repo
string | commit
string | message
string | diff
string |
---|---|---|---|
numpy/numpy.org
|
d8153d9862967559ce9dcc7483da8f8059750fb4
|
Streamline formatting in references
|
diff --git a/content/en/learn.md b/content/en/learn.md
index 2f79a8d..723d29e 100644
--- a/content/en/learn.md
+++ b/content/en/learn.md
@@ -1,96 +1,97 @@
---
title: Learn
sidebar: false
---
For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
***
Below is a curated collection of educational resources, both for self-learning and
teaching others, developed by NumPy contributors and vetted by the community.
## Beginners
There's a ton of information about NumPy out there. If you are just starting, we'd
strongly recommend the following:
<i class="fas fa-chalkboard"></i> **Tutorials**
* [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and
educational materials in the format of Jupyter Notebooks developed and maintained by
the NumPy Documentation team. To submit your own content, visit the
[numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
-* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+* [NumPy Illustrated: The Visual Guide to NumPy](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
+*by Lev Maximov*
* [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering
NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
-* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
-* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
+* [NumPy tutorial](https://github.com/rougier/numpy-tutorial) *by Nicolas Rougier*
+* [Stanford CS231](http://cs231n.github.io/python-numpy-tutorial/) *by Justin Johnson*
* [NumPy User Guide](https://numpy.org/devdocs)
<i class="fas fa-book"></i> **Books**
-* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf)
+* [Guide to NumPy](https://web.mit.edu/dvp/Public/numpybook.pdf) *by Travis E. Oliphant*
This is the first and *free* edition of the book. To purchase the latest edition,
[click here](https://www.amazon.com/exec/obidos/ASIN/151730007X/acmorg-20).
* [From Python to NumPy](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
*by Nicolas P. Rougier* *(free)*
* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877)
*by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy)
on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem,"
which has NumPy at its core.
<i class="far fa-file-video"></i> **Videos**
* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
***
## Advanced
Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
<i class="fas fa-chalkboard"></i> **Tutorials**
* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html)
*by Nicolas P. Rougier*
* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf)
*by M. Scott Shell*
* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/)
*by Stéfan van der Walt*
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational
materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team.
To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
<i class="fas fa-book"></i> **Books**
* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228)
*by Jake Vanderplas*
* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X)
*by Wes McKinney*
* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
<i class="far fa-file-video"></i> **Videos**
* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q)
*by Juan Nunez-Iglesias*
***
## NumPy Talks
* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stéfan van der Walt, Charles Harris* (2019)
* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
***
## Citing NumPy
If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
|
numpy/numpy.org
|
e8d99cbfe510d66a0e63ed87758d66e58d1d1b69
|
Minor fix in formatting
|
diff --git a/content/en/learn.md b/content/en/learn.md
index 322df18..2f79a8d 100644
--- a/content/en/learn.md
+++ b/content/en/learn.md
@@ -1,76 +1,96 @@
---
title: Learn
sidebar: false
---
For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
***
-Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
+Below is a curated collection of educational resources, both for self-learning and
+teaching others, developed by NumPy contributors and vetted by the community.
## Beginners
-There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
+There's a ton of information about NumPy out there. If you are just starting, we'd
+strongly recommend the following:
<i class="fas fa-chalkboard"></i> **Tutorials**
* [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
-* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and
+educational materials in the format of Jupyter Notebooks developed and maintained by
+the NumPy Documentation team. To submit your own content, visit the
+[numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
-* [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
+* [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering
+NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
* [NumPy User Guide](https://numpy.org/devdocs)
<i class="fas fa-book"></i> **Books**
-* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf) This is the first and *free* edition of the book. To purchase the latest edition, [click here](https://www.amazon.com/exec/obidos/ASIN/151730007X/acmorg-20).
-* [From Python to NumPy *by Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/) *(free)*
-* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
+* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf)
+This is the first and *free* edition of the book. To purchase the latest edition,
+[click here](https://www.amazon.com/exec/obidos/ASIN/151730007X/acmorg-20).
+* [From Python to NumPy](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+*by Nicolas P. Rougier* *(free)*
+* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877)
+*by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
-You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
+You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy)
+on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem,"
+which has NumPy at its core.
<i class="far fa-file-video"></i> **Videos**
* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
***
## Advanced
Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
<i class="fas fa-chalkboard"></i> **Tutorials**
-* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *by Nicolas P. Rougier*
-* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *by M. Scott Shell*
-* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *by Stéfan van der Walt*
-* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
+* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html)
+*by Nicolas P. Rougier*
+* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf)
+*by M. Scott Shell*
+* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/)
+*by Stéfan van der Walt*
+* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational
+materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team.
+To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
<i class="fas fa-book"></i> **Books**
-* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) *by Jake Vanderplas*
-* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) *by Wes McKinney*
+* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228)
+*by Jake Vanderplas*
+* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X)
+*by Wes McKinney*
* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
<i class="far fa-file-video"></i> **Videos**
-* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *by Juan Nunez-Iglesias*
+* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q)
+*by Juan Nunez-Iglesias*
***
## NumPy Talks
* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stéfan van der Walt, Charles Harris* (2019)
* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
***
## Citing NumPy
If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
|
numpy/numpy.org
|
1e8c78a7b485f358664d991b7aea5177698d23d0
|
tweak front page for new release (#866)
|
diff --git a/content/en/config.yaml b/content/en/config.yaml
index 6ee1230..120e133 100644
--- a/content/en/config.yaml
+++ b/content/en/config.yaml
@@ -1,117 +1,117 @@
languageName: English
params:
description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
navbarlogo:
image: logo.svg
text: NumPy
link: /
hero:
# Main hero title
title: NumPy
# Hero subtitle (optional)
subtitle: The fundamental package for scientific computing with Python
# Button text
- buttontext: "Latest release: NumPy 2.2. View all releases"
+ buttontext: "Latest release: NumPy 2.3. View all releases"
# Where the main hero button links to
buttonlink: "/news/#releases"
# Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
- title: Try NumPy
text: Use the interactive shell to try NumPy in the browser
docslink: Don't forget to check out the <a href="https://numpy.org/doc/stable" target="_blank">docs</a>.
casestudies:
title: CASE STUDIES
features:
- title: First Image of a Black Hole
text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
img: /images/content_images/case_studies/blackhole.png
alttext: First image of a black hole. It is an orange circle in a black background.
url: /case-studies/blackhole-image
- title: Detection of Gravitational Waves
text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Two orbs orbiting each other. They are displacing gravity around them.
url: /case-studies/gw-discov
- title: Sports Analytics
text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
img: /images/content_images/case_studies/sports.jpg
alttext: Cricket ball on green field.
url: /case-studies/cricket-analytics
- title: Pose Estimation using deep learning
text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Cheetah pose analysis
url: /case-studies/deeplabcut-dnn
tabs:
title: ECOSYSTEM
section5: false
navbar:
- title: Install
url: /install
- title: Documentation
url: https://numpy.org/doc/stable
- title: Learn
url: /learn
- title: Community
url: /community
- title: About Us
url: /about
- title: News
url: /news
- title: Contribute
url: /contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- link: https://github.com/numpy/numpy
icon: github
- link: https://www.youtube.com/@NumPy_team
icon: youtube
quicklinks:
column1:
title: ""
links:
- text: Install
link: /install
- text: Documentation
link: https://numpy.org/doc/stable
- text: Learn
link: /learn
- text: Citing NumPy
link: /citing-numpy
- text: Roadmap
link: https://numpy.org/neps/roadmap.html
column2:
links:
- text: About us
link: /about
- text: Community
link: /community
- text: User surveys
link: /user-surveys
- text: Contribute
link: /contribute
- text: Code of conduct
link: /code-of-conduct
column3:
links:
- text: Get help
link: /gethelp
- text: Terms of use
link: /terms
- text: Privacy
link: /privacy
- text: Press kit
link: /press-kit
diff --git a/content/en/news.md b/content/en/news.md
index 42795e1..d4cc1ee 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,516 +1,516 @@
---
title: "News"
sidebar: false
-newsHeader: "NumPy 2.2.0 released!"
-date: 2024-12-08
+newsHeader: "NumPy 2.3.0 released!"
+date: 2025-06-07
---
### NumPy 2.3.0 released
_7 Jun, 2025_ -- The NumPy 2.3.0 release improves free threaded Python support
and annotations together with the usual set of bug fixes. It is unusual in the
number of expired deprecations, code modernizations, and style cleanups. The
latter may not be visible to users, but is important for code maintenance over
the long term. Note that we have also upgraded from manylinux2014 to
manylinux_2_28. Highlights are:
- Interactive examples in the NumPy documentation.
- Building NumPy with OpenMP Parallelization.
- Preliminary support for Windows on ARM.
- Improved support for free threaded Python.
- Improved annotations.
This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
- NumPy 2.3.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.3.0)) -- _7 Jun 2025_.
- NumPy 2.2.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.6)) -- _17 May 2025_.
- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
0b30bb533a277408bd975b0181cc5096760a272e
|
Include the feedback from the review
|
diff --git a/content/en/learn.md b/content/en/learn.md
index 25fc428..f354688 100644
--- a/content/en/learn.md
+++ b/content/en/learn.md
@@ -1,76 +1,76 @@
---
title: Learn
sidebar: false
---
For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
***
Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
## Beginners
There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
<i class="fas fa-chalkboard"></i> **Tutorials**
* [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
* [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
* [NumPy User Guide](https://numpy.org/devdocs)
<i class="fas fa-book"></i> **Books**
-* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf) This is the first edition of the book published in 2006. For the latest edition released in 2015, [click here](https://dl.acm.org/doi/10.5555/2886196).
-* [From Python to NumPy *by Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
+* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf) This is the first and *free* edition of the book. To purchase the latest edition, [click here](https://www.amazon.com/exec/obidos/ASIN/151730007X/acmorg-20).
+* [From Python to NumPy *by Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/) *(free)*
* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
<i class="far fa-file-video"></i> **Videos**
* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
***
## Advanced
Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
<i class="fas fa-chalkboard"></i> **Tutorials**
* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *by Nicolas P. Rougier*
* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *by M. Scott Shell*
* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *by Stéfan van der Walt*
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
<i class="fas fa-book"></i> **Books**
* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) *by Jake Vanderplas*
* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) *by Wes McKinney*
* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
<i class="far fa-file-video"></i> **Videos**
* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *by Juan Nunez-Iglesias*
***
## NumPy Talks
* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
***
## Citing NumPy
If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
|
numpy/numpy.org
|
554b3afedf3d13709c975e04a9af4aacba015fe2
|
announce the NumPy 2.3.0 release (#865)
|
diff --git a/content/en/news.md b/content/en/news.md
index 3dcc92e..42795e1 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,496 +1,516 @@
---
title: "News"
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-08
---
+### NumPy 2.3.0 released
+
+_7 Jun, 2025_ -- The NumPy 2.3.0 release improves free threaded Python support
+and annotations together with the usual set of bug fixes. It is unusual in the
+number of expired deprecations, code modernizations, and style cleanups. The
+latter may not be visible to users, but is important for code maintenance over
+the long term. Note that we have also upgraded from manylinux2014 to
+manylinux_2_28. Highlights are:
+
+- Interactive examples in the NumPy documentation.
+- Building NumPy with OpenMP Parallelization.
+- Preliminary support for Windows on ARM.
+- Improved support for free threaded Python.
+- Improved annotations.
+
+This release supports Python versions 3.11-3.13, Python 3.14 will be
+supported when it is released.
+
+
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.3.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.3.0)) -- _7 Jun 2025_.
- NumPy 2.2.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.6)) -- _17 May 2025_.
- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
ef3cd04eebdad2fbfe8e07e9d5a7cfd54be06744
|
Use current quansight logo (#864)
|
diff --git a/static/images/logos/quansight.svg b/static/images/logos/quansight.svg
index 88c5bf3..746358c 100644
--- a/static/images/logos/quansight.svg
+++ b/static/images/logos/quansight.svg
@@ -1 +1 @@
-<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 914.16 346.02"><defs><style>.cls-1{fill:#652e8e;}.cls-2{fill:#05773d;}.cls-3{fill:#e86825;}</style></defs><title>QS logo strip vector</title><polygon class="cls-1" points="154.38 209.2 140.5 224.35 121.98 201.34 134.09 191.4 154.38 209.2"/><path class="cls-1" d="M113,204.27C94,201.69,85.76,186.93,85.76,165c0-28.47,17-33.79,30.13-33.79,18.75,0,31.5,13.9,31.5,39.51a45,45,0,0,1-3,17.51l9.38,8c6.82-8.2,9.59-17.93,9.59-29.79,0-26.19-17.73-42.77-46.2-42.77C82.9,123.67,70,148.94,70,168.5c0,20.24,13.26,44.82,46.08,44.82a17.31,17.31,0,0,0,2.32-.18Z"/><path class="cls-1" d="M183.81,167.48c0-14.59.11-17.31-.12-20.36-.22-3.4-1.13-4.3-4.3-5.21a18.3,18.3,0,0,0-3.84-.34c-1.13,0-1.7-.33-1.7-1s.68-.91,2.15-.91c5.32,0,12,.23,14.93.23,2.49,0,9.17-.23,12.79-.23,1.47,0,2.15.23,2.15.91s-.57,1-1.59,1a14.28,14.28,0,0,0-2.94.34c-2.6.46-3.39,1.81-3.62,5.21-.23,3-.23,5.77-.23,20.36V181c0,14,2.72,19.45,7.59,23.3,4.41,3.51,9.16,3.85,12.55,3.85A19,19,0,0,0,231,203c5.55-5.21,5.77-13.58,5.77-23.42V167.48c0-14.59-.11-17.31-.22-20.36-.23-3.28-1-4.3-4.19-5.21a17.54,17.54,0,0,0-3.62-.34c-1.13,0-1.7-.33-1.7-1s.68-.91,2-.91c5.09,0,11.76.23,11.88.23,1.13,0,7.8-.23,11.65-.23,1.36,0,2,.23,2,.91s-.57,1-1.7,1a14.2,14.2,0,0,0-2.94.34c-2.72.46-3.4,1.81-3.62,5.21-.12,3-.23,5.77-.23,20.36v10.3c0,10.74-1.13,22.06-9.5,29-7,5.88-14.6,6.9-21,6.9-5.21,0-15.5-.23-22.74-6.56-5.09-4.41-9.05-11.54-9.05-25.46Z"/><path class="cls-1" d="M276.91,188.19c-.57,0-.68.11-.91.67l-5.31,12.9a17.47,17.47,0,0,0-1.48,5.88c0,1.7.91,2.72,4,2.72h1.48c1.24,0,1.47.45,1.47,1,0,.79-.57,1-1.59,1-3.28,0-7.92-.34-11.08-.34-1,0-6.34.34-11.54.34-1.25,0-1.81-.23-1.81-1a1,1,0,0,1,1.13-1c.9,0,2-.11,2.94-.11,4.52-.68,6.22-3.62,8.26-8.49l26-60.52c1.13-2.72,1.92-3.85,2.94-3.85,1.47,0,1.92.9,2.94,3.05,2.38,5.32,19,44.69,25.34,59.29,3.85,8.71,6.68,10,8.49,10.29a23.51,23.51,0,0,0,3.73.34c.91,0,1.36.34,1.36,1s-.57,1-4.3,1c-3.51,0-10.75,0-19.12-.23-1.81-.11-2.94-.11-2.94-.79s.22-.91,1.24-1a1.51,1.51,0,0,0,.91-2.15l-7.7-19.35a.93.93,0,0,0-1-.67Zm21.27-5.32c.45,0,.56-.23.45-.57l-9.39-24.43c-.11-.34-.23-.91-.45-.91s-.46.57-.57.91l-9.62,24.32c-.22.45,0,.68.34.68Z"/><path class="cls-1" d="M350.32,199.27c.23,7.47,1.47,9.73,3.4,10.41a16.73,16.73,0,0,0,5.2.68c1.13,0,1.7.45,1.7,1,0,.79-.91,1-2.26,1-6.45,0-11.09-.34-12.9-.34-.91,0-5.66.34-10.75.34-1.36,0-2.26-.12-2.26-1,0-.57.68-1,1.58-1a20.48,20.48,0,0,0,4.53-.45c2.6-.68,2.94-3.28,3.05-11.66l.91-57c0-1.93.68-3.29,1.69-3.29,1.25,0,2.61,1.48,4.3,3.17,1.25,1.25,16.18,16.52,30.66,30.66,6.79,6.68,20,20.25,21.5,21.61h.45l-1-42.76c-.11-5.89-1-7.58-3.39-8.49a16.6,16.6,0,0,0-5.21-.57c-1.24,0-1.58-.45-1.58-1,0-.79,1-.91,2.49-.91,5.2,0,10.52.23,12.67.23,1.13,0,4.86-.23,9.73-.23,1.36,0,2.26.12,2.26.91,0,.56-.56,1-1.7,1a10.06,10.06,0,0,0-3.05.34c-2.72.8-3.51,2.49-3.62,7.92l-1.13,60.64c0,2.15-.79,3.06-1.59,3.06a5.92,5.92,0,0,1-4.07-2c-6.22-5.77-18.67-17.65-29.07-27.72C362,173.37,351.45,161.71,349.53,160h-.34Z"/><path class="cls-1" d="M435.76,211c-1.86-.8-2.26-1.34-2.26-3.88,0-6.14.53-13.22.66-15.09s.54-2.94,1.47-2.94,1.2,1.07,1.2,1.88a21.07,21.07,0,0,0,1.07,5.87c2.54,8.42,11.35,11.22,18.7,11.22,10.15,0,16.3-6.41,16.3-14.42,0-4.95-1.21-9.89-11.63-16l-6.81-4C440.57,165.45,436,157.83,436,147.81c0-13.88,13.36-22.83,29.65-22.83a69.76,69.76,0,0,1,16.7,1.87c1.07.26,1.6.66,1.6,1.47,0,1.46-.4,4.67-.4,13.62,0,2.4-.54,3.61-1.47,3.61s-1.2-.67-1.2-2a12.88,12.88,0,0,0-3.07-7.48c-1.74-2.13-5.48-5.34-13.09-5.34-8.42,0-16,4.41-16,12.15,0,5.08,1.87,9.09,12.42,15L466,160.5c15.49,8.55,20.3,17.23,20.3,27.52,0,8.41-3.21,15.22-11.75,21.23-5.61,4-13.36,4.68-19.64,4.68C448.05,213.93,440.84,213.26,435.76,211Z"/><path class="cls-1" d="M511.35,167.48c0-14.59,0-17.31-.11-20.36-.23-3.28-1.25-4.41-3.4-5.09a12.66,12.66,0,0,0-3.62-.46c-1,0-1.58-.22-1.58-1.13,0-.56.79-.79,2.38-.79,3.73,0,10.52.23,13.34.23,2.49,0,8.94-.23,12.79-.23,1.24,0,2,.23,2,.79,0,.91-.57,1.13-1.59,1.13a14.2,14.2,0,0,0-2.94.34c-2.72.46-3.51,1.81-3.73,5.21-.23,3-.23,5.77-.23,20.36v17c0,9.28,0,17,.45,21,.34,2.61,1,4.08,4,4.53a36.67,36.67,0,0,0,5.09.34c1.13,0,1.59.57,1.59,1,0,.68-.79,1-1.93,1-6.56,0-13.35-.34-16.06-.34-2.26,0-9,.34-13,.34-1.25,0-1.92-.34-1.92-1,0-.45.34-1,1.58-1A14.52,14.52,0,0,0,508,210c2-.45,2.6-1.81,2.94-4.64.45-4,.45-11.65.45-20.93Z"/><path class="cls-1" d="M617,206c0,2.6,0,2.71-1.24,3.39-6.68,3.28-16.52,4.3-24.33,4.3-24.43,0-46-11.09-46-37.67,0-15.39,8.26-26.14,17.42-31.45,9.51-5.55,18.44-6.23,26.81-6.23a113.41,113.41,0,0,1,17.65,1.59c2,.34,5.55.9,7.92,1,1.13.11,1.36.45,1.36,1.13a130.16,130.16,0,0,0-.68,15.84c0,1.47-.56,2.15-1.36,2.15s-.9-.46-1-1.25a12.85,12.85,0,0,0-3.4-7.92c-2.94-3-10.41-7.35-21.61-7.35-5.43,0-12.33.11-19.23,5.66-5.54,4.52-9.16,11.65-9.16,23.41,0,20.71,13.35,35.75,34.62,35.75,2.6,0,4.64,0,7-1,1.47-.67,1.92-1.69,1.92-3.39v-8.82c0-4.75,0-8.37-.11-11.32-.11-3.28-1.13-4.3-4.3-5.2a17.68,17.68,0,0,0-3.85-.34c-.9,0-1.58-.45-1.58-1,0-.79.79-.9,2.15-.9,5.2,0,12.33.22,15.27.22,3.17,0,8.38-.22,11.66-.22,1.35,0,2,.11,2,.9a1.14,1.14,0,0,1-1.24,1,13.36,13.36,0,0,0-2.72.34c-2.71.45-3.73,1.81-3.84,5.2-.12,2.95-.12,6.79-.12,11.54Z"/><path class="cls-1" d="M696.42,171c.23,0,.57-.11.57-.68v-2c0-14.59-.11-18.1-.23-21.15-.22-3.28-1.13-4.3-4.3-5.21a18.3,18.3,0,0,0-3.84-.34c-1.13,0-1.7-.33-1.7-1s.68-.91,2.15-.91c5.32,0,12.33.23,14.93.23,2.38,0,8.94-.23,12.79-.23,1.47,0,2.15.23,2.15.91s-.68,1-1.81,1a17.38,17.38,0,0,0-3,.34c-2.6.46-3.39,1.81-3.62,5.21-.22,3-.22,5.77-.22,20.36v17c0,8.83,0,16.41.45,20.59.34,2.72.91,4.53,4,5a35.54,35.54,0,0,0,5.09.34c1,0,1.59.57,1.59,1,0,.68-.8,1-2,1-6.45,0-13-.34-15.73-.34-2.26,0-9.27.34-13.12.34-1.36,0-2.15-.34-2.15-1,0-.45.45-1,1.58-1a14.79,14.79,0,0,0,3.62-.34c2-.45,2.61-2.26,2.95-5.09.45-4.07.45-11.43.45-20.25v-7.35a.6.6,0,0,0-.57-.57H658.86c-.34,0-.68.11-.68.57v7.35c0,8.82.12,16.18.57,20.36.34,2.72.9,4.53,3.85,5a36.56,36.56,0,0,0,5.09.34c1.13,0,1.58.57,1.58,1,0,.68-.79,1-2,1-6.44,0-13.34-.34-16.17-.34-2.27,0-8.83.34-12.79.34-1.24,0-1.92-.34-1.92-1,0-.45.34-1,1.58-1a14.46,14.46,0,0,0,3.51-.34c2-.45,2.6-2.26,2.94-5.09.45-4.07.45-11.65.45-20.48v-17c0-14.59,0-17.31-.11-20.36-.22-3.28-1.13-4.3-4.3-5.21a18.75,18.75,0,0,0-4-.34c-1,0-1.69-.33-1.69-1s.79-.91,2.14-.91c5.32,0,11.88.23,14.6.23,2.38,0,9.28-.23,13.24-.23,1.35,0,2,.23,2,.91s-.56,1-1.81,1a15.12,15.12,0,0,0-2.83.34c-2.71.46-3.5,1.81-3.73,5.21-.23,3-.23,6.56-.23,21.15v2a.6.6,0,0,0,.68.68Z"/><path class="cls-1" d="M756.15,145.53l-14.82.34c-5.77.12-8.15.8-9.62,2.94a11.36,11.36,0,0,0-1.7,3.29c-.22.79-.45,1.24-1.13,1.24s-.9-.57-.9-1.58c0-1.59,1.92-10.86,2.15-11.66.22-1.24.56-1.81,1.13-1.81.79,0,1.81.8,4.3,1.14a93.16,93.16,0,0,0,10,.45H785.9a45,45,0,0,0,6.79-.45c1.58-.23,2.37-.46,2.71-.46.68,0,.8.57.8,2,0,2-.23,9.16-.23,11.65-.11,1-.34,1.59-.91,1.59-.79,0-1-.46-1.13-1.93l-.11-1c-.23-2.49-2.83-5.43-11.77-5.54l-12.55-.23v38.92c0,8.83.11,16.41.56,20.59.34,2.72.91,4.53,3.85,5a36.67,36.67,0,0,0,5.09.34c1.13,0,1.58.57,1.58,1,0,.68-.79,1-1.92,1-6.56,0-13.24-.34-16.06-.34-2.27,0-9.06.34-13,.34-1.24,0-1.92-.34-1.92-1,0-.45.34-1,1.59-1a13.77,13.77,0,0,0,3.5-.34c2-.45,2.61-2.26,2.94-5.09.46-4.07.46-11.65.46-20.48Z"/><g id="bottom"><path class="cls-2" d="M166.61,242.91,159,238.5c-2.51-1.51-4.93-3.17-7.4-4.75q6.44-7.86,12.7-15.84c1.72,1.09,3.39,2.24,5.15,3.27l5.28,3.07C172,230.43,169.26,236.68,166.61,242.91Z"/><path class="cls-2" d="M192.38,255l-8-3.34c-2.66-1.18-5.28-2.45-7.92-3.67q5.25-8.7,10.36-17.46c1.87.85,3.71,1.75,5.59,2.56l5.69,2.35Q195.14,245.15,192.38,255Z"/><path class="cls-2" d="M219.26,263.78l-8.34-2.37-8.26-2.68q4.16-9.27,8.18-18.59l5.89,1.89c2,.59,4,1.12,6,1.68Q220.91,253.73,219.26,263.78Z"/><path class="cls-2" d="M246.81,269.67c-5.69-.88-11.34-2.05-17-3.26q3.13-9.63,6.15-19.34c4.07.79,8.11,1.71,12.21,2.31Q247.43,259.52,246.81,269.67Z"/><path class="cls-2" d="M274.74,272.87c-1.44-.1-2.87-.17-4.3-.29l-4.3-.41c-2.86-.28-5.73-.53-8.58-.95q2.19-9.9,4.23-19.82c2.06.28,4.13.41,6.2.62s4.13.44,6.2.53Q274.4,262.71,274.74,272.87Z"/><path class="cls-2" d="M302.81,273.49c-5.75.08-11.49.15-17.24-.09q1.26-10.06,2.38-20.15c4.15.18,8.31,0,12.47,0Q301.55,263.42,302.81,273.49Z"/><path class="cls-2" d="M330.82,271.52l-8.57.89-8.6.62q.32-10.15.53-20.3l6.22-.46,6.19-.66Q328.65,261.57,330.82,271.52Z"/><path class="cls-2" d="M358.56,267c-2.82.6-5.63,1.22-8.47,1.68s-5.66,1.05-8.51,1.45c-.4-6.75-.85-13.48-1.34-20.23l6.13-1.1,3.06-.55,3-.65Q355.45,257.26,358.56,267Z"/><path class="cls-2" d="M385.79,259.7c-2.73,1-5.52,1.7-8.29,2.52l-4.16,1.2-4.19,1.06q-1.57-10-3.29-20c2-.48,4-1.09,6-1.67s4-1.14,6-1.77Q381.7,250.39,385.79,259.7Z"/><path class="cls-2" d="M412.2,249.61c-2.65,1.17-5.34,2.27-8,3.4l-2,.84-2,.77-4.06,1.52q-2.62-9.81-5.37-19.57c3.89-1.39,7.64-3.07,11.44-4.67C405.46,237.83,408.82,243.76,412.2,249.61Z"/><path class="cls-2" d="M437.35,236.4l-7.55,4.41-7.72,4.06q-3.74-9.45-7.61-18.82l5.44-2.88,5.29-3.12Q431.19,228.27,437.35,236.4Z"/></g><g id="top"><path class="cls-3" d="M779.48,96.15l7.63,4.34c2.52,1.48,5,3.12,7.45,4.68q-6.36,7.92-12.55,16c-1.73-1.07-3.41-2.21-5.17-3.22l-5.32-3C774.23,108.68,776.89,102.41,779.48,96.15Z"/><path class="cls-3" d="M753.59,84.35l8.08,3.27c2.67,1.15,5.31,2.4,8,3.59q-5.18,8.75-10.19,17.56c-1.88-.83-3.73-1.71-5.62-2.51L748.11,104Q750.93,94.19,753.59,84.35Z"/><path class="cls-3" d="M726.63,75.8,735,78.09l8.29,2.6q-4.08,9.3-8,18.66l-5.9-1.83c-2-.57-4-1.08-6-1.62Q725.09,85.86,726.63,75.8Z"/><path class="cls-3" d="M699,70.18c5.7.82,11.36,1.94,17,3.1q-3,9.66-6,19.39c-4.08-.75-8.12-1.62-12.23-2.19Q698.5,80.34,699,70.18Z"/><path class="cls-3" d="M671.06,67.26c1.44.08,2.87.13,4.31.24l4.3.38c2.86.24,5.73.47,8.58.85q-2.09,9.93-4,19.87c-2.06-.26-4.14-.37-6.2-.57s-4.14-.4-6.22-.46Q671.5,77.41,671.06,67.26Z"/><path class="cls-3" d="M643,66.91c5.74-.13,11.49-.26,17.23-.08Q659.08,76.91,658,87c-4.15-.14-8.31,0-12.46.08Q644.35,77,643,66.91Z"/><path class="cls-3" d="M615,69.16l8.57-1,8.59-.71q-.23,10.16-.33,20.31l-6.21.52-6.19.72Q617.28,79.08,615,69.16Z"/><path class="cls-3" d="M587.3,74c2.81-.63,5.62-1.29,8.45-1.77s5.66-1.1,8.5-1.53c.47,6.75,1,13.46,1.53,20.22l-6.11,1.15-3.06.58-3,.69Q590.5,83.65,587.3,74Z"/><path class="cls-3" d="M560.15,81.51c2.72-1,5.5-1.76,8.26-2.6l4.14-1.24,4.19-1.1q1.66,10,3.48,20c-2,.5-4,1.13-6,1.73s-4,1.18-5.93,1.83Q564.31,90.79,560.15,81.51Z"/><path class="cls-3" d="M533.84,91.86c2.64-1.2,5.31-2.32,8-3.48l2-.86,2-.79,4-1.56q2.71,9.78,5.56,19.51c-3.87,1.43-7.61,3.15-11.39,4.79C540.69,103.57,537.28,97.68,533.84,91.86Z"/><path class="cls-3" d="M508.82,105.31l7.5-4.48L524,96.69q3.82,9.42,7.79,18.75l-5.41,2.94-5.26,3.16Q515.06,113.38,508.82,105.31Z"/></g></svg>
\ No newline at end of file
+<?xml version="1.0" encoding="UTF-8"?><svg id="Layer_1" xmlns="http://www.w3.org/2000/svg" viewBox="59.189350000000005 103.28248447204967 973.9338500000001 314.1508902691511"><defs><style>.cls-1{fill:#452392;}.cls-2{fill:#a43a8f;}.cls-3{fill:#99c941;}</style></defs><path class="cls-1" d="M511.67,297.57c.21-.26,.43-.53,.63-.8,6.76-8.71,10.87-19.86,10.93-31.96-.04-2.75-.29-5.32-.72-7.74-.96-6.79-3.21-13.14-6.45-18.78,.12,.14,.24,.29,.36,.43-8.1-14.41-22.71-24.19-39.39-24.56-.08,0-.16,0-.24,0-.25,0-.5-.01-.75-.01-.04,0-.09,0-.13,0-.04,0-.09,0-.13,0-.25,0-.5,0-.75,.01-.08,0-.16,0-.24,0-16.67,.37-31.28,10.16-39.39,24.56,.12-.15,.24-.29,.36-.43-3.46,5.99-5.77,12.8-6.62,20.08-.31,2.09-.5,4.3-.53,6.63,.14,27.62,21.33,50.28,47.17,50.28,14.27,0,27.13-6.86,35.8-17.6,.03-.03,.05-.07,.08-.1Zm-40.94-76.81c.22-.03,.44-.07,.66-.1,.23-.03,.47-.06,.7-.09,.39-.05,.79-.08,1.19-.12,.2-.02,.4-.03,.6-.05,.25-.02,.5-.03,.76-.04,.27-.01,.53-.02,.8-.02,.16,0,.33,0,.49,0,.16,0,.33,0,.49,0,.27,0,.53,.01,.8,.02,.25,.01,.51,.02,.76,.04,.2,.01,.4,.03,.6,.05,.4,.03,.8,.07,1.19,.12,.23,.03,.47,.06,.7,.09,.22,.03,.44,.06,.66,.1,.25,.04,.5,.09,.75,.13,20.01,3.7,27.8,25.76,27.8,43.8,0,10.71-2.74,22.75-9.13,31.57,0,0-.01,.02-.02,.03-.19,.26-.38,.51-.58,.77-5.39,6.93-13.18,11.63-23.86,11.64-1.59,0-3.18-.12-4.75-.34-1.09-.1-2.17-.23-3.24-.39-3.5-.86-6.6-2.31-9.33-4.2,.08,.03,.16,.06,.24,.08-11.93-8.2-16.8-24.88-16.8-39.16,0-18.05,7.79-40.1,27.8-43.8,.25-.05,.5-.09,.75-.13Z"/><path class="cls-1" d="M598.78,311.51c0,.78-.78,1.17-2.34,1.17h-14.77c-1.07,0-1.85-.54-2.34-1.61l-2.34-5.12c-.49-.97-.98-1.02-1.46-.15-4.19,5.56-10.29,8.34-18.28,8.34-6.24,0-11.24-2.02-14.99-6.07-3.75-4.04-5.63-9.77-5.63-17.19v-29.4c0-3.51-1.61-5.7-4.83-6.58l-3.07-.88c-1.56-.49-2.34-1.02-2.34-1.61,0-.78,.78-1.17,2.34-1.17h20.18c1.27,0,1.9,.34,1.9,1.02,0,.1-.61,.76-1.83,1.97-1.22,1.22-1.83,4.12-1.83,8.7v30.27c0,8.78,4.53,13.16,13.6,13.16,3.41,0,6.82-1.02,10.24-3.07,3.8-2.34,5.7-5.12,5.7-8.34v-33.49c0-3.51-1.61-5.7-4.83-6.58l-3.07-.88c-1.56-.49-2.34-1.02-2.34-1.61,0-.78,.78-1.17,2.34-1.17h17.11c1.36,0,2,.59,1.9,1.76l-.59,9.65v39.93c0,3.61,1.66,5.75,4.97,6.44l4.09,.88c1.66,.39,2.49,.93,2.49,1.61Z"/><path class="cls-1" d="M659.47,311.51c0,.78-.78,1.17-2.34,1.17h-14.48c-1.07,0-1.9-.54-2.49-1.61l-1.17-2.05c-.39-.68-.88-1.02-1.46-1.02s-1.22,.24-1.9,.73c-5.17,3.61-11.26,5.41-18.28,5.41-5.27,0-9.51-1.32-12.72-3.95-3.51-2.92-5.27-6.87-5.27-11.85,0-7.02,3.36-11.99,10.09-14.92,2.05-.88,5.27-1.8,9.65-2.78,5.46-1.27,9.02-2.14,10.68-2.63,5.17-1.56,7.75-4.04,7.75-7.46v-5.7c0-3.22-1.56-5.7-4.68-7.46-2.54-1.36-5.41-2.05-8.63-2.05-5.36,0-9.34,1.17-11.92,3.51-2.59,2.34-4.46,6.29-5.63,11.85-.2,.49-.54,.73-1.02,.73-.58,0-.88-.29-.88-.88l-.15-17.55c0-.88,.49-1.36,1.46-1.46,1.56-.1,4.63-.44,9.21-1.02,3.8-.49,6.87-.73,9.21-.73,7.8,0,13.55,1.51,17.26,4.53,4.19,3.51,6.29,9.26,6.29,17.26v30.86c0,3.8,1.56,6,4.68,6.58l4.39,.88c1.56,.29,2.34,.83,2.34,1.61Zm-21.94-14.04v-14.48c0-1.27-.54-1.66-1.61-1.17l-19.16,5.56c-4.78,1.37-7.17,4.19-7.17,8.48,0,8.48,3.8,12.72,11.41,12.72,4.58,0,8.48-1.05,11.7-3.14,3.22-2.1,4.83-4.75,4.83-7.97Z"/><path class="cls-1" d="M782.69,295.57c0,12.38-7.56,18.57-22.67,18.57-6.63,0-13.51-.98-20.62-2.93-1.27-.39-2.05-1.8-2.34-4.24,0-1.76-.05-3.58-.15-5.48-.1-1.9-.34-4.46-.73-7.68-.2-1.17,.15-1.76,1.02-1.76s1.41,.54,1.61,1.61c2.05,5.85,4.92,9.85,8.63,11.99,3.22,1.95,7.99,2.93,14.33,2.93,3.02,0,5.75-.78,8.19-2.34,2.83-1.85,4.24-4.24,4.24-7.17,0-4.19-3.17-7.65-9.51-10.38-5.75-2.44-11.55-4.92-17.4-7.46-6.34-3.51-9.51-8.24-9.51-14.19,0-11.5,6.78-17.26,20.33-17.26,4.78,0,11.41,.59,19.89,1.76,.97,.1,1.46,.59,1.46,1.46l.29,14.48c0,1.17-.29,1.75-.88,1.75-.49,0-.88-.44-1.17-1.32-1.76-5.27-4.19-8.78-7.31-10.53-2.73-1.56-7.12-2.34-13.16-2.34-7.61,0-11.41,2.93-11.41,8.78,0,3.32,3.17,6.34,9.51,9.07,11.21,4.78,17.16,7.36,17.84,7.75,6.34,3.8,9.51,8.77,9.51,14.92Z"/><path class="cls-1" d="M818.08,309.62l-4.97-.88c-3.22-.59-4.83-2.73-4.83-6.44v-16.02h0s0-23.63,0-23.63l.58-9.65c.1-1.17-.58-1.76-2.05-1.76h-18.87c-1.56,0-2.34,.39-2.34,1.17s.78,1.32,2.34,1.61l4.97,.88c3.22,.59,4.83,2.73,4.83,6.44v14.6h0s0,25.05,0,25.05l-.58,9.65c-.1,1.17,.58,1.76,2.05,1.76h18.87c1.56,0,2.34-.39,2.34-1.17s-.78-1.32-2.34-1.61Z"/><path class="cls-1" d="M731.65,309.9l-3.07-.88c-3.22-.88-4.83-3.07-4.83-6.58v-29.4c0-7.41-1.88-13.14-5.63-17.18-3.76-4.04-8.75-6.07-14.99-6.07-8,0-14.09,2.78-18.28,8.34-.49,.88-.98,.83-1.46-.15l-2.34-5.12c-.49-1.07-1.27-1.61-2.34-1.61h-16.53c-1.56,0-2.34,.39-2.34,1.17,0,.88,.78,1.42,2.34,1.61l6,.88c3.31,.49,4.97,2.63,4.97,6.44v29.16s.01,.04,.02,.05v10.72l-.58,9.65c-.1,1.17,.58,1.76,2.05,1.76h16.95c1.56,0,2.34-.39,2.34-1.17,0-.59-.78-1.12-2.34-1.61l-3.07-.88c-3.22-.88-4.83-3.07-4.83-6.58v-33.49c0-3.12,1.95-5.9,5.85-8.34,3.51-2.05,6.87-3.07,10.09-3.07,9.07,0,13.6,4.39,13.6,13.16v30.28c0,4.58-.61,7.48-1.83,8.7-1.22,1.22-1.83,1.88-1.83,1.97,0,.68,.63,1.02,1.9,1.02h20.18c1.56,0,2.34-.39,2.34-1.17,0-.59-.78-1.12-2.34-1.61Z"/><path class="cls-1" d="M808.87,227.12c0,2.05-.85,3.88-2.53,5.48-1.69,1.61-3.59,2.41-5.72,2.41-1.64,0-3.06-.56-4.27-1.68-1.21-1.12-1.81-2.51-1.81-4.17,0-2.14,.82-4,2.46-5.56,1.64-1.56,3.52-2.34,5.65-2.34,4.15,0,6.23,1.95,6.23,5.85Z"/><path class="cls-1" d="M887.12,256.08c0,.98-.54,1.46-1.61,1.46l-15.94,.44c3.31,3.62,4.97,8.17,4.97,13.66,0,6.46-2.49,11.72-7.46,15.79-4.97,4.06-11.17,6.1-18.57,6.1h-4.24c-5.85,0-8.78,1.88-8.78,5.63,0,3.27,2.05,4.9,6.14,4.9,.58,0,2.97-.1,7.17-.29,4.19-.19,7.55-.29,10.09-.29,7.12,0,12.38,1.12,15.8,3.36,4,2.73,6,7.36,6,13.89,0,7.99-4,14.04-11.99,18.14-6.24,3.22-13.8,4.83-22.67,4.83-6.53,0-11.94-1.32-16.23-3.95-5.17-3.22-7.75-7.9-7.75-14.04,0-6.83,3.22-11.99,9.65-15.5-2.34-1.85-3.51-4.19-3.51-7.02,0-5.17,2.24-8.68,6.73-10.53,.68-.29,1.02-.63,1.02-1.02s-.3-.73-.89-1.02c-8.67-3.8-13-10.14-13-19.01,0-6.44,2.52-11.68,7.57-15.72,5.04-4.04,11.29-6.07,18.73-6.07,4.6,0,8.86,.83,12.78,2.49l24.39-1.02c1.08,0,1.62,.39,1.62,1.17v3.66Zm-14.63,66.99c0-3.8-1.27-6.49-3.8-8.04-2.54-1.56-6.87-2.34-13.02-2.34-2.83,0-6.9,.07-12.21,.22-5.32,.15-8.26,.22-8.85,.22-3.02,.97-4.53,3.95-4.53,8.92,0,4.58,2.58,8.09,7.75,10.53,4,1.85,8.68,2.78,14.04,2.78,13.75,0,20.62-4.1,20.62-12.28Zm-8.48-49.87c0-11.8-5.53-17.7-16.6-17.7-9.6,0-14.4,4.83-14.4,14.48,0,5.56,1.42,10,4.26,13.31,2.84,3.32,7,4.97,12.49,4.97,4.6,0,8.13-1.36,10.58-4.1,2.45-2.73,3.67-6.38,3.67-10.97Z"/><path class="cls-1" d="M951.33,309.9l-3.22-.88c-3.22-.88-4.83-3.07-4.83-6.58v-29.4c0-7.41-1.88-13.14-5.63-17.18-3.75-4.04-8.75-6.07-14.99-6.07-8,0-14.09,2.78-18.28,8.34-.2,.2-.44,.24-.73,.15-.29-.1-.44-.34-.44-.73v-28.52l.59-9.65c.1-1.17-.59-1.75-2.05-1.75h-19.89c-1.56,0-2.34,.39-2.34,1.17,0,.88,.78,1.41,2.34,1.61l6,.88c3.22,.49,4.83,2.63,4.83,6.44v67.74h0v5.82l-.58,9.65c-.1,1.17,.58,1.76,2.05,1.76h16.96c1.56,0,2.34-.39,2.34-1.17,0-.59-.78-1.12-2.34-1.61l-3.07-.88c-3.22-.88-4.83-3.07-4.83-6.58v-33.49c0-3.22,1.9-6,5.7-8.34,3.31-2.05,6.73-3.07,10.24-3.07,9.07,0,13.6,4.39,13.6,13.16v31.45c0,3.8-.61,6.31-1.83,7.53-1.22,1.22-1.83,1.88-1.83,1.97,0,.68,.63,1.02,1.9,1.02h20.18c1.56,0,2.34-.39,2.34-1.17,0-.49-.73-1.02-2.19-1.61Z"/><path class="cls-1" d="M992.57,308.98c.19,.48,.1,.86-.29,1.15-3.02,2.19-7.02,3.29-11.99,3.29-11.99,0-17.99-4.4-17.99-13.2v-41.64h-11.55c-.98,0-1.46-.46-1.46-1.37v-4.42c0-1.02,.49-1.52,1.46-1.52h8.48c1.66,0,2.97-1.12,3.95-3.36l6.87-16.38c.39-.88,.88-1.32,1.46-1.32,.88,0,1.32,.59,1.32,1.76v19.31h16.67c.97,0,1.46,.39,1.46,1.17v4.97c0,.78-.44,1.17-1.32,1.17h-16.82v38.86c0,7.73,3.02,11.6,9.07,11.6,3.31,0,6.14-.68,8.48-2.05,.59-.59,1.07-.54,1.46,.14l.73,1.86Z"/><path class="cls-1" d="M476.04,314.87c-4.03,.87-12.77,4.56-21.37,9.46h5.9c8.58-4.69,17.15-8.58,24.05-10.18,.96-.22,1.95-.5,2.78-.8l-11.36,1.51Z"/><path class="cls-1" d="M441.15,335.96s16.77-11.32,32.67-11.47c20.7-.22,39.84,31.26,64.38,31.26,22.91,0,32.95-15.75,37.73-28.74l-.99-.45c-8.9,13.18-18.04,17.67-32.68,17.67-25.61,0-34.2-25.54-68.39-25.16-18.13,.18-32.89,14.25-32.72,16.88"/><g><g><polygon class="cls-1" points="185.77 200.68 192.03 188.12 209.25 197.71 203.78 208.67 185.77 200.68"/><polygon class="cls-1" points="199.4 176.19 207.81 164.96 223.03 177.48 215.68 187.28 199.4 176.19"/><polygon class="cls-1" points="217.19 154.54 227.48 145.01 240.21 160.05 231.23 168.38 217.19 154.54"/><polygon class="cls-1" points="238.58 136.43 250.42 128.89 260.24 145.98 249.91 152.56 238.58 136.43"/><polygon class="cls-1" points="275.51 147.66 286.23 143.32 291.64 158.63 282.3 162.42 275.51 147.66"/><polygon class="cls-1" points="255.48 159.18 265.23 152.96 273.33 167.05 264.82 172.47 255.48 159.18"/><polygon class="cls-1" points="207 302.56 204.01 291.39 219.88 287.91 222.48 297.66 207 302.56"/><polygon class="cls-1" points="202.05 279.99 201.11 268.48 217.35 267.89 218.17 277.96 202.05 279.99"/><polygon class="cls-1" points="201.21 256.92 202.35 245.41 218.43 247.74 217.43 257.78 201.21 256.92"/><polygon class="cls-1" points="204.53 234.04 207.74 222.92 223.13 228.12 220.33 237.83 204.53 234.04"/><polygon class="cls-1" points="211.94 212.14 217.11 201.79 231.3 209.69 226.8 218.72 211.94 212.14"/><polygon class="cls-1" points="286.32 170.97 294.88 167.5 299.2 179.73 291.74 182.75 286.32 170.97"/><polygon class="cls-1" points="237.85 174.11 246.33 166.25 256.83 178.64 249.42 185.51 237.85 174.11"/><polygon class="cls-1" points="271.11 140.37 262.88 122.46 275.89 117.19 282.45 135.77 271.11 140.37"/><polygon class="cls-1" points="270.32 180.16 278.11 175.2 284.58 186.45 277.78 190.78 270.32 180.16"/><polygon class="cls-1" points="256.25 192.08 263.02 185.81 271.4 195.7 265.49 201.19 256.25 192.08"/><polygon class="cls-1" points="223.18 191.95 230.11 182.7 242.66 193.01 236.61 201.1 223.18 191.95"/><polygon class="cls-1" points="244.54 206.33 250.07 198.94 260.09 207.18 255.26 213.63 244.54 206.33"/><polygon class="cls-1" points="235.57 222.44 239.69 214.18 251.02 220.49 247.42 227.7 235.57 222.44"/><polygon class="cls-1" points="229.65 239.93 232.21 231.05 244.5 235.21 242.26 242.95 229.65 239.93"/><polygon class="cls-1" points="227 258.2 227.91 249 240.74 250.87 239.95 258.89 227 258.2"/><polygon class="cls-1" points="227.67 276.62 226.92 267.43 239.88 266.95 240.54 275 227.67 276.62"/><polygon class="cls-1" points="229.23 285.72 241.9 282.94 243.98 290.72 231.62 294.64 229.23 285.72"/><polygon class="cls-1" points="179.76 310.38 176.14 296.82 195.39 292.6 198.55 304.43 179.76 310.38"/><polygon class="cls-1" points="173.76 283 172.63 269.03 192.33 268.31 193.32 280.53 173.76 283"/><polygon class="cls-1" points="172.75 255 174.13 241.04 193.63 243.87 192.43 256.05 172.75 255"/><polygon class="cls-1" points="176.77 227.25 180.67 213.75 199.33 220.07 195.94 231.84 176.77 227.25"/></g><g><polygon class="cls-3" points="364.25 282.78 372.4 294.21 355.85 304.91 348.74 294.94 364.25 282.78"/><polygon class="cls-3" points="379.48 306.32 385.44 319.02 367.23 326.58 362.03 315.49 379.48 306.32"/><polygon class="cls-3" points="390.23 332.2 393.82 345.75 374.56 349.94 371.42 338.09 390.23 332.2"/><polygon class="cls-3" points="396.17 359.58 397.27 373.57 377.57 374.22 376.62 362.01 396.17 359.58"/><polygon class="cls-3" points="368.92 386.92 367.72 398.42 351.65 396.01 352.7 385.97 368.92 386.92"/><polygon class="cls-3" points="368.16 363.82 369.06 375.35 352.82 375.89 352.03 365.82 368.16 363.82"/><polygon class="cls-3" points="264.33 253.68 275.6 256.29 271.22 271.94 261.39 269.66 264.33 253.68"/><polygon class="cls-3" points="286.58 259.91 297.19 264.5 290.08 279.11 280.81 275.1 286.58 259.91"/><polygon class="cls-3" points="307.35 270.01 316.98 276.42 307.37 289.52 298.96 283.93 307.35 270.01"/><polygon class="cls-3" points="325.99 283.68 334.3 291.74 322.48 302.88 315.22 295.85 325.99 283.68"/><polygon class="cls-3" points="341.84 300.51 348.56 309.93 334.91 318.75 329.05 310.53 341.84 300.51"/><polygon class="cls-3" points="343.26 385.51 342.31 394.7 329.48 392.77 330.32 384.76 343.26 385.51"/><polygon class="cls-3" points="363.25 341.24 366.21 352.42 350.34 355.87 347.75 346.11 363.25 341.24"/><polygon class="cls-3" points="377.42 386.46 397.1 387.6 395.64 401.56 376.15 398.63 377.42 386.46"/><polygon class="cls-3" points="342.66 367.07 343.38 376.28 330.42 376.71 329.79 368.67 342.66 367.07"/><polygon class="cls-3" points="338.74 349.05 341.11 357.97 328.43 360.72 326.37 352.93 338.74 349.05"/><polygon class="cls-3" points="354.39 319.92 359.3 330.38 344.3 336.62 340.01 327.47 354.39 319.92"/><polygon class="cls-3" points="331.67 332.02 335.59 340.38 323.61 345.35 320.19 338.05 331.67 332.02"/><polygon class="cls-3" points="321.65 316.53 327.01 324.05 316.12 331.09 311.44 324.53 321.65 316.53"/><polygon class="cls-3" points="308.99 303.09 315.63 309.53 306.19 318.42 300.4 312.81 308.99 303.09"/><polygon class="cls-3" points="294.11 292.18 301.8 297.3 294.13 307.76 287.42 303.29 294.11 292.18"/><polygon class="cls-3" points="277.53 284.12 286 287.77 280.33 299.44 272.92 296.24 277.53 284.12"/><polygon class="cls-3" points="268.76 281.23 265.26 293.72 257.42 291.9 259.77 279.14 268.76 281.23"/><polygon class="cls-3" points="270.22 225.97 283.89 229.14 278.57 248.11 266.65 245.35 270.22 225.97"/><polygon class="cls-3" points="297.21 233.53 310.08 239.09 301.46 256.81 290.21 251.95 297.21 233.53"/><polygon class="cls-3" points="322.4 245.78 334.09 253.56 322.43 269.45 312.23 262.66 322.4 245.78"/><polygon class="cls-3" points="345.02 262.37 355.1 272.14 340.76 285.66 331.96 277.13 345.02 262.37"/></g><g><polygon class="cls-2" points="204.21 398.47 190.22 399.6 189.52 379.91 201.73 378.92 204.21 398.47"/><polygon class="cls-2" points="176.19 399.47 162.24 398.07 165.08 378.56 177.27 379.79 176.19 399.47"/><polygon class="cls-2" points="148.47 395.42 134.98 391.55 141.27 372.87 153.05 376.25 148.47 395.42"/><polygon class="cls-2" points="121.9 386.48 109.33 380.24 118.88 363 129.85 368.44 121.9 386.48"/><polygon class="cls-2" points="112.43 349.06 103.16 342.13 113.48 329.58 121.56 335.62 112.43 349.06"/><polygon class="cls-2" points="132.64 360.25 122.28 355.11 130.15 340.9 139.19 345.38 132.64 360.25"/><polygon class="cls-2" points="280.44 327.63 272.42 335.96 261.24 324.17 268.24 316.9 280.44 327.63"/><polygon class="cls-2" points="263.68 343.53 254.31 350.28 245.41 336.69 253.61 330.78 263.68 343.53"/><polygon class="cls-2" points="244.36 356.18 233.92 361.15 227.6 346.18 236.72 341.84 244.36 356.18"/><polygon class="cls-2" points="223.06 365.16 211.88 368.17 208.38 352.3 218.14 349.68 223.06 365.16"/><polygon class="cls-2" points="200.48 370.14 188.95 371.07 188.38 354.84 198.44 354.02 200.48 370.14"/><polygon class="cls-2" points="126.79 327.76 119.4 322.23 127.63 312.2 134.08 317.03 126.79 327.76"/><polygon class="cls-2" points="154.53 367.63 143.42 364.43 148.61 349.04 158.31 351.82 154.53 367.63"/><polygon class="cls-2" points="108.46 356.59 97.38 372.89 86.15 364.49 98.66 349.26 108.46 356.59"/><polygon class="cls-2" points="142.93 336.7 134.66 332.59 140.94 321.25 148.16 324.83 142.93 336.7"/><polygon class="cls-2" points="160.41 342.58 151.54 340.03 155.68 327.74 163.43 329.97 160.41 342.58"/><polygon class="cls-2" points="177.39 370.96 165.89 369.81 168.23 353.73 178.28 354.74 177.39 370.96"/><polygon class="cls-2" points="178.66 345.24 169.47 344.32 171.34 331.49 179.37 332.29 178.66 345.24"/><polygon class="cls-2" points="197.09 344.59 187.89 345.33 187.43 332.37 195.46 331.72 197.09 344.59"/><polygon class="cls-2" points="215.12 340.62 206.19 343.01 203.4 330.35 211.19 328.26 215.12 340.62"/><polygon class="cls-2" points="232.12 333.44 223.79 337.42 218.74 325.46 226.02 322 232.12 333.44"/><polygon class="cls-2" points="247.55 323.35 240.06 328.74 232.96 317.88 239.51 313.17 247.55 323.35"/><polygon class="cls-2" points="254.53 317.3 245.6 307.89 251.19 302.09 260.93 310.65 254.53 317.3"/><polygon class="cls-2" points="301.21 346.9 291.48 357.01 277.92 342.71 286.41 333.89 301.21 346.9"/><polygon class="cls-2" points="280.88 366.19 269.51 374.38 258.71 357.89 268.66 350.73 280.88 366.19"/><polygon class="cls-2" points="257.44 381.53 244.77 387.57 237.11 369.41 248.16 364.14 257.44 381.53"/><polygon class="cls-2" points="231.6 392.43 218.03 396.08 213.79 376.83 225.62 373.65 231.6 392.43"/></g></g></svg>
\ No newline at end of file
|
numpy/numpy.org
|
5edac4332b7d9919fcdaa9a32551f2f5ea02cbd0
|
DOC: Add how to contribute translations in crowdin (#681)
|
diff --git a/content/en/contribute.md b/content/en/contribute.md
index acad323..8a5d9e5 100644
--- a/content/en/contribute.md
+++ b/content/en/contribute.md
@@ -1,115 +1,118 @@
---
title: Contribute to NumPy
sidebar: false
---
The NumPy project welcomes your expertise and enthusiasm!
Your choices aren't limited to programming, as you can
see below there are many areas where we need **your** help.
If you're unsure where to start or how your skills fit in, _reach out!_ You
can ask on the [mailing
list](https://mail.python.org/mailman/listinfo/numpy-discussion) or
[GitHub](http://github.com/numpy/numpy) (open an
[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
issue).
Those are our preferred channels (open source is open by nature), but
if you prefer to talk privately, contact our community coordinators at
<[email protected]> or on [Slack](https://numpy-team.slack.com)
(write <[email protected]> for an invite).
We also have a biweekly _community call_, details of which are announced on
the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
You are very welcome to join.
If you are new to contributing to open source, we also highly recommend reading
[this guide](https://opensource.guide/how-to-contribute/).
Our community aspires to treat everyone equally and to value all
contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open
and welcoming environment.
For a visual guide on how to contribute to NumPy, check out this [comic](https://heyzine.com/flip-book/3e66a13901.html).
{{< comic >}}
### Writing code
Programmers, this
[guide](https://numpy.org/devdocs/dev/index.html#development-process-summary)
explains how to contribute to the NumPy codebase.
<br>Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
### Reviewing pull requests
The project has more than 250 open pull requests -- meaning many potential
improvements and many open-source contributors waiting for feedback. If you're
a developer who knows NumPy, you can help even if you're not familiar with the
codebase. You can:
* summarize a long-running discussion
* triage documentation PRs
* test proposed changes
### Developing educational materials
NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
We're in need of new tutorials, how-to's, and deep-dive explanations, and the
site needs restructuring. Opportunities aren't limited to writers. We'd also
welcome worked examples, notebooks, and videos. [NEP 44 â Restructuring the
NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)
lays out our ideas -- and you may have others.
### Issue triaging
The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
of open issues. Some are no longer valid, some should be prioritized, and some
would make good issues for new contributors. You can:
* check if older bugs are still present
* find duplicate issues and link related ones
* add good self-contained reproducers to issues
* label issues correctly (this requires triage rights -- just ask)
Please just dive in.
### Website development
We've just revamped our website, but we're far from done. If you love web
development, these
[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
list some of our unmet needs -- and feel free to share your own ideas.
### Graphic design
We can barely begin to list the contributions a graphic designer can make here.
Our docs are parched for illustration; our growing website craves images --
opportunities abound.
### Translating website content
-We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
-accessible to users in their native language. Volunteer translators are at the heart
-of this effort. See
-[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
-for background; comment on [this GitHub
-issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
+We are working on translating [numpy.org](https://numpy.org) into multiple languages to make
+its content more accessible to NumPy users all over the globe. (See
+[NEP 28](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
+for background.) Volunteer translators are at the heart of this effort. If you'd like to help, join the
+*translation* channel on the
+[Scientific Python Discord server](https://discord.com/channels/786703927705862175/1131695137370669158).
+
+To get familiar with our translation process, read the guide
+[How to translate content using Crowdin](https://scientific-python-translations.github.io/translate/).
### Community coordination and outreach
Through community contact we share our work more widely and learn where we're
falling short. We're eager to get more people involved in efforts like organizing NumPy [code
sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
### Fundraising
For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
became clear that to ensure stability and growth we would need financial support.
[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
and other kinds of funding. We have a number of ideas and of course we welcome more.
Fundraising is a scarce skill here -- we'd appreciate your help.
### Donate
If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
|
numpy/numpy.org
|
2e38577379acc09eb5a5ee90181c7e4b12558736
|
announce NumPy 2.2.6
|
diff --git a/content/en/news.md b/content/en/news.md
index 3133b6f..3dcc92e 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,495 +1,496 @@
---
title: "News"
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-08
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.2.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.6)) -- _17 May 2025_.
- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
5d3476bc8fb019d559551b4ec74319058da2062e
|
Make the name accents consistent
|
diff --git a/content/en/learn.md b/content/en/learn.md
index 373d8a0..a56f90f 100644
--- a/content/en/learn.md
+++ b/content/en/learn.md
@@ -1,76 +1,76 @@
---
title: Learn
sidebar: false
---
For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
***
Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
## Beginners
There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
<i class="fas fa-chalkboard"></i> **Tutorials**
* [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
* [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
* [NumPy User Guide](https://numpy.org/devdocs)
<i class="fas fa-book"></i> **Books**
* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
* [From Python to NumPy *by Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
-* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
+* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *by Juan Nunez-Iglesias, Stéfan van der Walt, and Harriet Dashnow*
You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
<i class="far fa-file-video"></i> **Videos**
* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
***
## Advanced
Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
<i class="fas fa-chalkboard"></i> **Tutorials**
* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *by Nicolas P. Rougier*
* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *by M. Scott Shell*
* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *by Stéfan van der Walt*
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
<i class="fas fa-book"></i> **Books**
* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) *by Jake Vanderplas*
* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) *by Wes McKinney*
* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
<i class="far fa-file-video"></i> **Videos**
* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *by Juan Nunez-Iglesias*
***
## NumPy Talks
* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
-* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
+* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stéfan van der Walt, Charles Harris* (2019)
* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
***
## Citing NumPy
If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
|
numpy/numpy.org
|
471d70b9670f4de52acca1ca34cd7e284fc1a608
|
Announce the NumPy 2.2.5 release (#849)
|
diff --git a/content/en/news.md b/content/en/news.md
index c940dac..3133b6f 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,494 +1,495 @@
---
title: "News"
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-08
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
384a0ddf34a2975ce1d5906309413213047a8eeb
|
Correct capitalization of NumPy in config.yaml (#848)
|
diff --git a/content/en/config.yaml b/content/en/config.yaml
index 63ac094..6ee1230 100644
--- a/content/en/config.yaml
+++ b/content/en/config.yaml
@@ -1,117 +1,117 @@
languageName: English
params:
description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
navbarlogo:
image: logo.svg
text: NumPy
link: /
hero:
# Main hero title
title: NumPy
# Hero subtitle (optional)
subtitle: The fundamental package for scientific computing with Python
# Button text
buttontext: "Latest release: NumPy 2.2. View all releases"
# Where the main hero button links to
buttonlink: "/news/#releases"
# Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
- title: Try NumPy
text: Use the interactive shell to try NumPy in the browser
docslink: Don't forget to check out the <a href="https://numpy.org/doc/stable" target="_blank">docs</a>.
casestudies:
title: CASE STUDIES
features:
- title: First Image of a Black Hole
text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
img: /images/content_images/case_studies/blackhole.png
alttext: First image of a black hole. It is an orange circle in a black background.
url: /case-studies/blackhole-image
- title: Detection of Gravitational Waves
text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Two orbs orbiting each other. They are displacing gravity around them.
url: /case-studies/gw-discov
- title: Sports Analytics
text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
img: /images/content_images/case_studies/sports.jpg
alttext: Cricket ball on green field.
url: /case-studies/cricket-analytics
- title: Pose Estimation using deep learning
text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Cheetah pose analysis
url: /case-studies/deeplabcut-dnn
tabs:
title: ECOSYSTEM
section5: false
navbar:
- title: Install
url: /install
- title: Documentation
url: https://numpy.org/doc/stable
- title: Learn
url: /learn
- title: Community
url: /community
- title: About Us
url: /about
- title: News
url: /news
- title: Contribute
url: /contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- link: https://github.com/numpy/numpy
icon: github
- link: https://www.youtube.com/@NumPy_team
icon: youtube
quicklinks:
column1:
title: ""
links:
- text: Install
link: /install
- text: Documentation
link: https://numpy.org/doc/stable
- text: Learn
link: /learn
- - text: Citing Numpy
+ - text: Citing NumPy
link: /citing-numpy
- text: Roadmap
link: https://numpy.org/neps/roadmap.html
column2:
links:
- text: About us
link: /about
- text: Community
link: /community
- text: User surveys
link: /user-surveys
- text: Contribute
link: /contribute
- text: Code of conduct
link: /code-of-conduct
column3:
links:
- text: Get help
link: /gethelp
- text: Terms of use
link: /terms
- text: Privacy
link: /privacy
- text: Press kit
link: /press-kit
|
numpy/numpy.org
|
3dae42be21c5c1af23f9661e92ad0b6c80d3e31a
|
Remove a broken link in cricket-analytics.md
|
diff --git a/content/en/case-studies/cricket-analytics.md b/content/en/case-studies/cricket-analytics.md
index 926a562..6abd3b0 100644
--- a/content/en/case-studies/cricket-analytics.md
+++ b/content/en/case-studies/cricket-analytics.md
@@ -1,164 +1,164 @@
---
title: "Case Study: Cricket Analytics, the game changer!"
sidebar: false
---
{{< figure >}}
src = '/images/content_images/cs/ipl-stadium.png'
title = 'IPLT20, the biggest Cricket Festival in India'
alt = 'Indian Premier League Cricket cup and stadium'
attribution = '(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))'
attributionlink = 'https://unsplash.com/@aksh1802'
{{< /figure >}}
{{< blockquote
cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
by="M S Dhoni, *International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL*"
>}}
You don't play for the crowd, you play for the country.
{{< /blockquote >}}
## About Cricket
It would be an understatement to state that Indians love cricket. The game is
played in just about every nook and cranny of India, rural or urban, popular
with the young and the old alike, connecting billions in India unlike any other sport.
Cricket enjoys lots of media attention. There is a significant amount of
[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
fame at stake. Over the last several years, technology has literally been a game
changer. Audiences are spoilt for choice with streaming media, tournaments,
affordable access to mobile based live cricket watching, and more.
The Indian Premier League (IPL) is a professional Twenty20 cricket
league, founded in 2008. It is one of the most attended cricketing events in
the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
in 2019.
Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
by a bowler, the matches won by a cricket team, the number of times a batsman
responds in a certain way to a kind of bowling attack, etc. The capability to
dig into cricketing numbers for both improving performance and studying
the business opportunities, overall market, and economics of cricket via powerful
analytics tools, powered by numerical computing software such as NumPy, is a big
deal. Cricket analytics provides interesting insights into the game and
predictive intelligence regarding game outcomes.
Today, there are rich and almost infinite troves of cricket game records and
statistics available, e.g., [ESPN
cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) and
[cricsheet](https://cricsheet.org). These and several such cricket databases
have been used for [cricket
analysis](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances)
using the latest machine learning and predictive modelling algorithms.
Media and entertainment platforms along with professional sports bodies
associated with the game use technology and analytics for determining key
metrics for improving match winning chances:
* batting performance moving average,
* score forecasting,
* gaining insights into fitness and performance of a player against different opposition,
* player contribution to wins and losses for making strategic decisions on team composition
{{< figure >}}
src = '/images/content_images/cs/cricket-pitch.png'
title = 'Cricket Pitch, the focal point in the field'
alt = 'A cricket pitch with bowler and batsmen'
align = 'center'
attribution = '(Image credit: Debarghya Das)'
attributionlink = 'http://debarghyadas.com/files/IPLpaper.pdf'
{{< /figure >}}
### Key Data Analytics Objectives
* Sports data analytics are used not only in cricket but many [other
sports](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) for
improving the overall team performance and maximizing winning chances.
* Real-time data analytics can help in gaining insights even during the game
for changing tactics by the team and by associated businesses for economic
benefits and growth.
* Besides historical analysis, predictive models are
harnessed to determine the possible match outcomes that require significant
number crunching and data science know-how, visualization tools and capability
to include newer observations in the analysis.
{{< figure >}}
src = '/images/content_images/cs/player-pose-estimator.png'
alt = 'pose estimator'
title = 'Cricket Pose Estimator'
attribution = '(Image credit: connect.vin)'
attributionlink = 'https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/'
{{< /figure >}}
### The Challenges
* **Data Cleaning and preprocessing**
IPL has expanded cricket beyond the classic test match format to a much
larger scale. The number of matches played every season across various
formats has increased and so has the data, the algorithms, newer sports data
analysis technologies and simulation models. Cricket data analysis requires
field mapping, player tracking, ball tracking, player shot analysis, and
several other aspects involved in how the ball is delivered, its angle, spin,
velocity, and trajectory. All these factors together have increased the
complexity of data cleaning and preprocessing.
* **Dynamic Modeling**
In cricket, just like any other sport,
there can be a large number of variables related to tracking various numbers
of players on the field, their attributes, the ball, and several possibilities
of potential actions. The complexity of data analytics and modeling is
directly proportional to the kind of predictive questions that are put forth
during analysis and are highly dependent on data representation and the
model. Things get even more challenging in terms of computation, data
comparisons when dynamic cricket play predictions are sought such as what
would have happened if the batsman had hit the ball at a different angle or
velocity.
* **Predictive Analytics Complexity**
Much of the decision making in cricket is based on questions such as "how
often does a batsman play a certain kind of shot if the ball delivery is of a
particular type", or "how does a bowler change his line and length if the
batsman responds to his delivery in a certain way".
This kind of predictive analytics query requires highly granular dataset
availability and the capability to synthesize data and create generative
models that are highly accurate.
## NumPyâs Role in Cricket Analytics
Sports Analytics is a thriving field. Many researchers and companies
[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
besides using the latest machine learning and AI techniques. NumPy has been used
for various kinds of cricket related sporting analytics such as:
* **Statistical Analysis:** NumPy's numerical capabilities help estimate the
statistical significance of observational data or match events in the context
of various player and game tactics, estimating the game outcome by comparison
with a generative or static model.
[Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
are used for tactical analysis.
-* **Data Visualization:** Data graphing and [visualization](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) provide useful insights into relationship between various datasets.
+* **Data Visualization:** Data graphing and visualization provide useful insights into relationship between various datasets.
## Summary
Sports Analytics is a game changer when it comes to how professional games are
played, especially how strategic decision making happens, which until recently
was primarily done based on âgut feeling" or adherence to past traditions. NumPy
forms a solid foundation for a large set of Python packages which provide higher
level functions related to data analytics, machine learning, and AI algorithms.
These packages are widely deployed to gain real-time insights that help in
decision making for game-changing outcomes, both on field as well as to draw
inferences and drive business around the game of cricket. Finding out the
hidden parameters, patterns, and attributes that lead to the outcome of a
cricket match helps the stakeholders to take notice of game insights that are
otherwise hidden in numbers and statistics.
{{< figure >}}
src = '/images/content_images/cs/numpy_ca_benefits.png'
alt = 'Diagram showing benefits of using NumPy for cricket analytics'
title = 'Key NumPy Capabilities utilized'
{{< /figure >}}
|
numpy/numpy.org
|
d2f40688ee11f9d4be724c033d7eb424c1c42614
|
Change PyMC3 to PyMC due to the name change of the project
|
diff --git a/content/en/tabcontents.yaml b/content/en/tabcontents.yaml
index 69ddf6e..1ffe038 100644
--- a/content/en/tabcontents.yaml
+++ b/content/en/tabcontents.yaml
@@ -1,295 +1,295 @@
params:
machinelearning:
paras:
- para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlowâs](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
arraylibraries:
intro:
- text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
headers:
- text: Array Library
- text: Capabilities & Application areas
libraries:
- title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.dev
- title: JAX
text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://jax.readthedocs.io/
- title: Xarray
text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://arrow.apache.org/
- title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipulate JSON-like data with NumPy-like idioms.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Nearly every scientist working in Python draws on the power of NumPy.
- text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
libraries:
- title: Quantum Computing
alttext: A computer chip.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: https://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Statistical Computing
alttext: A line graph with the line moving up.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- url: https://www.statsmodels.org/
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- url: https://seaborn.pydata.org/
label: Seaborn
- title: Signal Processing
alttext: A bar chart with positive and negative values.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
- url: https://hyperspy.org/
label: HyperSpy
- title: Image Processing
alttext: An photograph of the mountains.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
- title: Graphs and Networks
alttext: A simple graph.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: Astronomy
alttext: A telescope.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- url: https://sunpy.org/
label: SunPy
- url: https://spacepy.github.io/
label: SpacePy
- title: Cognitive Psychology
alttext: A human head with gears.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformatics
alttext: A strand of DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
- label: PyMC3
+ label: PyMC
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Mathematical Analysis
alttext: Four mathematical symbols.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- url: https://www.cvxpy.org/
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: Chemistry
alttext: A test tube.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geoscience
alttext: The Earth.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Geographic Processing
alttext: A map.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Architecture & Engineering
alttext: A microprocessor development board.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- - text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
content:
- text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
- url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.
content:
- text: NumPy is an essential component in the burgeoning
[Python visualization landscape](https://pyviz.org/overviews/index.html),
which includes [Matplotlib](https://matplotlib.org),
[Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly),
[Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/),
[Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/),
and [PyVista](https://docs.pyvista.org/), to name a few.
- text: NumPy's accelerated processing of large arrays allows researchers to visualize
datasets far larger than native Python could handle.
diff --git a/content/es/tabcontents.yaml b/content/es/tabcontents.yaml
index 1b4e97a..81b705c 100644
--- a/content/es/tabcontents.yaml
+++ b/content/es/tabcontents.yaml
@@ -1,275 +1,275 @@
params:
machinelearning:
paras:
- para1: NumPy constituye la base de potentes librerÃas de aprendizaje automático como [scikit-learn](https://scikit-learn.org) y [SciPy](https://www.scipy.org). A medida que crece el aprendizaje automático, también lo hace la lista de librerÃas basadas en NumPy. Las capacidades de aprendizaje profundo de [TensorFlow](https://www.tensorflow.org) tienen amplias aplicaciones— entre ellas el reconocimiento de voz e imágenes, las aplicaciones basadas en texto, el análisis de series de tiempo y la detección de vÃdeo. [PyTorch](https://pytorch.org), otra librerÃa de aprendizaje profundo, es popular entre los investigadores de visión artificial y procesamiento del lenguaje natural.
para2: Las técnicas estadÃsticas denominadas métodos [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205), como binning, bagging, stacking y boosting, se encuentran entre los algoritmos de ML implementados por herramientas como [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/) y [CatBoost](https://catboost.ai) — uno de los motores de inferencia más rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) y [Eli5](https://eli5.readthedocs.io/en/latest/) ofrecen visualizaciones de aprendizaje automático.
arraylibraries:
intro:
- text: La API de NumPy es el punto de partida cuando se escriben librerÃas para explotar hardware innovador, crear tipos de arreglos especializadas o añadir capacidades más allá de lo que NumPy proporciona.
headers:
- text: LibrerÃa de arreglos
- text: Capacidades y áreas de aplicación
libraries:
- title: Dask
text: Arreglos distribuidos y paralelismo avanzado para análisis, que permiten un rendimiento a escala.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: LibrerÃa de arreglos compatible con NumPy para cálculo acelerado en la GPU con Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.dev
- title: JAX
text: "Transformaciones componibles de programas NumPy: diferenciar, vectorizar, compilación justo-a-tiempo a GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://jax.readthedocs.io/
- title: Xarray
text: Arreglos multidimensionales indexados y etiquetados para análisis y visualización avanzados.
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: LibrerÃa de arreglos dispersos compatible con NumPy que se integra con el álgebra lineal dispersa de Dask y SciPy.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Marco de aprendizaje profundo que acelera el camino desde la creación de prototipos de investigación hasta la implantación en producción.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: Una plataforma integral de aprendizaje automático para crear y desplegar fácilmente aplicaciones basadas en ML.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: Arrow
text: Plataforma de desarrollo multilingüe para datos y análisis columnares en memoria.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://arrow.apache.org/
- title: xtensor
text: Arreglos multidimensionales con difusión y computación perezosa para análisis numérico.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipular datos similares a JSON con expresiones similares a NumPy.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Sistema de backend de Python que desacopla la API de la implementación; unumpy proporciona una API de NumPy.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Aprendizaje tensorial, álgebra y backends para usar de manera fluida NumPy, PyTorch, TensorFlow o CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Casi todos los cientÃficos que trabajan en Python recurren a la potencia de NumPy.
- text: "NumPy aporta la potencia de cálculo de lenguajes como C y Fortran a Python, un lenguaje mucho más fácil de aprender y utilizar. Con esta potencia viene la sencillez: una solución en NumPy suele ser clara y elegante."
libraries:
- title: Computación Cuántica
alttext: Un chip para computador.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: https://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Computación EstadÃstica
alttext: Un gráfico lineal con la lÃnea moviéndose hacia arriba.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- url: https://www.statsmodels.org/
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- url: https://seaborn.pydata.org/
label: Seaborn
- title: Procesamiento de Señales
alttext: Un gráfico de barras con valores positivos y negativos.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
- url: https://hyperspy.org/
label: HiperSpy
- title: Procesamiento de Imágenes
alttext: Una fotografÃa de las montañas.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
- title: Grafos y Redes
alttext: Un grafo simple.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: AstronomÃa
alttext: Un telescopio.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- url: https://sunpy.org/
label: SunPy
- url: https://spacepy.github.io/
label: SpacePy
- title: PsicologÃa Cognitiva
alttext: Una cabeza humana con engranajes.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformática
alttext: Una hebra de ADN.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Inferencia Bayesiana
alttext: Un gráfico con una curva en forma de campanas.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
- label: PyMC3
+ label: PyMC
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Análisis Matemático
alttext: Cuatro sÃmbolos matemáticos.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- url: https://www.cvxpy.org/
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: QuÃmica
alttext: Un tubo de ensayo.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geociencia
alttext: La Tierra.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Procesamiento Geográfico
alttext: Un mapa.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Arquitectura e IngenierÃa
alttext: Una placa de desarrollo de microprocesadores.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst - Analista de EnergÃa de Ciudad
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy es el núcleo de un rico ecosistema de librerÃas de ciencia de datos. Un flujo de trabajo exploratorio tÃpico de ciencia de datos podrÃa verse asÃ:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagrama de las librerÃas de Python. Las cinco categorÃas son "Extraer, Transformar, Cargar", "Exploración de Datos", "Modelado de Datos", "Evaluación de Datos" y "Presentación de Datos".
image2:
- img: /images/content_images/data-science.png
alttext: Diagrama de tres cÃrculos superpuestos. Los cÃrculos se denominan "Matemáticas", "Ciencias de la Computación" y "Conocimientos Especializados". En el centro del diagrama, con los tres cÃrculos superpuestos, hay un área denominada "Ciencia de datos".
examples:
- text: "<b>Extraer, Transformar, Cargar: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
- text: "<b>Análisis Exploratorio: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- - text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
- text: "<b>Informes en un panel de control: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
content:
- text: Para grandes volúmenes de datos, [Dask](https://dask.org) y [Ray](https://ray.io/) están diseñados para escalarse. Las implementaciones estables se basan en el versionado de datos ([DVC](https://dvc.org)), rastreo de experimentos ([MLFlow](https://mlflow.org)), y automatización del flujo de trabajo ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) y [Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: Un diagrama de flujo hecho en matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: Un diagrama de dispersión hecho en ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: Un diagrama de caja hecho en plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: Un diagrama de flujo hecho en altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: Un gráfico de pares de dos tipos de gráficos, un gráfico de trazado y un gráfico de frecuencias hecho en seaborn
- url: https://docs.pyvista.org/examples/index.html
img: /images/content_images/v_pyvista.png
alttext: Un renderizado de volumen 3D realizado en PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: Una imagen multidimensional hecha en napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: Un diagrama de Voronoi hecho en vispy.
content:
- text: NumPy es un componente esencial en el floreciente [panorama de visualización de Python](https://pyviz.org/overviews/index.html), que incluye [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), y [PyVista](https://github.com/pyvista/pyvista), por nombrar algunos.
- text: El procesamiento acelerado de arreglos de gran tamaño de NumPy permite a los investigadores visualizar conjuntos de datos mucho mayores a los que el Python nativo podrÃa manejar.
diff --git a/content/ja/tabcontents.yaml b/content/ja/tabcontents.yaml
index 26c3241..c038cdc 100644
--- a/content/ja/tabcontents.yaml
+++ b/content/ja/tabcontents.yaml
@@ -1,373 +1,373 @@
params:
machinelearning:
paras:
-
para1: NumPyã¯ã[scikit-learn](https://scikit-learn.org)ã[SciPy](https://www.scipy.org)ã®ãããªå¼·åãªæ©æ¢°å¦ç¿ã©ã¤ãã©ãªã®åºç¤ãå½¢æãã¦ãã¾ããæ©æ¢°å¦ç¿ã®æè¡åéãæé·ããã«ã¤ããNumPyããã¼ã¹ã«ããã©ã¤ãã©ãªã®æ°ãå¢ãã¦ãã¾ãã[TensorFlow](https://www.tensorflow.org)ã®æ·±å±¤å¦ç¿æ©è½ã¯ãé³å£°èªèãç»åèªèãããã¹ããã¼ã¹ã®ã¢ããªã±ã¼ã·ã§ã³ãæç³»ååæãåç»æ¤åºãªã©ãå¹
åºãå¿ç¨ç¨éãããã¾ãã[PyTorch](https://pytorch.org)ããã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãèªç¶è¨èªå¦çã®ç ç©¶è
ã«äººæ°ã®ããæ·±å±¤å¦ç¿ã©ã¤ãã©ãªã§ãã[MXNet](https://github.com/apache/incubator-mxnet)ãAIããã±ã¼ã¸ã®ä¸ã¤ã§ã深層å¦ç¿ã®è¨è¨å³ããã³ãã¬ã¼ãæ©è½ãæä¾ãã¦ãã¾ãã
para2: '[ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205)æ³ã¨å¼ã°ããçµ±è¨çææ³ã§ãããã³ãã³ã°ããã®ã³ã°ãã¹ã¿ããã³ã°ãã[XGBoost](https://github.com/dmlc/xgboost)ã[LightGBM](https://lightgbm.readthedocs.io/en/latest/)ã[CatBoost](https://catboost.ai)ãªã©ã®ãã¼ã«ã§å®è£
ããã¦ãããã¼ã¹ãã£ã³ã°ãªã©ã¯ãæ©æ¢°å¦ç¿ã¢ã«ã´ãªãºã ã®ä¸ã¤ã§ãããæéã®æ¨è«ã¨ã³ã¸ã³ã®ä¸ã¤ã§ãã[Yellowbrick](https://www.scikit-yb.org/en/latest/)ã[Eli5](https://eli5.readthedocs.io/en/latest/)ã¯æ©æ¢°å¦ç¿ã®å¯è¦åæ©è½ãæä¾ãã¦ãã¾ãã'
arraylibraries:
intro:
-
text: NumPyã®APIã¯ã驿°çãªãã¼ãã¦ã§ã¢ãå©ç¨ããããç¹æ®ãªé
åã¿ã¤ãã使ããããNumPyãæä¾ãã以ä¸ã®æ©è½ã追å ããããã«ã©ã¤ãã©ãªã使ããéã®åºç¤ã¨ãªãã¾ãã
headers:
-
text: é
åã©ã¤ãã©ãª
-
text: æ©è½ã¨å¿ç¨åé
libraries:
-
title: Dask
text: åæç¨ã®åæ£é
åã¨é«åº¦ãªä¸¦åå¦çã«ãããå¤§è¦æ¨¡ãªå¦çãå¯è½ã«ãã¾ãã
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
-
title: CuPy
text: Python ã使ç¨ãã GPUã«ããé«éè¨ç®ç¨ã®NumPyäºæé
åã©ã¤ãã©ãª
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
-
title: JAX
text: "NumPyã³ã¼ãã®åæå¯è½ãªå¤æã©ã¤ãã©ãª: å¾®åããã¯ãã«åãGPU/TPUã¸ã®ã¸ã£ã¹ãã¤ã³ã¿ã¤ã ã³ã³ãã¤ã«"
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
-
title: Xarray
text: é«åº¦ãªåæã¨è¦è¦åã®ããã®ã©ãã«ã¨ã¤ã³ããã¯ã¹ä»ã夿¬¡å
é
å
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
-
title: Sparse
text: Dask 㨠SciPy ã®çè¡åã®ç·å½¢ä»£æ°ã©ã¤ãã©ãªãçµ±åãããNumpy äºæã®çè¡åã©ã¤ãã©ãª
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
-
title: PyTorch
text: ç ç©¶ç¨ã®ãããã¿ã¤ãã³ã°ããæ¬çªéç¨ã¸ã®å±éãå éããããæ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
-
title: TensorFlow
text: æ©æ¢°å¦ç¿ãå©ç¨ããã¢ããªã±ã¼ã·ã§ã³ãç°¡åã«æ§ç¯ã»å±éããããã®ãã¨ã³ãã»ãã¼ã»ã¨ã³ãã®æ©æ¢°å¦ç¿ãã©ãããã©ã¼ã
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
-
title: MXNet
text: æè»ãç ç©¶ç¨ã®ãããã¿ã¤ãã³ã°ãããå®éã®éç¨ã¾ã§å©ç¨å¯è½ãªæ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
-
title: Arrow
text: ååã®ã¤ã³ã¡ã¢ãªã¼ãã¼ã¿ããã®åæã®ããã®ãè¤æ°ã®è¨èªã«å¯¾å¿ããéçºãã©ãããã©ã¼ã
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
-
title: xtensor
text: æ°å¤è§£æã®ããã®ããã¼ããã£ã¹ãã£ã³ã°ã¨é
å»¶è¨ç®ãåãã夿¬¡å
é
å
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
-
title: Awkward
text: Numpy ã®ãã㪠ã¤ãã£ãªã ã使ã£ã¦ JSON ã®ãããªãã¼ã¿ãæä½ããã©ã¤ãã©ãª
img: /images/content_images/arlib/xnd.png
alttext: awkward
url: https://awkward-array.org/
-
title: uarray
text: APIãå®è£
ããåãé¢ãPythonããã¯ã¨ã³ãã·ã¹ãã (unumpyã¯NumPy APIãæä¾ãã¦ãã¾ã)
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
scientificdomains:
intro:
-
text: Pythonã使ã£ã¦åãã»ã¨ãã©ã®ç§å¦è
ã¯NumPyã®åãå©ç¨ãã¦ãã¾ãã
-
text: "Numpy ã¯ã C ã Fortran ã®ãããªè¨èªã®è¨ç®ããã©ã¼ãã³ã¹ããPythonã«ããããã¾ãã ãã®ãã¯ã¼ã¯NumPyã®ã·ã³ãã«ãããæ¥ã¦ãããNumPyã«ããã½ãªã¥ã¼ã·ã§ã³ã®å¤ãã¯æç¢ºã§ã¨ã¬ã¬ã³ãã«ãªãã¾ãã"
libraries:
-
title: éåã³ã³ãã¥ã¼ãã£ã³ã°
alttext: ã³ã³ãã¥ã¼ã¿ã¼ããã
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
-
url: https://qutip.org
label: QuTiP
-
url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
-
url: https://qiskit.org
label: Qiskit
-
url: https://pennylane.ai
label: PennyLane
-
title: çµ±è¨ã³ã³ãã¥ã¼ãã£ã³ã°
alttext: ç·ã°ã©ããä¸ã«ç§»åãã¾ãã
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
-
url: https://pandas.pydata.org/
label: Pandas
-
url: https://github.com/statsmodels/statsmodels
label: statsmodels
-
url: https://xarray.pydata.org/en/stable/
label: Xarray
-
url: https://github.com/mwaskom/seaborn
label: Seaborn
-
title: ä¿¡å·å¦ç
alttext: æ£ã¨è² ã®å¤ãæã¤æ£ã°ã©ãã
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
-
url: https://www.scipy.org/
label: SciPy
-
url: https://pywavelets.readthedocs.io/
label: PyWavelets
-
url: https://python-control.org/
label: python-control
-
url: https://hyperspy.org/
label: HyperSpy
-
title: ç»åå¦ç
alttext: å±±ã
ã®åç
img: /images/content_images/sc_dom_img/image_processing.svg
links:
-
url: https://scikit-image.org/
label: Scikit-image
-
url: https://opencv.org/
label: OpenCV
-
url: https://mahotas.rtfd.io/
label: Mahotas
-
title: ã°ã©ãã¨ãããã¯ã¼ã¯
alttext: ã·ã³ãã«ãªã°ã©ã
img: /images/content_images/sc_dom_img/sd6.svg
links:
-
url: https://networkx.org/
label: NetworkX
-
url: https://graph-tool.skewed.de/
label: graph-tool
-
url: https://igraph.org/python/
label: igraph
-
url: https://pygsp.rtfd.io/
label: PyGSP
-
title: 天æå¦
alttext: æé é¡
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
-
url: https://www.astropy.org/
label: AstroPy
-
url: https://github.com/sunpy/sunpy
label: SunPy
-
url: https://github.com/spacepy/spacepy
label: SpacePy
-
title: èªç¥å¿çå¦
alttext: ã®ã¢ãã¤ãã人éã®é é¨
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
-
url: https://www.psychopy.org/
label: PsychoPy
-
title: ç彿
å ±ç§å¦
alttext: DNAã®é
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
-
url: https://biopython.org/
label: BioPython
-
url: http://scikit-bio.org/
label: Scikit-Bio
-
url: https://github.com/openvax/pyensembl
label: PyEnsembl
-
url: http://etetoolkit.org/
label: ETE
-
title: ãã¤ãºæ¨è«
alttext: éå½¢ã®æ²ç·ã®ã°ã©ã
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
-
url: https://pystan.readthedocs.io/en/latest/
label: PyStan
-
url: https://docs.pymc.io/
- label: PyMC3
+ label: PyMC
-
url: https://arviz-devs.github.io/arviz/
label: ArviZ
-
url: https://emcee.readthedocs.io/
label: emcee
-
title: æ°å¦çåæ
alttext: ï¼ã¤ã®æ°å¦è¨å·
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
-
url: https://www.scipy.org/
label: SciPy
-
url: https://www.sympy.org/
label: SymPy
-
url: https://github.com/cvxgrp/cvxpy
label: cvxpy
-
url: https://fenicsproject.org/
label: FEniCS
-
title: åå¦
alttext: 試é¨ç®¡
img: /images/content_images/sc_dom_img/chemistry.svg
links:
-
url: https://cantera.org/
label: Cantera
-
url: https://www.mdanalysis.org/
label: MDAnalysis
-
url: https://github.com/rdkit/rdkit
label: RDKit
-
url: https://www.pybamm.org/
label: PyBaMM
-
title: å°çç§å¦
alttext: å°ç
img: /images/content_images/sc_dom_img/geoscience.svg
links:
-
url: https://pangeo.io/
label: Pangeo
-
url: https://simpeg.xyz/
label: Simpeg
-
url: https://github.com/obspy/obspy/wiki
label: ObsPy
-
url: https://www.fatiando.org/
label: Fatiando a Terra
-
title: å°çæ
å ±å¦ç
alttext: å°å³
img: /images/content_images/sc_dom_img/GIS.svg
links:
-
url: https://shapely.readthedocs.io/
label: Shapely
-
url: https://geopandas.org/
label: GeoPandas
-
url: https://python-visualization.github.io/folium
label: Folium
-
title: ã¢ã¼ããã¯ãã£ã¨ã¨ã³ã¸ãã¢ãªã³ã°
alttext: ãã¤ã¯ãããã»ããµéçºãã¼ã
img: /images/content_images/sc_dom_img/robotics.svg
links:
-
url: https://compas.dev/
label: COMPAS
-
url: https://cityenergyanalyst.com/
label: é½å¸ã¨ãã«ã®ã¼åæ
-
url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "Numpy ã¯è±å¯ãªãã¼ã¿ãµã¤ã¨ã³ã¹ã©ã¤ãã©ãªã®ã¨ã³ã·ã¹ãã ã®ä¸æ ¸ã«ããã¾ããä¸è¬çãªãã¼ã¿ãµã¤ã¨ã³ã¹ã®ã¯ã¼ã¯ããã¼ã¯æ¬¡ã®ããã«ãªãã¾ãã"
image1:
-
img: /images/content_images/ds-landscape.png
alttext: Python ã©ã¤ãã©ãªã®å³ ã5 ã¤ã®ã«ãã´ãªã«åé¡ããããæ½åºã夿ãèªã¿è¾¼ã¿ããããã¼ã¿æ¢ç´¢ãããã¢ããªã³ã°ãããè©ä¾¡ãããå¯è¦åãã§ãã
image2:
-
img: /images/content_images/data-science.png
alttext: ä¸ã¤ã®åãéãªãåãå³ãåã¯ãããããæ°å¦ãããã³ã³ãã¥ã¼ã¿ã¼ãµã¤ã¨ã³ã¹ãããå°éç¥èãã§ã©ãã«ä»ãããã¦ãã¾ããå³ã®ä¸å¿é¨ã«ã¯ãä¸ã¤ã®åãéãªãåã£ã¦å½¢æãããã¨ãªã¢ããããããã¼ã¿ãµã¤ã¨ã³ã¹ãã¨ã©ãã«ä»ãããã¦ãã¾ãã
examples:
-
text: "<b>æ½åº, 夿, èªã¿è¾¼ã¿: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
-
text: "<b>æ¢ç´¢çè§£æ: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
-
- text: "<b>ã¢ããªã³ã°ã¨è©ä¾¡: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ text: "<b>ã¢ããªã³ã°ã¨è©ä¾¡: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
-
text: "<b>ããã·ã¥ãã¼ãã§ã®ã¬ãã¼ã: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
content:
-
text: å¤§è¦æ¨¡ãã¼ã¿ã«å¯¾ãã¦ã[Dask](https://dask.org)ã¨[Ray](https://ray.io/)ã¯ã¹ã±ã¼ã«ãããã¨ãç®æãã¦è¨è¨ããã¦ãã¾ããå®å®ãããããã¤ã¡ã³ãã«é¢ãã¦ã¯ããã¼ã¿ã®ãã¼ã¸ã§ãã³ã°ï¼[DVC](https://dvc.org)ï¼ãå®é¨ã®è¿½è·¡ï¼[MLFlow](https://mlflow.org)ï¼ãã¯ã¼ã¯ããã¼ã®èªååï¼[Airflow](https://airflow.apache.org)ããã³[Prefect](https://www.prefect.io)ãéè¦ã§ããæ§ã
ãªNumPyãã¼ã¹ã®ãã¼ã«ãæä¾ããã¦ãã¾ãã
visualization:
images:
-
url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: matplotlibã§ä½ãããã¹ããªã¼ã ãããã
-
url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: ggpyã§ä½ãããæ£å¸å³ã°ã©ã
-
url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: plotyã§ä½ãããç®±ã²ãå³
-
url: https://alta-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: altairã§ä½ãããã¹ããªã¼ã ã°ã©ã
-
url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: 2種é¡ã®ã°ã©ãã«ãããã¢ãããããseabornã§ä½ãããããããã¨å¨æ³¢æ°ã°ã©ã"
-
url: https://docs.pyvista.org/examples/index.html
img: /images/content_images/v_pyvista.png
alttext: PyVista製ã®3Dããªã¥ã¼ã ã¬ã³ããªã³ã°
-
url: https://napari.org
img: /images/content_images/v_napari.png
alttext: napariã§ä½ããã夿¬¡å
ç»å
-
url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: vispyã§ä½ããããããã¤å³
content:
-
text: NumPyã¯ã[Matplotlib](https://matplotlib.org)ã[Seaborn](https://seaborn.pydata.org)ã[Plotly](https://plot.ly)ã[Altair](https://altair-viz.github.io)ã[Bokeh](https://docs.bokeh.org/en/latest/)ã[Holoviz](https://holoviz.org)ã[Vispy](http://vispy.org)ã[Napari](https://github.com/napari/napari)ã[PyVista](https://github.com/pyvista/pyvista)ãªã©ã®ãæ¥æé·ãã¦ãã[Python visualization landscape](https://pyviz.org/overviews/index.html)ã«æ¬ ãããªãã³ã³ãã¼ãã³ãã§ãã
-
text: NumPy ã®å¤§è¦æ¨¡é
åã®é«éå¦çã«ãããç ç©¶è
ã¯ããã¤ãã£ãã® Python ãæ±ããã¨ãã§ãããããã¯ããã«å¤§ããªãã¼ã¿ã»ãããå¯è¦åãããã¨ãã§ãã¾ãã
diff --git a/content/pt/tabcontents.yaml b/content/pt/tabcontents.yaml
index e34f7cc..6a2e194 100644
--- a/content/pt/tabcontents.yaml
+++ b/content/pt/tabcontents.yaml
@@ -1,280 +1,280 @@
params:
machinelearning:
paras:
- para1: O NumPy forma a base de bibliotecas de aprendizagem de máquina poderosas como [scikit-learn](https://scikit-learn.org) e [SciPy](https://www.scipy.org). à medida que a disciplina de aprendizagem de máquina cresce, a lista de bibliotecas construidas a partir do NumPy também cresce. As funcionalidades de deep learning do [TensorFlow](https://www.tensorflow.org) tem diversas aplicações — entre elas, reconhecimento de imagem e de fala, aplicações baseadas em texto, análise de séries temporais, e detecção de vÃdeo. O [PyTorch](https://pytorch.org), outra biblioteca de deep learning, é popular entre pesquisadores em visão computacional e processamento de linguagem natural. O [MXNet](https://github.com/apache/incubator-mxnet) é outro pacote de IA, que fornece templates e protótipos para deep learning.
para2: Técnicas estatÃsticas chamadas métodos de [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) tais como binning, bagging, stacking, e boosting estão entre os algoritmos de ML implementados por ferramentas tais como [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), e [CatBoost](https://catboost.ai) — um dos motores de inferência mais rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) e [Eli5](https://eli5.readthedocs.io/en/latest/) oferecem visualizações para aprendizagem de máquina.
arraylibraries:
intro:
- text: A API do NumPy é o ponto de partida quando bibliotecas são escritas para explorar hardware inovador, criar tipos de arrays especializados, ou adicionar capacidades além do que o NumPy fornece.
headers:
- text: Biblioteca de Arrays
- text: Recursos e áreas de aplicação
libraries:
- title: Dask
text: Arrays distribuÃdas e paralelismo avançado para análise, permitindo desempenho em escala.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: Biblioteca de matriz compatÃvel com NumPy para computação acelerada pela GPU com Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- title: JAX
text: "Transformações combináveis de programas NumPy: vetorização, compilação just-in-time para GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
- title: Xarray
text: Arrays multidimensionais rotuladas e indexadas para análise e visualização avançadas
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: Biblioteca de arrays compatÃveis com o NumPy que pode ser integrada com Dask e álgebra linear esparsa da SciPy.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Framework de deep learning que acelera o caminho entre prototipação de pesquisa e colocação em produção.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: Uma plataforma completa para aprendizagem de máquina que permite construir e colocar em produção aplicações usando ML facilmente.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: MXNet
text: Framework de deep learning voltado para flexibilizar prototipação em pesquisa e produção.
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
- title: Arrow
text: Uma plataforma de desenvolvimento multi-linguagens para dados e análise para dados armazenados em colunas na memória.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
- title: xtensor
text: Arrays multidimensionais com broadcasting e avaliação preguiçosa (lazy computing) para análise numérica.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipulação de dados JSON-like com sintaxe NumPy-like.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Sistema de backend Python que dissocia a API da implementação; unumpy fornece uma API NumPy.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Ferramentas para aprendizagem com tensores, algebra e backends para usar NumPy, MXNet, PyTorch, TensorFlow ou CuPy sem esforço.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Quase todos os cientistas que trabalham em Python se baseiam na potência do NumPy.
- text: "NumPy traz o poder computacional de linguagens como C e Fortran para Python, uma linguagem muito mais fácil de aprender e usar. Com esse poder vem a simplicidade: uma solução no NumPy é frequentemente clara e elegante."
libraries:
- title: Computação quântica
alttext: Um chip de computador.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: https://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Computação estatÃstica
alttext: Um gráfico com uma linha em movimento para cima.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- url: https://www.statsmodels.org/
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- url: https://seaborn.pydata.org/
label: Seaborn
- title: Processamento de sinais
alttext: Um gráfico de barras com valores positivos e negativos.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
- url: https://hyperspy.org/
label: HiperSpy
- title: Processamento de imagens
alttext: Uma fotografia das montanhas.
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
img: /images/content_images/sc_dom_img/image_processing.svg
- title: Gráficos e Redes
alttext: Um grafo simples.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: Processos de Astronomia
alttext: Um telescópio.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- url: https://sunpy.org/
label: SunPy
- url: https://spacepy.github.io/
label: SpacePy
- title: Psicologia Cognitiva
alttext: Uma cabeça humana com engrenagens.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformática
alttext: Um pedaço de DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Inferência Bayesiana
alttext: Um gráfico com uma curva em forma de sino.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
- label: PyMC3
+ label: PyMC
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Análise Matemática
alttext: Quatro sÃmbolos matemáticos.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- url: https://www.cvxpy.org/
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: QuÃmica
alttext: Um tubo de ensaio.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geociências
alttext: A Terra.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Processamento Geográfico
alttext: Um mapa.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Arquitetura e Engenharia
alttext: Uma placa de desenvolvimento de microprocessador.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst - Analista de EnergÃa de Ciudad
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy está no centro de um rico ecossistema de bibliotecas de ciência de dados. Um fluxo de trabalho tÃpico de ciência de dados exploratório pode parecer assim:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagrama de bibliotecas Python. As cinco categorias são 'Extrair, Transformar, Carregar', 'Exploração de Dados', 'Modelo de Dados', 'Avaliação de Dados' e 'Apresentação de Dados'.
image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circle. The circles labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org),[ Intake](https://intake.readthedocs.io),[PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org),[Seaborn](https://seaborn.pydata.org),[ Matplotlib](https://matplotlib.org),[ Altair](https://altair-viz.github.io)"
- - text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC3](https://docs.pymc.io),[ spaCy](https://spacy.io)"
+ - text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC](https://docs.pymc.io),[ spaCy](https://spacy.io)"
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash),[ Panel](https://panel.holoviz.org),[ Voila](https://github.com/voila-dashboards/voila)"
content:
- text: For high data volumes, [Dask](https://dask.org) and[Ray](https://ray.io/) are designed to scale. Stabledeployments rely on data versioning ([DVC](https://dvc.org)),experiment tracking ([MLFlow](https://mlflow.org)), andworkflow automation ([Airflow](https://airflow.apache.org) and[Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: Um streamplot feito em matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: Um gráfico scatter-plot feito em ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: Um box-plot feito no plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: Um gráfico streamgraph feito em altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A plot duplo com dois tipos de gráficos, um plot-graph e um gráfico de frequência feitos no seaborn
- url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: Uma renderização de volume 3D feita no PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: Uma imagem multidimensional, feita em napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: Diagrama de Voronoi feito com vispy.
content:
- text: NumPy é um componente essencial no crescente [campo de visualização em Python](https://pyviz.org/overviews/index.html), que inclui [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), e [PyVista](https://github.com/pyvista/pyvista), para citar alguns.
- text: O processamento de grandes arrays acelerado pela NumPy permite que os pesquisadores visualizem conjuntos de dados muito maiores do que o Python nativo poderia permitir.
|
numpy/numpy.org
|
bb0098c13321db3c6340246dfa0a944bfaf17b9a
|
announce the NumPy 2.2.4 release (#841)
|
diff --git a/content/en/news.md b/content/en/news.md
index 7225722..c940dac 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,493 +1,494 @@
---
title: "News"
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-08
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
340f7a992b795f01f166c0129748c7e8a39a1db9
|
Remove hyperlinks to the NumPy-related conferences
|
diff --git a/content/en/community.md b/content/en/community.md
index 73338a5..50f850e 100644
--- a/content/en/community.md
+++ b/content/en/community.md
@@ -1,77 +1,77 @@
---
title: Community
sidebar: false
---
NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
## Participate online
The following are ways to engage directly with the NumPy project and community.
_Please note that we encourage users and community members to support each other
for usage questions - see [Get Help](/gethelp)._
### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
Announcements about NumPy, such as for releases, developer meetings, sprints or
conference talks are also made on this list.
On this list please use bottom posting, reply to the list (rather than to
another sender), and don't reply to digests. A searchable archive of this list
is available [here](https://mail.python.org/archives/list/[email protected]/).
***
### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
- documentation issues (e.g. "I found this section unclear");
- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
***
### [Slack](https://numpy-team.slack.com)
A real-time chat room to ask questions about _contributing_ to NumPy.
This is a private space, specifically meant for people who are hesitant to
bring up their questions or ideas on a large public mailing list or GitHub.
Please see
[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
details and how to get an invite.
## Study Groups and Meetups
If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
## Conferences
The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
-- [SciPy US](https://conference.scipy.org)
-- [EuroSciPy](https://www.euroscipy.org)
-- [SciPy Latin America](https://pythoncientifico.ar/)
-- [SciPy India](https://scipy.in)
-- [SciPy Japan](https://www.scipyjapan.scipy.org/)
-- [PyData conferences](https://pydata.org/event-schedule/) (15-20 events a year spread over many countries)
+- SciPy US
+- EuroSciPy
+- SciPy Latin America
+- SciPy India
+- SciPyData Japan
+- PyData conferences (15-20 events a year spread over many countries)
Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
## Join the NumPy community
To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
|
numpy/numpy.org
|
24b21f7e7a2ffb5ca70321de38b841505629f6d0
|
Adjust comic dimension
|
diff --git a/layouts/shortcodes/comic.html b/layouts/shortcodes/comic.html
index 80e1f4b..3c6d2aa 100644
--- a/layouts/shortcodes/comic.html
+++ b/layouts/shortcodes/comic.html
@@ -1,12 +1,12 @@
<div class="comic"></div>
<a href="https://heyzine.com/flip-book/3e66a13901.html">
<img src="/images/content_images/numpy-comic.png" alt="NumPy Contributor comic book cover">
</a>
</div>
<style>
.comic {
- width: 30%;
- height: auto;
+ max-width: 20%;
+ max-height: 20%;
}
</style>
|
numpy/numpy.org
|
a487d5ac034d695177760c0ca0d27392db94db86
|
[skip actions][skip azp][skip cirrus] removed installation guide lines
|
diff --git a/content/en/install.md b/content/en/install.md
index 569bbdd..e2a5596 100644
--- a/content/en/install.md
+++ b/content/en/install.md
@@ -1,137 +1,131 @@
---
title: Installing NumPy
sidebar: false
---
{{< admonition tip >}}
This page assumes you are comfortable using a terminal and are familiar with package managers.
The only prerequisite for installing NumPy is Python itself. If you don't have
Python yet and want the simplest way to get started, we recommend you use the
[Anaconda Distribution](https://www.anaconda.com/download) - it includes
Python, NumPy, and many other commonly used packages for scientific computing
and data science.
{{< /admonition >}}
The recommended method of installing NumPy depends on your preferred workflow. Below, we break down the installation methods into the following categories:
- **Project-based** (e.g., uv, pixi) *(recommended for new users)*
- **Environment-based** (e.g., pip, conda) *(the traditional workflow)*
- **System package managers** *(not recommended for most users)*
- **Building from source** *(for advanced users and development purposes)*
Choose the method that best suits your needs. If you're unsure, start with the **Environment-based** method using `conda` or `pip`.
-
-NumPy can be installed with a `package manager` on
-macOS and Linux, or [from source](https://numpy.org/devdocs/building).
-For more detailed instructions, consult our **Python and NumPy
-installation** guide below.
-
Below are the different methods for **installing NumPy**. Click on the tabs to explore each method:
{{< tabs >}}
[[tab]]
name = 'Project Based'
content = '''
Recommended for new users who want a streamlined workflow.
- **uv:** A modern Python package manager designed for speed and simplicity.
```bash
uv pip install numpy
```
- **pixi:** A cross-platform package manager for Python and other languages.
```bash
pixi add numpy
```
'''
[[tab]]
name = 'Environment Based'
content = '''
The two main tools that install Python packages are `pip` and `conda`. Their functionality partially overlaps (e.g. both can install `numpy`), however, they can also work together. Weâll discuss the major differences between pip and conda here - this is important to understand if you want to manage packages effectively.
The first difference is that conda is cross-language and it can install Python, while pip is installed for a particular Python on your system and installs other packages to that same Python install only. This also means conda can install non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while pip canât.
The second difference is that pip installs from the Python Packaging Index (PyPI), while conda installs from its own channels (typically âdefaultsâ or âconda-forgeâ). PyPI is the largest collection of packages by far, however, all popular packages are available for conda as well.
The third difference is that conda is an integrated solution for managing packages, dependencies and environments, while with pip you may need another tool (there are many!) for dealing with environments or complex dependencies.
- **Conda:** If you use conda, you can install NumPy from the defaults or conda-forge channels:
```bash
conda create -n my-env
conda activate my-env
conda install numpy
```
- **Pip:**
```bash
pip install numpy
```
{{< admonition tip >}}
**Tip:** Use a virtual environment for better dependency management
{{< /admonition >}}
```bash
python -m venv my-env
source my-env/bin/activate # macOS/Linux
my-env\Scripts\activate # Windows
pip install numpy
```
'''
[[tab]]
name = 'System Package Managers'
content = '''
Not recommended for most users, but available for convenience.
**macOS (Homebrew):**
```bash
brew install numpy
```
**Linux (APT):**
```bash
sudo apt install python3-numpy
```
**Windows (Chocolatey):**
```bash
choco install numpy
```
'''
[[tab]]
name = 'Building from Source'
content = '''
For advanced users and developers who want to customize or debug **NumPy**.
A word of warning: building Numpy from source can be a nontrivial exercise.
We recommend using binaries instead if those are available for your platform via one of the above methods.
For details on how to build from source, see [the building from source guide in the Numpy docs](https://numpy.org/devdocs/building/).
'''
{{< /tabs >}}
## Verifying the Installation
After installing NumPy, verify the installation by running the following in a Python shell or script:
```python
import numpy as np
print(np.__version__)
```
This should print the installed version of NumPy without errors.
## Troubleshooting
If your installation fails with the message below, see [Troubleshooting
ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html).
```
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
Importing the numpy c-extensions failed. This error can happen for
different reasons, often due to issues with your setup.
```
|
numpy/numpy.org
|
d061d378a28a92b5b7656ea36bac773cee7808ac
|
DOC: Update the link to Guide to NumPy (2015)
|
diff --git a/content/en/learn.md b/content/en/learn.md
index 4f9fa53..373d8a0 100644
--- a/content/en/learn.md
+++ b/content/en/learn.md
@@ -1,76 +1,76 @@
---
title: Learn
sidebar: false
---
For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
***
Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
## Beginners
There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
<i class="fas fa-chalkboard"></i> **Tutorials**
* [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
* [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
* [NumPy User Guide](https://numpy.org/devdocs)
<i class="fas fa-book"></i> **Books**
-* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1144670472).
+* [Guide to NumPy *by Travis E. Oliphant*](https://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://dl.acm.org/doi/10.5555/2886196).
* [From Python to NumPy *by Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
<i class="far fa-file-video"></i> **Videos**
* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
***
## Advanced
Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
<i class="fas fa-chalkboard"></i> **Tutorials**
* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *by Nicolas P. Rougier*
* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *by M. Scott Shell*
* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *by Stéfan van der Walt*
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
<i class="fas fa-book"></i> **Books**
* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1098121228) *by Jake Vanderplas*
* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) *by Wes McKinney*
* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
<i class="far fa-file-video"></i> **Videos**
* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *by Juan Nunez-Iglesias*
***
## NumPy Talks
* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
***
## Citing NumPy
If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
|
numpy/numpy.org
|
8eb1d8f4c052494a6fcc6c1439e77fbb4536ed53
|
fix URL redirects
|
diff --git a/content/en/case-studies/blackhole-image.md b/content/en/case-studies/blackhole-image.md
index 969af15..f7fd5ec 100644
--- a/content/en/case-studies/blackhole-image.md
+++ b/content/en/case-studies/blackhole-image.md
@@ -1,143 +1,143 @@
---
title: "Case Study: First Image of a Black Hole"
sidebar: false
---
{{< figure >}}
src = '/images/content_images/cs/blackhole.jpg'
title = 'Black Hole M87'
alt = 'black hole image'
attribution = '(Image Credits: Event Horizon Telescope Collaboration)'
attributionlink = 'https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg'
{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="Katie Bouman, *Assistant Professor, Computing & Mathematical Sciences, Caltech*"
>}}
Imaging the M87 Black Hole is like trying to see something that is by definition impossible to see.
{{< /blockquote >}}
## A telescope the size of the earth
The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an
array of eight ground-based radio telescopes forming a computational telescope
the size of the earth, studing the universe with unprecedented
sensitivity and resolution. The huge virtual telescope, which uses a technique
called very-long-baseline interferometry (VLBI), has an angular resolution of
[20 micro-arcseconds][resolution] â enough to read a newspaper in New York
from a sidewalk café in Paris!
[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
### Key Goals and Results
* **A New View of the Universe:**
The groundwork for the EHT's groundbreaking image had been laid 100 years
earlier when [Sir Arthur Eddington][eddington] yielded the first
observational support of Einstein's theory of general relativity.
* **The Black Hole:** EHT was trained on a supermassive black hole
approximately 55 million light-years from Earth, lying at the center
of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is
6.5 billion times the Sun's. It had been studied for
[over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before
had a black hole been visually observed.
* **Comparing Observations to Theory:** From Einsteinâs general theory of
relativity, scientists expected to find a shadow-like region caused by
gravitational bending and capture of light. Scientists could
use it to measure the black hole's enormous mass.
[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
### The Challenges
* **Computational scale**
EHT poses massive data-processing challenges, including rapid atmospheric
phase fluctuations, large recording bandwidth, and telescopes that are
widely dissimilar and geographically dispersed.
* **Too much information**
Each day EHT generates over 350 terabytes of observations, stored on
helium-filled hard drives. Reducing the volume and complexity of this much
data is enormously difficult.
* **Into the unknown**
When the goal is to see something never before seen, how can scientists be
confident the image is correct?
{{< figure >}}
src = '/images/content_images/cs/dataprocessbh.png'
title = 'EHT Data Processing Pipeline'
alt = 'data pipeline'
align = 'center'
attribution = '(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)'
attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
{{< /figure >}}
## NumPyâs Role
What if there's a problem with the data? Or perhaps an algorithm relies too
heavily on a particular assumption. Will the image change drastically if a
single parameter is changed?
The EHT collaboration met these challenges by having independent teams
evaluate the data, using both established and cutting-edge image reconstruction
techniques. When results proved consistent, they were combined to yield the
first-of-a-kind image of the black hole.
Their work illustrates the role the scientific Python ecosystem plays in
advancing science through collaborative data analysis.
{{< figure >}}
src = '/images/content_images/cs/bh_numpy_role.png'
alt = 'role of numpy'
title = 'The role of NumPy in Black Hole imaging'
{{< /figure >}}
For example, the [`eht-imaging`][ehtim] Python package provides tools for
simulating and performing image reconstruction on VLBI data.
NumPy is at the core of array data processing used
in this package, as illustrated by the partial software
dependency chart below.
{{< figure >}}
src = '/images/content_images/cs/ehtim_numpy.png'
alt = 'ehtim dependency map highlighting numpy'
title = 'Software dependency chart of ehtim package highlighting NumPy'
{{< /figure >}}
[ehtim]: https://github.com/achael/eht-imaging
Besides NumPy, many other packages, such as
-[SciPy](https://www.scipy.org) and [Pandas](https://pandas.io), are part of the
+[SciPy](https://scipy.org) and [Pandas](https://pandas.pydata.org), are part of the
data processing pipeline for imaging the black hole.
The standard astronomical file formats and time/coordinate transformations
were handled by [Astropy][astropy], while [Matplotlib][mpl] was used
in visualizing data throughout the analysis pipeline, including the generation
of the final image of the black hole.
[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
## Summary
The efficient and adaptable n-dimensional array that is NumPy's central feature
enabled researchers to manipulate large numerical datasets, providing a
foundation for the first-ever image of a black hole. A landmark moment in
science, it gives stunning visual evidence of Einsteinâs theory. The
achievement encompasses not only technological breakthroughs but also
international collaboration among over 200 scientists and some of the world's
best radio observatories. Innovative algorithms and data processing
techniques, improving upon existing astronomical models, helped unfold a
mystery of the universe.
{{< figure >}}
src = '/images/content_images/cs/numpy_bh_benefits.png'
alt = 'numpy benefits'
title = 'Key NumPy Capabilities utilized'
{{< /figure >}}
diff --git a/content/es/case-studies/blackhole-image.md b/content/es/case-studies/blackhole-image.md
index ba02e5f..57a3be4 100644
--- a/content/es/case-studies/blackhole-image.md
+++ b/content/es/case-studies/blackhole-image.md
@@ -1,95 +1,95 @@
---
title: "Caso de estudio: La primera imagen de un Agujero Negro"
sidebar: false
---
{{< figure >}}
src = '/images/content_images/cs/blackhole.jpg'
title = 'Agujero Negro M87'
alt = 'Imagen de agujero negro'
attribution = '(Créditos de la imagen: Colaboración del telescopio del Horizonte de Sucesos)'
attributionlink = 'https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg'
{{< /figure >}}
{{< blockquote cite="https://www.youtube.com/watch?v=BIvezCVcsYs" by="Katie Bouman, *Profesora Asistente, Ciencias de la Computación & Matemáticas, Caltech*"
>}}
Capturar imágenes del Agujero Negro M87 es como intentar ver algo que por definición es imposible de ver.
{{< /blockquote >}}
## Un telescopio del tamaño de la Tierra
El [ Telescopio Event Horizon (EHT) ](https://eventhorizontelescope.org), es un conjunto de ocho radiotelescopios terrestres que forman un telescopio computacional del tamaño de la Tierra, estudiando al universo con una sensibilidad y resolución sin precedente. El enorme telescopio virtual, que utiliza una técnica llamada InterferometrÃa de lÃnea de base muy larga (VLBI), tiene una resolución angular de [20 microsegundos de arco][resolution] â ¡suficiente para leer un periódico en Nueva York desde un café en la acera en ParÃs!
### Objetivos clave y resultados
* **Una nueva vista del universo:** El trabajo preliminar de la innovadora imagen de EHT se habÃa establecido 100 años antes, cuando [Sir Arthur Eddington][eddington] dio el primer apoyo observacional a la teorÃa de la relatividad general de Einstein.
* **El agujero negro:** EHT se entrenó en un enorme agujero negro supermasivo aproximadamente a 55 millones de años luz de la Tierra, situado en el centro de la galaxia Messier 87 (M87) en el cúmulo de galaxias Virgo. Su masa es 6.5 mil millones de veces la del sol. Se habÃa estudiado por [más de 100 años](https://www.jpl.nasa.gov/news/news.php?feature=7385), pero nunca antes se habÃa observado un agujero negro.
* **Comparando las observaciones con la teorÃa:** A partir de la teorÃa general de la relatividad de Einstein, los cientÃficos esperaban encontrar una región similar a una sombra causada por la flexión gravitacional y la captura de la luz. Los cientÃficos pudieron utilizarla para medir la enorme masa del agujero negro.
### Los desafÃos
* **Escala computacional**
EHT plantea enormes desafÃos de procesamiento de datos, incluyendo las rápidas fluctuaciones de fase atmosféricas, amplio ancho de banda de grabación, y telescopios que son ampliamente disÃmiles y geográficamente dispersos.
* **Demasiada información**
Cada dÃa, el EHT genera más de 350 terabytes de observaciones, almacenados en discos duros llenos de helio. Reducir el volumen y complejidad de estos datos es enormemente difÃcil.
* **Hacia lo desconocido**
Cuando el objetivo es ver algo nunca antes visto, ¿cómo pueden los cientÃficos estar seguros de que la imagen es correcta?
{{< figure >}}
src = '/images/content_images/cs/dataprocessbh.png'
title = 'Flujo de Trabajo de Procesamiento de Datos EHT'
alt = 'flujo de datos'
align = 'center'
attribution = '(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)'
attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
{{< /figure >}}
## El Rol de NumPy
¿Qué pasa si hay un problema con los datos? O tal vez un algoritmo depende demasiado de una suposición en particular. ¿Cambiará drásticamente la imagen si se cambia un solo parámetro?
La colaboración del EHT respondió a estos desafÃos haciendo que los equipos independientes evaluaran los datos, utilizando técnicas de reconstrucción de imágenes ya establecidas y de vanguardia. Cuando los resultados se mostraron consistentes, se combinaron para producir la primera imagen de su tipo de un agujero negro.
Su trabajo ilustra el rol que desempeña el ecosistema cientÃfico de Python en el avance de la ciencia a través del análisis de datos colaborativos.
{{< figure >}}
src = '/images/content_images/cs/bh_numpy_role.png'
alt = 'rol de numpy'
title = 'El rol de NumPy en la imagen del agujero negro'
{{< /figure >}}
Por ejemplo, el paquete de Python [`eht-imaging`][ehtim] proporciona herramientas para simular y realizar reconstrucción de imágenes en datos VLBI. NumPy está en el núcleo del procesamiento de datos de matrices utilizados en este paquete, como se muestra a continuación en el gráfico parcial de dependencias de software.
{{< figure >}}
src = '/images/content_images/cs/ehtim_numpy.png'
alt = 'mapa de dependencias de ehtim resaltando a numpy'
title = 'Gráfico de dependencias de software del paquete ehtim resaltando a NumPy'
{{< /figure >}}
-Además de NumPy, muchos otros paquetes, como [SciPy](https://www.scipy.org) y [Pandas](https://pandas.io), son parte del flujo de procesamiento de datos para fotografiar el agujero negro. Los formatos estándar de archivos astronómicos y transformaciones de tiempo/coordenadas fueron manejados por [Astropy][astropy], mientras que [Matplotlib][mpl] fue utilizado en la visualización de datos a través del flujo de análisis, incluyendo la generación de la imagen final del agujero negro.
+Además de NumPy, muchos otros paquetes, como [SciPy](https://scipy.org) y [Pandas](https://pandas.pydata.org), son parte del flujo de procesamiento de datos para fotografiar el agujero negro. Los formatos estándar de archivos astronómicos y transformaciones de tiempo/coordenadas fueron manejados por [Astropy][astropy], mientras que [Matplotlib][mpl] fue utilizado en la visualización de datos a través del flujo de análisis, incluyendo la generación de la imagen final del agujero negro.
## Resumen
El eficiente y adaptable arreglo n-dimensional que es la caracterÃstica central de NumPy, permitió a los investigadores manipular grandes conjuntos de datos numéricos, proporcionando una base para la primera imagen de un agujero negro. Un momento histórico en la ciencia ofrece una impresionante evidencia visual de la teorÃa de Einstein. Este logro abarca no solo los avances tecnológicos sino también la colaboración internacional de más de 200 cientÃficos y algunos de los mejores radio observatorios del mundo. Algoritmos innovadores y técnicas de procesamiento de datos, mejorando los modelos astronómicos existentes, ayudaron a desvelar un misterio del universo.
{{< figure >}}
src = '/images/content_images/cs/numpy_dlc_benefits.png'
alt = 'beneficios de numpy'
title = 'Capacidades clave de NumPy utilizadas'
{{< /figure >}}
[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
[ehtim]: https://github.com/achael/eht-imaging
[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
diff --git a/content/ja/case-studies/blackhole-image.md b/content/ja/case-studies/blackhole-image.md
index f3e11a7..896d46d 100644
--- a/content/ja/case-studies/blackhole-image.md
+++ b/content/ja/case-studies/blackhole-image.md
@@ -1,97 +1,97 @@
---
title: "ã±ã¼ã¹ã¹ã¿ãã£ï¼ä¸çåã®ãã©ãã¯ãã¼ã«ç»å"
sidebar: false
---
{{< figure >}}
src = '/images/content_images/cs/blackhole.jpg'
title = 'Black Hole M87'
alt = 'black hole image'
attribution = '(Image Credits: Event Horizon Telescope Collaboration)'
attributionlink = 'https://www.jpl.nasa.gov/images/universe/90410/blackhole20190410.jpg'
{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="*ã«ãªãã©ã«ãã¢å·¥ç§å¤§å¦ è¨ç®ã»æ°çå¦é¨*ã®Katie Bouman婿æ"
>}}
M87ãã©ãã¯ãã¼ã«ãç»ååãããã¨ã¯ãè¦ããã¨ã®ã§ããªããã®ããããã¦è¦ããã¨ãããããªãã®ã§ãã
{{< /blockquote >}}
## å°çå¤§ã®æé é¡
[Event Horizon telescope(EHT)](https:/eventhorizontelescope.org)ã¯ãå°çãµã¤ãºã®è§£ææé é¡ãå½¢æãã8å°ã®å°ä¸å黿³¢æé é¡ããæãã·ã¹ãã ã§ãããã¾ã§ã«åä¾ã®ãªãæåº¦ã¨è§£å度ã§å®å®ãç ç©¶ãããã¨ãã§ãã¾ãã è¶
é·åºç·å¹²æ¸æ³(VLBI) ã¨å¼ã°ããææ³ãç¨ãã巨大ãªä»®æ³æé é¡ã®è§åº¦åè§£è½ã¯ã[20ãã¤ã¯ãç§][resolution]ã§ããã¥ã¼ã¨ã¼ã¯ã«ããæ°èãããªã®æ©éã®ã«ãã§ããèªãã®ã«ååãªè§£å度ã§ã!
### 主ãªç®æ¨ã¨çµæ
* **å®å®ã®æ°ããè¦æ¹:** EHTã®ç»æçãªèãæ¹ã®åºç¤ãç¯ãããã®ã¯ã100å¹´åã« [Sir Arthur Eddington][eddington]ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ä¸è¬ç¸å¯¾æ§çè«ã«æ²¿ã£ãæåã®è¦³æ¸¬ã宿½ãããã¨ãå§ã¾ãã§ããã
* **ãã©ãã¯ãã¼ã«:** EHTã¯ããã¨ãåº§éæ²³å£ã®ã¡ã·ã¨87éæ²³ (M87) ã®ä¸å¿ã«ãããå°çããç´5500ä¸å
å¹´ã®è·é¢ã«ããè¶
巨大ãã©ãã¯ãã¼ã«ã観測ãã¾ããã ãã®è³ªéã¯ã太é½ã®65ååã§ãã [100年以ä¸](https://www.jpl.nasa.gov/news/news.php?feature=7385)ã«æ¸¡ãç ç©¶ãè¡ããã¦ããªããããã¾ã§ã«è¦è¦çã«ãã©ãã¯ãã¼ã«ã観測ã§ãããã¨ã¯ããã¾ããã§ããã
* **観測ã¨çè«ã®æ¯è¼:** ç§å¦è
ãã¡ã®éã§ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ä¸è¬ç¸å¯¾æ§çè«ãããéåã«ããå
ã®æ²ããå
ã®æç²ã«ããå½±ã®ãããªé åã観測ã§ããã®ã§ã¯ãªããã¨æå¾
ããã¦ãã¾ããã ããã¯ãã©ãã¯ãã¼ã«ã®å·¨å¤§ãªè³ªéãæ¸¬å®ããããã«å©ç¨ãããã¨ãã§ãã¾ãã
### 課é¡
* **å¤§è¦æ¨¡ãªè¨ç®**
EHTã¯è¨å¤§ãªãã¼ã¿å¦çã®èª²é¡ãæ±ãã¦ãã¾ããã 大æ°ã®ä½ç¸å¤åã¯æ¥éã§ãè¨é²å¸¯åã®å¹
ã¯å¤§ãããæé é¡ã¯ããããç°ãªã£ã¦ãã¦å°ççã«ã忣ãã¦ãã¾ãã
* **大éã®ãã¼ã¿**
EHTã¯ä¸æ¥ã§350ãã©ãã¤ããè¶
ãã観測ãã¼ã¿ãçæããããªã¦ã ã§æºãããããã¼ããã©ã¤ãã«ä¿åãã¦ãã¾ãã ãã®å¤§éã®ãã¼ã¿ã¨ãã¼ã¿ã®è¤éãã軽æ¸ãããã¨ã¯é常ã«é£ãããã¨ã§ãã
* **ããããããªããã®ã観測ãã**
ä»ã¾ã§ã«è¦ããã¨ã®ãªããã®ãè¦ãã®ãç ç©¶ã®ç®æ¨ãªããã©ããã£ã¦ç§å¦è
ã¯ãã®ç»åãæ£ããã¨ç¢ºä¿¡ãããã¨ãã§ããã®ã§ãããã?
{{< figure >}}
src = '/images/content_images/cs/dataprocessbh.png'
title = 'EHTã®ãã¼ã¿å¦çãã¤ãã©ã¤ã³'
alt = 'data pipeline'
align = 'center'
attribution = '(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)'
attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
{{< /figure >}}
## NumPyãæãããå½¹å²
ãã¼ã¿ã«åé¡ãããå ´åã¯ã©ããªãã§ãããï¼ ãããã¯ãã¢ã«ã´ãªãºã ãç¹å®ã®ä»®å®ã« ãã¾ãã«ã大ããä¾åãã¦ããããããã¾ããã ãããããã©ã¡ã¼ã¿ã夿´ããå ´åãç»åã¯å¤§ããå¤åããã®ã§ããããï¼
EHTã®å
±åç ç©¶ã§ã¯ãæå
端ã®ç»ååæ§ææè¡ã使ç¨ãã¦ãããããã®ãã¼ã ããã¼ã¿ãè©ä¾¡ãããã¨ã«ãã£ã¦ããããã®èª²é¡ã«å¯¾å¦ãã¾ããã ããããã®ãã¼ã ã®è§£æçµæãåãã§ãããã¨ã証æãããã¨ããããã®çµæãçµã¿åããããã¨ã§ããã©ãã¯ãã¼ã«ç»åãå¾ããã¨ãã§ãã¾ããã
å½¼ãã®ç ç©¶ã¯ãå
±åã®ãã¼ã¿è§£æãéãã¦ç§å¦ã鲿©ããããç§å¦çãªPythonã¨ã³ã·ã¹ãã ãæããå½¹å²ãå¦å®ã«è¡¨ãã¦ãã¾ãã
{{< figure >}}
src = '/images/content_images/cs/bh_numpy_role.png'
alt = 'role of numpy'
title = 'ãã©ãã¯ãã¼ã«ç»ååã§NumPyãæãããå½¹å²'
{{< /figure >}}
ä¾ãã°ã [`eht-imaging`][ehtim] ã¨ããPython ããã±ã¼ã¸ã¯ VLBI ãã¼ã¿ã§ç»åã®åæ§ç¯ãã·ãã¥ã¬ã¼ãããå®è¡ããããã®ãã¼ã«ã§ãã NumPyã¯ã以ä¸ã®ã½ããã¦ã§ã¢ä¾åé¢ä¿ãã£ã¼ãã§ç¤ºããã¦ããããã«ããã®ããã±ã¼ã¸ã§ä½¿ç¨ãããé
åãã¼ã¿å¦çã®ä¸æ ¸ãæ
ã£ã¦ãã¾ãã
{{< figure >}}
src = '/images/content_images/cs/ehtim_numpy.png'
alt = 'ehtim dependency map highlighting numpy'
title = 'NumPyã®ä¸å¿ã¨ããehtimã®ã½ããã¦ã§ã¢ä¾åå³'
{{< /figure >}}
-NumPyã ãã§ãªãã[SciPy](https://www.scipy.org)ã[Pandas](https://pandas.io)ãªã©ã®ããã±ã¼ã¸ããã©ãã¯ãã¼ã«ç»ååã«ããããã¼ã¿å¦çãã¤ãã©ã¤ã³ã«å©ç¨ããã¦ãã¾ãã 天æå¦ã®æ¨æºçãªãã¡ã¤ã«å½¢å¼ãæé/座æ¨å¤æ ã¯[Astropy][astropy]ã§å®è£
ããããã©ãã¯ãã¼ã«ã®æçµç»åã®çæãå«ããè§£æãã¤ãã©ã¤ã³å
¨ä½ã§ã®ãã¼ã¿å¯è¦åã«ã¯ [Matplotlib][mpl]ãå©ç¨ããã¾ããã
+NumPyã ãã§ãªãã[SciPy](https://scipy.org)ã[Pandas](https://pandas.pydata.org)ãªã©ã®ããã±ã¼ã¸ããã©ãã¯ãã¼ã«ç»ååã«ããããã¼ã¿å¦çãã¤ãã©ã¤ã³ã«å©ç¨ããã¦ãã¾ãã 天æå¦ã®æ¨æºçãªãã¡ã¤ã«å½¢å¼ãæé/座æ¨å¤æ ã¯[Astropy][astropy]ã§å®è£
ããããã©ãã¯ãã¼ã«ã®æçµç»åã®çæãå«ããè§£æãã¤ãã©ã¤ã³å
¨ä½ã§ã®ãã¼ã¿å¯è¦åã«ã¯ [Matplotlib][mpl]ãå©ç¨ããã¾ããã
## ã¾ã¨ã
NumPyã®ä¸å¿çãªæ©è½ã§ãããå¹ççã§é©ç¨æ§ã®é«ãn次å
é
åã¯ãç ç©¶è
ãå¤§è¦æ¨¡ãªæ°å¤ãã¼ã¿ãæä½ãããã¨ãå¯è½ã«ããä¸çã§åãã¦ã®ãã©ãã¯ãã¼ã«ã®ç»ååã®åºç¤ãç¯ãã¾ããã ã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®çè«ã«ç´ æ´ãããè¦è¦ç証æ ãä¸ããã®ã¯ãç§å¦ã®ç»æçãªç¬éã ã¨ããã¾ãã ãã®ç§å¦çã«å大ãªéæã«ã¯ãæè¡çã®é£èºçãªé²æ©ã ãã§ãªãã200人以ä¸ã®ç§å¦è
ã¨ä¸çã§ æé«ã®é»æ³¢è¦³æ¸¬æã®éã§ã®å½éååãå¯ä¸ãã¾ããã 驿°çãªã¢ã«ã´ãªãºã ã¨ãã¼ã¿å¦çæè¡ã¯ãæ¢åã®å¤©æå¦ã¢ãã«ãæ¹è¯ããå®å®ã®è¬ãè§£ãæããå©ãã«ãªã£ãã¨ããã¾ãã
{{< figure >}}
src = '/images/content_images/cs/numpy_bh_benefits.png'
alt = 'numpy benefits'
title = 'å©ç¨ãããNumPyã®ä¸»è¦æ©è½'
{{< /figure >}}
[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
[ehtim]: https://github.com/achael/eht-imaging
[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
diff --git a/content/pt/case-studies/blackhole-image.md b/content/pt/case-studies/blackhole-image.md
index d8429b3..ec740bf 100644
--- a/content/pt/case-studies/blackhole-image.md
+++ b/content/pt/case-studies/blackhole-image.md
@@ -1,97 +1,97 @@
---
title: "Estudo de Caso: A Primeira Imagem de um Buraco Negro"
sidebar: false
---
{{< figure >}}
src = '/images/content_images/cs/blackhole.jpg'
title = 'Black Hole M87'
alt = 'black hole image'
attribution = '(Créditos: Event Horizon Telescope Collaboration)'
attributionlink = 'https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg'
{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="Katie Bouman, *Professora Assistente, Ciências da Computação e Matemática, Caltech*"
>}}
Criar uma imagem do Buraco Negro M87 é como tentar ver algo que, por definição, é impossÃvel de se ver.
{{< /blockquote >}}
## Um telescópio do tamanho da Terra
O [telescópio Event Horizon (EHT)](https://eventhorizontelescope.org), é um conjunto de oito telescópios em solo formando um telescópio computacional do tamanho da Terra, projetado para estudar o universo com sensibilidade e resolução sem precedentes. O enorme telescópio virtual, que usa uma técnica chamada interferometria de longa linha de base (VLBI), tem uma resolução angular de [20 micro-arcossegundos][resolution] â o suficiente para ler um jornal em Nova Iorque a partir de um café em uma calçada de Paris!
### Principais Objetivos e Resultados
* **Uma nova visão do universo:** A imagem inovadora do EHT foi publicada 100 anos após [o experimento de Sir Arthur Eddington][eddington] ter produzido as primeiras evidências observacionais apoiando a teoria da relatividade geral de Einstein.
* **O Buraco Negro:** o EHT foi treinado em um buraco negro supermassivo a aproximadamente 55 milhões de anos-luz da Terra, localizado no centro do galáxia Messier 87 (M87) no aglomerado de Virgem. Sua massa é equivalente a 6,5 bilhões de vezes a do Sol. Ele vem sendo estudado [há mais de 100 anos](https://www.jpl.nasa.gov/news/news.php?feature=7385), mas um buraco negro nunca havia sido observado visualmente antes.
* **Comparando observações com a teoria:** Pela teoria geral da relatividade de Einstein, os cientistas esperavam encontrar uma região de sombra causada pela distorção e captura da luz causada pela influência gravitacional do buraco negro. Os cientistas poderiam usá-la para medir a enorme massa do mesmo.
### Desafios
* **Escala computacional**
O EHT representa um desafio imenso em processamento de dados, incluindo rápidas flutuações de fase atmosférica, uma largura grande de banda nas gravações e telescópios que são muito diferentes e geograficamente dispersos.
* **Muitas informações**
A cada dia, o EHT gera mais de 350 terabytes de observações, armazenadas em discos rÃgidos cheios de hélio. Reduzir o volume e a complexidade desse volume de dados é extremamente difÃcil.
* **Em direção ao desconhecido**
Quando o objetivo é algo que nunca foi visto, como os cientistas podem ter confiança de que sua imagem está correta?
{{< figure >}}
src = '/images/content_images/cs/dataprocessbh.png'
title = 'Etapas de Processamento de Dados do EHT'
alt = 'data pipeline'
align = 'center'
attribution = '(Créditos do diagrama: The Astrophysical Journal, Event Horizon Telescope Collaboration)'
attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
{{< /figure >}}
## O papel do NumPy
E se houver um problema com os dados? Ou talvez um algoritmo seja muito dependente de uma hipótese em particular. A imagem será alterada drasticamente se um único parâmetro for alterado?
A colaboração do EHT venceu esses desafios ao estabelecer equipes independentes que avaliaram os dados usando técnicas de reconstrução de imagem estabelecidas e de ponta para verificar se as imagens resultantes eram consistentes. Quando os resultados se provaram consistentes, eles foram combinados para produzir a imagem inédita do buraco negro.
