'] = temp_df['gap'].apply(lambda x: 1 if x else 0).cumsum() dfs = [group[1] for group in temp_df.groupby(temp_df['gap'])] for i, df in enumerate(dfs): df = df.drop(columns=['t', 'gap']) if len(df) > 1: result.append(Trajectory(df, '{}_{}'.format(traj.id, i))) return TrajectoryCollection(result) class SpeedSplitter(TrajectorySplitter): """ Split trajectories if there are no speed measurements above the speed limit for the specified duration. Parameters ---------- speed : float Speed limit duration : datetime.timedelta Minimum stop duration Examples -------- >>> mpd.SpeedSplitter(traj).split(speed=10, duration=timedelta(minutes=5)) """ def _split_traj(self, traj, speed, duration): traj = traj.copy() speed_col_name = traj.get_speed_column_name() if speed_col_name not in traj.df.columns: traj.add_speed(overwrite=True) traj.df = traj.df[traj.df[speed_col_name] >= speed] return ObservationGapSplitter(traj).split(gap=duration)
# The following comments couldn't be translated into the new config version: #, import FWCore.ParameterSet.Config as cms #------------------ # clustering: #------------------ # BasicCluster producer from RecoEcal.EgammaClusterProducers.cosmicBasicClusters_cfi import * # SuperCluster producer from RecoEcal.EgammaClusterProducers.cosmicSuperClusters_cfi import * # SuperCluster with Preshower producer #include "RecoEcal/EgammaClusterProducers/data/SuperClustersWithPreshower.cfi" # create sequence for clustering cosmicClusteringTask = cms.Task(cosmicBasicClusters, cosmicSuperClusters) cosmicClusteringSequence = cms.Sequence(cosmicClusteringTask)
import os # test on CPU os.environ["CUDA_VISIBLE_DEVICES"] = "" os.environ["JAX_PLATFORMS"] = "cpu"
"""Implemented arrival classes for different distributions""" from abc import abstractmethod from math import exp from nc_arrivals.arrival import Arrival class ArrivalDistribution(Arrival): """Abstract class for arrival processes that are of a distinct distribution.""" @abstractmethod def sigma(self, theta: float) -> float: """ sigma(theta) :param theta: mgf parameter """ pass @abstractmethod def rho(self, theta: float) -> float: """ rho(theta) :param theta: mgf parameter """ pass @abstractmethod def is_discrete(self) -> bool: """ :return True if the arrival distribution is discrete, False if not """ pass @abstractmethod def average_rate(self) -> float: pass def to_name(self) -> str: return self.__class__.__name__ def transient_bound(self, theta: float, delta_time: int) -> float: if delta_time < 0: raise ValueError(f"time is non-negative") return exp( theta * (self.rho(theta=theta) * delta_time + self.sigma(theta=theta))) @abstractmethod def to_value(self, number=1, show_m=False) -> str: pass
import socket from socketWrapper import * import json from handleMessages import HandleMessages IP = "127.0.0.1" PORT = 2020 class SocketConsumer: def __init__(self, _id_consumer): self._id_consumer = _id_consumer self._receiver_socket = None self._socket_wrapper = None self._handle_messages = HandleMessages(_id_consumer) self.open_socket() def open_socket(self): self._receiver_socket = socket.socket() _flag = True while _flag: try: self._receiver_socket.connect((IP, PORT)) print(f"the sender socket is up and connected to receiver{self._id_consumer}.") _flag = False except Exception: print("the sender socket is not up still.") self._socket_wrapper = SocketWrapper(self._receiver_socket) def close_socket(self): self._receiver_socket.close() def consume_data(self): data = json.loads(self._socket_wrapper.read_with_len()) self._handle_messages.handler(data) def run(self): non_stop = True # trying to get an images files from the sender all the time. while non_stop: self.consume_data() self.close_socket()
from __future__ import print_function, division, absolute_import from time import sleep from distributed.system_monitor import SystemMonitor def test_SystemMonitor(): sm = SystemMonitor() a = sm.update() sleep(0.01) b = sm.update() assert sm.cpu assert sm.memory assert set(a) == set(b) assert all(rb >= 0 for rb in sm.read_bytes) assert all(wb >= 0 for wb in sm.write_bytes) assert all(len(q) == 3 for q in sm.quantities.values()) assert 'cpu' in repr(sm) def test_count(): sm = SystemMonitor(n=5) assert sm.count == 1 sm.update() assert sm.count == 2 for i in range(10): sm.update() assert sm.count == 12 for v in sm.quantities.values(): assert len(v) == 5 def test_range_query(): sm = SystemMonitor(n=5) assert all(len(v) == 1 for v in sm.range_query(0).values()) assert all(len(v) == 0 for v in sm.range_query(123).values()) sm.update() sm.update() sm.update() assert all(len(v) == 4 for v in sm.range_query(0).values()) assert all(len(v) == 3 for v in sm.range_query(1).values()) for i in range(10): sm.update() assert all(len(v) == 4 for v in sm.range_query(10).values()) assert all(len(v) == 5 for v in sm.range_query(0).values())
"""Dropping old integration with readability left overs Revision ID: f4543055e780 Revises: f5978c8a8740 Create Date: 2020-11-08 20:28:31.145702 """ import logging import sqlalchemy as sa from alembic import op logger = logging.getLogger(__name__) revision = 'f4543055e780' down_revision = 'f5978c8a8740' branch_labels = None depends_on = None def upgrade(): logger.info('dropping readability_key column from user') op.drop_column('user', 'readability_key') def downgrade(): op.add_column('user', sa.Column('readability_key', sa.String(), nullable=True))
# ===================================================================================================================== # # Tensor Abstraction Layer Objects 0.1.0-ALPHA # MACHINE LEARNING EXPERIMENTS # # Framework design by Pantelis I. Kaplanoglou # Licensed under the MIT License # # ===================================================================================================================== import tensorflow as tf import os import sys import json import random import numpy as np import TALOS.Constants as tcc from TALOS.Core import Logger, MinuteUID, SysParams, Exec, ERLString from TALOS.Utils import OperatingSystemSignature from TALOS.FileSystem import Storage, BaseFolders from TALOS.Metrics import ClassificationMetrics, ClassificationBest from TALOS.HyperParams import NNLearnConfig #------------------------------------------------------------------------------------ def GetModelAndFoldCommandArguments(p_sDefaultModelName=None, p_nDefaultFoldNumber=10, p_nDefaultIsEvaluating=False): sModelName=p_sDefaultModelName nFoldNumber=p_nDefaultFoldNumber bIsEvaluating=p_nDefaultIsEvaluating if len(sys.argv) > 1: sModelName=sys.argv[1] if len(sys.argv) > 2: nFoldNumber=int(sys.argv[2]) if len(sys.argv) > 3: bIsEvaluating=(int(sys.argv[3]) == 1) return sModelName, nFoldNumber, bIsEvaluating #------------------------------------------------------------------------------------ #================================================================================================== class MonitoringSettings(object): #------------------------------------------------------------------------------------ def __init__(self, p_sFileName): #........ | Instance Attributes | .............................................. self.FileName = p_sFileName self.ModelsToCompare=None self.ModelTitles=None self.ModelBaseFolders=None #................................................................................ self.Load() #------------------------------------------------------------------------------------ def Load(self): if self.FileName is not None: with open(self.FileName) as oDefFile: dJSON = json.load(oDefFile) self.ModelsToCompare=[] self.ModelTitles=[] self.ModelBaseFolders=[] oModels=dJSON["CompareModels"] for oModel in oModels: print("Adding to comparison:", oModel[0], ":", "'%s'" % oModel[1]) self.ModelsToCompare.append(oModel[0]) self.ModelTitles.append(oModel[1]) self.ModelBaseFolders.append(oModel[2]) #------------------------------------------------------------------------------------ #================================================================================================== #================================================================================================== class StatsColumnType(object): VALUE = 0 DELTA_VALUE = 1 ARCTAN_DELTA_VALUE = 2 COUNT = 3 @classmethod def ToString(cls, p_sBaseDescr, p_nType): p_sBaseDescr = p_sBaseDescr.replace(" ", "") if p_nType == StatsColumnType.VALUE: return p_sBaseDescr elif p_nType == StatsColumnType.DELTA_VALUE: return "Δ%s" % p_sBaseDescr elif p_nType == StatsColumnType.ARCTAN_DELTA_VALUE: return "ArcTan(Δ%s)" % p_sBaseDescr return #================================================================================================== #TODO: 0.7 Setup file for testing different DNAs #================================================================================================== class ExperimentSubFolder(object): NO_SUBFOLDERS="{None}" #------------------------------------------------------------------------------------ def __init__(self, p_oParent, p_nFoldNumber, p_bIsRun=False): #........ | Instance Attributes | .............................................. self.ParentExperiment = p_oParent self.FoldNumber = p_nFoldNumber self.IsRun = p_bIsRun if self.IsRun: self.Folder = os.path.join(self.ParentExperiment.RunBaseFolder, "fold%.2d" % self.FoldNumber ) else: self.Folder = os.path.join(self.ParentExperiment.BaseFolder , "fold%.2d" % self.FoldNumber ) Storage.EnsurePathExists(self.Folder) sFolders = Storage.GetDirectoriesSorted(self.Folder) if len(sFolders) > 0: self.LastUID = sFolders[-1] else: self.LastUID = ExperimentSubFolder.NO_SUBFOLDERS self.__pathsToEnsure=None #self.__initExperimentFolder(self.LastUID) #................................................................................ #------------------------------------------------------------------------------------ def __defineExperimentFolders(self, p_sUID): self.__pathsToEnsure=[] self.ExperimentFolder = os.path.join(self.Folder, p_sUID) self.ExperimentLogFolder = os.path.join(self.ExperimentFolder, "log") self.ExperimentStatsFolder = os.path.join(self.ExperimentFolder, "stats") self.ExperimentResultsFolder = os.path.join(self.ExperimentFolder, "results") self.ExperimentModelFolder = os.path.join(self.ExperimentFolder, "models") self.ExperimentGraphsFolder = os.path.join(self.ExperimentFolder, "graphs") self.ExperimentPlotFolder = os.path.join(self.ExperimentGraphsFolder, "plots") self.ExperimentVisualsFolder = os.path.join(self.ExperimentFolder, "visuals") self.ExperimentConfigFolder = os.path.join(self.ExperimentFolder, "config") self.ExperimentBestsFolder = os.path.join(self.ExperimentFolder, "best") self.ExperimentLogSamplesFolder = os.path.join(self.ExperimentLogFolder, "samples") assert self.ParentExperiment.ModelName is not None, "Experiment model architecture is not defined" self.ArchitectureCommonFolder = os.path.join(self.ParentExperiment.RunBaseFolder, "common") self.__pathsToEnsure.append(self.ExperimentFolder) self.__pathsToEnsure.append(self.ExperimentLogFolder) self.__pathsToEnsure.append(self.ExperimentStatsFolder) self.__pathsToEnsure.append(self.ExperimentResultsFolder) self.__pathsToEnsure.append(self.ExperimentModelFolder) self.__pathsToEnsure.append(self.ExperimentGraphsFolder) self.__pathsToEnsure.append(self.ExperimentPlotFolder) self.__pathsToEnsure.append(self.ExperimentVisualsFolder) self.__pathsToEnsure.append(self.ExperimentConfigFolder) self.__pathsToEnsure.append(self.ExperimentBestsFolder) self.__pathsToEnsure.append(self.ExperimentLogSamplesFolder) self.__pathsToEnsure.append(self.ArchitectureCommonFolder) # // Saved model file system names \\ self.CommonInitialModelFileName = os.path.join(self.Folder , "init.nn") self.InitialModelFileName = os.path.join(self.ExperimentModelFolder , "init_%s.nn" % p_sUID) self.InitialModelZipFileName = os.path.join(self.ArchitectureCommonFolder , "initial-model_%s.zip" % p_sUID) self.ModelFolderTemplate = os.path.join(self.ExperimentModelFolder , "%.3d" ) self.ModelFileNameTemplate = os.path.join(self.ModelFolderTemplate , "model_%s.nn" % p_sUID) self.BestModelFileName = os.path.join(self.ExperimentBestsFolder , "best_%s.nn" % p_sUID) self.InfoFileName = os.path.join(self.ExperimentFolder , "info.dat") # // Evaluation results file system names \\ self.ModelResultsFileNameTemplate = os.path.join(self.ExperimentResultsFolder , "%.3d.pkl") self.BestModelResultsFileName = os.path.join(self.ExperimentBestsFolder , "best_%s.pkl" % p_sUID) self.BestModelTextFileName = os.path.join(self.ExperimentBestsFolder , "best_%s.txt" % p_sUID) #self.BestEvaluationFileName = os.path.join(self.ExperimentBestsFolder , "best_evaluation_%s.csv" % p_sUID) self.NetworkArchitectureFileName = os.path.join(self.ExperimentConfigFolder , "architecture_%s.csv" % p_sUID) self.LogFileName = os.path.join(self.ExperimentLogFolder , "log_%s.txt" % p_sUID) self.StatsFileName = os.path.join(self.ExperimentStatsFolder , "stats_%s.dat" % p_sUID) self.StatsTempFileName = os.path.join(self.ExperimentStatsFolder , "stats_%s.tmp" % p_sUID) self.MarginSamplesTemplate = os.path.join(self.ExperimentLogSamplesFolder , "sample-margins-%.3d.txt") self.MarginHistogramTemplate = os.path.join(self.ExperimentGraphsFolder , "histogram-margins-%.3d.png") self.LearnConfigFileName = os.path.join(self.ExperimentConfigFolder , "learn-config-source.cfg") self.LearnConfigUsedFileName = os.path.join(self.ExperimentConfigFolder , "learn-config-used-%s.cfg" % p_sUID) #------------------------------------------------------------------------------------ def Initialize(self, p_sUID, p_bIsEnsuringPaths=True): self.__defineExperimentFolders(p_sUID) if p_bIsEnsuringPaths: for sFolder in self.__pathsToEnsure: Storage.EnsurePathExists(sFolder) #------------------------------------------------------------------------------------ def ListSavedResults(self): if Storage.IsExistingPath(self.ExperimentResultsFolder): sModelResultFiles = Storage.GetFilesSorted(self.ExperimentResultsFolder) oModelResults = [] for sResultFile in sModelResultFiles: _, sFileName, _ = Storage.SplitFileName(sResultFile) nEpochNumber = int(sFileName) oModelResults.append([nEpochNumber, sResultFile, None]) return oModelResults #------------------------------------------------------------------------------------ def ListSavedModels(self): sModelFolders = [] if Storage.IsExistingPath(self.ExperimentModelFolder): if not Storage.IsFolderEmpty(self.ExperimentModelFolder): sModelFolders = Storage.GetDirectoriesSorted(self.ExperimentModelFolder) oModels = [] for sModel in sModelFolders: sFolder = Storage.JoinPath(self.ExperimentModelFolder, sModel) sModelFiles = Storage.GetFilesSorted(sFolder) nEpochNumber = int(sModel) oModels.append([nEpochNumber, sFolder, sModelFiles]) return oModels #------------------------------------------------------------------------------------ def ListCompressedModels(self): sResult = [] if Storage.IsExistingPath(self.ExperimentModelFolder): sModelZipFiles = Storage.GetFilesSorted(self.ExperimentModelFolder) for sZipFile in sModelZipFiles: sZipFile = Storage.JoinPath(self.ExperimentModelFolder, sZipFile) sResult.append(sZipFile) return sResult #------------------------------------------------------------------------------------ def DiscardModels(self, p_nEpochNumbers): for nEpochNumberToDelete in p_nEpochNumbers: self.DeleteSavedModel(nEpochNumberToDelete) #------------------------------------------------------------------------------------ def CompressModels(self, p_nEpochNumbers): sUID = self.ParentExperiment.MinuteUID.UID for nEpochToCompress in p_nEpochNumbers: sModelFolder = self.ModelFolderTemplate % nEpochToCompress bContinueToDelete, sArchiveName = Storage.CompressFolder(sModelFolder, "model_%s_epoch_%.3d.zip" % (sUID, nEpochToCompress)) if bContinueToDelete: bContinueToDelete = Storage.IsExistingFile(sArchiveName) if bContinueToDelete: self.DeleteSavedModel(nEpochToCompress) #------------------------------------------------------------------------------------ def DeleteSavedModel(self, p_nEpochNumber): sModelFolder = self.ModelFolderTemplate % p_nEpochNumber Storage.RemoveFolder(sModelFolder) #------------------------------------------------------------------------------------ #================================================================================================== #================================================================================================== class ExperimentQueueSystem(object): #------------------------------------------------------------------------------------ def __init__(self): #....................... | Instance Attributes | ............................... self.BaseFolder = BaseFolders.EXPERIMENTS_SYSTEM self.ToEvaluteFolder = Storage.JoinPath(self.BaseFolder , "toevaluate") self.PendingFolder = Storage.JoinPath(self.BaseFolder , "pending") self.ArchiveFolder = Storage.JoinPath(self.BaseFolder , "archive") self.ErrorFolder = Storage.JoinPath(self.PendingFolder , "errors") self.EditFolder = Storage.JoinPath(self.BaseFolder , "edit") self.RecombineFolder = Storage.JoinPath(self.BaseFolder , "recombine") self.CountersFileName = Storage.JoinPath(self.BaseFolder, "counters") self.TemplateName = None self.TemplateConfigFileName = None #................................................................................ Storage.EnsurePathExists(self.BaseFolder) Storage.EnsurePathExists(self.PendingFolder) Storage.EnsurePathExists(self.ArchiveFolder) Storage.EnsurePathExists(self.ErrorFolder) Storage.EnsurePathExists(self.EditFolder) Storage.EnsurePathExists(self.ToEvaluteFolder) Storage.EnsurePathExists(self.RecombineFolder) self.SetTemplateName(None) #------------------------------------------------------------------------------------ def LoopExecution(self, p_sExecutableName): bContinue = True while bContinue and (self.GetNextConfig() is not None): oConfig = self.LoadNextConfig() print("[TALOS]: Next experiment in queue:%s" % oConfig.FileName) nResult = Exec.Python(p_sExecutableName, [oConfig.Architecture, oConfig.DataSetName, str(oConfig.FoldNumber)]) bContinue = (nResult == 0) if not bContinue: print("[TALOS]: Error occured:%s" % oConfig.FileName) self.ArchiveConfigAsError(oConfig.FileName) #------------------------------------------------------------------------------------ def SetTemplateName(self, p_sName): if p_sName is not None: self.TemplateName = p_sName else: self.TemplateName = "template.cfg" self.TemplateConfigFileName = Storage.JoinPath(self.EditFolder, self.TemplateName) #------------------------------------------------------------------------------------ def __sequenceLearningRate(self, p_sSourceFileName, p_nLearningRateSequence, p_nCounter): print(" -> Sequencing learning rates from template") sResult=[] nCounter = p_nCounter for nLearningRate in p_nLearningRateSequence: oNewConfig = NNLearnConfig() oNewConfig.LoadFromFile(p_sSourceFileName) oNewConfig.Learn.LearningRate = nLearningRate _, sName, _ = Storage.SplitFileName(p_sSourceFileName) sDestFileName = Storage.JoinFileName(self.PendingFolder, "%.3d-" % p_nCounter + sName + "-lr%.6f" % nLearningRate, ".cfg") sResult.append(sDestFileName) oNewConfig.SaveToFile(sDestFileName) nCounter += 1 return nCounter, sResult #------------------------------------------------------------------------------------ def __sequenceFoldNumber(self, p_sSourceFileName, p_nFoldSequence, p_nCounter): print(" -> Sequencing fold numbers from template") sResult=[] nCounter = p_nCounter for nFoldNumber in p_nFoldSequence: oNewConfig = NNLearnConfig() oNewConfig.LoadFromFile(p_sSourceFileName) oNewConfig.FoldNumber = nFoldNumber _, sName, _ = Storage.SplitFileName(p_sSourceFileName) sDestFileName = Storage.JoinFileName(self.PendingFolder, "%.3d-" % p_nCounter + sName + "-fold%d" % nFoldNumber, ".cfg") sResult.append(sDestFileName) oNewConfig.SaveToFile(sDestFileName) nCounter += 1 return nCounter, sResult #------------------------------------------------------------------------------------ def __readCounter(self): """ Gets the current run/evaluation counter """ self.Counter = Storage.DeserializeObjectFromFile(self.CountersFileName) if self.Counter is None: self.Counter = {"FormatVersion":"TALOS10", "RunCounter": 1} nCounter = 1 else: nCounter = self.Counter["RunCounter"] return nCounter #------------------------------------------------------------------------------------ def __writeCounter(self, p_nNumber): self.Counter["RunCounter"] = p_nNumber Storage.SerializeObjectToFile(self.CountersFileName, self.Counter, True) #------------------------------------------------------------------------------------ def IncCounter(self): nCounter = self.__readCounter() nCounter += 1 self.__writeCounter(nCounter) return nCounter #------------------------------------------------------------------------------------ def AddConfig(self, p_sConfigFileName=None): if p_sConfigFileName is None: sSourceFileName = self.TemplateConfigFileName else: sSourceFileName = p_sConfigFileName _, sName, _ = Storage.SplitFileName(sSourceFileName) # Gets the current run/evaluation counter nCounter = self.__readCounter() oConfig = NNLearnConfig() oConfig.LoadFromFile(sSourceFileName) sDestFileNames = None if oConfig.LearningRateSequence is not None: nCounter, sDestFileNames = self.__sequenceLearningRate(sSourceFileName, oConfig.LearningRateSequence, nCounter) elif oConfig.FoldSequence is not None: nCounter, sDestFileNames = self.__sequenceFoldNumber(sSourceFileName, oConfig.FoldSequence, nCounter) # for nFoldNumber in oConfig.FoldSequence: # oNewConfig = NNLearnConfig() # oNewConfig.LoadFromFile(sSourceFileName) # oNewConfig.FoldNumber = nFoldNumber # sDestFileName = Storage.JoinFileName(self.PendingFolder, "%.3d-" % nCounter + sName, ".cfg") # oNewConfig.SaveToFile(sDestFileName) # nCounter += 1 else: sDestFileNames = [Storage.JoinFileName(self.PendingFolder, "%.3d-" % nCounter + sName , ".cfg")] Storage.CopyFile(sSourceFileName, sDestFileNames[0]) nCounter += 1 # Saves the current run/evaluation counter self.__writeCounter() return sDestFileNames #------------------------------------------------------------------------------------ def GetNextConfig(self): # By priority first evaluates models to save disk space and then start training sResult = self.GetNextConfigToEvaluate() if sResult is None: sFiles = Storage.GetFilesSorted(self.PendingFolder) sConfigFiles = [] for sFile in sFiles: _, _, sExt = Storage.SplitFileName(sFile) if sExt == ".cfg": sConfigFiles.append(Storage.JoinPath(self.PendingFolder, sFile)) if len(sFiles) > 0: sResult = sConfigFiles[0] else: sResult = None return sResult #------------------------------------------------------------------------------------ def GetNextConfigToEvaluate(self): sFiles = Storage.GetFilesSorted(self.ToEvaluteFolder) sConfigFiles = [] for sFile in sFiles: _, _, sExt = Storage.SplitFileName(sFile) if sExt == ".cfg": sConfigFiles.append(Storage.JoinPath(self.ToEvaluteFolder, sFile)) if len(sFiles) > 0: sResult = sConfigFiles[0] else: sResult = None return sResult #------------------------------------------------------------------------------------ def EnsureConfig(self, p_sTemplateName): # Gets the next configuration, or copies from the current template file sConfigFileName = self.GetNextConfig() if sConfigFileName is None: # Sets the current configuration template file self.SetTemplateName(p_sTemplateName) self.AddConfig() #------------------------------------------------------------------------------------ def LoadNextConfig(self): oConfig = None sNextConfigFileName = self.GetNextConfig() if sNextConfigFileName is not None: oConfig = NNLearnConfig() oConfig.LoadFromFile(sNextConfigFileName) # Supports the evaluation queue if sNextConfigFileName == self.GetNextConfigToEvaluate(): oConfig.ParseUID() oConfig.IsTraining = False oConfig.IsEvaluating = True oConfig.IsDeterminingBest = True return oConfig #------------------------------------------------------------------------------------ def ArchiveConfig(self, p_sConfigFileName=None, p_sDestFileName=None): if p_sConfigFileName is None: p_sConfigFileName = self.GetNextConfig() Storage.MoveFileToFolder(p_sConfigFileName, self.ArchiveFolder, p_sDestFileName) #------------------------------------------------------------------------------------ def ArchiveConfigAsError(self, p_sConfigFileName=None): if p_sConfigFileName is None: p_sConfigFileName = self.GetNextConfig() Storage.MoveFileToFolder(p_sConfigFileName, self.ErrorFolder) #------------------------------------------------------------------------------------ #================================================================================================== #================================================================================================== class ExperimentFolder(object): __verboseLevel = 2 #------------------------------------------------------------------------------------ @classmethod def SplitExperimentCode(cls, p_sExperimentCode): sParts = p_sExperimentCode.split("/") return int(sParts[0]), sParts[1] #------------------------------------------------------------------------------------ @classmethod def GetExperimentName(cls, p_sModelName, p_sDataSetName=None): if p_sDataSetName is None: sResult = p_sModelName else: sResult = p_sDataSetName + "-" + p_sModelName return sResult #------------------------------------------------------------------------------------ @classmethod def GetLastRunConfig(cls, p_sModelName, p_sDataSetName, p_nFoldNumber): oExp = ExperimentFolder(p_sModelName, p_sDataSetName) oExp.__setFoldNumber(p_nFoldNumber) oExp.RunSub.Initialize(oExp.RunSub.LastUID, p_bIsEnsuringPaths=False) return oExp.RunSub.LearnConfigUsedFileName #------------------------------------------------------------------------------------ @classmethod def GetExperiment(cls, p_sFolder, p_sCustomBaseFolder=None): oResult = None oConfig = NNLearnConfig.GetConfig(p_sFolder) if oConfig is not None: oResult = ExperimentFolder(p_oLearnConfig=oConfig) if p_sCustomBaseFolder is not None: oResult.RunBaseFolder = p_sCustomBaseFolder assert oConfig.SavedExperimentUID is not None oResult.Open(oConfig.FoldNumber, oConfig.SavedExperimentUID, p_bIsVerbose=False) oResult.LearnConfig = oConfig return oResult #------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------ def __init__(self, p_sModelName=None, p_sDataSetName=None, p_nBatchSize=15, p_oLearnConfig=None): #........ | Instance Attributes | .............................................. self.ERL = None self.LearnConfig = p_oLearnConfig if self.LearnConfig is not None: p_sModelName = p_oLearnConfig.Architecture p_sDataSetName = p_oLearnConfig.DataSetName p_nBatchSize = p_oLearnConfig.BatchSize self.ModelName = p_sModelName self.DataSetName = p_sDataSetName self.Name = ExperimentFolder.GetExperimentName(self.ModelName, self.DataSetName) self.Code = None # if self.DataSetName is None: # self.Name = p_sModelName # else : # self.Name = self.DataSetName + "-" + p_sModelName self.BatchSize = p_nBatchSize assert self.Name is not None, "Experiment name is not provided" self.BaseFolder = os.path.join(BaseFolders.EXPERIMENTS_STORE, self.Name) self.RunBaseFolder = os.path.join(BaseFolders.EXPERIMENTS_RUN, self.Name) # // Control Variables \\ self.RandomSeed = 2017 self.FoldNumber = None self.MaxDiskSpaceForModels = 30 #GB # // Composite Objects \\ self.Log = Logger() self.MinuteUID=MinuteUID() self.IsNew = True self.StoreSub=None self.RunSub=None # // System \\ self.OSSignature = OperatingSystemSignature() self.TensorflowVersion = tf.VERSION #................................................................................ #Storage.EnsurePathExists(self.BaseFolder) #Storage.EnsurePathExists(self.RunBaseFolder) #------------------------------------------------------------------------------------ @property def UID(self): return self.MinuteUID.UID #------------------------------------------------------------------------------------ @UID.setter def UID(self, p_UID): self.MinuteUID.UID = p_UID #------------------------------------------------------------------------------------ def GetCode(self): return "%d/%s" % (self.FoldNumber, self.MinuteUID.UID) #------------------------------------------------------------------------------------ def GetERLString(self): sERLString = "%s:%s|%d/%s" % ( self.DataSetName, self.ModelName, self.FoldNumber, self.MinuteUID.UID ) return sERLString #------------------------------------------------------------------------------------ def GetDataSetFolder(self, p_sSubFolder): return Storage.JoinPath(BaseFolders.DATASETS, p_sSubFolder) #------------------------------------------------------------------------------------ def __setFoldNumber(self, p_nFoldNumber): self.FoldNumber = p_nFoldNumber self.StoreSub = ExperimentSubFolder(self, self.FoldNumber, False) self.RunSub = ExperimentSubFolder(self, self.FoldNumber, True) #------------------------------------------------------------------------------------ def __determineInitialModelUID(self): sFiles = Storage.GetFilesSorted(self.RunSub.ArchitectureCommonFolder) sUID = None for sFile in sFiles: if sFile.startswith("initial-model_"): _, sName, _ = Storage.SplitFileName(sFile) sUID = sName[-12:] # A standard fold number 1 and the last saved initial experiment in the common folder will be returned return sUID #------------------------------------------------------------------------------------ def GetInitialExperiment(self): assert self.LearnConfig is not None, "Method requires a learn configuration." oInitialExperiment=None if self.LearnConfig.InitExperimentCode is not None: if self.LearnConfig.InitExperimentCode == "=": sInitExperimentUID = self.__determineInitialModelUID() else: sInitExperimentUID = self.LearnConfig.InitExperimentUID # If automatic initial experiment is used, initial experiment UID is none for the first experiment. if sInitExperimentUID is not None: oInitialExperiment = ExperimentFolder(self.LearnConfig.Architecture, self.LearnConfig.DataSetName, self.LearnConfig.BatchSize) oInitialExperiment.Open(self.LearnConfig.InitExperimentFoldNumber, sInitExperimentUID) return oInitialExperiment #------------------------------------------------------------------------------------ def Activate(self): """ Returns True : If a new experiment folder is created and the configuration was copied there False: If an existing experiment folder is reused """ assert self.LearnConfig is not None, "Method requires a learn configuration." if self.LearnConfig.SavedExperimentUID is not None: self.Open(self.LearnConfig.FoldNumber, self.LearnConfig.SavedExperimentUID) bMustArchive = False else: if self.LearnConfig.IsTraining: self.Begin() # Copies the source configuration file to the experiment subfolder "config" Storage.CopyFile(self.LearnConfig.FileName, self.RunSub.LearnConfigFileName, True) bMustArchive = True else: self.Open() bMustArchive = False return bMustArchive #------------------------------------------------------------------------------------ def OpenERL(self, p_sERL=None, p_sERLString=None): if p_sERLString is not None: self.ERL = ERLString(p_sERLString) elif p_sERL is not None: self.ERL = p_sERL elif self.LearnConfig is not None: self.ERL = self.LearnConfig.ERL assert self.ERL is not None, "No ERL given" assert self.ERL.IsValid, "Invalid ERL %s" % self.ERL.String self.Open(self.ERL.FoldNumber, self.ERL.ExperimentUID) #------------------------------------------------------------------------------------ def Open(self, p_nFoldNumber=None, p_UID=None, p_bIsVerbose=True): if (p_nFoldNumber is None) and (self.LearnConfig is not None): p_nFoldNumber = self.LearnConfig.FoldNumber assert p_nFoldNumber is not None self.__setFoldNumber(p_nFoldNumber) # if self.RunSub.LastUID == ExperimentSubFolder.NO_SUBFOLDERS: # # If no experiment has been run for the fold number it starts the first experiment # self.Begin(p_nFoldNumber) # else: # Initializes with the given UID or the UID of the last experiment self.IsNew = False if p_UID is None: self.MinuteUID.UID = self.RunSub.LastUID else: self.MinuteUID.UID = p_UID self.StoreSub.Initialize(self.MinuteUID.UID, p_bIsEnsuringPaths=False) self.RunSub.Initialize(self.MinuteUID.UID, p_bIsEnsuringPaths=False) if p_bIsVerbose: if type(self).__verboseLevel >= 1: print("[TALOS] Loaded experiment [%s], stored in %s, started at %s" % ( self.MinuteUID.UID, self.RunSub.ExperimentFolder , self.MinuteUID.DateTime.strftime(tcc.LOG_DATETIME_FORMAT) ) ) self.Log.Open("", p_nCustomLogFileName=self.RunSub.LogFileName, p_nLogType=Logger.LOG_TYPE_CONFIG) self.Code = "%d" % self.FoldNumber + "/" + self.MinuteUID.UID if self.ERL is None: self.ERL = ERLString(self.GetERLString()) #------------------------------------------------------------------------------------ def Begin(self, p_nFoldNumber=None): if (p_nFoldNumber is None) and (self.LearnConfig is not None): p_nFoldNumber = self.LearnConfig.FoldNumber assert p_nFoldNumber is not None self.__setFoldNumber(p_nFoldNumber) # Sets seeds for reproducibility random.seed(self.RandomSeed) np.random.seed(self.RandomSeed) # Initializes a new UID for the current minute and ensures the subfolders if not self.IsNew: self.MinuteUID = MinuteUID() self.StoreSub.Initialize(self.MinuteUID.UID, p_bIsEnsuringPaths=False) self.RunSub.Initialize(self.MinuteUID.UID) self.Code = "%d" % self.FoldNumber + "/" + self.MinuteUID.UID if type(self).__verboseLevel >= 2: print("Begin experiment at", self.MinuteUID.DateTime) self.Log.Open("", p_nCustomLogFileName=self.RunSub.LogFileName, p_nLogType=Logger.LOG_TYPE_CONFIG) self.Log.WriteLine("Initializing experiment [%s] ..." % self.Code) self.Log.Flush() #------------------------------------------------------------------------------------ def StoreCompressedModels(self): sZipFiles = self.RunSub.ListCompressedModels() sDestFolder = self.StoreSub.ExperimentModelFolder Storage.EnsurePathExists(sDestFolder) for sZipFile in sZipFiles: self.Log.Print("Moving model %s to storage folder %s" % (sZipFile, sDestFolder)) Storage.MoveFileToFolder(sZipFile, sDestFolder) Storage.DeleteEmptyFolder(self.RunSub.ExperimentModelFolder) #------------------------------------------------------------------------------------ def WriteGraph(self, p_oMainGraph): NetworkGraphWriter(self.RunSub.ExperimentConfigFolder, p_oMainGraph).Write() #------------------------------------------------------------------------------------ def End(self): self.Log.Flush() #------------------------------------------------------------------------------------ #================================================================================================== #================================================================================================== class NetworkGraphWriter(object): #------------------------------------------------------------------------------------ def __init__(self, p_sTensorboardLogFolder, p_oGraph): #........ | Instance Attributes | .............................................. self.TensorboardLogFolder = p_sTensorboardLogFolder self.Graph = p_oGraph #................................................................................ #------------------------------------------------------------------------------------ def Write(self): oSummaryWriter = tf.summary.FileWriter(logdir=self.TensorboardLogFolder, graph=self.Graph, filename_suffix=".tf") oSummaryWriter.flush() oGraphDef = self.Graph.as_graph_def() sGraphDefStr = str(oGraphDef) with open(os.path.join(self.TensorboardLogFolder,"tensorflow-graph.txt"), "w") as oFile: oFile.write(sGraphDefStr) self.__writeBatchFile(self.TensorboardLogFolder) #------------------------------------------------------------------------------------ def __writeBatchFile(self, p_sFolder): sWinScriptFileName = os.path.join(p_sFolder,"browse-graph.bat") sLinuxScriptFileName = os.path.join(p_sFolder,"bgr.sh") for nIndex, sFile in enumerate( [sWinScriptFileName, sLinuxScriptFileName] ): with open(sFile, "w") as oFile: if nIndex == 0: print("call %s %s" % (SysParams.AnacondaActivation, SysParams.AnacondaEnvironment), file=oFile) else: print("#! /bin/bash", file=oFile) print("source activate %s" % SysParams.AnacondaEnvironment, file=oFile) print("cd " + self.TensorboardLogFolder, file=oFile) print("tensorboard --logdir .", file=oFile) #------------------------------------------------------------------------------------ #================================================================================================== #================================================================================================== class ClassificationEvaluator(object): #------------------------------------------------------------------------------------ def __init__(self, p_oNetwork, p_bIsDiscardingModels=True): #........ | Instance Attributes | .............................................. self.Network = p_oNetwork self.ExperimentSub = self.Network.Experiment.RunSub self.Models=None self.ModelIndex=None self.CurrentModelEpochNumber = None self.CurrentModelFolder = None self.HasLoadedModel = None self.IsDiscardingModels = p_bIsDiscardingModels self.IsAutoDeterminingBestModels = False #................................................................................ #------------------------------------------------------------------------------------ def FirstModel(self): self.Models = self.ExperimentSub.ListSavedModels() # If models folder is delete then checks the save results if self.Models == []: self.Models = self.ExperimentSub.ListSavedResults() self.ModelIndex = -1 return self.NextModel() #------------------------------------------------------------------------------------ def NextModel(self): self.CurrentModelEpochNumber = None self.CurrentModelFolder = None self.ModelIndex += 1 if self.ModelIndex < len(self.Models): oRec = self.Models[self.ModelIndex] self.CurrentModelEpochNumber = oRec[0] self.CurrentModelFolder = oRec[1] if not self.IsExistingModelResults(): self.Network.Log.Print("Evaluating folder %s" % self.CurrentModelFolder) self.Network.State.LoadWeights(self.CurrentModelEpochNumber) self.HasLoadedModel = True else: self.Network.Log.Print("Results found for epoch %d" % self.CurrentModelEpochNumber) self.HasLoadedModel = False return self.CurrentModelEpochNumber #------------------------------------------------------------------------------------ def EndOfModels(self): return self.ModelIndex >= len(self.Models) #------------------------------------------------------------------------------------ def IsExistingModelResults(self): #print(self.ExperimentSub.ModelResultsFileNameTemplate % self.CurrentModelEpochNumber) return Storage.IsExistingFile(self.ExperimentSub.ModelResultsFileNameTemplate % self.CurrentModelEpochNumber) #------------------------------------------------------------------------------------ def CalculateMetrics(self, p_oPrediction): oMetrics = ClassificationMetrics() oMetrics.Calculate(p_oPrediction.Actual, p_oPrediction.Predicted, p_oPrediction.PredictedProbs) oMetrics.CalculateTopK(p_oPrediction.TopKappa, p_oPrediction.TopKCorrect) oMetrics.IDs = p_oPrediction.SampleIDs oMetrics.Save( self.ExperimentSub.ModelResultsFileNameTemplate % self.CurrentModelEpochNumber ) #------------------------------------------------------------------------------------ def DetermineBestModels(self, p_oExperiment=None): oBest = ClassificationBest(self.ExperimentSub.ExperimentResultsFolder) oBest.Run() oBest.Save(self.ExperimentSub.BestModelResultsFileName) oBest.ExportToText(self.ExperimentSub.BestModelTextFileName, p_oExperiment) # Discards all models except the best ones if self.IsDiscardingModels: self.ExperimentSub.DiscardModels(oBest.DiscardedEpochs) # Compresses the each model parameters folder into a zip file self.ExperimentSub.CompressModels(oBest.BestEpochs) # Moves the model zip files to the neural network experiment storage self.Network.Experiment.StoreCompressedModels() #------------------------------------------------------------------------------------ def Evaluate(self, p_oIterator): bMustStart = False self.FirstModel() while not self.EndOfModels(): if self.HasLoadedModel: bMustStart = True break self.NextModel() if bMustStart: p_oIterator.Start() self.FirstModel() while not self.EndOfModels(): if self.HasLoadedModel: # Recalls the data through the trained model oPrediction = self.Network.PredictEval(p_oIterator) self.CalculateMetrics(oPrediction) p_oIterator.Resume() self.NextModel() p_oIterator.Stop(True) if self.IsAutoDeterminingBestModels: self.DetermineBestModels() #------------------------------------------------------------------------------------ #==================================================================================================
"""Convolutional Layers for NeuralPy""" from .conv1d import Conv1D from .conv2d import Conv2D from .conv3d import Conv3D
import dash from dash.dependencies import Input, Output from .. import id_constants, utils from ..dash_app import app @app.callback( Output(id_constants.SIGNAL_SLI_REFRESH, "children"), [ Input(id_constants.REFRESH_SLI_BUTTON, "n_clicks_timestamp"), Input(id_constants.REFRESH_SLI_INTERVAL, "n_intervals"), ], prevent_initial_call=True, ) def update_sli_refresh_signal(n_clicks_timestamp: int, n_intervals: int): """Updates the SLI refresh signal. Args: n_clicks_timestamp: the timestamp when the SLI refresh button was clicked n_intervals: the amount of times the interval component was updated Returns: a constant to be placed into the SLI refresh signal """ ctx = dash.callback_context triggered_id, triggered_prop, triggered_value = utils.ctx_triggered_info(ctx) return triggered_id
''' A pronic number is a number which is the product of two consecutive integers. Such as 2=2*1 (2 and 1 are consecutive numbers) 12=4*3 This program will print the pronic numbers in the given range. ''' import math '''Function to check whether number is pronic or not A number is pronic if the root of equation i^2+i-num=0 is real and integer.''' def is_pronic(n): dis = 1 + 4 * n if dis <= 0: return 0 else: root = int(math.sqrt(dis)) if root * root == dis and dis % 2 == 1: return 1 else: return 0 if __name__ == '__main__': ran_ge = list(input("Enter range to print all the PRONIC NUMBERS: ").split()) #Printing pronic numbers in given range print("PRONIC NUMBERS from "+ ran_ge[0] +" to "+ran_ge[1]+" are:") for i in range(int(ran_ge[0]),int(ran_ge[1])+1): if is_pronic(i): print(i,end=" ") ''' Sample Input/Output: Input: Enter range to print all the PRONIC NUMBERS: 1 1000 Output: PRONIC NUMBERS from 1 to 1000 are: 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 812 870 930 992 Time Complexity:O(n) where n is total numbers in range Time Complexity of is_pronic()=O(1) Space Complexity:O(1) '''
# Copyright (c) 2013, ReMake Electric ehf # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ This is a module for a single message consumption process It listens to a topic and expects to see a known sequence of messages. """ from __future__ import division import collections import errno import logging import math import os import stat import tempfile import time import fuse import paho.mqtt.client as mqtt from beem.trackers import ObservedMessage as MsgStatus class TrackingListener(): """ An MQTT message subscriber that tracks an expected message sequence and generates timing, duplicate/missing and monitors for drops """ msg_statuses = [] def __init__(self, host, port, opts): self.options = opts self.cid = opts.clientid self.log = logging.getLogger(__name__ + ":" + self.cid) self.mqttc = mqtt.Client(self.cid) self.mqttc.on_message = self.msg_handler self.mqttc.on_subscribe = self.subscribe_handler #self.mqttc.on_log = self.log_handler self.mqttc.on_disconnect = self.disconnect_handler self.mqttc.on_connect = self.connect_handler self.listen_topic = opts.topic self.time_start = None self.connected = False # TODO - you _probably_ want to tweak this if hasattr(self.mqttc, "max_inflight_messages_set"): self.mqttc.max_inflight_messages_set(1000) if opts.ca_certs or opts.certfile or opts.keyfile: self.log.info("TLS %s %s %s", opts.ca_certs, opts.certfile, opts.keyfile) self.mqttc.tls_set(opts.ca_certs, opts.certfile, opts.keyfile) self.log.info("Host %s Port %s", host, port) rc = self.mqttc.connect(host, port, 60) if rc: raise Exception("Couldn't even connect! ouch! rc=%d" % rc) self.log.info("Connection established") self.drop_count = None self.dropping = False self.mqttc.loop_start() time.sleep(4) def subscribe_handler(self, client, userdata, mid, granted_qos): self.log.info("subscribe handler: %d", mid) def log_handler(self, client, userdata, level, buf): self.log.info("%d: %s", level, buf) def connect_handler(self, client, userdata, flags, rc): self.connected = True def disconnect_handler(self, client, userdata, rc): self.log.info("disconnect handler: %d", rc) def msg_handler(self, mosq, userdata, msg): # WARNING: this _must_ release as quickly as possible! # get the sequence id from the topic #self.log.debug("heard a message on topic: %s", msg.topic) #if msg.topic == '$SYS/broker/publish/messages/dropped': # if self.drop_count: # self.log.warn("Drop count has increased by %d", # int(msg.payload) - self.drop_count) # self.dropping = True # else: # self.drop_count = int(msg.payload) # self.log.debug("Initial drop count: %d", self.drop_count) # return if not self.time_start: self.time_start = time.time() try: ms = MsgStatus(msg) self.msg_statuses.append(ms) except Exception: self.log.exception("Failed to parse a received message. (Is the publisher sending time-tracking information with -t?)") def run(self, qos=1): """ Start a (long lived) process waiting for messages to arrive. The number of clients and messages per client that are expected are set at creation time """ while not self.connected: time.sleep(1) self.expected = self.options.msg_count * self.options.client_count self.log.info( "Listening for %d messages on topic %s (q%d)", self.expected, self.listen_topic, qos) rc, mid = self.mqttc.subscribe(self.listen_topic, qos) self.log.info("Subscribe returned %d %d", rc, mid) if rc: raise Exception("Couldn't even subscribe! ouch! rc=%d" % rc) while len(self.msg_statuses) < self.expected: # let the mosquitto thread fill us up time.sleep(1) self.log.info("Still waiting for %d messages", self.expected - len(self.msg_statuses)) if self.dropping: self.log.error("Detected drops are occuring, aborting test!") break self.time_end = time.time() self.mqttc.disconnect() def stats(self): msg_count = len(self.msg_statuses) flight_times = [x.time_flight() for x in self.msg_statuses] mean = sum(flight_times) / len(flight_times) squares = [x * x for x in [q - mean for q in flight_times]] stddev = math.sqrt(sum(squares) / len(flight_times)) actual_clients = set([x.cid for x in self.msg_statuses]) per_client_expected = range(1, self.options.msg_count + 1) per_client_stats = {} for cid in actual_clients: per_client_real = [x.mid for x in self.msg_statuses if x.cid == cid] per_client_duplicates = [x for x, y in collections.Counter(per_client_real).items() if y > 1] per_client_real_mid = [x.mid for x in self.msg_statuses if x.cid == cid] per_client_missing_mid = list(set(per_client_expected).difference(set(per_client_real_mid))) per_client_stats[cid] = { "actual_count": len(per_client_real), "expected_count": len(per_client_expected), "duplicate_count": len(per_client_duplicates), "missing_count": len(per_client_missing_mid) } return { "clientid": self.cid, "client_count": len(actual_clients), "test_complete": not self.dropping, "msg_count": msg_count, "per_client": per_client_stats, "ms_per_msg": (self.time_end - self.time_start) / msg_count * 1000, "msg_per_sec": msg_count / (self.time_end - self.time_start), "time_total": self.time_end - self.time_start, "flight_time_mean": mean, "flight_time_stddev": stddev, "flight_time_max": max(flight_times), "flight_time_min": min(flight_times) } def static_file_attrs(content=None): now = time.time() if content: size = len(content) else: size = 20 return { "file": dict(st_mode=(stat.S_IFREG | 0o0444), st_nlink=1, st_size=size, st_ctime=now, st_mtime=now, st_atime=now), "content": content } class MalariaWatcherStatsFS(fuse.LoggingMixIn, fuse.Operations): file_attrs = dict(st_mode=(stat.S_IFREG | 0o0444), st_nlink=1, st_size=20000, st_ctime=time.time(), st_mtime=time.time(), st_atime=time.time()) dir_attrs = dict(st_mode=(stat.S_IFDIR | 0o0755), st_nlink=2, st_ctime=time.time(), st_mtime=time.time(), st_atime=time.time()) README_STATFS = """ This is a FUSE filesystem that contains a set of files representing various statistics we have gathered about the MQTT broker we are watching and the topics we are subscribed to. """ msgs_total = 0 msgs_stored = 0 drop_count = 0 drop_count_initial = None def handle_msgs_total(self): """Total number of messages seen since we started""" return self.msgs_total def handle_msgs_stored(self): """Total number of stored ($sys/broker/messages/stored)""" return self.msgs_stored def handle_uptime(self): """Time in seconds this watcher has been running""" return time.time() - self.time_start def handle_drop_count(self): """Total drops since this watcher has been running""" return self.drop_count def handle_topic(self): """The topics this watcher is subscribing too""" return '\n'.join(self.listen_topics) def handle_readme(self): """Returns 'this' readme ;)""" rval = self.README_STATFS useful = [x for x in self.handlers if x != '/'] file_field = "File " rval += "\n" + file_field + "Description\n\n" for h in useful: func = self.handlers[h].get("handler", None) desc = None if not func: desc = "Raw file, no further description" if func: desc = func.__doc__ if not desc: desc = "No description in handler method! (Fix pydoc!)" # pad file line to line up with the description line = "%s%s\n" % (str.ljust(h[1:], len(file_field)), desc) rval += line return rval handlers = { "/": {"file": dir_attrs, "handler": None}, "/msgs_total": {"file": file_attrs, "handler": handle_msgs_total}, "/msgs_stored": {"file": file_attrs, "handler": handle_msgs_stored}, "/uptime": {"file": file_attrs, "handler": handle_uptime}, "/topic": {"file": file_attrs, "handler": handle_topic}, "/drop_count": {"file": file_attrs, "handler": handle_drop_count}, "/README": static_file_attrs(README_STATFS), "/README.detailed": {"file": file_attrs, "handler": handle_readme} } def __init__(self, options): print("listener operations __init__") self.options = options self.time_start = time.time() def msg_handler(self, mosq, userdata, msg): # WARNING: this _must_ release as quickly as possible! # get the sequence id from the topic #self.log.debug("heard a message on topic: %s", msg.topic) if "/messages/dropped" in msg.topic: if self.drop_count_initial: self.log.warn("Drop count has increased by %d", (int(msg.payload) - self.drop_count_initial)) self.drop_count = int(msg.payload) - self.drop_count_initial else: self.drop_count_initial = int(msg.payload) self.log.debug("Initial drops: %d", self.drop_count_initial) return if "messages/stored" in msg.topic: self.msgs_stored = int(msg.payload) return self.msgs_total += 1 def init(self, path): """ Fuse calls this when it's ready, so we can start our actual mqtt processes here. """ print("listener post init init(), path=", path) self.cid = self.options.clientid self.log = logging.getLogger(__name__ + ":" + self.cid) self.mqttc = mqtt.Client(self.cid) self.mqttc.on_message = self.msg_handler self.listen_topics = self.options.topic # TODO - you _probably_ want to tweak this self.mqttc.max_inflight_messages_set(200) rc = self.mqttc.connect(self.options.host, self.options.port, 60) if rc: raise Exception("Couldn't even connect! ouch! rc=%d" % rc) # umm, how? # b/p/m for >= 1.2, b/m for 1.1.x #self.mqttc.subscribe('$SYS/broker/publish/messages/dropped', 0) #self.mqttc.subscribe('$SYS/broker/messages/dropped', 0) #self.mqttc.subscribe('$SYS/broker/messages/stored', 0) self.mqttc.loop_start() [self.mqttc.subscribe(t, self.options.qos) for t in self.listen_topics] def getattr(self, path, fh=None): if path not in self.handlers: raise fuse.FuseOSError(errno.ENOENT) return self.handlers[path]["file"] def read(self, path, size, offset, fh): if self.handlers[path].get("content", False): return self.handlers[path]["content"] funcy = self.handlers[path]["handler"] return str(funcy(self)) + "\n" def readdir(self, path, fh): return ['.', '..'] + [x[1:] for x in self.handlers if x != '/'] class CensusListener(): """ Create a listener that just watches all the messages go past. It doesn't care about time in flight or expected vs actual, it just cares about what it has seen, and maintains long term stats on whatever it does see. """ def __init__(self, options): self.log = logging.getLogger(__name__) path_provided = True if not options.directory: path_provided = False options.directory = tempfile.mkdtemp() self.log.info("Statistics files will be available in %s", options.directory) fuse.FUSE(MalariaWatcherStatsFS(options), options.directory, foreground=True) if not path_provided: self.log.info("Automatically removing statsfs: %s", options.directory) os.rmdir(options.directory)
# Copyright 2019 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tabular Q-Learner self-play example. Two Q-Learning agents are trained by playing against each other. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from absl import app from absl import flags import numpy as np from six.moves import range from open_spiel.python import rl_environment from open_spiel.python import rl_tools from open_spiel.python.algorithms import tabular_qlearner FLAGS = flags.FLAGS flags.DEFINE_integer("num_train_episodes", int(1e6), "Number of training episodes.") flags.DEFINE_integer("num_eval_episodes", int(1e4), "Number of episodes to use during each evaluation.") flags.DEFINE_integer("eval_freq", int(1e4), "The frequency (in episodes) to run evaluation.") flags.DEFINE_string( "epsilon_schedule", None, "Epsilon schedule: e.g. 'linear,init,final,num_steps' or " "'constant,0.2'") flags.DEFINE_string("game", "tic_tac_toe", "Game to load.") def eval_agents(env, agents, num_episodes): """Evaluate the agents, returning a numpy array of average returns.""" rewards = np.array([0] * env.num_players, dtype=np.float64) for _ in range(num_episodes): time_step = env.reset() while not time_step.last(): player_id = time_step.observations["current_player"] agent_output = agents[player_id].step(time_step, is_evaluation=True) time_step = env.step([agent_output.action]) for i in range(env.num_players): rewards[i] += time_step.rewards[i] rewards /= num_episodes return rewards def create_epsilon_schedule(sched_str): """Creates an epsilon schedule from the string as desribed in the flags.""" values = FLAGS.epsilon_schedule.split(",") if values[0] == "linear": assert len(values) == 4 return rl_tools.LinearSchedule( float(values[1]), float(values[2]), int(values[3])) elif values[0] == "constant": assert len(values) == 2 return rl_tools.ConstantSchedule(float(values[1])) else: print("Unrecognized schedule string: {}".format(sched_str)) sys.exit() def main(_): env = rl_environment.Environment(FLAGS.game) num_players = env.num_players num_actions = env.action_spec()["num_actions"] agents = [] if FLAGS.epsilon_schedule is not None: for idx in range(num_players): agents.append( tabular_qlearner.QLearner( player_id=idx, num_actions=num_actions, epsilon_schedule=create_epsilon_schedule(FLAGS.epsilon_schedule))) else: agents = [ tabular_qlearner.QLearner(player_id=idx, num_actions=num_actions) for idx in range(num_players) ] # 1. Train the agents training_episodes = FLAGS.num_train_episodes for cur_episode in range(training_episodes): if cur_episode % int(FLAGS.eval_freq) == 0: avg_rewards = eval_agents(env, agents, FLAGS.num_eval_episodes) print("Training episodes: {}, Avg rewards: {}".format( cur_episode, avg_rewards)) time_step = env.reset() while not time_step.last(): player_id = time_step.observations["current_player"] agent_output = agents[player_id].step(time_step) time_step = env.step([agent_output.action]) # Episode is over, step all agents with final info state. for agent in agents: agent.step(time_step) if __name__ == "__main__": app.run(main)
from pydub import AudioSegment from pydub.effects import normalize import os import numpy as np from os.path import join, splitext from random import randint, shuffle import h5py as h5 fragment_length = 10 max_dataset_size = 65536 fs = 44100 bd = 16 fmt = [None, "mp3", "aac", "ogg", "wma", "ac3"] ffmpeg_format = [None, "mp3", "adts", "ogg", "asf", "ac3"] ffmpeg_codec = [None, "libmp3lame", "aac", "libvorbis", "wmav2", "ac3"] bitrates = ["320k", "192k", "128k"] bitrates_labels = [1, 2, 3] fmt_labels = [0, 10, 20, 30, 40, 50] lenbr = len(bitrates)*len(fmt) - len(bitrates) + 1 allfiles = [] for (root, dirs, files) in os.walk(os.getcwd()): for cfile in files: if splitext(cfile)[-1].lower() == ".flac": allfiles.append(join(root, cfile)) maxsize = len(allfiles)*lenbr shuffle(allfiles) actualsize = 0 with h5.File('dataset.h5', 'w') as f: labels = f.create_dataset("labels", (maxsize,), maxshape=(maxsize,), dtype="int8") data = f.create_dataset("data", (maxsize, fragment_length*fs), maxshape=(maxsize, fragment_length*fs), dtype=f"int{bd}") for fpath in allfiles: try: audio = AudioSegment\ .from_file(fpath, format="flac") if audio.duration_seconds > fragment_length and audio.frame_rate == fs: print(f"Preparing: {fpath} ({int(actualsize/lenbr)}/{int(maxsize/lenbr)})") audio = normalize(audio.set_sample_width(bd//8)) start = randint(0, np.floor((audio.duration_seconds-fragment_length)*1000)) fragment = audio[start:(fragment_length*1000+start)] for i1 in range(len(fmt)): if fmt[i1] is None: labels[actualsize] = fmt_labels[i1] data[actualsize, :] = fragment.set_channels(1).get_array_of_samples() actualsize += 1 else: for i2 in range(len(bitrates)): labels[actualsize] = bitrates_labels[i2] + fmt_labels[i1] fragment.export(f"/tmp/tmp.{fmt[i1]}", format=ffmpeg_format[i1], codec=ffmpeg_codec[i1], bitrate=bitrates[i2]) fragment = AudioSegment.from_file(f"/tmp/tmp.{fmt[i1]}") data[actualsize, :] = fragment.set_channels(1)\ .set_sample_width(bd//8)\ .get_array_of_samples()[0:fragment_length*fs] actualsize += 1 if actualsize >= max_dataset_size: break except KeyboardInterrupt: print("Received SIGINT, exiting...") break except Exception as ex: print(f"Exception: {ex}") continue labels.resize(actualsize, 0) data.resize(actualsize, 0)
''' Binary Search Step 1: Initialize 2 pointers, start at beginning of array, end at the end of the array。 Step 2: Find the element at the middle of the 2 pointers Step 3:If element at the middle is bigger than our goal, set end pointer to the middle Step 4:If element at the middle is smaller than our goal,set start pointer to middle +1 eg. arrary:[1,2,3,4,5,6] target = 6 ''' def binarySearch(arr, target): left = 0 right = len(arr) - 1 while left <= right: mid = (left+right)//2 if arr[mid] == target: return mid elif arr[mid] > target: right = mid elif arr[mid] < target: left = mid + 1 else: right = mid -1 return -1 array = [1, 2, 3, 4, 5, 6] result = binarySearch(array, 5) if result != -1: print("Element is present at the index %d" %result) else: print("Element is not present in the array.")
# Generated by Django 2.2.9 on 2020-02-06 22:02 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('agents', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='agent', options={'ordering': ['name']}, ), ]
import numpy as np import os from sklearn.preprocessing import MinMaxScaler import pickle import tensorflow as tf import vae_ from sklearn.utils import shuffle import collections STEM_SAMPLE_POINT_NUM = 20 data_size = 40*3 batch_size = 50 # settings for VAE. n_hidden = 100 # num of hidden units in mlp. dim_z = 20 # dim of latent. br_data_size = 4 * dim_z + 3 # data_path = "C:/Users/Administrator/Desktop/neuron_factor_tree_test/test/data/L4_BC/data" # # sess_save_dir = "C:/Users/Administrator/Desktop/neuron_factor_tree_test/test/data/L4_BC/data/save" # save_dir = "C:/Users/Administrator/Desktop/neuron_factor_tree_test/test/data/L4_BC/data/save" ''' Load both branch codes and branch id sequences. ''' class SeqLoader(): def __init__(self, test_path, seq_size, branch_size, batch_size, seq_type): self.data_path = os.path.join(test_path, "seq_data") self.save_path = os.path.join(test_path, "vae_save") self.seq_size = seq_size self.branch_size = branch_size self.batch_size = batch_size self.type = seq_type # load rnn data. training_data = os.path.join(self.data_path, "factorDB"+"_"+str(self.type)+".txt") if not (os.path.exists(training_data)): self.build_seq_data() else: self.load_processed(self.data_path) # self.build_seq_data() self.create_batches() self.reset_batch() # Collect all the branch codes(normalized). def branches_loader(self, branch_codes_file): ''' A Branch : [angle, stm_scale_1, stm_scale_2, br_codes[sample_point_num, 3]]. ''' branches = [] branch = [] branch_codes = [] br_angle = 0.0 stm_scale = 1.0 with open(branch_codes_file) as f: for line in f.readlines(): if line.startswith("#BRANCH:"): branch = [] branch_codes = [] elif line.startswith("#ANGLE:"): br_angle = float(line[:-1].split(" ")[1]) branch.append(br_angle) elif line.startswith("#STEM:"): stm_scale = float(line[:-1].split(" ")[1]) branch.append(stm_scale) elif line.startswith("#DATA:"): code_str = np.array(line[:-1].split(" ")[1:4]) code = list(map(float, code_str)) branch_codes.append(code) elif line.startswith("#BRANCHEND"): branch.append(branch_codes) # print(branch) branches.append(branch) # print(len(branches)) return branches # Load sequence as branch ids, only load a type each time. def sequences_loader(self, branch_database_path): seqs = [] seq = [] current_type = 0 with open(branch_database_path) as f: for line in f.readlines(): if line.startswith("#SEQ"): if current_type==self.type and len(seq) != 0: seqs.append(seq) seq = [] current_type = int(np.array(line[:-1].split(" ")[1])) # update current seq type elif line.startswith("#BID"): b_id_str = np.array(line[:-1].split(" ")[1]) b_id = float(b_id_str) seq.append(b_id) if current_type==self.type and len(seq)!=0: seqs.append(seq) # print(len(seqs)) return seqs def process_branches(self, branches): print("Processing branches.") # load scaler_file created in branch_generator traning step. scaler_file = os.path.join(self.data_path, "scaler.txt") with open(scaler_file, "rb") as f: min_max_scaler = pickle.load(f) print("Scaler file loaded from [%s]." % scaler_file) self.min_max_scaler = min_max_scaler # record the scaler. br_count = np.array([[br[0], br[1], br[2]] for br in branches]) # print(br_count.shape) angle_stm_scaler = MinMaxScaler() angle_stm_scaler.fit(br_count) angle_stm_scaler_file = os.path.join(self.data_path, "angle_stm_scaler.txt") with open(angle_stm_scaler_file, "wb") as f: pickle.dump(angle_stm_scaler, f) print("Angle stm scaler file saved at [%s]." % angle_stm_scaler_file) # Normalixation data = [[angle_stm_scaler.transform(np.array([br[0], br[1], br[2]]).reshape(-1, 3)), min_max_scaler.transform(br[3]).reshape(STEM_SAMPLE_POINT_NUM*2, 3, 1)] for br in branches] # print(len(data)) # print(data[0]) return data def build_seq_data(self): print("Building sequence datas.") branch_seq_path = os.path.join(self.data_path, "branch_dataset.brd") branch_code_path = os.path.join(self.data_path, "branch_code.bcd") # Load branches. branches = self.branches_loader(branch_code_path) print("{} branches loaded.".format(len(branches))) self.branches = self.process_branches(branches) # [None, [angle, scale_1, scale_2, codes]]. # Load branch id sequences. self.sequences = self.sequences_loader(branch_seq_path) print("{} sequences loaded.".format(len(self.sequences))) if int(len(self.sequences) / self.batch_size) == 0: self.tensor = [] return # print(self.sequences) # Sequence normalization. seq_ids = [] for seq in self.sequences: seq.reverse() seq_n = [] for id in [int(f) for f in seq]: if id!=-1: # empty branches. seq_n.append(id) if(len(seq_n)==0): continue elif len(seq_n) < self.seq_size: for i in range(self.seq_size - len(seq_n)): seq_n.append(-1) else: # equals or shorter than seq_size. seq_n = seq_n[(len(seq_n) - self.seq_size) + 1:] seq_n.append(-1) # make sure last one is -1. seq_ids.append(seq_n) # print("shape") # print(np.array(seq_ids).shape) # x = tf.placeholder(tf.float32, shape=[None, data_size], name='input_img') x = tf.placeholder(tf.float32, shape=[None, 20, 3, 1], name='input') latent = vae_.gaussian_MLP_encoder(x, n_hidden, dim_z, 1.0) with tf.Session() as sess: tf.global_variables_initializer().run() saver = tf.train.Saver(tf.global_variables()) ckpt = tf.train.get_checkpoint_state(self.save_path) if ckpt: print("VAE model restored for branch latent transform.") saver.restore(sess, ckpt.model_checkpoint_path) else: return latent_data = [] for seq in seq_ids: seq_latents = [] # seq_latents.append(np.array([1.0 for _ in range(br_data_size)])) # all 1.0 for soma. for br in seq: if br != -1: _st_mean, _st_stdv = \ sess.run(latent, feed_dict={x: [self.branches[br][1][:STEM_SAMPLE_POINT_NUM]]})# stem 1 st_latent = np.append(_st_mean[0], _st_stdv[0]) _st_mean, _st_stdv = \ sess.run(latent, feed_dict={x: [self.branches[br][1][STEM_SAMPLE_POINT_NUM:]]}) st_latent_ = np.append(_st_mean[0], _st_stdv[0]) br_latent = np.append(np.array(self.branches[br][0]), st_latent) br_latent = np.append(br_latent, st_latent_) # print(len(br_latent)) # print(br_latent) seq_latents.append(br_latent) for i in range(self.seq_size - len(seq_latents)): seq_latents.append(np.array([0.0 for _ in range(self.branch_size)])) # all 0 for leaf. latent_data.append(seq_latents) # print(len(latent_data)) # print(latent_data[0][0]) x_data_ = np.array(latent_data, dtype=np.float32) print(x_data_.shape) # (data_size, seq_size, 4*dim_z+3) print("Training data normalized.") x_data = shuffle(x_data_, random_state=42) # make up a neuronFactor-database. Each nf in DB have a id. factors_ = x_data.reshape(-1, self.branch_size) # reshape to count factors. factors_s = [str(f) for f in factors_.tolist()] counter = collections.Counter(factors_s) count_pairs = sorted(counter.items(), key=lambda x: -x[1]) self.factors, _ = zip(*count_pairs) print(len(self.factors)) # for f in self.factors: # print(f) self.factorDB_size = len(self.factors) self.factorDB = dict(zip(self.factors, range(len(self.factors)))) db_file = os.path.join(self.data_path, "factorDB" + "_" + str(self.type) + ".txt") print("Got a NeuronFactor Database of size %d." % self.factorDB_size) tensor = np.array(list(map(self.factorDB.get, factors_s))) tensor_file = os.path.join(self.data_path, "tensor" + "_" + str(self.type) + "") self.tensor = tensor.reshape(-1, self.seq_size) # seq_num * seq_size # save data. with open(db_file, "wb") as f: pickle.dump(self.factors, f) print("NeuronFactorDB saved at [%s]." % db_file) np.save(tensor_file, self.tensor) print("Factor tensors saved at [%s]." % tensor_file) print("Data preprocessed.") def load_processed(self, data_base_dir): db_file = os.path.join(data_base_dir, "factorDB_"+str(self.type)+".txt") tensor_file = os.path.join(data_base_dir, "tensor_"+str(self.type)+".npy") # Loading data. with open(db_file, "rb") as f: self.factors = pickle.load(f) self.factorDB_size = len(self.factors) self.factorDB = dict(zip(self.factors, range(len(self.factors)))) self.tensor = np.load(tensor_file) print("[%d] training data loaded from [%s]." % (len(self.tensor), tensor_file)) def create_batches(self): self.num_batches = int(len(self.tensor) / self.batch_size) if self.num_batches== 0: print("Don't have enough data, finish.") return # use the first self.batch_size*self.num_batches data. tensor = self.tensor[:self.batch_size*self.num_batches] x_data = tensor y_data = np.copy(tensor) for y_ in y_data: y_[:-1] = y_[1:] y_[-1] = 0 self.x_batches = np.split(x_data, self.num_batches) self.y_batches = np.split(y_data, self.num_batches) def reset_batch(self): self.index_id = 0 def next_batch(self): # in test use for range. x, y = self.x_batches[self.index_id], \ self.y_batches[self.index_id] self.index_id += 1 return x, y def get_seq_ter_prob(self): branch_seq_path = os.path.join(self.data_path, "branch_dataset.brd") seqs = self.sequences_loader(branch_seq_path) seq_len_list = [len(seq) for seq in seqs] seq_len_counter = collections.Counter(seq_len_list) t_prob = {} # A dict for terminate prob. for l, _ in seq_len_counter.items(): c = sum([c_ for l_, c_ in seq_len_counter.items() if l_ == l]) # rest longer one r = 0 # rest longer one for l_, c_ in seq_len_counter.items(): r_ = 0 if l_ > l: # for longer one for i in range(l_ - l): c_ = c_ / 2 # get rid of repetitive sub tree r_ += c_ r += r_ t_prob[l] = float(c) / float(c + r) print("Got termination prob.") return t_prob # loader = SeqLoader("C:/Users/Administrator/Desktop/TestFullNeuron", 20, 2*STEM_SAMPLE_POINT_NUM, 50, 3) # x, y = loader.next_batch() # print(x) # print(y)
