id
int64 1
3.65k
| title
stringlengths 3
79
| difficulty
stringclasses 3
values | description
stringlengths 430
25.4k
| tags
stringlengths 0
131
| language
stringclasses 19
values | solution
stringlengths 47
20.6k
|
---|---|---|---|---|---|---|
3,091 |
Apply Operations to Make Sum of Array Greater Than or Equal to k
|
Medium
|
<p>You are given a <strong>positive</strong> integer <code>k</code>. Initially, you have an array <code>nums = [1]</code>.</p>
<p>You can perform <strong>any</strong> of the following operations on the array <strong>any</strong> number of times (<strong>possibly zero</strong>):</p>
<ul>
<li>Choose any element in the array and <strong>increase</strong> its value by <code>1</code>.</li>
<li>Duplicate any element in the array and add it to the end of the array.</li>
</ul>
<p>Return <em>the <strong>minimum</strong> number of operations required to make the <strong>sum</strong> of elements of the final array greater than or equal to </em><code>k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 11</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>We can do the following operations on the array <code>nums = [1]</code>:</p>
<ul>
<li>Increase the element by <code>1</code> three times. The resulting array is <code>nums = [4]</code>.</li>
<li>Duplicate the element two times. The resulting array is <code>nums = [4,4,4]</code>.</li>
</ul>
<p>The sum of the final array is <code>4 + 4 + 4 = 12</code> which is greater than or equal to <code>k = 11</code>.<br />
The total number of operations performed is <code>3 + 2 = 5</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of the original array is already greater than or equal to <code>1</code>, so no operations are needed.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Greedy; Math; Enumeration
|
Java
|
class Solution {
public int minOperations(int k) {
int ans = k;
for (int a = 0; a < k; ++a) {
int x = a + 1;
int b = (k + x - 1) / x - 1;
ans = Math.min(ans, a + b);
}
return ans;
}
}
|
3,091 |
Apply Operations to Make Sum of Array Greater Than or Equal to k
|
Medium
|
<p>You are given a <strong>positive</strong> integer <code>k</code>. Initially, you have an array <code>nums = [1]</code>.</p>
<p>You can perform <strong>any</strong> of the following operations on the array <strong>any</strong> number of times (<strong>possibly zero</strong>):</p>
<ul>
<li>Choose any element in the array and <strong>increase</strong> its value by <code>1</code>.</li>
<li>Duplicate any element in the array and add it to the end of the array.</li>
</ul>
<p>Return <em>the <strong>minimum</strong> number of operations required to make the <strong>sum</strong> of elements of the final array greater than or equal to </em><code>k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 11</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>We can do the following operations on the array <code>nums = [1]</code>:</p>
<ul>
<li>Increase the element by <code>1</code> three times. The resulting array is <code>nums = [4]</code>.</li>
<li>Duplicate the element two times. The resulting array is <code>nums = [4,4,4]</code>.</li>
</ul>
<p>The sum of the final array is <code>4 + 4 + 4 = 12</code> which is greater than or equal to <code>k = 11</code>.<br />
The total number of operations performed is <code>3 + 2 = 5</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of the original array is already greater than or equal to <code>1</code>, so no operations are needed.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Greedy; Math; Enumeration
|
Python
|
class Solution:
def minOperations(self, k: int) -> int:
ans = k
for a in range(k):
x = a + 1
b = (k + x - 1) // x - 1
ans = min(ans, a + b)
return ans
|
3,091 |
Apply Operations to Make Sum of Array Greater Than or Equal to k
|
Medium
|
<p>You are given a <strong>positive</strong> integer <code>k</code>. Initially, you have an array <code>nums = [1]</code>.</p>
<p>You can perform <strong>any</strong> of the following operations on the array <strong>any</strong> number of times (<strong>possibly zero</strong>):</p>
<ul>
<li>Choose any element in the array and <strong>increase</strong> its value by <code>1</code>.</li>
<li>Duplicate any element in the array and add it to the end of the array.</li>
</ul>
<p>Return <em>the <strong>minimum</strong> number of operations required to make the <strong>sum</strong> of elements of the final array greater than or equal to </em><code>k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 11</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>We can do the following operations on the array <code>nums = [1]</code>:</p>
<ul>
<li>Increase the element by <code>1</code> three times. The resulting array is <code>nums = [4]</code>.</li>
<li>Duplicate the element two times. The resulting array is <code>nums = [4,4,4]</code>.</li>
</ul>
<p>The sum of the final array is <code>4 + 4 + 4 = 12</code> which is greater than or equal to <code>k = 11</code>.<br />
The total number of operations performed is <code>3 + 2 = 5</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of the original array is already greater than or equal to <code>1</code>, so no operations are needed.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Greedy; Math; Enumeration
|
Rust
|
impl Solution {
pub fn min_operations(k: i32) -> i32 {
let mut ans = k;
for a in 0..k {
let x = a + 1;
let b = (k + x - 1) / x - 1;
ans = ans.min(a + b);
}
ans
}
}
|
3,091 |
Apply Operations to Make Sum of Array Greater Than or Equal to k
|
Medium
|
<p>You are given a <strong>positive</strong> integer <code>k</code>. Initially, you have an array <code>nums = [1]</code>.</p>
<p>You can perform <strong>any</strong> of the following operations on the array <strong>any</strong> number of times (<strong>possibly zero</strong>):</p>
<ul>
<li>Choose any element in the array and <strong>increase</strong> its value by <code>1</code>.</li>
<li>Duplicate any element in the array and add it to the end of the array.</li>
</ul>
<p>Return <em>the <strong>minimum</strong> number of operations required to make the <strong>sum</strong> of elements of the final array greater than or equal to </em><code>k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 11</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>We can do the following operations on the array <code>nums = [1]</code>:</p>
<ul>
<li>Increase the element by <code>1</code> three times. The resulting array is <code>nums = [4]</code>.</li>
<li>Duplicate the element two times. The resulting array is <code>nums = [4,4,4]</code>.</li>
</ul>
<p>The sum of the final array is <code>4 + 4 + 4 = 12</code> which is greater than or equal to <code>k = 11</code>.<br />
The total number of operations performed is <code>3 + 2 = 5</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">k = 1</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of the original array is already greater than or equal to <code>1</code>, so no operations are needed.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Greedy; Math; Enumeration
|
TypeScript
|
function minOperations(k: number): number {
let ans = k;
for (let a = 0; a < k; ++a) {
const x = a + 1;
const b = Math.ceil(k / x) - 1;
ans = Math.min(ans, a + b);
}
return ans;
}
|
3,092 |
Most Frequent IDs
|
Medium
|
<p>The problem involves tracking the frequency of IDs in a collection that changes over time. You have two integer arrays, <code>nums</code> and <code>freq</code>, of equal length <code>n</code>. Each element in <code>nums</code> represents an ID, and the corresponding element in <code>freq</code> indicates how many times that ID should be added to or removed from the collection at each step.</p>
<ul>
<li><strong>Addition of IDs:</strong> If <code>freq[i]</code> is positive, it means <code>freq[i]</code> IDs with the value <code>nums[i]</code> are added to the collection at step <code>i</code>.</li>
<li><strong>Removal of IDs:</strong> If <code>freq[i]</code> is negative, it means <code>-freq[i]</code> IDs with the value <code>nums[i]</code> are removed from the collection at step <code>i</code>.</li>
</ul>
<p>Return an array <code>ans</code> of length <code>n</code>, where <code>ans[i]</code> represents the <strong>count</strong> of the <em>most frequent ID</em> in the collection after the <code>i<sup>th</sup></code> step. If the collection is empty at any step, <code>ans[i]</code> should be 0 for that step.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,3,2,1], freq = [3,2,-3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[3,3,2,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 3 IDs with the value of 2. So <code>ans[0] = 3</code>.<br />
After step 1, we have 3 IDs with the value of 2 and 2 IDs with the value of 3. So <code>ans[1] = 3</code>.<br />
After step 2, we have 2 IDs with the value of 3. So <code>ans[2] = 2</code>.<br />
After step 3, we have 2 IDs with the value of 3 and 1 ID with the value of 1. So <code>ans[3] = 2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [5,5,3], freq = [2,-2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 2 IDs with the value of 5. So <code>ans[0] = 2</code>.<br />
After step 1, there are no IDs. So <code>ans[1] = 0</code>.<br />
After step 2, we have 1 ID with the value of 3. So <code>ans[2] = 1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length == freq.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
<li><code>-10<sup>5</sup> <= freq[i] <= 10<sup>5</sup></code></li>
<li><code>freq[i] != 0</code></li>
<li>The input is generated<!-- notionvc: a136b55a-f319-4fa6-9247-11be9f3b1db8 --> such that the occurrences of an ID will not be negative in any step.</li>
</ul>
|
Array; Hash Table; Ordered Set; Heap (Priority Queue)
|
C++
|
class Solution {
public:
vector<long long> mostFrequentIDs(vector<int>& nums, vector<int>& freq) {
unordered_map<int, long long> cnt;
unordered_map<long long, int> lazy;
int n = nums.size();
vector<long long> ans(n);
priority_queue<long long> pq;
for (int i = 0; i < n; ++i) {
int x = nums[i], f = freq[i];
lazy[cnt[x]]++;
cnt[x] += f;
pq.push(cnt[x]);
while (!pq.empty() && lazy[pq.top()] > 0) {
lazy[pq.top()]--;
pq.pop();
}
ans[i] = pq.empty() ? 0 : pq.top();
}
return ans;
}
};
|
3,092 |
Most Frequent IDs
|
Medium
|
<p>The problem involves tracking the frequency of IDs in a collection that changes over time. You have two integer arrays, <code>nums</code> and <code>freq</code>, of equal length <code>n</code>. Each element in <code>nums</code> represents an ID, and the corresponding element in <code>freq</code> indicates how many times that ID should be added to or removed from the collection at each step.</p>
<ul>
<li><strong>Addition of IDs:</strong> If <code>freq[i]</code> is positive, it means <code>freq[i]</code> IDs with the value <code>nums[i]</code> are added to the collection at step <code>i</code>.</li>
<li><strong>Removal of IDs:</strong> If <code>freq[i]</code> is negative, it means <code>-freq[i]</code> IDs with the value <code>nums[i]</code> are removed from the collection at step <code>i</code>.</li>
</ul>
<p>Return an array <code>ans</code> of length <code>n</code>, where <code>ans[i]</code> represents the <strong>count</strong> of the <em>most frequent ID</em> in the collection after the <code>i<sup>th</sup></code> step. If the collection is empty at any step, <code>ans[i]</code> should be 0 for that step.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,3,2,1], freq = [3,2,-3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[3,3,2,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 3 IDs with the value of 2. So <code>ans[0] = 3</code>.<br />
After step 1, we have 3 IDs with the value of 2 and 2 IDs with the value of 3. So <code>ans[1] = 3</code>.<br />
After step 2, we have 2 IDs with the value of 3. So <code>ans[2] = 2</code>.<br />
After step 3, we have 2 IDs with the value of 3 and 1 ID with the value of 1. So <code>ans[3] = 2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [5,5,3], freq = [2,-2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 2 IDs with the value of 5. So <code>ans[0] = 2</code>.<br />
After step 1, there are no IDs. So <code>ans[1] = 0</code>.<br />
After step 2, we have 1 ID with the value of 3. So <code>ans[2] = 1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length == freq.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
<li><code>-10<sup>5</sup> <= freq[i] <= 10<sup>5</sup></code></li>
<li><code>freq[i] != 0</code></li>
<li>The input is generated<!-- notionvc: a136b55a-f319-4fa6-9247-11be9f3b1db8 --> such that the occurrences of an ID will not be negative in any step.</li>
</ul>
|
Array; Hash Table; Ordered Set; Heap (Priority Queue)
|
Go
|
func mostFrequentIDs(nums []int, freq []int) []int64 {
n := len(nums)
cnt := map[int]int{}
lazy := map[int]int{}
ans := make([]int64, n)
pq := hp{}
heap.Init(&pq)
for i, x := range nums {
f := freq[i]
lazy[cnt[x]]++
cnt[x] += f
heap.Push(&pq, cnt[x])
for pq.Len() > 0 && lazy[pq.IntSlice[0]] > 0 {
lazy[pq.IntSlice[0]]--
heap.Pop(&pq)
}
if pq.Len() > 0 {
ans[i] = int64(pq.IntSlice[0])
}
}
return ans
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] }
func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
|
3,092 |
Most Frequent IDs
|
Medium
|
<p>The problem involves tracking the frequency of IDs in a collection that changes over time. You have two integer arrays, <code>nums</code> and <code>freq</code>, of equal length <code>n</code>. Each element in <code>nums</code> represents an ID, and the corresponding element in <code>freq</code> indicates how many times that ID should be added to or removed from the collection at each step.</p>
<ul>
<li><strong>Addition of IDs:</strong> If <code>freq[i]</code> is positive, it means <code>freq[i]</code> IDs with the value <code>nums[i]</code> are added to the collection at step <code>i</code>.</li>
<li><strong>Removal of IDs:</strong> If <code>freq[i]</code> is negative, it means <code>-freq[i]</code> IDs with the value <code>nums[i]</code> are removed from the collection at step <code>i</code>.</li>
</ul>
<p>Return an array <code>ans</code> of length <code>n</code>, where <code>ans[i]</code> represents the <strong>count</strong> of the <em>most frequent ID</em> in the collection after the <code>i<sup>th</sup></code> step. If the collection is empty at any step, <code>ans[i]</code> should be 0 for that step.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,3,2,1], freq = [3,2,-3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[3,3,2,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 3 IDs with the value of 2. So <code>ans[0] = 3</code>.<br />
After step 1, we have 3 IDs with the value of 2 and 2 IDs with the value of 3. So <code>ans[1] = 3</code>.<br />
After step 2, we have 2 IDs with the value of 3. So <code>ans[2] = 2</code>.<br />
After step 3, we have 2 IDs with the value of 3 and 1 ID with the value of 1. So <code>ans[3] = 2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [5,5,3], freq = [2,-2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 2 IDs with the value of 5. So <code>ans[0] = 2</code>.<br />
After step 1, there are no IDs. So <code>ans[1] = 0</code>.<br />
After step 2, we have 1 ID with the value of 3. So <code>ans[2] = 1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length == freq.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
<li><code>-10<sup>5</sup> <= freq[i] <= 10<sup>5</sup></code></li>
<li><code>freq[i] != 0</code></li>
<li>The input is generated<!-- notionvc: a136b55a-f319-4fa6-9247-11be9f3b1db8 --> such that the occurrences of an ID will not be negative in any step.</li>
</ul>
|
Array; Hash Table; Ordered Set; Heap (Priority Queue)
|
Java
|
class Solution {
public long[] mostFrequentIDs(int[] nums, int[] freq) {
Map<Integer, Long> cnt = new HashMap<>();
Map<Long, Integer> lazy = new HashMap<>();
int n = nums.length;
long[] ans = new long[n];
PriorityQueue<Long> pq = new PriorityQueue<>(Collections.reverseOrder());
for (int i = 0; i < n; ++i) {
int x = nums[i], f = freq[i];
lazy.merge(cnt.getOrDefault(x, 0L), 1, Integer::sum);
cnt.merge(x, (long) f, Long::sum);
pq.add(cnt.get(x));
while (!pq.isEmpty() && lazy.getOrDefault(pq.peek(), 0) > 0) {
lazy.merge(pq.poll(), -1, Integer::sum);
}
ans[i] = pq.isEmpty() ? 0 : pq.peek();
}
return ans;
}
}
|
3,092 |
Most Frequent IDs
|
Medium
|
<p>The problem involves tracking the frequency of IDs in a collection that changes over time. You have two integer arrays, <code>nums</code> and <code>freq</code>, of equal length <code>n</code>. Each element in <code>nums</code> represents an ID, and the corresponding element in <code>freq</code> indicates how many times that ID should be added to or removed from the collection at each step.</p>
<ul>
<li><strong>Addition of IDs:</strong> If <code>freq[i]</code> is positive, it means <code>freq[i]</code> IDs with the value <code>nums[i]</code> are added to the collection at step <code>i</code>.</li>
<li><strong>Removal of IDs:</strong> If <code>freq[i]</code> is negative, it means <code>-freq[i]</code> IDs with the value <code>nums[i]</code> are removed from the collection at step <code>i</code>.</li>
</ul>
<p>Return an array <code>ans</code> of length <code>n</code>, where <code>ans[i]</code> represents the <strong>count</strong> of the <em>most frequent ID</em> in the collection after the <code>i<sup>th</sup></code> step. If the collection is empty at any step, <code>ans[i]</code> should be 0 for that step.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,3,2,1], freq = [3,2,-3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[3,3,2,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 3 IDs with the value of 2. So <code>ans[0] = 3</code>.<br />
After step 1, we have 3 IDs with the value of 2 and 2 IDs with the value of 3. So <code>ans[1] = 3</code>.<br />
After step 2, we have 2 IDs with the value of 3. So <code>ans[2] = 2</code>.<br />
After step 3, we have 2 IDs with the value of 3 and 1 ID with the value of 1. So <code>ans[3] = 2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [5,5,3], freq = [2,-2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>After step 0, we have 2 IDs with the value of 5. So <code>ans[0] = 2</code>.<br />
After step 1, there are no IDs. So <code>ans[1] = 0</code>.<br />
After step 2, we have 1 ID with the value of 3. So <code>ans[2] = 1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length == freq.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
<li><code>-10<sup>5</sup> <= freq[i] <= 10<sup>5</sup></code></li>
<li><code>freq[i] != 0</code></li>
<li>The input is generated<!-- notionvc: a136b55a-f319-4fa6-9247-11be9f3b1db8 --> such that the occurrences of an ID will not be negative in any step.</li>
</ul>
|
Array; Hash Table; Ordered Set; Heap (Priority Queue)
|
Python
|
class Solution:
def mostFrequentIDs(self, nums: List[int], freq: List[int]) -> List[int]:
cnt = Counter()
lazy = Counter()
ans = []
pq = []
for x, f in zip(nums, freq):
lazy[cnt[x]] += 1
cnt[x] += f
heappush(pq, -cnt[x])
while pq and lazy[-pq[0]] > 0:
lazy[-pq[0]] -= 1
heappop(pq)
ans.append(0 if not pq else -pq[0])
return ans
|
3,093 |
Longest Common Suffix Queries
|
Hard
|
<p>You are given two arrays of strings <code>wordsContainer</code> and <code>wordsQuery</code>.</p>
<p>For each <code>wordsQuery[i]</code>, you need to find a string from <code>wordsContainer</code> that has the <strong>longest common suffix</strong> with <code>wordsQuery[i]</code>. If there are two or more strings in <code>wordsContainer</code> that share the longest common suffix, find the string that is the <strong>smallest</strong> in length. If there are two or more such strings that have the <strong>same</strong> smallest length, find the one that occurred <strong>earlier</strong> in <code>wordsContainer</code>.</p>
<p>Return <em>an array of integers </em><code>ans</code><em>, where </em><code>ans[i]</code><em> is the index of the string in </em><code>wordsContainer</code><em> that has the <strong>longest common suffix</strong> with </em><code>wordsQuery[i]</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcd","bcd","xbcd"], wordsQuery = ["cd","bcd","xyz"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,1,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "cd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"cd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[1] = "bcd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"bcd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[2] = "xyz"</code>, there is no string from <code>wordsContainer</code> that shares a common suffix. Hence the longest common suffix is <code>""</code>, that is shared with strings at index 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcdefgh","poiuygh","ghghgh"], wordsQuery = ["gh","acbfgh","acbfegh"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "gh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