O trabalho desse grupo ilustra o papel do ecossistema cientÃfico do Python no avanço da ciência através da análise de dados colaborativa.
{{< figure >}}
src = '/images/content_images/cs/bh_numpy_role.png'
alt = 'role of numpy'
title = 'O papel do NumPy na criação da primeira imagem de um Buraco Negro'
{{< /figure >}}
Por exemplo, o pacote Python [`eht-imaging`][ehtim] fornece ferramentas para simular e realizar reconstrução de imagem nos dados do VLBI. O NumPy está no coração do processamento de dados vetoriais usado neste pacote, como ilustrado pelo gráfico parcial de dependências de software abaixo.
{{< figure >}}
src = '/images/content_images/cs/ehtim_numpy.png'
alt = 'ehtim dependency map highlighting numpy'
title = 'Diagrama de dependência de software do pacote ehtim evidenciando o NumPy'
{{< /figure >}}
-Além do NumPy, muitos outros pacotes como [SciPy](https://www.scipy.org) e [Pandas](https://pandas.io) foram usados na *pipeline* de processamento de dados para criar a imagem do buraco negro. Os arquivos astronômicos de formato padrão e transformações de tempo/coordenadas foram tratados pelo [Astropy][astropy] enquanto a [Matplotlib][mpl] foi usada na visualização de dados em todas as etapas de análise, incluindo a geração da imagem final do buraco negro.
+Além do NumPy, muitos outros pacotes como [SciPy](https://scipy.org) e [Pandas](https://pandas.pydata.org) foram usados na *pipeline* de processamento de dados para criar a imagem do buraco negro. Os arquivos astronômicos de formato padrão e transformações de tempo/coordenadas foram tratados pelo [Astropy][astropy] enquanto a [Matplotlib][mpl] foi usada na visualização de dados em todas as etapas de análise, incluindo a geração da imagem final do buraco negro.
## Resumo
A estrutura de dados n-dimensional que é a funcionalidade central do NumPy permitiu aos pesquisadores manipular grandes conjuntos de dados, fornecendo a base para a primeira imagem de um buraco negro. Esse momento marcante na ciência fornece evidências visuais impressionantes para a teoria de Einstein. Esta conquista abrange não apenas avanços tecnológicos, mas colaboração cientÃfica em escala internacional entre mais de 200 cientistas e alguns dos melhores observatórios de rádio do mundo. Eles usaram algoritmos e técnicas de processamento de dados inovadores, que aperfeiçoaram os modelos astronômicos existentes, para ajudar a descobrir um dos mistérios do universo.
{{< figure >}}
src = '/images/content_images/cs/numpy_bh_benefits.png'
alt = 'numpy benefits'
title = 'Funcionalidades-chave do NumPy utilizadas'
{{< /figure >}}
[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
[ehtim]: https://github.com/achael/eht-imaging
[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
|
numpy/numpy.org
|
014343e05b93a5ebe208fe5923e1a52947e91d97
|
announce the NumPy 2.2.3 release (#836)
|
diff --git a/content/en/news.md b/content/en/news.md
index fa3d14c..7225722 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,492 +1,493 @@
---
title: "News"
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-08
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
-- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2024_.
+- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
54dc5a79550b2838827111521f5115f2756cb8ca
|
Remove header
|
diff --git a/content/en/contribute.md b/content/en/contribute.md
index f23d40d..60d4b95 100644
--- a/content/en/contribute.md
+++ b/content/en/contribute.md
@@ -1,117 +1,116 @@
---
title: Contribute to NumPy
sidebar: false
---
The NumPy project welcomes your expertise and enthusiasm!
Your choices aren't limited to programming, as you can
see below there are many areas where we need **your** help.
If you're unsure where to start or how your skills fit in, _reach out!_ You
can ask on the [mailing
list](https://mail.python.org/mailman/listinfo/numpy-discussion) or
[GitHub](http://github.com/numpy/numpy) (open an
[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
issue).
Those are our preferred channels (open source is open by nature), but
if you prefer to talk privately, contact our community coordinators at
<[email protected]> or on [Slack](https://numpy-team.slack.com)
(write <[email protected]> for an invite).
We also have a biweekly _community call_, details of which are announced on
the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
You are very welcome to join.
If you are new to contributing to open source, we also highly recommend reading
[this guide](https://opensource.guide/how-to-contribute/).
Our community aspires to treat everyone equally and to value all
contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open
and welcoming environment.
-### 'How to Contribute to NumPy' comic
-For a visual guide, check out this [comic](https://heyzine.com/flip-book/3e66a13901.html).
+For a visual guide on how to contribute to NumPy, check out this [comic](https://heyzine.com/flip-book/3e66a13901.html).
{{< comic >}}
### Writing code
Programmers, this
[guide](https://numpy.org/devdocs/dev/index.html#development-process-summary)
explains how to contribute to the NumPy codebase.
<br>Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
### Reviewing pull requests
The project has more than 250 open pull requests -- meaning many potential
improvements and many open-source contributors waiting for feedback. If you're
a developer who knows NumPy, you can help even if you're not familiar with the
codebase. You can:
* summarize a long-running discussion
* triage documentation PRs
* test proposed changes
### Developing educational materials
NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
We're in need of new tutorials, how-to's, and deep-dive explanations, and the
site needs restructuring. Opportunities aren't limited to writers. We'd also
welcome worked examples, notebooks, and videos. [NEP 44 â Restructuring the
NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)
lays out our ideas -- and you may have others.
### Issue triaging
The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
of open issues. Some are no longer valid, some should be prioritized, and some
would make good issues for new contributors. You can:
* check if older bugs are still present
* find duplicate issues and link related ones
* add good self-contained reproducers to issues
* label issues correctly (this requires triage rights -- just ask)
Please just dive in.
### Website development
We've just revamped our website, but we're far from done. If you love web
development, these
[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
list some of our unmet needs -- and feel free to share your own ideas.
### Graphic design
We can barely begin to list the contributions a graphic designer can make here.
Our docs are parched for illustration; our growing website craves images --
opportunities abound.
### Translating website content
We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
accessible to users in their native language. Volunteer translators are at the heart
of this effort. See
[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
for background; comment on [this GitHub
issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
### Community coordination and outreach
Through community contact we share our work more widely and learn where we're
falling short. We're eager to get more people involved in efforts like our
[Twitter](https://twitter.com/numpy_team) account, organizing NumPy [code
sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
### Fundraising
For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
became clear that to ensure stability and growth we would need financial support.
[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
and other kinds of funding. We have a number of ideas and of course we welcome more.
Fundraising is a scarce skill here -- we'd appreciate your help.
### Donate
If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
|
numpy/numpy.org
|
9b75ac87033b5deb4b44bd63f36ca9fd1561bcda
|
Fix invalid link for LIGO in Japanease doc (#833)
|
diff --git a/content/ja/case-studies/gw-discov.md b/content/ja/case-studies/gw-discov.md
index 8ba1f92..e92252d 100644
--- a/content/ja/case-studies/gw-discov.md
+++ b/content/ja/case-studies/gw-discov.md
@@ -1,91 +1,91 @@
---
title: "ã±ã¼ã¹ã¹ã¿ãã£: éåæ³¢ã®çºè¦"
sidebar: false
---
{{< figure >}}
src = '/images/content_images/cs/gw_sxs_image.png'
title = 'éåæ³¢'
alt = 'binary coalesce black hole generating gravitational waves'
attribution = '(Image Credits: The Simulating eXtreme Spacetimes (SXS) Project at LIGO)'
attributionlink = 'https://youtu.be/Zt8Z_uzG71o'
{{< /figure >}}
{{< blockquote cite="https://www.youtube.com/watch?v=BIvezCVcsYs" by="David Shoemaker, *LIGOãµã¤ã¨ã³ãã£ãã£ãã¯ã»ã³ã©ãã¬ã¼ã·ã§ã³*" >}} ç§å¦è¨ç®ã®ããã®Pythonã¨ã³ã·ã¹ãã ã¯LIGOã§è¡ããã¦ããç ç©¶ã®ããã®éè¦ãªã¤ã³ãã©ã§ãã
{{< /blockquote >}}
## [éåæ³¢](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) 㨠[LIGO](https://www.ligo.caltech.edu) ã«ã¤ãã¦
éåæ³¢ã¯ã空éã¨æéã®åºæ¬æ§é ã®æ³¢ç´ã§ãã 2ã¤ã®ãã©ãã¯ãã¼ã«ã®è¡çªãåä½ã2飿ãè¶
æ°æã®åä½ãªã©ã大ããªå¤åç¾è±¡ã«ãã£ã¦çæããã¾ãã éåæ³¢ã®è¦³æ¸¬ã¯ãéåãç ç©¶ããä¸ã§éè¦ãªã ãã§ãªããé ãå®å®ã«ãããããã¤ãã®ä¸æçãªç¾è±¡ã¨ããã®å½±é¿ãçè§£ããããã«ãå½¹ç«ã¡ã¾ãã
-\[ã¬ã¼ã¶ã¼å¹²æ¸è¨éåæ³¢å¤©æå°(LIGO)\](https://www. ligo. caltech. edu)ã¯ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ä¸è¬ç¸å¯¾æ§çè«ã«ãã£ã¦äºæ¸¬ãããéåæ³¢ã®ç´æ¥æ¤åºãéãã¦ãéåæ³¢å¤©ä½ç©çå¦ã®åéãåãéãããã«è¨è¨ããã¾ããã ãã®ã·ã¹ãã ã¯ãã¢ã¡ãªã«ã®ã¯ã·ã³ãã³å·ãã³ãã©ã¼ãã¨ã«ã¤ã¸ã¢ãå·ãªãã³ã°ã¹ãã³ã«ãã2ã¤ã®å¹²æ¸è¨ãä¸ä½ã¨ãªã£ã¦æ§æãããéåæ³¢ãæ¤åºãã¾ãã ããããã®ã·ã¹ãã ã«ã¯ãã¬ã¼ã¶ã¼å¹²æ¸æ³ãç¨ããæ°ããè¦æ¨¡ã®éåæ³¢æ¤åºå¨ãè¨ç½®ããã¦ãã¾ãã LIGO Scientific Collaborationï¼LSCï¼ã¯ãç±³å½ãã¯ããã¨ãã14ã«å½ã®å¤§å¦ãã1000人以ä¸ã®ç§å¦è
ãéã¾ãã90以ä¸ã®å¤§å¦ã»ç ç©¶æ©é¢ã«ãã£ã¦æ¯æ´ããã¦ãã¾ãã ã¾ããç´250人ã®å¦çãåå ãã¦ãã¾ãã ä»åã®LIGOã®çºè¦ã¯ãéåæ³¢ãå°çãééããéã«çãã空éã¨æéã®å¾®å°ãªä¹±ãã®æ¸¬å®ã«ãããéåæ³¢ãã®ãã®ãåãã¦è¦³æ¸¬ãã¾ããã ããã«ãããæ°ãã天ä½ç©çå¦ã®ããã³ãã£ã¢ãéããã¾ããã ããã¯ãå®å®ã®æªãã å´é¢ãã¤ã¾ãæªãã æç©ºããä½ãããç©ä½ã¨ããã«ç¾è±¡ãåãæããã®ã§ãã
+[ã¬ã¼ã¶ã¼å¹²æ¸è¨éåæ³¢å¤©æå°(LIGO)](https://www.ligo.caltech.edu)ã¯ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ä¸è¬ç¸å¯¾æ§çè«ã«ãã£ã¦äºæ¸¬ãããéåæ³¢ã®ç´æ¥æ¤åºãéãã¦ãéåæ³¢å¤©ä½ç©çå¦ã®åéãåãéãããã«è¨è¨ããã¾ããã ãã®ã·ã¹ãã ã¯ãã¢ã¡ãªã«ã®ã¯ã·ã³ãã³å·ãã³ãã©ã¼ãã¨ã«ã¤ã¸ã¢ãå·ãªãã³ã°ã¹ãã³ã«ãã2ã¤ã®å¹²æ¸è¨ãä¸ä½ã¨ãªã£ã¦æ§æãããéåæ³¢ãæ¤åºãã¾ãã ããããã®ã·ã¹ãã ã«ã¯ãã¬ã¼ã¶ã¼å¹²æ¸æ³ãç¨ããæ°ããè¦æ¨¡ã®éåæ³¢æ¤åºå¨ãè¨ç½®ããã¦ãã¾ãã LIGO Scientific Collaborationï¼LSCï¼ã¯ãç±³å½ãã¯ããã¨ãã14ã«å½ã®å¤§å¦ãã1000人以ä¸ã®ç§å¦è
ãéã¾ãã90以ä¸ã®å¤§å¦ã»ç ç©¶æ©é¢ã«ãã£ã¦æ¯æ´ããã¦ãã¾ãã ã¾ããç´250人ã®å¦çãåå ãã¦ãã¾ãã ä»åã®LIGOã®çºè¦ã¯ãéåæ³¢ãå°çãééããéã«çãã空éã¨æéã®å¾®å°ãªä¹±ãã®æ¸¬å®ã«ãããéåæ³¢ãã®ãã®ãåãã¦è¦³æ¸¬ãã¾ããã ããã«ãããæ°ãã天ä½ç©çå¦ã®ããã³ãã£ã¢ãéããã¾ããã ããã¯ãå®å®ã®æªãã å´é¢ãã¤ã¾ãæªãã æç©ºããä½ãããç©ä½ã¨ããã«ç¾è±¡ãåãæããã®ã§ãã
### 主ãªç®ç
* LIGOã®[ããã·ã§ã³](https://www.ligo.caltech.edu/page/what-is-ligo)ã¯ãå®å®ã§æãæ¿ããã¨ãã«ã®ã¼ã«æºã¡ãããã»ã¹ããã®éåæ³¢ãæ¤åºãããã¨ã§ãããLIGOãåéãããã¼ã¿ã¯ãéåãç¸å¯¾æ§çè«ã天ä½ç©çå¦ãå®å®è«ãç´ ç²åç©çå¦ãååæ ¸ç©çå¦ãªã©ãç©çå¦ã®å¤ãã®åéã«åºãå½±é¿ãä¸ããå¯è½æ§ãããã¾ãã
* è¤éãªæ°å¦ãå«ãç¸å¯¾æ§çè«ã®æ°å¤è¨ç®ã«ãã£ã¦è¦³æ¸¬ãã¼ã¿ãè§£æããä¿¡å·ã¨ãã¤ãºãèå¥ããé¢é£æ§ã®ããä¿¡å·ããã£ã«ã¿ãªã³ã°ãã観測ãã¼ã¿ã®æææ§ãçµ±è¨çã«æ¨å®ãããã¨ã§ãå®å®ã®å§ã¾ãã®ã¯ã©ã³ãã観測ã§ããããã«ãªãã¾ãã
* ãã¤ããªãæ°å¤ã®çµæãçè§£ããããããã«ãã¼ã¿ãå¯è¦åãããã¨ãå¿
è¦ã§ãã
### 課é¡
* **è¨ç®**
åæã«ããæ¾åºãããéåæ³¢ã¯ãã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ãç¨ãã¦æ°å¤ç¸å¯¾æ§ãæãããæ¬¡ç¬¬ã«è©¦ããããªæ¹æ³ã§ã¯è¨ç®ã§ãã¾ããã LIGOãåéãããã¼ã¿éã¯ãéåæ³¢ã®ä¿¡å·ãå°ãªãã®ã¨åããããä¸å¯è§£ã§ãã
* **ãã¼ã¿ã®æ°¾æ¿«**
観測è£
ç½®ãããé«æåº¦ã§ä¿¡é ¼æ§ãæã¤ããã«ãªãã¨ããã¼ã¿ã®å¤§æ´ªæ°´ã«ãã£ã¦ãå¹²ãèã®ä¸ããéãæ¢ããããªåé¡ããå¤éã«çºçãããã¨ããããã¾ãã LIGOã¯æ¯æ¥ãã©ãã¤ãã®ãã¼ã¿ãçæãã¦ããã®ã§ãï¼ ãã®å¤§éã®ãã¼ã¿ãè§£éããã«ã¯ã忤åºãã¨ã«å¤å¤§ãªå´åãå¿
è¦ã§ãã ä¾ãã°ãLIGOã«ãã£ã¦åéãããä¿¡å·ã¯ãæ°åä¸åã®éåæ³¢ã·ã°ããã£ã®ãã³ãã¬ã¼ãã§æ§æããã¦ãããã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ã§ããè§£æã§ãã¾ããã
* **å¯è¦å**
ã¢ã¤ã³ã·ã¥ã¿ã¤ã³æ¹ç¨å¼ãå
ã«ã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ã§ãã¼ã¿ãè§£æã§ããããã«ãªã£ãããæ¬¡ã¯ãã¼ã¿ã人éã®è³ã§çè§£ã§ããããã«ããªããã°ãªãã¾ããã ã·ãã¥ã¬ã¼ã·ã§ã³ã®ã¢ããªã³ã°ãä¿¡å·ã®æ¤åºã«ã¯ãããããããå¯è¦åæè¡ãå¿
è¦ã§ãã ç»åå¦çãã·ãã¥ã¬ã¼ã·ã§ã³ã«ãã£ã¦ãè§£æçµæãããå¤ãã®äººã«çè§£ãã¦ããããç¶æ
ã«ãªãåã®æ®µéã«ããã¦ãå¯è¦åã¯ãæ°å¤ç¸å¯¾æ§ãååã«éè¦è¦ãã¦ããªãã£ãç´ç²ãªç§å¦æå¥½å®¶ã®ç®ã«ãæ°å¤ç¸å¯¾æ§ããããä¿¡é ¼æ§ã®é«ããã®ã¨ãã¦æ ãããã«ããã¨ããå½¹å²ãæããã¦ãã¾ãã è¤éãªè¨ç®ã¨æç»ãè¡ããã¾ãææ°ã®å®é¨çµæã¨æ´å¯ã«åºã¥ãã¦ã·ãã¥ã¬ã¼ã·ã§ã³ã¨åæç»ãè¡ã使¥ã¯æéã®ããããã®ã§ããã®åéã®ç ç©¶è
ã«ã¨ã£ã¦ã®èª²é¡ã§ãã
{{< figure >}}
src = '/images/content_images/cs/gw_strain_amplitude.png'
alt = 'gravitational waves strain amplitude'
title = 'GW150914ããæ¨å®ãããéåæ³¢ã®æªã¿ã®æ¯å¹
'
attribution = '(Graph Credits: Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)'
attributionlink = 'https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger'
{{< /figure >}}
## éåæ³¢ã®æ¤åºã«ãããNumPyã®å½¹å²
ãã©ãã¯ãã¼ã«åæã«ããæ¾åºãããéåæ³¢ã¯ãã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ãç¨ãããã«ã¼ããã©ã¼ã¹ã®æ°å¤ç¸å¯¾æ§å¦ç以å¤ã®ææ³ã§ã¯è¨ç®ã§ãã¾ããã éåæ³¢ã¯é常ã«å°ãã广ãçã¿ãç©è³ªã¨å¾®å°ãªç¸äºä½ç¨ãæã¤ãããæ¤åºãå°é£ã§ãã LIGOã®ãã¹ã¦ã®ãã¼ã¿ãå¦çã»åæããã«ã¯ãè¨å¤§ãªè¨ç®ã¤ã³ãã©ãå¿
è¦ã§ãã ä¿¡å·ã®æ°åååã®ãã¤ãºãé¤å»ããå¾ããé常ã«è¤éãªç¸å¯¾æ§çè«ã®æ¹ç¨å¼ã¨è¨å¤§ãªéã®ãã¼ã¿ããããè¨ç®ä¸ã®èª²é¡ã¨ãªã£ã¦ãã¾ãã
Pythonç¨ã®æ¨æºçãªæ°å¤è§£æããã±ã¼ã¸NumPyã¯ãLIGOã®éåæ³¢æ¤åºããã¸ã§ã¯ãã§å®è¡ãããæ§ã
ãªã¿ã¹ã¯ã«ä½¿ç¨ãããã½ããã¦ã§ã¢ã§å©ç¨ããã¦ãã¾ãã NumPyã¯ãè¤éãªæ°å¦å¦çãé«éãªãã¼ã¿æä½ã«å½¹ç«ã¡ã¾ããã æ¬¡ã«ããã¤ãã®ä¾ã示ãã¾ãã
* [ä¿¡å·å¦ç](https://www.uv.es/virgogroup/Denoising_ROF.html): ã°ãªãã¸æ¤åºã[ãã¤ãºåå®ã¨ãã¼ã¿å¤å®](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)ã
* ãã¼ã¿åå¾: ã©ã®ãã¼ã¿ãè§£æã§ããããæ±ºå®ããå¹²ãèã®ä¸ã®éã®ãããªä¿¡å·ãå
¥ã£ã¦ãããã©ãããçªãæ¢ããã
* çµ±è¨è§£æ: 観測ãã¼ã¿ã®çµ±è¨çæææ§ãæ¨å®ããã¢ãã«ã¨ã®æ¯è¼ã«ããä¿¡å·ãã©ã¡ã¼ã¿ï¼æã®è³ªéãã¹ãã³é度ãè·é¢ãªã©ï¼ãæ¨å®ããã
* ãã¼ã¿å¯è¦å
- æç³»åãã¼ã¿
- ã¹ãã¯ããã°ã©ã
* ç¸é¢è¨ç®
* éåæ³¢ãã¼ã¿è§£æã®ããã«éçºããã[ã½ããã¦ã§ã¢ç¾¤](https://github.com/lscsoft): [GwPy](https://gwpy.github.io/docs/stable/overview.html)ã [PyCBC](https://pycbc.org)ã¯ãNumPyãAstroPyãç¨ãã¦ãéåæ³¢æ¤åºå¨ãã¼ã¿ãç ç©¶ããããã®ã¦ã¼ãã£ãªãã£ã¼ã»ãã¼ã«ã»é¢æ°ã¸ã®ãªãã¸ã§ã¯ãæåã¤ã³ã¿ã¼ãã§ã¼ã¹ãæä¾ãã¦ãã¾ãã
{{< figure >}}
src = '/images/content_images/cs/gwpy-numpy-dep-graph.png'
alt = 'gwpy-numpy depgraph'
title = 'GwPyã®NumPyä¾åã°ã©ã'
{{< /figure >}}
----
{{< figure >}}
src = '/images/content_images/cs/PyCBC-numpy-dep-graph.png'
alt = 'PyCBC-numpy depgraph'
title = 'PyCBCã®NumPyä¾åã°ã©ã'
{{< /figure >}}
## ã¾ã¨ã
䏿¹ã§ãããã¾ã§ç¥ããã¦ããæ·±é ãªå¤©ä½ç©çå¦ã®ç¾è±¡ã«ãå¤ãã«æ°ããªæ´å¯ãæä¾ãã¾ããã æ°å¤å¦çã¨ãã¼ã¿ã®å¯è¦åã¯ãç§å¦è
ãç§å¦çãªè¦³æ¸¬ããåéãããã¼ã¿ã«ã¤ãã¦ã®æ´å¯ãå¾ã¦ããã®çµæãçè§£ããã®ã«å½¹ç«ã¤éè¦ãªã¹ãããã§ãã ãããããã®è¨ç®ã¯è¤éã§ãããå®éã®è¦³æ¸¬ãã¼ã¿ã¨åæãç¨ããã³ã³ãã¥ã¼ã¿ã·ãã¥ã¬ã¼ã·ã§ã³ãç¨ãã¦å¯è¦åãããªãéãã人éãçè§£ãããã¨ã¯ã§ãã¾ããã§ããã NumPyã¯ãmatplotlibã»pandasã»scikit-learnãªã©ã®Pythonããã±ã¼ã¸ã¨ã¨ãã«ãç ç©¶è
ãè¤éãªè³ªåã«çããç§ãã¡ã®å®å®ã«å¯¾ããã®çè§£ã«ããã¦ãæ°ããå°å¹³ãçºè¦ãããã¨ã[å¯è½ã«ãã¦ãã¾ã](https://www.gw-openscience.org/events/GW150914/)ã
{{< figure >}}
src = '/images/content_images/cs/numpy_gw_benefits.png'
alt = 'numpy benefits'
title = 'å©ç¨ãããNumPyã®ä¸»è¦æ©è½'
{{< /figure >}}
|
numpy/numpy.org
|
e7508479d27ee17b3ae4dfe40d2527d2a317318b
|
[skip actions][skip azp][skip cirrus] updated the numpy installation page with tab based navigation
|
diff --git a/content/en/install.md b/content/en/install.md
index b493f60..3b50b5d 100644
--- a/content/en/install.md
+++ b/content/en/install.md
@@ -1,206 +1,217 @@
---
title: Installing NumPy
sidebar: false
---
The only prerequisite for installing NumPy is Python itself. If you don't have
Python yet and want the simplest way to get started, we recommend you use the
[Anaconda Distribution](https://www.anaconda.com/download) - it includes
Python, NumPy, and many other commonly used packages for scientific computing
and data science.
NumPy can be installed with `conda`, with `pip`, with a package manager on
macOS and Linux, or [from source](https://numpy.org/devdocs/building).
For more detailed instructions, consult our [Python and NumPy
installation guide](#python-numpy-install-guide) below.
**CONDA**
If you use `conda`, you can install NumPy from the `defaults` or `conda-forge`
channels:
```bash
# Best practice, use an environment rather than install in the base env
conda create -n my-env
conda activate my-env
# If you want to install from conda-forge
conda config --env --add channels conda-forge
# The actual install command
conda install numpy
```
**PIP**
If you use `pip`, you can install NumPy with:
```bash
pip install numpy
```
Also when using pip, it's good practice to use a virtual environment -
see [Reproducible Installs](#reproducible-installs) below for why, and
[this guide](https://dev.to/bowmanjd/python-tools-for-managing-virtual-environments-3bko#howto)
for details on using virtual environments.
<a name="python-numpy-install-guide"></a>
# Python and NumPy installation guide
Installing and managing packages in Python is complicated, there are a
number of alternative solutions for most tasks. This guide tries to give the
reader a sense of the best (or most popular) solutions, and give clear
recommendations. It focuses on users of Python, NumPy, and the PyData (or
numerical computing) stack on common operating systems and hardware.
-## Recommendations
+{{< tabs >}}
+
+[[tab]]
+name = 'Recommended Method'
+content = '''
We'll start with recommendations based on the user's experience level and
operating system of interest. If you're in between "beginning" and "advanced",
please go with "beginning" if you want to keep things simple, and with
"advanced" if you want to work according to best practices that go a longer way
in the future.
### Beginning users
On all of Windows, macOS, and Linux:
- Install [Anaconda](https://www.anaconda.com/download) (it installs all
packages you need and all other tools mentioned below).
- For writing and executing code, use notebooks in
[JupyterLab](https://jupyterlab.readthedocs.io/en/stable/index.html) for
exploratory and interactive computing, and
[Spyder](https://www.spyder-ide.org/) or [Visual Studio Code](https://code.visualstudio.com/)
for writing scripts and packages.
- Use [Anaconda Navigator](https://docs.anaconda.com/anaconda/navigator/) to
manage your packages and start JupyterLab, Spyder, or Visual Studio Code.
### Advanced users
#### Conda
- Install [Miniforge](https://github.com/conda-forge/miniforge).
- Keep the `base` conda environment minimal, and use one or more
[conda environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
to install the package you need for the task or project you're working on.
#### Alternative if you prefer pip/PyPI
For users who know, from personal preference or reading about the main
differences between conda and pip below, they prefer a pip/PyPI-based solution,
we recommend:
- Install Python from [python.org](https://www.python.org/downloads/),
[Homebrew](https://brew.sh/), or your Linux package manager.
- Use [Poetry](https://python-poetry.org/) as the most well-maintained tool
that provides a dependency resolver and environment management capabilities
in a similar fashion as conda does.
+'''
-## Python package management
+[[tab]]
+name = 'Python Package Management'
+content = '''
Managing packages is a challenging problem, and, as a result, there are lots of
tools. For web and general purpose Python development there's a whole
[host of tools](https://packaging.python.org/guides/tool-recommendations/)
complementary with pip. For high-performance computing (HPC),
[Spack](https://github.com/spack/spack) is worth considering. For most NumPy
users though, [conda](https://conda.io/en/latest/) and
[pip](https://pip.pypa.io/en/stable/) are the two most popular tools.
### Pip & conda
The two main tools that install Python packages are `pip` and `conda`. Their
functionality partially overlaps (e.g. both can install `numpy`), however, they
can also work together. We'll discuss the major differences between pip and
conda here - this is important to understand if you want to manage packages
effectively.
The first difference is that conda is cross-language and it can install Python,
while pip is installed for a particular Python on your system and installs other
packages to that same Python install only. This also means conda can install
non-Python libraries and tools you may need (e.g. compilers, CUDA, HDF5), while
pip can't.
The second difference is that pip installs from the Python Packaging Index
(PyPI), while conda installs from its own channels (typically "defaults" or
"conda-forge"). PyPI is the largest collection of packages by far, however, all
popular packages are available for conda as well.
The third difference is that conda is an integrated solution for managing
packages, dependencies and environments, while with pip you may need another
tool (there are many!) for dealing with environments or complex dependencies.
<a name="reproducible-installs"></a>
### Reproducible installs
As libraries get updated, results from running your code can change, or your
code can break completely. It's important to be able to reconstruct the set
of packages and versions you're using. Best practice is to:
1. use a different environment per project you're working on,
2. record package names and versions using your package installer;
each has its own metadata format for this:
- Conda: [conda environments and environment.yml](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
- Pip: [virtual environments](https://docs.python.org/3/tutorial/venv.html) and
[requirements.txt](https://pip.readthedocs.io/en/latest/user_guide/#requirements-files)
- Poetry: [virtual environments and pyproject.toml](https://python-poetry.org/docs/basic-usage/)
+'''
-## NumPy packages & accelerated linear algebra libraries
+[[tab]]
+name = 'NumPy packages & Libraries'
+content = '''
NumPy doesn't depend on any other Python packages, however, it does depend on an
accelerated linear algebra library - typically
[Intel MKL](https://software.intel.com/en-us/mkl) or
[OpenBLAS](https://www.openblas.net/). Users don't have to worry about
installing those (they're automatically included in all NumPy install methods).
Power users may still want to know the details, because the used BLAS can
affect performance, behavior and size on disk:
- The NumPy wheels on PyPI, which is what pip installs, are built with OpenBLAS.
The OpenBLAS libraries are included in the wheel. This makes the wheel
larger, and if a user installs (for example) SciPy as well, they will now
have two copies of OpenBLAS on disk.
- In the conda defaults channel, NumPy is built against Intel MKL. MKL is a
separate package that will be installed in the users' environment when they
install NumPy.
- In the conda-forge channel, NumPy is built against a dummy "BLAS" package. When
a user installs NumPy from conda-forge, that BLAS package then gets installed
together with the actual library - this defaults to OpenBLAS, but it can also
be MKL (from the defaults channel), or even
[BLIS](https://github.com/flame/blis) or reference BLAS.
- The MKL package is a lot larger than OpenBLAS, it's about 700 MB on disk
while OpenBLAS is about 30 MB.
- MKL is typically a little faster and more robust than OpenBLAS.
Besides install sizes, performance and robustness, there are two more things to
consider:
- Intel MKL is not open source. For normal use this is not a problem, but if
a user needs to redistribute an application built with NumPy, this could be
an issue.
- Both MKL and OpenBLAS will use multi-threading for function calls like
`np.dot`, with the number of threads being determined by both a build-time
option and an environment variable. Often all CPU cores will be used. This is
sometimes unexpected for users; NumPy itself doesn't auto-parallelize any
function calls. It typically yields better performance, but can also be
harmful - for example when using another level of parallelization with Dask,
scikit-learn or multiprocessing.
-
+'''
+{{< /tabs >}}
## Troubleshooting
If your installation fails with the message below, see [Troubleshooting
ImportError](https://numpy.org/doc/stable/user/troubleshooting-importerror.html).
```
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
Importing the numpy c-extensions failed. This error can happen for
different reasons, often due to issues with your setup.
```
|
numpy/numpy.org
|
81d6282ef470c94f0e15ea909fe087de5db6cdc2
|
Shortened NumPy YouTube link in config.yaml (#828)
|
diff --git a/content/en/config.yaml b/content/en/config.yaml
index a2277de..63ac094 100644
--- a/content/en/config.yaml
+++ b/content/en/config.yaml
@@ -1,117 +1,117 @@
languageName: English
params:
description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
navbarlogo:
image: logo.svg
text: NumPy
link: /
hero:
# Main hero title
title: NumPy
# Hero subtitle (optional)
subtitle: The fundamental package for scientific computing with Python
# Button text
buttontext: "Latest release: NumPy 2.2. View all releases"
# Where the main hero button links to
buttonlink: "/news/#releases"
# Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
- title: Try NumPy
text: Use the interactive shell to try NumPy in the browser
docslink: Don't forget to check out the <a href="https://numpy.org/doc/stable" target="_blank">docs</a>.
casestudies:
title: CASE STUDIES
features:
- title: First Image of a Black Hole
text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
img: /images/content_images/case_studies/blackhole.png
alttext: First image of a black hole. It is an orange circle in a black background.
url: /case-studies/blackhole-image
- title: Detection of Gravitational Waves
text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Two orbs orbiting each other. They are displacing gravity around them.
url: /case-studies/gw-discov
- title: Sports Analytics
text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
img: /images/content_images/case_studies/sports.jpg
alttext: Cricket ball on green field.
url: /case-studies/cricket-analytics
- title: Pose Estimation using deep learning
text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Cheetah pose analysis
url: /case-studies/deeplabcut-dnn
tabs:
title: ECOSYSTEM
section5: false
navbar:
- title: Install
url: /install
- title: Documentation
url: https://numpy.org/doc/stable
- title: Learn
url: /learn
- title: Community
url: /community
- title: About Us
url: /about
- title: News
url: /news
- title: Contribute
url: /contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- link: https://github.com/numpy/numpy
icon: github
- - link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
+ - link: https://www.youtube.com/@NumPy_team
icon: youtube
quicklinks:
column1:
title: ""
links:
- text: Install
link: /install
- text: Documentation
link: https://numpy.org/doc/stable
- text: Learn
link: /learn
- text: Citing Numpy
link: /citing-numpy
- text: Roadmap
link: https://numpy.org/neps/roadmap.html
column2:
links:
- text: About us
link: /about
- text: Community
link: /community
- text: User surveys
link: /user-surveys
- text: Contribute
link: /contribute
- text: Code of conduct
link: /code-of-conduct
column3:
links:
- text: Get help
link: /gethelp
- text: Terms of use
link: /terms
- text: Privacy
link: /privacy
- text: Press kit
link: /press-kit
|
numpy/numpy.org
|
3bfce2f11da9fac2605ad7a1b42b123615868dd0
|
Disable code execution for NumPy REPL (#824)
|
diff --git a/layouts/partials/shell.html b/layouts/partials/shell.html
index a37d60d..7a0db79 100644
--- a/layouts/partials/shell.html
+++ b/layouts/partials/shell.html
@@ -1,25 +1,25 @@
{{- $shell := .Site.Params.shell }}
{{- $intro := index $shell "intro" }}
<div class="hero-right">
<div class="flex-column shell-title-container">
{{- range $intro }}
<div class="shell-title">{{ .title }}</div>
<div class="shell-content-message">
<p>{{ .text }}</p>
</div>
{{- end }}
</div>
<div class="numpy-shell-canvas">
<div class="numpy-shell-container">
<div class="shell-lesson shell-content">
{{partial "shell-lesson.html" | print | markdownify}}
</div>
<!-- Interactive Shell -->
<iframe
class="numpy-shell"
- src="https://jupyterlite.github.io/demo/repl/?toolbar=1&kernel=python&code=import%20numpy%20as%20np"
+ src="https://jupyterlite.github.io/demo/repl/?toolbar=1&kernel=python&execute=0&code=import%20numpy%20as%20np"
>
</iframe>
</div>
</div>
</div>
|
numpy/numpy.org
|
b2a88231243f0bfd003825e2ec841df69f4dbff3
|
Use plain ascii anchors to avoid problems with link checker (#825)
|
diff --git a/content/ja/code-of-conduct.md b/content/ja/code-of-conduct.md
index 70ca4d8..304f138 100644
--- a/content/ja/code-of-conduct.md
+++ b/content/ja/code-of-conduct.md
@@ -1,83 +1,83 @@
---
title: NumPyè¡åè¦ç¯
sidebar: false
aliases:
- /ja/conduct/
---
### ã¯ããã«
ãã®è¡åè¦ç¯ã¯ãNumPy ããã¸ã§ã¯ãã«ãã£ã¦ç®¡çããããã¹ã¦ã®å ´æã§é©ç¨ããã¾ãã ãã®å ´æã¨ã¯ããã¹ã¦ã®ãããªãã¯ããã³ãã©ã¤ãã¼ãã®ã¡ã¼ãªã³ã°ãªã¹ããã¤ã·ã¥ã¼ãã©ãã«ã¼ãWikiãããã°ãTwitterãã³ãã¥ããã£ã§ä½¿ç¨ããã¦ãããã®ä»ã®éä¿¡ãã£ã³ãã«ãªã©ãå«ã¿ã¾ãã NumPy ããã¸ã§ã¯ãã§ã¯å¯¾é¢ã§ã®ã¤ãã³ãã¯éå¬ãã¦ãã¾ããã ããããæã
ã®ã³ãã¥ããã£ã«é¢é£ãããã®ã§ããã°ã対é¢ã®ã¤ãã³ãã§ãåæ§ã®è¡åè¦ç¯ãæã¤å¿
è¦ãããã¾ãã
ãã®è¡åè¦ç¯ã¯ãNumPy ã³ãã¥ããã£ã«æ£å¼ã¾ãã¯éå
¬å¼ã«åå ãããã¹ã¦ã®äººãé å®ããå¿
è¦ãããã¾ãã ãã®ä»ã«ããNumPyã¨ã®ææºã»é¢é£ããããã¸ã§ã¯ãæ´»åã«ããã¦ã¯ãç¹ã«ãããã®ããã¸ã§ã¯ãã代表ããå ´åãåæ§ã®è¡åè¦ç¯ã«å¾ãå¿
è¦ãããã¾ãã
ãã®è¡åè¦ç¯ã¯å®å
¨ã§ã¯ããã¾ããã ããããè¡åè¦ç¯ã¯æã
ãçè§£ãã¹ããäºãã®ååã®ä»æ¹ããå
±éã®å ´æã®ããã¹ãå§¿ãæã
ã®ã´ã¼ã«ãªã©ãã¾ã¨ããã®ã«éè¦ãªå½¹ç®ãæããã¾ãã ãã¬ã³ããªã¼ã§çç£çãªç°å¢ãçã¿åºããå¨å²ã®ã³ãã¥ããã£ã«ããè¯ãå½±é¿ãä¸ããããããã²ãã®è¡åè¦ç¯ã«å¾ã£ã¦ãã ããã
### ã¬ã¤ãã©ã¤ã³ã®æ¦è¦
ç§ãã¡ã¯ä¸è¨ã®å
容ã«çæ¯ã«åãçµã¿ã¾ãã
1. éããã³ãã¥ããã£ã«ãã¾ãããã ç§ãã¡ã¯ã誰ã§ãã³ãã¥ããã£ã«åå ã§ããããã«ãã¾ãã ç§ãã¡ã¯ãå
¬ã«ãã¹ãã§ã¯ãªãå
容ãè°è«ããå ´å以å¤ãããã¸ã§ã¯ãã«é¢é£ããã¡ãã»ã¼ã¸ãå
¬ã®å ´ã§åç¥ãããã¨ãé¸ã³ã¾ãã ããã¯ãNumPyã«é¢ãããã«ããããã¸ã§ã¯ããµãã¼ãã«ãé©ç¨ããã¾ããå
¬å¼ãªãµãã¼ãã ãã§ãªããNumPyã«é¢ãã質åã«çããå ´åãã§ãã ããã«ããã質åã«çããéã®æå³ããªãééãããããç°¡åã«æ¤åºããè¨æ£ã§ããããã«ãªãã¾ãã
2. å
±æããæè¿ããå好çã§ãããã¦ææ
¢å¼·ãããã¾ãããã ç§ãã¡ã¯äºãã«äºãã解決ãåããäºãã®åæãä¿¡ãåãã¾ãã ç§ãã¡ã¯ææã䏿ºãæããããããã¾ããã ããããã®ãããªå ´åãã䏿ºãå人çãªæ»æã«å¤ãããã¨ã¯è¨±å®¹ããã¾ããã 人ã
ãä¸å¿«ãè
å¨ãæããã³ãã¥ããã£ã¯ãçç£çã§ã¯ãªãããã§ãã
3. äºãã«ååãåããã ç§ãã¡ã®éçºææã¯ä»ã®äººã
ã«ãã£ã¦å©ç¨ããã䏿¹ã§ããã¡ã¯ä»ã®äººã
ã®éçºææã«ä¾åãã¦ããã®ã§ãã ç§ãã¡ãããã¸ã§ã¯ãããã«ä½ããä½ãã¨ããç§ãã¡ã¯ãããã©ã®ããã«åä½ããããä»ã®äººã«èª¬æããå¿
è¦ãããã¾ãã ãããããã®ä½æ¥ã«ãããããè¯ããã®ãä½ãä¸ãããã¨ãã§ããã®ã§ãã ç§ãã¡ãä¸ãå
¨ã¦ã®æ±ºæã¯ãã¦ã¼ã¶ã¨éçºã³ãã¥ããã£ã«å½±é¿ãä¸ããããããã®æ±ºæãããããçµæãç§ãã¡ã¯çæ¯ã«åãæ¢ãã¾ãã
4. 好å¥å¿ã大äºã«ãããã å
¨ã¦ãç¥ã£ã¦ãã人ã¯ããªãã®ã§ãï¼ æ©ãæ©ãã«è³ªåããããã¨ã§ãå¾ã«çãããå¤ãã®åé¡ãåé¿ã§ãã¾ãã ãã®ããç§ãã¡ã¯è³ªåã奨å±ãã¦ãã¾ãã ç§ãã¡ã¯ãåºæ¥ãã ã質åã«è¯ã対å¿ããæå©ãã§ããããåªåãã¾ãã
5. 使ãè¨èã«æ³¨æãã¾ãããã ç§ãã¡ã¯ãã³ãã¥ããã£ã«ãããã³ãã¥ãã±ã¼ã·ã§ã³ã«æ³¨æã¨æ¬æãæãã¾ãã ããã¦ãç§ãã¡ã¯èªåã®è¨èã«è²¬ä»»ãæã¡ã¾ãã ä»äººã«åªãããã¾ãããã ä»ã®ã³ãã¥ããã£ã®åå è
ã侮辱ããªãã§ãã ããã ç§ãã¡ã¯ã以ä¸ã®ãããªãã©ã¹ã¡ã³ãããã®ä»ã®ææ¥è¡çºã許ãã¾ããã :
* ä»ã®äººã«åããããæ´åçãªè¡çºãè¨èã
* æ§å·®å¥ã人種差å¥ããã®ä»ã®å·®å¥çãªã¸ã§ã¼ã¯ãè¨åã
* æ§çã¾ãã¯æ´åçãªå
å®¹ã®æç¨¿ã
* ä»ã®ã¦ã¼ã¶ã¼ã®å人æ
å ±ãæç¨¿ãããã¨ã (ã¾ãã¯æç¨¿ããã¨è
ããã¨)ã
* å
¬éç®çã®ãªãé»åã¡ã¼ã«ããICRãã£ããã®ãããªãã°ã®æ®ããªããã©ã¼ã©ã ã®å±¥æ´ãªã©ããã©ã¤ãã¼ããªã³ã³ãã³ããéä¿¡è
ã®åæãªãã«å
±æãããã¨ã
* å人çãªä¾®è¾±, ç¹ã«äººç¨®å·®å¥ãæ§å·®å¥çãªç¨èªã使ç¨ãã¦ä¾®è¾±ãããã¨ã
* ä¸å¿«ãªæãããããæ§çãªè¨åã
* é度ã«ç²æ´ã«æ¯ãèããã¨ã ã²ã©ããªè¨èã使ãã®ãé¿ãã¦ãã ããã 人ã
ã¯æããè¦ããæåº¦ãããããã大ããç°ãªãã¾ãã
* ä»äººã«å¯¾ãããã©ã¹ã¡ã³ãã®ç¹°ãè¿ãã ä¸è¬çã«ã誰ããããªãã«ããè¨åãæ¢ããããã«è¦æ±ããå ´åããã®è¨åãããã¦ä¸ããã
* ä¸è¨ã®ããããã®è¡åãæè·ãããã¨ãã¾ãã¯å¥¨å±ãããã¨ã
### 夿§æ§ã«é¢ãã声æ
NumPyããã¸ã§ã¯ãã¯ãå
¨ã¦ã®äººã
ã®åå ãæè¿ãã¦ãã¾ãã ç§ãã¡ã¯ã誰ããã³ãã¥ããã£ã®ä¸å¡ã§ãããã¨ã楽ãããããã«å°½åãã¾ãã å
¨ã¦ã®äººã®å¥½ã¿ãæºè¶³ã¯ãããããªãããããã¾ããããå
¨å¡ã«å¯¾ãåºæ¥ãã ã親åãªå¯¾å¿ãã§ããããæåãå°½ããã¾ãã
ããªãã®èªå·±èªèããä»è
ã®ããªãã¸ã®èªèã¯é¢ä¿ããã¾ããã ç§ãã¡ã¯ããªããæè¿ãã¾ãã æ°æãéºä¼ãæ§å䏿§ãããã¯é¢é£ãã表ç¾ãè¨èªãå½ç±ãç¥çµå¦çãªå·®ç°ãçç©å¦çãªå·®ç°ã æ¿æ²»çä¿¡æ¡ãè·æ¥ã人種ãå®æãæ§çæåã社ä¼çµæ¸çå°ä½ãæåçãªå·®ç°ãæè¡çãªè½åã
ç§ãã¡ã¯ãã¹ã¦ã®ç¨®é¡ã®è¨èªè¨èªè©±è
ã®åå ãæè¿ãã¾ãããNumPy éçºã¯è±èªã§è¡ããã¾ãã
NumPy ã³ãã¥ããã£ã®æ¨æºçãªã«ã¼ã«ã¯ãä¸è¨ã®è¡åè¦ç¯ã§èª¬æããã¦ãã¾ãã NumPyã³ãã¥ããã£ã®åå è
ã¯ããããã®è¡ååºæºããã¹ã¦ã®ã³ãã¥ãã±ã¼ã·ã§ã³ã«ããã¦é å®ããä»ã®äººã
ã«ãåæ§ãªè¡åããããã¨ãæ¨å¥¨ãã¹ãã§ã (次ã®ã»ã¯ã·ã§ã³ãåç
§)ã
### å ±åã¬ã¤ãã©ã¤ã³
ç§ãã¡ã¯ãã¤ã³ã¿ã¼ãããä¸ã§ã®ããã¨ããç°¡åã«ã²ã©ã誹è¬ä¸å·ã«é¥ã£ã¦ãã¾ããã¨ããçãã»ã©ç¥ã£ã¦ãã¾ã. ç§ãã¡ã¯ã¾ããå«ãªæ¥ãéããã¦ãããããããã¦ãã人ããè¡åè¦ç¯ã¬ã¤ãã©ã¤ã³ã®é
ç®ãè¦è½ã¨ãã¦ãã人ããããã¨ãç¥ã£ã¦ãã¾ãã è¡åè¦ç¯ã®éåã«ã©ã®ããã«å¯¾å¦ããããæ±ºå®ããéã«ã¯ããã®ãã¨ãå¿ã«çãã¦ããå¿
è¦ãããã¾ãã
æå³çãªè¡åè¦ç¯éåã«ã¤ãã¦ã¯ãè¡åè¦ç¯å§å¡ä¼ã«å ±åãã¦ãã ãã (ä¸è¨åç
§)ã ãããéåãæå³çã§ãªãå¯è½æ§ãããå ´åããã®äººã«ãã®è¡åè¦ç¯ã®åå¨ãç¥ããããã¨ãå¯è½ã§ã (ãããªãã¯ã§ããã©ã¤ãã¼ãã§ããé©åãªæ¹æ³ã§)ã ããç´æ¥ææããããªãå ´åã¯ããã²ãè¡åè¦ç¯å§å¡ä¼ã«ç´æ¥é£çµ¡ããããéåã®ç¢ºåº¦ã«ã¤ãã¦å©è¨ãæ±ãã¦ä¸ããã
NumPyè¡åè¦ç¯å§å¡ä¼ã«åé¡ãå ±åããå ´åã¯ããã¡ãã«ãé£çµ¡ä¸ãã: [email protected]ã
ç¾å¨ãè¡åè¦ç¯å§å¡ä¼ã¯ä»¥ä¸ã®ã¡ã³ãã¼ã§æ§æããã¦ãã¾ã:
* Stefan van der Walt
* Melissa Weber Mendonça
* Rohit Goswami
ããããªãã®éåå ±åã«å§å¡ä¼ã®ã¡ã³ãã¼ãå«ã¾ãã¦ããå ´å, ã¾ãã¯å½¼ãããããå¦çããä¸ã§å©çç¸åããã¦ããã¨æããå ´åããã®ã¡ã³ãã¼ã¯ããªãã®å ±åãè©ä¾¡ããç«å ´ããã¯è¾éãã¦ãããã¾ãã ãããã¯ãè¡åè¦ç¯å§å¡ä¼ã«å ±åããã®ãèºèºãããå ´åã¯ããã¡ãããNumFOCUSã®ã·ãã¢ã¹ã¿ããã«é£çµ¡ãããã¨ãå¯è½ã§ã:[[email protected]](https://numfocus.org/code-of-conduct#persons-responsible) ã
### ã¤ã³ã·ãã³ãå ±åã®è§£æ±º & è¡åè¦ç¯ã®å®æ½
æ¬ç¯ã§ã¯ã_æãéè¦ãªç¹ã®ã¿ãã¾ã¨ãã¾ãã _詳細ã«ã¤ãã¦ã¯ã[NumPy Code of Conduct - How to follow up on a report](report-handling-manual) ãã覧ãã ããã
ç§ãã¡ã¯ãã¹ã¦ã®è¨´ãã調æ»ãã対å¿ããããã«ãã¾ãã NumPyè¡åè¦ç¯å§å¡ä¼ããã³NumPyéå¶å§å¡ä¼(ããé¢ä¿ããå ´å) ã¯ãå ±åè
ã®èº«å
ãä¿è·ãã¾ãã ã¾ã(å ±åè
ãåæããªãéã) è¦æ
ã®å
å®¹ãæ©å¯ã¨ãã¦æ±ããã¨ã¨ãã¾ãã
ããæ·±å»ã§æãããªéåã®å ´åãä¾ãã°ã å人çãªè
ããã¾ãã¯æ´åçãæ§å·®å¥çã¾ãã¯äººç¨®å·®å¥çãªçºè¨ãªã©ã®å ´åãæã
ã¯ç´ã¡ã«NumPyã®ã³ãã¥ãã±ã¼ã·ã§ã³ã®å ´ããçºè¨è
ãéå ´ããã¾ãã詳細ã«ã¤ãã¦ã¯ããã¥ã¢ã«ãåç
§ãã¦ãã ããã
ãããè¡åè¦ç¯ã«å¯¾ãã¦æç½ãªéåãã¿ãããªãå ´åãåé ãããè¡åè¦ç¯éåå ±åã«å¯¾ããããã»ã¹ã¯ä»¥ä¸ã®éãã§ãã
1. å ±åæ¸ã®åé ã確èª
2. 建è¨çãªè°è«/ãã£ã¼ãããã¯
3. 調åï¼å ±åè
ã¨å ±åãåãããã®ã®ä¸¡æ¹ããã£ã¼ãããã¯ãå½¹ã«ç«ããªãã£ãã¨åæããå ´åã«éãï¼
-4. è¡åè¦ç¯å§å¡ä¼ã«ããéææ§ã®ããæ±ºå®ã¨å·è¡( [決è°](report-handling-manual/#è§£æ±ºæ¹æ³)ãåç
§)
+4. è¡åè¦ç¯å§å¡ä¼ã«ããéææ§ã®ããæ±ºå®ã¨å·è¡( [決è°](report-handling-manual/#resolutions)ãåç
§)
è¡åè¦ç¯å§å¡ä¼ã¯ãå¯è½ãªéãéããã«å¯¾å¿ããæå¤§ã§72æé以å
ã«å¯¾å¿ããæ§ã«ãã¾ãã
### ææ«èæ³¨:
ç§ãã¡ã¯ä¸è¨ã®ããã¥ã¡ã³ãã使ããã°ã«ã¼ãã«æè¬ãã¾ãã å
容ã»çºæ³ã¨ãã«å¤§ãã«å½±é¿ããã¦ãã¾ãã
- [SciPyè¡åè¦ç¯](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/ja/report-handling-manual.md b/content/ja/report-handling-manual.md
index 10ec4d6..831fee0 100644
--- a/content/ja/report-handling-manual.md
+++ b/content/ja/report-handling-manual.md
@@ -1,95 +1,95 @@
---
title: NumPyè¡åè¦ç¯ - å ±åæ¸ã®ãã©ãã¼ã¢ããæ¹æ³
sidebar: false
---
NumPyã®è¡åè¦ç¯å§å¡ä¼ã¯ãã®ããã¥ã¢ã«ã«å¾ãã¾ãã ãã®ããã¥ã¢ã«ã¯æ§ã
ãªåé¡ã«å¯¾å¿ããéã«ä½¿ç¨ãããä¸è²«æ§ã¨å
¬å¹³æ§ã確ä¿ãã¾ãã
[è¡åè¦ç¯](/ja/code-of-conduct) ãæ½è¡ãããã¨ã¯ãç§ãã¡ã®ã³ãã¥ããã£ã®ç¾å¨ã®ãããæªæ¥ã®ããã«éè¦ã§ãã ãã®æ½è¡ã¯ã軽ããã®ã§ã¯ããã¾ããã æ½è¡ã®åºæºãè¦ç´ãéãè¡åè¦ç¯å§å¡ä¼ã¯ä»¥ä¸ã®èãæ¹ã¨ã¬ã¤ãã©ã¤ã³ã«çæããããã«ãã¾ãã
* æ©æ¢°çã§ã¯ãªãã人éçã«è¡åãã¾ãã å§å¡ä¼ã¯ãå½äºè
ã®ãã©ã¤ãã·ã¼ã¨å ±åè
ã®å¿
è¦ãªã ãã®æ©å¯æ§ãå°éããªãããç¶æ³ãçè§£ããããã«åãããããã¨ãã§ãã¾ã. ãã ãã1人以ä¸ã®å人ã¨ç´æ¥é£çµ¡ãåãå¿
è¦ãããå ´åãããã¾ãã å§å¡ä¼ã®ç®æ¨ã¯æ£ããæ±ºå®ãä¸ãã®ã§ã¯ãªããã³ãã¥ããã£ã®å¥åº·ãæ¹åãããã¨ãªã®ã§ãã
* è¡åã夿ããã®ã§ã¯ãªããå人ã¸ã®å
±æã強調ãããè¯ããã¨ãæªããã®äºå¤è©ä¾¡ãé¿ãã¾ãã æç¢ºãªæ»ææ§ã¨ãã©ã¹ã¡ã³ããåå¨ããå ´åãç§ãã¡ã¯ãããã«å¯¾å¦ãã¾ãã ãããã解決ãå°é£ãªã·ããªãªã®å¤ãã¯ãéå¸¸ã®æè¦ã®ç¸éããè¤æ°ã®å½äºè
ã«ããç¡çã¾ãã¯æå®³ãªè¡åã«çºå±ããå ´åã§ãã å®å
¨ã«æèãçè§£ãããã¹ã¦ãåã³å
ã«æ»ãéãè¦ã¤ãããã¨ã¯å°é£ã§ãããã³ãã¥ããã£ã«ã¨ã£ã¦æçµçã«æãæçãªæ¹æ³ã§ãã
* ç§ãã¡ã¯ãé»åã¡ã¼ã«ã夿ã«å°é£ãªåªä½ã§ãããç¬ç«ãã¦å©ç¨ã§ãããã¨ãçè§£ãã¦ãã¾ãã åäººã®æ
å ±ãªãã«é»åã¡ã¼ã«ä¸ã§æ¹å¤ãåãããã¨ã¯ãç¹ã«è¦çã§ããå ´åãããã¾ãã ããã§ãä»è
ã®è¦è§£ã«å¯¾ãã¦ãéæ¾çã§ãæ¬æãæã£ãé°å²æ°ãä¿ã¤ãã¨ãéè¦ã«ãªãã¾ãã ããã¯ã¾ããç§ãã¡ã®è¡åãéæã§ãªããã°ãªããªããã¨ãæå³ãã¾ãã å
¨ã¦ã®ã¡ã³ãã¼ãå
¬å¹³ãã¤åæ
ããã£ã¦æ±ãããããã«ãããããç§ãã¡ã¯å
¨åãå°½ããã¾ãã
* å·®å¥ã®å¢çã¯æã«ææ§ã§ãã¾ãç¡æèã«è¡ããã¦ããå ´åãããã¾ãã ããã«ãããæ®éã®äººã¨ã®é¢ããã®ä¸ã§ãä¸å
¬å¹³æãæµæã¨ãã¦ç¾ãã¦ããã®ã§ãã ç§éã¯ããã®ãããªãã¨ãèµ·ãããã¨ã¯ããã£ã¦ããã®ã§ãæ°ãã¤ãã¦è¦ã¦ããããã¨æãã¾ãã ä¸å½ãªæ±ããåããã¨æãããæ¹ã¯ããã²ãé£çµ¡ãã ããã
* è¯ãè°è«ãå®è·µãããã¨ã§ãã¨ã³ã²ã¼ã¸ã¡ã³ãã®åä¸ã«åãçµã¿ã¾ããä¾ãã°è°è«ãã©ãã§æ¢ã¾ã£ã¦ããã®ããç¹å®ãããã å®è·µçãªæ
å ±ãæéãè³æºãæä¾ãããã¨ã§ããããã®åé¡ãååããªæ¹åã«å¤ãã¦ããã¾ãã
* æ°ããã¡ã³ãã¼ãä½ãå¿
è¦ã¨ãã¦ãããã«çæãã¾ãã ç¹ã«ç¤¾ä¼çå°ä½ã®ä½ãã°ã«ã¼ãããã®åå ãå¢ãããã¨ãç®çã«ãæç¢ºãªãµãã¼ãã¨é
æ
®ãæä¾ãã¦ããã¾ãã
* ä¸äººä¸äººã®æåçèæ¯ãæ¯å½èªã¯ç°ãªãã¾ãã ãã¤ãã£ãã§ãªã人ãèµ·ãããæªæ°ã®ãªã誤解ã確èªããåé¡ãçè§£ãã¦ããããä¸å¿«æãä¸ããªãããã«ä½ãå¤ããã°ããããæãã¦ããã¦ãã ããã å¤å½èªã§ã®è¤éãªè°è«ã¯ã¨ã¦ãé£ãããã®ã§ãããå½ç±ãæåãè¶
ãã¦å¤æ§æ§ãè²ã¦ã¦ããããã¨èãã¦ãã¾ãã
## 仲ä»
èªä¸»çãªéå
¬å¼ã®èª¿åã¯ãç§ãã¡ã®éè¦ãªå½¹å²ã§ãã 2ã¤ã®ã°ã«ã¼ã以ä¸ã®å½äºè
ãä¸é©åãªè¡åãã¨ã¹ã«ã¬ã¼ãããå ´å(人é¡ã®ç´äºã§ã¯æ²ãããã¨ã«ä¸è¬çãªãã®ã§ãã)ã調åããã»ã¹ãä¿é²ããã¯é常ã«éè¦ã§ãã ã¡ãªã¿ã«ãããã¯ä¸ä¾ã«éãã¾ãããå§å¡ä¼ã¯ãã©ã®ãããªã±ã¼ã¹ã§ã調åãæ¤è¨ãããã¨ãã§ãã¾ããããã®ããã»ã¹ã¯ããã¾ã§ãèªçºçãªãã®ã§ãããå½äºè
ã«åå ãè¿«ããã¨ã¯ã§ããªããã¨ã念é ã«ç½®ãã¦ä¸ããã å§å¡ä¼ã調åãææ¡ããå ´åã¯ã次ã®ããã«ãã¹ãã§ãã
* 調åè
ã¨ãã¦å½¹ç«ã¤åè£è
ãè¦ã¤ãã¾ãã
* å ±åè
ã®åæãåå¾ãã¾ãã å ±åè
ã¯ã調åã®ã¢ã¤ãã¢ãæå¦ãããã代æ¿ã®èª¿åè
ãææ¡ããæ¨©å©ãæã¡ã¾ãã
* å ±åè
ã®åæãåå¾ãã¾ãã
* 調åäººãæ±ºå®ãã¾ããå½äºè
ã¯ãææ¡ãããåè£è
ã¨ã¯å¥ã®èª¿åäººãææ¡ãããã¨ãã§ãã¾ãããã¹ã¦ã®æ¡ä»¶ã§å
±éã®åæã«éããå ´åã®ã¿ãããã»ã¹ãé²ãããã¨ãã§ãã¾ãã
* 調åãå®äºããã¾ã§ã®ã¿ã¤ã ã©ã¤ã³ãè¨å®ããçæ³çã«ã¯2é±é以å
ã«å®äºããã¾ãã
調åè
ã¯ããã¹ã¦ã®å½äºè
ã¨é¢ããããã¹ã¦ã®äººã«æºè¶³ã®ããæ±ºè°ãæ±ãã¦ããã¾ãã çµäºå¾ã調å人ã¯ï¼ããã»ã¹ã®å
¨å½äºè
ã«ãã£ã¦åå³ãããï¼å ±åæ¸ãå§å¡ä¼ã«æåºããä»å¾ã®ã¹ãããã«é¢ããæ¨å¥¨äºé
ãæç¤ºãã¾ãã å§å¡ä¼ã¯ããããã®çµæ(æºè¶³ã®ããæ±ºè°ãéæããããå¦ã) ãè©ä¾¡ããå¿
è¦ã¨å¤æããã追å çãªæªç½®ã決å®ãã¾ãã
## å ±åã«å¯¾ããå§å¡ä¼ã®å¯¾å¿
å§å¡ä¼(ã¾ãã¯å§å¡) ãè¡åè¦ç¯éåå ±åãåããæããã®å ±åãæç¢ºã§æ·±å»ãªéåã§ãããã©ããã¯å¤æããã¾ã(以ä¸ã«éåé
ç®ãå®ç¾©ãã¾ã)ã éåå¤å®ãããå ´åã¯ãé常ã®ã¬ãã¼ãå¦çããã»ã¹ã«å ãã¦ã峿ã®å¯¾å¿ãå¿
è¦ã«ãªãã¾ãã
## æç¢ºãã¤æ·±å»ãªéåè¡çºã®è§£æ±º
ç§ãã¡ã¯ãã¤ã³ã¿ã¼ãããã§ã®ä¼è©±ãç°¡åã«ã²ã©ã誹è¬ä¸å·ã«ãªã£ã¦ãã¾ããã¨ããçãã»ã©ç¥ã£ã¦ãã¾ãã å人çãªè
è¿«ãæ´åçãæ§å·®å¥çã人種差å¥çãªè¨èãªã©ãæããã§æ·±å»ãªéåã«å¯¾ãã¦ã¯ãè¿
éã«å¯¾å¦ãã¾ãã
è¡åè¦ç¯å§å¡ä¼ã®ã¡ã³ãã¼ã¯ãæç¢ºãã¤æ·±å»ãªéåã«æ°ã¥ããå ´åã以ä¸ã®ããã«è¡åãã¾ãã
* ç´ã¡ã«ãã¹ã¦ã®NumPyã®ãªã³ã©ã¤ã³ã³ãã¥ããã£ããéåè
ãæé¤ãã¾ãã
* å ±åãåä¿¡ãããéåè
ãæé¤ããããã¨ãå ±åè
ã«é£çµ¡ãã¾ãã
* ã©ã®ãããªå ´åã§ããã¢ãã¬ã¼ã¿ã¼ã¯éåè
ã«é£çµ¡ããããã®åççãªåªåãè¡ããéåè
ã®è¨èãè¡åãã©ã®ããã«ãæç¢ºãã¤é大ãªéåãã«è©²å½ããã®ããå
·ä½çã«ä¼ããã¹ãã§ãã ã¢ãã¬ã¼ã¿ã¼ã¯ãéåè
ãããã¯ä¸å½ã ã¨æãå ´åããããã¯NumPyãã£ã³ãã«ã¨ã®åæ¥ç¶ãæãå ´åã«ã¯ãè¡åè¦ç¯å§å¡ä¼ã«ãã以ä¸ã®ãããªå¯©æ»ãæ±ããæ¨©å©ããããã¨ãè¿°ã¹ãã¹ãã§ãã ã¢ãã¬ã¼ã¿ã¯ããã®èª¬æãè¡åè¦ç¯å§å¡ä¼ã«è»¢éããå¿
è¦ãããã¾ãã
* è¡åè¦ç¯å§å¡ä¼ã¯ããã®ããã»ã¹ãé©ç¨ããããã¹ã¦ã®ã±ã¼ã¹ãæ£å¼ã«ã¬ãã¥ã¼ãç½²åãããã¨ã§ãããããçãä¸ãããããè«äºãè««ãããããã®ããã»ã¹ã使ç¨ãããã®ã§ãªããã¨ã確èªãã¾ãã
## å ±åã®å¦ç
å ±åãå§å¡ä¼ã«éãããã¨ãç´ã¡ã«å ±åè
ã«è¿ä¿¡ãã¦å ±åãåé ãããã¨ã確èªãã¾ãã ãã®è¿ä¿¡ã¯72æé以å
ã«éä¿¡ãããå¿
è¦ããããå§å¡ä¼ã¯ãããããã¯ããã«è¿
éã«å¯¾å¿ããããåªããå¿
è¦ãããã¾ãã
ã¬ãã¼ãã«ååãªæ
å ±ãå«ã¾ãã¦ããªãå ´åãå§å¡ä¼ã¯è¡åããåã«ãé¢é£ãããã¹ã¦ã®ãã¼ã¿ãåå¾ããããã«ãã¾ãã å§å¡ä¼ã¯ãäºä»¶ã®ç¶æ³ãå
¨ã¦ç¥ãããã«é¢ä¿ããå人ã«é£çµ¡ããéã«ãéå¶åè°ä¼ã«ä»£ãã£ã¦è¡åããæ¨©éãä¸ãããã¦ãã¾ãã
ãã®å¾ãå§å¡ä¼ã¯ä»åã®åé¡ãè¦ç´ãã广ãæå¤§éã«çºæ®ãã対çãæ±ºå®ãã¾ãã
* åé¡ã®ç¨®é¡
* ä»åã®äºæ
ãè¡åè¦ç¯éåã§ãããã©ããã
* 責任è
ã誰ã§ããã
* ãããé²è¡ä¸ã®ç¶æ³ã§ãããã誰ã®ç©ççå®å
¨ã«è
å¨ããããã©ããã
ãããã®æ
å ±ã¯æ¸é¢ã§åéãããå¯è½ãªéãã°ã«ã¼ãã®å¯©è°ãè¨é²ãããä¿æããã¾ã (ä¾ãã°ããã£ããã®è¨é²ãEã¡ã¼ã«ã®ãã£ã¹ã«ãã·ã§ã³ãä¼è°é話ã®è¨é²ãé³å£°ä¼è©±ã®æ¦è¦ãªã©)ã
è¡åã®ä¸è²«æ§ã確ä¿ããããã¸ã§ã¯ãã®ããã«è¨é²ãæ®ãããã«ãå§å¡ä¼ã®ãã¹ã¦ã®æ´»åã®ã¢ã¼ã«ã¤ããä¿æãããã¨ãéè¦ã§ãã ãã®æ´»åæ¯æ´ããããã«ãå§å¡ä¼ã®ããã©ã«ãã®è°è«ãã£ãã«ã¯ãæ£å½åãããè¦æ±ã«å¿ãã¦ãå§å¡ä¼ã®ç¾å¨ããã³å°æ¥ã®ã¡ã³ãã¼ãããã³éå¶å§å¡ä¼ã®ã¡ã³ãã¼ãã¢ã¯ã»ã¹ã§ãããã©ã¤ãã¼ãã¡ã¼ãªã³ã°ãªã¹ãã«ãã¾ãã å§å¡ä¼ããªã¹ãã«ã¯ãªãé£çµ¡æ¹æ³ã使ç¨ããå¿
è¦ãããå ´å(ä¾: æ©æ/è¿
éãªå¯¾å¿ãæ±ããé»è©±ãªã©)ããã®ããã»ã¹ã®è¯ãè¨é²ã¨ãªãããã«ããããããªã¹ãã«ã¾ã¨ãã¦æ»ãã¹ãã§ãã
è¡åè¦ç¯å§å¡ä¼ã¯ã2é±é以å
ã«æ±ºè°ã®åæãç®æãã¹ãã§ãã ãã®æéå
ã«æ±ºè°ã確å®ã§ããªãå ´åã å§å¡ä¼ã¯ãã¬ãã¼ã¿ã¼ã«å¯¾ãã¦ç¾ç¶ã®æ´æ°ã¨ä»å¾ã®ã¿ã¤ã ã©ã¤ã³ãé£çµ¡ãã¾ãã
-## è§£æ±ºæ¹æ³
+## è§£æ±ºæ¹æ³ {#resolutions}
å§å¡ä¼ã¯ãåæã«ããæ±ºè°ã«ã¤ãã¦æ±ºå®ããªããã°ãªãã¾ããã æ¤è¨ã°ã«ã¼ããä¸é±é以ä¸ãåæããããããã¯ã«éããªãã£ãå ´åãã°ã«ã¼ãã¯ãã¹ãã¢ãªã³ã°è©è°ä¼ã«ãã®åé¡ãå¼ã渡ããã¨ãã§ãã¾ãã
ããããè¿çã¯æ¬¡ã®ã¨ããã§ã:
* ãã以ä¸ã¢ã¯ã·ã§ã³ãåããªãã
- éåãèµ·ãã¦ããªãã¨å¤æããã
- æ¤è¨ä¸ã«åé¡ãæããã«è§£æ±ºããã
* 調åã®èª¿æ´ããã¹ã¦ã®é¢ä¿è
ãåæããå ´åãå§å¡ä¼ã¯ä¸è¨ã®ããã«èª¿åããã»ã¹ãä¿é²ãããã¨ãã§ãã¾ãã
* å
¬ã®å ´ã«ããã説æã ã©ã®è¡åã»è¨åã»è¨èªãä¸é©åã§ãç¾å¨ã®ç¶æ³ããªããå¼ãèµ·ãããã人ã
ãå·ã¤ããã®ãã説æããã³ãã¥ããã£ã«èªçãè¦æ±ãã¾ãã
* å§å¡ä¼ããé¢ä¿è
(è¤æ°å¯) ã¸ã®éå
¬éå¦åã®å®æ½ã ãã®å ´åãå§å¡ä¼ã¯ãé»åã¡ã¼ã«ãä»ãã¦ãã°ã«ã¼ãã«ccãå
¥ããªããã対象è
ã«åé¡ã®ææãé£çµ¡ãã¾ãã
* å
¬ã®å ´ã§ã®ææã ãã®å ´åãå§å¡ä¼ã®è°é·ã¯ãéåãçºçããã®ã¨åãå ´æã§ãå®ç¨æ§ã®ç¯å²å
ã§å±è²¬ãè¡ãã¾ãã ä¾ãã°ãã¡ã¼ã«ã«ã¼ã«ã®éåã®å
ã®ã¡ã¼ãªã³ã°ãªã¹ããªã©ã§ãã ãããã人ãç¶æ³ãããããããããªããã£ããã«ã¼ã ãªã©ã®å ´åãä»ã®ææ®µãå©ç¨ããå¯è½æ§ãããã¾ãã ææ¸åã®ããããã®åé¡ã®ã¡ãã»ã¼ã¸ãä»ã®å ´æã§å
¬éãããã¨ã対çã°ã«ã¼ãã鏿ããå ´åãããã¾ãã
* å ±åè
ããã®èãã«åæãããã¨ãåæã¨ãããå
¬çã¾ãã¯ç§çãªè¬ç½ªã®è¦æ±ã å ±åè
ã¯èªåã®è£éã§ãéåè
ã¨ã®ãããªãæ¥è§¦ãæå¦ãããã¨ãã§ãã¾ãã å§å¡ä¼ããã®è¦æ±ããå±ããã¾ãã å§å¡ä¼ã¯ãå¿
è¦ã«å¿ãã¦ãã®è¦æ±ã«ãæ¡ä»¶ããä»ãããã¨ãã§ãã¾ããä¾ãã°ãã¡ã¼ãªã³ã°ãªã¹ãã®ä¼å¡è³æ ¼ãç¶æããããã«ãéåè
ã«è¬ç½ªãæ±ãããã¨ãã§ãã¾ãã
* ãç¸äºã«åæãã伿¢ãã®è¦æ±ã ããã¯ãå§å¡ä¼ããå人ã¸ã®ãã³ãã¥ããã£ã¸ã®åå ã䏿çã«æ§ãããããªè¦è«ã§ãã 対象è
ãèªçºçã«ä¸æçãªä¼ã¿ãåããªããã¨ã鏿ããå ´åãå§å¡ä¼ã¯ãå·å´æéããæºåãããã¨ãããã¾ãã
* ããã¯ãä¸é¨ã¾ãã¯ãã¹ã¦ã®NumPyãªã³ã©ã¤ã³ã³ãã¥ãã㣠(ã¡ã¼ãªã³ã°ãªã¹ããgitter.im ãªã©) ããã®æ°¸ç¶çã¾ãã¯ä¸æçãªåºå
¥ãç¦æ¢ã å°æ¥çã«ç¦æ¢ãè¦ç´ãããã®ããç¶æããããæ±ºå®ã§ããããã対çã°ã«ã¼ãã¯åºå
¥ãç¦æ¢ã®è¨é²ãå
¨ã¦ä¿æãã¾ãã
決è°ãåæãããã¨å¶å®ãããåã«ãå§å¡ä¼ã¯ãå
ã®å ±åè
ããã³ãã®ä»ã®å½±é¿ãåããå½äºè
ã«é£çµ¡ããææ¡ãããæ±ºè°ã説æãã¾ãã å§å¡ä¼ã¯ããã®æ±ºè°ãåãå
¥ãããããã©ãããå°ãã¾ãã ããã¦ãè¨é²ã®ããã®ãã£ã¼ãããã¯ã«æ³¨æãæãã¾ãã
æå¾ã« å§å¡ä¼ã¯ãNumPy Steering Councilã«å ±åãè¡ãã¾ã(NumPy Coreãã¼ã ã«ããåºå
¥ãç¦æ¢ãªã©é²è¡ä¸ã®åºæ¥äºã«ã¤ãã¦ã¯å ±åãã¾ã)ã
å§å¡ä¼ã¯ãã®åé¡ã«ã¤ãã¦å
¬ã«è°è«ãããã¨ã¯ããã¾ããã ãã¹ã¦ã®å
¬é声æã¯ãè¡åè¦ç¯å§å¡ä¼ã¾ãã¯NumPy Steering Councilã®è°é·ã«ãã£ã¦è¡ããã¾ãã
## å©çç¸å
å©çç¸åãçºçããå ´åãå§å¡ä¼ã¡ã³ãã¼ã¯ç´ã¡ã«ä»ã®ã¡ã³ãã¼ã«éç¥ããå¿
è¦ã«å¿ãã¦å¯¾å¿ãè¾éããªããã°ãªãã¾ããã
diff --git a/content/pt/code-of-conduct.md b/content/pt/code-of-conduct.md
index 1e2c9e5..52f6057 100644
--- a/content/pt/code-of-conduct.md
+++ b/content/pt/code-of-conduct.md
@@ -1,83 +1,83 @@
---
title: Código de Conduta NumPy
sidebar: false
aliases:
- /pt/conduct/
---
### Introdução
Este código de conduta aplica-se a todos os espaços gerenciados pelo projeto NumPy, incluindo todas as listas de discussão públicas e privadas, *issue tracker*, wikis, blogs, Twitter e qualquer outro canal de comunicação usado pela nossa comunidade. O projeto NumPy não organiza eventos presenciais. No entanto, os eventos relacionados à nossa comunidade devem ter um código de conduta semelhante ao atual.
Este Código de Conduta deve ser honrado por todas as pessoas que participam da comunidade NumPy formal ou informalmente, ou que reivindicam qualquer afiliação com o projeto, em qualquer atividade relacionada ao projeto, especialmente ao representar o projeto, em qualquer função.
Este código não é exaustivo ou completo. Serve para disseminar a nossa compreensão comum de um ambiente colaborativo e de objetivos compartilhados entre nós. Por favor, tente seguir este código tanto na essência quanto ao pé da letra, para criar um ambiente amigável e produtivo que enriqueça a comunidade em geral.
### Diretrizes especÃficas
Nós nos esforçamos para:
1. Sermos abertos. Convidamos qualquer pessoa a participar da nossa comunidade. Preferimos usar métodos públicos de comunicação para mensagens relacionadas aos projetos, a menos que estejamos discutindo algo sensÃvel. Isso se aplica a mensagens em busca de ajuda ou suporte relacionado ao projeto também; não só é muito mais provável que um pedido de ajuda público resulte em uma resposta, mas isso também garante que qualquer erro involuntário na resposta seja mais facilmente detectado e corrigido.
2. Sermos empáticos, acolhedores, amigáveis e pacientes. Trabalhamos juntos para resolver conflitos e acreditamos em boas intenções. Todos nós podemos sentir alguma frustração de vez em quando, mas não permitimos que a frustração se transforme num ataque pessoal. Uma comunidade onde as pessoas se sentem desconfortáveis ou ameaçadas não é uma comunidade produtiva.
3. Sermos colaborativos. O nosso trabalho será utilizado por outras pessoas e, por sua vez, dependeremos do trabalho dos outros. Quando fazemos algo em benefÃcio do projeto, estamos dispostos a explicar aos outros como esse algo funciona, para que outros possam desenvolver o trabalho e torná-lo ainda melhor. Qualquer decisão que tomemos afetará nossos usuários e os colegas, e levamos essas consequências a sério quando tomamos decisões.
4. Sermos inquisitivos. Ninguém sabe tudo! Fazer perguntas antecipadamente evita muitos problemas mais tarde, por isso encorajamos as perguntas, embora possamos encaminhá-las para um fórum adequado. Vamos nos esforçar para sermos sensÃveis e úteis.
5. Termos cuidado com as palavras que escolhemos. Somos cuidadosos e respeitosos na nossa comunicação e assumimos a responsabilidade pelo nosso próprio discurso. Seja gentil com os outros. Não insulte ou deprecie outros participantes. Nós não aceitaremos assédio ou outros comportamentos exclusivos, como:
* Ameaças ou linguagem violenta direcionadas contra outra pessoa.
* Piadas e linguagem sexista, racista ou discriminatória.
* Postagem de material sexualmente explÃcito ou violento.
* Postar (ou ameaçar postar) informações pessoais de outras pessoas (âdoxingâ).
* Compartilhar conteúdo privado, como e-mails enviados de maneira privada ou não-pública, ou fóruns não registrados, como histórico de canais IRC, sem o consentimento do remetente.
* Insultos pessoais, especialmente aqueles que utilizam termos racistas ou sexistas.
* Atenção sexual não consentida.
* Profanidade excessiva. Por favor, evite palavrões; as pessoas diferem muito na sua sensibilidade à linguagem.
* Assédio reiterado. Em geral, se alguém pedir que você pare, então pare.
* Advogar em favor ou encorajar qualquer um dos comportamentos acima.
### Declaração de diversidade
O projeto NumPy convida e incentiva a participação de todas as pessoas. Estamos empenhados em ser uma comunidade da qual todas as pessoas gostem de fazer parte. Embora nem sempre sejamos capazes de acomodar as preferências de cada indivÃduo, nós tentamos o nosso melhor para tratar todos gentilmente.
Não importa como você se identifica ou como os outros percebem você: nós lhe damos as boas-vindas. Embora nenhuma lista possa esperar ser totalmente abrangente, honramos explicitamente a diversidade em: idade, cultura, etnia, genótipo, identidade ou expressão de gênero, lÃngua, origem, neurotipo, fenotipo, crenças polÃticas, profissão, raça, religião, orientação sexual, estado socioeconômico, subcultura e capacidade técnica, na medida em que não entrem em conflito com este código de conduta.
Embora sejamos receptivos à s pessoas fluentes em todas as lÃnguas, o desenvolvimento do NumPy é conduzido em inglês.
Padrões de comportamento na comunidade NumPy estão detalhados no Código de Conduta acima. Os participantes da nossa comunidade devem se comportar de acordo com esses padrões em todas as suas interações e ajudar os outros a fazê-lo também (veja a próxima seção).
### Diretrizes de resposta a incidentes
Sabemos que é mais comum do que o desejado que a comunicação na Internet comece ou se transforme em abusos óbvios e flagrantes. Reconhecemos também que, por vezes, as pessoas podem ter um dia ruim, ou não conhecer algumas das orientações deste Código de Conduta. Tenha isto em mente ao decidir como responder a uma violação deste Código.
Em caso de violações claramente intencionais, o Comitê do Código de Conduta (veja abaixo) deve ser informado. Para violações possivelmente não intencionais, você pode responder à pessoa e apontar este código de conduta (seja em público ou em privado, o que for mais apropriado). Se preferir não o fazer, sinta-se à vontade para informar diretamente o Comitê do Código de Conduta, ou peça ao Comitê um conselho, sigilosamente.
Você pode relatar problemas ao Comitê do Código de Conduta NumPy em [email protected].
Atualmente, o comitê é formato por:
* Stefan van der Walt
* Melissa Weber Mendonça
* Rohit Goswami
Se o seu relatório envolve algum membro da comissão, ou se você sentir que existe um conflito de interesses em tratá-lo, então os membros abster-se-ão de considerar o seu relatório. Como alternativa, se por qualquer razão você se sentir desconfortável em fazer um relatório à comissão, então você também pode entrar em contato com a equipe sênior da NumFOCUS em [[email protected]](https://numfocus.org/code-of-conduct#persons-responsible).
### Resolução de Incidentes & Aplicação do Código de Conduta
_Esta seção resume os pontos mais importantes, mais detalhes podem ser encontrados em_ [Código de Conduta do NumPy - Como dar seguimento a um relatório](report-handling-manual).
Vamos investigar e responder a todas as queixas. O Comitê do Código de Conduta do NumPy e o Comitê Diretor do NumPy (se envolvido) protegerão a identidade do relatante, e tratarão o conteúdo das reclamações como confidencial (a menos que o relatante aceite o contrário).
Em caso de violações graves e óbvias, por exemplo, ameaça pessoal ou linguagem violenta, sexista ou racista, vamos imediatamente desconectar a pessoa relatada dos canais de comunicação do NumPy; por favor, consulte o manual para mais detalhes.
Em casos que não envolvam claras violações graves e óbvias deste Código de Conduta, o processo de ação referente a qualquer relato de violação do Código de Conduta recebido será:
1. acusar o recebimento do relato,
2. discussão/feedback razoável,
3. mediação (se o feedback não ajudar e somente se ambos o relatante e relatado concordarem com isso),
-4. aplicação de solução via decisão transparente (veja as [Resoluções](report-handling-manual/#resoluções)) do Comitê do Código de Conduta.
+4. aplicação de solução via decisão transparente (veja as [Resoluções](report-handling-manual/#resolutions)) do Comitê do Código de Conduta.
O comitê responderá a qualquer relatório o mais rapidamente possÃvel e, no máximo, no prazo de 72 horas.
### Notas
Somos gratos aos grupos responsáveis pelos documentos abaixo, dos quais retiramos conteúdo e inspiração:
- [The SciPy Code of Conduct](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
diff --git a/content/pt/report-handling-manual.md b/content/pt/report-handling-manual.md
index 14418d0..e33dd0d 100644
--- a/content/pt/report-handling-manual.md
+++ b/content/pt/report-handling-manual.md
@@ -1,95 +1,95 @@
---
title: Código de Conduta NumPy - Como dar seguimento a um relatório
sidebar: false
---
Este é o manual seguido pelo Comitê do Código de Conduta do NumPy. à usado quando respondemos a um incidente para nos certificarmos de que somos pessoas consistentes e justas.
Garantir que o [Código de Conduta](/code-of-conduct) seja respeitado afeta nossa comunidade hoje e no futuro. à uma ação que levamos muito a sério. Ao analisar medidas de aplicação do Código de Conduta, o Comitê terá em mente os seguintes valores e orientações:
* Agir de forma pessoal e não impessoal. O Comitê pode levar as partes a compreender a situação, respeitando simultaneamente a privacidade e a necessária confidencialidade das pessoas relatantes. No entanto, por vezes, é necessário comunicar diretamente com um ou mais indivÃduos: o objetivo do Comitê é melhorar a saúde da nossa comunidade, em vez de produzir apenas uma decisão formal.
* Enfatizar empatia pelos indivÃduos ao invés de julgar o comportamento, evitando rótulos binários de "bom" e "mau". Existem atos de agressão e assédio claros e visÃveis, e vamos abordá-los com firmeza. Mas muitos cenários que podem ser desafiadores são aqueles em que as discordâncias normais se transformam em comportamento desnecessário ou prejudicial de várias partes. Compreender o contexto completo e encontrar um caminho que traga um entendimento entre as partes é difÃcil, mas, em última análise, é o resultado mais produtivo para a nossa comunidade.
* Compreendemos que o e-mail é um meio difÃcil e que pode causar uma sensação de isolamento. Receber crÃticas por e-mail, sem contato pessoal, pode ser particularmente doloroso. Isto faz com que seja especialmente importante manter um clima de respeito aberto pelas opiniões dos outros. Significa também que temos de ser transparentes nas nossas ações, e que faremos tudo o que estiver ao nosso alcance para garantir que todos os nossos membros sejam tratados de forma justa e com simpatia.
* A discriminação pode ser sutil e pode ser inconsciente. Pode revelar-se em tratamentos injustos e hostis em interações que normalmente seriam ordinárias. Sabemos que isso acontece, e teremos o cuidado de ter isso em mente. GostarÃamos muito de ouvir se você acha que foi tratado injustamente, e usaremos esses procedimentos para garantir que a sua reclamação seja ouvida e abordada.
* Ajudar a aumentar o envolvimento em uma boa prática de discussão: tentar identificar onde a discussão pode ter falhado, e fornecer informações úteis, indicadores e recursos que podem levar a mudanças positivas nestes pontos.
* Estar ciente das necessidades de novos membros: fornecer-lhes apoio e consideração explÃcitos, com o objetivo de aumentar a participação de grupos sub-representados, em particular.
* As pessoas vêm de meios culturais e linguÃsticos diferentes. Tentar identificar quaisquer mal-entendidos honestos causados por falantes não-nativos e ajudá-los a entender a questão e o que pode ser modificado para evitar causar ofensa. Uma discussão complexa numa lÃngua estrangeira pode ser muito intimidante, e queremos aumentar a nossa diversidade também entre nacionalidades e culturas.
## Mediação
A mediação informal voluntária é um instrumento à nossa disposição. Em contextos em que duas ou mais partes escalaram ao ponto de demonstrarem comportamento inapropriado (algo tristemente comum no conflito humano), poderá ser útil facilitar um processo de mediação. Isto é apenas um exemplo: em todo caso, o Comitê pode considerar a mediação, tendo em conta que o processo se destina a ser estritamente voluntário e que nenhuma das partes pode ser pressionada a participar. Se o Comitê sugerir mediação, deve:
* Encontrar uma pessoa candidata que possa servir de mediadora.
* Obter o acordo da(s) pessoa(s) relatante(s). A(s) pessoa(s) relatante(s) têm total liberdade para recusar a ideia de mediação ou propor um mediador alternativo.
* Obter o acordo da(s) pessoa(s) relatada(s).
* Estabelecer uma pessoa mediadora: enquanto as partes podem propor um mediador diferente da pessoa sugerida, o processo só poderá avançar se for alcançado um acordo comum em todos os termos.
* Estabelecer um cronograma para a mediação ser concluida, idealmente dentro de duas semanas.
A pessoa mediadora entrará em contato com todas as partes e procurará uma resolução satisfatória para todos. Após a sua conclusão, a pessoa mediadora apresentará ao Comitê um relatório (examinado por todas as partes envolvidas no processo) com recomendações sobre outras medidas. O Comitê avaliará então esses resultados (em caso de resolução satisfatória ou não) e decidirá sobre quaisquer medidas adicionais consideradas necessárias.
## Como o Comitê responderá aos relatórios
Quando o Comitê (ou um membro do Comitê) recebe um relatório, será inicialmente determinado se o relatório é sobre uma violação clara e severa (como definido abaixo). Em caso afirmativo, medidas imediatas serão tomadas para além do processo regular de tratamento dos relatórios.
## Ações claras e severas de violação
Sabemos que é mais comum do que o desejado que a comunicação na Internet comece ou se transforme em abusos óbvios e flagrantes. Trataremos rapidamente de violações claras e severas como ameaças pessoais, linguagem violenta, sexista ou racista.
Quando um membro do Comitê do Código de Conduta tomar conhecimento de uma violação clara e grave, fará o seguinte:
* Desligará imediatamente a pessoa originadora de todos os canais de comunicação do NumPy.
* Responderá à pessoa relatante para informá-la que seu relatório foi recebido e que a pessoa originadora foi desligada.
* Em todos os casos, a pessoa moderadora deve fazer um esforço razoável para entrar em contato com a pessoa originadora, e dizer-lhes especificamente como sua linguagem ou ações se qualificam como uma "violação clara e severa". A pessoa moderadora deve também dizer que, se a pessoa originadora considerar que isso é injusto ou quiser ser reconectada ao NumPy, tem o direito de solicitar uma revisão, de acordo com as disposições do Comitê do Código de Conduta. A pessoa moderadora deve copiar esta explicação para o Comitê do Código de Conduta.
* O Comitê do Código de Conduta procederá formalmente à análise e decisão em todos os casos em que este mecanismo tenha sido aplicado para garantir que não seja utilizado para controlar desentendimentos acalorados comuns.
## Tratamento de relatórios
Quando um relatório é enviado ao Comitê, ele responderá imediatamente à pessoa relatante para confirmar a sua recepção. Esta resposta deve ser enviada no prazo de 72 horas, e o grupo deve esforçar-se por responder muito mais rapidamente.
Se um relatório não contiver informações suficientes, o Comitê obterá todos os dados relevantes antes de agir. O Comitê tem poderes para agir em nome do Conselho Diretor ao contactar quaisquer pessoas envolvidas para obter um relato mais completo dos acontecimentos.
O Comitê analisará então o incidente e determinará, do melhor jeito possÃvel:
* O que aconteceu.
* Se este evento constitui ou não uma violação do Código de Conduta.
* Quem são as pessoas responsáveis.
* Se se trata de uma situação contÃnua, e existe uma ameaça para a segurança fÃsica de alguém.
Estas informações serão recolhidas por escrito e, sempre que possÃvel, as deliberações do grupo serão gravadas e armazenadas (por exemplo, transcrições de conversas, discussões por e-mail, chamadas gravadas de videoconferência, resumos de conversas por voz, etc).
à importante manter um arquivo de todas as atividades deste Comitê para garantir a consistência no comportamento e fornecer memória institucional ao projeto. Para ajudar com isto, o canal de discussão padrão para este Comitê será uma lista de e-mail privada, acessÃvel a atuais e futuros membros do Comitê, bem como aos membros do Conselho Diretor a pedido justificado. Se o Comitê sentir a necessidade de usar comunicações fora da lista (por exemplo, chamadas por telefone para resposta precoce/rápida), deve em todos os casos resumi-las de volta para a lista, para que haja um bom registro do processo.
O Comitê do Código de Conduta deve ter por objetivo chegar a um acordo sobre uma resolução no prazo de duas semanas. Caso uma resolução não possa ser determinada nesse perÃodo, o Comitê responderá à (s) pessoa(s) relatante(s) com uma atualização e cronograma previsto para a resolução.
-## Resoluções
+## Resoluções {#resolutions}
O Comitê tem de chegar a um acordo sobre uma resolução por consenso. Se o grupo não conseguir chegar a um consenso e permanece bloqueado durante mais de uma semana, o grupo encaminhará o assunto para o Conselho Diretor para resolução.
PossÃveis respostas podem incluir:
* Não tomar nenhuma outra ação:
- se determinarmos que não ocorreram violações;
- se a questão tiver sido resolvida publicamente enquanto o Comitê estava considerando uma resposta.
* Coordenação de mediação voluntária: se todas as partes envolvidas concordarem, o Comitê poderá facilitar um processo de mediação, conforme detalhado acima.
* Salientar publicamente que alguns comportamentos, ações ou linguagem foram julgados inapropriados ou podem ser considerados danosos para algumas pessoas, explicando por que no contexto atual e solicitando que a comunidade se auto-ajuste.
* Uma advertência privada do Comitê para a(s) pessoa(s) envolvida(s). Neste caso, a pessoa presidente do Comitê irá entregar essa advertência à (s) pessoa(s) por e-mail, em cópia (CC) ao grupo.
* Uma advertência pública. Neste caso, a pessoa presidente do Comitê vai apresentar essa advertência no mesmo fórum em que ocorreu a violação, dentro dos limites da viabilidade. Exemplo: a lista original para uma violação de e-mail, mas para uma discussão em sala de bate-papo onde a pessoa/contexto pode sumir, isto pode ser feito por outros meios. O grupo pode optar por publicar esta mensagem em outro local para fins de documentação.
* Um pedido de desculpas públicas ou privadas, supondo que a(s) pessoa(s) relatante(s) concorde(m) com esta ideia: a(s) pessoa(s) pode(m), a seu critério, recusar contatos adicionais com a pessoa relatada. A Presidência dará seguimento a este pedido. O Comitê, se escolher, pode anexar condições adicionais a este pedido inicial: por exemplo, o grupo pode pedir à pessoa relatada que se desculpe para que tenha o direito de manter a sua adesão a uma lista de e-mails.
* Um âacordo mútuo de tréguaâ onde o Comitê solicita à pessoa que se abstenha temporariamente da participação na comunidade. Se a pessoa optar por não fazer uma pausa temporária voluntariamente, o Comitê pode aplicar um âperÃodo de afastamento obrigatórioâ.
* Um banimento permanente ou temporário de alguns ou todos os espaços do NumPy (listas de e-mails, gitter.im, etc.). O grupo manterá registro de todas essas proibições, para que elas possam ser revistas no futuro ou mantidas.
Uma vez aprovada uma resolução, mas antes de ser efetivamente aplicada, o Comitê entrará em contato com a pessoa relatante original e quaisquer outras partes afetadas e explicará a resolução proposta. O Comitê perguntará se esta resolução é aceitável e terá de tomar nota da sua resposta para registro futuro.
Finalmente, o Comitê apresentará um relatório ao Conselho Diretor do NumPy (bem como ao time *core* do NumPy no caso de uma resolução em curso, como um banimento).
O Comitê nunca discutirá publicamente a questão; todas as declarações públicas serão feitas pela pessoa presidente do Comitê do Código de Conduta ou pelo Conselho Diretor do NumPy.
## Conflitos de Interesse
Em caso de conflito de interesses, um membro do Comitê deve notificar imediatamente os outros membros e abdicar de sua participação no processo caso seja necessário.
|
numpy/numpy.org
|
3954e4c0169523e68c04d3248a6dae03a0859d4b
|
Announce NumPy 2.2.2 (#822)
|
diff --git a/content/en/news.md b/content/en/news.md
index 930e685..fa3d14c 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,491 +1,492 @@
---
title: "News"
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-08
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2024_.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
813e91bdb14e9d9730039c6fe364246b7b2e7532
|
Remove dash from main page title (#819)
|
diff --git a/content/en/_index.md b/content/en/_index.md
index 9e9534d..43b25e3 100644
--- a/content/en/_index.md
+++ b/content/en/_index.md
@@ -1,49 +1,49 @@
---
-title:
+title: NumPy
---
{{< grid columns="1 2 2 3" >}}
[[item]]
type = 'card'
title = 'Powerful N-dimensional arrays'
body = '''
Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
'''
[[item]]
type = 'card'
title = 'Numerical computing tools'
body = '''
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
'''
[[item]]
type = 'card'
title = 'Open source'
body = '''
Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
'''
[[item]]
type = 'card'
title = 'Interoperable'
body = '''
NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
'''
[[item]]
type = 'card'
title = 'Performant'
body = '''
The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
'''
[[item]]
type = 'card'
title = 'Easy to use'
body = '''
NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
'''
{{< /grid>}}
diff --git a/content/es/_index.md b/content/es/_index.md
index 67652c5..1d2edb1 100644
--- a/content/es/_index.md
+++ b/content/es/_index.md
@@ -1,49 +1,49 @@
---
-title: null
+title: NumPy
---
{{< grid columns="1 2 2 3" >}}
[[item]]
type = 'card'
title = 'Matrices N-dimensionales potentes'
body = '''
Rápida y versátil, la vectorización, indexación y conceptos de broadcasting de NumPy son los estándares de facto en el cálculo de matrices hoy en dÃa.
'''
[[item]]
type = 'card'
title = 'Herramientas de cálculo numérico'
body = '''
NumPy ofrece funciones matemáticas completas, generadores de números aleatorios, rutinas de álgebra lineal, transformadas de Fourier, y más.
'''
[[item]]
type = 'card'
title = 'Código abierto'
body = '''
Distribuido bajo una [licencia BSD] liberal (https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy es desarrollado y mantenido [públicamente en GitHub](https://github.com/numpy/numpy) por una vibrante, receptiva y diversa [comunidad](/es/community).
'''
[[item]]
type = 'card'
title = 'Interoperable'
body = '''
NumPy soporta una amplia gama de hardware y plataformas de computación, y funciona bien con librerÃas distribuidas, de GPU y de matrices dispersas.
'''
[[item]]
type = 'card'
title = 'Ãptimo'
body = '''
El núcleo de NumPy está optimizado adecuadamente con código en C. Disfrute de la flexibilidad de Python con la velocidad del código compilado.
'''
[[item]]
type = 'card'
title = 'Fácil de usar'
body = '''
La sintaxis de alto nivel de NumPy lo hace accesible y productivo para programadores de cualquier formación o nivel de experiencia.
'''
{{< /grid>}}
diff --git a/content/ja/_index.md b/content/ja/_index.md
index 7e6a38c..18ee86b 100644
--- a/content/ja/_index.md
+++ b/content/ja/_index.md
@@ -1,52 +1,52 @@
---
-title: null
+title: NumPy
---
{{< grid columns="1 2 2 3" >}}
[[item]]
type = 'card'
title = 'å¼·åãªå¤æ¬¡å
é
å'
body = '''
NumPyã®é«éã§å¤æ©è½ãªãã¯ãã«åè¨ç®ãã¤ã³ããã¯ã¹å¦çãããã¼ããã£ã¹ãã®èãæ¹ã¯ãç¾å¨ã®é
åè¨ç®ã«ãããããã¡ã¯ãã»ã¹ã¿>ã³ãã¼ãã§ãã
'''
[[item]]
type = 'card'
title = 'æ°å¤è¨ç®ãã¼ã«ç¾¤'
body = '''
NumPyã¯ãæ§ã
ãªæ°å¦é¢æ°ãä¹±æ°çæå¨ãç·å½¢ä»£æ°ã«ã¼ãã³ããã¼ãªã¨å¤æãªã©ãæä¾ãã¦ãã¾ãã
'''
[[item]]
type = 'card'
title = 'ãªã¼ãã³ã½ã¼ã¹'
body = '''
NumPyã¯ãå¯å®¹ãª[BSDã©ã¤ã»ã³ã¹](https://github.com/numpy/numpy/blob/main/LICENSE.txt)ã§å
¬éããã¦ãã¾ããNumPyã¯æ´»çºã§ãäºããå°éãã夿§æ§ãèªãåã[ã³ãã¥ããã£](/ja/community)ã«ãã£ã¦ã [GitHub](https://github.com/numpy/numpy)ä¸ã§ãªã¼ãã³ã«éçºããã¦ãã¾
ã.
'''
[[item]]
type = 'card'
title = 'ç¸äºéç¨æ§'
body = '''
NumPyã¯ãå¹
åºããã¼ãã¦ã§ã¢ã¨ã³ã³ãã¥ã¼ãã£ã³ã°ã»ãã©ãããã©ã¼ã ããµãã¼ããã¦ããã忣å¦çãGPUãçè¡åã©ã¤ãã©ãªã«ã対
å¿ãã¦ãã¾ãã
'''
[[item]]
type = 'card'
title = 'é«ããã©ã¼ãã³ã¹'
body = '''
NumPyã®å¤§é¨åã¯æé©åãããCè¨èªã®ã³ã¼ãã§æ§æããã¦ãã¾ããããã«ããPythonã®æè»æ§ã¨ã³ã³ãã¤ã«ãããã³ã¼ãã®é«éæ§ã®ä¸¡æ¹
ã享åã§ãã¾ãã
'''
[[item]]
type = 'card'
title = '使ãããã'
body = '''
NumPyã®é«æ°´æºãªã·ã³ã¿ãã¯ã¹ã¯ãã©ããªããã¯ã°ã©ã¦ã³ããçµé¨ãæã¤ã®ããã°ã©ãã¼ã§ãç°¡åã«å©ç¨ãããã¨ãã§ããçç£æ§ãé«ã>ããã¨ãã§ãã¾ãã
'''
{{< /grid >}}
diff --git a/content/pt/_index.md b/content/pt/_index.md
index 0a39687..0b598dd 100644
--- a/content/pt/_index.md
+++ b/content/pt/_index.md
@@ -1,49 +1,49 @@
---
-title:
+title: NumPy
---
{{< grid columns="1 2 2 3" >}}
[[item]]
type = 'card'
title = 'Arrays n-dimensionais poderosas'
body = '''
Rápidos e versáteis, os conceitos de vetorização, indexação e broadcasting do NumPy são, na prática, o padrão em computação com arrays.
'''
[[item]]
type = 'card'
title = 'Ferramentas de computação numérica'
body = '''
O NumPy oferece um conjunto completo de funções matemáticas, geradores de números aleatórios, rotinas de álgebra linear, transformadas de Fourier, e mais.
'''
[[item]]
type = 'card'
title = 'Interoperabilidade'
body = '''
O NumPy suporta um grande número de plataformas de hardware e computação, e pode ser combinado com bibliotecas de computação com arrays esparsas, distribuidas ou em GPUs.
'''
[[item]]
type = 'card'
title = 'Alto desempenho'
body = '''
O núcleo do NumPy é feito de código otimizado em C. Experimente a flexibilidade do Python com a velocidade de código compilado.
'''
[[item]]
type = 'card'
title = 'Fácil de usar'
body = '''
A sintaxe de alto nÃvel do NumPy torna-o acessÃvel e produtivo para programadores de qualquer nÃvel de experiência e formação.
'''
[[item]]
type = 'card'
title = 'Código aberto'
body = '''
Distribuido com uma [licença BSD](https://github.com/numpy/numpy/blob/main/LICENSE.txt) liberal, o NumPy é desenvolvido e mantido [publicamente no GitHub](https://github.com/numpy/numpy) por uma [comunidade](/pt/community) vibrante, responsiva, e diversa.
'''
{{< /grid >}}
|
numpy/numpy.org
|
10b2f51c308c8a101700272cf58c96fee106a290
|
Fix date format in news.md (#815)
|
diff --git a/content/en/news.md b/content/en/news.md
index a7af251..930e685 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,491 +1,491 @@
---
-title: News
+title: "News"
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
-date: 2024-12-8
+date: 2024-12-08
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
db2a056925b8854d2520f6afebcca62501096b19
|
announce the NumPy 2.2.1 release (#810)
|
diff --git a/content/en/news.md b/content/en/news.md
index 396c9a0..a7af251 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,490 +1,491 @@
---
title: News
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-8
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
into sync with the usual twice yearly release cycle. There have been a number
of small cleanups, improvements to the StringDType, and better support for free
threaded Python. Highlights are:
* New functions ``matvec`` and ``vecmat``,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
a074f0c6e8cf2c5072072078706f9f021babde19
|
Removed Twitter link in community.md
|
diff --git a/content/en/community.md b/content/en/community.md
index c7e0357..48208ae 100644
--- a/content/en/community.md
+++ b/content/en/community.md
@@ -1,77 +1,77 @@
---
title: Community
sidebar: false
---
NumPy is a community-driven open source project developed by a diverse group of [contributors](/teams/). The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the [NumPy Code of Conduct](/code-of-conduct) for guidance on how to interact with others in a way that makes the community thrive.
We offer several communication channels to learn, share your knowledge and connect with others within the NumPy community.
## Participate online
The following are ways to engage directly with the NumPy project and community.
_Please note that we encourage users and community members to support each other
for usage questions - see [Get Help](/gethelp)._
### [NumPy mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion)
This list is the main forum for longer-form discussions, like adding new features to NumPy, making changes to the NumPy Roadmap, and all kinds of project-wide decision making.
Announcements about NumPy, such as for releases, developer meetings, sprints or
conference talks are also made on this list.
On this list please use bottom posting, reply to the list (rather than to
another sender), and don't reply to digests. A searchable archive of this list
is available [here](https://mail.python.org/archives/list/[email protected]/).
***
### [GitHub issue tracker](https://github.com/numpy/numpy/issues)
- For bug reports (e.g. "`np.arange(3).shape` returns `(5,)`, when it should return `(3,)`");
- documentation issues (e.g. "I found this section unclear");
- and feature requests (e.g. "I would like to have a new interpolation method in `np.percentile`").
_Please note that GitHub is not the right place to report a security vulnerability. If you think you have found a security vulnerability in NumPy, please report it [here](https://tidelift.com/docs/security)._
***
### [Slack](https://numpy-team.slack.com)
A real-time chat room to ask questions about _contributing_ to NumPy.
This is a private space, specifically meant for people who are hesitant to
bring up their questions or ideas on a large public mailing list or GitHub.
Please see
[here](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) for more
details and how to get an invite.
## Study Groups and Meetups
If you would like to find a local meetup or study group to learn more about NumPy and the wider ecosystem of Python packages for data science and scientific computing, we recommend exploring the [PyData meetups](https://www.meetup.com/pro/pydata/) (150+ meetups, 100,000+ members).
-NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion) and [X](https://x.com/numpy_team).
+NumPy also organizes in-person sprints for its team and interested contributors occasionally. These are typically planned several months in advance and will be announced on the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
## Conferences
The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
- [SciPy US](https://conference.scipy.org)
- [EuroSciPy](https://www.euroscipy.org)
- [SciPy Latin America](https://www.scipyla.org)
- [SciPy India](https://scipy.in)
- [SciPy Japan](https://conference.scipy.org)
- [PyData conferences](https://pydata.org/event-schedule/) (15-20 events a year spread over many countries)
Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
## Join the NumPy community
To thrive, the NumPy project needs your expertise and enthusiasm. Not a coder? Not a problem! There are many ways to contribute to NumPy.
If you are interested in becoming a NumPy contributor (yay!) we recommend checking out our [Contribute](/contribute) page.
Also, feel free to stop by and say hi at one of our community meetings. To keep track of them, check out our events calendar [here](https://scientific-python.org/calendars/).
|
numpy/numpy.org
|
76678795ed53ff24e1ed23e2378bcbb0a3f80657
|
Removed Twitter link in contribute.md
|
diff --git a/content/en/contribute.md b/content/en/contribute.md
index 1006251..f5ea653 100644
--- a/content/en/contribute.md
+++ b/content/en/contribute.md
@@ -1,112 +1,111 @@
---
title: Contribute to NumPy
sidebar: false
---
The NumPy project welcomes your expertise and enthusiasm!
Your choices aren't limited to programming, as you can
see below there are many areas where we need **your** help.
If you're unsure where to start or how your skills fit in, _reach out!_ You
can ask on the [mailing
list](https://mail.python.org/mailman/listinfo/numpy-discussion) or
[GitHub](http://github.com/numpy/numpy) (open an
[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
issue).
Those are our preferred channels (open source is open by nature), but
if you prefer to talk privately, contact our community coordinators at
<[email protected]> or on [Slack](https://numpy-team.slack.com)
(write <[email protected]> for an invite).
We also have a biweekly _community call_, details of which are announced on
the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
You are very welcome to join.
If you are new to contributing to open source, we also highly recommend reading
[this guide](https://opensource.guide/how-to-contribute/).
Our community aspires to treat everyone equally and to value all
contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open
and welcoming environment.
### Writing code
Programmers, this
[guide](https://numpy.org/devdocs/dev/index.html#development-process-summary)
explains how to contribute to the NumPy codebase.
<br>Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
### Reviewing pull requests
The project has more than 250 open pull requests -- meaning many potential
improvements and many open-source contributors waiting for feedback. If you're
a developer who knows NumPy, you can help even if you're not familiar with the
codebase. You can:
* summarize a long-running discussion
* triage documentation PRs
* test proposed changes
### Developing educational materials
NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
We're in need of new tutorials, how-to's, and deep-dive explanations, and the
site needs restructuring. Opportunities aren't limited to writers. We'd also
welcome worked examples, notebooks, and videos. [NEP 44 â Restructuring the
NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)
lays out our ideas -- and you may have others.
### Issue triaging
The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
of open issues. Some are no longer valid, some should be prioritized, and some
would make good issues for new contributors. You can:
* check if older bugs are still present
* find duplicate issues and link related ones
* add good self-contained reproducers to issues
* label issues correctly (this requires triage rights -- just ask)
Please just dive in.
### Website development
We've just revamped our website, but we're far from done. If you love web
development, these
[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
list some of our unmet needs -- and feel free to share your own ideas.
### Graphic design
We can barely begin to list the contributions a graphic designer can make here.
Our docs are parched for illustration; our growing website craves images --
opportunities abound.
### Translating website content
We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
accessible to users in their native language. Volunteer translators are at the heart
of this effort. See
[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
for background; comment on [this GitHub
issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
### Community coordination and outreach
Through community contact we share our work more widely and learn where we're
-falling short. We're eager to get more people involved in efforts like our
-[X](https://x.com/numpy_team) account, organizing NumPy [code
+falling short. We're eager to get more people involved in efforts like organizing NumPy [code
sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
### Fundraising
For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
became clear that to ensure stability and growth we would need financial support.
[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
and other kinds of funding. We have a number of ideas and of course we welcome more.
Fundraising is a scarce skill here -- we'd appreciate your help.
### Donate
If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
|
numpy/numpy.org
|
7c9c18f963d396c5797d1be41f0efbec14aee537
|
Revert "Update contribute.md"
|
diff --git a/content/pt/contribute.md b/content/pt/contribute.md
index 1f1861e..65b8263 100644
--- a/content/pt/contribute.md
+++ b/content/pt/contribute.md
@@ -1,66 +1,66 @@
---
title: Contribua com o NumPy
sidebar: false
---
O projeto NumPy precisa de sua experiência e entusiasmo! Suas opções de não são limitadas à programação -- além de
Se você não sabe por onde começar ou como suas habilidades podem ajudar, _fale conosco!_ Você pode perguntar na nossa [lista de emails](https://mail.python.org/mailman/listinfo/numpy-discussion) ou [GitHub](http://github.com/numpy/numpy) (abrindo uma [issue](https://github.com/numpy/numpy/issues) ou comentando em uma issue relevante).
Estes são os nossos canais de comunicação preferidos (projetos de código aberto são abertos por natureza!). No entanto, se você preferir discutir em privado, entre em contato com os coordenadores da comunidade em <[email protected]> ou no [Slack](https://numpy-team.slack.com) (envie um e-mail para <[email protected]> para obter um convite antes de entrar).
Nós também temos uma _reunião aberta da comunidade_ a cada duas semanas. Os detalhes são anunciados na nossa [lista de emails](https://mail.python.org/mailman/listinfo/numpy-discussion). Convidamos você a participar. Se você nunca contribuiu para projetos de código aberto, recomendamos fortemente que você leita [esse guia](https://opensource.guide/how-to-contribute/).
Nossa comunidade deseja tratar todos da mesma forma e valorizar todas as contribuições. Temos um [Código de Conduta](/pt/code-of-conduct) para promover um ambiente aberto e acolhedor.
### Escrevendo código
Para pessoas programadoras, este [guia](https://numpy.org/devdocs/dev/index.html#development-process-summary) explica como contribuir para a base de código. <br>Confira também nosso [canal do YouTube](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) para obter informações adicionais.
### Revisar pull requests
O projeto tem mais de 250 pull requests abertos -- o que significa que muitas potenciais melhorias e muitos contribuidores de código aberto estão aguardando feedback. Se você é uma pessoa programadora que conhece o NumPy, você pode ajudar, mesmo que não tenha familiaridade com o código. Você pode:
* resumir uma discussão longa
* fazer triagem de PRs de documentação
* testar alterações propostas
### Desenvolvimento de materiais educacionais
O [Guia do Usuário](https://numpy.org/devdocs) do Numpy está sendo reformado. Precisamos de novos tutoriais, how-to's e de explicações de conceitos, e o site precisa de reestruturação. Oportunidades não se limitam a pessoas com experiência em escrita técnica. Também procuramos exemplos práticos, notebooks e vÃdeos. A [NEP 44](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html) explica nossas ideias para reestruturar a documentação do NumPy â talvez você também tenha outras ideias.
### Triagem de Issues
O [*issue tracker* do NumPy](https://github.com/numpy/numpy/issues) tem _um monte_ de issues abertas. Algumas não são mais válidas, algumas deveriam ser priorizadas, e algumas poderiam ser boas para pessoas que estão procurando sua primeira contribuição. Você pode:
* verificar se erros mais antigos ainda estão presentes
* encontrar issues duplicadas e criar links entre issues relacionadas
* adicionar bons exemplos autocontidos que reproduzam issues
* rotular issues corretamente (isso requer direitos de triagem -- basta perguntar)
Sinta-se à vontade!
### Desenvolvimento do site
Acabamos de renovar o nosso site, mas estamos longe de terminar. Se você adora o desenvolvimento web, estas [issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign) listam algumas de nossas necessidades não atendidas -- e sinta-se livre para compartilhar suas próprias ideias.
### Design gráfico
Nós mal podemos começar a listar as contribuições que uma pessoa com conhecimento em design gráfico pode fazer aqui. Nossa documentação precisa de ilustrações; nosso site crescente precisa de imagens -- há muitas oportunidades.
### Traduzir conteúdo do site
Planejamos várias traduções do [numpy.org](https://numpy.org) para tornar o NumPy acessÃvel aos usuários em seu idioma nativo. Tradutores voluntários estão no coração deste esforço. Veja [aqui](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n) para informações; comente [nesta issue do GitHub](https://github.com/numpy/numpy.org/issues/55) para se envolver.
### Coordenação e promoção na comunidade
-Através do contato com a comunidade podemos compartilhar nosso trabalho para mais pessoas e descobrir onde precisamos trabalhar mais. Estamos ansiosos para que mais pessoas se envolvam em esforços como nossa conta no [X](https://x.com/numpy_team), na organização de [sprints](https://scisprints.github.io/) sobre o NumPy, uma newsletter, e talvez um blog.
+Através do contato com a comunidade podemos compartilhar nosso trabalho para mais pessoas e descobrir onde precisamos trabalhar mais. Estamos ansiosos para que mais pessoas se envolvam em esforços como nossa conta no [Twitter](https://twitter.com/numpy_team), na organização de [sprints](https://scisprints.github.io/) sobre o NumPy, uma newsletter, e talvez um blog.
### Financiamento
O NumPy foi um projeto totalmente voluntário por muitos anos, mas conforme sua importância cresceu, tornou-se clara a necessidade de apoio financeiro para garantir estabilidade e crescimento. [Esta palestra na SciPy'19](https://www.youtube.com/watch?v=dBTJD_FDVjU) explica quanta diferença esse suporte fez. Como todo o mundo das organizações sem fins lucrativos, nós estamos constantemente procurando bolsas, patrocinadores e outros tipos de apoio. Nós temos uma série de ideias e é claro que nós damos as boas-vindas a mais. Habilidade de buscar financiamento é uma habilidade rara aqui -- apreciarÃamos a sua ajuda.
|
numpy/numpy.org
|
c5a68f3d3e39d77f1f46fb30e6d27ca58f48ea44
|
Revert "Update community.md"
|
diff --git a/content/pt/community.md b/content/pt/community.md
index 5a6046f..7992ff2 100644
--- a/content/pt/community.md
+++ b/content/pt/community.md
@@ -1,66 +1,66 @@
---
title: Comunidade
sidebar: false
---
NumPy é um projeto de código aberto impulsionado pela comunidade desenvolvido por um grupo muito diversificado de [contribuidores](/pt/teams/). A liderança do NumPy assumiu um forte compromisso de criar uma comunidade aberta, inclusiva e positiva. Por favor, leia [o Código de Conduta NumPy](/pt/code-of-conduct) para orientações sobre como interagir com os outros de uma forma que faça a comunidade prosperar.
Oferecemos vários canais de comunicação para aprender, compartilhar seu conhecimento e se conectar com outros dentro da comunidade NumPy.
## Participar online
Abaixo, listamos algumas formas de se envolver diretamente com o projeto e a comunidade do NumPy. _Por favor, note que encorajamos os usuários e membros da comunidade a apoiarem-se uns aos outros para perguntas sobre utilização - veja [Obter Ajuda](/gethelp)._
### [Lista de discussões NumPy](https://mail.python.org/mailman/listinfo/numpy-discussion)
Esta lista é o principal fórum para discussões mais longas, como adicionar novos recursos ao NumPy, fazer alterações no roadmap do NumPy e em todos os tipos de tomada de decisão para todo o projeto. Anúncios sobre o NumPy, como novas versões, reuniões de desenvolvedores, sprints ou palestras de conferência também são feitas nesta lista.
Nesta lista, por favor, use *bottom posting*, responda à lista (em vez de a outro remetente), e não responda aos *digests*. Um arquivo pesquisável desta lista está disponÃvel [aqui](https://mail.python.org/archives/list/[email protected]/).
***
### [Página de issues do GitHub](https://github.com/numpy/numpy/issues)
- Para relatórios de bugs (por exemplo, "`np.arange(3).shape` retorna `(5,)`, quando deveria retornar `(3,)`");
- problemas de documentação (ex. "Eu achei esta seção confusa");
- e pedidos de recursos (por exemplo, "Eu gostaria de ter um novo método de interpolação em `np.percentile`").
_Por favor, note que o GitHub não é o lugar certo para relatar uma vulnerabilidade de segurança. Se você acha que encontrou uma vulnerabilidade de segurança no NumPy, relate-a [aqui](https://tidelift.com/docs/security)._
***
### [Slack](https://numpy-team.slack.com)
Uma sala de bate-papo em tempo real para fazer perguntas sobre _contribuir_ para o NumPy. Este é um fórum privado, especificamente para pessoas hesitantes em levantar suas perguntas ou idéias em uma grande lista de e-mails públicos ou no GitHub. Por favor, clique [aqui](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) para mais detalhes e como obter um convite.
## Grupos de Estudo e Meetups
Se você gostaria de encontrar um encontro ou grupo de estudo local para aprender mais sobre o NumPy e o ecossistema mais amplo de pacotes Python para ciência de dados e computação cientÃfica, recomendamos explorar os [meetups PyData](https://www.meetup.com/pro/pydata/) (mais de 150 encontros, mais de 100.000 membros).
-O NumPy também organiza sprints presenciais para sua equipe e colaboradores interessados ocasionalmente. Estes eventos são normalmente planejados com vários meses de antecedência e serão anunciados na [lista de discussão](https://mail.python.org/mailman/listinfo/numpy-discussion) e no [X](https://x.com/numpy_team).
+O NumPy também organiza sprints presenciais para sua equipe e colaboradores interessados ocasionalmente. Estes eventos são normalmente planejados com vários meses de antecedência e serão anunciados na [lista de discussão](https://mail.python.org/mailman/listinfo/numpy-discussion) e no [Twitter](https://twitter.com/numpy_team).
## Conferências
O projeto NumPy não organiza suas próprias conferências. As conferências que tradicionalmente têm sido mais populares com mantenedores, colaboradores e usuários são as conferências SciPy e PyData:
- [SciPy US](https://conference.scipy.org)
- [EuroSciPy](https://www.euroscipy.org)
- [SciPy Latin America](https://www.scipyla.org)
- [SciPy India](https://scipy.in)
- [SciPy Japan](https://conference.scipy.org)
- [conferências PyData](https://pydata.org/event-schedule/) (15-20 eventos por ano espalhados por muitos paÃses)
Muitas dessas conferências incluem dias de tutorial sobre o NumPy e/ou sprints onde você pode aprender como contribuir com o NumPy ou projetos de código aberto relacionados.
## Junte-se à comunidade NumPy
Para prosperar, o projeto NumPy precisa de sua experiência e entusiasmo. Não é uma pessoa programadora? Sem problemas! Existem muitas maneiras de contribuir com o NumPy.
Se você está interessado em se tornar um contribuidor do NumPy (oba!) recomendamos que você confira nossa página sobre [Contribuições](/pt/contribute).