"""The Volkswagen We Connect ID integration.""" from __future__ import annotations from datetime import timedelta import logging from weconnect import weconnect from weconnect.elements.control_operation import ControlOperation from homeassistant.config_entries import ConfigEntry from homeassistant.const import Platform from homeassistant.core import HomeAssistant, ServiceCall, callback from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.update_coordinator import ( CoordinatorEntity, DataUpdateCoordinator, ) from .const import DOMAIN PLATFORMS = [Platform.BINARY_SENSOR, Platform.BUTTON, Platform.SENSOR, Platform.NUMBER] _LOGGER = logging.getLogger(__name__) SUPPORTED_VEHICLES = ["ID.3", "ID.4", "ID.5"] async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up Volkswagen We Connect ID from a config entry.""" hass.data.setdefault(DOMAIN, {}) _we_connect = weconnect.WeConnect( username=entry.data["username"], password=entry.data["password"], updateAfterLogin=False, loginOnInit=False, ) await hass.async_add_executor_job(_we_connect.login) await hass.async_add_executor_job(_we_connect.update) async def async_update_data(): """Fetch data from Volkswagen API.""" await hass.async_add_executor_job(_we_connect.update) vehicles = [] for vin, vehicle in _we_connect.vehicles.items(): if vehicle.model.value in SUPPORTED_VEHICLES: vehicles.append(vehicle) hass.data[DOMAIN][entry.entry_id + "_vehicles"] = vehicles return vehicles coordinator = DataUpdateCoordinator( hass, _LOGGER, name=DOMAIN, update_method=async_update_data, update_interval=timedelta(seconds=30), ) hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id + "_coordinator"] = coordinator hass.data[DOMAIN][entry.entry_id] = _we_connect hass.data[DOMAIN][entry.entry_id + "_vehicles"] = [] # Fetch initial data so we have data when entities subscribe await coordinator.async_config_entry_first_refresh() # Setup components hass.config_entries.async_setup_platforms(entry, PLATFORMS) @callback async def volkswagen_id_start_stop_charging(call: ServiceCall) -> None: vin = call.data["vin"] start_stop = call.data["start_stop"] if ( await hass.async_add_executor_job( start_stop_charging, vin, _we_connect, start_stop, ) is False ): _LOGGER.error("Cannot send charging request to car") @callback async def volkswagen_id_set_climatisation(call: ServiceCall) -> None: vin = call.data["vin"] start_stop = call.data["start_stop"] target_temperature = 0 if "target_temp" in call.data: target_temperature = call.data["target_temp"] if ( await hass.async_add_executor_job( set_climatisation, vin, _we_connect, start_stop, target_temperature, ) is False ): _LOGGER.error("Cannot send climate request to car") @callback async def volkswagen_id_set_target_soc(call: ServiceCall) -> None: vin = call.data["vin"] target_soc = 0 if "target_soc" in call.data: target_soc = call.data["target_soc"] if ( await hass.async_add_executor_job( set_target_soc, vin, _we_connect, target_soc, ) is False ): _LOGGER.error("Cannot send target soc request to car") @callback async def volkswagen_id_set_ac_charge_speed(call: ServiceCall) -> None: vin = call.data["vin"] if "maximum_reduced" in call.data: if ( await hass.async_add_executor_job( set_ac_charging_speed, vin, _we_connect, call.data["maximum_reduced"], ) is False ): _LOGGER.error("Cannot send ac speed request to car") # Register our services with Home Assistant. hass.services.async_register( DOMAIN, "volkswagen_id_start_stop_charging", volkswagen_id_start_stop_charging ) hass.services.async_register( DOMAIN, "volkswagen_id_set_climatisation", volkswagen_id_set_climatisation ) hass.services.async_register( DOMAIN, "volkswagen_id_set_target_soc", volkswagen_id_set_target_soc ) hass.services.async_register( DOMAIN, "volkswagen_id_set_ac_charge_speed", volkswagen_id_set_ac_charge_speed ) return True def start_stop_charging( call_data_vin, api: weconnect.WeConnect, operation: str ) -> bool: """Start of stop charging of your volkswagen.""" for vin, vehicle in api.vehicles.items(): if vin == call_data_vin: if operation == "start": try: if ( vehicle.controls.chargingControl is not None and vehicle.controls.chargingControl.enabled ): vehicle.controls.chargingControl.value = ControlOperation.START _LOGGER.info("Sended start charging call to the car") except Exception as exc: _LOGGER.error("Failed to send request to car - %s", exc) return False if operation == "stop": try: if ( vehicle.controls.chargingControl is not None and vehicle.controls.chargingControl.enabled ): vehicle.controls.chargingControl.value = ControlOperation.STOP _LOGGER.info("Sended stop charging call to the car") except Exception as exc: _LOGGER.error("Failed to send request to car - %s", exc) return False return True def set_ac_charging_speed( call_data_vin, api: weconnect.WeConnect, charging_speed ) -> bool: """Set charging speed in your volkswagen.""" for vin, vehicle in api.vehicles.items(): if vin == call_data_vin: if ( charging_speed != vehicle.domains["charging"][ "chargingSettings" ].maxChargeCurrentAC.value ): try: vehicle.domains["charging"][ "chargingSettings" ].maxChargeCurrentAC.value = charging_speed _LOGGER.info("Sended charging speed call to the car") except Exception as exc: _LOGGER.error("Failed to send request to car - %s", exc) return False return True def set_target_soc(call_data_vin, api: weconnect.WeConnect, target_soc: int) -> bool: """Set target SOC in your volkswagen.""" target_soc = int(target_soc) for vin, vehicle in api.vehicles.items(): if vin == call_data_vin: if ( target_soc > 10 and target_soc != vehicle.domains["charging"]["chargingSettings"].targetSOC_pct.value ): try: vehicle.domains["charging"][ "chargingSettings" ].targetSOC_pct.value = target_soc _LOGGER.info("Sended target SoC call to the car") except Exception as exc: _LOGGER.error("Failed to send request to car - %s", exc) return False return True def set_climatisation( call_data_vin, api: weconnect.WeConnect, operation: str, target_temperature: float ) -> bool: """Set climate in your volkswagen.""" for vin, vehicle in api.vehicles.items(): if vin == call_data_vin: if ( target_temperature > 10 and target_temperature != vehicle.domains["climatisation"][ "climatisationSettings" ].targetTemperature_C.value ): try: vehicle.domains["climatisation"][ "climatisationSettings" ].targetTemperature_C.value = float(target_temperature) _LOGGER.info("Sended target temperature call to the car") except Exception as exc: _LOGGER.error("Failed to send request to car - %s", exc) return False if operation == "start": try: if ( vehicle.controls.climatizationControl is not None and vehicle.controls.climatizationControl.enabled ): vehicle.controls.climatizationControl.value = ( ControlOperation.START ) _LOGGER.info("Sended start climate call to the car") except Exception as exc: _LOGGER.error("Failed to send request to car - %s", exc) return False if operation == "stop": try: if ( vehicle.controls.climatizationControl is not None and vehicle.controls.climatizationControl.enabled ): vehicle.controls.climatizationControl.value = ( ControlOperation.STOP ) _LOGGER.info("Sended stop climate call to the car") except Exception as exc: _LOGGER.error("Failed to send request to car - %s", exc) return False return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok def get_object_value(value) -> str: """Get value from object or enum.""" while hasattr(value, "value"): value = value.value return value class VolkswagenIDBaseEntity(CoordinatorEntity): """Common base for VolkswagenID entities.""" # _attr_should_poll = False _attr_attribution = "Data provided by Volkswagen Connect ID" def __init__( self, we_connect: weconnect.WeConnect, coordinator: DataUpdateCoordinator, index: int, ) -> None: """Initialize sensor.""" super().__init__(coordinator) self.we_connect = we_connect self.index = index self._attr_device_info = DeviceInfo( identifiers={(DOMAIN, f"vw{self.data.vin}")}, manufacturer="Volkswagen", model=f"{self.data.model}", # format because of the ID.3/ID.4 names. name=f"Volkswagen {self.data.nickname} ({self.data.vin})", ) @property def data(self): """Shortcut to access coordinator data for the entity.""" return self.coordinator.data[self.index]
# -*- coding: utf-8 -*- """ Created on Thu Jun 17 11:33:40 2021 @author: lukepinkel """ import numpy as np import scipy as sp import scipy.stats TWOPI = 2.0 * np.pi LN2PI = np.log(TWOPI) class SASH: @staticmethod def loglike(y, mu, sigma, nu, tau): return _logpdf(y, mu, sigma, nu, tau) @staticmethod def d1loglike(y, mu, sigma, nu, tau): return _d1logpdf(y, mu, sigma, nu, tau) @staticmethod def d2loglike(y, mu, sigma, nu, tau): return _d2logpdf(y, mu, sigma, nu, tau) @staticmethod def d3loglike(y, mu, sigma, nu, tau): return _d3logpdf(y, mu, sigma, nu, tau) @staticmethod def d4loglike(y, mu, sigma, nu, tau): return _d4logpdf(y, mu, sigma, nu, tau) def _expand_arrs(*arrs): y = np.concatenate([np.expand_dims(np.asarray(arr), -1) for arr in arrs], axis=-1) return y def _logpdf(x, m=0.0, s=1.0, v=0.0, t=1.0): z = (x - m) / s y = np.arcsinh(z) * t - v r, c, w = np.sinh(y), np.cosh(y), np.sqrt(1.0 + z**2) logp = np.log(t) + np.log(c) - np.log(s) - np.log(w) - r**2 / 2.0 - LN2PI / 2.0 return logp def _d1logpdf(x, m, s, v, t): si1 = 1.0 / s si2 = si1 / s r = x - m r2 = r**2 rs = si2*r2 z = (rs + 1.0)**(-1) u = np.arcsinh(r*si1) y = t*u - v x8 = np.sinh(y) x9 = np.cosh(y) x10 = x8*x9 x11 = t/np.sqrt(rs + 1) x12 = x11*si1 x13 = x8/x9 x14 = si2*r*x11 m = -1/2*si2*z*(2*m - 2*x) + x10*x12 - x12*x13 s = x10*x14 - x13*x14 - si1 + r2*z/s**3 v = x10 - x13 t = -x10*u + x13*u + t**(-1) D1 = _expand_arrs(m, s, v, t) return D1 def _d2logpdf(x, m, s, v, t): x0 = s**(-2) x1 = m - x x2 = x0*x1**2 x3 = x2 + 1.0 x4 = x3**(-1) x5 = t**2 x6 = x2 + 1 x7 = x5/x6 x8 = 2/x3**2 x9 = s**(-1) x10 = x1*x9 x11 = np.arcsinh(x10) x12 = t*x11 x13 = v + x12 x14 = np.sinh(x13) x15 = x14**2 x16 = x15*x7 x17 = np.cosh(x13) x18 = x17**2 x19 = x18*x7 x20 = x15/x18 x21 = x20*x7 x22 = x14*x17 x23 = t/x6**(3/2) x24 = x10*x23 x25 = x14/x17 x26 = 2*x10 x27 = x1**3/s**3 x28 = 1/np.sqrt(x6) x29 = t*x28 x30 = x22*x29 x31 = x25*x29 x32 = x2*x23 x33 = -x15 - x18 - x20 + 1 x34 = x28*x9 x35 = x12*x15 x36 = x12*x18 x37 = x12*x20 x38 = x23*x27 x39 = x0*x1 x40 = x11**2 mm = x0*(-x16 - x19 + x2*x8 - x21 + x22*x24 - x24*x25 - x4 + x7) ms = x0*(x10*x16 + x10*x19 + x10*x21 - x10*x7 - x22*x32 + x25*x32 + x26*x4 - x27*x8 + x30 - x31) mv = t*x33*x34 mt = x34*(x12 - x22 + x25 - x35 - x36 - x37) ss = x0*(-x16*x2 - x19*x2 - x2*x21 - 3*x2*x4 + x2*x7 + x22*x38 - x25*x38 - x26*x30 + x26*x31 + 1 + x1**4*x8/s**4) sv = x29*x39*(x15 + x18 + x20 - 1) st = x28*x39*(-x12 + x22 - x25 + x35 + x36 + x37) vv = x33 vt = x11*x33 tt = -x15*x40 - x18*x40 - x20*x40 + x40 - 1/x5 D2 = _expand_arrs(mm, ms, mv, mt, ss, sv, st, vv, vt, tt) return D2 def _d3logpdf(x, m, s, v, t): x0 = s**(-3) x1 = s**(-2) x2 = m - x x3 = x1*x2**2 x4 = x3 + 1.0 x5 = x4**(-2) x6 = s**(-1) x7 = x2*x6 x8 = 6*x7 x9 = 8/x4**3 x10 = x0*x2**3 x11 = t**2 x12 = x11*x7 x13 = x3 + 1 x14 = 3/x13**2 x15 = x12*x14 x16 = np.arcsinh(x7) x17 = t*x16 x18 = v + x17 x19 = np.sinh(x18) x20 = x19**2 x21 = np.cosh(x18) x22 = x21**2 x23 = x13**(-3/2) x24 = t*x23 x25 = x19*x21 x26 = x24*x25 x27 = x21**(-1) x28 = x19*x27 x29 = x24*x28 x30 = t**3 x31 = x23*x30 x32 = 4*x25 x33 = x31*x32 x34 = 2*x19 x35 = x27*x34 x36 = x31*x35 x37 = x21**(-3) x38 = x19**3*x37 x39 = 2*x38 x40 = x31*x39 x41 = 3*t x42 = x41/x13**(5/2) x43 = x3*x42 x44 = x22**(-1) x45 = x20*x44 x46 = x4**(-1) x47 = x13**(-1) x48 = 2*x47 x49 = x11*x48 x50 = x2**4/s**4 x51 = x11*x14 x52 = x3*x51 x53 = x23*x7 x54 = x25*x53 x55 = x10*x42 x56 = x28*x53 x57 = x30*x53 x58 = x20*x53 x59 = x22*x53 x60 = x32*x47 x61 = t*x60 x62 = t*x48 x63 = x28*x62 x64 = x38*x62 x65 = x45*x53 x66 = t*x1 x67 = x20*x62 x68 = x22*x62 x69 = x45*x62 x70 = x16*x60 x71 = x16*x49 x72 = x28*x71 x73 = x38*x71 x74 = x2**5/s**5 x75 = 4*x12*x47 x76 = x10*x51 x77 = 2*x21 x78 = 1/np.sqrt(x13) x79 = x19*x78 x80 = x77*x79 x81 = 2*x78 x82 = x28*x81 x83 = x42*x50 x84 = x23*x3 x85 = x25*x84 x86 = 5*t x87 = x28*x84 x88 = x30*x84 x89 = x20*x78 x90 = x22*x78 x91 = x20*x84 x92 = x22*x84 x93 = x44*x89 x94 = x61*x7 x95 = x63*x7 x96 = x64*x7 x97 = x45*x84 x98 = x62*x7 x99 = x17*x84 x100 = x67*x7 x101 = x68*x7 x102 = x21*x79 x103 = x27*x79 x104 = x17*x91 x105 = x17*x92 x106 = x69*x7 x107 = x12*x70 x108 = x7*x72 x109 = x17*x97 x110 = x7*x73 x111 = x20*x37 x112 = x111 - x27 - x77 x113 = x6*x81 x114 = x17*x32 x115 = x17*x35 x116 = x17*x38 x117 = 2*x116 x118 = -x20 - x22 - x45 + 1 x119 = x17*x28 x120 = x19*x77 x121 = x120*x17 x122 = x50*x51 x123 = 6*x11*x3*x47 x124 = t*x8 x125 = x42*x74 x126 = 7*x10 x127 = 2*x89 x128 = 2*x90 x129 = 2*x93 x130 = x0*x2 x131 = x20 + x22 + x45 - 1 x132 = x1*x2 x133 = x112*x34 x134 = x16**3 mmm = x0*(-x10*x9 + x15*x20 + x15*x22 + x15*x45 - x15 - x25*x43 + x26 + x28*x43 - x29 - x33 - x36 + x40 + x5*x8) mms = x0*(x20*x49 - x20*x52 + x22*x49 - x22*x52 + x25*x55 - x28*x55 - 10*x3*x5 + x32*x57 + x35*x57 - x39*x57 - x41*x54 + x41*x56 + x45*x49 - x45*x52 + 2*x46 - x49 + x50*x9 + x52) mmv = x66*(-x53 + x58 + x59 - x61 - x63 + x64 + x65) mmt = x1*(-x11*x70 - x17*x53 + x17*x58 + x17*x59 + x17*x65 + x54 - x56 + x62 - x67 - x68 - x69 - x72 + x73) mss = x0*(-t*x80 + t*x82 + 14*x10*x5 - x20*x75 + x20*x76 - x22*x75 + x22*x76 - x25*x83 + x28*x83 - x32*x88 - x35*x88 + x39*x88 - x45*x75 + x45*x76 - x46*x8 - x74*x9 + x75 - x76 + x85*x86 - x86*x87) msv = x66*(-x78 + x84 + x89 + x90 - x91 - x92 + x93 + x94 + x95 - x96 - x97) mst = x1*(x100 + x101 + x102 - x103 - x104 - x105 + x106 + x107 + x108 - x109 - x110 - x17*x78 + x17*x89 + x17*x90 + x17*x93 - x85 + x87 - x98 + x99) mvv = t*x112*x113*x19 mvt = x6*x78*(-x114 - x115 + x117 + x118) mtt = x113*x16*(x116 + x118 - x119 - x121) sss = x0*(x10*x33 + x10*x36 - x10*x40 + x102*x124 - x103*x124 - x122*x20 - x122*x22 - x122*x45 + x122 + x123*x20 + x123*x22 + x123*x45 - x123 + x125*x25 - x125*x28 - x126*x26 + x126*x29 + 12*x3*x46 - 18*x5*x50 - 2 + x2**6*x9/s**6) ssv = t*x130*(-x127 - x128 - x129 + x81 - x84 + x91 + x92 - x94 - x95 + x96 + x97) sst = x130*(-x100 - x101 + x104 + x105 - x106 - x107 - x108 + x109 + x110 - x127*x17 - x128*x17 - x129*x17 + x17*x81 - x80 + x82 + x85 - x87 + x98 - x99) svv = x19*x2*x66*x81*(-x111 + x27 + x77) svt = x132*x78*(x114 + x115 - x117 + x131) stt = x132*x16*x81*(-x116 + x119 + x121 + x131) vvv = x133 vvt = x133*x16 vtt = x133*x16**2 ttt = -2*x120*x134 - 2*x134*x28 + 2*x134*x38 + 2/x30 D3 = _expand_arrs(mmm,mms, mmv, mmt, mss, msv, mst, mvv, mvt, mtt, sss, ssv, sst, svv, svt, stt, vvv, vvt, vtt, ttt) return D3 def _d4logpdf(x, m, s, v, t): x0 = s**(-4) x1 = s**(-2) x2 = m - x x3 = x1*x2**2 x4 = x3 + 1.0 x5 = x4**(-2) x6 = t**2 x7 = x3 + 1 x8 = x7**(-2) x9 = 4*x8 x10 = x6*x9 x11 = t**4 x12 = x11*x8 x13 = 2*x12 x14 = 48/x4**4 x15 = x0*x2**4 x16 = x4**(-3) x17 = x3*x6 x18 = 15/x7**3 x19 = x17*x18 x20 = s**(-1) x21 = x2*x20 x22 = np.arcsinh(x21) x23 = t*x22 x24 = v + x23 x25 = np.sinh(x24) x26 = x25**2 x27 = np.cosh(x24) x28 = x27**2 x29 = x11*x9 x30 = x26*x29 x31 = x28*x29 x32 = x28**(-1) x33 = x26*x32 x34 = 8*x33 x35 = x12*x34 x36 = x25**4/x27**4 x37 = 6*x36 x38 = x12*x37 x39 = x25*x27 x40 = t*x39 x41 = x7**(-5/2) x42 = x21*x41 x43 = 9*x42 x44 = 15/x7**(7/2) x45 = x2**3 x46 = s**(-3) x47 = t*x46 x48 = x45*x47 x49 = x39*x48 x50 = x25/x27 x51 = t*x50 x52 = t**3 x53 = 24*x21 x54 = x52*x53 x55 = x39*x41 x56 = x48*x50 x57 = 12*x52 x58 = x42*x57 x59 = x25**3/x27**3 x60 = x2**5/s**5 x61 = x45*x46 x62 = x21*x8 x63 = x6*x62 x64 = 13*x63 x65 = x18*x6 x66 = x61*x65 x67 = x7**(-3/2) x68 = x39*x67 x69 = 3*t x70 = x50*x67 x71 = 12*x68 x72 = 6*x52 x73 = x59*x67 x74 = x15*x44 x75 = x3*x41 x76 = 18*x75 x77 = 24*x52 x78 = x55*x77 x79 = x57*x75 x80 = 2*x67 x81 = x6*x80 x82 = 3*x41 x83 = x3*x82 x84 = x26*x67 x85 = x28*x67 x86 = 4*x6 x87 = x84*x86 x88 = x85*x86 x89 = x26*x83 x90 = x28*x83 x91 = x32*x84 x92 = 8*x91 x93 = x6*x92 x94 = 6*x6 x95 = x36*x94 x96 = 12*x40 x97 = 6*t x98 = x62*x97 x99 = x33*x83 x100 = x23*x67 x101 = x22*x52 x102 = x101*x80 x103 = x23*x84 x104 = x23*x85 x105 = 4*x101 x106 = x6*x71 x107 = x70*x94 x108 = 3*x50 x109 = x108*x41 x110 = x23*x91 x111 = x101*x92 x112 = x101*x37 x113 = 12*x39 x114 = x113*x22 x115 = x22*x94 x116 = x115*x62 x117 = x4**(-1) x118 = x7**(-1) x119 = x118*x6 x120 = 6*x119 x121 = x2**6/s**6 x122 = x15*x65 x123 = x17*x8 x124 = 22*x123 x125 = x118*x26 x126 = x118*x28 x127 = x125*x32 x128 = x44*x60 x129 = 27*x41 x130 = x21*x70 x131 = x41*x57 x132 = x131*x50 x133 = x21*x67 x134 = x133*x59 x135 = x59*x61 x136 = x61*x82 x137 = x21*x84 x138 = x21*x85 x139 = x136*x26 x140 = x136*x28 x141 = t*x118 x142 = 8*x39 x143 = x141*x142 x144 = 4*x141 x145 = x144*x50 x146 = x144*x59 x147 = x3*x8 x148 = x21*x91 x149 = x147*x97 x150 = x136*x33 x151 = 3*x21 x152 = x144*x33 x153 = x119*x22 x154 = 4*x153 x155 = x115*x147 x156 = 2*x26 x157 = x141*x156 x158 = 2*x28 x159 = x141*x158 x160 = 3*x36 x161 = x39*x80 x162 = x161*x21 x163 = 2*x1 x164 = t*x163 x165 = 2*x153 x166 = x22*x86 x167 = x127*x6 x168 = 8*x22 x169 = x120*x22*x36 x170 = 4*x23 x171 = x23*x80 x172 = x21*x50 x173 = x21*x59 x174 = x22**2 x175 = x119*x174 x176 = 2*x174*x6 x177 = x118*x23 x178 = 4*x177 x179 = x174*x86 x180 = t*x174 x181 = x2**7/s**7 x182 = 18*x21 x183 = x60*x65 x184 = x6*x8 x185 = x184*x61 x186 = 31*x185 x187 = x125*x21 x188 = 18*x6 x189 = x126*x21 x190 = 1/np.sqrt(x7) x191 = 6*x190 x192 = x191*x39 x193 = x191*x50 x194 = x121*x44 x195 = 36*x15 x196 = x40*x41 x197 = 27*t x198 = x3*x68 x199 = x41*x51 x200 = x3*x70 x201 = 36*x3 x202 = x52*x68 x203 = 18*x52 x204 = x131*x59 x205 = x3*x67 x206 = x205*x59 x207 = x15*x82 x208 = x207*x28 x209 = x207*x26 x210 = x3*x81 x211 = x3*x85 x212 = x3*x84 x213 = x3*x88 x214 = x3*x87 x215 = x207*x33 x216 = x3*x91 x217 = x141*x21 x218 = 16*x39 x219 = 8*x217 x220 = x48*x8 x221 = 6*x220 x222 = x221*x59 x223 = x205*x95 x224 = x221*x50 x225 = x17*x92 x226 = x113*x220 x227 = 2*x190 x228 = x227*x28 x229 = x227*x26 x230 = x229*x32 x231 = x227 - x228 - x229 - x230 x232 = x227*x23 x233 = x207*x23 x234 = 5*x3 x235 = x102*x3 x236 = x221*x26 x237 = x221*x28 x238 = x227*x39 x239 = x227*x50 x240 = x209*x23 x241 = x208*x23 x242 = x207*x39 x243 = x105*x212 x244 = x105*x211 x245 = x109*x15 x246 = x17*x71 x247 = x221*x33 x248 = x107*x3 x249 = x206*x94 x250 = x114*x185 x251 = 8*x153 x252 = x215*x23 x253 = x115*x8 x254 = x253*x50*x61 x255 = x135*x253 x256 = x111*x3 x257 = x112*x205 x258 = x157*x21 x259 = x159*x21 x260 = x190*x50 x261 = x190*x59 x262 = x161*x3 x263 = x152*x21 x264 = x160*x217 x265 = x190*x26 x266 = x190*x28 x267 = x165*x21 x268 = x265*x32 x269 = x166*x187 x270 = x166*x189 x271 = x142*x217 x272 = 4*x39 x273 = x190*x272 x274 = x145*x21 x275 = x146*x21 x276 = x170*x198 x277 = x171*x3 x278 = x277*x50 x279 = x277*x59 x280 = x127*x21 x281 = x168*x280*x6 x282 = x169*x21 x283 = x118*x21 x284 = x205*x22 x285 = x175*x21 x286 = x212*x22 x287 = x211*x22 x288 = x176*x187 x289 = x176*x189 x290 = x142*x23 x291 = x283*x290 x292 = x170*x283 x293 = x292*x50 x294 = x180*x262 x295 = x292*x59 x296 = x216*x22 x297 = x180*x200 x298 = x180*x206 x299 = x179*x280 x300 = x160*x285 x301 = 4*x33 x302 = -x156 - x158 - x160 + x301 - 1 x303 = x20*x227 x304 = 2*x39 x305 = x158*x23 x306 = x156*x23 x307 = x160*x23 x308 = x23*x301 x309 = -x23 - x305 - x306 - x307 + x308 x310 = 2*x50 x311 = 2*x59 x312 = x22*x227 x313 = 6*x39 x314 = 3*x59 x315 = x121*x65 x316 = 40*x15*x184 x317 = 36*x17 x318 = x181*x44 x319 = 45*x60 x320 = 48*x48 x321 = x61*x77 x322 = 6*x265 x323 = 6*x266 x324 = 6*x268 x325 = x39*x53 x326 = 12*x217 x327 = x0*x2 x328 = 7*x3 x329 = 12*x153 x330 = x227*x59 x331 = x2*x46 x332 = x1*x2 x333 = x227*x332 x334 = x23 + x305 + x306 + x307 - x308 x335 = 2*x302 x336 = x22**4 mmmm = x0*(x10*x26 + x10*x28 + x10*x33 - x10 - x13 + x14*x15 - 48*x16*x3 - x19*x26 - x19*x28 - x19*x33 + x19 - x30 - x31 + x35 - x38 - x40*x43 + x43*x51 + x44*x49 - x44*x56 + 6*x5 + x50*x58 + x54*x55 - x58*x59) mmms = x0*(x13*x21 - x14*x60 + 72*x16*x61 + x21*x30 + x21*x31 - x21*x35 + x21*x38 - x26*x64 + x26*x66 - x28*x64 + x28*x66 - x3*x78 - x33*x64 + x33*x66 - x40*x74 + x40*x76 - x5*x53 - x50*x79 + x51*x74 - x51*x76 + x52*x71 + x59*x79 + x64 - x66 - x68*x69 + x69*x70 + x70*x72 - x72*x73) mmmv = x47*(x50*x98 - x59*x98 + x62*x96 - x67*x95 - x67 - x81 + x83 + x84 + x85 - x87 - x88 - x89 - x90 + x91 + x93 - x99) mmmt = x46*(-x100 - x102 + x103 + x104 - x105*x84 - x105*x85 - x106 - x107 + x109*x3 + x110 + x111 - x112*x67 + x114*x63 + x116*x50 - x116*x59 + x23*x83 - x23*x89 - x23*x90 - x23*x99 + x26*x98 + x28*x98 + x33*x98 - x39*x83 + x68 - x70 + x73*x94 - x98) mmss = x0*(-12*t*x130 + t*x21*x71 - 6*x117 + x120 + x121*x14 - x122*x26 - x122*x28 - x122*x33 + x122 + x124*x26 + x124*x28 + x124*x33 - x124 - x125*x94 - x126*x94 - x127*x94 + x128*x40 - x128*x51 - x129*x49 + x129*x56 - x13*x3 - x130*x57 - x131*x135 + x132*x61 + x134*x57 - 96*x15*x16 - x3*x30 - x3*x31 + x3*x35 - x3*x38 + 54*x3*x5 - x54*x68 + x61*x78) mmsv = x47*(x133*x95 + 3*x133 - x136 - 3*x137 - 3*x138 + x139 + x140 + x143 + x145 - x146 - x147*x96 - 3*x148 - x149*x50 + x149*x59 + x150 + x21*x81 + x21*x87 + x21*x88 - x21*x93) mmst = x46*(x100*x151 + x102*x21 - x103*x151 - x104*x151 + x105*x137 + x105*x138 + x106*x21 + x107*x21 - x109*x61 - x110*x151 - x111*x21 + x112*x133 - x114*x123 + 3*x130 - x134*x94 - x136*x23 + x136*x39 + x139*x23 + x140*x23 + x142*x153 + x144*x26 + x144*x28 - x144 - x149*x26 - x149*x28 - x149*x33 + x149 + x150*x23 - x151*x68 + x152 + x154*x50 - x154*x59 - x155*x50 + x155*x59) mmvv = x164*(x130 - x134 - x141*x160 - x141 + x152 - x157 - x159 + x162) mmvt = x1*(-x125*x166 - x126*x166 - x133 + x137 + x138 - x143 - x145 + x146 + x148 - x165 + x167*x168 - x169 + x170*x21*x68 + x171*x172 - x171*x173) mmtt = x163*(x118 - x125*x176 - x125 - x126*x176 - x126 + x127*x179 - x127 + x130*x180 - x133*x22 - x134*x180 + x137*x22 + x138*x22 - x142*x177 + x148*x22 - x160*x175 + x162*x180 - x175 - x178*x50 + x178*x59) msss = x0*(t*x192 - t*x193 + x117*x53 - x119*x182 + x13*x61 - x132*x15 - x14*x181 + x15*x204 - x15*x78 + 120*x16*x60 + x167*x182 + x183*x26 + x183*x28 + x183*x33 - x183 - x186*x26 - x186*x28 - x186*x33 + x186 + x187*x188 + x188*x189 - x194*x40 + x194*x51 + x195*x196 - x195*x199 - x197*x198 + x197*x200 + x200*x203 + x201*x202 - x203*x206 + x30*x61 + x31*x61 - x35*x61 + x38*x61 - 96*x5*x61) mssv = x47*(-5*x205 + x207 - x208 - x209 - x210 + 5*x211 + 5*x212 - x213 - x214 - x215 + 5*x216 - x217*x218 - x219*x50 + x219*x59 - x222 - x223 + x224 + x225 + x226 + x231) msst = x46*(-x100*x234 + x103*x234 + x104*x234 + x110*x234 - x153*x21*x218 - x172*x251 + x173*x251 - 5*x200 - x217*x34 - x219*x26 - x219*x28 + x219 - x221 - x228*x23 - x229*x23 - x23*x230 + x232 + x233 + x234*x68 - x235 + x236 + x237 - x238 + x239 - x240 - x241 - x242 - x243 - x244 + x245 - x246 + x247 - x248 + x249 + x250 - x252 + x254 - x255 + x256 - x257) msvv = x164*(-x200 + x206 + x217 + x238 + x258 + x259 + x260 - x261 - x262 - x263 + x264) msvt = x1*(-x190 + x205 - x211 - x212 - x216 + x23*x273 + x232*x50 - x232*x59 + x265 + x266 + x267 + x268 + x269 + x270 + x271 + x274 - x275 - x276 - x278 + x279 - x281 + x282) mstt = x163*(x180*x238 + x180*x260 - x180*x261 + x187 + x189 - x190*x22 + x22*x265 + x22*x266 + x22*x268 + x280 - x283 + x284 + x285 - x286 - x287 + x288 + x289 + x291 + x293 - x294 - x295 - x296 - x297 + x298 - x299 + x300) mvvv = t*x302*x303 mvvt = x303*(-x304 + x309 - x50 + x59) mvtt = x20*x312*(-x272 + x309 - x310 + x311) mttt = x174*x303*(-x108 + x309 - x313 + x314) ssss = x0*(t*x260*x53 - 60*x117*x3 + x119*x201 - 144*x121*x16 - x125*x317 - x126*x317 - x127*x317 - x13*x15 + x132*x60 - x15*x30 - x15*x31 + x15*x35 - x15*x38 + 150*x15*x5 - x190*x40*x53 - x196*x319 + x199*x319 - 48*x202*x61 - x204*x60 - x26*x315 + x26*x316 - x28*x315 + x28*x316 - x315*x33 + x315 + x316*x33 - x316 + x318*x40 - x318*x51 + x320*x68 - x320*x70 - x321*x70 + x321*x73 + x60*x78 + 6 + x14*x2**8/s**8) sssv = t*x327*(x141*x325 - x191 + 7*x205 - x207 + x208 + x209 + x210 - 7*x211 - 7*x212 + x213 + x214 + x215 - 7*x216 + x222 + x223 - x224 - x225 - x226 + x322 + x323 + x324 + x326*x50 - x326*x59) ssst = x327*(x100*x328 - x103*x328 - x104*x328 - x110*x328 + x153*x325 + x172*x329 - x173*x329 - x191*x23 + x192 - x193 + 7*x200 + x221 + x23*x322 + x23*x323 + x23*x324 - x233 + x235 - x236 - x237 + x240 + x241 + x242 + x243 + x244 - x245 + x246 - x247 + x248 - x249 - x250 + x252 - x254 + x255 - x256 + x257 + x26*x326 + x28*x326 + x326*x33 - x326 - x328*x68) ssvv = 2*x2*x47*(x200 - x206 - x217 - x239 - x258 - x259 + x262 + x263 - x264 - x273 + x330) ssvt = x331*(-x170*x260 + x170*x261 - x190*x290 - x205 + x211 + x212 + x216 + x231 - x267 - x269 - x270 - x271 - x274 + x275 + x276 + x278 - x279 + x281 - x282) sstt = 2*x331*(-x180*x239 - x180*x273 + x180*x330 - x187 - x189 - x22*x228 - x22*x229 - x22*x230 - x280 + x283 - x284 - x285 + x286 + x287 - x288 - x289 - x291 - x293 + x294 + x295 + x296 + x297 - x298 + x299 - x300 + x312) svvv = t*x333*(x156 + x158 + x160 - x301 + 1) svvt = x333*(x304 + x334 + x50 - x59) svtt = x312*x332*(x272 + x310 - x311 + x334) sttt = x174*x333*(x108 + x313 - x314 + x334) vvvv = 2*x302 vvvt = x22*x335 vvtt = x174*x335 vttt = x22**3*x335 tttt = -2*x156*x336 - 2*x158*x336 - 2*x160*x336 + 2*x301*x336 - 2*x336 - 6/x11 D4 = _expand_arrs(mmmm, mmms, mmmv, mmmt, mmss, mmsv, mmst, mmvv, mmvt, mmtt, msss, mssv, msst, msvv, msvt, mstt, mvvv, mvvt, mvtt, mttt, ssss, sssv, ssst, ssvv, ssvt, sstt, svvv, svvt, svtt, sttt, vvvv, vvvt, vvtt, vttt, tttt) return D4 def _pdf(x, m=0.0, s=1.0, v=0.0, t=1.0): return np.exp(_logpdf(x, m=m, s=s, v=v, t=t)) def _cdf(x, m=0.0, s=1.0, v=0.0, t=1.0): z = (x - m) / s r = np.sinh(t * np.arcsinh(z) - v) return sp.special.ndtr(r) def _qtf(q, m=0.0, s=1.0, v=0.0, t=1.0): y = sp.special.ndtri(q) z = np.sinh((np.arcsinh(y) + v) / t) x = s * z + m return x def _rvs(random_state, m=0.0, s=1.0, v=0.0, t=1.0, size=None): u = random_state.uniform(low=0.0, high=1.0, size=size) y = _qtf(u, m=m, s=s, v=v, t=t) return y
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of Advent of Code 2020 # https://github.com/scorphus/advent-of-code-2020 # Licensed under the BSD-3-Clause license: # https://opensource.org/licenses/BSD-3-Clause # Copyright (c) 2020, Pablo S. Blum de Aguiar <[email protected]> from aoc import strip # fmt: off DIRS = { "e": ( 1, 0), # noqa "w": (-1, 0), # noqa "nw": (-1, 1), # noqa "se": ( 1, -1), # noqa "ne": ( 0, 1), # noqa "sw": ( 0, -1), # noqa } # fmt: on def part1(lines): return sum(read(lines).values()) def part2(lines, days=100): tiles = set(p for p, c in read(lines).items() if c) for _ in range(days): tiles = flip(tiles) return len(tiles) def read(lines): tiles = {} for line in strip(lines): line = line.rstrip("\n") x, y = 0, 0 while line: for dir_, (dx, dy) in DIRS.items(): if line.startswith(dir_): x += dx y += dy line = line[len(dir_) :] continue tiles[x, y] = not tiles.get((x, y), False) return tiles def flip(tiles): adjacent, next_tiles = {}, set() for tile in tiles: for deltas in DIRS.values(): adj = tuple(c + d for c, d in zip(tile, deltas)) adjacent[adj] = adjacent.get(adj, 0) + 1 for tile, adj in adjacent.items(): if tile not in tiles and adj == 2 or tile in tiles and 0 < adj < 3: next_tiles.add(tile) return next_tiles
TEXT = 'AACAAGCTGATAAACATTTAAAGAG' PATTERN = 'AAAAA' D = 2 def print_num_list_as_str(numlist, glue=' '): print(glue.join(str(x) for x in numlist)) def hamming_distance(text1, text2): if len(text1) != len(text2): return -1 return sum([0 if text1[i] == text2[i] else 1 for i in range(len(text1))]) def count_approx_kmers(text, pattern, d): k = len(pattern) return sum([1 for i in range(len(text)-k+1) if hamming_distance(text[i:i+k], pattern) <= d]) ans = count_approx_kmers(TEXT, PATTERN, D) print(ans)
# # Copyright (C) 2019 Luca Pasqualini # University of Siena - Artificial Intelligence Laboratory - SAILab # # Inspired by the work of David Johnston (C) 2017: https://github.com/dj-on-github/sp800_22_tests # # NistRng is licensed under a BSD 3-Clause. # # You should have received a copy of the license along with this # work. If not, see <https://opensource.org/licenses/BSD-3-Clause>. # Import packages import numpy import math import sys # Import required src from nistrng import Test, Result class DiscreteFourierTransformTest(Test): """ Discrete Fourier transform (spectral) test as described in NIST paper: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf The focus of this test is the peak heights in the Discrete Fourier Transform of the sequence. The purpose of this test is to detect periodic features (i.e., repetitive patterns that are near each other) in the tested sequence that would indicate a deviation from the assumption of randomness. The intention is to detect whether the number of peaks exceeding the 95% threshold is significantly different than 5%. The significance value of the test is 0.01. """ def __init__(self): # Generate base Test class super(DiscreteFourierTransformTest, self).__init__("Discrete Fourier Transform", 0.01) def _execute(self, bits: numpy.ndarray) -> Result: """ Overridden method of Test class: check its docstring for further information. """ # Make sure the sequence is even in length bits_copy: numpy.ndarray = bits.copy() if (bits_copy.size % 2) == 1: bits_copy = bits_copy[:-1] # Convert all the zeros in the array to -1 bits_copy[bits_copy == 0] = -1 # Compute DFT discrete_fourier_transform = numpy.fft.fft(bits_copy) # Compute magnitudes of first half of sequence depending on the system type if sys.version_info > (3, 0): magnitudes = abs(discrete_fourier_transform)[:bits_copy.size // 2] else: magnitudes = abs(discrete_fourier_transform)[:bits_copy.size / 2] # Compute upper threshold threshold: float = math.sqrt(math.log(1.0 / 0.05) * bits_copy.size) # Compute the expected number of peaks (N0) expected_peaks: float = 0.95 * bits_copy.size / 2.0 # Count the peaks above the upper threshold (N1) counted_peaks: float = float(len(magnitudes[magnitudes < threshold])) # Compute the score (P-value) using the normalized difference normalized_difference: float = (counted_peaks - expected_peaks) / math.sqrt((bits_copy.size * 0.95 * 0.05) / 4) score: float = math.erfc(abs(normalized_difference) / math.sqrt(2)) # Return result if score >= self.significance_value: return Result(self.name, True, numpy.array(score)) return Result(self.name, False, numpy.array(score)) def is_eligible(self, bits: numpy.ndarray) -> bool: """ Overridden method of Test class: check its docstring for further information. """ # This test is always eligible for any sequence return True
import setuptools with open("README.md", "r") as f: long_description = f.read() setuptools.setup( name="bopt", version="0.1.0", author="Jakub Arnold", author_email="[email protected]", description="Bayesian Optimization", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/darthdeus/bopt", packages=setuptools.find_packages(), package_data={ "": ["LICENSE"], "bopt": ["templates/*"] }, python_requires=">=3.6, <4", install_requires=[ "numpy>=1.17.4", "scipy>=1.1.0", "pyyaml>=5.1", "tqdm~=4.39.0", "flask~=1.0.2", "psutil~=5.6.3", "jsonpickle~=1.0", "GPy[plotting]~=1.9.9", "filelock~=3.0.10", "ipdb~=0.11", "livereload==2.5.1", "colored==1.4.2" ], extras_require={ "plotting": [ "matplotlib~=3.2.0", ], "dev": [ "pylint", "coverage", "deepdiff", "Cython", "pytest", "mypy", "radon", ] }, entry_points={ "console_scripts": [ "bopt=bopt.cli.cli:main" ] }, classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], )