<li>For <code>wordsQuery[1] = "acbfgh"</code>, only the string at index 0 shares the longest common suffix <code>"fgh"</code>. Hence it is the answer, even though the string at index 2 is shorter.</li>
<li>For <code>wordsQuery[2] = "acbfegh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
</ul>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= wordsContainer.length, wordsQuery.length <= 10<sup>4</sup></code></li>
<li><code>1 <= wordsContainer[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>1 <= wordsQuery[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>wordsContainer[i]</code> consists only of lowercase English letters.</li>
<li><code>wordsQuery[i]</code> consists only of lowercase English letters.</li>
<li>Sum of <code>wordsContainer[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
<li>Sum of <code>wordsQuery[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
</ul>
|
Trie; Array; String
|
C++
|
class Trie {
private:
const int inf = 1 << 30;
Trie* children[26];
int length = inf;
int idx = inf;
public:
Trie() {
for (int i = 0; i < 26; ++i) {
children[i] = nullptr;
}
}
void insert(string w, int i) {
Trie* node = this;
if (node->length > w.length()) {
node->length = w.length();
node->idx = i;
}
for (int k = w.length() - 1; k >= 0; --k) {
int idx = w[k] - 'a';
if (node->children[idx] == nullptr) {
node->children[idx] = new Trie();
}
node = node->children[idx];
if (node->length > w.length()) {
node->length = w.length();
node->idx = i;
}
}
}
int query(string w) {
Trie* node = this;
for (int k = w.length() - 1; k >= 0; --k) {
int idx = w[k] - 'a';
if (node->children[idx] == nullptr) {
break;
}
node = node->children[idx];
}
return node->idx;
}
};
class Solution {
public:
vector<int> stringIndices(vector<string>& wordsContainer, vector<string>& wordsQuery) {
Trie* trie = new Trie();
for (int i = 0; i < wordsContainer.size(); ++i) {
trie->insert(wordsContainer[i], i);
}
int n = wordsQuery.size();
vector<int> ans(n);
for (int i = 0; i < n; ++i) {
ans[i] = trie->query(wordsQuery[i]);
}
return ans;
}
};
|
3,093 |
Longest Common Suffix Queries
|
Hard
|
<p>You are given two arrays of strings <code>wordsContainer</code> and <code>wordsQuery</code>.</p>
<p>For each <code>wordsQuery[i]</code>, you need to find a string from <code>wordsContainer</code> that has the <strong>longest common suffix</strong> with <code>wordsQuery[i]</code>. If there are two or more strings in <code>wordsContainer</code> that share the longest common suffix, find the string that is the <strong>smallest</strong> in length. If there are two or more such strings that have the <strong>same</strong> smallest length, find the one that occurred <strong>earlier</strong> in <code>wordsContainer</code>.</p>
<p>Return <em>an array of integers </em><code>ans</code><em>, where </em><code>ans[i]</code><em> is the index of the string in </em><code>wordsContainer</code><em> that has the <strong>longest common suffix</strong> with </em><code>wordsQuery[i]</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcd","bcd","xbcd"], wordsQuery = ["cd","bcd","xyz"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,1,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "cd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"cd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[1] = "bcd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"bcd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[2] = "xyz"</code>, there is no string from <code>wordsContainer</code> that shares a common suffix. Hence the longest common suffix is <code>""</code>, that is shared with strings at index 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcdefgh","poiuygh","ghghgh"], wordsQuery = ["gh","acbfgh","acbfegh"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "gh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
<li>For <code>wordsQuery[1] = "acbfgh"</code>, only the string at index 0 shares the longest common suffix <code>"fgh"</code>. Hence it is the answer, even though the string at index 2 is shorter.</li>
<li>For <code>wordsQuery[2] = "acbfegh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
</ul>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= wordsContainer.length, wordsQuery.length <= 10<sup>4</sup></code></li>
<li><code>1 <= wordsContainer[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>1 <= wordsQuery[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>wordsContainer[i]</code> consists only of lowercase English letters.</li>
<li><code>wordsQuery[i]</code> consists only of lowercase English letters.</li>
<li>Sum of <code>wordsContainer[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
<li>Sum of <code>wordsQuery[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
</ul>
|
Trie; Array; String
|
Go
|
const inf = 1 << 30
type Trie struct {
children [26]*Trie
length int
idx int
}
func newTrie() *Trie {
return &Trie{length: inf, idx: inf}
}
func (t *Trie) insert(w string, i int) {
node := t
if node.length > len(w) {
node.length = len(w)
node.idx = i
}
for k := len(w) - 1; k >= 0; k-- {
idx := int(w[k] - 'a')
if node.children[idx] == nil {
node.children[idx] = newTrie()
}
node = node.children[idx]
if node.length > len(w) {
node.length = len(w)
node.idx = i
}
}
}
func (t *Trie) query(w string) int {
node := t
for k := len(w) - 1; k >= 0; k-- {
idx := int(w[k] - 'a')
if node.children[idx] == nil {
break
}
node = node.children[idx]
}
return node.idx
}
func stringIndices(wordsContainer []string, wordsQuery []string) (ans []int) {
trie := newTrie()
for i, w := range wordsContainer {
trie.insert(w, i)
}
for _, w := range wordsQuery {
ans = append(ans, trie.query(w))
}
return
}
|
3,093 |
Longest Common Suffix Queries
|
Hard
|
<p>You are given two arrays of strings <code>wordsContainer</code> and <code>wordsQuery</code>.</p>
<p>For each <code>wordsQuery[i]</code>, you need to find a string from <code>wordsContainer</code> that has the <strong>longest common suffix</strong> with <code>wordsQuery[i]</code>. If there are two or more strings in <code>wordsContainer</code> that share the longest common suffix, find the string that is the <strong>smallest</strong> in length. If there are two or more such strings that have the <strong>same</strong> smallest length, find the one that occurred <strong>earlier</strong> in <code>wordsContainer</code>.</p>
<p>Return <em>an array of integers </em><code>ans</code><em>, where </em><code>ans[i]</code><em> is the index of the string in </em><code>wordsContainer</code><em> that has the <strong>longest common suffix</strong> with </em><code>wordsQuery[i]</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcd","bcd","xbcd"], wordsQuery = ["cd","bcd","xyz"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,1,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "cd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"cd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[1] = "bcd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"bcd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[2] = "xyz"</code>, there is no string from <code>wordsContainer</code> that shares a common suffix. Hence the longest common suffix is <code>""</code>, that is shared with strings at index 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcdefgh","poiuygh","ghghgh"], wordsQuery = ["gh","acbfgh","acbfegh"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "gh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
<li>For <code>wordsQuery[1] = "acbfgh"</code>, only the string at index 0 shares the longest common suffix <code>"fgh"</code>. Hence it is the answer, even though the string at index 2 is shorter.</li>
<li>For <code>wordsQuery[2] = "acbfegh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
</ul>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= wordsContainer.length, wordsQuery.length <= 10<sup>4</sup></code></li>
<li><code>1 <= wordsContainer[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>1 <= wordsQuery[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>wordsContainer[i]</code> consists only of lowercase English letters.</li>
<li><code>wordsQuery[i]</code> consists only of lowercase English letters.</li>
<li>Sum of <code>wordsContainer[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
<li>Sum of <code>wordsQuery[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
</ul>
|
Trie; Array; String
|
Java
|
class Trie {
private final int inf = 1 << 30;
private Trie[] children = new Trie[26];
private int length = inf;
private int idx = inf;
public void insert(String w, int i) {
Trie node = this;
if (node.length > w.length()) {
node.length = w.length();
node.idx = i;
}
for (int k = w.length() - 1; k >= 0; --k) {
int idx = w.charAt(k) - 'a';
if (node.children[idx] == null) {
node.children[idx] = new Trie();
}
node = node.children[idx];
if (node.length > w.length()) {
node.length = w.length();
node.idx = i;
}
}
}
public int query(String w) {
Trie node = this;
for (int k = w.length() - 1; k >= 0; --k) {
int idx = w.charAt(k) - 'a';
if (node.children[idx] == null) {
break;
}
node = node.children[idx];
}
return node.idx;
}
}
class Solution {
public int[] stringIndices(String[] wordsContainer, String[] wordsQuery) {
Trie trie = new Trie();
for (int i = 0; i < wordsContainer.length; ++i) {
trie.insert(wordsContainer[i], i);
}
int n = wordsQuery.length;
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
ans[i] = trie.query(wordsQuery[i]);
}
return ans;
}
}
|
3,093 |
Longest Common Suffix Queries
|
Hard
|
<p>You are given two arrays of strings <code>wordsContainer</code> and <code>wordsQuery</code>.</p>
<p>For each <code>wordsQuery[i]</code>, you need to find a string from <code>wordsContainer</code> that has the <strong>longest common suffix</strong> with <code>wordsQuery[i]</code>. If there are two or more strings in <code>wordsContainer</code> that share the longest common suffix, find the string that is the <strong>smallest</strong> in length. If there are two or more such strings that have the <strong>same</strong> smallest length, find the one that occurred <strong>earlier</strong> in <code>wordsContainer</code>.</p>
<p>Return <em>an array of integers </em><code>ans</code><em>, where </em><code>ans[i]</code><em> is the index of the string in </em><code>wordsContainer</code><em> that has the <strong>longest common suffix</strong> with </em><code>wordsQuery[i]</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcd","bcd","xbcd"], wordsQuery = ["cd","bcd","xyz"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,1,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "cd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"cd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[1] = "bcd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"bcd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[2] = "xyz"</code>, there is no string from <code>wordsContainer</code> that shares a common suffix. Hence the longest common suffix is <code>""</code>, that is shared with strings at index 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcdefgh","poiuygh","ghghgh"], wordsQuery = ["gh","acbfgh","acbfegh"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "gh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
<li>For <code>wordsQuery[1] = "acbfgh"</code>, only the string at index 0 shares the longest common suffix <code>"fgh"</code>. Hence it is the answer, even though the string at index 2 is shorter.</li>
<li>For <code>wordsQuery[2] = "acbfegh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
</ul>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= wordsContainer.length, wordsQuery.length <= 10<sup>4</sup></code></li>
<li><code>1 <= wordsContainer[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>1 <= wordsQuery[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>wordsContainer[i]</code> consists only of lowercase English letters.</li>
<li><code>wordsQuery[i]</code> consists only of lowercase English letters.</li>
<li>Sum of <code>wordsContainer[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
<li>Sum of <code>wordsQuery[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
</ul>
|
Trie; Array; String
|
Python
|
class Trie:
__slots__ = ("children", "length", "idx")
def __init__(self):
self.children = [None] * 26
self.length = inf
self.idx = inf
def insert(self, w: str, i: int):
node = self
if node.length > len(w):
node.length = len(w)
node.idx = i
for c in w[::-1]:
idx = ord(c) - ord("a")
if node.children[idx] is None:
node.children[idx] = Trie()
node = node.children[idx]
if node.length > len(w):
node.length = len(w)
node.idx = i
def query(self, w: str) -> int:
node = self
for c in w[::-1]:
idx = ord(c) - ord("a")
if node.children[idx] is None:
break
node = node.children[idx]
return node.idx
class Solution:
def stringIndices(
self, wordsContainer: List[str], wordsQuery: List[str]
) -> List[int]:
trie = Trie()
for i, w in enumerate(wordsContainer):
trie.insert(w, i)
return [trie.query(w) for w in wordsQuery]
|
3,093 |
Longest Common Suffix Queries
|
Hard
|
<p>You are given two arrays of strings <code>wordsContainer</code> and <code>wordsQuery</code>.</p>
<p>For each <code>wordsQuery[i]</code>, you need to find a string from <code>wordsContainer</code> that has the <strong>longest common suffix</strong> with <code>wordsQuery[i]</code>. If there are two or more strings in <code>wordsContainer</code> that share the longest common suffix, find the string that is the <strong>smallest</strong> in length. If there are two or more such strings that have the <strong>same</strong> smallest length, find the one that occurred <strong>earlier</strong> in <code>wordsContainer</code>.</p>
<p>Return <em>an array of integers </em><code>ans</code><em>, where </em><code>ans[i]</code><em> is the index of the string in </em><code>wordsContainer</code><em> that has the <strong>longest common suffix</strong> with </em><code>wordsQuery[i]</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcd","bcd","xbcd"], wordsQuery = ["cd","bcd","xyz"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,1,1]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "cd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"cd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[1] = "bcd"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"bcd"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
<li>For <code>wordsQuery[2] = "xyz"</code>, there is no string from <code>wordsContainer</code> that shares a common suffix. Hence the longest common suffix is <code>""</code>, that is shared with strings at index 0, 1, and 2. Among these, the answer is the string at index 1 because it has the shortest length of 3.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">wordsContainer = ["abcdefgh","poiuygh","ghghgh"], wordsQuery = ["gh","acbfgh","acbfegh"]</span></p>
<p><strong>Output:</strong> <span class="example-io">[2,0,2]</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at each <code>wordsQuery[i]</code> separately:</p>
<ul>
<li>For <code>wordsQuery[0] = "gh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
<li>For <code>wordsQuery[1] = "acbfgh"</code>, only the string at index 0 shares the longest common suffix <code>"fgh"</code>. Hence it is the answer, even though the string at index 2 is shorter.</li>
<li>For <code>wordsQuery[2] = "acbfegh"</code>, strings from <code>wordsContainer</code> that share the longest common suffix <code>"gh"</code> are at indices 0, 1, and 2. Among these, the answer is the string at index 2 because it has the shortest length of 6.</li>
</ul>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= wordsContainer.length, wordsQuery.length <= 10<sup>4</sup></code></li>
<li><code>1 <= wordsContainer[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>1 <= wordsQuery[i].length <= 5 * 10<sup>3</sup></code></li>
<li><code>wordsContainer[i]</code> consists only of lowercase English letters.</li>
<li><code>wordsQuery[i]</code> consists only of lowercase English letters.</li>
<li>Sum of <code>wordsContainer[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
<li>Sum of <code>wordsQuery[i].length</code> is at most <code>5 * 10<sup>5</sup></code>.</li>
</ul>
|
Trie; Array; String
|
TypeScript
|
class Trie {
private children: Trie[] = new Array<Trie>(26);
private length: number = Infinity;
private idx: number = Infinity;
public insert(w: string, i: number): void {
let node: Trie = this;
if (node.length > w.length) {
node.length = w.length;
node.idx = i;
}
for (let k: number = w.length - 1; k >= 0; --k) {
let idx: number = w.charCodeAt(k) - 'a'.charCodeAt(0);
if (node.children[idx] == null) {
node.children[idx] = new Trie();
}
node = node.children[idx];
if (node.length > w.length) {
node.length = w.length;
node.idx = i;
}
}
}
public query(w: string): number {
let node: Trie = this;
for (let k: number = w.length - 1; k >= 0; --k) {
let idx: number = w.charCodeAt(k) - 'a'.charCodeAt(0);
if (node.children[idx] == null) {
break;
}
node = node.children[idx];
}
return node.idx;
}
}
function stringIndices(wordsContainer: string[], wordsQuery: string[]): number[] {
const trie: Trie = new Trie();
for (let i: number = 0; i < wordsContainer.length; ++i) {
trie.insert(wordsContainer[i], i);
}
const n: number = wordsQuery.length;
const ans: number[] = new Array<number>(n);
for (let i: number = 0; i < n; ++i) {
ans[i] = trie.query(wordsQuery[i]);
}
return ans;
}
|
3,094 |
Guess the Number Using Bitwise Questions II
|
Medium
|
<p>There is a number <code>n</code> between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive) that you have to find.</p>
<p>There is a pre-defined API <code>int commonBits(int num)</code> that helps you with your mission. But here is the challenge, every time you call this function, <code>n</code> changes in some way. But keep in mind, that you have to find the <strong>initial value of </strong><code>n</code>.</p>
<p><code>commonBits(int num)</code> acts as follows:</p>
<ul>
<li>Calculate <code>count</code> which is the number of bits where both <code>n</code> and <code>num</code> have the same value in that position of their binary representation.</li>
<li><code>n = n XOR num</code></li>
<li>Return <code>count</code>.</li>
</ul>
<p>Return <em>the number</em> <code>n</code>.</p>
<p><strong>Note:</strong> In this world, all numbers are between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive), thus for counting common bits, we see only the first 30 bits of those numbers.</p>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 2<sup>30</sup> - 1</code></li>
<li><code>0 <= num <= 2<sup>30</sup> - 1</code></li>
<li>If you ask for some <code>num</code> out of the given range, the output wouldn't be reliable.</li>
</ul>
|
Bit Manipulation; Interactive
|
C++
|
/**
* Definition of commonBits API.
* int commonBits(int num);
*/
class Solution {
public:
int findNumber() {
int n = 0;
for (int i = 0; i < 32; ++i) {
int count1 = commonBits(1 << i);
int count2 = commonBits(1 << i);
if (count1 > count2) {
n |= 1 << i;
}
}
return n;
}
};
|
3,094 |
Guess the Number Using Bitwise Questions II
|
Medium
|
<p>There is a number <code>n</code> between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive) that you have to find.</p>
<p>There is a pre-defined API <code>int commonBits(int num)</code> that helps you with your mission. But here is the challenge, every time you call this function, <code>n</code> changes in some way. But keep in mind, that you have to find the <strong>initial value of </strong><code>n</code>.</p>
<p><code>commonBits(int num)</code> acts as follows:</p>
<ul>
<li>Calculate <code>count</code> which is the number of bits where both <code>n</code> and <code>num</code> have the same value in that position of their binary representation.</li>
<li><code>n = n XOR num</code></li>
<li>Return <code>count</code>.</li>
</ul>
<p>Return <em>the number</em> <code>n</code>.</p>
<p><strong>Note:</strong> In this world, all numbers are between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive), thus for counting common bits, we see only the first 30 bits of those numbers.</p>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 2<sup>30</sup> - 1</code></li>
<li><code>0 <= num <= 2<sup>30</sup> - 1</code></li>
<li>If you ask for some <code>num</code> out of the given range, the output wouldn't be reliable.</li>
</ul>
|
Bit Manipulation; Interactive
|
Go
|
/**
* Definition of commonBits API.