Além disso, sinta-se à vontade para passar por aqui e dizer oi em uma de nossas reuniões da comunidade. Para acompanhá-las, confira nosso calendário de eventos [aqui](https://scientific-python.org/calendars/).
|
numpy/numpy.org
|
07213fb30dc4153b1d4d0513dccad6c97320bfbe
|
Revert "Update config.yaml"
|
diff --git a/content/pt/config.yaml b/content/pt/config.yaml
index c1e8156..14ab9ee 100644
--- a/content/pt/config.yaml
+++ b/content/pt/config.yaml
@@ -1,111 +1,111 @@
languageName: Português
params:
description: Por que NumPy? Arrays n-dimensionais poderosas. Ferramentas para computação numérica. Interoperabilidade. Alto desempenho. Código aberto.
navbarlogo:
image: logo.svg
text: NumPy
link: /pt/
hero:
#Main hero title
title: NumPy
#Hero subtitle (optional)
subtitle: A biblioteca fundamental para computação cientÃfica com Python
#Button text
buttontext: "Ãltima versão: NumPy 1.26. Veja todas as versões"
#Where the main hero button links to
buttonlink: "/pt/news/#releases"
#Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
- title: Experimentar o NumPy
text: Use o shell interativo para testar o NumPy no navegador
docslink: Não se esqueça de conferir a <a href="https://numpy.org/doc/stable" target="_blank">documentação</a>.
casestudies:
title: ESTUDOS DE CASO
features:
- title: A Primeira Imagem de um Buraco Negro
text: Como o NumPy, junto com outras bibliotecas como SciPy e Matplotlib que dependem do NumPy, permitiram ao Event Horizon Telescope gerar a primeira imagem de um buraco negro da história.
img: /images/content_images/case_studies/blackhole.png
alttext: Primeira imagem de um buraco negro. Ã um cÃrculo laranja em um fundo preto.
url: /pt/case-studies/blackhole-image
- title: Descoberta de Ondas Gravitacionais
text: Em 1916, Albert Einstein previu ondas gravitacionais; 100 anos depois, sua existência foi confirmada pelos cientistas do LIGO usando NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Duas esferas orbitando a si mesmas. Elas deslocam a gravidade em seu entorno.
url: /pt/case-studies/gw-discov
- title: Análise Esportiva
text: A análise de crÃquete está mudando o jogo ao melhorar o desempenho de jogadores e times através de modelagem estatÃstica e análise preditiva. O NumPy possibilita muitas dessas análises.
img: /images/content_images/case_studies/sports.jpg
alttext: Bola de crÃquete em um campo verde
url: /pt/case-studies/cricket-analytics
- title: Estimação de poses usando deep learning
text: DeepLabCut usa o NumPy para acelerar estudos cientÃficos que envolvem comportamento animal para entender melhor o controle motor em várias espécies e escalas de tempo.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Análise de pose de um guepardo
url: /pt/case-studies/deeplabcut-dnn
tabs:
title: ECOSSISTEMA
section5: false
navbar:
- title: Instalação
url: /pt/install
- title: Documentação
url: https://numpy.org/doc/stable
- title: Aprenda
url: /pt/learn
- title: Comunidade
url: /pt/community
- title: Sobre
url: /pt/about
- title: NotÃcias
url: /pt/news
- title: Contribuir
url: /pt/contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- link: https://github.com/numpy/numpy
icon: github
- - link: https://www.youtube.com/@NumPy_team
+ - link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
icon: youtube
- - link: https://x.com/numpy_team
- icon: x
+ - link: https://twitter.com/numpy_team
+ icon: twitter
quicklinks:
column1:
title: ""
links:
- text: Instalação
link: /pt/install
- text: Documentação
link: https://numpy.org/doc/stable
- text: Aprenda
link: /pt/learn
- text: Citando o Numpy
link: /pt/citing-numpy
- text: Roadmap
link: https://numpy.org/neps/roadmap.html
column2:
links:
- text: Sobre
link: /pt/about
- text: Comunidade
link: /pt/community
- text: Pesquisas de usuário
link: /pt/user-surveys
- text: Contribuir
link: /pt/contribute
- text: Código de Conduta
link: /pt/code-of-conduct
column3:
links:
- text: Ajuda
link: /pt/gethelp
- text: Termos de uso (EN)
link: /pt/terms
- text: Privacidade
link: /pt/privacy
- text: Kit de imprensa
link: /pt/press-kit
|
numpy/numpy.org
|
8eb58bb01f541b10655eb1e9a0f5312b0cae4cdf
|
Revert "Update contribute.md"
|
diff --git a/content/ja/contribute.md b/content/ja/contribute.md
index 39d7f08..d2720fd 100644
--- a/content/ja/contribute.md
+++ b/content/ja/contribute.md
@@ -1,65 +1,65 @@
---
title: NumPy ã«è²¢ç®ãã
sidebar: false
---
NumPyããã¸ã§ã¯ããæåãããã«ã¯ãããªãã®å°éç¥èã¨ããã¸ã§ã¯ãã«é¢ããç±æãå¿
è¦ã§ãã è²¢ç®æ¹æ³ã¯ããã°ã©ãã³ã°ã«éå®ããã¾ããã ãã®ãã¼ã¸ã«ã¯**ããªããã§ãã** æ§ã
ãªç¨®é¡ã®è²¢ç®æ¹æ³ã示ããã¦ãã¾ãã
ããã©ãããå§ããã°ããããããªãã®ã¹ãã«ãã©ãçããã°ããããããããªãå ´åã¯ã _æ¯éãé£çµ¡ä¸ããã _ é£çµ¡ã®æ¹æ³ã¨ãã¦ã¯ã [ã¡ã¼ãªã³ã°ãªã¹ã](https://mail.python.org/mailman/listinfo/numpy-discussion) ã [GitHub](http://github.com/numpy/numpy)ã [ã¤ã·ã¥ã¼ã®ä½æ](https://github.com/numpy/numpy/issues) ãé¢é£ããã¤ã·ã¥ã¼ã¸ã®ã³ã¡ã³ããããã¾ãã
é£çµ¡å
ã¨ãã¦ã¯ã <[email protected]> ã¾ãã¯ã[Slack](https://numpy-team.slack.com) (ã°ã«ã¼ãã«æå¾
ããããã«ãã¡ãã«é£çµ¡ãé¡ããã¾ã: <[email protected]>)ãããã¾ãã
ã¾ããéé±ã® _ã³ãã¥ããã£ãã¼ãã£ã³ã°_ãããã詳細㯠[ã¡ã¼ãªã³ã°ãªã¹ã](https://mail.python.org/mailman/listinfo/numpy-discussion) ã§çºè¡¨ããã¦ãã¾ãã ããªãã®åå ã大ãã«æè¿ãã¾ãã ãªã¼ãã³ã½ã¼ã¹ããã¸ã§ã¯ãã«è²¢ç®ããã®ãåãã¦ã®æ¹ã¯ãæ¯éã [ãã®ã¬ã¤ã](https://opensource.guide/how-to-contribute/) ãèªãã§ã¿ã¦ä¸ããã
ç§ãã¡ã®ã³ãã¥ããã£ã¯ã誰ããå¹³çã«æ±ããããã¹ã¦ã®è²¢ç®ãå¹³çã«è©ä¾¡ãããã¨ãç®æãã¦ãã¾ãã ç§ãã¡ã¯ãªã¼ãã³ã§å±
å¿å°ã®è¯ãã³ãã¥ããã£ãä½ãããã« [è¡ååºæº](/ja/code-of-conduct) ãå¶å®ãã¦ãã¾ãã
### ã³ã¼ããæ¸ã
ããã°ã©ãã¼ã®æ¹ã«ã¯ããã¡ãã® [ã¬ã¤ã](https://numpy.org/devdocs/dev/index.html#development-process-summary)ã§NumPyã®ã³ã¼ãã«è²¢ç®ããæ¹æ³ã説æãã¦ãã¾ãã <br>è¿½å æ
å ±ã«é¢ãã¦ã¯ã ãã¡ãã®[YouTube ãã£ã³ãã«](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) ãã覧ãã ããã
### ãã«ãªã¯ã¨ã¹ãã®ã¬ãã¥ã¼
NumPyããã¸ã§ã¯ãã«ã¯ç¾æç¹ã§250以ä¸ã®ãªã¼ãã³ãªãã«ãªã¯ã¨ã¹ãããããå¤ãã® æ¹åè¦æ±ã¨å¤ãã®ã¬ãã¥ã¯ã¼ããã®ãã£ã¼ãããã¯ãå¾
ã£ã¦ãã¾ãã ããããªããNumPy ã使ã£ããã¨ãããå ´åã ãã¨ãNumPyã³ã¼ããã¼ã¹ã«æ
£ãã¦ããªãå ´åã§ãè²¢ç®ããæ¹æ³ã¯ããã¾ãã ä¾ãã°ã
* é·æã«ãããè°è«ãã¾ã¨ãã
* ããã¥ã¡ã³ãã®PRãããªã¢ã¼ã¸ãã
* ææ¡ããã夿´ããã¹ããã
### æè²ç¨ã®è³æã使ãã
NumPy ã® [ã¦ã¼ã¶ã¬ã¤ã](https://numpy.org/devdocs) ã¯ç¾å¨ãå¤§è¦æ¨¡ãªåè¨è¨ä¸ã§ãã æ°ããNumPyã®Webãã¼ã¸ã¯ãæ°ãããã¥ã¼ããªã¢ã«ããNumPyã®ä½¿ãæ¹ãNumPyå
é¨ã®æ·±ã説æãªã©å¿
è¦ã¨ãã¦ããããµã¤ãå
¨ä½ã«ãåè¨è¨ã¨åæ§ç¯ãå¿
è¦ã§ãã ãã®ã¦ã§ããµã¤ãã®åæ§ç¯ã®ä½æ¥ã¯ãããã¥ã¡ã³ããæ¸ãã ãã§ã¯ããã¾ããã ã³ã¼ãä¾ãããã¼ãããã¯ããããªãªã©ã®ä½æãæè¿ãã¦ãã¾ãã [NEP 44 â Restructuring the NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)ã«ãã¦ã§ããµã¤ãã®åæ§ç¯ã«ã¤ãã¦ã®è©³ç´°ã説æããã¦ãã¾ãã
### ã¤ã·ã¥ã¼ã®ããªã¢ã¼ã¸
[NumPyã®ã¤ã·ã¥ã¼ãã©ãã«ã¼](https://github.com/numpy/numpy/issues) ã«ã¯ã _沢山ã®_Openç¶æ
ã®ã¤ã·ã¥ã¼ãããã¾ãã ãã§ã«è§£æ±ºããããã®ãåªå
é ä½ä»ããããã¹ããã®ã åå¿è
ãåãçµãã®ã«é©ãããã®ãããã¾ãã ããªããã§ãããã¨ã¯ãããã¤ãããã¾ã:
* å¤ããã°ãã¾ã æ®ã£ã¦ããã確èªãã
* éè¤ããã¤ã·ã¥ã¼ãè¦ã¤ãããäºãã«é¢é£ã¥ãã
* åé¡ãåç¾ããã³ã¼ãã使ãã
* ã¤ã·ã¥ã¼ã«æ£ããã©ãã«ä»ãããã (ããªã¢ã¼ã¸æ¨©ãå¿
è¦ãªã®ã§ãé£çµ¡ä¸ãã)
ãã²ããã£ã¦ã¿ã¦ä¸ããã
### ã¦ã§ããµã¤ãã®éçº
ç§ãã¡ã¯ã¡ããã©ã¦ã§ããµã¤ããä½ãç´ãå§ããã¨ããã§ããããããã¯ã¾ã å®äºãã¦ãã¾ããã Webéçºã好ããªãããã®[ã¤ã·ã¥ã¼](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign) ã«æªå®æãªè¦æ±ãåæããã¦ãã¾ãã ãã²ãããªãã®ã¢ã¤ãã¢ãå
±æãã¦ãã ããã
### ã°ã©ãã£ãã¯ãã¶ã¤ã³
ã°ã©ãã£ãã¯ãã¶ã¤ãã¼ã®æ¹ãå¯è½ãªè²¢ç®ã¯ãææã«ãã¨ã¾ãããã¾ããã ããããç§ãã¡ã®ããã¥ã¡ã³ãã¯èª¬æã®ããã«å¯è¦åãéè¦ã§ãããç§ãã¡ã®æ¡å¤§ãã¦ããã¦ã§ããµã¤ãã¯è¯ãç»åãæ±ãã¦ãããã¨ããã è²¢ç®ããæ©ä¼ã沢山ããã¨è¨ãã¾ãã
### ã¦ã§ããµã¤ãã®ç¿»è¨³
ç§ãã¡ã¯ã[numpy.org](https://numpy.org) ãè¤æ°è¨èªã«ç¿»è¨³ããNumPyãæ¯å½èªã§ã¢ã¯ã»ã¹ã§ããããã«ãããã¨æã£ã¦ãã¾ãã ãããå®ç¾ããã«ã¯ããã©ã³ãã£ã¢ã®ç¿»è¨³è
ãå¿
è¦ã§ãã 詳ããã¯[ãã®ã¤ã·ã¥ã¼](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)ãåç
§ãã¦ãã ããã [ãã® GitHubã¤ã·ã¥ã¼](https://github.com/numpy/numpy.org/issues/55) ã«ã³ã¡ã³ããã¦ãµã¤ã³ã¢ãããã¦ãã ããã
### ã³ãã¥ããã£ã¨ã®é£æºã¨ã¢ã¦ããªã¼ã
-ã³ãã¥ããã£ã¨ã®ã³ãã¥ãã±ã¼ã·ã§ã³ãéãã¦ãç§ãã¡ã¯ãNumPyããåºãç¥ã£ã¦ããããã©ãã«åé¡ãããã®ããç¥ãããã¨æã£ã¦ãã¾ãã ç§ãã¡ã¯ã[X](https://x.com/numpy_team) ã¢ã«ã¦ã³ãããNumPy[ã³ã¼ãã¹ããªã³ã](https://scisprints.github.io/)ã®éå¬ããã¥ã¼ã¹ã¬ã¿ã¼ã®çºè¡ãããã¦ããããããã°ãªã©ãéãã¦ãããæ²¢å±±ã®äººã«ã³ãã¥ããã£ã«åå ãã¦æ¬²ããã¨æã£ã¦ããã
+ã³ãã¥ããã£ã¨ã®ã³ãã¥ãã±ã¼ã·ã§ã³ãéãã¦ãç§ãã¡ã¯ãNumPyããåºãç¥ã£ã¦ããããã©ãã«åé¡ãããã®ããç¥ãããã¨æã£ã¦ãã¾ãã ç§ãã¡ã¯ã[Twitter](https://twitter.com/numpy_team) ã¢ã«ã¦ã³ãããNumPy[ã³ã¼ãã¹ããªã³ã](https://scisprints.github.io/)ã®éå¬ããã¥ã¼ã¹ã¬ã¿ã¼ã®çºè¡ãããã¦ããããããã°ãªã©ãéãã¦ãããæ²¢å±±ã®äººã«ã³ãã¥ããã£ã«åå ãã¦æ¬²ããã¨æã£ã¦ããã
### è³é調é
NumPyã¯ä½å¹´ã«ã渡ã£ã¦ãã©ã³ãã£ã¢ã ãæ´»åãã¦ãã¾ãããããã®éè¦æ§ãé«ã¾ãã«ã¤ããå®å®æ§ã¨æé·ã®ããã«ã¯è³éé¢ã§ã®æ¯æ´ãå¿
è¦ã§ãããã¨ãããã£ã¦ãã¾ããã ãã¡ãã®[SciPy'19ã®ãã¬ã¼ã³](https://www.youtube.com/watch?v=dBTJD_FDVjU) ã§ã¯ãè³éçãªãµãã¼ããåãããã¨ã§ãã©ãã ãéããåºããã説æãã¦ãã¾ãã ä»ã®éå¶å©å£ä½ã®ããã«ãç§ãã¡ã¯å©æéããã¹ãã³ãµã¼ã·ããããã®ä»ã®è³éæ¯æ´ãå¸¸ã«æ¢ãã¦ãã¾ãã ç§ãã¡ã¯ãã§ã«ããã¤ãã®è³é調éã®ã¢ã¤ãã¢ãæã£ã¦ãã¾ãããä»ã«ãããå¤ããè³é調éãåãããã¨æã£ã¦ãã¾ãã è³é調éã«é¢ããç¥èã¯ãæã
ã«ã¯ä¸è¶³ãã¦ããã¹ãã«ã§ãã æ¯éãããªãã®ãµãã¼ãããå¾
ã¡ãã¦ãã¾ãã
### å¯ä»
å¯ä»ããããã¨ã§Numpyã«è²¢ç®ãããå ´åã¯ã [https://numpy.org/about/#donate](https://numpy.org/about/#donate) ãã覧ãã ããã
|
numpy/numpy.org
|
b6df19aec264ede127bfd18524726063d22aa6d5
|
Revert "Update config.yaml"
|
diff --git a/content/ja/config.yaml b/content/ja/config.yaml
index d074c8a..f662552 100644
--- a/content/ja/config.yaml
+++ b/content/ja/config.yaml
@@ -1,137 +1,137 @@
languageName: æ¥æ¬èª (Japanese)
params:
description: NumPyãåºãå©ç¨ãããçç± å¼·åãªå¤æ¬¡å
é
åãæ°å¤è¨ç®ãã¼ã«ç¾¤ãç¸äºéç¨æ§ãé«ãããã©ã¼ãã³ã¹ããªã¼ãã³ã½ã¼ã¹
navbarlogo:
image: logo.svg
text: NumPy
link: /ja/
hero:
#Main hero title
title: NumPy
#Hero subtitle (optional)
subtitle: Pythonã«ããç§å¦æè¡è¨ç®ã®åºç¤ããã±ã¼ã¸
#Button text
buttontext: "ææ°ãªãªã¼ã¹: Numpy 1.26. ãã¹ã¦ã®ãªãªã¼ã¹ã表示ãã"
#Where the main hero button links to
buttonlink: "/ja/news/#releases"
#Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
-
title: NumPy ã試ã
text: ã¤ã³ã¿ã©ã¯ãã£ãã·ã§ã«ã使ç¨ãã¦ããã©ã¦ã¶ä¸ã§ Numpy ã試ãã¦ã¿ã¦ãã ããã
docslink: <a href="https://numpy.org/doc/stable" target="_blank">ããã¥ã¡ã³ã</a> ã確èªãããã¨ãå¿ããªãã§ãã ããã
casestudies:
title: ã±ã¼ã¹ã¹ã¿ãã£
features:
-
title: ä¸çåã®ãã©ãã¯ãã¼ã«ç»å
text: NumPyã¯ã©ã®ããã«ãSciPyãMatplotlibãªã©ã®NumPyã«ä¾åããã©ã¤ãã©ãªã¨ã¨ãã«ãã¤ãã³ããã©ã¤ãºã³ãã¬ã¹ã³ã¼ãã«ããä¸çåã®ãã©ãã¯ãã¼ã«ç»åã®ä½æãå¯è½ã«ããã®ã§ããããã
img: /images/content_images/case_studies/blackhole.png
alttext: ä¸çåã®ãã©ãã¯ãã¼ã«ç»åãé»ãèæ¯ã«ãªã¬ã³ã¸è²ã®åã§æããã¦ãã¾ãã
url: /ja/case-studies/blackhole-image
-
title: éåæ³¢ã®æ¤ç¥
text: 1916å¹´ãã¢ã«ãã¼ãã»ã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã¯éåæ³¢ãäºè¨ãã¾ããã100å¹´å¾ãLIGOã®ç ç©¶è
ãã¡ã¯NumPyã使ã£ã¦ãã®åå¨ã確èªãã¾ããã
img: /images/content_images/case_studies/gravitional.png
alttext: 2ã¤ã®ãªã¼ãããäºãã«å¨åããå¨ãã®éåãå¤ä½ããã¦ãã¾ãã
url: /ja/case-studies/gw-discov
-
title: ã¹ãã¼ãåæ
text: ã¯ãªã±ããåæã¯ãçµ±è¨çã¢ããªã³ã°ã¨äºæ¸¬åæã«ãã£ã¦é¸æããã¼ã ã®ããã©ã¼ãã³ã¹ãåä¸ããããã¨ã§ãã¯ãªã±ããã®è©¦åãå¤ãããã¨ãã¦ãã¾ããå¤ãã®åæããNumPyã«ããå¯è½ã«ãªãã¾ããã
img: /images/content_images/case_studies/sports.jpg
alttext: ç·ã®ãã£ã¼ã«ãä¸ã«ããã¯ãªã±ãããã¼ã«ã
url: /ja/case-studies/cricket-analytics
-
title: 深層å¦ç¿ã«ããå§¿å¢æ¨å®
text: DeepLabCutã¯NumPyãå©ç¨ããåç©ã®ç¨®é¡ãæéã¹ã±ã¼ã«ã«ãããªãéåå¶å¾¡ã®çè§£ã¸åããåç©ã®è¡å観å¯ãå«ãç§å¦æè¡ç ç©¶ãå éããã¦ãã¾ãã
img: /images/content_images/case_studies/deeplabcut.png
alttext: ãã¼ã¿ã®å§¿å¢æ¨å®
url: /ja/case-studies/deeplabcut-dnn
tabs:
title: NumPyã®ã¨ã³ã·ã¹ãã
section5: false
navbar:
-
title: ã¤ã³ã¹ãã¼ã«
url: /ja/install
-
title: ããã¥ã¡ã³ã
url: https://numpy.org/doc/stable
-
title: å¦ã³æ¹
url: /ja/learn
-
title: ã³ãã¥ããã£
url: /ja/community
-
title: ç§éã«ã¤ãã¦
url: /ja/about
-
title: ãã¥ã¼ã¹
url: /ja/news
-
title: NumPyã«è²¢ç®ãã
url: /ja/contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
-
link: https://github.com/numpy/numpy
icon: github
-
- link: https://www.youtube.com/@NumPy_team
+ link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
icon: youtube
quicklinks:
column1:
title: ""
links:
-
text: ã¤ã³ã¹ãã¼ã«
link: /ja/install
-
text: ããã¥ã¡ã³ã
link: https://numpy.org/doc/stable
-
text: å¦ã³æ¹
link: /ja/learn
-
text: å¼ç¨ãã
link: /ja/citing-numpy
-
text: ãã¼ãããã
link: https://numpy.org/neps/roadmap.html
column2:
links:
-
text: ç§éã«ã¤ãã¦
link: /ja/about
-
text: ã³ãã¥ããã£
link: /ja/community
-
text: ã¦ã¼ã¶ã¼ã®èª¿æ»
link: /ja/user-surveys
-
text: NumPyã«è²¢ç®ãã
link: /ja/contribute
-
text: è¡åè¦ç¯
link: /ja/code-of-conduct
column3:
links:
-
text: ãµãã¼ããå¾ãæ¹æ³
link: /ja/gethelp
-
text: å©ç¨è¦ç´
link: /ja/terms
-
text: ãã©ã¤ãã·ã¼ããªã·ã¼
link: /ja/privacy
-
text: ãã¬ã¹ç¨è³æ
link: /ja/press-kit
|
numpy/numpy.org
|
cf58e68b77ff28e6cdbfd0d2bb8eba31ded0134e
|
Revert "Update code-of-conduct.md"
|
diff --git a/content/ja/code-of-conduct.md b/content/ja/code-of-conduct.md
index 0d7581e..70ca4d8 100644
--- a/content/ja/code-of-conduct.md
+++ b/content/ja/code-of-conduct.md
@@ -1,83 +1,83 @@
---
title: NumPyè¡åè¦ç¯
sidebar: false
aliases:
- /ja/conduct/
---
### ã¯ããã«
-ãã®è¡åè¦ç¯ã¯ãNumPy ããã¸ã§ã¯ãã«ãã£ã¦ç®¡çããããã¹ã¦ã®å ´æã§é©ç¨ããã¾ãã ãã®å ´æã¨ã¯ããã¹ã¦ã®ãããªãã¯ããã³ãã©ã¤ãã¼ãã®ã¡ã¼ãªã³ã°ãªã¹ããã¤ã·ã¥ã¼ãã©ãã«ã¼ãWikiãããã°ãXãã³ãã¥ããã£ã§ä½¿ç¨ããã¦ãããã®ä»ã®éä¿¡ãã£ã³ãã«ãªã©ãå«ã¿ã¾ãã NumPy ããã¸ã§ã¯ãã§ã¯å¯¾é¢ã§ã®ã¤ãã³ãã¯éå¬ãã¦ãã¾ããã ããããæã
ã®ã³ãã¥ããã£ã«é¢é£ãããã®ã§ããã°ã対é¢ã®ã¤ãã³ãã§ãåæ§ã®è¡åè¦ç¯ãæã¤å¿
è¦ãããã¾ãã
+ãã®è¡åè¦ç¯ã¯ãNumPy ããã¸ã§ã¯ãã«ãã£ã¦ç®¡çããããã¹ã¦ã®å ´æã§é©ç¨ããã¾ãã ãã®å ´æã¨ã¯ããã¹ã¦ã®ãããªãã¯ããã³ãã©ã¤ãã¼ãã®ã¡ã¼ãªã³ã°ãªã¹ããã¤ã·ã¥ã¼ãã©ãã«ã¼ãWikiãããã°ãTwitterãã³ãã¥ããã£ã§ä½¿ç¨ããã¦ãããã®ä»ã®éä¿¡ãã£ã³ãã«ãªã©ãå«ã¿ã¾ãã NumPy ããã¸ã§ã¯ãã§ã¯å¯¾é¢ã§ã®ã¤ãã³ãã¯éå¬ãã¦ãã¾ããã ããããæã
ã®ã³ãã¥ããã£ã«é¢é£ãããã®ã§ããã°ã対é¢ã®ã¤ãã³ãã§ãåæ§ã®è¡åè¦ç¯ãæã¤å¿
è¦ãããã¾ãã
ãã®è¡åè¦ç¯ã¯ãNumPy ã³ãã¥ããã£ã«æ£å¼ã¾ãã¯éå
¬å¼ã«åå ãããã¹ã¦ã®äººãé å®ããå¿
è¦ãããã¾ãã ãã®ä»ã«ããNumPyã¨ã®ææºã»é¢é£ããããã¸ã§ã¯ãæ´»åã«ããã¦ã¯ãç¹ã«ãããã®ããã¸ã§ã¯ãã代表ããå ´åãåæ§ã®è¡åè¦ç¯ã«å¾ãå¿
è¦ãããã¾ãã
ãã®è¡åè¦ç¯ã¯å®å
¨ã§ã¯ããã¾ããã ããããè¡åè¦ç¯ã¯æã
ãçè§£ãã¹ããäºãã®ååã®ä»æ¹ããå
±éã®å ´æã®ããã¹ãå§¿ãæã
ã®ã´ã¼ã«ãªã©ãã¾ã¨ããã®ã«éè¦ãªå½¹ç®ãæããã¾ãã ãã¬ã³ããªã¼ã§çç£çãªç°å¢ãçã¿åºããå¨å²ã®ã³ãã¥ããã£ã«ããè¯ãå½±é¿ãä¸ããããããã²ãã®è¡åè¦ç¯ã«å¾ã£ã¦ãã ããã
### ã¬ã¤ãã©ã¤ã³ã®æ¦è¦
ç§ãã¡ã¯ä¸è¨ã®å
容ã«çæ¯ã«åãçµã¿ã¾ãã
1. éããã³ãã¥ããã£ã«ãã¾ãããã ç§ãã¡ã¯ã誰ã§ãã³ãã¥ããã£ã«åå ã§ããããã«ãã¾ãã ç§ãã¡ã¯ãå
¬ã«ãã¹ãã§ã¯ãªãå
容ãè°è«ããå ´å以å¤ãããã¸ã§ã¯ãã«é¢é£ããã¡ãã»ã¼ã¸ãå
¬ã®å ´ã§åç¥ãããã¨ãé¸ã³ã¾ãã ããã¯ãNumPyã«é¢ãããã«ããããã¸ã§ã¯ããµãã¼ãã«ãé©ç¨ããã¾ããå
¬å¼ãªãµãã¼ãã ãã§ãªããNumPyã«é¢ãã質åã«çããå ´åãã§ãã ããã«ããã質åã«çããéã®æå³ããªãééãããããç°¡åã«æ¤åºããè¨æ£ã§ããããã«ãªãã¾ãã
2. å
±æããæè¿ããå好çã§ãããã¦ææ
¢å¼·ãããã¾ãããã ç§ãã¡ã¯äºãã«äºãã解決ãåããäºãã®åæãä¿¡ãåãã¾ãã ç§ãã¡ã¯ææã䏿ºãæããããããã¾ããã ããããã®ãããªå ´åãã䏿ºãå人çãªæ»æã«å¤ãããã¨ã¯è¨±å®¹ããã¾ããã 人ã
ãä¸å¿«ãè
å¨ãæããã³ãã¥ããã£ã¯ãçç£çã§ã¯ãªãããã§ãã
3. äºãã«ååãåããã ç§ãã¡ã®éçºææã¯ä»ã®äººã
ã«ãã£ã¦å©ç¨ããã䏿¹ã§ããã¡ã¯ä»ã®äººã
ã®éçºææã«ä¾åãã¦ããã®ã§ãã ç§ãã¡ãããã¸ã§ã¯ãããã«ä½ããä½ãã¨ããç§ãã¡ã¯ãããã©ã®ããã«åä½ããããä»ã®äººã«èª¬æããå¿
è¦ãããã¾ãã ãããããã®ä½æ¥ã«ãããããè¯ããã®ãä½ãä¸ãããã¨ãã§ããã®ã§ãã ç§ãã¡ãä¸ãå
¨ã¦ã®æ±ºæã¯ãã¦ã¼ã¶ã¨éçºã³ãã¥ããã£ã«å½±é¿ãä¸ããããããã®æ±ºæãããããçµæãç§ãã¡ã¯çæ¯ã«åãæ¢ãã¾ãã
4. 好å¥å¿ã大äºã«ãããã å
¨ã¦ãç¥ã£ã¦ãã人ã¯ããªãã®ã§ãï¼ æ©ãæ©ãã«è³ªåããããã¨ã§ãå¾ã«çãããå¤ãã®åé¡ãåé¿ã§ãã¾ãã ãã®ããç§ãã¡ã¯è³ªåã奨å±ãã¦ãã¾ãã ç§ãã¡ã¯ãåºæ¥ãã ã質åã«è¯ã対å¿ããæå©ãã§ããããåªåãã¾ãã
5. 使ãè¨èã«æ³¨æãã¾ãããã ç§ãã¡ã¯ãã³ãã¥ããã£ã«ãããã³ãã¥ãã±ã¼ã·ã§ã³ã«æ³¨æã¨æ¬æãæãã¾ãã ããã¦ãç§ãã¡ã¯èªåã®è¨èã«è²¬ä»»ãæã¡ã¾ãã ä»äººã«åªãããã¾ãããã ä»ã®ã³ãã¥ããã£ã®åå è
ã侮辱ããªãã§ãã ããã ç§ãã¡ã¯ã以ä¸ã®ãããªãã©ã¹ã¡ã³ãããã®ä»ã®ææ¥è¡çºã許ãã¾ããã :
* ä»ã®äººã«åããããæ´åçãªè¡çºãè¨èã
* æ§å·®å¥ã人種差å¥ããã®ä»ã®å·®å¥çãªã¸ã§ã¼ã¯ãè¨åã
* æ§çã¾ãã¯æ´åçãªå
å®¹ã®æç¨¿ã
* ä»ã®ã¦ã¼ã¶ã¼ã®å人æ
å ±ãæç¨¿ãããã¨ã (ã¾ãã¯æç¨¿ããã¨è
ããã¨)ã
* å
¬éç®çã®ãªãé»åã¡ã¼ã«ããICRãã£ããã®ãããªãã°ã®æ®ããªããã©ã¼ã©ã ã®å±¥æ´ãªã©ããã©ã¤ãã¼ããªã³ã³ãã³ããéä¿¡è
ã®åæãªãã«å
±æãããã¨ã
* å人çãªä¾®è¾±, ç¹ã«äººç¨®å·®å¥ãæ§å·®å¥çãªç¨èªã使ç¨ãã¦ä¾®è¾±ãããã¨ã
* ä¸å¿«ãªæãããããæ§çãªè¨åã
* é度ã«ç²æ´ã«æ¯ãèããã¨ã ã²ã©ããªè¨èã使ãã®ãé¿ãã¦ãã ããã 人ã
ã¯æããè¦ããæåº¦ãããããã大ããç°ãªãã¾ãã
* ä»äººã«å¯¾ãããã©ã¹ã¡ã³ãã®ç¹°ãè¿ãã ä¸è¬çã«ã誰ããããªãã«ããè¨åãæ¢ããããã«è¦æ±ããå ´åããã®è¨åãããã¦ä¸ããã
* ä¸è¨ã®ããããã®è¡åãæè·ãããã¨ãã¾ãã¯å¥¨å±ãããã¨ã
### 夿§æ§ã«é¢ãã声æ
NumPyããã¸ã§ã¯ãã¯ãå
¨ã¦ã®äººã
ã®åå ãæè¿ãã¦ãã¾ãã ç§ãã¡ã¯ã誰ããã³ãã¥ããã£ã®ä¸å¡ã§ãããã¨ã楽ãããããã«å°½åãã¾ãã å
¨ã¦ã®äººã®å¥½ã¿ãæºè¶³ã¯ãããããªãããããã¾ããããå
¨å¡ã«å¯¾ãåºæ¥ãã ã親åãªå¯¾å¿ãã§ããããæåãå°½ããã¾ãã
ããªãã®èªå·±èªèããä»è
ã®ããªãã¸ã®èªèã¯é¢ä¿ããã¾ããã ç§ãã¡ã¯ããªããæè¿ãã¾ãã æ°æãéºä¼ãæ§å䏿§ãããã¯é¢é£ãã表ç¾ãè¨èªãå½ç±ãç¥çµå¦çãªå·®ç°ãçç©å¦çãªå·®ç°ã æ¿æ²»çä¿¡æ¡ãè·æ¥ã人種ãå®æãæ§çæåã社ä¼çµæ¸çå°ä½ãæåçãªå·®ç°ãæè¡çãªè½åã
ç§ãã¡ã¯ãã¹ã¦ã®ç¨®é¡ã®è¨èªè¨èªè©±è
ã®åå ãæè¿ãã¾ãããNumPy éçºã¯è±èªã§è¡ããã¾ãã
NumPy ã³ãã¥ããã£ã®æ¨æºçãªã«ã¼ã«ã¯ãä¸è¨ã®è¡åè¦ç¯ã§èª¬æããã¦ãã¾ãã NumPyã³ãã¥ããã£ã®åå è
ã¯ããããã®è¡ååºæºããã¹ã¦ã®ã³ãã¥ãã±ã¼ã·ã§ã³ã«ããã¦é å®ããä»ã®äººã
ã«ãåæ§ãªè¡åããããã¨ãæ¨å¥¨ãã¹ãã§ã (次ã®ã»ã¯ã·ã§ã³ãåç
§)ã
### å ±åã¬ã¤ãã©ã¤ã³
ç§ãã¡ã¯ãã¤ã³ã¿ã¼ãããä¸ã§ã®ããã¨ããç°¡åã«ã²ã©ã誹è¬ä¸å·ã«é¥ã£ã¦ãã¾ããã¨ããçãã»ã©ç¥ã£ã¦ãã¾ã. ç§ãã¡ã¯ã¾ããå«ãªæ¥ãéããã¦ãããããããã¦ãã人ããè¡åè¦ç¯ã¬ã¤ãã©ã¤ã³ã®é
ç®ãè¦è½ã¨ãã¦ãã人ããããã¨ãç¥ã£ã¦ãã¾ãã è¡åè¦ç¯ã®éåã«ã©ã®ããã«å¯¾å¦ããããæ±ºå®ããéã«ã¯ããã®ãã¨ãå¿ã«çãã¦ããå¿
è¦ãããã¾ãã
æå³çãªè¡åè¦ç¯éåã«ã¤ãã¦ã¯ãè¡åè¦ç¯å§å¡ä¼ã«å ±åãã¦ãã ãã (ä¸è¨åç
§)ã ãããéåãæå³çã§ãªãå¯è½æ§ãããå ´åããã®äººã«ãã®è¡åè¦ç¯ã®åå¨ãç¥ããããã¨ãå¯è½ã§ã (ãããªãã¯ã§ããã©ã¤ãã¼ãã§ããé©åãªæ¹æ³ã§)ã ããç´æ¥ææããããªãå ´åã¯ããã²ãè¡åè¦ç¯å§å¡ä¼ã«ç´æ¥é£çµ¡ããããéåã®ç¢ºåº¦ã«ã¤ãã¦å©è¨ãæ±ãã¦ä¸ããã
NumPyè¡åè¦ç¯å§å¡ä¼ã«åé¡ãå ±åããå ´åã¯ããã¡ãã«ãé£çµ¡ä¸ãã: [email protected]ã
ç¾å¨ãè¡åè¦ç¯å§å¡ä¼ã¯ä»¥ä¸ã®ã¡ã³ãã¼ã§æ§æããã¦ãã¾ã:
* Stefan van der Walt
* Melissa Weber Mendonça
* Rohit Goswami
ããããªãã®éåå ±åã«å§å¡ä¼ã®ã¡ã³ãã¼ãå«ã¾ãã¦ããå ´å, ã¾ãã¯å½¼ãããããå¦çããä¸ã§å©çç¸åããã¦ããã¨æããå ´åããã®ã¡ã³ãã¼ã¯ããªãã®å ±åãè©ä¾¡ããç«å ´ããã¯è¾éãã¦ãããã¾ãã ãããã¯ãè¡åè¦ç¯å§å¡ä¼ã«å ±åããã®ãèºèºãããå ´åã¯ããã¡ãããNumFOCUSã®ã·ãã¢ã¹ã¿ããã«é£çµ¡ãããã¨ãå¯è½ã§ã:[[email protected]](https://numfocus.org/code-of-conduct#persons-responsible) ã
### ã¤ã³ã·ãã³ãå ±åã®è§£æ±º & è¡åè¦ç¯ã®å®æ½
æ¬ç¯ã§ã¯ã_æãéè¦ãªç¹ã®ã¿ãã¾ã¨ãã¾ãã _詳細ã«ã¤ãã¦ã¯ã[NumPy Code of Conduct - How to follow up on a report](report-handling-manual) ãã覧ãã ããã
ç§ãã¡ã¯ãã¹ã¦ã®è¨´ãã調æ»ãã対å¿ããããã«ãã¾ãã NumPyè¡åè¦ç¯å§å¡ä¼ããã³NumPyéå¶å§å¡ä¼(ããé¢ä¿ããå ´å) ã¯ãå ±åè
ã®èº«å
ãä¿è·ãã¾ãã ã¾ã(å ±åè
ãåæããªãéã) è¦æ
ã®å
å®¹ãæ©å¯ã¨ãã¦æ±ããã¨ã¨ãã¾ãã
ããæ·±å»ã§æãããªéåã®å ´åãä¾ãã°ã å人çãªè
ããã¾ãã¯æ´åçãæ§å·®å¥çã¾ãã¯äººç¨®å·®å¥çãªçºè¨ãªã©ã®å ´åãæã
ã¯ç´ã¡ã«NumPyã®ã³ãã¥ãã±ã¼ã·ã§ã³ã®å ´ããçºè¨è
ãéå ´ããã¾ãã詳細ã«ã¤ãã¦ã¯ããã¥ã¢ã«ãåç
§ãã¦ãã ããã
ãããè¡åè¦ç¯ã«å¯¾ãã¦æç½ãªéåãã¿ãããªãå ´åãåé ãããè¡åè¦ç¯éåå ±åã«å¯¾ããããã»ã¹ã¯ä»¥ä¸ã®éãã§ãã
1. å ±åæ¸ã®åé ã確èª
2. 建è¨çãªè°è«/ãã£ã¼ãããã¯
3. 調åï¼å ±åè
ã¨å ±åãåãããã®ã®ä¸¡æ¹ããã£ã¼ãããã¯ãå½¹ã«ç«ããªãã£ãã¨åæããå ´åã«éãï¼
4. è¡åè¦ç¯å§å¡ä¼ã«ããéææ§ã®ããæ±ºå®ã¨å·è¡( [決è°](report-handling-manual/#è§£æ±ºæ¹æ³)ãåç
§)
è¡åè¦ç¯å§å¡ä¼ã¯ãå¯è½ãªéãéããã«å¯¾å¿ããæå¤§ã§72æé以å
ã«å¯¾å¿ããæ§ã«ãã¾ãã
### ææ«èæ³¨:
ç§ãã¡ã¯ä¸è¨ã®ããã¥ã¡ã³ãã使ããã°ã«ã¼ãã«æè¬ãã¾ãã å
容ã»çºæ³ã¨ãã«å¤§ãã«å½±é¿ããã¦ãã¾ãã
- [SciPyè¡åè¦ç¯](https://docs.scipy.org/doc/scipy/dev/conduct/code_of_conduct.html)
|
numpy/numpy.org
|
4c15ad2501803033d80301a764a3f83355579232
|
Revert "Update config.yaml"
|
diff --git a/content/es/config.yaml b/content/es/config.yaml
index a13b0a0..0357ec7 100644
--- a/content/es/config.yaml
+++ b/content/es/config.yaml
@@ -1,109 +1,109 @@
languageName: Español
params:
description: '¿Por qué NumPy? Potentes arreglos n-dimensionales. Herramientas de cálculo numérico. Interoperabilidad. Rendimiento. Código abierto.'
navbarlogo:
image: logo.svg
text: NumPy
link: /es/
hero:
#Main hero title
title: NumPy
#Hero subtitle (optional)
subtitle: El paquete fundamental para la computación cientÃfica con Python
#Button text
buttontext: "Ãltima versión: NumPy 2.0. Ver todas las versiones"
#Where the main hero button links to
buttonlink: "/news/#releases"
#Hero image (from static/images/___)
image: logo.svg
shell:
title: marcador
intro:
- title: Prueba NumPy
text: Utilice el terminal interactivo para probar NumPy en el navegador
docslink: No olvides echarle un ojo a la <a href="https://numpy.org/doc/stable" target="_blank">documentación</a>.
casestudies:
title: CASOS DE ESTUDIO
features:
- title: Primera imagen de un Agujero Negro
text: Cómo NumPy, junto con bibliotecas como SciPy y Matplotlib que dependen de NumPy, permitió al Telescopio del Horizonte de Sucesos producir la primera imagen de un agujero negro
img: /images/content_images/case_studies/blackhole.png
alttext: Primera imagen de un agujero negro. Es un cÃrculo anaranjado con fondo negro.
url: /es/case-studies/blackhole-image
- title: Detección de Ondas Gravitacionales
text: En 1916 Albert Einstein predijo las ondas gravitacionales; 100 años después se confirmó su existencia por cientÃficos del LIGO, utilizando NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Dos cuerpos orbitándose mutuamente. Estos desplazan la gravedad a su alrededor.
url: /es/case-studies/gw-discov
- title: AnalÃticas Deportivas
text: El Análisis de CrÃquet está cambiando el juego, mejorando el rendimiento de los jugadores y equipos mediante modelos estadÃsticos y análisis predictivos. NumPy permite realizar muchos de estos análisis.
img: /images/content_images/case_studies/sports.jpg
alttext: Bola de Cricket sobre un campo verde.
url: /es/case-studies/cricket-analytics
- title: Estimación de la pose mediante aprendizaje profundo
text: DeepLabCut utiliza NumPy para acelerar estudios cientÃficos que implican la observación del comportamiento animal para una mejor comprensión del control motriz, a través de especies y escalas de tiempo.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Análisis de la pose de un Guepardo
url: /es/case-studies/deeplabcut-dnn
tabs:
title: ECOSISTEMA
section5: false
navbar:
- title: Instalar
url: /es/install
- title: Documentación
url: https://numpy.org/doc/stable
- title: Aprende
url: /es/learn
- title: Comunidad
url: /es/community
- title: Quiénes somos
url: /es/about
- title: Noticias
url: /es/news
- title: Contribuye
url: /es/contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- link: https://github.com/numpy/numpy
icon: github
- - link: https://www.youtube.com/@NumPy_team
+ - link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
icon: youtube
quicklinks:
column1:
title: ""
links:
- text: Instalar
link: /es/install
- text: Documentación
link: https://numpy.org/doc/stable
- text: Aprende
link: /es/learn
- text: Citando a NumPy
link: /es/citing-numpy
- text: Mapa de ruta
link: https://numpy.org/neps/roadmap.html
column2:
links:
- text: Acerca de nosotros
link: /es/about
- text: Comunidad
link: /es/community
- text: Encuestas a usuarios
link: /es/user-surveys
- text: Contribuye
link: /es/contribute
- text: Código de Conducta
link: /es/code-of-conduct
column3:
links:
- text: Buscar ayuda
link: /es/gethelp
- text: Términos de uso
link: /es/terms
- text: Confidencialidad
link: /es/privacy
- text: Kit de prensa
link: /es/press-kit
|
numpy/numpy.org
|
f657d137fe2d2339bf64f5e97d07ed05b38a93a4
|
Revert "Update community.md"
|
diff --git a/content/es/community.md b/content/es/community.md
index 153ebd2..f96474c 100644
--- a/content/es/community.md
+++ b/content/es/community.md
@@ -1,66 +1,66 @@
---
title: Comunidad
sidebar: false
---
NumPy es un proyecto de código abierto impulsado por la comunidad y desarrollado por un grupo diverso de [colaboradores](/teams/). El liderazgo de NumPy se ha comprometido firmemente a crear una comunidad abierta, inclusiva y positiva. Por favor, lee el [Código de Conducta de NumPy](/code-of-conduct) para obtener orientación sobre cómo interactuar con los demás de una manera que haga que la comunidad prospere.
Ofrecemos varios canales de comunicación para aprender, compartir conocimientos y conectarse con otros dentro de la comunidad de NumPy.
## Participa en lÃnea
Las siguientes son formas de relacionarse directamente con el proyecto y la comunidad de NumPy. _Ten en cuenta que animamos a los usuarios y a los miembros de la comunidad a apoyarse mutuamente por preguntas de uso - ver [Obtener ayuda](/gethelp)._
### [Lista de correo de NumPy](https://mail.python.org/mailman/listinfo/numpy-discussion)
Este es el foro principal para discusiones más extensas, como añadir nuevas caracterÃsticas a NumPy, hacer cambios en el mapa de ruta de NumPy, y todo tipo de proceso de toma de decisiones sobre el proyecto. Aquà también se realizan los anuncios sobre NumPy, tales como lanzamientos, reuniones de desarrolladores, sprints o charlas en conferencias.
En esta lista, por favor, utiliza el botón de envÃo inferior, responde a la lista (en lugar de a otro remitente) y no respondas a los resúmenes. El archivo de consulta de esta lista está disponible [aquÃ](https://mail.python.org/archives/list/[email protected]/).
***
### [Seguimiento de incidencias en GitHub](https://github.com/numpy/numpy/issues)
- Para informes de error (por ejemplo, "`np.arange(3).shape` devuelve `(5,)`, cuando deberÃa devolver `(3,)`");
- problemas en la documentación (por ejemplo, "Esta sección me pareció poco clara");
- y solicitudes de funcionalidades (por ejemplo, "Me gustarÃa tener un nuevo método de interpolación en `np.percentile`").
_Ten en cuenta que GitHub no es el lugar adecuado para reportar una vulnerabilidad de seguridad. Si crees que has encontrado una vulnerabilidad de seguridad en NumPy, por favor repórtalo [aquÃ](https://tidelift.com/docs/security)._
***
### [Slack](https://numpy-team.slack.com)
Una sala de chat en tiempo real para hacer preguntas sobre las _contribuciones_ a NumPy. Este es un espacio privado, destinado especÃficamente a las personas que no se atreven a plantear sus preguntas o ideas en la lista de correo pública o en GitHub. Por favor, visita [aquÃ](https://numpy.org/devdocs/dev/index.html#contributing-to-numpy) para más detalles, y sobre cómo obtener una invitación.
## Grupos de Estudio y Reuniones
Si desea encontrar un grupo de estudio o reunión local para aprender más sobre NumPy y el ecosistema más amplio de paquetes de Python para ciencia de datos y computación cientÃfica, te recomendamos que explores los [PyData meetups](https://www.meetup.com/pro/pydata/) (más de 150 reuniones, más de 100,000 miembros).
-NumPy también organiza ocasionalmente sprints presenciales para su equipo y colaboradores interesados. Estos normalmente se planifican con varios meses de anticipación y se anunciarán en la [lista de correo](https://mail.python.org/mailman/listinfo/numpy-discussion) y en [X (antes conocido como Twitter)](https://x.com/numpy_team).
+NumPy también organiza ocasionalmente sprints presenciales para su equipo y colaboradores interesados. Estos normalmente se planifican con varios meses de anticipación y se anunciarán en la [lista de correo](https://mail.python.org/mailman/listinfo/numpy-discussion) y en [X (antes conocido como Twitter)](https://twitter.com/numpy_team).
## Conferencias
El proyecto NumPy no organiza sus propias conferencias. Las conferencias que tradicionalmente han sido más populares entre los responsables, colaboradores y usuarios de NumPy son la serie de conferencias de SciPy y PyData:
- [SciPy US](https://conference.scipy.org)
- [EuroSciPy](https://www.euroscipy.org)
- [SciPy Latinoamérica](https://www.scipyla.org)
- [SciPy India](https://scipy.in)
- [SciPy Japan](https://conference.scipy.org)
- [Conferencias PyData](https://pydata.org/event-schedule/) (de 15 a 20 eventos al año, repartidos entre muchos paÃses)
Muchas de estas conferencias incluyen tutoriales y/o sprints que cubren NumPy, en donde puedes aprender cómo contribuir a Numpy o proyectos de código abierto relacionados.
## Ãnete a la comunidad NumPy
Para prosperar, el proyecto NumPy necesita tu experiencia y entusiasmo. ¿No sabes programar? ¡No es un problema! Hay muchas maneras de contribuir a NumPy.
Si te interesa colaborar en NumPy (¡hurra!) te recomendamos que visites nuestra página [Contribuir](/contribute).
No dudes en pasar a saludarnos en uno de nuestros encuentros de la comunidad. Para enterarte del próximo, consulta nuestro calendario de eventos [aquÃ](https://scientific-python.org/calendars/).
|
numpy/numpy.org
|
0b5bdfbdbe5ad30870eeb20494fdb19c263f2101
|
Add translations team (#806)
|
diff --git a/content/en/teams/index.md b/content/en/teams/index.md
index 1baaaa3..f5be9df 100644
--- a/content/en/teams/index.md
+++ b/content/en/teams/index.md
@@ -1,36 +1,40 @@
---
title: NumPy Teams
sidebar: false
---
We are an international team on a mission to support scientific and research
communities worldwide by building quality, open-source software.
[Join us](/contribute)!
### Maintainers
{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
### Docs team
{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
### Web team
{{< grid file="web-team.toml" columns="2 3 4 5" />}}
### Triage team
{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
### Survey team
{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
+### Translations team
+
+{{< grid file="translations-team.toml" columns="2 3 4 5" />}}
+
### Emeritus maintainers
{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# Governance
For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/en/teams/translations-team.toml b/content/en/teams/translations-team.toml
new file mode 100644
index 0000000..d0b025a
--- /dev/null
+++ b/content/en/teams/translations-team.toml
@@ -0,0 +1,99 @@
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/3949932?u=aacac68df60d2cf64c17c7e5aa17adf8b738aa7b&v=4"'
+alt = 'Avatar of Melissa Weber Mendonça'
+{{< /image >}}
+Melissa Weber Mendonça'''
+link = 'https://github.com/melissawm'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of Juan Pablo Duque'
+{{< /image >}}
+Juan Pablo Duque (@juanpabloduqueo)'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of Yeimi'
+{{< /image >}}
+Yeimi (@yeimiyaz)'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of Atsushi Sakai'
+{{< /image >}}
+Atsushi Sakai (@AtsushiSakai)'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of Getúlio Silva'
+{{< /image >}}
+Getúlio Silva (@getuliosilva)'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Oriol Abril-Pla'
+{{< /image >}}
+Oriol Abril-Pla (@OriolAbril)'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of @julio'
+{{< /image >}}
+@julio'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of Ali Faraji'
+{{< /image >}}
+Ali Faraji (@ali)'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of Saeed Foroutan'
+{{< /image >}}
+Saeed Foroutan (@SaeedForoutan)'''
+link = 'https://scientific-python.crowdin.com'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://raw.githubusercontent.com/numpy/numpy.org/refs/heads/main/static/images/logo.svg'
+alt = 'Avatar of @pyjavo'
+{{< /image >}}
+@pyjavo'''
+link = 'https://scientific-python.crowdin.com'
|
numpy/numpy.org
|
7303a797b92d1c4784e7448b30aa1b785276d232
|
Use Python 3.13 on netlify
|
diff --git a/netlify.toml b/netlify.toml
index cb211b3..18d4ef1 100644
--- a/netlify.toml
+++ b/netlify.toml
@@ -1,31 +1,31 @@
# Settings in the [build] context are global and are applied to all contexts
# unless otherwise overridden by more specific contexts.
[build.environment]
- PYTHON_VERSION = "3.8" # netlify currently only support 2.7 and 3.8
+ PYTHON_VERSION = "3.13"
HUGO_VERSION = "0.134.3"
DART_SASS_VERSION = "1.77.5"
DART_SASS_URL = "https://github.com/sass/dart-sass/releases/download/"
[build]
base = "/"
publish = "public"
command = """\
export DART_SASS_TARBALL="dart-sass-${DART_SASS_VERSION}-linux-x64.tar.gz" && \
curl -LJO ${DART_SASS_URL}/${DART_SASS_VERSION}/${DART_SASS_TARBALL} && \
tar -xf ${DART_SASS_TARBALL} && \
rm ${DART_SASS_TARBALL} && \
export PATH=/opt/build/repo/dart-sass:$PATH && \
pip install pyyaml && \
make html \
"""
# Here is another way to define context specific environment variables.
[context.deploy-preview.environment]
NUMPYORG_WITH_TRANSLATIONS = "1"
[[plugins]]
package = "netlify-plugin-checklinks"
[plugins.inputs]
todoPatterns = [" public/pt/user-surveys", " public/ja/user-surveys"]
skipPatterns = ["https://fonts.gstatic.com", "https://fonts.googleapis.com"]
|
numpy/numpy.org
|
e4acc20092f2d6350dedcb461bcb29bb1ce9d3c6
|
New translations news.md (Portuguese, Brazilian)
|
diff --git a/content/pt/news.md b/content/pt/news.md
index cfb217b..3195ef5 100644
--- a/content/pt/news.md
+++ b/content/pt/news.md
@@ -1,322 +1,322 @@
---
title: NotÃcias
sidebar: false
newsHeader: "NumPy versão 1.26.0"
date: 2023-09-16
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
* New functions `matvec` and `vecmat`,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### Lançado o NumPy versão 1.26.0
-_18 de agosto, 2024_ -- NumPy 2.1.0 fornece suporte para Python 3.13 e remove suporte para Python 3.9. Além das habituais correções de erros e suporte a Python atualizado, esta versão ajuda a trazer o NumPy de volta ao ciclo habitual de lançamento após o longo desenvolvimento da versão 2.0. Os destaques desta versão são:
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. Os destaques desta versão são:
- Suporte ao Python 3.12.0.
-- Suporte preliminar para Python 3.13 free threaded.
-- Suporte para array-api 2023.12 standard.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
-As versões 3.10-3.13 do Python são suportadas por esta versão.
+Python versions 3.10-3.13 are supported by this release.
-### NumPy 2.0.0 lançada
+### NumPy 2.0.0 released
-_16 de junho, 2024_ -- NumPy 2.0.0 é a primeira grande versão desde 2006. à o resultado de 11 meses de desenvolvimento desde a última feature release e é o trabalho de 212 contribuidores espalhado por 1078 pull requests. Esta versão contém um grande número de novas funcionalidades interessantes, bem como mudanças nas APIs Python e C. As mudanças incluem quebras de compatibilidade que não puderam acontecer em uma versão regular menor - incluindo uma quebra na ABI, mudanças nas regras de promoção de tipo e mudanças na API que poderiam não estar emitindo alertas de fim de suporte nas versões 1.26.x. Documentos-chave, relacionados a como se adaptar às mudanças em NumPy 2.0, incluem:
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
-- O [guia de migração NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- As [notas de lançamento da versão 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- Issue de anúncio para atualizações de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
-A postagem de blog ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) conta um pouco da história sobre como esta versão foi construÃda.
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
-### Data de lançamento da NumPy 2.0: 16 de junho
+### NumPy 2.0 release date: June 16
-_23 de maio, 2024_ -- Estamos animados em anunciar que planejamos lançar a NumPy 2.0 em 16 de junho de 2024. Este lançamento está em desenvolvimento há mais de um ano, e é o primeiro grande lançamento desde 2006. Importante, além de muitas funcionalidades novas e melhoria de desempenho, esta versão contém **quebras de compatibilidade** com a ABI e com as APIs Python e C. à provável que os pacotes downstream e o código de usuário final precisem ser adaptados - se você puder, por favor, verifique se o seu código funciona com NumPy `2.0.0rc2`. **Por favor, veja o seguinte para mais detalhes:**
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
-- O [guia de migração NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- As [notas de lançamento da versão 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- Issue de anúncio para atualizações de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### Lançado o NumPy versão 1.26.0
_19 de dez, 2023_ -- O NumFOCUS se juntou ao PyCharm durante sua campanha de final de ano para oferecer 30% de desconto em licenças de PyCharm para novos usuários. Todas as receitas do primeiro ano das compras do PyCharm a partir de agora até 23 de dezembro, 2023 irão diretamente para os programas NumFOCUS.
Use a URL única que permitirá rastrear as compras https://lp.jetbrains.com/support-data-science/ ou um código de cupom ISUPPORTDATASCIENCEÂ
### NumPy versão 1.24.0
-_17 de junho, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) está disponÃvel agora. Os destaques desta versão são:
+_16 de setembro de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) está disponÃvel. Os destaques desta versão são:
* Suport ao Python 3.12.0.
* Compatibilidade com Cython 3.0.0.
* Utilização do sistema Meson para compilação
* Suport a SIMD atualizado
* Melhorias para f2py, suporte a meson e bind(x)
* Suporte à versão mais recente da biblioteca Accelerate BLAS/LAPACK
A versão 1.26.0 é uma continuação da série de versões 1.25.x que marcam a transição para o sistema de compilação Meson e oferecem suporte preliminar para o Cython 3.0.0. Um total de 20 pessoas contribuÃram para este lançamento e 59 pull requests foram incorporadas.
As versões do Python suportadas por esta versão são 3.9-3.12.
### numpy.org agora está disponÃvel em japonês e português
_2 de agosto de 2023_ -- numpy.org agora está disponÃvel em 2 idiomas adicionais: japonês e português. Isto não seria possÃvel sem nossos voluntários dedicados:
_Português:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japonês:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
O trabalho na infraestrutura de traduções é financiado pela CZI.
No futuro, adorarÃamos traduzir o site para mais lÃnguas. Se você quiser ajudar, por favor entre em contato com o time de traduções do NumPy no Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Procure pelo canal de #translations.) (Procure pelo canal #translations) Também estamos organizando um time de tradutores que serão responsáveis por trabalhar na localização da documentação e conteúdo educacional para o ecossistema Scientific Python. Se esse trabalho te interessa, junte-se a nós no Discord do projeto Scientific Python: https://discord.gg/khWtqY6RKr. (Procure pelo canal #translation)
### NumPy versão 1.22.0
-_18 de dezembro de 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
+_17 de junho, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) está disponÃvel agora. Os destaques desta versão são:
* Suporte para MUSL, agora existem rodas MUSL.
* Suporte para o compilador Fujitsu C/C++.
* Arrays de objetos agora são suportados em einsum.
* Suporte para a multiplicação da matriz inplace (`@=`).
A versão 1.25.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade e execução, e na documentação. Também tem havido trabalho preparatório para a futura versão 2.0.0, resultando em um grande número de depreciações novas e expiradas.
Um total de 148 pessoas contribuÃram para este lançamento e 530 pull requests foram incorporadas.
As versões do Python suportadas por esta versão são 3.9-3.11.
### Promovendo uma cultura inclusiva: Chamada de participação
_10 de maio de 2023_ -- Promovendo uma Cultura Inclusiva: Chamada de Participação
Como podemos ser melhores quando se trata de diversidade e de inclusão? Leia o relatório e descubra como colaborar [aqui](https://contributor-experience.org/docs/posts/dei-report/).
### Transição de liderança do time de documentação do NumPy
_6 de janeiro de 2023_ â- Mukulika Pahari e Ross Barnowski são nomeados como lideres do time de documentação do NumPy, substituindo Melissa Mendonça. Agradecemos a Melissa por todas suas contribuições para a documentação oficial do NumPy e materiais educacionais, e Mukulika e Ross por aceitarem o desafio.
### NumPy versão 1.23.0
-_31 de dezembro de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
+_18 de dezembro de 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
* Novas palavras-chave "dtype" e "casting" para funções que atuam com stacking.
* Novas funcionalidades e correções do F2PY.
* Muitas depreciações novas, confira.
* Muitas depreciações expiradas.
A versão 1.24.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade e execução, e na documentação. Há um grande número de depreciações novas e expiradas devido a mudanças na promoção de dtypes e limpezas no código. à o trabalho de 177 contribuidores espalhados em 444 pull requests. As versões suportadas do Python são 3.8-3.11.
### NumPy versão 1.19.0
-_22 de junho de 2022_ -- O [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) está disponÃvel. Os destaques desta versão são:
+_31 de dezembro de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
* Implementação de `loadtxt` em C, melhorando muito seu desempenho.
* Exposição do DLPack ao nÃvel de Python para facilitar a troca de dados.
* Mudanças na promoção e comparações de dtypes estruturados.
* Melhorias no f2py.
A versão 1.23.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade de execução, na documentação e na expiração de depreciações. à o trabalho de 151 contribuidores espalhados em 494 pull requests. As versões do Python suportadas por esta versão 3.8-3.10. Python 3.11 será suportado quando chegar na etapa rc.
### Pesquisa NumFOCUS DEI: chamada para participação
_13 de abril de 2022_ -- O NumPy está trabalhando com a [NumFOCUS](http://numfocus.org/) em um [projeto de pesquisa](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) financiado pela [Gordon & Betty Moore Foundation](https://www.moore.org/) para entender as barreiras à participação que contribuidores, especialmente aqueles de grupos historicamente subrepresentados, enfrentam na comunidade open source. A equipe da pesquisa gostaria de falar com novos colaboradores, desenvolvedores e mantenedores, e aqueles que contribuÃram no passado sobre suas experiências contribuindo para o NumPy.
**Quer compartilhar suas experiências?**
Por favor, preencha este breve formulário: ["Participant Interest form"](https://numfocus.typeform.com/to/WBWVJSqe) que contém informações adicionais sobre os objetivos da pesquisa, privacidade e considerações de confidencialidade. Sua participação será valiosa para o crescimento e sustentabilidade de comunidades de software open source diversas e inclusivas. Os participantes aceitos participarão de uma entrevista de 30 minutos com um membro da equipe de pesquisa.
### NumPy versão 1.20.0
_23 de junho de 2021_ -- O [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) está disponÃvel. Os destaques desta versão são:
* Anotações de tipo do namespace principal estão praticamente completas. Ainda há trabalho a se fazer no upstream, mas a maior parte do trabalho está feita. Esta é provavelmente a melhoria mais visÃvel para os usuários nesta versão.
* Uma versão preliminar da proposta do [array API Standard](https://data-apis.org/array-api/latest/) está disponÃvel (veja [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). Este é um passo na criação de uma coleção padrão de funções que podem ser compartilhadas entre bibliotecas como CuPy e JAX.
* NumPy agora tem um backend de DLPack. DLPack fornece um formato comum de compartilhamento para dados de arrays (tensores).
* Novos métodos para `quantile`, `percentile`, e funções relacionadas. Os novos métodos fornecem um conjunto completo dos métodos comumente encontrados na literatura.
* As funções universais foram refatoradas para implementar a maior parte da [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). Isso também desbloqueia a capacidade de experimentar a futura API DType.
* Um novo alocador de memória configurável para uso pelos projetos downstream.
NumPy 1.22.0 é uma versão importante com o trabalho de 153 contribuidores espalhados por mais de 609 pull requests. As versões do Python suportadas por esta versão são 3.8-3.10.
### Promovendo uma cultura inclusiva no ecossistema cientÃfico de Python
_31 de agosto de 2021_ -- Estamos felizes em anunciar que a Chan Zuckerberg Initiative [vai financiar](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) um projeto para apoiar a integração, inclusão, e retenção de pessoas de grupos marginalizados historicamente em projetos cientÃficos em Python, e para estruturalmente melhorar a dinâmica das comunidades para o NumPy, SciPy, Matplotlib, e Pandas.
Como parte do programa [CZI's Essential Open Source Software for Science](https://chanzuckerberg.com/eoss/), esse [financiamento adicional para diversidade e inclusão](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) vai apoiar a criação de posições de Contributor Experience Lead para identificar, documentar e implementar práticas para fomentar comunidades open source inclusivas. Este projeto será liderado por Melissa Mendonça (NumPy), com apoio adicional de Ralf Gommers (NumPy, SciPy), Hannah Aizenman e Thomas Caswell (Matplotlib), Matt Haberland (SciPy), e Joris Van den Bossche (Pandas).
Esse é um projeto ambicioso que visa descobrir e implementar atividades que devem estruturalmente melhorar a dinâmica da comunidade de nossos projetos. Ao criar essas novas funções entre projetos, esperamos introduzir um novo modelo de colaboração à s comunidades de Python cientÃfico, permitir que o trabalho de construção da comunidade no ecossistema seja feito de forma mais eficiente e com maiores resultados. Também esperamos desenvolver uma imagem mais clara do que funciona e o que não funciona em nossos projetos para engajar e reter novos colaboradores, especialmente de grupos historicamente sub-representados. Finalmente, planejamos produzir relatórios detalhados sobre as ações executadas, explicando como eles afetaram nossos projetos em termos de representação e interação com nossas comunidades.
O projeto de dois anos deverá começar em novembro de 2021 e estamos animados para ver os resultados deste trabalho! [Você pode ler a proposta completa aqui](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### Pesquisa NumPy 2021
_12 de julho de 2021_ -- Nós do NumPy acreditamos no poder da nossa comunidade. 1,236 usuários do NumPy de 75 paÃses participaram da nossa primeira pesquisa ano passado. Os resultados da pesquisa nos ajudaram a compreender muito bem o que devemos fazer pelos 12 meses seguintes.
Chegou a hora de fazer outra pesquisa e estamos contando com você novamente. Vai levar cerca de 15 minutos do seu tempo. Além de Inglês, o questionário de pesquisa está disponÃvel em 8 idiomas adicionais: Bangla, Francês, Hindi, Japonês, Mandarim, Português, Russo e Espanhol.
Siga o link para começar: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### NumPy versão 1.19.0
-_16 de setembro de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) está disponÃvel. Os destaques desta versão são:
+_22 de junho de 2022_ -- O [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) está disponÃvel. Os destaques desta versão são:
- a continuação do trabalho com SIMD para suportar mais funções e plataformas,
- trabalho inicial na infraestrutura e conversão de novos dtypes,
- wheels universal2 para Python 3.8 e Python 3.9 no Mac,
- melhorias na documentação,
- melhorias nas anotações de tipos,
- novo bitgenerator `PCG64DXSM` para números aleatórios.
Esta versão do NumPy é o resultado de 581 pull requests aceitos, a partir das contribuições de 175 pessoas. As versões do Python suportadas por esta versão são 3.7-3.9; o suporte para o Python 3.10 será adicionado após o lançamento do Python 3.10.
### Resultados da pesquisa NumPy 2020
_22 de junho de 2021_ -- Em 2020, o time de pesquisas NumPy, em parceria com estudantes e professores da Universidade de Michigan e da Universidade de Maryland, realizou a primeira pesquisa oficial sobre a comunidade NumPy. Encontre os resultados da pesquisa aqui: https://numpy.org/user-survey-2020/.
### NumPy versão 1.20.0
_30 de janeiro de 2021_ -- O [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) está disponÃvel. Este é o maior lançamento do NumPy até hoje, graças a mais de 180 colaboradores. As duas novidades mais emocionantes são:
- Anotações de tipos para grandes partes do NumPy, e um novo submódulo `numpy.typing` contendo aliases `ArrayLike` e `DtypeLike` que usuários e bibliotecas downstream podem usar quando quiserem adicionar anotações de tipos em seu próprio código.
- Otimizações de compilação SIMD multi-plataforma, com suporte para instruções x86 (SSE, AVX), ARM64 (Neon) e PowerPC (VSX). Isso rendeu melhorias significativas de desempenho para muitas funções (exemplos: [sen/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversidade no projeto NumPy
_20 de setembro de 2020_ -- Escrevemos uma [declaração sobre o estado da diversidade e inclusão no projeto NumPy e discussões em redes sociais sobre isso.](/diversity_sep2020).
### Primeiro artigo oficial do NumPy publicado na Nature!
_16 de setembro de 2020_ -- Temos o prazer de anunciar a publicação do [primeiro artigo oficial do NumPy](https://www.nature.com/articles/s41586-020-2649-2) como um artigo de revisão na Nature. Isso ocorre 14 anos após o lançamento do NumPy 1.0. O artigo abrange aplicações e conceitos fundamentais da programação de matrizes, o rico ecossistema cientÃfico de Python construÃdo em cima do NumPy, e os protocolos de array recentemente adicionados para facilitar a interoperabilidade com bibliotecas externas para computação com matrizes e tensores, como CuPy, Dask e JAX.
### O Python 3.9 está chegando, quando o NumPy vai liberar wheels binárias?
_14 de setembro de 2020_ -- Python 3.9 será lançado em algumas semanas. Se você for quiser usar imediatamente a nova versão do Python, você pode ficar desapontado ao descobrir que o NumPy (e outros pacotes binários como SciPy) não terão wheels no dia do lançamento. à um grande esforço adaptar a infraestrutura de compilação a uma nova versão de Python e normalmente leva algumas semanas para que os pacotes apareçam no PyPI e no conda-forge. Em preparação para este evento, por favor, certifique-se de
- atualizar seu `pip` para a versão 20.1 pelo menos para suportar `manylinux2010` e `manylinux2014`
- usar [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) ou `--only-binary=:all:` para impedir `pip` de tentar compilar a partir do código fonte.
### NumPy versão 1.18.0
_10 de setembro de 2020_ -- O [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) está disponÃvel. Essa última versão da série 1.19 corrige vários bugs, inclui preparações para o lançamento [do Cython 3](http://docs.cython.org/en/latest/src/changes.html) e fixa o setuptools para que o distutils continue funcionando enquanto modificações upstream estão sendo feitas. As wheels para aarch64 são compiladas com manylinux2014 mais recente que conserta um problema com distribuições linux diferentes.
### A primeira pesquisa NumPy está aqui!
_2 de julho de 2020_ -- Esta pesquisa tem como objetivo guiar e definir prioridades para tomada de decisões sobre o desenvolvimento do NumPy como software e como comunidade. A pesquisa está disponÃvel em mais 8 idiomas além do inglês: Bangla, Hindi, Japonês, Mandarim, Português, Russo, Espanhol e Francês.
Ajude-nos a melhorar o NumPy respondendo à pesquisa [aqui](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### O NumPy tem um novo logo!
_24 de junho de 2020_ -- NumPy agora tem um novo logo:
<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
O logotipo é uma versão moderna do antigo, com um design mais limpo. Obrigado à Isabela Presedo-Floyd por projetar o novo logotipo, bem como ao Travis Vaught pelo o logotipo antigo que nos serviu bem durante mais de 15 anos.
### NumPy versão 1.19.0
_20 de junho de 2020_ -- O NumPy 1.19.0 está disponÃvel. Esta é a primeira versão sem suporte ao Python 2, portanto foi uma "versão de limpeza". A versão mÃnima de Python suportada agora é Python 3.6. Uma caracterÃstica nova importante é que a infraestrutura de geração de números aleatórios que foi introduzida na NumPy 1.17.0 agora está acessÃvel a partir do Cython.
### Aceitação no programa Season of Docs
_11 de maio de 2020_ -- O NumPy foi aceito como uma das organizações mentoras do programa Google Season of Docs. Estamos animados com a oportunidade de trabalhar com um *technical writer* para melhorar a documentação do NumPy mais uma vez! Para mais detalhes, consulte [o site oficial do programa Season of Docs](https://developers.google.com/season-of-docs/) e nossa [página de ideias](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy versão 1.19.2
_22 de dezembro de 2019_ -- O NumPy 1.18.0 está disponÃvel. Após as principais mudanças em 1.17.0, esta é uma versão de consolidação. à a última versão menor que suportará Python 3.5. Destaques dessa versão incluem a adição de uma infraestrutura básica para permitir o link com as bibliotecas BLAS e LAPACK em 64 bits durante a compilação, e uma nova C-API para `numpy.random`.
Por favor, veja as [notas de lançamento](https://github.com/numpy/numpy/releases/tag/v1.18.0) para mais detalhes.
### O NumPy recebe financiamento da Chan Zuckerberg Initiative
_15 de novembro de 2019_ -- Estamos felizes em anunciar que o NumPy e a OpenBLAS, uma das dependências-chave do NumPy, receberam um auxÃlio conjunto de $195,000 da Chan Zuckerberg Initiative através do seu programa [Essential Open Source Software for Science](https://chanzuckerberg.com/eoss/) que apoia a manutenção, crescimento, desenvolvimento e envolvimento da comunidade em ferramentas de código aberto fundamentais para a ciência.
Este auxÃlio será usado para aumentar os esforços de melhoria da documentação do NumPy, reformulação do site, desenvolvimento comunitário para melhor servir a nossa grande, e rapidamente crescente, base de usuários, assim como para garantir a sustentabilidade do projeto a longo prazo. Enquanto a equipe OpenBLAS se concentrará em tratar de um conjunto de questões técnicas fundamentais, em particular relacionadas a *thread-safety*, AVX-512, e *thread-local storage* (TLS), bem como melhorias algorÃtmicas na ReLAPACK (Recursive LAPACK) da qual a OpenBLAS depende.
Mais detalhes sobre nossas propostas e resultados esperados podem ser encontrados na [proposta completa de concessão de auxÃlio](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). O trabalho está agendado para começar no dia 1 de dezembro de 2019 e continuar pelos próximos 12 meses.
<a name="releases"></a>
## Lançamentos
Aqui está uma lista de versões do NumPy, com links para notas de lançamento. Bugfix lança (apenas o `z` muda no `x.y.` número da versão) não tem novos recursos; versões menores (o `y` aumenta) sim.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
-- NumPy 2.1.2 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 de outubro de 2024_.
-- NumPy 2.1.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 de setembro de 2024_.
-- NumPy 2.0.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 de agosto de 2024_.
-- NumPy 2.1.0 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 de agosto de 2024_.
-- NumPy 2.0.1 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 de julho de 2024_.
-- NumPy 2.0.0 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 de junho de 2024_.
-- NumPy 1.26.4 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 de fevereiro de 2024_.
-- NumPy 1.26.3 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 de janeiro de 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 de novembro de 2023_.
- NumPy 1.26.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 de outubro de 2023_.
- NumPy 1.26.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 de setembro de 2023_.
- NumPy 1.25.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 de julho de 2023_.
- NumPy 1.25.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 de julho de 2023_.
- NumPy 1.24.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 de junho de 2023_.
- NumPy 1.25.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 de junho de 2023_.
- NumPy 1.24.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 de abril de 2023_.
- NumPy 1.24.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 de fevereiro de 2023_.
- NumPy 1.24.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 de dezembro de 2022_.
- NumPy 1.24.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 de dezembro de 2022_.
- NumPy 1.23.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 de novembro de 2022_.
- NumPy 1.23.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 de outubro de 2022_.
- NumPy 1.23.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 de setembro de 2022_.
- NumPy 1.23.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 de agosto de 2022_.
- NumPy 1.23.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 de julho de 2022_.
- NumPy 1.23.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 de junho de 2022_.
- NumPy 1.22.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 de maio de 2022_.
- NumPy 1.21.6 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 de abril de 2022_.
- NumPy 1.22.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 de março de 2022_.
- NumPy 1.22.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 de fevereiro de 2022_.
- NumPy 1.22.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 de janeiro de 2022_.
- NumPy 1.22.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 de dezembro de 2021_.
- NumPy 1.21.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 de dezembro de 2021_.
- NumPy 1.21.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 de junho de 2021_.
- NumPy 1.20.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 de maio de 2021_.
- NumPy 1.20.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 de janeiro de 2021_.
- NumPy 1.19.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 de janeiro de 2021_.
- NumPy 1.19.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 de junho de 2020_.
- NumPy 1.18.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 de maio de 2020_.
- NumPy 1.17.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 de janeiro de 2020_.
- NumPy 1.18.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 de dezembro de 2019_.
- NumPy 1.17.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 de julho de 2019_.
- NumPy 1.16.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 de janeiro de 2019_.
- NumPy 1.15.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 de julho de 2018_.
- NumPy 1.14.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 de janeiro de 2018_.
|
numpy/numpy.org
|
065094504da17eaa92b62daa6a99d693fcffe924
|
New translations news.md (Chinese Simplified)
|
diff --git a/content/zh/news.md b/content/zh/news.md
index 8f47d8b..7a7aba2 100644
--- a/content/zh/news.md
+++ b/content/zh/news.md
@@ -1,322 +1,322 @@
---
-title: 社åºå¿«è®¯
+title: News
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-8
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
* New functions `matvec` and `vecmat`,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
-_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
-_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (`@=`).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
-_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
-_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
* Implementation of `loadtxt` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
-### NumPy 1.22.0 åå¸
+### Numpy 1.22.0 release
-_2021å¹´6æ31æ¥_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) æ£å¼åå¸ã æ¤æ¬¡åå¸çéç¹æ¯ï¼
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
-* 主å½å空é´ç注éç±»ååºæ¬ä¸å·²å®æã 䏿¸¸æ¯ä¸ªç§»å¨ç®æ ï¼æä»¥å¾å¯è½ä¼æè¿ä¸æ¥çæ¹è¿ï¼ä½æ¯ä¸»è¦ç 项工ä½å·²ç»å®æã è¿å¯è½æ¯æ¬æ¬¡åå¸ä¸ç¨æ·æå¯è§çå¢å¼ºåè½ã
-* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). è¿æ¯å建ä¸ä¸ªå¯ä»¥å¨ CuPy å JAX çåºä¸ä½¿ç¨ç彿°çæ åæ¶èçä¸ä¸ªæ¥éª¤ã
-* NumPy ç°å¨æä¸ä¸ª DLPack å端ã DLPackæä¾äºä¸ä¸ªæ°ç» (tensor) æ°æ®çéç¨äº¤æ¢æ ¼å¼ã
-* `éå`, `ç¾åæ¯`以åç¸å
³å½æ°çæ°æ¹æ³ã æ°ç æ¹æ³æä¾äºä¸æ´å¥å¸¸è§äº æç®ä¸çæ¹æ³ã
-* éç¨å½æ°å·²è¢«éæ°èèï¼ä»¥å®ç°å¤§å¤æ°ç [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html) è¿ä¹ä¼è§£éå®éªæªæ¥DType APIçè½åã
-* ä¸ä¸ªæ°çå¯é
ç½®å
ååé
å¨ï¼ä¾ä¸æ¸¸é¡¹ç®ä½¿ç¨ã
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
-NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. æ¤çæ¬æ¯æç Python çæ¬æ¯ 3.8-3.10ã
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
-### ä¿è¿Pythonç§å¦çæç³»ç»ä¸çå
å®¹æ§æå
+### Advancing an inclusive culture in the scientific Python ecosystem
-_8æ31æ¥ï¼ 2021_ â æä»¬å¾é«å
´å®£å¸Chan Zuckerbergå¡è®® [æäºèµ 款](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) ä»¥æ¯æåå²ä¸è¢«è¾¹ç¼å群ä½ç人å¨ç§å¦Python项ç®ä¸çèå
¥ãå
容åçåï¼å¹¶ä¸ºNumPyãSciPyãMatplotlibåPandasç社åºå¨æè¿è¡ç»ææ§æ¹åã
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
-ä½ä¸º [CZI åºæ¬å¼æ¾æºç ç§å¦ç¨åº](https://chanzuckerberg.com/eoss/)çä¸é¨åï¼ è¿ ä¸ª[夿 ·æ§ & å
容æ§è¡¥å
èµ æ¬¾](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) å°æ¯æå建ä¸é¨çè´è´£äººèä½ï¼ä»¥ç¡®å®ãè®°å½å宿½ä¿è¿å
容æ§å¼æºç¤¾åºçå®è·µã è¿ä¸ªé¡¹ç®å°ç±Melissa Mendoncstima (NumPy) é¢å¯¼ï¼ç±Ralf Gommers (NumPy, SciPy) Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas)ï¼ æä¾ é¢å¤çè¾
导åæå¯¼
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
-è¿æ¯ä¸ä¸ªéå¿ååç项ç®ï¼æ¨å¨åç°åæ§è¡ åºè¯¥ä»ç»æä¸æ¹åæä»¬é¡¹ç®ç社åºå¨æçæ´»å¨ã éè¿ å»ºç«è¿äºæ°ç跨项ç®è§è²ï¼æä»¬å¸æå¨Scientific Python社åºå¼è¿ä¸ä¸ªæ°ç å使¨¡åã 使çæç³»ç»ä¸ç 社åºå»ºè®¾å·¥ä½è½å¤æ´ææå°å¼å±ï¼ å徿´å¤§çææã æä»¬è¿å¸æå¨é¡¹ç®ä¸äºè§£ä»ä¹ææï¼ä»ä¹æ æï¼ä»¥å¸å¼åç使¥èªåå²ä¸æªè¢«ä»£è¡¨ç群ä½çæ°è´¡ç®è
ï¼å»ºç«æ´æ¸
æ°ç认ç¥ã æåï¼æä»¬è®¡åå¶ä½è¯¦ç»çæ¥åï¼è¯´ææä»¬éåçæªæ½å¦ä½å¨ä»£è¡¨æ§åä¸ç¤¾åºäºå¨æ¹é¢å¯¹æä»¬ç项ç®äº§çå½±åã
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
-è¿ä¸ªä¸ºæä¸¤å¹´ç项ç®é¢è®¡å°äº2021å¹´11æå¼å§ï¼æä»¬å¾æå¾
çå°è¿é¡¹å·¥ä½çææ! [æ¨å¯ä»¥å¨è¿éé
è¯»å®æ´çææ¡](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063)ã
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
-### 2021 Numpyè°æ¥
+### 2021 NumPy survey
-_2021å¹´7æ12æ¥_ -- æä»¬ç¸ä¿¡NumPy社åºçåéã æ¥èª75个å½å®¶ç1236 åç¨æ·åå äºæä»¬å»å¹´ç馿¬¡è°æ¥ã è°æ¥ç»æä½¿æä»¬å¯¹ä»å12个æåºè¯¥é䏿³¨æçé®é¢æäºå¾å¥½çäºè§£ã
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
-ç°å¨æ¯æ¶åè¿è¡å¦ä¸æ¬¡è°æ¥äºï¼æä»¬å°ååº¦å°æ±æ¨çåä½ã è¿ä»½è°æ¥å°èè´¹æ¨å¤§çº¦15åéçæ¶é´ã é¤è±æå¤ï¼è°æ¥é®å·è¿æä¾å¦å¤8ç§è¯æï¼åå æè¯ãæ³è¯ãå°å°è¯ãæ¥è¯ãæ®éè¯ãè¡èçè¯ãä¿è¯å西ççè¯ã
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
-ç¹å»é¾æ¥å¼å§ï¼https://berkeley.qualtrics.com/jfe/form/SV_aOONjgcBXDSl4qã
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
-### NumPy 1.21.0 åå¸
+### Numpy 1.21.0 release
-_2021å¹´6æ23æ¥_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) æ£å¼åå¸ã æ¤æ¬¡åå¸çéç¹æ¯ï¼
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
-- ç»§ç»å¼å±SIMDå·¥ä½ï¼æ¶µçæ´å¤çåè½åå¹³å°
-- æ°dtypeçåºç¡ååæè½¬æ¢åæ¥å·¥ä½
-- éç¨äºMacå¹³å°çPython 3.8åPython 3.9çuniversal2 wheels
-- æ¹è¿ææ¡£
-- æ¹è¿æ³¨é
-- æ°ç `PCG64DXSM` ä½å
çæå¨ï¼ç¨äºçæéæºæ°å
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
-è¿ä¸ªNumPyçæ¬å
å«175人æè´¡ç®ç581个å并请æ±ã æ¤åå¸çæ¬æ¯æPython 3.7-3.9ï¼å°å¨Python 3.10åå¸åæ·»å Python 3.10æ¯æã
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
-### 2020 Numpyè°ç ç»æç»æ
+### 2020 NumPy survey results
-_2021å¹´6æ22æ¥_ -- å¨2020å¹´, NumPyè°ç å°ç»ä¸å¯ææ ¹å¤§å¦å马éå
°å¤§å¦çå¦çåæèåå·¥åä½ï¼è¿è¡äºç¬¬ä¸æ¬¡å®æ¹NumPy社åºè°æ¥ã å¨è¿éå¯ä»¥æ¥çè°ç ç»æï¼https://numpy.org/user-survey-2020/ã
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
-### NumPy 1.20.0 åå¸
+### Numpy 1.20.0 release
-_2021å¹´1æ30æ¥_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) æ£å¼åå¸ã è¿æ¯ NumPyå°ç®åä¸ºæ¢æå¤§ç䏿¬¡çæ¬æ´æ°ï¼æè°¢180+ä½è´¡ç®è
ã æä»¤äººæ¯å¥ç两个ç¹ç¹æ¯ï¼
-- 为大é¨åNumpy代ç åäºç±»å注解ï¼ä¸¦æ·»å äºä¸ä¸ªå
¨æ°ç`numpy.typing` 忍¡åï¼å
¶ä¸å
å« `ArrayLike` å `DtypeLike`å«å ï¼ä½¿å¾ç¨æ·å䏿¸¸ä¾èµåºå¯ä»¥ä¸ºèªå·±çä»£ç æ·»å ç±»åæ³¨è§£ã
-- 为å¤ä¸ªæ¶æè¿è¡SIMDç¼è¯ä¼åï¼å
¶æ¯æX86(SSEãAVX)ãARM64(Neon) åPowerPC(VSX) æä»¤éã 大å¹
æé«è®¸å¤å½æ°çæ§è½(ä¾å¦ï¼ [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194))ã
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
-### NumPy项ç®ç夿 ·æ§
+### Diversity in the NumPy project
-_2020å¹´9æ20æ¥_ -- æä»¬å°±NumPy项ç®ç社交åªä½ã夿 ·æ§åå
容æ§çç°ç¶ä»¥åç¸å
³ç讨论æ°åäºä¸ä»½[声æ](/diversity_sep2020)ã
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
-### NumPy宿¹ç¬¬ä¸æ¬¡å¨Natureå表论æï¼
+### First official NumPy paper published in Nature!
-_2020å¹´9æ16æ¥_ - æä»¬é«å
´å°å®£å¸ [Numpyç第ä¸ç¯å®æ¹è®ºæ](https://www.nature.com/articles/s41586-020-2649-2)åç»å¨Natureçè¯è®ºæç« ã è¿ç¦»NumPy 1.0åå¸å·²ç»è¿å»äºæ´æ´14å¹´ã è¿ç¯è®ºææ¶µçäºæ°ç»ç¼ç¨çåºç¨ååºæ¬æ¦å¿µï¼åºäºNumPyæå»ºç丰å¯ç§å¦Pythonçæç³»ç»ï¼ä»¥åæè¿æ·»å çæ°ç»åè®®ï¼ä»¥ä¿è¿ä¸å¤é¨æ°ç»åå¼ éåºï¼å¦CuPyãDaskåJAXï¼çäºæä½æ§ã
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
-### Python 3.9 å³å°æ¥ä¸´ï¼æ°çæ¬çNumPy å°å¨ä½æ¶åå¸ï¼
+### Python 3.9 is coming, when will NumPy release binary wheels?
-_2020å¹´9æ14æ¥_ -- Python 3.9 å°å¨å å¨ååå¸ã å¦ææ¨æ¯è¿ä¸ªPythonçæ¬çæ©æéç¨è
ï¼ æ¨å¯è½ä¼å¤±æçåç°NumPy(以åå
¶ä»äºè¿å¶è½¯ä»¶å
ï¼å¦SciPy) å¨Pythonæ°çåå¸å½å¤©è¿ä¸ä¼åå¸ç¸åºççæ¬ã æå»ºå
¼å®¹æ°ç Python çæ¬çåºç¡è®¾æ½éè¦ä»åºé大åªåï¼é常éè¦å 卿¶é´æè½è®©æ°çæ¬åºç°å¨ PyPI å conda-forge ä¸ã 为äºè¿æ¬¡çæ¬å级å¾ä»¥é¡ºå©è¿è¡ï¼è¯·ç¡®ä¿ï¼
-- å°æ¨ç `pip` åçº§å° 20.1 çæ¬ï¼è³å°è¦æ¯æ`manylinux2010` å `manylinux2014`
-- ä½¿ç¨ [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) æ `--only-binary=:all:` é项æ¥é²æ¢ `pip` å°è¯ä»æºç æå»ºã
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
-### NumPy 1.19.2 åå¸
+### Numpy 1.19.2 release
-_2020å¹´9æ10æ¥_ -- [NumPy 19.2.0](https://numpy.org/devdocs/release/1.19.2-notes.html) æ£å¼åå¸ã è¿ä¸ªææ°çæ¬ä¿®å¤äº1.19 ç³»åä¸çå ä¸ªæ¼æ´ï¼ä¸º [å³å°åå¸çCython3.x](http://docs.cython.org/en/latest/src/changes.html) ååå¤ï¼ä¸¦åºå®è®¾ç½®å·¥å
·ä»¥å¨ä¸æ¸¸ä¿®æ¹æ£å¨è¿è¡æ¶ä¿æ distutils å·¥ä½ã Aarch64æ¶æçå®è£
å
æ¯ç¨ææ°ç manylinux2014 çæ¬æå»ºçï¼å®ä¿®å¤äº linux åè¡çä¹é´ä½¿ç¨ä¸å大å°å
å页çé®é¢ã
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
-### 馿¬¡NumPyè°ç å³å°å¼å§ï¼
+### The inaugural NumPy survey is live!
-_Jul 2, 2020_ - æ¬æ¬¡è°æ¥æ¨å¨æå¯¼å¹¶ç¡®å® å
³äºå¼åNumPy ä½ä¸ºè½¯ä»¶å社åºçå³çéç¹ã é¤è±æå¤ï¼è°æ¥è¿æä¾äºå¦å¤8ç§è¯è¨ççæ¬ï¼åå æè¯ãå°å°è¯ãæ¥è¯ãæ®éè¯ãè¡èçè¯ãä¿è¯ã西ççè¯åæ³è¯ã
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
-è¯·å¸®å©æä»¬è®© NumPy å徿´å¥½ï¼å¨[è¿é](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl)åä¸è°æ¥ã
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
-### NumPy ææ°æ å¿äº!
+### NumPy has a new logo!
-_2020å¹´7æ24æ¥_ -- NumPy ç°å¨æä¸ä¸ªæ°çæ å¿ï¼
+_Jun 24, 2020_ -- NumPy now has a new logo:
-<img src="/images/logos/numpy_logo.svg" alt="NumPy æ å¿" title="æ°ç NumPy æ å¿" width=300>
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
-è¿ä¸ªæ å¿æ¯å¯¹æ§æ å¿çç°ä»£åæ¼ç»ï¼éç¨æ´å ç®æ´çè®¾è®¡ã æè°¢Isabela Presedo-Florydçè®¾è®¡æ¹æ¡ï¼ åæ¶æè°¢Travis Vaughè®¾è®¡çæ§å¾æ 为æä»¬æå¡äº15年以ä¸ã
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
-### NumPy 1.19.0 åå¸
+### NumPy 1.19.0 release
-_2020å¹´6æ20æ¥_ -- NumPy 1.19.0 æ£å¼åå¸ã è¿æ¯ç¬¬ä¸ä¸ªä¸æ¯æPython 2ççæ¬ï¼å æ¤å®æ¯ä¸ä¸ªâæ¸
ççæ¬âã ç®åæ¯æçæä½Python çæ¬æ¯ Python 3.6ã æ¬çæ¬æ¥æä¸ä¸ªéè¦çæ°ç¹æ§ï¼NumPy 1.17.0å¼è¿çéæºæ°åçæåºç¡æ¨¡åç°å¨å¯ä»¥éè¿Cython访é®ã
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
-### ææ¡£æ´æ¹æ¶æ®µ
+### Season of Docs acceptance
-_2020å¹´5æ11æ¥_ -- NumPy å·²æä¸ºGoogle Season ææ¡£é¡¹ç®ä¹ä¸ã æä»¬å¾é«å
´çå°ææºä¼åææ¯åä½è
ä¸èµ·å次æ¹è¿NumPyçææ¯ææ¡£ï¼ æ´å¤è¯¦æ
ï¼è¯·åè [ææ¡£æ´æ¹æ¶æ®µå®æ¹ç½ç«](https://developers.google.com/season-of-docs/) åæä»¬ç [æè§é¡µé¢](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas)ã
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
-### NumPy 1.18.0 åå¸
+### NumPy 1.18.0 release
-_2019å¹´12æ22æ¥_ -- NumPy 1.18.0 æ£å¼åå¸ã å¨1.17.0åçé大åååï¼è¿æ¯ä¸ä¸ªåå¹¶çæ¬ã è¿æ¯æåä¸ä¸ªæ¯æ Python 3.5çå°çæ¬ã è¯¥çæ¬çéè¦æ´æ°å
æ¬ä¸¤ä¸ªï¼æ·»å äºä¸64ä½ BLAS å LAPACK åºæå
³çåºå±æ´æ°ï¼ æ·»å ä¸ä¸ªç¨äº`numpy.random`çæ°C-APIæ´æ°ã
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
-详æ
请ç [çæ¬è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.18.0)ã
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
-### NumPy ä»Chan Zuckerberg Initiativeè·å¾äºä¸ç¬ææ¬¾
+### NumPy receives a grant from the Chan Zuckerberg Initiative
-_2019å¹´11æ15æ¥_ -- æä»¬é«å
´å°å®£å¸NumPyå OpenBLAS (Numpyçä¸ä¸ªæ ¸å¿ä¾èµåº)å·²ç»æ¶å°ä¸ç¬19,5000ç¾å
çèåèµ æ¬¾ã ææ¬¾æ¥èªäºChan Zuckerberg Initiativeéè¿ç[åºç¡å¼æºç§å¦è®¡ç®è½¯ä»¶é¡¹ç®](https://chanzuckerberg.com/eoss/)ï¼ç¨æ¥æ¯æå¯¹ç§å¦åå±èµ·å°å
³é®ä½ç¨ç弿ºè½¯ä»¶çç»´æ¤ãå¢é¿ãå¼åå社åºåä¸ã
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
-è¿ç¬èµ 款å°ç¨æ¥å éæ¹è¿NumPyææ¡£ãç½ç«éæå社åºå¼åï¼è¿èæ´å¥½å°ä¸ºæä»¬åºå¤§åè¿
éå¢é¿çç¨æ·åºç¡æå¡ï¼å¹¶ç¡®ä¿é¡¹ç®çé¿æå¯æç»æ§ã OpenBLAS å¢éå°ä¾§éäºå¤çå 个å
³é®ææ¯é®é¢ï¼ç¹å«æ¯çº¿ç¨å®å
¨é®é¢ãAVX-512å thread-local åå¨(TLS) é®é¢ï¼ä»¥åOpenBLAS ä¾èµç ReLAPACK (éå½çLAPACK) ç®æ³æ¹è¿ã
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
-è¥æ³æ¥çæ´å¤å
³äºææ¬¾çå¡è®®å交ä»ä»¶ç详æ
ï¼å¯å¨ [å
¨é¢èµ æ¬¾ææ¡](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167) 䏿¾å°ã 项ç®å¼å§äº2019å¹´12æ1æ¥ï¼ä»å12个æå°æç»è¿ä½ä¸å»ã
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
-## çæ¬åå¸
+## Releases
-è¿æ¯NumPy çæ¬å表ï¼å
å«äºå¯¹åºçæ¬åå¸è¯´æç龿¥ã ææç bugä¿®å¤çæ¬(å³å¨ `x.y.z`æ ¼å¼çæ¬å·ä¸åªæ `z`æ¹å)æ²¡ææ°åè½ï¼å°çæ¬æ´æ°(`y` æ¹å)ææ°åè½ã
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
-- NumPy1.22.0 (<a>åè¡è¯´æ</a>) -- _2021å¹´12æ31æ¥_.
-- NumPy1.21.5 (<a>åè¡è¯´æ</a>) -- _2021å¹´12æ19æ¥_.
-- NumPy1.21.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _2021å¹´6æ22æ¥_.
-- NumPy1.23.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _2021å¹´5æ10æ¥_.
-- NumPy1.20.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _2021å¹´1æ30æ¥_.
-- NumPy1.19.5 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _2021å¹´1æ5æ¥_.
-- NumPy1.19.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _2020å¹´6æ20æ¥_.
-- NumPy1.18.4 (<a>åè¡è¯´æ</a>) -- _2020å¹´5æ3æ¥_.
-- NumPy1.17.5 (<a>åè¡è¯´æ</a>) -- _2020å¹´1æ1æ¥_.
-- NumPy1.18.0 (<a>åè¡è¯´æ</a>) -- _2019å¹´12æ22æ¥_.
-- NumPy1.17.0 (<a>åè¡è¯´æ</a>) -- _2019å¹´7æ26æ¥_.
-- NumPy1.16.0 (<a>åè¡è¯´æ</a>) -- _2019å¹´1æ14æ¥_.
-- NumPy1.15.0 (<a>åè¡è¯´æ</a>) -- _2018å¹´7æ23æ¥_.
-- NumPy1.14.0 (<a>åè¡è¯´æ</a>) -- _2018å¹´1æ7æ¥_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
28379a9d888fbb71aaca918294f8fa500d3f9a9b
|
New translations news.md (Korean)
|
diff --git a/content/ko/news.md b/content/ko/news.md
index 4fb6664..0808edd 100644
--- a/content/ko/news.md
+++ b/content/ko/news.md
@@ -1,322 +1,322 @@
---
title: ìì
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2023-09-16
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
* New functions `matvec` and `vecmat`,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0 ì¶ìì¼: 6ì 16ì¼
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
-- [NumPy 2.0 ì´ì£¼ ê°ì´ë](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- [2.0.0 ë¦´ë¦¬ì¦ ë
¸í¸](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- ìí ì
ë°ì´í¸ ê³µì§ì© ì´ì: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
### NumPy 2.0 ì¶ìì¼: 6ì 16ì¼
_2024ë
5ì 23ì¼_ -- NumPy 2.0ì´ 2024ë
6ì 16ì¼ì ì¶ìí ìì ì´ë¼ë ììì ë°ííê² ëì´ ê¸°ì©ëë¤. ì´ ë¦´ë¦¬ì¦ë¥¼ ì ìíë ë° 1ë
ì´ ëê² ê±¸ë ¸ê³ , 2006ë
ì´í 첫 ë²ì§¸ ë©ì¸ 릴리ì¦ì
ëë¤. ì¤ìí ê±´ ë§ì 기ë¥ê³¼ ì±ë¥ ê°ì ì¸ìë, ABIì Python, C APIì ëí **í기ì ì¸ ë³í**를 ì´ë¤ëë¤ë ê²ì
ëë¤. ìë§ ìì¡´íë í¨í¤ì§ì ìµì¢
ì¬ì©ìì ì½ë를 ìì í´ì¼ í ê²ëë¤. ê°ë¥íë¤ë©´ ì½ëê° `2.0.0rc2`ìì ì ìëíëì§ ê²ì¦í´ 주ì¸ì. **ìì¸í ë´ì©ì ìë í목ë¤ì íì¸í´ 주ì¸ì.**
- [NumPy 2.0 ì´ì£¼ ê°ì´ë](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- [2.0.0 ë¦´ë¦¬ì¦ ë
¸í¸](https://numpy.org/devdocs/release/2.0.0-notes.html)
- ìí ì
ë°ì´í¸ ê³µì§ì© ì´ì: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumPy 1.26.0 ì¶ì
_2023ë
12ì 19_ -- NumFOCUSìì ì°ë§ ìº íì¸ ê¸°ê° ëì PyCharmê³¼ íë ¥í´ ìµì´ PyCharm ì´ì©ìì ë¼ì´ì ì¤ë¥¼ 30% í ì¸ë ê°ê²©ì ì ê³µíìµëë¤. ì§ê¸ë¶í° 2023ë
12ì 23ì¼ê¹ì§ PyCharm êµ¬ë§¤ë¡ ë°ìí 모ë ììµì NumFOCUS íë¡ê·¸ë¨ì¼ë¡ ì§ì ì ë¬ë©ëë¤.
구매를 ì¶ì í ì ìë ê³ ì URLì ì´ì©íê±°ë: https://lp.jetbrains.com/support-data-science/ ì¿ í° ì½ë를 ì¬ì©íì¸ì: ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 ì¶ì
_2023ë
12ì 16ì¼_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
* íì´ì¬ 3.12.0 ì§ì
* Cython 3.0.0 í¸í
* Meson ë¹ë ìì¤í
ì¬ì©
* ì
ë°ì´í¸ë SIMD ì§ì
* f2py ìì , meson ë° bind(x) ì§ì
* ì
ë°ì´í¸ë Accelerate BLAS/LAPACK ë¼ì´ë¸ë¬ë¦¬ ì§ì
NumPy 1.26.0 릴리ì¤ë Meson ë¹ë ìì¤í
ì¼ë¡ì ì íê³¼ Cython 3.0.0 ì§ìì íìíë 1.25.x ì리ì¦ì ì°ì¥ì
ëë¤. ì´ 20ëª
ì ì¬ëë¤ì´ ì´ ë¦´ë¦¬ì¤ì 기ì¬íìì¼ë©° 59ê°ì í 리íì¤í¸ê° ë³í©ëììµëë¤.
본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.3.9-3.12ì
ëë¤.
### numpy.orgì ì´ì ì¼ë³¸ì´ì í¬ë¥´í¬ê°ì´ë¡ë ì´ì© ê°ë¥í©ëë¤.
_2023ë
8ì 2ì¼_ - numpy.orgì ì´ì ì¶ê°ë¡ ì¼ë³¸ì´ì í¬ë¥´í¬ê°ì´ë¡ ì´ì© ê°ë¥í©ëë¤. ì´ë ë¤ìì íì ì ì¸ ììë´ì¬ìë¤ì ë
¸ë ¥ ìì´ë ê°ë¥íì§ ììì ê²ì
ëë¤:
_í¬ë¥´í¬ê°ì´_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_ì¼ë³¸ì´_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
ë²ì ì¸íë¼ì ëí ìì
ì CZIë¡ë¶í°ì ìê¸ ì§ìì ë°ì ì§íëììµëë¤.
ëìê°ì NumPy ì¹ì¬ì´í¸ê° ë ë§ì ì¸ì´ë¡ ë²ìë기를 ë°ëëë¤. ëìì 주ìë ¤ë©´ ë¤ì Slack ë§í¬ë¥¼ íµí´ NumPy Translations Team ì ì°ë½ì 주ììì¤: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (#translations ì±ëì add í´ì£¼ì¸ì) ëí ê³¼íì íì´ì¬ ìíê³ ì ë°ìì 문ì ë° êµì¡ ì½í
ì¸ ë¥¼ ì§ìííëë° ì°¸ì¬í Translations Teamì 구ì¶íê³ ììµëë¤. ì´ì í¥ë¯¸ë¥¼ ëëë¤ë©´ Scientific Python Discordìì í¨ê»í´ 주ì¸ì: https://discord.gg/khWtqY6RKr. (#translation ì±ëì ì°¾ìë³´ì¸ì)
### NumPy 1.25.0 ì¶ì
_2023ë
6ì 17ì¼_ -- ì´ì [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)ì ì´ì©í ì ììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
* MUSL ì§ì, ì´ì MUSL Wheelë ë°°í¬ë©ëë¤.
* Fujitsu C/C++ ì»´íì¼ë¬ ì§ì
* Einsumìì ê°ì²´ ë°°ì´ ì§ì
* Inplace íë ¬ ê³±ì
(`@=`) ì§ì
NumPy 1.25.0 릴리ì¤ììë dtypeì ì²ë¦¬ ë° íë³íì ê°ì íê³ ì¤í ìë를 ëì´ë ìì
, 문ì를 ë³´ë¤ ëª
ë£íê² ë¤ë¬ë ìì
ì ê³ìíê³ ììµëë¤. 미ëì NumPy 2.0.0ì ìí ì¤ë¹ ìì
ë ììëë°, ì´ë¡ ì¸í´ ìë§ì 기ë¥ë¤ì´ ì§ì ì¢
ë£ ìì ì ìë¡ í¬í¨ëê±°ë ìì í ë§ë£ëììµëë¤.
ì´ 148ëª
ì ì¬ëë¤ì´ ì´ ë¦´ë¦¬ì¤ì 기ì¬íìì¼ë©° 530ê°ì í 리íì¤í¸ê° ë³í©ëììµëë¤.
본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.9-3.11ì
ëë¤.
### í¬ì©ì ì¸ ë¬¸í ì¡°ì±: ì°¸ì¬ ìì²
_2023ë
5ì 10ì¼_ -- í¬ì©ì ì¸ ë¬¸í ì¡°ì±: ì°¸ì¬ ìì²
ë¤ìì±ê³¼ í¬ì©ì±ì 측면ìì ì°ë¦¬ë ì´ë»ê² ë ëìì§ ì ììê¹ì? [ì¬ê¸°](https://contributor-experience.org/docs/posts/dei-report/)ìì ë³´ê³ ì를 ì½ê³ í¨ê» ì°¸ì¬íë ë°©ë²ì ììë³´ì¸ì.
### NumPy 문ì í 리ë ë³ê²½
_2023ë
1ì 6ì¼_ â- Mukulika Pahari, Ross Barnowskiê° Melissa Mendonça를 ëì í´ ì NumPy 문ì í 리ëë¡ ìëª
ëììµëë¤. NumPy ê³µì 문ìì êµì¡ ìë£ì 기ì¬í Melissaì í 걸ì ë ëìê° Mukulika, Rossìê² ê°ì¬ë¥¼ íí©ëë¤.
### NumPy 1.24.0 ì¶ì
_2022ë
12ì 18ì¼_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
* ì¤íí¹ í¨ì를 ìí ì "dtype" ë° "casting" í¤ìë.
* ì F2PY ê¸°ë¥ ë° ìì .
* ìë§ì ì§ì ì¢
ë£ ìì 기ë¥, íì¸íì¸ì.
* ìë§ì ë§ë£ë 기ë¥,
NumPy 1.24.0 릴리ì¤ììë dtypeì ì²ë¦¬ ë° íë³íì ê°ì íê³ ì¤í ìë를 ëì´ë ìì
, 문ì를 ë³´ë¤ ëª
ë£íê² ë¤ë¬ë ìì
ì ê³ìíê³ ììµëë¤. dtypeì íë³í ë° ì 리를 ë³ê²½íë ê³¼ì ìì ìë§ì 기ë¥ë¤ì´ ì§ì ì¢
ë£ ìì ì ìë¡ í¬í¨ëê±°ë ìì í ë§ë£ëììµëë¤. 177ëª
ì 기ì¬ìê° ìì±í 444ê°ì í ìì²ì ë°íì¼ë¡ í ì±ê³¼ì
ëë¤. ì§ìíë Python ë²ì ì 3.8-3.11ì
ëë¤.
### NumPy 1.23.0 ì¶ì
_2022ë
6ì 22ì¼_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
* `loadtxt`를 Cë¡ êµ¬ííì¬ ì±ë¥ì´ í¬ê² í¥ìëììµëë¤.
* ë°ì´í° êµíì ì½ê² í기 ìí´ Python ìì¤ìì DLPackì ê°ë°©í©ëë¤.
* 구조íë dtypeì íë³í ë° ë¹êµ ë°©ë²ì ë³ê²½íìµëë¤.
* f2py를 ê°ì íìµëë¤.
NumPy 1.23.0 릴리ì¤ììë dtypeì ì²ë¦¬ ë° íë³íì ê°ì íê³ ì¤í ìë를 ëì´ë ìì
, 문ì를 ë³´ë¤ ëª
ë£íê² ë¤ë¬ë ìì
, ì¤ëë ì§ì ì¢
ë£ ìì 기ë¥ì ìì í ë§ë£ìí¤ë ìì
ì ê³ìíê³ ììµëë¤. 151ëª
ì 기ì¬ìê° ìì±í 494ê°ì í ìì²ì ë°íì¼ë¡ í ì±ê³¼ì
ëë¤. 본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.8-3.10ì
ëë¤. Python 3.11ì rc ë¨ê³ì ë¤ë¤ë¥´ë©´ ì§ìí ìì ì
ëë¤.
### NumFOCUS DEI ì°êµ¬: ì°¸ì¬ ìì²
_2022ë
4ì 13ì¼_ -- NumPyë [NumFOCUS](http://numfocus.org/)ì íë ¥íì¬ [Gordon & Betty Moore ì¬ë¨](https://www.moore.org/)ìì 기ê¸ì ì ê³µíë [ì°êµ¬ íë¡ì í¸](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)를 ì§íí©ëë¤. 본 ì°êµ¬ë ì¤í ìì¤ ìíí¸ì¨ì´ 커뮤ëí°ì 기ì¬ì, í¹í ìì¬ì ì¼ë¡ ê³¼ìíê°ë ì§ë¨ì 기ì¬ìê° ì°¸ì¬í ë ì§ë©´íë ì¥ë²½ì ì´í´íë ê²ì 목íë¡ í©ëë¤. ì°êµ¬íì ì 기ì¬ì, íë¡ì í¸ ê°ë°ì ë° ì ì§ê´ë¦¬ì, 과거ì 기ì¬í ì¬ëë¤ê³¼ NumPyì ì°¸ì¬íê³ ê¸°ì¬í ê²½íì ëí´ ì´ì¼ê¸°íê³ ì í©ëë¤.
**ê²½íì ê³µì íê³ ì¶ì¼ì ê°ì?**
ê°ë¨í ["ì°¸ì¬ í¬ë§" ìì](https://numfocus.typeform.com/to/WBWVJSqe)ì ìì±í´ì£¼ì¸ì. ìììì ì°êµ¬ 목í, ê°ì¸ì ë³´ ë³´í¸, ê¸°ë° ì ì§ ì¬íì ëí ì¶ê° ì 보를 íì¸í ì ììµëë¤. ë¹ì ì ì°¸ì¬ê° ë¤ìì±ê³¼ í¬ì©ì±ì ê°ì¶ ì¤í ìì¤ ìíí¸ì¨ì´ 커뮤ëí°ì ì±ì¥ê³¼ ì§ì ê°ë¥ì±ì ëìì´ ë ê²ì
ëë¤. ì¹ì¸ë ì°¸ê°ìë ì°êµ¬íê³¼ 30ë¶ ë©´ë´ì ì§ííê² ë©ëë¤.
### Numpy 1.22.0 ì¶ì
_2021ë
12ì 31ì¼_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
* 기본 ë¤ìì¤íì´ì¤ì ëí´ ì í 주ìì ì§ìì ê±°ì ìë£íìµëë¤. ì
ì¤í¸ë¦¼ ì½ëë íì ë³íë¯ë¡ ì¶ê° ê°ì ì´ ìì ì ìì§ë§ 주ì ìì
ì ìë£ëììµëë¤. ìë§ë ì´ ë¦´ë¦¬ì¤ìì ê°ì¥ ì²´ê°ëë ê°ì ì¬íì¼ ê²ì
ëë¤.
* ì ìë [ë°°ì´ API íì¤ì ìë¹ ë²ì ](https://data-apis.org/array-api/latest/)ì´ ì ê³µë©ëë¤([NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html) 참조). ì´ë CuPy ë° JAXì ê°ì ë¼ì´ë¸ë¬ë¦¬ìì ì¬ì©í ì ìë íì¤ í¨ì 모ìì ë§ëë ë¨ê³ì
ëë¤.
* NumPyê° DLPack ë°±ìëë¡ êµ¬ëë©ëë¤. DLPackì ë°°ì´(í
ì) ë°ì´í°ì ëí ê³µíµ êµí íìì ì ê³µí©ëë¤.
* `quantile`, `percentile` ê´ë ¨ í¨ì를 ìí ì ë©ìë를 ì¶ê°íìµëë¤. ì ë©ìë를 ì´ì©í´ 문íìì ì¼ë°ì ì¼ë¡ ì°ì´ë ì²ë¦¬ë¥¼ ì§íí ì ììµëë¤.
* ë²ì© í¨ìê° ëë¶ë¶ì [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html)ì 구ííëë¡ ë¦¬í©í°ë§ëììµëë¤. ì´ë¥¼ íµí´ 미ëì DType API를 ì¤íí ì ìë ë¥ë ¥ë ê°ì·ìµëë¤.
* ì êµ¬ì± ê°ë¥í ë©ëª¨ë¦¬ í ë¹ì를 ë¤ì´ì¤í¸ë¦¼ íë¡ì í¸ìì ì¬ì©í ì ììµëë¤.
NumPy 1.22.0ì 153ëª
ì 기ì¬ìê° ìì±í 609ê°ì í ìì²ì ë°íì¼ë¡ ë§ë¤ì´ì§ ëí 릴리ì¦ì
ëë¤. 본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.8-3.10ì
ëë¤.
### ê³¼í Python ìíê³ìì í¬ì©ì 문í ë°ì
_2021ë
8ì 31ì¼_ -- Chan Zuckerberg Initiativeê° ê³¼íì Python íë¡ì í¸ìì ìì¬ì ì¼ë¡ ìì¸ë 그룹ì ì¬ëë¤ì ì¨ë³´ë©, í¬í¨ ë° ì ì§íê³ NumPy, SciPy, Matplotlib ê·¸ë¦¬ê³ Pandas ì 커뮤ëí° ìíì 구조ì ì¼ë¡ ê°ì í기 ìí [ë³´ì¡°ê¸ì ìì¬](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)íìì ë°ííê² ëì´ ê¸°ì©ëë¤.
[CZIì Essential Open Source Software for Science íë¡ê·¸ë¨](https://chanzuckerberg.com/eoss/)ì ì¼íì¼ë¡ ì´ [Diversity & í¬í¨ ì¶ê° ë³´ì¡°ê¸](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)ì í¬ê´ì ì¸ ì¤í ìì¤ ì»¤ë®¤ëí°ë¥¼ ì¡ì±í기 ìí ê´íì ìë³, 문ìí ë° êµ¬íí기 ìí ì ë´ ê¸°ì¬ì ê²½í 리ë ì§ì±
ìì±ì ì§ìí©ëë¤. ì´ íë¡ì í¸ë Melissa Mendonça(NumPy) ëì´ ì´ëê³ Ralf Gommers(NumPy, SciPy), Hannah Aizenman, Thomas Caswell(Matplotlib), Matt Haberland(SciPy), Joris Van den Bossche(Pandas) ëì´ ì¶ê° ë©í ë§ ë° ì§ì¹¨ì ì ê³µí©ëë¤.
ì´ê²ì íë¡ì í¸ì 커뮤ëí° ìíì 구조ì ì¼ë¡ ê°ì í´ì¼ íë íëì ë°ê²¬íê³ êµ¬ííë ê²ì 목íë¡ íë ì¼ì¬ ì°¬ íë¡ì í¸ì
ëë¤. ìë¡ì´ êµì°¨ íë¡ì í¸ ìí ì ì¤ì í¨ì¼ë¡ì¨ ê³¼íì Python 커뮤ëí°ì ìë¡ì´ íì
모ë¸ì ëì
íì¬ ìíê³ ë´ìì 커뮤ëí° êµ¬ì¶ ìì
ì ë³´ë¤ í¨ì¨ì ì¼ë¡ ìííê³ ë í° ê²°ê³¼ë¥¼ ì»ì ì ìì ê²ì¼ë¡ 기ëë©ëë¤. ëí í¹í ìì¬ì ì¼ë¡ ê³¼ìëíë ì§ë¨ì ìë¡ì´ 기ì¬ì를 ì°¸ì¬ìí¤ê³ ì ì§í기 ìí´, íë¡ì í¸ìì í¨ê³¼ì ì¸ ê²ê³¼ ê·¸ë ì§ ìì ê²ì ëí ëª
íí 그림ì 구ì¶í ê²ì¼ë¡ 기ëí©ëë¤. ë§ì§ë§ì¼ë¡, ìíë ì¡°ì¹ì ëí´ ìì¸í ë³´ê³ ì를 ìì±íì¬ ì»¤ë®¤ëí°ìì ëí ë° ìí¸ ìì© ì¸¡ë©´ìì íë¡ì í¸ì ì´ë¤ ìí¥ì 미쳤ëì§ ì¤ëª
í ê³íì
ëë¤.
2ê°ë
íë¡ì í¸ê° 2021ë
11ìë¶í° ììë ìì ì
ëë¤. íë¡ì í¸ì 결과를 ë³¼ ë ì´ ê¸°ëëë¤ì! [ì¬ê¸°ìì ì ì²´ ì ìì를 ì´ëí ì ììµëë¤](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021ë
ë NumPy ì¤ë¬¸ì¡°ì¬
_2021ë
7ì 12ì¼_ -- NumPyìì, ì°ë¦¬ë 커뮤ëí°ì íì 믿ìµëë¤. ìë
ì 75ê°êµìì 1,236ëª
ì NumPy ì¬ì©ìê° ì²« ë²ì§¸ ì¤ë¬¸ì¡°ì¬ì ì°¸ì¬íìµëë¤. ì¤ë¬¸ ì¡°ì¬ ê²°ê³¼ë¥¼ íµí´ ë¤ì 12ê°ì ëì ì°ë¦¬ê° ì´ë¤ ê²ì ì§ì¤í´ì¼ í ì§ ì주 ì ì´í´í ì ìììµëë¤.
ì´ì ëë¤ë¥¸ ì¤ë¬¸ ì¡°ì¬ë¥¼ ì§íí ìê°ì´ê³ , ì¬ë¬ë¶ì ëìì´ ë¤ì í ë² íìí©ëë¤. ìë£íë ë° ì½ 15ë¶ ì ë ììë ê²ëë¤. ì¤ë¬¸ì§ë ìì´ ì¸ìë 8ê° êµì´ë¡ ì ê³µë©ëë¤: 벵골ì´, íëì¤ì´, íëì´, ì¼ë³¸ì´, ì¤êµ ê´í, í¬ë¥´í¬ê°ì´, ë¬ììì´, ì¤íì¸ì´.
ììíë ¤ë©´ ìë ë§í¬ë¥¼ ëë¬ ì£¼ì¸ì: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 ì¶ì
_2021ë
9ì 23ì¼_ -- [NumPy 1.1.21](https://numpy.org/doc/stable/release/1.21.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
- ë ë§ì 기ë¥ê³¼ íë«í¼ì ë¤ë£¨ë ì§ìì ì¸ SIMD ìì
,
- ìë¡ì´ dtype ì¸íë¼ ë° ìºì¤í
ì ëí ì´ê¸° ìì
,
- Macì Python 3.8 ë° Python 3.9ì© universal2 í ,
- 문ìí í¥ì,
- 주ì í¥ì,
- ëì ìì±ì ì´ì©ëë ì `PCG64DXSM` ë¹í¸ ìì±ê¸°.
ì´ë² NumPy 릴리ì¦ë 175ëª
ì´ ê¸°ì¬í´ì£¼ì 581ê°ì í 리íì¤í¸ê° í©ì³ì§ ê²°ê³¼ì
ëë¤. 본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.7-3.9ì
ëë¤. Python 3.10ì Python 3.10 ë¦´ë¦¬ì¦ ì´í ì§ìí ìì ì
ëë¤.
### 2020ë
ë NumPy ì¤ë¬¸ì¡°ì¬ ê²°ê³¼
_2021ë
6ì 22ì¼_ -- 2020ë
ì, NumPy ì¡°ì¬ íì ì¡°ì¬ë°©ë²ë¡ íì¬ ê³¼ì ì íì ë° êµìì íë ¥íì¬ ë¯¸ìê° ëíê³¼ 매릴ë ë ëíì´ ê³µëì¼ë¡ ê°ìµí 첫 ê³µì NumPy 커뮤ëí° ì¡°ì¬ë¥¼ ì¤ìíìµëë¤. ì¬ê¸°ì ì¡°ì¬ ê²°ê³¼ë¥¼ íì¸íì¸ì: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 ì¶ì
_2021ë
9ì 30ì¼_ -- [NumPy 1.1.20](https://numpy.org/doc/stable/release/1.20.0-notes.html)ì´ ì¶ìëììµëë¤. ìë ìµëì NumPy 릴리ì¦ì
ëë¤. 180ëª
ì´ ëë 기ì¬ìë¶ë¤ê» ê°ì¬ë립ëë¤. ë¤ìì ì´ë² ì¶ììì ê°ì¥ í¥ë¯¸ë¡ì´ ëê°ì§ 기ë¥ë¤ ì
ëë¤.
- NumPyì ë§ì ë¶ë¶ì ëí ì í 주ì ë° ì¬ì©ìì ë¤ì´ì¤í¸ë¦¼ ë¼ì´ë¸ë¬ë¦¬ê° ì¶ê°í ë ì¬ì©í ì ìë `ArrayLike` ë° `DtypeLike` ë³ì¹ì í¬í¨íë ìë¡ì´ `numpy.typing` íì 모ë ìì²´ ì½ëì 주ìì ì
ë ¥í©ëë¤.
- x86(SSE, AVX), ARM64(Neon) ë° PowerPC(VSX) ëª
ë ¹ì ì§ìíë ë¤ì¤ íë«í¼ SIMD ì»´íì¼ë¬ ìµì í ì
ëë¤. ì´ë ë§ì í¨ìë¤ì ìë¹í ì±ë¥í¥ìì ê°ì ¸ììµëë¤ (ì: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
### NumPy íë¡ì í¸ ë´ ë¤ìì±
_2020ë
9ì 20ì¼_ -- ì°ë¦¬ë [NumPy íë¡ì í¸ ìììì ë¤ìì±ê³¼ í¬ì©ì±ì ê´í ìì
미ëì´ì ìí ë° í ë¡ ì ëí ì±ëª
ì를 ìì±íìµëë¤](/diversity_sep2020).
### Natureì 첫 ê³µì NumPy ë
¼ë¬¸ ë°í!
_2020ë
9ì 16ì¼_ -- [NumPyì ëí 첫 ë²ì§¸ ê³µì ë
¼ë¬¸](https://www.nature.com/articles/s41586-020-2649-2)ì´ Natureì 리뷰 기ì¬ë¡ ê²ì¬ëììì ë°ííê² ëì´ ê¸°ì©ëë¤. NumPy 1.0ì´ ëì¨ ì§ 14ë
ë§ì
ëë¤. ì´ ë°±ìììë ë°°ì´ íë¡ê·¸ëë°ì ìì© íë¡ê·¸ë¨ ë° ê¸°ë³¸ ê°ë
, NumPy ìì 구ì¶ë íë¶í ê³¼íì Python ìíê³, CuPy, Dask ë° JAXì ê°ì ì¸ë¶ ë°°ì´ ë° í
ì ë¼ì´ë¸ë¬ë¦¬ìì ìí¸ ì´ì©ì±ì ì´ì§í기 ìí´ ìµê·¼ì ì¶ê°ë ë°°ì´ íë¡í ì½ì ë¤ë£¹ëë¤.
### Python 3.9ê° ê³§ ì¶ìíëë°, NumPyë ë°ì´ë리 Wheelì ì¸ì ì¶ìí©ëê¹?
_2020ë
9ì 14ì¼_ -- Python 3.9ê° ëª ì£¼ ë´ë¡ ì¶ìë ê²ì
ëë¤. ë§ì½ Python ì¼ë¦¬ì´ëµí°ë¼ë©´, NumPy (ê·¸ë¦¬ê³ SciPy ë± ë¤ë¥¸ ë°ì´ë리 í¨í¤ì§) ê° ë¦´ë¦¬ì¦ ìì¼ì ë°ì´ë리 Wheelì ì¤ë¹íì§ ëª»íë¤ë ê²ì ìê³ ì¤ë§íì ì ììµëë¤. ìë¡ì´ Python ë²ì ì ë¹ë íê²½ì ë§ì¶ë ê²ì ë§ì ë
¸ë ¥ì ìíê³ , í¨í¤ì§ê° PyPI ë° conda-forgeì ë°°í¬ëë ë°ìë ì¼ë°ì ì¼ë¡ ëª ì£¼ê° ê±¸ë¦½ëë¤. ì¶ì를 ëë¹íë ¤ë©´ ìë ìê±´ì 충족íëë¡ íììì¤.
- `pip` ë²ì ì ìµì 20.1ë¡ ì
ë°ì´í¸íì¬ `manylinux2010` ë° `manylinux2014`를 ì§ìíëë¡ í©ëë¤
- [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary)를 ì¬ì©íê±°ë ëë `--only-binary=:all:`ì ì¬ì©íì¬ `pip`ê° ìì¤ìì ë¹ëíë ê²ì ë§ì주ì¸ì.
### NumPy 1.19.2 ì¶ì
_2020ë
9ì 10ì¼_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html)ì´ ì¶ìëììµëë¤. 1.19 ì리ì¦ì ì´ ìµì 릴리ì¤ë ëª ê°ì§ ë²ê·¸ë¥¼ ìì íê³ [ë¤ê°ì¤ë Cython 3.x 릴리ì¤](http://docs.cython.org/en/latest/src/changes.html)를 ì¤ë¹íë©° setuptools를 ê³ ì íì¬ ì
ì¤í¸ë¦¼ ìì ì´ ì§íëë ëì distutilsê° ê³ì ìëíëë¡ í©ëë¤. aarch64 í ì ë¤ìí Linux ë°°í¬íìì ì¬ì©ëë ë¤ìí íì´ì§ í¬ê¸° 문ì 를 í´ê²°íë ìµì manylinux2014 릴리ì¤ë¡ ì ìëììµëë¤.
### ìµì´ì NumPy ì¤ë¬¸ì¡°ì¬ê° ì§í ì¤ì
ëë¤!
_2020ë
7ì 2ì¼_ -- 본 ì¤ë¬¸ì¡°ì¬ë ìíí¸ì¨ì´ ë° ì»¤ë®¤ëí°ë¡ìì NumPy ê°ë°ì ëíì¬, ìì¬ê²°ì ì ì°ì ìì를 ìë´íê³ ì¤ì í기 ìí´ ì¤ìë©ëë¤. ì¤ë¬¸ì§ë ìì´ ì¸ìë 8ê° êµì´ë¡ ì ê³µë©ëë¤: 벵골ì´, íëì¤ì´, íëì´, ì¼ë³¸ì´, ì¤êµ ê´í, í¬ë¥´í¬ê°ì´, ë¬ììì´, ì¤íì¸ì´.
NumPy를 ê°ì íê² ëì주ìê³ ì´ë¥¼ìí´ ì¤ë¬¸ì¡°ì¬ì ì°¸ì¬í´ 주ì¸ì. [ì¬ê¸°](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPyì ìë¡ì´ ë¡ê³ ê° ìê²¼ìµëë¤!
_2020ë
6ì 24ì¼_ -- NumPyì ìë¡ì´ ë¡ê³ ê° ìê²¼ìµëë¤.
<img src="/images/logos/numpy_logo.svg" alt="NumPy ë¡ê³ " title="ì NumPy ë¡ê³ " width=300>
ì´ì ë¡ê³ 를 ê¹ëíê³ íëì ì¼ë¡ ë¤ì ëìì¸íìµëë¤. ì ë¡ê³ 를 ë§ë¤ì´ 주ì Isabela Presedo-Floydëê» ê°ì¬ë립ëë¤. ë 15ë
ì´ ëë ê¸°ê° ëì ì í¬ê° ì¬ì©íë ë¡ê³ 를 ë§ë¤ì´ 주ì Travis Vaughtëê»ë ê°ì¬ì ë§ìì ë립ëë¤.
### NumPy 1.19.0 ì¶ì
_2020ë
6ì 20ì¼_ -- NumPy 1.19.0ì´ ì¶ìëììµëë¤. Python 2ì ì§ìì ì¤ë¨í 첫 릴리ì¦ë¼ì "ì 리 릴리ì¦"ë¼ê³ ë ë¶ë¦½ëë¤. ì´ì ì§ìíë Python ìµì ë²ì ì 3.6ì
ëë¤. ì¤ìí ì 기ë¥ì ê¼½ìë©´, NumPy 1.17.0ì ëì
ë ëì ìì± ì¸íë¼ë¥¼ Cythonìì ì ê·¼í ì ìê² ëìë¤ë ê²ì
ëë¤.
### Season of Docs ì¹ì¸
_2020ë
5ì 11ì¼_ -- NumPyê° Google Season of Docs íë¡ê·¸ë¨ì ì ë ì¡°ì§ì¼ë¡ ì¹ì¸ëììµëë¤. í
í¬ë컬 ë¼ì´í°ì íë ¥í´ì NumPy 문ì를 ë¤ì í ë² ê°ì í ì ìë 기í를 ê°ê² ëì´ ì¢ìµëë¤! ì´ì ìì¸í ë´ì©ì [ê³µì 문ì ìì¦ ì¬ì´í¸](https://developers.google.com/season-of-docs/) ë° [ìì´ëì´ íì´ì§](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas) 를 참조íì¸ì.
### NumPy 1.18.0 ì¶ì
_2019ë
12ì 22ì¼_ -- NumPy 1.18.0ì´ ì¶ìëììµëë¤. 1.17.0ììì 주ì ë³ê²½ì ì íµí©íë 릴리ì¦ì
ëë¤. 본 릴리ì¦ë Python 3.5를 ì§ìíë ë§ì§ë§ ë§ì´ë 릴리ì¦ì
ëë¤. 릴리ì¦ì 주ì ë´ì©ì¼ë¡ë, 64ë¹í¸ BLAS ë° LAPACK ë¼ì´ë¸ë¬ë¦¬ì ì°ê²°í기 ìí íê²½ ì¡°ì±, `numpy.random`ì ìí ìë¡ì´ C-API ë±ì´ ììµëë¤.
ìì¸í ë´ì©ì [ì¶ì ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.18.0)를 참조íì¸ì.
### NumPyê° Chan Zuckerberg Initiativeìì ë³´ì¡°ê¸ì ë°ììµëë¤
_2019ë
11ì 15ì¼_ -- NumPyì 주ì ì¢
ì í¨í¤ì§ ì¤ íëì¸ NumPyì OpenBLASê° ì± ì 커ë²ê·¸ ì´ëì
í°ë¸ì [ê³¼í íë¡ê·¸ë¨ì© ì¤ì ì¤íìì¤ ìíí¸ì¨ì´](https://chanzuckerberg.com/eoss/) ì§ìì íµí´ 19ë§ 5ì² ë¬ë¬ì ë¬íë ê³µë ë³´ì¡°ê¸ì ë°ìë¤ë ììì ì í ì ìì´ ê¸°ì©ëë¤. ì´ê³³ììë ê³¼íì ì¤ìí ì¤íìì¤ ë구ì ëí´ ì ì§ ê´ë¦¬, ì±ì¥, ê°ë° ë° ì»¤ë®¤ëí° ì°¸ì¬ë¥¼ ì§ìí©ëë¤.
ì´ ë³´ì¡°ê¸ì NumPy 문ì, ì¹ì¬ì´í¸ ì¬ì¤ê³ ë° ì»¤ë®¤ëí° ê°ë°ì ê°ì íì¬ ë¹ ë¥´ê² ì±ì¥íë ëê·ëª¨ ì¬ì©ì 기ë°ì ë ëì ìë¹ì¤ë¥¼ ì ê³µíê³ íë¡ì í¸ì ì¥ê¸°ì ì¸ ì§ì ê°ë¥ì±ì ë³´ì¥íë ë° ì¬ì©ë ê²ì
ëë¤. OpenBLAS íì OpenBLASê° ìì¡´íë ReLAPACK(Recursive LAPACK) ì ìê³ ë¦¬ì¦ ê°ì ë¿ë§ ìëë¼ í¹í ì¤ë ë ìì ì±, AVX-512 ë° ì¤ë ë ë¡ì»¬ ì¤í 리ì§(TLS) 문ì ì ê°ì ì¼ë ¨ì íµì¬ 기ì 문ì 를 í´ê²°íë ë° ì§ì¤í ê²ì
ëë¤.
ì ìë ê³í ë° ê²°ê³¼ë¬¼ì ëí ìì¸í ë´ì©ì [ì ì²´ ë³´ì¡°ê¸ ì ì](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167)ìì íì¸í ì ììµëë¤. 2019ë
12ì 1ì¼ë¶í° ìì
ì ììíì¬ ë¤ì 12ê°ì ëì ì§íí ìì ì
ëë¤.
<a name="releases"></a>
## 릴리ì¦
NumPy 릴리ì¦ì 목ë¡ì
ëë¤. ë¦´ë¦¬ì¦ ë
¸í¸ë¡ ë§í¬ë ê±¸ë ¤ ììµëë¤. ë²ê·¸ ìì 릴리ì¦(`x.y.z`ìì `z`ë§ ë°ë ê²½ì°)ìë ìë¡ì´ 기ë¥ì´ ììµëë¤. ë§ì´ë 릴리ì¦(`y`ê° ì¦ê°í ê²½ì°)ìë ìë¡ì´ 기ë¥ì´ ììµëë¤.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _ 2024ë
2ì 5ì¼_.
- NumPy 1.26.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2024ë
1ì 2ì¼_.
- NumPy 1.26.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _2023ë
1ì 2ì¼_.
- NumPy 1.26.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _2023ë
10ì 14ì¼_.
- NumPy 1.26.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _2023ë
16ì 9ì¼_.
- NumPy 1.25.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _2023ë
7ì 31ì¼_.
- NumPy 1.25.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _2023ë
7ì 8ì¼_.
- NumPy 1.24.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _2023ë
6ì 26ì¼_.
- NumPy 1.25.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _2023ë
6ì 17ì¼_.
- NumPy 1.24.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _2023ë
4ì 22ì¼_.
- NumPy 1.24.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _2023ë
2ì 5ì¼_.
- NumPy 1.24.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _2022ë
12ì 26ì¼_.
- NumPy 1.24.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _2022ë
12ì 18ì¼_.
- NumPy 1.23.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _2022ë
11ì 19ì¼_.
- NumPy 1.23.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _2022ë
10ì 12ì¼_.
- NumPy 1.23.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _2022ë
9ì 9ì¼_.
- NumPy 1.23.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _2022ë
8ì 14ì¼_.
- NumPy 1.23.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _2022ë
7ì 8ì¼_.
- NumPy 1.23.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _2022ë
6ì 22ì¼_.
- NumPy 1.22.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _2022ë
5ì 20ì¼_.
- NumPy 1.21.6 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _2022ë
4ì 12ì¼_.
- NumPy 1.22.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _2022ë
3ì 7ì¼_.
- NumPy 1.22.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _2022ë
2ì 3ì¼_.
- NumPy 1.22.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _2022ë
1ì 14ì¼_.
- NumPy 1.22.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _2021ë
12ì 31ì¼_.
- NumPy 1.21.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _2021ë
12ì 19ì¼_.
- NumPy 1.21.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _2021ë
6ì 22ì¼_.
- NumPy 1.20.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _2021ë
5ì 10ì¼_.
- NumPy 1.20.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _2021ë
1ì 30ì¼_.
- NumPy 1.19.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _2021ë
1ì 5ì¼_.
- NumPy 1.19.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _2020ë
6ì 20ì¼_.
- NumPy 1.18.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _2020ë
5ì 3ì¼_.
- NumPy 1.17.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _2020ë
1ì 1ì¼_.
- NumPy 1.18.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _2019ë
12ì 22ì¼_.
- NumPy 1.17.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _2019ë
7ì 26ì¼_.
- NumPy 1.16.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _2019ë
1ì 14ì¼_.
- NumPy 1.15.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _2018ë
7ì 23ì¼_.
- NumPy 1.14.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _2018ë
1ì 7ì¼_.
|
numpy/numpy.org
|
06b683d66de11bfbf5a4c5c0c13493a8df007d9f
|
New translations news.md (Japanese)
|
diff --git a/content/ja/news.md b/content/ja/news.md
index acd02d6..673f502 100644
--- a/content/ja/news.md
+++ b/content/ja/news.md
@@ -1,322 +1,322 @@
---
title: ãã¥ã¼ã¹
sidebar: false
newsHeader: "NumPy 1.26.0 ããªãªã¼ã¹ããã¾ããã"
date: 2023-09-16
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
* New functions `matvec` and `vecmat`,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 1.26.0 ããªãªã¼ã¹ããã¾ããã
-_2024 Aug, 2024_ -- Numpy 2.1.0 㯠Python 3.13 ããµãã¼ãããPython 3.9ããµãã¼ãå¤ã¨ãã¾ããã ä»åã®ãªãªã¼ã¹ã¯é常ã®ãã°ä¿®æ£ãPythonãµãã¼ãã®æ´æ°ã«å ãã¦ãNumPyã2.0ã®é·æéçºãçµã¦ãé常ã®ãªãªã¼ã¹ãµã¤ã¯ã«ã«æ»ãããã®ãªãªã¼ã¹ã§ãããã¾ãã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯ä¸è¨ã®éãã§ãã
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
- Python 3.12.0 ã®ãµãã¼ã
- å¤ãã®æéåãã®éæ¨å¥¨(Deprecation)ã®åé¤
-- Array-api 2023.12 æ¨æºã®ãµãã¼ã
+- Support for the array-api 2023.12 standard.
-Python ãã¼ã¸ã§ã³ 3.10-3.13 ãããã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã¾ãã
+Python versions 3.10-3.13 are supported by this release.
### å¤ãã®æ°ãã鿍奍(Deprecation)ã®è¿½å
-_2024å¹´6æ16æ¥_ -- Numpy 2.0.0 ã¯2006年以æ¥ã®ã¡ã¸ã£ã¼ãªãªã¼ã¹ã§ãã ããã¯ãååã®æ©è½ãªãªã¼ã¹ãã11ãæéã®éçºã®ææã§ããã1078ä»¶ã®ãã«ãªã¯ã¨ã¹ãã«ããã212人ã®è²¢ç®è
ã®ææã¨ãªãã¾ãã ãã®ãªãªã¼ã¹ã«ã¯ã大ãããã¨ããµã¤ãã£ã³ã°ãªæ°æ©è½ã¨ãPythonã¨Cã®ä¸¡æ¹ã®APIã¸ã®å¤æ´ãå«ã¾ãã¦ãã¾ãã ä»åã®ãªãªã¼ã¹ããé常ã®ãã¤ãã¼ãªãªã¼ã¹ã§ã¯å®æ½ã§ããªãã£ãäºææ§ãç ´å£ãã夿´ãå«ãã§ãã¾ããããã«ã¯ãABIã®ç ´å£ãåææ ¼ã«ã¼ã«ã®å¤æ´ãããã³1.26.xã§ã¯éæ¨å¥¨è¦åãåºããã¦ããªãã£ãå¯è½æ§ã®ããAPIã®å¤æ´ãå«ã¾ãã¦ãã¾ãã NumPy 2.0ã®å¤æ´ã«å¯¾å¿ããæ¹æ³ã«é¢ãã主è¦ãªããã¥ã¡ã³ãã¯æ¬¡ã®ã¨ããã§ãã
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
-- [NumPy 2.0ç§»è¡ã¬ã¤ã](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- [2.0.0 ãªãªã¼ã¹ãã¼ã](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- ã¹ãã¼ã¿ã¹æ´æ°ã®ãç¥ããã¤ã·ã¥ã¼ãã±ãã: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
-ããã°è¨äº ["NumPy 2.0: é²åã®ãã¤ã«ã¹ãã¼ã³"](https://blog.scientific-python.org/numpy/numpy2/) ã¯ãä»åã®ã¡ã¸ã£ã¼ãã¼ã¸ã§ã³ãªãªã¼ã¹ãã©ã®ããã«ãã¦æ±ºå®ããããã«ã¤ãã¦ã®ã¹ãã¼ãªã¼ãå°ãä¼ãã¦ãã¾ãã
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
### NumPy 1.25.0 ãªãªã¼ã¹
_ 2024å¹´5æ23æ¥_ -- NumPy 2.0ã2024å¹´6æ16æ¥ã«ãªãªã¼ã¹ãããäºå®ã«ãªãã¾ããï¼ ãã®ãªãªã¼ã¹ã¯1年以ä¸ããã¦æã
ãæºåãã¦ãããã®ã§ã2006年以æ¥ã®ã¡ã¸ã£ã¼ãªãªã¼ã¹ã¨ãªãã¾ãã ãã®ãªãªã¼ã¹ã§éè¦ãªãã¨ã¯ãå¤ãã®æ°æ©è½ã¨ããã©ã¼ãã³ã¹ã®åä¸ã«å ãã¦ã ãã®ãªãªã¼ã¹ã¯ã **ç ´å£çãªå¤æ´** ã§ãã Python 㨠C API ãå«ããABI ã¸ã®å¤æ´ ãå«ã¾ãã¦ãã¾ãã NumPyã«ä¾åãã¦ããããã±ã¼ã¸ãã¨ã³ãã¦ã¼ã¶ã¼ã®ã³ã¼ãããã®ã¯ç ´å£ç夿´ã«é©å¿ããå¿
è¦ãããå¯è½æ§ãããã¾ããå¯è½ã§ããã°ãããªãã®ã³ã¼ããNumPy `2.0.0rc2`ã§åä½ãããã©ãã確èªããé¡ããã¾ãã **詳細ã¯ä¸è¨ãã覧ãã ãã:**
- [NumPy 2.0ç§»è¡ã¬ã¤ã](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- [2.0.0 ãªãªã¼ã¹ ãã¼ã](https://numpy.org/devdocs/release/2.0.0-notes.html)
- ã¹ãã¼ã¿ã¹ã¢ãããã¼ããç¥ããã«é¢ããåé¡: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUSã®å¹´æ«ã®è³é調é
_2023å¹´12æ19æ¥_ -- NumFOCUSã¯ãå¹´æ«ãã£ã³ãã¼ã³ã§PyCharmãã¼ã ã¨ååããPyCharmã©ã¤ã»ã³ã¹ã®ååè³¼å
¥ã«30%ã®å²å¼ãæä¾ãã¦ãã¾ãã 2023å¹´12æ23æ¥ã¾ã§ã®PyCharmè³¼å
¥ã«ãã1å¹´ç®ã®åçã¯å
¨ã¦NumFOCUSã®ããã°ã©ã ã«ç´æ¥å¯ä»ããã¾ãã
è³¼å
¥ãããæ¹ã¯ãã¡ãã®URLã: https://lp.jetbrains.com/support-data-science/ ãã¡ãã®ã¯ã¼ãã³ã³ã¼ããå©ç¨ãã¦ãã ãã: ISUPPORTDATASCIENCEÂ
### NumPy 1.20.0 ãªãªã¼ã¹
-_2022å¹´12æ18æ¥_ -- [Numpy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯æ¬¡ã®ã¨ããã§ãã
+_2023å¹´1æ17æ¥_ -- [Numpy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
* Python 3.12.0 ã®ãµãã¼ã
* Cython 3.0.0 ã¨ã®äºææ§
* Mesonãã«ãã·ã¹ãã ã®å©ç¨
* SIMD ãµãã¼ãã®æ¹å
* f2py ã®ãã°ä¿®æ£, meson 㨠bind(x) ã®ãµãã¼ã
* æ´æ°ããã BLAS/LAPACK ã®é«éåã©ã¤ãã©ãªã®ãµãã¼ã
Numpy 1.26.0 㯠1.25 ããã®äºææ§ãä¿æãã¦ãã¾ããMesonãã«ãã·ã¹ãã ã¸ã®ç§»è¡ã¨Cython 3.0.0ã¸ã®ãµãã¼ããç®çã®ãªãªã¼ã¹ã§ãã åè¨20人ããã®ãªãªã¼ã¹ã«è²¢ç®ãã59åã®ãã«ãªã¯ã¨ã¹ãããã¼ã¸ããã¾ããã
ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯3.9ãã 3.12 ã§ãã
### numpy.orgãæ¥æ¬èªã¨ãã«ãã¬ã«èªã§å©ç¨å¯è½ã«ãªãã¾ãã
_2023å¹´4æ2æ¥_ -- numpy.orgã2ã¤ã®è¨èªã§å©ç¨å¯è½ã«ãªãã¾ããï¼ æ¥æ¬èªã¨ãã«ãã¬ã«èªã ç±å¿ãªãã©ã³ãã£ã¢ãããªããã°ããã®ããã¸ã§ã¯ãã¯ä¸å¯è½ã§ããï¼
_ãã«ãã¬ã«èª_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* GetuÌlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_æ¥æ¬èªï¼_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
翻訳ã¤ã³ãã©ã¹ãã©ã¯ãã£ã«é¢ããããã¸ã§ã¯ãã¯ãCZIããã®è³éæ´å©ã§ãµãã¼ãããã¦ãã¾ãã
ä»å¾ããNumPyã®ã¦ã§ããµã¤ããããå¤ãã®è¨èªã«ç¿»è¨³ãããã¨æã£ã¦ãã¾ãã ããæä¼ããå ´åã¯ãSlackä¸ã®NumPy翻訳ãã¼ã ã«é£çµ¡ããé¡ãã¾ã: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (#translation ãã£ã³ãã«ãæ¢ãã¦ãã ãã) (#translation ãã£ã³ãã«ãæ¢ãã¦ãã ãã) ã¾ããScientific Pythonã¨ã³ã·ã¹ãã å
¨ä½ã®ããã¥ã¡ã³ããæè²ã³ã³ãã³ãã®ãã¼ã«ã©ã¤ãºã«åãçµã翻訳ãã¼ã ã ç«ã¡ä¸ãã¦ãã¾ãã ãã®ããã¸ã§ã¯ãã«ãèå³ãããå ´åã¯ãæ¯éScientific Python Discordã«åå ãã¦ãã ãã: https://discord.gg/khWtqY6RKr. (#translation ãã£ã³ãã«ãæ¢ãã¦ãã ãã)
### Numpy 1.23.0 ãªãªã¼ã¹
-_2022å¹´1æ22æ¥_ -- [Numpy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯æ¬¡ã®ã¨ããã§ãã
+_2022å¹´12æ18æ¥_ -- [Numpy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯æ¬¡ã®ã¨ããã§ãã
* MUSLã®ãµãã¼ãã MUSLã®Wheelãæºåããã¾ããã
* å¯å£«éã®C/C++ã³ã³ãã¤ã©ãµãã¼ã
* einsum ã§ãªãã¸ã§ã¯ãé
åããµãã¼ããããããã«ãªãã¾ãã.
* è¡åã®ç½®ãæã(inplace)æãç®ã®ãµãã¼ã (`@=`).