from typing import Dict, Tuple import os import numpy def _empty_cmap() -> Dict: return {i: [0, 0, 0, 0] for i in range(256)} def _update_alpha(cmap: Dict, idx: Tuple[int], alpha: int = 0) -> None: if not isinstance(idx, tuple): idx = tuple((idx,)) for i in idx: cmap[i] = cmap[i][0:3] + (alpha,) def _remove_value(cmap: Dict, idx: Tuple[int]) -> None: if not isinstance(idx, tuple): idx = tuple((idx,)) for i in idx: cmap.pop(i, None) def _update_cmap(cmap: Dict, values: Dict) -> None: for i, color in values.items(): if len(color) == 3: color += [255] cmap[i] = color def get_colormap(name: str) -> Dict: """ Return colormap dict. Attributes ---------- name : str, optional Colormap name (default: cfastie) Returns ------- colormap : dict GDAL RGBA Color Table dictionary. """ cmap_file = os.path.join(os.path.dirname(__file__), "cmaps", f"{name}.npy") cmap = numpy.load(cmap_file) return {idx: value.tolist() for idx, value in enumerate(cmap)} # From https://github.com/mojodna/marblecutter/blob/5b9040ba6c83562a465eabdbb6e8959e6a8bf041/marblecutter/utils.py#L35 def make_lut(colormap: Dict) -> numpy.ma.array: """ Create a lookup table numpy.ma.array from a GDAL RGBA Color Table dictionary. Attributes ---------- colormap : dict GDAL RGBA Color Table dictionary. Returns ------- lut : numpy.ndarray returns a JSON like object with the metadata. """ lut = numpy.zeros(shape=(256, 4), dtype=numpy.uint8) for i, color in colormap.items(): lut[int(i)] = color return lut def apply_cmap(data: numpy.ndarray, cmap: Dict) -> Tuple[numpy.ndarray, numpy.ndarray]: """ Apply colormap on tile data. Attributes ---------- colormap : dict GDAL RGBA Color Table dictionary. Returns ------- lut : numpy.array returns a JSON like object with the metadata. """ if data.shape[0] > 1: raise Exception("Source data must be 1 band") lookup_table = make_lut(cmap) # apply the color map data = lookup_table[data[0], :] data = numpy.transpose(data, [2, 0, 1]) return data[:-1], data[-1]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019/10/12 15:23 # @Author : Dong Wang # @FileName: STR_search.py # @Software: STRsearch # @github :https://github.com/AnJingwd/STRsearch from __future__ import division import os,re import numpy as np from functools import reduce from multiprocessing import Pool as Pool def STR_nomenclature_trans(period,STR_Repeat_Motif): ''' Transfor STR motif to STR unit list , if stand is "-", get Inverse complementary sequence of STR unit list, And record which unit needs to be counted for STR allele using a list. input: like [TCTA]1TCTG[TCTA]14 output: like (['TCTA', 'TCTG', 'TCTA'], [1, 0, 1]) ''' STR_units = re.findall(r"([a-zA-Z]+)", re.sub("n","",STR_Repeat_Motif)) repetitive_motifs = [1 if re.findall(r'[[](.*?)[]]',i) else 0 for i in STR_Repeat_Motif.split(" ")] STR_numbers = [] non_period_unit_len = [len(m) for m in re.findall(r"([A-Z]+)", STR_Repeat_Motif) if len(m) < period] if sum(non_period_unit_len) == period: weight = 1/len(non_period_unit_len) elif sum(non_period_unit_len) > period: weight = (sum(non_period_unit_len) // period + sum(non_period_unit_len) % period * 0.1) / len( non_period_unit_len) else: weight = 0.1*sum(non_period_unit_len) for i in STR_units: if re.match(r"[a-z]+", i): STR_numbers.append(0) else: if len(i) < period: STR_numbers.append(weight) else: STR_numbers.append(1) STR_units_upper = [j.upper() for j in STR_units] return STR_units_upper, repetitive_motifs,STR_numbers def find_lcseque(seq,STR_unit): ''' seach STR unit in reads a sequence using Longest common subsequence algorithm input: seq: a sequence STR_unit: the sequence of a STR unit output: local_max_list:local max score list p_list: position list ''' m = np.zeros([len(seq) + 1,len(STR_unit) + 1]) local_max = 0 p = 0 local_max_list = [] p_list = [] for i in range(len(seq)): for j in range(len(STR_unit)): if seq[i] == STR_unit[j]: m[i + 1][j + 1] = m[i][j] + 1 if m[i + 1][j + 1] == len(STR_unit): mmax = m[i + 1][j + 1] p = i + 1 local_max_list.append(int(mmax)) p_list.append(int(p)) return (local_max_list,p_list) def match_flank(seq,flank): ''' match flanking sequences using dynamic programming, and output the location of the least mismatched input: seq: reads sequnece flank: flank sequence of 15 bp output: the location of the least mismatched and the number of mismatched ''' length = len(flank) resultMissmatchCount = length seqdict = {} for index, s in enumerate(seq[:-length]): missmatch = 0 for j, k in zip(seq[index:index + length], flank): # [(s1[0],s2[0]),(s1[1],s2[1]),...] if j != k: missmatch += 1 if missmatch <= resultMissmatchCount: seqdict[missmatch] = seq[index:index + length] resultMissmatchCount = missmatch minkey = min(seqdict.keys()) result = seqdict[minkey] start,end = seq.index(result),seq.index(result)+length return start,end,resultMissmatchCount def merge_intervals(intervals): '''' Merge interval list input: like [[1,3],[2,6],[8,10],[15,18]] output: like [[1,6],[8,10],[15,18]] ''' intervals.sort(key=lambda x: x[0]) merged = [] for interval in intervals: if not merged or merged[-1][-1] < interval[0]: merged.append(interval) else: merged[-1][-1] = max(merged[-1][-1], interval[-1]) return merged def get_STR_unit_region(score_list,pos_list,start_point = 0): ''' Compute the intervals of STR unit and union input: output: ''' intervals_list = [] for i in range(0,len(score_list)): start = pos_list[i]-score_list[i] + start_point end = pos_list[i] + start_point intervals_list.append([start,end]) if score_list == []: return [] elif score_list[0]==2: ## when a unit is part of other unit ,don’t merge intervals return intervals_list else: intervals_union = merge_intervals(intervals_list) ## get union intervals of STR units return intervals_union def list_depth(items): ''' Calculate the depth of nested lists input: list output: max depth of list ''' max_depth = 1 if isinstance(items, list) else 0 if max_depth: for item in items: if isinstance(item, list): max_depth = max(max_depth, list_depth(item) + 1) else: return max_depth return max_depth def get_interval_max(interval_list): if list_depth(interval_list) == 1: ## like [1,4] return interval_list else: if len(interval_list)==1: # depth=2 and len = 1 like [[-1,-1,-1,-1]] return interval_list[0] else: ## depth=2 and len > 1 like [[-1,-1,-1,-1],[-1,-1,3,10]] max_length = 0 max_index = 0 for i in range(0, len(interval_list)): interval_new = [j for j in interval_list[i] if j != -1] if interval_new == []: pass else: (start, end) = min(interval_new), max(interval_new) length = end - start if length > max_length: max_length = length max_index = i return interval_list[max_index] def get_continue_region(region1,region2): ## all region [) if region1==region2 == []: return [[-1,-1,-1,-1]] elif region1== [] or region2 == []: return [[-1,-1]+[k[0],k[1]] for k in region2] if region1== [] else [get_interval_max(region1)+[-1, -1]] else: continue_region = [] for i in range(0,len(region1)): for j in range(0,len(region2)): if region1[i][-1] == region2[j][0]: region = [k for k in region1[i]]+[m for m in region2[j]] continue_region.append(region) elif region1[i][-1] > region2[j][0] and region1[i][-1] < region2[j][1]: region = [k for k in region1[i]]+[region1[i][-1],region2[j][1]] continue_region.append(region) else: pass continue_region.append(get_interval_max(region1) +[-1,-1]) continue_region +=[[-1,-1]*(int(len(region1[0])/2))+[k[0],k[1]] for k in region2] return continue_region def get_STR_seq(max_order_region, STR_units_upper,repetitive_motifs,STR_numbers,seq,period,flank_left_region,flank_right_region): mySTR_start,mySTR_end = int(min([i for i in max_order_region if i!=-1])),int(max(max_order_region)) start_index, end_index = int(max_order_region.index(mySTR_start)/2),int(max_order_region.index(mySTR_end)/2) max_order_region_len = [max_order_region[i+1]- max_order_region[i] for i in range(0,len(max_order_region),2)] max_order_region_len_sub = max_order_region_len[start_index:end_index+1] STR_units_sub = STR_units_upper[start_index:end_index+1] STR_units_sub_len = [len(j) for j in STR_units_sub] repetitive_motifs_sub = repetitive_motifs[start_index:end_index+1] STR_numbers_sub = STR_numbers[start_index:end_index+1] STR_unit_rep_count = np.array(max_order_region_len_sub)/np.array(STR_units_sub_len)*np.array(STR_numbers_sub) STR_unit_rep_count_new = [int(STR_unit_rep_count[i]) if repetitive_motifs_sub[i]==1 else STR_unit_rep_count[i] for i in range(len(repetitive_motifs_sub))] rep_num = sum(STR_unit_rep_count_new) STR_to_flank_distance = len(seq[flank_left_region[1]:mySTR_start]) + len(seq[mySTR_end:flank_right_region[0]]) allele_sum = rep_num+(STR_to_flank_distance)//period+(STR_to_flank_distance)%period*0.1 allele = int(allele_sum) if (allele_sum-int(allele_sum))<0.1 else allele_sum STR_result_pat = "" for k in range(0,len(STR_units_sub)): if STR_numbers_sub[k] == 1: if repetitive_motifs_sub[k]==1: unit = "[" + STR_units_sub[k] + "]"+str(STR_unit_rep_count_new[k]) else: unit = STR_units_sub[k] elif STR_numbers_sub[k] == 0: unit = STR_units_sub[k].lower() else: unit = STR_units_sub[k] STR_result_pat +=unit+" " STR_result_pat_full = seq[flank_left_region[1]:mySTR_start].upper()+" " + STR_result_pat +seq[mySTR_end:flank_right_region[0]].upper() flank_mismatchs = str(flank_left_region[2])+","+str(flank_right_region[2]) distances = str(mySTR_start)+","+str(len(seq)-mySTR_end) return STR_result_pat_full,allele,max_order_region_len,rep_num,flank_mismatchs,distances def STR_search(STR_Repeat_Motif,period,seq,flank_seq_left,flank_seq_right): flank_left_region,flank_right_region = match_flank(seq,flank_seq_left),match_flank(seq,flank_seq_right) STR_units_upper, repetitive_motifs,STR_numbers= STR_nomenclature_trans(period,STR_Repeat_Motif) region_list_all = [] for STR_unit in STR_units_upper: (local_max_score_list,p_list_left) = find_lcseque(seq,STR_unit) region_list = get_STR_unit_region(local_max_score_list, p_list_left, 0) region_list_all.append(region_list) region_list_all_not_empty = [i for i in region_list_all if i !=[]] if len(region_list_all_not_empty)==0: # if all units mismatched, the read will be skipped return -1 else: max_order_region_list = reduce(get_continue_region,region_list_all) max_order_region_list_new = [j for j in max_order_region_list if len(set(j))!=1] max_order_region= get_interval_max(max_order_region_list_new) (STR_result_pat_full,allele,max_order_region_len,rep_num,flank_mismatchs,distances) = get_STR_seq(max_order_region, STR_units_upper,repetitive_motifs,STR_numbers, seq,period,flank_left_region,flank_right_region) if sum(list(map(lambda a,b:a*b,repetitive_motifs,max_order_region_len))) ==0: return -1 else: return (STR_result_pat_full,allele,rep_num,flank_mismatchs,distances) def STR_search_one_locus(args_list): marker_name,STR_Repeat_Motif,period,STR_fastq_file,result_file,flank_seq_left,flank_seq_right= args_list results = open(result_file,"w") results.write("STR_sequence_structure\tAllele\tFlank_mismatchs(5',3')\tDistance_to_reads_ends(5',3')\n") N_line = 0 with open(STR_fastq_file,"r") as f1: for line in f1: N_line+=1 if N_line % 4 != 2: pass else: myseq = line.strip() res =STR_search(STR_Repeat_Motif,period,myseq,flank_seq_left,flank_seq_right) if res == -1: continue else: (STR_result_pat_full,allele,rep_num,flank_mismatchs,distances) =res if rep_num<=1: pass else: results.write(str(STR_result_pat_full)+"\t"+ str(allele) +"\t"+flank_mismatchs+ "\t"+distances+"\n") results.close() print("{} has been decoded completely! ".format(marker_name)) def count_reads(fq_file): ''' count number of reads from fastq file ''' count = 0 with open(fq_file,"r") as f1: for line in f1: count+=1 return int(count/4) ################### STR genotype for locus listed in bed file one by one ##################### def main(working_path,sample,sex,fastq_dir,ref_bed,reads_threshold,num_processors): ## create STR genotyping path STR_results_dir=os.path.join(working_path,"STRsearch") if not os.path.exists(STR_results_dir): os.makedirs(STR_results_dir) info_list = [] bed = open(ref_bed,"r") next(bed) N = 0 for line in bed: line = line.strip() content_list = line.split("\t") chr = content_list[0] period = int(content_list[3]) marker_name = content_list[5] STR_Repeat_Motif = content_list[7] stand = content_list[-3] flank_seq_left,flank_seq_right = content_list[-2],content_list[-1] STR_fastq_merge_file = os.path.join(fastq_dir, marker_name +"_reads_"+sample+"_merge.fastq") result_file = os.path.join(STR_results_dir,marker_name+"_results_{}.txt".format(sample)) if count_reads(STR_fastq_merge_file)<= int(reads_threshold): # if reads < 30 in fastq, the STR locus won't be genotyped , but create empty file os.system("touch {0}".format(result_file)) print("{} has been decoded completely!".format(marker_name)) else: if sex =="female" and chr == "chrY": os.system("touch {0}".format(result_file)) print("{} has been decoded completely!".format(marker_name)) else: info_list.append([marker_name,STR_Repeat_Motif,period,STR_fastq_merge_file,result_file,flank_seq_left,flank_seq_right]) N+=1 bed.close() pool = Pool(num_processors) pool.imap(STR_search_one_locus, info_list) pool.close() pool.join() print('Finished searching for total {} STR locus'.format(N)) if __name__=='__main__': sys.exit(main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5], sys.argv[6],sys.argv[7]))
from inspect import isclass, signature from .AuthorizationResponse import AuthorizationResponse from ..exceptions.exceptions import GateDoesNotExist, PolicyDoesNotExist class Gate: def __init__( self, application, user_callback=None, policies={}, permissions={}, before_callbacks=[], after_callbacks=[], ): self.application = application self.user_callback = user_callback self.policies = policies self.permissions = permissions self.before_callbacks = before_callbacks self.after_callbacks = after_callbacks def define(self, permission, condition): if not callable(condition): raise Exception(f"Permission {permission} should be given a callable.") self.permissions.update({permission: condition}) def register_policies(self, policies): for model_class, policy_class in policies: self.policies[model_class] = policy_class return self def get_policy_for(self, instance_or_class): if isinstance(instance_or_class, str): # TODO: load model from str, get class and get policies policy = None elif isclass(instance_or_class): policy = self.policies.get(instance_or_class, None) else: policy = self.policies.get(instance_or_class.__class__, None) if policy: return policy() else: return None def before(self, before_callback): if not callable(before_callback): raise Exception("before() should be given a callable.") self.before_callbacks.append(before_callback) def after(self, after_callback): if not callable(after_callback): raise Exception("before() should be given a callable.") self.after_callbacks.append(after_callback) def allows(self, permission, *args): return self.inspect(permission, *args).allowed() def denies(self, permission, *args): return not self.inspect(permission, *args).allowed() def has(self, permission): return permission in self.permissions def for_user(self, user): return Gate( self.application, lambda: user, self.policies, self.permissions, self.before_callbacks, self.after_callbacks, ) def any(self, permissions, *args): """Check that every of those permissions are allowed.""" for permission in permissions: if self.denies(permission, *args): return False return True def none(self, permissions, *args): """Check that none of those permissions are allowed.""" for permission in permissions: if self.allows(permission, *args): return False return True def authorize(self, permission, *args): return self.inspect(permission, *args).authorize() def inspect(self, permission, *args): """Get permission checks results for the given user then builds and returns an authorization response.""" boolean_result = self.check(permission, *args) if isinstance(boolean_result, AuthorizationResponse): return boolean_result if boolean_result: return AuthorizationResponse.allow() else: return AuthorizationResponse.deny() def check(self, permission, *args): """The core of the authorization class. Run before() checks, permission check and then after() checks.""" user = self._get_user() # run before checks and returns immediately if non null response result = None for callback in self.before_callbacks: result = callback(user, permission) if result: break # run permission checks if nothing returned previously if result is None: # first check in policy permission_method = None if len(args) > 0: policy = self.get_policy_for(args[0]) if policy: try: permission_method = getattr(policy, permission) except AttributeError: raise PolicyDoesNotExist( f"Policy method {permission} not found in {policy.__class__.__name__}." ) if not permission_method: # else check in gates try: permission_method = self.permissions[permission] except KeyError: raise GateDoesNotExist( f"Gate {permission} has not been found. Did you declare it ?" ) params = signature(permission_method).parameters # check if user parameter is optional (meaning that guests users are allowed) if ( permission_method.__defaults__ and permission_method.__defaults__[0] is None and not user ): result = True elif not user: result = False elif len(params) == 1: result = permission_method(user) else: result = permission_method(user, *args) # run after checks for callback in self.after_callbacks: after_result = callback(user, permission, result) result = after_result if after_result is not None else result return result def _get_user(self): from ..facades import Request if self.user_callback: return self.user_callback() else: return Request.user()
from formencode import Schema, validators, FancyValidator, Invalid, ForEach from dateutil.parser import parse class ValidateISODate(FancyValidator): @staticmethod def _to_python(value, state): try: val = parse(value) except ValueError: raise Invalid("Date/time format is invalid, it must be ISO 8601 formatted " "for UTZ with no offset (i.e. 2010-01-01T01:01:01Z)", value, state) return val class PublicKeyValidator(Schema): id = validators.String() active = validators.Bool() date_created = ValidateISODate() date_expires = ValidateISODate() public_key = validators.String() allow_extra_fields = True class DirectoryUserDeviceLinkResponseValidator(Schema): qrcode = validators.String() # URL code = validators.String(min=7) allow_extra_fields = True class DirectoryGetDeviceResponseValidator(Schema): id = validators.String() name = validators.String() status = validators.Int() type = validators.String() allow_extra_fields = True class DirectoryGetSessionsValidator(Schema): auth_request = validators.String() date_created = ValidateISODate() service_icon = validators.String() service_id = validators.String() service_name = validators.String() allow_extra_fields = True class DirectoryValidator(Schema): id = validators.String() service_ids = ForEach(validators.String()) sdk_keys = ForEach(validators.String()) premium = validators.Bool() name = validators.String() android_key = validators.String() ios_certificate_fingerprint = validators.String() active = validators.Bool() allow_extra_fields = True class AuthorizationResponseValidator(Schema): auth = validators.String() service_user_hash = validators.String() org_user_hash = validators.String() user_push_id = validators.String() public_key_id = validators.String() allow_extra_fields = True class AuthorizationResponsePackageValidator(Schema): service_pins = ForEach() auth_request = validators.String() # UUID response = validators.Bool() device_id = validators.String() allow_extra_fields = True class AuthorizeValidator(Schema): auth_request = validators.String(not_empty=True) push_package = validators.String(if_missing=None, not_empty=True) allow_extra_fields = True class AuthorizeSSEValidator(Schema): service_user_hash = validators.String() api_time = validators.String() allow_extra_fields = True class ServiceValidator(Schema): id = validators.String() icon = validators.String() name = validators.String() description = validators.String() active = validators.Bool() callback_url = validators.String() allow_extra_fields = True class ServiceSecurityPolicyValidator(Schema): allow_extra_fields = True
# coding: utf-8 """ Mailchimp Marketing API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 3.0.70 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from mailchimp_marketing.api_client import ApiClient class TemplatesApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client): self.api_client = api_client def delete_template(self, template_id, **kwargs): # noqa: E501 """Delete template # noqa: E501 Delete a specific template. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_template(template_id, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.delete_template_with_http_info(template_id, **kwargs) # noqa: E501 else: (data) = self.delete_template_with_http_info(template_id, **kwargs) # noqa: E501 return data def delete_template_with_http_info(self, template_id, **kwargs): # noqa: E501 """Delete template # noqa: E501 Delete a specific template. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_template_with_http_info(template_id, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['template_id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_template" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'template_id' is set if ('template_id' not in params or params['template_id'] is None): raise ValueError("Missing the required parameter `template_id` when calling ``") # noqa: E501 collection_formats = {} path_params = {} if 'template_id' in params: path_params['template_id'] = params['template_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/templates/{template_id}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def list(self, **kwargs): # noqa: E501 """List templates # noqa: E501 Get a list of an account's available templates. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list(async_req=True) >>> result = thread.get() :param async_req bool :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :param int count: The number of records to return. Default value is 10. Maximum value is 1000 :param int offset: Used for [pagination](https://mailchimp.com/developer/marketing/docs/methods-parameters/#pagination), this it the number of records from a collection to skip. Default value is 0. :param str created_by: The Mailchimp account user who created the template. :param str since_date_created: Restrict the response to templates created after the set date. Uses ISO 8601 time format: 2015-10-21T15:41:36+00:00. :param str before_date_created: Restrict the response to templates created before the set date. Uses ISO 8601 time format: 2015-10-21T15:41:36+00:00. :param str type: Limit results based on template type. :param str category: Limit results based on category. :param str folder_id: The unique folder id. :param str sort_field: Returns user templates sorted by the specified field. :param str sort_dir: Determines the order direction for sorted results. :return: Templates If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.list_with_http_info(**kwargs) # noqa: E501 else: (data) = self.list_with_http_info(**kwargs) # noqa: E501 return data def list_with_http_info(self, **kwargs): # noqa: E501 """List templates # noqa: E501 Get a list of an account's available templates. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :param int count: The number of records to return. Default value is 10. Maximum value is 1000 :param int offset: Used for [pagination](https://mailchimp.com/developer/marketing/docs/methods-parameters/#pagination), this it the number of records from a collection to skip. Default value is 0. :param str created_by: The Mailchimp account user who created the template. :param str since_date_created: Restrict the response to templates created after the set date. Uses ISO 8601 time format: 2015-10-21T15:41:36+00:00. :param str before_date_created: Restrict the response to templates created before the set date. Uses ISO 8601 time format: 2015-10-21T15:41:36+00:00. :param str type: Limit results based on template type. :param str category: Limit results based on category. :param str folder_id: The unique folder id. :param str sort_field: Returns user templates sorted by the specified field. :param str sort_dir: Determines the order direction for sorted results. :return: Templates If the method is called asynchronously, returns the request thread. """ all_params = ['fields', 'exclude_fields', 'count', 'offset', 'created_by', 'since_date_created', 'before_date_created', 'type', 'category', 'folder_id', 'sort_field', 'sort_dir'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method list" % key ) params[key] = val del params['kwargs'] if 'count' in params and params['count'] > 1000: # noqa: E501 raise ValueError("Invalid value for parameter `count` when calling ``, must be a value less than or equal to `1000`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 collection_formats['fields'] = 'csv' # noqa: E501 if 'exclude_fields' in params: query_params.append(('exclude_fields', params['exclude_fields'])) # noqa: E501 collection_formats['exclude_fields'] = 'csv' # noqa: E501 if 'count' in params: query_params.append(('count', params['count'])) # noqa: E501 if 'offset' in params: query_params.append(('offset', params['offset'])) # noqa: E501 if 'created_by' in params: query_params.append(('created_by', params['created_by'])) # noqa: E501 if 'since_date_created' in params: query_params.append(('since_date_created', params['since_date_created'])) # noqa: E501 if 'before_date_created' in params: query_params.append(('before_date_created', params['before_date_created'])) # noqa: E501 if 'type' in params: query_params.append(('type', params['type'])) # noqa: E501 if 'category' in params: query_params.append(('category', params['category'])) # noqa: E501 if 'folder_id' in params: query_params.append(('folder_id', params['folder_id'])) # noqa: E501 if 'sort_field' in params: query_params.append(('sort_field', params['sort_field'])) # noqa: E501 if 'sort_dir' in params: query_params.append(('sort_dir', params['sort_dir'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/templates', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Templates', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_template(self, template_id, **kwargs): # noqa: E501 """Get template info # noqa: E501 Get information about a specific template. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_template(template_id, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :return: TemplateInstance If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_template_with_http_info(template_id, **kwargs) # noqa: E501 else: (data) = self.get_template_with_http_info(template_id, **kwargs) # noqa: E501 return data def get_template_with_http_info(self, template_id, **kwargs): # noqa: E501 """Get template info # noqa: E501 Get information about a specific template. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_template_with_http_info(template_id, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :return: TemplateInstance If the method is called asynchronously, returns the request thread. """ all_params = ['template_id', 'fields', 'exclude_fields'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_template" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'template_id' is set if ('template_id' not in params or params['template_id'] is None): raise ValueError("Missing the required parameter `template_id` when calling ``") # noqa: E501 collection_formats = {} path_params = {} if 'template_id' in params: path_params['template_id'] = params['template_id'] # noqa: E501 query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 collection_formats['fields'] = 'csv' # noqa: E501 if 'exclude_fields' in params: query_params.append(('exclude_fields', params['exclude_fields'])) # noqa: E501 collection_formats['exclude_fields'] = 'csv' # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/templates/{template_id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TemplateInstance', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_default_content_for_template(self, template_id, **kwargs): # noqa: E501 """View default content # noqa: E501 Get the sections that you can edit in a template, including each section's default content. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_default_content_for_template(template_id, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :return: TemplateDefaultContent If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_default_content_for_template_with_http_info(template_id, **kwargs) # noqa: E501 else: (data) = self.get_default_content_for_template_with_http_info(template_id, **kwargs) # noqa: E501 return data def get_default_content_for_template_with_http_info(self, template_id, **kwargs): # noqa: E501 """View default content # noqa: E501 Get the sections that you can edit in a template, including each section's default content. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_default_content_for_template_with_http_info(template_id, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :param list[str] fields: A comma-separated list of fields to return. Reference parameters of sub-objects with dot notation. :param list[str] exclude_fields: A comma-separated list of fields to exclude. Reference parameters of sub-objects with dot notation. :return: TemplateDefaultContent If the method is called asynchronously, returns the request thread. """ all_params = ['template_id', 'fields', 'exclude_fields'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_default_content_for_template" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'template_id' is set if ('template_id' not in params or params['template_id'] is None): raise ValueError("Missing the required parameter `template_id` when calling ``") # noqa: E501 collection_formats = {} path_params = {} if 'template_id' in params: path_params['template_id'] = params['template_id'] # noqa: E501 query_params = [] if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 collection_formats['fields'] = 'csv' # noqa: E501 if 'exclude_fields' in params: query_params.append(('exclude_fields', params['exclude_fields'])) # noqa: E501 collection_formats['exclude_fields'] = 'csv' # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/templates/{template_id}/default-content', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TemplateDefaultContent', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_template(self, template_id, body, **kwargs): # noqa: E501 """Update template # noqa: E501 Update the name, HTML, or `folder_id` of an existing template. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_template(template_id, body, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :param TemplateInstance2 body: (required) :return: TemplateInstance If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.update_template_with_http_info(template_id, body, **kwargs) # noqa: E501 else: (data) = self.update_template_with_http_info(template_id, body, **kwargs) # noqa: E501 return data def update_template_with_http_info(self, template_id, body, **kwargs): # noqa: E501 """Update template # noqa: E501 Update the name, HTML, or `folder_id` of an existing template. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_template_with_http_info(template_id, body, async_req=True) >>> result = thread.get() :param async_req bool :param str template_id: The unique id for the template. (required) :param TemplateInstance2 body: (required) :return: TemplateInstance If the method is called asynchronously, returns the request thread. """ all_params = ['template_id', 'body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_template" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'template_id' is set if ('template_id' not in params or params['template_id'] is None): raise ValueError("Missing the required parameter `template_id` when calling ``") # noqa: E501 # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling ``") # noqa: E501 collection_formats = {} path_params = {} if 'template_id' in params: path_params['template_id'] = params['template_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/templates/{template_id}', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TemplateInstance', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def create(self, body, **kwargs): # noqa: E501 """Add template # noqa: E501 Create a new template for the account. Only Classic templates are supported. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create(body, async_req=True) >>> result = thread.get() :param async_req bool :param TemplateInstance1 body: (required) :return: TemplateInstance If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.create_with_http_info(body, **kwargs) # noqa: E501 else: (data) = self.create_with_http_info(body, **kwargs) # noqa: E501 return data def create_with_http_info(self, body, **kwargs): # noqa: E501 """Add template # noqa: E501 Create a new template for the account. Only Classic templates are supported. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_with_http_info(body, async_req=True) >>> result = thread.get() :param async_req bool :param TemplateInstance1 body: (required) :return: TemplateInstance If the method is called asynchronously, returns the request thread. """ all_params = ['body'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling ``") # noqa: E501 collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json', 'application/problem+json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['basicAuth'] # noqa: E501 return self.api_client.call_api( '/templates', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TemplateInstance', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
""" Question: Write a program which takes 2 digits, X,Y as input and generates a 2-dimensional array. The element value in the i-th row and j-th column of the array should be i*j. Note: i=0,1.., X-1; j=0,1,¡­Y-1. Example Suppose the following inputs are given to the program: 3,5 Then, the output of the program should be: [[0, 0, 0, 0, 0], [0, 1, 2, 3, 4], [0, 2, 4, 6, 8]] """ str_input = input() dimensions = [int(x) for x in str_input.split(',')] rowNum = dimensions[0] columnNum = dimensions[1] multilist = [[0 for col in range(columnNum)] for row in range(rowNum)] """ This creates a 4X6 dimensional array of 0's 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 """ print(multilist) for row in range(rowNum): for col in range(columnNum): multilist[row][col]= row*col print(multilist) """ ------------------Row 1---------------------- for row in range(0): for col in range(6): multilist[0][0]= 1*0 = 0 for row in range(0): for col in range(6): multilist[0][1]= 0*1 = 0 for row in range(0): for col in range(6): multilist[0][2]= 0*2 = 0 for row in range(0): for col in range(6): multilist[0][3]= 0*3 = 0 for row in range(0): for col in range(6): multilist[0][4]= 0*4 = 0 for row in range(0): for col in range(6): multilist[0][5]= 0*5 = 0 for row in range(0): for col in range(6): multilist[0][6]= 0*6 = 0 ------------------Row 2------------------------- for row in range(1): for col in range(6): multilist[1][0]= 1*0 = 0 for row in range(1): for col in range(6): multilist[1][1]= 1*1 = 1 for row in range(1): for col in range(6): multilist[1][2]= 1*2 = 2 for row in range(1): for col in range(6): multilist[1][3]= 1*3 = 3 for row in range(1): for col in range(6): multilist[1][4]= 1*4 = 4 for row in range(1): for col in range(6): multilist[1][5]= 1*5 = 5 for row in range(1): for col in range(6): multilist[1][6]= 1*6 = 6 ------------------Row 3--------------------------- for row in range(2): for col in range(6): multilist[2][0]= 2*0 = 0 for row in range(2): for col in range(6): multilist[2][1]= 2*1 = 2 for row in range(2): for col in range(6): multilist[2][2]= 2*2 = 4 for row in range(2): for col in range(6): multilist[2][3]= 2*3 = 6 for row in range(2): for col in range(6): multilist[2][4]= 2*4 = 8 for row in range(2): for col in range(6): multilist[2][5]= 2*5 = 10 for row in range(2): for col in range(6): multilist[2][6]= 2*6 = 12 ------------------Row 4--------------------------------- for row in range(3): for col in range(6): multilist[3][0]= 3*0 = 0 for row in range(3): for col in range(6): multilist[3][1]= 3*1 = 3 for row in range(3): for col in range(6): multilist[3][2]= 3*2 = 6 for row in range(3): for col in range(6): multilist[3][3]= 3*3 = 9 for row in range(3): for col in range(6): multilist[3][4]= 3*4 = 12 for row in range(3): for col in range(6): multilist[3][5]= 3*5 = 15 """
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from baxter_maintenance_msgs/UpdateStatus.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class UpdateStatus(genpy.Message): _md5sum = "74e246350421569590252c39e8aa7b85" _type = "baxter_maintenance_msgs/UpdateStatus" _has_header = False #flag to mark the presence of a Header object _full_text = """# See the class UpdateRunner() # status: One-word description of the current action being performed # long_description: Details pertaining to status if any. Used for verbose error messages. uint16 status float32 progress string long_description uint16 STS_IDLE = 0 uint16 STS_INVALID = 1 uint16 STS_BUSY = 2 uint16 STS_CANCELLED = 3 uint16 STS_ERR = 4 uint16 STS_MOUNT_UPDATE = 5 uint16 STS_VERIFY_UPDATE = 6 uint16 STS_PREP_STAGING = 7 uint16 STS_MOUNT_STAGING = 8 uint16 STS_EXTRACT_UPDATE = 9 uint16 STS_LOAD_KEXEC = 10 """ # Pseudo-constants STS_IDLE = 0 STS_INVALID = 1 STS_BUSY = 2 STS_CANCELLED = 3 STS_ERR = 4 STS_MOUNT_UPDATE = 5 STS_VERIFY_UPDATE = 6 STS_PREP_STAGING = 7 STS_MOUNT_STAGING = 8 STS_EXTRACT_UPDATE = 9 STS_LOAD_KEXEC = 10 __slots__ = ['status','progress','long_description'] _slot_types = ['uint16','float32','string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: status,progress,long_description :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(UpdateStatus, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.status is None: self.status = 0 if self.progress is None: self.progress = 0. if self.long_description is None: self.long_description = '' else: self.status = 0 self.progress = 0. self.long_description = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_Hf().pack(_x.status, _x.progress)) _x = self.long_description length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 _x = self start = end end += 6 (_x.status, _x.progress,) = _get_struct_Hf().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.long_description = str[start:end].decode('utf-8') else: self.long_description = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_Hf().pack(_x.status, _x.progress)) _x = self.long_description length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 _x = self start = end end += 6 (_x.status, _x.progress,) = _get_struct_Hf().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.long_description = str[start:end].decode('utf-8') else: self.long_description = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_Hf = None def _get_struct_Hf(): global _struct_Hf if _struct_Hf is None: _struct_Hf = struct.Struct("<Hf") return _struct_Hf