* func commonBits(num int) int;
*/
func findNumber() (n int) {
for i := 0; i < 32; i++ {
count1 := commonBits(1 << i)
count2 := commonBits(1 << i)
if count1 > count2 {
n |= 1 << i
}
}
return
}
|
3,094 |
Guess the Number Using Bitwise Questions II
|
Medium
|
<p>There is a number <code>n</code> between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive) that you have to find.</p>
<p>There is a pre-defined API <code>int commonBits(int num)</code> that helps you with your mission. But here is the challenge, every time you call this function, <code>n</code> changes in some way. But keep in mind, that you have to find the <strong>initial value of </strong><code>n</code>.</p>
<p><code>commonBits(int num)</code> acts as follows:</p>
<ul>
<li>Calculate <code>count</code> which is the number of bits where both <code>n</code> and <code>num</code> have the same value in that position of their binary representation.</li>
<li><code>n = n XOR num</code></li>
<li>Return <code>count</code>.</li>
</ul>
<p>Return <em>the number</em> <code>n</code>.</p>
<p><strong>Note:</strong> In this world, all numbers are between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive), thus for counting common bits, we see only the first 30 bits of those numbers.</p>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 2<sup>30</sup> - 1</code></li>
<li><code>0 <= num <= 2<sup>30</sup> - 1</code></li>
<li>If you ask for some <code>num</code> out of the given range, the output wouldn't be reliable.</li>
</ul>
|
Bit Manipulation; Interactive
|
Java
|
/**
* Definition of commonBits API (defined in the parent class Problem).
* int commonBits(int num);
*/
public class Solution extends Problem {
public int findNumber() {
int n = 0;
for (int i = 0; i < 32; ++i) {
int count1 = commonBits(1 << i);
int count2 = commonBits(1 << i);
if (count1 > count2) {
n |= 1 << i;
}
}
return n;
}
}
|
3,094 |
Guess the Number Using Bitwise Questions II
|
Medium
|
<p>There is a number <code>n</code> between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive) that you have to find.</p>
<p>There is a pre-defined API <code>int commonBits(int num)</code> that helps you with your mission. But here is the challenge, every time you call this function, <code>n</code> changes in some way. But keep in mind, that you have to find the <strong>initial value of </strong><code>n</code>.</p>
<p><code>commonBits(int num)</code> acts as follows:</p>
<ul>
<li>Calculate <code>count</code> which is the number of bits where both <code>n</code> and <code>num</code> have the same value in that position of their binary representation.</li>
<li><code>n = n XOR num</code></li>
<li>Return <code>count</code>.</li>
</ul>
<p>Return <em>the number</em> <code>n</code>.</p>
<p><strong>Note:</strong> In this world, all numbers are between <code>0</code> and <code>2<sup>30</sup> - 1</code> (both inclusive), thus for counting common bits, we see only the first 30 bits of those numbers.</p>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 2<sup>30</sup> - 1</code></li>
<li><code>0 <= num <= 2<sup>30</sup> - 1</code></li>
<li>If you ask for some <code>num</code> out of the given range, the output wouldn't be reliable.</li>
</ul>
|
Bit Manipulation; Interactive
|
Python
|
# Definition of commonBits API.
# def commonBits(num: int) -> int:
class Solution:
def findNumber(self) -> int:
n = 0
for i in range(32):
count1 = commonBits(1 << i)
count2 = commonBits(1 << i)
if count1 > count2:
n |= 1 << i
return n
|
3,095 |
Shortest Subarray With OR at Least K I
|
Easy
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
<p>Note that <code>[2]</code> is also a special subarray.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>0 <= nums[i] <= 50</code></li>
<li><code>0 <= k < 64</code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
C++
|
class Solution {
public:
int minimumSubarrayLength(vector<int>& nums, int k) {
int n = nums.size();
int cnt[32]{};
int ans = n + 1;
for (int i = 0, j = 0, s = 0; j < n; ++j) {
s |= nums[j];
for (int h = 0; h < 32; ++h) {
if ((nums[j] >> h & 1) == 1) {
++cnt[h];
}
}
for (; s >= k && i <= j; ++i) {
ans = min(ans, j - i + 1);
for (int h = 0; h < 32; ++h) {
if ((nums[i] >> h & 1) == 1) {
if (--cnt[h] == 0) {
s ^= 1 << h;
}
}
}
}
}
return ans > n ? -1 : ans;
}
};
|
3,095 |
Shortest Subarray With OR at Least K I
|
Easy
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
<p>Note that <code>[2]</code> is also a special subarray.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>0 <= nums[i] <= 50</code></li>
<li><code>0 <= k < 64</code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Go
|
func minimumSubarrayLength(nums []int, k int) int {
n := len(nums)
cnt := [32]int{}
ans := n + 1
s, i := 0, 0
for j, x := range nums {
s |= x
for h := 0; h < 32; h++ {
if x>>h&1 == 1 {
cnt[h]++
}
}
for ; s >= k && i <= j; i++ {
ans = min(ans, j-i+1)
for h := 0; h < 32; h++ {
if nums[i]>>h&1 == 1 {
cnt[h]--
if cnt[h] == 0 {
s ^= 1 << h
}
}
}
}
}
if ans == n+1 {
return -1
}
return ans
}
|
3,095 |
Shortest Subarray With OR at Least K I
|
Easy
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
<p>Note that <code>[2]</code> is also a special subarray.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>0 <= nums[i] <= 50</code></li>
<li><code>0 <= k < 64</code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Java
|
class Solution {
public int minimumSubarrayLength(int[] nums, int k) {
int n = nums.length;
int[] cnt = new int[32];
int ans = n + 1;
for (int i = 0, j = 0, s = 0; j < n; ++j) {
s |= nums[j];
for (int h = 0; h < 32; ++h) {
if ((nums[j] >> h & 1) == 1) {
++cnt[h];
}
}
for (; s >= k && i <= j; ++i) {
ans = Math.min(ans, j - i + 1);
for (int h = 0; h < 32; ++h) {
if ((nums[i] >> h & 1) == 1) {
if (--cnt[h] == 0) {
s ^= 1 << h;
}
}
}
}
}
return ans > n ? -1 : ans;
}
}
|
3,095 |
Shortest Subarray With OR at Least K I
|
Easy
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
<p>Note that <code>[2]</code> is also a special subarray.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>0 <= nums[i] <= 50</code></li>
<li><code>0 <= k < 64</code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Python
|
class Solution:
def minimumSubarrayLength(self, nums: List[int], k: int) -> int:
n = len(nums)
cnt = [0] * 32
ans = n + 1
s = i = 0
for j, x in enumerate(nums):
s |= x
for h in range(32):
if x >> h & 1:
cnt[h] += 1
while s >= k and i <= j:
ans = min(ans, j - i + 1)
y = nums[i]
for h in range(32):
if y >> h & 1:
cnt[h] -= 1
if cnt[h] == 0:
s ^= 1 << h
i += 1
return -1 if ans > n else ans
|
3,095 |
Shortest Subarray With OR at Least K I
|
Easy
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
<p>Note that <code>[2]</code> is also a special subarray.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>0 <= nums[i] <= 50</code></li>
<li><code>0 <= k < 64</code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Rust
|
impl Solution {
pub fn minimum_subarray_length(nums: Vec<i32>, k: i32) -> i32 {
let n = nums.len();
let mut cnt = vec![0; 32];
let mut ans = n as i32 + 1;
let mut s = 0;
let mut i = 0;
for (j, &x) in nums.iter().enumerate() {
s |= x;
for h in 0..32 {
if (x >> h) & 1 == 1 {
cnt[h] += 1;
}
}
while s >= k && i <= j {
ans = ans.min((j - i + 1) as i32);
let y = nums[i];
for h in 0..32 {
if (y >> h) & 1 == 1 {
cnt[h] -= 1;
if cnt[h] == 0 {
s ^= 1 << h;
}
}
}
i += 1;
}
}
if ans > n as i32 {
-1
} else {
ans
}
}
}
|
3,095 |
Shortest Subarray With OR at Least K I
|
Easy
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
<p>Note that <code>[2]</code> is also a special subarray.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>0 <= nums[i] <= 50</code></li>
<li><code>0 <= k < 64</code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
TypeScript
|
function minimumSubarrayLength(nums: number[], k: number): number {
const n = nums.length;
let ans = n + 1;
const cnt: number[] = new Array<number>(32).fill(0);
for (let i = 0, j = 0, s = 0; j < n; ++j) {
s |= nums[j];
for (let h = 0; h < 32; ++h) {
if (((nums[j] >> h) & 1) === 1) {
++cnt[h];
}
}
for (; s >= k && i <= j; ++i) {
ans = Math.min(ans, j - i + 1);
for (let h = 0; h < 32; ++h) {
if (((nums[i] >> h) & 1) === 1 && --cnt[h] === 0) {
s ^= 1 << h;
}
}
}
}
return ans === n + 1 ? -1 : ans;
}
|
3,096 |
Minimum Levels to Gain More Points
|
Medium
|
<p>You are given a binary array <code>possible</code> of length <code>n</code>.</p>
<p>Alice and Bob are playing a game that consists of <code>n</code> levels. Some of the levels in the game are <strong>impossible</strong> to clear while others can <strong>always</strong> be cleared. In particular, if <code>possible[i] == 0</code>, then the <code>i<sup>th</sup></code> level is <strong>impossible</strong> to clear for <strong>both</strong> the players. A player gains <code>1</code> point on clearing a level and loses <code>1</code> point if the player fails to clear it.</p>
<p>At the start of the game, Alice will play some levels in the <strong>given order</strong> starting from the <code>0<sup>th</sup></code> level, after which Bob will play for the rest of the levels.</p>
<p>Alice wants to know the <strong>minimum</strong> number of levels she should play to gain more points than Bob, if both players play optimally to <strong>maximize</strong> their points.</p>
<p>Return <em>the <strong>minimum</strong> number of levels Alice should play to gain more points</em>. <em>If this is <strong>not</strong> possible, return</em> <code>-1</code>.</p>
<p><strong>Note</strong> that each player must play at least <code>1</code> level.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has -1 + 1 - 1 = -1 point.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 1 - 1 = 0 points, while Bob has 1 - 1 = 0 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 1 - 1 + 1 = 1 point, while Bob has -1 point.</li>
</ul>
<p>Alice must play a minimum of 1 level to gain more points.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,1,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has 4 points.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 2 points, while Bob has 3 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 3 points, while Bob has 2 points.</li>
<li>If Alice plays till level 3 and Bob plays the rest of the levels, Alice has 4 points, while Bob has 1 point.</li>
</ul>
<p>Alice must play a minimum of 3 levels to gain more points.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [0,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The only possible way is for both players to play 1 level each. Alice plays level 0 and loses 1 point. Bob plays level 1 and loses 1 point. As both players have equal points, Alice can't gain more points than Bob.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == possible.length <= 10<sup>5</sup></code></li>
<li><code>possible[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Prefix Sum
|
C++
|
class Solution {
public:
int minimumLevels(vector<int>& possible) {
int s = 0;
for (int x : possible) {
s += x == 0 ? -1 : 1;
}
int t = 0;
for (int i = 1; i < possible.size(); ++i) {
t += possible[i - 1] == 0 ? -1 : 1;
if (t > s - t) {
return i;
}
}
return -1;
}
};
|
3,096 |
Minimum Levels to Gain More Points
|
Medium
|
<p>You are given a binary array <code>possible</code> of length <code>n</code>.</p>
<p>Alice and Bob are playing a game that consists of <code>n</code> levels. Some of the levels in the game are <strong>impossible</strong> to clear while others can <strong>always</strong> be cleared. In particular, if <code>possible[i] == 0</code>, then the <code>i<sup>th</sup></code> level is <strong>impossible</strong> to clear for <strong>both</strong> the players. A player gains <code>1</code> point on clearing a level and loses <code>1</code> point if the player fails to clear it.</p>
<p>At the start of the game, Alice will play some levels in the <strong>given order</strong> starting from the <code>0<sup>th</sup></code> level, after which Bob will play for the rest of the levels.</p>
<p>Alice wants to know the <strong>minimum</strong> number of levels she should play to gain more points than Bob, if both players play optimally to <strong>maximize</strong> their points.</p>
<p>Return <em>the <strong>minimum</strong> number of levels Alice should play to gain more points</em>. <em>If this is <strong>not</strong> possible, return</em> <code>-1</code>.</p>
<p><strong>Note</strong> that each player must play at least <code>1</code> level.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has -1 + 1 - 1 = -1 point.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 1 - 1 = 0 points, while Bob has 1 - 1 = 0 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 1 - 1 + 1 = 1 point, while Bob has -1 point.</li>
</ul>
<p>Alice must play a minimum of 1 level to gain more points.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,1,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has 4 points.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 2 points, while Bob has 3 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 3 points, while Bob has 2 points.</li>
<li>If Alice plays till level 3 and Bob plays the rest of the levels, Alice has 4 points, while Bob has 1 point.</li>
</ul>
<p>Alice must play a minimum of 3 levels to gain more points.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [0,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The only possible way is for both players to play 1 level each. Alice plays level 0 and loses 1 point. Bob plays level 1 and loses 1 point. As both players have equal points, Alice can't gain more points than Bob.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == possible.length <= 10<sup>5</sup></code></li>
<li><code>possible[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Prefix Sum
|
Go
|
func minimumLevels(possible []int) int {
s := 0
for _, x := range possible {
if x == 0 {
x = -1
}
s += x
}
t := 0
for i, x := range possible[:len(possible)-1] {
if x == 0 {
x = -1
}
t += x
if t > s-t {
return i + 1
}
}
return -1
}
|
3,096 |
Minimum Levels to Gain More Points
|
Medium
|
<p>You are given a binary array <code>possible</code> of length <code>n</code>.</p>
<p>Alice and Bob are playing a game that consists of <code>n</code> levels. Some of the levels in the game are <strong>impossible</strong> to clear while others can <strong>always</strong> be cleared. In particular, if <code>possible[i] == 0</code>, then the <code>i<sup>th</sup></code> level is <strong>impossible</strong> to clear for <strong>both</strong> the players. A player gains <code>1</code> point on clearing a level and loses <code>1</code> point if the player fails to clear it.</p>
<p>At the start of the game, Alice will play some levels in the <strong>given order</strong> starting from the <code>0<sup>th</sup></code> level, after which Bob will play for the rest of the levels.</p>
<p>Alice wants to know the <strong>minimum</strong> number of levels she should play to gain more points than Bob, if both players play optimally to <strong>maximize</strong> their points.</p>
<p>Return <em>the <strong>minimum</strong> number of levels Alice should play to gain more points</em>. <em>If this is <strong>not</strong> possible, return</em> <code>-1</code>.</p>
<p><strong>Note</strong> that each player must play at least <code>1</code> level.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has -1 + 1 - 1 = -1 point.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 1 - 1 = 0 points, while Bob has 1 - 1 = 0 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 1 - 1 + 1 = 1 point, while Bob has -1 point.</li>
</ul>
<p>Alice must play a minimum of 1 level to gain more points.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,1,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has 4 points.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 2 points, while Bob has 3 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 3 points, while Bob has 2 points.</li>
<li>If Alice plays till level 3 and Bob plays the rest of the levels, Alice has 4 points, while Bob has 1 point.</li>
</ul>
<p>Alice must play a minimum of 3 levels to gain more points.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [0,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The only possible way is for both players to play 1 level each. Alice plays level 0 and loses 1 point. Bob plays level 1 and loses 1 point. As both players have equal points, Alice can't gain more points than Bob.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == possible.length <= 10<sup>5</sup></code></li>
<li><code>possible[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Prefix Sum
|
Java
|
class Solution {
public int minimumLevels(int[] possible) {
int s = 0;
for (int x : possible) {
s += x == 0 ? -1 : 1;
}
int t = 0;
for (int i = 1; i < possible.length; ++i) {
t += possible[i - 1] == 0 ? -1 : 1;
if (t > s - t) {
return i;
}
}
return -1;
}
}
|
3,096 |
Minimum Levels to Gain More Points
|
Medium
|
<p>You are given a binary array <code>possible</code> of length <code>n</code>.</p>
<p>Alice and Bob are playing a game that consists of <code>n</code> levels. Some of the levels in the game are <strong>impossible</strong> to clear while others can <strong>always</strong> be cleared. In particular, if <code>possible[i] == 0</code>, then the <code>i<sup>th</sup></code> level is <strong>impossible</strong> to clear for <strong>both</strong> the players. A player gains <code>1</code> point on clearing a level and loses <code>1</code> point if the player fails to clear it.</p>
<p>At the start of the game, Alice will play some levels in the <strong>given order</strong> starting from the <code>0<sup>th</sup></code> level, after which Bob will play for the rest of the levels.</p>
<p>Alice wants to know the <strong>minimum</strong> number of levels she should play to gain more points than Bob, if both players play optimally to <strong>maximize</strong> their points.</p>
<p>Return <em>the <strong>minimum</strong> number of levels Alice should play to gain more points</em>. <em>If this is <strong>not</strong> possible, return</em> <code>-1</code>.</p>
<p><strong>Note</strong> that each player must play at least <code>1</code> level.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has -1 + 1 - 1 = -1 point.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 1 - 1 = 0 points, while Bob has 1 - 1 = 0 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 1 - 1 + 1 = 1 point, while Bob has -1 point.</li>
</ul>
<p>Alice must play a minimum of 1 level to gain more points.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,1,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has 4 points.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 2 points, while Bob has 3 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 3 points, while Bob has 2 points.</li>
<li>If Alice plays till level 3 and Bob plays the rest of the levels, Alice has 4 points, while Bob has 1 point.</li>
</ul>
<p>Alice must play a minimum of 3 levels to gain more points.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [0,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The only possible way is for both players to play 1 level each. Alice plays level 0 and loses 1 point. Bob plays level 1 and loses 1 point. As both players have equal points, Alice can't gain more points than Bob.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == possible.length <= 10<sup>5</sup></code></li>
<li><code>possible[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Prefix Sum
|
Python
|
class Solution:
def minimumLevels(self, possible: List[int]) -> int:
s = sum(-1 if x == 0 else 1 for x in possible)
t = 0
for i, x in enumerate(possible[:-1], 1):
t += -1 if x == 0 else 1
if t > s - t:
return i
return -1
|
3,096 |
Minimum Levels to Gain More Points
|
Medium
|
<p>You are given a binary array <code>possible</code> of length <code>n</code>.</p>