Numpy 1.25. ãªãªã¼ã¹ã¯å¼ãç¶ãdtypeã®åãæ±ã㨠dtypeã®ããã¢ã¼ã·ã§ã³ãæ¹åããå®è¡é度ãåä¸ããã ããã¥ã¡ã³ããæç¢ºåããããã®ç¶ç¶çãªä½æ¥ãç¶ãã¦è¡ãäºå®ã§ãã å°æ¥ã® NumPy 2.0.0 ã«åããæºå使¥ãè¡ããã¦ããã 夿°ã®æ°è¦ããã³æéåãã®æ©è½å»æ¢ãå¯è½ã¨ãªã£ã¦ãã¦ãã¾ãã
åè¨148人ããã®ãªãªã¼ã¹ã«è²¢ç®ãã530åã®ãã«ãªã¯ã¨ã¹ãã ãã¼ã¸ããã¾ããã
ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯3.3.9 - 3.11 ã§ãã
### ã¤ã³ã¯ã«ã¼ã·ããªæåã®è²æ: åå ã®åé
_2023å¹´5æ10æ¥_ -- ã¤ã³ã¯ã«ã¼ã·ãã»ã«ã«ãã£ã¼ã®è²æ: åå åé
NumPyããã¸ã§ã¯ãã®å¤æ§æ§ã¨ã¤ã³ã¯ã«ã¼ã¸ã§ã³ã«é¢ãã¦ãæã
ã¯ã©ã®ãããªãã¨ã宿½ããã°ããã§ããããï¼ èå³ãããæ¹ã¯ãã¡ãã® [ã¬ãã¼ã](https://contributor-experience.org/docs/posts/dei-report/) ãèªãã§åå ããæ¹æ³ã確èªãã¦ãã ããã
### NumPy ããã¥ã¡ã³ãã¼ã·ã§ã³ãã¼ã ã®ãªã¼ãã¼ã®å¤æ´
_2023å¹´1æ6æ¥_ â- Mukulika Pahariã¨Ross Barnowskiã¯ãMelissa MendoncAudioã«ä»£ããNumPyããã¥ã¡ã³ãã¼ã·ã§ã³ãã¼ã ã®æ°ãããªã¼ãã¼ã¨ãã¦ä»»å½ããã¾ããã ç§ãã¡ã¯ãMelissaã«NumPyã®å
¬å¼ããã¥ã¡ã³ãã¨æè²è³æã«å¯¾ãããã¹ã¦ã®è²¢ç®ã«æè¬ããMukulikaã¨Rossã«æ°ããå½¹å²ã«ã¹ãããã¢ãããã¦ããã£ããã¨ã«æè¬ãã¾ãã
### NumPy 1.24.0 ãªãªã¼ã¹
-_2021å¹´1æ23æ¥_ -- [Numpy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯ä¸è¨ã®éãã§ãã
+_2022å¹´1æ22æ¥_ -- [Numpy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯æ¬¡ã®ã¨ããã§ãã
* ã¹ã¿ããã³ã°é¢æ°ã®ããã®æ°ãã"dtype"ã¨"casting"ãã¼ã¯ã¼ãã®è¿½å
* F2PYã®æ°æ©è½è¿½å ã¨ãã°ä¿®æ£
* å¤ãã®æ°ãã鿍奍(Deprecation)ã®è¿½å
* å¤ãã®æéåãã®éæ¨å¥¨(Deprecation)ã®åé¤
Numpy 1.25. ãªãªã¼ã¹ã¯å¼ãç¶ãdtypeã®åãæ±ã㨠dtypeã®ããã¢ã¼ã·ã§ã³ãæ¹åããå®è¡é度ãåä¸ããã ããã¥ã¡ã³ããæç¢ºåããããã®ç¶ç¶çãªä½æ¥ãç¶ãã¦è¡ãäºå®ã§ãã dtype ã®ããã¢ã¼ã·ã§ã³ã¨ã¯ãªã¼ã³ã¢ããã®å¤æ´ã«ããã夿°ã®æ°è¦ã¨æéåãã®éæ¨å¥¨ãåå¨ãã¦ãã¾ãã ä»åã®ãªãªã¼ã¹ã¯ã444åã®ãã«ãªã¯ã¨ã¹ãã¨177人ã®ã³ã³ããªãã¥ã¼ã¿ã¼ã«ãããã®ã§ãã ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.8-3.11 ã§ãã
### Numpy 1.26.0 㯠1.25 ããã®äºææ§ãä¿æãã¦ãã¾ãã
-_2021å¹´12æ31æ¥_ -- [Numpy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
+_2021å¹´1æ23æ¥_ -- [Numpy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯ä¸è¨ã®éãã§ãã
* `loadtxt` ãCã§å®è£
ããããã¨ã«ããã大å¹
ãªããã©ã¼ãã³ã¹åä¸
* ããç°¡åãªãã¼ã¿äº¤æã®ããã®Pythonã¬ãã«ã§ã®DLPackã®å
Ž
* æ§é åãããdtypesã®ããã¢ã¼ã·ã§ã³ã¨æ¯è¼æ¹æ³ã®å¤æ´
* f2pyã®æ¹å
Numpy 1.23. ãªãªã¼ã¹ã§ã¯å¼ãç¶ãdtypeã®åãæ±ã㨠dtypeã®ããã¢ã¼ã·ã§ã³ãæ¹åããå®è¡é度ãåä¸ããã ããã¥ã¡ã³ããæç¢ºåããããã®ç¶ç¶çãªä½æ¥ãç¶ãã¦è¡ãäºå®ã§ãã ä»åã®ãªãªã¼ã¹ã¯ã494åã®ãã«ãªã¯ã¨ã¹ãã¨151人ã®ã³ã³ããªãã¥ã¼ã¿ã¼ã«ãããã®ã§ãã ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.8 - 3.10 ã§ãã Python 3.11ãrc ã¹ãã¼ã¸ã«å°éãã㨠Python 3.11 ããµãã¼ãããã¾ãã
### NumFOCUS DEIç ç©¶ã¸ã®åå åé
_2022å¹´4æ13æ¥_ -- NumPyã¯ã[NumFOCUS](http://numfocus.org/)ã¨ååãã¦ã[ããç ç©¶ããã¸ã§ã¯ã](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)ãé²ãã¦ãããããã¯[Gordon & Betty Moore Foundation](https://www.moore.org/)ã«ãã£ã¦è³éæä¾ããã¦ãã¾ãã ãã®ç ç©¶ãã¼ã ã¯ãæ°ããè²¢ç®è
ãããã¸ã§ã¯ãã®éçºè
ããã³ã¡ã³ããã¼ãããã¦éå»ã«è²¢ç®ããæ¹ã
ã«ãNumPyã«åå ãè²¢ç®ããçµé¨ã«ã¤ãã¦è©±ãèãããã¨èãã¦ãã¾ãã
**ããªãã®çµé¨ãå
±æãããã¨ã«èå³ãããã¾ãã?**
ããèå³ãããå ´åã¯ãç ç©¶ç®æ¨ããã©ã¤ãã·ã¼ãããã³ å®ç§ç¾©åã«é¢ããè¿½å æ
å ±ãè¨è¼ããã¦ããããã®ç°¡åãª[åå è
ã®èå³](https://numfocus.typeform.com/to/WBWVJSqe)ãã©ã¼ã ã«è¨å
¥ããé¡ããã¾ãã 夿§ã§å
æ¬çãªãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã³ãã¥ããã£ã® æé·ã¨æç¶å¯è½æ§ã®ããã«ããã®ããã¸ã§ã¯ãã¸ã®ããªãã®åå ã¯é常ã«å¤§ããªä¾¡å¤ãããã¾ãã åå ãåãå
¥ãããã人ã¯ãç ç©¶ãã¼ã ã¡ã³ãã¼ã¨30åéã®ã¤ã³ã¿ãã¥ã¼ã«åå ãããã¨ã«ãªãã¾ãã
### NumPy 1.19.2 ãªãªã¼ã¹
-_2023å¹´9æ16æ¥_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
+_2021å¹´12æ31æ¥_ -- [Numpy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
* ã¡ã¤ã³ã®åå空éã®åã¢ããã¼ã·ã§ã³ã¯åºæ¬çã«å®äºãã¾ããã 䏿µã®ã³ã¼ãã¯å¸¸ã«å¤åãããã®ãªã®ã§ããããªãæ¹è¯ãå¿
è¦ã§ããããã大ããªä½æ¥ã¯çµãã£ãã¨èãã¦ãã¾ãã ããã¯ãããããä»åã®ãªãªã¼ã¹ã§æãç®ã«è¦ããæ¹è¯ã§ãããã
* 以åããææ¡ããã¦ãã [array API æ¨æº](https://data-apis.org/array-api/latest/) ã®ãã¼ã¿çãæä¾ããã¦ãã¾ã ( [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html) ãåç
§) ã ããã¯ãCuPy ã JAX ãªã©ã®ã©ã¤ãã©ãªã§ä½¿ç¨ã§ãã 颿°ã®æ¨æºçãªã³ã¬ã¯ã·ã§ã³ã使ããããã«å¿
è¦ãªã¹ãããã§ãã
* NumPy ã« DLPack ããã¯ã¨ã³ãã追å ããã¾ããã DLPack ã¯ãé
å(ãã³ã½ã«) ãã¼ã¿ç¨ã®å
±éã®ãã¼ã¿å¤æãã©ã¼ããããæä¾ãã¾ãã
* `quantile`, `percentile`, ããã³é¢é£ãã颿°ã«æ°ããã¡ã½ããã追å ããã¾ããã ãããã®æ°ããã¡ã½ããã¯ãè«æã§ä¸è¬çã«è¦ãããä¸éãã®å¦çãæä¾ãã¾ãã
* ã¦ããã¼ãµã«é¢æ°ã¯ã[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html) ã®å¤ããå®è£
ããããã«ãªãã¡ã¯ã¿ãªã³ã°ããã¾ããã ããã«ããå°æ¥ã® DType API ã®å¦çãå¯è½ã«ãã¾ãã
* ãã¦ã³ã¹ããªã¼ã ã®ããã¸ã§ã¯ãã§ä½¿ç¨ããããã®æ°ããè¨å®å¯è½ãªã¡ã¢ãªã¼ã»ã¢ãã±ã¼ã¿ã¼ã追å ããã¾ããã
NumPy 1.22.0ã¯ã153人ã®è²¢ç®è
ã609ã®ãã«ãªã¯ã¨ã¹ãã使ãã é常ã«å¤§ããªãªãªã¼ã¹ã§ãã ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.8 - 3.10 ã§ãã
### ç§å¦çãªPythonã¨ã³ã·ã¹ãã ã«ãããå
æ¬çãªæåã®åé²
_ 2021å¹´8æ31æ¥_ -- ãã®åº¦ãChan Zuckerberg Initiativeãããç§å¦çãªPythonããã¸ã§ã¯ãã«ããã¦ãæ´å²çã«çå¤ããã¦ããã°ã«ã¼ãã®äººã
ã®ãªã³ãã¼ãã£ã³ã°ãã¤ã³ã¯ã«ã¼ã¸ã§ã³ããªãã³ã·ã§ã³ãæ¯æ´ããNumPyãSciPyãMatplotlibãPandasã®ã³ãã¥ããã£ãã¤ããã¯ã¹ãæ§é çã«æ¹åããããã® [ 婿éãæä¸ããã¾ãã ](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) ãã¨ããç¥ãããã¾ãã
[ CZIã®Essential Open Source Software for Scienceããã°ã©ã ](https://chanzuckerberg.com/eoss/)ã®ä¸ç°ã¨ãã¦ããã®[ Diversity & Inclusionè£å©é ](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)ã¯ãéãããªãªã¼ãã³ã½ã¼ã¹ã³ãã¥ããã£ãè²æããããã«ããã¹ããã¨ãç¹å®ããããææ¸åãããã宿½ãããããããã®ã³ã³ããªãã¥ã¼ã¿ä½é¨ã®ãªã¼ãã¼å°ä»»è·ã®åµè¨ãæ¯æ´ãããã¨ã«ãªãã¾ãã ãã®ããã¸ã§ã¯ãã¯ãMelissa Mendonça (NumPy) ãä¸å¿ã¨ãªã£ã¦ãä¸è¨ã®æ¹ã
ã®è¿½å ã®ã¡ã³ã¿ãªã³ã°ã¨ãµãã¼ãã«ãã宿½ããã¾ãã Ralf Gommers (NumPyãSciPy)ãHannah Aizenmanã¨Thomas Caswell (Matplotlib)ãMatt Haberland (SciPy)ããã㦠Joris Van den Bossche (Pandas)ã
ãã®ããã¸ã§ã¯ãã¯ç§ãã¡ã®OSSããã¸ã§ã¯ãã®ã³ãã¥ããã£ãã¤ããã¯ã¹ãæ§é çã«æ¹åããæ¹æ³ãçºè¦ãã宿½ãããã¨ãç®æãéå¿çãªããã¸ã§ã¯ãã§ãã ãã®ãããªè¤æ°ã®ããã¸ã§ã¯ãã®æ¨ªæçãªå½¹å²ã確ç«ãããã¨ã§ãScientific Pythonã³ãã¥ããã£ã«æ°ããã³ã©ãã¬ã¼ã·ã§ã³ã¢ãã«ãå°å
¥ããã¨ã³ã·ã¹ãã å
ã®ã³ãã¥ããã£æ§ç¯ä½æ¥ãããå¹ççã«ããã大ããªææãçããããã«ãããã¨èãã¦ãã¾ãã ç¹ã«ãã®ããã¸ã§ã¯ãã«ãããæ´å²çã«ããã¾ã§ä»£è¡¨çã§ã¯ãªãã£ãã°ã«ã¼ãããã®æ°ããã³ã³ããªãã¥ã¼ã¿ãå¼ãä»ããè²¢ç®ãç¶æããããã«ãä½ããã¾ããããä½ããã¾ããããªããããããæç¢ºã«ææ¡ã§ããããã«ãªãã¨æå¾
ãã¦ãã¾ãã æå¾ã«ã宿½ããã¢ã¯ã·ã§ã³ã«ã¤ãã¦è©³ç´°ãªå ±åæ¸ã使ããããã¸ã§ã¯ãã®ä»£è¡¨è
ãã³ãã¥ããã£ã¨ã®äº¤æµã®é¢ã§ãããã¸ã§ã¯ãã«ã©ã®ãããªå½±é¿ãä¸ãããã説æããäºå®ã§ãã
2021å¹´11æãã2å¹´éã®ããã¸ã§ã¯ããå§ã¾ãã¨äºæ³ããã¦ããããã®ããã¸ã§ã¯ãã®ææã楽ãã¿ã«ãã¦ãã¾ã! ãã®ããã¸ã§ã¯ãã®ææ¡æ¸ã«é¢ãã¦ã¯ã[ãã¡ã](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063) ããå
¨æãèªããã¨ãã§ãã¾ã.
### 2021年度NumPyã¢ã³ã±ã¼ã
_2021å¹´7æ12æ¥_ -- NumPy ã§ã¯ã³ãã¥ããã£ã®åãä¿¡ãã¦ãã¾ãã æ¨å¹´ã®ç¬¬1åã¢ã³ã±ã¼ãã«ã¯ã75ã«å½ãã1,236åã®NumPyã¦ã¼ã¶ã¼ãåå ãã¦ããã¾ããã ãã®èª¿æ»çµæã«ãããä»å¾12ã¶æéãç§ãã¡ãã©ã®ãããªãã¨ã«éä¸ãã¹ããããé常ã«è¯ãçè§£ãããã¨ãã§ãã¾ããã
ä»å¹´ãã¢ã³ã±ã¼ãã®æéãæ¥ã¾ãããããä¸åº¦ã¢ã³ã±ã¼ãã¸ã®åçããé¡ããããã¾ãã ã¢ã³ã±ã¼ãã¸ã®åçã¯15åã»ã©ã§çµäºãã¾ãã ã¢ã³ã±ã¼ãã¯è±èªä»¥å¤ã«ãããã³ã¬ã«èªããã©ã³ã¹èªããã³ãã£ã¼èªãæ¥æ¬èªããã³ããªã³ããã«ãã¬ã«èªããã·ã¢èªãã¹ãã¤ã³èªã®8ã¶å½èªã«å¯¾å¿ãã¦ãã¾ãã
ãã¡ãã®ãªã³ã¯å
ãããã¢ã³ã±ã¼ããå§ãããã¨ãã§ãã¾ã: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSL4q.
### Numpy 1.18.0 ãªãªã¼ã¹
-_2023å¹´1æ17æ¥_ -- [Numpy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
+_2023å¹´9æ16æ¥_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
- ããå¤ãã®æ©è½ããã©ãããã©ã¼ã ãã«ãã¼ããããã®SIMDé¢é£ã®æ¹åã宿½ããã¾ããã
- dtypeã®ããã®æ°ããã¤ã³ãã©ã¨ãã£ã¹ãã®æºå
- Mac çã® Python 3.8 㨠Python 3.9 ç¨ universal2 wheel
- ããã¥ã¡ã³ãã®æ¹å
- ã¢ããã¼ã·ã§ã³ã®æ¹å
- ä¹±æ°çæç¨ã®æ°ãã `PCG64DXSM` ãããçææ©
ä»åã®Numpy ãªãªã¼ã¹ã¯ã175人ã«ãã581ä»¶ã®ãã«ãªã¯ã¨ã¹ãã®ãã¼ã¸ã®çµæã§ãã ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.7-3.9 ã§ãã Python 3.10 ããªãªã¼ã¹ãããå¾ãPython 3.10 ã®ãµãã¼ãã追å ããã¾ãã
### 2020年度 NumPy ã¢ã³ã±ã¼ãçµæ
_2021å¹´6æ22æ¥_ -- NumPyã®èª¿æ»ãã¼ã ã¯ã2020å¹´ã« ãã·ã¬ã³å¤§å¦ã¨ã¡ãªã¼ã©ã³ã大å¦ã®å¦çãæå¡ã¨ååãã¦ãæåã®å
¬å¼NumPyã³ãã¥ããã£èª¿æ»ã宿½ãã¾ããã ã¢ã³ã±ã¼ãã®çµæã¯ãã¡ããã確èªã§ãã¾ãã https://numpy.org/user-survey-2020/
### NumPy 1.19.2 ãªãªã¼ã¹
_2021å¹´1æ30æ¥_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã¯180 人以ä¸ã®ã³ã³ããªãã¥ã¼ã¿ã¼ã®ãããã§ãããã¾ã§ã§æå¤§ã® NumPyã®ãªãªã¼ã¹ã¨ãªãã¾ããã æãéè¦ãª2ã¤ã®æ°æ©è½ã¯æ¬¡ã®ã¨ããã§ãã
- NumPyã®å¤§é¨åã®ã³ã¼ãã«å注éã追å ããã¾ããã ããã¦æ°ãããµãã¢ã¸ã¥ã¼ã«ã§ãã`numpy.typing`ã追å ããã¾ããã ãã®ãµãã¢ã¸ã¥ã¼ã«ã¯`ArrayLike` ã`DtypeLike`ã¨ããåæ³¨éã®ã¨ã¤ãªã¢ã¹ãå®ç¾©ããã¦ãããããã«ããã¦ã¼ã¶ã¼ããã¦ã³ã¹ããªã¼ã ã®ã©ã¤ãã©ãªã¯ãã®å注éã使ããã¨ãã§ãã¾ãã
- X86(SSEãAVX)ãARM64(Neon)ãããã³PowerPC (VSX) å½ä»¤ããµãã¼ããããã«ããã©ãããã©ã¼ã SIMDã³ã³ãã¤ã©ã®æé©åã宿½ããã¾ããã ããã«ãããå¤ãã®é¢æ°ã§å¤§ãã ããã©ã¼ãã³ã¹ãåä¸ãã¾ãã (ä¾: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
### NumPyããã¸ã§ã¯ãã®å¤æ§æ§
_2020å¹´9æ20æ¥ã«_ ãç§ãã¡ã¯[ NumPyããã¸ã§ã¯ãã«ããããã¤ãã¼ã·ãã£ãã¤ã³ã¯ã«ã¼ã¸ã§ã³ã®ç¶æ³ããã½ã¼ã·ã£ã«ã¡ãã£ã¢ä¸ã§ã®è°è«ã«ã¤ãã¦ã®å®£è¨ ](/diversity_sep2020)ã«ã¤ãã¦æ¸ãã¾ããã
### Natureã«åã®å
¬å¼NumPyè«æãæ²è¼ããã¾ãã!
_2020å¹´9æ16æ¥_ -- NumPyã«é¢ãã [ æåã®å
¬å¼ã®è«æ ](https://www.nature.com/articles/s41586-020-2649-2)ãNatureã«æ»èªä»ãè«æã¨ãã¦æ²è¼ããã¾ããã ããã¯NumPy 1.0ã®ãªãªã¼ã¹ãã14å¹´å¾ã®ãã¨ã«ãªãã¾ããã ãã®è«æã§ã¯ãé
åããã°ã©ãã³ã°ã®ã¢ããªã±ã¼ã·ã§ã³ã¨åºæ¬çãªã³ã³ã»ãããNumPyã®ä¸ã«æ§ç¯ãããæ§ã
ãªç§å¦çPythonã¨ã³ã·ã¹ãã ãããã¦CuPyãDaskãJAXã®ãããªå¤é¨ã®é
åããã³ãã³ã½ã«ã©ã¤ãã©ãªã¨ã®ç¸äºéç¨ã容æã«ããããã«æè¿è¿½å ãããé
åãããã³ã«ã«ã¤ãã¦èª¬æãã¦ãã¾ãã
### Python 3.9ã®ãªãªã¼ã¹ã«ä¼´ãããã¤NumPyã®ãã¤ããªwheelããªãªã¼ã¹ãããã®ã§ããï¼
_2020å¹´9æ14æ¥_ -- Python 3.9 ã¯æ°é±éå¾ã«ãªãªã¼ã¹ãããäºå®ã§ãã ããããªããæ°ããPythonã®ãã¼ã¸ã§ã³ããã¡æ©ãå©ç¨ãã¦ããå ´åãNumPyï¼ããã³SciPyã®ãããªä»ã®ããã±ã¼ã¸ï¼ããªãªã¼ã¹å½æ¥ã«ãã¤ããªwheelãç¨æãã¦ããªããã¨ãç¥ã£ã¦ãã£ããããããããã¾ãããã ãã«ãç¨ã®ã¤ã³ãã©ãæ°ããPythonã®ãã¼ã¸ã§ã³ã«é©å¿ãããã®ã¯é常ã«å¤§å¤ãªä½æ¥ã§ãPyPIãconda-forgeã«ããã±ã¼ã¸ãæ²è¼ãããã¾ã§ã«ã¯é常æ°é±éãããã¾ãã ä»å¾ã®wheelã®ãªãªã¼ã¹ã«åãã¦ã以ä¸ã確èªãã¦ãã ããã
- `pip` ã`manylinux2010` 㨠`manylinux2014` ããµãã¼ãããããã«pipãå°ãªãã¨ããã¼ã¸ã§ã³ 20.1 ã«æ´æ°ããã
- [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) ã¾ã㯠`--only-binary=:all:` ã`pip`ãã½ã¼ã¹ãããã«ããããã¨ããã®ãé²ãããã«ä½¿ç¨ãã¾ãã
### NumPy 1.19.2 ãªãªã¼ã¹
_2020å¹´9æ10æ¥_ -- [NumPy 19.2.0](https://numpy.org/devdocs/release/1.19.2-notes.html) ããªãªã¼ã¹ããã¾ããã ãã® 1.19 ã·ãªã¼ãºã®ææ°ãªãªã¼ã¹ã§ã¯ãããã¤ãã®ãã°ãä¿®æ£ããã[ æ¥ãã¹ã Cython 3.xãªãªã¼ã¹ ](http:/docs.cython.orgenlatestsrcchanges.html)ã¸ã®æºåãè¡ãããã¢ããã¹ããªã¼ã ã®ä¿®æ£ãé²è¡ä¸ã®éã distutils ã®åä½ãç¶æããããã®setuptoolsã®ãã¼ã¸ã§ã³ã®åºå®ã宿½ããã¦ãã¾ãã aarch64 wheelã¯ææ°ã®manylinux2014ãªãªã¼ã¹ã§ãã«ãããã¦ãããç°ãªãLinuxãã£ã¹ããªãã¥ã¼ã·ã§ã³ã§ä½¿ç¨ãããç°ãªããã¼ã¸ãµã¤ãºã®åé¡ãä¿®æ£ããã¦ãã¾ãã
### åãã¦ã®NumPyã®èª¿æ»ãå
¬éããã¾ãã!!
_2020å¹´7æ2æ¥_ -- ãã®ã¢ã³ã±ã¼ã調æ»ã¯ãNumPyã«ããããã½ããã¦ã§ã¢ã¨ãã¦ã¨ã³ãã¥ããã£ã®ä¸¡æ¹ã«ãããæææ±ºå®ã®æéã¨ãªããåªå
é ä½ã決å®ããå½¹ã«ç«ã¡ã¾ããã ãã®èª¿æ»çµæã¯è±èªä»¥å¤ã®ãããã®8ã¤ã®è¨èªã§å©ç¨å¯è½ã§ã: ãã³ã°ã©, ãã³ãã£ã¼èª, æ¥æ¬èª, ãã³ããªã³, ãã«ãã¬ã«èª, ãã·ã¢èª, ã¹ãã¤ã³èªã¨ãã©ã³ã¹èª.
NumPy ãããè¯ãããããã«ããã¡ãã® \[ã¢ã³ã±ã¼ã\](https://umdsurvey. umd. edu/jfe/form/SV_8bJrXjbhXf7saAl) ã«ååãã¦ããããã¨å©ããã¾ãã
### NumPy ã«æ°ãããã´ãã§ãã¾ãã!
_2020å¹´6æ24æ¥_ -- NumPyã®ãã´ãæ°ãããªãã¾ãã:
<img src="/images/logos/numpy_logo.svg" alt="NumPyã®ãã´" title="æ°ããNumPyãã´" width=300>
æ°ãããã´ã¯ãå¤ããã´ã«æ¯ã¹ã¦ãã¢ãã³ã§ããã¯ãªã¼ã³ãªãã¶ã¤ã³ã«ãªãã¾ããã æ°ãããã´ããã¶ã¤ã³ãã¦ãããIsabela Presedo-Floydã¨ã15年以ä¸ã«ããã£ã¦ä½¿ç¨ãã¦ããæ§ãã´ããã¶ã¤ã³ãã¦ãããTravis Vaughtã«æè¬ãã¾ãã
### NumPy 1.19.0 ãªãªã¼ã¹
_2020å¹´6æ20æ¥_ -- NumPy 1.19.0 ããªãªã¼ã¹ããã¾ããã ãã®ãã¼ã¸ã§ã³ã¯ Python 2ç³»ã®ãµãã¼ãããªãæåã®ãªãªã¼ã¹ã§ããã"ã¯ãªã¼ã³ã¢ããç¨ã®ãªãªã¼ã¹" ã§ãã ãµãã¼ãããã¦ããä¸çªå¤ãPython ã®ãã¼ã¸ã§ã³ã¯ Python 3.6 ã«ãªãã¾ããã ã¾ããä»åã®éè¦ãªæ°æ©è½ã¯NumPy 1.17.0ã§å°å
¥ãããä¹±æ°çæç¨ã®ã¤ã³ãã©ã«Cythonããã¢ã¯ã»ã¹ã§ããããã«ãªã£ããã¨ã§ãã
### ããã¥ã¡ã³ãå諾æé
_2020å¹´5æ11æ¥_ -- NumPyã¯ã Googleã®ã·ã¼ãºã³ãªãããã¥ã¡ã³ãããã°ã©ã ã®ã¡ã³ã¿ã¼å£ä½ã®1ã¤ã¨ãã¦é¸ã°ãã¾ããã NumPy ã®ããã¥ã¡ã³ããæ¹åããããã«ããã¯ãã«ã«ã©ã¤ã¿ã¼ã¨ååãããã®æ©ä¼ã楽ãã¿ã«ãã¦ãã¾ã! 詳細ã«ã¤ãã¦ã¯ã [ã·ã¼ãºã³ãªãããã¥ã¡ã³ãå
¬å¼ãµã¤ã](https://developers.google.com/season-of-docs/) 㨠[ã¢ã¤ãã¢ãã¼ã¸](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas) ãã覧ãã ããã
### NumPy 1.18.0 ãªãªã¼ã¹
_2019å¹´12æ22æ¥_ -- NumPy 1.18.0 ããªãªã¼ã¹ããã¾ããã ãã®ãªãªã¼ã¹ã¯ã1.17.0ã§ã®ä¸»è¦ãªå¤æ´ã®å¾ã®ãã¾ã¨ãã®ãããªãªãªã¼ã¹ã§ãã Python 3.5 ããµãã¼ãããæå¾ã®ãã¤ãã¼ãªãªã¼ã¹ã«ãªãã¾ãã ä»åã®ãªãªã¼ã¹ã§ã¯ã64ãããã®BLASããã³LAPACKã©ã¤ãã©ãªã¨ãªã³ã¯ããããã®ã¤ã³ãã©ã®è¿½å ãã`numpy.random`ã®ããã®æ°ããC-APIã®è¿½å ãªã©ãè¡ããã¾ããã
詳細ã«ã¤ãã¦ã¯ã [ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.0) ãåç
§ãã¦ãã ããã
### NumPyã¯Chan Zuckerberg財å£ãã婿éãåãã¾ããã
_2019å¹´11æ15æ¥_ -- NumPyã¨ãNumPyã®éè¦ãªä¾åã©ã¤ãã©ãªã®1ã¤ã§ããOpenBLASããChan Zuckerberg財å£ã®[Essential Open Source Software for Scienceããã°ã©ã ](https:/chanzuckerberg.comeoss)ãéãã¦ãç§å¦ã«ä¸å¯æ¬ ãªãªã¼ãã³ã½ã¼ã¹ãã¼ã«ã®ã½ããã¦ã§ã¢ã®ã¡ã³ããã³ã¹ãæé·ãéçºãã³ãã¥ããã£ã¸ã®åå ãªã©ãæ¯æ´ãã195,000ãã«ã®å
±å婿éãç²å¾ãããã¨ãçºè¡¨ãã¾ããã
ãã®å©æéã¯ãNumpy ããã¥ã¡ã³ããã¦ã§ããµã¤ãã®åè¨è¨ãªã©ã®æ¹åã«åããåãçµã¿ãä¿é²ããããã«ä½¿ç¨ããã¾ãã å¤§è¦æ¨¡ãã¤æ¥éã«æ¡å¤§ããã¦ã¼ã¶ã¼ã®ä½é¨ãããè¯ãããããã¸ã§ã¯ãã®é·æçãªæç¶å¯è½æ§ã確ä¿ããããã®ã³ãã¥ããã£éçºãè¡ã£ã¦ããã¾ãã OpenBLASãã¼ã ã¯ãæè¡çã«é常ã«éè¦ãªåé¡ã§ãããã¹ã¬ããå®å
¨æ§ãAVX-512ã«å¯¾å¦ãããã¨ã«æ³¨åãã¾ãã ã¾ããã¹ã¬ãããã¼ã«ã«ã¹ãã¬ã¼ã¸(TLS) ã®åé¡ããOpenBLASãä¾åããReLAPACK(å帰çãªLAPACK) ã®ã¢ã«ã´ãªãºã ã®æ¹åã宿½ãã¾ãã
ææ¡ãããã¤ãã·ã¢ããã¨ãã®ææã®è©³ç´°ã«ã¤ãã¦ã¯ã [ãã«ã°ã©ã³ããããã¼ã¶ã«](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167) ãåç
§ãã¦ãã ããã ãã®åãçµã¿ã¯2019å¹´12æ1æ¥ããå§ã¾ããä»å¾12ã¶æéç¶ç¶å®æ½ãããäºå®ã§ãã
<a name="releases"></a>
## éå»ã®ãªãªã¼ã¹
ãã¡ãã¯ããã以åã®NumPyãªãªã¼ã¹ã®ãªã¹ãã§ãåãªãªã¼ã¹ãã¼ãã¸ã®ãªã³ã¯ãè¨è¼ããã¦ãã¾ãã å
¨ã¦ã®ãã°ãã£ãã¯ã¹ãªãªã¼ã¹(ãã¼ã¸ã§ã³çªå·`x.y.z` ã®`z`ã ãã夿´ããããã®)ã¯æ°ããæ©è½è¿½å ã¯ãããããã¤ãã¼ãªãªã¼ã¹ (`y` ãå¢ãããã®)ã¯ãæ°ããæ©è½è¿½å ããã¦ãã¾ãã
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
-- NumPy 2.1.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _2024å¹´10æ5æ¥_.
-- NumPy 2.1.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _2024å¹´9æ3æ¥_.
-- NumPy 2.0.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _2024å¹´8æ26æ¥_.
-- NumPy 2.1.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _2024å¹´8æ18æ¥_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 1.22.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _2022å¹´5æ20æ¥_.
-- NumPy 2.0.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _2024å¹´6æ16æ¥_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _ 2024å¹´1æ2æ¥_.
-- NumPy 1.26.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _ 2024å¹´1æ2æ¥_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _2023å¹´11æ12æ¥_.
- NumPy 1.26.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _2023å¹´10æ14æ¥_.
- NumPy 1.26.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _2023å¹´9æ16æ¥_.
- NumPy 1.25.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _2023å¹´7æ31æ¥_.
- NumPy 1.25.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _2023å¹´7æ8æ¥_.
- NumPy 1.24.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _2023å¹´6æ26æ¥_.
- NumPy 1.25.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _2023å¹´6æ17æ¥_.
- NumPy 1.24.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _2023å¹´4æ22æ¥_.
- NumPy 1.24.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _2023å¹´2æ5æ¥_.
- NumPy 1.24.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _2022å¹´12æ26æ¥_.
- NumPy 1.18.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _2020å¹´4æ19æ¥_.
- NumPy 1.23.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _2022å¹´11æ19æ¥_.
- NumPy 1.23.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _2022å¹´10æ12æ¥_.
- NumPy 1.23.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _2022å¹´9æ9æ¥_.
- NumPy 1.23.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _2022å¹´8æ14æ¥_.
- NumPy 1.23.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _2022å¹´7æ8æ¥_.
- NumPy 1.23.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _2022å¹´6æ22æ¥_.
- NumPy 1.22.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _2022å¹´5æ20æ¥_.
- NumPy 1.21.6 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _2022å¹´4æ12æ¥_.
- NumPy 1.22.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.2)) -- _2022å¹´3æ7æ¥_.
- NumPy 1.22.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _2022å¹´2æ3æ¥_.
- NumPy 1.22.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _2022å¹´1æ14æ¥_.
- NumPy 1.22.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _2021å¹´12æ31æ¥_.
- NumPy 1.21.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _2021å¹´12æ19æ¥_.
- NumPy 1.21.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _2021å¹´6æ22æ¥_.
- NumPy 1.20.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _2021å¹´5æ10æ¥_.
- NumPy 1.20.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _2021å¹´1æ30æ¥_.
- NumPy 1.19.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _2021å¹´1æ5æ¥_.
- NumPy 1.19.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _2020å¹´6æ20æ¥_.
- NumPy 1.18.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _2020å¹´5æ3æ¥_.
- NumPy 1.17.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _2020å¹´1æ1æ¥_.
- NumPy 1.18.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _2019å¹´12æ22æ¥_.
- NumPy 1.17.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _2019å¹´7æ26æ¥_.
- NumPy 1.16.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _2019å¹´1æ14æ¥_.
- NumPy 1.15.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _2018å¹´7æ23æ¥_.
- NumPy 1.14.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _2018å¹´1æ7æ¥_.
|
numpy/numpy.org
|
645139f378e6bf0106b2bbbf394128fe1dabce9a
|
New translations news.md (Arabic)
|
diff --git a/content/ar/news.md b/content/ar/news.md
index 08bd83d..7a7aba2 100644
--- a/content/ar/news.md
+++ b/content/ar/news.md
@@ -1,322 +1,322 @@
---
-title: Ø§ÙØ£Ø®Ø¨Ø§Ø±
+title: News
sidebar: false
newsHeader: "NumPy 2.2.0 released!"
date: 2024-12-8
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
* New functions `matvec` and `vecmat`,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (`@=`).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
* Implementation of `loadtxt` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new `PCG64DXSM` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
-## Ø§ÙØ¥ØµØ¯Ø§Ø±Ø§Øª
+## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
43f25c914d01f7ab96d1fff92177915fb36108a0
|
New translations news.md (Spanish)
|
diff --git a/content/es/news.md b/content/es/news.md
index 209ea5b..dc73b05 100644
--- a/content/es/news.md
+++ b/content/es/news.md
@@ -1,322 +1,322 @@
---
-title: Noticias
+title: News
sidebar: false
-newsHeader: "¡NumPy 2.0 ha sido lanzado!"
-date: 2024-06-17
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
---
### NumPy 2.2.0 released
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
* New functions `matvec` and `vecmat`,
* Many improved annotations,
* Improved support for the new StringDType,
* Improved support for free threaded Python,
* Fixes for f2py.
This release supports Python versions 3.10-3.13.
-### Lanzamiento de NumPy 2.1.0
+### NumPy 2.1.0 released
-_18 de agosto 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. Además de las habituales correcciones de errores y soporte actualizado de Python, ayuda a que NumPy vuelva a su ciclo de publicación habitual después del extenso desarrollo de 2.0. Los aspectos más destacados son:
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
-- Soporte para Python 3.13.
-- Soporte preliminar para Python 3.13 de hilos libres.
-- Compatibilidad con la norma array-api 2023.12.
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
-Esta versión es compatible con las versiones 3.10-3.13 de Python.
+Python versions 3.10-3.13 are supported by this release.
-### Lanzamiento de NumPy 2.0.0
+### NumPy 2.0.0 released
-_16 de junio de 2024_ -- NumPy 2.0.0 es el primer lanzamiento importante desde 2006. Es el resultado de 11 meses de desarrollo desde el último lanzamiento de caracterÃsticas y es el trabajo de 212 colaboradores distribuidos entre 1078 solicitudes de incorporación de cambios. Contiene un gran número de nuevas caracterÃsticas interesantes, asà como cambios en las APIs de Python y C. Incluye cambios importantes que no podrÃan producirse en un lanzamiento menor regular, como una ruptura de ABI, cambios en las reglas de promoción de tipos y cambios en la API que podrÃan no haber estado emitiendo advertencias de obsolescencia en la versión 1.26.x. Los documentos clave relacionados con cómo adaptarse a los cambios en NumPy 2.0 incluyen:
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
-- La [guÃa de migración a NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- Las [ notas del lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- Emisión de anuncios para actualizaciones de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
-La publicación ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) cuenta un poco de la historia sobre cómo se llegó a este lanzamiento.
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
-### Fecha de lanzamiento de NumPy 2.0: 16 de junio
+### NumPy 2.0 release date: June 16
-_23 de mayo de 2024_ -- Estamos encantados de anunciar que NumPy 2.0 está previsto que sea lanzado el 16 de junio de 2024. Esta publicación lleva más de un año en proceso y es el primer lanzamiento importante desde 2006. Es importante destacar que, además de muchas nuevas caracterÃsticas y mejoras en el rendimiento, contiene **cambios disruptivos** frente al ABI, como también a las APIs de Python y C. Es probable que los paquetes dependientes o downstream y código de usuario final necesiten ser adaptados - si puedes, por favor verifica que tu código funciona con NumPy `2.0.0rc2`. **Por favor, revisa lo siguiente para más detalles:**
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
-- La [GuÃa de migración de NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- Las [notas de lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- Emisión de anuncios para actualizaciones de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
-### Recaudación de fondos de fin de año de NumFOCUS
-_19 de diciembre de 2023_ -- NumFOCUS se ha asociado con PyCharm durante su campaña de fin de año para ofrecer un 30% de descuento en licencias de primera vez de PyCharm. Todos los ingresos del primer año de las compras de PyCharm desde ahora hasta el 23 de diciembre de 2023 se destinarán directamente a los programas de NumFOCUS.
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
-Utiliza una URL única que te permitirá rastrear las compras https://lp.jetbrains.com/support-data-science/ o un código de cupón ISUPPORTDATASCIENCEÂ
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
-### NumPy 1.26.0 ha sido lanzado
+### NumPy 1.26.0 released
-_16 de septiembre de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) ahora está disponible. Los aspectos más destacados del lanzamiento son:
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) ahora está disponible. The highlights of the release are:
* Soporte de Python 3.12.0.
* Compatibilidad con Cython 3.0.0.
* Utilización del sistema de compilación Meson
* Actualización del soporte de SIMD
* Correcciones de f2py, meson y soporte de bind(x)
* Soporte para la librerÃa actualizada Accelerate BLAS/LAPACK
La versión 1.26.0 de NumPy es la continuación de la serie 1.25.x que marca la transición al sistema de compilación Meson y que provee soporte para Cython 3.0.0. Un total de 20 personas contribuyeron a esta versión y 59 solicitudes de cambios fueron fusionadas.
Las versiones de Python compatibles con esta versión son 3.9-3.12.
-### numpy.org ya está disponible en japonés y portugués
+### numpy.org is now available in Japanese and Portuguese
-_ 2 de agosto de 2023_ -- numpy.org ya está disponible en 2 idiomas adicionales: japonés y portugués. Esto no serÃa posible sin nuestros dedicados voluntarios:
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
-_Portugués:_
-* Melissa Weber Mendonça (melissawm)
-* Precios Ricardo (ricardoprins)
-* GetuÌlio Silva (getuliosilva)
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
-_Japonés:_
+_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
-El trabajo sobre la infraestructura de traducción se apoya con fondos de CZI.
+The work on the translation infrastructure is supported with funding from CZI.
-De cara al futuro, nos encantarÃa traducir el sitio web a más idiomas. Si quieres ayudar, por favor pone en contacto con el equipo de traducciones de NumPy en Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Busca el canal #translations) También estamos formando un equipo de traducciones que estará trabajando en la localización de la documentación y el contenido educativo a través de todo el ecosistema de Python cientÃfico. Si esto ha despertado tu interés, únete a nosotros en el Discord de Python cientÃfico: https://discord.gg/khWtqY6RKr. (Busca el canal #translations)
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
-### NumPy 1.25.0 ha sido lanzado
+### NumPy 1.25.0 released
-_17 de junio de 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
-* Soporte para MUSL, ahora hay ruedas MUSL.
-* Soporte para el compilador de Fujitsu C/C++.
-* Los arreglos de objetos ahora están soportadas en einsum.
-* Soporte para la multiplicación de matrices in situ (`@=`).
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
-NumPy 1.25. continúa el trabajo en curso para mejorar el manejo y promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación. También se ha realizado trabajo preparatorio para el futuro NumPy 2.0.0, resultando en un gran número de nuevas y eliminadas obsolescencias.
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
-Un total de 148 personas contribuyeron a esta versión y 530 solicitudes de incorporación de cambios fueron aceptadas.
+A total of 148 people contributed to this release and 530 pull requests were merged.
-Las versiones de Python soportadas por este lanzamiento son 3.9-3.11.
+The Python versions supported by this release are 3.9-3.11.
-### Fomentar una Cultura Inclusiva: Convocatoria de Participación
+### Fostering an Inclusive Culture: Call for Participation
-_10 de mayo de 2023_ -- Fomentar una Cultura Inclusiva: Convocatoria de Participación
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
-¿Cómo podemos ser mejores cuando se trata de diversidad e inclusión? Lee el informe y averigua cómo involucrarte [aquÃ](https://contributor-experience.org/docs/posts/dei-report/).
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
-### Transición en el liderazgo del equipo de documentación de NumPy
+### NumPy documentation team leadership transition
-_6 de enero de 2023_ â- Mukulika Pahari y Ross Barnowski son nombrados como los nuevos lÃderes del equipo de documentación de NumPy, reemplazando a Melissa Mendonça. Damos las gracias a Melissa por todas sus contribuciones a la documentación oficial de NumPy y materiales educativos, y a Mukulika y Ross por asumir este rol.
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
-### Lanzamiento de NumPy 1.24.0
+### NumPy 1.24.0 released
-_18 de diciembre de 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
-* Nuevas palabras clave "dtype" y "casting" para las funciones de apilamiento.
-* Nuevas caracterÃsticas y correcciones de F2PY.
-* Muchas nuevas obsolescencias, revÃsalas.
-* Muchas obsolescencias caducadas,
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
-El lanzamiento de NumPy 1.24.0 continúa el trabajo en curso para mejorar el manejo y promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación. Hay un gran número de obsolescencias nuevas y caducadas debido a los cambios en la limpieza y promoción de tipo dtype. Es el trabajo de 177 colaboradores distribuidos sobre 444 solicitudes de incorporación de cambios. Las versiones Python soportadas son 3.8-3.11.
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
-### NumPy 1.23.0 ha sido lanzado
+### Numpy 1.23.0 released
-_22 de junio de 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
-* Implementación de `loadtxt` en C, mejorando enormemente su rendimiento.
-* Exposición de DLPack a nivel Python para facilitar el intercambio de datos.
-* Cambios a la promoción y comparación de dtypes estructurados.
-* Mejoras a f2py.
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
-El lanzamiento de NumPy 1.23.0 continúa el trabajo en curso para mejorar el manejo y promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación, caducar viejas obsolescencias. Es el trabajo de 151 colaboradores distribuidos sobre 494 solicitudes de incorporación de cambios. Las versiones de Python soportadas por este lanzamiento son 3.8-3.10. Python 3.11 será soportado cuando alcance la etapa rc.
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
-### Estudio de investigación NumFOCUS DEI: llamado a participar
+### NumFOCUS DEI research study: call for participation
-_13 de abril de 2022_ -- NumPy está trabajando con [NumFOCUS](http://numfocus.org/) en un [proyecto de investigación](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) financiado por la [Fundación Gordon & Betty Moore](https://www.moore.org/) para entender las barreras de participación que enfrentan los colaboradores, especialmente aquellos de grupos históricamente subrepresentados, en la comunidad de software de código abierto. El equipo de investigación quisiera hablar con nuevos colaboradores, desarrolladores y mantenedores del proyecto, y con aquellos que han contribuido en el pasado acerca de sus experiencias uniéndose y contribuyendo a NumPy.
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
-**¿Estás interesado en compartir tus experiencias?**
+**Interested in sharing your experiences?**
-Por favor, completa este breve [formulario de "Interés del Participante"](https://numfocus.typeform.com/to/WBWVJSqe), que contiene información adicional sobre los objetivos de la investigación, la privacidad y las consideraciones de confidencialidad. Tu participación será valiosa para el crecimiento y la sostenibilidad de comunidades de software de código abierto diversas e inclusivas. Los participantes aceptados participarán en una entrevista de 30 minutos con un miembro del equipo de investigación.
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
-### Lanzamiento de NumPy 1.22.0
+### Numpy 1.22.0 release
-_31 de diciembre de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
-* Las anotaciones de tipo del espacio de nombres principal están esencialmente completas. El repositorio principal (upstream) es un objetivo en movimiento, asà que probablemente habrán más mejoras, pero el mayor trabajo ya está hecho. Esta es probablemente la mejora más visible para el usuario en esta versión.
-* Una versión preliminar del propuesto [Estándar API de Arreglos](https://data-apis.org/array-api/latest/) es suministrada (véase [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). Este es un paso en la creación de una colección estándar de funciones que pueden ser usadas a través de librerÃas como CuPy y JAX.
-* NumPy ahora tiene un backend de DLPack. DLPack proporciona un formato de intercambio común para datos de arreglos (tensor).
-* Nuevos métodos para `cuantil`, `percentil` y funciones relacionadas. Los nuevos métodos proporcionan un conjunto completo de los métodos comúnmente encontrados en la literatura.
-* Las funciones universales se han refactorizado para implementar la mayor parte de [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). Esto también desbloquea la capacidad de experimentar con la futura API DType.
-* Un nuevo asignador de memoria configurable para el uso de proyectos dependientes o downstream.
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
-NumPy 1.22.0 es un gran lanzamiento que contó con el trabajo de 153 colaboradores distribuidos sobre 609 solicitudes de incorporación de cambios. Las versiones de Python soportadas por este lanzamiento son 3.8-3.10.
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
-### Promoviendo una cultura inclusiva en el ecosistema cientÃfico de Python
+### Advancing an inclusive culture in the scientific Python ecosystem
-_31 de agosto de 2021_ -- Nos complace anunciar que la Iniciativa Chan Zuckerberg ha [otorgado una subvención](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) para apoyar la incorporación, inclusión, y retención de personas de grupos históricamente marginados en proyectos cientÃficos de Python y para mejorar estructuralmente la dinámica de la comunidad para NumPy, SciPy, Matplotlib y Pandas.
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
-Como parte del [Programa de Software Esencial de Código Abierto para la Ciencia de CZI](https://chanzuckerberg.com/eoss/), esta subvención suplementaria de [Diversidad &e Inclusión](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) apoyará la creación de posiciones dedicadas de LÃder de Experiencia del Colaborador para identificar, documentar e implementar prácticas para fomentar comunidades inclusivas de código abierto. Este proyecto será liderado por Melissa Mendonça (NumPy), con mentorÃa y orientación adicionales por parte de Ralf Gommers (NumPy, SciPy), Hannah Aizenman y Thomas Caswell (Matplotlib), Matt Haberland (SciPy), y Joris Van den Bossche (Pandas).
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
-Este es un proyecto ambicioso destinado a descubrir e implementar actividades que deberÃan mejorar estructuralmente la dinámica comunitaria de nuestros proyectos. Al establecer estos nuevos roles entre proyectos, esperamos introducir un nuevo modelo de colaboración para las comunidades de Python CientÃfico, permitiendo que el trabajo de construcción de comunidades dentro del ecosistema se realice de manera más eficiente y con mejores resultados. También esperamos desarrollar una idea más clara tanto de lo que funciona y lo que no en nuestros proyectos, para atraer y retener nuevos colaboradores, especialmente de grupos históricamente subrepresentados. Finalmente, planeamos producir informes detallados sobre las acciones ejecutadas, explicando cómo éstas han impactado nuestros proyectos en términos de representación e interacción con nuestras comunidades.
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
-Se espera que este proyecto, de dos años de duración, comience en noviembre de 2021, y estamos emocionados por ver los resultados de este trabajo! [Puedes leer la propuesta completa aquÃ](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
-### Encuesta de NumPy de 2021
+### 2021 NumPy survey
-_12 de julio de 2021_ -- En NumPy creemos en el poder de nuestra comunidad. 1,236 usuarios de NumPy de 75 paÃses participaron en nuestra encuesta inaugural el año pasado. Los resultados de la encuesta nos dieron una muy buena comprensión acerca de lo que deberÃa ser nuestro enfoque durante los próximos 12 meses.
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
-Es hora de otra encuesta, y contamos contigo una vez más. Te tomará alrededor de 15 minutos de tu tiempo. Además de inglés, el cuestionario de la encuesta está disponible en 8 idiomas adicionales: Bangla, Francés, Hindi, Japonés, MandarÃn, Portugués, Ruso y Español.
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
-Sigue el enlace para comenzar: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
-### Lanzamiento de NumPy 1.21.0
+### Numpy 1.21.0 release
-_23 de junio de 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) ya está disponible. Los aspectos más destacados de esta versión son:
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. Los aspectos más destacados de esta versión son:
-- trabajo SIMD continuo que cubre más funciones y plataformas,
-- trabajo inicial sobre la nueva infraestructura dtype y conversiones de tipo,
-- universal2 wheels para Python 3.8 y Python 3.9 en Mac,
-- documentación mejorada,
-- anotaciones mejoradas,
-- nuevo `PCG64DXSM` generador de bits para números aleatorios.
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
-Esta versión de NumPy es el resultado de 581 solicitudes de incorporación de cambios contribuidas por 175 personas. Las versiones de Python soportadas por este lanzamiento son las 3.7-3.9, se añadirá soporte para Python 3.10 después del lanzamiento de Python 3.10.
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
-### Resultados de la encuesta de NumPy de 2020
+### 2020 NumPy survey results
-_22 de junio de 2021_ -- En 2020, el equipo de encuestas de NumPy, en asociación con los estudiantes y profesores de la Universidad de Michigan y la Universidad de Maryland, realizó la primera encuesta oficial de la comunidad NumPy. Encuentra los resultados de la encuesta aquÃ: https://numpy.org/user-survey-2020/.
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
-### Lanzamiento de NumPy 1.20.0
+### Numpy 1.20.0 release
-_30 de enero de 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) ya está disponible. Este es el lanzamiento de NumPy más grande hasta la fecha, gracias a los más de 180 colaboradores. Las dos nuevas caracterÃsticas más importantes son:
-- Anotaciones de tipo para grandes partes de NumPy, y un nuevo submódulo `numpy.typing` que contiene los alias `ArralyLike` y `DtypeLike` que los usuarios y las librerÃas dependientes o downstream pueden usar al agregar anotaciones de tipo en su propio código.
-- Optimizaciones de compilador SIMD multiplataforma, con soporte para instrucciones x86 (SSE, AVX), ARM64 (Neon) y PowerPC (VSX). Esto produjo mejoras significativas de rendimiento para muchas funciones (ejemplos: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
-### Diversidad en el proyecto NumPy
+### Diversity in the NumPy project
-_20 de septiembre de 2020_ -- Escribimos una [declaración sobre el estado de, y discusión en redes sociales, alrededor de la diversidad e inclusión en el proyecto NumPy](/diversity_sep2020).
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
-### Primer artÃculo oficial de NumPy publicado en Nature!
+### First official NumPy paper published in Nature!
-_16 de septiembre de 2020_ -- Nos complace anunciar la publicación del [primer artÃculo oficial sobre NumPy](https://www.nature.com/articles/s41586-020-2649-2) como artÃculo de revisión en Nature. Esto llega 14 años después de la publicación de NumPy 1.0. El documento cubre aplicaciones y conceptos fundamentales de programación de arreglos, el rico ecosistema cientÃfico de Python construido sobre NumPy, y los recientemente añadidos protocolos de arreglos que facilitan la interoperabilidad con librerÃas de arreglos y tensores externas, tales como CuPy, Dask y JAX.
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
-### Python 3.9 está por llegar, ¿cuándo lanzará NumPy ruedas binarias?
+### Python 3.9 is coming, when will NumPy release binary wheels?
-_14 de septiembre de 2020_ -- Python 3.9 será lanzado dentro de unas pocas semanas. Si eres uno de los primeros en adoptar las más recientes versiones de Python, es posible que te sientas decepcionado al descubrir que NumPy (y otros paquetes binarios como SciPy) no tendrán ruedas binarias listas para el dÃa del lanzamiento. Es un esfuerzo importante el adaptar la infraestructura de compilación a una versión nueva de Python y normalmente tarda unas cuantas semanas para que los paquetes aparezcan en PyPI y conda-forge. En preparación para este evento, por favor asegúrese de
-- actualizar su versión de `pip` al menos a la 20.1 para soportar `manylinux2010` y `manylinux2014`
-- utiliza [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) o `--only-binary=:all:` para evitar que `pip` intente compilar desde la fuente.
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
-### Lanzamiento de NumPy 1.19.2
+### Numpy 1.19.2 release
-_10 de septiembre de 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) ya está disponible. Este último lanzamiento de la serie 1.19 corrige varios errores, se prepara para el [lanzamiento próximo de Cython 3.x](http://docs.cython.org/en/latest/src/changes.html) y fija las versiones de setuptools para mantener distutils funcionando mientras las modificaciones hacia el repositorio principal continúan. Las wheels para aarch64 están construidas con la última versión de manylinux2014 que corrige el problema de diferentes tamaños de página utilizados por diferentes distribuciones de linux.
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
-### La encuesta inaugural de NumPy ya está disponible!
+### The inaugural NumPy survey is live!
-_2 de julio de 2020_ -- Esta encuesta está destinada a guiar y establecer prioridades para la toma de decisiones sobre el desarrollo de NumPy como software y como comunidad. La encuesta está disponible en 8 idiomas adicionales además del Inglés: Bangla, Hindi, Japonés, MandarÃn, Portugués, Ruso, Español y Francés.
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
-Por favor ayúdanos a mejorar NumPy diligenciando la encuesta: [aquÃ](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
-### ¡NumPy tiene un nuevo logo!
+### NumPy has a new logo!
-_24 de junio de 2020_ -- NumPy tiene ahora un nuevo logo:
+_Jun 24, 2020_ -- NumPy now has a new logo:
-<img src="/images/logos/numpy_logo.svg" alt="Logo de NumPy" title="El nuevo logo de NumPy" width=300>
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
-El logo es una versión moderna del anterior, con un diseño más limpio. Gracias a Isabela Presedo-Floyd por diseñar el nuevo logo, asà como a Travis Vaught por el viejo logo que nos sirvió tanto durante más de 15 años.
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
-### Lanzamiento de NumPy 1.19.0
+### NumPy 1.19.0 release
-_20 de junio de 2020_ -- NumPy 1.19.0 ya está disponible. Esta es el primer lanzamiento sin soporte para Python 2, por lo que fue una "versión de limpieza". La versión mÃnima soportada de Python es ahora Python 3.6. Una nueva caracterÃstica importante es que la infraestructura de generación de números aleatorios que fue introducida en NumPy 1.17.0 es ahora accesible desde Cython.
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
-### Aceptación a Season of Docs
+### Season of Docs acceptance
-_11 de mayo de 2020_ -- NumPy ha sido aceptado como una de las organizaciones mentoras para el programa Google Season of Docs. ¡Estamos entusiasmados de tener la oportunidad de trabajar con un redactor técnico para mejorar la documentación de NumPy una vez más! Para más detalles, por favor consulte [el sitio oficial de Season of Docs](https://developers.google.com/season-of-docs/) y nuestra [página de ideas](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
-### Lanzamiento de NumPy 1.18.0
+### NumPy 1.18.0 release
-_22 de diciembre de 2019_ -- NumPy 1.18.0 ya está disponible. Después de los grandes cambios en 1.17.0, este es un lanzamiento de consolidación. Es el último lanzamiento menor que soportará Python 3.5. Los aspectos más destacados de la publicación incluyen la adición de la infraestructura básica para enlazar con las librerÃas BLAS de 64 bits y LAPACK, y un nuevo C-API para `numpy.random`.
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
-Por favor revise las [notas del lanzamiento](https://github.com/npm/npm/releases/tag/v2.11.0) para conocer más detalles.
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
-### NumPy recibe una subvención de la Iniciativa Chan Zuckerberg
+### NumPy receives a grant from the Chan Zuckerberg Initiative
-_15 de noviembre de 2019_ -- Nos complace anunciar que NumPy y OpenBLAS, una de las dependencias clave de NumPy, han recibido una subvención conjunta por $195,000 de la Iniciativa Chan Zuckerberg a través de su [programa Esencial de Software Abierto para la Ciencia](https://chanzuckerberg.com/eoss/) que apoya el mantenimiento de software, crecimiento, desarrollo y compromiso comunitario para herramientas de código abierto crÃticas para la ciencia.
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
-Esta subvención se utilizará para acelerar los esfuerzos en la mejora de la documentación de NumPy, rediseño del sitio web y desarrollo de la comunidad para servir mejor a nuestra amplia y creciente base de usuarios, y asegurar la sostenibilidad a largo plazo del proyecto. Mientras que el equipo de OpenBLAS se enfocará en abordar conjuntos de problemas técnicos clave, en particular la seguridad de los hilos, AVX-512, y problemas de almacenamiento local de hilos (TLS), asà como mejoras algorÃtmicas en ReLAPACK (Recursive LAPACK) de las que depende OpenBLAS.
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
-Puede encontrar más detalles sobre nuestras iniciativas y entregables propuestos en la [propuesta completa de subvención](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). Está previsto que el trabajo comience el 1 de diciembre de 2019 y continúe durante los siguientes 12 meses.
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
-## Lanzamientos
+## Releases
-Esta es una lista de lanzamientos NumPy, con enlaces a notas de lanzamiento. Los lanzamientos de corrección de errores (solo cambia la `z` en el número de versión `x.y.z`) no tienen nuevas caracterÃsticas; las versiones menores (aumenta la `y`) sà las tienen.
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
-- NumPy 2.1.1 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 de septiembre 2024_.
-- NumPy 2.0.2 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 de agosto 2024_.
-- NumPy 2.1.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 de agosto de 2024_.
-- NumPy 2.0.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 de julio de 2024_.
-- NumPy 2.0.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 de junio de 2024_.
-- NumPy 1.26.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 de febrero de 2024_.
-- NumPy 1.26.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 de enero de 2024_.
-- NumPy 1.26.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _12 de noviembre de 2023_.
-- NumPy 1.26.1 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 de octubre de 2023_.
-- NumPy 1.26.0 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 de septiembre de 2023_.
-- NumPy 1.25.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 de julio de 2023_.
-- NumPy 1.25.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 de julio de 2023_.
-- NumPy 1.24.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 de junio de 2023_.
-- NumPy 1.25.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 de junio de 2023_.
-- NumPy 1.24.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 de abril de 2023_.
-- NumPy 1.24.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 de febrero de 2023_.
-- NumPy 1.24.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 de diciembre de 2022_.
-- NumPy 1.24.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 de diciembre de 2022_.
-- NumPy 1.23.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _19 de noviembre de 2022_.
-- NumPy 1.23.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 de octubre de 2022_.
-- NumPy 1.23.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 de septiembre de 2022_.
-- NumPy 1.23.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 de agosto de 2022_.
-- NumPy 1.23.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 de julio de 2022_.
-- NumPy 1.23.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 de junio de 2022_.
-- NumPy 1.22.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 de mayo de 2022_.
-- NumPy 1.21.6 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 de abril de 2022_.
-- NumPy 1.22.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 de marzo de 2022_.
-- NumPy 1.22.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 de febrero de 2022_.
-- NumPy 1.22.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 de enero de 2022_.
-- NumPy 1.22.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 de diciembre de 2021_.
-- NumPy 1.21.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 de diciembre de 2021_.
-- NumPy 1.21.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 de junio de 2021_.
-- NumPy 1.20.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 de mayo de 2021_.
-- NumPy 1.20.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 de enero de 2021_.
-- NumPy 1.19.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 de enero de 2021_.
-- NumPy 1.19.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 de junio de 2020_.
-- NumPy 1.18.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 de mayo de 2020_.
-- NumPy 1.17.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 de enero de 2020_.
-- NumPy 1.18.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 de diciembre de 2019_.
-- NumPy 1.17.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 de julio de 2019_.
-- NumPy 1.16.0 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
-- NumPy 1.15.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 de julio de 2018_.
-- NumPy 1.14.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 de enero de 2018_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
ec9f5730972f435fd2898b3d4fb3a703ef74fc6c
|
New translations news.md (Hindi)
|
diff --git a/content/hi/news.md b/content/hi/news.md
new file mode 100644
index 0000000..7a7aba2
--- /dev/null
+++ b/content/hi/news.md
@@ -0,0 +1,322 @@
+---
+title: News
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
+
+* Python 3.12.0 support.
+* Cython 3.0.0 compatibility.
+* Use of the Meson build system
+* Updated SIMD support
+* f2py fixes, meson and bind(x) support
+* Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
+
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_Japanese:_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
+
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
+
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
+
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+<a name="releases"></a>
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
f64ad45d9c4800e5d75d551765e5a15d71d4c7fa
|
New translations news.md (Persian)
|
diff --git a/content/fa/news.md b/content/fa/news.md
new file mode 100644
index 0000000..7a7aba2
--- /dev/null
+++ b/content/fa/news.md
@@ -0,0 +1,322 @@
+---
+title: News
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
+
+* Python 3.12.0 support.
+* Cython 3.0.0 compatibility.
+* Use of the Meson build system
+* Updated SIMD support
+* f2py fixes, meson and bind(x) support
+* Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
+
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_Japanese:_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
+
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
+
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
+
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+<a name="releases"></a>
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
26434ad9e7e95032a24e6b683af1b0a67a233dc9
|
New translations news.md (Portuguese, Brazilian)
|
diff --git a/content/pt/news.md b/content/pt/news.md
index e972a74..cfb217b 100644
--- a/content/pt/news.md
+++ b/content/pt/news.md
@@ -1,263 +1,322 @@
---
title: NotÃcias
sidebar: false
newsHeader: "NumPy versão 1.26.0"
date: 2023-09-16
---
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
### Lançado o NumPy versão 1.26.0
-_16 de setembro de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) está disponÃvel. Os destaques desta versão são:
+_18 de agosto, 2024_ -- NumPy 2.1.0 fornece suporte para Python 3.13 e remove suporte para Python 3.9. Além das habituais correções de erros e suporte a Python atualizado, esta versão ajuda a trazer o NumPy de volta ao ciclo habitual de lançamento após o longo desenvolvimento da versão 2.0. Os destaques desta versão são:
+
+- Suporte ao Python 3.12.0.
+- Suporte preliminar para Python 3.13 free threaded.
+- Suporte para array-api 2023.12 standard.
+
+As versões 3.10-3.13 do Python são suportadas por esta versão.
+
+
+### NumPy 2.0.0 lançada
+
+_16 de junho, 2024_ -- NumPy 2.0.0 é a primeira grande versão desde 2006. à o resultado de 11 meses de desenvolvimento desde a última feature release e é o trabalho de 212 contribuidores espalhado por 1078 pull requests. Esta versão contém um grande número de novas funcionalidades interessantes, bem como mudanças nas APIs Python e C. As mudanças incluem quebras de compatibilidade que não puderam acontecer em uma versão regular menor - incluindo uma quebra na ABI, mudanças nas regras de promoção de tipo e mudanças na API que poderiam não estar emitindo alertas de fim de suporte nas versões 1.26.x. Documentos-chave, relacionados a como se adaptar às mudanças em NumPy 2.0, incluem:
+
+- O [guia de migração NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- As [notas de lançamento da versão 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Issue de anúncio para atualizações de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+A postagem de blog ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) conta um pouco da história sobre como esta versão foi construÃda.
+
+
+### Data de lançamento da NumPy 2.0: 16 de junho
+
+_23 de maio, 2024_ -- Estamos animados em anunciar que planejamos lançar a NumPy 2.0 em 16 de junho de 2024. Este lançamento está em desenvolvimento há mais de um ano, e é o primeiro grande lançamento desde 2006. Importante, além de muitas funcionalidades novas e melhoria de desempenho, esta versão contém **quebras de compatibilidade** com a ABI e com as APIs Python e C. à provável que os pacotes downstream e o código de usuário final precisem ser adaptados - se você puder, por favor, verifique se o seu código funciona com NumPy `2.0.0rc2`. **Por favor, veja o seguinte para mais detalhes:**
+
+- O [guia de migração NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- As [notas de lançamento da versão 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Issue de anúncio para atualizações de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### Lançado o NumPy versão 1.26.0
+_19 de dez, 2023_ -- O NumFOCUS se juntou ao PyCharm durante sua campanha de final de ano para oferecer 30% de desconto em licenças de PyCharm para novos usuários. Todas as receitas do primeiro ano das compras do PyCharm a partir de agora até 23 de dezembro, 2023 irão diretamente para os programas NumFOCUS.
+
+Use a URL única que permitirá rastrear as compras https://lp.jetbrains.com/support-data-science/ ou um código de cupom ISUPPORTDATASCIENCEÂ
+
+### NumPy versão 1.24.0
-* Suporte ao Python 3.12.0.
+_17 de junho, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) está disponÃvel agora. Os destaques desta versão são:
+
+* Suport ao Python 3.12.0.
* Compatibilidade com Cython 3.0.0.
* Utilização do sistema Meson para compilação
* Suport a SIMD atualizado
* Melhorias para f2py, suporte a meson e bind(x)
* Suporte à versão mais recente da biblioteca Accelerate BLAS/LAPACK
A versão 1.26.0 é uma continuação da série de versões 1.25.x que marcam a transição para o sistema de compilação Meson e oferecem suporte preliminar para o Cython 3.0.0. Um total de 20 pessoas contribuÃram para este lançamento e 59 pull requests foram incorporadas.
As versões do Python suportadas por esta versão são 3.9-3.12.
### numpy.org agora está disponÃvel em japonês e português
_2 de agosto de 2023_ -- numpy.org agora está disponÃvel em 2 idiomas adicionais: japonês e português. Isto não seria possÃvel sem nossos voluntários dedicados:
_Português:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
-Japonês:
+_Japonês:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
O trabalho na infraestrutura de traduções é financiado pela CZI.
-No futuro, adorarÃamos traduzir o site para mais lÃnguas. Se você quiser ajudar, por favor entre em contato com o time de traduções do NumPy no Slack:
-https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Procure pelo canal #translations)
-Também estamos organizando um time de tradutores que serão responsáveis por trabalhar na localização da documentação e conteúdo educacional para o ecossistema Scientific Python. Se esse trabalho te interessa, junte-se a nós no Discord do projeto Scientific Python: https://discord.gg/khWtqY6RKr. (Procure pelo canal #translation)
+No futuro, adorarÃamos traduzir o site para mais lÃnguas. Se você quiser ajudar, por favor entre em contato com o time de traduções do NumPy no Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Procure pelo canal de #translations.) (Procure pelo canal #translations) Também estamos organizando um time de tradutores que serão responsáveis por trabalhar na localização da documentação e conteúdo educacional para o ecossistema Scientific Python. Se esse trabalho te interessa, junte-se a nós no Discord do projeto Scientific Python: https://discord.gg/khWtqY6RKr. (Procure pelo canal #translation)
-_17 de junho, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) está disponÃvel agora. Os destaques desta versão são:
+### NumPy versão 1.22.0
+
+_18 de dezembro de 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
* Suporte para MUSL, agora existem rodas MUSL.
* Suporte para o compilador Fujitsu C/C++.
* Arrays de objetos agora são suportados em einsum.
* Suporte para a multiplicação da matriz inplace (`@=`).
A versão 1.25.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade e execução, e na documentação. Também tem havido trabalho preparatório para a futura versão 2.0.0, resultando em um grande número de depreciações novas e expiradas.
Um total de 148 pessoas contribuÃram para este lançamento e 530 pull requests foram incorporadas.
As versões do Python suportadas por esta versão são 3.9-3.11.
### Promovendo uma cultura inclusiva: Chamada de participação
_10 de maio de 2023_ -- Promovendo uma Cultura Inclusiva: Chamada de Participação
Como podemos ser melhores quando se trata de diversidade e de inclusão? Leia o relatório e descubra como colaborar [aqui](https://contributor-experience.org/docs/posts/dei-report/).
### Transição de liderança do time de documentação do NumPy
_6 de janeiro de 2023_ â- Mukulika Pahari e Ross Barnowski são nomeados como lideres do time de documentação do NumPy, substituindo Melissa Mendonça. Agradecemos a Melissa por todas suas contribuições para a documentação oficial do NumPy e materiais educacionais, e Mukulika e Ross por aceitarem o desafio.
-### NumPy versão 1.24.0
+### NumPy versão 1.23.0
-_18 de dezembro de 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
+_31 de dezembro de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
* Novas palavras-chave "dtype" e "casting" para funções que atuam com stacking.
* Novas funcionalidades e correções do F2PY.
* Muitas depreciações novas, confira.
* Muitas depreciações expiradas.
A versão 1.24.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade e execução, e na documentação. Há um grande número de depreciações novas e expiradas devido a mudanças na promoção de dtypes e limpezas no código. à o trabalho de 177 contribuidores espalhados em 444 pull requests. As versões suportadas do Python são 3.8-3.11.
-### NumPy versão 1.23.0
+### NumPy versão 1.19.0
_22 de junho de 2022_ -- O [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) está disponÃvel. Os destaques desta versão são:
* Implementação de `loadtxt` em C, melhorando muito seu desempenho.
* Exposição do DLPack ao nÃvel de Python para facilitar a troca de dados.
* Mudanças na promoção e comparações de dtypes estruturados.
* Melhorias no f2py.
A versão 1.23.0 do NumPy continua o trabalho de melhorias no suporte e promoção de dtypes, na velocidade de execução, na documentação e na expiração de depreciações. à o trabalho de 151 contribuidores espalhados em 494 pull requests. As versões do Python suportadas por esta versão 3.8-3.10. Python 3.11 será suportado quando chegar na etapa rc.
### Pesquisa NumFOCUS DEI: chamada para participação
_13 de abril de 2022_ -- O NumPy está trabalhando com a [NumFOCUS](http://numfocus.org/) em um [projeto de pesquisa](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) financiado pela [Gordon & Betty Moore Foundation](https://www.moore.org/) para entender as barreiras à participação que contribuidores, especialmente aqueles de grupos historicamente subrepresentados, enfrentam na comunidade open source. A equipe da pesquisa gostaria de falar com novos colaboradores, desenvolvedores e mantenedores, e aqueles que contribuÃram no passado sobre suas experiências contribuindo para o NumPy.
**Quer compartilhar suas experiências?**
Por favor, preencha este breve formulário: ["Participant Interest form"](https://numfocus.typeform.com/to/WBWVJSqe) que contém informações adicionais sobre os objetivos da pesquisa, privacidade e considerações de confidencialidade. Sua participação será valiosa para o crescimento e sustentabilidade de comunidades de software open source diversas e inclusivas. Os participantes aceitos participarão de uma entrevista de 30 minutos com um membro da equipe de pesquisa.
-### NumPy versão 1.22.0
+### NumPy versão 1.20.0
-_31 de dezembro de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) está agora disponÃvel. Os destaques desta versão são:
+_23 de junho de 2021_ -- O [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) está disponÃvel. Os destaques desta versão são:
* Anotações de tipo do namespace principal estão praticamente completas. Ainda há trabalho a se fazer no upstream, mas a maior parte do trabalho está feita. Esta é provavelmente a melhoria mais visÃvel para os usuários nesta versão.
* Uma versão preliminar da proposta do [array API Standard](https://data-apis.org/array-api/latest/) está disponÃvel (veja [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). Este é um passo na criação de uma coleção padrão de funções que podem ser compartilhadas entre bibliotecas como CuPy e JAX.
* NumPy agora tem um backend de DLPack. DLPack fornece um formato comum de compartilhamento para dados de arrays (tensores).
* Novos métodos para `quantile`, `percentile`, e funções relacionadas. Os novos métodos fornecem um conjunto completo dos métodos comumente encontrados na literatura.
* As funções universais foram refatoradas para implementar a maior parte da [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). Isso também desbloqueia a capacidade de experimentar a futura API DType.
* Um novo alocador de memória configurável para uso pelos projetos downstream.
NumPy 1.22.0 é uma versão importante com o trabalho de 153 contribuidores espalhados por mais de 609 pull requests. As versões do Python suportadas por esta versão são 3.8-3.10.
### Promovendo uma cultura inclusiva no ecossistema cientÃfico de Python
_31 de agosto de 2021_ -- Estamos felizes em anunciar que a Chan Zuckerberg Initiative [vai financiar](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) um projeto para apoiar a integração, inclusão, e retenção de pessoas de grupos marginalizados historicamente em projetos cientÃficos em Python, e para estruturalmente melhorar a dinâmica das comunidades para o NumPy, SciPy, Matplotlib, e Pandas.
Como parte do programa [CZI's Essential Open Source Software for Science](https://chanzuckerberg.com/eoss/), esse [financiamento adicional para diversidade e inclusão](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) vai apoiar a criação de posições de Contributor Experience Lead para identificar, documentar e implementar práticas para fomentar comunidades open source inclusivas. Este projeto será liderado por Melissa Mendonça (NumPy), com apoio adicional de Ralf Gommers (NumPy, SciPy), Hannah Aizenman e Thomas Caswell (Matplotlib), Matt Haberland (SciPy), e Joris Van den Bossche (Pandas).
Esse é um projeto ambicioso que visa descobrir e implementar atividades que devem estruturalmente melhorar a dinâmica da comunidade de nossos projetos. Ao criar essas novas funções entre projetos, esperamos introduzir um novo modelo de colaboração à s comunidades de Python cientÃfico, permitir que o trabalho de construção da comunidade no ecossistema seja feito de forma mais eficiente e com maiores resultados. Também esperamos desenvolver uma imagem mais clara do que funciona e o que não funciona em nossos projetos para engajar e reter novos colaboradores, especialmente de grupos historicamente sub-representados. Finalmente, planejamos produzir relatórios detalhados sobre as ações executadas, explicando como eles afetaram nossos projetos em termos de representação e interação com nossas comunidades.
O projeto de dois anos deverá começar em novembro de 2021 e estamos animados para ver os resultados deste trabalho! [Você pode ler a proposta completa aqui](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### Pesquisa NumPy 2021
_12 de julho de 2021_ -- Nós do NumPy acreditamos no poder da nossa comunidade. 1,236 usuários do NumPy de 75 paÃses participaram da nossa primeira pesquisa ano passado. Os resultados da pesquisa nos ajudaram a compreender muito bem o que devemos fazer pelos 12 meses seguintes.
Chegou a hora de fazer outra pesquisa e estamos contando com você novamente. Vai levar cerca de 15 minutos do seu tempo. Além de Inglês, o questionário de pesquisa está disponÃvel em 8 idiomas adicionais: Bangla, Francês, Hindi, Japonês, Mandarim, Português, Russo e Espanhol.
Siga o link para começar: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### NumPy versão 1.19.0
-_23 de junho de 2021_ -- O [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) está disponÃvel. Os destaques desta versão são:
+_16 de setembro de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) está disponÃvel. Os destaques desta versão são:
- a continuação do trabalho com SIMD para suportar mais funções e plataformas,
- trabalho inicial na infraestrutura e conversão de novos dtypes,
- wheels universal2 para Python 3.8 e Python 3.9 no Mac,
- melhorias na documentação,
- melhorias nas anotações de tipos,
- novo bitgenerator `PCG64DXSM` para números aleatórios.
Esta versão do NumPy é o resultado de 581 pull requests aceitos, a partir das contribuições de 175 pessoas. As versões do Python suportadas por esta versão são 3.7-3.9; o suporte para o Python 3.10 será adicionado após o lançamento do Python 3.10.
### Resultados da pesquisa NumPy 2020
_22 de junho de 2021_ -- Em 2020, o time de pesquisas NumPy, em parceria com estudantes e professores da Universidade de Michigan e da Universidade de Maryland, realizou a primeira pesquisa oficial sobre a comunidade NumPy. Encontre os resultados da pesquisa aqui: https://numpy.org/user-survey-2020/.
### NumPy versão 1.20.0
_30 de janeiro de 2021_ -- O [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) está disponÃvel. Este é o maior lançamento do NumPy até hoje, graças a mais de 180 colaboradores. As duas novidades mais emocionantes são:
- Anotações de tipos para grandes partes do NumPy, e um novo submódulo `numpy.typing` contendo aliases `ArrayLike` e `DtypeLike` que usuários e bibliotecas downstream podem usar quando quiserem adicionar anotações de tipos em seu próprio código.
- Otimizações de compilação SIMD multi-plataforma, com suporte para instruções x86 (SSE, AVX), ARM64 (Neon) e PowerPC (VSX). Isso rendeu melhorias significativas de desempenho para muitas funções (exemplos: [sen/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversidade no projeto NumPy
_20 de setembro de 2020_ -- Escrevemos uma [declaração sobre o estado da diversidade e inclusão no projeto NumPy e discussões em redes sociais sobre isso.](/diversity_sep2020).
### Primeiro artigo oficial do NumPy publicado na Nature!
_16 de setembro de 2020_ -- Temos o prazer de anunciar a publicação do [primeiro artigo oficial do NumPy](https://www.nature.com/articles/s41586-020-2649-2) como um artigo de revisão na Nature. Isso ocorre 14 anos após o lançamento do NumPy 1.0. O artigo abrange aplicações e conceitos fundamentais da programação de matrizes, o rico ecossistema cientÃfico de Python construÃdo em cima do NumPy, e os protocolos de array recentemente adicionados para facilitar a interoperabilidade com bibliotecas externas para computação com matrizes e tensores, como CuPy, Dask e JAX.
### O Python 3.9 está chegando, quando o NumPy vai liberar wheels binárias?
_14 de setembro de 2020_ -- Python 3.9 será lançado em algumas semanas. Se você for quiser usar imediatamente a nova versão do Python, você pode ficar desapontado ao descobrir que o NumPy (e outros pacotes binários como SciPy) não terão wheels no dia do lançamento. à um grande esforço adaptar a infraestrutura de compilação a uma nova versão de Python e normalmente leva algumas semanas para que os pacotes apareçam no PyPI e no conda-forge. Em preparação para este evento, por favor, certifique-se de
- atualizar seu `pip` para a versão 20.1 pelo menos para suportar `manylinux2010` e `manylinux2014`
- usar [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) ou `--only-binary=:all:` para impedir `pip` de tentar compilar a partir do código fonte.
-### NumPy versão 1.19.2
+### NumPy versão 1.18.0
_10 de setembro de 2020_ -- O [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) está disponÃvel. Essa última versão da série 1.19 corrige vários bugs, inclui preparações para o lançamento [do Cython 3](http://docs.cython.org/en/latest/src/changes.html) e fixa o setuptools para que o distutils continue funcionando enquanto modificações upstream estão sendo feitas. As wheels para aarch64 são compiladas com manylinux2014 mais recente que conserta um problema com distribuições linux diferentes.
### A primeira pesquisa NumPy está aqui!
_2 de julho de 2020_ -- Esta pesquisa tem como objetivo guiar e definir prioridades para tomada de decisões sobre o desenvolvimento do NumPy como software e como comunidade. A pesquisa está disponÃvel em mais 8 idiomas além do inglês: Bangla, Hindi, Japonês, Mandarim, Português, Russo, Espanhol e Francês.
Ajude-nos a melhorar o NumPy respondendo à pesquisa [aqui](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### O NumPy tem um novo logo!
_24 de junho de 2020_ -- NumPy agora tem um novo logo:
<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
O logotipo é uma versão moderna do antigo, com um design mais limpo. Obrigado à Isabela Presedo-Floyd por projetar o novo logotipo, bem como ao Travis Vaught pelo o logotipo antigo que nos serviu bem durante mais de 15 anos.
### NumPy versão 1.19.0
_20 de junho de 2020_ -- O NumPy 1.19.0 está disponÃvel. Esta é a primeira versão sem suporte ao Python 2, portanto foi uma "versão de limpeza". A versão mÃnima de Python suportada agora é Python 3.6. Uma caracterÃstica nova importante é que a infraestrutura de geração de números aleatórios que foi introduzida na NumPy 1.17.0 agora está acessÃvel a partir do Cython.
### Aceitação no programa Season of Docs
_11 de maio de 2020_ -- O NumPy foi aceito como uma das organizações mentoras do programa Google Season of Docs. Estamos animados com a oportunidade de trabalhar com um *technical writer* para melhorar a documentação do NumPy mais uma vez! Para mais detalhes, consulte [o site oficial do programa Season of Docs](https://developers.google.com/season-of-docs/) e nossa [página de ideias](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
-### NumPy versão 1.18.0
+### NumPy versão 1.19.2
_22 de dezembro de 2019_ -- O NumPy 1.18.0 está disponÃvel. Após as principais mudanças em 1.17.0, esta é uma versão de consolidação. à a última versão menor que suportará Python 3.5. Destaques dessa versão incluem a adição de uma infraestrutura básica para permitir o link com as bibliotecas BLAS e LAPACK em 64 bits durante a compilação, e uma nova C-API para `numpy.random`.
Por favor, veja as [notas de lançamento](https://github.com/numpy/numpy/releases/tag/v1.18.0) para mais detalhes.
### O NumPy recebe financiamento da Chan Zuckerberg Initiative
_15 de novembro de 2019_ -- Estamos felizes em anunciar que o NumPy e a OpenBLAS, uma das dependências-chave do NumPy, receberam um auxÃlio conjunto de $195,000 da Chan Zuckerberg Initiative através do seu programa [Essential Open Source Software for Science](https://chanzuckerberg.com/eoss/) que apoia a manutenção, crescimento, desenvolvimento e envolvimento da comunidade em ferramentas de código aberto fundamentais para a ciência.
Este auxÃlio será usado para aumentar os esforços de melhoria da documentação do NumPy, reformulação do site, desenvolvimento comunitário para melhor servir a nossa grande, e rapidamente crescente, base de usuários, assim como para garantir a sustentabilidade do projeto a longo prazo. Enquanto a equipe OpenBLAS se concentrará em tratar de um conjunto de questões técnicas fundamentais, em particular relacionadas a *thread-safety*, AVX-512, e *thread-local storage* (TLS), bem como melhorias algorÃtmicas na ReLAPACK (Recursive LAPACK) da qual a OpenBLAS depende.
Mais detalhes sobre nossas propostas e resultados esperados podem ser encontrados na [proposta completa de concessão de auxÃlio](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). O trabalho está agendado para começar no dia 1 de dezembro de 2019 e continuar pelos próximos 12 meses.
<a name="releases"></a>
## Lançamentos
Aqui está uma lista de versões do NumPy, com links para notas de lançamento. Bugfix lança (apenas o `z` muda no `x.y.` número da versão) não tem novos recursos; versões menores (o `y` aumenta) sim.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 de outubro de 2024_.
+- NumPy 2.1.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 de setembro de 2024_.
+- NumPy 2.0.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 de agosto de 2024_.
+- NumPy 2.1.0 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 de agosto de 2024_.
+- NumPy 2.0.1 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 de julho de 2024_.
+- NumPy 2.0.0 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 de junho de 2024_.
+- NumPy 1.26.4 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 de fevereiro de 2024_.
+- NumPy 1.26.3 ([notas de lançamento](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 de janeiro de 2024_.
- NumPy 1.26.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 de novembro de 2023_.
- NumPy 1.26.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 de outubro de 2023_.
- NumPy 1.26.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 de setembro de 2023_.
- NumPy 1.25.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 de julho de 2023_.
- NumPy 1.25.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 de julho de 2023_.
- NumPy 1.24.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 de junho de 2023_.
- NumPy 1.25.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 de junho de 2023_.
- NumPy 1.24.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 de abril de 2023_.
- NumPy 1.24.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 de fevereiro de 2023_.
- NumPy 1.24.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 de dezembro de 2022_.
- NumPy 1.24.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 de dezembro de 2022_.
- NumPy 1.23.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 de novembro de 2022_.
- NumPy 1.23.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 de outubro de 2022_.
- NumPy 1.23.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 de setembro de 2022_.
- NumPy 1.23.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 de agosto de 2022_.
- NumPy 1.23.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 de julho de 2022_.
- NumPy 1.23.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 de junho de 2022_.
- NumPy 1.22.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 de maio de 2022_.
- NumPy 1.21.6 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 de abril de 2022_.
- NumPy 1.22.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 de março de 2022_.
- NumPy 1.22.2 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 de fevereiro de 2022_.
- NumPy 1.22.1 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 de janeiro de 2022_.
- NumPy 1.22.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 de dezembro de 2021_.
- NumPy 1.21.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 de dezembro de 2021_.
- NumPy 1.21.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 de junho de 2021_.
- NumPy 1.20.3 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 de maio de 2021_.
- NumPy 1.20.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 de janeiro de 2021_.
- NumPy 1.19.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 de janeiro de 2021_.
- NumPy 1.19.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 de junho de 2020_.
- NumPy 1.18.4 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 de maio de 2020_.
- NumPy 1.17.5 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 de janeiro de 2020_.
- NumPy 1.18.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 de dezembro de 2019_.
- NumPy 1.17.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 de julho de 2019_.
- NumPy 1.16.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 de janeiro de 2019_.
- NumPy 1.15.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 de julho de 2018_.
- NumPy 1.14.0 ([notas de versão](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 de janeiro de 2018_.
|
numpy/numpy.org
|
361cf0880ef57d02c0aab9e94e2acdd5a7840145
|
New translations news.md (Chinese Simplified)
|
diff --git a/content/zh/news.md b/content/zh/news.md
new file mode 100644
index 0000000..8f47d8b
--- /dev/null
+++ b/content/zh/news.md
@@ -0,0 +1,322 @@
+---
+title: 社åºå¿«è®¯
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+
+* Python 3.12.0 support.
+* Cython 3.0.0 compatibility.
+* Use of the Meson build system
+* Updated SIMD support
+* f2py fixes, meson and bind(x) support
+* Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
+
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_Japanese:_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. æ¤æ¬¡åå¸çéç¹æ¯ï¼
+
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
+
+### NumPy 1.22.0 åå¸
+
+_2021å¹´6æ31æ¥_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) æ£å¼åå¸ã æ¤æ¬¡åå¸çéç¹æ¯ï¼
+
+* 主å½å空é´ç注éç±»ååºæ¬ä¸å·²å®æã 䏿¸¸æ¯ä¸ªç§»å¨ç®æ ï¼æä»¥å¾å¯è½ä¼æè¿ä¸æ¥çæ¹è¿ï¼ä½æ¯ä¸»è¦ç 项工ä½å·²ç»å®æã è¿å¯è½æ¯æ¬æ¬¡åå¸ä¸ç¨æ·æå¯è§çå¢å¼ºåè½ã
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). è¿æ¯å建ä¸ä¸ªå¯ä»¥å¨ CuPy å JAX çåºä¸ä½¿ç¨ç彿°çæ åæ¶èçä¸ä¸ªæ¥éª¤ã
+* NumPy ç°å¨æä¸ä¸ª DLPack å端ã DLPackæä¾äºä¸ä¸ªæ°ç» (tensor) æ°æ®çéç¨äº¤æ¢æ ¼å¼ã
+* `éå`, `ç¾åæ¯`以åç¸å
³å½æ°çæ°æ¹æ³ã æ°ç æ¹æ³æä¾äºä¸æ´å¥å¸¸è§äº æç®ä¸çæ¹æ³ã
+* éç¨å½æ°å·²è¢«éæ°èèï¼ä»¥å®ç°å¤§å¤æ°ç [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html) è¿ä¹ä¼è§£éå®éªæªæ¥DType APIçè½åã
+* ä¸ä¸ªæ°çå¯é
ç½®å
ååé
å¨ï¼ä¾ä¸æ¸¸é¡¹ç®ä½¿ç¨ã
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. æ¤çæ¬æ¯æç Python çæ¬æ¯ 3.8-3.10ã
+
+### ä¿è¿Pythonç§å¦çæç³»ç»ä¸çå
å®¹æ§æå
+
+_8æ31æ¥ï¼ 2021_ â æä»¬å¾é«å
´å®£å¸Chan Zuckerbergå¡è®® [æäºèµ 款](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) ä»¥æ¯æåå²ä¸è¢«è¾¹ç¼å群ä½ç人å¨ç§å¦Python项ç®ä¸çèå
¥ãå
容åçåï¼å¹¶ä¸ºNumPyãSciPyãMatplotlibåPandasç社åºå¨æè¿è¡ç»ææ§æ¹åã
+
+ä½ä¸º [CZI åºæ¬å¼æ¾æºç ç§å¦ç¨åº](https://chanzuckerberg.com/eoss/)çä¸é¨åï¼ è¿ ä¸ª[夿 ·æ§ & å
容æ§è¡¥å
èµ æ¬¾](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) å°æ¯æå建ä¸é¨çè´è´£äººèä½ï¼ä»¥ç¡®å®ãè®°å½å宿½ä¿è¿å
容æ§å¼æºç¤¾åºçå®è·µã è¿ä¸ªé¡¹ç®å°ç±Melissa Mendoncstima (NumPy) é¢å¯¼ï¼ç±Ralf Gommers (NumPy, SciPy) Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas)ï¼ æä¾ é¢å¤çè¾
导åæå¯¼
+
+è¿æ¯ä¸ä¸ªéå¿ååç项ç®ï¼æ¨å¨åç°åæ§è¡ åºè¯¥ä»ç»æä¸æ¹åæä»¬é¡¹ç®ç社åºå¨æçæ´»å¨ã éè¿ å»ºç«è¿äºæ°ç跨项ç®è§è²ï¼æä»¬å¸æå¨Scientific Python社åºå¼è¿ä¸ä¸ªæ°ç å使¨¡åã 使çæç³»ç»ä¸ç 社åºå»ºè®¾å·¥ä½è½å¤æ´ææå°å¼å±ï¼ å徿´å¤§çææã æä»¬è¿å¸æå¨é¡¹ç®ä¸äºè§£ä»ä¹ææï¼ä»ä¹æ æï¼ä»¥å¸å¼åç使¥èªåå²ä¸æªè¢«ä»£è¡¨ç群ä½çæ°è´¡ç®è
ï¼å»ºç«æ´æ¸
æ°ç认ç¥ã æåï¼æä»¬è®¡åå¶ä½è¯¦ç»çæ¥åï¼è¯´ææä»¬éåçæªæ½å¦ä½å¨ä»£è¡¨æ§åä¸ç¤¾åºäºå¨æ¹é¢å¯¹æä»¬ç项ç®äº§çå½±åã
+
+è¿ä¸ªä¸ºæä¸¤å¹´ç项ç®é¢è®¡å°äº2021å¹´11æå¼å§ï¼æä»¬å¾æå¾
çå°è¿é¡¹å·¥ä½çææ! [æ¨å¯ä»¥å¨è¿éé
è¯»å®æ´çææ¡](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063)ã
+
+### 2021 Numpyè°æ¥
+
+_2021å¹´7æ12æ¥_ -- æä»¬ç¸ä¿¡NumPy社åºçåéã æ¥èª75个å½å®¶ç1236 åç¨æ·åå äºæä»¬å»å¹´ç馿¬¡è°æ¥ã è°æ¥ç»æä½¿æä»¬å¯¹ä»å12个æåºè¯¥é䏿³¨æçé®é¢æäºå¾å¥½çäºè§£ã
+
+ç°å¨æ¯æ¶åè¿è¡å¦ä¸æ¬¡è°æ¥äºï¼æä»¬å°ååº¦å°æ±æ¨çåä½ã è¿ä»½è°æ¥å°èè´¹æ¨å¤§çº¦15åéçæ¶é´ã é¤è±æå¤ï¼è°æ¥é®å·è¿æä¾å¦å¤8ç§è¯æï¼åå æè¯ãæ³è¯ãå°å°è¯ãæ¥è¯ãæ®éè¯ãè¡èçè¯ãä¿è¯å西ççè¯ã
+
+ç¹å»é¾æ¥å¼å§ï¼https://berkeley.qualtrics.com/jfe/form/SV_aOONjgcBXDSl4qã
+
+
+### NumPy 1.21.0 åå¸
+
+_2021å¹´6æ23æ¥_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) æ£å¼åå¸ã æ¤æ¬¡åå¸çéç¹æ¯ï¼
+
+- ç»§ç»å¼å±SIMDå·¥ä½ï¼æ¶µçæ´å¤çåè½åå¹³å°
+- æ°dtypeçåºç¡ååæè½¬æ¢åæ¥å·¥ä½
+- éç¨äºMacå¹³å°çPython 3.8åPython 3.9çuniversal2 wheels
+- æ¹è¿ææ¡£
+- æ¹è¿æ³¨é
+- æ°ç `PCG64DXSM` ä½å
çæå¨ï¼ç¨äºçæéæºæ°å
+
+è¿ä¸ªNumPyçæ¬å
å«175人æè´¡ç®ç581个å并请æ±ã æ¤åå¸çæ¬æ¯æPython 3.7-3.9ï¼å°å¨Python 3.10åå¸åæ·»å Python 3.10æ¯æã
+
+
+### 2020 Numpyè°ç ç»æç»æ
+
+_2021å¹´6æ22æ¥_ -- å¨2020å¹´, NumPyè°ç å°ç»ä¸å¯ææ ¹å¤§å¦å马éå
°å¤§å¦çå¦çåæèåå·¥åä½ï¼è¿è¡äºç¬¬ä¸æ¬¡å®æ¹NumPy社åºè°æ¥ã å¨è¿éå¯ä»¥æ¥çè°ç ç»æï¼https://numpy.org/user-survey-2020/ã
+
+
+### NumPy 1.20.0 åå¸
+
+_2021å¹´1æ30æ¥_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) æ£å¼åå¸ã è¿æ¯ NumPyå°ç®åä¸ºæ¢æå¤§ç䏿¬¡çæ¬æ´æ°ï¼æè°¢180+ä½è´¡ç®è
ã æä»¤äººæ¯å¥ç两个ç¹ç¹æ¯ï¼
+- 为大é¨åNumpy代ç åäºç±»å注解ï¼ä¸¦æ·»å äºä¸ä¸ªå
¨æ°ç`numpy.typing` 忍¡åï¼å
¶ä¸å
å« `ArrayLike` å `DtypeLike`å«å ï¼ä½¿å¾ç¨æ·å䏿¸¸ä¾èµåºå¯ä»¥ä¸ºèªå·±çä»£ç æ·»å ç±»åæ³¨è§£ã
+- 为å¤ä¸ªæ¶æè¿è¡SIMDç¼è¯ä¼åï¼å
¶æ¯æX86(SSEãAVX)ãARM64(Neon) åPowerPC(VSX) æä»¤éã 大å¹
æé«è®¸å¤å½æ°çæ§è½(ä¾å¦ï¼ [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194))ã
+
+### NumPy项ç®ç夿 ·æ§
+
+_2020å¹´9æ20æ¥_ -- æä»¬å°±NumPy项ç®ç社交åªä½ã夿 ·æ§åå
容æ§çç°ç¶ä»¥åç¸å
³ç讨论æ°åäºä¸ä»½[声æ](/diversity_sep2020)ã
+
+
+### NumPy宿¹ç¬¬ä¸æ¬¡å¨Natureå表论æï¼
+
+_2020å¹´9æ16æ¥_ - æä»¬é«å
´å°å®£å¸ [Numpyç第ä¸ç¯å®æ¹è®ºæ](https://www.nature.com/articles/s41586-020-2649-2)åç»å¨Natureçè¯è®ºæç« ã è¿ç¦»NumPy 1.0åå¸å·²ç»è¿å»äºæ´æ´14å¹´ã è¿ç¯è®ºææ¶µçäºæ°ç»ç¼ç¨çåºç¨ååºæ¬æ¦å¿µï¼åºäºNumPyæå»ºç丰å¯ç§å¦Pythonçæç³»ç»ï¼ä»¥åæè¿æ·»å çæ°ç»åè®®ï¼ä»¥ä¿è¿ä¸å¤é¨æ°ç»åå¼ éåºï¼å¦CuPyãDaskåJAXï¼çäºæä½æ§ã
+
+
+### Python 3.9 å³å°æ¥ä¸´ï¼æ°çæ¬çNumPy å°å¨ä½æ¶åå¸ï¼
+
+_2020å¹´9æ14æ¥_ -- Python 3.9 å°å¨å å¨ååå¸ã å¦ææ¨æ¯è¿ä¸ªPythonçæ¬çæ©æéç¨è
ï¼ æ¨å¯è½ä¼å¤±æçåç°NumPy(以åå
¶ä»äºè¿å¶è½¯ä»¶å
ï¼å¦SciPy) å¨Pythonæ°çåå¸å½å¤©è¿ä¸ä¼åå¸ç¸åºççæ¬ã æå»ºå
¼å®¹æ°ç Python çæ¬çåºç¡è®¾æ½éè¦ä»åºé大åªåï¼é常éè¦å 卿¶é´æè½è®©æ°çæ¬åºç°å¨ PyPI å conda-forge ä¸ã 为äºè¿æ¬¡çæ¬å级å¾ä»¥é¡ºå©è¿è¡ï¼è¯·ç¡®ä¿ï¼
+- å°æ¨ç `pip` åçº§å° 20.1 çæ¬ï¼è³å°è¦æ¯æ`manylinux2010` å `manylinux2014`
+- ä½¿ç¨ [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) æ `--only-binary=:all:` é项æ¥é²æ¢ `pip` å°è¯ä»æºç æå»ºã
+
+
+### NumPy 1.19.2 åå¸
+
+_2020å¹´9æ10æ¥_ -- [NumPy 19.2.0](https://numpy.org/devdocs/release/1.19.2-notes.html) æ£å¼åå¸ã è¿ä¸ªææ°çæ¬ä¿®å¤äº1.19 ç³»åä¸çå ä¸ªæ¼æ´ï¼ä¸º [å³å°åå¸çCython3.x](http://docs.cython.org/en/latest/src/changes.html) ååå¤ï¼ä¸¦åºå®è®¾ç½®å·¥å
·ä»¥å¨ä¸æ¸¸ä¿®æ¹æ£å¨è¿è¡æ¶ä¿æ distutils å·¥ä½ã Aarch64æ¶æçå®è£
å
æ¯ç¨ææ°ç manylinux2014 çæ¬æå»ºçï¼å®ä¿®å¤äº linux åè¡çä¹é´ä½¿ç¨ä¸å大å°å
å页çé®é¢ã
+
+### 馿¬¡NumPyè°ç å³å°å¼å§ï¼
+
+_Jul 2, 2020_ - æ¬æ¬¡è°æ¥æ¨å¨æå¯¼å¹¶ç¡®å® å
³äºå¼åNumPy ä½ä¸ºè½¯ä»¶å社åºçå³çéç¹ã é¤è±æå¤ï¼è°æ¥è¿æä¾äºå¦å¤8ç§è¯è¨ççæ¬ï¼åå æè¯ãå°å°è¯ãæ¥è¯ãæ®éè¯ãè¡èçè¯ãä¿è¯ã西ççè¯åæ³è¯ã
+
+è¯·å¸®å©æä»¬è®© NumPy å徿´å¥½ï¼å¨[è¿é](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl)åä¸è°æ¥ã
+
+
+### NumPy ææ°æ å¿äº!
+
+_2020å¹´7æ24æ¥_ -- NumPy ç°å¨æä¸ä¸ªæ°çæ å¿ï¼
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy æ å¿" title="æ°ç NumPy æ å¿" width=300>
+
+è¿ä¸ªæ å¿æ¯å¯¹æ§æ å¿çç°ä»£åæ¼ç»ï¼éç¨æ´å ç®æ´çè®¾è®¡ã æè°¢Isabela Presedo-Florydçè®¾è®¡æ¹æ¡ï¼ åæ¶æè°¢Travis Vaughè®¾è®¡çæ§å¾æ 为æä»¬æå¡äº15年以ä¸ã
+
+
+### NumPy 1.19.0 åå¸
+
+_2020å¹´6æ20æ¥_ -- NumPy 1.19.0 æ£å¼åå¸ã è¿æ¯ç¬¬ä¸ä¸ªä¸æ¯æPython 2ççæ¬ï¼å æ¤å®æ¯ä¸ä¸ªâæ¸
ççæ¬âã ç®åæ¯æçæä½Python çæ¬æ¯ Python 3.6ã æ¬çæ¬æ¥æä¸ä¸ªéè¦çæ°ç¹æ§ï¼NumPy 1.17.0å¼è¿çéæºæ°åçæåºç¡æ¨¡åç°å¨å¯ä»¥éè¿Cython访é®ã
+
+
+### ææ¡£æ´æ¹æ¶æ®µ
+
+_2020å¹´5æ11æ¥_ -- NumPy å·²æä¸ºGoogle Season ææ¡£é¡¹ç®ä¹ä¸ã æä»¬å¾é«å
´çå°ææºä¼åææ¯åä½è
ä¸èµ·å次æ¹è¿NumPyçææ¯ææ¡£ï¼ æ´å¤è¯¦æ
ï¼è¯·åè [ææ¡£æ´æ¹æ¶æ®µå®æ¹ç½ç«](https://developers.google.com/season-of-docs/) åæä»¬ç [æè§é¡µé¢](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas)ã
+
+
+### NumPy 1.18.0 åå¸
+
+_2019å¹´12æ22æ¥_ -- NumPy 1.18.0 æ£å¼åå¸ã å¨1.17.0åçé大åååï¼è¿æ¯ä¸ä¸ªåå¹¶çæ¬ã è¿æ¯æåä¸ä¸ªæ¯æ Python 3.5çå°çæ¬ã è¯¥çæ¬çéè¦æ´æ°å
æ¬ä¸¤ä¸ªï¼æ·»å äºä¸64ä½ BLAS å LAPACK åºæå
³çåºå±æ´æ°ï¼ æ·»å ä¸ä¸ªç¨äº`numpy.random`çæ°C-APIæ´æ°ã
+
+详æ
请ç [çæ¬è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.18.0)ã
+
+
+### NumPy ä»Chan Zuckerberg Initiativeè·å¾äºä¸ç¬ææ¬¾
+
+_2019å¹´11æ15æ¥_ -- æä»¬é«å
´å°å®£å¸NumPyå OpenBLAS (Numpyçä¸ä¸ªæ ¸å¿ä¾èµåº)å·²ç»æ¶å°ä¸ç¬19,5000ç¾å
çèåèµ æ¬¾ã ææ¬¾æ¥èªäºChan Zuckerberg Initiativeéè¿ç[åºç¡å¼æºç§å¦è®¡ç®è½¯ä»¶é¡¹ç®](https://chanzuckerberg.com/eoss/)ï¼ç¨æ¥æ¯æå¯¹ç§å¦åå±èµ·å°å
³é®ä½ç¨ç弿ºè½¯ä»¶çç»´æ¤ãå¢é¿ãå¼åå社åºåä¸ã
+
+è¿ç¬èµ 款å°ç¨æ¥å éæ¹è¿NumPyææ¡£ãç½ç«éæå社åºå¼åï¼è¿èæ´å¥½å°ä¸ºæä»¬åºå¤§åè¿
éå¢é¿çç¨æ·åºç¡æå¡ï¼å¹¶ç¡®ä¿é¡¹ç®çé¿æå¯æç»æ§ã OpenBLAS å¢éå°ä¾§éäºå¤çå 个å
³é®ææ¯é®é¢ï¼ç¹å«æ¯çº¿ç¨å®å
¨é®é¢ãAVX-512å thread-local åå¨(TLS) é®é¢ï¼ä»¥åOpenBLAS ä¾èµç ReLAPACK (éå½çLAPACK) ç®æ³æ¹è¿ã
+
+è¥æ³æ¥çæ´å¤å
³äºææ¬¾çå¡è®®å交ä»ä»¶ç详æ
ï¼å¯å¨ [å
¨é¢èµ æ¬¾ææ¡](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167) 䏿¾å°ã 项ç®å¼å§äº2019å¹´12æ1æ¥ï¼ä»å12个æå°æç»è¿ä½ä¸å»ã
+
+
+<a name="releases"></a>
+
+## çæ¬åå¸
+
+è¿æ¯NumPy çæ¬å表ï¼å
å«äºå¯¹åºçæ¬åå¸è¯´æç龿¥ã ææç bugä¿®å¤çæ¬(å³å¨ `x.y.z`æ ¼å¼çæ¬å·ä¸åªæ `z`æ¹å)æ²¡ææ°åè½ï¼å°çæ¬æ´æ°(`y` æ¹å)ææ°åè½ã
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy1.22.0 (<a>åè¡è¯´æ</a>) -- _2021å¹´12æ31æ¥_.
+- NumPy1.21.5 (<a>åè¡è¯´æ</a>) -- _2021å¹´12æ19æ¥_.
+- NumPy1.21.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _2021å¹´6æ22æ¥_.
+- NumPy1.23.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _2021å¹´5æ10æ¥_.
+- NumPy1.20.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _2021å¹´1æ30æ¥_.
+- NumPy1.19.5 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _2021å¹´1æ5æ¥_.
+- NumPy1.19.0 ([åè¡è¯´æ](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _2020å¹´6æ20æ¥_.
+- NumPy1.18.4 (<a>åè¡è¯´æ</a>) -- _2020å¹´5æ3æ¥_.
+- NumPy1.17.5 (<a>åè¡è¯´æ</a>) -- _2020å¹´1æ1æ¥_.
+- NumPy1.18.0 (<a>åè¡è¯´æ</a>) -- _2019å¹´12æ22æ¥_.
+- NumPy1.17.0 (<a>åè¡è¯´æ</a>) -- _2019å¹´7æ26æ¥_.
+- NumPy1.16.0 (<a>åè¡è¯´æ</a>) -- _2019å¹´1æ14æ¥_.
+- NumPy1.15.0 (<a>åè¡è¯´æ</a>) -- _2018å¹´7æ23æ¥_.
+- NumPy1.14.0 (<a>åè¡è¯´æ</a>) -- _2018å¹´1æ7æ¥_.
|
numpy/numpy.org
|
b23d296444e8500eab0982f75716a457695d3045
|
New translations news.md (Russian)
|
diff --git a/content/ru/news.md b/content/ru/news.md
new file mode 100644
index 0000000..7a7aba2
--- /dev/null
+++ b/content/ru/news.md
@@ -0,0 +1,322 @@
+---
+title: News
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
+
+* Python 3.12.0 support.
+* Cython 3.0.0 compatibility.
+* Use of the Meson build system
+* Updated SIMD support
+* f2py fixes, meson and bind(x) support
+* Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
+
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_Japanese:_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
+
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
+
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
+
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+<a name="releases"></a>
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
3d11a5d0e474a90afd105ef181c181cf1775bf4c
|
New translations news.md (Korean)
|
diff --git a/content/ko/news.md b/content/ko/news.md
new file mode 100644
index 0000000..4fb6664
--- /dev/null
+++ b/content/ko/news.md
@@ -0,0 +1,322 @@
+---
+title: ìì
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2023-09-16
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0 ì¶ìì¼: 6ì 16ì¼
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- [NumPy 2.0 ì´ì£¼ ê°ì´ë](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- [2.0.0 ë¦´ë¦¬ì¦ ë
¸í¸](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- ìí ì
ë°ì´í¸ ê³µì§ì© ì´ì: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 ì¶ìì¼: 6ì 16ì¼
+
+_2024ë
5ì 23ì¼_ -- NumPy 2.0ì´ 2024ë
6ì 16ì¼ì ì¶ìí ìì ì´ë¼ë ììì ë°ííê² ëì´ ê¸°ì©ëë¤. ì´ ë¦´ë¦¬ì¦ë¥¼ ì ìíë ë° 1ë
ì´ ëê² ê±¸ë ¸ê³ , 2006ë
ì´í 첫 ë²ì§¸ ë©ì¸ 릴리ì¦ì
ëë¤. ì¤ìí ê±´ ë§ì 기ë¥ê³¼ ì±ë¥ ê°ì ì¸ìë, ABIì Python, C APIì ëí **í기ì ì¸ ë³í**를 ì´ë¤ëë¤ë ê²ì
ëë¤. ìë§ ìì¡´íë í¨í¤ì§ì ìµì¢
ì¬ì©ìì ì½ë를 ìì í´ì¼ í ê²ëë¤. ê°ë¥íë¤ë©´ ì½ëê° `2.0.0rc2`ìì ì ìëíëì§ ê²ì¦í´ 주ì¸ì. **ìì¸í ë´ì©ì ìë í목ë¤ì íì¸í´ 주ì¸ì.**
+
+- [NumPy 2.0 ì´ì£¼ ê°ì´ë](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- [2.0.0 ë¦´ë¦¬ì¦ ë
¸í¸](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- ìí ì
ë°ì´í¸ ê³µì§ì© ì´ì: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumPy 1.26.0 ì¶ì
+_2023ë
12ì 19_ -- NumFOCUSìì ì°ë§ ìº íì¸ ê¸°ê° ëì PyCharmê³¼ íë ¥í´ ìµì´ PyCharm ì´ì©ìì ë¼ì´ì ì¤ë¥¼ 30% í ì¸ë ê°ê²©ì ì ê³µíìµëë¤. ì§ê¸ë¶í° 2023ë
12ì 23ì¼ê¹ì§ PyCharm êµ¬ë§¤ë¡ ë°ìí 모ë ììµì NumFOCUS íë¡ê·¸ë¨ì¼ë¡ ì§ì ì ë¬ë©ëë¤.
+
+구매를 ì¶ì í ì ìë ê³ ì URLì ì´ì©íê±°ë: https://lp.jetbrains.com/support-data-science/ ì¿ í° ì½ë를 ì¬ì©íì¸ì: ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 ì¶ì
+
+_2023ë
12ì 16ì¼_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
+
+* íì´ì¬ 3.12.0 ì§ì
+* Cython 3.0.0 í¸í
+* Meson ë¹ë ìì¤í
ì¬ì©
+* ì
ë°ì´í¸ë SIMD ì§ì
+* f2py ìì , meson ë° bind(x) ì§ì
+* ì
ë°ì´í¸ë Accelerate BLAS/LAPACK ë¼ì´ë¸ë¬ë¦¬ ì§ì
+
+NumPy 1.26.0 릴리ì¤ë Meson ë¹ë ìì¤í
ì¼ë¡ì ì íê³¼ Cython 3.0.0 ì§ìì íìíë 1.25.x ì리ì¦ì ì°ì¥ì
ëë¤. ì´ 20ëª
ì ì¬ëë¤ì´ ì´ ë¦´ë¦¬ì¤ì 기ì¬íìì¼ë©° 59ê°ì í 리íì¤í¸ê° ë³í©ëììµëë¤.
+
+본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.3.9-3.12ì
ëë¤.
+
+### numpy.orgì ì´ì ì¼ë³¸ì´ì í¬ë¥´í¬ê°ì´ë¡ë ì´ì© ê°ë¥í©ëë¤.
+
+_2023ë
8ì 2ì¼_ - numpy.orgì ì´ì ì¶ê°ë¡ ì¼ë³¸ì´ì í¬ë¥´í¬ê°ì´ë¡ ì´ì© ê°ë¥í©ëë¤. ì´ë ë¤ìì íì ì ì¸ ììë´ì¬ìë¤ì ë
¸ë ¥ ìì´ë ê°ë¥íì§ ììì ê²ì
ëë¤:
+
+_í¬ë¥´í¬ê°ì´_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_ì¼ë³¸ì´_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+ë²ì ì¸íë¼ì ëí ìì
ì CZIë¡ë¶í°ì ìê¸ ì§ìì ë°ì ì§íëììµëë¤.
+
+ëìê°ì NumPy ì¹ì¬ì´í¸ê° ë ë§ì ì¸ì´ë¡ ë²ìë기를 ë°ëëë¤. ëìì 주ìë ¤ë©´ ë¤ì Slack ë§í¬ë¥¼ íµí´ NumPy Translations Team ì ì°ë½ì 주ììì¤: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (#translations ì±ëì add í´ì£¼ì¸ì) ëí ê³¼íì íì´ì¬ ìíê³ ì ë°ìì 문ì ë° êµì¡ ì½í
ì¸ ë¥¼ ì§ìííëë° ì°¸ì¬í Translations Teamì 구ì¶íê³ ììµëë¤. ì´ì í¥ë¯¸ë¥¼ ëëë¤ë©´ Scientific Python Discordìì í¨ê»í´ 주ì¸ì: https://discord.gg/khWtqY6RKr. (#translation ì±ëì ì°¾ìë³´ì¸ì)
+
+### NumPy 1.25.0 ì¶ì
+
+_2023ë
6ì 17ì¼_ -- ì´ì [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)ì ì´ì©í ì ììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
+
+* MUSL ì§ì, ì´ì MUSL Wheelë ë°°í¬ë©ëë¤.
+* Fujitsu C/C++ ì»´íì¼ë¬ ì§ì
+* Einsumìì ê°ì²´ ë°°ì´ ì§ì
+* Inplace íë ¬ ê³±ì
(`@=`) ì§ì
+
+NumPy 1.25.0 릴리ì¤ììë dtypeì ì²ë¦¬ ë° íë³íì ê°ì íê³ ì¤í ìë를 ëì´ë ìì
, 문ì를 ë³´ë¤ ëª
ë£íê² ë¤ë¬ë ìì
ì ê³ìíê³ ììµëë¤. 미ëì NumPy 2.0.0ì ìí ì¤ë¹ ìì
ë ììëë°, ì´ë¡ ì¸í´ ìë§ì 기ë¥ë¤ì´ ì§ì ì¢
ë£ ìì ì ìë¡ í¬í¨ëê±°ë ìì í ë§ë£ëììµëë¤.
+
+ì´ 148ëª
ì ì¬ëë¤ì´ ì´ ë¦´ë¦¬ì¤ì 기ì¬íìì¼ë©° 530ê°ì í 리íì¤í¸ê° ë³í©ëììµëë¤.
+
+본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.9-3.11ì
ëë¤.
+
+### í¬ì©ì ì¸ ë¬¸í ì¡°ì±: ì°¸ì¬ ìì²
+
+_2023ë
5ì 10ì¼_ -- í¬ì©ì ì¸ ë¬¸í ì¡°ì±: ì°¸ì¬ ìì²
+
+ë¤ìì±ê³¼ í¬ì©ì±ì 측면ìì ì°ë¦¬ë ì´ë»ê² ë ëìì§ ì ììê¹ì? [ì¬ê¸°](https://contributor-experience.org/docs/posts/dei-report/)ìì ë³´ê³ ì를 ì½ê³ í¨ê» ì°¸ì¬íë ë°©ë²ì ììë³´ì¸ì.
+
+### NumPy 문ì í 리ë ë³ê²½
+
+_2023ë
1ì 6ì¼_ â- Mukulika Pahari, Ross Barnowskiê° Melissa Mendonça를 ëì í´ ì NumPy 문ì í 리ëë¡ ìëª
ëììµëë¤. NumPy ê³µì 문ìì êµì¡ ìë£ì 기ì¬í Melissaì í 걸ì ë ëìê° Mukulika, Rossìê² ê°ì¬ë¥¼ íí©ëë¤.
+
+### NumPy 1.24.0 ì¶ì
+
+_2022ë
12ì 18ì¼_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
+
+* ì¤íí¹ í¨ì를 ìí ì "dtype" ë° "casting" í¤ìë.
+* ì F2PY ê¸°ë¥ ë° ìì .
+* ìë§ì ì§ì ì¢
ë£ ìì 기ë¥, íì¸íì¸ì.
+* ìë§ì ë§ë£ë 기ë¥,
+
+NumPy 1.24.0 릴리ì¤ììë dtypeì ì²ë¦¬ ë° íë³íì ê°ì íê³ ì¤í ìë를 ëì´ë ìì
, 문ì를 ë³´ë¤ ëª
ë£íê² ë¤ë¬ë ìì
ì ê³ìíê³ ììµëë¤. dtypeì íë³í ë° ì 리를 ë³ê²½íë ê³¼ì ìì ìë§ì 기ë¥ë¤ì´ ì§ì ì¢
ë£ ìì ì ìë¡ í¬í¨ëê±°ë ìì í ë§ë£ëììµëë¤. 177ëª
ì 기ì¬ìê° ìì±í 444ê°ì í ìì²ì ë°íì¼ë¡ í ì±ê³¼ì
ëë¤. ì§ìíë Python ë²ì ì 3.8-3.11ì
ëë¤.
+
+### NumPy 1.23.0 ì¶ì
+
+_2022ë
6ì 22ì¼_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
+
+* `loadtxt`를 Cë¡ êµ¬ííì¬ ì±ë¥ì´ í¬ê² í¥ìëììµëë¤.
+* ë°ì´í° êµíì ì½ê² í기 ìí´ Python ìì¤ìì DLPackì ê°ë°©í©ëë¤.
+* 구조íë dtypeì íë³í ë° ë¹êµ ë°©ë²ì ë³ê²½íìµëë¤.
+* f2py를 ê°ì íìµëë¤.
+
+NumPy 1.23.0 릴리ì¤ììë dtypeì ì²ë¦¬ ë° íë³íì ê°ì íê³ ì¤í ìë를 ëì´ë ìì
, 문ì를 ë³´ë¤ ëª
ë£íê² ë¤ë¬ë ìì
, ì¤ëë ì§ì ì¢
ë£ ìì 기ë¥ì ìì í ë§ë£ìí¤ë ìì
ì ê³ìíê³ ììµëë¤. 151ëª
ì 기ì¬ìê° ìì±í 494ê°ì í ìì²ì ë°íì¼ë¡ í ì±ê³¼ì
ëë¤. 본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.8-3.10ì
ëë¤. Python 3.11ì rc ë¨ê³ì ë¤ë¤ë¥´ë©´ ì§ìí ìì ì
ëë¤.
+
+### NumFOCUS DEI ì°êµ¬: ì°¸ì¬ ìì²
+
+_2022ë
4ì 13ì¼_ -- NumPyë [NumFOCUS](http://numfocus.org/)ì íë ¥íì¬ [Gordon & Betty Moore ì¬ë¨](https://www.moore.org/)ìì 기ê¸ì ì ê³µíë [ì°êµ¬ íë¡ì í¸](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)를 ì§íí©ëë¤. 본 ì°êµ¬ë ì¤í ìì¤ ìíí¸ì¨ì´ 커뮤ëí°ì 기ì¬ì, í¹í ìì¬ì ì¼ë¡ ê³¼ìíê°ë ì§ë¨ì 기ì¬ìê° ì°¸ì¬í ë ì§ë©´íë ì¥ë²½ì ì´í´íë ê²ì 목íë¡ í©ëë¤. ì°êµ¬íì ì 기ì¬ì, íë¡ì í¸ ê°ë°ì ë° ì ì§ê´ë¦¬ì, 과거ì 기ì¬í ì¬ëë¤ê³¼ NumPyì ì°¸ì¬íê³ ê¸°ì¬í ê²½íì ëí´ ì´ì¼ê¸°íê³ ì í©ëë¤.
+
+**ê²½íì ê³µì íê³ ì¶ì¼ì ê°ì?**
+
+ê°ë¨í ["ì°¸ì¬ í¬ë§" ìì](https://numfocus.typeform.com/to/WBWVJSqe)ì ìì±í´ì£¼ì¸ì. ìììì ì°êµ¬ 목í, ê°ì¸ì ë³´ ë³´í¸, ê¸°ë° ì ì§ ì¬íì ëí ì¶ê° ì 보를 íì¸í ì ììµëë¤. ë¹ì ì ì°¸ì¬ê° ë¤ìì±ê³¼ í¬ì©ì±ì ê°ì¶ ì¤í ìì¤ ìíí¸ì¨ì´ 커뮤ëí°ì ì±ì¥ê³¼ ì§ì ê°ë¥ì±ì ëìì´ ë ê²ì
ëë¤. ì¹ì¸ë ì°¸ê°ìë ì°êµ¬íê³¼ 30ë¶ ë©´ë´ì ì§ííê² ë©ëë¤.
+
+### Numpy 1.22.0 ì¶ì
+
+_2021ë
12ì 31ì¼_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
+
+* 기본 ë¤ìì¤íì´ì¤ì ëí´ ì í 주ìì ì§ìì ê±°ì ìë£íìµëë¤. ì
ì¤í¸ë¦¼ ì½ëë íì ë³íë¯ë¡ ì¶ê° ê°ì ì´ ìì ì ìì§ë§ 주ì ìì
ì ìë£ëììµëë¤. ìë§ë ì´ ë¦´ë¦¬ì¤ìì ê°ì¥ ì²´ê°ëë ê°ì ì¬íì¼ ê²ì
ëë¤.
+* ì ìë [ë°°ì´ API íì¤ì ìë¹ ë²ì ](https://data-apis.org/array-api/latest/)ì´ ì ê³µë©ëë¤([NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html) 참조). ì´ë CuPy ë° JAXì ê°ì ë¼ì´ë¸ë¬ë¦¬ìì ì¬ì©í ì ìë íì¤ í¨ì 모ìì ë§ëë ë¨ê³ì
ëë¤.
+* NumPyê° DLPack ë°±ìëë¡ êµ¬ëë©ëë¤. DLPackì ë°°ì´(í
ì) ë°ì´í°ì ëí ê³µíµ êµí íìì ì ê³µí©ëë¤.
+* `quantile`, `percentile` ê´ë ¨ í¨ì를 ìí ì ë©ìë를 ì¶ê°íìµëë¤. ì ë©ìë를 ì´ì©í´ 문íìì ì¼ë°ì ì¼ë¡ ì°ì´ë ì²ë¦¬ë¥¼ ì§íí ì ììµëë¤.
+* ë²ì© í¨ìê° ëë¶ë¶ì [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html)ì 구ííëë¡ ë¦¬í©í°ë§ëììµëë¤. ì´ë¥¼ íµí´ 미ëì DType API를 ì¤íí ì ìë ë¥ë ¥ë ê°ì·ìµëë¤.
+* ì êµ¬ì± ê°ë¥í ë©ëª¨ë¦¬ í ë¹ì를 ë¤ì´ì¤í¸ë¦¼ íë¡ì í¸ìì ì¬ì©í ì ììµëë¤.
+
+NumPy 1.22.0ì 153ëª
ì 기ì¬ìê° ìì±í 609ê°ì í ìì²ì ë°íì¼ë¡ ë§ë¤ì´ì§ ëí 릴리ì¦ì
ëë¤. 본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.8-3.10ì
ëë¤.
+
+### ê³¼í Python ìíê³ìì í¬ì©ì 문í ë°ì
+
+_2021ë
8ì 31ì¼_ -- Chan Zuckerberg Initiativeê° ê³¼íì Python íë¡ì í¸ìì ìì¬ì ì¼ë¡ ìì¸ë 그룹ì ì¬ëë¤ì ì¨ë³´ë©, í¬í¨ ë° ì ì§íê³ NumPy, SciPy, Matplotlib ê·¸ë¦¬ê³ Pandas ì 커뮤ëí° ìíì 구조ì ì¼ë¡ ê°ì í기 ìí [ë³´ì¡°ê¸ì ìì¬](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)íìì ë°ííê² ëì´ ê¸°ì©ëë¤.
+
+[CZIì Essential Open Source Software for Science íë¡ê·¸ë¨](https://chanzuckerberg.com/eoss/)ì ì¼íì¼ë¡ ì´ [Diversity & í¬í¨ ì¶ê° ë³´ì¡°ê¸](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)ì í¬ê´ì ì¸ ì¤í ìì¤ ì»¤ë®¤ëí°ë¥¼ ì¡ì±í기 ìí ê´íì ìë³, 문ìí ë° êµ¬íí기 ìí ì ë´ ê¸°ì¬ì ê²½í 리ë ì§ì±
ìì±ì ì§ìí©ëë¤. ì´ íë¡ì í¸ë Melissa Mendonça(NumPy) ëì´ ì´ëê³ Ralf Gommers(NumPy, SciPy), Hannah Aizenman, Thomas Caswell(Matplotlib), Matt Haberland(SciPy), Joris Van den Bossche(Pandas) ëì´ ì¶ê° ë©í ë§ ë° ì§ì¹¨ì ì ê³µí©ëë¤.
+
+ì´ê²ì íë¡ì í¸ì 커뮤ëí° ìíì 구조ì ì¼ë¡ ê°ì í´ì¼ íë íëì ë°ê²¬íê³ êµ¬ííë ê²ì 목íë¡ íë ì¼ì¬ ì°¬ íë¡ì í¸ì
ëë¤. ìë¡ì´ êµì°¨ íë¡ì í¸ ìí ì ì¤ì í¨ì¼ë¡ì¨ ê³¼íì Python 커뮤ëí°ì ìë¡ì´ íì
모ë¸ì ëì
íì¬ ìíê³ ë´ìì 커뮤ëí° êµ¬ì¶ ìì
ì ë³´ë¤ í¨ì¨ì ì¼ë¡ ìííê³ ë í° ê²°ê³¼ë¥¼ ì»ì ì ìì ê²ì¼ë¡ 기ëë©ëë¤. ëí í¹í ìì¬ì ì¼ë¡ ê³¼ìëíë ì§ë¨ì ìë¡ì´ 기ì¬ì를 ì°¸ì¬ìí¤ê³ ì ì§í기 ìí´, íë¡ì í¸ìì í¨ê³¼ì ì¸ ê²ê³¼ ê·¸ë ì§ ìì ê²ì ëí ëª
íí 그림ì 구ì¶í ê²ì¼ë¡ 기ëí©ëë¤. ë§ì§ë§ì¼ë¡, ìíë ì¡°ì¹ì ëí´ ìì¸í ë³´ê³ ì를 ìì±íì¬ ì»¤ë®¤ëí°ìì ëí ë° ìí¸ ìì© ì¸¡ë©´ìì íë¡ì í¸ì ì´ë¤ ìí¥ì 미쳤ëì§ ì¤ëª
í ê³íì
ëë¤.
+
+2ê°ë
íë¡ì í¸ê° 2021ë
11ìë¶í° ììë ìì ì
ëë¤. íë¡ì í¸ì 결과를 ë³¼ ë ì´ ê¸°ëëë¤ì! [ì¬ê¸°ìì ì ì²´ ì ìì를 ì´ëí ì ììµëë¤](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021ë
ë NumPy ì¤ë¬¸ì¡°ì¬
+
+_2021ë
7ì 12ì¼_ -- NumPyìì, ì°ë¦¬ë 커뮤ëí°ì íì 믿ìµëë¤. ìë
ì 75ê°êµìì 1,236ëª
ì NumPy ì¬ì©ìê° ì²« ë²ì§¸ ì¤ë¬¸ì¡°ì¬ì ì°¸ì¬íìµëë¤. ì¤ë¬¸ ì¡°ì¬ ê²°ê³¼ë¥¼ íµí´ ë¤ì 12ê°ì ëì ì°ë¦¬ê° ì´ë¤ ê²ì ì§ì¤í´ì¼ í ì§ ì주 ì ì´í´í ì ìììµëë¤.
+
+ì´ì ëë¤ë¥¸ ì¤ë¬¸ ì¡°ì¬ë¥¼ ì§íí ìê°ì´ê³ , ì¬ë¬ë¶ì ëìì´ ë¤ì í ë² íìí©ëë¤. ìë£íë ë° ì½ 15ë¶ ì ë ììë ê²ëë¤. ì¤ë¬¸ì§ë ìì´ ì¸ìë 8ê° êµì´ë¡ ì ê³µë©ëë¤: 벵골ì´, íëì¤ì´, íëì´, ì¼ë³¸ì´, ì¤êµ ê´í, í¬ë¥´í¬ê°ì´, ë¬ììì´, ì¤íì¸ì´.
+
+ììíë ¤ë©´ ìë ë§í¬ë¥¼ ëë¬ ì£¼ì¸ì: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 ì¶ì
+
+_2021ë
9ì 23ì¼_ -- [NumPy 1.1.21](https://numpy.org/doc/stable/release/1.21.0-notes.html)ì´ ì¶ìëììµëë¤. 주ì 기ë¥ë¤ì ë¤ìê³¼ ê°ìµëë¤:
+
+- ë ë§ì 기ë¥ê³¼ íë«í¼ì ë¤ë£¨ë ì§ìì ì¸ SIMD ìì
,
+- ìë¡ì´ dtype ì¸íë¼ ë° ìºì¤í
ì ëí ì´ê¸° ìì
,
+- Macì Python 3.8 ë° Python 3.9ì© universal2 í ,
+- 문ìí í¥ì,
+- 주ì í¥ì,
+- ëì ìì±ì ì´ì©ëë ì `PCG64DXSM` ë¹í¸ ìì±ê¸°.
+
+ì´ë² NumPy 릴리ì¦ë 175ëª
ì´ ê¸°ì¬í´ì£¼ì 581ê°ì í 리íì¤í¸ê° í©ì³ì§ ê²°ê³¼ì
ëë¤. 본 릴리ì¦ìì ì§ìíë Python ë²ì ì 3.7-3.9ì
ëë¤. Python 3.10ì Python 3.10 ë¦´ë¦¬ì¦ ì´í ì§ìí ìì ì
ëë¤.
+
+
+### 2020ë
ë NumPy ì¤ë¬¸ì¡°ì¬ ê²°ê³¼
+
+_2021ë
6ì 22ì¼_ -- 2020ë
ì, NumPy ì¡°ì¬ íì ì¡°ì¬ë°©ë²ë¡ íì¬ ê³¼ì ì íì ë° êµìì íë ¥íì¬ ë¯¸ìê° ëíê³¼ 매릴ë ë ëíì´ ê³µëì¼ë¡ ê°ìµí 첫 ê³µì NumPy 커뮤ëí° ì¡°ì¬ë¥¼ ì¤ìíìµëë¤. ì¬ê¸°ì ì¡°ì¬ ê²°ê³¼ë¥¼ íì¸íì¸ì: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 ì¶ì
+
+_2021ë
9ì 30ì¼_ -- [NumPy 1.1.20](https://numpy.org/doc/stable/release/1.20.0-notes.html)ì´ ì¶ìëììµëë¤. ìë ìµëì NumPy 릴리ì¦ì
ëë¤. 180ëª
ì´ ëë 기ì¬ìë¶ë¤ê» ê°ì¬ë립ëë¤. ë¤ìì ì´ë² ì¶ììì ê°ì¥ í¥ë¯¸ë¡ì´ ëê°ì§ 기ë¥ë¤ ì
ëë¤.
+- NumPyì ë§ì ë¶ë¶ì ëí ì í 주ì ë° ì¬ì©ìì ë¤ì´ì¤í¸ë¦¼ ë¼ì´ë¸ë¬ë¦¬ê° ì¶ê°í ë ì¬ì©í ì ìë `ArrayLike` ë° `DtypeLike` ë³ì¹ì í¬í¨íë ìë¡ì´ `numpy.typing` íì 모ë ìì²´ ì½ëì 주ìì ì
ë ¥í©ëë¤.
+- x86(SSE, AVX), ARM64(Neon) ë° PowerPC(VSX) ëª
ë ¹ì ì§ìíë ë¤ì¤ íë«í¼ SIMD ì»´íì¼ë¬ ìµì í ì
ëë¤. ì´ë ë§ì í¨ìë¤ì ìë¹í ì±ë¥í¥ìì ê°ì ¸ììµëë¤ (ì: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### NumPy íë¡ì í¸ ë´ ë¤ìì±
+
+_2020ë
9ì 20ì¼_ -- ì°ë¦¬ë [NumPy íë¡ì í¸ ìììì ë¤ìì±ê³¼ í¬ì©ì±ì ê´í ìì
미ëì´ì ìí ë° í ë¡ ì ëí ì±ëª
ì를 ìì±íìµëë¤](/diversity_sep2020).
+
+
+### Natureì 첫 ê³µì NumPy ë
¼ë¬¸ ë°í!
+
+_2020ë
9ì 16ì¼_ -- [NumPyì ëí 첫 ë²ì§¸ ê³µì ë
¼ë¬¸](https://www.nature.com/articles/s41586-020-2649-2)ì´ Natureì 리뷰 기ì¬ë¡ ê²ì¬ëììì ë°ííê² ëì´ ê¸°ì©ëë¤. NumPy 1.0ì´ ëì¨ ì§ 14ë
ë§ì
ëë¤. ì´ ë°±ìììë ë°°ì´ íë¡ê·¸ëë°ì ìì© íë¡ê·¸ë¨ ë° ê¸°ë³¸ ê°ë
, NumPy ìì 구ì¶ë íë¶í ê³¼íì Python ìíê³, CuPy, Dask ë° JAXì ê°ì ì¸ë¶ ë°°ì´ ë° í
ì ë¼ì´ë¸ë¬ë¦¬ìì ìí¸ ì´ì©ì±ì ì´ì§í기 ìí´ ìµê·¼ì ì¶ê°ë ë°°ì´ íë¡í ì½ì ë¤ë£¹ëë¤.
+
+
+### Python 3.9ê° ê³§ ì¶ìíëë°, NumPyë ë°ì´ë리 Wheelì ì¸ì ì¶ìí©ëê¹?
+
+_2020ë
9ì 14ì¼_ -- Python 3.9ê° ëª ì£¼ ë´ë¡ ì¶ìë ê²ì
ëë¤. ë§ì½ Python ì¼ë¦¬ì´ëµí°ë¼ë©´, NumPy (ê·¸ë¦¬ê³ SciPy ë± ë¤ë¥¸ ë°ì´ë리 í¨í¤ì§) ê° ë¦´ë¦¬ì¦ ìì¼ì ë°ì´ë리 Wheelì ì¤ë¹íì§ ëª»íë¤ë ê²ì ìê³ ì¤ë§íì ì ììµëë¤. ìë¡ì´ Python ë²ì ì ë¹ë íê²½ì ë§ì¶ë ê²ì ë§ì ë
¸ë ¥ì ìíê³ , í¨í¤ì§ê° PyPI ë° conda-forgeì ë°°í¬ëë ë°ìë ì¼ë°ì ì¼ë¡ ëª ì£¼ê° ê±¸ë¦½ëë¤. ì¶ì를 ëë¹íë ¤ë©´ ìë ìê±´ì 충족íëë¡ íììì¤.
+- `pip` ë²ì ì ìµì 20.1ë¡ ì
ë°ì´í¸íì¬ `manylinux2010` ë° `manylinux2014`를 ì§ìíëë¡ í©ëë¤
+- [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary)를 ì¬ì©íê±°ë ëë `--only-binary=:all:`ì ì¬ì©íì¬ `pip`ê° ìì¤ìì ë¹ëíë ê²ì ë§ì주ì¸ì.
+
+
+### NumPy 1.19.2 ì¶ì
+
+_2020ë
9ì 10ì¼_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html)ì´ ì¶ìëììµëë¤. 1.19 ì리ì¦ì ì´ ìµì 릴리ì¤ë ëª ê°ì§ ë²ê·¸ë¥¼ ìì íê³ [ë¤ê°ì¤ë Cython 3.x 릴리ì¤](http://docs.cython.org/en/latest/src/changes.html)를 ì¤ë¹íë©° setuptools를 ê³ ì íì¬ ì
ì¤í¸ë¦¼ ìì ì´ ì§íëë ëì distutilsê° ê³ì ìëíëë¡ í©ëë¤. aarch64 í ì ë¤ìí Linux ë°°í¬íìì ì¬ì©ëë ë¤ìí íì´ì§ í¬ê¸° 문ì 를 í´ê²°íë ìµì manylinux2014 릴리ì¤ë¡ ì ìëììµëë¤.
+
+### ìµì´ì NumPy ì¤ë¬¸ì¡°ì¬ê° ì§í ì¤ì
ëë¤!
+
+_2020ë
7ì 2ì¼_ -- 본 ì¤ë¬¸ì¡°ì¬ë ìíí¸ì¨ì´ ë° ì»¤ë®¤ëí°ë¡ìì NumPy ê°ë°ì ëíì¬, ìì¬ê²°ì ì ì°ì ìì를 ìë´íê³ ì¤ì í기 ìí´ ì¤ìë©ëë¤. ì¤ë¬¸ì§ë ìì´ ì¸ìë 8ê° êµì´ë¡ ì ê³µë©ëë¤: 벵골ì´, íëì¤ì´, íëì´, ì¼ë³¸ì´, ì¤êµ ê´í, í¬ë¥´í¬ê°ì´, ë¬ììì´, ì¤íì¸ì´.
+
+NumPy를 ê°ì íê² ëì주ìê³ ì´ë¥¼ìí´ ì¤ë¬¸ì¡°ì¬ì ì°¸ì¬í´ 주ì¸ì. [ì¬ê¸°](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPyì ìë¡ì´ ë¡ê³ ê° ìê²¼ìµëë¤!
+
+_2020ë
6ì 24ì¼_ -- NumPyì ìë¡ì´ ë¡ê³ ê° ìê²¼ìµëë¤.
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy ë¡ê³ " title="ì NumPy ë¡ê³ " width=300>
+
+ì´ì ë¡ê³ 를 ê¹ëíê³ íëì ì¼ë¡ ë¤ì ëìì¸íìµëë¤. ì ë¡ê³ 를 ë§ë¤ì´ 주ì Isabela Presedo-Floydëê» ê°ì¬ë립ëë¤. ë 15ë
ì´ ëë ê¸°ê° ëì ì í¬ê° ì¬ì©íë ë¡ê³ 를 ë§ë¤ì´ 주ì Travis Vaughtëê»ë ê°ì¬ì ë§ìì ë립ëë¤.
+
+
+### NumPy 1.19.0 ì¶ì
+
+_2020ë
6ì 20ì¼_ -- NumPy 1.19.0ì´ ì¶ìëììµëë¤. Python 2ì ì§ìì ì¤ë¨í 첫 릴리ì¦ë¼ì "ì 리 릴리ì¦"ë¼ê³ ë ë¶ë¦½ëë¤. ì´ì ì§ìíë Python ìµì ë²ì ì 3.6ì
ëë¤. ì¤ìí ì 기ë¥ì ê¼½ìë©´, NumPy 1.17.0ì ëì
ë ëì ìì± ì¸íë¼ë¥¼ Cythonìì ì ê·¼í ì ìê² ëìë¤ë ê²ì
ëë¤.
+
+
+### Season of Docs ì¹ì¸
+
+_2020ë
5ì 11ì¼_ -- NumPyê° Google Season of Docs íë¡ê·¸ë¨ì ì ë ì¡°ì§ì¼ë¡ ì¹ì¸ëììµëë¤. í
í¬ë컬 ë¼ì´í°ì íë ¥í´ì NumPy 문ì를 ë¤ì í ë² ê°ì í ì ìë 기í를 ê°ê² ëì´ ì¢ìµëë¤! ì´ì ìì¸í ë´ì©ì [ê³µì 문ì ìì¦ ì¬ì´í¸](https://developers.google.com/season-of-docs/) ë° [ìì´ëì´ íì´ì§](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas) 를 참조íì¸ì.
+
+
+### NumPy 1.18.0 ì¶ì
+
+_2019ë
12ì 22ì¼_ -- NumPy 1.18.0ì´ ì¶ìëììµëë¤. 1.17.0ììì 주ì ë³ê²½ì ì íµí©íë 릴리ì¦ì
ëë¤. 본 릴리ì¦ë Python 3.5를 ì§ìíë ë§ì§ë§ ë§ì´ë 릴리ì¦ì
ëë¤. 릴리ì¦ì 주ì ë´ì©ì¼ë¡ë, 64ë¹í¸ BLAS ë° LAPACK ë¼ì´ë¸ë¬ë¦¬ì ì°ê²°í기 ìí íê²½ ì¡°ì±, `numpy.random`ì ìí ìë¡ì´ C-API ë±ì´ ììµëë¤.
+
+ìì¸í ë´ì©ì [ì¶ì ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.18.0)를 참조íì¸ì.
+
+
+### NumPyê° Chan Zuckerberg Initiativeìì ë³´ì¡°ê¸ì ë°ììµëë¤
+
+_2019ë
11ì 15ì¼_ -- NumPyì 주ì ì¢
ì í¨í¤ì§ ì¤ íëì¸ NumPyì OpenBLASê° ì± ì 커ë²ê·¸ ì´ëì
í°ë¸ì [ê³¼í íë¡ê·¸ë¨ì© ì¤ì ì¤íìì¤ ìíí¸ì¨ì´](https://chanzuckerberg.com/eoss/) ì§ìì íµí´ 19ë§ 5ì² ë¬ë¬ì ë¬íë ê³µë ë³´ì¡°ê¸ì ë°ìë¤ë ììì ì í ì ìì´ ê¸°ì©ëë¤. ì´ê³³ììë ê³¼íì ì¤ìí ì¤íìì¤ ë구ì ëí´ ì ì§ ê´ë¦¬, ì±ì¥, ê°ë° ë° ì»¤ë®¤ëí° ì°¸ì¬ë¥¼ ì§ìí©ëë¤.
+
+ì´ ë³´ì¡°ê¸ì NumPy 문ì, ì¹ì¬ì´í¸ ì¬ì¤ê³ ë° ì»¤ë®¤ëí° ê°ë°ì ê°ì íì¬ ë¹ ë¥´ê² ì±ì¥íë ëê·ëª¨ ì¬ì©ì 기ë°ì ë ëì ìë¹ì¤ë¥¼ ì ê³µíê³ íë¡ì í¸ì ì¥ê¸°ì ì¸ ì§ì ê°ë¥ì±ì ë³´ì¥íë ë° ì¬ì©ë ê²ì
ëë¤. OpenBLAS íì OpenBLASê° ìì¡´íë ReLAPACK(Recursive LAPACK) ì ìê³ ë¦¬ì¦ ê°ì ë¿ë§ ìëë¼ í¹í ì¤ë ë ìì ì±, AVX-512 ë° ì¤ë ë ë¡ì»¬ ì¤í 리ì§(TLS) 문ì ì ê°ì ì¼ë ¨ì íµì¬ 기ì 문ì 를 í´ê²°íë ë° ì§ì¤í ê²ì
ëë¤.
+
+ì ìë ê³í ë° ê²°ê³¼ë¬¼ì ëí ìì¸í ë´ì©ì [ì ì²´ ë³´ì¡°ê¸ ì ì](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167)ìì íì¸í ì ììµëë¤. 2019ë
12ì 1ì¼ë¶í° ìì
ì ììíì¬ ë¤ì 12ê°ì ëì ì§íí ìì ì
ëë¤.
+
+
+<a name="releases"></a>
+
+## 릴리ì¦
+
+NumPy 릴리ì¦ì 목ë¡ì
ëë¤. ë¦´ë¦¬ì¦ ë
¸í¸ë¡ ë§í¬ë ê±¸ë ¤ ììµëë¤. ë²ê·¸ ìì 릴리ì¦(`x.y.z`ìì `z`ë§ ë°ë ê²½ì°)ìë ìë¡ì´ 기ë¥ì´ ììµëë¤. ë§ì´ë 릴리ì¦(`y`ê° ì¦ê°í ê²½ì°)ìë ìë¡ì´ 기ë¥ì´ ììµëë¤.