from setuptools import setup from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='ansible_merge_vars', version='5.0.0', description='An Ansible action plugin to explicitly merge inventory variables', # noqa long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/leapfrogonline/ansible-merge-vars', author='Leapfrog Online', author_email='[email protected]', classifiers=[ # Optional 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: System :: Systems Administration', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], keywords='ansible plugin', # Optional py_modules=["ansible_merge_vars"], project_urls={ # Optional 'Bug Reports': 'https://github.com/leapfrogonline/ansible-merge-vars/issues', 'Source': 'https://github.com/leapfrogonline/ansible-merge-vars/', }, )
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import paddle from .utils.verification import CallBackVerification from .utils.io import Checkpoint from . import backbones def validation(args): checkpoint = Checkpoint( rank=0, world_size=1, embedding_size=args.embedding_size, num_classes=None, checkpoint_dir=args.checkpoint_dir, ) backbone = eval("backbones.{}".format(args.backbone))( num_features=args.embedding_size) checkpoint.load(backbone, for_train=False, dtype='float32') backbone.eval() callback_verification = CallBackVerification( 1, 0, args.batch_size, args.val_targets, args.data_dir) callback_verification(1, backbone)
import json class ArxivDocEncoder(json.JSONEncoder): def default(self, o): try: to_serialize = { "id": o.doc_id, "url": o.url, "title": o.title, "abstract": o.abstract, "authors": ",".join(o.authors), "publish_date": o.publish_date, "pdf": o.pdf_url, } return to_serialize except AttributeError: return super().default(o)
import os import sys import struct import numpy from time import time from particles_container import ParticlesContainer import multiprocessing as mp import threading from data_parsers import BackupDataParser #from numba import jit,float64,int8,autojit def rd(f, t, max_particles): while True: try: print "Reading ",f trsp = t.transport_for_file(f) return BackupDataParser(trsp).raw_particles(max_particles) except: print "Bad thing while reading, trying once more" class BackupDataReader: def __init__(self, elemets_description = None, chunk_size = 100000): self.elemets_description = elemets_description self.chunk_size = chunk_size if not self.elemets_description: return for elem in elemets_description: try: elemets_description[elem]["id"] except: raise "Elements description has to have \"id\" field" def read(self, transport, max_particles = 100000, np=5): print ( "Reading backup directory " + transport.address ) files = transport.list() containers = {} if self.elemets_description: for element in self.elemets_description: containers[element] = ParticlesContainer(element, self.elemets_description[element]["atom_d"], self.elemets_description[element]["atom_mass"]) else: containers = ParticlesContainer("Unknown", 1, 1) if self.elemets_description: print ("Created {} containers".format(len(containers))) particles_count = max_particles; pool = mp.Pool(processes=np) results = [pool.apply_async(rd, args=(f, transport, max_particles)) for f in files] print "Created ",np," readers" ts = time(); for raw_particles in results: raw_particles = raw_particles.get() n = raw_particles["n"] t = raw_particles["t"] x = raw_particles["x"] y = raw_particles["y"] z = raw_particles["z"] vx = raw_particles["vx"] vy = raw_particles["vy"] vz = raw_particles["vz"] particles_count = raw_particles["count"] tts = time() if self.elemets_description: for element in self.elemets_description: # print "Filtering by type ", element containers[element].add_particles(n[t == self.elemets_description[element]["id"]], x[t == self.elemets_description[element]["id"]], y[t == self.elemets_description[element]["id"]], z[t == self.elemets_description[element]["id"]], vx[t == self.elemets_description[element]["id"]], vy[t == self.elemets_description[element]["id"]], vz[t == self.elemets_description[element]["id"]]) else: # print "Finalizing" containers.add_particles(n, x, y, z, vx, vy, vz) if self.elemets_description: for element in self.elemets_description: print "Finalizing ", element containers[element].finalize() print ("Readed [{}] {} particles".format(len(containers[element].n),element)) else: print "Finalizing " containers.finalize() print ("Readed [{}] particles".format(len(containers.n))) print "Readed directory, total read time:", time()-ts return containers
from django.conf.urls import url from django.conf import settings from django.urls import include, path from rest_framework import routers from core import views class OptionalTrailingSlashRouter(routers.SimpleRouter): def __init__(self): super().__init__() self.trailing_slash = '/?' router = OptionalTrailingSlashRouter() router.register('museums', views.MuseumAPI, base_name='museum') router.register('quiz', views.QuizAPI, base_name='quiz') app_name = 'core' urlpatterns = ( path('profile/', views.profile), path('leaderboard/', views.leaderboard), path('login', views.login), path('privacy/', views.privacy), path('', include(router.urls)), ) if settings.DEBUG is True: urlpatterns += (url(r'.debug/login', views.login_debug),)
from flask import request from idManager.model import authentication_service, token_service, account_service, message_service from idManager.view import authentication_view, header_view from . import id_manager_blueprint from flask_cors import cross_origin @id_manager_blueprint.route('/auth/', methods=['POST']) @header_view.verify_content_type @header_view.add_response_headers @cross_origin() def auth_login(): ver = request.headers.get('ver') data = request.get_json(force=True, silent=True) if not data: # Bad Request message_service.expected_json_data() # Use 'or ver is None' at the last version if ver == '1' or not ver: # Validate Schema using the write version. account_data, errors = account_service.register_account_schema.load(data) if errors: # Bad Request message_service.wrong_json_data(errors) auth = authentication_service.auth_login_ver_1(account_data["email"], account_data["password"]) response = authentication_view.auth_login(**auth) response.status_code = auth.get('http_status_code') return response # elif header['ver'] == '2': # return auth_login_ver_2(username, password, ip) else: # Bad Request message_service.invalid_api_ver() @id_manager_blueprint.route('/auth/', methods=['GET']) @header_view.verify_content_type @token_service.validate_token @header_view.add_response_headers @cross_origin() def auth_is_valid(): ver = request.headers.get('ver') token = request.headers.get('token') # Use 'or ver is None' at the last version if ver == '1' or not ver: auth = authentication_service.auth_is_valid_ver_1(token) response = authentication_view.auth_is_valid(**auth) response.status_code = auth.get('http_status_code') return response # elif header['ver'] == '2': # return auth_logout_ver_2() else: # Bad Request message_service.invalid_api_ver() @id_manager_blueprint.route('/auth/', methods=['DELETE']) @header_view.verify_content_type @token_service.validate_token @header_view.add_response_headers @cross_origin() def auth_logout(): ver = request.headers.get('ver') token = request.headers.get('token') # Use 'or ver is None' at the last version if ver == '1' or not ver: auth = authentication_service.auth_logout_ver_1(token) response = authentication_view.auth_logout(**auth) response.status_code = auth.get('http_status_code') return response # elif header['ver'] == '2': # return auth_is_valid_ver_2() else: # Bad Request message_service.invalid_api_ver()
""" This module stores all the information and parameters that are used to configurate the modules, sometimes called groups of my qtile configuration. A group, is a workspace that can hold N number of windows, in my configuration I have enabled 9 groups. For more information check out: github.com/pablocorbalann/dotfiles/tree/main/qtile """ from libqtile.config import Key, Group from libqtile.command import lazy from settings.keys import mod, keys # For using this icons you will have to install a nerd font (any of them). Check # out: nerd-fonts.com, and then enable it (in arch you have to put the .ttf, odtf or # the font itself in the /usr/local/share/fonts/ dir, for more information about how # to enable the font check: wiki.archlinux.org/index.php/Fonts# Icons: # # Bellow you can see the icon of each group and it's nerd font name: # # nerdfonts.com/cheat-sheet groups = [Group(f" {icon} ") for icon in [ "", # Icon for the web browser: nf-fa-firefox "", # Icon of Python: nf-fae-python "", # Icon of the terminal: nf-dev-terminal "", # Icon of the html lang: nf-fa-code "", # Icon of the settings: nf-seti-config "", # Icon of the file manager: nf-mdi-folder "", # Icon of the image viewer: nf-mdi-image "", # Icon of the video player: nf-fa-video_camera "", # Icon of the layers: nf-mdi-layers ]] for i, group in enumerate(groups): actual_key = str(i + 1) keys.extend([ # Switch to workspace N Key([mod], actual_key, lazy.group[group.name].toscreen()), # Send window to workspace N Key([mod, "shift"], actual_key, lazy.window.togroup(group.name)) ])
# -*- coding: utf-8 -*- """ Created on Wed Jun 13 10:16:18 2018 @author: KrRish """ import os print("Path at terminal when executing this file") print(os.getcwd() + "\n") os.chdir("E:\python") f=open("file.txt","r") print(f.readline(5)) print(f.read()) print(f.readlines()) #********************************************** f=open("file.txt","r") with open("file.txt",'r') as f: d=f.readlines() for var in d: print(var) #*********************************************** f=open("file.txt","r+")
from abc import ABCMeta, abstractmethod from typing import Sequence from .tech.timestamp import time_from_timestamp from .meta import BeadName, InputSpec class Bead: ''' Interface to metadata of a bead. Unique identifier: box_name, name, content_id content_id guarantees same data content, but beads with same content can have different metadata, including where it is to be found (box_name) and under which name, or how to find the referenced input beads (see input_map). ''' # high level view of computation kind: str # kind is deprecated. Humans naturally agree on domain specific names instead. # The price is living with bad, undescriptive names, that are hard to improve upon later. name: BeadName inputs: Sequence[InputSpec] # frozen beads only details # (workspaces fake them with recognisable values) content_id: str freeze_time_str: str box_name: str @property def freeze_time(self): return time_from_timestamp(self.freeze_time_str) def get_input(self, name): for input in self.inputs: if name == input.name: return input class UnpackableBead(Bead, metaclass=ABCMeta): ''' Provide high-level access to content of a bead. ''' def unpack_to(self, workspace): self.unpack_code_to(workspace.directory) workspace.create_directories() self.unpack_meta_to(workspace) @abstractmethod def unpack_data_to(self, path): pass @abstractmethod def unpack_code_to(self, path): pass @abstractmethod def unpack_meta_to(self, workspace): pass
#Calculo de IMC. x="s" while x=="s": sx=input("Digite seu sexo ") n=input("Digite seu nome ") p=float(input("Digite peso ")) a=float(input("Digite altura ")) imc=(p)/(a*a) print(imc) if sx==("Masculino"): if imc<20.7: print("abaixo do peso") elif imc>=20.7: print("Peso ideal") elif imc>26.4: print("Marginalmnete assima do peso") elif imc>27.8: print("Assima do peso ideal") if sx==("Feminino"): if imc<19.1: print("abaixo do peso") elif imc>=19.1: print("Peso ideal") elif imc>25.8: print("Marginalmente assima do peso") elif imc>27.3: print("Assima do peso ideal") x=input("Quer ver de outra pessoa? [s/n]:")
from jose.backends.base import Key from jose.constants import ALGORITHMS from jose.exceptions import JWKError try: from jose.backends import RSAKey # noqa: F401 except ImportError: pass try: from jose.backends import ECKey # noqa: F401 except ImportError: pass try: from jose.backends import AESKey # noqa: F401 except ImportError: pass try: from jose.backends import DIRKey # noqa: F401 except ImportError: pass try: from jose.backends import HMACKey # noqa: F401 except ImportError: pass def get_key(algorithm): if algorithm in ALGORITHMS.KEYS: return ALGORITHMS.KEYS[algorithm] elif algorithm in ALGORITHMS.HMAC: # noqa: F811 return HMACKey elif algorithm in ALGORITHMS.RSA: from jose.backends import RSAKey # noqa: F811 return RSAKey elif algorithm in ALGORITHMS.EC: from jose.backends import ECKey # noqa: F811 return ECKey elif algorithm in ALGORITHMS.AES: from jose.backends import AESKey # noqa: F811 return AESKey elif algorithm == ALGORITHMS.DIR: from jose.backends import DIRKey # noqa: F811 return DIRKey return None def register_key(algorithm, key_class): if not issubclass(key_class, Key): raise TypeError("Key class is not a subclass of jwk.Key") ALGORITHMS.KEYS[algorithm] = key_class ALGORITHMS.SUPPORTED.add(algorithm) return True def construct(key_data, algorithm=None): """ Construct a Key object for the given algorithm with the given key_data. """ # Allow for pulling the algorithm off of the passed in jwk. if not algorithm and isinstance(key_data, dict): algorithm = key_data.get("alg", None) if not algorithm: raise JWKError("Unable to find an algorithm for key: %s" % key_data) key_class = get_key(algorithm) if not key_class: raise JWKError("Unable to find an algorithm for key: %s" % key_data) return key_class(key_data, algorithm)
"""Example of framework usage""" import random from acai_ml.core import Engine import pandas as pd from pydataset import data from pathlib import Path from dbkcore.core import trace from dbkcore.core import Log from dbkdev.data_steps import DataStep, DataStepDataframe from dbkdev.data_steps import apply_test from sklearn.model_selection import ParameterSampler from sklearn.utils.fixes import loguniform from pyspark.sql import functions as F import numpy as np from sklearn.model_selection import cross_val_score from sklearn import svm class Step_loadData(DataStep): """Load the defined dataset.""" def test(self): """Apply data tests.""" self.test_is_dataframe_empty(df=self.output_data.dataframe) self.test_null_values( cols=['Sepal.Length', 'Sepal.Width'], df=self.output_data.dataframe ) @apply_test @trace def initialize(self, name_dataset: str): """ Initialize the DataStep. Parameters ---------- name_dataset : str Name of the dataset to load from pydataset package """ p_df = data(name_dataset) p_df.columns = [c.replace('.', '') for c in p_df.columns] dt = self.spark.createDataFrame(p_df) self.set_output_data(dt) class Step_crossValidate(DataStep): """Run multiple models in parallel.""" def test(self): pass @trace(attrs_refact=['appi_ik']) def initialize( self, dt: DataStepDataframe, pipeline_name: str, appi_ik: str, n_iter: int ): param_grid = { 'C': loguniform(1e0, 1e3), 'kernel': ['linear', 'rbf'], 'class_weight': ['balanced', None] } rng = np.random.RandomState(0) param_list = list( ParameterSampler( param_grid, n_iter=n_iter, random_state=rng ) ) # p_dt = Engine.get_instance().spark().createDataFrame(pd.DataFrame(param_list)).\ # withColumn('id', F.monotonically_increasing_id()) p_dt = self.spark.createDataFrame(pd.DataFrame(param_list)).\ withColumn('id', F.monotonically_increasing_id()) dt_train = dt.dataframe.crossJoin( p_dt ) udf_schema = dt_train.select( 'id', F.lit(0.0).alias('score') ).schema def pudf_train(dt_model): param_id = dt_model['id'].unique()[0] param_c = dt_model['C'].unique()[0] param_class_weight = dt_model['class_weight'].unique()[0] param_kernel = dt_model['kernel'].unique()[0] logging_custom_dimensions = { 'id': str(param_id), 'C': str(param_c), 'class_weight': param_class_weight, 'kernel': param_kernel } Log(pipeline_name, appi_ik) try: # Raising randomly exception if random.randint(0, 20) > 15: raise 'Random exception' dt_x = dt_model[ [ 'SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth' ] ] y = dt_model['Species'] clf = svm.SVC( kernel=param_kernel, C=param_c, class_weight=param_class_weight, random_state=42 ) scores = cross_val_score(clf, dt_x, y, cv=5, scoring='f1_macro') score = scores.mean() dt_out = pd.DataFrame( { 'id': [param_id], 'score': [score] } ) Log.get_instance().log_info("Training:success", custom_dimension=logging_custom_dimensions) except Exception: Log.get_instance().log_error("Training:failed", custom_dimension=logging_custom_dimensions) dt_out = pd.DataFrame( { 'id': [param_id], 'score': [-1] } ) return dt_out ''' dt_model = dt_train.where(F.col('id') == 17179869184).toPandas() ''' dt_cross_evals = dt_train.\ groupBy(['id']).\ applyInPandas(pudf_train, schema=udf_schema).\ cache() dt_cross_evals.count() self.set_output_data(dt_cross_evals) Engine() Engine().get_instance().initialize_env() # pipeline_name = Path(__file__).stem pipeline_name = "Remote Testing" Engine().get_instance().initialize_logger(pipeline_name=pipeline_name) # Engine().get_instance().spark().conf.set("spark.sql.execution.arrow.enabled", "true") run_id = 'test_run_id' step_loadData = Step_loadData( spark=Engine.get_instance().spark(), run_id=run_id ) step_loadData.initialize( name_dataset='iris' ) step_crossValidate = Step_crossValidate( spark=Engine.get_instance().spark(), run_id=run_id ) step_crossValidate.initialize( dt=step_loadData.output_data, pipeline_name=pipeline_name, appi_ik=Engine().get_instance().appi_ik, n_iter=1000 ) step_crossValidate.output_data.dataframe.toPandas()
def parse_opcode(token): """Extract the opcode and the mode of all params""" opcode = token % 100 modes = [0, 0, 0, 0] if token > 100: for (i, mode) in enumerate(str(token)[-3::-1]): modes[i] = int(mode) return opcode, modes def param_value(memory, position, mode): """Get the value of a param according to its mode""" if mode == 0: # position mode return memory[memory[position]] elif mode == 1: # immediate mode return memory[position] else: raise ValueError("Unknown mode : ", mode) def run_program(memory, inputs): """Execute the successive instructions of the program""" instr_ptr = 0 output = [] while True: (opcode, modes) = parse_opcode(memory[instr_ptr]) if opcode == 99: # Program end break elif opcode in [1, 2]: # 1 = Addition, 2 = Multiplication param1 = param_value(memory, instr_ptr + 1, modes[0]) param2 = param_value(memory, instr_ptr + 2, modes[1]) output_address = memory[instr_ptr + 3] memory[output_address] = (param1 + param2) if opcode == 1 else (param1 * param2) # move forward the instruction pointer instr_ptr += 4 elif opcode == 3: # Store input in memory (program init) val_to_insert = inputs.pop(0) output_address = memory[instr_ptr + 1] memory[output_address] = val_to_insert instr_ptr += 2 elif opcode == 4: # Output a value val_to_output = param_value(memory, instr_ptr + 1, modes[0]) output.append(val_to_output) instr_ptr += 2 else: raise ValueError("Invalid opcode : ", opcode) return output def solve(memory): """Return the last value of the output""" return run_program(memory, [1])[-1] def parse(file_name): """Parse the data file into a list of int""" with open(file_name, "r") as f: return [int(x) for x in f.readline().split(",")] if __name__ == '__main__': print(solve(parse("data.txt")))
# # # Copyright (c) 2008, 2009 by Casey Duncan and contributors # All Rights Reserved. # # This software is subject to the provisions of the MIT License # A copy of the license should accompany this distribution. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # # # $Id$ import unittest import sys import ctypes try: import pyglet from pyglet.gl import * except ImportError: import warnings warnings.warn("Pyglet not installed, some texturizer tests disabled") pyglet = None class TexTestBase: def assertVector(self, vec3, exp, tolerance=0.0001): x, y, z = exp self.failUnless(abs(vec3.x - x) <= tolerance, (vec3, (x, y, z))) self.failUnless(abs(vec3.y - y) <= tolerance, (vec3, (x, y, z))) self.failUnless(abs(vec3.z - z) <= tolerance, (vec3, (x, y, z))) def _make_group(self, pcount): from lepton import ParticleGroup group = ParticleGroup() self._add_particles(group, pcount) self.assertEqual(len(group), pcount) return group def _add_particles(self, group, pcount): from lepton import Particle for i in range(pcount): group.new(Particle()) group.update(0) class SpriteTexturizerTest(TexTestBase, unittest.TestCase): def test_default_coords(self): from lepton.texturizer import SpriteTexturizer tex = SpriteTexturizer(0) self.assertEqual(tex.tex_dimension, 2) expected = (0, 0, 1, 0, 1, 1, 0, 1) self.assertEqual(tex.tex_coords, None) self.assertEqual(tex.weights, None) group = self._make_group(4) coords = tex.generate_tex_coords(group) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) self.assertEqual(tuple(coords), expected * (len(coords) // 8)) return tex, group def test_default_coords_growing_group(self): tex, group = self.test_default_coords() self._add_particles(group, 200) expected = (0, 0, 1, 0, 1, 1, 0, 1) coords = tex.generate_tex_coords(group) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) self.assertEqual(tuple(coords), expected * (len(coords) // 8)) def test_single_coord_set(self): from lepton.texturizer import SpriteTexturizer coord_set = (0, 0, 0.5, 0, 0.5, 0.5, 0, 0.5) tex = SpriteTexturizer(0, coords=[coord_set]) self.assertEqual(tex.tex_dimension, 2) self.assertEqual(tex.tex_coords, (coord_set,)) self.assertEqual(tex.weights, None) group = self._make_group(4) coords = tex.generate_tex_coords(group) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) self.assertEqual(tuple(coords), coord_set * (len(coords) // 8)) return coord_set, tex, group def test_single_coord_set_growing_group(self): coord_set, tex, group = self.test_single_coord_set() self._add_particles(group, 200) expected = (0, 0, 1, 0, 1, 1, 0, 1) coords = tex.generate_tex_coords(group) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) self.assertEqual(tuple(coords), coord_set * (len(coords) // 8)) def test_mutiple_coord_sets(self): from lepton.texturizer import SpriteTexturizer coord_set1 = (0.5, 0.5, 1, 0.5, 1, 1, 0.5, 1) coord_set2 = ((0, 0.5), (0.5, 0.5), (0.5, 1), (0, 1)) coord_set3 = (0.5, 0, 0, 1, 0, 0, 1, 0.5, 0, 0.5, 0.5, 0) tex = SpriteTexturizer(0, coords=[coord_set1, coord_set2, coord_set3]) coord_sets = tex.tex_coords self.assertEqual(coord_sets, ( (0.5, 0.5, 1, 0.5, 1, 1, 0.5, 1), (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1), (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5)) ) self.assertEqual(tex.weights, None) group = self._make_group(6) coords = tuple(tex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) self.assertEqual(coords[:8], coord_sets[0]) self.assertEqual(coords[8:16], coord_sets[1]) self.assertEqual(coords[16:24], coord_sets[2]) self.assertEqual(coords[24:32], coord_sets[0]) self.assertEqual(coords[32:40], coord_sets[1]) self.assertEqual(coords[40:48], coord_sets[2]) def test_coord_set_weights(self): from lepton.texturizer import SpriteTexturizer coord_set1 = ((0.5, 0.5), (1, 0.5), (1, 1), (0.5, 1)) coord_set2 = (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1) coord_set3 = (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5) tex = SpriteTexturizer(0, coords=(coord_set1, coord_set2, coord_set3), weights=(20, 30, 50)) coord_sets = tex.tex_coords self.assertEqual(coord_sets, ( (0.5, 0.5, 1, 0.5, 1, 1, 0.5, 1), (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1), (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5)) ) self.assertEqual(len(tex.weights), 3) self.assertAlmostEqual(tex.weights[0], 0.20) self.assertAlmostEqual(tex.weights[1], 0.30) self.assertAlmostEqual(tex.weights[2], 0.50) group = self._make_group(1000) coords = tuple(tex.generate_tex_coords(group)) self.failUnless(len(coords) >= 8000, (len(coords), len(group))) counts = {coord_sets[0]: 0, coord_sets[1]: 0, coord_sets[2]: 0} for i in range(1000): cset = coords[i * 8:i * 8 + 8] self.failUnless(cset in counts, cset) counts[cset] += 1 self.assertEqual(sum(counts.values()), 1000) self.failUnless(250 > counts[coord_sets[0]] > 150, counts[coord_sets[0]]) self.failUnless(375 > counts[coord_sets[1]] > 225, counts[coord_sets[1]]) self.failUnless(600 > counts[coord_sets[2]] > 400, counts[coord_sets[2]]) def test_coord_set_weights_deterministic(self): from lepton.texturizer import SpriteTexturizer coord_set1 = ((0.5, 0.5), (1, 0.5), (1, 1), (0.5, 1)) coord_set2 = (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1) coord_set3 = (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5) tex = SpriteTexturizer(0, coords=(coord_set1, coord_set2, coord_set3), weights=(20, 70, 10)) coord_sets = tex.tex_coords group = self._make_group(20) coords = [tuple(tex.generate_tex_coords(group)) for i in range(20)] for cs in coords: self.assertEqual(cs, coords[0]) def test_aspect_adjust(self): from lepton.texturizer import SpriteTexturizer coord_set1 = (0, 0, 1, 0, 1, 0.5, 0, 0.5) coord_set2 = (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1) tex = SpriteTexturizer(0, coords=(coord_set1, coord_set2)) self.failIf(tex.aspect_adjust_width) self.failIf(tex.aspect_adjust_height) sizes = [ (1, 1, 0), (2, 3, 0), ] group = self._make_group(2) for size, p in zip(sizes, group): p.size = size self.assertEqual([tuple(p.size) for p in group], sizes) tex.generate_tex_coords(group) self.assertEqual([tuple(p.size) for p in group], sizes) tex.aspect_adjust_width = True expected = [ (2, 1, 0), (3, 3, 0), ] tex.generate_tex_coords(group) for p, b in zip(group, expected): self.assertVector(p.size, b) for size, p in zip(sizes, group): p.size = size self.assertEqual([tuple(p.size) for p in group], sizes) tex.aspect_adjust_width = False tex.aspect_adjust_height = True expected = [ (1, 0.5, 0), (2, 2, 0), ] tex.generate_tex_coords(group) for p, b in zip(group, expected): self.assertVector(p.size, b) def test_invalid_args(self): from lepton.texturizer import SpriteTexturizer self.assertRaises(TypeError, SpriteTexturizer, 0, object()) self.assertRaises(TypeError, SpriteTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], object()) self.assertRaises(ValueError, SpriteTexturizer, 0, []) self.assertRaises(ValueError, SpriteTexturizer, 0, [(0, 0)]) self.assertRaises(ValueError, SpriteTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], []) self.assertRaises(ValueError, SpriteTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], [-1]) self.assertRaises(ValueError, SpriteTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], [1, 1]) self.assertRaises(ValueError, SpriteTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)], [1, -1]) if pyglet is not None: def _glGet(self, what): result = (ctypes.c_int * 1)() glGetIntegerv(what, result) return result[0] def test_set_state_restore_state(self): from lepton.texturizer import SpriteTexturizer texture = (ctypes.c_uint * 1)() glGenTextures(1, texture) glDisable(GL_TEXTURE_2D) glBindTexture(GL_TEXTURE_2D, 0) sprite_tex = SpriteTexturizer(texture[0]) self.failIf(self._glGet(GL_TEXTURE_2D)) self.assertEqual(self._glGet(GL_TEXTURE_BINDING_2D), 0) sprite_tex.set_state() self.failUnless(self._glGet(GL_TEXTURE_2D)) self.assertEqual(self._glGet(GL_TEXTURE_BINDING_2D), texture[0]) sprite_tex.restore_state() self.failIf(self._glGet(GL_TEXTURE_2D)) class FlipBookTexturizerTest(TexTestBase, unittest.TestCase): def test_2D_single_duration_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0.5, 0, 0.5, 0.5, 0, 0.5), (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5), (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1), (0.5, 0.5, 1, 0.5, 1, 1, 0.5, 1), ] fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=0.1, ) self.failUnless(fbtex.loop) self.assertAlmostEqual(fbtex.duration, 0.1) self.assertEqual(fbtex.tex_dimension, 2) group = self._make_group(10) age = 0.0 for p in group: p.age = age age += 0.06 coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) self.assertEqual(coords[:8], coord_sets[0]) self.assertEqual(coords[8:16], coord_sets[0]) self.assertEqual(coords[16:24], coord_sets[1]) self.assertEqual(coords[24:32], coord_sets[1]) self.assertEqual(coords[32:40], coord_sets[2]) self.assertEqual(coords[40:48], coord_sets[3]) self.assertEqual(coords[48:56], coord_sets[3]) self.assertEqual(coords[56:64], coord_sets[0]) self.assertEqual(coords[64:72], coord_sets[0]) self.assertEqual(coords[72:80], coord_sets[1]) # Next frame group.update(0.05) coords = tuple(fbtex.generate_tex_coords(group)) self.assertEqual(coords[:8], coord_sets[0]) self.assertEqual(coords[8:16], coord_sets[1]) self.assertEqual(coords[16:24], coord_sets[1]) self.assertEqual(coords[24:32], coord_sets[2]) self.assertEqual(coords[32:40], coord_sets[2]) self.assertEqual(coords[40:48], coord_sets[3]) self.assertEqual(coords[48:56], coord_sets[0]) self.assertEqual(coords[56:64], coord_sets[0]) self.assertEqual(coords[64:72], coord_sets[1]) self.assertEqual(coords[72:80], coord_sets[1]) def test_2D_single_duration_no_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0.5, 0, 0.5, 0.5, 0, 0.5), (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5), (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1), (0.5, 0.5, 1, 0.5, 1, 1, 0.5, 1), ] fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=0.03, loop=False, ) self.failIf(fbtex.loop) self.assertAlmostEqual(fbtex.duration, 0.03) group = self._make_group(10) age = 0.0 for i, p in enumerate(group): p.age = i * 0.016 coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) self.assertEqual(coords[:8], coord_sets[0]) self.assertEqual(coords[8:16], coord_sets[0]) self.assertEqual(coords[16:24], coord_sets[1]) self.assertEqual(coords[24:32], coord_sets[1]) self.assertEqual(coords[32:40], coord_sets[2]) self.assertEqual(coords[40:48], coord_sets[2]) self.assertEqual(coords[48:56], coord_sets[3]) self.assertEqual(coords[56:64], coord_sets[3]) self.assertEqual(coords[64:72], coord_sets[3]) self.assertEqual(coords[72:80], coord_sets[3]) # Next frame group.update(0.02) coords = tuple(fbtex.generate_tex_coords(group)) self.assertEqual(coords[:8], coord_sets[0]) self.assertEqual(coords[8:16], coord_sets[1]) self.assertEqual(coords[16:24], coord_sets[1]) self.assertEqual(coords[24:32], coord_sets[2]) self.assertEqual(coords[32:40], coord_sets[2]) self.assertEqual(coords[40:48], coord_sets[3]) self.assertEqual(coords[48:56], coord_sets[3]) self.assertEqual(coords[56:64], coord_sets[3]) self.assertEqual(coords[64:72], coord_sets[3]) self.assertEqual(coords[72:80], coord_sets[3]) def test_2D_duration_list_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0.5, 0, 0.5, 0.5, 0, 0.5), (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5), (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1), (0.5, 0.5, 1, 0.5, 1, 1, 0.5, 1), ] durations = (0.12, 0.3, 0.2, 0.15) times = [] t = 0 for d in durations: t += d times.append(t) fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=durations, ) self.failUnless(fbtex.loop) for d, expected in zip(fbtex.duration, durations): self.assertAlmostEqual(d, expected) group = self._make_group(10) age = 0.0 for p in group: p.age = age % 2.0 age += 0.7 for f in range(5): coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) i = 0 for p, t in zip(group, times): age = p.age % times[-1] c = 0 while c < 3 and age > times[c]: c += 1 self.assertEqual(coords[i:i + 8], coord_sets[c], "f=%s i=%s c=%s age=%s: %s != %s" % (f, i, c, p.age, coords[i:i + 8], coord_sets[c])) i += 8 group.update(0.2) def test_2D_duration_list_no_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0.5, 0, 0.5, 0.5, 0, 0.5), (0.5, 0, 1, 0, 1, 0.5, 0.5, 0.5), (0, 0.5, 0.5, 0.5, 0.5, 1, 0, 1), (0.5, 0.5, 1, 0.5, 1, 1, 0.5, 1), ] durations = (0.5, 0.25, 0.3, 0.4) times = [] t = 0 for d in durations: t += d times.append(t) fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=durations, loop=False, ) self.failIf(fbtex.loop) for d, expected in zip(fbtex.duration, durations): self.assertAlmostEqual(d, expected, 6) group = self._make_group(10) age = 0.0 for p in group: p.age = age % 2.0 age += 0.7 for f in range(5): coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 8, (len(coords), len(group))) i = 0 for p, t in zip(group, times): c = 0 while c < 3 and p.age > times[c]: c += 1 self.assertEqual(coords[i:i + 8], coord_sets[c], "f=%s i=%s c=%s age=%s: %s != %s" % (f, i, c, p.age, coords[i:i + 8], coord_sets[c])) i += 8 group.update(0.2) def test_default_r_coords(self): from lepton.texturizer import FlipBookTexturizer fbtex = FlipBookTexturizer(0, coords=[(0, 0, 0.5, 0, 0.5, 0.5, 0, 0.5)], duration=1, dimension=3) self.assertEqual(fbtex.tex_dimension, 3) coords = fbtex.tex_coords self.assertEqual(coords, ((0, 0, 0, 0.5, 0, 0, 0.5, 0.5, 0, 0, 0.5, 0),)) fbtex = FlipBookTexturizer(0, coords=[((0.5, 0), (1, 0), (1, 0.5), (0.5, 0.5))], duration=1, dimension=3) self.assertEqual(fbtex.tex_dimension, 3) coords = fbtex.tex_coords self.assertEqual(coords, ((0.5, 0, 0, 1, 0, 0, 1, 0.5, 0, 0.5, 0.5, 0),)) def test_3D_single_duration_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0), (0, 0, 0.5, 1, 0, 0.5, 1, 1, 0.5, 0, 1, 0.5), (0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1), ] fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=0.1, dimension=3, ) self.assertEqual(fbtex.tex_dimension, 3) self.assertAlmostEqual(fbtex.duration, 0.1) self.failUnless(fbtex.loop) group = self._make_group(10) age = 0.0 for p in group: p.age = age % 0.4 age += 0.07 times = [0.1, 0.2, 0.3] for f in range(5): coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 12, (len(coords), len(group))) i = 0 for p, t in zip(group, times): age = p.age % times[-1] c = 0 while c < 2 and age > times[c]: c += 1 self.assertEqual(coords[i:i + 12], coord_sets[c], "f=%s i=%s c=%s age=%s: %s != %s" % (f, i, c, age, coords[i:i + 12], coord_sets[c])) i += 12 group.update(0.04) def test_3D_single_duration_no_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0), (0, 0, 0.5, 1, 0, 0.5, 1, 1, 0.5, 0, 1, 0.5), (0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1), ] fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=0.12, dimension=3, loop=False, ) self.assertEqual(fbtex.tex_dimension, 3) self.assertAlmostEqual(fbtex.duration, 0.12) self.failIf(fbtex.loop) group = self._make_group(10) age = 0.0 for p in group: p.age = age % 0.4 age += 0.07 times = [0.12, 0.24, 0.36] for f in range(5): coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 12, (len(coords), len(group))) i = 0 for p, t in zip(group, times): c = 0 while c < 2 and p.age > times[c]: c += 1 self.assertEqual(coords[i:i + 12], coord_sets[c], "f=%s i=%s c=%s age=%s: %s != %s" % (f, i, c, p.age, coords[i:i + 