<p>Alice and Bob are playing a game that consists of <code>n</code> levels. Some of the levels in the game are <strong>impossible</strong> to clear while others can <strong>always</strong> be cleared. In particular, if <code>possible[i] == 0</code>, then the <code>i<sup>th</sup></code> level is <strong>impossible</strong> to clear for <strong>both</strong> the players. A player gains <code>1</code> point on clearing a level and loses <code>1</code> point if the player fails to clear it.</p>
<p>At the start of the game, Alice will play some levels in the <strong>given order</strong> starting from the <code>0<sup>th</sup></code> level, after which Bob will play for the rest of the levels.</p>
<p>Alice wants to know the <strong>minimum</strong> number of levels she should play to gain more points than Bob, if both players play optimally to <strong>maximize</strong> their points.</p>
<p>Return <em>the <strong>minimum</strong> number of levels Alice should play to gain more points</em>. <em>If this is <strong>not</strong> possible, return</em> <code>-1</code>.</p>
<p><strong>Note</strong> that each player must play at least <code>1</code> level.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has -1 + 1 - 1 = -1 point.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 1 - 1 = 0 points, while Bob has 1 - 1 = 0 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 1 - 1 + 1 = 1 point, while Bob has -1 point.</li>
</ul>
<p>Alice must play a minimum of 1 level to gain more points.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [1,1,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>Let's look at all the levels that Alice can play up to:</p>
<ul>
<li>If Alice plays only level 0 and Bob plays the rest of the levels, Alice has 1 point, while Bob has 4 points.</li>
<li>If Alice plays till level 1 and Bob plays the rest of the levels, Alice has 2 points, while Bob has 3 points.</li>
<li>If Alice plays till level 2 and Bob plays the rest of the levels, Alice has 3 points, while Bob has 2 points.</li>
<li>If Alice plays till level 3 and Bob plays the rest of the levels, Alice has 4 points, while Bob has 1 point.</li>
</ul>
<p>Alice must play a minimum of 3 levels to gain more points.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">possible = [0,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The only possible way is for both players to play 1 level each. Alice plays level 0 and loses 1 point. Bob plays level 1 and loses 1 point. As both players have equal points, Alice can't gain more points than Bob.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == possible.length <= 10<sup>5</sup></code></li>
<li><code>possible[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Prefix Sum
|
TypeScript
|
function minimumLevels(possible: number[]): number {
const s = possible.reduce((acc, x) => acc + (x === 0 ? -1 : 1), 0);
let t = 0;
for (let i = 1; i < possible.length; ++i) {
t += possible[i - 1] === 0 ? -1 : 1;
if (t > s - t) {
return i;
}
}
return -1;
}
|
3,097 |
Shortest Subarray With OR at Least K II
|
Medium
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>0 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
C++
|
class Solution {
public:
int minimumSubarrayLength(vector<int>& nums, int k) {
int n = nums.size();
int cnt[32]{};
int ans = n + 1;
for (int i = 0, j = 0, s = 0; j < n; ++j) {
s |= nums[j];
for (int h = 0; h < 32; ++h) {
if ((nums[j] >> h & 1) == 1) {
++cnt[h];
}
}
for (; s >= k && i <= j; ++i) {
ans = min(ans, j - i + 1);
for (int h = 0; h < 32; ++h) {
if ((nums[i] >> h & 1) == 1) {
if (--cnt[h] == 0) {
s ^= 1 << h;
}
}
}
}
}
return ans > n ? -1 : ans;
}
};
|
3,097 |
Shortest Subarray With OR at Least K II
|
Medium
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>0 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Go
|
func minimumSubarrayLength(nums []int, k int) int {
n := len(nums)
cnt := [32]int{}
ans := n + 1
s, i := 0, 0
for j, x := range nums {
s |= x
for h := 0; h < 32; h++ {
if x>>h&1 == 1 {
cnt[h]++
}
}
for ; s >= k && i <= j; i++ {
ans = min(ans, j-i+1)
for h := 0; h < 32; h++ {
if nums[i]>>h&1 == 1 {
cnt[h]--
if cnt[h] == 0 {
s ^= 1 << h
}
}
}
}
}
if ans == n+1 {
return -1
}
return ans
}
|
3,097 |
Shortest Subarray With OR at Least K II
|
Medium
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>0 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Java
|
class Solution {
public int minimumSubarrayLength(int[] nums, int k) {
int n = nums.length;
int[] cnt = new int[32];
int ans = n + 1;
for (int i = 0, j = 0, s = 0; j < n; ++j) {
s |= nums[j];
for (int h = 0; h < 32; ++h) {
if ((nums[j] >> h & 1) == 1) {
++cnt[h];
}
}
for (; s >= k && i <= j; ++i) {
ans = Math.min(ans, j - i + 1);
for (int h = 0; h < 32; ++h) {
if ((nums[i] >> h & 1) == 1) {
if (--cnt[h] == 0) {
s ^= 1 << h;
}
}
}
}
}
return ans > n ? -1 : ans;
}
}
|
3,097 |
Shortest Subarray With OR at Least K II
|
Medium
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>0 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Python
|
class Solution:
def minimumSubarrayLength(self, nums: List[int], k: int) -> int:
n = len(nums)
cnt = [0] * 32
ans = n + 1
s = i = 0
for j, x in enumerate(nums):
s |= x
for h in range(32):
if x >> h & 1:
cnt[h] += 1
while s >= k and i <= j:
ans = min(ans, j - i + 1)
y = nums[i]
for h in range(32):
if y >> h & 1:
cnt[h] -= 1
if cnt[h] == 0:
s ^= 1 << h
i += 1
return -1 if ans > n else ans
|
3,097 |
Shortest Subarray With OR at Least K II
|
Medium
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>0 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
Rust
|
impl Solution {
pub fn minimum_subarray_length(nums: Vec<i32>, k: i32) -> i32 {
let n = nums.len();
let mut cnt = vec![0; 32];
let mut ans = n as i32 + 1;
let mut s = 0;
let mut i = 0;
for (j, &x) in nums.iter().enumerate() {
s |= x;
for h in 0..32 {
if (x >> h) & 1 == 1 {
cnt[h] += 1;
}
}
while s >= k && i <= j {
ans = ans.min((j - i + 1) as i32);
let y = nums[i];
for h in 0..32 {
if (y >> h) & 1 == 1 {
cnt[h] -= 1;
if cnt[h] == 0 {
s ^= 1 << h;
}
}
}
i += 1;
}
}
if ans > n as i32 {
-1
} else {
ans
}
}
}
|
3,097 |
Shortest Subarray With OR at Least K II
|
Medium
|
<p>You are given an array <code>nums</code> of <strong>non-negative</strong> integers and an integer <code>k</code>.</p>
<p>An array is called <strong>special</strong> if the bitwise <code>OR</code> of all of its elements is <strong>at least</strong> <code>k</code>.</p>
<p>Return <em>the length of the <strong>shortest</strong> <strong>special</strong> <strong>non-empty</strong> <span data-keyword="subarray-nonempty">subarray</span> of</em> <code>nums</code>, <em>or return</em> <code>-1</code> <em>if no special subarray exists</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[3]</code> has <code>OR</code> value of <code>3</code>. Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,1,8], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[2,1,8]</code> has <code>OR</code> value of <code>11</code>. Hence, we return <code>3</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2], k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The subarray <code>[1]</code> has <code>OR</code> value of <code>1</code>. Hence, we return <code>1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>0 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Bit Manipulation; Array; Sliding Window
|
TypeScript
|
function minimumSubarrayLength(nums: number[], k: number): number {
const n = nums.length;
let ans = n + 1;
const cnt: number[] = new Array<number>(32).fill(0);
for (let i = 0, j = 0, s = 0; j < n; ++j) {
s |= nums[j];
for (let h = 0; h < 32; ++h) {
if (((nums[j] >> h) & 1) === 1) {
++cnt[h];
}
}
for (; s >= k && i <= j; ++i) {
ans = Math.min(ans, j - i + 1);
for (let h = 0; h < 32; ++h) {
if (((nums[i] >> h) & 1) === 1 && --cnt[h] === 0) {
s ^= 1 << h;
}
}
}
}
return ans === n + 1 ? -1 : ans;
}
|
3,098 |
Find the Sum of Subsequence Powers
|
Hard
|
<p>You are given an integer array <code>nums</code> of length <code>n</code>, and a <strong>positive</strong> integer <code>k</code>.</p>
<p>The <strong>power</strong> of a <span data-keyword="subsequence-array">subsequence</span> is defined as the <strong>minimum</strong> absolute difference between <strong>any</strong> two elements in the subsequence.</p>
<p>Return <em>the <strong>sum</strong> of <strong>powers</strong> of <strong>all</strong> subsequences of </em><code>nums</code><em> which have length</em> <strong><em>equal to</em></strong> <code>k</code>.</p>
<p>Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9 </sup>+ 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 4 subsequences in <code>nums</code> which have length 3: <code>[1,2,3]</code>, <code>[1,3,4]</code>, <code>[1,2,4]</code>, and <code>[2,3,4]</code>. The sum of powers is <code>|2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,2], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The only subsequence in <code>nums</code> which has length 2 is <code>[2,2]</code>. The sum of powers is <code>|2 - 2| = 0</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [4,3,-1], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 3 subsequences in <code>nums</code> which have length 2: <code>[4,3]</code>, <code>[4,-1]</code>, and <code>[3,-1]</code>. The sum of powers is <code>|4 - 3| + |4 - (-1)| + |3 - (-1)| = 10</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == nums.length <= 50</code></li>
<li><code>-10<sup>8</sup> <= nums[i] <= 10<sup>8</sup> </code></li>
<li><code>2 <= k <= n</code></li>
</ul>
|
Array; Dynamic Programming; Sorting
|
C++
|
class Solution {
public:
int sumOfPowers(vector<int>& nums, int k) {
unordered_map<long long, int> f;
const int mod = 1e9 + 7;
int n = nums.size();
sort(nums.begin(), nums.end());
auto dfs = [&](this auto&& dfs, int i, int j, int k, int mi) -> int {
if (i >= n) {
return k == 0 ? mi : 0;
}
if (n - i < k) {
return 0;
}
long long key = (1LL * mi) << 18 | (i << 12) | (j << 6) | k;
if (f.contains(key)) {
return f[key];
}
long long ans = dfs(i + 1, j, k, mi);
if (j == n) {
ans += dfs(i + 1, i, k - 1, mi);
} else {
ans += dfs(i + 1, i, k - 1, min(mi, nums[i] - nums[j]));
}
ans %= mod;
f[key] = ans;
return f[key];
};
return dfs(0, n, k, INT_MAX);
}
};
|
3,098 |
Find the Sum of Subsequence Powers
|
Hard
|
<p>You are given an integer array <code>nums</code> of length <code>n</code>, and a <strong>positive</strong> integer <code>k</code>.</p>
<p>The <strong>power</strong> of a <span data-keyword="subsequence-array">subsequence</span> is defined as the <strong>minimum</strong> absolute difference between <strong>any</strong> two elements in the subsequence.</p>
<p>Return <em>the <strong>sum</strong> of <strong>powers</strong> of <strong>all</strong> subsequences of </em><code>nums</code><em> which have length</em> <strong><em>equal to</em></strong> <code>k</code>.</p>
<p>Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9 </sup>+ 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 4 subsequences in <code>nums</code> which have length 3: <code>[1,2,3]</code>, <code>[1,3,4]</code>, <code>[1,2,4]</code>, and <code>[2,3,4]</code>. The sum of powers is <code>|2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,2], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The only subsequence in <code>nums</code> which has length 2 is <code>[2,2]</code>. The sum of powers is <code>|2 - 2| = 0</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [4,3,-1], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 3 subsequences in <code>nums</code> which have length 2: <code>[4,3]</code>, <code>[4,-1]</code>, and <code>[3,-1]</code>. The sum of powers is <code>|4 - 3| + |4 - (-1)| + |3 - (-1)| = 10</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == nums.length <= 50</code></li>
<li><code>-10<sup>8</sup> <= nums[i] <= 10<sup>8</sup> </code></li>
<li><code>2 <= k <= n</code></li>
</ul>
|
Array; Dynamic Programming; Sorting
|
Go
|
func sumOfPowers(nums []int, k int) int {
const mod int = 1e9 + 7
sort.Ints(nums)
n := len(nums)
f := map[int]int{}
var dfs func(i, j, k, mi int) int
dfs = func(i, j, k, mi int) int {
if i >= n {
if k == 0 {
return mi
}
return 0
}
if n-i < k {
return 0
}
key := mi<<18 | (i << 12) | (j << 6) | k
if v, ok := f[key]; ok {
return v
}
ans := dfs(i+1, j, k, mi)
if j == n {
ans += dfs(i+1, i, k-1, mi)
} else {
ans += dfs(i+1, i, k-1, min(mi, nums[i]-nums[j]))
}
ans %= mod
f[key] = ans
return ans
}
return dfs(0, n, k, math.MaxInt)
}
|
3,098 |
Find the Sum of Subsequence Powers
|
Hard
|
<p>You are given an integer array <code>nums</code> of length <code>n</code>, and a <strong>positive</strong> integer <code>k</code>.</p>
<p>The <strong>power</strong> of a <span data-keyword="subsequence-array">subsequence</span> is defined as the <strong>minimum</strong> absolute difference between <strong>any</strong> two elements in the subsequence.</p>
<p>Return <em>the <strong>sum</strong> of <strong>powers</strong> of <strong>all</strong> subsequences of </em><code>nums</code><em> which have length</em> <strong><em>equal to</em></strong> <code>k</code>.</p>
<p>Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9 </sup>+ 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 4 subsequences in <code>nums</code> which have length 3: <code>[1,2,3]</code>, <code>[1,3,4]</code>, <code>[1,2,4]</code>, and <code>[2,3,4]</code>. The sum of powers is <code>|2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,2], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The only subsequence in <code>nums</code> which has length 2 is <code>[2,2]</code>. The sum of powers is <code>|2 - 2| = 0</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [4,3,-1], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 3 subsequences in <code>nums</code> which have length 2: <code>[4,3]</code>, <code>[4,-1]</code>, and <code>[3,-1]</code>. The sum of powers is <code>|4 - 3| + |4 - (-1)| + |3 - (-1)| = 10</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == nums.length <= 50</code></li>
<li><code>-10<sup>8</sup> <= nums[i] <= 10<sup>8</sup> </code></li>
<li><code>2 <= k <= n</code></li>
</ul>
|
Array; Dynamic Programming; Sorting
|
Java
|
class Solution {
private Map<Long, Integer> f = new HashMap<>();
private final int mod = (int) 1e9 + 7;
private int[] nums;
public int sumOfPowers(int[] nums, int k) {
Arrays.sort(nums);
this.nums = nums;
return dfs(0, nums.length, k, Integer.MAX_VALUE);
}
private int dfs(int i, int j, int k, int mi) {
if (i >= nums.length) {
return k == 0 ? mi : 0;
}
if (nums.length - i < k) {
return 0;
}
long key = (1L * mi) << 18 | (i << 12) | (j << 6) | k;
if (f.containsKey(key)) {
return f.get(key);
}
int ans = dfs(i + 1, j, k, mi);
if (j == nums.length) {
ans += dfs(i + 1, i, k - 1, mi);
} else {
ans += dfs(i + 1, i, k - 1, Math.min(mi, nums[i] - nums[j]));
}
ans %= mod;
f.put(key, ans);
return ans;
}
}
|
3,098 |
Find the Sum of Subsequence Powers
|
Hard
|
<p>You are given an integer array <code>nums</code> of length <code>n</code>, and a <strong>positive</strong> integer <code>k</code>.</p>
<p>The <strong>power</strong> of a <span data-keyword="subsequence-array">subsequence</span> is defined as the <strong>minimum</strong> absolute difference between <strong>any</strong> two elements in the subsequence.</p>
<p>Return <em>the <strong>sum</strong> of <strong>powers</strong> of <strong>all</strong> subsequences of </em><code>nums</code><em> which have length</em> <strong><em>equal to</em></strong> <code>k</code>.</p>
<p>Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9 </sup>+ 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 4 subsequences in <code>nums</code> which have length 3: <code>[1,2,3]</code>, <code>[1,3,4]</code>, <code>[1,2,4]</code>, and <code>[2,3,4]</code>. The sum of powers is <code>|2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,2], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The only subsequence in <code>nums</code> which has length 2 is <code>[2,2]</code>. The sum of powers is <code>|2 - 2| = 0</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [4,3,-1], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 3 subsequences in <code>nums</code> which have length 2: <code>[4,3]</code>, <code>[4,-1]</code>, and <code>[3,-1]</code>. The sum of powers is <code>|4 - 3| + |4 - (-1)| + |3 - (-1)| = 10</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == nums.length <= 50</code></li>
<li><code>-10<sup>8</sup> <= nums[i] <= 10<sup>8</sup> </code></li>
<li><code>2 <= k <= n</code></li>
</ul>
|
Array; Dynamic Programming; Sorting
|
Python
|
class Solution:
def sumOfPowers(self, nums: List[int], k: int) -> int:
@cache
def dfs(i: int, j: int, k: int, mi: int) -> int:
if i >= n:
return mi if k == 0 else 0
if n - i < k:
return 0
ans = dfs(i + 1, j, k, mi)
if j == n:
ans += dfs(i + 1, i, k - 1, mi)
else:
ans += dfs(i + 1, i, k - 1, min(mi, nums[i] - nums[j]))
ans %= mod
return ans
mod = 10**9 + 7
n = len(nums)
nums.sort()
return dfs(0, n, k, inf)
|
3,098 |
Find the Sum of Subsequence Powers
|
Hard
|
<p>You are given an integer array <code>nums</code> of length <code>n</code>, and a <strong>positive</strong> integer <code>k</code>.</p>
<p>The <strong>power</strong> of a <span data-keyword="subsequence-array">subsequence</span> is defined as the <strong>minimum</strong> absolute difference between <strong>any</strong> two elements in the subsequence.</p>
<p>Return <em>the <strong>sum</strong> of <strong>powers</strong> of <strong>all</strong> subsequences of </em><code>nums</code><em> which have length</em> <strong><em>equal to</em></strong> <code>k</code>.</p>
<p>Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9 </sup>+ 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 4 subsequences in <code>nums</code> which have length 3: <code>[1,2,3]</code>, <code>[1,3,4]</code>, <code>[1,2,4]</code>, and <code>[2,3,4]</code>. The sum of powers is <code>|2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,2], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The only subsequence in <code>nums</code> which has length 2 is <code>[2,2]</code>. The sum of powers is <code>|2 - 2| = 0</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [4,3,-1], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>There are 3 subsequences in <code>nums</code> which have length 2: <code>[4,3]</code>, <code>[4,-1]</code>, and <code>[3,-1]</code>. The sum of powers is <code>|4 - 3| + |4 - (-1)| + |3 - (-1)| = 10</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n == nums.length <= 50</code></li>
<li><code>-10<sup>8</sup> <= nums[i] <= 10<sup>8</sup> </code></li>
<li><code>2 <= k <= n</code></li>
</ul>
|
Array; Dynamic Programming; Sorting
|
TypeScript
|
function sumOfPowers(nums: number[], k: number): number {
const mod = BigInt(1e9 + 7);
nums.sort((a, b) => a - b);
const n = nums.length;
const f: Map<bigint, bigint> = new Map();
function dfs(i: number, j: number, k: number, mi: number): bigint {
if (i >= n) {
if (k === 0) {
return BigInt(mi);
}
return BigInt(0);
}
if (n - i < k) {
return BigInt(0);
}
const key =
(BigInt(mi) << BigInt(18)) |
(BigInt(i) << BigInt(12)) |
(BigInt(j) << BigInt(6)) |
BigInt(k);
if (f.has(key)) {
return f.get(key)!;
}
let ans = dfs(i + 1, j, k, mi);
if (j === n) {
ans += dfs(i + 1, i, k - 1, mi);
} else {
ans += dfs(i + 1, i, k - 1, Math.min(mi, nums[i] - nums[j]));
}
ans %= mod;
f.set(key, ans);
return ans;
}
return Number(dfs(0, n, k, Number.MAX_SAFE_INTEGER));
}
|
3,099 |
Harshad Number
|
Easy
|
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 18</span></p>
<p><strong>Output:</strong> <span class="example-io">9</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 23</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 100</code></li>
</ul>
|
Math
|
C++
|
class Solution {
public:
int sumOfTheDigitsOfHarshadNumber(int x) {
int s = 0;
for (int y = x; y > 0; y /= 10) {
s += y % 10;
}
return x % s == 0 ? s : -1;
}
};
|
3,099 |
Harshad Number
|
Easy
|
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 18</span></p>
<p><strong>Output:</strong> <span class="example-io">9</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 23</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 100</code></li>
</ul>
|
Math
|
Go
|
func sumOfTheDigitsOfHarshadNumber(x int) int {
s := 0
for y := x; y > 0; y /= 10 {
s += y % 10
}
if x%s == 0 {
return s
}
return -1