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _ 2024ë
2ì 5ì¼_.
+- NumPy 1.26.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2024ë
1ì 2ì¼_.
+- NumPy 1.26.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _2023ë
1ì 2ì¼_.
+- NumPy 1.26.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _2023ë
10ì 14ì¼_.
+- NumPy 1.26.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _2023ë
16ì 9ì¼_.
+- NumPy 1.25.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _2023ë
7ì 31ì¼_.
+- NumPy 1.25.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _2023ë
7ì 8ì¼_.
+- NumPy 1.24.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _2023ë
6ì 26ì¼_.
+- NumPy 1.25.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _2023ë
6ì 17ì¼_.
+- NumPy 1.24.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _2023ë
4ì 22ì¼_.
+- NumPy 1.24.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _2023ë
2ì 5ì¼_.
+- NumPy 1.24.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _2022ë
12ì 26ì¼_.
+- NumPy 1.24.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _2022ë
12ì 18ì¼_.
+- NumPy 1.23.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _2022ë
11ì 19ì¼_.
+- NumPy 1.23.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _2022ë
10ì 12ì¼_.
+- NumPy 1.23.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _2022ë
9ì 9ì¼_.
+- NumPy 1.23.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _2022ë
8ì 14ì¼_.
+- NumPy 1.23.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _2022ë
7ì 8ì¼_.
+- NumPy 1.23.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _2022ë
6ì 22ì¼_.
+- NumPy 1.22.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _2022ë
5ì 20ì¼_.
+- NumPy 1.21.6 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _2022ë
4ì 12ì¼_.
+- NumPy 1.22.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _2022ë
3ì 7ì¼_.
+- NumPy 1.22.2 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _2022ë
2ì 3ì¼_.
+- NumPy 1.22.1 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _2022ë
1ì 14ì¼_.
+- NumPy 1.22.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _2021ë
12ì 31ì¼_.
+- NumPy 1.21.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _2021ë
12ì 19ì¼_.
+- NumPy 1.21.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _2021ë
6ì 22ì¼_.
+- NumPy 1.20.3 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _2021ë
5ì 10ì¼_.
+- NumPy 1.20.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _2021ë
1ì 30ì¼_.
+- NumPy 1.19.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _2021ë
1ì 5ì¼_.
+- NumPy 1.19.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _2020ë
6ì 20ì¼_.
+- NumPy 1.18.4 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _2020ë
5ì 3ì¼_.
+- NumPy 1.17.5 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _2020ë
1ì 1ì¼_.
+- NumPy 1.18.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _2019ë
12ì 22ì¼_.
+- NumPy 1.17.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _2019ë
7ì 26ì¼_.
+- NumPy 1.16.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _2019ë
1ì 14ì¼_.
+- NumPy 1.15.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _2018ë
7ì 23ì¼_.
+- NumPy 1.14.0 ([ë¦´ë¦¬ì¦ ë
¸í¸](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _2018ë
1ì 7ì¼_.
|
numpy/numpy.org
|
c2bb0e7b394a3ba40c92cdee46d2c2ec65607449
|
New translations news.md (Japanese)
|
diff --git a/content/ja/news.md b/content/ja/news.md
index 33c10a9..acd02d6 100644
--- a/content/ja/news.md
+++ b/content/ja/news.md
@@ -1,308 +1,322 @@
---
title: ãã¥ã¼ã¹
sidebar: false
newsHeader: "NumPy 1.26.0 ããªãªã¼ã¹ããã¾ããã"
-date: 2024-08-18
+date: 2023-09-16
---
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
### NumPy 1.26.0 ããªãªã¼ã¹ããã¾ããã
_2024 Aug, 2024_ -- Numpy 2.1.0 㯠Python 3.13 ããµãã¼ãããPython 3.9ããµãã¼ãå¤ã¨ãã¾ããã ä»åã®ãªãªã¼ã¹ã¯é常ã®ãã°ä¿®æ£ãPythonãµãã¼ãã®æ´æ°ã«å ãã¦ãNumPyã2.0ã®é·æéçºãçµã¦ãé常ã®ãªãªã¼ã¹ãµã¤ã¯ã«ã«æ»ãããã®ãªãªã¼ã¹ã§ãããã¾ãã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯ä¸è¨ã®éãã§ãã
- Python 3.12.0 ã®ãµãã¼ã
- å¤ãã®æéåãã®éæ¨å¥¨(Deprecation)ã®åé¤
- Array-api 2023.12 æ¨æºã®ãµãã¼ã
-ãã®ãªãªã¼ã¹ã§ã¯ãPythonã®ãã¼ã¸ã§ã³ 3.10-3.13 ããµãã¼ãããã¦ãã¾ãã
+Python ãã¼ã¸ã§ã³ 3.10-3.13 ãããã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã¾ãã
### å¤ãã®æ°ãã鿍奍(Deprecation)ã®è¿½å
_2024å¹´6æ16æ¥_ -- Numpy 2.0.0 ã¯2006年以æ¥ã®ã¡ã¸ã£ã¼ãªãªã¼ã¹ã§ãã ããã¯ãååã®æ©è½ãªãªã¼ã¹ãã11ãæéã®éçºã®ææã§ããã1078ä»¶ã®ãã«ãªã¯ã¨ã¹ãã«ããã212人ã®è²¢ç®è
ã®ææã¨ãªãã¾ãã ãã®ãªãªã¼ã¹ã«ã¯ã大ãããã¨ããµã¤ãã£ã³ã°ãªæ°æ©è½ã¨ãPythonã¨Cã®ä¸¡æ¹ã®APIã¸ã®å¤æ´ãå«ã¾ãã¦ãã¾ãã ä»åã®ãªãªã¼ã¹ããé常ã®ãã¤ãã¼ãªãªã¼ã¹ã§ã¯å®æ½ã§ããªãã£ãäºææ§ãç ´å£ãã夿´ãå«ãã§ãã¾ããããã«ã¯ãABIã®ç ´å£ãåææ ¼ã«ã¼ã«ã®å¤æ´ãããã³1.26.xã§ã¯éæ¨å¥¨è¦åãåºããã¦ããªãã£ãå¯è½æ§ã®ããAPIã®å¤æ´ãå«ã¾ãã¦ãã¾ãã NumPy 2.0ã®å¤æ´ã«å¯¾å¿ããæ¹æ³ã«é¢ãã主è¦ãªããã¥ã¡ã³ãã¯æ¬¡ã®ã¨ããã§ãã
- [NumPy 2.0ç§»è¡ã¬ã¤ã](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- [2.0.0 ãªãªã¼ã¹ ãã¼ã](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- ã¹ãã¼ã¿ã¹ã¢ãããã¼ããç¥ããã«é¢ããåé¡: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- [2.0.0 ãªãªã¼ã¹ãã¼ã](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- ã¹ãã¼ã¿ã¹æ´æ°ã®ãç¥ããã¤ã·ã¥ã¼ãã±ãã: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
ããã°è¨äº ["NumPy 2.0: é²åã®ãã¤ã«ã¹ãã¼ã³"](https://blog.scientific-python.org/numpy/numpy2/) ã¯ãä»åã®ã¡ã¸ã£ã¼ãã¼ã¸ã§ã³ãªãªã¼ã¹ãã©ã®ããã«ãã¦æ±ºå®ããããã«ã¤ãã¦ã®ã¹ãã¼ãªã¼ãå°ãä¼ãã¦ãã¾ãã
### NumPy 1.25.0 ãªãªã¼ã¹
_ 2024å¹´5æ23æ¥_ -- NumPy 2.0ã2024å¹´6æ16æ¥ã«ãªãªã¼ã¹ãããäºå®ã«ãªãã¾ããï¼ ãã®ãªãªã¼ã¹ã¯1年以ä¸ããã¦æã
ãæºåãã¦ãããã®ã§ã2006年以æ¥ã®ã¡ã¸ã£ã¼ãªãªã¼ã¹ã¨ãªãã¾ãã ãã®ãªãªã¼ã¹ã§éè¦ãªãã¨ã¯ãå¤ãã®æ°æ©è½ã¨ããã©ã¼ãã³ã¹ã®åä¸ã«å ãã¦ã ãã®ãªãªã¼ã¹ã¯ã **ç ´å£çãªå¤æ´** ã§ãã Python 㨠C API ãå«ããABI ã¸ã®å¤æ´ ãå«ã¾ãã¦ãã¾ãã NumPyã«ä¾åãã¦ããããã±ã¼ã¸ãã¨ã³ãã¦ã¼ã¶ã¼ã®ã³ã¼ãããã®ã¯ç ´å£ç夿´ã«é©å¿ããå¿
è¦ãããå¯è½æ§ãããã¾ããå¯è½ã§ããã°ãããªãã®ã³ã¼ããNumPy `2.0.0rc2`ã§åä½ãããã©ãã確èªããé¡ããã¾ãã **詳細ã¯ä¸è¨ãã覧ãã ãã:**
- [NumPy 2.0ç§»è¡ã¬ã¤ã](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- [2.0.0 ãªãªã¼ã¹ãã¼ã](https://numpy.org/devdocs/release/2.0.0-notes.html)
-- ã¹ãã¼ã¿ã¹æ´æ°ã®ãç¥ããã¤ã·ã¥ã¼ãã±ãã: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+- [2.0.0 ãªãªã¼ã¹ ãã¼ã](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- ã¹ãã¼ã¿ã¹ã¢ãããã¼ããç¥ããã«é¢ããåé¡: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUSã®å¹´æ«ã®è³é調é
_2023å¹´12æ19æ¥_ -- NumFOCUSã¯ãå¹´æ«ãã£ã³ãã¼ã³ã§PyCharmãã¼ã ã¨ååããPyCharmã©ã¤ã»ã³ã¹ã®ååè³¼å
¥ã«30%ã®å²å¼ãæä¾ãã¦ãã¾ãã 2023å¹´12æ23æ¥ã¾ã§ã®PyCharmè³¼å
¥ã«ãã1å¹´ç®ã®åçã¯å
¨ã¦NumFOCUSã®ããã°ã©ã ã«ç´æ¥å¯ä»ããã¾ãã
è³¼å
¥ãããæ¹ã¯ãã¡ãã®URLã: https://lp.jetbrains.com/support-data-science/ ãã¡ãã®ã¯ã¼ãã³ã³ã¼ããå©ç¨ãã¦ãã ãã: ISUPPORTDATASCIENCEÂ
### NumPy 1.20.0 ãªãªã¼ã¹
_2022å¹´12æ18æ¥_ -- [Numpy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯æ¬¡ã®ã¨ããã§ãã
* Python 3.12.0 ã®ãµãã¼ã
* Cython 3.0.0 ã¨ã®äºææ§
* Mesonãã«ãã·ã¹ãã ã®å©ç¨
* SIMD ãµãã¼ãã®æ¹å
* f2py ã®ãã°ä¿®æ£, meson 㨠bind(x) ã®ãµãã¼ã
* æ´æ°ããã BLAS/LAPACK ã®é«éåã©ã¤ãã©ãªã®ãµãã¼ã
Numpy 1.26.0 㯠1.25 ããã®äºææ§ãä¿æãã¦ãã¾ããMesonãã«ãã·ã¹ãã ã¸ã®ç§»è¡ã¨Cython 3.0.0ã¸ã®ãµãã¼ããç®çã®ãªãªã¼ã¹ã§ãã åè¨20人ããã®ãªãªã¼ã¹ã«è²¢ç®ãã59åã®ãã«ãªã¯ã¨ã¹ãããã¼ã¸ããã¾ããã
ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯3.9ãã 3.12 ã§ãã
### numpy.orgãæ¥æ¬èªã¨ãã«ãã¬ã«èªã§å©ç¨å¯è½ã«ãªãã¾ãã
_2023å¹´4æ2æ¥_ -- numpy.orgã2ã¤ã®è¨èªã§å©ç¨å¯è½ã«ãªãã¾ããï¼ æ¥æ¬èªã¨ãã«ãã¬ã«èªã ç±å¿ãªãã©ã³ãã£ã¢ãããªããã°ããã®ããã¸ã§ã¯ãã¯ä¸å¯è½ã§ããï¼
_ãã«ãã¬ã«èª_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* GetuÌlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_æ¥æ¬èªï¼_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
翻訳ã¤ã³ãã©ã¹ãã©ã¯ãã£ã«é¢ããããã¸ã§ã¯ãã¯ãCZIããã®è³éæ´å©ã§ãµãã¼ãããã¦ãã¾ãã
ä»å¾ããNumPyã®ã¦ã§ããµã¤ããããå¤ãã®è¨èªã«ç¿»è¨³ãããã¨æã£ã¦ãã¾ãã ããæä¼ããå ´åã¯ãSlackä¸ã®NumPy翻訳ãã¼ã ã«é£çµ¡ããé¡ãã¾ã: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (#translation ãã£ã³ãã«ãæ¢ãã¦ãã ãã) (#translation ãã£ã³ãã«ãæ¢ãã¦ãã ãã) ã¾ããScientific Pythonã¨ã³ã·ã¹ãã å
¨ä½ã®ããã¥ã¡ã³ããæè²ã³ã³ãã³ãã®ãã¼ã«ã©ã¤ãºã«åãçµã翻訳ãã¼ã ã ç«ã¡ä¸ãã¦ãã¾ãã ãã®ããã¸ã§ã¯ãã«ãèå³ãããå ´åã¯ãæ¯éScientific Python Discordã«åå ãã¦ãã ãã: https://discord.gg/khWtqY6RKr. (#translation ãã£ã³ãã«ãæ¢ãã¦ãã ãã)
### Numpy 1.23.0 ãªãªã¼ã¹
_2022å¹´1æ22æ¥_ -- [Numpy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯æ¬¡ã®ã¨ããã§ãã
* MUSLã®ãµãã¼ãã MUSLã®Wheelãæºåããã¾ããã
* å¯å£«éã®C/C++ã³ã³ãã¤ã©ãµãã¼ã
* einsum ã§ãªãã¸ã§ã¯ãé
åããµãã¼ããããããã«ãªãã¾ãã.
* è¡åã®ç½®ãæã(inplace)æãç®ã®ãµãã¼ã (`@=`).
Numpy 1.25. ãªãªã¼ã¹ã¯å¼ãç¶ãdtypeã®åãæ±ã㨠dtypeã®ããã¢ã¼ã·ã§ã³ãæ¹åããå®è¡é度ãåä¸ããã ããã¥ã¡ã³ããæç¢ºåããããã®ç¶ç¶çãªä½æ¥ãç¶ãã¦è¡ãäºå®ã§ãã å°æ¥ã® NumPy 2.0.0 ã«åããæºå使¥ãè¡ããã¦ããã 夿°ã®æ°è¦ããã³æéåãã®æ©è½å»æ¢ãå¯è½ã¨ãªã£ã¦ãã¦ãã¾ãã
åè¨148人ããã®ãªãªã¼ã¹ã«è²¢ç®ãã530åã®ãã«ãªã¯ã¨ã¹ãã ãã¼ã¸ããã¾ããã
ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯3.3.9 - 3.11 ã§ãã
### ã¤ã³ã¯ã«ã¼ã·ããªæåã®è²æ: åå ã®åé
_2023å¹´5æ10æ¥_ -- ã¤ã³ã¯ã«ã¼ã·ãã»ã«ã«ãã£ã¼ã®è²æ: åå åé
NumPyããã¸ã§ã¯ãã®å¤æ§æ§ã¨ã¤ã³ã¯ã«ã¼ã¸ã§ã³ã«é¢ãã¦ãæã
ã¯ã©ã®ãããªãã¨ã宿½ããã°ããã§ããããï¼ èå³ãããæ¹ã¯ãã¡ãã® [ã¬ãã¼ã](https://contributor-experience.org/docs/posts/dei-report/) ãèªãã§åå ããæ¹æ³ã確èªãã¦ãã ããã
### NumPy ããã¥ã¡ã³ãã¼ã·ã§ã³ãã¼ã ã®ãªã¼ãã¼ã®å¤æ´
_2023å¹´1æ6æ¥_ â- Mukulika Pahariã¨Ross Barnowskiã¯ãMelissa MendoncAudioã«ä»£ããNumPyããã¥ã¡ã³ãã¼ã·ã§ã³ãã¼ã ã®æ°ãããªã¼ãã¼ã¨ãã¦ä»»å½ããã¾ããã ç§ãã¡ã¯ãMelissaã«NumPyã®å
¬å¼ããã¥ã¡ã³ãã¨æè²è³æã«å¯¾ãããã¹ã¦ã®è²¢ç®ã«æè¬ããMukulikaã¨Rossã«æ°ããå½¹å²ã«ã¹ãããã¢ãããã¦ããã£ããã¨ã«æè¬ãã¾ãã
### NumPy 1.24.0 ãªãªã¼ã¹
_2021å¹´1æ23æ¥_ -- [Numpy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ãã¤ã©ã¤ãã¯ä¸è¨ã®éãã§ãã
* ã¹ã¿ããã³ã°é¢æ°ã®ããã®æ°ãã"dtype"ã¨"casting"ãã¼ã¯ã¼ãã®è¿½å
* F2PYã®æ°æ©è½è¿½å ã¨ãã°ä¿®æ£
* å¤ãã®æ°ãã鿍奍(Deprecation)ã®è¿½å
* å¤ãã®æéåãã®éæ¨å¥¨(Deprecation)ã®åé¤
Numpy 1.25. ãªãªã¼ã¹ã¯å¼ãç¶ãdtypeã®åãæ±ã㨠dtypeã®ããã¢ã¼ã·ã§ã³ãæ¹åããå®è¡é度ãåä¸ããã ããã¥ã¡ã³ããæç¢ºåããããã®ç¶ç¶çãªä½æ¥ãç¶ãã¦è¡ãäºå®ã§ãã dtype ã®ããã¢ã¼ã·ã§ã³ã¨ã¯ãªã¼ã³ã¢ããã®å¤æ´ã«ããã夿°ã®æ°è¦ã¨æéåãã®éæ¨å¥¨ãåå¨ãã¦ãã¾ãã ä»åã®ãªãªã¼ã¹ã¯ã444åã®ãã«ãªã¯ã¨ã¹ãã¨177人ã®ã³ã³ããªãã¥ã¼ã¿ã¼ã«ãããã®ã§ãã ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.8-3.11 ã§ãã
### Numpy 1.26.0 㯠1.25 ããã®äºææ§ãä¿æãã¦ãã¾ãã
_2021å¹´12æ31æ¥_ -- [Numpy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
* `loadtxt` ãCã§å®è£
ããããã¨ã«ããã大å¹
ãªããã©ã¼ãã³ã¹åä¸
* ããç°¡åãªãã¼ã¿äº¤æã®ããã®Pythonã¬ãã«ã§ã®DLPackã®å
Ž
* æ§é åãããdtypesã®ããã¢ã¼ã·ã§ã³ã¨æ¯è¼æ¹æ³ã®å¤æ´
* f2pyã®æ¹å
Numpy 1.23. ãªãªã¼ã¹ã§ã¯å¼ãç¶ãdtypeã®åãæ±ã㨠dtypeã®ããã¢ã¼ã·ã§ã³ãæ¹åããå®è¡é度ãåä¸ããã ããã¥ã¡ã³ããæç¢ºåããããã®ç¶ç¶çãªä½æ¥ãç¶ãã¦è¡ãäºå®ã§ãã ä»åã®ãªãªã¼ã¹ã¯ã494åã®ãã«ãªã¯ã¨ã¹ãã¨151人ã®ã³ã³ããªãã¥ã¼ã¿ã¼ã«ãããã®ã§ãã ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.8 - 3.10 ã§ãã Python 3.11ãrc ã¹ãã¼ã¸ã«å°éãã㨠Python 3.11 ããµãã¼ãããã¾ãã
### NumFOCUS DEIç ç©¶ã¸ã®åå åé
_2022å¹´4æ13æ¥_ -- NumPyã¯ã[NumFOCUS](http://numfocus.org/)ã¨ååãã¦ã[ããç ç©¶ããã¸ã§ã¯ã](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)ãé²ãã¦ãããããã¯[Gordon & Betty Moore Foundation](https://www.moore.org/)ã«ãã£ã¦è³éæä¾ããã¦ãã¾ãã ãã®ç ç©¶ãã¼ã ã¯ãæ°ããè²¢ç®è
ãããã¸ã§ã¯ãã®éçºè
ããã³ã¡ã³ããã¼ãããã¦éå»ã«è²¢ç®ããæ¹ã
ã«ãNumPyã«åå ãè²¢ç®ããçµé¨ã«ã¤ãã¦è©±ãèãããã¨èãã¦ãã¾ãã
**ããªãã®çµé¨ãå
±æãããã¨ã«èå³ãããã¾ãã?**
ããèå³ãããå ´åã¯ãç ç©¶ç®æ¨ããã©ã¤ãã·ã¼ãããã³ å®ç§ç¾©åã«é¢ããè¿½å æ
å ±ãè¨è¼ããã¦ããããã®ç°¡åãª[åå è
ã®èå³](https://numfocus.typeform.com/to/WBWVJSqe)ãã©ã¼ã ã«è¨å
¥ããé¡ããã¾ãã 夿§ã§å
æ¬çãªãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã³ãã¥ããã£ã® æé·ã¨æç¶å¯è½æ§ã®ããã«ããã®ããã¸ã§ã¯ãã¸ã®ããªãã®åå ã¯é常ã«å¤§ããªä¾¡å¤ãããã¾ãã åå ãåãå
¥ãããã人ã¯ãç ç©¶ãã¼ã ã¡ã³ãã¼ã¨30åéã®ã¤ã³ã¿ãã¥ã¼ã«åå ãããã¨ã«ãªãã¾ãã
### NumPy 1.19.2 ãªãªã¼ã¹
_2023å¹´9æ16æ¥_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
* ã¡ã¤ã³ã®åå空éã®åã¢ããã¼ã·ã§ã³ã¯åºæ¬çã«å®äºãã¾ããã 䏿µã®ã³ã¼ãã¯å¸¸ã«å¤åãããã®ãªã®ã§ããããªãæ¹è¯ãå¿
è¦ã§ããããã大ããªä½æ¥ã¯çµãã£ãã¨èãã¦ãã¾ãã ããã¯ãããããä»åã®ãªãªã¼ã¹ã§æãç®ã«è¦ããæ¹è¯ã§ãããã
* 以åããææ¡ããã¦ãã [array API æ¨æº](https://data-apis.org/array-api/latest/) ã®ãã¼ã¿çãæä¾ããã¦ãã¾ã ( [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html) ãåç
§) ã ããã¯ãCuPy ã JAX ãªã©ã®ã©ã¤ãã©ãªã§ä½¿ç¨ã§ãã 颿°ã®æ¨æºçãªã³ã¬ã¯ã·ã§ã³ã使ããããã«å¿
è¦ãªã¹ãããã§ãã
* NumPy ã« DLPack ããã¯ã¨ã³ãã追å ããã¾ããã DLPack ã¯ãé
å(ãã³ã½ã«) ãã¼ã¿ç¨ã®å
±éã®ãã¼ã¿å¤æãã©ã¼ããããæä¾ãã¾ãã
* `quantile`, `percentile`, ããã³é¢é£ãã颿°ã«æ°ããã¡ã½ããã追å ããã¾ããã ãããã®æ°ããã¡ã½ããã¯ãè«æã§ä¸è¬çã«è¦ãããä¸éãã®å¦çãæä¾ãã¾ãã
* ã¦ããã¼ãµã«é¢æ°ã¯ã[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html) ã®å¤ããå®è£
ããããã«ãªãã¡ã¯ã¿ãªã³ã°ããã¾ããã ããã«ããå°æ¥ã® DType API ã®å¦çãå¯è½ã«ãã¾ãã
* ãã¦ã³ã¹ããªã¼ã ã®ããã¸ã§ã¯ãã§ä½¿ç¨ããããã®æ°ããè¨å®å¯è½ãªã¡ã¢ãªã¼ã»ã¢ãã±ã¼ã¿ã¼ã追å ããã¾ããã
NumPy 1.22.0ã¯ã153人ã®è²¢ç®è
ã609ã®ãã«ãªã¯ã¨ã¹ãã使ãã é常ã«å¤§ããªãªãªã¼ã¹ã§ãã ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.8 - 3.10 ã§ãã
### ç§å¦çãªPythonã¨ã³ã·ã¹ãã ã«ãããå
æ¬çãªæåã®åé²
_ 2021å¹´8æ31æ¥_ -- ãã®åº¦ãChan Zuckerberg Initiativeãããç§å¦çãªPythonããã¸ã§ã¯ãã«ããã¦ãæ´å²çã«çå¤ããã¦ããã°ã«ã¼ãã®äººã
ã®ãªã³ãã¼ãã£ã³ã°ãã¤ã³ã¯ã«ã¼ã¸ã§ã³ããªãã³ã·ã§ã³ãæ¯æ´ããNumPyãSciPyãMatplotlibãPandasã®ã³ãã¥ããã£ãã¤ããã¯ã¹ãæ§é çã«æ¹åããããã® [ 婿éãæä¸ããã¾ãã ](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) ãã¨ããç¥ãããã¾ãã
[ CZIã®Essential Open Source Software for Scienceããã°ã©ã ](https://chanzuckerberg.com/eoss/)ã®ä¸ç°ã¨ãã¦ããã®[ Diversity & Inclusionè£å©é ](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)ã¯ãéãããªãªã¼ãã³ã½ã¼ã¹ã³ãã¥ããã£ãè²æããããã«ããã¹ããã¨ãç¹å®ããããææ¸åãããã宿½ãããããããã®ã³ã³ããªãã¥ã¼ã¿ä½é¨ã®ãªã¼ãã¼å°ä»»è·ã®åµè¨ãæ¯æ´ãããã¨ã«ãªãã¾ãã ãã®ããã¸ã§ã¯ãã¯ãMelissa Mendonça (NumPy) ãä¸å¿ã¨ãªã£ã¦ãä¸è¨ã®æ¹ã
ã®è¿½å ã®ã¡ã³ã¿ãªã³ã°ã¨ãµãã¼ãã«ãã宿½ããã¾ãã Ralf Gommers (NumPyãSciPy)ãHannah Aizenmanã¨Thomas Caswell (Matplotlib)ãMatt Haberland (SciPy)ããã㦠Joris Van den Bossche (Pandas)ã
ãã®ããã¸ã§ã¯ãã¯ç§ãã¡ã®OSSããã¸ã§ã¯ãã®ã³ãã¥ããã£ãã¤ããã¯ã¹ãæ§é çã«æ¹åããæ¹æ³ãçºè¦ãã宿½ãããã¨ãç®æãéå¿çãªããã¸ã§ã¯ãã§ãã ãã®ãããªè¤æ°ã®ããã¸ã§ã¯ãã®æ¨ªæçãªå½¹å²ã確ç«ãããã¨ã§ãScientific Pythonã³ãã¥ããã£ã«æ°ããã³ã©ãã¬ã¼ã·ã§ã³ã¢ãã«ãå°å
¥ããã¨ã³ã·ã¹ãã å
ã®ã³ãã¥ããã£æ§ç¯ä½æ¥ãããå¹ççã«ããã大ããªææãçããããã«ãããã¨èãã¦ãã¾ãã ç¹ã«ãã®ããã¸ã§ã¯ãã«ãããæ´å²çã«ããã¾ã§ä»£è¡¨çã§ã¯ãªãã£ãã°ã«ã¼ãããã®æ°ããã³ã³ããªãã¥ã¼ã¿ãå¼ãä»ããè²¢ç®ãç¶æããããã«ãä½ããã¾ããããä½ããã¾ããããªããããããæç¢ºã«ææ¡ã§ããããã«ãªãã¨æå¾
ãã¦ãã¾ãã æå¾ã«ã宿½ããã¢ã¯ã·ã§ã³ã«ã¤ãã¦è©³ç´°ãªå ±åæ¸ã使ããããã¸ã§ã¯ãã®ä»£è¡¨è
ãã³ãã¥ããã£ã¨ã®äº¤æµã®é¢ã§ãããã¸ã§ã¯ãã«ã©ã®ãããªå½±é¿ãä¸ãããã説æããäºå®ã§ãã
2021å¹´11æãã2å¹´éã®ããã¸ã§ã¯ããå§ã¾ãã¨äºæ³ããã¦ããããã®ããã¸ã§ã¯ãã®ææã楽ãã¿ã«ãã¦ãã¾ã! ãã®ããã¸ã§ã¯ãã®ææ¡æ¸ã«é¢ãã¦ã¯ã[ãã¡ã](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063) ããå
¨æãèªããã¨ãã§ãã¾ã.
### 2021年度NumPyã¢ã³ã±ã¼ã
_2021å¹´7æ12æ¥_ -- NumPy ã§ã¯ã³ãã¥ããã£ã®åãä¿¡ãã¦ãã¾ãã æ¨å¹´ã®ç¬¬1åã¢ã³ã±ã¼ãã«ã¯ã75ã«å½ãã1,236åã®NumPyã¦ã¼ã¶ã¼ãåå ãã¦ããã¾ããã ãã®èª¿æ»çµæã«ãããä»å¾12ã¶æéãç§ãã¡ãã©ã®ãããªãã¨ã«éä¸ãã¹ããããé常ã«è¯ãçè§£ãããã¨ãã§ãã¾ããã
ä»å¹´ãã¢ã³ã±ã¼ãã®æéãæ¥ã¾ãããããä¸åº¦ã¢ã³ã±ã¼ãã¸ã®åçããé¡ããããã¾ãã ã¢ã³ã±ã¼ãã¸ã®åçã¯15åã»ã©ã§çµäºãã¾ãã ã¢ã³ã±ã¼ãã¯è±èªä»¥å¤ã«ãããã³ã¬ã«èªããã©ã³ã¹èªããã³ãã£ã¼èªãæ¥æ¬èªããã³ããªã³ããã«ãã¬ã«èªããã·ã¢èªãã¹ãã¤ã³èªã®8ã¶å½èªã«å¯¾å¿ãã¦ãã¾ãã
ãã¡ãã®ãªã³ã¯å
ãããã¢ã³ã±ã¼ããå§ãããã¨ãã§ãã¾ã: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSL4q.
### Numpy 1.18.0 ãªãªã¼ã¹
_2023å¹´1æ17æ¥_ -- [Numpy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã®ç®çæ©è½ã¯æ¬¡ã®ã¨ããã§ãã
- ããå¤ãã®æ©è½ããã©ãããã©ã¼ã ãã«ãã¼ããããã®SIMDé¢é£ã®æ¹åã宿½ããã¾ããã
- dtypeã®ããã®æ°ããã¤ã³ãã©ã¨ãã£ã¹ãã®æºå
- Mac çã® Python 3.8 㨠Python 3.9 ç¨ universal2 wheel
- ããã¥ã¡ã³ãã®æ¹å
- ã¢ããã¼ã·ã§ã³ã®æ¹å
- ä¹±æ°çæç¨ã®æ°ãã `PCG64DXSM` ãããçææ©
ä»åã®Numpy ãªãªã¼ã¹ã¯ã175人ã«ãã581ä»¶ã®ãã«ãªã¯ã¨ã¹ãã®ãã¼ã¸ã®çµæã§ãã ãã®ãªãªã¼ã¹ã§ãµãã¼ãããã¦ãã Python ã®ãã¼ã¸ã§ã³ã¯ 3.7-3.9 ã§ãã Python 3.10 ããªãªã¼ã¹ãããå¾ãPython 3.10 ã®ãµãã¼ãã追å ããã¾ãã
### 2020年度 NumPy ã¢ã³ã±ã¼ãçµæ
_2021å¹´6æ22æ¥_ -- NumPyã®èª¿æ»ãã¼ã ã¯ã2020å¹´ã« ãã·ã¬ã³å¤§å¦ã¨ã¡ãªã¼ã©ã³ã大å¦ã®å¦çãæå¡ã¨ååãã¦ãæåã®å
¬å¼NumPyã³ãã¥ããã£èª¿æ»ã宿½ãã¾ããã ã¢ã³ã±ã¼ãã®çµæã¯ãã¡ããã確èªã§ãã¾ãã https://numpy.org/user-survey-2020/
### NumPy 1.19.2 ãªãªã¼ã¹
_2021å¹´1æ30æ¥_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) ããªãªã¼ã¹ããã¾ããã ä»åã®ãªãªã¼ã¹ã¯180 人以ä¸ã®ã³ã³ããªãã¥ã¼ã¿ã¼ã®ãããã§ãããã¾ã§ã§æå¤§ã® NumPyã®ãªãªã¼ã¹ã¨ãªãã¾ããã æãéè¦ãª2ã¤ã®æ°æ©è½ã¯æ¬¡ã®ã¨ããã§ãã
- NumPyã®å¤§é¨åã®ã³ã¼ãã«å注éã追å ããã¾ããã ããã¦æ°ãããµãã¢ã¸ã¥ã¼ã«ã§ãã`numpy.typing`ã追å ããã¾ããã ãã®ãµãã¢ã¸ã¥ã¼ã«ã¯`ArrayLike` ã`DtypeLike`ã¨ããåæ³¨éã®ã¨ã¤ãªã¢ã¹ãå®ç¾©ããã¦ãããããã«ããã¦ã¼ã¶ã¼ããã¦ã³ã¹ããªã¼ã ã®ã©ã¤ãã©ãªã¯ãã®å注éã使ããã¨ãã§ãã¾ãã
- X86(SSEãAVX)ãARM64(Neon)ãããã³PowerPC (VSX) å½ä»¤ããµãã¼ããããã«ããã©ãããã©ã¼ã SIMDã³ã³ãã¤ã©ã®æé©åã宿½ããã¾ããã ããã«ãããå¤ãã®é¢æ°ã§å¤§ãã ããã©ã¼ãã³ã¹ãåä¸ãã¾ãã (ä¾: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
### NumPyããã¸ã§ã¯ãã®å¤æ§æ§
_2020å¹´9æ20æ¥ã«_ ãç§ãã¡ã¯[ NumPyããã¸ã§ã¯ãã«ããããã¤ãã¼ã·ãã£ãã¤ã³ã¯ã«ã¼ã¸ã§ã³ã®ç¶æ³ããã½ã¼ã·ã£ã«ã¡ãã£ã¢ä¸ã§ã®è°è«ã«ã¤ãã¦ã®å®£è¨ ](/diversity_sep2020)ã«ã¤ãã¦æ¸ãã¾ããã
### Natureã«åã®å
¬å¼NumPyè«æãæ²è¼ããã¾ãã!
_2020å¹´9æ16æ¥_ -- NumPyã«é¢ãã [ æåã®å
¬å¼ã®è«æ ](https://www.nature.com/articles/s41586-020-2649-2)ãNatureã«æ»èªä»ãè«æã¨ãã¦æ²è¼ããã¾ããã ããã¯NumPy 1.0ã®ãªãªã¼ã¹ãã14å¹´å¾ã®ãã¨ã«ãªãã¾ããã ãã®è«æã§ã¯ãé
åããã°ã©ãã³ã°ã®ã¢ããªã±ã¼ã·ã§ã³ã¨åºæ¬çãªã³ã³ã»ãããNumPyã®ä¸ã«æ§ç¯ãããæ§ã
ãªç§å¦çPythonã¨ã³ã·ã¹ãã ãããã¦CuPyãDaskãJAXã®ãããªå¤é¨ã®é
åããã³ãã³ã½ã«ã©ã¤ãã©ãªã¨ã®ç¸äºéç¨ã容æã«ããããã«æè¿è¿½å ãããé
åãããã³ã«ã«ã¤ãã¦èª¬æãã¦ãã¾ãã
### Python 3.9ã®ãªãªã¼ã¹ã«ä¼´ãããã¤NumPyã®ãã¤ããªwheelããªãªã¼ã¹ãããã®ã§ããï¼
_2020å¹´9æ14æ¥_ -- Python 3.9 ã¯æ°é±éå¾ã«ãªãªã¼ã¹ãããäºå®ã§ãã ããããªããæ°ããPythonã®ãã¼ã¸ã§ã³ããã¡æ©ãå©ç¨ãã¦ããå ´åãNumPyï¼ããã³SciPyã®ãããªä»ã®ããã±ã¼ã¸ï¼ããªãªã¼ã¹å½æ¥ã«ãã¤ããªwheelãç¨æãã¦ããªããã¨ãç¥ã£ã¦ãã£ããããããããã¾ãããã ãã«ãç¨ã®ã¤ã³ãã©ãæ°ããPythonã®ãã¼ã¸ã§ã³ã«é©å¿ãããã®ã¯é常ã«å¤§å¤ãªä½æ¥ã§ãPyPIãconda-forgeã«ããã±ã¼ã¸ãæ²è¼ãããã¾ã§ã«ã¯é常æ°é±éãããã¾ãã ä»å¾ã®wheelã®ãªãªã¼ã¹ã«åãã¦ã以ä¸ã確èªãã¦ãã ããã
- `pip` ã`manylinux2010` 㨠`manylinux2014` ããµãã¼ãããããã«pipãå°ãªãã¨ããã¼ã¸ã§ã³ 20.1 ã«æ´æ°ããã
- [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) ã¾ã㯠`--only-binary=:all:` ã`pip`ãã½ã¼ã¹ãããã«ããããã¨ããã®ãé²ãããã«ä½¿ç¨ãã¾ãã
### NumPy 1.19.2 ãªãªã¼ã¹
_2020å¹´9æ10æ¥_ -- [NumPy 19.2.0](https://numpy.org/devdocs/release/1.19.2-notes.html) ããªãªã¼ã¹ããã¾ããã ãã® 1.19 ã·ãªã¼ãºã®ææ°ãªãªã¼ã¹ã§ã¯ãããã¤ãã®ãã°ãä¿®æ£ããã[ æ¥ãã¹ã Cython 3.xãªãªã¼ã¹ ](http:/docs.cython.orgenlatestsrcchanges.html)ã¸ã®æºåãè¡ãããã¢ããã¹ããªã¼ã ã®ä¿®æ£ãé²è¡ä¸ã®éã distutils ã®åä½ãç¶æããããã®setuptoolsã®ãã¼ã¸ã§ã³ã®åºå®ã宿½ããã¦ãã¾ãã aarch64 wheelã¯ææ°ã®manylinux2014ãªãªã¼ã¹ã§ãã«ãããã¦ãããç°ãªãLinuxãã£ã¹ããªãã¥ã¼ã·ã§ã³ã§ä½¿ç¨ãããç°ãªããã¼ã¸ãµã¤ãºã®åé¡ãä¿®æ£ããã¦ãã¾ãã
### åãã¦ã®NumPyã®èª¿æ»ãå
¬éããã¾ãã!!
_2020å¹´7æ2æ¥_ -- ãã®ã¢ã³ã±ã¼ã調æ»ã¯ãNumPyã«ããããã½ããã¦ã§ã¢ã¨ãã¦ã¨ã³ãã¥ããã£ã®ä¸¡æ¹ã«ãããæææ±ºå®ã®æéã¨ãªããåªå
é ä½ã決å®ããå½¹ã«ç«ã¡ã¾ããã ãã®èª¿æ»çµæã¯è±èªä»¥å¤ã®ãããã®8ã¤ã®è¨èªã§å©ç¨å¯è½ã§ã: ãã³ã°ã©, ãã³ãã£ã¼èª, æ¥æ¬èª, ãã³ããªã³, ãã«ãã¬ã«èª, ãã·ã¢èª, ã¹ãã¤ã³èªã¨ãã©ã³ã¹èª.
NumPy ãããè¯ãããããã«ããã¡ãã® \[ã¢ã³ã±ã¼ã\](https://umdsurvey. umd. edu/jfe/form/SV_8bJrXjbhXf7saAl) ã«ååãã¦ããããã¨å©ããã¾ãã
### NumPy ã«æ°ãããã´ãã§ãã¾ãã!
_2020å¹´6æ24æ¥_ -- NumPyã®ãã´ãæ°ãããªãã¾ãã:
<img src="/images/logos/numpy_logo.svg" alt="NumPyã®ãã´" title="æ°ããNumPyãã´" width=300>
æ°ãããã´ã¯ãå¤ããã´ã«æ¯ã¹ã¦ãã¢ãã³ã§ããã¯ãªã¼ã³ãªãã¶ã¤ã³ã«ãªãã¾ããã æ°ãããã´ããã¶ã¤ã³ãã¦ãããIsabela Presedo-Floydã¨ã15年以ä¸ã«ããã£ã¦ä½¿ç¨ãã¦ããæ§ãã´ããã¶ã¤ã³ãã¦ãããTravis Vaughtã«æè¬ãã¾ãã
### NumPy 1.19.0 ãªãªã¼ã¹
_2020å¹´6æ20æ¥_ -- NumPy 1.19.0 ããªãªã¼ã¹ããã¾ããã ãã®ãã¼ã¸ã§ã³ã¯ Python 2ç³»ã®ãµãã¼ãããªãæåã®ãªãªã¼ã¹ã§ããã"ã¯ãªã¼ã³ã¢ããç¨ã®ãªãªã¼ã¹" ã§ãã ãµãã¼ãããã¦ããä¸çªå¤ãPython ã®ãã¼ã¸ã§ã³ã¯ Python 3.6 ã«ãªãã¾ããã ã¾ããä»åã®éè¦ãªæ°æ©è½ã¯NumPy 1.17.0ã§å°å
¥ãããä¹±æ°çæç¨ã®ã¤ã³ãã©ã«Cythonããã¢ã¯ã»ã¹ã§ããããã«ãªã£ããã¨ã§ãã
### ããã¥ã¡ã³ãå諾æé
_2020å¹´5æ11æ¥_ -- NumPyã¯ã Googleã®ã·ã¼ãºã³ãªãããã¥ã¡ã³ãããã°ã©ã ã®ã¡ã³ã¿ã¼å£ä½ã®1ã¤ã¨ãã¦é¸ã°ãã¾ããã NumPy ã®ããã¥ã¡ã³ããæ¹åããããã«ããã¯ãã«ã«ã©ã¤ã¿ã¼ã¨ååãããã®æ©ä¼ã楽ãã¿ã«ãã¦ãã¾ã! 詳細ã«ã¤ãã¦ã¯ã [ã·ã¼ãºã³ãªãããã¥ã¡ã³ãå
¬å¼ãµã¤ã](https://developers.google.com/season-of-docs/) 㨠[ã¢ã¤ãã¢ãã¼ã¸](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas) ãã覧ãã ããã
### NumPy 1.18.0 ãªãªã¼ã¹
_2019å¹´12æ22æ¥_ -- NumPy 1.18.0 ããªãªã¼ã¹ããã¾ããã ãã®ãªãªã¼ã¹ã¯ã1.17.0ã§ã®ä¸»è¦ãªå¤æ´ã®å¾ã®ãã¾ã¨ãã®ãããªãªãªã¼ã¹ã§ãã Python 3.5 ããµãã¼ãããæå¾ã®ãã¤ãã¼ãªãªã¼ã¹ã«ãªãã¾ãã ä»åã®ãªãªã¼ã¹ã§ã¯ã64ãããã®BLASããã³LAPACKã©ã¤ãã©ãªã¨ãªã³ã¯ããããã®ã¤ã³ãã©ã®è¿½å ãã`numpy.random`ã®ããã®æ°ããC-APIã®è¿½å ãªã©ãè¡ããã¾ããã
詳細ã«ã¤ãã¦ã¯ã [ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.0) ãåç
§ãã¦ãã ããã
### NumPyã¯Chan Zuckerberg財å£ãã婿éãåãã¾ããã
_2019å¹´11æ15æ¥_ -- NumPyã¨ãNumPyã®éè¦ãªä¾åã©ã¤ãã©ãªã®1ã¤ã§ããOpenBLASããChan Zuckerberg財å£ã®[Essential Open Source Software for Scienceããã°ã©ã ](https:/chanzuckerberg.comeoss)ãéãã¦ãç§å¦ã«ä¸å¯æ¬ ãªãªã¼ãã³ã½ã¼ã¹ãã¼ã«ã®ã½ããã¦ã§ã¢ã®ã¡ã³ããã³ã¹ãæé·ãéçºãã³ãã¥ããã£ã¸ã®åå ãªã©ãæ¯æ´ãã195,000ãã«ã®å
±å婿éãç²å¾ãããã¨ãçºè¡¨ãã¾ããã
ãã®å©æéã¯ãNumpy ããã¥ã¡ã³ããã¦ã§ããµã¤ãã®åè¨è¨ãªã©ã®æ¹åã«åããåãçµã¿ãä¿é²ããããã«ä½¿ç¨ããã¾ãã å¤§è¦æ¨¡ãã¤æ¥éã«æ¡å¤§ããã¦ã¼ã¶ã¼ã®ä½é¨ãããè¯ãããããã¸ã§ã¯ãã®é·æçãªæç¶å¯è½æ§ã確ä¿ããããã®ã³ãã¥ããã£éçºãè¡ã£ã¦ããã¾ãã OpenBLASãã¼ã ã¯ãæè¡çã«é常ã«éè¦ãªåé¡ã§ãããã¹ã¬ããå®å
¨æ§ãAVX-512ã«å¯¾å¦ãããã¨ã«æ³¨åãã¾ãã ã¾ããã¹ã¬ãããã¼ã«ã«ã¹ãã¬ã¼ã¸(TLS) ã®åé¡ããOpenBLASãä¾åããReLAPACK(å帰çãªLAPACK) ã®ã¢ã«ã´ãªãºã ã®æ¹åã宿½ãã¾ãã
ææ¡ãããã¤ãã·ã¢ããã¨ãã®ææã®è©³ç´°ã«ã¤ãã¦ã¯ã [ãã«ã°ã©ã³ããããã¼ã¶ã«](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167) ãåç
§ãã¦ãã ããã ãã®åãçµã¿ã¯2019å¹´12æ1æ¥ããå§ã¾ããä»å¾12ã¶æéç¶ç¶å®æ½ãããäºå®ã§ãã
<a name="releases"></a>
## éå»ã®ãªãªã¼ã¹
ãã¡ãã¯ããã以åã®NumPyãªãªã¼ã¹ã®ãªã¹ãã§ãåãªãªã¼ã¹ãã¼ãã¸ã®ãªã³ã¯ãè¨è¼ããã¦ãã¾ãã å
¨ã¦ã®ãã°ãã£ãã¯ã¹ãªãªã¼ã¹(ãã¼ã¸ã§ã³çªå·`x.y.z` ã®`z`ã ãã夿´ããããã®)ã¯æ°ããæ©è½è¿½å ã¯ãããããã¤ãã¼ãªãªã¼ã¹ (`y` ãå¢ãããã®)ã¯ãæ°ããæ©è½è¿½å ããã¦ãã¾ãã
-- NumPy 2.1.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2024å¹´11æ2æ¥_.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _2024å¹´10æ5æ¥_.
- NumPy 2.1.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _2024å¹´9æ3æ¥_.
- NumPy 2.0.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _2024å¹´8æ26æ¥_.
- NumPy 2.1.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _2024å¹´8æ18æ¥_.
- NumPy 1.22.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _2022å¹´5æ20æ¥_.
- NumPy 2.0.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _2024å¹´6æ16æ¥_.
- NumPy 1.26.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _ 2024å¹´1æ2æ¥_.
- NumPy 1.26.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _ 2024å¹´1æ2æ¥_.
- NumPy 1.26.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _2023å¹´11æ12æ¥_.
- NumPy 1.26.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _2023å¹´10æ14æ¥_.
- NumPy 1.26.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _2023å¹´9æ16æ¥_.
- NumPy 1.25.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _2023å¹´7æ31æ¥_.
- NumPy 1.25.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _2023å¹´7æ8æ¥_.
- NumPy 1.24.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _2023å¹´6æ26æ¥_.
- NumPy 1.25.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _2023å¹´6æ17æ¥_.
- NumPy 1.24.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _2023å¹´4æ22æ¥_.
- NumPy 1.24.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _2023å¹´2æ5æ¥_.
- NumPy 1.24.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _2022å¹´12æ26æ¥_.
- NumPy 1.18.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _2020å¹´4æ19æ¥_.
- NumPy 1.23.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _2022å¹´11æ19æ¥_.
- NumPy 1.23.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _2022å¹´10æ12æ¥_.
- NumPy 1.23.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _2022å¹´9æ9æ¥_.
- NumPy 1.23.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _2022å¹´8æ14æ¥_.
- NumPy 1.23.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _2022å¹´7æ8æ¥_.
- NumPy 1.23.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _2022å¹´6æ22æ¥_.
- NumPy 1.22.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _2022å¹´5æ20æ¥_.
- NumPy 1.21.6 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _2022å¹´4æ12æ¥_.
- NumPy 1.22.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.2)) -- _2022å¹´3æ7æ¥_.
- NumPy 1.22.2 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _2022å¹´2æ3æ¥_.
- NumPy 1.22.1 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _2022å¹´1æ14æ¥_.
- NumPy 1.22.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _2021å¹´12æ31æ¥_.
- NumPy 1.21.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _2021å¹´12æ19æ¥_.
- NumPy 1.21.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _2021å¹´6æ22æ¥_.
- NumPy 1.20.3 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _2021å¹´5æ10æ¥_.
- NumPy 1.20.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _2021å¹´1æ30æ¥_.
- NumPy 1.19.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _2021å¹´1æ5æ¥_.
- NumPy 1.19.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _2020å¹´6æ20æ¥_.
- NumPy 1.18.4 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _2020å¹´5æ3æ¥_.
- NumPy 1.17.5 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _2020å¹´1æ1æ¥_.
- NumPy 1.18.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _2019å¹´12æ22æ¥_.
- NumPy 1.17.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _2019å¹´7æ26æ¥_.
- NumPy 1.16.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _2019å¹´1æ14æ¥_.
- NumPy 1.15.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _2018å¹´7æ23æ¥_.
- NumPy 1.14.0 ([ãªãªã¼ã¹ãã¼ã](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _2018å¹´1æ7æ¥_.
|
numpy/numpy.org
|
5d193cdd52d6fb6cf42ec11830573be78db77b06
|
New translations news.md (Catalan)
|
diff --git a/content/ca/news.md b/content/ca/news.md
new file mode 100644
index 0000000..7a7aba2
--- /dev/null
+++ b/content/ca/news.md
@@ -0,0 +1,322 @@
+---
+title: News
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
+
+* Python 3.12.0 support.
+* Cython 3.0.0 compatibility.
+* Use of the Meson build system
+* Updated SIMD support
+* f2py fixes, meson and bind(x) support
+* Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
+
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_Japanese:_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
+
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
+
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
+
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+<a name="releases"></a>
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
d78fbfb66a3a50e81accefecc83db2abe3018363
|
New translations news.md (Arabic)
|
diff --git a/content/ar/news.md b/content/ar/news.md
new file mode 100644
index 0000000..08bd83d
--- /dev/null
+++ b/content/ar/news.md
@@ -0,0 +1,322 @@
+---
+title: Ø§ÙØ£Ø®Ø¨Ø§Ø±
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
+
+* Python 3.12.0 support.
+* Cython 3.0.0 compatibility.
+* Use of the Meson build system
+* Updated SIMD support
+* f2py fixes, meson and bind(x) support
+* Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
+
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_Japanese:_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
+
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
+
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
+
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+<a name="releases"></a>
+
+## Ø§ÙØ¥ØµØ¯Ø§Ø±Ø§Øª
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
09a27a3d3e2748b729a4d43dc1d259a69311494f
|
New translations news.md (Spanish)
|
diff --git a/content/es/news.md b/content/es/news.md
index 1e34cd9..209ea5b 100644
--- a/content/es/news.md
+++ b/content/es/news.md
@@ -1,306 +1,322 @@
---
title: Noticias
sidebar: false
newsHeader: "¡NumPy 2.0 ha sido lanzado!"
date: 2024-06-17
---
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
### Lanzamiento de NumPy 2.1.0
_18 de agosto 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. Además de las habituales correcciones de errores y soporte actualizado de Python, ayuda a que NumPy vuelva a su ciclo de publicación habitual después del extenso desarrollo de 2.0. Los aspectos más destacados son:
- Soporte para Python 3.13.
- Soporte preliminar para Python 3.13 de hilos libres.
- Compatibilidad con la norma array-api 2023.12.
Esta versión es compatible con las versiones 3.10-3.13 de Python.
### Lanzamiento de NumPy 2.0.0
_16 de junio de 2024_ -- NumPy 2.0.0 es el primer lanzamiento importante desde 2006. Es el resultado de 11 meses de desarrollo desde el último lanzamiento de caracterÃsticas y es el trabajo de 212 colaboradores distribuidos entre 1078 solicitudes de incorporación de cambios. Contiene un gran número de nuevas caracterÃsticas interesantes, asà como cambios en las APIs de Python y C. Incluye cambios importantes que no podrÃan producirse en un lanzamiento menor regular, como una ruptura de ABI, cambios en las reglas de promoción de tipos y cambios en la API que podrÃan no haber estado emitiendo advertencias de obsolescencia en la versión 1.26.x. Los documentos clave relacionados con cómo adaptarse a los cambios en NumPy 2.0 incluyen:
-- La [GuÃa de migración de NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- Las [notas de lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- La [guÃa de migración a NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- Las [ notas del lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Emisión de anuncios para actualizaciones de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
La publicación ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) cuenta un poco de la historia sobre cómo se llegó a este lanzamiento.
### Fecha de lanzamiento de NumPy 2.0: 16 de junio
_23 de mayo de 2024_ -- Estamos encantados de anunciar que NumPy 2.0 está previsto que sea lanzado el 16 de junio de 2024. Esta publicación lleva más de un año en proceso y es el primer lanzamiento importante desde 2006. Es importante destacar que, además de muchas nuevas caracterÃsticas y mejoras en el rendimiento, contiene **cambios disruptivos** frente al ABI, como también a las APIs de Python y C. Es probable que los paquetes dependientes o downstream y código de usuario final necesiten ser adaptados - si puedes, por favor verifica que tu código funciona con NumPy `2.0.0rc2`. **Por favor, revisa lo siguiente para más detalles:**
-- La [guÃa de migración a NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
-- Las [ notas del lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- La [GuÃa de migración de NumPy 2.0](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- Las [notas de lanzamiento 2.0.0](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Emisión de anuncios para actualizaciones de estado: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### Recaudación de fondos de fin de año de NumFOCUS
_19 de diciembre de 2023_ -- NumFOCUS se ha asociado con PyCharm durante su campaña de fin de año para ofrecer un 30% de descuento en licencias de primera vez de PyCharm. Todos los ingresos del primer año de las compras de PyCharm desde ahora hasta el 23 de diciembre de 2023 se destinarán directamente a los programas de NumFOCUS.
Utiliza una URL única que te permitirá rastrear las compras https://lp.jetbrains.com/support-data-science/ o un código de cupón ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 ha sido lanzado
_16 de septiembre de 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) ahora está disponible. Los aspectos más destacados del lanzamiento son:
* Soporte de Python 3.12.0.
* Compatibilidad con Cython 3.0.0.
* Utilización del sistema de compilación Meson
* Actualización del soporte de SIMD
* Correcciones de f2py, meson y soporte de bind(x)
* Soporte para la librerÃa actualizada Accelerate BLAS/LAPACK
La versión 1.26.0 de NumPy es la continuación de la serie 1.25.x que marca la transición al sistema de compilación Meson y que provee soporte para Cython 3.0.0. Un total de 20 personas contribuyeron a esta versión y 59 solicitudes de cambios fueron fusionadas.
Las versiones de Python compatibles con esta versión son 3.9-3.12.
### numpy.org ya está disponible en japonés y portugués
_ 2 de agosto de 2023_ -- numpy.org ya está disponible en 2 idiomas adicionales: japonés y portugués. Esto no serÃa posible sin nuestros dedicados voluntarios:
_Portugués:_
* Melissa Weber Mendonça (melissawm)
* Precios Ricardo (ricardoprins)
* GetuÌlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japonés:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
El trabajo sobre la infraestructura de traducción se apoya con fondos de CZI.
De cara al futuro, nos encantarÃa traducir el sitio web a más idiomas. Si quieres ayudar, por favor pone en contacto con el equipo de traducciones de NumPy en Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Busca el canal #translations) También estamos formando un equipo de traducciones que estará trabajando en la localización de la documentación y el contenido educativo a través de todo el ecosistema de Python cientÃfico. Si esto ha despertado tu interés, únete a nosotros en el Discord de Python cientÃfico: https://discord.gg/khWtqY6RKr. (Busca el canal #translations)
### NumPy 1.25.0 ha sido lanzado
_17 de junio de 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
* Soporte para MUSL, ahora hay ruedas MUSL.
* Soporte para el compilador de Fujitsu C/C++.
* Los arreglos de objetos ahora están soportadas en einsum.
* Soporte para la multiplicación de matrices in situ (`@=`).
NumPy 1.25. continúa el trabajo en curso para mejorar el manejo y promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación. También se ha realizado trabajo preparatorio para el futuro NumPy 2.0.0, resultando en un gran número de nuevas y eliminadas obsolescencias.
Un total de 148 personas contribuyeron a esta versión y 530 solicitudes de incorporación de cambios fueron aceptadas.
Las versiones de Python soportadas por este lanzamiento son 3.9-3.11.
### Fomentar una Cultura Inclusiva: Convocatoria de Participación
_10 de mayo de 2023_ -- Fomentar una Cultura Inclusiva: Convocatoria de Participación
¿Cómo podemos ser mejores cuando se trata de diversidad e inclusión? Lee el informe y averigua cómo involucrarte [aquÃ](https://contributor-experience.org/docs/posts/dei-report/).
### Transición en el liderazgo del equipo de documentación de NumPy
_6 de enero de 2023_ â- Mukulika Pahari y Ross Barnowski son nombrados como los nuevos lÃderes del equipo de documentación de NumPy, reemplazando a Melissa Mendonça. Damos las gracias a Melissa por todas sus contribuciones a la documentación oficial de NumPy y materiales educativos, y a Mukulika y Ross por asumir este rol.
### Lanzamiento de NumPy 1.24.0
_18 de diciembre de 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
* Nuevas palabras clave "dtype" y "casting" para las funciones de apilamiento.
* Nuevas caracterÃsticas y correcciones de F2PY.
* Muchas nuevas obsolescencias, revÃsalas.
* Muchas obsolescencias caducadas,
El lanzamiento de NumPy 1.24.0 continúa el trabajo en curso para mejorar el manejo y promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación. Hay un gran número de obsolescencias nuevas y caducadas debido a los cambios en la limpieza y promoción de tipo dtype. Es el trabajo de 177 colaboradores distribuidos sobre 444 solicitudes de incorporación de cambios. Las versiones Python soportadas son 3.8-3.11.
### NumPy 1.23.0 ha sido lanzado
_22 de junio de 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
* Implementación de `loadtxt` en C, mejorando enormemente su rendimiento.
* Exposición de DLPack a nivel Python para facilitar el intercambio de datos.
* Cambios a la promoción y comparación de dtypes estructurados.
* Mejoras a f2py.
El lanzamiento de NumPy 1.23.0 continúa el trabajo en curso para mejorar el manejo y promoción de dtypes, aumentar la velocidad de ejecución y clarificar la documentación, caducar viejas obsolescencias. Es el trabajo de 151 colaboradores distribuidos sobre 494 solicitudes de incorporación de cambios. Las versiones de Python soportadas por este lanzamiento son 3.8-3.10. Python 3.11 será soportado cuando alcance la etapa rc.
### Estudio de investigación NumFOCUS DEI: llamado a participar
_13 de abril de 2022_ -- NumPy está trabajando con [NumFOCUS](http://numfocus.org/) en un [proyecto de investigación](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) financiado por la [Fundación Gordon & Betty Moore](https://www.moore.org/) para entender las barreras de participación que enfrentan los colaboradores, especialmente aquellos de grupos históricamente subrepresentados, en la comunidad de software de código abierto. El equipo de investigación quisiera hablar con nuevos colaboradores, desarrolladores y mantenedores del proyecto, y con aquellos que han contribuido en el pasado acerca de sus experiencias uniéndose y contribuyendo a NumPy.
**¿Estás interesado en compartir tus experiencias?**
Por favor, completa este breve [formulario de "Interés del Participante"](https://numfocus.typeform.com/to/WBWVJSqe), que contiene información adicional sobre los objetivos de la investigación, la privacidad y las consideraciones de confidencialidad. Tu participación será valiosa para el crecimiento y la sostenibilidad de comunidades de software de código abierto diversas e inclusivas. Los participantes aceptados participarán en una entrevista de 30 minutos con un miembro del equipo de investigación.
### Lanzamiento de NumPy 1.22.0
_31 de diciembre de 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) ya está disponible. Los aspectos más destacados del lanzamiento son:
* Las anotaciones de tipo del espacio de nombres principal están esencialmente completas. El repositorio principal (upstream) es un objetivo en movimiento, asà que probablemente habrán más mejoras, pero el mayor trabajo ya está hecho. Esta es probablemente la mejora más visible para el usuario en esta versión.
* Una versión preliminar del propuesto [Estándar API de Arreglos](https://data-apis.org/array-api/latest/) es suministrada (véase [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). Este es un paso en la creación de una colección estándar de funciones que pueden ser usadas a través de librerÃas como CuPy y JAX.
* NumPy ahora tiene un backend de DLPack. DLPack proporciona un formato de intercambio común para datos de arreglos (tensor).
* Nuevos métodos para `cuantil`, `percentil` y funciones relacionadas. Los nuevos métodos proporcionan un conjunto completo de los métodos comúnmente encontrados en la literatura.
* Las funciones universales se han refactorizado para implementar la mayor parte de [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). Esto también desbloquea la capacidad de experimentar con la futura API DType.
* Un nuevo asignador de memoria configurable para el uso de proyectos dependientes o downstream.
NumPy 1.22.0 es un gran lanzamiento que contó con el trabajo de 153 colaboradores distribuidos sobre 609 solicitudes de incorporación de cambios. Las versiones de Python soportadas por este lanzamiento son 3.8-3.10.
### Promoviendo una cultura inclusiva en el ecosistema cientÃfico de Python
_31 de agosto de 2021_ -- Nos complace anunciar que la Iniciativa Chan Zuckerberg ha [otorgado una subvención](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) para apoyar la incorporación, inclusión, y retención de personas de grupos históricamente marginados en proyectos cientÃficos de Python y para mejorar estructuralmente la dinámica de la comunidad para NumPy, SciPy, Matplotlib y Pandas.
Como parte del [Programa de Software Esencial de Código Abierto para la Ciencia de CZI](https://chanzuckerberg.com/eoss/), esta subvención suplementaria de [Diversidad &e Inclusión](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) apoyará la creación de posiciones dedicadas de LÃder de Experiencia del Colaborador para identificar, documentar e implementar prácticas para fomentar comunidades inclusivas de código abierto. Este proyecto será liderado por Melissa Mendonça (NumPy), con mentorÃa y orientación adicionales por parte de Ralf Gommers (NumPy, SciPy), Hannah Aizenman y Thomas Caswell (Matplotlib), Matt Haberland (SciPy), y Joris Van den Bossche (Pandas).
Este es un proyecto ambicioso destinado a descubrir e implementar actividades que deberÃan mejorar estructuralmente la dinámica comunitaria de nuestros proyectos. Al establecer estos nuevos roles entre proyectos, esperamos introducir un nuevo modelo de colaboración para las comunidades de Python CientÃfico, permitiendo que el trabajo de construcción de comunidades dentro del ecosistema se realice de manera más eficiente y con mejores resultados. También esperamos desarrollar una idea más clara tanto de lo que funciona y lo que no en nuestros proyectos, para atraer y retener nuevos colaboradores, especialmente de grupos históricamente subrepresentados. Finalmente, planeamos producir informes detallados sobre las acciones ejecutadas, explicando cómo éstas han impactado nuestros proyectos en términos de representación e interacción con nuestras comunidades.
Se espera que este proyecto, de dos años de duración, comience en noviembre de 2021, y estamos emocionados por ver los resultados de este trabajo! [Puedes leer la propuesta completa aquÃ](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### Encuesta de NumPy de 2021
_12 de julio de 2021_ -- En NumPy creemos en el poder de nuestra comunidad. 1,236 usuarios de NumPy de 75 paÃses participaron en nuestra encuesta inaugural el año pasado. Los resultados de la encuesta nos dieron una muy buena comprensión acerca de lo que deberÃa ser nuestro enfoque durante los próximos 12 meses.
Es hora de otra encuesta, y contamos contigo una vez más. Te tomará alrededor de 15 minutos de tu tiempo. Además de inglés, el cuestionario de la encuesta está disponible en 8 idiomas adicionales: Bangla, Francés, Hindi, Japonés, MandarÃn, Portugués, Ruso y Español.
Sigue el enlace para comenzar: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Lanzamiento de NumPy 1.21.0
_23 de junio de 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) ya está disponible. Los aspectos más destacados de esta versión son:
- trabajo SIMD continuo que cubre más funciones y plataformas,
- trabajo inicial sobre la nueva infraestructura dtype y conversiones de tipo,
- universal2 wheels para Python 3.8 y Python 3.9 en Mac,
- documentación mejorada,
- anotaciones mejoradas,
- nuevo `PCG64DXSM` generador de bits para números aleatorios.
Esta versión de NumPy es el resultado de 581 solicitudes de incorporación de cambios contribuidas por 175 personas. Las versiones de Python soportadas por este lanzamiento son las 3.7-3.9, se añadirá soporte para Python 3.10 después del lanzamiento de Python 3.10.
### Resultados de la encuesta de NumPy de 2020
_22 de junio de 2021_ -- En 2020, el equipo de encuestas de NumPy, en asociación con los estudiantes y profesores de la Universidad de Michigan y la Universidad de Maryland, realizó la primera encuesta oficial de la comunidad NumPy. Encuentra los resultados de la encuesta aquÃ: https://numpy.org/user-survey-2020/.
### Lanzamiento de NumPy 1.20.0
_30 de enero de 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) ya está disponible. Este es el lanzamiento de NumPy más grande hasta la fecha, gracias a los más de 180 colaboradores. Las dos nuevas caracterÃsticas más importantes son:
- Anotaciones de tipo para grandes partes de NumPy, y un nuevo submódulo `numpy.typing` que contiene los alias `ArralyLike` y `DtypeLike` que los usuarios y las librerÃas dependientes o downstream pueden usar al agregar anotaciones de tipo en su propio código.
- Optimizaciones de compilador SIMD multiplataforma, con soporte para instrucciones x86 (SSE, AVX), ARM64 (Neon) y PowerPC (VSX). Esto produjo mejoras significativas de rendimiento para muchas funciones (ejemplos: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversidad en el proyecto NumPy
_20 de septiembre de 2020_ -- Escribimos una [declaración sobre el estado de, y discusión en redes sociales, alrededor de la diversidad e inclusión en el proyecto NumPy](/diversity_sep2020).
### Primer artÃculo oficial de NumPy publicado en Nature!
_16 de septiembre de 2020_ -- Nos complace anunciar la publicación del [primer artÃculo oficial sobre NumPy](https://www.nature.com/articles/s41586-020-2649-2) como artÃculo de revisión en Nature. Esto llega 14 años después de la publicación de NumPy 1.0. El documento cubre aplicaciones y conceptos fundamentales de programación de arreglos, el rico ecosistema cientÃfico de Python construido sobre NumPy, y los recientemente añadidos protocolos de arreglos que facilitan la interoperabilidad con librerÃas de arreglos y tensores externas, tales como CuPy, Dask y JAX.
### Python 3.9 está por llegar, ¿cuándo lanzará NumPy ruedas binarias?
_14 de septiembre de 2020_ -- Python 3.9 será lanzado dentro de unas pocas semanas. Si eres uno de los primeros en adoptar las más recientes versiones de Python, es posible que te sientas decepcionado al descubrir que NumPy (y otros paquetes binarios como SciPy) no tendrán ruedas binarias listas para el dÃa del lanzamiento. Es un esfuerzo importante el adaptar la infraestructura de compilación a una versión nueva de Python y normalmente tarda unas cuantas semanas para que los paquetes aparezcan en PyPI y conda-forge. En preparación para este evento, por favor asegúrese de
- actualizar su versión de `pip` al menos a la 20.1 para soportar `manylinux2010` y `manylinux2014`
- utiliza [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) o `--only-binary=:all:` para evitar que `pip` intente compilar desde la fuente.
### Lanzamiento de NumPy 1.19.2
_10 de septiembre de 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) ya está disponible. Este último lanzamiento de la serie 1.19 corrige varios errores, se prepara para el [lanzamiento próximo de Cython 3.x](http://docs.cython.org/en/latest/src/changes.html) y fija las versiones de setuptools para mantener distutils funcionando mientras las modificaciones hacia el repositorio principal continúan. Las wheels para aarch64 están construidas con la última versión de manylinux2014 que corrige el problema de diferentes tamaños de página utilizados por diferentes distribuciones de linux.
### La encuesta inaugural de NumPy ya está disponible!
_2 de julio de 2020_ -- Esta encuesta está destinada a guiar y establecer prioridades para la toma de decisiones sobre el desarrollo de NumPy como software y como comunidad. La encuesta está disponible en 8 idiomas adicionales además del Inglés: Bangla, Hindi, Japonés, MandarÃn, Portugués, Ruso, Español y Francés.
Por favor ayúdanos a mejorar NumPy diligenciando la encuesta: [aquÃ](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### ¡NumPy tiene un nuevo logo!
_24 de junio de 2020_ -- NumPy tiene ahora un nuevo logo:
<img src="/images/logos/numpy_logo.svg" alt="Logo de NumPy" title="El nuevo logo de NumPy" width=300>
El logo es una versión moderna del anterior, con un diseño más limpio. Gracias a Isabela Presedo-Floyd por diseñar el nuevo logo, asà como a Travis Vaught por el viejo logo que nos sirvió tanto durante más de 15 años.
### Lanzamiento de NumPy 1.19.0
_20 de junio de 2020_ -- NumPy 1.19.0 ya está disponible. Esta es el primer lanzamiento sin soporte para Python 2, por lo que fue una "versión de limpieza". La versión mÃnima soportada de Python es ahora Python 3.6. Una nueva caracterÃstica importante es que la infraestructura de generación de números aleatorios que fue introducida en NumPy 1.17.0 es ahora accesible desde Cython.
### Aceptación a Season of Docs
_11 de mayo de 2020_ -- NumPy ha sido aceptado como una de las organizaciones mentoras para el programa Google Season of Docs. ¡Estamos entusiasmados de tener la oportunidad de trabajar con un redactor técnico para mejorar la documentación de NumPy una vez más! Para más detalles, por favor consulte [el sitio oficial de Season of Docs](https://developers.google.com/season-of-docs/) y nuestra [página de ideas](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### Lanzamiento de NumPy 1.18.0
_22 de diciembre de 2019_ -- NumPy 1.18.0 ya está disponible. Después de los grandes cambios en 1.17.0, este es un lanzamiento de consolidación. Es el último lanzamiento menor que soportará Python 3.5. Los aspectos más destacados de la publicación incluyen la adición de la infraestructura básica para enlazar con las librerÃas BLAS de 64 bits y LAPACK, y un nuevo C-API para `numpy.random`.
Por favor revise las [notas del lanzamiento](https://github.com/npm/npm/releases/tag/v2.11.0) para conocer más detalles.
### NumPy recibe una subvención de la Iniciativa Chan Zuckerberg
_15 de noviembre de 2019_ -- Nos complace anunciar que NumPy y OpenBLAS, una de las dependencias clave de NumPy, han recibido una subvención conjunta por $195,000 de la Iniciativa Chan Zuckerberg a través de su [programa Esencial de Software Abierto para la Ciencia](https://chanzuckerberg.com/eoss/) que apoya el mantenimiento de software, crecimiento, desarrollo y compromiso comunitario para herramientas de código abierto crÃticas para la ciencia.
Esta subvención se utilizará para acelerar los esfuerzos en la mejora de la documentación de NumPy, rediseño del sitio web y desarrollo de la comunidad para servir mejor a nuestra amplia y creciente base de usuarios, y asegurar la sostenibilidad a largo plazo del proyecto. Mientras que el equipo de OpenBLAS se enfocará en abordar conjuntos de problemas técnicos clave, en particular la seguridad de los hilos, AVX-512, y problemas de almacenamiento local de hilos (TLS), asà como mejoras algorÃtmicas en ReLAPACK (Recursive LAPACK) de las que depende OpenBLAS.
Puede encontrar más detalles sobre nuestras iniciativas y entregables propuestos en la [propuesta completa de subvención](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). Está previsto que el trabajo comience el 1 de diciembre de 2019 y continúe durante los siguientes 12 meses.
<a name="releases"></a>
## Lanzamientos
Esta es una lista de lanzamientos NumPy, con enlaces a notas de lanzamiento. Los lanzamientos de corrección de errores (solo cambia la `z` en el número de versión `x.y.z`) no tienen nuevas caracterÃsticas; las versiones menores (aumenta la `y`) sà las tienen.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 de septiembre 2024_.
- NumPy 2.0.2 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 de agosto 2024_.
- NumPy 2.1.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 de agosto de 2024_.
- NumPy 2.0.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 de julio de 2024_.
- NumPy 2.0.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 de junio de 2024_.
- NumPy 1.26.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 de febrero de 2024_.
- NumPy 1.26.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 de enero de 2024_.
- NumPy 1.26.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _12 de noviembre de 2023_.
- NumPy 1.26.1 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 de octubre de 2023_.
- NumPy 1.26.0 ([notas de publicación](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 de septiembre de 2023_.
- NumPy 1.25.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 de julio de 2023_.
- NumPy 1.25.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 de julio de 2023_.
- NumPy 1.24.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 de junio de 2023_.
- NumPy 1.25.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 de junio de 2023_.
- NumPy 1.24.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 de abril de 2023_.
- NumPy 1.24.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 de febrero de 2023_.
- NumPy 1.24.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 de diciembre de 2022_.
- NumPy 1.24.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 de diciembre de 2022_.
- NumPy 1.23.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _19 de noviembre de 2022_.
- NumPy 1.23.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 de octubre de 2022_.
- NumPy 1.23.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 de septiembre de 2022_.
- NumPy 1.23.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 de agosto de 2022_.
- NumPy 1.23.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 de julio de 2022_.
- NumPy 1.23.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 de junio de 2022_.
- NumPy 1.22.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 de mayo de 2022_.
- NumPy 1.21.6 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 de abril de 2022_.
- NumPy 1.22.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 de marzo de 2022_.
- NumPy 1.22.2 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 de febrero de 2022_.
- NumPy 1.22.1 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 de enero de 2022_.
- NumPy 1.22.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 de diciembre de 2021_.
- NumPy 1.21.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 de diciembre de 2021_.
- NumPy 1.21.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 de junio de 2021_.
- NumPy 1.20.3 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 de mayo de 2021_.
- NumPy 1.20.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 de enero de 2021_.
- NumPy 1.19.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 de enero de 2021_.
- NumPy 1.19.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 de junio de 2020_.
- NumPy 1.18.4 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 de mayo de 2020_.
- NumPy 1.17.5 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 de enero de 2020_.
- NumPy 1.18.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 de diciembre de 2019_.
- NumPy 1.17.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 de julio de 2019_.
- NumPy 1.16.0 ([notas de lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 de julio de 2018_.
- NumPy 1.14.0 ([notas del lanzamiento](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 de enero de 2018_.
|
numpy/numpy.org
|
e0c7183748aa4c9591faa4787d1e0b84aa6f1782
|
New translations news.md (French)
|
diff --git a/content/fr/news.md b/content/fr/news.md
new file mode 100644
index 0000000..7a7aba2
--- /dev/null
+++ b/content/fr/news.md
@@ -0,0 +1,322 @@
+---
+title: News
+sidebar: false
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
+---
+
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back into sync with the usual twice yearly release cycle. There have been a number of small cleanups, improvements to the StringDType, and better support for free threaded Python. Highlights are:
+
+* New functions `matvec` and `vecmat`,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and drops support for Python 3.9. In addition to the usual bug fixes and updated Python support, it helps get NumPy back to its usual release cycle after the extended development of 2.0. The highlights for this release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the result of 11 months of development since the last feature release and is the work of 212 contributors spread over 1078 pull requests. It contains a large number of exciting new features as well as changes to both the Python and C APIs. It includes breaking changes that could not happen in a regular minor release - including an ABI break, changes to type promotion rules, and API changes which may not have been emitting deprecation warnings in 1.26.x. Key documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/) tells a bit of the story about how this release came together.
+
+
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be released on June 16, 2024. This release has been over a year in the making, and is the first major release since 2006. Importantly, in addition to many new features and performance improvement, it contains **breaking changes** to the ABI as well as the Python and C APIs. It is likely that downstream packages and end user code needs to be adapted - if you can, please verify whether your code works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
+### NumFOCUS end of the year fundraiser
+_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now until December 23rd, 2023 will go directly to the NumFOCUS programs.
+
+Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/ or a coupon code ISUPPORTDATASCIENCEÂ
+
+### NumPy 1.26.0 released
+
+_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html) is now available. The highlights of the release are:
+
+* Python 3.12.0 support.
+* Cython 3.0.0 compatibility.
+* Use of the Meson build system
+* Updated SIMD support
+* f2py fixes, meson and bind(x) support
+* Support for the updated Accelerate BLAS/LAPACK library
+
+The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the transition to the Meson build system and provision of support for Cython 3.0.0. A total of 20 people contributed to this release and 59 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.12.
+
+### numpy.org is now available in Japanese and Portuguese
+
+_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages: Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
+
+_Portuguese:_
+* Melissa Weber Mendonça (melissawm)
+* Ricardo Prins (ricardoprins)
+* Getúlio Silva (getuliosilva)
+* Julio Batista Silva (jbsilva)
+* Alexandre de Siqueira (alexdesiqueira)
+* Alexandre B A Villares (villares)
+* Vini Salazar (vinisalazar)
+
+_Japanese:_
+* Atsushi Sakai (AtsushiSakai)
+* KKunai
+* Tom Kelly (TomKellyGenetics)
+* Yuji Kanagawa (kngwyu)
+* Tetsuo Koyama (tkoyama010)
+
+The work on the translation infrastructure is supported with funding from CZI.
+
+Looking ahead, weâd love to translate the website into more languages. If youâd like to help, please connect with the NumPy Translations Team on Slack: https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w. (Look for the #translations channel.) We are also building a Translations Team who will be working on localizing documentation and educational content across the Scientific Python ecosystem. If this piqued your interest, join us on the Scientific Python Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
+
+### NumPy 1.25.0 released
+
+_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html) is now available. The highlights of the release are:
+
+* Support for MUSL, there are now MUSL wheels.
+* Support for the Fujitsu C/C++ compiler.
+* Object arrays are now supported in einsum.
+* Support for the inplace matrix multiplication (`@=`).
+
+The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been preparatory work for the future NumPy 2.0.0, resulting in a large number of new and expired deprecations.
+
+A total of 148 people contributed to this release and 530 pull requests were merged.
+
+The Python versions supported by this release are 3.9-3.11.
+
+### Fostering an Inclusive Culture: Call for Participation
+
+_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
+
+How can we be better when it comes to diversity and inclusion? Read the report and find out how to get involved [here](https://contributor-experience.org/docs/posts/dei-report/).
+
+### NumPy documentation team leadership transition
+
+_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy documentation team leads replacing Melissa Mendonça. We thank Melissa for all her contributions to the NumPy official documentation and educational materials, and Mukulika and Ross for stepping up.
+
+### NumPy 1.24.0 released
+
+_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html) is now available. The highlights of the release are:
+
+* New "dtype" and "casting" keywords for stacking functions.
+* New F2PY features and fixes.
+* Many new deprecations, check them out.
+* Many expired deprecations,
+
+The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase execution speed, and clarify the documentation. There are a large number of new and expired deprecations due to changes in dtype promotion and cleanups. It is the work of 177 contributors spread over 444 pull requests. The supported Python versions are 3.8-3.11.
+
+### Numpy 1.23.0 released
+
+_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html) is now available. The highlights of the release are:
+
+* Implementation of `loadtxt` in C, greatly improving its performance.
+* Exposure of DLPack at the Python level for easy data exchange.
+* Changes to the promotion and comparisons of structured dtypes.
+* Improvements to f2py.
+
+The NumPy 1.23.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, clarify the documentation, and expire old deprecations. It is the work of 151 contributors spread over 494 pull requests. The Python versions supported by this release 3.8-3.10. Python 3.11 will be supported when it reaches the rc stage.
+
+### NumFOCUS DEI research study: call for participation
+
+_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a [research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c) funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to understand the barriers to participation that contributors, particularly those from historically underrepresented groups, face in the open-source software community. The research team would like to talk to new contributors, project developers and maintainers, and those who have contributed in the past about their experiences joining and contributing to NumPy.
+
+**Interested in sharing your experiences?**
+
+Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe) which contains additional information on the research goals, privacy, and confidentiality considerations. Your participation will be valuable to the growth and sustainability of diverse and inclusive open-source software communities. Accepted participants will participate in a 30-minute interview with a research team member.
+
+### Numpy 1.22.0 release
+
+_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html) is now available. The highlights of the release are:
+
+* Type annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
+* A preliminary version of the proposed [array API Standard](https://data-apis.org/array-api/latest/) is provided (see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)). This is a step in creating a standard collection of functions that can be used across libraries such as CuPy and JAX.
+* NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
+* New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
+* The universal functions have been refactored to implement most of [NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html). This also unlocks the ability to experiment with the future DType API.
+* A new configurable memory allocator for use by downstream projects.
+
+NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. The Python versions supported by this release are 3.8-3.10.
+
+### Advancing an inclusive culture in the scientific Python ecosystem
+
+_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has [awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/) to support the onboarding, inclusion, and retention of people from historically marginalized groups on scientific Python projects, and to structurally improve the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
+
+As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/), this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b) will support the creation of dedicated Contributor Experience Lead positions to identify, document, and implement practices to foster inclusive open-source communities. This project will be led by Melissa Mendonça (NumPy), with additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy), Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and Joris Van den Bossche (Pandas).
+
+This is an ambitious project aiming to discover and implement activities that should structurally improve the community dynamics of our projects. By establishing these new cross-project roles, we hope to introduce a new collaboration model to the Scientific Python communities, allowing community-building work within the ecosystem to be done more efficiently and with greater outcomes. We also expect to develop a clearer picture of what works and what doesn't in our projects to engage and retain new contributors, especially from historically underrepresented groups. Finally, we plan on producing detailed reports on the actions executed, explaining how they have impacted our projects in terms of representation and interaction with our communities.
+
+The two-year project is expected to start by November 2021, and we are excited to see the results from this work! [You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
+
+### 2021 NumPy survey
+
+_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236 NumPy users from 75 countries participated in our inaugural survey last year. The survey findings gave us a very good understanding of what we should focus on for the next 12 months.
+
+Itâs time for another survey, and we are counting on you once again. It will take about 15 minutes of your time. Besides English, the survey questionnaire is available in 8 additional languages: Bangla, French, Hindi, Japanese, Mandarin, Portuguese, Russian, and Spanish.
+
+Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
+
+
+### Numpy 1.21.0 release
+
+_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html) is now available. The highlights of the release are:
+
+- continued SIMD work covering more functions and platforms,
+- initial work on the new dtype infrastructure and casting,
+- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
+- improved documentation,
+- improved annotations,
+- new `PCG64DXSM` bitgenerator for random numbers.
+
+This NumPy release is the result of 581 merged pull requests contributed by 175 people. The Python versions supported for this release are 3.7-3.9, support for Python 3.10 will be added after Python 3.10 is released.
+
+
+### 2020 NumPy survey results
+
+_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students and faculty from the University of Michigan and the University of Maryland conducted the first official NumPy community survey. Find the survey results here: https://numpy.org/user-survey-2020/.
+
+
+### Numpy 1.20.0 release
+
+_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html) is now available. This is the largest NumPy release to date, thanks to 180+ contributors. The two most exciting new features are:
+- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule containing `ArrayLike` and `DtypeLike` aliases that users and downstream libraries can use when adding type annotations in their own code.
+- Multi-platform SIMD compiler optimizations, with support for x86 (SSE, AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant performance improvements for many functions (examples: [sin/cos](https://github.com/numpy/numpy/pull/17587), [einsum](https://github.com/numpy/numpy/pull/18194)).
+
+### Diversity in the NumPy project
+
+_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
+
+
+### First official NumPy paper published in Nature!
+
+_Sep 16, 2020_ -- We are pleased to announce the publication of [the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2) as a review article in Nature. This comes 14 years after the release of NumPy 1.0. The paper covers applications and fundamental concepts of array programming, the rich scientific Python ecosystem built on top of NumPy, and the recently added array protocols to facilitate interoperability with external array and tensor libraries like CuPy, Dask, and JAX.
+
+
+### Python 3.9 is coming, when will NumPy release binary wheels?
+
+_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an early adopter of Python versions, you may be dissapointed to find that NumPy (and other binary packages like SciPy) will not have binary wheels ready on the day of the release. It is a major effort to adapt the build infrastructure to a new Python version and it typically takes a few weeks for the packages to appear on PyPI and conda-forge. In preparation for this event, please make sure to
+- update your `pip` to version 20.1 at least to support `manylinux2010` and `manylinux2014`
+- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from trying to build from source.
+
+
+### Numpy 1.19.2 release
+
+_Sep 10, 2020_ -- [NumPy 1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available. This latest release in the 1.19 series fixes several bugs, prepares for the [upcoming Cython 3.x release](http://docs.cython.org/en/latest/src/changes.html) and pins setuptools to keep distutils working while upstream modifications are ongoing. The aarch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different linux distros.
+
+### The inaugural NumPy survey is live!
+
+_Jul 2, 2020_ -- This survey is meant to guide and set priorities for decision-making about the development of NumPy as software and as a community. The survey is available in 8 additional languages besides English: Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
+
+Please help us make NumPy better and take the survey [here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
+
+
+### NumPy has a new logo!
+
+_Jun 24, 2020_ -- NumPy now has a new logo:
+
+<img src="/images/logos/numpy_logo.svg" alt="NumPy logo" title="The new NumPy logo" width=300>
+
+The logo is a modern take on the old one, with a cleaner design. Thanks to Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught for the old logo that served us well for 15+ years.
+
+
+### NumPy 1.19.0 release
+
+_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release without Python 2 support, hence it was a "clean-up release". The minimum supported Python version is now Python 3.6. An important new feature is that the random number generation infrastructure that was introduced in NumPy 1.17.0 is now accessible from Cython.
+
+
+### Season of Docs acceptance
+
+_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for the Google Season of Docs program. We are excited about the opportunity to work with a technical writer to improve NumPy's documentation once again! For more details, please see [the official Season of Docs site](https://developers.google.com/season-of-docs/) and our [ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
+
+
+### NumPy 1.18.0 release
+
+_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in 1.17.0, this is a consolidation release. It is the last minor release that will support Python 3.5. Highlights of the release includes the addition of basic infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for `numpy.random`.
+
+Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
+
+
+### NumPy receives a grant from the Chan Zuckerberg Initiative
+
+_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
+
+This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
+
+More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
+
+
+<a name="releases"></a>
+
+## Releases
+
+Here is a list of NumPy releases, with links to release notes. Bugfix releases (only the `z` changes in the `x.y.z` version number) have no new features; minor releases (the `y` increases) do.
+
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
+- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
+- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
+- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
+- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
+- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
+- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
+- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
+- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
+- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
+- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
+- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
+- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
+- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
+- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
+- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
+- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
+- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
+- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
+- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
+- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
+- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
+- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
+- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
+- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
+- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
+- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
+- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
+- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
+- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
+- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
+- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
+- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
+- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
+- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
+- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
+- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
+- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
+- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
05a541cc198a898e2f7eea93d73659a8b95ffb4b
|
announce the NumPy 2.2.0 release
|
diff --git a/content/en/news.md b/content/en/news.md
index 04f94e6..396c9a0 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,473 +1,490 @@
---
title: News
sidebar: false
-newsHeader: "NumPy 2.1 released!"
-date: 2024-08-18
+newsHeader: "NumPy 2.2.0 released!"
+date: 2024-12-8
---
+### NumPy 2.2.0 released
+
+_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
+into sync with the usual twice yearly release cycle. There have been a number
+of small cleanups, improvements to the StringDType, and better support for free
+threaded Python. Highlights are:
+
+* New functions ``matvec`` and ``vecmat``,
+* Many improved annotations,
+* Improved support for the new StringDType,
+* Improved support for free threaded Python,
+* Fixes for f2py.
+
+This release supports Python versions 3.10-3.13.
+
+
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.2.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.0)) -- _8 Dec 2024_.
- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
ab458d1feed23346f061e119c9a9e38e298f80c6
|
audit workflows via zizmor and correct use of env variables
|
diff --git a/.github/workflows/create-translations-pr.yml b/.github/workflows/create-translations-pr.yml
index 3804511..c692fe9 100644
--- a/.github/workflows/create-translations-pr.yml
+++ b/.github/workflows/create-translations-pr.yml
@@ -1,56 +1,61 @@
name: Create Translations PR
on:
workflow_dispatch:
inputs:
language_code:
description: 'Crowdin language code for the language of interest'
required: true
jobs:
create-translations-pr:
runs-on: ubuntu-latest
# Run only on main branch in upstream repo.
if: ${{ github.repository == 'numpy/numpy.org' && github.ref == 'refs/heads/main' }}
steps:
- name: Checkout numpy.org
uses: actions/checkout@v4
with:
repository: 'numpy/numpy.org'
path: 'numpy.org'
ref: 'main'
fetch-depth: 0 # Gets full github history.
# Full history is needed for the scripted interactive rebase
# which takes place in create_branch_for_language.sh below.
+ persist-credentials: false
- name: Checkout scientific-python-translations automations
uses: actions/checkout@v4
with:
repository: 'scientific-python-translations/automations'
path: 'automations'
ref: 'main'
+ persist-credentials: false
- name: Create translations branch for language of interest
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ LANG: ${{ github.event.inputs.language_code }}
run: |
git config --global user.email "[email protected]"
git config --global user.name "GitHub Actions"
- ../automations/scripts/create_branch_for_language.sh origin main l10n_main ${{ github.event.inputs.language_code }}
+ ../automations/scripts/create_branch_for_language.sh origin main l10n_main "$LANG"
branch_name=$(git rev-parse --abbrev-ref HEAD)
- git push -u origin $branch_name
+ git push -u origin "$branch_name"
echo "BRANCH_NAME=$branch_name" >> $GITHUB_ENV
working-directory: ./numpy.org
- name: Create Pull Request
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ BRANCH_NAME: ${{ env.BRANCH_NAME }}
+ LANG: ${{ github.event.inputs.language_code }}
run: |
- language_name=$(../automations/scripts/get_language_name.sh ${{ github.event.inputs.language_code }})
- gh pr create --base main --head ${{ env.BRANCH_NAME }} --title "Update translations for $language_name" \
+ language_name=$(../automations/scripts/get_language_name.sh "$LANG")
+ gh pr create --base main --head "$BRANCH_NAME" --title "Update translations for $language_name" \
--body "This PR to update translations for $language_name was generated by the GitHub workflow, \
auto-translations-pr.yml and includes all commits from this repo's Crowdin branch for the language \
of interest. A final check of the rendered docs is needed to identify if there are any formatting \
errors due to incorrect string segmentation by Crowdin. If there are such formatting errors, they \
should be fixed directly on this branch, not through Crowdin."
working-directory: ./numpy.org
diff --git a/.github/workflows/gh-pages.yml b/.github/workflows/gh-pages.yml
index 822b8e1..8d29fe6 100644
--- a/.github/workflows/gh-pages.yml
+++ b/.github/workflows/gh-pages.yml
@@ -1,68 +1,69 @@
# https://gohugo.io/hosting-and-deployment/hosting-on-github/
name: github pages
on:
push:
branches:
- main
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
# Allow only one concurrent deployment, skipping runs queued between the run in-progress and latest queued.
# However, do NOT cancel in-progress runs as we want to allow these production deployments to complete.
concurrency:
group: pages
cancel-in-progress: false
jobs:
build-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout
- uses: actions/checkout@v3
+ uses: actions/checkout@v4
with:
+ persist-credentials: false
submodules: recursive
fetch-depth: 0
- name: Read Hugo version
id: hugo-version
run: cat netlify.toml | grep HUGO_VERSION | tr -d ' "' >> "$GITHUB_OUTPUT"
- name: Read DART SASS version
id: dart-sass-version
run: cat netlify.toml | grep --max-count=1 DART_SASS_VERSION | tr -d ' "' >> "$GITHUB_OUTPUT"
- name: Install Hugo CLI
env:
HUGO_VERSION: ${{ steps.hugo-version.outputs.HUGO_VERSION }}
run: |
- wget -O ${{ runner.temp }}/hugo.deb https://github.com/gohugoio/hugo/releases/download/v${HUGO_VERSION}/hugo_extended_${HUGO_VERSION}_linux-amd64.deb \
- && sudo dpkg -i ${{ runner.temp }}/hugo.deb
+ wget -O /tmp/hugo.deb https://github.com/gohugoio/hugo/releases/download/v${HUGO_VERSION}/hugo_extended_${HUGO_VERSION}_linux-amd64.deb \
+ && sudo dpkg -i /tmp/hugo.deb
- name: Install Dart Sass
env:
DART_SASS_VERSION: ${{ steps.dart-sass-version.outputs.DART_SASS_VERSION }}
DART_SASS_URL: "https://github.com/sass/dart-sass/releases/download/"
run: |
export DART_SASS_TARBALL="dart-sass-${DART_SASS_VERSION}-linux-x64.tar.gz" && \
curl -LJO ${DART_SASS_URL}/${DART_SASS_VERSION}/${DART_SASS_TARBALL} && \
tar -xf ${DART_SASS_TARBALL} && \
rm ${DART_SASS_TARBALL}
- name: Generate config
run: python gen_config.py
- name: Build with Hugo
run: |
export PATH=$(pwd)/dart-sass:$PATH
hugo --gc --minify
- name: Deploy pages
uses: JamesIves/github-pages-deploy-action@releases/v4
with:
folder: ./public
repository-name: numpy/numpy.github.com
branch: main
token: ${{ secrets.PERSONAL_TOKEN }}
|
numpy/numpy.org
|
15b83f5c82ffc1aa576bea5cf2065c7190d323d9
|
Add shortcode to contribute.md
|
diff --git a/content/en/contribute.md b/content/en/contribute.md
index 32f5ea4..f23d40d 100644
--- a/content/en/contribute.md
+++ b/content/en/contribute.md
@@ -1,119 +1,117 @@
---
title: Contribute to NumPy
sidebar: false
---
The NumPy project welcomes your expertise and enthusiasm!
Your choices aren't limited to programming, as you can
see below there are many areas where we need **your** help.
If you're unsure where to start or how your skills fit in, _reach out!_ You
can ask on the [mailing
list](https://mail.python.org/mailman/listinfo/numpy-discussion) or
[GitHub](http://github.com/numpy/numpy) (open an
[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
issue).
Those are our preferred channels (open source is open by nature), but
if you prefer to talk privately, contact our community coordinators at
<[email protected]> or on [Slack](https://numpy-team.slack.com)
(write <[email protected]> for an invite).
We also have a biweekly _community call_, details of which are announced on
the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
You are very welcome to join.
If you are new to contributing to open source, we also highly recommend reading
[this guide](https://opensource.guide/how-to-contribute/).
Our community aspires to treat everyone equally and to value all
contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open
and welcoming environment.
### 'How to Contribute to NumPy' comic
For a visual guide, check out this [comic](https://heyzine.com/flip-book/3e66a13901.html).
-<a href="https://heyzine.com/flip-book/3e66a13901.html">
- <img src="static/images/content_images/numpy-comic.png" alt="NumPy Contributor comic book cover">
-</a>
+{{< comic >}}
### Writing code
Programmers, this
[guide](https://numpy.org/devdocs/dev/index.html#development-process-summary)
explains how to contribute to the NumPy codebase.
<br>Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
### Reviewing pull requests
The project has more than 250 open pull requests -- meaning many potential
improvements and many open-source contributors waiting for feedback. If you're
a developer who knows NumPy, you can help even if you're not familiar with the
codebase. You can:
* summarize a long-running discussion
* triage documentation PRs
* test proposed changes
### Developing educational materials
NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
We're in need of new tutorials, how-to's, and deep-dive explanations, and the
site needs restructuring. Opportunities aren't limited to writers. We'd also
welcome worked examples, notebooks, and videos. [NEP 44 â Restructuring the
NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)
lays out our ideas -- and you may have others.
### Issue triaging
The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
of open issues. Some are no longer valid, some should be prioritized, and some
would make good issues for new contributors. You can:
* check if older bugs are still present
* find duplicate issues and link related ones
* add good self-contained reproducers to issues
* label issues correctly (this requires triage rights -- just ask)
Please just dive in.
### Website development
We've just revamped our website, but we're far from done. If you love web
development, these
[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
list some of our unmet needs -- and feel free to share your own ideas.
### Graphic design
We can barely begin to list the contributions a graphic designer can make here.
Our docs are parched for illustration; our growing website craves images --
opportunities abound.
### Translating website content
We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
accessible to users in their native language. Volunteer translators are at the heart
of this effort. See
[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
for background; comment on [this GitHub
issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
### Community coordination and outreach
Through community contact we share our work more widely and learn where we're
falling short. We're eager to get more people involved in efforts like our
[Twitter](https://twitter.com/numpy_team) account, organizing NumPy [code
sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
### Fundraising
For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
became clear that to ensure stability and growth we would need financial support.
[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
and other kinds of funding. We have a number of ideas and of course we welcome more.
Fundraising is a scarce skill here -- we'd appreciate your help.
### Donate
If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
|
numpy/numpy.org
|
7b8b64e909ee9e8b7e04f779c382c585f69c2deb
|
Add shortcode
|
diff --git a/layouts/shortcodes/comic.html b/layouts/shortcodes/comic.html
new file mode 100644
index 0000000..e69de29
|
numpy/numpy.org
|
59262ff6bd8f64cd49747b0edd3c4a8f492651e6
|
Add resized comic cover
|
diff --git a/static/images/content_images/numpy-comic.png b/static/images/content_images/numpy-comic.png
new file mode 100644
index 0000000..b2cc417
Binary files /dev/null and b/static/images/content_images/numpy-comic.png differ
|
numpy/numpy.org
|
5f038b48ddb15e6edebce3e1b47790125f036d35
|
Convert makefile to original state
|
diff --git a/Makefile b/Makefile
index a53582b..cc76605 100644
--- a/Makefile
+++ b/Makefile
@@ -1,49 +1,49 @@
# type `make help` to see all options
BASEURL ?=
ifdef BASEURL
BASEURLARG=-b $(BASEURL)
endif
.PHONY: help prepare teams-clean teams serve clean
# Add help text after each target name starting with '\#\#'
help: ## show this help
@echo "\nHelp for this makefile"
@echo "Possible commands are:"
@grep -h "##" $(MAKEFILE_LIST) | grep -v grep | sed -e 's/\(.*\):.*##\(.*\)/ \1: \2/'
prepare:
git submodule update --init
- python3 gen_config.py
+ python gen_config.py
# All translations share the <team>.toml files in the en translation
TEAMS_DIR = content/en/teams
TEAMS = emeritus-maintainers maintainers docs-team triage-team survey-team web-team
TEAMS_QUERY = python themes/scientific-python-hugo-theme/tools/team_query.py
$(TEAMS_DIR)/%.toml:
$(TEAMS_QUERY) --org numpy --team "$*" > $(TEAMS_DIR)/$*.toml
teams-clean: prepare
for team in $(TEAMS); do \
rm -f $(TEAMS_DIR)/$${team}.toml ;\
done
teams: | teams-clean $(patsubst %,$(TEAMS_DIR)/%.toml,$(TEAMS)) ## generates numpy.org team gallery pages
serve: prepare ## serve the website
hugo $(BASEURLARG) --printI18nWarnings server -D
# Serve the site for development purposes (leaving submodules as-is, etc).
serve-dev:
python gen_config.py
hugo $(BASEURLARG) --printI18nWarnings server --buildDrafts --disableFastRender --poll 1000ms
html: prepare ## build the website in ./public
hugo $(BASEURLARG)
clean: ## remove the build artifacts, mainly the "public" directory
rm -rf public
|
numpy/numpy.org
|
d41b9205537885dd06db91aa5c780d42720e9880
|
Add link and image of NumPy comcis
|
diff --git a/Makefile b/Makefile
index cc76605..a53582b 100644
--- a/Makefile
+++ b/Makefile
@@ -1,49 +1,49 @@
# type `make help` to see all options
BASEURL ?=
ifdef BASEURL
BASEURLARG=-b $(BASEURL)
endif
.PHONY: help prepare teams-clean teams serve clean
# Add help text after each target name starting with '\#\#'
help: ## show this help
@echo "\nHelp for this makefile"
@echo "Possible commands are:"
@grep -h "##" $(MAKEFILE_LIST) | grep -v grep | sed -e 's/\(.*\):.*##\(.*\)/ \1: \2/'
prepare:
git submodule update --init
- python gen_config.py
+ python3 gen_config.py
# All translations share the <team>.toml files in the en translation
TEAMS_DIR = content/en/teams
TEAMS = emeritus-maintainers maintainers docs-team triage-team survey-team web-team
TEAMS_QUERY = python themes/scientific-python-hugo-theme/tools/team_query.py
$(TEAMS_DIR)/%.toml:
$(TEAMS_QUERY) --org numpy --team "$*" > $(TEAMS_DIR)/$*.toml
teams-clean: prepare
for team in $(TEAMS); do \
rm -f $(TEAMS_DIR)/$${team}.toml ;\
done
teams: | teams-clean $(patsubst %,$(TEAMS_DIR)/%.toml,$(TEAMS)) ## generates numpy.org team gallery pages
serve: prepare ## serve the website
hugo $(BASEURLARG) --printI18nWarnings server -D
# Serve the site for development purposes (leaving submodules as-is, etc).
serve-dev:
python gen_config.py
hugo $(BASEURLARG) --printI18nWarnings server --buildDrafts --disableFastRender --poll 1000ms
html: prepare ## build the website in ./public
hugo $(BASEURLARG)
clean: ## remove the build artifacts, mainly the "public" directory
rm -rf public
diff --git a/content/en/contribute.md b/content/en/contribute.md
index a0968d2..9f8cd62 100644
--- a/content/en/contribute.md
+++ b/content/en/contribute.md
@@ -1,112 +1,119 @@
---
title: Contribute to NumPy
sidebar: false
---
The NumPy project welcomes your expertise and enthusiasm!
Your choices aren't limited to programming, as you can
see below there are many areas where we need **your** help.
If you're unsure where to start or how your skills fit in, _reach out!_ You
can ask on the [mailing
list](https://mail.python.org/mailman/listinfo/numpy-discussion) or
[GitHub](http://github.com/numpy/numpy) (open an
[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
issue).
Those are our preferred channels (open source is open by nature), but
if you prefer to talk privately, contact our community coordinators at
<[email protected]> or on [Slack](https://numpy-team.slack.com)
(write <[email protected]> for an invite).
We also have a biweekly _community call_, details of which are announced on
the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
You are very welcome to join.
If you are new to contributing to open source, we also highly recommend reading
[this guide](https://opensource.guide/how-to-contribute/).
Our community aspires to treat everyone equally and to value all
contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open
and welcoming environment.
+### 'How to Contribute to NumPy' comic
+For a visual guide, check out this [comic](https://heyzine.com/flip-book/3e66a13901.html).
+
+<a href="https://heyzine.com/flip-book/3e66a13901.html">
+ <img src="/images/numpy-comic.png"/>
+</a>
+
### Writing code
Programmers, this
[guide](https://numpy.org/devdocs/dev/index.html#development-process-summary)
explains how to contribute to the NumPy codebase.
<br>Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
### Reviewing pull requests
The project has more than 250 open pull requests -- meaning many potential
improvements and many open-source contributors waiting for feedback. If you're
a developer who knows NumPy, you can help even if you're not familiar with the
codebase. You can:
* summarize a long-running discussion
* triage documentation PRs
* test proposed changes
### Developing educational materials
NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
We're in need of new tutorials, how-to's, and deep-dive explanations, and the
site needs restructuring. Opportunities aren't limited to writers. We'd also
welcome worked examples, notebooks, and videos. [NEP 44 â Restructuring the
NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)
lays out our ideas -- and you may have others.
### Issue triaging
The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
of open issues. Some are no longer valid, some should be prioritized, and some
would make good issues for new contributors. You can:
* check if older bugs are still present
* find duplicate issues and link related ones
* add good self-contained reproducers to issues
* label issues correctly (this requires triage rights -- just ask)
Please just dive in.
### Website development
We've just revamped our website, but we're far from done. If you love web
development, these
[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
list some of our unmet needs -- and feel free to share your own ideas.
### Graphic design
We can barely begin to list the contributions a graphic designer can make here.
Our docs are parched for illustration; our growing website craves images --
opportunities abound.
### Translating website content
We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
accessible to users in their native language. Volunteer translators are at the heart
of this effort. See
[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
for background; comment on [this GitHub
issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
### Community coordination and outreach
Through community contact we share our work more widely and learn where we're
falling short. We're eager to get more people involved in efforts like our
[Twitter](https://twitter.com/numpy_team) account, organizing NumPy [code
sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
### Fundraising
For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
became clear that to ensure stability and growth we would need financial support.
[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
and other kinds of funding. We have a number of ideas and of course we welcome more.
Fundraising is a scarce skill here -- we'd appreciate your help.
### Donate
If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
diff --git a/images/numpy-comic.png b/images/numpy-comic.png
new file mode 100644
index 0000000..24abdab
Binary files /dev/null and b/images/numpy-comic.png differ
|
numpy/numpy.org
|
1f824621497cec390cc1db3e1b37dc7a893ae998
|
announce the NumPy 2.1.3 release
|
diff --git a/content/en/news.md b/content/en/news.md
index 3e479cf..04f94e6 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,472 +1,473 @@
---
title: News
sidebar: false
newsHeader: "NumPy 2.1 released!"
date: 2024-08-18
---
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.1.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.3)) -- _2 Nov 2024_.
- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
e266b4ac39ecb903b388fb7acfd9206c60e5927a
|
announce the NumPy 2.1.2 release
|
diff --git a/content/en/news.md b/content/en/news.md
index 78dd3fa..3e479cf 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,471 +1,472 @@
---
title: News
sidebar: false
newsHeader: "NumPy 2.1 released!"
date: 2024-08-18
---
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.1.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.2)) -- _5 Oct 2024_.
- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
90365677482a7d7ddf9258e46740863fbc6b8dd2
|
Fix display of ecosystem tab for Ja and Pt (#784)
|
diff --git a/assets/css/tabs.scss b/assets/css/tabs.scss
index c1b84be..560da2b 100644
--- a/assets/css/tabs.scss
+++ b/assets/css/tabs.scss
@@ -1,136 +1,137 @@
[role="tablist"] {
justify-content: center;
}
table td:not([align]), table th:not([align]) {
text-align: inherit;
}
table td, table th {
vertical-align: top;
}
.tabs-section {
display: flex;
flex-direction: column;
}
.tabs-section .container {
display: flex;
flex-direction: column;
}
.tabs-title {
display: flex;
justify-content: center;
letter-spacing: 1.5px;
font-size: 27px;
margin: 30px 0;
}
.visualization, .data-science, .machine-learning, .array-libraries {
max-width: 900px;
margin: 15px auto;
}
@media only screen and (max-width: 1200px) {
.tabs-section {
margin: 30px 10px;
}
.tabs-title {
margin: 30px;
}
}
.grid-container {
display: grid;
grid-template-columns: auto auto;
grid-gap: 20px;
}
.grid-container > div {
background-color: var(--pst-color-background);
text-align: middle;
}
@media only screen and (max-width: 600px) {
.grid-container {
display: block;
}
}
/* Visualization */
.visualization-images > img {
border-radius: 10px;
}
.image-grid {
display: grid;
grid-template-columns: auto auto auto auto;
grid-gap: 10px;
}
.image-grid > div {
background-color: var(--pst-color-surface);
border: 2px solid var(--pst-color-surface);
border-radius: 10px;
padding: 10px;
}
/* Scientific Domains */
section.scientific-domains {
max-width: 900px !important;
& ul {
display: flex;
flex-wrap: wrap;
list-style: none;
margin: 15px auto;
padding-inline-start: 0;
& li {
align-content: center;
font-size: 0.8rem;
line-height: 130%;
margin: 0.2em 0.4em;
flex-basis: 13%;
+ align-self: baseline;
& header {
// FIXME: Use appropriate PST color for this header text.
color: var(--pst-color-text-base);
font-weight: 700;
// Ensure headers are the same minimum height (some wrap
// to two lines).
min-height: 3.3em;
text-align: left;
}
& img {
width: 50px;
height: 50px;
margin-bottom: 0.5em;
}
& ul {
align-content: left;
display: flex;
flex-direction: column;
padding-inline-start: 0;
& li {
margin-left: 0em;
}
}
}
}
}
/* Array Libraries */
img.first-column-layout {
max-width: 100px;
max-height: 30px;
margin: 0px 20px 0px 10px;
}
td.left-text {
vertical-align: middle;
}
diff --git a/content/es/tabcontents.yaml b/content/es/tabcontents.yaml
index fa57763..b22cc54 100644
--- a/content/es/tabcontents.yaml
+++ b/content/es/tabcontents.yaml
@@ -1,373 +1,275 @@
params:
machinelearning:
paras:
- -
- para1: NumPy constituye la base de potentes librerÃas de aprendizaje automático como [scikit-learn](https://scikit-learn.org) y [SciPy](https://www.scipy.org). A medida que crece el aprendizaje automático, también lo hace la lista de librerÃas basadas en NumPy. Las capacidades de aprendizaje profundo de [TensorFlow](https://www.tensorflow.org) tienen amplias aplicaciones— entre ellas el reconocimiento de voz e imágenes, las aplicaciones basadas en texto, el análisis de series de tiempo y la detección de vÃdeo. [PyTorch](https://pytorch.org), otra librerÃa de aprendizaje profundo, es popular entre los investigadores de visión artificial y procesamiento del lenguaje natural.
+ - para1: NumPy constituye la base de potentes librerÃas de aprendizaje automático como [scikit-learn](https://scikit-learn.org) y [SciPy](https://www.scipy.org). A medida que crece el aprendizaje automático, también lo hace la lista de librerÃas basadas en NumPy. Las capacidades de aprendizaje profundo de [TensorFlow](https://www.tensorflow.org) tienen amplias aplicaciones— entre ellas el reconocimiento de voz e imágenes, las aplicaciones basadas en texto, el análisis de series de tiempo y la detección de vÃdeo. [PyTorch](https://pytorch.org), otra librerÃa de aprendizaje profundo, es popular entre los investigadores de visión artificial y procesamiento del lenguaje natural.
para2: Las técnicas estadÃsticas denominadas métodos [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205), como binning, bagging, stacking y boosting, se encuentran entre los algoritmos de ML implementados por herramientas como [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/) y [CatBoost](https://catboost.ai) — uno de los motores de inferencia más rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) y [Eli5](https://eli5.readthedocs.io/en/latest/) ofrecen visualizaciones de aprendizaje automático.
arraylibraries:
intro:
- -
- text: La API de NumPy es el punto de partida cuando se escriben librerÃas para explotar hardware innovador, crear tipos de arreglos especializadas o añadir capacidades más allá de lo que NumPy proporciona.
+ - text: La API de NumPy es el punto de partida cuando se escriben librerÃas para explotar hardware innovador, crear tipos de arreglos especializadas o añadir capacidades más allá de lo que NumPy proporciona.
headers:
- -
- text: LibrerÃa de arreglos
- -
- text: Capacidades y áreas de aplicación
+ - text: LibrerÃa de arreglos
+ - text: Capacidades y áreas de aplicación
libraries:
- -
- title: Dask
+ - title: Dask
text: Arreglos distribuidos y paralelismo avanzado para análisis, que permiten un rendimiento a escala.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- -
- title: CuPy
+ - title: CuPy
text: LibrerÃa de arreglos compatible con NumPy para cálculo acelerado en la GPU con Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.dev
- -
- title: JAX
+ - title: JAX
text: "Transformaciones componibles de programas NumPy: diferenciar, vectorizar, compilación justo-a-tiempo a GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://jax.readthedocs.io/
- -
- title: Xarray
+ - title: Xarray
text: Arreglos multidimensionales indexados y etiquetados para análisis y visualización avanzados.
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- -
- title: Sparse
+ - title: Sparse
text: LibrerÃa de arreglos dispersos compatible con NumPy que se integra con el álgebra lineal dispersa de Dask y SciPy.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- -
- title: PyTorch
+ - title: PyTorch
text: Marco de aprendizaje profundo que acelera el camino desde la creación de prototipos de investigación hasta la implantación en producción.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- -
- title: TensorFlow
+ - title: TensorFlow
text: Una plataforma integral de aprendizaje automático para crear y desplegar fácilmente aplicaciones basadas en ML.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- -
- title: Arrow
+ - title: Arrow
text: Plataforma de desarrollo multilingüe para datos y análisis columnares en memoria.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://arrow.apache.org/
- -
- title: xtensor
+ - title: xtensor
text: Arreglos multidimensionales con difusión y computación perezosa para análisis numérico.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- -
- title: Awkward Array
+ - title: Awkward Array
text: Manipular datos similares a JSON con expresiones similares a NumPy.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- -
- title: uarray
+ - title: uarray
text: Sistema de backend de Python que desacopla la API de la implementación; unumpy proporciona una API de NumPy.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- -
- title: tensorly
+ - title: tensorly
text: Aprendizaje tensorial, álgebra y backends para usar de manera fluida NumPy, PyTorch, TensorFlow o CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- -
- text: Casi todos los cientÃficos que trabajan en Python recurren a la potencia de NumPy.
- -
- text: "NumPy aporta la potencia de cálculo de lenguajes como C y Fortran a Python, un lenguaje mucho más fácil de aprender y utilizar. Con esta potencia viene la sencillez: una solución en NumPy suele ser clara y elegante."
+ - text: Casi todos los cientÃficos que trabajan en Python recurren a la potencia de NumPy.
+ - text: "NumPy aporta la potencia de cálculo de lenguajes como C y Fortran a Python, un lenguaje mucho más fácil de aprender y utilizar. Con esta potencia viene la sencillez: una solución en NumPy suele ser clara y elegante."
libraries:
- -
- title: Computación Cuántica
+ - title: Computación Cuántica
alttext: Un chip para computador.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- -
- url: http://qutip.org
+ - url: http://qutip.org
label: QuTiP
- -
- url: https://pyquil-docs.rigetti.com/en/stable
+ - url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- -
- url: https://qiskit.org
+ - url: https://qiskit.org
label: Qiskit
- -
- url: https://pennylane.ai
+ - url: https://pennylane.ai
label: PennyLane
- -
- title: Computación EstadÃstica
+ - title: Computación EstadÃstica
alttext: Un gráfico lineal con la lÃnea moviéndose hacia arriba.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- -
- url: https://pandas.pydata.org/
+ - url: https://pandas.pydata.org/
label: Pandas
- -
- url: https://www.statsmodels.org/
+ - url: https://www.statsmodels.org/
label: statsmodels
- -
- url: https://xarray.pydata.org/en/stable/
+ - url: https://xarray.pydata.org/en/stable/
label: Xarray
- -
- url: https://seaborn.pydata.org/
+ - url: https://seaborn.pydata.org/
label: Seaborn
- -
- title: Procesamiento de Señales
+ - title: Procesamiento de Señales
alttext: Un gráfico de barras con valores positivos y negativos.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- -
- url: https://www.scipy.org/
+ - url: https://www.scipy.org/
label: SciPy
- -
- url: https://pywavelets.readthedocs.io/
+ - url: https://pywavelets.readthedocs.io/
label: PyWavelets
- -
- url: https://python-control.org/
+ - url: https://python-control.org/
label: python-control
- -
- url: https://hyperspy.org/
+ - url: https://hyperspy.org/
label: HiperSpy
- -
- title: Procesamiento de Imágenes
+ - title: Procesamiento de Imágenes
alttext: Una fotografÃa de las montañas.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- -
- url: https://scikit-image.org/
+ - url: https://scikit-image.org/
label: Scikit-image
- -
- url: https://opencv.org/
+ - url: https://opencv.org/
label: OpenCV
- -
- url: https://mahotas.rtfd.io/
+ - url: https://mahotas.rtfd.io/
label: Mahotas
- -
- title: Grafos y Redes
+ - title: Grafos y Redes
alttext: Un grafo simple.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- -
- url: https://networkx.org/
+ - url: https://networkx.org/
label: NetworkX
- -
- url: https://graph-tool.skewed.de/
+ - url: https://graph-tool.skewed.de/
label: graph-tool
- -
- url: https://igraph.org/python/
+ - url: https://igraph.org/python/
label: igraph
- -
- url: https://pygsp.rtfd.io/
+ - url: https://pygsp.rtfd.io/
label: PyGSP
- -
- title: AstronomÃa
+ - title: AstronomÃa
alttext: Un telescopio.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- -
- url: https://www.astropy.org/
+ - url: https://www.astropy.org/
label: AstroPy
- -
- url: https://sunpy.org/
+ - url: https://sunpy.org/
label: SunPy
- -
- url: https://spacepy.github.io/
+ - url: https://spacepy.github.io/
label: SpacePy
- -
- title: PsicologÃa Cognitiva
+ - title: PsicologÃa Cognitiva
alttext: Una cabeza humana con engranajes.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- -
- url: https://www.psychopy.org/
+ - url: https://www.psychopy.org/
label: PsychoPy
- -
- title: Bioinformática
+ - title: Bioinformática
alttext: Una hebra de ADN.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- -
- url: https://biopython.org/
+ - url: https://biopython.org/
label: BioPython
- -
- url: http://scikit-bio.org/
+ - url: http://scikit-bio.org/
label: Scikit-Bio
- -
- url: https://github.com/openvax/pyensembl
+ - url: https://github.com/openvax/pyensembl
label: PyEnsembl
- -
- url: http://etetoolkit.org/
+ - url: http://etetoolkit.org/
label: ETE
- -
- title: Inferencia Bayesiana
+ - title: Inferencia Bayesiana
alttext: Un gráfico con una curva en forma de campanas.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- -
- url: https://pystan.readthedocs.io/en/latest/
+ - url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- -
- url: https://docs.pymc.io/
+ - url: https://docs.pymc.io/
label: PyMC3
- -
- url: https://arviz-devs.github.io/arviz/
+ - url: https://arviz-devs.github.io/arviz/
label: ArviZ
- -
- url: https://emcee.readthedocs.io/
+ - url: https://emcee.readthedocs.io/
label: emcee
- -
- title: Análisis Matemático
+ - title: Análisis Matemático
alttext: Cuatro sÃmbolos matemáticos.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- -
- url: https://www.scipy.org/
+ - url: https://www.scipy.org/
label: SciPy
- -
- url: https://www.sympy.org/
+ - url: https://www.sympy.org/
label: SymPy
- -
- url: https://www.cvxpy.org/
+ - url: https://www.cvxpy.org/
label: cvxpy
- -
- url: https://fenicsproject.org/
+ - url: https://fenicsproject.org/
label: FEniCS
- -
- title: QuÃmica
+ - title: QuÃmica
alttext: Un tubo de ensayo.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- -
- url: https://cantera.org/
+ - url: https://cantera.org/
label: Cantera
- -
- url: https://www.mdanalysis.org/
+ - url: https://www.mdanalysis.org/
label: MDAnalysis
- -
- url: https://github.com/rdkit/rdkit
+ - url: https://github.com/rdkit/rdkit
label: RDKit
- -
- url: https://www.pybamm.org/
+ - url: https://www.pybamm.org/
label: PyBaMM
- -
- title: Geociencia
+ - title: Geociencia
alttext: La Tierra.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- -
- url: https://pangeo.io/
+ - url: https://pangeo.io/
label: Pangeo
- -
- url: https://simpeg.xyz/
+ - url: https://simpeg.xyz/
label: Simpeg
- -
- url: https://github.com/obspy/obspy/wiki
+ - url: https://github.com/obspy/obspy/wiki
label: ObsPy
- -
- url: https://www.fatiando.org/
+ - url: https://www.fatiando.org/
label: Fatiando a Terra
- -
- title: Procesamiento Geográfico
+ - title: Procesamiento Geográfico
alttext: Un mapa.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- -
- url: https://shapely.readthedocs.io/
+ - url: https://shapely.readthedocs.io/
label: Shapely
- -
- url: https://geopandas.org/
+ - url: https://geopandas.org/
label: GeoPandas
- -
- url: https://python-visualization.github.io/folium
+ - url: https://python-visualization.github.io/folium
label: Folium
- -
- title: Arquitectura e IngenierÃa
+ - title: Arquitectura e IngenierÃa
alttext: Una placa de desarrollo de microprocesadores.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- -
- url: https://compas.dev/
+ - url: https://compas.dev/
label: COMPAS
- -
- url: https://cityenergyanalyst.com/
+ - url: https://cityenergyanalyst.com/
label: City Energy Analyst - Analista de EnergÃa de Ciudad
- -
- url: https://nortikin.github.io/sverchok/
+ - url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy es el núcleo de un rico ecosistema de librerÃas de ciencia de datos. Un flujo de trabajo exploratorio tÃpico de ciencia de datos podrÃa verse asÃ:"
image1:
- -
- img: /images/content_images/ds-landscape.png
+ - img: /images/content_images/ds-landscape.png
alttext: Diagrama de las librerÃas de Python. Las cinco categorÃas son "Extraer, Transformar, Cargar", "Exploración de Datos", "Modelado de Datos", "Evaluación de Datos" y "Presentación de Datos".
image2:
- -
- img: /images/content_images/data-science.png
+ - img: /images/content_images/data-science.png
alttext: Diagrama de tres cÃrculos superpuestos. Los cÃrculos se denominan "Matemáticas", "Ciencias de la Computación" y "Conocimientos Especializados". En el centro del diagrama, con los tres cÃrculos superpuestos, hay un área denominada "Ciencia de datos".
examples:
- -
- text: "<b>Extraer, Transformar, Cargar: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
- -
- text: "<b>Análisis Exploratorio: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- -
- text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
- -
- text: "<b>Informes en un panel de control: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ - text: "<b>Extraer, Transformar, Cargar: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ - text: "<b>Análisis Exploratorio: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
+ - text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
+ - text: "<b>Informes en un panel de control: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
content:
- -
- text: Para grandes volúmenes de datos, [Dask](https://dask.org) y [Ray](https://ray.io/) están diseñados para escalarse. Las implementaciones estables se basan en el versionado de datos ([DVC](https://dvc.org)), rastreo de experimentos ([MLFlow](https://mlflow.org)), y automatización del flujo de trabajo ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) y [Prefect](https://www.prefect.io)).
+ - text: Para grandes volúmenes de datos, [Dask](https://dask.org) y [Ray](https://ray.io/) están diseñados para escalarse. Las implementaciones estables se basan en el versionado de datos ([DVC](https://dvc.org)), rastreo de experimentos ([MLFlow](https://mlflow.org)), y automatización del flujo de trabajo ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) y [Prefect](https://www.prefect.io)).
visualization:
images:
- -
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: Un diagrama de flujo hecho en matplotlib
- -
- url: https://github.com/yhat/ggpy
+ - url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: Un diagrama de dispersión hecho en ggpy
- -
- url: https://www.journaldev.com/19692/python-plotly-tutorial
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: Un diagrama de caja hecho en plotly
- -
- url: https://altair-viz.github.io/gallery/streamgraph.html
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: Un diagrama de flujo hecho en altair
- -
- url: https://seaborn.pydata.org
+ - url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: Un gráfico de pares de dos tipos de gráficos, un gráfico de trazado y un gráfico de frecuencias hecho en seaborn
- -
- url: https://docs.pyvista.org/examples/index.html
+ - url: https://docs.pyvista.org/examples/index.html
img: /images/content_images/v_pyvista.png
alttext: Un renderizado de volumen 3D realizado en PyVista.
- -
- url: https://napari.org
+ - url: https://napari.org
img: /images/content_images/v_napari.png
alttext: Una imagen multidimensional hecha en napari.
- -
- url: https://vispy.org/gallery/index.html
+ - url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: Un diagrama de Voronoi hecho en vispy.
content:
- -
- text: NumPy es un componente esencial en el floreciente [panorama de visualización de Python](https://pyviz.org/overviews/index.html), que incluye [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), y [PyVista](https://github.com/pyvista/pyvista), por nombrar algunos.
- -
- text: El procesamiento acelerado de arreglos de gran tamaño de NumPy permite a los investigadores visualizar conjuntos de datos mucho mayores a los que el Python nativo podrÃa manejar.
+ - text: NumPy es un componente esencial en el floreciente [panorama de visualización de Python](https://pyviz.org/overviews/index.html), que incluye [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), y [PyVista](https://github.com/pyvista/pyvista), por nombrar algunos.
+ - text: El procesamiento acelerado de arreglos de gran tamaño de NumPy permite a los investigadores visualizar conjuntos de datos mucho mayores a los que el Python nativo podrÃa manejar.
diff --git a/content/ja/tabcontents.yaml b/content/ja/tabcontents.yaml
index e3dc2ba..e6089c6 100644
--- a/content/ja/tabcontents.yaml
+++ b/content/ja/tabcontents.yaml
@@ -1,219 +1,297 @@
params:
machinelearning:
paras:
- -
- para1: NumPyã¯ã[scikit-learn](https://scikit-learn.org)ã[SciPy](https://www.scipy.org)ã®ãããªå¼·åãªæ©æ¢°å¦ç¿ã©ã¤ãã©ãªã®åºç¤ãå½¢æãã¦ãã¾ããæ©æ¢°å¦ç¿ã®æè¡åéãæé·ããã«ã¤ããNumPyããã¼ã¹ã«ããã©ã¤ãã©ãªã®æ°ãå¢ãã¦ãã¾ãã[TensorFlow](https://www.tensorflow.org)ã®æ·±å±¤å¦ç¿æ©è½ã¯ãé³å£°èªèãç»åèªèãããã¹ããã¼ã¹ã®ã¢ããªã±ã¼ã·ã§ã³ãæç³»ååæãåç»æ¤åºãªã©ãå¹
åºãå¿ç¨ç¨éãããã¾ãã[PyTorch](https://pytorch.org)ããã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãèªç¶è¨èªå¦çã®ç ç©¶è
ã«äººæ°ã®ããæ·±å±¤å¦ç¿ã©ã¤ãã©ãªã§ãã[MXNet](https://github.com/apache/incubator-mxnet)ãAIããã±ã¼ã¸ã®ä¸ã¤ã§ã深層å¦ç¿ã®è¨è¨å³ããã³ãã¬ã¼ãæ©è½ãæä¾ãã¦ãã¾ãã
+ - para1: NumPyã¯ã[scikit-learn](https://scikit-learn.org)ã[SciPy](https://www.scipy.org)ã®ãããªå¼·åãªæ©æ¢°å¦ç¿ã©ã¤ãã©ãªã®åºç¤ãå½¢æãã¦ãã¾ããæ©æ¢°å¦ç¿ã®æè¡åéãæé·ããã«ã¤ããNumPyããã¼ã¹ã«ããã©ã¤ãã©ãªã®æ°ãå¢ãã¦ãã¾ãã[TensorFlow](https://www.tensorflow.org)ã®æ·±å±¤å¦ç¿æ©è½ã¯ãé³å£°èªèãç»åèªèãããã¹ããã¼ã¹ã®ã¢ããªã±ã¼ã·ã§ã³ãæç³»ååæãåç»æ¤åºãªã©ãå¹
åºãå¿ç¨ç¨éãããã¾ãã[PyTorch](https://pytorch.org)ããã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãèªç¶è¨èªå¦çã®ç ç©¶è
ã«äººæ°ã®ããæ·±å±¤å¦ç¿ã©ã¤ãã©ãªã§ãã[MXNet](https://github.com/apache/incubator-mxnet)ãAIããã±ã¼ã¸ã®ä¸ã¤ã§ã深層å¦ç¿ã®è¨è¨å³ããã³ãã¬ã¼ãæ©è½ãæä¾ãã¦ãã¾ãã
para2: '[ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205)æ³ã¨å¼ã°ããçµ±è¨çææ³ã§ãããã³ãã³ã°ããã®ã³ã°ãã¹ã¿ããã³ã°ãã[XGBoost](https://github.com/dmlc/xgboost)ã[LightGBM](https://lightgbm.readthedocs.io/en/latest/)ã[CatBoost](https://catboost.ai)ãªã©ã®ãã¼ã«ã§å®è£
ããã¦ãããã¼ã¹ãã£ã³ã°ãªã©ã¯ãæ©æ¢°å¦ç¿ã¢ã«ã´ãªãºã ã®ä¸ã¤ã§ãããæéã®æ¨è«ã¨ã³ã¸ã³ã®ä¸ã¤ã§ãã[Yellowbrick](https://www.scikit-yb.org/en/latest/)ã[Eli5](https://eli5.readthedocs.io/en/latest/)ã¯æ©æ¢°å¦ç¿ã®å¯è¦åæ©è½ãæä¾ãã¦ãã¾ãã'
arraylibraries:
intro:
- -
- text: NumPyã®APIã¯ã驿°çãªãã¼ãã¦ã§ã¢ãå©ç¨ããããç¹æ®ãªé
åã¿ã¤ãã使ããããNumPyãæä¾ãã以ä¸ã®æ©è½ã追å ããããã«ã©ã¤ãã©ãªã使ããéã®åºç¤ã¨ãªãã¾ãã
+ - text: NumPyã®APIã¯ã驿°çãªãã¼ãã¦ã§ã¢ãå©ç¨ããããç¹æ®ãªé
åã¿ã¤ãã使ããããNumPyãæä¾ãã以ä¸ã®æ©è½ã追å ããããã«ã©ã¤ãã©ãªã使ããéã®åºç¤ã¨ãªãã¾ãã
headers:
- -
- text: é
åã©ã¤ãã©ãª
- -
- text: æ©è½ã¨å¿ç¨åé
+ - text: é
åã©ã¤ãã©ãª
+ - text: æ©è½ã¨å¿ç¨åé
libraries:
- -
- title: Dask
+ - title: Dask
text: åæç¨ã®åæ£é
åã¨é«åº¦ãªä¸¦åå¦çã«ãããå¤§è¦æ¨¡ãªå¦çãå¯è½ã«ãã¾ãã
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- -
- title: CuPy
+ - title: CuPy
text: Python ã使ç¨ãã GPUã«ããé«éè¨ç®ç¨ã®NumPyäºæé
åã©ã¤ãã©ãª
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- -
- title: JAX
+ - title: JAX
text: "NumPyã³ã¼ãã®åæå¯è½ãªå¤æã©ã¤ãã©ãª: å¾®åããã¯ãã«åãGPU/TPUã¸ã®ã¸ã£ã¹ãã¤ã³ã¿ã¤ã ã³ã³ãã¤ã«"
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
- -
- title: Xarray
+ - title: Xarray
text: é«åº¦ãªåæã¨è¦è¦åã®ããã®ã©ãã«ã¨ã¤ã³ããã¯ã¹ä»ã夿¬¡å
é
å
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- -
- title: Sparse
+ - title: Sparse
text: Dask 㨠SciPy ã®çè¡åã®ç·å½¢ä»£æ°ã©ã¤ãã©ãªãçµ±åãããNumpy äºæã®çè¡åã©ã¤ãã©ãª
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- -
- title: PyTorch
+ - title: PyTorch
text: ç ç©¶ç¨ã®ãããã¿ã¤ãã³ã°ããæ¬çªéç¨ã¸ã®å±éãå éããããæ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- -
- title: TensorFlow
+ - title: TensorFlow
text: æ©æ¢°å¦ç¿ãå©ç¨ããã¢ããªã±ã¼ã·ã§ã³ãç°¡åã«æ§ç¯ã»å±éããããã®ãã¨ã³ãã»ãã¼ã»ã¨ã³ãã®æ©æ¢°å¦ç¿ãã©ãããã©ã¼ã
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- -
- title: MXNet
+ - title: MXNet
text: æè»ãç ç©¶ç¨ã®ãããã¿ã¤ãã³ã°ãããå®éã®éç¨ã¾ã§å©ç¨å¯è½ãªæ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
- -
- title: Arrow
+ - title: Arrow
text: ååã®ã¤ã³ã¡ã¢ãªã¼ãã¼ã¿ããã®åæã®ããã®ãè¤æ°ã®è¨èªã«å¯¾å¿ããéçºãã©ãããã©ã¼ã
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
- -
- title: xtensor
+ - title: xtensor
text: æ°å¤è§£æã®ããã®ããã¼ããã£ã¹ãã£ã³ã°ã¨é
å»¶è¨ç®ãåãã夿¬¡å
é
å
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- -
- title: Awkward
+ - title: Awkward
text: Numpy ã®ãã㪠ã¤ãã£ãªã ã使ã£ã¦ JSON ã®ãããªãã¼ã¿ãæä½ããã©ã¤ãã©ãª
img: /images/content_images/arlib/xnd.png
alttext: awkward
url: https://awkward-array.org/
- -
- title: uarray
+ - title: uarray
text: APIãå®è£
ããåãé¢ãPythonããã¯ã¨ã³ãã·ã¹ãã (unumpyã¯NumPy APIãæä¾ãã¦ãã¾ã)
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- -
- title: tensorly
+ - title: tensorly
text: NumpyãMXNetãPyTorchãTensorFlowã¾ãã¯Cupyãã·ã¼ã ã¬ã¹ã«ä½¿ç¨ããããã®ããã³ã½ã«å¦ç¿ããã³ã½ã«ä»£æ°ãããã³ãããã®ãã³ã½ã«è¨ç®ã®ããã®ããã¯ã¨ã³ã
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- -
- text: Pythonã使ã£ã¦åãã»ã¨ãã©ã®ç§å¦è
ã¯NumPyã®åãå©ç¨ãã¦ãã¾ãã
- -
- text: "Numpy ã¯ã C ã Fortran ã®ãããªè¨èªã®è¨ç®ããã©ã¼ãã³ã¹ããPythonã«ããããã¾ãã ãã®ãã¯ã¼ã¯NumPyã®ã·ã³ãã«ãããæ¥ã¦ãããNumPyã«ããã½ãªã¥ã¼ã·ã§ã³ã®å¤ãã¯æç¢ºã§ã¨ã¬ã¬ã³ãã«ãªãã¾ãã"
- librariesrow1:
- -
- title: éåã³ã³ãã¥ã¼ãã£ã³ã°
+ - text: Pythonã使ã£ã¦åãã»ã¨ãã©ã®ç§å¦è
ã¯NumPyã®åãå©ç¨ãã¦ãã¾ãã
+ - text: "Numpy ã¯ã C ã Fortran ã®ãããªè¨èªã®è¨ç®ããã©ã¼ãã³ã¹ããPythonã«ããããã¾ãã ãã®ãã¯ã¼ã¯NumPyã®ã·ã³ãã«ãããæ¥ã¦ãããNumPyã«ããã½ãªã¥ã¼ã·ã§ã³ã®å¤ãã¯æç¢ºã§ã¨ã¬ã¬ã³ãã«ãªãã¾ãã"
+ libraries:
+ - title: éåã³ã³ãã¥ã¼ãã£ã³ã°
alttext: ã³ã³ãã¥ã¼ã¿ã¼ããã
img: /images/content_images/sc_dom_img/quantum_computing.svg
- -
- title: çµ±è¨ã³ã³ãã¥ã¼ãã£ã³ã°
+ links:
+ - url: http://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: çµ±è¨ã³ã³ãã¥ã¼ãã£ã³ã°
alttext: ç·ã°ã©ãã§ãã°ã©ããä¸ã«ç§»åãã¾ãã
img: /images/content_images/sc_dom_img/statistical_computing.svg
- -
- title: ä¿¡å·å¦ç
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: ä¿¡å·å¦ç
alttext: æ£ã¨è² ã®å¤ãæã¤æ£ã°ã©ãã
img: /images/content_images/sc_dom_img/signal_processing.svg
- -
- title: ç»åå¦ç
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HiperSpy
+ - title: ç»åå¦ç
alttext: å±±ã
ã®åç
img: /images/content_images/sc_dom_img/image_processing.svg
- -
- title: ã°ã©ãã¨ãããã¯ã¼ã¯
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
+ - title: ã°ã©ãã¨ãããã¯ã¼ã¯
alttext: ã·ã³ãã«ãªã°ã©ã
img: /images/content_images/sc_dom_img/sd6.svg
- -
- title: 天æå¦
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: 天æå¦
alttext: æé é¡
img: /images/content_images/sc_dom_img/astronomy_processes.svg
- -
- title: èªç¥å¿çå¦
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: èªç¥å¿çå¦
alttext: ã®ã¢ãã¤ãã人éã®é é¨
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
- librariesrow2:
- -
- title: ç彿
å ±ç§å¦
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: ç彿
å ±ç§å¦
alttext: DNAã®é
img: /images/content_images/sc_dom_img/bioinformatics.svg
- -
- title: ãã¤ãºæ¨è«
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: ãã¤ãºæ¨è«
alttext: éå½¢ã®æ²ç·ã®ã°ã©ã
img: /images/content_images/sc_dom_img/bayesian_inference.svg
- -
- title: æ°å¦çåæ
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC3
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: æ°å¦çåæ
alttext: ï¼ã¤ã®æ°å¦è¨å·
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
- -
- title: åå¦
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: åå¦
alttext: 試é¨ç®¡
img: /images/content_images/sc_dom_img/chemistry.svg
- -
- title: å°çç§å¦
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: å°çç§å¦
alttext: å°ç
img: /images/content_images/sc_dom_img/geoscience.svg
- -
- title: å°çæ
å ±å¦ç
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: å°çæ
å ±å¦ç
alttext: å°å³
img: /images/content_images/sc_dom_img/GIS.svg
- -
- title: ã¢ã¼ããã¯ãã£ã¨ã¨ã³ã¸ãã¢ãªã³ã°
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: ã¢ã¼ããã¯ãã£ã¨ã¨ã³ã¸ãã¢ãªã³ã°
alttext: ãã¤ã¯ãããã»ããµéçºãã¼ã
img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst - Analista de EnergÃa de Ciudad
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
datascience:
intro: "Numpy ã¯è±å¯ãªãã¼ã¿ãµã¤ã¨ã³ã¹ã©ã¤ãã©ãªã®ã¨ã³ã·ã¹ãã ã®ä¸æ ¸ã«ããã¾ããä¸è¬çãªãã¼ã¿ãµã¤ã¨ã³ã¹ã®ã¯ã¼ã¯ããã¼ã¯æ¬¡ã®ããã«ãªãã¾ãã"
image1:
-
img: /images/content_images/ds-landscape.png
alttext: Python ã©ã¤ãã©ãªã®å³ ã5 ã¤ã®ã«ãã´ãªã«åé¡ããããæ½åºã夿ãèªã¿è¾¼ã¿ããããã¼ã¿æ¢ç´¢ãããã¢ããªã³ã°ãããè©ä¾¡ãããå¯è¦åãã§ãã
image2:
-
img: /images/content_images/data-science.png
alttext: ä¸ã¤ã®åãéãªãåãå³ãåã¯ãããããæ°å¦ãããã³ã³ãã¥ã¼ã¿ã¼ãµã¤ã¨ã³ã¹ãããå°éç¥èãã§ã©ãã«ä»ãããã¦ãã¾ããå³ã®ä¸å¿é¨ã«ã¯ãä¸ã¤ã®åãéãªãåã£ã¦å½¢æãããã¨ãªã¢ããããããã¼ã¿ãµã¤ã¨ã³ã¹ãã¨ã©ãã«ä»ãããã¦ãã¾ãã
examples:
-
text: "<b>æ½åº, 夿, èªã¿è¾¼ã¿: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
-
text: "<b>æ¢ç´¢çè§£æ: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
-
text: "<b>ã¢ããªã³ã°ã¨è©ä¾¡: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
-
text: "<b>ããã·ã¥ãã¼ãã§ã®ã¬ãã¼ã: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
content:
-
text: å¤§è¦æ¨¡ãã¼ã¿ã«å¯¾ãã¦ã[Dask](https://dask.org)ã¨[Ray](https://ray.io/)ã¯ã¹ã±ã¼ã«ãããã¨ãç®æãã¦è¨è¨ããã¦ãã¾ããå®å®ãããããã¤ã¡ã³ãã«é¢ãã¦ã¯ããã¼ã¿ã®ãã¼ã¸ã§ãã³ã°ï¼[DVC](https://dvc.org)ï¼ãå®é¨ã®è¿½è·¡ï¼[MLFlow](https://mlflow.org)ï¼ãã¯ã¼ã¯ããã¼ã®èªååï¼[Airflow](https://airflow.apache.org)ããã³[Prefect](https://www.prefect.io)ãéè¦ã§ããæ§ã
ãªNumPyãã¼ã¹ã®ãã¼ã«ãæä¾ããã¦ãã¾ãã
visualization:
images:
-
url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: matplotlibã§ä½ãããã¹ããªã¼ã ãããã
-
url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: ggpyã§ä½ãããæ£å¸å³ã°ã©ã
-
url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: plotyã§ä½ãããç®±ã²ãå³
-
url: https://alta-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: altairã§ä½ãããã¹ããªã¼ã ã°ã©ã
-
url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: 2種é¡ã®ã°ã©ãã«ãããã¢ãããããseabornã§ä½ãããããããã¨å¨æ³¢æ°ã°ã©ã"
-
url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: PyVista製ã®3Dããªã¥ã¼ã ã¬ã³ããªã³ã°
-
url: https://napari.org
img: /images/content_images/v_napari.png
alttext: napariã§ä½ããã夿¬¡å
ç»å
-
url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: vispyã§ä½ããããããã¤å³
content:
-
text: NumPyã¯ã[Matplotlib](https://matplotlib.org)ã[Seaborn](https://seaborn.pydata.org)ã[Plotly](https://plot.ly)ã[Altair](https://altair-viz.github.io)ã[Bokeh](https://docs.bokeh.org/en/latest/)ã[Holoviz](https://holoviz.org)ã[Vispy](http://vispy.org)ã[Napari](https://github.com/napari/napari)ã[PyVista](https://github.com/pyvista/pyvista)ãªã©ã®ãæ¥æé·ãã¦ãã[Python visualization landscape](https://pyviz.org/overviews/index.html)ã«æ¬ ãããªãã³ã³ãã¼ãã³ãã§ãã
-
text: NumPy ã®å¤§è¦æ¨¡é
åã®é«éå¦çã«ãããç ç©¶è
ã¯ããã¤ãã£ãã® Python ãæ±ããã¨ãã§ãããããã¯ããã«å¤§ããªãã¼ã¿ã»ãããå¯è¦åãããã¨ãã§ãã¾ãã
diff --git a/content/pt/tabcontents.yaml b/content/pt/tabcontents.yaml
index a2d2b0d..5f0b4ca 100644
--- a/content/pt/tabcontents.yaml
+++ b/content/pt/tabcontents.yaml
@@ -1,219 +1,280 @@
params:
machinelearning:
paras:
- -
- para1: O NumPy forma a base de bibliotecas de aprendizagem de máquina poderosas como [scikit-learn](https://scikit-learn.org) e [SciPy](https://www.scipy.org). à medida que a disciplina de aprendizagem de máquina cresce, a lista de bibliotecas construidas a partir do NumPy também cresce. As funcionalidades de deep learning do [TensorFlow](https://www.tensorflow.org) tem diversas aplicações — entre elas, reconhecimento de imagem e de fala, aplicações baseadas em texto, análise de séries temporais, e detecção de vÃdeo. O [PyTorch](https://pytorch.org), outra biblioteca de deep learning, é popular entre pesquisadores em visão computacional e processamento de linguagem natural. O [MXNet](https://github.com/apache/incubator-mxnet) é outro pacote de IA, que fornece templates e protótipos para deep learning.