12], coord_sets[c])) i += 12 group.update(0.055) def test_3D_duration_list_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0), (0, 0, 0.5, 1, 0, 0.5, 1, 1, 0.5, 0, 1, 0.5), (0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1), ] durations = [0.7, 0.3, 0.5] times = [] t = 0 for d in durations: t += d times.append(t) fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=durations, dimension=3, ) self.assertEqual(fbtex.tex_dimension, 3) self.failUnless(fbtex.loop) for d, expected in zip(fbtex.duration, durations): self.assertAlmostEqual(d, expected, 6) group = self._make_group(10) age = 0.0 for p in group: p.age = age % 0.4 age += 0.07 for f in range(5): coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 12, (len(coords), len(group))) i = 0 for p, t in zip(group, times): age = p.age % times[-1] c = 0 while c < 2 and age > times[c]: c += 1 self.assertEqual(coords[i:i + 12], coord_sets[c], "f=%s i=%s c=%s age=%s: %s != %s" % (f, i, c, age, coords[i:i + 12], coord_sets[c])) i += 12 group.update(0.11) def test_3D_duration_list_no_loop(self): from lepton.texturizer import FlipBookTexturizer coord_sets = [ (0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0), (0, 0, 0.5, 1, 0, 0.5, 1, 1, 0.5, 0, 1, 0.5), (0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1), ] durations = [0.4, 0.4, 0.5] times = [] t = 0 for d in durations: t += d times.append(t) fbtex = FlipBookTexturizer(0, coords=coord_sets, duration=durations, dimension=3, loop=False, ) self.assertEqual(fbtex.tex_dimension, 3) self.failIf(fbtex.loop) for d, expected in zip(fbtex.duration, durations): self.assertAlmostEqual(d, expected, 6) group = self._make_group(10) age = 0.0 for p in group: p.age = age % 0.5 age += 0.07 for f in range(5): coords = tuple(fbtex.generate_tex_coords(group)) self.failUnless(len(coords) >= len(group) * 12, (len(coords), len(group))) i = 0 for p, t in zip(group, times): c = 0 while c < 2 and p.age > times[c]: c += 1 self.assertEqual(coords[i:i + 12], coord_sets[c], "f=%s i=%s c=%s age=%s: %s != %s" % (f, i, c, p.age, coords[i:i + 12], coord_sets[c])) i += 12 group.update(0.17) def test_invalid_args(self): from lepton.texturizer import FlipBookTexturizer self.assertRaises(TypeError, FlipBookTexturizer, 0, object(), 1) self.assertRaises(TypeError, FlipBookTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], object()) self.assertRaises(ValueError, FlipBookTexturizer, 0, [], 1) self.assertRaises(ValueError, FlipBookTexturizer, 0, [(0, 0)], 1) self.assertRaises(ValueError, FlipBookTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], 0) self.assertRaises(ValueError, FlipBookTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], -1) self.assertRaises(ValueError, FlipBookTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0)], []) self.assertRaises(ValueError, FlipBookTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)], [1, -1]) self.assertRaises(ValueError, FlipBookTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)], [1, 1], dimension=0) self.assertRaises(ValueError, FlipBookTexturizer, 0, [(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)], [1, 1], dimension=4) if pyglet is not None: def _glGet(self, what): result = (ctypes.c_int * 1)() glGetIntegerv(what, result) return result[0] def test_2D_set_state_restore_state(self): from lepton.texturizer import FlipBookTexturizer texture = (ctypes.c_uint * 1)() glGenTextures(1, texture) glDisable(GL_TEXTURE_2D) glDisable(GL_TEXTURE_3D) glBindTexture(GL_TEXTURE_2D, 0) sprite_tex = FlipBookTexturizer(texture[0], [(0, 0, 0, 0, 0, 0, 0, 0)], 1) self.assertEqual(sprite_tex.tex_dimension, 2) self.failIf(self._glGet(GL_TEXTURE_2D)) self.failIf(self._glGet(GL_TEXTURE_3D)) self.assertEqual(self._glGet(GL_TEXTURE_BINDING_2D), 0) sprite_tex.set_state() self.failUnless(self._glGet(GL_TEXTURE_2D)) self.failIf(self._glGet(GL_TEXTURE_3D)) self.assertEqual(self._glGet(GL_TEXTURE_BINDING_2D), texture[0]) sprite_tex.restore_state() self.failIf(self._glGet(GL_TEXTURE_2D)) self.failIf(self._glGet(GL_TEXTURE_3D)) def test_3D_set_state_restore_state(self): from lepton.texturizer import FlipBookTexturizer texture = (ctypes.c_uint * 1)() glGenTextures(1, texture) glDisable(GL_TEXTURE_2D) glDisable(GL_TEXTURE_3D) glBindTexture(GL_TEXTURE_3D, 0) sprite_tex = FlipBookTexturizer(texture[0], [(0, 0, 0, 0, 0, 0, 0, 0)], 1, dimension=3) self.assertEqual(sprite_tex.tex_dimension, 3) self.failIf(self._glGet(GL_TEXTURE_2D)) self.failIf(self._glGet(GL_TEXTURE_3D)) self.assertEqual(self._glGet(GL_TEXTURE_BINDING_3D), 0) sprite_tex.set_state() self.failUnless(self._glGet(GL_TEXTURE_3D)) self.failIf(self._glGet(GL_TEXTURE_2D)) self.assertEqual(self._glGet(GL_TEXTURE_BINDING_3D), texture[0]) sprite_tex.restore_state() self.failIf(self._glGet(GL_TEXTURE_2D)) self.failIf(self._glGet(GL_TEXTURE_3D)) if __name__ == '__main__': unittest.main()
# 383 - Ransom Note (Easy) # https://leetcode.com/problems/ransom-note/ from collections import Counter class Solution(object): def canConstruct(self, ransom_note, magazine): """ :type ransomNote: str :type magazine: str :rtype: bool """ # Is it possible to build a certain ransom note starting from the letters in a magazine? counter_ransom = Counter(ransom_note) counter_magazine = Counter(magazine) valid = all(counter_magazine[char] >= counter_ransom[char] for char in list(ransom_note)) return valid
#! /usr/bin/python from urlparse import urlparse def fullPath(baseUrl, link): # converts baseUrl string to ParseResult (urlparse object) # for constructing simple links we can ignore everything after # last slash, i.e. on http://test.com/super.ext?mag=ic # relative links are constructed with http://test.com/ prefix baseUrl = urlparse(baseUrl[:baseUrl.rfind('/') + 1]) if link.startswith('http'): '''Full link''' return link if link.startswith('javascript'): '''We are not interested in following these links''' return None if link.startswith('/'): return "http://" + baseUrl.netloc + link return baseUrl.geturl() + link
#TODO the NCDEnterprise library requires the digi Xbee library from: #https://github.com/digidotcom/python-xbee # someday I may make an install package, but today is not that day. from ncd_enterprise import NCDEnterprise #TODO Change this line to your Serial Port # SERIAL_PORT = "/dev/tty.usbserial-AC4CF4AA" SERIAL_PORT = "/dev/cu.usbserial-AC4CF4AA" BAUD_RATE = 115200 #this is function is the callback that I pass into the NCDEnterprise module during #instantiation. The module uses the Digi XBee module which runs on another thread. def my_custom_callback(sensor_data): if sensor_data['sensor_type_id'] is 40: csv_dict = restructure_data(sensor_data.get('sensor_data')) print('data acquired') csv_file = open('~/vibration_data.csv', 'a+') csv_file.write(csv_dict.get('rms_x_csv')+"\r") csv_file.write(csv_dict.get('rms_y_csv')+"\r") csv_file.write(csv_dict.get('rms_z_csv')+"\r\r") csv_file.close() def restructure_data(data): r_data = {'rms_x_csv': '\"RMS_X\",', 'rms_y_csv': '\"RMS_Y\",', 'rms_z_csv': '\"RMS_Z\",'} for sample in data: r_data['rms_x_csv'] += '\"'+str(data.get(sample)['rms_x']) +'\",' r_data['rms_y_csv'] += '\"'+str(data.get(sample)['rms_y']) +'\",' r_data['rms_z_csv'] += '\"'+str(data.get(sample)['rms_z']) +'\",' return r_data #instantiate the NCDEnterprise Object and pass in the Serial Port, Baud Rate, # and Function/Method object ncdModem = NCDEnterprise(SERIAL_PORT, BAUD_RATE, my_custom_callback) # print(ncdModem.device.serial_port.rts)
# Anders Poirel # 12-03-2020 # # https://leetcode.com/problems/generate-parentheses/ # # Runtime: 28 ms, faster than 89.93% of Python3 online submissions for Generate Parentheses. # Memory Usage: 13.2 MB, less than 91.11% of Python3 online submissions for Generate Parentheses. class Solution: def build_sol(self, nleft, nright, curr, sols, n): print(curr) if nright > nleft or nleft > n: return elif len(curr) == n*2 - 2: sols.append("(" + curr + ")") print("(" + curr + ")") else: print("Recursive call") self.build_sol(nleft, nright+1, curr + ")", sols, n) self.build_sol(nleft+1, nright, curr + "(", sols, n) def generateParenthesis(self, n: int) -> List[str]: sols = [] self.build_sol(1, 1, ")", sols, n) self.build_sol(2, 0, "(", sols, n) return sols
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('vendors', '0075_auto_20160421_0404'), ] operations = [ migrations.RemoveField( model_name='insuranceverification', name='remind_me', ), migrations.AlterField( model_name='insuranceverification', name='expiry_date', field=models.DateField(null=True, blank=True), preserve_default=True, ), migrations.AlterField( model_name='insuranceverification', name='extent', field=models.IntegerField(null=True, choices=[(1, '\u20ac2.6 million'), (2, '\u20ac6.5 million'), (3, 'Other (please specify)')]), preserve_default=True, ), ]
import os import pygame class ResourceManager: __instance = None def __init__(self, path): self.__base_path = os.path.dirname(path) + "/res/" self.__fonts = {} self.__graphics = {} self.__music = {} self.__sounds = {} for file in os.listdir(self.__base_path + "fonts/"): key = "fonts/" + os.path.splitext(os.path.basename(file))[0] self.__fonts[key] = os.path.join(self.__base_path, "fonts/" + file) for file in os.listdir(self.__base_path + "graphics/"): key = "graphics/" + os.path.splitext(os.path.basename(file))[0] surface = pygame.image.load(os.path.join(self.__base_path, "graphics/" + file)) self.__graphics[key] = surface for file in os.listdir(self.__base_path + "music/"): key = "music/" + os.path.splitext(os.path.basename(file))[0] music = pygame.mixer.Sound(os.path.join(self.__base_path, "music/" + file)) self.__music[key] = music for file in os.listdir(self.__base_path + "sounds/"): key = "sounds/" + os.path.splitext(os.path.basename(file))[0] sound = pygame.mixer.Sound(os.path.join(self.__base_path, "sounds/" + file)) self.__sounds[key] = sound ResourceManager.__instance = self @staticmethod def get_instance(): return ResourceManager.__instance def get_font(self, key, size): return pygame.font.Font(self.__fonts[key], size) def get_image(self, key): return self.__graphics[key] def get_music(self, key): return self.__music[key] def get_sound(self, key): return self.__sounds[key]
import gamry_parser as parser import unittest class TestVFP600(unittest.TestCase): def setUp(self): pass def test_load(self): gp = parser.VFP600() self.assertFalse(gp.loaded) gp.load("tests/vfp600_data.dta") self.assertEqual(gp.fname, "tests/vfp600_data.dta") self.assertTrue("VFP600" in gp.get_header()["TAG"]) # data file acq frequency = 15hz self.assertEqual(gp.get_sample_time(), 1 / 15) self.assertEqual(gp.get_curve_count(), 1) self.assertEqual(gp.get_sample_count(), 20) self.assertTrue(gp.loaded) def test_getters(self): gp = parser.VFP600() gp.load("tests/vfp600_data.dta") curve = gp.get_curve_data() self.assertTrue((curve.columns == ["T", "Voltage", "Current"]).all()) self.assertEqual(curve["T"][0], 0) self.assertEqual(round(curve["T"].iloc[-1] * 100), 127) self.assertEqual(curve["Voltage"].iloc[-1], 0.033333) self.assertEqual(round(curve["Current"].iloc[-1] * 1e13), 5125)
# This logic is to help convert address: str to address: bytes # copied from https://github.com/cosmos/cosmos-sdk/blob/main/types/address.go from typing import List import bech32 def address_to_bytes(address: str) -> bytes: _prefix, b = bech32.bech32_decode(address) b = from_words(b) return bytes(b) def bytes_to_address(b: bytes, prefix: str = "secret") -> str: b = to_words(b) res = bech32.bech32_encode(prefix, b) return res def from_words(words: List[int]) -> List[int]: res = convert(words, 5, 8, False) if res is None: raise ValueError(res) return res def to_words(bytes: List[int]) -> List[int]: return convert(bytes, 8, 5, True) def convert(data: List[int], inBits: int, outBits: int, pad: bool = False) -> List[int]: value = 0 bits = 0 maxV = (1 << outBits) - 1 result = [] for i in range(len(data)): value = (value << inBits) | data[i] bits += inBits while bits >= outBits: bits -= outBits result.append((value >> bits) & maxV) if pad: if bits > 0: result.append((value << (outBits - bits)) & maxV) else: if bits >= inBits: raise ValueError("Excess Padding") if ((value << outBits - bits)) & maxV: raise ValueError("Non-zero padding") return result
import json import six def iterate_dict(dictionary, parents=[]): """ This function iterates over one dict and returns a list of tuples: (list_of_keys, value) Usefull for looping through a multidimensional dictionary. """ ret = [] for key, value in six.iteritems(dictionary): if isinstance(value, dict): ret.extend(iterate_dict(value, parents + [str(key)])) elif isinstance(value, list): ret.append((parents + [str(key)], value)) else: ret.append((parents + [str(key)], value)) return ret def unnest_json(row_obj): """ Iterates over a JSON to tranfsorm each element into a column. Example: {'a': {'b': 'c'}} -> {'a.b': 'c'} """ row = {} for keys, value in iterate_dict(row_obj): row[".".join(keys)] = value if value is not None else '' return row def log(*args): for thing in args: if type(thing) is dict: thing = json.dumps(thing) print('Salesforce plugin - %s' % thing)
import os class Config(): ENV_AWS_DEFAULT_REGION = 'AWS_DEFAULT_REGION' ENV_NGROK_BASE_AGENT_URL = 'NGROK_BASE_AGENT_URL' ENV_SSM_PREFIX = 'SSM_PREFIX' defaults = { ENV_AWS_DEFAULT_REGION: 'us-east-2', ENV_NGROK_BASE_AGENT_URL: 'http://localhost:4040/api', ENV_SSM_PREFIX: '/ngrok_domains', } def __init__(self): self.cache = { self.ENV_AWS_DEFAULT_REGION: os.environ.get(self.ENV_AWS_DEFAULT_REGION), self.ENV_NGROK_BASE_AGENT_URL: os.environ.get(self.ENV_NGROK_BASE_AGENT_URL), self.ENV_SSM_PREFIX: os.environ.get(self.ENV_SSM_PREFIX) } for key, value in self.cache.items(): if (value == None or value == '') and key in self.defaults: self.cache[key] = self.defaults[key] if self.cache[self.ENV_SSM_PREFIX].endswith('/'): self.cache[self.ENV_SSM_PREFIX] = self.cache[self.ENV_SSM_PREFIX][:-1] def get(self, keyName): if not keyName in self.cache: return None return self.cache[keyName]
import debug import tensorflow as tf import time import os from .. import data from .. import error from .. import helpers from .. import internal from .. import network from .. import checkpoint from .. import layer class CTrainer(internal.CBaseRunner): def __init__(self, Network, Reader, ErrorMeasurement, Settings = None): super().__init__(Settings) debug.Assert(isinstance(Network, network.CNetwork), "You must specify a Network object.") debug.Assert(isinstance(Reader, data.CReader), "You must specify a Reader object.") debug.Assert(isinstance(ErrorMeasurement, error.CMeasurement), "You must specify an ErrorMeasurement object.") self._Network = Network self._Reader = Reader self._ErrorMeasurement = ErrorMeasurement self._Printer = None self._SummaryMerger = None self._IsReady = False self._OptimizerStep = None self._prepare(self._Settings) def _prepare(self, Settings): if not self._IsReady: self._OptimizerStep = self._createOptimizer(self._ErrorMeasurement, Settings) Variables, Tensors = helpers.getTrainableVariables() print("Current Model has {} parameters in {} trainable tensors.".format(Variables, Tensors)) self.reset(self.getCheckpointDir()) self._Summary = tf.summary.merge_all() self._IsReady = True def train(self, NumberOfEpochs = None): Session = self._Session # Init Writer is necessary TrainWriter = None ValWriter = None if self._SummaryDir != None: print("Store tensorboard summary at directory {}".format(self._SummaryDir)) TrainWriter = tf.summary.FileWriter(os.path.join(self._SummaryDir, "train")) TrainWriter.add_graph(Session.graph) ValWriter = tf.summary.FileWriter(os.path.join(self._SummaryDir, "val")) ValWriter.add_graph(Session.graph) else: print("Do not store any summary") # Store settings if not os.path.exists(self.getCheckpointDir()): os.makedirs(self.getCheckpointDir()) Filename = os.path.join(self.getCheckpointDir(), "train.cfg") print("Store training settings in file {}".format(Filename)) with open(Filename, "w") as File: File.write(str(self._Settings)) # Start queues QueueCoordinage = tf.train.Coordinator() tf.train.start_queue_runners(sess=Session, coord=QueueCoordinage) # Calculate number of epochs to run MaxEpochs = self.getMaxEpochs() - self._EpochCount if NumberOfEpochs != None: MaxEpochs = min([NumberOfEpochs, MaxEpochs]) # Setup Printer if self._Printer != None: self._Printer.setupTraining(self.getMaxEpochs()) # Loop Preparation BatchSize = self._Reader.getBatchSize() Epoch = self._EpochCount IterationsPerEpoch = helpers.getIterationsPerEpoch(self.getEpochSize(), BatchSize) Iteration = Epoch * IterationsPerEpoch print("Run training for {} epochs beginning with epoch {} and {} iterations per epoch.".format(MaxEpochs, self._EpochCount, IterationsPerEpoch)) # Initial Eval Step StartTime = time.time() SummaryResult, OtherResults = self._internalEvalStep(Session, Iteration, 0, Epoch) Writer = TrainWriter if Epoch > 0: # Do not write to summary, since is has already been written by the training before Writer = None self._postEpochAction(Writer, SummaryResult, OtherResults, StartTime, Iteration, Epoch, BatchSize) SummaryResult = self._internalValidationStep(Session, Iteration, 0, Epoch) Writer = ValWriter if Epoch > 0: # Do not write to summary, since is has already been written by the training before Writer = None self._postValidationAction(Writer, SummaryResult, Iteration, Epoch, BatchSize) # Training Loop StartTime = time.time() for EpochNumber in range(MaxEpochs): Epoch = EpochNumber + self._EpochCount + 1 SampleCount = 0 for Batch in range(IterationsPerEpoch): Iteration += 1 SampleCount += BatchSize self._printTrainingBar(20, Iteration, Epoch, Batch, IterationsPerEpoch, True) self._internalTrainStep(Session, Iteration, Batch, Epoch) SummaryResult, OtherResults = self._internalEvalStep(Session, Iteration, 0, Epoch) StartTime = self._postEpochAction(TrainWriter, SummaryResult, OtherResults, StartTime, Iteration, Epoch, SampleCount) SummaryResult = self._internalValidationStep(Session, Iteration, 0, Epoch) self._postValidationAction(ValWriter, SummaryResult, Iteration, Epoch, BatchSize) self._saveCheckpoint(Epoch, EpochNumber == MaxEpochs) self._EpochCount = Epoch # Stop queues QueueCoordinage.request_stop() QueueCoordinage.join() # Close writer if TrainWriter != None: TrainWriter.close() # Close writer if ValWriter != None: ValWriter.close() def _internalEvalStep(self, Session, Iteration, Batch, Epoch): RunTargets = [self._Summary] RawResults = list(self._trainIteration(Session, RunTargets, self._Reader, Iteration, Batch, Epoch)) SummaryResult = RawResults[0] if len(RawResults) > 1: OtherResults = RawResults[1:] else: OtherResults = [] return SummaryResult, OtherResults def _internalValidationStep(self, Session, Iteration, Batch, Epoch): RunTargets = [self._Summary] IsTraining = self._Reader.IsTraining self._Reader.IsTraining = False #print("Validate {} Iterations...".format(self.getValidationIterations(self._Settings))) IterationsPerStep = self.getValidationIterations(self._Settings) for i in range(IterationsPerStep): self._printTrainingBar(20, Iteration, Epoch, i, IterationsPerStep, False) RawResults = list(self._trainIteration(Session, RunTargets, self._Reader, Iteration, Batch, Epoch)) SummaryResult = RawResults[0] if self._SummaryMerger != None: self._SummaryMerger.add(SummaryResult) self._Reader.IsTraining = IsTraining if self._SummaryMerger != None: SummaryResult = self._SummaryMerger.merge() return SummaryResult def _internalTrainStep(self, Session, Iteration, Batch, Epoch): RunTargets = [self._OptimizerStep] RawResults = list(self._trainIteration(Session, RunTargets, self._Reader, Iteration, Batch, Epoch)) return RawResults def _postValidationAction(self, Writer, Summary, Iteration, Epoch, SampleCount): if (Summary != None) and (Writer != None): Writer.add_summary(Summary, Epoch) if self._Printer != None: self._Printer.printValidationUpdate(Summary, Iteration, Epoch, SampleCount) def _postEpochAction(self, Writer, Summary, OtherResults, StartTime, Iteration, Epoch, SampleCount): Duration = (time.time() - StartTime) StartTime = time.time() if (Summary != None) and (Writer != None): Writer.add_summary(Summary, Epoch) if self._Printer != None: self._Printer.printEpochUpdate(Summary, Iteration, Epoch, Duration, SampleCount) return StartTime def _saveCheckpoint(self, Epoch, IsForceSave = False): EpochsUntilCheckpoint = self.getEpochsUntilCheckpoint() IsSave = False if EpochsUntilCheckpoint != None: if Epoch % EpochsUntilCheckpoint == 0: IsSave = True if IsSave or IsForceSave: self.saveModel(self.getCheckpointDir(), Epoch) def restore(self, Epoch=None): if Epoch is None: CheckpointFile = checkpoint.getLatestCheckpointFile(self.getCheckpointDir()) else: CheckpointFile = checkpoint.getCheckpointFilename(self.getCheckpointDir(), Epoch) debug.Assert(CheckpointFile != None, "Cannot find checkpoint file {}.".format(CheckpointFile)) super().restore(CheckpointFile) def getMaxEpochs(self): return self._getMaxEpochs(self._Settings) def getEpochSize(self): return self._getEpochSize(self._Settings) def getCheckpointDir(self): return self._getCheckpointDir(self._Settings) def getEpochsUntilCheckpoint(self): return self._getEpochsUntilCheckpoint(self._Settings) def _trainIteration(self, Session, RunTargets, Reader, Iteration, Batch, Epoch): raise Exception("You have to overwride this method and run a training iteration inside.") # Return the results here return None, None def _createOptimizer(self, ErrorMeasurement, Settings): raise Exception("You have to overwride this method and create an optimizer step to return.") return None def _getMaxEpochs(self, Settings): # You have to overwride this method to return the maximum number of epochs. return Settings['Trainer']['NumberOfEpochs'] def _getEpochSize(self, Settings): # You have to overwride this method to return the epoch size. return Settings['Trainer']['EpochSize'] def _getSummaryDir(self, Settings): # You can overrite this function to specify a summary directory if 'Trainer' in Settings: if 'SummaryPath' in Settings['Trainer']: return Settings['Trainer']['SummaryPath'] return None def _getCheckpointDir(self, Settings): # You can overrite this function to specify a checkpoint directory if 'Trainer' in Settings: if 'CheckpointPath' in Settings['Trainer']: return os.path.join(Settings['Trainer']['CheckpointPath'], "State_{}".format(self._Network.State)) return None def _getEpochsUntilCheckpoint(self, Settings): # You can overrite this function to specify the number of epochs until a checkpoint is stored if 'Trainer' in Settings: if 'CheckpointEpochs' in Settings['Trainer']: return Settings['Trainer']['CheckpointEpochs'] return None def getValidationIterations(self, Settings): # You can overrite this function to specify the number of epochs until a checkpoint is stored if 'Validation' in Settings: if 'Samples' in Settings['Validation']: return int(Settings['Validation']['Samples']/self._Reader.getBatchSize()) return 1 def _printTrainingBar(self, BarSize, Iteration, Epoch, Batch, IterationsPerEpoch, IsTraining=True): Percent = Batch/IterationsPerEpoch Bar = '.' * int((BarSize*Percent)) BarString = str("{:<"+str(BarSize)+"}").format(Bar) if IsTraining: Prefix = str("Training Epoch {}").format(Epoch) else: Prefix = str("Validation Epoch {}").format(Epoch) print("\r{:>8}: ({}) [{}] - {} / {}".format(Iteration, Prefix, BarString, Batch, IterationsPerEpoch), end='', flush=True) print("\r{:>8}: ({}) [{}] - {} / {}".format(Iteration, Prefix, BarString, Batch, IterationsPerEpoch), end='', flush=True) if Batch >= (IterationsPerEpoch-1): print("\r", end='', flush=True) def _applyNoise(self, Gradients, GradientNoise): if GradientNoise is not None and GradientNoise > 0.0: NoiseLevel = GradientNoise / (tf.sqrt(tf.cast((CurrentOptimizationStep + 1), tf.float32))) NoisyGradients = [] print("Apply noise to gradients (nu = {})...".format(GradientNoise)) # Taken from: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/optimizers.py for Gradient, Variable in Gradients: if Gradient is not None: if isinstance(Gradient, tf.IndexedSlices): GradientShape = Gradient.dense_shape else: GradientShape = Gradient.get_shape() Noise = tf.truncated_normal(GradientShape) * NoiseLevel Gradient += Noise NoisyGradients.append((Gradient, Variable)) else: NoiseLevel = 0 NoisyGradients = Gradients tf.summary.scalar("NoiseLevel", NoiseLevel) return NoisyGradients def _applyIndiviualLearningRates(self, Gradients): print("Apply individual learning rate scales...") ScaledGradients = [] for Gradient, Variable in Gradients: Scale = layer.LearningRates.get(Variable.name) if Scale != None: Gradient *= Scale print(" * \"{}\" has scale {}".format(Variable.name, Scale)) ScaledGradients.append((Gradient, Variable)) return ScaledGradients def _addSumGradientSummary(self, Gradients): Sum = 0.0 for Gradient, Variable in Gradients: Sum += tf.norm(Gradient) tf.summary.scalar("GradientNorm", Sum) def _addSingleGradientSummary(self, Gradients): for Gradient, Variable in Gradients: tf.summary.scalar(Variable.name, tf.norm(Gradient)) def _addGradientNoiseSummary(self, Gradients, NoisyGradients): for i, (Gradients, Variable) in enumerate(Gradients): tf.summary.scalar(Variable.name, tf.norm(NoisyGradients[i][0]) - tf.norm(Gradients))
from abc import ABC, abstractmethod from typing import List, Optional import torch from .options import OptionBridge from .registry import Registry class BaseConfig(ABC): def __init__(self): self._params_list = None @Registry("base_config") def _named_params(self) -> List[str] : self._params_list = {key:value for key, value in vars(self).items() if not key.startswith('_')} return self._params_list def params(self): return {key: getattr(self,key)() for key in self._params_list} class ModelConfig(BaseConfig): def __init__(self, input_size: Optional[int] = 20000, hidden_size : Optional[int] = 256, num_layers: Optional[int] = 2, dropout_p: Optional[float] = 0.4): super(ModelConfig, self).__init__() self.input_size = OptionBridge[int]("input_size", input_size, desc="Size of the input "\ +"layer, this usually is the size of the "\ + "vocab in case of text modality.", required=False) self.hidden_size = OptionBridge[int]("hidden_size", hidden_size, desc="Size of the"\ +" hidden layer", required=False) self.num_layers = OptionBridge[int]("num_layers", num_layers, desc="Number of "\ + " layers of encoder", required=False) self.dropout_p = OptionBridge[float]("dropout_p", dropout_p, desc="dropout probability", required=False) super(ModelConfig, self)._named_params() class TrainConfig(BaseConfig): def __init__(self, lr=1.0, gamma=0.9, momentum=0.9, clip_value=0.25, num_epochs=5, log_interval=10, device='cpu', checkpoint_dir='./models'): super(TrainConfig, self).__init__() self.lr = OptionBridge[float]("lr", lr, desc="learning rate", required=False) self.gamma = OptionBridge[float]("gamma", gamma, desc="gamma for lr scheduler", required=False) self.momentum = OptionBridge[float]("momentum", momentum, desc="Momentum value", required=False) self.clip_value = OptionBridge[float]("clip_value", clip_value, desc="clip value for grad", required=False) self.num_epochs = OptionBridge[int]("num_epochs", num_epochs, desc="Number of epochs", required=False) self.log_interval = OptionBridge[int]("log_interval", log_interval, desc="Interval between logs", required=False) self.device = OptionBridge[str]("device", device, desc="device: cpu or cuda", required=False, choices=['cpu', 'cuda']) self.checkpoint_dir = OptionBridge[str]("checkpoint_dir", checkpoint_dir, desc="Directory for checkpointing") super(TrainConfig, self)._named_params() class DataConfig(BaseConfig): def __init__(self, data_dir, train_batch_size=24, valid_batch_size=24, num_workers=0, shuffle_data=True, drop_last=True): super(DataConfig, self).__init__() self.data_dir = OptionBridge[str]("data_dir", data_dir, desc="directory where data is located", required=True) self.train_batch_size = OptionBridge[int]("train_batch_size", train_batch_size, desc="Batch Size for training", default=24) self.valid_batch_size = OptionBridge[int]("valid_batch_size", valid_batch_size, desc="Batch Size for validation data", default=24) self.shuffle_data = OptionBridge[bool]("shuffle_data", shuffle_data, desc="data is shuffled if true", default=True) self.drop_last = OptionBridge[bool]("drop_last", drop_last, desc="left over samples that don't fit "\ + "in a batch are dropped if true", default=True) self.num_workers = OptionBridge[int]("num_workers", num_workers, desc="Number of workers required "\ +" to load the data", default= 0) super(DataConfig, self)._named_params()
import numpy as np import struct import os import csv def hex_to_ieee_fp(hex_str): hex_str = hex_str.strip() if hex_str[0:2] in ["0x", "0X"]: hex_str = hex_str[2:] return struct.unpack(">f", bytes.fromhex(hex_str))[0] def str_to_bool(bool_str): if bool_str.strip() in ["true", "True", "1", "0x1"]: return True elif bool_str.strip() in ["false", "False", "0", "0x0"]: return False def check_ieee_fp_a_gt_b(output_path): test_successful = True with open(os.path.join(output_path, "results.dat"), 'r') as res_file: results_data = csv.reader(res_file) next(results_data, None) # skip header for row in results_data: idx = int(row[0].strip()) fp_a = hex_to_ieee_fp(row[1]) fp_b = hex_to_ieee_fp(row[2]) result = str_to_bool(row[3]) if (fp_a > fp_b) != result: test_successful = False print("index={}: {} > {} = {} not correct!".format(idx, fp_a, fp_b, result)) result = str_to_bool(row[4]) if (fp_a > fp_a) != result: test_successful = False print("index={}: {} > {} = {} not correct!".format(idx, fp_a, fp_a, result)) return test_successful def check_ieee_fp_a_lt_b(output_path): test_successful = True with open(os.path.join(output_path, "results.dat"), 'r') as res_file: results_data = csv.reader(res_file) next(results_data, None) # skip header for row in results_data: idx = int(row[0].strip()) fp_a = hex_to_ieee_fp(row[1]) fp_b = hex_to_ieee_fp(row[2]) result = str_to_bool(row[3]) if (fp_a < fp_b) != result: test_successful = False print("index={}: {} < {} = {} not correct!".format(idx, fp_a, fp_b, result)) result = str_to_bool(row[4]) if (fp_a < fp_a) != result: test_successful = False print("index={}: {} < {} = {} not correct!".format(idx, fp_a, fp_a, result)) return test_successful def check_ieee_fp_a_ge_b(output_path): test_successful = True with open(os.path.join(output_path, "results.dat"), 'r') as res_file: results_data = csv.reader(res_file) next(results_data, None) # skip header for row in results_data: idx = int(row[0].strip()) fp_a = hex_to_ieee_fp(row[1]) fp_b = hex_to_ieee_fp(row[2]) result = str_to_bool(row[3]) if (fp_a >= fp_b) != result: test_successful = False print("index={}: {} >= {} = {} not correct!".format(idx, fp_a, fp_b, result)) result = str_to_bool(row[4]) if (fp_a >= fp_a) != result: test_successful = False print("index={}: {} >= {} = {} not correct!".format(idx, fp_a, fp_a, result)) return test_successful def check_ieee_fp_a_le_b(output_path): test_successful = True with open(os.path.join(output_path, "results.dat"), 'r') as res_file: results_data = csv.reader(res_file) next(results_data, None) # skip header for row in results_data: idx = int(row[0].strip()) fp_a = hex_to_ieee_fp(row[1]) fp_b = hex_to_ieee_fp(row[2]) result = str_to_bool(row[3]) if (fp_a <= fp_b) != result: test_successful = False print("index={}: {} <= {} = {} not correct!".format(idx, fp_a, fp_b, result)) result = str_to_bool(row[4]) if (fp_a <= fp_a) != result: test_successful = False print("index={}: {} <= {} = {} not correct!".format(idx, fp_a, fp_a, result)) return test_successful
# -*- mode: python; coding: utf-8 -*- # Copyright 2015 Peter Williams <[email protected]> and collaborators. # Licensed under the MIT License. """jupyter - extensions for the Jupyter/IPython project """ from __future__ import absolute_import, division, print_function, unicode_literals __all__ = str ('JupyterTool commandline').split () from ... import PKError, cli from ...io import Path from ...cli import multitool import logging, sys from notebook import notebookapp class BgNotebookApp (notebookapp.NotebookApp): def initialize (self, argv=None): self.port = 0 # => auto-choose port self.open_browser = False super (BgNotebookApp, self).initialize (argv) def _log_level_default (self): return logging.ERROR def init_webapp (self): super (BgNotebookApp, self).init_webapp () # Update fields to reflect the port that was actually chosen. sock = list (self.http_server._sockets.values ())[0] self.port = sock.getsockname ()[1] def get_server_cwd (): return Path ('~').expand (user=True) def get_server_info (): servercwd = get_server_cwd () for info in notebookapp.list_running_servers (): if Path (info['notebook_dir']) == servercwd: return info return None # Command-line interface class BgNotebookCommand (multitool.Command): name = 'bg-notebook' argspec = '' summary = 'Start a standardized notebook server in the background if needed.' help_if_no_args = False more_help = '''\ A new server will only be started if necessary. Regardless of whether a server was started or not, the only thing that will be printed is the base URL at which the server may be accessed. Unlike the standard setup, the port on which the server listens will probably not be 8888, because we ask the OS to determine it automatically. ''' def invoke (self, args, **kwargs): import os if len (args): raise multitool.UsageError ('mynotebook takes no arguments') # See if there's a running server that we can suggest. servercwd = get_server_cwd () for info in notebookapp.list_running_servers (): if Path (info['notebook_dir']) == servercwd: print (info['url']) return # OK, need to start a server info = cli.fork_detached_process () if info.whoami == 'original': url = info.pipe.readline ().strip () if not len (url): cli.die ('notebook server (PID %d) appears to have crashed', info.forkedpid) print (url.decode ('ascii')) else: # We're the child. Set up to run as a background daemon as much as # possible, then indicate to the parent that things look OK. NOTE: # notebook's `argv` should not include what's traditionally called # `argv[0]`. os.chdir (str (servercwd)) app = BgNotebookApp.instance () app.initialize (argv=[]) info.pipe.write (app.display_url.encode ('ascii')) info.pipe.write (b'\n') info.pipe.close () with open (os.devnull, 'rb') as devnull: os.dup2 (devnull.fileno (), 0) with open (os.devnull, 'wb') as devnull: for fd in 1, 2: os.dup2 (devnull.fileno (), fd) # Enter the main loop, never to leave again. app.start () class GetNotebookPidCommand (multitool.Command): name = 'get-notebook-pid' argspec = '' summary = 'Print the PID of the currently running notebook server, if any.' help_if_no_args = False more_help = '''\ If no server is currently running, a message is printed to standard error but nothing is printed to stdout. Furthermore the exit code in this case is 1.''' def invoke (self, args, **kwargs): if len (args): raise multitool.UsageError ('get-notebook-pid takes no arguments') info = get_server_info () if info is None: print ('(no notebook server is currently running)', file=sys.stderr) sys.exit (1) print (info['pid']) class KillNotebookCommand (multitool.Command): name = 'kill-notebook' argspec = '' summary = 'Kill the currently running notebook server, if any.' help_if_no_args = False more_help = '''\ If no server is currently running, a warning is printed to standard error, and the exit code is 1.''' def invoke (self, args, **kwargs): if len (args): raise multitool.UsageError ('kill-notebook takes no arguments') info = get_server_info () if info is None: print ('(no notebook server is currently running)', file=sys.stderr) sys.exit (1) # Not sure what Jupyter does when it gets SIGTERM, but to be safe let's # shut down everything from requests import request from notebook.utils import url_path_join as ujoin def command (verb, *paths): resp = request (verb, ujoin (info['url'], *paths)) resp.raise_for_status () return resp for sessinfo in command ('GET', 'api/sessions').json (): command ('DELETE', 'api/sessions', sessinfo['id']) for kerninfo in command ('GET', 'api/kernels').json (): command ('DELETE', 'api/kernels', kerninfo['id']) import os, signal os.kill (info['pid'], signal.SIGTERM) class JupyterTool (multitool.Multitool): cli_name = 'pkenvtool jupyter' summary = 'Helpers for the Jupyter environment.' def commandline (argv): from six import itervalues tool = JupyterTool () tool.populate (itervalues (globals ())) tool.commandline (argv)
from setuptools import setup from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='b4rpipe', packages=['b4rpipe'], version='0.1.3', license='MIT', install_requires=['numpy','scipy','astropy','matplotlib','netcdf4','python-casacore','tqdm','sklearn'], author='astroysmr', author_email='[email protected]', url='https://github.com/LMT-heterodyne-dev/b4rpipe', description='Pipeline reduction tools for B4R (2mm heterodyne reciver) on LMT 50m @Mexico', long_description=long_description, long_description_content_type='text/markdown', keywords='B4R LMT', classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], )