}
|
3,099 |
Harshad Number
|
Easy
|
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 18</span></p>
<p><strong>Output:</strong> <span class="example-io">9</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 23</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 100</code></li>
</ul>
|
Math
|
Java
|
class Solution {
public int sumOfTheDigitsOfHarshadNumber(int x) {
int s = 0;
for (int y = x; y > 0; y /= 10) {
s += y % 10;
}
return x % s == 0 ? s : -1;
}
}
|
3,099 |
Harshad Number
|
Easy
|
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 18</span></p>
<p><strong>Output:</strong> <span class="example-io">9</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 23</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 100</code></li>
</ul>
|
Math
|
Python
|
class Solution:
def sumOfTheDigitsOfHarshadNumber(self, x: int) -> int:
s, y = 0, x
while y:
s += y % 10
y //= 10
return s if x % s == 0 else -1
|
3,099 |
Harshad Number
|
Easy
|
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 18</span></p>
<p><strong>Output:</strong> <span class="example-io">9</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">x = 23</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong></p>
<p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 100</code></li>
</ul>
|
Math
|
TypeScript
|
function sumOfTheDigitsOfHarshadNumber(x: number): number {
let s = 0;
for (let y = x; y; y = Math.floor(y / 10)) {
s += y % 10;
}
return x % s === 0 ? s : -1;
}
|
3,100 |
Water Bottles II
|
Medium
|
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p>
<p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p>
<ul>
<li>Drink any number of full water bottles turning them into empty bottles.</li>
<li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li>
</ul>
<p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p>
<p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 13, numExchange = 6
<strong>Output:</strong> 15
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 10, numExchange = 3
<strong>Output:</strong> 13
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numBottles <= 100 </code></li>
<li><code>1 <= numExchange <= 100</code></li>
</ul>
|
Math; Simulation
|
C++
|
class Solution {
public:
int maxBottlesDrunk(int numBottles, int numExchange) {
int ans = numBottles;
while (numBottles >= numExchange) {
numBottles -= numExchange;
++numExchange;
++ans;
++numBottles;
}
return ans;
}
};
|
3,100 |
Water Bottles II
|
Medium
|
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p>
<p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p>
<ul>
<li>Drink any number of full water bottles turning them into empty bottles.</li>
<li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li>
</ul>
<p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p>
<p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 13, numExchange = 6
<strong>Output:</strong> 15
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 10, numExchange = 3
<strong>Output:</strong> 13
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numBottles <= 100 </code></li>
<li><code>1 <= numExchange <= 100</code></li>
</ul>
|
Math; Simulation
|
Go
|
func maxBottlesDrunk(numBottles int, numExchange int) int {
ans := numBottles
for numBottles >= numExchange {
numBottles -= numExchange
numExchange++
ans++
numBottles++
}
return ans
}
|
3,100 |
Water Bottles II
|
Medium
|
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p>
<p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p>
<ul>
<li>Drink any number of full water bottles turning them into empty bottles.</li>
<li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li>
</ul>
<p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p>
<p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 13, numExchange = 6
<strong>Output:</strong> 15
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 10, numExchange = 3
<strong>Output:</strong> 13
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numBottles <= 100 </code></li>
<li><code>1 <= numExchange <= 100</code></li>
</ul>
|
Math; Simulation
|
Java
|
class Solution {
public int maxBottlesDrunk(int numBottles, int numExchange) {
int ans = numBottles;
while (numBottles >= numExchange) {
numBottles -= numExchange;
++numExchange;
++ans;
++numBottles;
}
return ans;
}
}
|
3,100 |
Water Bottles II
|
Medium
|
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p>
<p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p>
<ul>
<li>Drink any number of full water bottles turning them into empty bottles.</li>
<li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li>
</ul>
<p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p>
<p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 13, numExchange = 6
<strong>Output:</strong> 15
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 10, numExchange = 3
<strong>Output:</strong> 13
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numBottles <= 100 </code></li>
<li><code>1 <= numExchange <= 100</code></li>
</ul>
|
Math; Simulation
|
Python
|
class Solution:
def maxBottlesDrunk(self, numBottles: int, numExchange: int) -> int:
ans = numBottles
while numBottles >= numExchange:
numBottles -= numExchange
numExchange += 1
ans += 1
numBottles += 1
return ans
|
3,100 |
Water Bottles II
|
Medium
|
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p>
<p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p>
<ul>
<li>Drink any number of full water bottles turning them into empty bottles.</li>
<li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li>
</ul>
<p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p>
<p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 13, numExchange = 6
<strong>Output:</strong> 15
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 10, numExchange = 3
<strong>Output:</strong> 13
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numBottles <= 100 </code></li>
<li><code>1 <= numExchange <= 100</code></li>
</ul>
|
Math; Simulation
|
Rust
|
impl Solution {
pub fn max_bottles_drunk(mut num_bottles: i32, mut num_exchange: i32) -> i32 {
let mut ans = num_bottles;
while num_bottles >= num_exchange {
num_bottles -= num_exchange;
num_exchange += 1;
ans += 1;
num_bottles += 1;
}
ans
}
}
|
3,100 |
Water Bottles II
|
Medium
|
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p>
<p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p>
<ul>
<li>Drink any number of full water bottles turning them into empty bottles.</li>
<li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li>
</ul>
<p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p>
<p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 13, numExchange = 6
<strong>Output:</strong> 15
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" />
<pre>
<strong>Input:</strong> numBottles = 10, numExchange = 3
<strong>Output:</strong> 13
<strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numBottles <= 100 </code></li>
<li><code>1 <= numExchange <= 100</code></li>
</ul>
|
Math; Simulation
|
TypeScript
|
function maxBottlesDrunk(numBottles: number, numExchange: number): number {
let ans = numBottles;
while (numBottles >= numExchange) {
numBottles -= numExchange;
++numExchange;
++ans;
++numBottles;
}
return ans;
}
|
3,101 |
Count Alternating Subarrays
|
Medium
|
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p>
<p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p>
<p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Math
|
C++
|
class Solution {
public:
long long countAlternatingSubarrays(vector<int>& nums) {
long long ans = 1, s = 1;
for (int i = 1; i < nums.size(); ++i) {
s = nums[i] != nums[i - 1] ? s + 1 : 1;
ans += s;
}
return ans;
}
};
|
3,101 |
Count Alternating Subarrays
|
Medium
|
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p>
<p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p>
<p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Math
|
Go
|
func countAlternatingSubarrays(nums []int) int64 {
ans, s := int64(1), int64(1)
for i, x := range nums[1:] {
if x != nums[i] {
s++
} else {
s = 1
}
ans += s
}
return ans
}
|
3,101 |
Count Alternating Subarrays
|
Medium
|
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p>
<p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p>
<p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Math
|
Java
|
class Solution {
public long countAlternatingSubarrays(int[] nums) {
long ans = 1, s = 1;
for (int i = 1; i < nums.length; ++i) {
s = nums[i] != nums[i - 1] ? s + 1 : 1;
ans += s;
}
return ans;
}
}
|
3,101 |
Count Alternating Subarrays
|
Medium
|
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p>
<p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p>
<p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Math
|
Python
|
class Solution:
def countAlternatingSubarrays(self, nums: List[int]) -> int:
ans = s = 1
for a, b in pairwise(nums):
s = s + 1 if a != b else 1
ans += s
return ans
|
3,101 |
Count Alternating Subarrays
|
Medium
|
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p>
<p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p>
<p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p>
<p><strong>Output:</strong> <span class="example-io">10</span></p>
<p><strong>Explanation:</strong></p>
<p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>
|
Array; Math
|
TypeScript
|
function countAlternatingSubarrays(nums: number[]): number {
let [ans, s] = [1, 1];
for (let i = 1; i < nums.length; ++i) {
s = nums[i] !== nums[i - 1] ? s + 1 : 1;
ans += s;
}
return ans;
}
|
3,102 |
Minimize Manhattan Distances
|
Hard
|
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p>
<p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p>
<p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">12</span></p>
<p><strong>Explanation:</strong></p>
<p>The maximum distance after removing each point is the following:</p>
<ul>
<li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
<li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li>
<li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li>
<li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
</ul>
<p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>Removing any of the points results in the maximum distance between any two points of 0.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>3 <= points.length <= 10<sup>5</sup></code></li>
<li><code>points[i].length == 2</code></li>
<li><code>1 <= points[i][0], points[i][1] <= 10<sup>8</sup></code></li>
</ul>
|
Geometry; Array; Math; Ordered Set; Sorting
|
C++
|
class Solution {
public:
int minimumDistance(vector<vector<int>>& points) {
multiset<int> st1;
multiset<int> st2;
for (auto& p : points) {
int x = p[0], y = p[1];
st1.insert(x + y);
st2.insert(x - y);
}
int ans = INT_MAX;
for (auto& p : points) {
int x = p[0], y = p[1];
st1.erase(st1.find(x + y));
st2.erase(st2.find(x - y));
ans = min(ans, max(*st1.rbegin() - *st1.begin(), *st2.rbegin() - *st2.begin()));
st1.insert(x + y);
st2.insert(x - y);
}
return ans;
}
};
|
3,102 |
Minimize Manhattan Distances
|
Hard
|
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p>
<p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p>
<p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">12</span></p>
<p><strong>Explanation:</strong></p>
<p>The maximum distance after removing each point is the following:</p>
<ul>
<li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
<li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li>
<li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li>
<li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
</ul>
<p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>Removing any of the points results in the maximum distance between any two points of 0.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>3 <= points.length <= 10<sup>5</sup></code></li>
<li><code>points[i].length == 2</code></li>
<li><code>1 <= points[i][0], points[i][1] <= 10<sup>8</sup></code></li>
</ul>
|
Geometry; Array; Math; Ordered Set; Sorting
|
Go
|
func minimumDistance(points [][]int) int {
st1 := redblacktree.New[int, int]()
st2 := redblacktree.New[int, int]()
merge := func(st *redblacktree.Tree[int, int], x, v int) {
c, _ := st.Get(x)
if c+v == 0 {
st.Remove(x)
} else {
st.Put(x, c+v)
}
}
for _, p := range points {
x, y := p[0], p[1]
merge(st1, x+y, 1)
merge(st2, x-y, 1)
}
ans := math.MaxInt
for _, p := range points {
x, y := p[0], p[1]
merge(st1, x+y, -1)
merge(st2, x-y, -1)
ans = min(ans, max(st1.Right().Key-st1.Left().Key, st2.Right().Key-st2.Left().Key))
merge(st1, x+y, 1)
merge(st2, x-y, 1)
}
return ans
}
|
3,102 |
Minimize Manhattan Distances
|
Hard
|
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p>
<p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p>
<p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">12</span></p>
<p><strong>Explanation:</strong></p>
<p>The maximum distance after removing each point is the following:</p>
<ul>
<li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
<li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li>
<li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li>
<li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
</ul>
<p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>Removing any of the points results in the maximum distance between any two points of 0.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>3 <= points.length <= 10<sup>5</sup></code></li>
<li><code>points[i].length == 2</code></li>
<li><code>1 <= points[i][0], points[i][1] <= 10<sup>8</sup></code></li>
</ul>
|
Geometry; Array; Math; Ordered Set; Sorting
|
Java
|
class Solution {
public int minimumDistance(int[][] points) {
TreeMap<Integer, Integer> tm1 = new TreeMap<>();
TreeMap<Integer, Integer> tm2 = new TreeMap<>();
for (int[] p : points) {
int x = p[0], y = p[1];
tm1.merge(x + y, 1, Integer::sum);
tm2.merge(x - y, 1, Integer::sum);
}
int ans = Integer.MAX_VALUE;
for (int[] p : points) {
int x = p[0], y = p[1];
if (tm1.merge(x + y, -1, Integer::sum) == 0) {
tm1.remove(x + y);
}
if (tm2.merge(x - y, -1, Integer::sum) == 0) {
tm2.remove(x - y);
}
ans = Math.min(
ans, Math.max(tm1.lastKey() - tm1.firstKey(), tm2.lastKey() - tm2.firstKey()));
tm1.merge(x + y, 1, Integer::sum);
tm2.merge(x - y, 1, Integer::sum);
}
return ans;
}
}
|
3,102 |
Minimize Manhattan Distances
|
Hard
|
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p>
<p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p>
<p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">12</span></p>
<p><strong>Explanation:</strong></p>
<p>The maximum distance after removing each point is the following:</p>
<ul>
<li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
<li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li>
<li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li>
<li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
</ul>
<p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>Removing any of the points results in the maximum distance between any two points of 0.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>3 <= points.length <= 10<sup>5</sup></code></li>
<li><code>points[i].length == 2</code></li>
<li><code>1 <= points[i][0], points[i][1] <= 10<sup>8</sup></code></li>
</ul>
|
Geometry; Array; Math; Ordered Set; Sorting
|
Python
|
class Solution:
def minimumDistance(self, points: List[List[int]]) -> int:
sl1 = SortedList()
sl2 = SortedList()
for x, y in points:
sl1.add(x + y)
sl2.add(x - y)
ans = inf
for x, y in points:
sl1.remove(x + y)
sl2.remove(x - y)
ans = min(ans, max(sl1[-1] - sl1[0], sl2[-1] - sl2[0]))
sl1.add(x + y)
sl2.add(x - y)
return ans
|
3,102 |
Minimize Manhattan Distances
|
Hard
|
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p>
<p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p>
<p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">12</span></p>
<p><strong>Explanation:</strong></p>
<p>The maximum distance after removing each point is the following:</p>
<ul>
<li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
<li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li>
<li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li>
<li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li>
</ul>
<p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>Removing any of the points results in the maximum distance between any two points of 0.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>3 <= points.length <= 10<sup>5</sup></code></li>
<li><code>points[i].length == 2</code></li>
<li><code>1 <= points[i][0], points[i][1] <= 10<sup>8</sup></code></li>
</ul>
|
Geometry; Array; Math; Ordered Set; Sorting
|
TypeScript
|
function minimumDistance(points: number[][]): number {
const st1 = new TreapMultiSet<number>();
const st2 = new TreapMultiSet<number>();
for (const [x, y] of points) {
st1.add(x + y);
st2.add(x - y);
}
let ans = Infinity;
for (const [x, y] of points) {
st1.delete(x + y);
st2.delete(x - y);
ans = Math.min(ans, Math.max(st1.last() - st1.first(), st2.last() - st2.first()));
st1.add(x + y);
st2.add(x - y);
}
return ans;
}
type CompareFunction<T, R extends 'number' | 'boolean'> = (
a: T,
b: T,
) => R extends 'number' ? number : boolean;
interface ITreapMultiSet<T> extends Iterable<T> {
add: (...value: T[]) => this;
has: (value: T) => boolean;
delete: (value: T) => void;
bisectLeft: (value: T) => number;
bisectRight: (value: T) => number;
indexOf: (value: T) => number;
lastIndexOf: (value: T) => number;
at: (index: number) => T | undefined;
first: () => T | undefined;
last: () => T | undefined;
lower: (value: T) => T | undefined;
higher: (value: T) => T | undefined;
floor: (value: T) => T | undefined;
ceil: (value: T) => T | undefined;
shift: () => T | undefined;
pop: (index?: number) => T | undefined;
count: (value: T) => number;
keys: () => IterableIterator<T>;
values: () => IterableIterator<T>;
rvalues: () => IterableIterator<T>;
entries: () => IterableIterator<[number, T]>;
readonly size: number;
}
class TreapNode<T = number> {
value: T;
count: number;
size: number;
priority: number;
left: TreapNode<T> | null;
right: TreapNode<T> | null;
constructor(value: T) {
this.value = value;
this.count = 1;
this.size = 1;
this.priority = Math.random();
this.left = null;
this.right = null;
}
static getSize(node: TreapNode<any> | null): number {
return node?.size ?? 0;
}
static getFac(node: TreapNode<any> | null): number {
return node?.priority ?? 0;
}
pushUp(): void {
let tmp = this.count;
tmp += TreapNode.getSize(this.left);
tmp += TreapNode.getSize(this.right);
this.size = tmp;
}
rotateRight(): TreapNode<T> {
// eslint-disable-next-line @typescript-eslint/no-this-alias
let node: TreapNode<T> = this;
const left = node.left;
node.left = left?.right ?? null;
left && (left.right = node);
left && (node = left);
node.right?.pushUp();
node.pushUp();
return node;
}
rotateLeft(): TreapNode<T> {
// eslint-disable-next-line @typescript-eslint/no-this-alias
let node: TreapNode<T> = this;
const right = node.right;
node.right = right?.left ?? null;
right && (right.left = node);
right && (node = right);
node.left?.pushUp();
node.pushUp();
return node;
}
}
class TreapMultiSet<T = number> implements ITreapMultiSet<T> {
private readonly root: TreapNode<T>;
private readonly compareFn: CompareFunction<T, 'number'>;
private readonly leftBound: T;
private readonly rightBound: T;
constructor(compareFn?: CompareFunction<T, 'number'>);
constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T);
constructor(
compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b,
leftBound: any = -Infinity,
rightBound: any = Infinity,
) {
this.root = new TreapNode<T>(rightBound);
this.root.priority = Infinity;
this.root.left = new TreapNode<T>(leftBound);
this.root.left.priority = -Infinity;
this.root.pushUp();
this.leftBound = leftBound;
this.rightBound = rightBound;
this.compareFn = compareFn;
}
get size(): number {
return this.root.size - 2;
}
get height(): number {
const getHeight = (node: TreapNode<T> | null): number => {
if (node == null) return 0;
return 1 + Math.max(getHeight(node.left), getHeight(node.right));
};
return getHeight(this.root);
}
/**
*
* @complexity `O(logn)`
* @description Returns true if value is a member.