+ - para1: O NumPy forma a base de bibliotecas de aprendizagem de máquina poderosas como [scikit-learn](https://scikit-learn.org) e [SciPy](https://www.scipy.org). à medida que a disciplina de aprendizagem de máquina cresce, a lista de bibliotecas construidas a partir do NumPy também cresce. As funcionalidades de deep learning do [TensorFlow](https://www.tensorflow.org) tem diversas aplicações — entre elas, reconhecimento de imagem e de fala, aplicações baseadas em texto, análise de séries temporais, e detecção de vÃdeo. O [PyTorch](https://pytorch.org), outra biblioteca de deep learning, é popular entre pesquisadores em visão computacional e processamento de linguagem natural. O [MXNet](https://github.com/apache/incubator-mxnet) é outro pacote de IA, que fornece templates e protótipos para deep learning.
para2: Técnicas estatÃsticas chamadas métodos de [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) tais como binning, bagging, stacking, e boosting estão entre os algoritmos de ML implementados por ferramentas tais como [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), e [CatBoost](https://catboost.ai) — um dos motores de inferência mais rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) e [Eli5](https://eli5.readthedocs.io/en/latest/) oferecem visualizações para aprendizagem de máquina.
arraylibraries:
intro:
- -
- text: A API do NumPy é o ponto de partida quando bibliotecas são escritas para explorar hardware inovador, criar tipos de arrays especializados, ou adicionar capacidades além do que o NumPy fornece.
+ - text: A API do NumPy é o ponto de partida quando bibliotecas são escritas para explorar hardware inovador, criar tipos de arrays especializados, ou adicionar capacidades além do que o NumPy fornece.
headers:
- -
- text: Biblioteca de Arrays
- -
- text: Recursos e áreas de aplicação
+ - text: Biblioteca de Arrays
+ - text: Recursos e áreas de aplicação
libraries:
- -
- title: Dask
+ - title: Dask
text: Arrays distribuÃdas e paralelismo avançado para análise, permitindo desempenho em escala.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- -
- title: CuPy
+ - title: CuPy
text: Biblioteca de matriz compatÃvel com NumPy para computação acelerada pela GPU com Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- -
- title: JAX
+ - title: JAX
text: "Transformações combináveis de programas NumPy: vetorização, compilação just-in-time para GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
- -
- title: Xarray
+ - title: Xarray
text: Arrays multidimensionais rotuladas e indexadas para análise e visualização avançadas
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- -
- title: Sparse
+ - title: Sparse
text: Biblioteca de arrays compatÃveis com o NumPy que pode ser integrada com Dask e álgebra linear esparsa da SciPy.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- -
- title: PyTorch
+ - title: PyTorch
text: Framework de deep learning que acelera o caminho entre prototipação de pesquisa e colocação em produção.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- -
- title: TensorFlow
+ - title: TensorFlow
text: Uma plataforma completa para aprendizagem de máquina que permite construir e colocar em produção aplicações usando ML facilmente.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- -
- title: MXNet
+ - title: MXNet
text: Framework de deep learning voltado para flexibilizar prototipação em pesquisa e produção.
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
- -
- title: Arrow
+ - title: Arrow
text: Uma plataforma de desenvolvimento multi-linguagens para dados e análise para dados armazenados em colunas na memória.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
- -
- title: xtensor
+ - title: xtensor
text: Arrays multidimensionais com broadcasting e avaliação preguiçosa (lazy computing) para análise numérica.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- -
- title: Awkward Array
+ - title: Awkward Array
text: Manipulação de dados JSON-like com sintaxe NumPy-like.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- -
- title: uarray
+ - title: uarray
text: Sistema de backend Python que dissocia a API da implementação; unumpy fornece uma API NumPy.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- -
- title: tensorly
+ - title: tensorly
text: Ferramentas para aprendizagem com tensores, algebra e backends para usar NumPy, MXNet, PyTorch, TensorFlow ou CuPy sem esforço.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- -
- text: Quase todos os cientistas que trabalham em Python se baseiam na potência do NumPy.
- -
- text: "NumPy traz o poder computacional de linguagens como C e Fortran para Python, uma linguagem muito mais fácil de aprender e usar. Com esse poder vem a simplicidade: uma solução no NumPy é frequentemente clara e elegante."
- librariesrow1:
- -
- title: Computação quântica
+ - text: Quase todos os cientistas que trabalham em Python se baseiam na potência do NumPy.
+ - text: "NumPy traz o poder computacional de linguagens como C e Fortran para Python, uma linguagem muito mais fácil de aprender e usar. Com esse poder vem a simplicidade: uma solução no NumPy é frequentemente clara e elegante."
+ libraries:
+ - title: Computação quântica
alttext: Um chip de computador.
img: /images/content_images/sc_dom_img/quantum_computing.svg
- -
- title: Computação estatÃstica
+ links:
+ - url: http://qutip.org
+ label: QuTiP
+ - url: https://pyquil-docs.rigetti.com/en/stable
+ label: PyQuil
+ - url: https://qiskit.org
+ label: Qiskit
+ - url: https://pennylane.ai
+ label: PennyLane
+ - title: Computação estatÃstica
alttext: Um gráfico com uma linha em movimento para cima.
img: /images/content_images/sc_dom_img/statistical_computing.svg
- -
- title: Processamento de sinais
+ links:
+ - url: https://pandas.pydata.org/
+ label: Pandas
+ - url: https://www.statsmodels.org/
+ label: statsmodels
+ - url: https://xarray.pydata.org/en/stable/
+ label: Xarray
+ - url: https://seaborn.pydata.org/
+ label: Seaborn
+ - title: Processamento de sinais
alttext: Um gráfico de barras com valores positivos e negativos.
img: /images/content_images/sc_dom_img/signal_processing.svg
- -
- title: Processamento de imagens
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://pywavelets.readthedocs.io/
+ label: PyWavelets
+ - url: https://python-control.org/
+ label: python-control
+ - url: https://hyperspy.org/
+ label: HiperSpy
+ - title: Processamento de imagens
alttext: Uma fotografia das montanhas.
+ links:
+ - url: https://scikit-image.org/
+ label: Scikit-image
+ - url: https://opencv.org/
+ label: OpenCV
+ - url: https://mahotas.rtfd.io/
+ label: Mahotas
img: /images/content_images/sc_dom_img/image_processing.svg
- -
- title: Gráficos e Redes
+ - title: Gráficos e Redes
alttext: Um grafo simples.
img: /images/content_images/sc_dom_img/sd6.svg
- -
- title: Processos de Astronomia
+ links:
+ - url: https://networkx.org/
+ label: NetworkX
+ - url: https://graph-tool.skewed.de/
+ label: graph-tool
+ - url: https://igraph.org/python/
+ label: igraph
+ - url: https://pygsp.rtfd.io/
+ label: PyGSP
+ - title: Processos de Astronomia
alttext: Um telescópio.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
- -
- title: Psicologia Cognitiva
+ links:
+ - url: https://www.astropy.org/
+ label: AstroPy
+ - url: https://sunpy.org/
+ label: SunPy
+ - url: https://spacepy.github.io/
+ label: SpacePy
+ - title: Psicologia Cognitiva
alttext: Uma cabeça humana com engrenagens.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
- librariesrow2:
- -
- title: Bioinformática
+ links:
+ - url: https://www.psychopy.org/
+ label: PsychoPy
+ - title: Bioinformática
alttext: Um pedaço de DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
- -
- title: Inferência Bayesiana
+ links:
+ - url: https://biopython.org/
+ label: BioPython
+ - url: http://scikit-bio.org/
+ label: Scikit-Bio
+ - url: https://github.com/openvax/pyensembl
+ label: PyEnsembl
+ - url: http://etetoolkit.org/
+ label: ETE
+ - title: Inferência Bayesiana
alttext: Um gráfico com uma curva em forma de sino.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
- -
- title: Análise Matemática
+ links:
+ - url: https://pystan.readthedocs.io/en/latest/
+ label: PyStan
+ - url: https://docs.pymc.io/
+ label: PyMC3
+ - url: https://arviz-devs.github.io/arviz/
+ label: ArviZ
+ - url: https://emcee.readthedocs.io/
+ label: emcee
+ - title: Análise Matemática
alttext: Quatro sÃmbolos matemáticos.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
- -
- title: QuÃmica
+ links:
+ - url: https://www.scipy.org/
+ label: SciPy
+ - url: https://www.sympy.org/
+ label: SymPy
+ - url: https://www.cvxpy.org/
+ label: cvxpy
+ - url: https://fenicsproject.org/
+ label: FEniCS
+ - title: QuÃmica
alttext: Um tubo de ensaio.
img: /images/content_images/sc_dom_img/chemistry.svg
- -
- title: Geociências
+ links:
+ - url: https://cantera.org/
+ label: Cantera
+ - url: https://www.mdanalysis.org/
+ label: MDAnalysis
+ - url: https://github.com/rdkit/rdkit
+ label: RDKit
+ - url: https://www.pybamm.org/
+ label: PyBaMM
+ - title: Geociências
alttext: A Terra.
img: /images/content_images/sc_dom_img/geoscience.svg
- -
- title: Processamento Geográfico
+ links:
+ - url: https://pangeo.io/
+ label: Pangeo
+ - url: https://simpeg.xyz/
+ label: Simpeg
+ - url: https://github.com/obspy/obspy/wiki
+ label: ObsPy
+ - url: https://www.fatiando.org/
+ label: Fatiando a Terra
+ - title: Processamento Geográfico
alttext: Um mapa.
img: /images/content_images/sc_dom_img/GIS.svg
- -
- title: Arquitetura e Engenharia
+ links:
+ - url: https://shapely.readthedocs.io/
+ label: Shapely
+ - url: https://geopandas.org/
+ label: GeoPandas
+ - url: https://python-visualization.github.io/folium
+ label: Folium
+ - title: Arquitetura e Engenharia
alttext: Uma placa de desenvolvimento de microprocessador.
img: /images/content_images/sc_dom_img/robotics.svg
+ links:
+ - url: https://compas.dev/
+ label: COMPAS
+ - url: https://cityenergyanalyst.com/
+ label: City Energy Analyst - Analista de EnergÃa de Ciudad
+ - url: https://nortikin.github.io/sverchok/
+ label: Sverchok
datascience:
intro: "NumPy está no centro de um rico ecossistema de bibliotecas de ciência de dados. Um fluxo de trabalho tÃpico de ciência de dados exploratório pode parecer assim:"
image1:
- -
- img: /images/content_images/ds-landscape.png
+ - img: /images/content_images/ds-landscape.png
alttext: Diagrama de bibliotecas Python. As cinco categorias são 'Extrair, Transformar, Carregar', 'Exploração de Dados', 'Modelo de Dados', 'Avaliação de Dados' e 'Apresentação de Dados'.
image2:
- -
- img: /images/content_images/data-science.png
+ - img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circle. The circles labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- -
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org),[ Intake](https://intake.readthedocs.io),[PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
- -
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org),[Seaborn](https://seaborn.pydata.org),[ Matplotlib](https://matplotlib.org),[ Altair](https://altair-viz.github.io)"
- -
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC3](https://docs.pymc.io),[ spaCy](https://spacy.io)"
- -
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash),[ Panel](https://panel.holoviz.org),[ Voila](https://github.com/voila-dashboards/voila)"
+ - text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org),[ Intake](https://intake.readthedocs.io),[PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
+ - text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org),[Seaborn](https://seaborn.pydata.org),[ Matplotlib](https://matplotlib.org),[ Altair](https://altair-viz.github.io)"
+ - text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC3](https://docs.pymc.io),[ spaCy](https://spacy.io)"
+ - text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash),[ Panel](https://panel.holoviz.org),[ Voila](https://github.com/voila-dashboards/voila)"
content:
- -
- text: For high data volumes, [Dask](https://dask.org) and[Ray](https://ray.io/) are designed to scale. Stabledeployments rely on data versioning ([DVC](https://dvc.org)),experiment tracking ([MLFlow](https://mlflow.org)), andworkflow automation ([Airflow](https://airflow.apache.org) and[Prefect](https://www.prefect.io)).
+ - text: For high data volumes, [Dask](https://dask.org) and[Ray](https://ray.io/) are designed to scale. Stabledeployments rely on data versioning ([DVC](https://dvc.org)),experiment tracking ([MLFlow](https://mlflow.org)), andworkflow automation ([Airflow](https://airflow.apache.org) and[Prefect](https://www.prefect.io)).
visualization:
images:
- -
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
+ - url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: Um streamplot feito em matplotlib
- -
- url: https://github.com/yhat/ggpy
+ - url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: Um gráfico scatter-plot feito em ggpy
- -
- url: https://www.journaldev.com/19692/python-plotly-tutorial
+ - url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: Um box-plot feito no plotly
- -
- url: https://altair-viz.github.io/gallery/streamgraph.html
+ - url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: Um gráfico streamgraph feito em altair
- -
- url: https://seaborn.pydata.org
+ - url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A plot duplo com dois tipos de gráficos, um plot-graph e um gráfico de frequência feitos no seaborn
- -
- url: https://docs.pyvista.org/
+ - url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: Uma renderização de volume 3D feita no PyVista.
- -
- url: https://napari.org
+ - url: https://napari.org
img: /images/content_images/v_napari.png
alttext: Uma imagem multidimensional, feita em napari.
- -
- url: https://vispy.org/gallery/index.html
+ - url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: Diagrama de Voronoi feito com vispy.
content:
- -
- text: NumPy é um componente essencial no crescente [campo de visualização em Python](https://pyviz.org/overviews/index.html), que inclui [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), e [PyVista](https://github.com/pyvista/pyvista), para citar alguns.
- -
- text: O processamento de grandes arrays acelerado pela NumPy permite que os pesquisadores visualizem conjuntos de dados muito maiores do que o Python nativo poderia permitir.
+ - text: NumPy é um componente essencial no crescente [campo de visualização em Python](https://pyviz.org/overviews/index.html), que inclui [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), e [PyVista](https://github.com/pyvista/pyvista), para citar alguns.
+ - text: O processamento de grandes arrays acelerado pela NumPy permite que os pesquisadores visualizem conjuntos de dados muito maiores do que o Python nativo poderia permitir.
|
numpy/numpy.org
|
bafcf218164ac51e7b7ecf5226e811ed18ada00c
|
Fix display of ecosystem tab for Ja and Pt (#783)
|
diff --git a/content/ja/config.yaml b/content/ja/config.yaml
index bb63338..395f1ad 100644
--- a/content/ja/config.yaml
+++ b/content/ja/config.yaml
@@ -1,141 +1,112 @@
languageName: æ¥æ¬èª (Japanese)
params:
description: NumPyãåºãå©ç¨ãããçç± å¼·åãªå¤æ¬¡å
é
åãæ°å¤è¨ç®ãã¼ã«ç¾¤ãç¸äºéç¨æ§ãé«ãããã©ã¼ãã³ã¹ããªã¼ãã³ã½ã¼ã¹
navbarlogo:
image: logo.svg
text: NumPy
link: /ja/
hero:
#Main hero title
title: NumPy
#Hero subtitle (optional)
subtitle: Pythonã«ããç§å¦æè¡è¨ç®ã®åºç¤ããã±ã¼ã¸
#Button text
buttontext: "ææ°ãªãªã¼ã¹: Numpy 1.26. ãã¹ã¦ã®ãªãªã¼ã¹ã表示ãã"
#Where the main hero button links to
buttonlink: "/ja/news/#releases"
#Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
- -
- title: NumPy ã試ã
+ - title: NumPy ã試ã
text: ã¤ã³ã¿ã©ã¯ãã£ãã·ã§ã«ã使ç¨ãã¦ããã©ã¦ã¶ä¸ã§ Numpy ã試ãã¦ã¿ã¦ãã ããã
docslink: <a href="https://numpy.org/doc/stable" target="_blank">ããã¥ã¡ã³ã</a> ã確èªãããã¨ãå¿ããªãã§ãã ããã
casestudies:
title: ã±ã¼ã¹ã¹ã¿ãã£
features:
- -
- title: ä¸çåã®ãã©ãã¯ãã¼ã«ç»å
+ - title: ä¸çåã®ãã©ãã¯ãã¼ã«ç»å
text: NumPyã¯ã©ã®ããã«ãSciPyãMatplotlibãªã©ã®NumPyã«ä¾åããã©ã¤ãã©ãªã¨ã¨ãã«ãã¤ãã³ããã©ã¤ãºã³ãã¬ã¹ã³ã¼ãã«ããä¸çåã®ãã©ãã¯ãã¼ã«ç»åã®ä½æãå¯è½ã«ããã®ã§ããããã
img: /images/content_images/case_studies/blackhole.png
alttext: ä¸çåã®ãã©ãã¯ãã¼ã«ç»åãé»ãèæ¯ã«ãªã¬ã³ã¸è²ã®åã§æããã¦ãã¾ãã
url: /ja/case-studies/blackhole-image
- -
- title: éåæ³¢ã®æ¤ç¥
+ - title: éåæ³¢ã®æ¤ç¥
text: 1916å¹´ãã¢ã«ãã¼ãã»ã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã¯éåæ³¢ãäºè¨ãã¾ããã100å¹´å¾ãLIGOã®ç ç©¶è
ãã¡ã¯NumPyã使ã£ã¦ãã®åå¨ã確èªãã¾ããã
img: /images/content_images/case_studies/gravitional.png
alttext: 2ã¤ã®ãªã¼ãããäºãã«å¨åããå¨ãã®éåãå¤ä½ããã¦ãã¾ãã
url: /ja/case-studies/gw-discov
- -
- title: ã¹ãã¼ãåæ
+ - title: ã¹ãã¼ãåæ
text: ã¯ãªã±ããåæã¯ãçµ±è¨çã¢ããªã³ã°ã¨äºæ¸¬åæã«ãã£ã¦é¸æããã¼ã ã®ããã©ã¼ãã³ã¹ãåä¸ããããã¨ã§ãã¯ãªã±ããã®è©¦åãå¤ãããã¨ãã¦ãã¾ããå¤ãã®åæããNumPyã«ããå¯è½ã«ãªãã¾ããã
img: /images/content_images/case_studies/sports.jpg
alttext: ç·ã®ãã£ã¼ã«ãä¸ã«ããã¯ãªã±ãããã¼ã«ã
url: /ja/case-studies/cricket-analytics
- -
- title: 深層å¦ç¿ã«ããå§¿å¢æ¨å®
+ - title: 深層å¦ç¿ã«ããå§¿å¢æ¨å®
text: DeepLabCutã¯NumPyãå©ç¨ããåç©ã®ç¨®é¡ãæéã¹ã±ã¼ã«ã«ãããªãéåå¶å¾¡ã®çè§£ã¸åããåç©ã®è¡å観å¯ãå«ãç§å¦æè¡ç ç©¶ãå éããã¦ãã¾ãã
img: /images/content_images/case_studies/deeplabcut.png
alttext: ãã¼ã¿ã®å§¿å¢æ¨å®
url: /ja/case-studies/deeplabcut-dnn
tabs:
title: NumPyã®ã¨ã³ã·ã¹ãã
section5: false
navbar:
- -
- title: ã¤ã³ã¹ãã¼ã«
+ - title: ã¤ã³ã¹ãã¼ã«
url: /ja/install
- -
- title: ããã¥ã¡ã³ã
+ - title: ããã¥ã¡ã³ã
url: https://numpy.org/doc/stable
- -
- title: å¦ã³æ¹
+ - title: å¦ã³æ¹
url: /ja/learn
- -
- title: ã³ãã¥ããã£
+ - title: ã³ãã¥ããã£
url: /ja/community
- -
- title: ç§éã«ã¤ãã¦
+ - title: ç§éã«ã¤ãã¦
url: /ja/about
- -
- title: ãã¥ã¼ã¹
+ - title: ãã¥ã¼ã¹
url: /ja/news
- -
- title: NumPyã«è²¢ç®ãã
+ - title: NumPyã«è²¢ç®ãã
url: /ja/contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- -
- link: https://github.com/numpy/numpy
+ - link: https://github.com/numpy/numpy
icon: github
- -
- link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
+ - link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
icon: youtube
- -
- link: https://twitter.com/numpy_team
+ - link: https://twitter.com/numpy_team
icon: twitter
quicklinks:
column1:
title: ""
links:
- -
- text: ã¤ã³ã¹ãã¼ã«
+ - text: ã¤ã³ã¹ãã¼ã«
link: /ja/install
- -
- text: ããã¥ã¡ã³ã
+ - text: ããã¥ã¡ã³ã
link: https://numpy.org/doc/stable
- -
- text: å¦ã³æ¹
+ - text: å¦ã³æ¹
link: /ja/learn
- -
- text: å¼ç¨ãã
+ - text: å¼ç¨ãã
link: /ja/citing-numpy
- -
- text: ãã¼ãããã
+ - text: ãã¼ãããã
link: https://numpy.org/neps/roadmap.html
column2:
links:
- -
- text: ç§éã«ã¤ãã¦
+ - text: ç§éã«ã¤ãã¦
link: /ja/about
- -
- text: ã³ãã¥ããã£
+ - text: ã³ãã¥ããã£
link: /ja/community
- -
- text: ã¦ã¼ã¶ã¼ã®èª¿æ»
+ - text: ã¦ã¼ã¶ã¼ã®èª¿æ»
link: /ja/user-surveys
- -
- text: NumPyã«è²¢ç®ãã
+ - text: NumPyã«è²¢ç®ãã
link: /ja/contribute
- -
- text: è¡åè¦ç¯
+ - text: è¡åè¦ç¯
link: /ja/code-of-conduct
column3:
links:
- -
- text: ãµãã¼ããå¾ãæ¹æ³
+ - text: ãµãã¼ããå¾ãæ¹æ³
link: /ja/gethelp
- -
- text: å©ç¨è¦ç´
+ - text: å©ç¨è¦ç´
link: /ja/terms
- -
- text: ãã©ã¤ãã·ã¼ããªã·ã¼
+ - text: ãã©ã¤ãã·ã¼ããªã·ã¼
link: /ja/privacy
- -
- text: ãã¬ã¹ç¨è³æ
+ - text: ãã¬ã¹ç¨è³æ
link: /ja/press-kit
diff --git a/content/pt/config.yaml b/content/pt/config.yaml
index fadb422..14ab9ee 100644
--- a/content/pt/config.yaml
+++ b/content/pt/config.yaml
@@ -1,140 +1,111 @@
languageName: Português
params:
description: Por que NumPy? Arrays n-dimensionais poderosas. Ferramentas para computação numérica. Interoperabilidade. Alto desempenho. Código aberto.
navbarlogo:
image: logo.svg
text: NumPy
link: /pt/
hero:
#Main hero title
title: NumPy
#Hero subtitle (optional)
subtitle: A biblioteca fundamental para computação cientÃfica com Python
#Button text
buttontext: "Ãltima versão: NumPy 1.26. Veja todas as versões"
#Where the main hero button links to
buttonlink: "/pt/news/#releases"
#Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
- -
- title: Experimentar o NumPy
+ - title: Experimentar o NumPy
text: Use o shell interativo para testar o NumPy no navegador
docslink: Não se esqueça de conferir a <a href="https://numpy.org/doc/stable" target="_blank">documentação</a>.
casestudies:
title: ESTUDOS DE CASO
features:
- -
- title: A Primeira Imagem de um Buraco Negro
+ - title: A Primeira Imagem de um Buraco Negro
text: Como o NumPy, junto com outras bibliotecas como SciPy e Matplotlib que dependem do NumPy, permitiram ao Event Horizon Telescope gerar a primeira imagem de um buraco negro da história.
img: /images/content_images/case_studies/blackhole.png
alttext: Primeira imagem de um buraco negro. Ã um cÃrculo laranja em um fundo preto.
url: /pt/case-studies/blackhole-image
- -
- title: Descoberta de Ondas Gravitacionais
+ - title: Descoberta de Ondas Gravitacionais
text: Em 1916, Albert Einstein previu ondas gravitacionais; 100 anos depois, sua existência foi confirmada pelos cientistas do LIGO usando NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Duas esferas orbitando a si mesmas. Elas deslocam a gravidade em seu entorno.
url: /pt/case-studies/gw-discov
- -
- title: Análise Esportiva
+ - title: Análise Esportiva
text: A análise de crÃquete está mudando o jogo ao melhorar o desempenho de jogadores e times através de modelagem estatÃstica e análise preditiva. O NumPy possibilita muitas dessas análises.
img: /images/content_images/case_studies/sports.jpg
alttext: Bola de crÃquete em um campo verde
url: /pt/case-studies/cricket-analytics
- -
- title: Estimação de poses usando deep learning
+ - title: Estimação de poses usando deep learning
text: DeepLabCut usa o NumPy para acelerar estudos cientÃficos que envolvem comportamento animal para entender melhor o controle motor em várias espécies e escalas de tempo.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Análise de pose de um guepardo
url: /pt/case-studies/deeplabcut-dnn
tabs:
title: ECOSSISTEMA
section5: false
navbar:
- -
- title: Instalação
+ - title: Instalação
url: /pt/install
- -
- title: Documentação
+ - title: Documentação
url: https://numpy.org/doc/stable
- -
- title: Aprenda
+ - title: Aprenda
url: /pt/learn
- -
- title: Comunidade
+ - title: Comunidade
url: /pt/community
- -
- title: Sobre
+ - title: Sobre
url: /pt/about
- -
- title: NotÃcias
+ - title: NotÃcias
url: /pt/news
- -
- title: Contribuir
+ - title: Contribuir
url: /pt/contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- -
- link: https://github.com/numpy/numpy
+ - link: https://github.com/numpy/numpy
icon: github
- -
- link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
+ - link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
icon: youtube
- -
- link: https://twitter.com/numpy_team
+ - link: https://twitter.com/numpy_team
icon: twitter
quicklinks:
column1:
title: ""
links:
- -
- text: Instalação
+ - text: Instalação
link: /pt/install
- -
- text: Documentação
+ - text: Documentação
link: https://numpy.org/doc/stable
- -
- text: Aprenda
+ - text: Aprenda
link: /pt/learn
- -
- text: Citando o Numpy
+ - text: Citando o Numpy
link: /pt/citing-numpy
- -
- text: Roadmap
+ - text: Roadmap
link: https://numpy.org/neps/roadmap.html
column2:
links:
- -
- text: Sobre
+ - text: Sobre
link: /pt/about
- -
- text: Comunidade
+ - text: Comunidade
link: /pt/community
- -
- text: Pesquisas de usuário
+ - text: Pesquisas de usuário
link: /pt/user-surveys
- -
- text: Contribuir
+ - text: Contribuir
link: /pt/contribute
- -
- text: Código de Conduta
+ - text: Código de Conduta
link: /pt/code-of-conduct
column3:
links:
- -
- text: Ajuda
+ - text: Ajuda
link: /pt/gethelp
- -
- text: Termos de uso (EN)
+ - text: Termos de uso (EN)
link: /pt/terms
- -
- text: Privacidade
+ - text: Privacidade
link: /pt/privacy
- -
- text: Kit de imprensa
+ - text: Kit de imprensa
link: /pt/press-kit
|
numpy/numpy.org
|
8160743313fdbbab0ab84671aebd2ce936411942
|
Redirect to spanish home page (#780)
|
diff --git a/content/es/config.yaml b/content/es/config.yaml
index 2f35773..0357ec7 100644
--- a/content/es/config.yaml
+++ b/content/es/config.yaml
@@ -1,109 +1,109 @@
languageName: Español
params:
description: '¿Por qué NumPy? Potentes arreglos n-dimensionales. Herramientas de cálculo numérico. Interoperabilidad. Rendimiento. Código abierto.'
navbarlogo:
image: logo.svg
text: NumPy
- link: /
+ link: /es/
hero:
#Main hero title
title: NumPy
#Hero subtitle (optional)
subtitle: El paquete fundamental para la computación cientÃfica con Python
#Button text
buttontext: "Ãltima versión: NumPy 2.0. Ver todas las versiones"
#Where the main hero button links to
buttonlink: "/news/#releases"
#Hero image (from static/images/___)
image: logo.svg
shell:
title: marcador
intro:
- title: Prueba NumPy
text: Utilice el terminal interactivo para probar NumPy en el navegador
docslink: No olvides echarle un ojo a la <a href="https://numpy.org/doc/stable" target="_blank">documentación</a>.
casestudies:
title: CASOS DE ESTUDIO
features:
- title: Primera imagen de un Agujero Negro
text: Cómo NumPy, junto con bibliotecas como SciPy y Matplotlib que dependen de NumPy, permitió al Telescopio del Horizonte de Sucesos producir la primera imagen de un agujero negro
img: /images/content_images/case_studies/blackhole.png
alttext: Primera imagen de un agujero negro. Es un cÃrculo anaranjado con fondo negro.
url: /es/case-studies/blackhole-image
- title: Detección de Ondas Gravitacionales
text: En 1916 Albert Einstein predijo las ondas gravitacionales; 100 años después se confirmó su existencia por cientÃficos del LIGO, utilizando NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Dos cuerpos orbitándose mutuamente. Estos desplazan la gravedad a su alrededor.
url: /es/case-studies/gw-discov
- title: AnalÃticas Deportivas
text: El Análisis de CrÃquet está cambiando el juego, mejorando el rendimiento de los jugadores y equipos mediante modelos estadÃsticos y análisis predictivos. NumPy permite realizar muchos de estos análisis.
img: /images/content_images/case_studies/sports.jpg
alttext: Bola de Cricket sobre un campo verde.
url: /es/case-studies/cricket-analytics
- title: Estimación de la pose mediante aprendizaje profundo
text: DeepLabCut utiliza NumPy para acelerar estudios cientÃficos que implican la observación del comportamiento animal para una mejor comprensión del control motriz, a través de especies y escalas de tiempo.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Análisis de la pose de un Guepardo
url: /es/case-studies/deeplabcut-dnn
tabs:
title: ECOSISTEMA
section5: false
navbar:
- title: Instalar
url: /es/install
- title: Documentación
url: https://numpy.org/doc/stable
- title: Aprende
url: /es/learn
- title: Comunidad
url: /es/community
- title: Quiénes somos
url: /es/about
- title: Noticias
url: /es/news
- title: Contribuye
url: /es/contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- link: https://github.com/numpy/numpy
icon: github
- link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
icon: youtube
quicklinks:
column1:
title: ""
links:
- text: Instalar
link: /es/install
- text: Documentación
link: https://numpy.org/doc/stable
- text: Aprende
link: /es/learn
- text: Citando a NumPy
link: /es/citing-numpy
- text: Mapa de ruta
link: https://numpy.org/neps/roadmap.html
column2:
links:
- text: Acerca de nosotros
link: /es/about
- text: Comunidad
link: /es/community
- text: Encuestas a usuarios
link: /es/user-surveys
- text: Contribuye
link: /es/contribute
- text: Código de Conducta
link: /es/code-of-conduct
column3:
links:
- text: Buscar ayuda
link: /es/gethelp
- text: Términos de uso
link: /es/terms
- text: Confidencialidad
link: /es/privacy
- text: Kit de prensa
link: /es/press-kit
|
numpy/numpy.org
|
7f4fb6eb7878d782e34bb07aac8d72084d1ebd72
|
Add teams subfolder to crowdin.yml (#777)
|
diff --git a/crowdin.yml b/crowdin.yml
index d307b43..e81f80a 100644
--- a/crowdin.yml
+++ b/crowdin.yml
@@ -1,17 +1,20 @@
project_identifier: PROJECT_IDENTIFIER_CROWDIN
api_key: API_KEY_CROWDIN
base_path: ./
preserve_hierarchy: true
files:
- source: /content/en/*.yaml
translation: /content/%two_letters_code%/%original_file_name%
update_option: "update_as_unapproved"
- source: /content/en/*.md
translation: /content/%two_letters_code%/%original_file_name%
update_option: "update_as_unapproved"
ignore:
- /content/en/terms.md
- /content/en/diversity_sep2020.md
- source: /content/en/case-studies/*.md
translation: /content/%two_letters_code%/case-studies/%original_file_name%
update_option: "update_as_unapproved"
+ - source: /content/en/teams/index.md
+ translation: /content/%two_letters_code%/teams/%original_file_name%
+ update_option: "update_as_unapproved"
|
numpy/numpy.org
|
b210a3f4afdeb9415bf74c0dc5e5c4af867a85e0
|
Add gh workflow for creating translations PR (#772)
|
diff --git a/.github/workflows/create-translations-pr.yml b/.github/workflows/create-translations-pr.yml
new file mode 100644
index 0000000..3804511
--- /dev/null
+++ b/.github/workflows/create-translations-pr.yml
@@ -0,0 +1,56 @@
+name: Create Translations PR
+
+on:
+ workflow_dispatch:
+ inputs:
+ language_code:
+ description: 'Crowdin language code for the language of interest'
+ required: true
+
+jobs:
+ create-translations-pr:
+ runs-on: ubuntu-latest
+ # Run only on main branch in upstream repo.
+ if: ${{ github.repository == 'numpy/numpy.org' && github.ref == 'refs/heads/main' }}
+ steps:
+ - name: Checkout numpy.org
+ uses: actions/checkout@v4
+ with:
+ repository: 'numpy/numpy.org'
+ path: 'numpy.org'
+ ref: 'main'
+ fetch-depth: 0 # Gets full github history.
+ # Full history is needed for the scripted interactive rebase
+ # which takes place in create_branch_for_language.sh below.
+
+ - name: Checkout scientific-python-translations automations
+ uses: actions/checkout@v4
+ with:
+ repository: 'scientific-python-translations/automations'
+ path: 'automations'
+ ref: 'main'
+
+ - name: Create translations branch for language of interest
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ run: |
+ git config --global user.email "[email protected]"
+ git config --global user.name "GitHub Actions"
+ ../automations/scripts/create_branch_for_language.sh origin main l10n_main ${{ github.event.inputs.language_code }}
+ branch_name=$(git rev-parse --abbrev-ref HEAD)
+ git push -u origin $branch_name
+ echo "BRANCH_NAME=$branch_name" >> $GITHUB_ENV
+ working-directory: ./numpy.org
+
+ - name: Create Pull Request
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ run: |
+ language_name=$(../automations/scripts/get_language_name.sh ${{ github.event.inputs.language_code }})
+ gh pr create --base main --head ${{ env.BRANCH_NAME }} --title "Update translations for $language_name" \
+ --body "This PR to update translations for $language_name was generated by the GitHub workflow, \
+ auto-translations-pr.yml and includes all commits from this repo's Crowdin branch for the language \
+ of interest. A final check of the rendered docs is needed to identify if there are any formatting \
+ errors due to incorrect string segmentation by Crowdin. If there are such formatting errors, they \
+ should be fixed directly on this branch, not through Crowdin."
+ working-directory: ./numpy.org
|
numpy/numpy.org
|
3544e872ff4703f998cb478dfe6a6ced392d8c06
|
announce the NumPy 2.1.1 release (#773)
|
diff --git a/content/en/news.md b/content/en/news.md
index a73ebc4..78dd3fa 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,470 +1,471 @@
---
title: News
sidebar: false
newsHeader: "NumPy 2.1 released!"
date: 2024-08-18
---
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.1.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.1)) -- _3 Sep 2024_.
- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
f3d23b1895eca38a95797ead35c788647edc9b28
|
announce the NumPy 2.0.2 release
|
diff --git a/content/en/news.md b/content/en/news.md
index 174a52b..a73ebc4 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,469 +1,470 @@
---
title: News
sidebar: false
newsHeader: "NumPy 2.1 released!"
date: 2024-08-18
---
### NumPy 2.1.0 released
_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
drops support for Python 3.9. In addition to the usual bug fixes and
updated Python support, it helps get NumPy back to its usual release
cycle after the extended development of 2.0. The highlights for this
release are:
- Support for Python 3.13.
- Preliminary support for free threaded Python 3.13.
- Support for the array-api 2023.12 standard.
Python versions 3.10-3.13 are supported by this release.
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.0.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.2)) -- _26 Aug 2024_.
- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
c24cf8bc8fe2c87f246eccca2d8354d65fbc513b
|
announce the NumPy 2.1.0 release
|
diff --git a/content/en/news.md b/content/en/news.md
index 22901b0..174a52b 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,453 +1,469 @@
---
title: News
sidebar: false
-newsHeader: "NumPy 2.0 released!"
-date: 2024-06-17
+newsHeader: "NumPy 2.1 released!"
+date: 2024-08-18
---
+### NumPy 2.1.0 released
+
+_18 Aug, 2024_ -- NumPy 2.1.0 provides support for Python 3.13 and
+drops support for Python 3.9. In addition to the usual bug fixes and
+updated Python support, it helps get NumPy back to its usual release
+cycle after the extended development of 2.0. The highlights for this
+release are:
+
+- Support for Python 3.13.
+- Preliminary support for free threaded Python 3.13.
+- Support for the array-api 2023.12 standard.
+
+Python versions 3.10-3.13 are supported by this release.
+
+
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.1.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.1.0)) -- _18 Aug 2024_.
- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
d590e012ffad6318f8fd61c2e4661f92bdf75335
|
Add info about donating to NumPy to contribute.md (#768)
|
diff --git a/content/en/contribute.md b/content/en/contribute.md
index 77c77cb..a0968d2 100644
--- a/content/en/contribute.md
+++ b/content/en/contribute.md
@@ -1,114 +1,112 @@
---
title: Contribute to NumPy
sidebar: false
---
The NumPy project welcomes your expertise and enthusiasm!
Your choices aren't limited to programming, as you can
see below there are many areas where we need **your** help.
If you're unsure where to start or how your skills fit in, _reach out!_ You
can ask on the [mailing
list](https://mail.python.org/mailman/listinfo/numpy-discussion) or
[GitHub](http://github.com/numpy/numpy) (open an
[issue](https://github.com/numpy/numpy/issues) or comment on a relevant
issue).
Those are our preferred channels (open source is open by nature), but
if you prefer to talk privately, contact our community coordinators at
<[email protected]> or on [Slack](https://numpy-team.slack.com)
(write <[email protected]> for an invite).
We also have a biweekly _community call_, details of which are announced on
the [mailing list](https://mail.python.org/mailman/listinfo/numpy-discussion).
You are very welcome to join.
If you are new to contributing to open source, we also highly recommend reading
[this guide](https://opensource.guide/how-to-contribute/).
Our community aspires to treat everyone equally and to value all
contributions. We have a [Code of Conduct](/code-of-conduct) to foster an open
and welcoming environment.
### Writing code
Programmers, this
[guide](https://numpy.org/devdocs/dev/index.html#development-process-summary)
explains how to contribute to the NumPy codebase.
<br>Check out also our [YouTube channel](https://www.youtube.com/playlist?list=PLCK6zCrcN3GXBUUzDr9L4__LnXZVtaIzS) for additional advice.
-
### Reviewing pull requests
The project has more than 250 open pull requests -- meaning many potential
improvements and many open-source contributors waiting for feedback. If you're
a developer who knows NumPy, you can help even if you're not familiar with the
codebase. You can:
* summarize a long-running discussion
* triage documentation PRs
* test proposed changes
-
### Developing educational materials
NumPy's [User Guide](https://numpy.org/devdocs) is undergoing rehabilitation.
We're in need of new tutorials, how-to's, and deep-dive explanations, and the
site needs restructuring. Opportunities aren't limited to writers. We'd also
welcome worked examples, notebooks, and videos. [NEP 44 â Restructuring the
NumPyDocumentation](https://numpy.org/neps/nep-0044-restructuring-numpy-docs.html)
lays out our ideas -- and you may have others.
-
### Issue triaging
The [NumPy issue tracker](https://github.com/numpy/numpy/issues) has a _lot_
of open issues. Some are no longer valid, some should be prioritized, and some
would make good issues for new contributors. You can:
* check if older bugs are still present
* find duplicate issues and link related ones
* add good self-contained reproducers to issues
* label issues correctly (this requires triage rights -- just ask)
Please just dive in.
-
### Website development
We've just revamped our website, but we're far from done. If you love web
development, these
[issues](https://github.com/numpy/numpy.org/issues?q=is%3Aissue+is%3Aopen+label%3Adesign)
list some of our unmet needs -- and feel free to share your own ideas.
-
### Graphic design
We can barely begin to list the contributions a graphic designer can make here.
Our docs are parched for illustration; our growing website craves images --
opportunities abound.
-
### Translating website content
We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
accessible to users in their native language. Volunteer translators are at the heart
of this effort. See
[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
for background; comment on [this GitHub
issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
-
### Community coordination and outreach
Through community contact we share our work more widely and learn where we're
falling short. We're eager to get more people involved in efforts like our
[Twitter](https://twitter.com/numpy_team) account, organizing NumPy [code
sprints](https://scisprints.github.io/), a newsletter, and perhaps a blog.
### Fundraising
-NumPy was all-volunteer for many years, but as its importance grew it became
-clear that to ensure stability and growth we'd need financial support. [This
-SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much
-difference that support has made. Like all the nonprofit world, we're
-constantly searching for grants, sponsorships, and other kinds of support. We
-have a number of ideas and of course we welcome more. Fundraising is a scarce
-skill here -- we'd appreciate your help.
+For many years, NumPy was maintained by dedicated volunteers, but as its importance grew it
+became clear that to ensure stability and growth we would need financial support.
+[This SciPy'19 talk](https://www.youtube.com/watch?v=dBTJD_FDVjU) explains how much difference
+that support has made. Like most nonprofits, we are constantly seeking grants, sponsorships,
+and other kinds of funding. We have a number of ideas and of course we welcome more.
+Fundraising is a scarce skill here -- we'd appreciate your help.
+
+### Donate
+
+If you'd like to contribute to NumPy by making a donation, visit [https://numpy.org/about/#donate](https://numpy.org/about/#donate).
+
+
|
numpy/numpy.org
|
772dec2080e5d5774c513472a594eb178387a106
|
Remove the link to the NumPy Twitter/X account (#767)
|
diff --git a/content/en/config.yaml b/content/en/config.yaml
index be76851..5546551 100644
--- a/content/en/config.yaml
+++ b/content/en/config.yaml
@@ -1,119 +1,117 @@
languageName: English
params:
description: Why NumPy? Powerful n-dimensional arrays. Numerical computing tools. Interoperable. Performant. Open source.
navbarlogo:
image: logo.svg
text: NumPy
link: /
hero:
# Main hero title
title: NumPy
# Hero subtitle (optional)
subtitle: The fundamental package for scientific computing with Python
# Button text
buttontext: "Latest release: NumPy 2.0. View all releases"
# Where the main hero button links to
buttonlink: "/news/#releases"
# Hero image (from static/images/___)
image: logo.svg
shell:
title: placeholder
intro:
- title: Try NumPy
text: Use the interactive shell to try NumPy in the browser
docslink: Don't forget to check out the <a href="https://numpy.org/doc/stable" target="_blank">docs</a>.
casestudies:
title: CASE STUDIES
features:
- title: First Image of a Black Hole
text: How NumPy, together with libraries like SciPy and Matplotlib that depend on NumPy, enabled the Event Horizon Telescope to produce the first ever image of a black hole
img: /images/content_images/case_studies/blackhole.png
alttext: First image of a black hole. It is an orange circle in a black background.
url: /case-studies/blackhole-image
- title: Detection of Gravitational Waves
text: In 1916, Albert Einstein predicted gravitational waves; 100 years later their existence was confirmed by LIGO scientists using NumPy.
img: /images/content_images/case_studies/gravitional.png
alttext: Two orbs orbiting each other. They are displacing gravity around them.
url: /case-studies/gw-discov
- title: Sports Analytics
text: Cricket Analytics is changing the game by improving player and team performance through statistical modelling and predictive analytics. NumPy enables many of these analyses.
img: /images/content_images/case_studies/sports.jpg
alttext: Cricket ball on green field.
url: /case-studies/cricket-analytics
- title: Pose Estimation using deep learning
text: DeepLabCut uses NumPy for accelerating scientific studies that involve observing animal behavior for better understanding of motor control, across species and timescales.
img: /images/content_images/case_studies/deeplabcut.png
alttext: Cheetah pose analysis
url: /case-studies/deeplabcut-dnn
tabs:
title: ECOSYSTEM
section5: false
navbar:
- title: Install
url: /install
- title: Documentation
url: https://numpy.org/doc/stable
- title: Learn
url: /learn
- title: Community
url: /community
- title: About Us
url: /about
- title: News
url: /news
- title: Contribute
url: /contribute
footer:
logo: logo.svg
socialmediatitle: ""
socialmedia:
- link: https://github.com/numpy/numpy
icon: github
- link: https://www.youtube.com/channel/UCguIL9NZ7ybWK5WQ53qbHng
icon: youtube
- - link: https://twitter.com/numpy_team
- icon: twitter
quicklinks:
column1:
title: ""
links:
- text: Install
link: /install
- text: Documentation
link: https://numpy.org/doc/stable
- text: Learn
link: /learn
- text: Citing Numpy
link: /citing-numpy
- text: Roadmap
link: https://numpy.org/neps/roadmap.html
column2:
links:
- text: About us
link: /about
- text: Community
link: /community
- text: User surveys
link: /user-surveys
- text: Contribute
link: /contribute
- text: Code of conduct
link: /code-of-conduct
column3:
links:
- text: Get help
link: /gethelp
- text: Terms of use
link: /terms
- text: Privacy
link: /privacy
- text: Press kit
link: /press-kit
|
numpy/numpy.org
|
8d8a14f7bd5fcb42b77a47c0204b6256c14be9c4
|
announce the NumPy 2.0.1 release
|
diff --git a/content/en/news.md b/content/en/news.md
index 50a0872..22901b0 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,452 +1,453 @@
---
title: News
sidebar: false
newsHeader: "NumPy 2.0 released!"
date: 2024-06-17
---
### NumPy 2.0.0 released
_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
result of 11 months of development since the last feature release and is the
work of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python and C
APIs. It includes breaking changes that could not happen in a regular minor
release - including an ABI break, changes to type promotion rules, and API
changes which may not have been emitting deprecation warnings in 1.26.x. Key
documents related to how to adapt to changes in NumPy 2.0 include:
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
tells a bit of the story about how this release came together.
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.0.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.1)) -- _21 Jul 2024_.
- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
2552f07232af56426dc507d23d601cb5cf7f330a
|
Specify hero/navbar font
|
diff --git a/assets/css/custom.css b/assets/css/custom.css
new file mode 100644
index 0000000..1b54986
--- /dev/null
+++ b/assets/css/custom.css
@@ -0,0 +1,4 @@
+.hero-title,
+.navbar-logo-text {
+ font-family: "Lato";
+}
|
numpy/numpy.org
|
3d57ba4cb2f4033e0f6a1999f27df04eb9505a58
|
Fix mailchimp footer
|
diff --git a/layouts/partials/footer_actions.html b/layouts/partials/footer_actions.html
index 4c583f8..2b823f2 100644
--- a/layouts/partials/footer_actions.html
+++ b/layouts/partials/footer_actions.html
@@ -1,21 +1,21 @@
-<p>Sign up for the latest NumPy news, resources, <br> and more</p>
+Sign up for the latest NumPy news, resources, and more
<!-- Begin Mailchimp -->
<form action="https://numpy.us4.list-manage.com/subscribe/post?u=5ddd0d1d6e807900a8212481a&id=287fa4253c" method="post" id="mc-embedded-subscribe-form" name="mc-embedded-subscribe-form" class="validate sign-up-container" target="_blank" novalidate>
<div class="sign-up-image">
{{ partial "svg-icon" "mail" }}
</div>
<input type="email" value="" name="EMAIL" class="required email sign-up-input" id="mce-EMAIL" aria-label="Input for email, press enter to submit" onkeypress="if (event.which === 13 || event.keyCode === 13 || event.key === 'Enter') sendThankYou()" />
<div class="submission-instructions">Press Enter</div>
<button class="signup-button" onclick="sendThankYou()" aria-label="Submit">
{{ partial "svg-icon" "sent" }}
</button>
<div id="mce-responses" class="clear">
<div class="response" id="mce-error-response" style="display:none"></div>
<div class="response" id="mce-success-response" style="display:none"></div>
</div>
<!-- real people should not fill this in and expect good things - do not remove this or risk form bot signups-->
<div style="position: absolute; left: -5000px;" aria-hidden="true"><input type="text" name="b_5ddd0d1d6e807900a8212481a_287fa4253c" tabindex="-1" value=""></div>
<div class="clear"><input type="submit" value="Subscribe" name="subscribe" id="mc-embedded-subscribe" class="button" style="display: none;"></div>
</form>
<div class="thank-you">Thank you! 🎉</div>
<!--End MailChimp -->
|
numpy/numpy.org
|
a0450edc33d61a77f24888a72622caa32755f4e2
|
Use new color names
|
diff --git a/assets/css/mailchimp.css b/assets/css/mailchimp.css
index 7441684..d9fa5e0 100644
--- a/assets/css/mailchimp.css
+++ b/assets/css/mailchimp.css
@@ -1,95 +1,95 @@
:root {
--numpySlateGray: rgb(108, 122, 137);
}
.sign-up-container {
display: flex;
flex-direction: row;
align-items: center;
position: relative;
height: 75px;
}
.sign-up-image {
height: 35px;
padding: 5px 10px 6px 10px;
- border-right: 1px solid var(--colorPrimaryDark);
- background-color: var(--colorSecondary);
+ border-right: 1px solid var(--spht-color-dark);
+ background-color: var(--spht-color-light);
border-radius: 5px 0 0 5px;
}
#footer .sign-up-image svg.icon {
- fill: var(--colorPrimaryDark);
+ fill: var(--spht-color-dark);
width: 1.25rem;
height: 1.25rem;
padding-bottom: 2px;
}
.sign-up-input {
- background-color: var(--colorSecondary);
+ background-color: var(--spht-color-light);
border-radius: 0 5px 5px 0;
border: none;
width: 75%;
height: 35px;
padding-left: 5px;
font-size: 14px;
- color: var(--colorPrimaryDark);
+ color: var(--spht-color-dark);
}
.submission-instructions {
position: absolute;
right: 18%;
font-size: 10px;
color: var(--numpySlateGray);
}
.signup-button {
display: none;
}
#footer .signup-button svg.icon {
- fill: var(--colorPrimaryDark);
+ fill: var(--spht-color-dark);
width: 1.6rem;
height: 1.6rem;
padding-bottom: 2px;
padding-left: 8px;
}
.thank-you {
display: none;
height: 75px;
- color: var(--colorSecondary);
+ color: var(--spht-color-light);
align-items: center;
- color: var(--colorSecondary);
+ color: var(--spht-color-light);
}
@media only screen and (max-width: 1150px) {
.sign-up-input {
font-size: 12px;
}
}
@media only screen and (max-width: 850px) {
.sign-up-input {
width: 100%;
}
.thank-you {
justify-content: center;
}
.submission-instructions {
display: none;
}
.signup-button {
display: block;
height: 35px;
border-radius: 5px;
margin-left: 5px;
width: 60px;
color: black;
border:none;
outline:none;
}
}
|
numpy/numpy.org
|
252c35ab032b920f00fc76749afa4f73ceed2c80
|
Announce NumPy 2.0.0 (#760)
|
diff --git a/content/en/news.md b/content/en/news.md
index 7412b03..50a0872 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,432 +1,452 @@
---
title: News
sidebar: false
-newsHeader: "NumPy 2.0 release date: June 16"
-date: 2024-05-23
+newsHeader: "NumPy 2.0 released!"
+date: 2024-06-17
---
+### NumPy 2.0.0 released
+
+_16 Jun, 2024_ -- NumPy 2.0.0 is the first major release since 2006. It is the
+result of 11 months of development since the last feature release and is the
+work of 212 contributors spread over 1078 pull requests. It contains a large
+number of exciting new features as well as changes to both the Python and C
+APIs. It includes breaking changes that could not happen in a regular minor
+release - including an ABI break, changes to type promotion rules, and API
+changes which may not have been emitting deprecation warnings in 1.26.x. Key
+documents related to how to adapt to changes in NumPy 2.0 include:
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+The blog post ["NumPy 2.0: an evolutionary milestone"](https://blog.scientific-python.org/numpy/numpy2/)
+tells a bit of the story about how this release came together.
+
+
### NumPy 2.0 release date: June 16
_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
released on June 16, 2024. This release has been over a year in the making, and
is the first major release since 2006. Importantly, in addition to many new
features and performance improvement, it contains **breaking changes** to the
ABI as well as the Python and C APIs. It is likely that downstream packages and
end user code needs to be adapted - if you can, please verify whether your code
works with NumPy `2.0.0rc2`. **Please see the following for more details:**
- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
+- NumPy 2.0.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.0.0)) -- _16 Jun 2024_.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
6611459759ae20e0ae952efc41ec87cb240f91b5
|
remove unnecesarry single bullet point (#752)
|
diff --git a/layouts/partials/array-libraries.html b/layouts/partials/array-libraries.html
index 2ea7960..46601c2 100644
--- a/layouts/partials/array-libraries.html
+++ b/layouts/partials/array-libraries.html
@@ -1,28 +1,28 @@
<!-- Array libraries Tab Content -->
{{- $arraylibraries := .Site.Params.arraylibraries }}
{{- $intro := index $arraylibraries "intro" }}
{{- $headers := index $arraylibraries "headers" }}
{{- $libraries := index $arraylibraries "libraries" }}
-<li class="array-libraries">
+<section class="array-libraries">
{{- range $intro }}
<p>
{{ .text }}
</p>
{{- end }}
<table>
<tr class="highlight-th">
<td class="bold-text"></td>
{{- range $headers }}
<td class="bold-text">{{ .text }}</td>
{{- end }}
</td>
</tr>
{{- range $libraries }}
<tr>
<td style="text-align: center"><img class="first-column-layout" src="{{ .img }}" alt="{{ .alttext }}"></td>
<td class="full-center-text"><a href="{{ .url }}">{{ .title }}</a></td>
<td class="left-text">{{ .text }}</td>
</tr>
{{- end }}
</table>
-</li>
+</section>
diff --git a/layouts/partials/data-science.html b/layouts/partials/data-science.html
index 2825218..87c89d1 100644
--- a/layouts/partials/data-science.html
+++ b/layouts/partials/data-science.html
@@ -1,46 +1,46 @@
<!-- Data Science Tab Content -->
{{- $datascience := .Site.Params.datascience }}
{{- $intro := index $datascience "intro" }}
{{- $content := index $datascience "content" }}
{{- $examples := index $datascience "examples" }}
{{- $image1 := index $datascience "image1" }}
{{- $image2 := index $datascience "image2" }}
-<li class="data-science">
+<section class="data-science">
<div class="grid-container">
<div>
{{- range $image1 }}
<a href="{{ .img }}" target="_blank">
<img src="{{ .img }}" alt="{{ .alttext }}" align="left">
</a>
{{- end }}
</div>
<div>
<p>
{{ $intro }}
<ul class="content-tab">
{{- range $examples }}
<li>{{ .text | markdownify }}</li>
{{- end }}
</ul>
</p>
</div>
</div>
<div class="grid-container">
<div>
<p></p>
{{- range $content }}
<p>
{{ .text | markdownify }}
</p>
{{- end }}
</p>
</div>
<div>
{{- range $image2 }}
<img src="{{ .img }}" alt="{{ .alttext }}" align="centre" width="75%">
</a>
{{- end }}
</div>
</div>
-</li>
+</section>
diff --git a/layouts/partials/machine-learning.html b/layouts/partials/machine-learning.html
index e7d9e45..ccfdf30 100644
--- a/layouts/partials/machine-learning.html
+++ b/layouts/partials/machine-learning.html
@@ -1,31 +1,31 @@
<!-- Machine Learning Tab Content -->
{{- $machinelearning := .Site.Params.machinelearning }}
{{- $paras := index $machinelearning "paras" }}
{{- range $paras }}
-<li class="machine-learning">
+<section class="machine-learning">
<div class="grid-container">
<div class="animation-holder">
<a href="https://ai.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html">
<img src="/images/content_images/ml_img/tensorflow-ml-anim.gif" alt="An animated gif showing a three-dimensional graph of embeddings made in Tensorflow." align="middle" class="animation-img">
</a>
<p>
<i style="font-size:80%;">
<a href="https://ai.googleblog.com/2016/12/open-sourcing-embedding-projector-tool.html">Source: Google AI Blog</a>
</i>
</p>
</div>
<div>
<p>
{{ .para1 | markdownify }}
</p>
</div>
</div>
<div>
<div>
<p>
{{ .para2 | markdownify }}
</p>
</div>
</div>
-</li>
+</section>
{{- end }}
diff --git a/layouts/partials/visualization.html b/layouts/partials/visualization.html
index e3aff21..5cd2350 100644
--- a/layouts/partials/visualization.html
+++ b/layouts/partials/visualization.html
@@ -1,28 +1,28 @@
<!-- Visualization Tab Content -->
{{- $visualization := .Site.Params.visualization }}
{{- $content := index $visualization "content" }}
{{- $images := index $visualization "images" }}
-<li class="visualization">
+<section class="visualization">
<div class="grid-container">
<div class="visualization-images">
<div class="image-grid">
{{- range $images }}
<div>
<a href="{{ .url }}">
<img src="{{ .img }}" alt="{{ .alttext }}" align="middle"/>
</a>
</div>
{{- end }}
</div>
</div>
<div>
{{- range $content }}
<p>
{{ .text | markdownify }}
</p>
{{- end }}
</div>
<div>
</div>
</div>
-</li>
+</section>
|
numpy/numpy.org
|
817f01d8fb2372eb5c7d8bff79c870f71585d201
|
replace the book with the latest 3rd edition link (#754)
|
diff --git a/content/en/learn.md b/content/en/learn.md
index a10aa18..ca45c14 100644
--- a/content/en/learn.md
+++ b/content/en/learn.md
@@ -1,76 +1,76 @@
---
title: Learn
sidebar: false
---
For the **official NumPy documentation** visit [numpy.org/doc/stable](https://numpy.org/doc/stable).
***
Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
## Beginners
There's a ton of information about NumPy out there. If you are just starting, we'd strongly recommend the following:
<i class="fas fa-chalkboard"></i> **Tutorials**
* [NumPy Quickstart Tutorial](https://numpy.org/devdocs/user/quickstart.html)
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
* [NumPy Illustrated: The Visual Guide to NumPy *by Lev Maximov*](https://betterprogramming.pub/3b1d4976de1d?sk=57b908a77aa44075a49293fa1631dd9b)
* [Scientific Python Lectures](https://lectures.scientific-python.org/) Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem.
* [NumPy: the absolute basics for beginners](https://numpy.org/devdocs/user/absolute_beginners.html)
* [NumPy tutorial *by Nicolas Rougier*](https://github.com/rougier/numpy-tutorial)
* [Stanford CS231 *by Justin Johnson*](http://cs231n.github.io/python-numpy-tutorial/)
* [NumPy User Guide](https://numpy.org/devdocs)
<i class="fas fa-book"></i> **Books**
* [Guide to NumPy *by Travis E. Oliphant*](http://web.mit.edu/dvp/Public/numpybook.pdf) This is a free version 1 from 2006. For the latest copy (2015) see [here](https://www.barnesandnoble.com/w/guide-to-numpy-travis-e-oliphant-phd/1122853007).
* [From Python to NumPy *by Nicolas P. Rougier*](https://www.labri.fr/perso/nrougier/from-python-to-numpy/)
* [Elegant SciPy](https://www.amazon.com/Elegant-SciPy-Art-Scientific-Python/dp/1491922877) *by Juan Nunez-Iglesias, Stefan van der Walt, and Harriet Dashnow*
You may also want to check out the [Goodreads list](https://www.goodreads.com/shelf/show/python-scipy) on the subject of "Python+SciPy." Most books there are about the "SciPy ecosystem," which has NumPy at its core.
<i class="far fa-file-video"></i> **Videos**
* [Introduction to Numerical Computing with NumPy](http://youtu.be/ZB7BZMhfPgk) *by Alex Chabot-Leclerc*
***
## Advanced
Try these advanced resources for a better understanding of NumPy concepts like advanced indexing, splitting, stacking, linear algebra, and more.
<i class="fas fa-chalkboard"></i> **Tutorials**
* [100 NumPy Exercises](http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html) *by Nicolas P. Rougier*
* [An Introduction to NumPy and Scipy](https://engineering.ucsb.edu/~shell/che210d/numpy.pdf) *by M. Scott Shell*
* [Numpy Medkits](http://mentat.za.net/numpy/numpy_advanced_slides/) *by Stéfan van der Walt*
* [NumPy Tutorials](https://numpy.org/numpy-tutorials) A collection of tutorials and educational materials in the format of Jupyter Notebooks developed and maintained by the NumPy Documentation team. To submit your own content, visit the [numpy-tutorials repository on GitHub](https://github.com/numpy/numpy-tutorials).
<i class="fas fa-book"></i> **Books**
* [Python Data Science Handbook](https://www.amazon.com/Python-Data-Science-Handbook-Essential/dp/1491912057) *by Jake Vanderplas*
-* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662) *by Wes McKinney*
+* [Python for Data Analysis](https://www.amazon.com/Python-Data-Analysis-Wrangling-Jupyter/dp/109810403X) *by Wes McKinney*
* [Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib](https://www.amazon.com/Numerical-Python-Scientific-Applications-Matplotlib/dp/1484242459) *by Robert Johansson*
<i class="far fa-file-video"></i> **Videos**
* [Advanced NumPy - broadcasting rules, strides, and advanced indexing](https://www.youtube.com/watch?v=cYugp9IN1-Q) *by Juan Nunez-Iglesias*
***
## NumPy Talks
* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
***
## Citing NumPy
If NumPy has been significant in your research, and you would like to acknowledge the project in your academic publication, please see [this citation information](/citing-numpy).
|
numpy/numpy.org
|
c7f100cba9206dc51e1eabd33dd71ba62df941c0
|
Add a news entry about the 2.0 release date (#750)
|
diff --git a/content/en/news.md b/content/en/news.md
index 1a38417..7412b03 100644
--- a/content/en/news.md
+++ b/content/en/news.md
@@ -1,417 +1,432 @@
---
title: News
sidebar: false
-newsHeader: "NumPy 1.26.0 released"
-date: 2023-09-16
+newsHeader: "NumPy 2.0 release date: June 16"
+date: 2024-05-23
---
+### NumPy 2.0 release date: June 16
+
+_23 May, 2024_ -- We are excited to announce that NumPy 2.0 is planned to be
+released on June 16, 2024. This release has been over a year in the making, and
+is the first major release since 2006. Importantly, in addition to many new
+features and performance improvement, it contains **breaking changes** to the
+ABI as well as the Python and C APIs. It is likely that downstream packages and
+end user code needs to be adapted - if you can, please verify whether your code
+works with NumPy `2.0.0rc2`. **Please see the following for more details:**
+
+- The [NumPy 2.0 migration guide](https://numpy.org/devdocs/numpy_2_0_migration_guide.html)
+- The [2.0.0 release notes](https://numpy.org/devdocs/release/2.0.0-notes.html)
+- Announcement issue for status updates: [numpy#24300](https://github.com/numpy/numpy/issues/24300)
+
+
### NumFOCUS end of the year fundraiser
_Dec 19, 2023_ -- NumFOCUS has teamed up with PyCharm during their EOY campaign to offer a 30% discount
on first-time PyCharm licenses. All year-one revenue from PyCharm purchases from now
until December 23rd, 2023 will go directly to the NumFOCUS programs.
Use unique URL that will allow to track purchases https://lp.jetbrains.com/support-data-science/
or a coupon code ISUPPORTDATASCIENCEÂ
### NumPy 1.26.0 released
_Sep 16, 2023_ -- [NumPy 1.26.0](https://numpy.org/doc/stable/release/1.26.0-notes.html)
is now available. The highlights of the release are:
* Python 3.12.0 support.
* Cython 3.0.0 compatibility.
* Use of the Meson build system
* Updated SIMD support
* f2py fixes, meson and bind(x) support
* Support for the updated Accelerate BLAS/LAPACK library
The NumPy 1.26.0 release is a continuation of the 1.25.x series that marks the
transition to the Meson build system and provision of support for Cython 3.0.0.
A total of 20 people contributed to this release and 59 pull requests were
merged.
The Python versions supported by this release are 3.9-3.12.
### numpy.org is now available in Japanese and Portuguese
_Aug 2, 2023_ -- numpy.org is now available in 2 additional languages:
Japanese and Portuguese. This wouldnât be possible without our dedicated volunteers:
_Portuguese:_
* Melissa Weber Mendonça (melissawm)
* Ricardo Prins (ricardoprins)
* Getúlio Silva (getuliosilva)
* Julio Batista Silva (jbsilva)
* Alexandre de Siqueira (alexdesiqueira)
* Alexandre B A Villares (villares)
* Vini Salazar (vinisalazar)
_Japanese:_
* Atsushi Sakai (AtsushiSakai)
* KKunai
* Tom Kelly (TomKellyGenetics)
* Yuji Kanagawa (kngwyu)
* Tetsuo Koyama (tkoyama010)
The work on the translation infrastructure is supported with funding from CZI.
Looking ahead, weâd love to translate the website into more languages.
If youâd like to help, please connect with the NumPy Translations Team on Slack:
https://join.slack.com/t/numpy-team/shared_invite/zt-1gokbq56s-bvEpo10Ef7aHbVtVFeZv2w.
(Look for the #translations channel.) We are also building a Translations Team who will be
working on localizing documentation and educational content across the Scientific Python
ecosystem. If this piqued your interest, join us on the Scientific Python
Discord: https://discord.gg/khWtqY6RKr. (Look for the #translation channel.)
### NumPy 1.25.0 released
_Jun 17, 2023_ -- [NumPy 1.25.0](https://numpy.org/doc/stable/release/1.25.0-notes.html)
is now available. The highlights of the release are:
* Support for MUSL, there are now MUSL wheels.
* Support for the Fujitsu C/C++ compiler.
* Object arrays are now supported in einsum.
* Support for the inplace matrix multiplication (``@=``).
The NumPy 1.25.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, and clarify the
documentation. There has also been preparatory work for the future NumPy 2.0.0,
resulting in a large number of new and expired deprecations.
A total of 148 people contributed to this release and 530 pull requests were
merged.
The Python versions supported by this release are 3.9-3.11.
### Fostering an Inclusive Culture: Call for Participation
_May 10, 2023_ -- Fostering an Inclusive Culture: Call for Participation
How can we be better when it comes to diversity and inclusion?
Read the report and find out how to get involved
[here](https://contributor-experience.org/docs/posts/dei-report/).
### NumPy documentation team leadership transition
_Jan 6, 2023_ â- Mukulika Pahari and Ross Barnowski are appointed as the new NumPy
documentation team leads replacing Melissa Mendonça. We thank Melissa for all her
contributions to the NumPy official documentation and educational materials,
and Mukulika and Ross for stepping up.
### NumPy 1.24.0 released
_Dec 18, 2022_ -- [NumPy 1.24.0](https://numpy.org/doc/stable/release/1.24.0-notes.html)
is now available. The highlights of the release are:
* New "dtype" and "casting" keywords for stacking functions.
* New F2PY features and fixes.
* Many new deprecations, check them out.
* Many expired deprecations,
The NumPy 1.24.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase execution speed, and clarify the documentation.
There are a large number of new and expired deprecations due to changes in
dtype promotion and cleanups. It is the work of 177 contributors spread over
444 pull requests. The supported Python versions are 3.8-3.11.
### Numpy 1.23.0 released
_Jun 22, 2022_ -- [NumPy 1.23.0](https://numpy.org/doc/stable/release/1.23.0-notes.html)
is now available. The highlights of the release are:
* Implementation of ``loadtxt`` in C, greatly improving its performance.
* Exposure of DLPack at the Python level for easy data exchange.
* Changes to the promotion and comparisons of structured dtypes.
* Improvements to f2py.
The NumPy 1.23.0 release continues the ongoing work to improve the handling and
promotion of dtypes, increase the execution speed, clarify the documentation,
and expire old deprecations. It is the work of 151 contributors spread over
494 pull requests. The Python versions supported by this release 3.8-3.10.
Python 3.11 will be supported when it reaches the rc stage.
### NumFOCUS DEI research study: call for participation
_Apr 13, 2022_ -- NumPy is working with [NumFOCUS](http://numfocus.org/) on a
[research project](https://numfocus.org/diversity-inclusion-disc/a-pivotal-time-in-numfocuss-project-aimed-dei-efforts?eType=EmailBlastContent&eId=f41a86c3-60d4-4cf9-86cf-58eb49dc968c)
funded by the [Gordon & Betty Moore Foundation](https://www.moore.org/) to
understand the barriers to participation that contributors, particularly those
from historically underrepresented groups, face in the open-source software
community. The research team would like to talk to new contributors, project
developers and maintainers, and those who have contributed in the past about
their experiences joining and contributing to NumPy.
**Interested in sharing your experiences?**
Please complete this brief [âParticipant Interestâ form](https://numfocus.typeform.com/to/WBWVJSqe)
which contains additional information on the research goals, privacy, and
confidentiality considerations. Your participation will be valuable to the
growth and sustainability of diverse and inclusive open-source software
communities. Accepted participants will participate in a 30-minute interview
with a research team member.
### Numpy 1.22.0 release
_Dec 31, 2021_ -- [NumPy 1.22.0](https://numpy.org/doc/stable/release/1.22.0-notes.html)
is now available. The highlights of the release are:
* Type annotations of the main namespace are essentially complete. Upstream is
a moving target, so there will likely be further improvements, but the major
work is done. This is probably the most user visible enhancement in this
release.
* A preliminary version of the proposed
[array API Standard](https://data-apis.org/array-api/latest/) is provided
(see [NEP 47](https://numpy.org/neps/nep-0047-array-api-standard.html)).
This is a step in creating a standard collection of functions that can be
used across libraries such as CuPy and JAX.
* NumPy now has a DLPack backend. DLPack provides a common interchange format
for array (tensor) data.
* New methods for ``quantile``, ``percentile``, and related functions. The new
methods provide a complete set of the methods commonly found in the
literature.
* The universal functions have been refactored to implement most of
[NEP 43](https://numpy.org/neps/nep-0043-extensible-ufuncs.html).
This also unlocks the ability to experiment with the future DType API.
* A new configurable memory allocator for use by downstream projects.
NumPy 1.22.0 is a big release featuring the work of 153 contributors spread
over 609 pull requests. The Python versions supported by this release are
3.8-3.10.
### Advancing an inclusive culture in the scientific Python ecosystem
_August 31, 2021_ -- We are happy to announce the Chan Zuckerberg Initiative has
[awarded a grant](https://chanzuckerberg.com/newsroom/czi-awards-16-million-for-foundational-open-source-software-tools-essential-to-biomedicine/)
to support the onboarding, inclusion, and retention of people from historically
marginalized groups on scientific Python projects, and to structurally improve
the community dynamics for NumPy, SciPy, Matplotlib, and Pandas.
As a part of [CZI's Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/),
this [Diversity & Inclusion supplemental grant](https://cziscience.medium.com/advancing-diversity-and-inclusion-in-scientific-open-source-eaabe6a5488b)
will support the creation of dedicated Contributor Experience Lead positions to
identify, document, and implement practices to foster inclusive open-source
communities. This project will be led by Melissa Mendonça (NumPy), with
additional mentorship and guidance provided by Ralf Gommers (NumPy, SciPy),
Hannah Aizenman and Thomas Caswell (Matplotlib), Matt Haberland (SciPy), and
Joris Van den Bossche (Pandas).
This is an ambitious project aiming to discover and implement activities that
should structurally improve the community dynamics of our projects. By
establishing these new cross-project roles, we hope to introduce a new
collaboration model to the Scientific Python communities, allowing
community-building work within the ecosystem to be done more efficiently and
with greater outcomes. We also expect to develop a clearer picture of what
works and what doesn't in our projects to engage and retain new contributors,
especially from historically underrepresented groups. Finally, we plan on
producing detailed reports on the actions executed, explaining how they have
impacted our projects in terms of representation and interaction with our
communities.
The two-year project is expected to start by November 2021, and we are excited
to see the results from this work!
[You can read the full proposal here](https://figshare.com/articles/online_resource/Advancing_an_inclusive_culture_in_the_scientific_Python_ecosystem/16548063).
### 2021 NumPy survey
_July 12, 2021_ -- At NumPy, we believe in the power of our community. 1,236
NumPy users from 75 countries participated in our inaugural survey last year.
The survey findings gave us a very good understanding of what we should focus
on for the next 12 months.
Itâs time for another survey, and we are counting on you once again. It will
take about 15 minutes of your time. Besides English, the survey questionnaire
is available in 8 additional languages: Bangla, French, Hindi, Japanese,
Mandarin, Portuguese, Russian, and Spanish.
Follow the link to get started: https://berkeley.qualtrics.com/jfe/form/SV_aaOONjgcBXDSl4q.
### Numpy 1.21.0 release
_Jun 23, 2021_ -- [NumPy 1.21.0](https://numpy.org/doc/stable/release/1.21.0-notes.html)
is now available. The highlights of the release are:
- continued SIMD work covering more functions and platforms,
- initial work on the new dtype infrastructure and casting,
- universal2 wheels for Python 3.8 and Python 3.9 on Mac,
- improved documentation,
- improved annotations,
- new ``PCG64DXSM`` bitgenerator for random numbers.
This NumPy release is the result of 581 merged pull requests contributed by 175
people. The Python versions supported for this release are 3.7-3.9, support
for Python 3.10 will be added after Python 3.10 is released.
### 2020 NumPy survey results
_Jun 22, 2021_ -- In 2020, the NumPy survey team in partnership with students
and faculty from the University of Michigan and the University of Maryland
conducted the first official NumPy community survey. Find the survey results
here: https://numpy.org/user-survey-2020/.
### Numpy 1.20.0 release
_Jan 30, 2021_ -- [NumPy 1.20.0](https://numpy.org/doc/stable/release/1.20.0-notes.html)
is now available. This is the largest NumPy release to date, thanks to 180+
contributors. The two most exciting new features are:
- Type annotations for large parts of NumPy, and a new `numpy.typing` submodule
containing `ArrayLike` and `DtypeLike` aliases that users and downstream
libraries can use when adding type annotations in their own code.
- Multi-platform SIMD compiler optimizations, with support for x86 (SSE,
AVX), ARM64 (Neon), and PowerPC (VSX) instructions. This yielded significant
performance improvements for many functions (examples:
[sin/cos](https://github.com/numpy/numpy/pull/17587),
[einsum](https://github.com/numpy/numpy/pull/18194)).
### Diversity in the NumPy project
_Sep 20, 2020_ -- We wrote a [statement on the state of, and discussion on social media around, diversity and inclusion in the NumPy project](/diversity_sep2020).
### First official NumPy paper published in Nature!
_Sep 16, 2020_ -- We are pleased to announce the publication of
[the first official paper on NumPy](https://www.nature.com/articles/s41586-020-2649-2)
as a review article in Nature. This comes 14 years after the release of NumPy 1.0.
The paper covers applications and fundamental concepts of array programming,
the rich scientific Python ecosystem built on top of NumPy, and the recently added
array protocols to facilitate interoperability with external array and tensor
libraries like CuPy, Dask, and JAX.
### Python 3.9 is coming, when will NumPy release binary wheels?
_Sept 14, 2020_ -- Python 3.9 will be released in a few weeks. If you are an
early adopter of Python versions, you may be dissapointed to find that NumPy
(and other binary packages like SciPy) will not have binary wheels ready on the
day of the release. It is a major effort to adapt the build infrastructure to a
new Python version and it typically takes a few weeks for the packages to appear
on PyPI and conda-forge. In preparation for this event, please make sure to
- update your `pip` to version 20.1 at least to support `manylinux2010` and
`manylinux2014`
- use [`--only-binary=numpy`](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-only-binary) or `--only-binary=:all:` to prevent `pip` from
trying to build from source.
### Numpy 1.19.2 release
_Sep 10, 2020_ -- [NumPy
1.19.2](https://numpy.org/devdocs/release/1.19.2-notes.html) is now available.
This latest release in the 1.19 series fixes several bugs, prepares for the
[upcoming Cython 3.x
release](http://docs.cython.org/en/latest/src/changes.html) and pins
setuptools to keep distutils working while upstream modifications are ongoing.
The aarch64 wheels are built with the latest manylinux2014 release that fixes
the problem of differing page sizes used by different linux distros.
### The inaugural NumPy survey is live!
_Jul 2, 2020_ -- This survey is meant to guide and set priorities for
decision-making about the development of NumPy as software and as a community.
The survey is available in 8 additional languages besides English:
Bangla, Hindi, Japanese, Mandarin, Portuguese, Russian, Spanish and French.
Please help us make NumPy better and take the survey
[here](https://umdsurvey.umd.edu/jfe/form/SV_8bJrXjbhXf7saAl).
### NumPy has a new logo!
_Jun 24, 2020_ -- NumPy now has a new logo:
<img
src="/images/logos/numpy_logo.svg"
alt="NumPy logo"
title="The new NumPy logo"
width=300>
The logo is a modern take on the old one, with a cleaner design. Thanks to
Isabela Presedo-Floyd for designing the new logo, as well as to Travis Vaught
for the old logo that served us well for 15+ years.
### NumPy 1.19.0 release
_Jun 20, 2020_ -- NumPy 1.19.0 is now available. This is the first release
without Python 2 support, hence it was a "clean-up release". The minimum
supported Python version is now Python 3.6. An important new feature is that
the random number generation infrastructure that was introduced in NumPy 1.17.0
is now accessible from Cython.
### Season of Docs acceptance
_May 11, 2020_ -- NumPy has been accepted as one of the mentor organizations for
the Google Season of Docs program. We are excited about the opportunity to
work with a technical writer to improve NumPy's documentation once again! For more
details, please see
[the official Season of Docs site](https://developers.google.com/season-of-docs/) and our
[ideas page](https://github.com/numpy/numpy/wiki/Google-Season-of-Docs-2020-Project-Ideas).
### NumPy 1.18.0 release
_Dec 22, 2019_ -- NumPy 1.18.0 is now available. After the major changes in
1.17.0, this is a consolidation release. It is the last minor release that will
support Python 3.5. Highlights of the release includes the addition of basic
infrastructure for linking with 64-bit BLAS and LAPACK libraries, and a new C-API for ``numpy.random``.
Please see the [release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0) for more details.
### NumPy receives a grant from the Chan Zuckerberg Initiative
_Nov 15, 2019_ -- We are pleased to announce that NumPy and OpenBLAS, one of NumPy's key dependencies, have received a joint grant for $195,000 from the Chan Zuckerberg Initiative through their [Essential Open Source Software for Science program](https://chanzuckerberg.com/eoss/) that supports software maintenance, growth, development, and community engagement for open source tools critical to science.
This grant will be used to ramp up the efforts in improving NumPy documentation, website redesign, and community development to better serve our large and rapidly growing user base, and ensure the long-term sustainability of the project. While the OpenBLAS team will focus on addressing sets of key technical issues, in particular thread-safety, AVX-512, and thread-local storage (TLS) issues, as well as algorithmic improvements in ReLAPACK (Recursive LAPACK) on which OpenBLAS depends.
More details on our proposed initiatives and deliverables can be found in the [full grant proposal](https://figshare.com/articles/Proposal_NumPy_OpenBLAS_for_Chan_Zuckerberg_Initiative_EOSS_2019_round_1/10302167). The work is scheduled to start on Dec 1st, 2019 and continue for the next 12 months.
<a name="releases"></a>
## Releases
Here is a list of NumPy releases, with links to release notes. Bugfix
releases (only the `z` changes in the `x.y.z` version number) have no new
features; minor releases (the `y` increases) do.
- NumPy 1.26.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.4)) -- _5 Feb 2024_.
- NumPy 1.26.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.3)) -- _2 Jan 2024_.
- NumPy 1.26.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.2)) -- _12 Nov 2023_.
- NumPy 1.26.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.1)) -- _14 Oct 2023_.
- NumPy 1.26.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.26.0)) -- _16 Sep 2023_.
- NumPy 1.25.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.2)) -- _31 Jul 2023_.
- NumPy 1.25.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.1)) -- _8 Jul 2023_.
- NumPy 1.24.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.4)) -- _26 Jun 2023_.
- NumPy 1.25.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.25.0)) -- _17 Jun 2023_.
- NumPy 1.24.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.3)) -- _22 Apr 2023_.
- NumPy 1.24.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.2)) -- _5 Feb 2023_.
- NumPy 1.24.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.1)) -- _26 Dec 2022_.
- NumPy 1.24.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.24.0)) -- _18 Dec 2022_.
- NumPy 1.23.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.5)) -- _19 Nov 2022_.
- NumPy 1.23.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.4)) -- _12 Oct 2022_.
- NumPy 1.23.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.3)) -- _9 Sep 2022_.
- NumPy 1.23.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.2)) -- _14 Aug 2022_.
- NumPy 1.23.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.1)) -- _8 Jul 2022_.
- NumPy 1.23.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.23.0)) -- _22 Jun 2022_.
- NumPy 1.22.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.4)) -- _20 May 2022_.
- NumPy 1.21.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.6)) -- _12 Apr 2022_.
- NumPy 1.22.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.3)) -- _7 Mar 2022_.
- NumPy 1.22.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.2)) -- _3 Feb 2022_.
- NumPy 1.22.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.1)) -- _14 Jan 2022_.
- NumPy 1.22.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.22.0)) -- _31 Dec 2021_.
- NumPy 1.21.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.5)) -- _19 Dec 2021_.
- NumPy 1.21.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.21.0)) -- _22 Jun 2021_.
- NumPy 1.20.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.3)) -- _10 May 2021_.
- NumPy 1.20.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.20.0)) -- _30 Jan 2021_.
- NumPy 1.19.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.5)) -- _5 Jan 2021_.
- NumPy 1.19.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.19.0)) -- _20 Jun 2020_.
- NumPy 1.18.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.4)) -- _3 May 2020_.
- NumPy 1.17.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.5)) -- _1 Jan 2020_.
- NumPy 1.18.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.18.0)) -- _22 Dec 2019_.
- NumPy 1.17.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.17.0)) -- _26 Jul 2019_.
- NumPy 1.16.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.16.0)) -- _14 Jan 2019_.
- NumPy 1.15.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.15.0)) -- _23 Jul 2018_.
- NumPy 1.14.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v1.14.0)) -- _7 Jan 2018_.
|
numpy/numpy.org
|
b5da85720ae1a5c4cca514dce9d901422851a507
|
pyjanitor link corrected (#749)
|
diff --git a/content/en/tabcontents.yaml b/content/en/tabcontents.yaml
index 6dbdc89..41fedc8 100644
--- a/content/en/tabcontents.yaml
+++ b/content/en/tabcontents.yaml
@@ -1,295 +1,295 @@
params:
machinelearning:
paras:
- para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlowâs](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
arraylibraries:
intro:
- text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
headers:
- text: Array Library
- text: Capabilities & Application areas
libraries:
- title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- title: JAX
text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://jax.readthedocs.io/
- title: Xarray
text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://arrow.apache.org/
- title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipulate JSON-like data with NumPy-like idioms.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Nearly every scientist working in Python draws on the power of NumPy.
- text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
libraries:
- title: Quantum Computing
alttext: A computer chip.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: http://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Statistical Computing
alttext: A line graph with the line moving up.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- url: https://www.statsmodels.org/
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- url: https://seaborn.pydata.org/
label: Seaborn
- title: Signal Processing
alttext: A bar chart with positive and negative values.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
- url: https://hyperspy.org/
label: HyperSpy
- title: Image Processing
alttext: An photograph of the mountains.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
- title: Graphs and Networks
alttext: A simple graph.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: Astronomy
alttext: A telescope.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- url: https://sunpy.org/
label: SunPy
- url: https://spacepy.github.io/
label: SpacePy
- title: Cognitive Psychology
alttext: A human head with gears.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformatics
alttext: A strand of DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
label: PyMC3
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Mathematical Analysis
alttext: Four mathematical symbols.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- url: https://www.cvxpy.org/
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: Chemistry
alttext: A test tube.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geoscience
alttext: The Earth.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Geographic Processing
alttext: A map.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Architecture & Engineering
alttext: A microprocessor development board.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- - text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ - text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
content:
- text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
- url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.
content:
- text: NumPy is an essential component in the burgeoning
[Python visualization landscape](https://pyviz.org/overviews/index.html),
which includes [Matplotlib](https://matplotlib.org),
[Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly),
[Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/),
[Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/),
and [PyVista](https://docs.pyvista.org/), to name a few.
- text: NumPy's accelerated processing of large arrays allows researchers to visualize
datasets far larger than native Python could handle.
diff --git a/content/ja/tabcontents.yaml b/content/ja/tabcontents.yaml
index 78f299b..e3dc2ba 100644
--- a/content/ja/tabcontents.yaml
+++ b/content/ja/tabcontents.yaml
@@ -1,219 +1,219 @@
params:
machinelearning:
paras:
-
para1: NumPyã¯ã[scikit-learn](https://scikit-learn.org)ã[SciPy](https://www.scipy.org)ã®ãããªå¼·åãªæ©æ¢°å¦ç¿ã©ã¤ãã©ãªã®åºç¤ãå½¢æãã¦ãã¾ããæ©æ¢°å¦ç¿ã®æè¡åéãæé·ããã«ã¤ããNumPyããã¼ã¹ã«ããã©ã¤ãã©ãªã®æ°ãå¢ãã¦ãã¾ãã[TensorFlow](https://www.tensorflow.org)ã®æ·±å±¤å¦ç¿æ©è½ã¯ãé³å£°èªèãç»åèªèãããã¹ããã¼ã¹ã®ã¢ããªã±ã¼ã·ã§ã³ãæç³»ååæãåç»æ¤åºãªã©ãå¹
åºãå¿ç¨ç¨éãããã¾ãã[PyTorch](https://pytorch.org)ããã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãèªç¶è¨èªå¦çã®ç ç©¶è
ã«äººæ°ã®ããæ·±å±¤å¦ç¿ã©ã¤ãã©ãªã§ãã[MXNet](https://github.com/apache/incubator-mxnet)ãAIããã±ã¼ã¸ã®ä¸ã¤ã§ã深層å¦ç¿ã®è¨è¨å³ããã³ãã¬ã¼ãæ©è½ãæä¾ãã¦ãã¾ãã
para2: '[ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205)æ³ã¨å¼ã°ããçµ±è¨çææ³ã§ãããã³ãã³ã°ããã®ã³ã°ãã¹ã¿ããã³ã°ãã[XGBoost](https://github.com/dmlc/xgboost)ã[LightGBM](https://lightgbm.readthedocs.io/en/latest/)ã[CatBoost](https://catboost.ai)ãªã©ã®ãã¼ã«ã§å®è£
ããã¦ãããã¼ã¹ãã£ã³ã°ãªã©ã¯ãæ©æ¢°å¦ç¿ã¢ã«ã´ãªãºã ã®ä¸ã¤ã§ãããæéã®æ¨è«ã¨ã³ã¸ã³ã®ä¸ã¤ã§ãã[Yellowbrick](https://www.scikit-yb.org/en/latest/)ã[Eli5](https://eli5.readthedocs.io/en/latest/)ã¯æ©æ¢°å¦ç¿ã®å¯è¦åæ©è½ãæä¾ãã¦ãã¾ãã'
arraylibraries:
intro:
-
text: NumPyã®APIã¯ã驿°çãªãã¼ãã¦ã§ã¢ãå©ç¨ããããç¹æ®ãªé
åã¿ã¤ãã使ããããNumPyãæä¾ãã以ä¸ã®æ©è½ã追å ããããã«ã©ã¤ãã©ãªã使ããéã®åºç¤ã¨ãªãã¾ãã
headers:
-
text: é
åã©ã¤ãã©ãª
-
text: æ©è½ã¨å¿ç¨åé
libraries:
-
title: Dask
text: åæç¨ã®åæ£é
åã¨é«åº¦ãªä¸¦åå¦çã«ãããå¤§è¦æ¨¡ãªå¦çãå¯è½ã«ãã¾ãã
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
-
title: CuPy
text: Python ã使ç¨ãã GPUã«ããé«éè¨ç®ç¨ã®NumPyäºæé
åã©ã¤ãã©ãª
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
-
title: JAX
text: "NumPyã³ã¼ãã®åæå¯è½ãªå¤æã©ã¤ãã©ãª: å¾®åããã¯ãã«åãGPU/TPUã¸ã®ã¸ã£ã¹ãã¤ã³ã¿ã¤ã ã³ã³ãã¤ã«"
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
-
title: Xarray
text: é«åº¦ãªåæã¨è¦è¦åã®ããã®ã©ãã«ã¨ã¤ã³ããã¯ã¹ä»ã夿¬¡å
é
å
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
-
title: Sparse
text: Dask 㨠SciPy ã®çè¡åã®ç·å½¢ä»£æ°ã©ã¤ãã©ãªãçµ±åãããNumpy äºæã®çè¡åã©ã¤ãã©ãª
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
-
title: PyTorch
text: ç ç©¶ç¨ã®ãããã¿ã¤ãã³ã°ããæ¬çªéç¨ã¸ã®å±éãå éããããæ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
-
title: TensorFlow
text: æ©æ¢°å¦ç¿ãå©ç¨ããã¢ããªã±ã¼ã·ã§ã³ãç°¡åã«æ§ç¯ã»å±éããããã®ãã¨ã³ãã»ãã¼ã»ã¨ã³ãã®æ©æ¢°å¦ç¿ãã©ãããã©ã¼ã
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
-
title: MXNet
text: æè»ãç ç©¶ç¨ã®ãããã¿ã¤ãã³ã°ãããå®éã®éç¨ã¾ã§å©ç¨å¯è½ãªæ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
-
title: Arrow
text: ååã®ã¤ã³ã¡ã¢ãªã¼ãã¼ã¿ããã®åæã®ããã®ãè¤æ°ã®è¨èªã«å¯¾å¿ããéçºãã©ãããã©ã¼ã
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
-
title: xtensor
text: æ°å¤è§£æã®ããã®ããã¼ããã£ã¹ãã£ã³ã°ã¨é
å»¶è¨ç®ãåãã夿¬¡å
é
å
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
-
title: Awkward
text: Numpy ã®ãã㪠ã¤ãã£ãªã ã使ã£ã¦ JSON ã®ãããªãã¼ã¿ãæä½ããã©ã¤ãã©ãª
img: /images/content_images/arlib/xnd.png
alttext: awkward
url: https://awkward-array.org/
-
title: uarray
text: APIãå®è£
ããåãé¢ãPythonããã¯ã¨ã³ãã·ã¹ãã (unumpyã¯NumPy APIãæä¾ãã¦ãã¾ã)
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
-
title: tensorly
text: NumpyãMXNetãPyTorchãTensorFlowã¾ãã¯Cupyãã·ã¼ã ã¬ã¹ã«ä½¿ç¨ããããã®ããã³ã½ã«å¦ç¿ããã³ã½ã«ä»£æ°ãããã³ãããã®ãã³ã½ã«è¨ç®ã®ããã®ããã¯ã¨ã³ã
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
-
text: Pythonã使ã£ã¦åãã»ã¨ãã©ã®ç§å¦è
ã¯NumPyã®åãå©ç¨ãã¦ãã¾ãã
-
text: "Numpy ã¯ã C ã Fortran ã®ãããªè¨èªã®è¨ç®ããã©ã¼ãã³ã¹ããPythonã«ããããã¾ãã ãã®ãã¯ã¼ã¯NumPyã®ã·ã³ãã«ãããæ¥ã¦ãããNumPyã«ããã½ãªã¥ã¼ã·ã§ã³ã®å¤ãã¯æç¢ºã§ã¨ã¬ã¬ã³ãã«ãªãã¾ãã"
librariesrow1:
-
title: éåã³ã³ãã¥ã¼ãã£ã³ã°
alttext: ã³ã³ãã¥ã¼ã¿ã¼ããã
img: /images/content_images/sc_dom_img/quantum_computing.svg
-
title: çµ±è¨ã³ã³ãã¥ã¼ãã£ã³ã°
alttext: ç·ã°ã©ãã§ãã°ã©ããä¸ã«ç§»åãã¾ãã
img: /images/content_images/sc_dom_img/statistical_computing.svg
-
title: ä¿¡å·å¦ç
alttext: æ£ã¨è² ã®å¤ãæã¤æ£ã°ã©ãã
img: /images/content_images/sc_dom_img/signal_processing.svg
-
title: ç»åå¦ç
alttext: å±±ã
ã®åç
img: /images/content_images/sc_dom_img/image_processing.svg
-
title: ã°ã©ãã¨ãããã¯ã¼ã¯
alttext: ã·ã³ãã«ãªã°ã©ã
img: /images/content_images/sc_dom_img/sd6.svg
-
title: 天æå¦
alttext: æé é¡
img: /images/content_images/sc_dom_img/astronomy_processes.svg
-
title: èªç¥å¿çå¦
alttext: ã®ã¢ãã¤ãã人éã®é é¨
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
librariesrow2:
-
title: ç彿
å ±ç§å¦
alttext: DNAã®é
img: /images/content_images/sc_dom_img/bioinformatics.svg
-
title: ãã¤ãºæ¨è«
alttext: éå½¢ã®æ²ç·ã®ã°ã©ã
img: /images/content_images/sc_dom_img/bayesian_inference.svg
-
title: æ°å¦çåæ
alttext: ï¼ã¤ã®æ°å¦è¨å·
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
-
title: åå¦
alttext: 試é¨ç®¡
img: /images/content_images/sc_dom_img/chemistry.svg
-
title: å°çç§å¦
alttext: å°ç
img: /images/content_images/sc_dom_img/geoscience.svg
-
title: å°çæ
å ±å¦ç
alttext: å°å³
img: /images/content_images/sc_dom_img/GIS.svg
-
title: ã¢ã¼ããã¯ãã£ã¨ã¨ã³ã¸ãã¢ãªã³ã°
alttext: ãã¤ã¯ãããã»ããµéçºãã¼ã
img: /images/content_images/sc_dom_img/robotics.svg
datascience:
intro: "Numpy ã¯è±å¯ãªãã¼ã¿ãµã¤ã¨ã³ã¹ã©ã¤ãã©ãªã®ã¨ã³ã·ã¹ãã ã®ä¸æ ¸ã«ããã¾ããä¸è¬çãªãã¼ã¿ãµã¤ã¨ã³ã¹ã®ã¯ã¼ã¯ããã¼ã¯æ¬¡ã®ããã«ãªãã¾ãã"
image1:
-
img: /images/content_images/ds-landscape.png
alttext: Python ã©ã¤ãã©ãªã®å³ ã5 ã¤ã®ã«ãã´ãªã«åé¡ããããæ½åºã夿ãèªã¿è¾¼ã¿ããããã¼ã¿æ¢ç´¢ãããã¢ããªã³ã°ãããè©ä¾¡ãããå¯è¦åãã§ãã
image2:
-
img: /images/content_images/data-science.png
alttext: ä¸ã¤ã®åãéãªãåãå³ãåã¯ãããããæ°å¦ãããã³ã³ãã¥ã¼ã¿ã¼ãµã¤ã¨ã³ã¹ãããå°éç¥èãã§ã©ãã«ä»ãããã¦ãã¾ããå³ã®ä¸å¿é¨ã«ã¯ãä¸ã¤ã®åãéãªãåã£ã¦å½¢æãããã¨ãªã¢ããããããã¼ã¿ãµã¤ã¨ã³ã¹ãã¨ã©ãã«ä»ãããã¦ãã¾ãã
examples:
-
- text: "<b>æ½åº, 夿, èªã¿è¾¼ã¿: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
+ text: "<b>æ½åº, 夿, èªã¿è¾¼ã¿: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
-
text: "<b>æ¢ç´¢çè§£æ: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
-
text: "<b>ã¢ããªã³ã°ã¨è©ä¾¡: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
-
text: "<b>ããã·ã¥ãã¼ãã§ã®ã¬ãã¼ã: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
content:
-
text: å¤§è¦æ¨¡ãã¼ã¿ã«å¯¾ãã¦ã[Dask](https://dask.org)ã¨[Ray](https://ray.io/)ã¯ã¹ã±ã¼ã«ãããã¨ãç®æãã¦è¨è¨ããã¦ãã¾ããå®å®ãããããã¤ã¡ã³ãã«é¢ãã¦ã¯ããã¼ã¿ã®ãã¼ã¸ã§ãã³ã°ï¼[DVC](https://dvc.org)ï¼ãå®é¨ã®è¿½è·¡ï¼[MLFlow](https://mlflow.org)ï¼ãã¯ã¼ã¯ããã¼ã®èªååï¼[Airflow](https://airflow.apache.org)ããã³[Prefect](https://www.prefect.io)ãéè¦ã§ããæ§ã
ãªNumPyãã¼ã¹ã®ãã¼ã«ãæä¾ããã¦ãã¾ãã
visualization:
images:
-
url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: matplotlibã§ä½ãããã¹ããªã¼ã ãããã
-
url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: ggpyã§ä½ãããæ£å¸å³ã°ã©ã
-
url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: plotyã§ä½ãããç®±ã²ãå³
-
url: https://alta-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: altairã§ä½ãããã¹ããªã¼ã ã°ã©ã
-
url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: 2種é¡ã®ã°ã©ãã«ãããã¢ãããããseabornã§ä½ãããããããã¨å¨æ³¢æ°ã°ã©ã"
-
url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: PyVista製ã®3Dããªã¥ã¼ã ã¬ã³ããªã³ã°
-
url: https://napari.org
img: /images/content_images/v_napari.png
alttext: napariã§ä½ããã夿¬¡å
ç»å
-
url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: vispyã§ä½ããããããã¤å³
content:
-
text: NumPyã¯ã[Matplotlib](https://matplotlib.org)ã[Seaborn](https://seaborn.pydata.org)ã[Plotly](https://plot.ly)ã[Altair](https://altair-viz.github.io)ã[Bokeh](https://docs.bokeh.org/en/latest/)ã[Holoviz](https://holoviz.org)ã[Vispy](http://vispy.org)ã[Napari](https://github.com/napari/napari)ã[PyVista](https://github.com/pyvista/pyvista)ãªã©ã®ãæ¥æé·ãã¦ãã[Python visualization landscape](https://pyviz.org/overviews/index.html)ã«æ¬ ãããªãã³ã³ãã¼ãã³ãã§ãã
-
text: NumPy ã®å¤§è¦æ¨¡é
åã®é«éå¦çã«ãããç ç©¶è
ã¯ããã¤ãã£ãã® Python ãæ±ããã¨ãã§ãããããã¯ããã«å¤§ããªãã¼ã¿ã»ãããå¯è¦åãããã¨ãã§ãã¾ãã
diff --git a/content/pt/tabcontents.yaml b/content/pt/tabcontents.yaml
index fffddb2..a2d2b0d 100644
--- a/content/pt/tabcontents.yaml
+++ b/content/pt/tabcontents.yaml
@@ -1,219 +1,219 @@
params:
machinelearning:
paras:
-
para1: O NumPy forma a base de bibliotecas de aprendizagem de máquina poderosas como [scikit-learn](https://scikit-learn.org) e [SciPy](https://www.scipy.org). à medida que a disciplina de aprendizagem de máquina cresce, a lista de bibliotecas construidas a partir do NumPy também cresce. As funcionalidades de deep learning do [TensorFlow](https://www.tensorflow.org) tem diversas aplicações — entre elas, reconhecimento de imagem e de fala, aplicações baseadas em texto, análise de séries temporais, e detecção de vÃdeo. O [PyTorch](https://pytorch.org), outra biblioteca de deep learning, é popular entre pesquisadores em visão computacional e processamento de linguagem natural. O [MXNet](https://github.com/apache/incubator-mxnet) é outro pacote de IA, que fornece templates e protótipos para deep learning.
para2: Técnicas estatÃsticas chamadas métodos de [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) tais como binning, bagging, stacking, e boosting estão entre os algoritmos de ML implementados por ferramentas tais como [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), e [CatBoost](https://catboost.ai) — um dos motores de inferência mais rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) e [Eli5](https://eli5.readthedocs.io/en/latest/) oferecem visualizações para aprendizagem de máquina.
arraylibraries:
intro:
-
text: A API do NumPy é o ponto de partida quando bibliotecas são escritas para explorar hardware inovador, criar tipos de arrays especializados, ou adicionar capacidades além do que o NumPy fornece.
headers:
-
text: Biblioteca de Arrays
-
text: Recursos e áreas de aplicação
libraries:
-
title: Dask
text: Arrays distribuÃdas e paralelismo avançado para análise, permitindo desempenho em escala.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
-
title: CuPy
text: Biblioteca de matriz compatÃvel com NumPy para computação acelerada pela GPU com Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
-
title: JAX
text: "Transformações combináveis de programas NumPy: vetorização, compilação just-in-time para GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
-
title: Xarray
text: Arrays multidimensionais rotuladas e indexadas para análise e visualização avançadas
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
-
title: Sparse
text: Biblioteca de arrays compatÃveis com o NumPy que pode ser integrada com Dask e álgebra linear esparsa da SciPy.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
-
title: PyTorch
text: Framework de deep learning que acelera o caminho entre prototipação de pesquisa e colocação em produção.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
-
title: TensorFlow
text: Uma plataforma completa para aprendizagem de máquina que permite construir e colocar em produção aplicações usando ML facilmente.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
-
title: MXNet
text: Framework de deep learning voltado para flexibilizar prototipação em pesquisa e produção.
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
-
title: Arrow
text: Uma plataforma de desenvolvimento multi-linguagens para dados e análise para dados armazenados em colunas na memória.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
-
title: xtensor
text: Arrays multidimensionais com broadcasting e avaliação preguiçosa (lazy computing) para análise numérica.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
-
title: Awkward Array
text: Manipulação de dados JSON-like com sintaxe NumPy-like.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
-
title: uarray
text: Sistema de backend Python que dissocia a API da implementação; unumpy fornece uma API NumPy.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
-
title: tensorly
text: Ferramentas para aprendizagem com tensores, algebra e backends para usar NumPy, MXNet, PyTorch, TensorFlow ou CuPy sem esforço.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
-
text: Quase todos os cientistas que trabalham em Python se baseiam na potência do NumPy.
-
text: "NumPy traz o poder computacional de linguagens como C e Fortran para Python, uma linguagem muito mais fácil de aprender e usar. Com esse poder vem a simplicidade: uma solução no NumPy é frequentemente clara e elegante."
librariesrow1:
-
title: Computação quântica
alttext: Um chip de computador.
img: /images/content_images/sc_dom_img/quantum_computing.svg
-
title: Computação estatÃstica
alttext: Um gráfico com uma linha em movimento para cima.
img: /images/content_images/sc_dom_img/statistical_computing.svg
-
title: Processamento de sinais
alttext: Um gráfico de barras com valores positivos e negativos.
img: /images/content_images/sc_dom_img/signal_processing.svg
-
title: Processamento de imagens
alttext: Uma fotografia das montanhas.
img: /images/content_images/sc_dom_img/image_processing.svg
-
title: Gráficos e Redes
alttext: Um grafo simples.
img: /images/content_images/sc_dom_img/sd6.svg
-
title: Processos de Astronomia
alttext: Um telescópio.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
-
title: Psicologia Cognitiva
alttext: Uma cabeça humana com engrenagens.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
librariesrow2:
-
title: Bioinformática
alttext: Um pedaço de DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
-
title: Inferência Bayesiana
alttext: Um gráfico com uma curva em forma de sino.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
-
title: Análise Matemática
alttext: Quatro sÃmbolos matemáticos.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
-
title: QuÃmica
alttext: Um tubo de ensaio.
img: /images/content_images/sc_dom_img/chemistry.svg
-
title: Geociências
alttext: A Terra.
img: /images/content_images/sc_dom_img/geoscience.svg
-
title: Processamento Geográfico
alttext: Um mapa.
img: /images/content_images/sc_dom_img/GIS.svg
-
title: Arquitetura e Engenharia
alttext: Uma placa de desenvolvimento de microprocessador.
img: /images/content_images/sc_dom_img/robotics.svg
datascience:
intro: "NumPy está no centro de um rico ecossistema de bibliotecas de ciência de dados. Um fluxo de trabalho tÃpico de ciência de dados exploratório pode parecer assim:"
image1:
-
img: /images/content_images/ds-landscape.png
alttext: Diagrama de bibliotecas Python. As cinco categorias são 'Extrair, Transformar, Carregar', 'Exploração de Dados', 'Modelo de Dados', 'Avaliação de Dados' e 'Apresentação de Dados'.
image2:
-
img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circle. The circles labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
-
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org),[ Intake](https://intake.readthedocs.io),[PyJanitor](https://pyjanitor.readthedocs.io/)"
+ text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org),[ Intake](https://intake.readthedocs.io),[PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
-
text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org),[Seaborn](https://seaborn.pydata.org),[ Matplotlib](https://matplotlib.org),[ Altair](https://altair-viz.github.io)"
-
text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org),[ statsmodels](https://www.statsmodels.org/stable/index.html),[ PyMC3](https://docs.pymc.io),[ spaCy](https://spacy.io)"
-
text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash),[ Panel](https://panel.holoviz.org),[ Voila](https://github.com/voila-dashboards/voila)"
content:
-
text: For high data volumes, [Dask](https://dask.org) and[Ray](https://ray.io/) are designed to scale. Stabledeployments rely on data versioning ([DVC](https://dvc.org)),experiment tracking ([MLFlow](https://mlflow.org)), andworkflow automation ([Airflow](https://airflow.apache.org) and[Prefect](https://www.prefect.io)).
visualization:
images:
-
url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: Um streamplot feito em matplotlib
-
url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: Um gráfico scatter-plot feito em ggpy
-
url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: Um box-plot feito no plotly
-
url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: Um gráfico streamgraph feito em altair
-
url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A plot duplo com dois tipos de gráficos, um plot-graph e um gráfico de frequência feitos no seaborn
-
url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: Uma renderização de volume 3D feita no PyVista.
-
url: https://napari.org
img: /images/content_images/v_napari.png
alttext: Uma imagem multidimensional, feita em napari.
-
url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: Diagrama de Voronoi feito com vispy.
content:
-
text: NumPy é um componente essencial no crescente [campo de visualização em Python](https://pyviz.org/overviews/index.html), que inclui [Matplotlib](https://matplotlib.org), [Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly), [Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/), [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari), e [PyVista](https://github.com/pyvista/pyvista), para citar alguns.
-
text: O processamento de grandes arrays acelerado pela NumPy permite que os pesquisadores visualizem conjuntos de dados muito maiores do que o Python nativo poderia permitir.
|
numpy/numpy.org
|
b3320dd27c5f367ecca4b77e6765d8efd6cffd82
|
remove references to mxnet which has been discontinued (#747)
|
diff --git a/content/en/tabcontents.yaml b/content/en/tabcontents.yaml
index 2bf49d5..6dbdc89 100644
--- a/content/en/tabcontents.yaml
+++ b/content/en/tabcontents.yaml
@@ -1,300 +1,295 @@
params:
machinelearning:
paras:
- - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlowâs](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://mxnet.apache.org/) is another AI package, providing blueprints and templates for deep learning.
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlowâs](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
arraylibraries:
intro:
- text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
headers:
- text: Array Library
- text: Capabilities & Application areas
libraries:
- title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- title: JAX
text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://jax.readthedocs.io/
- title: Xarray
text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- - title: MXNet
- text: Deep learning framework suited for flexible research prototyping and production.
- img: /images/content_images/arlib/mxnet_logo.png
- alttext: MXNet
- url: https://mxnet.apache.org/
- title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://arrow.apache.org/
- title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipulate JSON-like data with NumPy-like idioms.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
- text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
+ text: Tensor learning, algebra and backends to seamlessly use NumPy, PyTorch, TensorFlow or CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Nearly every scientist working in Python draws on the power of NumPy.
- text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
libraries:
- title: Quantum Computing
alttext: A computer chip.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: http://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Statistical Computing
alttext: A line graph with the line moving up.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- url: https://www.statsmodels.org/
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- url: https://seaborn.pydata.org/
label: Seaborn
- title: Signal Processing
alttext: A bar chart with positive and negative values.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
- url: https://hyperspy.org/
label: HyperSpy
- title: Image Processing
alttext: An photograph of the mountains.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
- title: Graphs and Networks
alttext: A simple graph.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: Astronomy
alttext: A telescope.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- url: https://sunpy.org/
label: SunPy
- url: https://spacepy.github.io/
label: SpacePy
- title: Cognitive Psychology
alttext: A human head with gears.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformatics
alttext: A strand of DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
label: PyMC3
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Mathematical Analysis
alttext: Four mathematical symbols.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- url: https://www.cvxpy.org/
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: Chemistry
alttext: A test tube.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geoscience
alttext: The Earth.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Geographic Processing
alttext: A map.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Architecture & Engineering
alttext: A microprocessor development board.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
content:
- text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
- url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.
content:
- text: NumPy is an essential component in the burgeoning
[Python visualization landscape](https://pyviz.org/overviews/index.html),
which includes [Matplotlib](https://matplotlib.org),
[Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly),
[Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/),
[Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/),
and [PyVista](https://docs.pyvista.org/), to name a few.
- text: NumPy's accelerated processing of large arrays allows researchers to visualize
datasets far larger than native Python could handle.
|
numpy/numpy.org
|
87abc3538bec6022be3518cbeb71bb05e58f8ef3
|
Use markdown links (#743)
|
diff --git a/content/en/about.md b/content/en/about.md
index 8bd7af1..2b77f7d 100644
--- a/content/en/about.md
+++ b/content/en/about.md
@@ -1,91 +1,91 @@
---
title: About Us
sidebar: false
---
NumPy is an open source project that enables numerical computing with Python. It was created in 2005 building on the early work of the Numeric and Numarray libraries. NumPy will always be 100% open source software and free for all to use. It is released under the liberal terms of the [modified BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
NumPy is developed in the open on GitHub, through the consensus of the NumPy and wider scientific Python community. For more information on our governance approach, please see our [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html).
## Steering Council
The NumPy Steering Council is the project's governing body. Its role is to ensure, through working with and serving the broader NumPy community, the long-term sustainability of the project, both as a software package and community. The NumPy Steering Council currently consists of the following members (in alphabetical order, by last name):
- Sebastian Berg
- Ralf Gommers
- Charles Harris
- Stephan Hoyer
- Inessa Pawson
- Matti Picus
- Stéfan van der Walt
- Melissa Weber Mendonça
- Eric Wieser
Emeritus:
- Alex Griffing (2015-2017)
- Allan Haldane (2015-2021)
- Marten van Kerkwijk (2017-2019)
- Travis Oliphant (project founder, 2005-2012)
- Nathaniel Smith (2012-2021)
- Julian Taylor (2013-2021)
- Jaime Fernández del RÃo (2014-2021)
- Pauli Virtanen (2008-2021)
To contact the NumPy Steering Council, please email [email protected].
## Teams
The NumPy project leadership is actively working on diversifying contribution pathways to the project.<br>
NumPy currently has the following teams:
- development
- documentation
- triage
- website
- survey
- translations
- sprint mentors
- optimization
- funding and grants
-See the [Team]({{< relref "/teams" >}}) page for more info.
+See the [Team](/teams) page for more info.
## NumFOCUS Subcommittee
- Charles Harris
- Ralf Gommers
- Inessa Pawson
- Sebastian Berg
- External member: Thomas Caswell
## Sponsors
NumPy receives direct funding from the following sources:
{{< sponsors >}}
## Institutional Partners
Institutional Partners are organizations that support the project by employing people that contribute to NumPy as part of their job. Current Institutional Partners include:
- UC Berkeley (Stéfan van der Walt)
- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça)
- NVIDIA (Sebastian Berg)
{{< partners >}}
## Donate
If you have found NumPy useful in your work, research, or company, please consider a donation to the project commensurate with your resources. Any amount helps! All donations will be used strictly to fund the development of NumPyâs open source software, documentation, and community.
NumPy is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides NumPy with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit [numfocus.org](https://numfocus.org) for more information.
Donations to NumPy are managed by [NumFOCUS](https://numfocus.org). For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax advisor about your particular tax situation.
NumPy's Steering Council will make the decisions on how to best use any funds received. Technical and infrastructure priorities are documented on the [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
{{<opencollective>}}
diff --git a/content/en/teams/index.md b/content/en/teams/index.md
index 2c5a4c5..1baaaa3 100644
--- a/content/en/teams/index.md
+++ b/content/en/teams/index.md
@@ -1,36 +1,36 @@
---
title: NumPy Teams
sidebar: false
---
We are an international team on a mission to support scientific and research
communities worldwide by building quality, open-source software.
-[Join us]({{< relref "/contribute" >}})!
+[Join us](/contribute)!
### Maintainers
{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
### Docs team
{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
### Web team
{{< grid file="web-team.toml" columns="2 3 4 5" />}}
### Triage team
{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
### Survey team
{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
### Emeritus maintainers
{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# Governance
For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/ja/teams/index.md b/content/ja/teams/index.md
index cb6acb2..f7bd323 100644
--- a/content/ja/teams/index.md
+++ b/content/ja/teams/index.md
@@ -1,34 +1,34 @@
---
title: NumPyéçºãã¼ã
sidebar: false
---
-ç§ãã¡ã¯ãé«å質ã®ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ãæ§ç¯ãããã¨ã§ãä¸çä¸ã®ç§å¦ã»ç ç©¶ã³ãã¥ããã£ããµãã¼ããããã¨ã使å½ã¨ããå½éçãªãã¼ã ã§ãã æ¯é[åå ãã¦ãã ãã]({{< relref "/contribute" >}})!
+ç§ãã¡ã¯ãé«å質ã®ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ãæ§ç¯ãããã¨ã§ãä¸çä¸ã®ç§å¦ã»ç ç©¶ã³ãã¥ããã£ããµãã¼ããããã¨ã使å½ã¨ããå½éçãªãã¼ã ã§ãã æ¯é[åå ãã¦ãã ãã](/contribute)!
### Maintainers
{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
### Docs team
{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
### Web team
{{< grid file="web-team.toml" columns="2 3 4 5" />}}
### Triage team
{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
### Survey team
{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
### Emeritus maintainers
{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# ã¬ããã³ã¹
For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/pt/about.md b/content/pt/about.md
index 9482ec1..8461f68 100644
--- a/content/pt/about.md
+++ b/content/pt/about.md
@@ -1,90 +1,90 @@
---
title: Quem Somos
sidebar: false
---
NumPy é um projeto de código aberto que visa possibilitar a computação numérica com Python. Foi criado em 2005, com base no trabalho inicial das bibliotecas Numeric e Numarray. O NumPy sempre será 100% software de código aberto, livre para que todos usem. à lançado sob os termos liberais da [licença BSD modificada](https://github.com/numpy/numpy/blob/main/LICENSE.txt).
O NumPy é desenvolvido no GitHub, através do consenso da comunidade NumPy e de uma comunidade mais ampla de Python cientÃfico. Para obter mais informações sobre nossa abordagem de governança, por favor, consulte nosso [Documento de Governança](https://www.numpy.org/devdocs/dev/governance/index.html).
## Conselho Diretor (Steering Council)
O papel do Conselho Diretor do NumPy consiste em assegurar o bem-estar a longo prazo do projeto, tanto nos aspectos técnicos quanto na comunidade. Isso é feito através do trabalho com e para a comunidade NumPy em geral. O Conselho Diretor do NumPy atualmente consiste dos seguintes membros (em ordem alfabética, pelo sobrenome):
- Sebastian Berg
- Ralf Gommers
- Charles Harris
- Stephan Hoyer
- Inessa Pawson
- Matti Picus
- Stéfan van der Walt
- Melissa Weber Mendonça
- Eric Wieser
Membros Eméritos:
- Alex Griffing (2015-2017)
- Allan Haldane (2015-2021)
- Marten van Kerkwijk (2017-2019)
- Travis Oliphant (project founder, 2005-2012)
- Nathaniel Smith (2012-2021)
- Julian Taylor (2013-2021)
- Jaime Fernández del RÃo (2014-2021)
- Pauli Virtanen (2008-2021)
Para entrar em contato com o conselho diretor do NumPy, por favor envie um email para [email protected].
## Times
A liderança do projeto NumPy trabalha ativamente na diversificação dos caminhos possÃveis para contribuições.<br> Atualmente, o NumPy conta com os seguintes times:
- desenvolvimento
- documentação
- triagem
- website
- pesquisa
- traduções
- mentores para sprints de desenvolvimento
- otimização
- financiamento e bolsas
-Veja a página sobre os [Times]({{< relref "/teams" >}}) para mais informações.
+Veja a página sobre os [Times](/teams) para mais informações.
## Subcomitê NumFOCUS
- Charles Harris
- Ralf Gommers
- Inessa Pawson
- Sebastian Berg
- Membro externo: Thomas Caswell
## Patrocinadores
O NumPy recebe financiamento direto das seguintes fontes:
{{< sponsors >}}
## Parceiros Institucionais
Os Parceiros Institucionais são organizações que apoiam o projeto, empregando pessoas que contribuem para a NumPy como parte de seu trabalho. Os parceiros institucionais atuais incluem:
- UC Berkeley (Stéfan van der Walt)
- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça)
- NVIDIA (Sebastian Berg)
{{< partners >}}
## Doações
Se você achou o NumPy útil no seu trabalho, pesquisa ou empresa, por favor considere fazer uma doação para o projeto que seja compatÃvel com seus recursos. Qualquer quantidade ajuda! Todas as doações serão utilizadas estritamente para financiar o desenvolvimento do software de código aberto da NumPy, documentação e comunidade.
NumPy é um Projeto Patrocinado da NumFOCUS, uma instituição de caridade sem fins lucrativos nos Estados Unidos. A NumFOCUS fornece ao NumPy apoio fiscal, legal e administrativo para ajudar a garantir a saúde e a sustentabilidade do projeto. Visite [numfocus.org](https://numfocus.org) para obter mais informações.
Doações para o NumPy são gerenciadas pela [NumFOCUS](https://numfocus.org). Para doadores nos Estados Unidos, sua doação é dedutÃvel para fins fiscais na medida oferecida pela lei. Como em qualquer doação, você deve consultar seu conselheiro fiscal sobre sua situação fiscal em particular.
O Conselho Diretor da NumPy tomará as decisões sobre a melhor forma de utilizar os fundos recebidos. Prioridades técnicas e de infraestrutura estão documentadas no [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap).
{{<opencollective>}}
diff --git a/content/pt/teams/index.md b/content/pt/teams/index.md
index bdd16ff..b84f16a 100644
--- a/content/pt/teams/index.md
+++ b/content/pt/teams/index.md
@@ -1,34 +1,34 @@
---
title: Times NumPy
sidebar: false
---
-Somos uma equipe internacional com a missão de apoiar comunidades cientÃficas e de pesquisa em todo o mundo construindo software de código aberto de qualidade. [Junte-se a nós]({{< relref "/contribute" >}})!
+Somos uma equipe internacional com a missão de apoiar comunidades cientÃficas e de pesquisa em todo o mundo construindo software de código aberto de qualidade. [Junte-se a nós](/contribute)!
### Maintainers
{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
### Docs team
{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
### Web team
{{< grid file="web-team.toml" columns="2 3 4 5" />}}
### Triage team
{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
### Survey team
{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
### Emeritus maintainers
{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# Governança
Para a lista de pessoas no Conselho Diretor, veja [aqui](https://numpy.org/devdocs/dev/governance/people.html).
|
numpy/numpy.org
|
2f2dbe74b80458890e4026ca0891862dfffba55d
|
Fix: (.grid-container > div) background-color for dark-mode
|
diff --git a/assets/css/tabs.scss b/assets/css/tabs.scss
index e95eda6..c1b84be 100644
--- a/assets/css/tabs.scss
+++ b/assets/css/tabs.scss
@@ -1,137 +1,136 @@
[role="tablist"] {
justify-content: center;
}
table td:not([align]), table th:not([align]) {
text-align: inherit;
}
table td, table th {
vertical-align: top;
}
.tabs-section {
display: flex;
flex-direction: column;
}
.tabs-section .container {
display: flex;
flex-direction: column;
}
.tabs-title {
display: flex;
justify-content: center;
letter-spacing: 1.5px;
font-size: 27px;
margin: 30px 0;
}
.visualization, .data-science, .machine-learning, .array-libraries {
max-width: 900px;
margin: 15px auto;
}
@media only screen and (max-width: 1200px) {
.tabs-section {
margin: 30px 10px;
}
.tabs-title {
margin: 30px;
}
}
.grid-container {
display: grid;
grid-template-columns: auto auto;
grid-gap: 20px;
}
.grid-container > div {
- /* White, with 80% opacity */
- background-color: rgba(255, 255, 255, 0.8);
+ background-color: var(--pst-color-background);
text-align: middle;
}
@media only screen and (max-width: 600px) {
.grid-container {
display: block;
}
}
/* Visualization */
.visualization-images > img {
border-radius: 10px;
}
.image-grid {
display: grid;
grid-template-columns: auto auto auto auto;
grid-gap: 10px;
}
.image-grid > div {
background-color: var(--pst-color-surface);
border: 2px solid var(--pst-color-surface);
border-radius: 10px;
padding: 10px;
}
/* Scientific Domains */
section.scientific-domains {
max-width: 900px !important;
& ul {
display: flex;
flex-wrap: wrap;
list-style: none;
margin: 15px auto;
padding-inline-start: 0;
& li {
align-content: center;
font-size: 0.8rem;
line-height: 130%;
margin: 0.2em 0.4em;
flex-basis: 13%;
& header {
// FIXME: Use appropriate PST color for this header text.
color: var(--pst-color-text-base);
font-weight: 700;
// Ensure headers are the same minimum height (some wrap
// to two lines).
min-height: 3.3em;
text-align: left;
}
& img {
width: 50px;
height: 50px;
margin-bottom: 0.5em;
}
& ul {
align-content: left;
display: flex;
flex-direction: column;
padding-inline-start: 0;
& li {
margin-left: 0em;
}
}
}
}
}
/* Array Libraries */
img.first-column-layout {
max-width: 100px;
max-height: 30px;
margin: 0px 20px 0px 10px;
}
td.left-text {
vertical-align: middle;
}
|
numpy/numpy.org
|
abfb6120b491e0707d79de92bc6e347094274533
|
Fix: (.image-grid > div) Image background and border color
|
diff --git a/assets/css/tabs.scss b/assets/css/tabs.scss
index 420ec1d..e95eda6 100644
--- a/assets/css/tabs.scss
+++ b/assets/css/tabs.scss
@@ -1,137 +1,137 @@
[role="tablist"] {
justify-content: center;
}
table td:not([align]), table th:not([align]) {
text-align: inherit;
}
table td, table th {
vertical-align: top;
}
.tabs-section {
display: flex;
flex-direction: column;
}
.tabs-section .container {
display: flex;
flex-direction: column;
}
.tabs-title {
display: flex;
justify-content: center;
letter-spacing: 1.5px;
font-size: 27px;
margin: 30px 0;
}
.visualization, .data-science, .machine-learning, .array-libraries {
max-width: 900px;
margin: 15px auto;
}
@media only screen and (max-width: 1200px) {
.tabs-section {
margin: 30px 10px;
}
.tabs-title {
margin: 30px;
}
}
.grid-container {
display: grid;
grid-template-columns: auto auto;
grid-gap: 20px;
}
.grid-container > div {
/* White, with 80% opacity */
background-color: rgba(255, 255, 255, 0.8);
text-align: middle;
}
@media only screen and (max-width: 600px) {
.grid-container {
display: block;
}
}
/* Visualization */
.visualization-images > img {
border-radius: 10px;
}
.image-grid {
display: grid;
grid-template-columns: auto auto auto auto;
grid-gap: 10px;
}
.image-grid > div {
- background-color: rgb(238, 238, 238);
- border: 2px solid rgb(255, 255, 255);
+ background-color: var(--pst-color-surface);
+ border: 2px solid var(--pst-color-surface);
border-radius: 10px;
padding: 10px;
}
/* Scientific Domains */
section.scientific-domains {
max-width: 900px !important;
& ul {
display: flex;
flex-wrap: wrap;
list-style: none;
margin: 15px auto;
padding-inline-start: 0;
& li {
align-content: center;
font-size: 0.8rem;
line-height: 130%;
margin: 0.2em 0.4em;
flex-basis: 13%;
& header {
// FIXME: Use appropriate PST color for this header text.
color: var(--pst-color-text-base);
font-weight: 700;
// Ensure headers are the same minimum height (some wrap
// to two lines).
min-height: 3.3em;
text-align: left;
}
& img {
width: 50px;
height: 50px;
margin-bottom: 0.5em;
}
& ul {
align-content: left;
display: flex;
flex-direction: column;
padding-inline-start: 0;
& li {
margin-left: 0em;
}
}
}
}
}
/* Array Libraries */
img.first-column-layout {
max-width: 100px;
max-height: 30px;
margin: 0px 20px 0px 10px;
}
td.left-text {
vertical-align: middle;
}
|
numpy/numpy.org
|
c3724eeeba4b2ae5ae0d5335ef98ed4c779d7eb9
|
Fix: (sd6.svg) Make background transparent for dark mode inversion
|
diff --git a/static/images/content_images/sc_dom_img/sd6.svg b/static/images/content_images/sc_dom_img/sd6.svg
index 3a975bd..cee7b82 100644
--- a/static/images/content_images/sc_dom_img/sd6.svg
+++ b/static/images/content_images/sc_dom_img/sd6.svg
@@ -1,21 +1 @@
-<svg width="160" height="120" viewBox="0 0 160 120" fill="none" xmlns="http://www.w3.org/2000/svg">
-<g clip-path="url(#clip0_1_47)">
-<path d="M160 0.000457764H0.000442505V120H160V0.000457764Z" fill="white"/>
-<path d="M37.2153 94.7348C32.0668 71.5785 26.9223 48.4223 21.7778 25.2622" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round"/>
-<path d="M46.3715 96.8168C55.3246 85.4028 64.2738 73.9926 73.2231 62.5786" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round"/>
-<path d="M50.5317 104.469C76.9106 102.098 103.289 99.7231 129.668 97.3481" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round"/>
-<path d="M28.602 20.5317C42.6645 29.6723 56.7309 38.8129 70.7934 47.9536" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round"/>
-<path d="M89.2582 48.0356C96.5551 43.3872 103.852 38.7348 111.145 34.0864" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round"/>
-<path d="M137.489 85.8364C132.832 70.1293 128.18 54.4184 123.524 38.7114" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round"/>
-<path d="M39.5981 116.434C42.5083 116.434 45.3012 115.278 47.3598 113.219C49.4184 111.161 50.5747 108.368 50.5747 105.454C50.5747 102.543 49.4184 99.7505 47.3598 97.6919C45.3012 95.6333 42.5083 94.4731 39.5981 94.4731C36.684 94.4731 33.8911 95.6333 31.8325 97.6919C29.7739 99.7505 28.6176 102.543 28.6176 105.454C28.6176 108.368 29.7739 111.161 31.8325 113.219C33.8911 115.278 36.684 116.434 39.5981 116.434Z" fill="white" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round"/>
-<path d="M19.395 25.5278C22.3051 25.5278 25.0981 24.3677 27.1567 22.3091C29.2192 20.2505 30.3754 17.4575 30.3754 14.5474C30.3754 11.6333 29.2192 8.84033 27.1567 6.78174C25.0981 4.72314 22.3051 3.56689 19.395 3.56689C16.4809 3.56689 13.688 4.72314 11.6294 6.78174C9.57077 8.84033 8.41452 11.6333 8.41452 14.5474C8.41452 17.4575 9.57077 20.2505 11.6294 22.3091C13.688 24.3677 16.4809 25.5278 19.395 25.5278Z" fill="white" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round"/>
-<path d="M80.0005 64.9185C82.9106 64.9185 85.7036 63.7622 87.7661 61.7036C89.8247 59.645 90.9809 56.8521 90.9809 53.938C90.9809 51.0279 89.8247 48.2349 87.7661 46.1763C85.7036 44.1177 82.9106 42.9615 80.0005 42.9615C77.0903 42.9615 74.2973 44.1177 72.2348 46.1763C70.1762 48.2349 69.02 51.0279 69.02 53.938C69.02 56.8521 70.1762 59.645 72.2348 61.7036C74.2973 63.7622 77.0903 64.9185 80.0005 64.9185Z" fill="white" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round"/>
-<path d="M140.606 107.344C143.52 107.344 146.313 106.188 148.372 104.129C150.43 102.071 151.586 99.2778 151.586 96.3638C151.586 93.4536 150.43 90.6606 148.372 88.5981C146.313 86.5396 143.52 85.3833 140.606 85.3833C137.696 85.3833 134.903 86.5396 132.844 88.5981C130.782 90.6606 129.625 93.4536 129.625 96.3638C129.625 99.2778 130.782 102.071 132.844 104.129C134.903 106.188 137.696 107.344 140.606 107.344Z" fill="white" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round"/>
-<path d="M120.403 39.1606C123.317 39.1606 126.11 38.0044 128.168 35.9458C130.227 33.8872 131.383 31.0942 131.383 28.1841C131.383 25.27 130.227 22.477 128.168 20.4185C126.11 18.3599 123.317 17.2036 120.403 17.2036C117.493 17.2036 114.7 18.3599 112.641 20.4185C110.582 22.477 109.426 25.27 109.426 28.1841C109.426 31.0942 110.582 33.8872 112.641 35.9458C114.7 38.0044 117.493 39.1606 120.403 39.1606Z" fill="white" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round"/>
-</g>
-<defs>
-<clipPath id="clip0_1_47">
-<rect width="160" height="120" fill="white"/>
-</clipPath>
-</defs>
-</svg>
+<svg xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" width="160" height="120" viewBox="0 0 160 120" fill="none" id="svg33" sodipodi:docname="sd6.svg" inkscape:version="1.0.2 (e86c870879, 2021-01-15)"><sodipodi:namedview pagecolor="#ffffff" bordercolor="#666666" borderopacity="1" objecttolerance="10" gridtolerance="10" guidetolerance="10" inkscape:pageopacity="0" inkscape:pageshadow="2" inkscape:window-width="1920" inkscape:window-height="1154" id="namedview35" showgrid="false" inkscape:zoom="5.6666667" inkscape:cx="80" inkscape:cy="60" inkscape:window-x="1920" inkscape:window-y="22" inkscape:window-maximized="1" inkscape:current-layer="svg33"/><g id="g909"><path d="M37.2153 94.7348c-5.1485-23.1563-10.293-46.3125-15.4375-69.4726" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round" id="path4"/><path d="M46.3715 96.8168c8.9531-11.414 17.9023-22.8242 26.8516-34.2382" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round" id="path6"/><path d="m50.5317 104.469c26.3789-2.371 52.7573-4.7459 79.1363-7.1209" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round" id="path8"/><path d="m28.602 20.5317c14.0625 9.1406 28.1289 18.2812 42.1914 27.4219" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round" id="path10"/><path d="M89.2582 48.0356C96.5551 43.3872 103.852 38.7348 111.145 34.0864" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round" id="path12"/><path d="M137.489 85.8364C132.832 70.1293 128.18 54.4184 123.524 38.7114" stroke="#013243" stroke-width="9.99999" stroke-linecap="round" stroke-linejoin="round" id="path14"/><path d="m39.5981 116.434c2.9102.0 5.7031-1.156 7.7617-3.215 2.0586-2.058 3.2149-4.851 3.2149-7.765.0-2.911-1.1563-5.7035-3.2149-7.7621s-4.8515-3.2188-7.7617-3.2188c-2.9141.0-5.707 1.1602-7.7656 3.2188s-3.2149 4.8511-3.2149 7.7621c0 2.914 1.1563 5.707 3.2149 7.765 2.0586 2.059 4.8515 3.215 7.7656 3.215z" fill="#fff" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round" id="path16" style="fill:none"/><path d="m19.395 25.5278c2.9101.0 5.7031-1.1601 7.7617-3.2187 2.0625-2.0586 3.2187-4.8516 3.2187-7.7617.0-2.9141-1.1562-5.70707-3.2187-7.76566-2.0586-2.0586-4.8516-3.21485-7.7617-3.21485-2.9141.0-5.707 1.15625-7.7656 3.21485-2.05863 2.05859-3.21488 4.85156-3.21488 7.76566.0 2.9101 1.15625 5.7031 3.21488 7.7617 2.0586 2.0586 4.8515 3.2187 7.7656 3.2187z" fill="#fff" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round" id="path18" style="fill:none"/><path d="m80.0005 64.9185c2.9101.0 5.7031-1.1563 7.7656-3.2149 2.0586-2.0586 3.2148-4.8515 3.2148-7.7656.0-2.9101-1.1562-5.7031-3.2148-7.7617-2.0625-2.0586-4.8555-3.2148-7.7656-3.2148-2.9102.0-5.7032 1.1562-7.7657 3.2148-2.0586 2.0586-3.2148 4.8516-3.2148 7.7617.0 2.9141 1.1562 5.707 3.2148 7.7656 2.0625 2.0586 4.8555 3.2149 7.7657 3.2149z" fill="#fff" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round" id="path20" style="fill:none"/><path d="m140.606 107.344c2.914.0 5.707-1.156 7.766-3.215 2.058-2.058 3.214-4.8512 3.214-7.7652.0-2.9102-1.156-5.7032-3.214-7.7657-2.059-2.0585-4.852-3.2148-7.766-3.2148-2.91.0-5.703 1.1563-7.762 3.2148-2.062 2.0625-3.219 4.8555-3.219 7.7657.0 2.914 1.157 5.7072 3.219 7.7652 2.059 2.059 4.852 3.215 7.762 3.215z" fill="#fff" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round" id="path22" style="fill:none"/><path d="m120.403 39.1606c2.914.0 5.707-1.1562 7.765-3.2148 2.059-2.0586 3.215-4.8516 3.215-7.7617.0-2.9141-1.156-5.7071-3.215-7.7656-2.058-2.0586-4.851-3.2149-7.765-3.2149-2.91.0-5.703 1.1563-7.762 3.2149-2.059 2.0585-3.215 4.8515-3.215 7.7656.0 2.9101 1.156 5.7031 3.215 7.7617s4.852 3.2148 7.762 3.2148z" fill="#fff" stroke="#013243" stroke-width="9.99999" stroke-linejoin="round" id="path24" style="fill:none"/></g><defs id="defs31"/></svg>
\ No newline at end of file
|
numpy/numpy.org
|
3e8f22a4825940e53e18b7364526f4fbaaa60117
|
Fix: .scientific-domains header color
|
diff --git a/assets/css/tabs.scss b/assets/css/tabs.scss
index 489341f..420ec1d 100644
--- a/assets/css/tabs.scss
+++ b/assets/css/tabs.scss
@@ -1,137 +1,137 @@
[role="tablist"] {
justify-content: center;
}
table td:not([align]), table th:not([align]) {
text-align: inherit;
}
table td, table th {
vertical-align: top;
}
.tabs-section {
display: flex;
flex-direction: column;
}
.tabs-section .container {
display: flex;
flex-direction: column;
}
.tabs-title {
display: flex;
justify-content: center;
letter-spacing: 1.5px;
font-size: 27px;
margin: 30px 0;
}
.visualization, .data-science, .machine-learning, .array-libraries {
max-width: 900px;
margin: 15px auto;
}
@media only screen and (max-width: 1200px) {
.tabs-section {
margin: 30px 10px;
}
.tabs-title {
margin: 30px;
}
}
.grid-container {
display: grid;
grid-template-columns: auto auto;
grid-gap: 20px;
}
.grid-container > div {
/* White, with 80% opacity */
background-color: rgba(255, 255, 255, 0.8);
text-align: middle;
}
@media only screen and (max-width: 600px) {
.grid-container {
display: block;
}
}
/* Visualization */
.visualization-images > img {
border-radius: 10px;
}
.image-grid {
display: grid;
grid-template-columns: auto auto auto auto;
grid-gap: 10px;
}
.image-grid > div {
background-color: rgb(238, 238, 238);
border: 2px solid rgb(255, 255, 255);
border-radius: 10px;
padding: 10px;
}
/* Scientific Domains */
section.scientific-domains {
max-width: 900px !important;
& ul {
display: flex;
flex-wrap: wrap;
list-style: none;
margin: 15px auto;
padding-inline-start: 0;
& li {
align-content: center;
font-size: 0.8rem;
line-height: 130%;
margin: 0.2em 0.4em;
flex-basis: 13%;
& header {
// FIXME: Use appropriate PST color for this header text.