"""empty message Revision ID: 16b50a2c53b Revises: 4a7e5abdf57 Create Date: 2015-12-21 14:51:48.537902 """ # revision identifiers, used by Alembic. revision = '16b50a2c53b' down_revision = '4a7e5abdf57' from alembic import op import sqlalchemy as sa def upgrade(): connection = op.get_bind() ### commands auto generated by Alembic - please adjust! ### op.add_column('departments', sa.Column('short_name', sa.String(length=80), nullable=True)) op.create_unique_constraint("dept_short_name", 'departments', ['short_name']) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_constraint("dept_short_name", 'departments', type_='unique') op.drop_column('departments', 'short_name') ### end Alembic commands ###
class ArraySlicer: def __init__(self, array): self.array = array def slice_into(self, slices): if (slices < 0): raise ValueError("was asked for %d slices, expected a minimum of 0" % slices) if (slices == 0): return [] slice_base_size, remaining = divmod(len(self.array), slices) cursor = 0 output = [] for index in range(slices): slice_size = slice_base_size if (index < remaining): slice_size += 1 slice_start = cursor slice_end = slice_start + slice_size cursor = slice_end output.append(self.array[slice_start:slice_end]) return output
import time import sys import cv2 from helper import utilty as util class Timer(object): def __init__(self, name): self.name = name self.start = 0 def __enter__(self): self.start = time.time() def __exit__(self, *a, **kw): print('%s took %.3f seconds' % (self.name, time.time() - self.start)) def do_util(src, dest): with Timer('util: load'): inp = util.load_image(src) with Timer('util: resize'): resized = util.resize_image_by_pil(inp, 2) with Timer('util: extract Y'): only_y = util.convert_rgb_to_y(inp) only_y = util.convert_rgb_to_y(resized) # simulate upscale with Timer('util: rgb => YCbCr'): scaled_ycbcr_image = util.convert_rgb_to_ycbcr(resized) with Timer('util: Y + YCbCr -> rgb'): image = util.convert_y_and_cbcr_to_rgb(only_y, scaled_ycbcr_image[:, :, 1:3]) with Timer('util: save'): util.save_image(dest, image) def do_cv(src, dest): with Timer('cv2: load'): inp = cv2.imread(src) with Timer('cv2: resize'): resized = cv2.resize(inp, (inp.shape[1] * 2, inp.shape[0] * 2)) with Timer('cv2: extract Y'): ycbcr = cv2.cvtColor(inp, cv2.COLOR_RGB2YCR_CB) only_Cb, only_Cr, only_y = cv2.split(ycbcr) # simulate upscale ycbcr = cv2.cvtColor(resized, cv2.COLOR_RGB2YCR_CB) only_Cb, only_Cr, only_y = cv2.split(ycbcr) with Timer('cv2: rgb => YCbCr'): scaled_ycbcr_image = cv2.cvtColor(resized, cv2.COLOR_RGB2YCR_CB) with Timer('cv2: Y + YCbCr -> rgb'): new_Cb, new_Cr, new_y = cv2.split(scaled_ycbcr_image) image = cv2.merge((new_Cb, new_Cr, only_y )) image = cv2.cvtColor(image, cv2.COLOR_YCR_CB2RGB) with Timer('cv2: save'): cv2.imwrite(dest, image) if __name__ == '__main__': src = sys.argv[1:] if not src: sys.exit('Usage: %s test-image.png [test-image1.png]' % sys.argv[0]) for img in src: with Timer('util convert'): do_util(img, 'b_util.png') print('-' * 10) with Timer('cv2 convert'): do_cv(img, 'b_cv.png')
"""Intro to Python - Part 1 - Hands-On Exercise.""" import math import random # TODO: Write a print statement that displays both the type and value of `pi` pi = math.pi print ("El valor de pi es:", pi) #Method 1 printpi = ("El valor de pi es: {}".format(pi)) #Method 2 print (printpi) # TODO: Write a conditional to print out if `i` is less than or greater than 50 i = random.randint(0, 100) if i < 50: print (i,"is less than 50") elif i > 50: print (i,"is greather than 50") else: print (i,"is equal to 50") # TODO: Write a conditional that prints the color of the picked fruit picked_fruit = random.choice(['orange', 'lemon', 'banana']) if picked_fruit == 'orange': color = "orange" print ("Your fruit is an {} an its color is {}".format(picked_fruit,color)) elif picked_fruit == 'lemon': color = "green" print ("Your fruit is an {} an its color is {}".format(picked_fruit,color)) else: color = "yellow" print ("Your fruit is an {} an its color is {}".format(picked_fruit,color)) # TODO: Write a function that multiplies two numbers and returns the result # Define the function here. i = random.randint(0, 100) n = random.randint(0, 100) def multiplier (num1,num2): result = num1 * num2 return result print ("The ramdom multiplier result is:", multiplier (i,n)) # TODO: Now call the function a few times to calculate the following answers print("12 x 96 =",multiplier(12,96)) print("48 x 17 =",multiplier(48,17)) print("196523 x 87323 =",multiplier(196523,87323))
import os import os.path as osp import torch import numpy as np from torch.utils.tensorboard import SummaryWriter from skimage import io from tqdm import tqdm from core.trainer import Trainer from utils.data_utils.misc import ( to_array, to_pseudo_color, normalize_minmax, normalize_8bit, quantize_8bit as quantize, ) from utils.utils import build_schedulers, HookHelper, FeatureContainer from utils.metrics import (Meter, Precision, Recall, Accuracy, F1Score) class CDTrainer(Trainer): def __init__(self, settings): super().__init__(settings['model'], settings['dataset'], settings['criterion'], settings['optimizer'], settings) # Set up tensorboard self.tb_on = (hasattr(self.logger, 'log_path') or self.debug) and self.ctx['tb_on'] if self.tb_on: if hasattr(self.logger, 'log_path'): tb_dir = self.path( 'log', osp.join('tb', osp.splitext(osp.basename(self.logger.log_path))[0], '.'), name='tb', auto_make=True, suffix=False ) else: tb_dir = self.path( 'log', osp.join('tb', 'debug', '.'), name='tb', auto_make=True, suffix=False ) for root, dirs, files in os.walk(self.gpc.get_dir('tb'), False): for f in files: os.remove(osp.join(root, f)) for d in dirs: os.rmdir(osp.join(root, d)) self.tb_writer = SummaryWriter(tb_dir) self.logger.show_nl("TensorBoard logdir: {}\n".format(osp.abspath(self.gpc.get_dir('tb')))) self.tb_intvl = self.ctx['tb_intvl'] # Global steps self.train_step = 0 self.eval_step = 0 # Whether to save network output self.out_dir = self.ctx['out_dir'] self.save = self.ctx['save_on'] and not self.debug # Build lr schedulers self.sched_on = self.ctx['sched_on'] and self.is_training if self.sched_on: self.schedulers = build_schedulers(self.ctx['schedulers'], self.optimizer) self._init_trainer() def init_learning_rate(self): if not self.sched_on: return super().init_learning_rate() else: for idx, sched in enumerate(self.schedulers): if self.start_epoch > 0: if isinstance(sched, torch.optim.lr_scheduler.ReduceLROnPlateau): self.logger.warn("The old state of lr scheduler {} will not be restored.".format(idx)) continue # Restore previous state # FIXME: This will trigger pytorch warning "Detected call of `lr_scheduler.step()` # before `optimizer.step()`" in pytorch 1.1.0 and later. # Perhaps I should store the state of scheduler to a checkpoint file and restore it from disk. last_epoch = self.start_epoch while sched.last_epoch < last_epoch: sched.step() return self.optimizer.param_groups[0]['lr'] def adjust_learning_rate(self, epoch, acc): if not self.sched_on: return super().adjust_learning_rate(epoch, acc) else: for sched in self.schedulers: if isinstance(sched, torch.optim.lr_scheduler.ReduceLROnPlateau): sched.step(acc) else: sched.step() return self.optimizer.param_groups[0]['lr'] def train_epoch(self, epoch): losses = Meter() len_train = len(self.train_loader) width = len(str(len_train)) start_pattern = "[{{:>{0}}}/{{:>{0}}}]".format(width) pb = tqdm(self.train_loader) self.model.train() for i, (t1, t2, tar) in enumerate(pb): t1, t2, tar = self._prepare_data(t1, t2, tar) show_imgs_on_tb = self.tb_on and (i%self.tb_intvl == 0) fetch_dict = self._set_fetch_dict() out_dict = FeatureContainer() with HookHelper(self.model, fetch_dict, out_dict, hook_type='forward_out'): out = self.model(t1, t2) pred = self._process_model_out(out) loss = self.criterion(pred, tar) losses.update(loss.item(), n=self.batch_size) self.optimizer.zero_grad() loss.backward() self.optimizer.step() desc = (start_pattern+" Loss: {:.4f} ({:.4f})").format(i+1, len_train, losses.val, losses.avg) pb.set_description(desc) if i % max(1, len_train//10) == 0: self.logger.dump(desc) if self.tb_on: # Write to tensorboard self.tb_writer.add_scalar("Train/running_loss", losses.val, self.train_step) if show_imgs_on_tb: t1 = self._denorm_image(to_array(t1.data[0])) t2 = self._denorm_image(to_array(t2.data[0])) self.tb_writer.add_image("Train/t1_picked", normalize_8bit(t1), self.train_step, dataformats='HWC') self.tb_writer.add_image("Train/t2_picked", normalize_8bit(t2), self.train_step, dataformats='HWC') self.tb_writer.add_image("Train/labels_picked", to_array(tar[0]), self.train_step, dataformats='HW') for key, feats in out_dict.items(): for idx, feat in enumerate(feats): feat = self._process_fetched_feat(feat) self.tb_writer.add_image(f"Train/{key}_{idx}", feat, self.train_step) self.tb_writer.flush() self.train_step += 1 if self.tb_on: self.tb_writer.add_scalar("Train/loss", losses.avg, self.train_step) self.tb_writer.add_scalar("Train/lr", self.lr, self.train_step) def evaluate_epoch(self, epoch): self.logger.show_nl("Epoch: [{0}]".format(epoch)) losses = Meter() len_eval = len(self.eval_loader) width = len(str(len_eval)) start_pattern = "[{{:>{0}}}/{{:>{0}}}]".format(width) pb = tqdm(self.eval_loader) # Construct metrics metrics = (Precision(mode='accum'), Recall(mode='accum'), F1Score(mode='accum'), Accuracy(mode='accum')) self.model.eval() with torch.no_grad(): for i, (name, t1, t2, tar) in enumerate(pb): t1, t2, tar = self._prepare_data(t1, t2, tar) fetch_dict = self._set_fetch_dict() out_dict = FeatureContainer() with HookHelper(self.model, fetch_dict, out_dict, hook_type='forward_out'): out = self.model(t1, t2) pred = self._process_model_out(out) loss = self.criterion(pred, tar) losses.update(loss.item()) # Convert to numpy arrays prob = self._pred_to_prob(pred) prob = to_array(prob[0]) cm = (prob>0.5).astype('uint8') tar = to_array(tar[0]).astype('uint8') for m in metrics: m.update(cm, tar) desc = (start_pattern+" Loss: {:.4f} ({:.4f})").format(i+1, len_eval, losses.val, losses.avg) for m in metrics: desc += " {} {:.4f}".format(m.__name__, m.val) pb.set_description(desc) dump = not self.is_training or (i % max(1, len_eval//10) == 0) if dump: self.logger.dump(desc) if self.tb_on: if dump: t1 = self._denorm_image(to_array(t1[0])) t2 = self._denorm_image(to_array(t2[0])) self.tb_writer.add_image("Eval/t1", normalize_8bit(t1), self.eval_step, dataformats='HWC') self.tb_writer.add_image("Eval/t2", normalize_8bit(t2), self.eval_step, dataformats='HWC') self.tb_writer.add_image("Eval/labels", quantize(tar), self.eval_step, dataformats='HW') self.tb_writer.add_image("Eval/prob", to_pseudo_color(quantize(prob)), self.eval_step, dataformats='HWC') self.tb_writer.add_image("Eval/cm", quantize(cm), self.eval_step, dataformats='HW') for key, feats in out_dict.items(): for idx, feat in enumerate(feats): feat = self._process_fetched_feat(feat) self.tb_writer.add_image(f"Train/{key}_{idx}", feat, self.eval_step) self.eval_step += 1 if self.save: self.save_image(name[0], quantize(cm), epoch) if self.tb_on: self.tb_writer.add_scalar("Eval/loss", losses.avg, self.eval_step) for m in metrics: self.tb_writer.add_scalar(f"Eval/{m.__name__.lower()}", m.val, self.eval_step) self.tb_writer.flush() return metrics[2].val # F1-score def save_image(self, file_name, image, epoch): file_path = osp.join( 'epoch_{}'.format(epoch), self.out_dir, file_name ) out_path = self.path( 'out', file_path, suffix=not self.ctx['suffix_off'], auto_make=True, underline=True ) return io.imsave(out_path, image) def _denorm_image(self, x): return x*np.asarray(self.ctx['sigma']) + np.asarray(self.ctx['mu']) def _process_fetched_feat(self, feat): feat = normalize_minmax(feat.mean(1)) feat = quantize(to_array(feat[0])) feat = to_pseudo_color(feat) return feat def _init_trainer(self): pass def _prepare_data(self, t1, t2, tar): return t1.to(self.device), t2.to(self.device), tar.to(self.device) def _set_fetch_dict(self): return dict() def _process_model_out(self, out): return out def _pred_to_prob(self, pred): return torch.nn.functional.sigmoid(pred)
# Generated by Django 3.0.1 on 2020-02-18 02:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('page', '0007_auto_20200218_1030'), ] operations = [ migrations.AlterField( model_name='post', name='cat', field=models.CharField(blank=True, default='', max_length=200, verbose_name='網站類型'), ), ]
from django.apps import AppConfig class PluginAppConfig(AppConfig): name = "metagov.plugins.twitter" label = "metagov_twitter"
from pynet.models.densenet import DenseNet, F from torch import nn import torch, re, logging from typing import List, Dict class FusionDenseNet(DenseNet): def __init__(self, modalities: List[str], fusion_scheme: str="late", agg_scheme: str="concat", device="cpu", *args, **kwargs): """ :param modalities List of modality's name to fuse :param fusion_scheme, str default None If set, the network can perform modality fusion in either early-, mid- or late- fusion. :param agg_scheme: str, default None The aggregation scheme bewteen n intermediate layers (for n modalities) :param device: str CPU or CUDA device :param args, kwargs: arguments defining DenseNet backbone for all modalities """ super(DenseNet, self).__init__() # init torch Module assert agg_scheme in ["cat", "concat", "avg", "max"] # NB: cat == concat assert device in ["cpu", "cuda"] self.fusion_scheme = fusion_scheme self.agg_scheme = agg_scheme self.modalities = modalities self.device = device self.logger = logging.getLogger("pynet") nb_mod = len(modalities) if fusion_scheme == "early": # simple: we only need to redefine the # input channels in_channels = kwargs.pop("in_channels", 1) * nb_mod super().__init__(*args, in_channels=in_channels, **kwargs) else: self.nets = [] out_block = kwargs.pop("out_block", None) for i in range(nb_mod): if fusion_scheme == "late": # simplest case where we only aggregate network's output assert agg_scheme != "concat", "No concatenation implemented for late-fusion" net = DenseNet(*args, **kwargs) self.logger.warning("Softmax is applied for late-fusion with DenseNet !") if net.num_classes == 1: if agg_scheme == "max": raise RuntimeError("Number of classes must be >= 2") net.classifier = nn.Sequential(net.classifier, nn.Sigmoid()) else: net.classifier = nn.Sequential(net.classifier, nn.Softmax(dim=-1)) elif fusion_scheme[:3] == "mid": # trickier, it needs to define only the network until a certain block try: block = int(re.search("mid-([1-4])$", fusion_scheme)[1]) except TypeError: raise ValueError("Block must be between 1 and 4. Got %s"%fusion_scheme) net = DenseNet(*args, out_block="block%i"%block, **kwargs) else: raise ValueError("Unknown fusion scheme: %s"%fusion_scheme) self.nets.append(net) self.nets = nn.ModuleList(self.nets) if fusion_scheme[:3] == "mid": # Starts by defining the entire network self.head = DenseNet(*args, out_block=out_block, **kwargs) # Removes the first blocks base_modules = [name for (name, _) in self.nets[0].features.named_children()] filtered_modules = [m for (name, m) in self.head.features.named_children() if name not in base_modules] # Small hack: add a conv layer to reduce the nb of feature maps if self.agg_scheme in ["concat", "cat"]: filtered_modules = [nn.Conv3d(nb_mod*self.nets[0].num_features, self.nets[0].num_features, kernel_size=1)] + filtered_modules self.head.features = nn.Sequential(*filtered_modules) def aggregate(self, x: List[torch.Tensor]): if self.agg_scheme == "avg": return torch.mean(torch.stack(x, dim=1), dim=1) elif self.agg_scheme == "max": if self.fusion_scheme == "late": # pick the distribution with max probability raise NotImplementedError("To be continued") # x = torch.stack(x, dim=1) # size n_batch x n_mod x n_classes # assert len(x.shape) == 3, "Wrong output shape {}".format(x.shape) # max_distrib, _ = torch.max(x, dim=-1) # _, argmax = torch.max(max_distrib, dim=1) # return x[:, argmax] else: return torch.max(torch.stack(x, dim=1), dim=1)[0] elif self.agg_scheme in ["concat", "cat"]: return torch.cat(x, dim=1) raise ValueError("Unknown aggregation scheme: %s"%self.agg_scheme) def forward(self, x: Dict[str, List[torch.Tensor]]): assert set(x.keys()) == set(self.modalities) x = [torch.stack(x[mod], dim=0).to(self.device) for mod in self.modalities] if self.fusion_scheme == "early": ## Fuses the inputs as several channels return super().forward(torch.cat(x, dim=1)) if self.fusion_scheme == "late": ## Fuses the output prediction of each sub-network out = self.aggregate([self.nets[i](x_) for (i, x_) in enumerate(x)]) return out if self.fusion_scheme[:3] == "mid": ## Fuses the intermediate feature maps of each sub-network. ## Gives the aggregated features maps to the head. out = self.aggregate([self.nets[i].features(x_) for (i, x_) in enumerate(x)]) out = self.head(out) return out class MultiModalDenseNet(nn.Module): def __init__(self, modalities: List[str], *args, device: str='cuda', concatenate_out_mod: bool=False, **kwargs): """ :param modalities: listing all the modality names. It also defines the total # modalities. :param concatenate_out_mod: bool, default False whether we concatenate the ouput or not :param args, kwargs: parameters to give to all DenseNet """ super(MultiModalDenseNet, self).__init__() self.modalities = modalities self.device = device self.concatenate_out_mod = concatenate_out_mod # No fusion, defines only individual network for mod in self.modalities: setattr(self, "densenet_" + mod, DenseNet(*args, **kwargs)) def forward(self, x: [Dict[str, torch.Tensor], torch.Tensor], mod: str=None): """ :param x: input images :param mod: str, modality used if no fusion scheme set :return: torch.Tensor """ if mod is None: out = [] if self.concatenate_out_mod: for mod in self.modalities: net = getattr(self, "densenet_"+mod) out.append(net(torch.stack(x[mod]).to(self.device)).view(len(x[mod]), -1)) return torch.cat(out, dim=1) else: assert len(self.modalities) == 1, "The modality needs to be specify" net = getattr(self, "densenet_"+self.modalities[0]) else: assert mod in self.modalities, "Unknown modality: %s"%mod net = getattr(self, "densenet_"+mod) return net(x) def multimodal_densenet121(modalities, device='cpu', **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ """ return MultiModalDenseNet(modalities, 32, (6, 12, 24, 16), 64, device=device, **kwargs) def fusion_densenet121(mods, fusion_scheme: str="late", agg_scheme: str="concat", device="cpu", **kwargs): return FusionDenseNet(mods, fusion_scheme, agg_scheme, device, 32, (6, 12, 24, 16), 64, **kwargs)
from torch.utils.tensorboard import SummaryWriter from base_config import BaseConfigByEpoch from model_map import get_model_fn from data.data_factory import create_dataset, load_cuda_data, num_iters_per_epoch from torch.nn.modules.loss import CrossEntropyLoss from utils.engine import Engine from utils.pyt_utils import ensure_dir from utils.misc import torch_accuracy, AvgMeter from collections import OrderedDict import torch from tqdm import tqdm import time from builder import ConvBuilder from utils.lr_scheduler import get_lr_scheduler import os from utils.checkpoint import get_last_checkpoint from ndp_test import val_during_train from sklearn.cluster import KMeans import numpy as np from csgd.csgd_prune import csgd_prune_and_save TRAIN_SPEED_START = 0.1 TRAIN_SPEED_END = 0.2 COLLECT_TRAIN_LOSS_EPOCHS = 3 TEST_BATCH_SIZE = 100 KERNEL_KEYWORD = 'conv.weight' def add_vecs_to_merge_mat_dicts(param_name_to_merge_matrix): kernel_names = set(param_name_to_merge_matrix.keys()) for name in kernel_names: bias_name = name.replace(KERNEL_KEYWORD, 'conv.bias') gamma_name = name.replace(KERNEL_KEYWORD, 'bn.weight') beta_name = name.replace(KERNEL_KEYWORD, 'bn.bias') param_name_to_merge_matrix[bias_name] = param_name_to_merge_matrix[name] param_name_to_merge_matrix[gamma_name] = param_name_to_merge_matrix[name] param_name_to_merge_matrix[beta_name] = param_name_to_merge_matrix[name] def generate_merge_matrix_for_kernel(deps, layer_idx_to_clusters, kernel_namedvalue_list): result = {} for layer_idx, clusters in layer_idx_to_clusters.items(): # 每层的通道数目 num_filters = deps[layer_idx] # 构建 num_filters * num_filters 0的矩阵 merge_trans_mat = np.zeros((num_filters, num_filters), dtype=np.float32) # 距离 clusters, 16 聚类 4 的结果 [[1, 10, 11, 12, 14], [3, 6], [0, 4, 7, 8, 9, 13], [2, 5, 15]] for clst in clusters: # 此时 clst 分别是 [1, 10, 11, 12, 14], [3, 6], [0, 4, 7, 8, 9, 13], [2, 5, 15] if len(clst) == 1: merge_trans_mat[clst[0], clst[0]] = 1 continue sc = sorted(clst) # Ideally, clst should have already been sorted in ascending order for ei in sc: for ej in sc: merge_trans_mat[ei, ej] = 1 / len(clst) result[kernel_namedvalue_list[layer_idx].name] = torch.from_numpy(merge_trans_mat).cuda() # 这样每层都能得到一个 聚类后id 的 matrix # 这个 matrix 是为了加快计算用的 return result # Recently it is popular to cancel weight decay on vecs def generate_decay_matrix_for_kernel_and_vecs(deps, layer_idx_to_clusters, kernel_namedvalue_list, weight_decay, weight_decay_bias, centri_strength): result = {} # for the kernel for layer_idx, clusters in layer_idx_to_clusters.items(): num_filters = deps[layer_idx] decay_trans_mat = np.zeros((num_filters, num_filters), dtype=np.float32) for clst in clusters: sc = sorted(clst) for ee in sc: decay_trans_mat[ee, ee] = weight_decay + centri_strength for p in sc: decay_trans_mat[ee, p] += -centri_strength / len(clst) kernel_mat = torch.from_numpy(decay_trans_mat).cuda() result[kernel_namedvalue_list[layer_idx].name] = kernel_mat # for the vec params (bias, beta and gamma), we use 0.1 * centripetal strength for layer_idx, clusters in layer_idx_to_clusters.items(): num_filters = deps[layer_idx] decay_trans_mat = np.zeros((num_filters, num_filters), dtype=np.float32) for clst in clusters: sc = sorted(clst) for ee in sc: # Note: using smaller centripetal strength on the scaling factor of BN improve the performance in some of the cases decay_trans_mat[ee, ee] = weight_decay_bias + centri_strength * 0.1 for p in sc: decay_trans_mat[ee, p] += -centri_strength * 0.1 / len(clst) vec_mat = torch.from_numpy(decay_trans_mat).cuda() result[kernel_namedvalue_list[layer_idx].name.replace(KERNEL_KEYWORD, 'bn.weight')] = vec_mat result[kernel_namedvalue_list[layer_idx].name.replace(KERNEL_KEYWORD, 'bn.bias')] = vec_mat result[kernel_namedvalue_list[layer_idx].name.replace(KERNEL_KEYWORD, 'conv.bias')] = vec_mat return result def cluster_by_kmeans(kernel_value, num_cluster): # 举例16 聚 4 的结果:result = [[1, 10, 11, 12, 14], [3, 6], [0, 4, 7, 8, 9, 13], [2, 5, 15]] assert kernel_value.ndim == 4 # n,c,h,w x = np.reshape(kernel_value, (kernel_value.shape[0], -1)) # n, c*h*w if num_cluster == x.shape[0]: # if num_cluster == n, result = [0, 1, ..., n] result = [[i] for i in range(num_cluster)] return result else: print('cluster {} filters into {} clusters'.format(x.shape[0], num_cluster)) km = KMeans(n_clusters=num_cluster) # use sklearn.cluster.KMeans to cluster kernel_value km.fit(x) result = [] # record result for j in range(num_cluster): result.append([]) for i, c in enumerate(km.labels_): result[c].append(i) for r in result: assert len(r) > 0 return result def _is_follower(layer_idx, pacesetter_dict): followers_and_pacesetters = set(pacesetter_dict.keys()) return (layer_idx in followers_and_pacesetters) and (pacesetter_dict[layer_idx] != layer_idx) def get_layer_idx_to_clusters(kernel_namedvalue_list, target_deps, pacesetter_dict): # 返回的是一个字典,每个 key 对应的 value 的值是一个长度等于当前层长度的聚类结果。[[1, 10, 11, 12, 14], [3, 6], [0, 4, 7, 8, 9, 13], [2, 5, 15]] result = {} for layer_idx, named_kv in enumerate(kernel_namedvalue_list): num_filters = named_kv.value.shape[0] if pacesetter_dict is not None and _is_follower(layer_idx, pacesetter_dict): continue if num_filters > target_deps[layer_idx]: result[layer_idx] = cluster_by_kmeans(kernel_value=named_kv.value, num_cluster=target_deps[layer_idx]) elif num_filters < target_deps[layer_idx]: raise ValueError('wrong target dep') return result def train_one_step(net, data, label, optimizer, criterion, param_name_to_merge_matrix, param_name_to_decay_matrix): pred = net(data) loss = criterion(pred, label) loss.backward() # 上面是正常的计算 loss, 和反向传播 #TODO note: C-SGD works here for name, param in net.named_parameters(): name = name.replace('module.', '') if name in param_name_to_merge_matrix: p_dim = param.dim() p_size = param.size() if p_dim == 4: param_mat = param.reshape(p_size[0], -1) g_mat = param.grad.reshape(p_size[0], -1) elif p_dim == 1: param_mat = param.reshape(p_size[0], 1) g_mat = param.grad.reshape(p_size[0], 1) else: assert p_dim == 2 param_mat = param g_mat = param.grad # 上面是获取当前的梯度,reshape 成 g_mat # 下面是将 g_mat 按照文章中的公式,进行矩阵相乘和相加。 csgd_gradient = param_name_to_merge_matrix[name].matmul(g_mat) + param_name_to_decay_matrix[name].matmul(param_mat) # 将计算的结果更新到参数梯度中。 param.grad.copy_(csgd_gradient.reshape(p_size)) optimizer.step() optimizer.zero_grad() acc, acc5 = torch_accuracy(pred, label, (1,5)) return acc, acc5, loss def sgd_optimizer(engine, cfg, model, no_l2_keywords, use_nesterov, keyword_to_lr_mult): params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue lr = cfg.base_lr weight_decay = cfg.weight_decay if "bias" in key or "bn" in key or "BN" in key: # lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR weight_decay = cfg.weight_decay_bias engine.echo('set weight_decay_bias={} for {}'.format(weight_decay, key)) for kw in no_l2_keywords: if kw in key: weight_decay = 0 engine.echo('NOTICE! weight decay = 0 for {} because {} in {}'.format(key, kw, key)) break if 'bias' in key: apply_lr = 2 * lr else: apply_lr = lr if keyword_to_lr_mult is not None: for keyword, mult in keyword_to_lr_mult.items(): if keyword in key: apply_lr *= mult engine.echo('multiply lr of {} by {}'.format(key, mult)) break params += [{"params": [value], "lr": apply_lr, "weight_decay": weight_decay}] # optimizer = torch.optim.Adam(params, lr) optimizer = torch.optim.SGD(params, lr, momentum=cfg.momentum, nesterov=use_nesterov) return optimizer def get_optimizer(engine, cfg, model, no_l2_keywords, use_nesterov=False, keyword_to_lr_mult=None): return sgd_optimizer(engine, cfg, model, no_l2_keywords, use_nesterov=use_nesterov, keyword_to_lr_mult=keyword_to_lr_mult) def get_criterion(cfg): return CrossEntropyLoss() # csgd 训练核心代码 def csgd_train_main( local_rank, cfg:BaseConfigByEpoch, target_deps, succeeding_strategy, pacesetter_dict, centri_strength, pruned_weights, net=None, train_dataloader=None, val_dataloader=None, show_variables=False, convbuilder=None, init_hdf5=None, no_l2_keywords='depth', use_nesterov=False, load_weights_keyword=None, keyword_to_lr_mult=None, auto_continue=False, save_hdf5_epochs=10000): ensure_dir(cfg.output_dir) ensure_dir(cfg.tb_dir) clusters_save_path = os.path.join(cfg.output_dir, 'clusters.npy') with Engine(local_rank=local_rank) as engine: engine.setup_log( name='train', log_dir=cfg.output_dir, file_name='log.txt') # ----------------------------- build model ------------------------------ if convbuilder is None: convbuilder = ConvBuilder(base_config=cfg) if net is None: net_fn = get_model_fn(cfg.dataset_name, cfg.network_type) model = net_fn(cfg, convbuilder) else: model = net model = model.cuda() # ----------------------------- model done ------------------------------ # ---------------------------- prepare data ------------------------- if train_dataloader is None: train_data = create_dataset(cfg.dataset_name, cfg.dataset_subset, cfg.global_batch_size, distributed=engine.distributed) if cfg.val_epoch_period > 0 and val_dataloader is None: val_data = create_dataset(cfg.dataset_name, 'val', global_batch_size=100, distributed=False) engine.echo('NOTE: Data prepared') engine.echo('NOTE: We have global_batch_size={} on {} GPUs, the allocated GPU memory is {}'.format(cfg.global_batch_size, torch.cuda.device_count(), torch.cuda.memory_allocated())) # ----------------------------- data done -------------------------------- # ------------------------ parepare optimizer, scheduler, criterion ------- if no_l2_keywords is None: no_l2_keywords = [] if type(no_l2_keywords) is not list: no_l2_keywords = [no_l2_keywords] # For a target parameter, cancel its weight decay in optimizer, because the weight decay will be later encoded in the decay mat conv_idx = 0 for k, v in model.named_parameters(): if v.dim() != 4: continue print('prune {} from {} to {}'.format(conv_idx, target_deps[conv_idx], cfg.deps[conv_idx])) if target_deps[conv_idx] < cfg.deps[conv_idx]: no_l2_keywords.append(k.replace(KERNEL_KEYWORD, 'conv')) no_l2_keywords.append(k.replace(KERNEL_KEYWORD, 'bn')) conv_idx += 1 print('no l2: ', no_l2_keywords) optimizer = get_optimizer(engine, cfg, model, no_l2_keywords=no_l2_keywords, use_nesterov=use_nesterov, keyword_to_lr_mult=keyword_to_lr_mult) scheduler = get_lr_scheduler(cfg, optimizer) criterion = get_criterion(cfg).cuda() # --------------------------------- done ------------------------------- engine.register_state( scheduler=scheduler, model=model, optimizer=optimizer) if engine.distributed: torch.cuda.set_device(local_rank) engine.echo('Distributed training, device {}'.format(local_rank)) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], broadcast_buffers=False, ) else: assert torch.cuda.device_count() == 1 engine.echo('Single GPU training') if cfg.init_weights: engine.load_checkpoint(cfg.init_weights) if init_hdf5: engine.load_hdf5(init_hdf5, load_weights_keyword=load_weights_keyword) if auto_continue: assert cfg.init_weights is None engine.load_checkpoint(get_last_checkpoint(cfg.output_dir)) if show_variables: engine.show_variables() # ===================================== prepare the clusters and matrices for C-SGD ========== kernel_namedvalue_list = engine.get_all_conv_kernel_namedvalue_as_list() if os.path.exists(clusters_save_path): layer_idx_to_clusters = np.load(clusters_save_path, allow_pickle=True).item() else: if local_rank == 0: # 获取聚类的 idx 结果 # # 返回的是一个字典,每个 key 是层id, 对应的 value 的值是一个长度等于当前层长度的聚类结果。[[1, 10, 11, 12, 14], [3, 6], [0, 4, 7, 8, 9, 13], [2, 5, 15]] layer_idx_to_clusters = get_layer_idx_to_clusters(kernel_namedvalue_list=kernel_namedvalue_list, target_deps=target_deps, pacesetter_dict=pacesetter_dict) # pacesetter_dict 是残差结构的连接层之间的关系。 if pacesetter_dict is not None: for follower_idx, pacesetter_idx in pacesetter_dict.items(): # 这里将残差的最后一层的剪枝方案直接等同于直连的剪枝方案 if pacesetter_idx in layer_idx_to_clusters: layer_idx_to_clusters[follower_idx] = layer_idx_to_clusters[pacesetter_idx] # 保存聚类的 idx 结果 np.save(clusters_save_path, layer_idx_to_clusters) else: while not os.path.exists(clusters_save_path): time.sleep(10) print('sleep, waiting for process 0 to calculate clusters') layer_idx_to_clusters = np.load(clusters_save_path, allow_pickle=True).item() param_name_to_merge_matrix = generate_merge_matrix_for_kernel(deps=cfg.deps, layer_idx_to_clusters=layer_idx_to_clusters, kernel_namedvalue_list=kernel_namedvalue_list) # 这块的功能似乎是要添加每层对于的 bias\gamma\beta 进入这个 param_name_to_merge_matrix add_vecs_to_merge_mat_dicts(param_name_to_merge_matrix) # core code 聚类结果的梯度计算,作为新的 weight decay param_name_to_decay_matrix = generate_decay_matrix_for_kernel_and_vecs(deps=cfg.deps, layer_idx_to_clusters=layer_idx_to_clusters, kernel_namedvalue_list=kernel_namedvalue_list, weight_decay=cfg.weight_decay, weight_decay_bias=cfg.weight_decay_bias, centri_strength=centri_strength) print(param_name_to_decay_matrix.keys()) print(param_name_to_merge_matrix.keys()) conv_idx = 0 param_to_clusters = {} # 通过 layer_idx_to_clusters 获得 param_to_clusters for k, v in model.named_parameters(): if v.dim() != 4: continue if conv_idx in layer_idx_to_clusters: for clsts in layer_idx_to_clusters[conv_idx]: if len(clsts) > 1: param_to_clusters[v] = layer_idx_to_clusters[conv_idx] break conv_idx += 1 # ============================================================================================ # ------------ do training ---------------------------- # engine.log("\n\nStart training with pytorch version {}".format(torch.__version__)) iteration = engine.state.iteration iters_per_epoch = num_iters_per_epoch(cfg) max_iters = iters_per_epoch * cfg.max_epochs tb_writer = SummaryWriter(cfg.tb_dir) tb_tags = ['Top1-Acc', 'Top5-Acc', 'Loss'] model.train() done_epochs = iteration // iters_per_epoch last_epoch_done_iters = iteration % iters_per_epoch if done_epochs == 0 and last_epoch_done_iters == 0: engine.save_hdf5(os.path.join(cfg.output_dir, 'init.hdf5')) recorded_train_time = 0 recorded_train_examples = 0 collected_train_loss_sum = 0 collected_train_loss_count = 0 for epoch in range(done_epochs, cfg.max_epochs): if engine.distributed and hasattr(train_data, 'train_sampler'): train_data.train_sampler.set_epoch(epoch) if epoch == done_epochs: pbar = tqdm(range(iters_per_epoch - last_epoch_done_iters)) else: pbar = tqdm(range(iters_per_epoch)) if epoch == 0 and local_rank == 0: val_during_train(epoch=epoch, iteration=iteration, tb_tags=tb_tags, engine=engine, model=model, val_data=val_data, criterion=criterion, descrip_str='Init', dataset_name=cfg.dataset_name, test_batch_size=TEST_BATCH_SIZE, tb_writer=tb_writer) top1 = AvgMeter() top5 = AvgMeter() losses = AvgMeter() discrip_str = 'Epoch-{}/{}'.format(epoch, cfg.max_epochs) pbar.set_description('Train' + discrip_str) for _ in pbar: start_time = time.time() data, label = load_cuda_data(train_data, dataset_name=cfg.dataset_name) # load_cuda_data(train_dataloader, cfg.dataset_name) data_time = time.time() - start_time train_net_time_start = time.time() acc, acc5, loss = train_one_step(model, data, label, optimizer, criterion, param_name_to_merge_matrix=param_name_to_merge_matrix, param_name_to_decay_matrix=param_name_to_decay_matrix) train_net_time_end = time.time() if iteration > TRAIN_SPEED_START * max_iters and iteration < TRAIN_SPEED_END * max_iters: recorded_train_examples += cfg.global_batch_size recorded_train_time += train_net_time_end - train_net_time_start scheduler.step() for module in model.modules(): if hasattr(module, 'set_cur_iter'): module.set_cur_iter(iteration) if iteration % cfg.tb_iter_period == 0 and engine.world_rank == 0: for tag, value in zip(tb_tags, [acc.item(), acc5.item(), loss.item()]): tb_writer.add_scalars(tag, {'Train': value}, iteration) deviation_sum = 0 for param, clusters in param_to_clusters.items(): pvalue = param.detach().cpu().numpy() for cl in clusters: if len(cl) == 1: continue selected = pvalue[cl, :, :, :] mean_kernel = np.mean(selected, axis=0, keepdims=True) diff = selected - mean_kernel deviation_sum += np.sum(diff ** 2) tb_writer.add_scalars('deviation_sum', {'Train': deviation_sum}, iteration) top1.update(acc.item()) top5.update(acc5.item()) losses.update(loss.item()) if epoch >= cfg.max_epochs - COLLECT_TRAIN_LOSS_EPOCHS: collected_train_loss_sum += loss.item() collected_train_loss_count += 1 pbar_dic = OrderedDict() pbar_dic['data-time'] = '{:.2f}'.format(data_time) pbar_dic['cur_iter'] = iteration pbar_dic['lr'] = scheduler.get_lr()[0] pbar_dic['top1'] = '{:.5f}'.format(top1.mean) pbar_dic['top5'] = '{:.5f}'.format(top5.mean) pbar_dic['loss'] = '{:.5f}'.format(losses.mean) pbar.set_postfix(pbar_dic) iteration += 1 if iteration >= max_iters or iteration % cfg.ckpt_iter_period == 0: engine.update_iteration(iteration) if (not engine.distributed) or (engine.distributed and engine.world_rank == 0): engine.save_and_link_checkpoint(cfg.output_dir) if iteration >= max_iters: break # do something after an epoch? engine.update_iteration(iteration) engine.save_latest_ckpt(cfg.output_dir) if (epoch + 1) % save_hdf5_epochs == 0: engine.save_hdf5(os.path.join(cfg.output_dir, 'epoch-{}.hdf5'.format(epoch))) if local_rank == 0 and \ cfg.val_epoch_period > 0 and (epoch >= cfg.max_epochs - 10 or epoch % cfg.val_epoch_period == 0): val_during_train(epoch=epoch, iteration=iteration, tb_tags=tb_tags, engine=engine, model=model, val_data=val_data, criterion=criterion, descrip_str=discrip_str, dataset_name=cfg.dataset_name, test_batch_size=TEST_BATCH_SIZE, tb_writer=tb_writer) if iteration >= max_iters: break # do something after the training if recorded_train_time > 0: exp_per_sec = recorded_train_examples / recorded_train_time else: exp_per_sec = 0 engine.log( 'TRAIN speed: from {} to {} iterations, batch_size={}, examples={}, total_net_time={:.4f}, examples/sec={}' .format(int(TRAIN_SPEED_START * max_iters), int(TRAIN_SPEED_END * max_iters), cfg.global_batch_size, recorded_train_examples, recorded_train_time, exp_per_sec)) if cfg.save_weights: engine.save_checkpoint(cfg.save_weights) print('NOTE: training finished, saved to {}'.format(cfg.save_weights)) engine.save_hdf5(os.path.join(cfg.output_dir, 'finish.hdf5')) if collected_train_loss_count > 0: engine.log('TRAIN LOSS collected over last {} epochs: {:.6f}'.format(COLLECT_TRAIN_LOSS_EPOCHS, collected_train_loss_sum / collected_train_loss_count)) if local_rank == 0: csgd_prune_and_save(engine=engine, layer_idx_to_clusters=layer_idx_to_clusters, save_file=pruned_weights, succeeding_strategy=succeeding_strategy, new_deps=target_deps)