*/
has(value: T): boolean {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): boolean => {
if (node == null) return false;
if (compare(node.value, value) === 0) return true;
if (compare(node.value, value) < 0) return dfs(node.right, value);
return dfs(node.left, value);
};
return dfs(this.root, value);
}
/**
*
* @complexity `O(logn)`
* @description Add value to sorted set.
*/
add(...values: T[]): this {
const compare = this.compareFn;
const dfs = (
node: TreapNode<T> | null,
value: T,
parent: TreapNode<T>,
direction: 'left' | 'right',
): void => {
if (node == null) return;
if (compare(node.value, value) === 0) {
node.count++;
node.pushUp();
} else if (compare(node.value, value) > 0) {
if (node.left) {
dfs(node.left, value, node, 'left');
} else {
node.left = new TreapNode(value);
node.pushUp();
}
if (TreapNode.getFac(node.left) > node.priority) {
parent[direction] = node.rotateRight();
}
} else if (compare(node.value, value) < 0) {
if (node.right) {
dfs(node.right, value, node, 'right');
} else {
node.right = new TreapNode(value);
node.pushUp();
}
if (TreapNode.getFac(node.right) > node.priority) {
parent[direction] = node.rotateLeft();
}
}
parent.pushUp();
};
values.forEach(value => dfs(this.root.left, value, this.root, 'left'));
return this;
}
/**
*
* @complexity `O(logn)`
* @description Remove value from sorted set if it is a member.
* If value is not a member, do nothing.
*/
delete(value: T): void {
const compare = this.compareFn;
const dfs = (
node: TreapNode<T> | null,
value: T,
parent: TreapNode<T>,
direction: 'left' | 'right',
): void => {
if (node == null) return;
if (compare(node.value, value) === 0) {
if (node.count > 1) {
node.count--;
node?.pushUp();
} else if (node.left == null && node.right == null) {
parent[direction] = null;
} else {
// 旋到根节点
if (
node.right == null ||
TreapNode.getFac(node.left) > TreapNode.getFac(node.right)
) {
parent[direction] = node.rotateRight();
dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right');
} else {
parent[direction] = node.rotateLeft();
dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left');
}
}
} else if (compare(node.value, value) > 0) {
dfs(node.left, value, node, 'left');
} else if (compare(node.value, value) < 0) {
dfs(node.right, value, node, 'right');
}
parent?.pushUp();
};
dfs(this.root.left, value, this.root, 'left');
}
/**
*
* @complexity `O(logn)`
* @description Returns an index to insert value in the sorted set.
* If the value is already present, the insertion point will be before (to the left of) any existing values.
*/
bisectLeft(value: T): number {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
return TreapNode.getSize(node.left);
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
return dfs(this.root, value) - 1;
}
/**
*
* @complexity `O(logn)`
* @description Returns an index to insert value in the sorted set.
* If the value is already present, the insertion point will be before (to the right of) any existing values.
*/
bisectRight(value: T): number {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
return TreapNode.getSize(node.left) + node.count;
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
return dfs(this.root, value) - 1;
}
/**
*
* @complexity `O(logn)`
* @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present.
*/
indexOf(value: T): number {
const compare = this.compareFn;
let isExist = false;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
isExist = true;
return TreapNode.getSize(node.left);
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
const res = dfs(this.root, value) - 1;
return isExist ? res : -1;
}
/**
*
* @complexity `O(logn)`
* @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present.
*/
lastIndexOf(value: T): number {
const compare = this.compareFn;
let isExist = false;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) {
isExist = true;
return TreapNode.getSize(node.left) + node.count - 1;
} else if (compare(node.value, value) > 0) {
return dfs(node.left, value);
} else if (compare(node.value, value) < 0) {
return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
}
return 0;
};
const res = dfs(this.root, value) - 1;
return isExist ? res : -1;
}
/**
*
* @complexity `O(logn)`
* @description Returns the item located at the specified index.
* @param index The zero-based index of the desired code unit. A negative index will count back from the last item.
*/
at(index: number): T | undefined {
if (index < 0) index += this.size;
if (index < 0 || index >= this.size) return undefined;
const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => {
if (node == null) return undefined;
if (TreapNode.getSize(node.left) >= rank) {
return dfs(node.left, rank);
} else if (TreapNode.getSize(node.left) + node.count >= rank) {
return node.value;
} else {
return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count);
}
};
const res = dfs(this.root, index + 2);
return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element less than `val`, return `undefined` if no such element found.
*/
lower(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) >= 0) return dfs(node.left, value);
const tmp = dfs(node.right, value);
if (tmp == null || compare(node.value, tmp) > 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.leftBound ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element greater than `val`, return `undefined` if no such element found.
*/
higher(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) <= 0) return dfs(node.right, value);
const tmp = dfs(node.left, value);
if (tmp == null || compare(node.value, tmp) < 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.rightBound ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element less than or equal to `val`, return `undefined` if no such element found.
*/
floor(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) === 0) return node.value;
if (compare(node.value, value) >= 0) return dfs(node.left, value);
const tmp = dfs(node.right, value);
if (tmp == null || compare(node.value, tmp) > 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.leftBound ? undefined : res;
}
/**
*
* @complexity `O(logn)`
* @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found.
*/
ceil(value: T): T | undefined {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
if (node == null) return undefined;
if (compare(node.value, value) === 0) return node.value;
if (compare(node.value, value) <= 0) return dfs(node.right, value);
const tmp = dfs(node.left, value);
if (tmp == null || compare(node.value, tmp) < 0) {
return node.value;
} else {
return tmp;
}
};
const res = dfs(this.root, value) as any;
return res === this.rightBound ? undefined : res;
}
/**
* @complexity `O(logn)`
* @description
* Returns the last element from set.
* If the set is empty, undefined is returned.
*/
first(): T | undefined {
const iter = this.inOrder();
iter.next();
const res = iter.next().value;
return res === this.rightBound ? undefined : res;
}
/**
* @complexity `O(logn)`
* @description
* Returns the last element from set.
* If the set is empty, undefined is returned .
*/
last(): T | undefined {
const iter = this.reverseInOrder();
iter.next();
const res = iter.next().value;
return res === this.leftBound ? undefined : res;
}
/**
* @complexity `O(logn)`
* @description
* Removes the first element from an set and returns it.
* If the set is empty, undefined is returned and the set is not modified.
*/
shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}
/**
* @complexity `O(logn)`
* @description
* Removes the last element from an set and returns it.
* If the set is empty, undefined is returned and the set is not modified.
*/
pop(index?: number): T | undefined {
if (index == null) {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}
const toDelete = this.at(index);
if (toDelete == null) return;
this.delete(toDelete);
return toDelete;
}
/**
*
* @complexity `O(logn)`
* @description
* Returns number of occurrences of value in the sorted set.
*/
count(value: T): number {
const compare = this.compareFn;
const dfs = (node: TreapNode<T> | null, value: T): number => {
if (node == null) return 0;
if (compare(node.value, value) === 0) return node.count;
if (compare(node.value, value) < 0) return dfs(node.right, value);
return dfs(node.left, value);
};
return dfs(this.root, value);
}
*[Symbol.iterator](): Generator<T, any, any> {
yield* this.values();
}
/**
* @description
* Returns an iterable of keys in the set.
*/
*keys(): Generator<T, any, any> {
yield* this.values();
}
/**
* @description
* Returns an iterable of values in the set.
*/
*values(): Generator<T, any, any> {
const iter = this.inOrder();
iter.next();
const steps = this.size;
for (let _ = 0; _ < steps; _++) {
yield iter.next().value;
}
}
/**
* @description
* Returns a generator for reversed order traversing the set.
*/
*rvalues(): Generator<T, any, any> {
const iter = this.reverseInOrder();
iter.next();
const steps = this.size;
for (let _ = 0; _ < steps; _++) {
yield iter.next().value;
}
}
/**
* @description
* Returns an iterable of key, value pairs for every entry in the set.
*/
*entries(): IterableIterator<[number, T]> {
const iter = this.inOrder();
iter.next();
const steps = this.size;
for (let i = 0; i < steps; i++) {
yield [i, iter.next().value];
}
}
private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
if (root == null) return;
yield* this.inOrder(root.left);
const count = root.count;
for (let _ = 0; _ < count; _++) {
yield root.value;
}
yield* this.inOrder(root.right);
}
private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
if (root == null) return;
yield* this.reverseInOrder(root.right);
const count = root.count;
for (let _ = 0; _ < count; _++) {
yield root.value;
}
yield* this.reverseInOrder(root.left);
}
}
|
3,103 |
Find Trending Hashtags II
|
Hard
|
<p>Table: <code>Tweets</code></p>
<pre>
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| user_id | int |
| tweet_id | int |
| tweet_date | date |
| tweet | varchar |
+-------------+---------+
tweet_id is the primary key (column with unique values) for this table.
Each row of this table contains user_id, tweet_id, tweet_date and tweet.
It is guaranteed that all tweet_date are valid dates in February 2024.
</pre>
<p>Write a solution to find the <strong>top</strong> <code>3</code> trending <strong>hashtags</strong> in <strong>February</strong> <code>2024</code>. Every tweet may contain <strong>several</strong> <strong>hashtags</strong>.</p>
<p>Return <em>the result table ordered by count of hashtag, hashtag in </em><strong>descending</strong><em> order.</em></p>
<p>The result format is in the following example.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong></p>
<p>Tweets table:</p>
<pre class="example-io">
+---------+----------+------------------------------------------------------------+------------+
| user_id | tweet_id | tweet | tweet_date |
+---------+----------+------------------------------------------------------------+------------+
| 135 | 13 | Enjoying a great start to the day. #HappyDay #MorningVibes | 2024-02-01 |
| 136 | 14 | Another #HappyDay with good vibes! #FeelGood | 2024-02-03 |
| 137 | 15 | Productivity peaks! #WorkLife #ProductiveDay | 2024-02-04 |
| 138 | 16 | Exploring new tech frontiers. #TechLife #Innovation | 2024-02-04 |
| 139 | 17 | Gratitude for today's moments. #HappyDay #Thankful | 2024-02-05 |
| 140 | 18 | Innovation drives us. #TechLife #FutureTech | 2024-02-07 |
| 141 | 19 | Connecting with nature's serenity. #Nature #Peaceful | 2024-02-09 |
+---------+----------+------------------------------------------------------------+------------+
</pre>
<p><strong>Output:</strong></p>
<pre class="example-io">
+-----------+-------+
| hashtag | count |
+-----------+-------+
| #HappyDay | 3 |
| #TechLife | 2 |
| #WorkLife | 1 |
+-----------+-------+
</pre>
<p><strong>Explanation:</strong></p>
<ul>
<li><strong>#HappyDay:</strong> Appeared in tweet IDs 13, 14, and 17, with a total count of 3 mentions.</li>
<li><strong>#TechLife:</strong> Appeared in tweet IDs 16 and 18, with a total count of 2 mentions.</li>
<li><strong>#WorkLife:</strong> Appeared in tweet ID 15, with a total count of 1 mention.</li>
</ul>
<p><b>Note:</b> Output table is sorted in descending order by count and hashtag respectively.</p>
</div>
|
Database
|
Python
|
import pandas as pd
def find_trending_hashtags(tweets: pd.DataFrame) -> pd.DataFrame:
# Filter tweets for February 2024
tweets_feb_2024 = tweets[tweets["tweet_date"].between("2024-02-01", "2024-02-29")]
# Extract hashtags from tweets
hashtags = tweets_feb_2024["tweet"].str.findall(r"#\w+")
# Flatten list of hashtags
all_hashtags = [tag for sublist in hashtags for tag in sublist]
# Count occurrences of each hashtag
hashtag_counts = pd.Series(all_hashtags).value_counts().reset_index()
hashtag_counts.columns = ["hashtag", "count"]
# Sort by count of hashtag in descending order
hashtag_counts = hashtag_counts.sort_values(
by=["count", "hashtag"], ascending=[False, False]
)
# Get top 3 trending hashtags
top_3_hashtags = hashtag_counts.head(3)
return top_3_hashtags
|
3,104 |
Find Longest Self-Contained Substring
|
Hard
|
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p>
<p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn't exist in the <em>rest</em> of <code>s</code>.</p>
<p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abba"</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"bb"</code>. You can see that no other <code>"b"</code> is outside of this substring. Hence the answer is 2.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abab"</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong><br />
Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abacd"</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"<span class="example-io">abac</span>"</code>. There is only one character outside of this substring and that is <code>"d"</code>. There is no <code>"d"</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Hash Table; String; Binary Search; Prefix Sum
|
C++
|
class Solution {
public:
int maxSubstringLength(string s) {
vector<int> first(26, -1);
vector<int> last(26);
int n = s.length();
for (int i = 0; i < n; ++i) {
int j = s[i] - 'a';
if (first[j] == -1) {
first[j] = i;
}
last[j] = i;
}
int ans = -1;
for (int k = 0; k < 26; ++k) {
int i = first[k];
if (i == -1) {
continue;
}
int mx = last[k];
for (int j = i; j < n; ++j) {
int a = first[s[j] - 'a'];
int b = last[s[j] - 'a'];
if (a < i) {
break;
}
mx = max(mx, b);
if (mx == j && j - i + 1 < n) {
ans = max(ans, j - i + 1);
}
}
}
return ans;
}
};
|
3,104 |
Find Longest Self-Contained Substring
|
Hard
|
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p>
<p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn't exist in the <em>rest</em> of <code>s</code>.</p>
<p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abba"</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"bb"</code>. You can see that no other <code>"b"</code> is outside of this substring. Hence the answer is 2.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abab"</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong><br />
Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abacd"</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"<span class="example-io">abac</span>"</code>. There is only one character outside of this substring and that is <code>"d"</code>. There is no <code>"d"</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Hash Table; String; Binary Search; Prefix Sum
|
Go
|
func maxSubstringLength(s string) int {
first := [26]int{}
last := [26]int{}
for i := range first {
first[i] = -1
}
n := len(s)
for i, c := range s {
j := int(c - 'a')
if first[j] == -1 {
first[j] = i
}
last[j] = i
}
ans := -1
for k := 0; k < 26; k++ {
i := first[k]
if i == -1 {
continue
}
mx := last[k]
for j := i; j < n; j++ {
a, b := first[s[j]-'a'], last[s[j]-'a']
if a < i {
break
}
mx = max(mx, b)
if mx == j && j-i+1 < n {
ans = max(ans, j-i+1)
}
}
}
return ans
}
|
3,104 |
Find Longest Self-Contained Substring
|
Hard
|
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p>
<p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn't exist in the <em>rest</em> of <code>s</code>.</p>
<p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abba"</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"bb"</code>. You can see that no other <code>"b"</code> is outside of this substring. Hence the answer is 2.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abab"</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong><br />
Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abacd"</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"<span class="example-io">abac</span>"</code>. There is only one character outside of this substring and that is <code>"d"</code>. There is no <code>"d"</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Hash Table; String; Binary Search; Prefix Sum
|
Java
|
class Solution {
public int maxSubstringLength(String s) {
int[] first = new int[26];
int[] last = new int[26];
Arrays.fill(first, -1);
int n = s.length();
for (int i = 0; i < n; ++i) {
int j = s.charAt(i) - 'a';
if (first[j] == -1) {
first[j] = i;
}
last[j] = i;
}
int ans = -1;
for (int k = 0; k < 26; ++k) {
int i = first[k];
if (i == -1) {
continue;
}
int mx = last[k];
for (int j = i; j < n; ++j) {
int a = first[s.charAt(j) - 'a'];
int b = last[s.charAt(j) - 'a'];
if (a < i) {
break;
}
mx = Math.max(mx, b);
if (mx == j && j - i + 1 < n) {
ans = Math.max(ans, j - i + 1);
}
}
}
return ans;
}
}
|
3,104 |
Find Longest Self-Contained Substring
|
Hard
|
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p>
<p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn't exist in the <em>rest</em> of <code>s</code>.</p>
<p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abba"</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"bb"</code>. You can see that no other <code>"b"</code> is outside of this substring. Hence the answer is 2.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abab"</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong><br />
Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abacd"</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"<span class="example-io">abac</span>"</code>. There is only one character outside of this substring and that is <code>"d"</code>. There is no <code>"d"</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Hash Table; String; Binary Search; Prefix Sum
|
Python
|
class Solution:
def maxSubstringLength(self, s: str) -> int:
first, last = {}, {}
for i, c in enumerate(s):
if c not in first:
first[c] = i
last[c] = i
ans, n = -1, len(s)
for c, i in first.items():
mx = last[c]
for j in range(i, n):
a, b = first[s[j]], last[s[j]]
if a < i:
break
mx = max(mx, b)
if mx == j and j - i + 1 < n:
ans = max(ans, j - i + 1)
return ans
|
3,104 |
Find Longest Self-Contained Substring
|
Hard
|
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p>
<p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn't exist in the <em>rest</em> of <code>s</code>.</p>
<p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abba"</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"bb"</code>. You can see that no other <code>"b"</code> is outside of this substring. Hence the answer is 2.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abab"</span></p>
<p><strong>Output:</strong> <span class="example-io">-1</span></p>
<p><strong>Explanation:</strong><br />
Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "abacd"</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong><br />
Let's check the substring <code>"<span class="example-io">abac</span>"</code>. There is only one character outside of this substring and that is <code>"d"</code>. There is no <code>"d"</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Hash Table; String; Binary Search; Prefix Sum
|
TypeScript
|
function maxSubstringLength(s: string): number {
const first: number[] = Array(26).fill(-1);
const last: number[] = Array(26).fill(0);