- color: var(--colorPrimaryDark);
+ color: var(--pst-color-text-base);
font-weight: 700;
// Ensure headers are the same minimum height (some wrap
// to two lines).
min-height: 3.3em;
text-align: left;
}
& img {
width: 50px;
height: 50px;
margin-bottom: 0.5em;
}
& ul {
align-content: left;
display: flex;
flex-direction: column;
padding-inline-start: 0;
& li {
margin-left: 0em;
}
}
}
}
}
/* Array Libraries */
img.first-column-layout {
max-width: 100px;
max-height: 30px;
margin: 0px 20px 0px 10px;
}
td.left-text {
vertical-align: middle;
}
|
numpy/numpy.org
|
957a264fdb8dce4069ad7a1c6040a258b6f5edac
|
Replace grid1 shotcode with grid
|
diff --git a/content/en/_index.md b/content/en/_index.md
index 8f69427..9e9534d 100644
--- a/content/en/_index.md
+++ b/content/en/_index.md
@@ -1,49 +1,49 @@
---
title:
---
-{{< grid1 columns="1 2 2 3" >}}
+{{< grid columns="1 2 2 3" >}}
[[item]]
type = 'card'
title = 'Powerful N-dimensional arrays'
body = '''
Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.
'''
[[item]]
type = 'card'
title = 'Numerical computing tools'
body = '''
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.
'''
[[item]]
type = 'card'
title = 'Open source'
body = '''
Distributed under a liberal [BSD license](https://github.com/numpy/numpy/blob/main/LICENSE.txt), NumPy is developed and maintained [publicly on GitHub](https://github.com/numpy/numpy) by a vibrant, responsive, and diverse [community](/community).
'''
[[item]]
type = 'card'
title = 'Interoperable'
body = '''
NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
'''
[[item]]
type = 'card'
title = 'Performant'
body = '''
The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.
'''
[[item]]
type = 'card'
title = 'Easy to use'
body = '''
NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
'''
-{{< /grid1>}}
+{{< /grid>}}
diff --git a/content/en/teams/index.md b/content/en/teams/index.md
index 824152b..2c5a4c5 100644
--- a/content/en/teams/index.md
+++ b/content/en/teams/index.md
@@ -1,36 +1,36 @@
---
title: NumPy Teams
sidebar: false
---
We are an international team on a mission to support scientific and research
communities worldwide by building quality, open-source software.
[Join us]({{< relref "/contribute" >}})!
### Maintainers
-{{< grid1 file="maintainers.toml" columns="2 3 4 5" />}}
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
### Docs team
-{{< grid1 file="docs-team.toml" columns="2 3 4 5" />}}
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
### Web team
-{{< grid1 file="web-team.toml" columns="2 3 4 5" />}}
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
### Triage team
-{{< grid1 file="triage-team.toml" columns="2 3 4 5" />}}
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
### Survey team
-{{< grid1 file="survey-team.toml" columns="2 3 4 5" />}}
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
### Emeritus maintainers
-{{< grid1 file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# Governance
For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/ja/_index.md b/content/ja/_index.md
index 192989e..1109f91 100644
--- a/content/ja/_index.md
+++ b/content/ja/_index.md
@@ -1,52 +1,52 @@
---
title:
---
-{{< grid1 columns="1 2 2 3" >}}
+{{< grid columns="1 2 2 3" >}}
[[item]]
type = 'card'
title = 'å¼·åãªå¤æ¬¡å
é
å'
body = '''
NumPyã®é«éã§å¤æ©è½ãªãã¯ãã«åè¨ç®ãã¤ã³ããã¯ã¹å¦çãããã¼ããã£ã¹ãã®èãæ¹ã¯ãç¾å¨ã®é
åè¨ç®ã«ãããããã¡ã¯ãã»ã¹ã¿>ã³ãã¼ãã§ãã
'''
[[item]]
type = 'card'
title = 'æ°å¤è¨ç®ãã¼ã«ç¾¤'
body = '''
NumPyã¯ãæ§ã
ãªæ°å¦é¢æ°ãä¹±æ°çæå¨ãç·å½¢ä»£æ°ã«ã¼ãã³ããã¼ãªã¨å¤æãªã©ãæä¾ãã¦ãã¾ãã
'''
[[item]]
type = 'card'
title = 'ç¸äºéç¨æ§'
body = '''
NumPyã¯ãå¹
åºããã¼ãã¦ã§ã¢ã¨ã³ã³ãã¥ã¼ãã£ã³ã°ã»ãã©ãããã©ã¼ã ããµãã¼ããã¦ããã忣å¦çãGPUãçè¡åã©ã¤ãã©ãªã«ã対
å¿ãã¦ãã¾ãã
'''
[[item]]
type = 'card'
title = 'é«ããã©ã¼ãã³ã¹'
body = '''
NumPyã®å¤§é¨åã¯æé©åãããCè¨èªã®ã³ã¼ãã§æ§æããã¦ãã¾ããããã«ããPythonã®æè»æ§ã¨ã³ã³ãã¤ã«ãããã³ã¼ãã®é«éæ§ã®ä¸¡æ¹
ã享åã§ãã¾ãã
'''
[[item]]
type = 'card'
title = '使ãããã'
body = '''
NumPyã®é«æ°´æºãªã·ã³ã¿ãã¯ã¹ã¯ãã©ããªããã¯ã°ã©ã¦ã³ããçµé¨ãæã¤ã®ããã°ã©ãã¼ã§ãç°¡åã«å©ç¨ãããã¨ãã§ããçç£æ§ãé«ã>ããã¨ãã§ãã¾ãã
'''
[[item]]
type = 'card'
title = 'ãªã¼ãã³ã½ã¼ã¹'
body = '''
NumPyã¯ãå¯å®¹ãª[BSDã©ã¤ã»ã³ã¹](https://github.com/numpy/numpy/blob/main/LICENSE.txt)ã§å
¬éããã¦ãã¾ããNumPyã¯æ´»çºã§ãäº>ããå°éãã夿§æ§ãèªãåã[ã³ãã¥ããã£](/ja/community)ã«ãã£ã¦ã [GitHub](https://github.com/numpy/numpy)ä¸ã§ãªã¼ãã³ã«éçºããã¦ãã¾
ã.
'''
-{{< /grid1 >}}
+{{< /grid >}}
diff --git a/content/ja/teams/index.md b/content/ja/teams/index.md
index bb60e53..cb6acb2 100644
--- a/content/ja/teams/index.md
+++ b/content/ja/teams/index.md
@@ -1,34 +1,34 @@
---
title: NumPyéçºãã¼ã
sidebar: false
---
ç§ãã¡ã¯ãé«å質ã®ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ãæ§ç¯ãããã¨ã§ãä¸çä¸ã®ç§å¦ã»ç ç©¶ã³ãã¥ããã£ããµãã¼ããããã¨ã使å½ã¨ããå½éçãªãã¼ã ã§ãã æ¯é[åå ãã¦ãã ãã]({{< relref "/contribute" >}})!
### Maintainers
-{{< grid1 file="maintainers.toml" columns="2 3 4 5" />}}
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
### Docs team
-{{< grid1 file="docs-team.toml" columns="2 3 4 5" />}}
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
### Web team
-{{< grid1 file="web-team.toml" columns="2 3 4 5" />}}
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
### Triage team
-{{< grid1 file="triage-team.toml" columns="2 3 4 5" />}}
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
### Survey team
-{{< grid1 file="survey-team.toml" columns="2 3 4 5" />}}
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
### Emeritus maintainers
-{{< grid1 file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# ã¬ããã³ã¹
For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/pt/_index.md b/content/pt/_index.md
index db817f5..0a39687 100644
--- a/content/pt/_index.md
+++ b/content/pt/_index.md
@@ -1,49 +1,49 @@
---
title:
---
-{{< grid1 columns="1 2 2 3" >}}
+{{< grid columns="1 2 2 3" >}}
[[item]]
type = 'card'
title = 'Arrays n-dimensionais poderosas'
body = '''
Rápidos e versáteis, os conceitos de vetorização, indexação e broadcasting do NumPy são, na prática, o padrão em computação com arrays.
'''
[[item]]
type = 'card'
title = 'Ferramentas de computação numérica'
body = '''
O NumPy oferece um conjunto completo de funções matemáticas, geradores de números aleatórios, rotinas de álgebra linear, transformadas de Fourier, e mais.
'''
[[item]]
type = 'card'
title = 'Interoperabilidade'
body = '''
O NumPy suporta um grande número de plataformas de hardware e computação, e pode ser combinado com bibliotecas de computação com arrays esparsas, distribuidas ou em GPUs.
'''
[[item]]
type = 'card'
title = 'Alto desempenho'
body = '''
O núcleo do NumPy é feito de código otimizado em C. Experimente a flexibilidade do Python com a velocidade de código compilado.
'''
[[item]]
type = 'card'
title = 'Fácil de usar'
body = '''
A sintaxe de alto nÃvel do NumPy torna-o acessÃvel e produtivo para programadores de qualquer nÃvel de experiência e formação.
'''
[[item]]
type = 'card'
title = 'Código aberto'
body = '''
Distribuido com uma [licença BSD](https://github.com/numpy/numpy/blob/main/LICENSE.txt) liberal, o NumPy é desenvolvido e mantido [publicamente no GitHub](https://github.com/numpy/numpy) por uma [comunidade](/pt/community) vibrante, responsiva, e diversa.
'''
-{{< /grid1 >}}
+{{< /grid >}}
diff --git a/content/pt/teams/index.md b/content/pt/teams/index.md
index cc50b7b..bdd16ff 100644
--- a/content/pt/teams/index.md
+++ b/content/pt/teams/index.md
@@ -1,34 +1,34 @@
---
title: Times NumPy
sidebar: false
---
Somos uma equipe internacional com a missão de apoiar comunidades cientÃficas e de pesquisa em todo o mundo construindo software de código aberto de qualidade. [Junte-se a nós]({{< relref "/contribute" >}})!
### Maintainers
-{{< grid1 file="maintainers.toml" columns="2 3 4 5" />}}
+{{< grid file="maintainers.toml" columns="2 3 4 5" />}}
### Docs team
-{{< grid1 file="docs-team.toml" columns="2 3 4 5" />}}
+{{< grid file="docs-team.toml" columns="2 3 4 5" />}}
### Web team
-{{< grid1 file="web-team.toml" columns="2 3 4 5" />}}
+{{< grid file="web-team.toml" columns="2 3 4 5" />}}
### Triage team
-{{< grid1 file="triage-team.toml" columns="2 3 4 5" />}}
+{{< grid file="triage-team.toml" columns="2 3 4 5" />}}
### Survey team
-{{< grid1 file="survey-team.toml" columns="2 3 4 5" />}}
+{{< grid file="survey-team.toml" columns="2 3 4 5" />}}
### Emeritus maintainers
-{{< grid1 file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+{{< grid file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# Governança
Para a lista de pessoas no Conselho Diretor, veja [aqui](https://numpy.org/devdocs/dev/governance/people.html).
|
numpy/numpy.org
|
9538ad94353ace4887ce7a44dd740333fb090936
|
Use theme's figure shortcode
|
diff --git a/content/en/case-studies/blackhole-image.md b/content/en/case-studies/blackhole-image.md
index b7c0035..969af15 100644
--- a/content/en/case-studies/blackhole-image.md
+++ b/content/en/case-studies/blackhole-image.md
@@ -1,118 +1,143 @@
---
title: "Case Study: First Image of a Black Hole"
sidebar: false
---
-{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**Black Hole M87**" alt="black hole image" attr="*(Image Credits: Event Horizon Telescope Collaboration)*" attrlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg" >}}
+{{< figure >}}
+src = '/images/content_images/cs/blackhole.jpg'
+title = 'Black Hole M87'
+alt = 'black hole image'
+attribution = '(Image Credits: Event Horizon Telescope Collaboration)'
+attributionlink = 'https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg'
+{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="Katie Bouman, *Assistant Professor, Computing & Mathematical Sciences, Caltech*"
>}}
Imaging the M87 Black Hole is like trying to see something that is by definition impossible to see.
{{< /blockquote >}}
## A telescope the size of the earth
The [Event Horizon telescope (EHT)](https://eventhorizontelescope.org) is an
array of eight ground-based radio telescopes forming a computational telescope
the size of the earth, studing the universe with unprecedented
sensitivity and resolution. The huge virtual telescope, which uses a technique
called very-long-baseline interferometry (VLBI), has an angular resolution of
[20 micro-arcseconds][resolution] â enough to read a newspaper in New York
from a sidewalk café in Paris!
[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
### Key Goals and Results
* **A New View of the Universe:**
The groundwork for the EHT's groundbreaking image had been laid 100 years
earlier when [Sir Arthur Eddington][eddington] yielded the first
observational support of Einstein's theory of general relativity.
* **The Black Hole:** EHT was trained on a supermassive black hole
approximately 55 million light-years from Earth, lying at the center
of the galaxy Messier 87 (M87) in the Virgo galaxy cluster. Its mass is
6.5 billion times the Sun's. It had been studied for
[over 100 years](https://www.jpl.nasa.gov/news/news.php?feature=7385), but never before
had a black hole been visually observed.
* **Comparing Observations to Theory:** From Einsteinâs general theory of
relativity, scientists expected to find a shadow-like region caused by
gravitational bending and capture of light. Scientists could
use it to measure the black hole's enormous mass.
[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
### The Challenges
* **Computational scale**
EHT poses massive data-processing challenges, including rapid atmospheric
phase fluctuations, large recording bandwidth, and telescopes that are
widely dissimilar and geographically dispersed.
* **Too much information**
Each day EHT generates over 350 terabytes of observations, stored on
helium-filled hard drives. Reducing the volume and complexity of this much
data is enormously difficult.
* **Into the unknown**
When the goal is to see something never before seen, how can scientists be
confident the image is correct?
-{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**EHT Data Processing Pipeline**" alt="data pipeline" align="middle" attr="(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}
+{{< figure >}}
+src = '/images/content_images/cs/dataprocessbh.png'
+title = 'EHT Data Processing Pipeline'
+alt = 'data pipeline'
+align = 'center'
+attribution = '(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)'
+attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
+{{< /figure >}}
## NumPyâs Role
What if there's a problem with the data? Or perhaps an algorithm relies too
heavily on a particular assumption. Will the image change drastically if a
single parameter is changed?
The EHT collaboration met these challenges by having independent teams
evaluate the data, using both established and cutting-edge image reconstruction
techniques. When results proved consistent, they were combined to yield the
first-of-a-kind image of the black hole.
Their work illustrates the role the scientific Python ecosystem plays in
advancing science through collaborative data analysis.
-{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="role of numpy" caption="**The role of NumPy in Black Hole imaging**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/bh_numpy_role.png'
+alt = 'role of numpy'
+title = 'The role of NumPy in Black Hole imaging'
+{{< /figure >}}
For example, the [`eht-imaging`][ehtim] Python package provides tools for
simulating and performing image reconstruction on VLBI data.
NumPy is at the core of array data processing used
in this package, as illustrated by the partial software
dependency chart below.
-{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="ehtim dependency map highlighting numpy" caption="**Software dependency chart of ehtim package highlighting NumPy**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/ehtim_numpy.png'
+alt = 'ehtim dependency map highlighting numpy'
+title = 'Software dependency chart of ehtim package highlighting NumPy'
+{{< /figure >}}
[ehtim]: https://github.com/achael/eht-imaging
Besides NumPy, many other packages, such as
[SciPy](https://www.scipy.org) and [Pandas](https://pandas.io), are part of the
data processing pipeline for imaging the black hole.
The standard astronomical file formats and time/coordinate transformations
were handled by [Astropy][astropy], while [Matplotlib][mpl] was used
in visualizing data throughout the analysis pipeline, including the generation
of the final image of the black hole.
[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
## Summary
The efficient and adaptable n-dimensional array that is NumPy's central feature
enabled researchers to manipulate large numerical datasets, providing a
foundation for the first-ever image of a black hole. A landmark moment in
science, it gives stunning visual evidence of Einsteinâs theory. The
achievement encompasses not only technological breakthroughs but also
international collaboration among over 200 scientists and some of the world's
best radio observatories. Innovative algorithms and data processing
techniques, improving upon existing astronomical models, helped unfold a
mystery of the universe.
-{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_bh_benefits.png'
+alt = 'numpy benefits'
+title = 'Key NumPy Capabilities utilized'
+{{< /figure >}}
diff --git a/content/en/case-studies/cricket-analytics.md b/content/en/case-studies/cricket-analytics.md
index 77aef51..926a562 100644
--- a/content/en/case-studies/cricket-analytics.md
+++ b/content/en/case-studies/cricket-analytics.md
@@ -1,141 +1,164 @@
---
title: "Case Study: Cricket Analytics, the game changer!"
sidebar: false
---
-{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="**IPLT20, the biggest Cricket Festival in India**" alt="Indian Premier League Cricket cup and stadium" attr="*(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))*" attrlink="https://unsplash.com/@aksh1802" >}}
+{{< figure >}}
+src = '/images/content_images/cs/ipl-stadium.png'
+title = 'IPLT20, the biggest Cricket Festival in India'
+alt = 'Indian Premier League Cricket cup and stadium'
+attribution = '(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))'
+attributionlink = 'https://unsplash.com/@aksh1802'
+{{< /figure >}}
{{< blockquote
cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
by="M S Dhoni, *International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL*"
>}}
You don't play for the crowd, you play for the country.
{{< /blockquote >}}
## About Cricket
It would be an understatement to state that Indians love cricket. The game is
played in just about every nook and cranny of India, rural or urban, popular
with the young and the old alike, connecting billions in India unlike any other sport.
Cricket enjoys lots of media attention. There is a significant amount of
[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
fame at stake. Over the last several years, technology has literally been a game
changer. Audiences are spoilt for choice with streaming media, tournaments,
affordable access to mobile based live cricket watching, and more.
The Indian Premier League (IPL) is a professional Twenty20 cricket
league, founded in 2008. It is one of the most attended cricketing events in
the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
in 2019.
Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
by a bowler, the matches won by a cricket team, the number of times a batsman
responds in a certain way to a kind of bowling attack, etc. The capability to
dig into cricketing numbers for both improving performance and studying
the business opportunities, overall market, and economics of cricket via powerful
analytics tools, powered by numerical computing software such as NumPy, is a big
deal. Cricket analytics provides interesting insights into the game and
predictive intelligence regarding game outcomes.
Today, there are rich and almost infinite troves of cricket game records and
statistics available, e.g., [ESPN
cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) and
[cricsheet](https://cricsheet.org). These and several such cricket databases
have been used for [cricket
analysis](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances)
using the latest machine learning and predictive modelling algorithms.
Media and entertainment platforms along with professional sports bodies
associated with the game use technology and analytics for determining key
metrics for improving match winning chances:
* batting performance moving average,
* score forecasting,
* gaining insights into fitness and performance of a player against different opposition,
* player contribution to wins and losses for making strategic decisions on team composition
-{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="**Cricket Pitch, the focal point in the field**" alt="A cricket pitch with bowler and batsmen" align="middle" attr="*(Image credit: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+{{< figure >}}
+src = '/images/content_images/cs/cricket-pitch.png'
+title = 'Cricket Pitch, the focal point in the field'
+alt = 'A cricket pitch with bowler and batsmen'
+align = 'center'
+attribution = '(Image credit: Debarghya Das)'
+attributionlink = 'http://debarghyadas.com/files/IPLpaper.pdf'
+{{< /figure >}}
### Key Data Analytics Objectives
* Sports data analytics are used not only in cricket but many [other
sports](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) for
improving the overall team performance and maximizing winning chances.
* Real-time data analytics can help in gaining insights even during the game
for changing tactics by the team and by associated businesses for economic
benefits and growth.
* Besides historical analysis, predictive models are
harnessed to determine the possible match outcomes that require significant
number crunching and data science know-how, visualization tools and capability
to include newer observations in the analysis.
-{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="pose estimator" caption="**Cricket Pose Estimator**" attr="*(Image credit: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+{{< figure >}}
+src = '/images/content_images/cs/player-pose-estimator.png'
+alt = 'pose estimator'
+title = 'Cricket Pose Estimator'
+attribution = '(Image credit: connect.vin)'
+attributionlink = 'https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/'
+{{< /figure >}}
### The Challenges
* **Data Cleaning and preprocessing**
IPL has expanded cricket beyond the classic test match format to a much
larger scale. The number of matches played every season across various
formats has increased and so has the data, the algorithms, newer sports data
analysis technologies and simulation models. Cricket data analysis requires
field mapping, player tracking, ball tracking, player shot analysis, and
several other aspects involved in how the ball is delivered, its angle, spin,
velocity, and trajectory. All these factors together have increased the
complexity of data cleaning and preprocessing.
* **Dynamic Modeling**
In cricket, just like any other sport,
there can be a large number of variables related to tracking various numbers
of players on the field, their attributes, the ball, and several possibilities
of potential actions. The complexity of data analytics and modeling is
directly proportional to the kind of predictive questions that are put forth
during analysis and are highly dependent on data representation and the
model. Things get even more challenging in terms of computation, data
comparisons when dynamic cricket play predictions are sought such as what
would have happened if the batsman had hit the ball at a different angle or
velocity.
* **Predictive Analytics Complexity**
Much of the decision making in cricket is based on questions such as "how
often does a batsman play a certain kind of shot if the ball delivery is of a
particular type", or "how does a bowler change his line and length if the
batsman responds to his delivery in a certain way".
This kind of predictive analytics query requires highly granular dataset
availability and the capability to synthesize data and create generative
models that are highly accurate.
## NumPyâs Role in Cricket Analytics
Sports Analytics is a thriving field. Many researchers and companies
[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
besides using the latest machine learning and AI techniques. NumPy has been used
for various kinds of cricket related sporting analytics such as:
* **Statistical Analysis:** NumPy's numerical capabilities help estimate the
statistical significance of observational data or match events in the context
of various player and game tactics, estimating the game outcome by comparison
with a generative or static model.
[Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
are used for tactical analysis.
* **Data Visualization:** Data graphing and [visualization](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) provide useful insights into relationship between various datasets.
## Summary
Sports Analytics is a game changer when it comes to how professional games are
played, especially how strategic decision making happens, which until recently
was primarily done based on âgut feeling" or adherence to past traditions. NumPy
forms a solid foundation for a large set of Python packages which provide higher
level functions related to data analytics, machine learning, and AI algorithms.
These packages are widely deployed to gain real-time insights that help in
decision making for game-changing outcomes, both on field as well as to draw
inferences and drive business around the game of cricket. Finding out the
hidden parameters, patterns, and attributes that lead to the outcome of a
cricket match helps the stakeholders to take notice of game insights that are
otherwise hidden in numbers and statistics.
-{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="Diagram showing benefits of using NumPy for cricket analytics" caption="**Key NumPy Capabilities utilized**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_ca_benefits.png'
+alt = 'Diagram showing benefits of using NumPy for cricket analytics'
+title = 'Key NumPy Capabilities utilized'
+{{< /figure >}}
diff --git a/content/en/case-studies/deeplabcut-dnn.md b/content/en/case-studies/deeplabcut-dnn.md
index 2d9e428..9124368 100644
--- a/content/en/case-studies/deeplabcut-dnn.md
+++ b/content/en/case-studies/deeplabcut-dnn.md
@@ -1,149 +1,184 @@
---
title: "Case Study: DeepLabCut 3D Pose Estimation"
sidebar: false
---
-{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Analyzing mice hand-movement using DeepLapCut**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut" >}}
+{{< figure >}}
+src = '/images/content_images/cs/mice-hand.gif'
+title = 'Analyzing mice hand-movement using DeepLapCut'
+alt = 'micehandanim'
+attribution = '(Source: www.deeplabcut.org )'
+attributionlink = 'http://www.mousemotorlab.org/deeplabcut'
+{{< /figure >}}
{{< blockquote
cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
by="Alexander Mathis, *Assistant Professor, Ãcole polytechnique fédérale de Lausanne* ([EPFL](https://www.epfl.ch/en/))"
>}}
Open Source Software is accelerating Biomedicine. DeepLabCut enables automated video analysis of animal behavior using Deep Learning.
{{< /blockquote >}}
## About DeepLabCut
[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
-{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**Colored dots track the positions of a racehorseâs body part**" alt="horserideranim" attr="*(Source: Mackenzie Mathis)*">}}
+{{< figure >}}
+src = '/images/content_images/cs/race-horse.gif'
+title = 'Colored dots track the positions of a racehorseâs body part'
+alt = 'horserideranim'
+attribution = '(Source: Mackenzie Mathis)'
+{{< /figure >}}
DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
Recently, the [DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
### Key Goals and Results
* **Automation of animal pose analysis for scientific studies:**
The primary objective of DeepLabCut technology is to measure and track posture
of animals in a diverse settings. This data can be used, for example, in
neuroscience studies to understand how the brain controls movement, or to
elucidate how animals socially interact. Researchers have observed a
[tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1)
with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second
(FPS).
* **Creation of an easy-to-use Python toolkit for pose estimation:**
DeepLabCut wanted to share their animal pose-estimation technology in the form
of an easy to use tool that can be adopted by researchers easily. So they have
created a complete, easy-to-use Python toolbox with project management features
as well. These enable not only automation of pose-estimation but also
managing the project end-to-end by helping the DeepLabCut Toolkit user right
from the dataset collection stage to creating shareable and reusable analysis
pipelines.
Their [toolkit][DLCToolkit] is now available as open source.
A typical DeepLabCut Workflow includes:
- creation and refining of training sets via active learning
- creation of tailored neural networks for specific animals and scenarios
- code for large-scale inference on videos
- draw inferences using integrated visualization tools
-{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**Pose estimation steps with DeepLabCut**" alt="dlcsteps" align="middle" attr="(Source: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
+{{< figure >}}
+src = '/images/content_images/cs/deeplabcut-toolkit-steps.png'
+title = 'Pose estimation steps with DeepLabCut'
+alt = 'dlcsteps'
+align = 'center'
+attribution = '(Source: DeepLabCut)'
+attributionlink = 'https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1'
+{{< /figure >}}
[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
### The Challenges
* **Speed**
Fast processing of animal behavior videos in order to measure their behavior
and at the same time make scientific experiments more efficient, accurate.
Extracting detailed animal poses for laboratory experiments, without
markers, in dynamically changing backgrounds, can be challenging, both
technically as well as in terms of resource needs and training data required.
Coming up with a tool that is easy to use without the need for skills such
as computer vision expertise that enables scientists to do research in more
real-world contexts, is a non-trivial problem to solve.
* **Combinatorics**
Combinatorics involves assembly and integration of movement of multiple
limbs into individual animal behavior. Assembling keypoints and their
connections into individual animal movements and linking them across time
is a complex process that requires heavy-duty numerical analysis, especially
in case of multi-animal movement tracking in experiment videos.
* **Data Processing**
Last but not the least, array manipulation - processing large stacks of
arrays corresponding to various images, target tensors and keypoints is
fairly challenging.
-{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**Pose estimation variety and complexity**" alt="challengesfig" align="middle" attr="(Source: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
+{{< figure >}}
+src = '/images/content_images/cs/pose-estimation.png'
+title = 'Pose estimation variety and complexity'
+alt = 'challengesfig'
+align = 'center'
+attribution = '(Source: Mackenzie Mathis)'
+attributionlink = 'https://www.biorxiv.org/content/10.1101/476531v1.full.pdf'
+{{< /figure >}}
## NumPy's Role in meeting Pose Estimation Challenges
NumPy addresses DeepLabCut technology's core need of numerical computations at
high speed for behavioural analytics. Besides NumPy, DeepLabCut employs
various Python software that utilize NumPy at their core, such as
[SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org),
[matplotlib](https://matplotlib.org),
[Tensorpack](https://github.com/tensorpack/tensorpack),
[imgaug](https://github.com/aleju/imgaug),
[scikit-learn](https://scikit-learn.org/stable/),
[scikit-image](https://scikit-image.org) and
[Tensorflow](https://www.tensorflow.org).
The following features of NumPy played a key role in addressing the image
processing, combinatorics requirements and need for fast computation in
DeepLabCut pose estimation algorithms:
* Vectorization
* Masked Array Operations
* Linear Algebra
* Random Sampling
* Reshaping of large arrays
DeepLabCut utilizes NumPyâs array capabilities throughout the workflow offered
by the toolkit. In particular, NumPy is used for sampling distinct frames for
human annotation labeling, and for writing, editing and processing annotation
data. Within TensorFlow the neural network is trained by DeepLabCut technology
over thousands of iterations to predict the ground truth annotations from
frames. For this purpose, target densities (scoremaps) are created to cast pose
estimation as a image-to-image translation problem. To make the neural networks
robust, data augmentation is employed, which requires the calculation of target
scoremaps subject to various geometric and image processing steps. To make
training fast, NumPyâs vectorization capabilities are leveraged. For inference,
the most likely predictions from target scoremaps need to extracted and one
needs to efficiently âlink predictions to assemble individual animalsâ.
-{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**DeepLabCut Workflow**" alt="workflow" attr="*(Source: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
+{{< figure >}}
+src = '/images/content_images/cs/deeplabcut-workflow.png'
+title = 'DeepLabCut Workflow'
+alt = 'workflow'
+attribution = '(Source: Mackenzie Mathis)'
+attributionlink = 'https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962'
+{{< /figure >}}
## Summary
Observing and efficiently describing behavior is a core tenant of modern
ethology, neuroscience, medicine, and technology.
[DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf)
allows researchers to estimate the pose of the subject, efficiently enabling
them to quantify the behavior. With only a small set of training images,
the DeepLabCut Python toolbox allows training a neural network to within human
level labeling accuracy, thus expanding its application to not only behavior
analysis in the laboratory, but to potentially also in sports, gait analysis,
medicine and rehabilitation studies. Complex combinatorics, data processing
challenges faced by DeepLabCut algorithms are addressed through the use of
NumPy's array manipulation capabilities.
-{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_dlc_benefits.png'
+alt = 'numpy benefits'
+title = 'Key NumPy Capabilities utilized'
+{{< /figure >}}
diff --git a/content/en/case-studies/gw-discov.md b/content/en/case-studies/gw-discov.md
index 0139915..ead650f 100644
--- a/content/en/case-studies/gw-discov.md
+++ b/content/en/case-studies/gw-discov.md
@@ -1,143 +1,167 @@
---
title: "Case Study: Discovery of Gravitational Waves"
sidebar: false
---
-{{< figure src="/images/content_images/cs/gw_sxs_image.png" class="fig-center" caption="**Gravitational Waves**" alt="binary coalesce black hole generating gravitational waves" attr="*(Image Credits: The Simulating eXtreme Spacetimes (SXS) Project at LIGO)*" attrlink="https://youtu.be/Zt8Z_uzG71o" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gw_sxs_image.png'
+title = 'Gravitational Waves'
+alt = 'binary coalesce black hole generating gravitational waves'
+attribution = '(Image Credits: The Simulating eXtreme Spacetimes (SXS) Project at LIGO)'
+attributionlink = 'https://youtu.be/Zt8Z_uzG71o'
+{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="David Shoemaker, *LIGO Scientific Collaboration*" >}}
The scientific Python ecosystem is critical infrastructure for the research done at LIGO.
{{< /blockquote >}}
## About [Gravitational Waves](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) and [LIGO](https://www.ligo.caltech.edu)
Gravitational waves are ripples in the fabric of space and time, generated by
cataclysmic events in the universe such as collision and merging of two black
holes or coalescing binary stars or supernovae. Observing GW can not only help
in studying gravity but also in understanding some of the obscure phenomena in
the distant universe and its impact.
The [Laser Interferometer Gravitational-Wave Observatory (LIGO)](https://www.ligo.caltech.edu)
was designed to open the field of gravitational-wave astrophysics through the
direct detection of gravitational waves predicted by Einsteinâs General Theory
of Relativity. It comprises two widely separated interferometers within the
United States â one in Hanford, Washington and the other in Livingston,
Louisiana â operated in unison to detect gravitational waves. Each of them has
multi-kilometer-scale gravitational wave detectors that use laser
interferometry. The LIGO Scientific Collaboration (LSC), is a group of more
than 1000 scientists from universities around the United States and in 14
other countries supported by more than 90 universities and research institutes;
approximately 250 students actively contributing to the collaboration. The new
LIGO discovery is the first observation of gravitational waves themselves,
made by measuring the tiny disturbances the waves make to space and time as
they pass through the earth. It has opened up new astrophysical frontiers
that explore the warped side of the universeâobjects and phenomena that are
made from warped spacetime.
### Key Objectives
* Though its [mission](https://www.ligo.caltech.edu/page/what-is-ligo) is to
detect gravitational waves from some of the most violent and energetic
processes in the Universe, the data LIGO collects may have far-reaching
effects on many areas of physics including gravitation, relativity,
astrophysics, cosmology, particle physics, and nuclear physics.
* Crunch observed data via numerical relativity computations that involves
complex maths in order to discern signal from noise, filter out relevant
signal and statistically estimate significance of observed data
* Data visualization so that the binary / numerical results can be
comprehended.
### The Challenges
* **Computation**
Gravitational Waves are hard to detect as they produce a very small effect
and have tiny interaction with matter. Processing and analyzing all of
LIGO's data requires a vast computing infrastructure.After taking care of
noise, which is billions of times of the signal, there is still very
complex relativity equations and huge amounts of data which present a
computational challenge:
[O(10^7) CPU hrs needed for binary merger analyses](https://youtu.be/7mcHknWWzNI)
spread on 6 dedicated LIGO clusters
* **Data Deluge**
As observational devices become more sensitive and reliable, the challenges
posed by data deluge and finding a needle in a haystack rise multi-fold.
LIGO generates terabytes of data every day! Making sense of this data
requires an enormous effort for each and every detection. For example, the
signals being collected by LIGO must be matched by supercomputers against
hundreds of thousands of templates of possible gravitational-wave signatures.
* **Visualization**
Once the obstacles related to understanding Einsteinâs equations well
enough to solve them using supercomputers are taken care of, the next big
challenge was making data comprehensible to the human brain. Simulation
modeling as well as signal detection requires effective visualization
techniques. Visualization also plays a role in lending more credibility
to numerical relativity in the eyes of pure science aficionados, who did
not give enough importance to numerical relativity until imaging and
simulations made it easier to comprehend results for a larger audience.
Speed of complex computations and rendering, re-rendering images and
simulations using latest experimental inputs and insights can be a time
consuming activity that challenges researchers in this domain.
-{{< figure src="/images/content_images/cs/gw_strain_amplitude.png" class="fig-center" alt="gravitational waves strain amplitude" caption="**Estimated gravitational-wave strain amplitude from GW150914**" attr="(**Graph Credits:** Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)" attrlink="https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gw_strain_amplitude.png'
+alt = 'gravitational waves strain amplitude'
+title = 'Estimated gravitational-wave strain amplitude from GW150914'
+attribution = '(Graph Credits: Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)'
+attributionlink = 'https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger'
+{{< /figure >}}
## NumPyâs Role in the Detection of Gravitational Waves
Gravitational waves emitted from the merger cannot be computed using any
technique except brute force numerical relativity using supercomputers.
The amount of data LIGO collects is as incomprehensibly large as gravitational
wave signals are small.
NumPy, the standard numerical analysis package for Python, was utilized by
the software used for various tasks performed during the GW detection project
at LIGO. NumPy helped in solving complex maths and data manipulation at high
speed. Here are some examples:
* [Signal Processing](https://www.uv.es/virgogroup/Denoising_ROF.html): Glitch
detection, [Noise identification and Data Characterization](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf)
(NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)
* Data retrieval: Deciding which data can be analyzed, figuring out whether it
contains a signal - needle in a haystack
* Statistical analysis: estimate the statistical significance of observational
data, estimating the signal parameters (e.g. masses of stars, spin velocity,
and distance) by comparison with a model.
* Visualization of data
- Time series
- Spectrograms
* Compute Correlations
* Key [Software](https://github.com/lscsoft) developed in GW data analysis
such as [GwPy](https://gwpy.github.io/docs/stable/overview.html) and
[PyCBC](https://pycbc.org) uses NumPy and AstroPy under the hood for
providing object based interfaces to utilities, tools, and methods for
studying data from gravitational-wave detectors.
-{{< figure src="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gwpy-numpy depgraph" caption="**Dependency graph showing how GwPy package depends on NumPy**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gwpy-numpy-dep-graph.png'
+alt = 'gwpy-numpy depgraph'
+title = 'Dependency graph showing how GwPy package depends on NumPy'
+{{< /figure >}}
----
-{{< figure src="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="PyCBC-numpy depgraph" caption="**Dependency graph showing how PyCBC package depends on NumPy**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/PyCBC-numpy-dep-graph.png'
+alt = 'PyCBC-numpy depgraph'
+title = 'Dependency graph showing how PyCBC package depends on NumPy'
+{{< /figure >}}
## Summary
GW detection has enabled researchers to discover entirely unexpected phenomena
while providing new insight into many of the most profound astrophysical
phenomena known. Number crunching and data visualization is a crucial step
that helps scientists gain insights into data gathered from the scientific
observations and understand the results. The computations are complex and
cannot be comprehended by humans unless it is visualized using computer
simulations that are fed with the real observed data and analysis. NumPy
along with other Python packages such as matplotlib, pandas, and scikit-learn
is [enabling researchers](https://www.gw-openscience.org/events/GW150914/) to
answer complex questions and discover new horizons in our understanding of the
universe.
-{{< figure src="/images/content_images/cs/numpy_gw_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_gw_benefits.png'
+alt = 'numpy benefits'
+title = 'Key NumPy Capabilities utilized'
+{{< /figure >}}
diff --git a/content/en/user-survey-2020.md b/content/en/user-survey-2020.md
index 73b49a4..d82c322 100644
--- a/content/en/user-survey-2020.md
+++ b/content/en/user-survey-2020.md
@@ -1,23 +1,27 @@
---
title: 2020 NUMPY COMMUNITY SURVEY
sidebar: false
---
In 2020, the NumPy survey team in partnership with students and faculty from a
Masterâs course in Survey Methodology jointly hosted by the University of
Michigan and the University of Maryland conducted the first official NumPy
community survey. Over 1,200 users from 75 countries participated to help us
map out a landscape of the NumPy community and voiced their thoughts about the
future of the project.
-{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 NumPy user survey report, titled 'NumPy Community Survey 2020 - results'" width="250" >}}
+{{< figure >}}
+src = '/surveys/NumPy_usersurvey_2020_report_cover.png'
+alt = 'Cover page of the 2020 NumPy user survey report, titled "NumPy Community Survey 2020 - results"'
+width = '250'
+{{< /figure >}}
**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)**
to take a closer look at the survey findings.
For the highlights, check out
**[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
diff --git a/content/ja/case-studies/blackhole-image.md b/content/ja/case-studies/blackhole-image.md
index 816687d..7d7dfb2 100644
--- a/content/ja/case-studies/blackhole-image.md
+++ b/content/ja/case-studies/blackhole-image.md
@@ -1,72 +1,97 @@
---
title: "ã±ã¼ã¹ã¹ã¿ãã£ï¼ä¸çåã®ãã©ãã¯ãã¼ã«ç»å"
sidebar: false
---
-{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**Black Hole M87**" alt="black hole image" attr="*(Image Credits: Event Horizon Telescope Collaboration)*" attrk="https://www.jpl.nasa.gov/images/universe/90410/blackhole20190410.jpg" >}}
+{{< figure >}}
+src = '/images/content_images/cs/blackhole.jpg'
+title = 'Black Hole M87'
+alt = 'black hole image'
+attribution = '(Image Credits: Event Horizon Telescope Collaboration)'
+attrk = 'https://www.jpl.nasa.gov/images/universe/90410/blackhole20190410.jpg'
+{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="*ã«ãªãã©ã«ãã¢å·¥ç§å¤§å¦ è¨ç®ã»æ°çå¦é¨*ã®Katie Bouman婿æ"
>}}
M87ãã©ãã¯ãã¼ã«ãç»ååãããã¨ã¯ãè¦ããã¨ã®ã§ããªããã®ããããã¦è¦ããã¨ãããããªãã®ã§ãã
{{< /blockquote >}}
## å°çå¤§ã®æé é¡
[Event Horizon telescope(EHT)](https:/eventhorizontelescope.org)ã¯ãå°çãµã¤ãºã®è§£ææé é¡ãå½¢æãã8å°ã®å°ä¸å黿³¢æé é¡ããæãã·ã¹ãã ã§ãããã¾ã§ã«åä¾ã®ãªãæåº¦ã¨è§£å度ã§å®å®ãç ç©¶ãããã¨ãã§ãã¾ãã è¶
é·åºç·å¹²æ¸æ³(VLBI) ã¨å¼ã°ããææ³ãç¨ãã巨大ãªä»®æ³æé é¡ã®è§åº¦åè§£è½ã¯ã[20ãã¤ã¯ãç§][resolution]ã§ããã¥ã¼ã¨ã¼ã¯ã«ããæ°èãããªã®æ©éã®ã«ãã§ããèªãã®ã«ååãªè§£å度ã§ã!
### 主ãªç®æ¨ã¨çµæ
* **å®å®ã®æ°ããè¦æ¹:** EHTã®ç»æçãªèãæ¹ã®åºç¤ãç¯ãããã®ã¯ã100å¹´åã« [Sir Arthur Eddington][eddington]ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ä¸è¬ç¸å¯¾æ§çè«ã«æ²¿ã£ãæåã®è¦³æ¸¬ã宿½ãããã¨ãå§ã¾ãã§ããã
* **ãã©ãã¯ãã¼ã«:** EHTã¯ããã¨ãåº§éæ²³å£ã®ã¡ã·ã¨87éæ²³ (M87) ã®ä¸å¿ã«ãããå°çããç´5500ä¸å
å¹´ã®è·é¢ã«ããè¶
巨大ãã©ãã¯ãã¼ã«ã観測ãã¾ããã ãã®è³ªéã¯ã太é½ã®65ååã§ãã [100年以ä¸](https://www.jpl.nasa.gov/news/news.php?feature=7385)ã«æ¸¡ãç ç©¶ãè¡ããã¦ããªããããã¾ã§ã«è¦è¦çã«ãã©ãã¯ãã¼ã«ã観測ã§ãããã¨ã¯ããã¾ããã§ããã
* **観測ã¨çè«ã®æ¯è¼:** ç§å¦è
ãã¡ã®éã§ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ä¸è¬ç¸å¯¾æ§çè«ãããéåã«ããå
ã®æ²ããå
ã®æç²ã«ããå½±ã®ãããªé åã観測ã§ããã®ã§ã¯ãªããã¨æå¾
ããã¦ãã¾ããã ããã¯ãã©ãã¯ãã¼ã«ã®å·¨å¤§ãªè³ªéãæ¸¬å®ããããã«å©ç¨ãããã¨ãã§ãã¾ãã
### 課é¡
* **å¤§è¦æ¨¡ãªè¨ç®**
EHTã¯è¨å¤§ãªãã¼ã¿å¦çã®èª²é¡ãæ±ãã¦ãã¾ããã 大æ°ã®ä½ç¸å¤åã¯æ¥éã§ãè¨é²å¸¯åã®å¹
ã¯å¤§ãããæé é¡ã¯ããããç°ãªã£ã¦ãã¦å°ççã«ã忣ãã¦ãã¾ãã
* **大éã®ãã¼ã¿**
EHTã¯ä¸æ¥ã§350ãã©ãã¤ããè¶
ãã観測ãã¼ã¿ãçæããããªã¦ã ã§æºãããããã¼ããã©ã¤ãã«ä¿åãã¦ãã¾ãã ãã®å¤§éã®ãã¼ã¿ã¨ãã¼ã¿ã®è¤éãã軽æ¸ãããã¨ã¯é常ã«é£ãããã¨ã§ãã
* **ããããããªããã®ã観測ãã**
ä»ã¾ã§ã«è¦ããã¨ã®ãªããã®ãè¦ãã®ãç ç©¶ã®ç®æ¨ãªããã©ããã£ã¦ç§å¦è
ã¯ãã®ç»åãæ£ããã¨ç¢ºä¿¡ãããã¨ãã§ããã®ã§ãããã?
-{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**EHTã®ãã¼ã¿å¦çãã¤ãã©ã¤ã³**" alt="data pipeline" align="middle" attr="(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}
+{{< figure >}}
+src = '/images/content_images/cs/dataprocessbh.png'
+title = 'EHTã®ãã¼ã¿å¦çãã¤ãã©ã¤ã³'
+alt = 'data pipeline'
+align = 'center'
+attribution = '(Diagram Credits: The Astrophysical Journal, Event Horizon Telescope Collaboration)'
+attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
+{{< /figure >}}
## NumPyãæãããå½¹å²
ãã¼ã¿ã«åé¡ãããå ´åã¯ã©ããªãã§ãããï¼ ãããã¯ãã¢ã«ã´ãªãºã ãç¹å®ã®ä»®å®ã« ãã¾ãã«ã大ããä¾åãã¦ããããããã¾ããã ãããããã©ã¡ã¼ã¿ã夿´ããå ´åãç»åã¯å¤§ããå¤åããã®ã§ããããï¼
EHTã®å
±åç ç©¶ã§ã¯ãæå
端ã®ç»ååæ§ææè¡ã使ç¨ãã¦ãããããã®ãã¼ã ããã¼ã¿ãè©ä¾¡ãããã¨ã«ãã£ã¦ããããã®èª²é¡ã«å¯¾å¦ãã¾ããã ããããã®ãã¼ã ã®è§£æçµæãåãã§ãããã¨ã証æãããã¨ããããã®çµæãçµã¿åããããã¨ã§ããã©ãã¯ãã¼ã«ç»åãå¾ããã¨ãã§ãã¾ããã
å½¼ãã®ç ç©¶ã¯ãå
±åã®ãã¼ã¿è§£æãéãã¦ç§å¦ã鲿©ããããç§å¦çãªPythonã¨ã³ã·ã¹ãã ãæããå½¹å²ãå¦å®ã«è¡¨ãã¦ãã¾ãã
-{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="role of numpy" caption="**ãã©ãã¯ãã¼ã«ç»ååã§NumPyãæãããå½¹å²**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/bh_numpy_role.png'
+alt = 'role of numpy'
+title = 'ãã©ãã¯ãã¼ã«ç»ååã§NumPyãæãããå½¹å²'
+{{< /figure >}}
ä¾ãã°ã [`eht-imaging`][ehtim] ã¨ããPython ããã±ã¼ã¸ã¯ VLBI ãã¼ã¿ã§ç»åã®åæ§ç¯ãã·ãã¥ã¬ã¼ãããå®è¡ããããã®ãã¼ã«ã§ãã NumPyã¯ã以ä¸ã®ã½ããã¦ã§ã¢ä¾åé¢ä¿ãã£ã¼ãã§ç¤ºããã¦ããããã«ããã®ããã±ã¼ã¸ã§ä½¿ç¨ãããé
åãã¼ã¿å¦çã®ä¸æ ¸ãæ
ã£ã¦ãã¾ãã
-{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="ehtim dependency map highlighting numpy" caption="**NumPyã®ä¸å¿ã¨ããehtimã®ã½ããã¦ã§ã¢ä¾åå³**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/ehtim_numpy.png'
+alt = 'ehtim dependency map highlighting numpy'
+title = 'NumPyã®ä¸å¿ã¨ããehtimã®ã½ããã¦ã§ã¢ä¾åå³'
+{{< /figure >}}
NumPyã ãã§ãªãã[SciPy](https://www.scipy.org)ã[Pandas](https://pandas.io)ãªã©ã®ããã±ã¼ã¸ããã©ãã¯ãã¼ã«ç»ååã«ããããã¼ã¿å¦çãã¤ãã©ã¤ã³ã«å©ç¨ããã¦ãã¾ãã 天æå¦ã®æ¨æºçãªãã¡ã¤ã«å½¢å¼ãæé/座æ¨å¤æ ã¯[Astropy][astropy]ã§å®è£
ããããã©ãã¯ãã¼ã«ã®æçµç»åã®çæãå«ããè§£æãã¤ãã©ã¤ã³å
¨ä½ã§ã®ãã¼ã¿å¯è¦åã«ã¯ [Matplotlib][mpl]ãå©ç¨ããã¾ããã
## ã¾ã¨ã
NumPyã®ä¸å¿çãªæ©è½ã§ãããå¹ççã§é©ç¨æ§ã®é«ãn次å
é
åã¯ãç ç©¶è
ãå¤§è¦æ¨¡ãªæ°å¤ãã¼ã¿ãæä½ãããã¨ãå¯è½ã«ããä¸çã§åãã¦ã®ãã©ãã¯ãã¼ã«ã®ç»ååã®åºç¤ãç¯ãã¾ããã ã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®çè«ã«ç´ æ´ãããè¦è¦ç証æ ãä¸ããã®ã¯ãç§å¦ã®ç»æçãªç¬éã ã¨ããã¾ãã ãã®ç§å¦çã«å大ãªéæã«ã¯ãæè¡çã®é£èºçãªé²æ©ã ãã§ãªãã200人以ä¸ã®ç§å¦è
ã¨ä¸çã§ æé«ã®é»æ³¢è¦³æ¸¬æã®éã§ã®å½éååãå¯ä¸ãã¾ããã 驿°çãªã¢ã«ã´ãªãºã ã¨ãã¼ã¿å¦çæè¡ã¯ãæ¢åã®å¤©æå¦ã¢ãã«ãæ¹è¯ããå®å®ã®è¬ãè§£ãæããå©ãã«ãªã£ãã¨ããã¾ãã
-{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy benefits" caption="**å©ç¨ãããNumPyã®ä¸»è¦æ©è½**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_bh_benefits.png'
+alt = 'numpy benefits'
+title = 'å©ç¨ãããNumPyã®ä¸»è¦æ©è½'
+{{< /figure >}}
[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
[ehtim]: https://github.com/achael/eht-imaging
[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
diff --git a/content/ja/case-studies/cricket-analytics.md b/content/ja/case-studies/cricket-analytics.md
index baf355a..b762498 100644
--- a/content/ja/case-studies/cricket-analytics.md
+++ b/content/ja/case-studies/cricket-analytics.md
@@ -1,66 +1,89 @@
---
title: "ã±ã¼ã¹ã¹ã¿ãã£: ã¯ãªã±ããåæãã²ã¼ã ãã§ã³ã¸ã£ã¼!"
sidebar: false
---
-{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="** IPLT20ãã¤ã³ãæå¤§ã®ã¯ãªã±ãããã§ã¹ãã£ãã«**" alt="Indian Premier League Cricket cup and stadium" attr="*(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))*" attrlink="https://unsplash.com/@aksh1802" >}}
+{{< figure >}}
+src = '/images/content_images/cs/ipl-stadium.png'
+title = ' IPLT20ãã¤ã³ãæå¤§ã®ã¯ãªã±ãããã§ã¹ãã£ãã«'
+alt = 'Indian Premier League Cricket cup and stadium'
+attribution = '(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))'
+attributionlink = 'https://unsplash.com/@aksh1802'
+{{< /figure >}}
{{< blockquote
cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
by="M S Dhoniã *ã¤ã³ãã£ã¢ã³ãã¼ã ã®å
ãã£ããã³ãã¤ã³ã¿ã¼ãã·ã§ãã«ã»ã¯ãªã±ãããã¬ã¤ã¤ã¼ããã§ã³ãã¤ã»ã¹ã¼ãã¼ã»ãã³ã°ã¹ã®ããã«IPLã§ãã¬ã¤*"
>}}
観客ã®ããã«ç«¶æãããã®ã§ã¯ãªããå½ã®ããã«ç«¶æããã®ã§ãã
{{< /blockquote >}}
## ã¯ãªã±ããã«ã¤ãã¦
ã¤ã³ã人ã¯ã¯ãªã±ããã大好ãã ã¨è¨ã£ã¦ãéè¨ã§ã¯ãªãã§ãããã ãã®ç«¶æã¯ãä»ã®ã¹ãã¼ãã¨ç°ãªããã¤ã³ãã®è¾²æé¨ãé½å¸é¨ãåãããããããå ´æã§ãã¬ã¤ããã¦ãããè¥è
ããå¹´é
ã®æ¹ã¾ã§åºã人æ°ããããã¤ã³ãã§ã¯ä½åå人ãã®äººã
ãçµã³ã¤ããå½¹å²ãæ
ã£ã¦ãã¾ãã ã¯ãªã±ããã¯å¤ãã®ã¡ãã£ã¢ã®æ³¨ç®ãéãã¦ãã¾ãã ã¯ãªã±ããã¯å¤ãã®ã¡ãã£ã¢ã®æ³¨ç®ãéããé常ã«[å¤é¡ã®ãé](https://www.statista.com/topics/4543/indian-premier-league-ipl/)ã¨å声ãããã£ã¦ãã¾ãã é廿°å¹´éããã¯ããã¸ã¼ã¯æåéãã¯ãªã±ããã®è©¦åãå¤ãã¦ãã¾ããã è¦è´è
ã¯ã¹ããªã¼ãã³ã°ã¡ãã£ã¢ããã¼ãã¡ã³ããã¢ãã¤ã«ãã¼ã¹ã®æé ãªã¢ã¯ã»ã¹ã«ããã©ã¤ãã¯ãªã±ããè¦è´ãªã©ã享åãã¦ãã¾ãã
ã¤ã³ããã¬ãã¢ãªã¼ã° (IPL) ã¯ã2008å¹´ã«è¨ç«ããã20ãã¼ã ããæãããã¯ãªã±ãããªã¼ã°ã§ãã ããã¯ä¸çã§æãåå è
ãå¤ãã¯ãªã±ããã¤ãã³ãã®1ã¤ã§ã2019å¹´ã®å¸å ´è¦æ¨¡ã¯[67åãã«](https://en.wikipedia.org/wiki/Indian_Premier_League)ã ã¨è©ä¾¡ããã¦ãã¾ãã
ã¯ãªã±ããã¯æ°ã®ã²ã¼ã ã§ãã ããããã³ã«ãã£ã¦ã¹ã³ã¢ãããã©ã³ã®æ°ããã¦ã©ã¼ã«ãã£ã¦åãããã¦ã£ã±ããã®æ°ãã¯ãªã±ãããã¼ã ã«ãã£ã¦ç²å¾ãã試åã®æ°ãããããã³ããã¦ãªã³ã°æ»æã«ç¹å®ã®æ¹æ³ã§å¿çããåæ°ã ã¯ãªã±ããã®æ°åãæãä¸ãã¦ããã©ã¼ãã³ã¹ãåä¸ãããã¨ã¨ãã«ãNumPyãªã©ã®æ°å¤è¨ç®ã½ããã¦ã§ã¢ãå©ç¨ããå¼·åãªåæãã¼ã«ãä»ãã¦ãã¯ãªã±ããã®ãã¸ãã¹ãã£ã³ã¹ãå¸å ´å
¨ä½ãçµæ¸æ§ãç ç©¶ãããã¨ã¯ã大ããªæå³ãæã¡ã¾ãã ã¯ãªã±ããåæã¯ã試åã«é¢ããè峿·±ãæ´å¯ã¨ãã²ã¼ã ã®çµæã«é¢ããäºæ¸¬AIãæä¾ãã¾ãã
ç¾å¨ã§ã¯ãã¯ãªã±ããã²ã¼ã ã®è¨é²ã¨ å©ç¨å¯è½ãªçµ±è¨ãã¼ã¿ã¯è±å¯ã§ãã»ã¼ç¡éã®å®ã®å±±ã ã¨è¨ãã¾ãã : [ESPN cricinfo ã](https://stats.espncricinfo.com/ci/engine/stats/index.html) [cricsheet](https://cricsheet.org). ãããã®ã¯ãªã±ãããã¼ã¿ãã¼ã¹ã¯ãææ°ã®æ©æ¢°å¦ç¿ã¨äºæ¸¬ã¢ããªã³ã°ã¢ã«ã´ãªãºã ã使ç¨ãã¦ã [ã¯ãªã±ãã åæ](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances) ã«ä½¿ç¨ããã¦ãã¾ãã ã¡ãã£ã¢ãããã¹ãã¼ãå£ä½ã®ã¨ã³ã¿ã¼ãã¤ã³ã¡ã³ããã©ãããã©ã¼ã ã¯ãæè¡ãåæãå©ç¨ãã試ååçãåä¸ãããããã«ãä¸è¨ã®ãããªè¦ç´ ã主è¦ãªã¡ããªãã¯ã ã¨èãå§ãã¦ãã¾ãã
* ãããã£ã³ã°æç¸¾ã®ç§»åå¹³å
* ã¹ã³ã¢äºæ¸¬
* ãã¬ã¤ã¤ã¼ã®ä½åããç°ãªãç¸æã«å¯¾ããããã©ã¼ãã³ã¹ã«ã¤ãã¦ã®æ´å¯
* ãã¼ã æ§æã«æ¦ç¥çãªæ±ºå®ãä¸ãããã®ãååæã¸ã®ãã¬ã¤ã¤ã¼ã®è²¢ç®
-{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="** ãã£ã¼ã«ãã®ãã©ã¼ã«ã«ãã¤ã³ãã¨ãªãã¯ãªã±ããããã**" alt="A cricket pitch with bowler and batsmen" align="middle" attr="*(Image credit: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+{{< figure >}}
+src = '/images/content_images/cs/cricket-pitch.png'
+title = ' ãã£ã¼ã«ãã®ãã©ã¼ã«ã«ãã¤ã³ãã¨ãªãã¯ãªã±ããããã'
+alt = 'A cricket pitch with bowler and batsmen'
+align = 'center'
+attribution = '(Image credit: Debarghya Das)'
+attributionlink = 'http://debarghyadas.com/files/IPLpaper.pdf'
+{{< /figure >}}
### ãã¼ã¿åæã®ä¸»è¦ãªç®æ¨
* ã¹ãã¼ããã¼ã¿åæã¯ã¯ãªã±ããã ãã§ãªãããã¼ã å
¨ä½ã®ããã©ã¼ãã³ã¹ãåä¸ãããåå©çãæå¤§éã«é«ããããã«ã [ä»ã®ã¹ãã¼ã](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)ã§ã使ç¨ããã¦ãã¾ãã
* ãªã¢ã«ã¿ã¤ã ãã¼ã¿åæã¯ãã²ã¼ã ä¸ã®æ´å¯ãå¾ããã¨ãã§ãããã¼ã ãé¢é£ãã¸ãã¹ãçµæ¸çå©çã¨æé·ã®ããã«æ¦è¡ã夿´ãããããå½¹ç«ã¡ã¾ãã
* å±¥æ´åæã«å ãã¦ãäºæ¸¬ã¢ãã«ã¯å¯è½æ§ã®ããçµæãæ±ãããã¨ãã§ãã¾ãããããªãã®æ°ã®ãã³ãã¼ã¯ã©ã³ãã³ã°ã¨ãã¼ã¿ãµã¤ã¨ã³ã¹ã®ãã¦ãã¦ãå¯è¦åãã¼ã«ãããã³åæã«æ°ãã観測ãã¼ã¿ãå«ããæ©è½ãªã©ãå¿
è¦ã«ãªãã¾ãã
-{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="pose estimator" caption="**ã¯ãªã±ããã®å§¿å¢æ¨å®**" attr="*(Image credit: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+{{< figure >}}
+src = '/images/content_images/cs/player-pose-estimator.png'
+alt = 'pose estimator'
+title = 'ã¯ãªã±ããã®å§¿å¢æ¨å®'
+attribution = '(Image credit: connect.vin)'
+attributionlink = 'https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/'
+{{< /figure >}}
### 課é¡
* **ãã¼ã¿ã®ã¯ãªã¼ãã³ã°ã¨åå¦ç**
IPLã¯ãã¯ãªã±ãããå¤å
¸çãªãã¹ããããå½¢å¼ãããã¯ããã«å¤§è¦æ¨¡ã«æ¡å¤§ããã¾ããã æ¯ã·ã¼ãºã³ãæ§ã
ãªãã©ã¼ãããã§è¡ããã試åã®æ°ã¯å¢å ãã¦ããããã¼ã¿ãã¢ã«ã´ãªãºã ãææ°ã®ã¹ãã¼ããã¼ã¿åææè¡ãã·ãã¥ã¬ã¼ã·ã§ã³ã¢ãã«ãå¢å ãã¦ãã¾ãã ã¯ãªã±ããã®ãã¼ã¿åæã«ã¯ããã£ã¼ã«ããããã³ã°ããã¬ã¤ã¤ã¼ãã©ããã³ã°ããã¼ã«ãã©ããã³ã°ããã¬ã¤ã¤ã¼ã·ã§ããåæãããã³ãã¼ã«ãã©ã®ããã«åãã®ãããã®è§åº¦ãã¹ãã³ãé度ãè»éãªã©ãä»ã®æ²¢å±±ã®ç¨®é¡ã®ãã¼ã¿ãå¿
è¦ã¨ãã¾ãã ãããã®è¦å ã«ããããã¼ã¿ã¯ãªã¼ãã³ã°ã¨åå¦çã®è¤éããå¢ãã¦ãã¾ãã¾ããã
* **åçã¢ããªã³ã°**
ã¯ãªã±ããã§ã¯ãä»ã®ã¹ãã¼ãã¨åæ§ããã£ã¼ã«ãä¸ã®é¸æã®æ§ã
ãªæ°åã追跡ããããã«ãé¢é£ãã夿°ã®æ°ãå¤ããªã£ã¦ãã¾ããã¡ã§ãã ãã¨ãã°ããã¼ã«ããã®å±æ§æ
å ±ãããã³ããã¤ãã®è¡åãã¨ãã¢ã¯ã·ã§ã³ã®ããã¤ãã®å¯è½æ§ãªã©ã®å¤æ°ã§ãã ãã¼ã¿åæã¨ã¢ããªã³ã°ã®è¤éãã¯ãåæä¸ã«å¿
è¦ã¨ãªãäºæ¸¬ã®ããã®è³ªåã®ç¨®é¡ã«æ£æ¯ä¾ãã¦ããããã¼ã¿è¡¨ç¾ã¨ã¢ãã«ã«ã大ããä¾åãã¦ãã¾ãã ããããã³ãç°ãªãè§åº¦ãé度ã§ãã¼ã«ãæã£ãå ´åã«ä½ãèµ·ããã®ãã®ãããªãåçãªã¯ãªã±ããã®ãã¬ã¼ã®äºæ¸¬ãå¿
è¦ãªå ´åãè¨ç®éããã¼ã¿æ¯è¼ãæ´ã«å°é£ã«ãªãã¾ãã
* **äºæ¸¬åæã®è¤éã**
ã¯ãªã±ããã«ããã¦ãæææ±ºå®ã®å¤ãã¯ããã¦ã©ã¼ãããç¹å®ã®ã¿ã¤ãã®å ´åãæè
ã¯ã©ã®ãããã®é »åº¦ã§ç¹å®ã®ç¨®é¡ã®ã·ã§ãããæã¤ã®ãããããããã³ãç¹å®ã®æ¹æ³ã§ãããã¦ã©ã¼ã«åå¿ããå ´åããã¦ã©ã¼ã¯ã©ã®ããã«ã©ã¤ã³ã¨é·ãã夿´ããã®ã ããªã©ã®è³ªåã«åºã¥ãã¦ãã¾ãã ãã®ç¨®ã®äºæ¸¬åæã¯ã¨ãªã§ã¯ã精度ã®è¯ããã¼ã¿ã»ãããå©ç¨ã§ãããã¨ã¨ããã¼ã¿ãåæãã¦é«ç²¾åº¦ãªçæã¢ãã«ã使ã§ãããã¨ãå¿
è¦ã¨ããã¾ãã
## ã¯ãªã±ããè§£æã«ãããNumPyã®å½¹å²
ã¹ãã¼ãåæã¯ç¾å¨ãé常ã«çããªåéã§ãã å¤ãã®ç ç©¶è
ã伿¥ã¯ãææ°ã®æ©æ¢°å¦ç¿ãAIæè¡ä»¥å¤ã«ããNumPyããScikit-learn, SciPy, Matplotlib, Jupyterãªã©ã®ä»ã®PyDataããã±ã¼ã¸ã[使ã£ã¦ãã¾ã](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)ã NumPyã¯ä»¥ä¸ã®ããã«ãã¯ãªã±ããé¢é£ã®æ§ã
ãªã¹ãã¼ãåæã«ä½¿ç¨ããã¦ãã¾ãã
* **çµ±è¨åæ:** NumPyã®æ°å¤è¨ç®æ©è½ã¯ãæ§ã
ãªãã¬ã¤ã¤ã¼ãã²ã¼ã æ¦è¡ã®ã³ã³ããã¹ãã§ã®è¦³æ¸¬ãã¼ã¿ã§ã試åä¸ã®ã¤ãã³ãã®çµ±è¨çæææ§ãæ¨å®ããçæã¢ãã«ãéçã¢ãã«ã¨æ¯è¼ãã¦è©¦åçµæãæ¨å®ããã®ã«å½¹ç«ã¡ã¾ãã [å æåæ](https://amplitude.com/blog/2017/01/19/causation-correlation) 㨠[ããã°ãã¼ã¿ã¢ããã¼ã](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)ãæ¦è¡çåæã«ä½¿ç¨ããã¦ãã¾ãã
* **ãã¼ã¿å¯è¦å:** ãã¼ã¿ã®ã°ã©ãåã»[å¯è¦å](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) ã¯ããã¾ãã¾ãªãã¼ã¿ã»ããéã®é¢ä¿ã«ã¤ãã¦ãæçãªæ´å¯ãä¸ãã¦ããã¾ãã
## ã¾ã¨ã
ã¹ãã¼ãã¢ããªãã£ã¯ã¹ã¯ãããã®è©¦åã«ã¤ãã¦ã¯ã¾ãã«ã²ã¼ã ãã§ã³ã¸ã£ã¼ã§ãã ç¹ã«æ¦ç¥çãªæææ±ºå®ã«ã¤ãã¦ã¯ãæè¿ã¾ã§ä¸»ã«ãç´æããéå»ã®ä¼çµ±çãªèãæ¹ã«åºã¥ãã¦è¡ããã¦ããããã大ããªå½±é¿ãããã¾ãã NumPyã¯ããã¼ã¿åæã»æ©æ¢°å¦ç¿ã»äººå·¥ç¥è½ã®ã¢ã«ã´ãªãºã ã«é¢é£ããé«ã¬ãã«é¢æ°ãæä¾ããæ²¢å±±ã®Pythonããã±ã¼ã¸ç¾¤ã®ãå
åºãªåºç¤ã¨ãªã£ã¦ãã¾ãã ãããã®ããã±ã¼ã¸ã¯ãã²ã¼ã ã®çµæãå¤ãããããªæææ±ºå®ãæ¯æ´ãããªã¢ã«ã¿ã¤ã ã®ã¤ã³ãµã¤ããå¾ããããã¯ãªã±ããã®è©¦åã ãã§ãªãé¢é£ããæ¨è«ããã¸ãã¹ã®æ¨é²ã«ãåºã使ç¨ããã¦ãã¾ãã ã¯ãªã±ããã®è©¦åçµæã«ã¤ãªããé ãããã©ã¡ã¼ã¿ãããã¿ã¼ã³ã屿§ãè¦ã¤ãããã¨ã¯ãã¹ãã¼ã¯ãã«ãã¼ãæ°åãçµ±è¨ã«é ããã¦ããã²ã¼ã ã®æ´å¯æ¹æ³ãè¦ã¤ããã®ã«ãå½¹ã«ç«ã¤ã®ã§ãã
-{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="ã¯ãªã±ããåæã«NumPyã使ç¨ããã¡ãªããã示ãå³" caption="** å©ç¨ããã¦ãã主ãªNumPyæ©è½ **" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_ca_benefits.png'
+alt = 'ã¯ãªã±ããåæã«NumPyã使ç¨ããã¡ãªããã示ãå³'
+title = ' å©ç¨ããã¦ãã主ãªNumPyæ©è½ '
+{{< /figure >}}
diff --git a/content/ja/case-studies/deeplabcut-dnn.md b/content/ja/case-studies/deeplabcut-dnn.md
index f115522..006daca 100644
--- a/content/ja/case-studies/deeplabcut-dnn.md
+++ b/content/ja/case-studies/deeplabcut-dnn.md
@@ -1,92 +1,127 @@
---
title: "ã±ã¼ã¹ã¹ã¿ãã£: DeepLabCut 䏿¬¡å
å§¿å¢æ¨å®"
sidebar: false
---
-{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**DeepLapCutãç¨ãããã¦ã¹ã®æã®åãã®è§£æ**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut" >}}
+{{< figure >}}
+src = '/images/content_images/cs/mice-hand.gif'
+title = 'DeepLapCutãç¨ãããã¦ã¹ã®æã®åãã®è§£æ'
+alt = 'micehandanim'
+attribution = '(Source: www.deeplabcut.org )'
+attributionlink = 'http://www.mousemotorlab.org/deeplabcut'
+{{< /figure >}}
{{< blockquote
cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
by="Alexander Mathisã *åææãEÌcole polytechnology feârale de Lausanne* ([EPFL](https://www.epfl.ch/en/))"
>}}
ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã¯çä½è¨åºå»å¦ãå éããã¦ãã¾ãã DeepLabCut ã使ç¨ããã¨ã深層å¦ç¿ã使ç¨ãã¦åç©ã®è¡åãèªåçã«ãããªè§£æãããã¨ãã§ãã¾ãã
{{< /blockquote >}}
## DeepLabCut ã«ã¤ãã¦
[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut)ã¯ãããããããªãã¬ã¼ãã³ã°ãã¼ã¿ã§äººéã¬ãã«ã®ç²¾åº¦ã§å®é¨åç©ã®è¡åã追跡å¯è½ã«ãããªã¼ãã³ã½ã¼ã¹ã®ãã¼ã«ããã¯ã¹ã§ãã DeepLabCutã®æè¡ã使ããã¨ã§ãç§å¦è
ã¯åç©ã®ç¨®é¡ã¨æç³»åã®ãã¼ã¿ããã¨ã«ãéåå¶å¾¡ã¨è¡åã«é¢ããç§å¦çãªçè§£ãæ·±ãããã¨ãã§ããããã«ãªãã¾ããã
ç¥çµç§å¦ãå»å¦ãçä½åå¦ãªã©ã®ããã¤ãã®ç ç©¶åéã§ã¯ãåç©ã®åãã追跡ãããã¼ã¿ã使ç¨ãã¦ãã¾ãã DeepLabCutã¯ãåç»ã«è¨é²ãããåããè§£æãããã¨ã§ã人éããã®ä»ã®åç©ãä½ããã¦ããã®ããçè§£ãããã¨ãã§ãã¾ãã ã¿ã°ä»ããç£è¦ãªã©ã®ãæéã®ããã使¥ãèªååããæ·±å±¤å¦ç¿ãã¼ã¹ã®ãã¼ã¿è§£æã宿½ãã¾ãã DeepLabCutã¯ãéé·é¡ããã¦ã¹ãéããã¨ãªã©ã®åç©ã観å¯ããç§å¦ç ç©¶ãããéãæ£ç¢ºã«ãã¦ãã¾ãã
-{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**è²ã®ã¤ããç¹ã¯ç«¶èµ°é¦¬ã®ä½ã®ä½ç½®ã追跡**" alt="horserideranim" attr="*(Source: Mackenzie Mathis)*">}}
+{{< figure >}}
+src = '/images/content_images/cs/race-horse.gif'
+title = 'è²ã®ã¤ããç¹ã¯ç«¶èµ°é¦¬ã®ä½ã®ä½ç½®ã追跡'
+alt = 'horserideranim'
+attribution = '(Source: Mackenzie Mathis)'
+{{< /figure >}}
DeepLabCutã¯ãåç©ã®å§¿å¢ãæ½åºãããã¨ã§é侵襲çãªè¡å追跡ãè¡ãã¾ãã ããã¯ãçä½åå¦ãéºä¼å¦ãå«çå¦ãç¥çµç§å¦ãªã©ã®åéã§ã®ç ç©¶ã«å¿
è¦ä¸å¯æ¬ ã§ãã åçã«å¤åããèæ¯ã®ä¸ã§ãåç©ã®å§¿å¢ããããªãã¼ã¿ããé侵襲çã«æ¸¬å®ãããã¨ã¯ãæè¡çã«ããå¿
è¦ãªè¨ç®ãªã½ã¼ã¹ããã¬ã¼ãã³ã°ãã¼ã¿ã®ç¹ã§ããé常ã«å°é£ãªè¨ç®å¦çã§ãã
DeepLabCutã¯ãç ç©¶è
ã対象ã®å§¿å¢ãæ¨å®ããPythonãã¼ã¹ã®ã½ããã¦ã§ã¢ã使ã£ã¦å¹ççã«å¯¾è±¡ã®è¡åãå®éåãããã¨ãå¯è½ã«ãã¾ãã DeepLabCutã使ç¨ããã¨ãç ç©¶è
ã¯åç»ããç°ãªããã¬ã¼ã ãèå¥ããæ°ååã®ãã¬ã¼ã ã®ç¹å®ã®èº«ä½é¨ä½ããããã§ããGUIã«ãã£ã¦ã©ãã«ã¥ãã§ãã¾ãã ããã¨ãDeepLabCutã®æ·±å±¤å¦ç¿ãã¼ã¹ã®ãã¼ãºæ¨å®ã¢ã¼ããã¯ãã£ã«ãããåç»ã®æ®ãã®é¨åãåç©ã®ä»ã®é¡ä¼¼ããåç»ããåãç¹å¾´ãæ½åºããæ¹æ³ãå¦ç¿ã§ãã¾ãã ãã¨ããã¦ã¹ãªã©ã®ä¸è¬çãªå®é¨åç©ãã [ãã¼ã¿ã¼][cheetah-movement]ã®ãããªããçããåç©ã¾ã§ãåç©ã®ç¨®é¡ãåããå©ç¨ã§ãã¾ãã
DeepLabCutã§ã¯[転移å¦ç¿](https://arxiv.org/pdf/1909.11229)ã¨ããæè¡ã使ç¨ãã¦ãã¾ãã ããã«ããå¿
è¦ãªå¦ç¿ãã¼ã¿ã®éã大å¹
ã«åæ¸ããå¦ç¿ã®åæãå éããããã¨ãã§ãã¾ãã å¿
è¦ã«å¿ãã¦ãããé«éãªæ¨è«ãæä¾ãããã¾ãã¾ãªãããã¯ã¼ã¯ã¢ã¼ããã¯ãã£(MobileNetV2ãªã©)ã鏿ãããã¨ãã§ãããªã¢ã«ã¿ã¤ã ã®å®é¨ãã¼ã¿ãã£ã¼ãããã¯ã¨çµã¿åããããã¨ãã§ãã¾ãã DeepLabCutã¯ãã¨ãã¨[DeeperCut](https://arxiv.org/abs/1605.03170)ã¨å¼ã°ããããã©ã¼ãã³ã¹ã®ãã人ç¨ã®ãã¼ãºæ¨å®ã¢ã¼ããã¯ãã£ã®ç¹å¾´æ¤åºå¨ã使ç¨ãã¦ããããããååã®ç±æ¥ã«ãªãã¾ããã ä»ã§ã¯ãã®ããã±ã¼ã¸ã¯å¤§å¹
ã«å¤æ´ããã追å ã®ã¢ã¼ããã¯ãã£ã»ãã¼ã¿ã®æ°´å¢ãã»ä¸éãã®ã¦ã¼ã¶ã¼ç¨ããã³ãã¨ã³ããå«ãã§ãã¾ãã ããã«ã å¤§è¦æ¨¡ãªçç©å¦çå®é¨ããµãã¼ããããããDeepLabCutã¯ãªã³ã©ã¤ã³å¦ç¿ã®æ©è½ãæä¾ãã¦ãã¾ãã ããã«ãããåç»ã®æéãããã¦å¦ç¿ãã¼ã¿ãå¢ãããã¨ãã§ããã¨ãã¸ã±ã¼ã¹ãã«ãã¼ããããç¹å®ã®ã³ã³ããã¹ãå
ã§ãã¼ãºæ¨å®ã¢ã«ã´ãªãºã ãå
ç¢ã«ãããã§ãã¾ãã
æè¿ã[DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo)ãçºè¡¨ããã¾ããã ããã¯ãéé·é¡ã®é¡åæããç¬ã®å§¿å¢ã¾ã§ãæ§ã
ãªç¨®ãå®é¨æ¡ä»¶ã«å¯¾å¿ããäºåè¨ç·´æ¸ã¿ã¢ãã«ãæä¾ãã¦ãã¾ãã ããã«ãããä¾ãã°ãæ°ãããã¼ã¿ã®ã©ãã«ãä»ãããã¨ãªãã¯ã©ã¦ãã§äºæ¸¬ãå®è¡ãããã¨ãã§ãããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®å¦ç¿ãå®è¡ãããã¨ãã§ãã¾ãã ããã°ã©ãã³ã°çµé¨ã¯å¿
è¦ããã¾ããã
### 主ãªç®æ¨ã¨çµæ
* **ç§å¦ç ç©¶ã®ããã®åç©å§¿å¢è§£æã®èªåå:**
DeepLabCutã¨ããæè¡ã®ä¸»ãªç®çã¯ã夿§ãªç°å¢ã§åç©ã®å§¿å¢ã測å®ã追跡ãããã¨ã§ãã ãã®ãã¼ã¿ã¯ä¾ãã°ç¥çµç§å¦ã®ç ç©¶ã«ããã¦ãè³ãã©ã®ããã«éåãå¶å¾¡ãã¦ããããçè§£ããããã®ããåç©ãã©ã®ããã«ç¤¾ä¼çã«äº¤æµãã¦ããããæããã«ããããã«å©ç¨ãããã¨ãã§ãã¾ãã ç ç©¶è
ã¯DeepLabCutã§ [10åã®ããã©ã¼ãã³ã¹åä¸](https://www.biorxiv.org/content/10.1101/457242v1) ãå¯è½ã§ããã¨çºè¡¨ãã¦ãã¾ãã ãªãã©ã¤ã³ã§ã¯æå¤§1200ãã¬ã¼ã /ç§(FPS) ã§å§¿å¢ãæ¨å®ãããã¨ãã§ãã¾ãã
* **å§¿å¢æ¨å®ã®ããã®ä½¿ããããPythonãã¼ã«ãããã®ä½æ:**
DeepLabCutã¯ãåç©ã®å§¿å¢æ¨å®æè¡ãç ç©¶è
ãç°¡åã«å©ç¨ã§ãããã¼ã«ã¨ãã¦å
±æãããã¨ããèãããéçºããã¦ãã¾ãã ããã§éçºè
ãã¯ããã¸ã§ã¯ãç®¡çæ©è½ãåãããåç¬ã§æ©è½ãã使ããããPythonãã¼ã«ããã¯ã¹ã¨ãã¦ãã®ãã¼ã«ã使ãã¾ããã ããã«ãããå§¿å¢æ¨å®ãèªååããã ãã§ãªããDeepLabCutãã¼ã«ãããã¦ã¼ã¶ã¼ããã¼ã¿ã»ããåéæ®µéããå
±æå¯è½ã»åå©ç¨å¯è½ãªåæãã¤ãã©ã¤ã³ã使ããæ®µéã¾ã§è£å©ããããã¸ã§ã¯ããã¨ã³ããã¼ã¨ã³ãã§ç®¡çãããã¨ãå¯è½ã«ãªãã¾ããã
ãã®[ãã¼ã«ããã][DLCToolkit] ã¯ãªã¼ãã³ã½ã¼ã¹ã¨ãã¦å©ç¨ã§ãã¾ãã
å
¸åçãªDeepLabCutã¯ã¼ã¯ããã¼ã¯ä»¥ä¸ã®ããã«ãªãã¾ãã
- ãªã³ã©ã¤ã³å¦ç¿ã«ãããã¬ã¼ãã³ã°ã»ããã®ä½æã¨èª¿æ´
- ç¹å®ã®åç©ãã·ããªãªã«åããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®æ§ç¯
- åç»ã«ãããå¤§è¦æ¨¡æ¨è«ã®ããã®ã³ã¼ã使
- çµ±åãããå¯è¦åãã¼ã«ã使ç¨ããæ¨è«ã®æç»
-{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**DeepLabCutã«ããå§¿å¢æ¨å®ã®ã¹ããã**" alt="dlcsteps" align="middle" attr="(Source: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
+{{< figure >}}
+src = '/images/content_images/cs/deeplabcut-toolkit-steps.png'
+title = 'DeepLabCutã«ããå§¿å¢æ¨å®ã®ã¹ããã'
+alt = 'dlcsteps'
+align = 'center'
+attribution = '(Source: DeepLabCut)'
+attributionlink = 'https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1'
+{{< /figure >}}
### 課é¡
* **é度**
åç©è¡ååç»ã®é«éãªå¦çã¯ãåç©ã®è¡åãæ¸¬å®ããç§å¦å®é¨ãããå¹ççã§æ£ç¢ºã«ããããã«éè¦ã§ãã åçã«å¤åããèæ¯ã®ä¸ã§ããã¼ã«ã¼ã使ç¨ããã«ãå®é¨å®¤ã§ã®å®é¨ã®ããã«åç©ã®è©³ç´°ãªå§¿å¢ãæ½åºãããã¨ã¯ãæè¡çã«ããå¿
è¦ãªãªã½ã¼ã¹çã«ããå¿
è¦ãªãã¬ã¼ãã³ã°ãã¼ã¿ã®é¢ã§ããå°é£ãªå ´åãããã¾ãã ç§å¦è
ããããç¾å®çãªç¶æ³ã§ç ç©¶ãè¡ãããã«ãã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãªã©ã®å°éç¥èã®ã¹ãã«ãå¿
è¦ã¨ããã«ä½¿ããã¨ãã§ãããã¼ã«ãéçºãããã¨ã¯ã解決ãã¹ãéè¦ãªåé¡ã§ãã
* **çµã¿åããåé¡**
çµåãåé¡ã¨ã¯ãè¤æ°ã®åè¢ã®åããåã
ã®åç©è¡åã«çµ±åãããã¨ãæãã¾ãã ãã¼ãã¤ã³ãã¨ããã®åã
ã®åç©è¡åã¨ã®é¢é£æ§ãçµã¿åãããæéçã«çµã³ã¤ãããã¨ã¯ãè¤éãªããã»ã¹ã§ãããé常ã«è¨å¤§ãªæ°å¤è§£æãå¿
è¦ã¨ãªãã¾ãã ç¹ã«ãå®é¨æ åã®ä¸ã§è¤æ°ã®åç©ã®åãã追跡ããå ´åã¯å¤§å¤ã§ãã
* **ãã¼ã¿å¦ç**
æå¾ã«ãé
åã®æä½ãããªãé£ããåé¡ã§ãã æ§ã
ãªç»åããç®æ¨ã®ãã³ã½ã«ããã¼ãã¤ã³ãã«å¯¾å¿ãã大ããªé
åã®ã¹ã¿ãã¯ãå¦çããªããã°ãªããªãããã§ãã
-{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**å§¿å¢æ¨å®ã®å¤æ§æ§ã¨é£ãã**" alt="challengesfig" align="middle" attr="(Source: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
+{{< figure >}}
+src = '/images/content_images/cs/pose-estimation.png'
+title = 'å§¿å¢æ¨å®ã®å¤æ§æ§ã¨é£ãã'
+alt = 'challengesfig'
+align = 'center'
+attribution = '(Source: Mackenzie Mathis)'
+attributionlink = 'https://www.biorxiv.org/content/10.1101/476531v1.full.pdf'
+{{< /figure >}}
## å§¿å¢æ¨å®ã®èª²é¡ã«å¯¾å¿ããããã®NumPyã®å½¹å²
NumPy 㯠DeepLabCutã«ããããè¡ååæã®é«éåã®ããã®æ°å¤è¨ç®ã®æ ¸ã¨ãªã£ã¦ãã¾ãã NumPyã ãã§ãªããDeepLabCutã¯æ§ã
ãªNumPyããã¼ã¹ã¨ãã¦ããPythonã©ã¤ãã©ãªãå©ç¨ãã¦ãã¾ãã [SciPy](https://www.scipy.org)ã[Pandas](https://pandas.pydata.org)ã[matplotlib](https://matplotlib.org)ã[Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug)ã[scikit-learn](https://scikit-learn.org/stable/)ã[scikit-image](https://scikit-image.org)ã[Tensorflow](https://www.tensorflow.org)ãªã©ã§ãã
以ä¸ã«æããNumPyã®ç¹å¾´ããDeepLabCutã®å§¿å¢æ¨å®ã¢ã«ã´ãªãºã ã§ã®ç»åå¦çã»çµã¿åããå¦çã»é«éè¨ç®ã«ããã¦ãéè¦ãªå½¹å²ãæããã¾ããã
* ãã¯ãã«å
* ãã¹ã¯ãããé
åæä½
* ç·å½¢ä»£æ°
* ã©ã³ãã ãµã³ããªã³ã°
* 大ããªé
åã®åæ§æ
DeepLabCutã¯ããã¼ã«ããããæä¾ããã¯ã¼ã¯ããã¼ãéãã¦NumPyã®é
åæ©è½ãå©ç¨ãã¦ãã¾ãã ç¹ã«ãNumPyã¯ãã¥ã¼ãã³ã¢ããã¼ã·ã§ã³ã®ã©ãã«ä»ãããã¢ããã¼ã·ã§ã³ã®æ¸ãè¾¼ã¿ãç·¨éãå¦çã®ããã«ãç¹å®ã®ãã¬ã¼ã ããµã³ããªã³ã°ããããã«ä½¿ç¨ããã¦ãã¾ãã TensorFlowã使ã£ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¯ãDeepLabCutã®æè¡ã«ãã£ã¦ä½ååãè¨ç·´ããã ãã¬ã¼ã ããçã®ã¢ããã¼ã·ã§ã³æ
å ±ãäºæ¸¬ãã¾ãã ãã®ç®çã®ãããå§¿å¢æ¨å®åé¡ãç»å-ç»å夿åé¡ã¨ãã¦å¤æããç®æ¨å¯åº¦(ã¹ã³ã¢ããã) ã使ãã¾ãã ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ããã¹ãåã®ããããã¼ã¿ã®æ°´å¢ãã使ç¨ãã¦ãã¾ããããã®ããã«ã¯å¹¾ä½å¦ã»ç»åçå¦çãæ½ããã¹ã³ã¢ãããã®è¨ç®ãè¡ããã¨ãå¿
è¦ã«ãªãã¾ãã ã¾ãå¦ç¿ãé«éåãããããNumPyã®ãã¯ãã«åæ©è½ãå©ç¨ããã¦ãã¾ãã æ¨è«ã«ã¯ãç®æ¨ã®ã¹ã³ã¢ãããããæãå¯è½æ§ã®é«ãäºæ¸¬å¤ãæ½åºããå¹ççã«ãäºæ¸¬å¤ããªã³ã¯ããã¦åã
ã®åç©ãçµã¿ç«ã¦ãããã¨ãå¿
è¦ã«ãªãã¾ãã
-{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**DeepLabCutã®ã¯ã¼ã¯ããã¼**" alt="workflow" attr="*(Source: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
+{{< figure >}}
+src = '/images/content_images/cs/deeplabcut-workflow.png'
+title = 'DeepLabCutã®ã¯ã¼ã¯ããã¼'
+alt = 'workflow'
+attribution = '(Source: Mackenzie Mathis)'
+attributionlink = 'https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962'
+{{< /figure >}}
## ã¾ã¨ã
è¡åã観å¯ããå¹ççã«è¡¨ç¾ãããã¨ã¯ãç¾ä»£å«çå¦ãç¥çµç§å¦ãå»å¦ãå·¥å¦ã®æ ¹å¹¹ã§ãã [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) ã«ãããç ç©¶è
ã¯å¯¾è±¡ã®å§¿å¢ãæ¨å®ããè¡åãå¹ççã«å®éåã§ããããã«ãªãã¾ããã DeepLabCutã¨ããPythonãã¼ã«ããã¯ã¹ã使ãã°ãããããªå¦ç¿ç»åã®ã»ããã§ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã人éã¬ãã«ã®ã©ããªã³ã°ç²¾åº¦ã§å¦ç¿ãããã¨ãã§ããå®é¨å®¤ã§ã®è¡ååæã ãã§ãªããã¹ãã¼ããæ©è¡åæãå»å¦ããªãããªãã¼ã·ã§ã³ç ç©¶ãªã©ã¸ã®å¿ç¨ãå¯è½ã«ãªãã¾ãã DeepLabCutã¢ã«ã´ãªãºã ã«å¿
è¦ãªè¤éãªçµã¿åããå¦çããã¼ã¿å¦çã®åé¡ããNumPyã®é
åæä½æ©è½ã解決ãã¦ãã¾ãã
-{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**NumPyã®ä¸»è¦æ©è½**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_dlc_benefits.png'
+alt = 'numpy benefits'
+title = 'NumPyã®ä¸»è¦æ©è½'
+{{< /figure >}}
[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/ja/case-studies/gw-discov.md b/content/ja/case-studies/gw-discov.md
index e0bdc84..c5275fd 100644
--- a/content/ja/case-studies/gw-discov.md
+++ b/content/ja/case-studies/gw-discov.md
@@ -1,70 +1,94 @@
---
title: "ã±ã¼ã¹ã¹ã¿ãã£: éåæ³¢ã®çºè¦"
sidebar: false
---
-{{< figure src="/images/content_images/cs/gw_sxs_image.png" class="fig-center" caption="**éåæ³¢**" alt="binary coalesce black hole generating gravitational waves" attr="*(Image Credits: The Simulating eXtreme Spacetimes (SXS) Project at LIGO)*" attrlink="https://youtu.be/Zt8Z_uzG71o" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gw_sxs_image.png'
+title = 'éåæ³¢'
+alt = 'binary coalesce black hole generating gravitational waves'
+attribution = '(Image Credits: The Simulating eXtreme Spacetimes (SXS) Project at LIGO)'
+attributionlink = 'https://youtu.be/Zt8Z_uzG71o'
+{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="David Shoemaker, *LIGOãµã¤ã¨ã³ãã£ãã£ãã¯ã»ã³ã©ãã¬ã¼ã·ã§ã³*" >}}
ç§å¦è¨ç®ã®ããã®Pythonã¨ã³ã·ã¹ãã ã¯LIGOã§è¡ããã¦ããç ç©¶ã®ããã®éè¦ãªã¤ã³ãã©ã§ãã
{{< /blockquote >}}
## [éåæ³¢](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) 㨠[LIGO](https://www.ligo.caltech.edu) ã«ã¤ãã¦
éåæ³¢ã¯ã空éã¨æéã®åºæ¬æ§é ã®æ³¢ç´ã§ãã 2ã¤ã®ãã©ãã¯ãã¼ã«ã®è¡çªãåä½ã2飿ãè¶
æ°æã®åä½ãªã©ã大ããªå¤åç¾è±¡ã«ãã£ã¦çæããã¾ãã éåæ³¢ã®è¦³æ¸¬ã¯ãéåãç ç©¶ããä¸ã§éè¦ãªã ãã§ãªããé ãå®å®ã«ãããããã¤ãã®ä¸æçãªç¾è±¡ã¨ããã®å½±é¿ãçè§£ããããã«ãå½¹ç«ã¡ã¾ãã
\[ã¬ã¼ã¶ã¼å¹²æ¸è¨éåæ³¢å¤©æå°(LIGO)\](https://www. ligo. caltech. edu)ã¯ãã¢ã¤ã³ã·ã¥ã¿ã¤ã³ã®ä¸è¬ç¸å¯¾æ§çè«ã«ãã£ã¦äºæ¸¬ãããéåæ³¢ã®ç´æ¥æ¤åºãéãã¦ãéåæ³¢å¤©ä½ç©çå¦ã®åéãåãéãããã«è¨è¨ããã¾ããã ãã®ã·ã¹ãã ã¯ãã¢ã¡ãªã«ã®ã¯ã·ã³ãã³å·ãã³ãã©ã¼ãã¨ã«ã¤ã¸ã¢ãå·ãªãã³ã°ã¹ãã³ã«ãã2ã¤ã®å¹²æ¸è¨ãä¸ä½ã¨ãªã£ã¦æ§æãããéåæ³¢ãæ¤åºãã¾ãã ããããã®ã·ã¹ãã ã«ã¯ãã¬ã¼ã¶ã¼å¹²æ¸æ³ãç¨ããæ°ããè¦æ¨¡ã®éåæ³¢æ¤åºå¨ãè¨ç½®ããã¦ãã¾ãã LIGO Scientific Collaborationï¼LSCï¼ã¯ãç±³å½ãã¯ããã¨ãã14ã«å½ã®å¤§å¦ãã1000人以ä¸ã®ç§å¦è
ãéã¾ãã90以ä¸ã®å¤§å¦ã»ç ç©¶æ©é¢ã«ãã£ã¦æ¯æ´ããã¦ãã¾ãã ã¾ããç´250人ã®å¦çãåå ãã¦ãã¾ãã ä»åã®LIGOã®çºè¦ã¯ãéåæ³¢ãå°çãééããéã«çãã空éã¨æéã®å¾®å°ãªä¹±ãã®æ¸¬å®ã«ãããéåæ³¢ãã®ãã®ãåãã¦è¦³æ¸¬ãã¾ããã ããã«ãããæ°ãã天ä½ç©çå¦ã®ããã³ãã£ã¢ãéããã¾ããã ããã¯ãå®å®ã®æªãã å´é¢ãã¤ã¾ãæªãã æç©ºããä½ãããç©ä½ã¨ããã«ç¾è±¡ãåãæããã®ã§ãã
### 主ãªç®ç
* LIGOã®[ããã·ã§ã³](https://www.ligo.caltech.edu/page/what-is-ligo)ã¯ãå®å®ã§æãæ¿ããã¨ãã«ã®ã¼ã«æºã¡ãããã»ã¹ããã®éåæ³¢ãæ¤åºãããã¨ã§ãããLIGOãåéãããã¼ã¿ã¯ãéåãç¸å¯¾æ§çè«ã天ä½ç©çå¦ãå®å®è«ãç´ ç²åç©çå¦ãååæ ¸ç©çå¦ãªã©ãç©çå¦ã®å¤ãã®åéã«åºãå½±é¿ãä¸ããå¯è½æ§ãããã¾ãã
* è¤éãªæ°å¦ãå«ãç¸å¯¾æ§çè«ã®æ°å¤è¨ç®ã«ãã£ã¦è¦³æ¸¬ãã¼ã¿ãè§£æããä¿¡å·ã¨ãã¤ãºãèå¥ããé¢é£æ§ã®ããä¿¡å·ããã£ã«ã¿ãªã³ã°ãã観測ãã¼ã¿ã®æææ§ãçµ±è¨çã«æ¨å®ãããã¨ã§ãå®å®ã®å§ã¾ãã®ã¯ã©ã³ãã観測ã§ããããã«ãªãã¾ãã
* ãã¤ããªãæ°å¤ã®çµæãçè§£ããããããã«ãã¼ã¿ãå¯è¦åãããã¨ãå¿
è¦ã§ãã
### 課é¡
* **è¨ç®**
åæã«ããæ¾åºãããéåæ³¢ã¯ãã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ãç¨ãã¦æ°å¤ç¸å¯¾æ§ãæãããæ¬¡ç¬¬ã«è©¦ããããªæ¹æ³ã§ã¯è¨ç®ã§ãã¾ããã LIGOãåéãããã¼ã¿éã¯ãéåæ³¢ã®ä¿¡å·ãå°ãªãã®ã¨åããããä¸å¯è§£ã§ãã
* **ãã¼ã¿ã®æ°¾æ¿«**
観測è£
ç½®ãããé«æåº¦ã§ä¿¡é ¼æ§ãæã¤ããã«ãªãã¨ããã¼ã¿ã®å¤§æ´ªæ°´ã«ãã£ã¦ãå¹²ãèã®ä¸ããéãæ¢ããããªåé¡ããå¤éã«çºçãããã¨ããããã¾ãã LIGOã¯æ¯æ¥ãã©ãã¤ãã®ãã¼ã¿ãçæãã¦ããã®ã§ãï¼ ãã®å¤§éã®ãã¼ã¿ãè§£éããã«ã¯ã忤åºãã¨ã«å¤å¤§ãªå´åãå¿
è¦ã§ãã ä¾ãã°ãLIGOã«ãã£ã¦åéãããä¿¡å·ã¯ãæ°åä¸åã®éåæ³¢ã·ã°ããã£ã®ãã³ãã¬ã¼ãã§æ§æããã¦ãããã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ã§ããè§£æã§ãã¾ããã
* **å¯è¦å**
ã¢ã¤ã³ã·ã¥ã¿ã¤ã³æ¹ç¨å¼ãå
ã«ã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ã§ãã¼ã¿ãè§£æã§ããããã«ãªã£ãããæ¬¡ã¯ãã¼ã¿ã人éã®è³ã§çè§£ã§ããããã«ããªããã°ãªãã¾ããã ã·ãã¥ã¬ã¼ã·ã§ã³ã®ã¢ããªã³ã°ãä¿¡å·ã®æ¤åºã«ã¯ãããããããå¯è¦åæè¡ãå¿
è¦ã§ãã ç»åå¦çãã·ãã¥ã¬ã¼ã·ã§ã³ã«ãã£ã¦ãè§£æçµæãããå¤ãã®äººã«çè§£ãã¦ããããç¶æ
ã«ãªãåã®æ®µéã«ããã¦ãå¯è¦åã¯ãæ°å¤ç¸å¯¾æ§ãååã«éè¦è¦ãã¦ããªãã£ãç´ç²ãªç§å¦æå¥½å®¶ã®ç®ã«ãæ°å¤ç¸å¯¾æ§ããããä¿¡é ¼æ§ã®é«ããã®ã¨ãã¦æ ãããã«ããã¨ããå½¹å²ãæããã¦ãã¾ãã è¤éãªè¨ç®ã¨æç»ãè¡ããã¾ãææ°ã®å®é¨çµæã¨æ´å¯ã«åºã¥ãã¦ã·ãã¥ã¬ã¼ã·ã§ã³ã¨åæç»ãè¡ã使¥ã¯æéã®ããããã®ã§ããã®åéã®ç ç©¶è
ã«ã¨ã£ã¦ã®èª²é¡ã§ãã
-{{< figure src="/images/content_images/cs/gw_strain_amplitude.png" class="fig-center" alt="gravitational waves strain amplitude" caption="**GW150914ããæ¨å®ãããéåæ³¢ã®æªã¿ã®æ¯å¹
**" attr="(**Graph Credits:** Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)" attrlink="https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gw_strain_amplitude.png'
+alt = 'gravitational waves strain amplitude'
+title = 'GW150914ããæ¨å®ãããéåæ³¢ã®æªã¿ã®æ¯å¹
'
+attribution = '(Graph Credits: Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)'
+attributionlink = 'https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger'
+{{< /figure >}}
## éåæ³¢ã®æ¤åºã«ãããNumPyã®å½¹å²
åæã«ããæ¾åºãããéåæ³¢ã¯ãã¹ã¼ãã¼ã³ã³ãã¥ã¼ã¿ãç¨ãããã«ã¼ããã©ã¼ã¹ã®æ°å¤ç¸å¯¾æ§å¦ç以å¤ã®ææ³ã§ã¯è¨ç®ã§ãã¾ããã éåæ³¢ã¯é常ã«å°ãã广ãçã¿ãç©è³ªã¨å¾®å°ãªç¸äºä½ç¨ãæã¤ãããæ¤åºãå°é£ã§ãã LIGOã®ãã¹ã¦ã®ãã¼ã¿ãå¦çã»åæããã«ã¯ãè¨å¤§ãªè¨ç®ã¤ã³ãã©ãå¿
è¦ã§ãã ä¿¡å·ã®æ°åååã®ãã¤ãºãé¤å»ããå¾ããé常ã«è¤éãªç¸å¯¾æ§çè«ã®æ¹ç¨å¼ã¨è¨å¤§ãªéã®ãã¼ã¿ããããè¨ç®ä¸ã®èª²é¡ã¨ãªã£ã¦ãã¾ãã
Pythonç¨ã®æ¨æºçãªæ°å¤è§£æããã±ã¼ã¸NumPyã¯ãLIGOã®éåæ³¢æ¤åºããã¸ã§ã¯ãã§å®è¡ãããæ§ã
ãªã¿ã¹ã¯ã«ä½¿ç¨ãããã½ããã¦ã§ã¢ã§å©ç¨ããã¦ãã¾ãã NumPyã¯ãè¤éãªæ°å¦å¦çãé«éãªãã¼ã¿æä½ã«å½¹ç«ã¡ã¾ããã æ¬¡ã«ããã¤ãã®ä¾ã示ãã¾ãã
* [ä¿¡å·å¦ç](https://www.uv.es/virgogroup/Denoising_ROF.html): ã°ãªãã¸æ¤åºã[ãã¤ãºåå®ã¨ãã¼ã¿å¤å®](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, pyCharm)ã
* ãã¼ã¿åå¾: ã©ã®ãã¼ã¿ãè§£æã§ããããæ±ºå®ããå¹²ãèã®ä¸ã®éã®ãããªä¿¡å·ãå
¥ã£ã¦ãããã©ãããçªãæ¢ããã
* çµ±è¨è§£æ: 観測ãã¼ã¿ã®çµ±è¨çæææ§ãæ¨å®ããã¢ãã«ã¨ã®æ¯è¼ã«ããä¿¡å·ãã©ã¡ã¼ã¿ï¼æã®è³ªéãã¹ãã³é度ãè·é¢ãªã©ï¼ãæ¨å®ããã
* ãã¼ã¿å¯è¦å
- æç³»åãã¼ã¿
- ã¹ãã¯ããã°ã©ã
* ç¸é¢è¨ç®
* éåæ³¢ãã¼ã¿è§£æã®ããã«éçºããã[ã½ããã¦ã§ã¢ç¾¤](https://github.com/lscsoft): [GwPy](https://gwpy.github.io/docs/stable/overview.html)ã [PyCBC](https://pycbc.org)ã¯ãNumPyãAstroPyãç¨ãã¦ãéåæ³¢æ¤åºå¨ãã¼ã¿ãç ç©¶ããããã®ã¦ã¼ãã£ãªãã£ã¼ã»ãã¼ã«ã»é¢æ°ã¸ã®ãªãã¸ã§ã¯ãæåã¤ã³ã¿ã¼ãã§ã¼ã¹ãæä¾ãã¦ãã¾ãã
-{{< figure src="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gwpy-numpy depgraph" caption="**GwPyã®NumPyä¾åã°ã©ã**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gwpy-numpy-dep-graph.png'
+alt = 'gwpy-numpy depgraph'
+title = 'GwPyã®NumPyä¾åã°ã©ã'
+{{< /figure >}}
----
-{{< figure src="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="PyCBC-numpy depgraph" caption="**PyCBCã®NumPyä¾åã°ã©ã**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/PyCBC-numpy-dep-graph.png'
+alt = 'PyCBC-numpy depgraph'
+title = 'PyCBCã®NumPyä¾åã°ã©ã'
+{{< /figure >}}
## ã¾ã¨ã
䏿¹ã§ãããã¾ã§ç¥ããã¦ããæ·±é ãªå¤©ä½ç©çå¦ã®ç¾è±¡ã«ãå¤ãã«æ°ããªæ´å¯ãæä¾ãã¾ããã æ°å¤å¦çã¨ãã¼ã¿ã®å¯è¦åã¯ãç§å¦è
ãç§å¦çãªè¦³æ¸¬ããåéãããã¼ã¿ã«ã¤ãã¦ã®æ´å¯ãå¾ã¦ããã®çµæãçè§£ããã®ã«å½¹ç«ã¤éè¦ãªã¹ãããã§ãã ãããããã®è¨ç®ã¯è¤éã§ãããå®éã®è¦³æ¸¬ãã¼ã¿ã¨åæãç¨ããã³ã³ãã¥ã¼ã¿ã·ãã¥ã¬ã¼ã·ã§ã³ãç¨ãã¦å¯è¦åãããªãéãã人éãçè§£ãããã¨ã¯ã§ãã¾ããã§ããã NumPyã¯ãmatplotlibã»pandasã»scikit-learnãªã©ã®Pythonããã±ã¼ã¸ã¨ã¨ãã«ãç ç©¶è
ãè¤éãªè³ªåã«çããç§ãã¡ã®å®å®ã«å¯¾ããã®çè§£ã«ããã¦ãæ°ããå°å¹³ãçºè¦ãããã¨ã[å¯è½ã«ãã¦ãã¾ã](https://www.gw-openscience.org/events/GW150914/)ã
-{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy benefits" caption="**å©ç¨ãããNumPyã®ä¸»è¦æ©è½**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_bh_benefits.png'
+alt = 'numpy benefits'
+title = 'å©ç¨ãããNumPyã®ä¸»è¦æ©è½'
+{{< /figure >}}
diff --git a/content/ja/user-survey-2020.md b/content/ja/user-survey-2020.md
index ce32100..b79cc13 100644
--- a/content/ja/user-survey-2020.md
+++ b/content/ja/user-survey-2020.md
@@ -1,16 +1,20 @@
---
title: 2020å¹´ NumPyã³ãã¥ããã£èª¿æ»
sidebar: false
---
2020å¹´ã«ãNumPyã®èª¿æ»ãã¼ã ã¯ããã·ã¬ã³å¤§å¦ã¨ã¡ãªã¼ã©ã³ã大å¦ãå
±åã§éå¬ãããèª¿æ»æ¹æ³å¦ã®ä¿®å£«ã³ã¼ã¹ã®å¦çã¨æå¡ã¨å
±åã§ãåãã¦å
¬å¼ã®NumPyã³ãã¥ããã£èª¿æ»ã宿½ãã¾ããã 75ã«å½ãã1,200人以ä¸ã®NumPyã¦ã¼ã¶ã¼ãåå ãã¦ããã¾ãããNumPyã³ãã¥ããã£ã®å
¨ä½åãæããããã¸ã§ã¯ãã®æªæ¥åã«ã¤ãã¦ã®æè¦ãè¿°ã¹ã¦ãããã¾ããã
-{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 Numpy User survey report, titled 'Numpyã³ãã¥ããã£èª¿æ»2020 - çµæ'" width="250" >}}
+{{< figure >}}
+src = '/surveys/NumPy_usersurvey_2020_report_cover.png'
+alt = 'Cover page of the 2020 Numpy User survey report, titled "Numpyã³ãã¥ããã£èª¿æ»2020 - çµæ"'
+width = '250'
+{{< /figure >}}
調æ»çµæã詳細ãç¥ãããå ´åã¯ã**[ãã¡ãã®ã¬ãã¼ã](/surveys/NumPy_usersurvey_2020_report.pdf)** ããã¦ã³ãã¼ããã¦ãã ããã
çµæã®æ¦è¦ã«ã¤ãã¦ã¯ã **[ãã¡ãã®å³](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)** ããã§ãã¯ãã¦ãã ããã
ãã詳細ãç¥ããããªãã¾ãããï¼ **https://numpy.org/user-survey-2020-details/** ãã覧ãã ããã
diff --git a/content/pt/case-studies/blackhole-image.md b/content/pt/case-studies/blackhole-image.md
index b4832fd..d8429b3 100644
--- a/content/pt/case-studies/blackhole-image.md
+++ b/content/pt/case-studies/blackhole-image.md
@@ -1,72 +1,97 @@
---
title: "Estudo de Caso: A Primeira Imagem de um Buraco Negro"
sidebar: false
---
-{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**Black Hole M87**" alt="black hole image" attr="*(Créditos: Event Horizon Telescope Collaboration)*" attrlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg" >}}
+{{< figure >}}
+src = '/images/content_images/cs/blackhole.jpg'
+title = 'Black Hole M87'
+alt = 'black hole image'
+attribution = '(Créditos: Event Horizon Telescope Collaboration)'
+attributionlink = 'https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg'
+{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="Katie Bouman, *Professora Assistente, Ciências da Computação e Matemática, Caltech*"
>}}
Criar uma imagem do Buraco Negro M87 é como tentar ver algo que, por definição, é impossÃvel de se ver.
{{< /blockquote >}}
## Um telescópio do tamanho da Terra
O [telescópio Event Horizon (EHT)](https://eventhorizontelescope.org), é um conjunto de oito telescópios em solo formando um telescópio computacional do tamanho da Terra, projetado para estudar o universo com sensibilidade e resolução sem precedentes. O enorme telescópio virtual, que usa uma técnica chamada interferometria de longa linha de base (VLBI), tem uma resolução angular de [20 micro-arcossegundos][resolution] â o suficiente para ler um jornal em Nova Iorque a partir de um café em uma calçada de Paris!
### Principais Objetivos e Resultados
* **Uma nova visão do universo:** A imagem inovadora do EHT foi publicada 100 anos após [o experimento de Sir Arthur Eddington][eddington] ter produzido as primeiras evidências observacionais apoiando a teoria da relatividade geral de Einstein.
* **O Buraco Negro:** o EHT foi treinado em um buraco negro supermassivo a aproximadamente 55 milhões de anos-luz da Terra, localizado no centro do galáxia Messier 87 (M87) no aglomerado de Virgem. Sua massa é equivalente a 6,5 bilhões de vezes a do Sol. Ele vem sendo estudado [há mais de 100 anos](https://www.jpl.nasa.gov/news/news.php?feature=7385), mas um buraco negro nunca havia sido observado visualmente antes.
* **Comparando observações com a teoria:** Pela teoria geral da relatividade de Einstein, os cientistas esperavam encontrar uma região de sombra causada pela distorção e captura da luz causada pela influência gravitacional do buraco negro. Os cientistas poderiam usá-la para medir a enorme massa do mesmo.
### Desafios
* **Escala computacional**
O EHT representa um desafio imenso em processamento de dados, incluindo rápidas flutuações de fase atmosférica, uma largura grande de banda nas gravações e telescópios que são muito diferentes e geograficamente dispersos.
* **Muitas informações**
A cada dia, o EHT gera mais de 350 terabytes de observações, armazenadas em discos rÃgidos cheios de hélio. Reduzir o volume e a complexidade desse volume de dados é extremamente difÃcil.
* **Em direção ao desconhecido**
Quando o objetivo é algo que nunca foi visto, como os cientistas podem ter confiança de que sua imagem está correta?
-{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**Etapas de Processamento de Dados do EHT**" alt="data pipeline" align="middle" attr="(Créditos do diagrama: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}
+{{< figure >}}
+src = '/images/content_images/cs/dataprocessbh.png'
+title = 'Etapas de Processamento de Dados do EHT'
+alt = 'data pipeline'
+align = 'center'
+attribution = '(Créditos do diagrama: The Astrophysical Journal, Event Horizon Telescope Collaboration)'
+attributionlink = 'https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57'
+{{< /figure >}}
## O papel do NumPy
E se houver um problema com os dados? Ou talvez um algoritmo seja muito dependente de uma hipótese em particular. A imagem será alterada drasticamente se um único parâmetro for alterado?
A colaboração do EHT venceu esses desafios ao estabelecer equipes independentes que avaliaram os dados usando técnicas de reconstrução de imagem estabelecidas e de ponta para verificar se as imagens resultantes eram consistentes. Quando os resultados se provaram consistentes, eles foram combinados para produzir a imagem inédita do buraco negro.
O trabalho desse grupo ilustra o papel do ecossistema cientÃfico do Python no avanço da ciência através da análise de dados colaborativa.
-{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="role of numpy" caption="**O papel do NumPy na criação da primeira imagem de um Buraco Negro**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/bh_numpy_role.png'
+alt = 'role of numpy'
+title = 'O papel do NumPy na criação da primeira imagem de um Buraco Negro'
+{{< /figure >}}
Por exemplo, o pacote Python [`eht-imaging`][ehtim] fornece ferramentas para simular e realizar reconstrução de imagem nos dados do VLBI. O NumPy está no coração do processamento de dados vetoriais usado neste pacote, como ilustrado pelo gráfico parcial de dependências de software abaixo.
-{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="ehtim dependency map highlighting numpy" caption="**Diagrama de dependência de software do pacote ehtim evidenciando o NumPy**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/ehtim_numpy.png'
+alt = 'ehtim dependency map highlighting numpy'
+title = 'Diagrama de dependência de software do pacote ehtim evidenciando o NumPy'
+{{< /figure >}}
Além do NumPy, muitos outros pacotes como [SciPy](https://www.scipy.org) e [Pandas](https://pandas.io) foram usados na *pipeline* de processamento de dados para criar a imagem do buraco negro. Os arquivos astronômicos de formato padrão e transformações de tempo/coordenadas foram tratados pelo [Astropy][astropy] enquanto a [Matplotlib][mpl] foi usada na visualização de dados em todas as etapas de análise, incluindo a geração da imagem final do buraco negro.
## Resumo
A estrutura de dados n-dimensional que é a funcionalidade central do NumPy permitiu aos pesquisadores manipular grandes conjuntos de dados, fornecendo a base para a primeira imagem de um buraco negro. Esse momento marcante na ciência fornece evidências visuais impressionantes para a teoria de Einstein. Esta conquista abrange não apenas avanços tecnológicos, mas colaboração cientÃfica em escala internacional entre mais de 200 cientistas e alguns dos melhores observatórios de rádio do mundo. Eles usaram algoritmos e técnicas de processamento de dados inovadores, que aperfeiçoaram os modelos astronômicos existentes, para ajudar a descobrir um dos mistérios do universo.
-{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy benefits" caption="**Funcionalidades-chave do NumPy utilizadas**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_bh_benefits.png'
+alt = 'numpy benefits'
+title = 'Funcionalidades-chave do NumPy utilizadas'
+{{< /figure >}}
[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole
[eddington]: https://en.wikipedia.org/wiki/Eddington_experiment
[ehtim]: https://github.com/achael/eht-imaging
[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
diff --git a/content/pt/case-studies/cricket-analytics.md b/content/pt/case-studies/cricket-analytics.md
index 54da45b..8d70c77 100644
--- a/content/pt/case-studies/cricket-analytics.md
+++ b/content/pt/case-studies/cricket-analytics.md
@@ -1,66 +1,89 @@
---
title: "Estudo de Caso: Análise de CrÃquete, a revolução!"
sidebar: false
---
-{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="**IPLT20, o maior festival de CrÃquete da Ãndia**" alt="Copa e estádio da Indian Premier League Cricket" attr="*(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))*" attrlink="https://unsplash.com/@aksh1802" >}}
+{{< figure >}}
+src = '/images/content_images/cs/ipl-stadium.png'
+title = 'IPLT20, o maior festival de CrÃquete da Ãndia'
+alt = 'Copa e estádio da Indian Premier League Cricket'
+attribution = '(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))'
+attributionlink = 'https://unsplash.com/@aksh1802'
+{{< /figure >}}
{{< blockquote
cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
by="M S Dhoni, *Jogador Internacional de CrÃquete, ex-capitão, Time Indiano, joga pelo Chennai Super Kings na IPL*"
>}}
Você não joga para a torcida, joga para o paÃs.
{{< /blockquote >}}
## Sobre CrÃquete
Dizer que os indianos adoram o crÃquete seria subestimar este sentimento. O jogo é jogado praticamente em todas as localidades da Ãndia, rurais ou urbanas, e é popular com os jovens e os anciões, conectando bilhões de pessoas na Ãndia como nenhum outro esporte. O cricket também recebe muita atenção da mÃdia. Há uma quantidade significativa de [dinheiro](https://www.statista.com/topics/4543/indian-premier-league-ipl/) e fama em jogo. Ao longo dos últimos anos, a tecnologia foi literalmente uma revolução. As audiências tem uma ampla possibilidade de escolha, com mÃdias de streaming, torneios, acesso barato a jogos de crÃquete ao vivo em dispositivos móveis, e mais.
A Primeira Liga Indiana (*Indian Premier League* - IPL) é uma liga profissional de crÃquete [Twenty20](https://pt.wikipedia.org/wiki/Twenty20), fundada em 2008. à um dos eventos de crÃquete mais assistidos no mundo, avaliado em [$6,7 bilhões de dólares](https://en.wikipedia.org/wiki/Indian_Premier_League) em 2019.
perdidos por um boleador, as partidas ganhas por uma equipe de crÃquete, o número de vezes que um batsman responde de certa maneira a um tipo de arremesso do boleador, etc. A capacidade de investigar números de crÃquete para melhorar o desempenho e estudar as oportunidades de negócio, mercado e economia de crÃquete através de poderosas ferramentas de análise, alimentadas por softwares numéricos de computação, como o NumPy, é um grande negócio. A capacidade de investigar estatÃsticas do crÃquete para melhorar a performance dos times e estudar oportunidades de negócios, o mercado em si, e a economia do crÃquete através de ferramentas de análise poderosas alimentadas por softwares de computação numérica como o NumPy é um grande negócio. As análises de crÃquete fornecem informações interessantes sobre o jogo e informações preditivas sobre os resultados do jogo.
Hoje, existem conjuntos ricos e quase infinitos de estatÃsticas e informações sobre jogos de crÃquete, por exemplo, [ESPN cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) e [cricsheet](https://cricsheet.org). Estes e muitos outros bancos de dados de crÃquete foram usados para [análise de crÃquete](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances) usando os mais modernos algoritmos de aprendizagem de máquina e modelagem preditiva. Plataformas de mÃdia e entretenimento, juntamente com entidades de esporte profissionais associadas ao jogo usam tecnologia e análise para determinar métricas chave para melhorar as chances de vitória:
* média móvel do desempenho em rebatidas,
* previsão de pontuação,
* ganho de informações sobre desempenho e condição fÃsica de um determinado jogador contra determinado adversário,
* contribuições dos jogadores para vitórias e derrotas para a tomada de decisões estratégicas na composição do time
-{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="**Pitch de crÃquete, o ponto focal do campo**" alt="Um pitch de crÃquete com um boleador e batsmen" align="middle" attr="*(Créditos de imagem: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+{{< figure >}}
+src = '/images/content_images/cs/cricket-pitch.png'
+title = 'Pitch de crÃquete, o ponto focal do campo'
+alt = 'Um pitch de crÃquete com um boleador e batsmen'
+align = 'center'
+attribution = '(Créditos de imagem: Debarghya Das)'
+attributionlink = 'http://debarghyadas.com/files/IPLpaper.pdf'
+{{< /figure >}}
### Objetivos Principais da Análise de Dados
* A análise de dados esportivos é usada não somente em crÃquete, mas em muitos [outros esportes](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) para melhorar o desempenho geral da equipe e maximizar as chances de vitória.
* A análise de dados em tempo real pode ajudar a obtenção de informações mesmo durante o jogo para orientar mudanças nas táticas da equipe e dos negócios associados para benefÃcios e crescimento econômicos.
* Além da análise histórica, os modelos preditivos explorados para determinar os possÃveis resultados das partidas requerem um conhecimento significativo sobre processamento numérico e ciência de dados, ferramentas de visualização e a possibilidade de incluir observações mais recentes na análise.
-{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="estimador de postura" caption="**Estimador de Postura de CrÃquete**" attr="*(Créditos de imagem: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+{{< figure >}}
+src = '/images/content_images/cs/player-pose-estimator.png'
+alt = 'estimador de postura'
+title = 'Estimador de Postura de CrÃquete'
+attribution = '(Créditos de imagem: connect.vin)'
+attributionlink = 'https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/'
+{{< /figure >}}
### Desafios
* **Limpeza e pré-processamento de dados**
A IPL expandiu o formato de jogo clássico de cricket para uma escala muito maior. O número de partidas jogadas a cada temporada em vários formatos tem aumentado, assim como os dados, os algoritmos, as tecnologias de análise de dados mais recentes e modelos de simulação. A análise de dados de crÃquete requer mapeamento de campo, rastreamento do jogador, rastreamento de bola e análise de tiros do jogador, análise de lances do jogador e vários outros aspectos envolvidos em como a bola é lançada, seu ângulo, giro, velocidade e trajetória. Todos esses fatores em conjunto aumentaram a complexidade da limpeza e pré-processamento de dados.
* **Modelagem Dinâmica**
No crÃquete, como em qualquer outro esporte, pode haver um grande número de variáveis relacionadas ao rastreamento de vários jogadores no campo, seus atributos, a bola e várias possibilidades de ações em potencial. A complexidade da análise e modelagem de dados é diretamente proporcional ao tipo de questões preditivas que são consideradas durante a análise e são altamente dependentes da representação de dados e do modelo. As coisas são ainda mais desafiadoras em termos de computação e comparações de dados quando previsões dinâmicas de jogo de crÃquete são desejadas, como o que teria acontecido se o batsman tivesse atingido a bola com um ângulo ou velocidade diferentes.
* **Complexidade da análise preditiva**
Muito da tomada de decisões em crÃquete se baseia em questões como "com que frequência um batsman joga um certo tipo de lance se a recepção da bola for de um determinado tipo", ou "como um boleador muda a direção e alcance da sua jogada se o batsman responder de uma certa maneira". Esse tipo de consulta de análise preditiva requer a disponibilidade de conjuntos de dados altamente granulares e a capacidade de sintetizar dados e criar modelos generativos que sejam altamente precisos.
## O papel do NumPy na análise de crÃquete
A análise de dados esportivos é um campo próspero. Muitos pesquisadores e empresas [usam NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) e outros pacotes PyData como Scikit-learn, SciPy, Matplotlib, e Jupyter, além de usar as últimas técnicas de aprendizagem de máquina e IA. O NumPy foi usado para vários tipos de análise esportiva relacionada a crÃquete, como:
* **Análise EstatÃstica:** Os recursos numéricos do NumPy ajudam a estimar o significado estatÃstico de dados observados ou de eventos ocorridos em partidas no contexto de vários jogadores e táticas de jogo, bem como estimar o resultado do jogo em comparação com um modelo generativo ou estático. [Análise Causal](https://amplitude.com/blog/2017/01/19/causation-correlation) e [abordagens em *big data*](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/) são usados para análise tática.
* **Visualização de dados:** Gráficos e [visualizações](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) fornecem informações úteis sobre as relações entre vários conjuntos de dados.
## Resumo
A análise de dados esportivos é revolucionária quando se trata de como os jogos profissionais são jogados, especialmente se consideramos como acontece a tomada de decisões estratégicas, que até pouco tempo era principalmente feita com base na "intuição" ou adesão a tradições passadas. O NumPy forma uma fundação sólida para um grande conjunto de pacotes Python que fornecem funções de alto nÃvel relacionadas à análise de dados, aprendizagem de máquina e algoritmos de IA. Estes pacotes são amplamente implantados para se obter informações em tempo real que ajudam na tomada de decisão para resultados decisivos, tanto em campo como para se derivar inferências e orientar negócios em torno do jogo de crÃquete. Encontrar os parâmetros ocultos, padrões, e atributos que levam ao resultado de uma partida de crÃquete ajuda os envolvidos a tomar nota das percepções do jogo que estariam de outra forma ocultas nos números e estatÃsticas.
-{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="Diagrama mostrando os benefÃcios de usar a NumPy para análise de crÃquete" caption="**Recursos principais da NumPy utilizados**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_ca_benefits.png'
+alt = 'Diagrama mostrando os benefÃcios de usar a NumPy para análise de crÃquete'
+title = 'Recursos principais da NumPy utilizados'
+{{< /figure >}}
diff --git a/content/pt/case-studies/deeplabcut-dnn.md b/content/pt/case-studies/deeplabcut-dnn.md
index a0c37db..557b336 100644
--- a/content/pt/case-studies/deeplabcut-dnn.md
+++ b/content/pt/case-studies/deeplabcut-dnn.md
@@ -1,92 +1,127 @@
---
title: "Estudo de Caso: Estimativa de Pose 3D com DeepLabCut"
sidebar: false
---
-{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Análise de movimentos de mãos de camundongos usando DeepLapCut**" alt="micehandanim" attr="*(Fonte: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut" >}}
+{{< figure >}}
+src = '/images/content_images/cs/mice-hand.gif'
+title = 'Análise de movimentos de mãos de camundongos usando DeepLapCut'
+alt = 'micehandanim'
+attribution = '(Fonte: www.deeplabcut.org )'
+attributionlink = 'http://www.mousemotorlab.org/deeplabcut'
+{{< /figure >}}
{{< blockquote
cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
by="Alexander Mathis, *Professor Assistente, Ãcole polytechnique fédérale de Lausanne* ([EPFL](https://www.epfl.ch/en/))"
>}}
Software de código aberto está acelerando a Biomedicina. DeepLabCut permite a análise automática de vÃdeos de comportamento animal usando Deep Learning.
{{< /blockquote >}}
## Sobre o DeepLabCut
[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) é uma toolbox de código aberto que permite que pesquisadores de centenas de instituições em todo o mundo rastreiem o comportamento de animais de laboratório, com muito poucos dados de treinamento, mas com precisão no nÃvel humano. Com a tecnologia DeepLabCut, cientistas podem aprofundar a compreensão cientÃfica do controle motor e do comportamento em diversas espécies animais e escalas temporais.
Várias áreas de pesquisa, incluindo a neurociência, a medicina e a biomecânica, utilizam dados de rastreamento da movimentação de animais. A DeepLabCut ajuda a compreender o que os seres humanos e outros animais estão fazendo, analisando ações que foram registradas em vÃdeo. Ao usar automação para tarefas trabalhosas de monitoramento e marcação, junto com análise de dados baseada em redes neurais profundas, a DeepLabCut garante que estudos cientÃficos envolvendo a observação de animais como primatas, camundongos, peixes, moscas etc. sejam mais rápidos e precisos.
-{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**Pontos coloridos rastreiam as posições das partes do corpo de um cavalo de corrida**" alt="horserideranim" attr="*(Fonte: Mackenzie Mathis)*">}}
+{{< figure >}}
+src = '/images/content_images/cs/race-horse.gif'
+title = 'Pontos coloridos rastreiam as posições das partes do corpo de um cavalo de corrida'
+alt = 'horserideranim'
+attribution = '(Fonte: Mackenzie Mathis)'
+{{< /figure >}}
O rastreamento não invasivo dos animais pela DeepLabCut através da extração de poses é crucial para pesquisas cientÃficas em domÃnios como a biomecânica, genética, etologia e neurociência. Medir as poses dos animais de maneira não invasiva através de vÃdeo - sem marcadores - com fundos dinâmicos é computacionalmente desafiador, tanto tecnicamente quanto em termos de recursos e dados de treinamento necessários.
A DeepLabCut permite que pesquisadores façam estimativas de poses para os sujeitos, permitindo que se possa quantificar de maneira eficiente seus comportamentos através de um conjunto de ferramentas de software baseado em Python. Com a DeepLabCut, pesquisadores podem identificar quadros (*frames*) distintos em vÃdeos e rotular digitalmente partes especÃficas do corpo em alguns quadros com uma GUI especializada. A partir disso, a arquitetura de estimação de poses baseada em deep learning da DeepLabCut aprende a selecionar essas mesmas caracterÃsticas no resto do vÃdeo e em outros vÃdeos similares. A ferramenta funciona para várias espécies de animais, desde animais comuns em laboratórios, como moscas e camundongos, até os mais incomuns, como [guepardos][cheetah-movement].
A DeepLabCut usa um princÃpio chamado [aprendizado por transferência (*transfer learning*)](https://arxiv.org/pdf/1909.11229), o que reduz enormemente a quantidade de dados de treinamento necessários e acelera a convergência do perÃodo de treinamento. Dependendo das suas necessidades, usuários podem escolher diferentes arquiteturas de rede que forneçam inferência mais rápida (por exemplo, MobileNetV2), e que também podem ser combinadas com feedback experimental em tempo real. A DeepLabCut usou originalmente os detectores de features de uma arquitetura de alto desempenho para estimativa de poses humanas, chamada [DeeperCut](https://arxiv.org/abs/1605.03170), que inspirou seu nome. O pacote foi significativamente alterado para incluir mais arquiteturas, métodos de ampliação e uma experiência de usuário completa no front-end. Além de possibilitar experimentos biológicos em grande escala, DeepLabCut fornece capacidades ativas de aprendizado para que os usuários possam aumentar o conjunto de treinamento ao longo do tempo, para incluir casos particulares e tornar seu algoritmo de estimativa de poses robusto no seu contexto especÃfico.
Recentemente, foi introduzido o [modelo DeepLabCut zoo](http://www.mousemotorlab.org/dlc-modelzoo), que proporciona modelos pré-treinados para várias espécies e condições experimentais, desde a análise facial em primatas até à posição de cães. Isso pode ser executado na nuvem, por exemplo, sem qualquer rotulagem de novos dados ou treinamento em rede neural, e não é necessária nenhuma experiência em programação.
### Principais Objetivos e Resultados
* **Automação da análise de poses animais para estudos cientÃficos:**
O objetivo principal da tecnologia DeepLabCut é medir e rastrear a postura dos animais em várias configurações. Esses dados podem ser usados, por exemplo, em estudos de neurociência para entender como o cérebro controla o movimento, ou para elucidar como os animais interagem socialmente. Pesquisadores observaram que [desempenho é 10 vezes melhor](https://www.biorxiv.org/content/10.1101/457242v1) com o DeepLabCut. Poses podem ser inferidas off-line em até 1200 quadros por segundo (FPS).
* **Criação de um kit de ferramentas Python fácil de usar para estimativa de poses:**
DeepLabCut queria compartilhar sua tecnologia de estimativa de poses animal na forma de uma ferramenta simples de usar que pudesse ser adotada pelos pesquisadores facilmente. Assim, criaram um conjunto de ferramentas em Python completo e fácil de usar, também com recursos de gerenciamento de projeto. Isso permite não apenas a automação de estimação de poses, mas também o gerenciamento do projeto de ponta a ponta, ajudando o usuário do DeepLabCut Toolkit desde a fase de coleta para criar fluxos de dados compartilháveis e reutilizáveis.
Seu [conjunto de ferramentas][DLCToolkit] agora está disponÃvel como software de código aberto.
Um fluxo de trabalho tÃpico na DeepLabCut inclui:
- criação e refinamento de conjuntos de treinamento por meio de aprendizagem ativa
- criação de redes neurais personalizadas para animais e cenários especÃficos
- código para inferência em larga escala em vÃdeos
- inferências de desenho usando ferramentas integradas de visualização
-{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**Passos na estimação de poses com DeepLabCut**" alt="dlcsteps" align="middle" attr="(Fonte: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
+{{< figure >}}
+src = '/images/content_images/cs/deeplabcut-toolkit-steps.png'
+title = 'Passos na estimação de poses com DeepLabCut'
+alt = 'dlcsteps'
+align = 'center'
+attribution = '(Fonte: DeepLabCut)'
+attributionlink = 'https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1'
+{{< /figure >}}
### Desafios
* **Velocidade**
Processamento rápido de vÃdeos de animais para medir seu comportamento e, ao mesmo tempo, tornar os experimentos cientÃficos mais eficientes e precisos. Extrair poses animais detalhadas para experimentos em laboratório, sem marcadores, sobre fundos dinâmicos, pode ser desafiador tanto tecnicamente quanto em termos de recursos e dados de treinamento necessários. Criar uma ferramenta que seja fácil de usar sem necessidade de habilidades como expertise em visão computacional que permita aos cientistas fazerem pesquisa em contextos mais próximos do mundo real é um problema não-trivial a ser solucionado.
* **Combinatória**
Combinatória envolve a junção e integração de movimentos de múltiplos membros em um comportamento animal único. Reunir pontos-chave e suas conexões em movimentos animais individuais e encadeá-los em função do tempo é um processo complexo que exige análise numérica intensa, especialmente nos casos de rastreio de múltiplos animais em vÃdeos experimentais.
* **Processamento de dados**
Por último, mas não menos importante, manipulação de matrizes - processar grandes conjuntos de matrizes correspondentes a várias imagens, tensores alvo e pontos-chave é bastante desafiador.
-{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**Estimação de poses e complexidade**" alt="challengesfig" align="middle" attr="(Fonte: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
+{{< figure >}}
+src = '/images/content_images/cs/pose-estimation.png'
+title = 'Estimação de poses e complexidade'
+alt = 'challengesfig'
+align = 'center'
+attribution = '(Fonte: Mackenzie Mathis)'
+attributionlink = 'https://www.biorxiv.org/content/10.1101/476531v1.full.pdf'
+{{< /figure >}}
## O papel da NumPy nos desafios da estimação de poses
NumPy supre a principal necessidade da tecnologia DeepLabCut de cálculos numéricos de alta velocidade para análises comportamentais. Além da NumPy, DeepLabCut emprega várias bibliotecas Python que usam a NumPy como sua base, tais como [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/), [scikit-image](https://scikit-image.org) e [Tensorflow](https://www.tensorflow.org).
As seguintes caracterÃsticas da NumPy desempenharam um papel fundamental para atender à s necessidades de processamento de imagens, combinatória e cálculos rápidos nos algoritmos de estimação de pose na DeepLabCut:
* Vetorização
* Operações em arrays com máscaras
* Ãlgebra linear
* Amostragem aleatória
* Reordenamento de matrizes grandes
A DeepLabCut utiliza as capacidades de manipulação de arrays da NumPy em todo o fluxo de trabalho oferecido pelo seu conjunto de ferramentas. Em particular, a NumPy é usada para amostragem de quadros distintos para serem rotulados com anotações humanas e para escrita, edição e processamento de dados de anotação. Dentro da TensorFlow, a rede neural é treinada pela tecnologia DeepLabCut em milhares de iterações para prever as anotações verdadeiras dos quadros. Para este propósito, densidades de alvo (*scoremaps*) são criadas para colocar a estimativa como um problema de tradução de imagem a imagem. Para tornar as redes neurais robustas, o aumento de dados é empregado, o que requer o cálculo de scoremaps alvo sujeitos a várias etapas geométricas e de processamento de imagem. Para tornar o treinamento rápido, os recursos de vectorização da NumPy são utilizados. Para inferência, as previsões mais prováveis de scoremaps alvo precisam ser extraÃdas e é necessário "vincular previsões para montar animais individuais" de maneira eficiente.