import numpy as np import math import skimage class PreprocessImage(): def __init__(self, config): """config: COCO style configuration object for the Mask RCNN. """ self._config = config def compose_image_meta(self, image_id, original_image_shape, image_shape, window, scale, active_class_ids): """Returns input image metadata """ meta = np.array( [image_id] + list(original_image_shape) + list(image_shape) + list(window) + [scale] + list(active_class_ids) ) return meta def mold_image(self, images): """Substracts mean pixel from the image and casts dtype to float32. """ return images.astype(np.float32) - self._config.MEAN_PIXEL def compute_backbone_shapes(self, image_shape): """Computes Mask RCNN backbone shapes """ if callable(self._config.BACKBONE): return self._config.COMPUTE_BACKBONE_SHAPE(image_shape) assert self._config.BACKBONE in ["resnet50", "resnet101"] return np.array( [[int(math.ceil(image_shape[0] / stride)), int(math.ceil(image_shape[1] / stride))] for stride in self._config.BACKBONE_STRIDES]) def generate_anchors(self, scales, ratios, shape, feature_stride, anchor_stride): """ scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128] ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2] shape: [height, width] spatial shape of the feature map over which to generate anchors. feature_stride: Stride of the feature map relative to the image in pixels. anchor_stride: Stride of anchors on the feature map. For example, if the value is 2 then generate anchors for every other feature map pixel. """ # Get all combinations of scales and ratios scales, ratios = np.meshgrid(np.array(scales), np.array(ratios)) scales = scales.flatten() ratios = ratios.flatten() # Enumerate heights and widths from scales and ratios heights = scales / np.sqrt(ratios) widths = scales * np.sqrt(ratios) # Enumerate shifts in feature space shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride shifts_x, shifts_y = np.meshgrid(shifts_x, shifts_y) # Enumerate combinations of shifts, widths, and heights box_widths, box_centers_x = np.meshgrid(widths, shifts_x) box_heights, box_centers_y = np.meshgrid(heights, shifts_y) # Reshape to get a list of (y, x) and a list of (h, w) box_centers = np.stack( [box_centers_y, box_centers_x], axis=2).reshape([-1, 2]) box_sizes = np.stack([box_heights, box_widths], axis=2).reshape([-1, 2]) # Convert to corner coordinates (y1, x1, y2, x2) boxes = np.concatenate([box_centers - 0.5 * box_sizes, box_centers + 0.5 * box_sizes], axis=1) return boxes def norm_boxes(self, boxes, shape): """Converts boxes from pixel coordinates to normalized coordinates. boxes: [N, (y1, x1, y2, x2)] in pixel coordinates shape: [..., (height, width)] in pixels Note: In pixel coordinates (y2, x2) is outside the box. But in normalized coordinates it's inside the box. Returns: [N, (y1, x1, y2, x2)] in normalized coordinates """ h, w = shape scale = np.array([h - 1, w - 1, h - 1, w - 1]) shift = np.array([0, 0, 1, 1]) return np.divide((boxes - shift), scale).astype(np.float32) def generate_pyramid_anchors(self, scales, ratios, feature_shapes, feature_strides, anchor_stride): """Generate anchors at different levels of a feature pyramid. Each scale is associated with a level of the pyramid, but each ratio is used in all levels of the pyramid. Returns: anchors: [N, (y1, x1, y2, x2)]. All generated anchors in one array. Sorted with the same order of the given scales. So, anchors of scale[0] come first, then anchors of scale[1], and so on. """ # Anchors # [anchor_count, (y1, x1, y2, x2)] anchors = [] for i in range(len(scales)): anchors.append(self.generate_anchors(scales[i], ratios, feature_shapes[i], feature_strides[i], anchor_stride)) return np.concatenate(anchors, axis=0) def get_anchors(self,image_shape): """Returns anchor pyramid for the given image size.""" backbone_shapes = self.compute_backbone_shapes(image_shape) # Cache anchors and reuse if image shape is the same if not hasattr(self, "_anchor_cache"): self._anchor_cache = {} if not tuple(image_shape) in self._anchor_cache: # Generate Anchors a = self.generate_pyramid_anchors( self._config.RPN_ANCHOR_SCALES, self._config.RPN_ANCHOR_RATIOS, backbone_shapes, self._config.BACKBONE_STRIDES, self._config.RPN_ANCHOR_STRIDE) # Keep a copy of the latest anchors in pixel coordinates because # it's used in inspect_model notebooks. # TODO: Remove this after the notebook are refactored to not use it self.anchors = a # Normalize coordinates self._anchor_cache[tuple(image_shape)] = self.norm_boxes(a, image_shape[:2]) return self._anchor_cache[tuple(image_shape)] def resize_image(self, image, min_dim=None, max_dim=None, min_scale=None, mode="square"): """Resizes an image keeping the aspect ratio unchanged. min_dim: if provided, resizes the image such that it's smaller dimension == min_dim max_dim: if provided, ensures that the image longest side doesn't exceed this value. min_scale: if provided, ensure that the image is scaled up by at least this percent even if min_dim doesn't require it. mode: Resizing mode. none: No resizing. Return the image unchanged. square: Resize and pad with zeros to get a square image of size [max_dim, max_dim]. pad64: Pads width and height with zeros to make them multiples of 64. If min_dim or min_scale are provided, it scales the image up before padding. max_dim is ignored in this mode. The multiple of 64 is needed to ensure smooth scaling of feature maps up and down the 6 levels of the FPN pyramid (2**6=64). crop: Picks random crops from the image. First, scales the image based on min_dim and min_scale, then picks a random crop of size min_dim x min_dim. Can be used in training only. max_dim is not used in this mode. Returns: image: the resized image window: (y1, x1, y2, x2). If max_dim is provided, padding might be inserted in the returned image. If so, this window is the coordinates of the image part of the full image (excluding the padding). The x2, y2 pixels are not included. scale: The scale factor used to resize the image padding: Padding added to the image [(top, bottom), (left, right), (0, 0)] """ # Keep track of image dtype and return results in the same dtype image_dtype = image.dtype # Default window (y1, x1, y2, x2) and default scale == 1. h, w = image.shape[:2] window = (0, 0, h, w) scale = 1 padding = [(0, 0), (0, 0), (0, 0)] crop = None if mode == "none": return image, window, scale, padding, crop # Scale? if min_dim: # Scale up but not down scale = max(1, min_dim / min(h, w)) if min_scale and scale < min_scale: scale = min_scale # Does it exceed max dim? if max_dim and mode == "square": image_max = max(h, w) if round(image_max * scale) > max_dim: scale = max_dim / image_max # Resize image using bilinear interpolation if scale != 1: image = skimage.transform.resize(image, (round(h * scale), round(w * scale)), preserve_range=True) # Need padding or cropping? if mode == "square": # Get new height and width h, w = image.shape[:2] top_pad = (max_dim - h) // 2 bottom_pad = max_dim - h - top_pad left_pad = (max_dim - w) // 2 right_pad = max_dim - w - left_pad padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)] image = np.pad(image, padding, mode='constant', constant_values=0) window = (top_pad, left_pad, h + top_pad, w + left_pad) elif mode == "pad64": h, w = image.shape[:2] # Both sides must be divisible by 64 assert min_dim % 64 == 0, "Minimum dimension must be a multiple of 64" # Height if h % 64 > 0: max_h = h - (h % 64) + 64 top_pad = (max_h - h) // 2 bottom_pad = max_h - h - top_pad else: top_pad = bottom_pad = 0 # Width if w % 64 > 0: max_w = w - (w % 64) + 64 left_pad = (max_w - w) // 2 right_pad = max_w - w - left_pad else: left_pad = right_pad = 0 padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)] image = np.pad(image, padding, mode='constant', constant_values=0) window = (top_pad, left_pad, h + top_pad, w + left_pad) elif mode == "crop": # Pick a random crop h, w = image.shape[:2] y = random.randint(0, (h - min_dim)) x = random.randint(0, (w - min_dim)) crop = (y, x, min_dim, min_dim) image = image[y:y + min_dim, x:x + min_dim] window = (0, 0, min_dim, min_dim) else: raise Exception("Mode {} not supported".format(mode)) return image.astype(image_dtype), window, scale, padding, crop def preprocess_input(self, img): """Pre-processes the input image. img: Input image of shape (-1,XX,YY,3) Returns: molded_image: Molded image to be used as model input image_meta: Input image metadata anchors: [N, (y1, x1, y2, x2)]. All generated anchors in one array. Sorted with the same order of the given scales. So, anchors of scale[0] come first, then anchors of scale[1], and so on. window: (y1, x1, y2, x2). If max_dim is provided, padding might be inserted in the returned image. If so, this window is the coordinates of the image part of the full image (excluding the padding). The x2, y2 pixels are not included. """ molded_image, window, scale, padding, crop = self.resize_image( img, min_dim=self._config.IMAGE_MIN_DIM, min_scale=self._config.IMAGE_MIN_SCALE, max_dim=self._config.IMAGE_MAX_DIM, mode=self._config.IMAGE_RESIZE_MODE ) molded_image = self.mold_image(molded_image) image_meta = self.compose_image_meta( 0, img.shape, molded_image.shape, window, scale, np.zeros([self._config.NUM_CLASSES], dtype=np.int32) ) anchors = self.get_anchors(molded_image.shape) #anchors = np.broadcast_to(anchors, (1,) + anchors.shape) return molded_image, image_meta, anchors, window
import numpy as np import mayavi.mlab as mlab from desicos.conecylDB.read_write import xyz2thetazimp R = 406.4 # nominal radius H = 1219.2 # nominal height R_best_fit = 407.193 # radius obtained with the best-fit routine thetas, zfit, dR = np.genfromtxt('sample_theta_z_imp.txt', unpack=True) xpos = R_best_fit*np.cos(thetas) ypos = R_best_fit*np.sin(thetas) sf = 20 x2 = xpos + sf*dR*np.cos(thetas) y2 = ypos + sf*dR*np.sin(thetas) z2 = zfit Tinv = np.loadtxt('tmp_Tinv.txt') x, y, z = Tinv.dot(np.vstack((x2, y2, z2, np.ones_like(x2)))) black = (0,0,0) white = (1,1,1) mlab.figure(bgcolor=white) mlab.points3d(x, y, z, color=(0,1,0)) mlab.plot3d([0, 600], [0, 0], [0, 0], color=black, tube_radius=10.) mlab.plot3d([0, 0], [0, 1600], [0, 0], color=black, tube_radius=10.) mlab.plot3d([0, 0], [0, 0], [0, 600], color=black, tube_radius=10.) mlab.text3d(650, -50, +50, 'x', color=black, scale=100.) mlab.text3d(0, 1650, +50, 'y', color=black, scale=100.) mlab.text3d(0, -50, 650, 'z', color=black, scale=100.) mlab.savefig('plot_sample_3d.png', size=(500, 500))
# Making use of this to make a generic enabled file # to load base adjutant-ui content. FEATURE = "adjutant-ui-base" # A list of applications to be added to INSTALLED_APPS. ADD_INSTALLED_APPS = [ 'adjutant_ui', ]
import socket REMOTE_SERVER = "one.one.one.one" def is_connected(): hostname = REMOTE_SERVER try: # see if we can resolve the host name -- tells us if there is # a DNS listening host = socket.gethostbyname(hostname) # connect to the host -- tells us if the host is actually # reachable s = socket.create_connection((host, 80), 2) s.close() return True except: pass return False # is_connected(REMOTE_SERVER)
#!/usr/bin/env python #-*- coding:utf-8 -*- """ using build-in/factory icon Tested environment: Mac OS X 10.6.8 Install Oxygen icon on Mac OS X via MacPorts: sudo port install oxygen-icons http://doc.trolltech.com/latest/qicon.html http://www.pyside.org/docs/pyside/PySide/QtGui/QIcon.html """ import sys try: from PySide import QtCore from PySide import QtGui except ImportError: from PyQt4 import QtCore from PyQt4 import QtGui import qutils class Demo(QtGui.QWidget): def __init__(self): super(Demo, self).__init__() x, y, w, h = 500, 200, 300, 400 self.setGeometry(x, y, w, h) # NOTICE: the difference print "themeName:", QtGui.QIcon.themeName() print "hasThemeIcon:", QtGui.QIcon.hasThemeIcon("edit-undo") qutils.config_theme_path() print "themeName:", QtGui.QIcon.themeName() print "hasThemeIcon:", QtGui.QIcon.hasThemeIcon("edit-undo") print my_online = QtGui.QIcon("/path/to/my_online.png") icon = QtGui.QIcon.fromTheme("user-online", my_online) print "icon not found:", icon.isNull() print "availableSizes:", icon.availableSizes() lab = QtGui.QLabel('foo', self) pixmap = icon.pixmap(QtCore.QSize(32, 32), QtGui.QIcon.Normal, QtGui.QIcon.On) lab.setPixmap(pixmap) lab.move(10, 10) def show_and_raise(self): self.show() self.raise_() if __name__ == "__main__": app = QtGui.QApplication(sys.argv) demo = Demo() demo.show_and_raise() sys.exit(app.exec_())
# coding: utf-8 # # Interpolate wavelength on multiple dimensions # # Jason Neal - 19th July 2017 # To try and interpolate N-D data along the first axis. # # This is to be able to perfrom chisquare analsysis for many parameters. # In[ ]: import numpy as np import scipy as sp from scipy.stats import chisquare import matplotlib.pyplot as plt get_ipython().magic('matplotlib inline') # The model we have is obs (w, f), and model (wm, fm). # # the model is combined (x + (y*a)*v) * gamma two doppler shifts of v and gamma. # # We either need to be able to perform broadcasting inside Pyastronomy.dopplershift, or do it ourselves and interpolate. # # In[ ]: w = np.arange(20) A = 1.7 S = 1.1 f = A * np.sin(w) + S plt.plot(w, f, label="data") plt.legend() plt.show() # In[ ]: wm = np.linspace(-3,23, 50) fm = np.sin(wm) plt.plot(wm, fm, label="model") plt.plot(w, f, label="data") plt.show() # # Add a second axis for the amplitude # In[ ]: a = np.arange(1.3, 2, 0.05) print(a) a.shape # In[ ]: fma = fm[:, None] * a # Each column is fma.shape # In[ ]: # make wavelength axis also the same wma = wm[:, None] * np.ones_like(a) wma.shape # In[ ]: # Need to interpolate fma from wma to w # np.interp does not work on 2d. w_func = sp.interpolate.interp1d(wm, fma, axis=0, kind="slinear") # In[ ]: fma_interp = w_func(w) #fma_cube = w_func(w) #fma_spl = w_func(w) fma_interp.shape # In[ ]: plt.plot(w, fma_interp) plt.plot(w, f, "--", label="data") plt.legend() plt.show() # In[ ]: chi2 = np.sum((f[:, None] - fma_interp)**2 / fma_interp, axis=0) plt.plot(a, chi2, label="chi2") plt.legend() plt.show() # In[ ]: # Find the minimum value m = np.argmin(chi2) a_min = a[m] a_min # # Add a third axis for a vertical shift # # In[ ]: shift = np.arange(0.1, 1.3, 0.1) print(len(shift)) fmas = fma[:, :, None] + shift fmas.shape # In[ ]: wmas = wma[:, :, None] * np.ones_like(shift) wmas.shape # In[ ]: print(wm.shape) print(fmas.shape) w_sfunc = sp.interpolate.interp1d(wm, fmas, axis=0, kind="slinear") fmas_interp = w_sfunc(w) fmas_interp.shape # In[ ]: plt.plot(w, fmas_interp[:,3, :]) plt.plot(w, f, "--", label="data") plt.legend() plt.show() # In[ ]: chi2s = np.sum((f[:, None, None] - fmas_interp)**2 / fmas_interp, axis=0) plt.plot(a, chi2s, label="chi2") plt.legend() plt.show() # In[ ]: X, Y = np.meshgrid(shift, a) print(X.shape) plt.contourf(X, Y, chi2s) plt.colorbar() plt.plot() plt.show() chi2s.shape # In[ ]: c2min = chi2s.argmin() print(c2min) chi2s[np.unravel_index(c2min, chi2s.shape)] # In[ ]: np.unravel_index(976, (140, 7)) # In[ ]: plt.contour(chi2s) plt.show() # In[ ]: # # Interpolating different wavelength axis. # # Each wl dimension has a dopplershift added. # # In[ ]: c = 500 vc = (1 + np.arange(10) / c) print(wm.shape) print(vc.shape) doppler = wm[:, np.newaxis] * vc print(doppler.shape) #print(doppler) # In[ ]: plt.plot(doppler, fmas[:,:,5]) plt.show() # In[ ]: # doppler_interp = sp.interpolate.interp1d(doppler, fm) print(len(wm)) print(len(vc)) print(fma.shape) # fma includes the amplitude also. # Cannot inperpolate directly for all the different wavelengths at once. Therefore dims = fmas.shape + (len(vc),) # add extra arry to dim print(dims) result = np.empty(dims) print(result.shape) for i, v in enumerate(vc): wm_vc = wm * v # print(wm_vc.shape) # print(fma.shape) func = sp.interpolate.interp1d(wm_vc, fmas, axis=0, bounds_error=False, fill_value=99999) # print(func(wm)) result[:,:, :, i] = func(wm) # In[ ]: print(result) # # This lets me doppler shift the wavelength and return it to wm. # # In the second case for model I will just want to return it to the wavelength values of the observation. # In[ ]: # interp to obs func = sp.interpolate.interp1d(wm, result, axis=0, bounds_error=False, fill_value=np.nan) fmasd = func(w) chi2d = np.sum((f[:, None, None, np.newaxis] - fmasd)**2 / fmasd, axis=0) chi2d # In[ ]: chi2d.shape # In[ ]: fmasd.shape # In[ ]: a.shape # In[ ]: # Try a 3d chisquare x_2 = chisquare(f[:, np.newaxis, np.newaxis, np.newaxis], fmasd, axis=0).statistic x_2.argmin() vals = np.unravel_index(x_2.argmin(), x_2.shape) print("index of min = ", vals) # returns the minimum index location # This provides a framework for chisquare of large arrays. for my simulations # In[ ]: plt.title("shift min") plt.contourf(x_2[:,3,:]) plt.show() plt.contourf(x_2[4,:,:]) plt.title("amplitude min") plt.show() plt.contourf(x_2[:,:,4]) plt.title("doppler min") plt.show() # Currently these plots do not look very informative. I will need to remove the bad interpolation values also. # In[ ]:
# -*- coding: utf-8 -*- """ Created on Wed May 16 10:58:24 2018 @author: Ramsey """ import matplotlib.pyplot as plt import numpy as np def x(xo, param, iters, plt): for i in range(iters): #this is the function that we're plotting... xo = xo*xo + param pts = [] for i in range(iters): #the function we're plotting #it is repeated here -- perhaps should place elsewhere xo = xo*xo + param plt.scatter(param, xo, s=1) iters = 100 stored = 100 param_low = -2 param_high = 0.25 totalsteps = 10.0 step = (param_high - param_low) / totalsteps print("totalsteps=", totalsteps) i = param_low while i < param_high: print("i is now:", i) pts = x(1, i, iters, plt) i = i + step plt.show()
# compare the observed species richnesses to the 95 percentiles of the neutral model import pandas as pd import numpy as np # parameters # --- # which fit should we use for the parameter values? rho = 1700 subset_name = 'survey_only' # where to put results dir_results = '../../results/neutral_data/' # where is processed information about islands? dir_processed = '../../data/processed/' # where to put results dir_results = '../../results/neutral_data/' # get area and real richness of each island # --- # get island name to richness fname_islands = dir_processed + 'island_subsets/island_bird_presence_absence_' + subset_name + '.csv' df_pamatrix = pd.read_csv(fname_islands) island_names = list(df_pamatrix.columns[1:]) # fixed ordering of island names richness = [ sum(df_pamatrix[island_name]) for island_name in island_names ] # get island name to area fname_area = dir_processed + 'island_area.csv' df_area = pd.read_csv(fname_area) df_area.set_index('island_name', inplace=True) areas = [ df_area.loc[island_name]['area_sq_km'] for island_name in island_names ] # get the species richness of each model sample # --- fname = dir_results + 'samples_' + subset_name + '_rho' + str(rho) + '.csv' df = pd.read_csv(fname) # calculate the mean and percentiles of richness for each island # --- # create means, hi, and lo mean_sampled_richness = [ np.mean(df['no_spp_isle_' + island_name]) for island_name in island_names ] hi_sampled_richness = [ np.percentile(df['no_spp_isle_' + island_name], 97.5) for island_name in island_names ] lo_sampled_richness = [ np.percentile(df['no_spp_isle_' + island_name], 2.5) for island_name in island_names ] # check if true is within percentiles # --- check_within = [ 'yes' if S >= lo and S <= hi else 'no' for S, lo, hi in zip(richness, lo_sampled_richness, hi_sampled_richness) ] # save information to file # --- # put it into a dataframe df_out = pd.DataFrame(zip( island_names, areas, richness, check_within, mean_sampled_richness, lo_sampled_richness, hi_sampled_richness ), columns=['island_name', 'area_sq_km', 'S', 'true_S_in_bounds?', 'model_mean_S', 'model_lo_S', 'model_hi_S']) df_out.to_csv( dir_results + 'percentiles_richness' + subset_name + '.csv', index=False)
# -*- coding: utf-8 -*- # # Copyright (C) 2019 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG), # acting on behalf of its Max Planck Institute for Intelligent Systems and the # Max Planck Institute for Biological Cybernetics. All rights reserved. # # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights # on this computer program. You can only use this computer program if you have closed a license agreement # with MPG or you get the right to use the computer program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and liable to prosecution. # Contact: [email protected] # # # If you use this code in a research publication please consider citing the following: # # Expressive Body Capture: 3D Hands, Face, and Body from a Single Image <https://arxiv.org/abs/1904.05866> # # # Code Developed by: # Nima Ghorbani <https://nghorbani.github.io/> # # 2020.12.12 import numpy as np import torch from human_body_prior.models.model_components import BatchFlatten from human_body_prior.tools.rotation_tools import matrot2aa from torch import nn from torch.nn import functional as F class ContinuousRotReprDecoder(nn.Module): def __init__(self): super(ContinuousRotReprDecoder, self).__init__() def forward(self, module_input): bs, d = module_input.size() nj = d // 6 # num_joints inference reshaped_input = module_input.view(bs*nj, 3, 2) b1 = F.normalize(reshaped_input[:, :, 0], dim=1) dot_prod = torch.sum(b1 * reshaped_input[:, :, 1], dim=1, keepdim=True) b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=-1) b3 = torch.cross(b1, b2, dim=1) return torch.stack([b1, b2, b3], dim=-1) class NormalDistDecoder(nn.Module): def __init__(self, num_feat_in, latentD): super(NormalDistDecoder, self).__init__() self.mu = nn.Linear(num_feat_in, latentD) self.logvar = nn.Linear(num_feat_in, latentD) def forward(self, Xout): return torch.distributions.normal.Normal(self.mu(Xout), F.softplus(self.logvar(Xout))) class VPoser(nn.Module): def __init__(self, model_ps): super(VPoser, self).__init__() num_neurons, self.latentD = model_ps.model_params.num_neurons, model_ps.model_params.latentD self.num_joints = 21 n_features = self.num_joints * 3 self.encoder_net = nn.Sequential( BatchFlatten(), nn.BatchNorm1d(n_features), nn.Linear(n_features, num_neurons), nn.LeakyReLU(), nn.BatchNorm1d(num_neurons), nn.Dropout(0.1), nn.Linear(num_neurons, num_neurons), nn.Linear(num_neurons, num_neurons), NormalDistDecoder(num_neurons, self.latentD) ) self.decoder_net = nn.Sequential( nn.Linear(self.latentD, num_neurons), nn.LeakyReLU(), nn.Dropout(0.1), nn.Linear(num_neurons, num_neurons), nn.LeakyReLU(), nn.Linear(num_neurons, self.num_joints * 6), ContinuousRotReprDecoder(), ) def encode(self, pose_body): ''' :param Pin: Nx(numjoints*3) :param rep_type: 'matrot'/'aa' for matrix rotations or axis-angle :return: ''' return self.encoder_net(pose_body) def decode(self, Zin): bs = Zin.shape[0] prec = self.decoder_net(Zin) return { 'pose_body': matrot2aa(prec.view(-1, 3, 3)).view(bs, -1, 3), 'pose_body_matrot': prec.view(bs, -1, 9) } def forward(self, pose_body): ''' :param Pin: aa: Nx1xnum_jointsx3 / matrot: Nx1xnum_jointsx9 :param input_type: matrot / aa for matrix rotations or axis angles :param output_type: matrot / aa :return: ''' q_z = self.encode(pose_body) q_z_sample = q_z.rsample() decode_results = self.decode(q_z_sample) decode_results.update({'poZ_body_mean': q_z.mean, 'poZ_body_std': q_z.scale, 'q_z': q_z}) return decode_results def sample_poses(self, num_poses, seed=None): np.random.seed(seed) some_weight = [a for a in self.parameters()][0] dtype = some_weight.dtype device = some_weight.device self.eval() with torch.no_grad(): Zgen = torch.tensor(np.random.normal(0., 1., size=(num_poses, self.latentD)), dtype=dtype, device=device) return self.decode(Zgen)
# -*- coding: utf-8 -*- # # Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper for user-visible error exceptions to raise in the CLI.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.core import exceptions class ComputeError(exceptions.Error): """Exceptions for compute common errors.""" class ArgumentError(ComputeError): """Command argument error.""" class AbortedError(ComputeError): """Operation aborted exception.""" class UpdatePropertyError(ComputeError): """Require at least on property to be modified exception.""" class ValidationError(ComputeError): """YAML data does not match the schema.""" class DuplicateError(ComputeError): """Duplicate param error.""" class FailedPromptError(ComputeError): """Prompt failure.""" class InvalidResourceError(ComputeError): """Invalid resource URI."""
import socket import os from PIL import Image from assets.font import numbers_15x28 if socket.gethostname() == "rpiv2": import cili9486 # width, height, SPI, SPEED, CS, RST, RS lcd = cili9486.ili(320, 480, 0, 3200000, 8, 25, 24) else: import cili9325 import RPi.GPIO # pylint: disable=I0011,F0401 RPi.GPIO.setmode(RPi.GPIO.BCM) RPi.GPIO.setup(6, RPi.GPIO.OUT) RPi.GPIO.output(6, 1) lcd = cili9325.ili(320, 240, 18, 27, 17, 25, 22, 23, 24, 5, 12, 16, 20, 21) lcd.rotation = 0 lcd.init() FONTS = { '15x28': numbers_15x28.Numbers(), } #print(lcd.transparency_color ); # image_file = Image.open("assets/japan_temple_240x320.jpg") # lcd.draw_image(0, 0, image_file) lcd.draw_image(0, 0, "assets/japan_temple_240x320.jpg") lcd.transparency_color = (255, 255, 255) # lcd.transparency_color = ((1, 1, 1), (9, 9, 9)) lcd.draw_image(10, 10, "assets/numbers.jpg") # lcd.transparency_color = (0, 0, 0) # lcd.draw_image(10, 0, "assets/dsp2017_101_64.png") numbers_image = Image.open("assets/dsp2017_101_64.png") lcd.transparency_color = (0, 0, 0) # print(lcd.transparency_color) lcd.draw_image(10, 100, numbers_image) # lcd.transparency_color = ((4,4,4),(1, 1, 1), (9, 9, 9)) #lcd.transparency_color = None lcd.transparency_color = FONTS['15x28'].get_transparency() lcd.draw_image( 10, 10, FONTS['15x28'].get(0) ) lcd.draw_image( 30, 10, FONTS['15x28'].get(1) ) lcd.draw_image( 50, 10, FONTS['15x28'].get(9) ) print("end")
from fabric.api import local from fabric.tasks import Task from vagrant import collectstatic, css_compile, killall from fabric.colors import red, green, yellow from agency_vars import with_vars, APP_INFO import logging logging.basicConfig() log = logging.getLogger(__name__) # suppress tasks __all__ = [] def get_hash(env): # print red("CHECKING OUT BRANCH: {}".format(APP_INFO[env]["branch_name"])) # local('git checkout {}'.format(APP_INFO[env]["branch_name"])) return local('git rev-parse HEAD', capture=True).strip()[:20] def get_heroku_asset_version(env): git_hash = local('heroku config:get ASSET_VERSION -a {}'.format(APP_INFO[env]["heroku_app_name"]), capture=True) print "got hash: ", yellow('{}'.format(git_hash)) return git_hash def set_heroku_asset_version(env, git_hash): local('heroku config:set ASSET_VERSION={} -a {}'.format(git_hash, APP_INFO[env]["heroku_app_name"])) def set_heroku_maintenance_page(env, url): local('heroku config:set MAINTENANCE_PAGE_URL={} -a {}'.format(url, APP_INFO[env]["heroku_app_name"])) def set_heroku_error_page(env, url): local('heroku config:set ERROR_PAGE_URL={} -a {}'.format(url, APP_INFO[env]["heroku_app_name"])) def current_asset_version(env, ): return get_hash(env) class CustomTask(Task): def __init__(self, func, env, *args, **kwargs): super(CustomTask, self).__init__(*args, **kwargs) self.func = func self.env = env self.name = func.__name__ self.__doc__ = func.__doc__ def run(self, *args, **kwargs): if 'env' not in kwargs: kwargs['env'] = self.env return self.func(*args, **kwargs) def deploy(env=None, quick=False): """Deploy static and source to heroku environment""" local('sudo ntpdate -u 0.pool.ntp.org') local('pip install -r requirements/production.txt') version = get_heroku_asset_version(env) if quick else current_asset_version(env=env) current_branch = local('git rev-parse --abbrev-ref HEAD',capture=True) if current_branch != APP_INFO[env]['branch_name']: print red("NOT ON DESIRED DEPLOY BRANCH: {}".format(APP_INFO[env]["branch_name"])) compile_env_css(env=env, asset_version=version) deploy_static_media(env=env, asset_version=version, quick=quick) deploy_maintenance_pages(env=env, asset_version=version, quick=quick) deploy_source(env=env, asset_version=version, quick=quick) clear_cache(env=env, asset_version=version, quick=quick) @with_vars def deploy_maintenance_pages(env=None, asset_version='', quick=False, agency_vars={}): url = "{}error.html".format(agency_vars['STATIC_URL']) print(agency_vars) set_heroku_error_page(env, url) set_heroku_maintenance_page(env, url) @with_vars def deploy_source(env=None, asset_version='', quick=False, agency_vars={}): """Deploy source to heroku environment""" print green('Deploying source to Heroku') local('git push {} {}:master'.format(APP_INFO[env]["heroku_remote_name"], APP_INFO[env]["branch_name"])) sync_prod_db(env=env) if not quick: set_heroku_asset_version(env, asset_version) @with_vars def clear_cache(env=None, asset_version='', quick=False, agency_vars={}): local('heroku run ./manage.py clear_cache -a {}'.format(APP_INFO[env]["heroku_app_name"])) @with_vars def deploy_static_media(env=None, asset_version='', quick=False, agency_vars={}): """Deploy static (runs collectstatic within given environment)""" print green('Deploying static media {}'.format('__quick__' if quick else '')) collectstatic(no_input=True, skip_admin=quick) @with_vars def deploy_user_media(env=None, agency_vars={} ): """Deploy user media to media location on s3""" print green('Deploying user media') local('./manage.py sync_media_s3 --prefix=uploads') @with_vars def sync_prod_db(env=None, reset_db=False, agency_vars={}): """Run syncdb and migrate within given environment""" print green('sync/migrate DB') if reset_db: # uncomment below and replace DATABSE_URL with the prod database url # note that this is destructive of the PROD DB #local('heroku pg:reset DATABASE_URL') #add "--confirm haus" to remove required input pass local('heroku run ./manage.py syncdb -a {}'.format(APP_INFO[env]["heroku_app_name"])) local('heroku run ./manage.py migrate -a {}'.format(APP_INFO[env]["heroku_app_name"])) @with_vars def compile_env_css(env=None, asset_version='', agency_vars={}): log.warning(red('Calling killall, all process will be killed!')) killall() css_compile() log.warning(red('Note killall was called so vagrant server/compass will be down'))