const n = s.length;
for (let i = 0; i < n; ++i) {
const j = s.charCodeAt(i) - 97;
if (first[j] === -1) {
first[j] = i;
}
last[j] = i;
}
let ans = -1;
for (let k = 0; k < 26; ++k) {
const i = first[k];
if (i === -1) {
continue;
}
let mx = last[k];
for (let j = i; j < n; ++j) {
const a = first[s.charCodeAt(j) - 97];
if (a < i) {
break;
}
const b = last[s.charCodeAt(j) - 97];
mx = Math.max(mx, b);
if (mx === j && j - i + 1 < n) {
ans = Math.max(ans, j - i + 1);
}
}
}
return ans;
}
|
3,105 |
Longest Strictly Increasing or Strictly Decreasing Subarray
|
Easy
|
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p>
<p>Hence, we return <code>2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p>
<p>Hence, we return <code>3</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>1 <= nums[i] <= 50</code></li>
</ul>
|
Array
|
C++
|
class Solution {
public:
int longestMonotonicSubarray(vector<int>& nums) {
int ans = 1;
for (int i = 1, t = 1; i < nums.size(); ++i) {
if (nums[i - 1] < nums[i]) {
ans = max(ans, ++t);
} else {
t = 1;
}
}
for (int i = 1, t = 1; i < nums.size(); ++i) {
if (nums[i - 1] > nums[i]) {
ans = max(ans, ++t);
} else {
t = 1;
}
}
return ans;
}
};
|
3,105 |
Longest Strictly Increasing or Strictly Decreasing Subarray
|
Easy
|
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p>
<p>Hence, we return <code>2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p>
<p>Hence, we return <code>3</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>1 <= nums[i] <= 50</code></li>
</ul>
|
Array
|
Go
|
func longestMonotonicSubarray(nums []int) int {
ans := 1
t := 1
for i, x := range nums[1:] {
if nums[i] < x {
t++
ans = max(ans, t)
} else {
t = 1
}
}
t = 1
for i, x := range nums[1:] {
if nums[i] > x {
t++
ans = max(ans, t)
} else {
t = 1
}
}
return ans
}
|
3,105 |
Longest Strictly Increasing or Strictly Decreasing Subarray
|
Easy
|
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p>
<p>Hence, we return <code>2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p>
<p>Hence, we return <code>3</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>1 <= nums[i] <= 50</code></li>
</ul>
|
Array
|
Java
|
class Solution {
public int longestMonotonicSubarray(int[] nums) {
int ans = 1;
for (int i = 1, t = 1; i < nums.length; ++i) {
if (nums[i - 1] < nums[i]) {
ans = Math.max(ans, ++t);
} else {
t = 1;
}
}
for (int i = 1, t = 1; i < nums.length; ++i) {
if (nums[i - 1] > nums[i]) {
ans = Math.max(ans, ++t);
} else {
t = 1;
}
}
return ans;
}
}
|
3,105 |
Longest Strictly Increasing or Strictly Decreasing Subarray
|
Easy
|
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p>
<p>Hence, we return <code>2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p>
<p>Hence, we return <code>3</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>1 <= nums[i] <= 50</code></li>
</ul>
|
Array
|
JavaScript
|
function longestMonotonicSubarray(nums) {
const n = nums.length;
let ans = 1;
for (let i = 1, t1 = 1, t2 = 1; i < n; i++) {
t1 = nums[i] > nums[i - 1] ? t1 + 1 : 1;
t2 = nums[i] < nums[i - 1] ? t2 + 1 : 1;
ans = Math.max(ans, t1, t2);
}
return ans;
}
|
3,105 |
Longest Strictly Increasing or Strictly Decreasing Subarray
|
Easy
|
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p>
<p>Hence, we return <code>2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p>
<p>Hence, we return <code>3</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>1 <= nums[i] <= 50</code></li>
</ul>
|
Array
|
Python
|
class Solution:
def longestMonotonicSubarray(self, nums: List[int]) -> int:
ans = t = 1
for i, x in enumerate(nums[1:]):
if nums[i] < x:
t += 1
ans = max(ans, t)
else:
t = 1
t = 1
for i, x in enumerate(nums[1:]):
if nums[i] > x:
t += 1
ans = max(ans, t)
else:
t = 1
return ans
|
3,105 |
Longest Strictly Increasing or Strictly Decreasing Subarray
|
Easy
|
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p>
<p>Hence, we return <code>2</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p>
<p><strong>Output:</strong> <span class="example-io">1</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p>
<p>Hence, we return <code>1</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p>
<p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p>
<p>Hence, we return <code>3</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 50</code></li>
<li><code>1 <= nums[i] <= 50</code></li>
</ul>
|
Array
|
TypeScript
|
function longestMonotonicSubarray(nums: number[]): number {
const n = nums.length;
let ans = 1;
for (let i = 1, t1 = 1, t2 = 1; i < n; i++) {
t1 = nums[i] > nums[i - 1] ? t1 + 1 : 1;
t2 = nums[i] < nums[i - 1] ? t2 + 1 : 1;
ans = Math.max(ans, t1, t2);
}
return ans;
}
|
3,106 |
Lexicographically Smallest String After Operations With Constraint
|
Medium
|
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p>
<p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p>
<ul>
<li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>'a'</code> to <code>'z'</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li>
</ul>
<p>For example, <code>distance("ab", "cd") == 4</code>, and <code>distance("a", "z") == 1</code>.</p>
<p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p>
<p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zbbz", k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">"aaaz"</span></p>
<p><strong>Explanation:</strong></p>
<p>Change <code>s</code> to <code>"aaaz"</code>. The distance between <code>"zbbz"</code> and <code>"aaaz"</code> is equal to <code>k = 3</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "xaxcd", k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"aawcd"</span></p>
<p><strong>Explanation:</strong></p>
<p>The distance between "xaxcd" and "aawcd" is equal to k = 4.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "lol", k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">"lol"</span></p>
<p><strong>Explanation:</strong></p>
<p>It's impossible to change any character as <code>k = 0</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 100</code></li>
<li><code>0 <= k <= 2000</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Greedy; String
|
C++
|
class Solution {
public:
string getSmallestString(string s, int k) {
for (int i = 0; i < s.size(); ++i) {
char c1 = s[i];
for (char c2 = 'a'; c2 < c1; ++c2) {
int d = min(c1 - c2, 26 - c1 + c2);
if (d <= k) {
s[i] = c2;
k -= d;
break;
}
}
}
return s;
}
};
|
3,106 |
Lexicographically Smallest String After Operations With Constraint
|
Medium
|
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p>
<p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p>
<ul>
<li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>'a'</code> to <code>'z'</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li>
</ul>
<p>For example, <code>distance("ab", "cd") == 4</code>, and <code>distance("a", "z") == 1</code>.</p>
<p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p>
<p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zbbz", k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">"aaaz"</span></p>
<p><strong>Explanation:</strong></p>
<p>Change <code>s</code> to <code>"aaaz"</code>. The distance between <code>"zbbz"</code> and <code>"aaaz"</code> is equal to <code>k = 3</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "xaxcd", k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"aawcd"</span></p>
<p><strong>Explanation:</strong></p>
<p>The distance between "xaxcd" and "aawcd" is equal to k = 4.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "lol", k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">"lol"</span></p>
<p><strong>Explanation:</strong></p>
<p>It's impossible to change any character as <code>k = 0</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 100</code></li>
<li><code>0 <= k <= 2000</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Greedy; String
|
Go
|
func getSmallestString(s string, k int) string {
cs := []byte(s)
for i, c1 := range cs {
for c2 := byte('a'); c2 < c1; c2++ {
d := int(min(c1-c2, 26-c1+c2))
if d <= k {
cs[i] = c2
k -= d
break
}
}
}
return string(cs)
}
|
3,106 |
Lexicographically Smallest String After Operations With Constraint
|
Medium
|
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p>
<p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p>
<ul>
<li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>'a'</code> to <code>'z'</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li>
</ul>
<p>For example, <code>distance("ab", "cd") == 4</code>, and <code>distance("a", "z") == 1</code>.</p>
<p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p>
<p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zbbz", k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">"aaaz"</span></p>
<p><strong>Explanation:</strong></p>
<p>Change <code>s</code> to <code>"aaaz"</code>. The distance between <code>"zbbz"</code> and <code>"aaaz"</code> is equal to <code>k = 3</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "xaxcd", k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"aawcd"</span></p>
<p><strong>Explanation:</strong></p>
<p>The distance between "xaxcd" and "aawcd" is equal to k = 4.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "lol", k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">"lol"</span></p>
<p><strong>Explanation:</strong></p>
<p>It's impossible to change any character as <code>k = 0</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 100</code></li>
<li><code>0 <= k <= 2000</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Greedy; String
|
Java
|
class Solution {
public String getSmallestString(String s, int k) {
char[] cs = s.toCharArray();
for (int i = 0; i < cs.length; ++i) {
char c1 = cs[i];
for (char c2 = 'a'; c2 < c1; ++c2) {
int d = Math.min(c1 - c2, 26 - c1 + c2);
if (d <= k) {
cs[i] = c2;
k -= d;
break;
}
}
}
return new String(cs);
}
}
|
3,106 |
Lexicographically Smallest String After Operations With Constraint
|
Medium
|
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p>
<p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p>
<ul>
<li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>'a'</code> to <code>'z'</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li>
</ul>
<p>For example, <code>distance("ab", "cd") == 4</code>, and <code>distance("a", "z") == 1</code>.</p>
<p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p>
<p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zbbz", k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">"aaaz"</span></p>
<p><strong>Explanation:</strong></p>
<p>Change <code>s</code> to <code>"aaaz"</code>. The distance between <code>"zbbz"</code> and <code>"aaaz"</code> is equal to <code>k = 3</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "xaxcd", k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"aawcd"</span></p>
<p><strong>Explanation:</strong></p>
<p>The distance between "xaxcd" and "aawcd" is equal to k = 4.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "lol", k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">"lol"</span></p>
<p><strong>Explanation:</strong></p>
<p>It's impossible to change any character as <code>k = 0</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 100</code></li>
<li><code>0 <= k <= 2000</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Greedy; String
|
Python
|
class Solution:
def getSmallestString(self, s: str, k: int) -> str:
cs = list(s)
for i, c1 in enumerate(s):
for c2 in ascii_lowercase:
if c2 >= c1:
break
d = min(ord(c1) - ord(c2), 26 - ord(c1) + ord(c2))
if d <= k:
cs[i] = c2
k -= d
break
return "".join(cs)
|
3,106 |
Lexicographically Smallest String After Operations With Constraint
|
Medium
|
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p>
<p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p>
<ul>
<li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>'a'</code> to <code>'z'</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li>
</ul>
<p>For example, <code>distance("ab", "cd") == 4</code>, and <code>distance("a", "z") == 1</code>.</p>
<p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p>
<p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zbbz", k = 3</span></p>
<p><strong>Output:</strong> <span class="example-io">"aaaz"</span></p>
<p><strong>Explanation:</strong></p>
<p>Change <code>s</code> to <code>"aaaz"</code>. The distance between <code>"zbbz"</code> and <code>"aaaz"</code> is equal to <code>k = 3</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "xaxcd", k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">"aawcd"</span></p>
<p><strong>Explanation:</strong></p>
<p>The distance between "xaxcd" and "aawcd" is equal to k = 4.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "lol", k = 0</span></p>
<p><strong>Output:</strong> <span class="example-io">"lol"</span></p>
<p><strong>Explanation:</strong></p>
<p>It's impossible to change any character as <code>k = 0</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 100</code></li>
<li><code>0 <= k <= 2000</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
Greedy; String
|
TypeScript
|
function getSmallestString(s: string, k: number): string {
const cs: string[] = s.split('');
for (let i = 0; i < s.length; ++i) {
for (let j = 97; j < s[i].charCodeAt(0); ++j) {
const d = Math.min(s[i].charCodeAt(0) - j, 26 - s[i].charCodeAt(0) + j);
if (d <= k) {
cs[i] = String.fromCharCode(j);
k -= d;
break;
}
}
}
return cs.join('');
}
|
3,107 |
Minimum Operations to Make Median of Array Equal to K
|
Medium
|
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p>
<p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p>
<p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The median of the array is already equal to <code>k</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Greedy; Array; Sorting
|
C++
|
class Solution {
public:
long long minOperationsToMakeMedianK(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int n = nums.size();
int m = n >> 1;
long long ans = abs(nums[m] - k);
if (nums[m] > k) {
for (int i = m - 1; i >= 0 && nums[i] > k; --i) {
ans += nums[i] - k;
}
} else {
for (int i = m + 1; i < n && nums[i] < k; ++i) {
ans += k - nums[i];
}
}
return ans;
}
};
|
3,107 |
Minimum Operations to Make Median of Array Equal to K
|
Medium
|
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p>
<p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p>
<p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The median of the array is already equal to <code>k</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Greedy; Array; Sorting
|
Go
|
func minOperationsToMakeMedianK(nums []int, k int) (ans int64) {
sort.Ints(nums)
n := len(nums)
m := n >> 1
ans = int64(abs(nums[m] - k))
if nums[m] > k {
for i := m - 1; i >= 0 && nums[i] > k; i-- {
ans += int64(nums[i] - k)
}
} else {
for i := m + 1; i < n && nums[i] < k; i++ {
ans += int64(k - nums[i])
}
}
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
3,107 |
Minimum Operations to Make Median of Array Equal to K
|
Medium
|
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p>
<p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p>
<p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The median of the array is already equal to <code>k</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Greedy; Array; Sorting
|
Java
|
class Solution {
public long minOperationsToMakeMedianK(int[] nums, int k) {
Arrays.sort(nums);
int n = nums.length;
int m = n >> 1;
long ans = Math.abs(nums[m] - k);
if (nums[m] > k) {
for (int i = m - 1; i >= 0 && nums[i] > k; --i) {
ans += nums[i] - k;
}
} else {
for (int i = m + 1; i < n && nums[i] < k; ++i) {
ans += k - nums[i];
}
}
return ans;
}
}
|
3,107 |
Minimum Operations to Make Median of Array Equal to K
|
Medium
|
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p>
<p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p>
<p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The median of the array is already equal to <code>k</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Greedy; Array; Sorting
|
Python
|
class Solution:
def minOperationsToMakeMedianK(self, nums: List[int], k: int) -> int:
nums.sort()
n = len(nums)
m = n >> 1
ans = abs(nums[m] - k)
if nums[m] > k:
for i in range(m - 1, -1, -1):
if nums[i] <= k:
break
ans += nums[i] - k
else:
for i in range(m + 1, n):
if nums[i] >= k:
break
ans += k - nums[i]
return ans
|
3,107 |
Minimum Operations to Make Median of Array Equal to K
|
Medium
|
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p>
<p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p>
<p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">2</span></p>
<p><strong>Explanation:</strong></p>
<p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong></p>
<p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>The median of the array is already equal to <code>k</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= k <= 10<sup>9</sup></code></li>
</ul>
|
Greedy; Array; Sorting
|
TypeScript
|
function minOperationsToMakeMedianK(nums: number[], k: number): number {
nums.sort((a, b) => a - b);
const n = nums.length;
const m = n >> 1;
let ans = Math.abs(nums[m] - k);
if (nums[m] > k) {
for (let i = m - 1; i >= 0 && nums[i] > k; --i) {
ans += nums[i] - k;
}
} else {
for (let i = m + 1; i < n && nums[i] < k; ++i) {
ans += k - nums[i];
}
}
return ans;
}
|
3,108 |
Minimum Cost Walk in Weighted Graph
|
Hard
|
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p>
<p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p>
<p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.</p>
<p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> & w<sub>1</sub> & w<sub>2</sub> & ... & w<sub>k</sub></code>, where <code>&</code> denotes the bitwise <code>AND</code> operator.</p>
<p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p>
<p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" />
<p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0->1</code> (weight 7), <code>1->2</code> (weight 1), <code>2->1</code> (weight 1), <code>1->3</code> (weight 7).</p>
<p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p>
<p><strong class="example">Example 2:</strong></p>
</div>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[0]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" />
<p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1->2</code> (weight 1), <code>2->1</code> (weight 6), <code>1->2</code> (weight 1).</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 10<sup>5</sup></code></li>
<li><code>0 <= edges.length <= 10<sup>5</sup></code></li>
<li><code>edges[i].length == 3</code></li>
<li><code>0 <= u<sub>i</sub>, v<sub>i</sub> <= n - 1</code></li>
<li><code>u<sub>i</sub> != v<sub>i</sub></code></li>
<li><code>0 <= w<sub>i</sub> <= 10<sup>5</sup></code></li>
<li><code>1 <= query.length <= 10<sup>5</sup></code></li>
<li><code>query[i].length == 2</code></li>
<li><code>0 <= s<sub>i</sub>, t<sub>i</sub> <= n - 1</code></li>
<li><code>s<sub>i</sub> != t<sub>i</sub></code></li>
</ul>
|
Bit Manipulation; Union Find; Graph; Array
|
C++
|
class UnionFind {
public:
UnionFind(int n) {
p = vector<int>(n);
size = vector<int>(n, 1);
iota(p.begin(), p.end(), 0);
}
bool unite(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
int getSize(int x) {
return size[find(x)];
}
private:
vector<int> p, size;
};
class Solution {
public:
vector<int> minimumCost(int n, vector<vector<int>>& edges, vector<vector<int>>& query) {
g = vector<int>(n, -1);
uf = new UnionFind(n);
for (auto& e : edges) {
uf->unite(e[0], e[1]);
}
for (auto& e : edges) {
int root = uf->find(e[0]);
g[root] &= e[2];
}
vector<int> ans;
for (auto& q : query) {
ans.push_back(f(q[0], q[1]));
}
return ans;
}
private:
UnionFind* uf;
vector<int> g;
int f(int u, int v) {
if (u == v) {
return 0;
}
int a = uf->find(u), b = uf->find(v);
return a == b ? g[a] : -1;
}
};
|
3,108 |
Minimum Cost Walk in Weighted Graph
|
Hard
|
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p>
<p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p>
<p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.</p>