-{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**Fluxo de dados DeepLabCut**" alt="workflow" attr="*(Fonte: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
+{{< figure >}}
+src = '/images/content_images/cs/deeplabcut-workflow.png'
+title = 'Fluxo de dados DeepLabCut'
+alt = 'workflow'
+attribution = '(Fonte: Mackenzie Mathis)'
+attributionlink = 'https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962'
+{{< /figure >}}
## Resumo
Observação e descrição eficiente do comportamento é uma peça fundamental da etologia, neurociência, medicina e tecnologia modernas. [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) permite que os pesquisadores estimem a pose do sujeito, permitindo efetivamente que o seu comportamento seja quantificado. Com apenas um pequeno conjunto de imagens de treinamento, o conjunto de ferramentas em Python da DeepLabCut permite treinar uma rede neural tão precisa quanto a rotulagem humana, expandindo assim sua aplicação para não só análise de comportamento dentro do laboratório, mas também potencialmente em esportes, análise de locomoção, medicina e estudos sobre reabilitação. Desafios complexos em combinatória e processamento de dados enfrentados pelos algoritmos da DeepLabCut são tratados através do uso de recursos de manipulação de matriz do NumPy.
-{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**Recursos chave do NumPy utilizados**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_dlc_benefits.png'
+alt = 'numpy benefits'
+title = 'Recursos chave do NumPy utilizados'
+{{< /figure >}}
[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/pt/case-studies/gw-discov.md b/content/pt/case-studies/gw-discov.md
index 4e8bcda..cb37191 100644
--- a/content/pt/case-studies/gw-discov.md
+++ b/content/pt/case-studies/gw-discov.md
@@ -1,70 +1,94 @@
---
title: "Estudo de Caso: Descoberta de Ondas Gravitacionais"
sidebar: false
---
-{{< figure src="/images/content_images/cs/gw_sxs_image.png" class="fig-center" caption="**Ondas gravitacionais**" alt="binary coalesce black hole generating gravitational waves" attr="*(Créditos de imagem: O projeto Simulating eXtreme Spacetimes (SXS) no LIGO)*" attrlink="https://youtu.be/Zt8Z_uzG71o" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gw_sxs_image.png'
+title = 'Ondas gravitacionais'
+alt = 'binary coalesce black hole generating gravitational waves'
+attribution = '(Créditos de imagem: O projeto Simulating eXtreme Spacetimes (SXS) no LIGO)'
+attributionlink = 'https://youtu.be/Zt8Z_uzG71o'
+{{< /figure >}}
{{< blockquote
cite="https://www.youtube.com/watch?v=BIvezCVcsYs"
by="David Shoemaker, *Colaborador CientÃfico no LIGO*" >}}
O ecossistema cientÃfico Python é uma infraestrutura crÃtica para a pesquisa feita no LIGO.
{{< /blockquote >}}
## Sobre [Ondas Gravitacionais](https://www.nationalgeographic.com/news/2017/10/what-are-gravitational-waves-ligo-astronomy-science/) e o [LIGO](https://www.ligo.caltech.edu)
Ondas gravitacionais são ondulações no tecido espaço-tempo, gerado por eventos cataclÃsmicos no universo, como colisão e fusão de dois buracos negros ou a coalescência de estrelas binárias ou supernovas. A observação de ondas gravitacionais pode ajudar não só no estudo da gravidade, mas também no entendimento de alguns dos fenômenos obscuros existentes no universo distante e seu impacto.
O [Observatório Interferômetro Laser de Ondas Gravitacionais (LIGO)](https://www.ligo.caltech.edu) foi projetado para abrir o campo da astrofÃsica das ondas gravitacionais através da detecção direta de ondas gravitacionais previstas pela Teoria Geral da Relatividade de Einstein. O observatório consiste de dois interferômetros amplamente separados dentro dos Estados Unidos - um em Hanford, Washington e o outro em Livingston, Louisiana â operando em unÃssono para detectar ondas gravitacionais. Cada um deles tem detectores em escala quilométrica de ondas gravitacionais que usam interferometria laser. A Colaboração CientÃfica LIGO (LSC), é um grupo de mais de 1000 cientistas de universidades dos Estados Unidos e em 14 outros paÃses apoiados por mais de 90 universidades e institutos de pesquisa; aproximadamente 250 estudantes contribuem ativamente com a colaboração. A nova descoberta do LIGO é a primeira observação de ondas gravitacionais em si, feita medindo os pequenos distúrbios que as ondas fazem ao espaço-tempo enquanto atravessam a Terra. A descoberta abriu novas fronteiras astrofÃsicas que exploram o lado "curvado" do universo - objetos e fenômenos que são feitos a partir da curvatura do espaço-tempo.
### Objetivos
* Embora sua [missão](https://www.ligo.caltech.edu/page/what-is-ligo) seja detectar ondas gravitacionais de alguns dos processos mais violentos e enérgicos no Universo, os dados que o LIGO coleta podem ter efeitos de grande alcance em muitas áreas da fÃsica, incluindo gravitação, relatividade, astrofÃsica, cosmologia, fÃsica de partÃculas e fÃsica nuclear.
* Processar dados observados através de cálculos numéricos de relatividade que envolvem matemática complexa para identificar o sinal e o ruÃdo, filtrar o sinal relevante e estimar estatisticamente o significado dos dados observados.
* Visualização de dados para que os resultados binários/numéricos possam ser compreendidos.
### Desafios
* **Computação**
As ondas gravitacionais são difÃceis de detectar pois produzem um efeito muito pequeno e têm uma pequena interação com a matéria. Processar e analisar todos os dados do LIGO requer uma vasta infraestrutura de computação. Depois de cuidar do ruÃdo, que é bilhões de vezes maior que o sinal, ainda há equações de relatividade complexas e enormes quantidades de dados que apresentam um desafio computacional: [O(10^7) horas de CPU necessárias para análises de fusão binária](https://youtu.be/7mcHknWWzNI) espalhado em 6 clusters LIGO dedicados.
* **Sobrecarga de dados**
à medida que os dispositivos observacionais se tornam mais sensÃveis e confiáveis, os desafios criados pela sobrecarga de dados e a procura por uma agulha em um palheiro se tornam muito maiores. O LIGO gera terabytes de dados todos os dias! Entender esses dados requer um enorme esforço para cada detecção. Por exemplo, os sinais sendo coletados pelo LIGO devem ser combinados por supercomputadores e comparados a centenas de milhares de modelos de possÃveis assinaturas de ondas gravitacionais.
* **Visualização**
Uma vez que os obstáculos relacionados a compreender as equações de Einstein bem o suficiente para resolvê-las usando supercomputadores foram ultrapassados, o próximo grande desafio era tornar os dados compreensÃveis para o cérebro humano. A modelagem de simulações, assim como a detecção de sinais, exigem técnicas de visualização efetiva. A visualização também desempenha um papel de fornecer mais credibilidade à relatividade numérica aos olhos dos aficionados pela ciência pura, que não dão importância suficiente à relatividade numérica até que a imagem e as simulações tornem mais fácil a compreensão dos resultados para um público maior. A velocidade da computação complexa, e da renderização, re-renderização de imagens e simulações usando as últimas entradas e informações experimentais pode ser uma atividade demorada que desafia pesquisadores neste domÃnio.
-{{< figure src="/images/content_images/cs/gw_strain_amplitude.png" class="fig-center" alt="gravitational waves strain amplitude" caption="**Amplitude estimada da deformação das ondas gravitacionais do evento GW150914**" attr="(**Créditos do gráfico:** Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)" attrlink="https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gw_strain_amplitude.png'
+alt = 'gravitational waves strain amplitude'
+title = 'Amplitude estimada da deformação das ondas gravitacionais do evento GW150914'
+attribution = '(Créditos do gráfico: Observation of Gravitational Waves from a Binary Black Hole Merger, ResearchGate Publication)'
+attributionlink = 'https://www.researchgate.net/publication/293886905_Observation_of_Gravitational_Waves_from_a_Binary_Black_Hole_Merger'
+{{< /figure >}}
## O papel da NumPy na detecção de ondas gravitacionais
Ondas gravitacionais emitidas da fusão não podem ser calculadas usando nenhuma técnica a não ser relatividade numérica por força bruta usando supercomputadores. A quantidade de dados que o LIGO coleta é imensa tanto quanto os sinais de ondas gravitacionais são pequenos.
NumPy, o pacote padrão de análise numérica para Python, foi parte do software utilizado para várias tarefas executadas durante o projeto de detecção de ondas gravitacionais no LIGO. A NumPy ajudou a resolver problemas matemáticos e de manipulação de dados complexos em alta velocidade. Aqui estão alguns exemplos:
* [Processamento de sinais](https://www.uv.es/virgogroup/Denoising_ROF.html): Detecção de falhas, [Identificação de ruÃdos e caracterização de dados](https://ep2016.europython.eu/media/conference/slides/pyhton-in-gravitational-waves-research-communities.pdf) (NumPy, scikit-learn, scipy, matplotlib, pandas, PyCharm)
* Recuperação de dados: Decidir quais dados podem ser analisados, compreender se os dados contém um sinal - como uma agulha em um palheiro
* Análise estatÃstica: estimar o significado estatÃstico dos dados observados, estimando os parâmetros do sinal (por exemplo, massa de estrelas, velocidade de giro e distância) em comparação com um modelo.
* Visualização de dados
- Séries temporais
- Espectrogramas
* Cálculo de correlações
* [Software](https://github.com/lscsoft) fundamental desenvolvido na análise de ondas gravitacionais, como [GwPy](https://gwpy.github.io/docs/stable/overview.html) e [PyCBC](https://pycbc.org) usam NumPy e AstroPy internamente para fornecer interfaces baseadas em objetos para utilidades, ferramentas e métodos para o estudo de dados de detectores de ondas gravitacionais.
-{{< figure src="/images/content_images/cs/gwpy-numpy-dep-graph.png" class="fig-center" alt="gwpy-numpy depgraph" caption="**Grafo de dependências mostrando como o pacote GwPy depended da NumPy**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/gwpy-numpy-dep-graph.png'
+alt = 'gwpy-numpy depgraph'
+title = 'Grafo de dependências mostrando como o pacote GwPy depended da NumPy'
+{{< /figure >}}
----
-{{< figure src="/images/content_images/cs/PyCBC-numpy-dep-graph.png" class="fig-center" alt="PyCBC-numpy depgraph" caption="**Grafo de dependências mostrando como o pacote PyCBC depended da NumPy**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/PyCBC-numpy-dep-graph.png'
+alt = 'PyCBC-numpy depgraph'
+title = 'Grafo de dependências mostrando como o pacote PyCBC depended da NumPy'
+{{< /figure >}}
## Resumo
A detecção de ondas gravitacionais permitiu que pesquisadores descobrissem fenômenos totalmente inesperados ao mesmo tempo em que proporcionaram novas idéias sobre muitos dos fenômenos mais profundos conhecidos na astrofÃsica. O processamento e a visualização de dados é um passo crucial que ajuda cientistas a obter informações coletadas de observações cientÃficas e a entender os resultados. Os cálculos são complexos e não podem ser compreendidos por humanos a não ser que sejam visualizados usando simulações de computador que são alimentadas com dados e análises reais observados. A NumPy, junto com outras bibliotecas Python, como matplotlib, pandas, e scikit-learn [permitem que pesquisadores](https://www.gw-openscience.org/events/GW150914/) respondam perguntas complexas e descubram novos horizontes em nossa compreensão do universo.
-{{< figure src="/images/content_images/cs/numpy_gw_benefits.png" class="fig-center" alt="numpy benefits" caption="**Recursos chave da NumPy utilizados**" >}}
+{{< figure >}}
+src = '/images/content_images/cs/numpy_gw_benefits.png'
+alt = 'numpy benefits'
+title = 'Recursos chave da NumPy utilizados'
+{{< /figure >}}
diff --git a/content/pt/user-survey-2020.md b/content/pt/user-survey-2020.md
index 45ade42..8747efc 100644
--- a/content/pt/user-survey-2020.md
+++ b/content/pt/user-survey-2020.md
@@ -1,16 +1,20 @@
---
title: PESQUISA SOBRE A COMUNIDADE NUMPY 2020
sidebar: false
---
Em 2020, o time de pesquisas do NumPy realizou a primeira pesquisa oficial sobre a comunidade NumPy, em parceria com alunos e docentes de um Mestrado em metodologia de pesquisa realizado conjuntamente pela Universidade de Michigan e pela Universidade da Maryland. Mais de 1200 usuários de 75 paÃses participaram para nos ajudar a mapear uma paisagem da comunidade NumPy e expressaram seus pensamentos sobre o futuro do projeto.
-{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Página de capa do relatório da pesquisa de usuários do NumPy 2020, chamado 'NumPy Community Survey 2020 - results'" width="250" >}}
+{{< figure >}}
+src = '/surveys/NumPy_usersurvey_2020_report_cover.png'
+alt = 'Página de capa do relatório da pesquisa de usuários do NumPy 2020, chamado "NumPy Community Survey 2020 - results"'
+width = '250'
+{{< /figure >}}
**[Faça o download do relatório](/surveys/NumPy_usersurvey_2020_report.pdf)** para ver os detalhes sobre os resultados encontrados.
Para os destaques, confira **[este infográfico](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
Quer saber mais? Visite **https://numpy.org/user-survey-2020-details/**.
|
numpy/numpy.org
|
aacbe93f8e6478e38102684e5201108c34784037
|
Add HyperSpy (#736)
|
diff --git a/content/en/tabcontents.yaml b/content/en/tabcontents.yaml
index b47c24a..1534f22 100644
--- a/content/en/tabcontents.yaml
+++ b/content/en/tabcontents.yaml
@@ -1,298 +1,300 @@
params:
machinelearning:
paras:
- para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlowâs](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://github.com/apache/incubator-mxnet) is another AI package, providing blueprints and templates for deep learning.
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
arraylibraries:
intro:
- text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
headers:
- text: Array Library
- text: Capabilities & Application areas
libraries:
- title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- title: JAX
text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
url: https://github.com/google/jax
- title: Xarray
- text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
+ text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization.
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: MXNet
text: Deep learning framework suited for flexible research prototyping and production.
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
- title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
img: /images/content_images/arlib/arrow.png
alttext: arrow
url: https://github.com/apache/arrow
- title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipulate JSON-like data with NumPy-like idioms.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Nearly every scientist working in Python draws on the power of NumPy.
- text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
libraries:
- title: Quantum Computing
alttext: A computer chip.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: http://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Statistical Computing
alttext: A line graph with the line moving up.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- url: https://github.com/statsmodels/statsmodels
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- url: https://github.com/mwaskom/seaborn
label: Seaborn
- title: Signal Processing
alttext: A bar chart with positive and negative values.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
+ - url: https://hyperspy.org/
+ label: HyperSpy
- title: Image Processing
alttext: An photograph of the mountains.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
- title: Graphs and Networks
alttext: A simple graph.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: Astronomy
alttext: A telescope.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- url: https://github.com/sunpy/sunpy
label: SunPy
- url: https://github.com/spacepy/spacepy
label: SpacePy
- title: Cognitive Psychology
alttext: A human head with gears.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformatics
alttext: A strand of DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
label: PyMC3
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Mathematical Analysis
alttext: Four mathematical symbols.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- url: https://github.com/cvxgrp/cvxpy
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: Chemistry
alttext: A test tube.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geoscience
alttext: The Earth.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Geographic Processing
alttext: A map.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Architecture & Engineering
alttext: A microprocessor development board.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
content:
- text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
- url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.
content:
- text: NumPy is an essential component in the burgeoning
[Python visualization landscape](https://pyviz.org/overviews/index.html),
which includes [Matplotlib](https://matplotlib.org),
[Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly),
[Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/),
[Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari),
and [PyVista](https://github.com/pyvista/pyvista), to name a few.
- text: NumPy's accelerated processing of large arrays allows researchers to visualize
datasets far larger than native Python could handle.
diff --git a/layouts/partials/tabs.html b/layouts/partials/tabs.html
index 7b53dfc..11d9419 100644
--- a/layouts/partials/tabs.html
+++ b/layouts/partials/tabs.html
@@ -1,42 +1,42 @@
{{- $tabs := .Site.Params.tabs }}
{{- $title := index $tabs "title" }}
<section class="tabs-section">
<div class="container">
<h1 class="tabs-title">{{ $title }}</h1>
<div class="tabs">
<div role="tablist" class="automatic">
<button id="0-tab-0" type="button" role="tab" aria-selected="true" aria-controls="0-tabpanel-0">
Scientific Domains
</button>
<button id="0-tab-1" type="button" role="tab" aria-selected="false" aria-controls="0-tabpanel-1">
- Array libraries
+ Array Libraries
</button>
<button id="0-tab-2" type="button" role="tab" aria-selected="false" aria-controls="0-tabpanel-2">
Data Science
</button>
<button id="0-tab-3" type="button" role="tab" aria-selected="false" aria-controls="0-tabpanel-3">
Machine Learning
</button>
<button id="0-tab-4" type="button" role="tab" aria-selected="false" aria-controls="0-tabpanel-4">
Visualization
</button>
</div>
<div id="0-tabpanel-0" role="tabpanel" tabindex="0" aria-labelledby="$0-tab-0">
{{ partial "scientific-domains.html" . }}
</div>
<div id="0-tabpanel-1" role="tabpanel" tabindex="0" aria-labelledby="$0-tab-1">
{{ partial "array-libraries.html" . }}
</div>
<div id="0-tabpanel-2" role="tabpanel" tabindex="0" aria-labelledby="$0-tab-2">
{{ partial "data-science.html" . }}
</div>
<div id="0-tabpanel-3" role="tabpanel" tabindex="0" aria-labelledby="$0-tab-3">
{{ partial "machine-learning.html" . }}
</div>
<div id="0-tabpanel-4" role="tabpanel" tabindex="0" aria-labelledby="$0-tab-4">
{{ partial "visualization.html" . }}
</div>
</div>
</div>
</section>
|
numpy/numpy.org
|
47a8b420296afb465147b3f61d8ee95c53663c6b
|
replace github by doc links
|
diff --git a/content/en/tabcontents.yaml b/content/en/tabcontents.yaml
index b47c24a..7c00aad 100644
--- a/content/en/tabcontents.yaml
+++ b/content/en/tabcontents.yaml
@@ -1,298 +1,298 @@
params:
machinelearning:
paras:
- - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlowâs](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://github.com/apache/incubator-mxnet) is another AI package, providing blueprints and templates for deep learning.
- para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://github.com/dmlc/xgboost), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
+ - para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlowâs](https://www.tensorflow.org) deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing. [MXNet](https://mxnet.apache.org/) is another AI package, providing blueprints and templates for deep learning.
+ para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) — one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
arraylibraries:
intro:
- text: NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.
headers:
- text: Array Library
- text: Capabilities & Application areas
libraries:
- title: Dask
text: Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
img: /images/content_images/arlib/dask.png
alttext: Dask
url: https://dask.org/
- title: CuPy
text: NumPy-compatible array library for GPU-accelerated computing with Python.
img: /images/content_images/arlib/cupy.png
alttext: CuPy
url: https://cupy.chainer.org
- title: JAX
text: "Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU."
img: /images/content_images/arlib/jax_logo_250px.png
alttext: JAX
- url: https://github.com/google/jax
+ url: https://jax.readthedocs.io/
- title: Xarray
text: Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
img: /images/content_images/arlib/xarray.png
alttext: xarray
url: https://xarray.pydata.org/en/stable/index.html
- title: Sparse
text: NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
img: /images/content_images/arlib/sparse.png
alttext: sparse
url: https://sparse.pydata.org/en/latest/
- title: PyTorch
text: Deep learning framework that accelerates the path from research prototyping to production deployment.
img: /images/content_images/arlib/pytorch-logo-dark.svg
alttext: PyTorch
url: https://pytorch.org/
- title: TensorFlow
text: An end-to-end platform for machine learning to easily build and deploy ML powered applications.
img: /images/content_images/arlib/tensorflow-logo.svg
alttext: TensorFlow
url: https://www.tensorflow.org
- title: MXNet
text: Deep learning framework suited for flexible research prototyping and production.
img: /images/content_images/arlib/mxnet_logo.png
alttext: MXNet
url: https://mxnet.apache.org/
- title: Arrow
text: A cross-language development platform for columnar in-memory data and analytics.
img: /images/content_images/arlib/arrow.png
alttext: arrow
- url: https://github.com/apache/arrow
+ url: https://arrow.apache.org/
- title: xtensor
text: Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
img: /images/content_images/arlib/xtensor.png
alttext: xtensor
url: https://github.com/xtensor-stack/xtensor-python
- title: Awkward Array
text: Manipulate JSON-like data with NumPy-like idioms.
img: /images/content_images/arlib/awkward.svg
alttext: awkward
url: https://awkward-array.org/
- title: uarray
text: Python backend system that decouples API from implementation; unumpy provides a NumPy API.
img: /images/content_images/arlib/uarray.png
alttext: uarray
url: https://uarray.org/en/latest/
- title: tensorly
text: Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
img: /images/content_images/arlib/tensorly.png
alttext: tensorly
url: http://tensorly.org/stable/home.html
scientificdomains:
intro:
- text: Nearly every scientist working in Python draws on the power of NumPy.
- text: "NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant."
libraries:
- title: Quantum Computing
alttext: A computer chip.
img: /images/content_images/sc_dom_img/quantum_computing.svg
links:
- url: http://qutip.org
label: QuTiP
- url: https://pyquil-docs.rigetti.com/en/stable
label: PyQuil
- url: https://qiskit.org
label: Qiskit
- url: https://pennylane.ai
label: PennyLane
- title: Statistical Computing
alttext: A line graph with the line moving up.
img: /images/content_images/sc_dom_img/statistical_computing.svg
links:
- url: https://pandas.pydata.org/
label: Pandas
- - url: https://github.com/statsmodels/statsmodels
+ - url: https://www.statsmodels.org/
label: statsmodels
- url: https://xarray.pydata.org/en/stable/
label: Xarray
- - url: https://github.com/mwaskom/seaborn
+ - url: https://seaborn.pydata.org/
label: Seaborn
- title: Signal Processing
alttext: A bar chart with positive and negative values.
img: /images/content_images/sc_dom_img/signal_processing.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://pywavelets.readthedocs.io/
label: PyWavelets
- url: https://python-control.org/
label: python-control
- title: Image Processing
alttext: An photograph of the mountains.
img: /images/content_images/sc_dom_img/image_processing.svg
links:
- url: https://scikit-image.org/
label: Scikit-image
- url: https://opencv.org/
label: OpenCV
- url: https://mahotas.rtfd.io/
label: Mahotas
- title: Graphs and Networks
alttext: A simple graph.
img: /images/content_images/sc_dom_img/sd6.svg
links:
- url: https://networkx.org/
label: NetworkX
- url: https://graph-tool.skewed.de/
label: graph-tool
- url: https://igraph.org/python/
label: igraph
- url: https://pygsp.rtfd.io/
label: PyGSP
- title: Astronomy
alttext: A telescope.
img: /images/content_images/sc_dom_img/astronomy_processes.svg
links:
- url: https://www.astropy.org/
label: AstroPy
- - url: https://github.com/sunpy/sunpy
+ - url: https://sunpy.org/
label: SunPy
- - url: https://github.com/spacepy/spacepy
+ - url: https://spacepy.github.io/
label: SpacePy
- title: Cognitive Psychology
alttext: A human head with gears.
img: /images/content_images/sc_dom_img/cognitive_psychology.svg
links:
- url: https://www.psychopy.org/
label: PsychoPy
- title: Bioinformatics
alttext: A strand of DNA.
img: /images/content_images/sc_dom_img/bioinformatics.svg
links:
- url: https://biopython.org/
label: BioPython
- url: http://scikit-bio.org/
label: Scikit-Bio
- url: https://github.com/openvax/pyensembl
label: PyEnsembl
- url: http://etetoolkit.org/
label: ETE
- title: Bayesian Inference
alttext: A graph with a bell-shaped curve.
img: /images/content_images/sc_dom_img/bayesian_inference.svg
links:
- url: https://pystan.readthedocs.io/en/latest/
label: PyStan
- url: https://docs.pymc.io/
label: PyMC3
- url: https://arviz-devs.github.io/arviz/
label: ArviZ
- url: https://emcee.readthedocs.io/
label: emcee
- title: Mathematical Analysis
alttext: Four mathematical symbols.
img: /images/content_images/sc_dom_img/mathematical_analysis.svg
links:
- url: https://www.scipy.org/
label: SciPy
- url: https://www.sympy.org/
label: SymPy
- - url: https://github.com/cvxgrp/cvxpy
+ - url: https://www.cvxpy.org/
label: cvxpy
- url: https://fenicsproject.org/
label: FEniCS
- title: Chemistry
alttext: A test tube.
img: /images/content_images/sc_dom_img/chemistry.svg
links:
- url: https://cantera.org/
label: Cantera
- url: https://www.mdanalysis.org/
label: MDAnalysis
- url: https://github.com/rdkit/rdkit
label: RDKit
- url: https://www.pybamm.org/
label: PyBaMM
- title: Geoscience
alttext: The Earth.
img: /images/content_images/sc_dom_img/geoscience.svg
links:
- url: https://pangeo.io/
label: Pangeo
- url: https://simpeg.xyz/
label: Simpeg
- url: https://github.com/obspy/obspy/wiki
label: ObsPy
- url: https://www.fatiando.org/
label: Fatiando a Terra
- title: Geographic Processing
alttext: A map.
img: /images/content_images/sc_dom_img/GIS.svg
links:
- url: https://shapely.readthedocs.io/
label: Shapely
- url: https://geopandas.org/
label: GeoPandas
- url: https://python-visualization.github.io/folium
label: Folium
- title: Architecture & Engineering
alttext: A microprocessor development board.
img: /images/content_images/sc_dom_img/robotics.svg
links:
- url: https://compas.dev/
label: COMPAS
- url: https://cityenergyanalyst.com/
label: City Energy Analyst
- url: https://nortikin.github.io/sverchok/
label: Sverchok
datascience:
intro: "NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:"
image1:
- img: /images/content_images/ds-landscape.png
alttext: Diagram of Python Libraries. The five catagories are 'Extract, Transform, Load', 'Data Exploration', 'Data Modeling', 'Data Evaluation' and 'Data Presentation'.
image2:
- img: /images/content_images/data-science.png
alttext: Diagram of three overlapping circles. The circles are labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'.
examples:
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
- - text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
+ - text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
content:
- text: For high data volumes, [Dask](https://dask.org) and [Ray](https://ray.io/) are designed to scale. Stable deployments rely on data versioning ([DVC](https://dvc.org)), experiment tracking ([MLFlow](https://mlflow.org)), and workflow automation ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) and [Prefect](https://www.prefect.io)).
visualization:
images:
- url: https://www.fusioncharts.com/blog/best-python-data-visualization-libraries
img: /images/content_images/v_matplotlib.png
alttext: A streamplot made in matplotlib
- url: https://github.com/yhat/ggpy
img: /images/content_images/v_ggpy.png
alttext: A scatter-plot graph made in ggpy
- url: https://www.journaldev.com/19692/python-plotly-tutorial
img: /images/content_images/v_plotly.png
alttext: A box-plot made in plotly
- url: https://altair-viz.github.io/gallery/streamgraph.html
img: /images/content_images/v_altair.png
alttext: A streamgraph made in altair
- url: https://seaborn.pydata.org
img: /images/content_images/v_seaborn.png
alttext: A pairplot of two types of graph, a plot-graph and a frequency graph made in seaborn"
- url: https://docs.pyvista.org/
img: /images/content_images/v_pyvista.png
alttext: A 3D volume rendering made in PyVista.
- url: https://napari.org
img: /images/content_images/v_napari.png
alttext: A multi-dimensionan image made in napari.
- url: https://vispy.org/gallery/index.html
img: /images/content_images/v_vispy.png
alttext: A Voronoi diagram made in vispy.
content:
- text: NumPy is an essential component in the burgeoning
[Python visualization landscape](https://pyviz.org/overviews/index.html),
which includes [Matplotlib](https://matplotlib.org),
[Seaborn](https://seaborn.pydata.org), [Plotly](https://plot.ly),
[Altair](https://altair-viz.github.io), [Bokeh](https://docs.bokeh.org/en/latest/),
- [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://github.com/napari/napari),
- and [PyVista](https://github.com/pyvista/pyvista), to name a few.
+ [Holoviz](https://holoviz.org), [Vispy](http://vispy.org), [Napari](https://napari.org/),
+ and [PyVista](https://docs.pyvista.org/), to name a few.
- text: NumPy's accelerated processing of large arrays allows researchers to visualize
datasets far larger than native Python could handle.
|
numpy/numpy.org
|
7dede0307a0d992598a2b59036b2a2a2c9b04cb7
|
Unify figure shortcode invocation (#738)
|
diff --git a/content/en/case-studies/deeplabcut-dnn.md b/content/en/case-studies/deeplabcut-dnn.md
index 3ac3487..2d9e428 100644
--- a/content/en/case-studies/deeplabcut-dnn.md
+++ b/content/en/case-studies/deeplabcut-dnn.md
@@ -1,149 +1,149 @@
---
title: "Case Study: DeepLabCut 3D Pose Estimation"
sidebar: false
---
-{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Analyzing mice hand-movement using DeepLapCut**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut">}}
+{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Analyzing mice hand-movement using DeepLapCut**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut" >}}
{{< blockquote
cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
by="Alexander Mathis, *Assistant Professor, Ãcole polytechnique fédérale de Lausanne* ([EPFL](https://www.epfl.ch/en/))"
>}}
Open Source Software is accelerating Biomedicine. DeepLabCut enables automated video analysis of animal behavior using Deep Learning.
{{< /blockquote >}}
## About DeepLabCut
[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) is an open source toolbox that empowers researchers at hundreds of institutions worldwide to track behaviour of laboratory animals, with very little training data, at human-level accuracy. With DeepLabCut technology, scientists can delve deeper into the scientific understanding of motor control and behavior across animal species and timescales.
Several areas of research, including neuroscience, medicine, and biomechanics, use data from tracking animal movement. DeepLabCut helps in understanding what humans and other animals are doing by parsing actions that have been recorded on film. Using automation for laborious tasks of tagging and monitoring, along with deep neural network based data analysis, DeepLabCut makes scientific studies involving observing animals, such as primates, mice, fish, flies etc., much faster and more accurate.
{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**Colored dots track the positions of a racehorseâs body part**" alt="horserideranim" attr="*(Source: Mackenzie Mathis)*">}}
DeepLabCut's non-invasive behavioral tracking of animals by extracting the poses of animals is crucial for scientific pursuits in domains such as biomechanics, genetics, ethology & neuroscience. Measuring animal poses non-invasively from video - without markers - in dynamically changing backgrounds is computationally challenging, both technically as well as in terms of resource needs and training data required.
DeepLabCut allows researchers to estimate the pose of the subject, efficiently enabling them to quantify the behavior through a Python based software toolkit. With DeepLabCut, researchers can identify distinct frames from videos, digitally label specific body parts in a few dozen frames with a tailored GUI, and then the deep learning based pose estimation architectures in DeepLabCut learn how to pick out those same features in the rest of the video and in other similar videos of animals. It works across species of animals, from common laboratory animals such as flies and mice to more unusual animals like [cheetahs][cheetah-movement].
[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
DeepLabCut uses a principle called [transfer learning](https://arxiv.org/pdf/1909.11229), which greatly reduces the amount of training data required and speeds up the convergence of the training period. Depending on the needs, users can pick different network architectures that provide faster inference (e.g. MobileNetV2), which can also be combined with real-time experimental feedback. DeepLabCut originally used the feature detectors from a top-performing human pose estimation architecture, called [DeeperCut](https://arxiv.org/abs/1605.03170), which inspired the name. The package now has been significantly changed to include additional architectures, augmentation methods, and a full front-end user experience. Furthermore, to support large-scale biological experiments DeepLabCut provides active learning capabilities so that users can increase the training set over time to cover edge cases and make their pose estimation algorithm robust within the specific context.
Recently, the [DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo) was introduced, which provides pre-trained models for various species and experimental conditions from facial analysis in primates to dog posture. This can be run for instance in the cloud without any labeling of new data, or neural network training, and no programming experience is necessary.
### Key Goals and Results
* **Automation of animal pose analysis for scientific studies:**
The primary objective of DeepLabCut technology is to measure and track posture
of animals in a diverse settings. This data can be used, for example, in
neuroscience studies to understand how the brain controls movement, or to
elucidate how animals socially interact. Researchers have observed a
[tenfold performance boost](https://www.biorxiv.org/content/10.1101/457242v1)
with DeepLabCut. Poses can be inferred offline at up to 1200 frames per second
(FPS).
* **Creation of an easy-to-use Python toolkit for pose estimation:**
DeepLabCut wanted to share their animal pose-estimation technology in the form
of an easy to use tool that can be adopted by researchers easily. So they have
created a complete, easy-to-use Python toolbox with project management features
as well. These enable not only automation of pose-estimation but also
managing the project end-to-end by helping the DeepLabCut Toolkit user right
from the dataset collection stage to creating shareable and reusable analysis
pipelines.
Their [toolkit][DLCToolkit] is now available as open source.
A typical DeepLabCut Workflow includes:
- creation and refining of training sets via active learning
- creation of tailored neural networks for specific animals and scenarios
- code for large-scale inference on videos
- draw inferences using integrated visualization tools
{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**Pose estimation steps with DeepLabCut**" alt="dlcsteps" align="middle" attr="(Source: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
### The Challenges
* **Speed**
Fast processing of animal behavior videos in order to measure their behavior
and at the same time make scientific experiments more efficient, accurate.
Extracting detailed animal poses for laboratory experiments, without
markers, in dynamically changing backgrounds, can be challenging, both
technically as well as in terms of resource needs and training data required.
Coming up with a tool that is easy to use without the need for skills such
as computer vision expertise that enables scientists to do research in more
real-world contexts, is a non-trivial problem to solve.
* **Combinatorics**
Combinatorics involves assembly and integration of movement of multiple
limbs into individual animal behavior. Assembling keypoints and their
connections into individual animal movements and linking them across time
is a complex process that requires heavy-duty numerical analysis, especially
in case of multi-animal movement tracking in experiment videos.
* **Data Processing**
Last but not the least, array manipulation - processing large stacks of
arrays corresponding to various images, target tensors and keypoints is
fairly challenging.
{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**Pose estimation variety and complexity**" alt="challengesfig" align="middle" attr="(Source: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
## NumPy's Role in meeting Pose Estimation Challenges
NumPy addresses DeepLabCut technology's core need of numerical computations at
high speed for behavioural analytics. Besides NumPy, DeepLabCut employs
various Python software that utilize NumPy at their core, such as
[SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org),
[matplotlib](https://matplotlib.org),
[Tensorpack](https://github.com/tensorpack/tensorpack),
[imgaug](https://github.com/aleju/imgaug),
[scikit-learn](https://scikit-learn.org/stable/),
[scikit-image](https://scikit-image.org) and
[Tensorflow](https://www.tensorflow.org).
The following features of NumPy played a key role in addressing the image
processing, combinatorics requirements and need for fast computation in
DeepLabCut pose estimation algorithms:
* Vectorization
* Masked Array Operations
* Linear Algebra
* Random Sampling
* Reshaping of large arrays
DeepLabCut utilizes NumPyâs array capabilities throughout the workflow offered
by the toolkit. In particular, NumPy is used for sampling distinct frames for
human annotation labeling, and for writing, editing and processing annotation
data. Within TensorFlow the neural network is trained by DeepLabCut technology
over thousands of iterations to predict the ground truth annotations from
frames. For this purpose, target densities (scoremaps) are created to cast pose
estimation as a image-to-image translation problem. To make the neural networks
robust, data augmentation is employed, which requires the calculation of target
scoremaps subject to various geometric and image processing steps. To make
training fast, NumPyâs vectorization capabilities are leveraged. For inference,
the most likely predictions from target scoremaps need to extracted and one
needs to efficiently âlink predictions to assemble individual animalsâ.
{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**DeepLabCut Workflow**" alt="workflow" attr="*(Source: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
## Summary
Observing and efficiently describing behavior is a core tenant of modern
ethology, neuroscience, medicine, and technology.
[DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf)
allows researchers to estimate the pose of the subject, efficiently enabling
them to quantify the behavior. With only a small set of training images,
the DeepLabCut Python toolbox allows training a neural network to within human
level labeling accuracy, thus expanding its application to not only behavior
analysis in the laboratory, but to potentially also in sports, gait analysis,
medicine and rehabilitation studies. Complex combinatorics, data processing
challenges faced by DeepLabCut algorithms are addressed through the use of
NumPy's array manipulation capabilities.
{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**Key NumPy Capabilities utilized**" >}}
diff --git a/content/en/user-survey-2020.md b/content/en/user-survey-2020.md
index 8bd9a6b..73b49a4 100644
--- a/content/en/user-survey-2020.md
+++ b/content/en/user-survey-2020.md
@@ -1,23 +1,23 @@
---
title: 2020 NUMPY COMMUNITY SURVEY
sidebar: false
---
In 2020, the NumPy survey team in partnership with students and faculty from a
Masterâs course in Survey Methodology jointly hosted by the University of
Michigan and the University of Maryland conducted the first official NumPy
community survey. Over 1,200 users from 75 countries participated to help us
map out a landscape of the NumPy community and voiced their thoughts about the
future of the project.
-{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 NumPy user survey report, titled 'NumPy Community Survey 2020 - results'" width="250">}}
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 NumPy user survey report, titled 'NumPy Community Survey 2020 - results'" width="250" >}}
**[Download the report](/surveys/NumPy_usersurvey_2020_report.pdf)**
to take a closer look at the survey findings.
For the highlights, check out
**[this infographic](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
Ready for a deep dive? Visit **https://numpy.org/user-survey-2020-details/**.
diff --git a/content/ja/case-studies/deeplabcut-dnn.md b/content/ja/case-studies/deeplabcut-dnn.md
index 9061ebd..f115522 100644
--- a/content/ja/case-studies/deeplabcut-dnn.md
+++ b/content/ja/case-studies/deeplabcut-dnn.md
@@ -1,92 +1,92 @@
---
title: "ã±ã¼ã¹ã¹ã¿ãã£: DeepLabCut 䏿¬¡å
å§¿å¢æ¨å®"
sidebar: false
---
-{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**DeepLapCutãç¨ãããã¦ã¹ã®æã®åãã®è§£æ**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut">}}
+{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**DeepLapCutãç¨ãããã¦ã¹ã®æã®åãã®è§£æ**" alt="micehandanim" attr="*(Source: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut" >}}
{{< blockquote
cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
by="Alexander Mathisã *åææãEÌcole polytechnology feârale de Lausanne* ([EPFL](https://www.epfl.ch/en/))"
>}}
ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ã¯çä½è¨åºå»å¦ãå éããã¦ãã¾ãã DeepLabCut ã使ç¨ããã¨ã深層å¦ç¿ã使ç¨ãã¦åç©ã®è¡åãèªåçã«ãããªè§£æãããã¨ãã§ãã¾ãã
{{< /blockquote >}}
## DeepLabCut ã«ã¤ãã¦
[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut)ã¯ãããããããªãã¬ã¼ãã³ã°ãã¼ã¿ã§äººéã¬ãã«ã®ç²¾åº¦ã§å®é¨åç©ã®è¡åã追跡å¯è½ã«ãããªã¼ãã³ã½ã¼ã¹ã®ãã¼ã«ããã¯ã¹ã§ãã DeepLabCutã®æè¡ã使ããã¨ã§ãç§å¦è
ã¯åç©ã®ç¨®é¡ã¨æç³»åã®ãã¼ã¿ããã¨ã«ãéåå¶å¾¡ã¨è¡åã«é¢ããç§å¦çãªçè§£ãæ·±ãããã¨ãã§ããããã«ãªãã¾ããã
ç¥çµç§å¦ãå»å¦ãçä½åå¦ãªã©ã®ããã¤ãã®ç ç©¶åéã§ã¯ãåç©ã®åãã追跡ãããã¼ã¿ã使ç¨ãã¦ãã¾ãã DeepLabCutã¯ãåç»ã«è¨é²ãããåããè§£æãããã¨ã§ã人éããã®ä»ã®åç©ãä½ããã¦ããã®ããçè§£ãããã¨ãã§ãã¾ãã ã¿ã°ä»ããç£è¦ãªã©ã®ãæéã®ããã使¥ãèªååããæ·±å±¤å¦ç¿ãã¼ã¹ã®ãã¼ã¿è§£æã宿½ãã¾ãã DeepLabCutã¯ãéé·é¡ããã¦ã¹ãéããã¨ãªã©ã®åç©ã観å¯ããç§å¦ç ç©¶ãããéãæ£ç¢ºã«ãã¦ãã¾ãã
{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**è²ã®ã¤ããç¹ã¯ç«¶èµ°é¦¬ã®ä½ã®ä½ç½®ã追跡**" alt="horserideranim" attr="*(Source: Mackenzie Mathis)*">}}
DeepLabCutã¯ãåç©ã®å§¿å¢ãæ½åºãããã¨ã§é侵襲çãªè¡å追跡ãè¡ãã¾ãã ããã¯ãçä½åå¦ãéºä¼å¦ãå«çå¦ãç¥çµç§å¦ãªã©ã®åéã§ã®ç ç©¶ã«å¿
è¦ä¸å¯æ¬ ã§ãã åçã«å¤åããèæ¯ã®ä¸ã§ãåç©ã®å§¿å¢ããããªãã¼ã¿ããé侵襲çã«æ¸¬å®ãããã¨ã¯ãæè¡çã«ããå¿
è¦ãªè¨ç®ãªã½ã¼ã¹ããã¬ã¼ãã³ã°ãã¼ã¿ã®ç¹ã§ããé常ã«å°é£ãªè¨ç®å¦çã§ãã
DeepLabCutã¯ãç ç©¶è
ã対象ã®å§¿å¢ãæ¨å®ããPythonãã¼ã¹ã®ã½ããã¦ã§ã¢ã使ã£ã¦å¹ççã«å¯¾è±¡ã®è¡åãå®éåãããã¨ãå¯è½ã«ãã¾ãã DeepLabCutã使ç¨ããã¨ãç ç©¶è
ã¯åç»ããç°ãªããã¬ã¼ã ãèå¥ããæ°ååã®ãã¬ã¼ã ã®ç¹å®ã®èº«ä½é¨ä½ããããã§ããGUIã«ãã£ã¦ã©ãã«ã¥ãã§ãã¾ãã ããã¨ãDeepLabCutã®æ·±å±¤å¦ç¿ãã¼ã¹ã®ãã¼ãºæ¨å®ã¢ã¼ããã¯ãã£ã«ãããåç»ã®æ®ãã®é¨åãåç©ã®ä»ã®é¡ä¼¼ããåç»ããåãç¹å¾´ãæ½åºããæ¹æ³ãå¦ç¿ã§ãã¾ãã ãã¨ããã¦ã¹ãªã©ã®ä¸è¬çãªå®é¨åç©ãã [ãã¼ã¿ã¼][cheetah-movement]ã®ãããªããçããåç©ã¾ã§ãåç©ã®ç¨®é¡ãåããå©ç¨ã§ãã¾ãã
DeepLabCutã§ã¯[転移å¦ç¿](https://arxiv.org/pdf/1909.11229)ã¨ããæè¡ã使ç¨ãã¦ãã¾ãã ããã«ããå¿
è¦ãªå¦ç¿ãã¼ã¿ã®éã大å¹
ã«åæ¸ããå¦ç¿ã®åæãå éããããã¨ãã§ãã¾ãã å¿
è¦ã«å¿ãã¦ãããé«éãªæ¨è«ãæä¾ãããã¾ãã¾ãªãããã¯ã¼ã¯ã¢ã¼ããã¯ãã£(MobileNetV2ãªã©)ã鏿ãããã¨ãã§ãããªã¢ã«ã¿ã¤ã ã®å®é¨ãã¼ã¿ãã£ã¼ãããã¯ã¨çµã¿åããããã¨ãã§ãã¾ãã DeepLabCutã¯ãã¨ãã¨[DeeperCut](https://arxiv.org/abs/1605.03170)ã¨å¼ã°ããããã©ã¼ãã³ã¹ã®ãã人ç¨ã®ãã¼ãºæ¨å®ã¢ã¼ããã¯ãã£ã®ç¹å¾´æ¤åºå¨ã使ç¨ãã¦ããããããååã®ç±æ¥ã«ãªãã¾ããã ä»ã§ã¯ãã®ããã±ã¼ã¸ã¯å¤§å¹
ã«å¤æ´ããã追å ã®ã¢ã¼ããã¯ãã£ã»ãã¼ã¿ã®æ°´å¢ãã»ä¸éãã®ã¦ã¼ã¶ã¼ç¨ããã³ãã¨ã³ããå«ãã§ãã¾ãã ããã«ã å¤§è¦æ¨¡ãªçç©å¦çå®é¨ããµãã¼ããããããDeepLabCutã¯ãªã³ã©ã¤ã³å¦ç¿ã®æ©è½ãæä¾ãã¦ãã¾ãã ããã«ãããåç»ã®æéãããã¦å¦ç¿ãã¼ã¿ãå¢ãããã¨ãã§ããã¨ãã¸ã±ã¼ã¹ãã«ãã¼ããããç¹å®ã®ã³ã³ããã¹ãå
ã§ãã¼ãºæ¨å®ã¢ã«ã´ãªãºã ãå
ç¢ã«ãããã§ãã¾ãã
æè¿ã[DeepLabCut model zoo](http://www.mousemotorlab.org/dlc-modelzoo)ãçºè¡¨ããã¾ããã ããã¯ãéé·é¡ã®é¡åæããç¬ã®å§¿å¢ã¾ã§ãæ§ã
ãªç¨®ãå®é¨æ¡ä»¶ã«å¯¾å¿ããäºåè¨ç·´æ¸ã¿ã¢ãã«ãæä¾ãã¦ãã¾ãã ããã«ãããä¾ãã°ãæ°ãããã¼ã¿ã®ã©ãã«ãä»ãããã¨ãªãã¯ã©ã¦ãã§äºæ¸¬ãå®è¡ãããã¨ãã§ãããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®å¦ç¿ãå®è¡ãããã¨ãã§ãã¾ãã ããã°ã©ãã³ã°çµé¨ã¯å¿
è¦ããã¾ããã
### 主ãªç®æ¨ã¨çµæ
* **ç§å¦ç ç©¶ã®ããã®åç©å§¿å¢è§£æã®èªåå:**
DeepLabCutã¨ããæè¡ã®ä¸»ãªç®çã¯ã夿§ãªç°å¢ã§åç©ã®å§¿å¢ã測å®ã追跡ãããã¨ã§ãã ãã®ãã¼ã¿ã¯ä¾ãã°ç¥çµç§å¦ã®ç ç©¶ã«ããã¦ãè³ãã©ã®ããã«éåãå¶å¾¡ãã¦ããããçè§£ããããã®ããåç©ãã©ã®ããã«ç¤¾ä¼çã«äº¤æµãã¦ããããæããã«ããããã«å©ç¨ãããã¨ãã§ãã¾ãã ç ç©¶è
ã¯DeepLabCutã§ [10åã®ããã©ã¼ãã³ã¹åä¸](https://www.biorxiv.org/content/10.1101/457242v1) ãå¯è½ã§ããã¨çºè¡¨ãã¦ãã¾ãã ãªãã©ã¤ã³ã§ã¯æå¤§1200ãã¬ã¼ã /ç§(FPS) ã§å§¿å¢ãæ¨å®ãããã¨ãã§ãã¾ãã
* **å§¿å¢æ¨å®ã®ããã®ä½¿ããããPythonãã¼ã«ãããã®ä½æ:**
DeepLabCutã¯ãåç©ã®å§¿å¢æ¨å®æè¡ãç ç©¶è
ãç°¡åã«å©ç¨ã§ãããã¼ã«ã¨ãã¦å
±æãããã¨ããèãããéçºããã¦ãã¾ãã ããã§éçºè
ãã¯ããã¸ã§ã¯ãç®¡çæ©è½ãåãããåç¬ã§æ©è½ãã使ããããPythonãã¼ã«ããã¯ã¹ã¨ãã¦ãã®ãã¼ã«ã使ãã¾ããã ããã«ãããå§¿å¢æ¨å®ãèªååããã ãã§ãªããDeepLabCutãã¼ã«ãããã¦ã¼ã¶ã¼ããã¼ã¿ã»ããåéæ®µéããå
±æå¯è½ã»åå©ç¨å¯è½ãªåæãã¤ãã©ã¤ã³ã使ããæ®µéã¾ã§è£å©ããããã¸ã§ã¯ããã¨ã³ããã¼ã¨ã³ãã§ç®¡çãããã¨ãå¯è½ã«ãªãã¾ããã
ãã®[ãã¼ã«ããã][DLCToolkit] ã¯ãªã¼ãã³ã½ã¼ã¹ã¨ãã¦å©ç¨ã§ãã¾ãã
å
¸åçãªDeepLabCutã¯ã¼ã¯ããã¼ã¯ä»¥ä¸ã®ããã«ãªãã¾ãã
- ãªã³ã©ã¤ã³å¦ç¿ã«ãããã¬ã¼ãã³ã°ã»ããã®ä½æã¨èª¿æ´
- ç¹å®ã®åç©ãã·ããªãªã«åããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®æ§ç¯
- åç»ã«ãããå¤§è¦æ¨¡æ¨è«ã®ããã®ã³ã¼ã使
- çµ±åãããå¯è¦åãã¼ã«ã使ç¨ããæ¨è«ã®æç»
{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**DeepLabCutã«ããå§¿å¢æ¨å®ã®ã¹ããã**" alt="dlcsteps" align="middle" attr="(Source: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
### 課é¡
* **é度**
åç©è¡ååç»ã®é«éãªå¦çã¯ãåç©ã®è¡åãæ¸¬å®ããç§å¦å®é¨ãããå¹ççã§æ£ç¢ºã«ããããã«éè¦ã§ãã åçã«å¤åããèæ¯ã®ä¸ã§ããã¼ã«ã¼ã使ç¨ããã«ãå®é¨å®¤ã§ã®å®é¨ã®ããã«åç©ã®è©³ç´°ãªå§¿å¢ãæ½åºãããã¨ã¯ãæè¡çã«ããå¿
è¦ãªãªã½ã¼ã¹çã«ããå¿
è¦ãªãã¬ã¼ãã³ã°ãã¼ã¿ã®é¢ã§ããå°é£ãªå ´åãããã¾ãã ç§å¦è
ããããç¾å®çãªç¶æ³ã§ç ç©¶ãè¡ãããã«ãã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ãªã©ã®å°éç¥èã®ã¹ãã«ãå¿
è¦ã¨ããã«ä½¿ããã¨ãã§ãããã¼ã«ãéçºãããã¨ã¯ã解決ãã¹ãéè¦ãªåé¡ã§ãã
* **çµã¿åããåé¡**
çµåãåé¡ã¨ã¯ãè¤æ°ã®åè¢ã®åããåã
ã®åç©è¡åã«çµ±åãããã¨ãæãã¾ãã ãã¼ãã¤ã³ãã¨ããã®åã
ã®åç©è¡åã¨ã®é¢é£æ§ãçµã¿åãããæéçã«çµã³ã¤ãããã¨ã¯ãè¤éãªããã»ã¹ã§ãããé常ã«è¨å¤§ãªæ°å¤è§£æãå¿
è¦ã¨ãªãã¾ãã ç¹ã«ãå®é¨æ åã®ä¸ã§è¤æ°ã®åç©ã®åãã追跡ããå ´åã¯å¤§å¤ã§ãã
* **ãã¼ã¿å¦ç**
æå¾ã«ãé
åã®æä½ãããªãé£ããåé¡ã§ãã æ§ã
ãªç»åããç®æ¨ã®ãã³ã½ã«ããã¼ãã¤ã³ãã«å¯¾å¿ãã大ããªé
åã®ã¹ã¿ãã¯ãå¦çããªããã°ãªããªãããã§ãã
{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**å§¿å¢æ¨å®ã®å¤æ§æ§ã¨é£ãã**" alt="challengesfig" align="middle" attr="(Source: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
## å§¿å¢æ¨å®ã®èª²é¡ã«å¯¾å¿ããããã®NumPyã®å½¹å²
NumPy 㯠DeepLabCutã«ããããè¡ååæã®é«éåã®ããã®æ°å¤è¨ç®ã®æ ¸ã¨ãªã£ã¦ãã¾ãã NumPyã ãã§ãªããDeepLabCutã¯æ§ã
ãªNumPyããã¼ã¹ã¨ãã¦ããPythonã©ã¤ãã©ãªãå©ç¨ãã¦ãã¾ãã [SciPy](https://www.scipy.org)ã[Pandas](https://pandas.pydata.org)ã[matplotlib](https://matplotlib.org)ã[Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug)ã[scikit-learn](https://scikit-learn.org/stable/)ã[scikit-image](https://scikit-image.org)ã[Tensorflow](https://www.tensorflow.org)ãªã©ã§ãã
以ä¸ã«æããNumPyã®ç¹å¾´ããDeepLabCutã®å§¿å¢æ¨å®ã¢ã«ã´ãªãºã ã§ã®ç»åå¦çã»çµã¿åããå¦çã»é«éè¨ç®ã«ããã¦ãéè¦ãªå½¹å²ãæããã¾ããã
* ãã¯ãã«å
* ãã¹ã¯ãããé
åæä½
* ç·å½¢ä»£æ°
* ã©ã³ãã ãµã³ããªã³ã°
* 大ããªé
åã®åæ§æ
DeepLabCutã¯ããã¼ã«ããããæä¾ããã¯ã¼ã¯ããã¼ãéãã¦NumPyã®é
åæ©è½ãå©ç¨ãã¦ãã¾ãã ç¹ã«ãNumPyã¯ãã¥ã¼ãã³ã¢ããã¼ã·ã§ã³ã®ã©ãã«ä»ãããã¢ããã¼ã·ã§ã³ã®æ¸ãè¾¼ã¿ãç·¨éãå¦çã®ããã«ãç¹å®ã®ãã¬ã¼ã ããµã³ããªã³ã°ããããã«ä½¿ç¨ããã¦ãã¾ãã TensorFlowã使ã£ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¯ãDeepLabCutã®æè¡ã«ãã£ã¦ä½ååãè¨ç·´ããã ãã¬ã¼ã ããçã®ã¢ããã¼ã·ã§ã³æ
å ±ãäºæ¸¬ãã¾ãã ãã®ç®çã®ãããå§¿å¢æ¨å®åé¡ãç»å-ç»å夿åé¡ã¨ãã¦å¤æããç®æ¨å¯åº¦(ã¹ã³ã¢ããã) ã使ãã¾ãã ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ããã¹ãåã®ããããã¼ã¿ã®æ°´å¢ãã使ç¨ãã¦ãã¾ããããã®ããã«ã¯å¹¾ä½å¦ã»ç»åçå¦çãæ½ããã¹ã³ã¢ãããã®è¨ç®ãè¡ããã¨ãå¿
è¦ã«ãªãã¾ãã ã¾ãå¦ç¿ãé«éåãããããNumPyã®ãã¯ãã«åæ©è½ãå©ç¨ããã¦ãã¾ãã æ¨è«ã«ã¯ãç®æ¨ã®ã¹ã³ã¢ãããããæãå¯è½æ§ã®é«ãäºæ¸¬å¤ãæ½åºããå¹ççã«ãäºæ¸¬å¤ããªã³ã¯ããã¦åã
ã®åç©ãçµã¿ç«ã¦ãããã¨ãå¿
è¦ã«ãªãã¾ãã
{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**DeepLabCutã®ã¯ã¼ã¯ããã¼**" alt="workflow" attr="*(Source: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
## ã¾ã¨ã
è¡åã観å¯ããå¹ççã«è¡¨ç¾ãããã¨ã¯ãç¾ä»£å«çå¦ãç¥çµç§å¦ãå»å¦ãå·¥å¦ã®æ ¹å¹¹ã§ãã [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) ã«ãããç ç©¶è
ã¯å¯¾è±¡ã®å§¿å¢ãæ¨å®ããè¡åãå¹ççã«å®éåã§ããããã«ãªãã¾ããã DeepLabCutã¨ããPythonãã¼ã«ããã¯ã¹ã使ãã°ãããããªå¦ç¿ç»åã®ã»ããã§ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã人éã¬ãã«ã®ã©ããªã³ã°ç²¾åº¦ã§å¦ç¿ãããã¨ãã§ããå®é¨å®¤ã§ã®è¡ååæã ãã§ãªããã¹ãã¼ããæ©è¡åæãå»å¦ããªãããªãã¼ã·ã§ã³ç ç©¶ãªã©ã¸ã®å¿ç¨ãå¯è½ã«ãªãã¾ãã DeepLabCutã¢ã«ã´ãªãºã ã«å¿
è¦ãªè¤éãªçµã¿åããå¦çããã¼ã¿å¦çã®åé¡ããNumPyã®é
åæä½æ©è½ã解決ãã¦ãã¾ãã
{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**NumPyã®ä¸»è¦æ©è½**" >}}
[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/ja/user-survey-2020.md b/content/ja/user-survey-2020.md
index 370138d..ce32100 100644
--- a/content/ja/user-survey-2020.md
+++ b/content/ja/user-survey-2020.md
@@ -1,16 +1,16 @@
---
title: 2020å¹´ NumPyã³ãã¥ããã£èª¿æ»
sidebar: false
---
2020å¹´ã«ãNumPyã®èª¿æ»ãã¼ã ã¯ããã·ã¬ã³å¤§å¦ã¨ã¡ãªã¼ã©ã³ã大å¦ãå
±åã§éå¬ãããèª¿æ»æ¹æ³å¦ã®ä¿®å£«ã³ã¼ã¹ã®å¦çã¨æå¡ã¨å
±åã§ãåãã¦å
¬å¼ã®NumPyã³ãã¥ããã£èª¿æ»ã宿½ãã¾ããã 75ã«å½ãã1,200人以ä¸ã®NumPyã¦ã¼ã¶ã¼ãåå ãã¦ããã¾ãããNumPyã³ãã¥ããã£ã®å
¨ä½åãæããããã¸ã§ã¯ãã®æªæ¥åã«ã¤ãã¦ã®æè¦ãè¿°ã¹ã¦ãããã¾ããã
-{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 Numpy User survey report, titled 'Numpyã³ãã¥ããã£èª¿æ»2020 - çµæ'" width="250">}}
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Cover page of the 2020 Numpy User survey report, titled 'Numpyã³ãã¥ããã£èª¿æ»2020 - çµæ'" width="250" >}}
調æ»çµæã詳細ãç¥ãããå ´åã¯ã**[ãã¡ãã®ã¬ãã¼ã](/surveys/NumPy_usersurvey_2020_report.pdf)** ããã¦ã³ãã¼ããã¦ãã ããã
çµæã®æ¦è¦ã«ã¤ãã¦ã¯ã **[ãã¡ãã®å³](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)** ããã§ãã¯ãã¦ãã ããã
ãã詳細ãç¥ããããªãã¾ãããï¼ **https://numpy.org/user-survey-2020-details/** ãã覧ãã ããã
diff --git a/content/pt/case-studies/deeplabcut-dnn.md b/content/pt/case-studies/deeplabcut-dnn.md
index c3fd0b9..a0c37db 100644
--- a/content/pt/case-studies/deeplabcut-dnn.md
+++ b/content/pt/case-studies/deeplabcut-dnn.md
@@ -1,92 +1,92 @@
---
title: "Estudo de Caso: Estimativa de Pose 3D com DeepLabCut"
sidebar: false
---
-{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Análise de movimentos de mãos de camundongos usando DeepLapCut**" alt="micehandanim" attr="*(Fonte: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut">}}
+{{< figure src="/images/content_images/cs/mice-hand.gif" class="fig-center" caption="**Análise de movimentos de mãos de camundongos usando DeepLapCut**" alt="micehandanim" attr="*(Fonte: www.deeplabcut.org )*" attrlink="http://www.mousemotorlab.org/deeplabcut" >}}
{{< blockquote
cite="https://news.harvard.edu/gazette/story/newsplus/harvard-researchers-awarded-czi-open-source-award/"
by="Alexander Mathis, *Professor Assistente, Ãcole polytechnique fédérale de Lausanne* ([EPFL](https://www.epfl.ch/en/))"
>}}
Software de código aberto está acelerando a Biomedicina. DeepLabCut permite a análise automática de vÃdeos de comportamento animal usando Deep Learning.
{{< /blockquote >}}
## Sobre o DeepLabCut
[DeepLabCut](https://github.com/DeepLabCut/DeepLabCut) é uma toolbox de código aberto que permite que pesquisadores de centenas de instituições em todo o mundo rastreiem o comportamento de animais de laboratório, com muito poucos dados de treinamento, mas com precisão no nÃvel humano. Com a tecnologia DeepLabCut, cientistas podem aprofundar a compreensão cientÃfica do controle motor e do comportamento em diversas espécies animais e escalas temporais.
Várias áreas de pesquisa, incluindo a neurociência, a medicina e a biomecânica, utilizam dados de rastreamento da movimentação de animais. A DeepLabCut ajuda a compreender o que os seres humanos e outros animais estão fazendo, analisando ações que foram registradas em vÃdeo. Ao usar automação para tarefas trabalhosas de monitoramento e marcação, junto com análise de dados baseada em redes neurais profundas, a DeepLabCut garante que estudos cientÃficos envolvendo a observação de animais como primatas, camundongos, peixes, moscas etc. sejam mais rápidos e precisos.
{{< figure src="/images/content_images/cs/race-horse.gif" class="fig-center" caption="**Pontos coloridos rastreiam as posições das partes do corpo de um cavalo de corrida**" alt="horserideranim" attr="*(Fonte: Mackenzie Mathis)*">}}
O rastreamento não invasivo dos animais pela DeepLabCut através da extração de poses é crucial para pesquisas cientÃficas em domÃnios como a biomecânica, genética, etologia e neurociência. Medir as poses dos animais de maneira não invasiva através de vÃdeo - sem marcadores - com fundos dinâmicos é computacionalmente desafiador, tanto tecnicamente quanto em termos de recursos e dados de treinamento necessários.
A DeepLabCut permite que pesquisadores façam estimativas de poses para os sujeitos, permitindo que se possa quantificar de maneira eficiente seus comportamentos através de um conjunto de ferramentas de software baseado em Python. Com a DeepLabCut, pesquisadores podem identificar quadros (*frames*) distintos em vÃdeos e rotular digitalmente partes especÃficas do corpo em alguns quadros com uma GUI especializada. A partir disso, a arquitetura de estimação de poses baseada em deep learning da DeepLabCut aprende a selecionar essas mesmas caracterÃsticas no resto do vÃdeo e em outros vÃdeos similares. A ferramenta funciona para várias espécies de animais, desde animais comuns em laboratórios, como moscas e camundongos, até os mais incomuns, como [guepardos][cheetah-movement].
A DeepLabCut usa um princÃpio chamado [aprendizado por transferência (*transfer learning*)](https://arxiv.org/pdf/1909.11229), o que reduz enormemente a quantidade de dados de treinamento necessários e acelera a convergência do perÃodo de treinamento. Dependendo das suas necessidades, usuários podem escolher diferentes arquiteturas de rede que forneçam inferência mais rápida (por exemplo, MobileNetV2), e que também podem ser combinadas com feedback experimental em tempo real. A DeepLabCut usou originalmente os detectores de features de uma arquitetura de alto desempenho para estimativa de poses humanas, chamada [DeeperCut](https://arxiv.org/abs/1605.03170), que inspirou seu nome. O pacote foi significativamente alterado para incluir mais arquiteturas, métodos de ampliação e uma experiência de usuário completa no front-end. Além de possibilitar experimentos biológicos em grande escala, DeepLabCut fornece capacidades ativas de aprendizado para que os usuários possam aumentar o conjunto de treinamento ao longo do tempo, para incluir casos particulares e tornar seu algoritmo de estimativa de poses robusto no seu contexto especÃfico.
Recentemente, foi introduzido o [modelo DeepLabCut zoo](http://www.mousemotorlab.org/dlc-modelzoo), que proporciona modelos pré-treinados para várias espécies e condições experimentais, desde a análise facial em primatas até à posição de cães. Isso pode ser executado na nuvem, por exemplo, sem qualquer rotulagem de novos dados ou treinamento em rede neural, e não é necessária nenhuma experiência em programação.
### Principais Objetivos e Resultados
* **Automação da análise de poses animais para estudos cientÃficos:**
O objetivo principal da tecnologia DeepLabCut é medir e rastrear a postura dos animais em várias configurações. Esses dados podem ser usados, por exemplo, em estudos de neurociência para entender como o cérebro controla o movimento, ou para elucidar como os animais interagem socialmente. Pesquisadores observaram que [desempenho é 10 vezes melhor](https://www.biorxiv.org/content/10.1101/457242v1) com o DeepLabCut. Poses podem ser inferidas off-line em até 1200 quadros por segundo (FPS).
* **Criação de um kit de ferramentas Python fácil de usar para estimativa de poses:**
DeepLabCut queria compartilhar sua tecnologia de estimativa de poses animal na forma de uma ferramenta simples de usar que pudesse ser adotada pelos pesquisadores facilmente. Assim, criaram um conjunto de ferramentas em Python completo e fácil de usar, também com recursos de gerenciamento de projeto. Isso permite não apenas a automação de estimação de poses, mas também o gerenciamento do projeto de ponta a ponta, ajudando o usuário do DeepLabCut Toolkit desde a fase de coleta para criar fluxos de dados compartilháveis e reutilizáveis.
Seu [conjunto de ferramentas][DLCToolkit] agora está disponÃvel como software de código aberto.
Um fluxo de trabalho tÃpico na DeepLabCut inclui:
- criação e refinamento de conjuntos de treinamento por meio de aprendizagem ativa
- criação de redes neurais personalizadas para animais e cenários especÃficos
- código para inferência em larga escala em vÃdeos
- inferências de desenho usando ferramentas integradas de visualização
{{< figure src="/images/content_images/cs/deeplabcut-toolkit-steps.png" class="csfigcaption" caption="**Passos na estimação de poses com DeepLabCut**" alt="dlcsteps" align="middle" attr="(Fonte: DeepLabCut)" attrlink="https://twitter.com/DeepLabCut/status/1198046918284210176/photo/1" >}}
### Desafios
* **Velocidade**
Processamento rápido de vÃdeos de animais para medir seu comportamento e, ao mesmo tempo, tornar os experimentos cientÃficos mais eficientes e precisos. Extrair poses animais detalhadas para experimentos em laboratório, sem marcadores, sobre fundos dinâmicos, pode ser desafiador tanto tecnicamente quanto em termos de recursos e dados de treinamento necessários. Criar uma ferramenta que seja fácil de usar sem necessidade de habilidades como expertise em visão computacional que permita aos cientistas fazerem pesquisa em contextos mais próximos do mundo real é um problema não-trivial a ser solucionado.
* **Combinatória**
Combinatória envolve a junção e integração de movimentos de múltiplos membros em um comportamento animal único. Reunir pontos-chave e suas conexões em movimentos animais individuais e encadeá-los em função do tempo é um processo complexo que exige análise numérica intensa, especialmente nos casos de rastreio de múltiplos animais em vÃdeos experimentais.
* **Processamento de dados**
Por último, mas não menos importante, manipulação de matrizes - processar grandes conjuntos de matrizes correspondentes a várias imagens, tensores alvo e pontos-chave é bastante desafiador.
{{< figure src="/images/content_images/cs/pose-estimation.png" class="csfigcaption" caption="**Estimação de poses e complexidade**" alt="challengesfig" align="middle" attr="(Fonte: Mackenzie Mathis)" attrlink="https://www.biorxiv.org/content/10.1101/476531v1.full.pdf" >}}
## O papel da NumPy nos desafios da estimação de poses
NumPy supre a principal necessidade da tecnologia DeepLabCut de cálculos numéricos de alta velocidade para análises comportamentais. Além da NumPy, DeepLabCut emprega várias bibliotecas Python que usam a NumPy como sua base, tais como [SciPy](https://www.scipy.org), [Pandas](https://pandas.pydata.org), [matplotlib](https://matplotlib.org), [Tensorpack](https://github.com/tensorpack/tensorpack), [imgaug](https://github.com/aleju/imgaug), [scikit-learn](https://scikit-learn.org/stable/), [scikit-image](https://scikit-image.org) e [Tensorflow](https://www.tensorflow.org).
As seguintes caracterÃsticas da NumPy desempenharam um papel fundamental para atender à s necessidades de processamento de imagens, combinatória e cálculos rápidos nos algoritmos de estimação de pose na DeepLabCut:
* Vetorização
* Operações em arrays com máscaras
* Ãlgebra linear
* Amostragem aleatória
* Reordenamento de matrizes grandes
A DeepLabCut utiliza as capacidades de manipulação de arrays da NumPy em todo o fluxo de trabalho oferecido pelo seu conjunto de ferramentas. Em particular, a NumPy é usada para amostragem de quadros distintos para serem rotulados com anotações humanas e para escrita, edição e processamento de dados de anotação. Dentro da TensorFlow, a rede neural é treinada pela tecnologia DeepLabCut em milhares de iterações para prever as anotações verdadeiras dos quadros. Para este propósito, densidades de alvo (*scoremaps*) são criadas para colocar a estimativa como um problema de tradução de imagem a imagem. Para tornar as redes neurais robustas, o aumento de dados é empregado, o que requer o cálculo de scoremaps alvo sujeitos a várias etapas geométricas e de processamento de imagem. Para tornar o treinamento rápido, os recursos de vectorização da NumPy são utilizados. Para inferência, as previsões mais prováveis de scoremaps alvo precisam ser extraÃdas e é necessário "vincular previsões para montar animais individuais" de maneira eficiente.
{{< figure src="/images/content_images/cs/deeplabcut-workflow.png" class="fig-center" caption="**Fluxo de dados DeepLabCut**" alt="workflow" attr="*(Fonte: Mackenzie Mathis)*" attrlink="https://www.researchgate.net/figure/DeepLabCut-work-flow-The-diagram-delineates-the-work-flow-as-well-as-the-directory-and_fig1_329185962">}}
## Resumo
Observação e descrição eficiente do comportamento é uma peça fundamental da etologia, neurociência, medicina e tecnologia modernas. [DeepLabCut](http://orga.cvss.cc/wp-content/uploads/2019/05/NathMathis2019.pdf) permite que os pesquisadores estimem a pose do sujeito, permitindo efetivamente que o seu comportamento seja quantificado. Com apenas um pequeno conjunto de imagens de treinamento, o conjunto de ferramentas em Python da DeepLabCut permite treinar uma rede neural tão precisa quanto a rotulagem humana, expandindo assim sua aplicação para não só análise de comportamento dentro do laboratório, mas também potencialmente em esportes, análise de locomoção, medicina e estudos sobre reabilitação. Desafios complexos em combinatória e processamento de dados enfrentados pelos algoritmos da DeepLabCut são tratados através do uso de recursos de manipulação de matriz do NumPy.
{{< figure src="/images/content_images/cs/numpy_dlc_benefits.png" class="fig-center" alt="numpy benefits" caption="**Recursos chave do NumPy utilizados**" >}}
[cheetah-movement]: https://www.technologynetworks.com/neuroscience/articles/interview-a-deeper-cut-into-behavior-with-mackenzie-mathis-327618
[DLCToolkit]: https://github.com/DeepLabCut/DeepLabCut
diff --git a/content/pt/user-survey-2020.md b/content/pt/user-survey-2020.md
index 0cb175d..45ade42 100644
--- a/content/pt/user-survey-2020.md
+++ b/content/pt/user-survey-2020.md
@@ -1,16 +1,16 @@
---
title: PESQUISA SOBRE A COMUNIDADE NUMPY 2020
sidebar: false
---
Em 2020, o time de pesquisas do NumPy realizou a primeira pesquisa oficial sobre a comunidade NumPy, em parceria com alunos e docentes de um Mestrado em metodologia de pesquisa realizado conjuntamente pela Universidade de Michigan e pela Universidade da Maryland. Mais de 1200 usuários de 75 paÃses participaram para nos ajudar a mapear uma paisagem da comunidade NumPy e expressaram seus pensamentos sobre o futuro do projeto.
-{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Página de capa do relatório da pesquisa de usuários do NumPy 2020, chamado 'NumPy Community Survey 2020 - results'" width="250">}}
+{{< figure src="/surveys/NumPy_usersurvey_2020_report_cover.png" class="fig-left" alt="Página de capa do relatório da pesquisa de usuários do NumPy 2020, chamado 'NumPy Community Survey 2020 - results'" width="250" >}}
**[Faça o download do relatório](/surveys/NumPy_usersurvey_2020_report.pdf)** para ver os detalhes sobre os resultados encontrados.
Para os destaques, confira **[este infográfico](https://github.com/numpy/numpy-surveys/blob/master/images/2020NumPysurveyresults_community_infographic.pdf)**.
Quer saber mais? Visite **https://numpy.org/user-survey-2020-details/**.
|
numpy/numpy.org
|
48ee92f37e4fccfed4ca26168eacbc8104e5f44b
|
Unify figure shortcode invocation (#737)
|
diff --git a/content/en/case-studies/cricket-analytics.md b/content/en/case-studies/cricket-analytics.md
index 3ac6612..77aef51 100644
--- a/content/en/case-studies/cricket-analytics.md
+++ b/content/en/case-studies/cricket-analytics.md
@@ -1,159 +1,141 @@
---
title: "Case Study: Cricket Analytics, the game changer!"
sidebar: false
---
-{{< figure src="/images/content_images/cs/ipl-stadium.png"
- caption="**IPLT20, the biggest Cricket Festival in India**"
- alt="Indian Premier League Cricket cup and stadium"
- attr="*(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))*"
- attrlink="https://unsplash.com/@aksh1802" >}}
+{{< figure src="/images/content_images/cs/ipl-stadium.png" caption="**IPLT20, the biggest Cricket Festival in India**" alt="Indian Premier League Cricket cup and stadium" attr="*(Image credits: IPLT20 (cup and logo) & Akash Yadav (stadium))*" attrlink="https://unsplash.com/@aksh1802" >}}
{{< blockquote
cite="https://www.scoopwhoop.com/sports/ms-dhoni/"
by="M S Dhoni, *International Cricket Player, ex-captain, Indian Team, plays for Chennai Super Kings in IPL*"
>}}
You don't play for the crowd, you play for the country.
{{< /blockquote >}}
## About Cricket
It would be an understatement to state that Indians love cricket. The game is
played in just about every nook and cranny of India, rural or urban, popular
with the young and the old alike, connecting billions in India unlike any other sport.
Cricket enjoys lots of media attention. There is a significant amount of
[money](https://www.statista.com/topics/4543/indian-premier-league-ipl/) and
fame at stake. Over the last several years, technology has literally been a game
changer. Audiences are spoilt for choice with streaming media, tournaments,
affordable access to mobile based live cricket watching, and more.
The Indian Premier League (IPL) is a professional Twenty20 cricket
league, founded in 2008. It is one of the most attended cricketing events in
the world, valued at [$6.7 billion](https://en.wikipedia.org/wiki/Indian_Premier_League)
in 2019.
Cricket is a game of numbers - the runs scored by a batsman, the wickets taken
by a bowler, the matches won by a cricket team, the number of times a batsman
responds in a certain way to a kind of bowling attack, etc. The capability to
dig into cricketing numbers for both improving performance and studying
the business opportunities, overall market, and economics of cricket via powerful
analytics tools, powered by numerical computing software such as NumPy, is a big
deal. Cricket analytics provides interesting insights into the game and
predictive intelligence regarding game outcomes.
Today, there are rich and almost infinite troves of cricket game records and
statistics available, e.g., [ESPN
cricinfo](https://stats.espncricinfo.com/ci/engine/stats/index.html) and
[cricsheet](https://cricsheet.org). These and several such cricket databases
have been used for [cricket
analysis](https://www.researchgate.net/publication/336886516_Data_visualization_and_toss_related_analysis_of_IPL_teams_and_batsmen_performances)
using the latest machine learning and predictive modelling algorithms.
Media and entertainment platforms along with professional sports bodies
associated with the game use technology and analytics for determining key
metrics for improving match winning chances:
* batting performance moving average,
* score forecasting,
* gaining insights into fitness and performance of a player against different opposition,
* player contribution to wins and losses for making strategic decisions on team composition
-{{< figure src="/images/content_images/cs/cricket-pitch.png"
- class="csfigcaption"
- caption="**Cricket Pitch, the focal point in the field**"
- alt="A cricket pitch with bowler and batsmen"
- align="middle"
- attr="*(Image credit: Debarghya Das)*"
- attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
+{{< figure src="/images/content_images/cs/cricket-pitch.png" class="csfigcaption" caption="**Cricket Pitch, the focal point in the field**" alt="A cricket pitch with bowler and batsmen" align="middle" attr="*(Image credit: Debarghya Das)*" attrlink="http://debarghyadas.com/files/IPLpaper.pdf" >}}
### Key Data Analytics Objectives
* Sports data analytics are used not only in cricket but many [other
sports](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx) for
improving the overall team performance and maximizing winning chances.
* Real-time data analytics can help in gaining insights even during the game
for changing tactics by the team and by associated businesses for economic
benefits and growth.
* Besides historical analysis, predictive models are
harnessed to determine the possible match outcomes that require significant
number crunching and data science know-how, visualization tools and capability
to include newer observations in the analysis.
-{{< figure src="/images/content_images/cs/player-pose-estimator.png"
- class="fig-center"
- alt="pose estimator"
- caption="**Cricket Pose Estimator**"
- attr="*(Image credit: connect.vin)*"
- attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
+{{< figure src="/images/content_images/cs/player-pose-estimator.png" class="fig-center" alt="pose estimator" caption="**Cricket Pose Estimator**" attr="*(Image credit: connect.vin)*" attrlink="https://connect.vin/2019/05/ai-for-cricket-batsman-pose-analysis/" >}}
### The Challenges
* **Data Cleaning and preprocessing**
IPL has expanded cricket beyond the classic test match format to a much
larger scale. The number of matches played every season across various
formats has increased and so has the data, the algorithms, newer sports data
analysis technologies and simulation models. Cricket data analysis requires
field mapping, player tracking, ball tracking, player shot analysis, and
several other aspects involved in how the ball is delivered, its angle, spin,
velocity, and trajectory. All these factors together have increased the
complexity of data cleaning and preprocessing.
* **Dynamic Modeling**
In cricket, just like any other sport,
there can be a large number of variables related to tracking various numbers
of players on the field, their attributes, the ball, and several possibilities
of potential actions. The complexity of data analytics and modeling is
directly proportional to the kind of predictive questions that are put forth
during analysis and are highly dependent on data representation and the
model. Things get even more challenging in terms of computation, data
comparisons when dynamic cricket play predictions are sought such as what
would have happened if the batsman had hit the ball at a different angle or
velocity.
* **Predictive Analytics Complexity**
Much of the decision making in cricket is based on questions such as "how
often does a batsman play a certain kind of shot if the ball delivery is of a
particular type", or "how does a bowler change his line and length if the
batsman responds to his delivery in a certain way".
This kind of predictive analytics query requires highly granular dataset
availability and the capability to synthesize data and create generative
models that are highly accurate.
## NumPyâs Role in Cricket Analytics
Sports Analytics is a thriving field. Many researchers and companies
[use NumPy](https://adtmag.com/blogs/dev-watch/2017/07/sports-analytics.aspx)
and other PyData packages like Scikit-learn, SciPy, Matplotlib, and Jupyter,
besides using the latest machine learning and AI techniques. NumPy has been used
for various kinds of cricket related sporting analytics such as:
* **Statistical Analysis:** NumPy's numerical capabilities help estimate the
statistical significance of observational data or match events in the context
of various player and game tactics, estimating the game outcome by comparison
with a generative or static model.
[Causal analysis](https://amplitude.com/blog/2017/01/19/causation-correlation)
and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
are used for tactical analysis.
* **Data Visualization:** Data graphing and [visualization](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) provide useful insights into relationship between various datasets.
## Summary
Sports Analytics is a game changer when it comes to how professional games are
played, especially how strategic decision making happens, which until recently
was primarily done based on âgut feeling" or adherence to past traditions. NumPy
forms a solid foundation for a large set of Python packages which provide higher
level functions related to data analytics, machine learning, and AI algorithms.
These packages are widely deployed to gain real-time insights that help in
decision making for game-changing outcomes, both on field as well as to draw
inferences and drive business around the game of cricket. Finding out the
hidden parameters, patterns, and attributes that lead to the outcome of a
cricket match helps the stakeholders to take notice of game insights that are
otherwise hidden in numbers and statistics.
-{{< figure src="/images/content_images/cs/numpy_ca_benefits.png"
- class="fig-center"
- alt="Diagram showing benefits of using NumPy for cricket analytics"
- caption="**Key NumPy Capabilities utilized**" >}}
+{{< figure src="/images/content_images/cs/numpy_ca_benefits.png" class="fig-center" alt="Diagram showing benefits of using NumPy for cricket analytics" caption="**Key NumPy Capabilities utilized**" >}}
|
numpy/numpy.org
|
f6680ba2e0df70af90d0dc43ede8683b3841c094
|
Use grid of cards for team gallery (#734)
|
diff --git a/Makefile b/Makefile
index b6d5f30..cc76605 100644
--- a/Makefile
+++ b/Makefile
@@ -1,51 +1,49 @@
# type `make help` to see all options
BASEURL ?=
ifdef BASEURL
BASEURLARG=-b $(BASEURL)
endif
.PHONY: help prepare teams-clean teams serve clean
# Add help text after each target name starting with '\#\#'
help: ## show this help
@echo "\nHelp for this makefile"
@echo "Possible commands are:"
@grep -h "##" $(MAKEFILE_LIST) | grep -v grep | sed -e 's/\(.*\):.*##\(.*\)/ \1: \2/'
prepare:
git submodule update --init
python gen_config.py
-TEAMS_DIR = static/gallery
+# All translations share the <team>.toml files in the en translation
+TEAMS_DIR = content/en/teams
TEAMS = emeritus-maintainers maintainers docs-team triage-team survey-team web-team
TEAMS_QUERY = python themes/scientific-python-hugo-theme/tools/team_query.py
-$(TEAMS_DIR):
- mkdir -p $(TEAMS_DIR)
-
-$(TEAMS_DIR)/%.md: $(TEAMS_DIR)
- $(TEAMS_QUERY) --org numpy --team "$*" > $(TEAMS_DIR)/$*.html
+$(TEAMS_DIR)/%.toml:
+ $(TEAMS_QUERY) --org numpy --team "$*" > $(TEAMS_DIR)/$*.toml
teams-clean: prepare
for team in $(TEAMS); do \
- rm -f $(TEAMS_DIR)/$${team}.html ;\
+ rm -f $(TEAMS_DIR)/$${team}.toml ;\
done
-teams: | teams-clean $(patsubst %,$(TEAMS_DIR)/%.md,$(TEAMS)) ## generates numpy.org team gallery pages
+teams: | teams-clean $(patsubst %,$(TEAMS_DIR)/%.toml,$(TEAMS)) ## generates numpy.org team gallery pages
serve: prepare ## serve the website
hugo $(BASEURLARG) --printI18nWarnings server -D
# Serve the site for development purposes (leaving submodules as-is, etc).
serve-dev:
python gen_config.py
hugo $(BASEURLARG) --printI18nWarnings server --buildDrafts --disableFastRender --poll 1000ms
html: prepare ## build the website in ./public
hugo $(BASEURLARG)
clean: ## remove the build artifacts, mainly the "public" directory
rm -rf public
diff --git a/content/en/teams.md b/content/en/teams.md
deleted file mode 100644
index 2e8116d..0000000
--- a/content/en/teams.md
+++ /dev/null
@@ -1,24 +0,0 @@
----
-title: NumPy Teams
-sidebar: false
----
-
-We are an international team on a mission to support scientific and research
-communities worldwide by building quality, open-source software.
-[Join us]({{< relref "/contribute" >}})!
-
-{{< include-html "static/gallery/maintainers.html" >}}
-
-{{< include-html "static/gallery/docs-team.html" >}}
-
-{{< include-html "static/gallery/web-team.html" >}}
-
-{{< include-html "static/gallery/triage-team.html" >}}
-
-{{< include-html "static/gallery/survey-team.html" >}}
-
-{{< include-html "static/gallery/emeritus-maintainers.html" >}}
-
-# Governance
-
-For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/en/teams/docs-team.toml b/content/en/teams/docs-team.toml
new file mode 100644
index 0000000..09abff8
--- /dev/null
+++ b/content/en/teams/docs-team.toml
@@ -0,0 +1,69 @@
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/4336207?u=564d623a8c9d710c3520841b83458b0bf1eae010&v=4"'
+alt = 'Avatar of Rohit Goswami'
+{{< /image >}}
+Rohit Goswami'''
+link = 'https://github.com/HaoZeke'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"'
+alt = 'Avatar of Inessa Pawson'
+{{< /image >}}
+Inessa Pawson'''
+link = 'https://github.com/InessaPawson'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/46167686?u=b5ca05a767012822d06b8bc16e3cd5ca0d1cafe9&v=4"'
+alt = 'Avatar of Mars Lee'
+{{< /image >}}
+Mars Lee'''
+link = 'https://github.com/MarsBarLee'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/823911?u=1dd52e6dcca6a7a35b6644935cdd33a6e166a596&v=4"'
+alt = 'Avatar of Matti Picus'
+{{< /image >}}
+Matti Picus'''
+link = 'https://github.com/mattip'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/3949932?u=aacac68df60d2cf64c17c7e5aa17adf8b738aa7b&v=4"'
+alt = 'Avatar of Melissa Weber Mendonça'
+{{< /image >}}
+Melissa Weber Mendonça'''
+link = 'https://github.com/melissawm'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/60316606?u=229ba03253068b0a4f206b0be08f7a9e76c832f1&v=4"'
+alt = 'Avatar of Mukulika'
+{{< /image >}}
+Mukulika'''
+link = 'https://github.com/Mukulikaa'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/1268991?u=974707b96081a9705f3a239c0773320f353ee02f&v=4"'
+alt = 'Avatar of Ross Barnowski'
+{{< /image >}}
+Ross Barnowski'''
+link = 'https://github.com/rossbar'
diff --git a/content/en/teams/emeritus-maintainers.toml b/content/en/teams/emeritus-maintainers.toml
new file mode 100644
index 0000000..b61eef1
--- /dev/null
+++ b/content/en/teams/emeritus-maintainers.toml
@@ -0,0 +1,89 @@
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/9040124?v=4"'
+alt = 'Avatar of Allan Haldane'
+{{< /image >}}
+Allan Haldane'''
+link = 'https://github.com/ahaldane'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/20568?v=4"'
+alt = 'Avatar of OndÅej ÄertÃk'
+{{< /image >}}
+OndÅej ÄertÃk'''
+link = 'https://github.com/certik'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/25111?v=4"'
+alt = 'Avatar of David Cournapeau'
+{{< /image >}}
+David Cournapeau'''
+link = 'https://github.com/cournape'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/3343990?v=4"'
+alt = 'Avatar of Jaime'
+{{< /image >}}
+Jaime'''
+link = 'https://github.com/jaimefrio'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/123428?v=4"'
+alt = 'Avatar of Jarrod Millman'
+{{< /image >}}
+Jarrod Millman'''
+link = 'https://github.com/jarrodmillman'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/542663?v=4"'
+alt = 'Avatar of Julian Taylor'
+{{< /image >}}
+Julian Taylor'''
+link = 'https://github.com/juliantaylor'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/399551?u=d4a592a0763568448a8eaa06b680ee9584a8c6e0&v=4"'
+alt = 'Avatar of Mark Wiebe'
+{{< /image >}}
+Mark Wiebe'''
+link = 'https://github.com/mwiebe'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/609896?u=935a2bf5f98be8c08d87eaac095f1f3bc3332490&v=4"'
+alt = 'Avatar of Nathaniel J. Smith'
+{{< /image >}}
+Nathaniel J. Smith'''
+link = 'https://github.com/njsmith'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/254880?v=4"'
+alt = 'Avatar of Travis E. Oliphant'
+{{< /image >}}
+Travis E. Oliphant'''
+link = 'https://github.com/teoliphant'
diff --git a/content/en/teams/index.md b/content/en/teams/index.md
new file mode 100644
index 0000000..824152b
--- /dev/null
+++ b/content/en/teams/index.md
@@ -0,0 +1,36 @@
+---
+title: NumPy Teams
+sidebar: false
+---
+
+We are an international team on a mission to support scientific and research
+communities worldwide by building quality, open-source software.
+[Join us]({{< relref "/contribute" >}})!
+
+### Maintainers
+
+{{< grid1 file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid1 file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid1 file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid1 file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid1 file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid1 file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Governance
+
+For the list of the Steering Council members, please see [here](https://numpy.org/about/).
diff --git a/content/en/teams/maintainers.toml b/content/en/teams/maintainers.toml
new file mode 100644
index 0000000..03120e8
--- /dev/null
+++ b/content/en/teams/maintainers.toml
@@ -0,0 +1,289 @@
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/702934?u=a026c1b1117981cea46e56ba562f3e80dfa71329&v=4"'
+alt = 'Avatar of Andrew Nelson'
+{{< /image >}}
+Andrew Nelson'''
+link = 'https://github.com/andyfaff'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/43369155?u=1f1fcabf979a2f00f403c60b816ba9f573026181&v=4"'
+alt = 'Avatar of Bas van Beek'
+{{< /image >}}
+Bas van Beek'''
+link = 'https://github.com/BvB93'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/77272?v=4"'
+alt = 'Avatar of Charles Harris'
+{{< /image >}}
+Charles Harris'''
+link = 'https://github.com/charris'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/425260?v=4"'
+alt = 'Avatar of Eric Wieser'
+{{< /image >}}
+Eric Wieser'''
+link = 'https://github.com/eric-wieser'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/20969920?u=ec0e4d9dd70227549776ba8209f0e55a35d1fe84&v=4"'
+alt = 'Avatar of Ganesh Kathiresan'
+{{< /image >}}
+Ganesh Kathiresan'''
+link = 'https://github.com/ganesh-k13'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/4336207?u=564d623a8c9d710c3520841b83458b0bf1eae010&v=4"'
+alt = 'Avatar of Rohit Goswami'
+{{< /image >}}
+Rohit Goswami'''
+link = 'https://github.com/HaoZeke'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/67612?v=4"'
+alt = 'Avatar of Matthew Brett'
+{{< /image >}}
+Matthew Brett'''
+link = 'https://github.com/matthew-brett'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/823911?u=1dd52e6dcca6a7a35b6644935cdd33a6e166a596&v=4"'
+alt = 'Avatar of Matti Picus'
+{{< /image >}}
+Matti Picus'''
+link = 'https://github.com/mattip'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/6570539?u=cfb3e218754e85c4fac18064d7cfdce0b67ddaa6&v=4"'
+alt = 'Avatar of Matt Haberland'
+{{< /image >}}
+Matt Haberland'''
+link = 'https://github.com/mdhaber'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/3949932?u=aacac68df60d2cf64c17c7e5aa17adf8b738aa7b&v=4"'
+alt = 'Avatar of Melissa Weber Mendonça'
+{{< /image >}}
+Melissa Weber Mendonça'''
+link = 'https://github.com/melissawm'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/2789820?v=4"'
+alt = 'Avatar of Marten van Kerkwijk'
+{{< /image >}}
+Marten van Kerkwijk'''
+link = 'https://github.com/mhvk'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/4933431?u=933e774277f53e83ebb3d58dab9851c801fbfacd&v=4"'
+alt = 'Avatar of Christopher Sidebottom'
+{{< /image >}}
+Christopher Sidebottom'''
+link = 'https://github.com/Mousius'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/8431159?u=179d05b307b027da3360c213fcf4f585e1c6d7b9&v=4"'
+alt = 'Avatar of Mateusz SokóÅ'
+{{< /image >}}
+Mateusz SokóÅ'''
+link = 'https://github.com/mtsokol'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/60316606?u=229ba03253068b0a4f206b0be08f7a9e76c832f1&v=4"'
+alt = 'Avatar of Mukulika'
+{{< /image >}}
+Mukulika'''
+link = 'https://github.com/Mukulikaa'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/3126246?u=a3c7cd970c0e4cbc4498febe0de777a263c522c5&v=4"'
+alt = 'Avatar of Nathan Goldbaum'
+{{< /image >}}
+Nathan Goldbaum'''
+link = 'https://github.com/ngoldbaum'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/402156?u=288a1f206a151f9e2b69f3c0ce11848d3381943e&v=4"'
+alt = 'Avatar of Pearu Peterson'
+{{< /image >}}
+Pearu Peterson'''
+link = 'https://github.com/pearu'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/15134881?v=4"'
+alt = 'Avatar of Josh Wilson'
+{{< /image >}}
+Josh Wilson'''
+link = 'https://github.com/person142'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/35046?v=4"'
+alt = 'Avatar of Pauli Virtanen'
+{{< /image >}}
+Pauli Virtanen'''
+link = 'https://github.com/pv'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/15245051?u=54810990f0fdb11ecaade02762c09d5549d72a11&v=4"'
+alt = 'Avatar of Chunlin'
+{{< /image >}}
+Chunlin'''
+link = 'https://github.com/Qiyu8'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/44766858?u=fcb771cdeac5320fa0c8f40db39c5afb071fdfb0&v=4"'
+alt = 'Avatar of Raghuveer Devulapalli'
+{{< /image >}}
+Raghuveer Devulapalli'''
+link = 'https://github.com/r-devulap'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/98330?u=22a023f8d191ba200ab13d476c83860d015cc9fe&v=4"'
+alt = 'Avatar of Ralf Gommers'
+{{< /image >}}
+Ralf Gommers'''
+link = 'https://github.com/rgommers'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/46135?u=305a96a4778daecacbc8ec97ac25a48099a239cc&v=4"'
+alt = 'Avatar of Robert Kern'
+{{< /image >}}
+Robert Kern'''
+link = 'https://github.com/rkern'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/1268991?u=974707b96081a9705f3a239c0773320f353ee02f&v=4"'
+alt = 'Avatar of Ross Barnowski'
+{{< /image >}}
+Ross Barnowski'''
+link = 'https://github.com/rossbar'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/61977?v=4"'
+alt = 'Avatar of Sebastian Berg'
+{{< /image >}}
+Sebastian Berg'''
+link = 'https://github.com/seberg'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/12713707?u=5a3f6a8de4801d7878750cbd0bb2e0427bf0af0b&v=4"'
+alt = 'Avatar of Sayed Adel'
+{{< /image >}}
+Sayed Adel'''
+link = 'https://github.com/seiko2plus'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/1217238?u=b61e7e0085405ce6d7d53f8f39a1360ef9723f72&v=4"'
+alt = 'Avatar of Stephan Hoyer'
+{{< /image >}}
+Stephan Hoyer'''
+link = 'https://github.com/shoyer'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/45071?u=c779b5e06448fbc638bc987cdfe305c7f9a7175e&v=4"'
+alt = 'Avatar of Stefan van der Walt'
+{{< /image >}}
+Stefan van der Walt'''
+link = 'https://github.com/stefanv'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/7903078?u=2762d9ff13b992dc635f8f190a17f9a90cddfae1&v=4"'
+alt = 'Avatar of Tyler Reddy'
+{{< /image >}}
+Tyler Reddy'''
+link = 'https://github.com/tylerjereddy'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/321463?v=4"'
+alt = 'Avatar of Warren Weckesser'
+{{< /image >}}
+Warren Weckesser'''
+link = 'https://github.com/WarrenWeckesser'
diff --git a/content/en/teams/survey-team.toml b/content/en/teams/survey-team.toml
new file mode 100644
index 0000000..d1eb22b
--- /dev/null
+++ b/content/en/teams/survey-team.toml
@@ -0,0 +1,29 @@
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"'
+alt = 'Avatar of Inessa Pawson'
+{{< /image >}}
+Inessa Pawson'''
+link = 'https://github.com/InessaPawson'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/98330?u=22a023f8d191ba200ab13d476c83860d015cc9fe&v=4"'
+alt = 'Avatar of Ralf Gommers'
+{{< /image >}}
+Ralf Gommers'''
+link = 'https://github.com/rgommers'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/1268991?u=974707b96081a9705f3a239c0773320f353ee02f&v=4"'
+alt = 'Avatar of Ross Barnowski'
+{{< /image >}}
+Ross Barnowski'''
+link = 'https://github.com/rossbar'
diff --git a/content/en/teams/triage-team.toml b/content/en/teams/triage-team.toml
new file mode 100644
index 0000000..8bfddc6
--- /dev/null
+++ b/content/en/teams/triage-team.toml
@@ -0,0 +1,279 @@
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/702934?u=a026c1b1117981cea46e56ba562f3e80dfa71329&v=4"'
+alt = 'Avatar of Andrew Nelson'
+{{< /image >}}
+Andrew Nelson'''
+link = 'https://github.com/andyfaff'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/1522319?v=4"'
+alt = 'Avatar of Anirudh Subramanian'
+{{< /image >}}
+Anirudh Subramanian'''
+link = 'https://github.com/anirudh2290'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/71486?u=cc88e2a4e4c6c496dcb9dd88cead5c0dab496c89&v=4"'
+alt = 'Avatar of Aaron Meurer'
+{{< /image >}}
+Aaron Meurer'''
+link = 'https://github.com/asmeurer'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/3813847?v=4"'
+alt = 'Avatar of Atsushi Sakai'
+{{< /image >}}
+Atsushi Sakai'''
+link = 'https://github.com/AtsushiSakai'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/6691888?v=4"'
+alt = 'Avatar of Ben Nathanson'
+{{< /image >}}
+Ben Nathanson'''
+link = 'https://github.com/bjnath'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/35413198?u=e67bd9ebc361fb207f914979d935fd1956eb626c&v=4"'
+alt = 'Avatar of Anne Bonner'
+{{< /image >}}
+Anne Bonner'''
+link = 'https://github.com/bonn0062'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/6788290?u=d9a388224b87d55106cb3e6199d02ebc1d8e0553&v=4"'
+alt = 'Avatar of Brigitta SipÅcz'
+{{< /image >}}
+Brigitta SipÅcz'''
+link = 'https://github.com/bsipocz'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/5476002?u=5352f057ef8cb5de29e4d2a9fa8b0d0f49580dc8&v=4"'
+alt = 'Avatar of carlkl'
+{{< /image >}}
+carlkl'''
+link = 'https://github.com/carlkl'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/11371428?u=9b425a337d076ec86b75ebc759724283f0970d9a&v=4"'
+alt = 'Avatar of Ryan C Cooper'
+{{< /image >}}
+Ryan C Cooper'''
+link = 'https://github.com/cooperrc'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/36567889?u=cbc76d558d375ebafd4a05a505f500eb94e00611&v=4"'
+alt = 'Avatar of à¨à¨à¨¨à¨¦à©à¨ª ਸਿੰਠ(Gagandeep Singh)'
+{{< /image >}}
+à¨à¨à¨¨à¨¦à©à¨ª ਸਿੰਠ(Gagandeep Singh)'''
+link = 'https://github.com/czgdp1807'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/2190658?u=b85e13f985d0bf87eeb3a7a146b61dcc9586019b&v=4"'
+alt = 'Avatar of Hameer Abbasi'
+{{< /image >}}
+Hameer Abbasi'''
+link = 'https://github.com/hameerabbasi'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"'
+alt = 'Avatar of Inessa Pawson'
+{{< /image >}}
+Inessa Pawson'''
+link = 'https://github.com/InessaPawson'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/8078968?v=4"'
+alt = 'Avatar of jbrockmendel'
+{{< /image >}}
+jbrockmendel'''
+link = 'https://github.com/jbrockmendel'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/30074037?u=c2549c85c82266302c71aef5c20446871323d91b&v=4"'
+alt = 'Avatar of Kai'
+{{< /image >}}
+Kai'''
+link = 'https://github.com/Kai-Striega'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/16046705?u=1bf01e87adb556503c1fe07789c194cc04d38490&v=4"'
+alt = 'Avatar of Yuji Kanagawa'
+{{< /image >}}
+Yuji Kanagawa'''
+link = 'https://github.com/kngwyu'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/22004158?u=2ebb3919ebaa3d7e0865ea5583032bc08bd0f526&v=4"'
+alt = 'Avatar of Kriti Singh'
+{{< /image >}}
+Kriti Singh'''
+link = 'https://github.com/kritisingh1'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/149655?u=249f7995c486de232c34e7970fbea505f518a1be&v=4"'
+alt = 'Avatar of Christopher Albert'
+{{< /image >}}
+Christopher Albert'''
+link = 'https://github.com/krystophny'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/20306270?u=235cdf82e88f76ba2f5f4c2d33fa392319c60ad1&v=4"'
+alt = 'Avatar of Lysandros Nikolaou'
+{{< /image >}}
+Lysandros Nikolaou'''
+link = 'https://github.com/lysnikolaou'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/34613774?u=61535ebfff07c68ea672cd8cd68c46187a38d3c1&v=4"'
+alt = 'Avatar of Meekail Zain'
+{{< /image >}}
+Meekail Zain'''
+link = 'https://github.com/Micky774'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/4933431?u=933e774277f53e83ebb3d58dab9851c801fbfacd&v=4"'
+alt = 'Avatar of Christopher Sidebottom'
+{{< /image >}}
+Christopher Sidebottom'''
+link = 'https://github.com/Mousius'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/8431159?u=179d05b307b027da3360c213fcf4f585e1c6d7b9&v=4"'
+alt = 'Avatar of Mateusz SokóÅ'
+{{< /image >}}
+Mateusz SokóÅ'''
+link = 'https://github.com/mtsokol'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/60316606?u=229ba03253068b0a4f206b0be08f7a9e76c832f1&v=4"'
+alt = 'Avatar of Mukulika'
+{{< /image >}}
+Mukulika'''
+link = 'https://github.com/Mukulikaa'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/6564007?u=e5fb962de792bbce925c0c94fb7a748803c8bfa0&v=4"'
+alt = 'Avatar of Noa Tamir'
+{{< /image >}}
+Noa Tamir'''
+link = 'https://github.com/noatamir'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/44766858?u=fcb771cdeac5320fa0c8f40db39c5afb071fdfb0&v=4"'
+alt = 'Avatar of Raghuveer Devulapalli'
+{{< /image >}}
+Raghuveer Devulapalli'''
+link = 'https://github.com/r-devulap'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/5890484?u=feb15a24e010a434ded00e41d8bd030a2cc31bdb&v=4"'
+alt = 'Avatar of shalz'
+{{< /image >}}
+shalz'''
+link = 'https://github.com/shaloo'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/55803680?u=bb727a0da1f33ed5f2feb58dc0333943430d2318&v=4"'
+alt = 'Avatar of Tina Oberoi'
+{{< /image >}}
+Tina Oberoi'''
+link = 'https://github.com/tinaoberoi'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/13260794?u=5421923c831b67c4ef290bbdeb31ebfbdd906abc&v=4"'
+alt = 'Avatar of Rakesh Vasudevan'
+{{< /image >}}
+Rakesh Vasudevan'''
+link = 'https://github.com/vrakesh'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/8103276?v=4"'
+alt = 'Avatar of Zijie (ZJ) Poh'
+{{< /image >}}
+Zijie (ZJ) Poh'''
+link = 'https://github.com/zjpoh'
diff --git a/content/en/teams/web-team.toml b/content/en/teams/web-team.toml
new file mode 100644
index 0000000..ef317b2
--- /dev/null
+++ b/content/en/teams/web-team.toml
@@ -0,0 +1,89 @@
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"'
+alt = 'Avatar of Inessa Pawson'
+{{< /image >}}
+Inessa Pawson'''
+link = 'https://github.com/InessaPawson'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/123428?v=4"'
+alt = 'Avatar of Jarrod Millman'
+{{< /image >}}
+Jarrod Millman'''
+link = 'https://github.com/jarrodmillman'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/3891660?u=5de0ba1f1adad6f041f6dde1affef5d05bbed80a&v=4"'
+alt = 'Avatar of Joe LaChance'
+{{< /image >}}
+Joe LaChance'''
+link = 'https://github.com/joelachance'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/46167686?u=b5ca05a767012822d06b8bc16e3cd5ca0d1cafe9&v=4"'
+alt = 'Avatar of Mars Lee'
+{{< /image >}}
+Mars Lee'''
+link = 'https://github.com/MarsBarLee'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/98330?u=22a023f8d191ba200ab13d476c83860d015cc9fe&v=4"'
+alt = 'Avatar of Ralf Gommers'
+{{< /image >}}
+Ralf Gommers'''
+link = 'https://github.com/rgommers'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/5890484?u=feb15a24e010a434ded00e41d8bd030a2cc31bdb&v=4"'
+alt = 'Avatar of shalz'
+{{< /image >}}
+shalz'''
+link = 'https://github.com/shaloo'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/5774448?u=af1d8beea7d3c37d064e0dcb42d96c41e1318934&v=4"'
+alt = 'Avatar of Shekhar Prasad Rajak'
+{{< /image >}}
+Shekhar Prasad Rajak'''
+link = 'https://github.com/Shekharrajak'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/45071?u=c779b5e06448fbc638bc987cdfe305c7f9a7175e&v=4"'
+alt = 'Avatar of Stefan van der Walt'
+{{< /image >}}
+Stefan van der Walt'''
+link = 'https://github.com/stefanv'
+
+[[item]]
+type = 'card'
+classcard = 'text-center'
+body = '''{{< image >}}
+src = 'https://avatars.githubusercontent.com/u/1953382?u=5df9d41ad2a6d526e7daeec06225274905e7e660&v=4"'
+alt = 'Avatar of Albert Steppi'
+{{< /image >}}
+Albert Steppi'''
+link = 'https://github.com/steppi'
diff --git a/content/ja/about.md b/content/ja/about.md
index a66076c..d153a89 100644
--- a/content/ja/about.md
+++ b/content/ja/about.md
@@ -1,90 +1,90 @@
---
title: ç§ãã¡ã«ã¤ãã¦
sidebar: false
---
NumPy ã¯ãPython ã§æ°å¤è¨ç®ãå¯è½ã«ããããã®ãªã¼ãã³ã½ã¼ã¹ããã¸ã§ã¯ãã§ãã NumPyã¯ãNumericãNumarrayã¨ãã£ãåæã®ã©ã¤ãã©ãªã®ã³ã¼ãããã¨ã«ã2005å¹´ããéçºãéå§ããã¾ããã NumPyã¯å®å
¨ã«ãªã¼ãã³ã½ã¼ã¹ãªã½ããã¦ã§ã¢ã§ãã ããã¦ãNumPyã¯[ä¿®æ£BSD ã©ã¤ã»ã³ã¹](https://github.com/numpy/numpy/blob/main/LICENSE.txt) ã®æ¡é
ã®ä¸ã§ããã¹ã¦ã®äººãå©ç¨å¯è½ã§ãã
NumPy 㯠ãNumPyã³ãã¥ããã£ãããåºç¯ãªç§å¦è¨ç®ç¨Python ã³ãã¥ããã£ã¨ã®åæã®ãã¨ãGitHub ä¸ã§ãªã¼ãã³ã«éçºããã¦ãã¾ãã NumPyã®ã¬ããã³ã¹æ¹æ³ã®è©³ç´°ã«ã¤ãã¦ã¯ã [Governance Document](https://www.numpy.org/devdocs/dev/governance/index.html) ãã覧ãã ããã
## éå¶å§å¡ä¼
Numpyéå¶å§å¡ä¼ã¯ãã®ããã¸ã§ã¯ãã®ç®¡ççµç¹ã§ãã ãã®å½¹å²ã¯ãNumpy ã³ãã¥ããã£ã¨ååããNumpyã®ã½ããã¦ã§ã¢ãµã¼ãã¹ã確å®ã«ã¦ã¼ã¶ã«æä¾ãããã¨ã§ãã ã½ããã¦ã§ã¢ããã±ã¼ã¸ã¨ã³ãã¥ããã£ã®ä¸¡æ¹ã«ããã¦ãããã¸ã§ã¯ãã®é·æçãªæç¶å¯è½æ§ãä¿ã£ã¦ããã¾ãã NumPyéå¶å§å¡ä¼ã¯ç¾å¨ä»¥ä¸ã®ã¡ã³ãã¼ã§æ§æããã¦ãã¾ã (å§ã®ã¢ã«ãã¡ãããé ):
- Sebastian Berg
- Ralf Gommers
- Charles Harris
- Stephan Hoyer
- Inessa Pawson
- Matti Picus
- SteÌfan van der Walt
- Melissa Weber Mendonça
- Eric Wieser
éå»ã®ã¡ã³ãã¼
- Alex Griffing (2015-2017)
- Allan Haldane (2015-2021)
- Marten van Kerkwijk (2017-2019)
- Travis Oliphant (ããã¸ã§ã¯ãåµè¨è
, 2005-2012)
- Nathaniel Smith (2012-2021)
- Julian Taylor (2013-2021)
- Jaime FernaÌndez del RiÌo (2014-2021)
- Pauli Virtanen (2008-2021)
Numpyéå¶å§å¡ä¼ã«é£çµ¡ããã«ã¯ã[email protected]ã¾ã§ã¡ã¼ã«ãã¦ãã ããã
## ãã¼ã
Numpy ããã¸ã§ã¯ãã®ã³ã¢ã¡ã³ãã¼ã¯ãããã¸ã§ã¯ãã¸ã®è²¢ç®ã®æ¹æ³ã®å¤æ§åã«ç©æ¥µçã«åãçµãã§ãã¾ãã<br> Numpyã«ã¯ç¾å¨ä»¥ä¸ã®ãã¼ã ãããã¾ã:
- éçº
- ããã¥ã¡ã³ã
- ããªã¢ã¼ã¸
- ã¦ã§ããµã¤ã
- 調æ»
- 翻訳
- ã¹ããªã³ãã®ã¡ã³ã¿ã¼
- æé©å
- è³éã¨å©æé
-åã
ã®ãã¼ã ã¡ã³ãã¼ã«ã¤ãã¦ã¯ã [ãã¼ã ](/teams/) ã®ãã¼ã¸ãåç
§ãã¦ãã ããã
+åã
ã®ãã¼ã ã¡ã³ãã¼ã«ã¤ãã¦ã¯ã [ãã¼ã ](teams/) ã®ãã¼ã¸ãåç
§ãã¦ãã ããã
## NumFOCUSãµãå§å¡ä¼
- Charles Harris
- Ralf Gommers
- Inessa Pawson
- Sebastian Berg
- å¤é¨ã¡ã³ãã¼: Thomas Caswell
## ã¹ãã³ãµã¼æ
å ±
NumPyã¯ä»¥ä¸ã®å£ä½ããç´æ¥è³éæ´å©ãåãã¦ãã¾ãã
{{< sponsors >}}
## ãã¼ããã¼å£ä½
ãã¼ããã¼å£ä½ã¯ãNumPyã¸ã®éçºãä»äºã®ä¸ã¤ã¨ãã¦ã社å¡ãéã£ã¦ããå£ä½ã§ãã ç¾å¨ã®ãã¼ããã¼å£ä½ã¨ãã¦ã¯ãä¸è¨ã®éãã§ãã
- ã«ã«ãã©ã«ãã¢å¤§å¦ ãã¼ã¯ã¬ã¼æ ¡ (Stéfan van der Walt)
- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça)
- NVIDIA (Sebastian Berg)
{{< partners >}}
## å¯ä»
NumPy ãããªãã®ä»äºãç ç©¶ããã¸ãã¹ã§å½¹ã«ç«ã£ãå ´åãã§ããç¯å²ã§è¯ãã®ã§ãæ¯éãNumPyããã¸ã§ã¯ãã¸ã®å¯ä»ãæ¤è¨ãã¦é ããã¨å©ããã¾ãã å°é¡ã®å¯ä»ã§ã大ããªå©ãã«ãªãã¾ãã ãã¹ã¦ã®å¯ä»ã¯ãNumPyã®ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ãããã¥ã¡ã³ããã³ãã¥ããã£ã®éçºã®ããã«ä½¿ç¨ããããã¨ãç´æããã¦ãã¾ãã
NumPy 㯠NumFOCUS ã«ã¹ãã³ãµã¼ãããããã¸ã§ã¯ãã§ãããç±³å½ã® 501(c)(3) éå¶å©ã®æ
åå£ä½ã§ãããã¾ãã NumFOCUSã¯ãNumPyããã¸ã§ã¯ãã«è²¡æ¿ãæ³åã管çé¢ã§ã®ãµãã¼ããæä¾ããããã¸ã§ã¯ãã®å®å®ã¨æç¶å¯è½æ§ãä¿ã¤æå©ãããã¦ãã¾ãã 詳細ã«ã¤ãã¦ã¯ã [numfocus.org](https://numfocus.org) ãã覧ãã ããã
NumPy ã¸ã®å¯ä»ã¯ [NumFOCUS](https://numfocus.org) ã«ãã£ã¦ç®¡çããã¦ãã¾ãã ç±³å½ã®å¯ä»æä¾è
ã®å ´åããã®äººã®å¯ä»ã¯æ³å¾ã«ãã£ã¦å®ããããç¯å²ã§å
ç¨ããã¾ãã ä½ããä»ã®å¯ä»ã¨åæ§ã«ãããªãã¯ããªãã®ç¨åç¶æ³ã«ã¤ãã¦ãããªãã®ç¨åæ
å½ã¨ç¸è«ããå¿
è¦ããããã¨ãå¿ããªãã§ä¸ããã
NumPyã®éå¶å§å¡ä¼ã¯ãåãåã£ãè³éãã©ã®ããã«ä½¿ãã°è¯ãããæ¤è¨ãã使ç¨ããæ¹æ³ã«ã¤ãã¦æ±ºå®ãã¾ã. NumPyã«é¢ããæè¡ã¨ã¤ã³ãã©ã®æè³ã®åªå
é ä½ã«é¢ãã¦ã¯ã[NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap) ã«è¨è¼ããã¦ãã¾ãã
{{<opencollective>}}
diff --git a/content/ja/teams.md b/content/ja/teams/index.md
similarity index 51%
rename from content/ja/teams.md
rename to content/ja/teams/index.md
index c91e538..bb60e53 100644
--- a/content/ja/teams.md
+++ b/content/ja/teams/index.md
@@ -1,22 +1,34 @@
---
title: NumPyéçºãã¼ã
sidebar: false
---
ç§ãã¡ã¯ãé«å質ã®ãªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ãæ§ç¯ãããã¨ã§ãä¸çä¸ã®ç§å¦ã»ç ç©¶ã³ãã¥ããã£ããµãã¼ããããã¨ã使å½ã¨ããå½éçãªãã¼ã ã§ãã æ¯é[åå ãã¦ãã ãã]({{< relref "/contribute" >}})!
-{{< include-html "static/gallery/maintainers.html" >}}
+### Maintainers
-{{< include-html "static/gallery/docs-team.html" >}}
+{{< grid1 file="maintainers.toml" columns="2 3 4 5" />}}
-{{< include-html "static/gallery/web-team.html" >}}
+### Docs team
-{{< include-html "static/gallery/triage-team.html" >}}
+{{< grid1 file="docs-team.toml" columns="2 3 4 5" />}}
-{{< include-html "static/gallery/survey-team.html" >}}
+### Web team
-{{< include-html "static/gallery/emeritus-maintainers.html" >}}
+{{< grid1 file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid1 file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid1 file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid1 file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
# ã¬ããã³ã¹
For the list of people on the Steering Council, please see [here](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/pt/teams.md b/content/pt/teams.md
deleted file mode 100644
index fcbe93b..0000000
--- a/content/pt/teams.md
+++ /dev/null
@@ -1,22 +0,0 @@
----
-title: Times NumPy
-sidebar: false
----
-
-Somos uma equipe internacional com a missão de apoiar comunidades cientÃficas e de pesquisa em todo o mundo construindo software de código aberto de qualidade. [Junte-se a nós]({{< relref "/contribute" >}})!
-
-{{< include-html "static/gallery/maintainers.html" >}}
-
-{{< include-html "static/gallery/docs-team.html" >}}
-
-{{< include-html "static/gallery/web-team.html" >}}
-
-{{< include-html "static/gallery/triage-team.html" >}}
-
-{{< include-html "static/gallery/survey-team.html" >}}
-
-{{< include-html "static/gallery/emeritus-maintainers.html" >}}
-
-# Governança
-
-Para a lista de pessoas no Conselho Diretor, veja [aqui](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/content/pt/teams/index.md b/content/pt/teams/index.md
new file mode 100644
index 0000000..cc50b7b
--- /dev/null
+++ b/content/pt/teams/index.md
@@ -0,0 +1,34 @@
+---
+title: Times NumPy
+sidebar: false
+---
+
+Somos uma equipe internacional com a missão de apoiar comunidades cientÃficas e de pesquisa em todo o mundo construindo software de código aberto de qualidade. [Junte-se a nós]({{< relref "/contribute" >}})!
+
+### Maintainers
+
+{{< grid1 file="maintainers.toml" columns="2 3 4 5" />}}
+
+### Docs team
+
+{{< grid1 file="docs-team.toml" columns="2 3 4 5" />}}
+
+### Web team
+
+{{< grid1 file="web-team.toml" columns="2 3 4 5" />}}
+
+### Triage team
+
+{{< grid1 file="triage-team.toml" columns="2 3 4 5" />}}
+
+### Survey team
+
+{{< grid1 file="survey-team.toml" columns="2 3 4 5" />}}
+
+### Emeritus maintainers
+
+{{< grid1 file="emeritus-maintainers.toml" columns="2 3 4 5" />}}
+
+# Governança
+
+Para a lista de pessoas no Conselho Diretor, veja [aqui](https://numpy.org/devdocs/dev/governance/people.html).
diff --git a/static/gallery/docs-team.html b/static/gallery/docs-team.html
deleted file mode 100644
index 313a002..0000000
--- a/static/gallery/docs-team.html
+++ /dev/null
@@ -1,83 +0,0 @@
-<div class="team">
- <h3 id="docs-team" class="team-name">Docs team</h3>
- <div class="team-members">
- <div class="team-member">
- <a href="https://github.com/HaoZeke" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/4336207?u=564d623a8c9d710c3520841b83458b0bf1eae010&v=4"
- loading="lazy"
- alt="Avatar of Rohit Goswami"
- />
- </div>
- Rohit Goswami
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/InessaPawson" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"
- loading="lazy"
- alt="Avatar of Inessa Pawson"
- />
- </div>
- Inessa Pawson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/MarsBarLee" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/46167686?u=b5ca05a767012822d06b8bc16e3cd5ca0d1cafe9&v=4"
- loading="lazy"
- alt="Avatar of Mars Lee"
- />
- </div>
- Mars Lee
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/mattip" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/823911?u=1dd52e6dcca6a7a35b6644935cdd33a6e166a596&v=4"
- loading="lazy"
- alt="Avatar of Matti Picus"
- />
- </div>
- Matti Picus
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/melissawm" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/3949932?u=aacac68df60d2cf64c17c7e5aa17adf8b738aa7b&v=4"
- loading="lazy"
- alt="Avatar of Melissa Weber Mendonça"
- />
- </div>
- Melissa Weber Mendonça
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Mukulikaa" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/60316606?u=229ba03253068b0a4f206b0be08f7a9e76c832f1&v=4"
- loading="lazy"
- alt="Avatar of Mukulika"
- />
- </div>
- Mukulika
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/rossbar" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/1268991?u=974707b96081a9705f3a239c0773320f353ee02f&v=4"
- loading="lazy"
- alt="Avatar of Ross Barnowski"
- />
- </div>
- Ross Barnowski
- </a>
- </div>
- </div>
-</div>
diff --git a/static/gallery/emeritus-maintainers.html b/static/gallery/emeritus-maintainers.html
deleted file mode 100644
index 12619aa..0000000
--- a/static/gallery/emeritus-maintainers.html
+++ /dev/null
@@ -1,105 +0,0 @@
-<div class="team">
- <h3 id="emeritus-maintainers" class="team-name">Emeritus maintainers</h3>
- <div class="team-members">
- <div class="team-member">
- <a href="https://github.com/ahaldane" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/9040124?v=4"
- loading="lazy"
- alt="Avatar of Allan Haldane"
- />
- </div>
- Allan Haldane
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/certik" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/20568?v=4"
- loading="lazy"
- alt="Avatar of OndÅej ÄertÃk"
- />
- </div>
- OndÅej ÄertÃk
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/cournape" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/25111?v=4"
- loading="lazy"
- alt="Avatar of David Cournapeau"
- />
- </div>
- David Cournapeau
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/jaimefrio" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/3343990?v=4"
- loading="lazy"
- alt="Avatar of Jaime"
- />
- </div>
- Jaime
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/jarrodmillman" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/123428?v=4"
- loading="lazy"
- alt="Avatar of Jarrod Millman"
- />
- </div>
- Jarrod Millman
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/juliantaylor" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/542663?v=4"
- loading="lazy"
- alt="Avatar of Julian Taylor"
- />
- </div>
- Julian Taylor
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/mwiebe" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/399551?u=d4a592a0763568448a8eaa06b680ee9584a8c6e0&v=4"
- loading="lazy"
- alt="Avatar of Mark Wiebe"
- />
- </div>
- Mark Wiebe
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/njsmith" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/609896?u=935a2bf5f98be8c08d87eaac095f1f3bc3332490&v=4"
- loading="lazy"
- alt="Avatar of Nathaniel J. Smith"
- />
- </div>
- Nathaniel J. Smith
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/teoliphant" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/254880?v=4"
- loading="lazy"
- alt="Avatar of Travis E. Oliphant"
- />
- </div>
- Travis E. Oliphant
- </a>
- </div>
- </div>
-</div>
diff --git a/static/gallery/maintainers.html b/static/gallery/maintainers.html
deleted file mode 100644
index bfe0f19..0000000
--- a/static/gallery/maintainers.html
+++ /dev/null
@@ -1,292 +0,0 @@
-<div class="team">
- <h3 id="maintainers" class="team-name">Maintainers</h3>
- <div class="team-members">
- <div class="team-member">
- <a href="https://github.com/andyfaff" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/702934?u=a026c1b1117981cea46e56ba562f3e80dfa71329&v=4"
- loading="lazy"
- alt="Avatar of Andrew Nelson"
- />
- </div>
- Andrew Nelson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/BvB93" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/43369155?u=1f1fcabf979a2f00f403c60b816ba9f573026181&v=4"
- loading="lazy"
- alt="Avatar of Bas van Beek"
- />
- </div>
- Bas van Beek
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/charris" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/77272?v=4"
- loading="lazy"
- alt="Avatar of Charles Harris"
- />
- </div>
- Charles Harris
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/eric-wieser" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/425260?v=4"
- loading="lazy"
- alt="Avatar of Eric Wieser"
- />
- </div>
- Eric Wieser
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/ganesh-k13" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/20969920?u=ec0e4d9dd70227549776ba8209f0e55a35d1fe84&v=4"
- loading="lazy"
- alt="Avatar of Ganesh Kathiresan"
- />
- </div>
- Ganesh Kathiresan
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/HaoZeke" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/4336207?u=564d623a8c9d710c3520841b83458b0bf1eae010&v=4"
- loading="lazy"
- alt="Avatar of Rohit Goswami"
- />
- </div>
- Rohit Goswami
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/matthew-brett" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/67612?v=4"
- loading="lazy"
- alt="Avatar of Matthew Brett"
- />
- </div>
- Matthew Brett
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/mattip" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/823911?u=1dd52e6dcca6a7a35b6644935cdd33a6e166a596&v=4"
- loading="lazy"
- alt="Avatar of Matti Picus"
- />
- </div>
- Matti Picus
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/mdhaber" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/6570539?u=cfb3e218754e85c4fac18064d7cfdce0b67ddaa6&v=4"
- loading="lazy"
- alt="Avatar of Matt Haberland"
- />
- </div>
- Matt Haberland
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/melissawm" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/3949932?u=aacac68df60d2cf64c17c7e5aa17adf8b738aa7b&v=4"
- loading="lazy"
- alt="Avatar of Melissa Weber Mendonça"
- />
- </div>
- Melissa Weber Mendonça
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/mhvk" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/2789820?v=4"
- loading="lazy"
- alt="Avatar of Marten van Kerkwijk"
- />
- </div>
- Marten van Kerkwijk
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Mukulikaa" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/60316606?u=229ba03253068b0a4f206b0be08f7a9e76c832f1&v=4"
- loading="lazy"
- alt="Avatar of Mukulika"
- />
- </div>
- Mukulika
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/ngoldbaum" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/3126246?u=a3c7cd970c0e4cbc4498febe0de777a263c522c5&v=4"
- loading="lazy"
- alt="Avatar of Nathan Goldbaum"
- />
- </div>
- Nathan Goldbaum
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/pearu" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/402156?u=288a1f206a151f9e2b69f3c0ce11848d3381943e&v=4"
- loading="lazy"
- alt="Avatar of Pearu Peterson"
- />
- </div>
- Pearu Peterson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/person142" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/15134881?v=4"
- loading="lazy"
- alt="Avatar of Josh Wilson"
- />
- </div>
- Josh Wilson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/pv" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/35046?v=4"
- loading="lazy"
- alt="Avatar of Pauli Virtanen"
- />
- </div>
- Pauli Virtanen
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Qiyu8" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/15245051?u=54810990f0fdb11ecaade02762c09d5549d72a11&v=4"
- loading="lazy"
- alt="Avatar of Chunlin"
- />
- </div>
- Chunlin
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/rgommers" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/98330?u=22a023f8d191ba200ab13d476c83860d015cc9fe&v=4"
- loading="lazy"
- alt="Avatar of Ralf Gommers"
- />
- </div>
- Ralf Gommers
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/rkern" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/46135?u=305a96a4778daecacbc8ec97ac25a48099a239cc&v=4"
- loading="lazy"
- alt="Avatar of Robert Kern"
- />
- </div>
- Robert Kern
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/rossbar" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/1268991?u=974707b96081a9705f3a239c0773320f353ee02f&v=4"
- loading="lazy"
- alt="Avatar of Ross Barnowski"
- />
- </div>
- Ross Barnowski
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/seberg" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/61977?v=4"
- loading="lazy"
- alt="Avatar of Sebastian Berg"
- />
- </div>
- Sebastian Berg
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/seiko2plus" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/12713707?u=5a3f6a8de4801d7878750cbd0bb2e0427bf0af0b&v=4"
- loading="lazy"
- alt="Avatar of Sayed Adel"
- />
- </div>
- Sayed Adel
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/shoyer" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/1217238?u=b61e7e0085405ce6d7d53f8f39a1360ef9723f72&v=4"
- loading="lazy"
- alt="Avatar of Stephan Hoyer"
- />
- </div>
- Stephan Hoyer
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/stefanv" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/45071?u=c779b5e06448fbc638bc987cdfe305c7f9a7175e&v=4"
- loading="lazy"
- alt="Avatar of Stefan van der Walt"
- />
- </div>
- Stefan van der Walt
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/tylerjereddy" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/7903078?u=2762d9ff13b992dc635f8f190a17f9a90cddfae1&v=4"
- loading="lazy"
- alt="Avatar of Tyler Reddy"
- />
- </div>
- Tyler Reddy
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/WarrenWeckesser" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/321463?v=4"
- loading="lazy"
- alt="Avatar of Warren Weckesser"
- />
- </div>
- Warren Weckesser
- </a>
- </div>
- </div>
-</div>
diff --git a/static/gallery/survey-team.html b/static/gallery/survey-team.html
deleted file mode 100644
index 95b6591..0000000
--- a/static/gallery/survey-team.html
+++ /dev/null
@@ -1,39 +0,0 @@
-<div class="team">
- <h3 id="survey-team" class="team-name">Survey team</h3>
- <div class="team-members">
- <div class="team-member">
- <a href="https://github.com/InessaPawson" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"
- loading="lazy"
- alt="Avatar of Inessa Pawson"
- />
- </div>
- Inessa Pawson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/rgommers" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/98330?u=22a023f8d191ba200ab13d476c83860d015cc9fe&v=4"
- loading="lazy"
- alt="Avatar of Ralf Gommers"
- />
- </div>
- Ralf Gommers
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/rossbar" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/1268991?u=974707b96081a9705f3a239c0773320f353ee02f&v=4"
- loading="lazy"
- alt="Avatar of Ross Barnowski"
- />
- </div>
- Ross Barnowski
- </a>
- </div>
- </div>
-</div>
diff --git a/static/gallery/triage-team.html b/static/gallery/triage-team.html
deleted file mode 100644
index 84450ba..0000000
--- a/static/gallery/triage-team.html
+++ /dev/null
@@ -1,314 +0,0 @@
-<div class="team">
- <h3 id="triage-team" class="team-name">Triage team</h3>
- <div class="team-members">
- <div class="team-member">
- <a href="https://github.com/andyfaff" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/702934?u=a026c1b1117981cea46e56ba562f3e80dfa71329&v=4"
- loading="lazy"
- alt="Avatar of Andrew Nelson"
- />
- </div>
- Andrew Nelson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/anirudh2290" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/1522319?v=4"
- loading="lazy"
- alt="Avatar of Anirudh Subramanian"
- />
- </div>
- Anirudh Subramanian
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/asmeurer" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/71486?u=cc88e2a4e4c6c496dcb9dd88cead5c0dab496c89&v=4"
- loading="lazy"
- alt="Avatar of Aaron Meurer"
- />
- </div>
- Aaron Meurer
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/AtsushiSakai" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/3813847?v=4"
- loading="lazy"
- alt="Avatar of Atsushi Sakai"
- />
- </div>
- Atsushi Sakai
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/bjnath" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/6691888?v=4"
- loading="lazy"
- alt="Avatar of Ben Nathanson"
- />
- </div>
- Ben Nathanson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/bonn0062" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/35413198?u=e67bd9ebc361fb207f914979d935fd1956eb626c&v=4"
- loading="lazy"
- alt="Avatar of Anne Bonner"
- />
- </div>
- Anne Bonner
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/bsipocz" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/6788290?u=d9a388224b87d55106cb3e6199d02ebc1d8e0553&v=4"
- loading="lazy"
- alt="Avatar of Brigitta SipÅcz"
- />
- </div>
- Brigitta SipÅcz
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/carlkl" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/5476002?u=5352f057ef8cb5de29e4d2a9fa8b0d0f49580dc8&v=4"
- loading="lazy"
- alt="Avatar of carlkl"
- />
- </div>
- carlkl
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/cooperrc" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/11371428?u=9b425a337d076ec86b75ebc759724283f0970d9a&v=4"
- loading="lazy"
- alt="Avatar of Ryan C Cooper"
- />
- </div>
- Ryan C Cooper
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/czgdp1807" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/36567889?u=cbc76d558d375ebafd4a05a505f500eb94e00611&v=4"
- loading="lazy"
- alt="Avatar of à¨à¨à¨¨à¨¦à©à¨ª ਸਿੰਠ(Gagandeep Singh)"
- />
- </div>
- à¨à¨à¨¨à¨¦à©à¨ª ਸਿੰਠ(Gagandeep Singh)
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/hameerabbasi" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/2190658?u=b85e13f985d0bf87eeb3a7a146b61dcc9586019b&v=4"
- loading="lazy"
- alt="Avatar of Hameer Abbasi"
- />
- </div>
- Hameer Abbasi
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/InessaPawson" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"
- loading="lazy"
- alt="Avatar of Inessa Pawson"
- />
- </div>
- Inessa Pawson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/jbrockmendel" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/8078968?v=4"
- loading="lazy"
- alt="Avatar of jbrockmendel"
- />
- </div>
- jbrockmendel
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Kai-Striega" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/30074037?u=c2549c85c82266302c71aef5c20446871323d91b&v=4"
- loading="lazy"
- alt="Avatar of Kai"
- />
- </div>
- Kai
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/kngwyu" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/16046705?u=1bf01e87adb556503c1fe07789c194cc04d38490&v=4"
- loading="lazy"
- alt="Avatar of Yuji Kanagawa"
- />
- </div>
- Yuji Kanagawa
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/kritisingh1" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/22004158?u=2ebb3919ebaa3d7e0865ea5583032bc08bd0f526&v=4"
- loading="lazy"
- alt="Avatar of Kriti Singh"
- />
- </div>
- Kriti Singh
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/krystophny" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/149655?u=249f7995c486de232c34e7970fbea505f518a1be&v=4"
- loading="lazy"
- alt="Avatar of Christopher Albert"
- />
- </div>
- Christopher Albert
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/lysnikolaou" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/20306270?u=235cdf82e88f76ba2f5f4c2d33fa392319c60ad1&v=4"
- loading="lazy"
- alt="Avatar of Lysandros Nikolaou"
- />
- </div>
- Lysandros Nikolaou
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Micky774" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/34613774?u=61535ebfff07c68ea672cd8cd68c46187a38d3c1&v=4"
- loading="lazy"
- alt="Avatar of Meekail Zain"
- />
- </div>
- Meekail Zain
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Mousius" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/4933431?u=933e774277f53e83ebb3d58dab9851c801fbfacd&v=4"
- loading="lazy"
- alt="Avatar of Christopher Sidebottom"
- />
- </div>
- Christopher Sidebottom
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/mtsokol" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/8431159?u=179d05b307b027da3360c213fcf4f585e1c6d7b9&v=4"
- loading="lazy"
- alt="Avatar of Mateusz SokóÅ"
- />
- </div>
- Mateusz SokóÅ
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Mukulikaa" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/60316606?u=229ba03253068b0a4f206b0be08f7a9e76c832f1&v=4"
- loading="lazy"
- alt="Avatar of Mukulika"
- />
- </div>
- Mukulika
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/noatamir" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/6564007?u=e5fb962de792bbce925c0c94fb7a748803c8bfa0&v=4"
- loading="lazy"
- alt="Avatar of Noa Tamir"
- />
- </div>
- Noa Tamir
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/r-devulap" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/44766858?u=fcb771cdeac5320fa0c8f40db39c5afb071fdfb0&v=4"
- loading="lazy"
- alt="Avatar of Raghuveer Devulapalli"
- />
- </div>
- Raghuveer Devulapalli
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/shaloo" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/5890484?u=feb15a24e010a434ded00e41d8bd030a2cc31bdb&v=4"
- loading="lazy"
- alt="Avatar of shalz"
- />
- </div>
- shalz
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/tinaoberoi" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/55803680?u=bb727a0da1f33ed5f2feb58dc0333943430d2318&v=4"
- loading="lazy"
- alt="Avatar of Tina Oberoi"
- />
- </div>
- Tina Oberoi
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/vrakesh" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/13260794?u=5421923c831b67c4ef290bbdeb31ebfbdd906abc&v=4"
- loading="lazy"
- alt="Avatar of Rakesh Vasudevan"
- />
- </div>
- Rakesh Vasudevan
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/zjpoh" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/8103276?v=4"
- loading="lazy"
- alt="Avatar of Zijie (ZJ) Poh"
- />
- </div>
- Zijie (ZJ) Poh
- </a>
- </div>
- </div>
-</div>
diff --git a/static/gallery/web-team.html b/static/gallery/web-team.html
deleted file mode 100644
index 8cae92e..0000000
--- a/static/gallery/web-team.html
+++ /dev/null
@@ -1,105 +0,0 @@
-<div class="team">
- <h3 id="web-team" class="team-name">Web team</h3>
- <div class="team-members">
- <div class="team-member">
- <a href="https://github.com/InessaPawson" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/43481325?u=8c0c0adbf3f2efd2cce72951d3554064c7bbfce3&v=4"
- loading="lazy"
- alt="Avatar of Inessa Pawson"
- />
- </div>
- Inessa Pawson
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/jarrodmillman" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/123428?v=4"
- loading="lazy"
- alt="Avatar of Jarrod Millman"
- />
- </div>
- Jarrod Millman
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/joelachance" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/3891660?u=5de0ba1f1adad6f041f6dde1affef5d05bbed80a&v=4"
- loading="lazy"
- alt="Avatar of Joe LaChance"
- />
- </div>
- Joe LaChance
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/MarsBarLee" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/46167686?u=b5ca05a767012822d06b8bc16e3cd5ca0d1cafe9&v=4"
- loading="lazy"
- alt="Avatar of Mars Lee"
- />
- </div>
- Mars Lee
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/rgommers" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/98330?u=22a023f8d191ba200ab13d476c83860d015cc9fe&v=4"
- loading="lazy"
- alt="Avatar of Ralf Gommers"
- />
- </div>
- Ralf Gommers
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/shaloo" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/5890484?u=feb15a24e010a434ded00e41d8bd030a2cc31bdb&v=4"
- loading="lazy"
- alt="Avatar of shalz"
- />
- </div>
- shalz
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/Shekharrajak" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/5774448?u=af1d8beea7d3c37d064e0dcb42d96c41e1318934&v=4"
- loading="lazy"
- alt="Avatar of Shekhar Prasad Rajak"
- />
- </div>
- Shekhar Prasad Rajak
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/stefanv" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/45071?u=c779b5e06448fbc638bc987cdfe305c7f9a7175e&v=4"
- loading="lazy"
- alt="Avatar of Stefan van der Walt"
- />
- </div>
- Stefan van der Walt
- </a>
- </div> <div class="team-member">
- <a href="https://github.com/steppi" class="team-member-name">
- <div class="team-member-photo">
- <img
- src="https://avatars.githubusercontent.com/u/1953382?u=5df9d41ad2a6d526e7daeec06225274905e7e660&v=4"
- loading="lazy"
- alt="Avatar of Albert Steppi"
- />
- </div>
- Albert Steppi
- </a>
- </div>
- </div>
-</div>
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.