<p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> & w<sub>1</sub> & w<sub>2</sub> & ... & w<sub>k</sub></code>, where <code>&</code> denotes the bitwise <code>AND</code> operator.</p>
<p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p>
<p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" />
<p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0->1</code> (weight 7), <code>1->2</code> (weight 1), <code>2->1</code> (weight 1), <code>1->3</code> (weight 7).</p>
<p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p>
<p><strong class="example">Example 2:</strong></p>
</div>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[0]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" />
<p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1->2</code> (weight 1), <code>2->1</code> (weight 6), <code>1->2</code> (weight 1).</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 10<sup>5</sup></code></li>
<li><code>0 <= edges.length <= 10<sup>5</sup></code></li>
<li><code>edges[i].length == 3</code></li>
<li><code>0 <= u<sub>i</sub>, v<sub>i</sub> <= n - 1</code></li>
<li><code>u<sub>i</sub> != v<sub>i</sub></code></li>
<li><code>0 <= w<sub>i</sub> <= 10<sup>5</sup></code></li>
<li><code>1 <= query.length <= 10<sup>5</sup></code></li>
<li><code>query[i].length == 2</code></li>
<li><code>0 <= s<sub>i</sub>, t<sub>i</sub> <= n - 1</code></li>
<li><code>s<sub>i</sub> != t<sub>i</sub></code></li>
</ul>
|
Bit Manipulation; Union Find; Graph; Array
|
Go
|
type unionFind struct {
p, size []int
}
func newUnionFind(n int) *unionFind {
p := make([]int, n)
size := make([]int, n)
for i := range p {
p[i] = i
size[i] = 1
}
return &unionFind{p, size}
}
func (uf *unionFind) find(x int) int {
if uf.p[x] != x {
uf.p[x] = uf.find(uf.p[x])
}
return uf.p[x]
}
func (uf *unionFind) union(a, b int) bool {
pa, pb := uf.find(a), uf.find(b)
if pa == pb {
return false
}
if uf.size[pa] > uf.size[pb] {
uf.p[pb] = pa
uf.size[pa] += uf.size[pb]
} else {
uf.p[pa] = pb
uf.size[pb] += uf.size[pa]
}
return true
}
func (uf *unionFind) getSize(x int) int {
return uf.size[uf.find(x)]
}
func minimumCost(n int, edges [][]int, query [][]int) (ans []int) {
uf := newUnionFind(n)
g := make([]int, n)
for i := range g {
g[i] = -1
}
for _, e := range edges {
uf.union(e[0], e[1])
}
for _, e := range edges {
root := uf.find(e[0])
g[root] &= e[2]
}
f := func(u, v int) int {
if u == v {
return 0
}
a, b := uf.find(u), uf.find(v)
if a == b {
return g[a]
}
return -1
}
for _, q := range query {
ans = append(ans, f(q[0], q[1]))
}
return
}
|
3,108 |
Minimum Cost Walk in Weighted Graph
|
Hard
|
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p>
<p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p>
<p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.</p>
<p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> & w<sub>1</sub> & w<sub>2</sub> & ... & w<sub>k</sub></code>, where <code>&</code> denotes the bitwise <code>AND</code> operator.</p>
<p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p>
<p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" />
<p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0->1</code> (weight 7), <code>1->2</code> (weight 1), <code>2->1</code> (weight 1), <code>1->3</code> (weight 7).</p>
<p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p>
<p><strong class="example">Example 2:</strong></p>
</div>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[0]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" />
<p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1->2</code> (weight 1), <code>2->1</code> (weight 6), <code>1->2</code> (weight 1).</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 10<sup>5</sup></code></li>
<li><code>0 <= edges.length <= 10<sup>5</sup></code></li>
<li><code>edges[i].length == 3</code></li>
<li><code>0 <= u<sub>i</sub>, v<sub>i</sub> <= n - 1</code></li>
<li><code>u<sub>i</sub> != v<sub>i</sub></code></li>
<li><code>0 <= w<sub>i</sub> <= 10<sup>5</sup></code></li>
<li><code>1 <= query.length <= 10<sup>5</sup></code></li>
<li><code>query[i].length == 2</code></li>
<li><code>0 <= s<sub>i</sub>, t<sub>i</sub> <= n - 1</code></li>
<li><code>s<sub>i</sub> != t<sub>i</sub></code></li>
</ul>
|
Bit Manipulation; Union Find; Graph; Array
|
Java
|
class UnionFind {
private final int[] p;
private final int[] size;
public UnionFind(int n) {
p = new int[n];
size = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
size[i] = 1;
}
}
public int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
public boolean union(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
public int size(int x) {
return size[find(x)];
}
}
class Solution {
private UnionFind uf;
private int[] g;
public int[] minimumCost(int n, int[][] edges, int[][] query) {
uf = new UnionFind(n);
for (var e : edges) {
uf.union(e[0], e[1]);
}
g = new int[n];
Arrays.fill(g, -1);
for (var e : edges) {
int root = uf.find(e[0]);
g[root] &= e[2];
}
int m = query.length;
int[] ans = new int[m];
for (int i = 0; i < m; ++i) {
int s = query[i][0], t = query[i][1];
ans[i] = f(s, t);
}
return ans;
}
private int f(int u, int v) {
if (u == v) {
return 0;
}
int a = uf.find(u), b = uf.find(v);
return a == b ? g[a] : -1;
}
}
|
3,108 |
Minimum Cost Walk in Weighted Graph
|
Hard
|
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p>
<p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p>
<p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.</p>
<p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> & w<sub>1</sub> & w<sub>2</sub> & ... & w<sub>k</sub></code>, where <code>&</code> denotes the bitwise <code>AND</code> operator.</p>
<p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p>
<p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" />
<p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0->1</code> (weight 7), <code>1->2</code> (weight 1), <code>2->1</code> (weight 1), <code>1->3</code> (weight 7).</p>
<p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p>
<p><strong class="example">Example 2:</strong></p>
</div>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[0]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" />
<p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1->2</code> (weight 1), <code>2->1</code> (weight 6), <code>1->2</code> (weight 1).</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 10<sup>5</sup></code></li>
<li><code>0 <= edges.length <= 10<sup>5</sup></code></li>
<li><code>edges[i].length == 3</code></li>
<li><code>0 <= u<sub>i</sub>, v<sub>i</sub> <= n - 1</code></li>
<li><code>u<sub>i</sub> != v<sub>i</sub></code></li>
<li><code>0 <= w<sub>i</sub> <= 10<sup>5</sup></code></li>
<li><code>1 <= query.length <= 10<sup>5</sup></code></li>
<li><code>query[i].length == 2</code></li>
<li><code>0 <= s<sub>i</sub>, t<sub>i</sub> <= n - 1</code></li>
<li><code>s<sub>i</sub> != t<sub>i</sub></code></li>
</ul>
|
Bit Manipulation; Union Find; Graph; Array
|
Python
|
class UnionFind:
def __init__(self, n):
self.p = list(range(n))
self.size = [1] * n
def find(self, x):
if self.p[x] != x:
self.p[x] = self.find(self.p[x])
return self.p[x]
def union(self, a, b):
pa, pb = self.find(a), self.find(b)
if pa == pb:
return False
if self.size[pa] > self.size[pb]:
self.p[pb] = pa
self.size[pa] += self.size[pb]
else:
self.p[pa] = pb
self.size[pb] += self.size[pa]
return True
class Solution:
def minimumCost(
self, n: int, edges: List[List[int]], query: List[List[int]]
) -> List[int]:
g = [-1] * n
uf = UnionFind(n)
for u, v, _ in edges:
uf.union(u, v)
for u, _, w in edges:
root = uf.find(u)
g[root] &= w
def f(u: int, v: int) -> int:
if u == v:
return 0
a, b = uf.find(u), uf.find(v)
return g[a] if a == b else -1
return [f(s, t) for s, t in query]
|
3,108 |
Minimum Cost Walk in Weighted Graph
|
Hard
|
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p>
<p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p>
<p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.</p>
<p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> & w<sub>1</sub> & w<sub>2</sub> & ... & w<sub>k</sub></code>, where <code>&</code> denotes the bitwise <code>AND</code> operator.</p>
<p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p>
<p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" />
<p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0->1</code> (weight 7), <code>1->2</code> (weight 1), <code>2->1</code> (weight 1), <code>1->3</code> (weight 7).</p>
<p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p>
<p><strong class="example">Example 2:</strong></p>
</div>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p>
<p><strong>Output:</strong> <span class="example-io">[0]</span></p>
<p><strong>Explanation:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" />
<p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1->2</code> (weight 1), <code>2->1</code> (weight 6), <code>1->2</code> (weight 1).</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 10<sup>5</sup></code></li>
<li><code>0 <= edges.length <= 10<sup>5</sup></code></li>
<li><code>edges[i].length == 3</code></li>
<li><code>0 <= u<sub>i</sub>, v<sub>i</sub> <= n - 1</code></li>
<li><code>u<sub>i</sub> != v<sub>i</sub></code></li>
<li><code>0 <= w<sub>i</sub> <= 10<sup>5</sup></code></li>
<li><code>1 <= query.length <= 10<sup>5</sup></code></li>
<li><code>query[i].length == 2</code></li>
<li><code>0 <= s<sub>i</sub>, t<sub>i</sub> <= n - 1</code></li>
<li><code>s<sub>i</sub> != t<sub>i</sub></code></li>
</ul>
|
Bit Manipulation; Union Find; Graph; Array
|
TypeScript
|
class UnionFind {
p: number[];
size: number[];
constructor(n: number) {
this.p = Array(n)
.fill(0)
.map((_, i) => i);
this.size = Array(n).fill(1);
}
find(x: number): number {
if (this.p[x] !== x) {
this.p[x] = this.find(this.p[x]);
}
return this.p[x];
}
union(a: number, b: number): boolean {
const [pa, pb] = [this.find(a), this.find(b)];
if (pa === pb) {
return false;
}
if (this.size[pa] > this.size[pb]) {
this.p[pb] = pa;
this.size[pa] += this.size[pb];
} else {
this.p[pa] = pb;
this.size[pb] += this.size[pa];
}
return true;
}
getSize(x: number): number {
return this.size[this.find(x)];
}
}
function minimumCost(n: number, edges: number[][], query: number[][]): number[] {
const uf = new UnionFind(n);
const g: number[] = Array(n).fill(-1);
for (const [u, v, _] of edges) {
uf.union(u, v);
}
for (const [u, _, w] of edges) {
const root = uf.find(u);
g[root] &= w;
}
const f = (u: number, v: number): number => {
if (u === v) {
return 0;
}
const [a, b] = [uf.find(u), uf.find(v)];
return a === b ? g[a] : -1;
};
return query.map(([u, v]) => f(u, v));
}
|
3,109 |
Find the Index of Permutation
|
Medium
|
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p>
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only two permutations in the following order:</p>
<p><code>[1,2]</code>, <code>[2,1]</code><br />
<br />
And <code>[1,2]</code> is at index 0.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only six permutations in the following order:</p>
<p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br />
<br />
And <code>[3,1,2]</code> is at index 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n == perm.length <= 10<sup>5</sup></code></li>
<li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
C++
|
class BinaryIndexedTree {
private:
int n;
vector<int> c;
public:
BinaryIndexedTree(int n)
: n(n)
, c(n + 1) {}
void update(int x, int delta) {
for (; x <= n; x += x & -x) {
c[x] += delta;
}
}
int query(int x) {
int s = 0;
for (; x > 0; x -= x & -x) {
s += c[x];
}
return s;
}
};
class Solution {
public:
int getPermutationIndex(vector<int>& perm) {
const int mod = 1e9 + 7;
using ll = long long;
ll ans = 0;
int n = perm.size();
BinaryIndexedTree tree(n + 1);
ll f[n];
f[0] = 1;
for (int i = 1; i < n; ++i) {
f[i] = f[i - 1] * i % mod;
}
for (int i = 0; i < n; ++i) {
int cnt = perm[i] - 1 - tree.query(perm[i]);
ans += cnt * f[n - i - 1] % mod;
tree.update(perm[i], 1);
}
return ans % mod;
}
};
|
3,109 |
Find the Index of Permutation
|
Medium
|
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p>
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only two permutations in the following order:</p>
<p><code>[1,2]</code>, <code>[2,1]</code><br />
<br />
And <code>[1,2]</code> is at index 0.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only six permutations in the following order:</p>
<p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br />
<br />
And <code>[3,1,2]</code> is at index 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n == perm.length <= 10<sup>5</sup></code></li>
<li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
Go
|
type BinaryIndexedTree struct {
n int
c []int
}
func NewBinaryIndexedTree(n int) *BinaryIndexedTree {
return &BinaryIndexedTree{n: n, c: make([]int, n+1)}
}
func (bit *BinaryIndexedTree) update(x, delta int) {
for ; x <= bit.n; x += x & -x {
bit.c[x] += delta
}
}
func (bit *BinaryIndexedTree) query(x int) int {
s := 0
for ; x > 0; x -= x & -x {
s += bit.c[x]
}
return s
}
func getPermutationIndex(perm []int) (ans int) {
const mod int = 1e9 + 7
n := len(perm)
tree := NewBinaryIndexedTree(n + 1)
f := make([]int, n)
f[0] = 1
for i := 1; i < n; i++ {
f[i] = f[i-1] * i % mod
}
for i, x := range perm {
cnt := x - 1 - tree.query(x)
ans += cnt * f[n-1-i] % mod
tree.update(x, 1)
}
return ans % mod
}
|
3,109 |
Find the Index of Permutation
|
Medium
|
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p>
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only two permutations in the following order:</p>
<p><code>[1,2]</code>, <code>[2,1]</code><br />
<br />
And <code>[1,2]</code> is at index 0.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only six permutations in the following order:</p>
<p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br />
<br />
And <code>[3,1,2]</code> is at index 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n == perm.length <= 10<sup>5</sup></code></li>
<li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
Java
|
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
this.c = new int[n + 1];
}
public void update(int x, int delta) {
for (; x <= n; x += x & -x) {
c[x] += delta;
}
}
public int query(int x) {
int s = 0;
for (; x > 0; x -= x & -x) {
s += c[x];
}
return s;
}
}
class Solution {
public int getPermutationIndex(int[] perm) {
final int mod = (int) 1e9 + 7;
long ans = 0;
int n = perm.length;
BinaryIndexedTree tree = new BinaryIndexedTree(n + 1);
long[] f = new long[n];
f[0] = 1;
for (int i = 1; i < n; ++i) {
f[i] = f[i - 1] * i % mod;
}
for (int i = 0; i < n; ++i) {
int cnt = perm[i] - 1 - tree.query(perm[i]);
ans = (ans + cnt * f[n - i - 1] % mod) % mod;
tree.update(perm[i], 1);
}
return (int) ans;
}
}
|
3,109 |
Find the Index of Permutation
|
Medium
|
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p>
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only two permutations in the following order:</p>
<p><code>[1,2]</code>, <code>[2,1]</code><br />
<br />
And <code>[1,2]</code> is at index 0.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only six permutations in the following order:</p>
<p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br />
<br />
And <code>[3,1,2]</code> is at index 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n == perm.length <= 10<sup>5</sup></code></li>
<li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
Python
|
class BinaryIndexedTree:
__slots__ = "n", "c"
def __init__(self, n: int):
self.n = n
self.c = [0] * (n + 1)
def update(self, x: int, delta: int) -> None:
while x <= self.n:
self.c[x] += delta
x += x & -x
def query(self, x: int) -> int:
s = 0
while x:
s += self.c[x]
x -= x & -x
return s
class Solution:
def getPermutationIndex(self, perm: List[int]) -> int:
mod = 10**9 + 7
ans, n = 0, len(perm)
tree = BinaryIndexedTree(n + 1)
f = [1] * n
for i in range(1, n):
f[i] = f[i - 1] * i % mod
for i, x in enumerate(perm):
cnt = x - 1 - tree.query(x)
ans += cnt * f[n - i - 1] % mod
tree.update(x, 1)
return ans % mod
|
3,109 |
Find the Index of Permutation
|
Medium
|
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p>
<p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only two permutations in the following order:</p>
<p><code>[1,2]</code>, <code>[2,1]</code><br />
<br />
And <code>[1,2]</code> is at index 0.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">4</span></p>
<p><strong>Explanation:</strong></p>
<p>There are only six permutations in the following order:</p>
<p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br />
<br />
And <code>[3,1,2]</code> is at index 4.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n == perm.length <= 10<sup>5</sup></code></li>
<li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
TypeScript
|
class BinaryIndexedTree {
private n: number;
private c: number[];
constructor(n: number) {
this.n = n;
this.c = Array(n + 1).fill(0);
}
update(x: number, delta: number): void {
for (; x <= this.n; x += x & -x) {
this.c[x] += delta;
}
}
query(x: number): number {
let s = 0;
for (; x > 0; x -= x & -x) {
s += this.c[x];
}
return s;
}
}
function getPermutationIndex(perm: number[]): number {
const mod = 1e9 + 7;
const n = perm.length;
const tree = new BinaryIndexedTree(n + 1);
let ans = 0;
const f: number[] = Array(n).fill(1);
for (let i = 1; i < n; ++i) {
f[i] = (f[i - 1] * i) % mod;
}
for (let i = 0; i < n; ++i) {
const cnt = perm[i] - 1 - tree.query(perm[i]);
ans = (ans + cnt * f[n - i - 1]) % mod;
tree.update(perm[i], 1);
}
return ans % mod;
}
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
C++
|
class Solution {
public:
int scoreOfString(string s) {
int ans = 0;
for (int i = 1; i < s.size(); ++i) {
ans += abs(s[i] - s[i - 1]);
}
return ans;
}
};
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
C#
|
public class Solution {
public int ScoreOfString(string s) {
int ans = 0;
for (int i = 1; i < s.Length; ++i) {
ans += Math.Abs(s[i] - s[i - 1]);
}
return ans;
}
}
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
Go
|
func scoreOfString(s string) (ans int) {
for i := 1; i < len(s); i++ {
ans += abs(int(s[i-1]) - int(s[i]))
}
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
Java
|
class Solution {
public int scoreOfString(String s) {
int ans = 0;
for (int i = 1; i < s.length(); ++i) {
ans += Math.abs(s.charAt(i - 1) - s.charAt(i));
}
return ans;
}
}
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
PHP
|
class Solution {
/**
* @param String $s
* @return Integer
*/
function scoreOfString($s) {
$ans = 0;
$n = strlen($s);
for ($i = 1; $i < $n; ++$i) {
$ans += abs(ord($s[$i]) - ord($s[$i - 1]));
}
return $ans;
}
}
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
Python
|
class Solution:
def scoreOfString(self, s: str) -> int:
return sum(abs(a - b) for a, b in pairwise(map(ord, s)))
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
Rust
|
impl Solution {
pub fn score_of_string(s: String) -> i32 {
s.as_bytes()
.windows(2)
.map(|w| (w[0] as i32 - w[1] as i32).abs())
.sum()
}
}
|
3,110 |
Score of a String
|
Easy
|
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p>
<p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "hello"</span></p>
<p><strong>Output:</strong> <span class="example-io">13</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'h' = 104</code>, <code>'e' = 101</code>, <code>'l' = 108</code>, <code>'o' = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "zaz"</span></p>
<p><strong>Output:</strong> <span class="example-io">50</span></p>
<p><strong>Explanation:</strong></p>
<p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>'z' = 122</code>, <code>'a' = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= s.length <= 100</code></li>
<li><code>s</code> consists only of lowercase English letters.</li>
</ul>
|
String
|
TypeScript
|
function scoreOfString(s: string): number {
let ans = 0;
for (let i = 1; i < s.length; ++i) {
ans += Math.abs(s.charCodeAt(i) - s.charCodeAt(i - 1));
}
return ans;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.