id
int64 1
3.65k
| title
stringlengths 3
79
| difficulty
stringclasses 3
values | description
stringlengths 430
25.4k
| tags
stringlengths 0
131
| language
stringclasses 19
values | solution
stringlengths 47
20.6k
|
---|---|---|---|---|---|---|
324 |
Wiggle Sort II
|
Medium
|
<p>Given an integer array <code>nums</code>, reorder it such that <code>nums[0] < nums[1] > nums[2] < nums[3]...</code>.</p>
<p>You may assume the input array always has a valid answer.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,1,1,6,4]
<strong>Output:</strong> [1,6,1,5,1,4]
<strong>Explanation:</strong> [1,4,1,5,1,6] is also accepted.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3,2,2,3,1]
<strong>Output:</strong> [2,3,1,3,1,2]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>4</sup></code></li>
<li><code>0 <= nums[i] <= 5000</code></li>
<li>It is guaranteed that there will be an answer for the given input <code>nums</code>.</li>
</ul>
<p> </p>
<strong>Follow Up:</strong> Can you do it in <code>O(n)</code> time and/or <strong>in-place</strong> with <code>O(1)</code> extra space?
|
Greedy; Array; Divide and Conquer; Quickselect; Sorting
|
Python
|
class Solution:
def wiggleSort(self, nums: List[int]) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
arr = sorted(nums)
n = len(arr)
i, j = (n - 1) >> 1, n - 1
for k in range(n):
if k % 2 == 0:
nums[k] = arr[i]
i -= 1
else:
nums[k] = arr[j]
j -= 1
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
C++
|
class Solution {
public:
int maxSubArrayLen(vector<int>& nums, int k) {
unordered_map<long long, int> d{{0, -1}};
int ans = 0;
long long s = 0;
for (int i = 0; i < nums.size(); ++i) {
s += nums[i];
if (d.count(s - k)) {
ans = max(ans, i - d[s - k]);
}
if (!d.count(s)) {
d[s] = i;
}
}
return ans;
}
};
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
C#
|
public class Solution {
public int MaxSubArrayLen(int[] nums, int k) {
var d = new Dictionary<int, int>();
d[0] = -1;
int ans = 0;
int s = 0;
for (int i = 0; i < nums.Length; i++) {
s += nums[i];
if (d.ContainsKey(s - k)) {
ans = Math.Max(ans, i - d[s - k]);
}
if (!d.ContainsKey(s)) {
d[s] = i;
}
}
return ans;
}
}
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
Go
|
func maxSubArrayLen(nums []int, k int) (ans int) {
d := map[int]int{0: -1}
s := 0
for i, x := range nums {
s += x
if j, ok := d[s-k]; ok && ans < i-j {
ans = i - j
}
if _, ok := d[s]; !ok {
d[s] = i
}
}
return
}
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
Java
|
class Solution {
public int maxSubArrayLen(int[] nums, int k) {
Map<Long, Integer> d = new HashMap<>();
d.put(0L, -1);
int ans = 0;
long s = 0;
for (int i = 0; i < nums.length; ++i) {
s += nums[i];
ans = Math.max(ans, i - d.getOrDefault(s - k, i));
d.putIfAbsent(s, i);
}
return ans;
}
}
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
JavaScript
|
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var maxSubArrayLen = function (nums, k) {
const d = new Map();
d.set(0, -1);
let ans = 0;
let s = 0;
for (let i = 0; i < nums.length; ++i) {
s += nums[i];
if (d.has(s - k)) {
ans = Math.max(ans, i - d.get(s - k));
}
if (!d.has(s)) {
d.set(s, i);
}
}
return ans;
};
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
Python
|
class Solution:
def maxSubArrayLen(self, nums: List[int], k: int) -> int:
d = {0: -1}
ans = s = 0
for i, x in enumerate(nums):
s += x
if s - k in d:
ans = max(ans, i - d[s - k])
if s not in d:
d[s] = i
return ans
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
Rust
|
use std::collections::HashMap;
impl Solution {
pub fn max_sub_array_len(nums: Vec<i32>, k: i32) -> i32 {
let mut d = HashMap::new();
d.insert(0, -1);
let mut ans = 0;
let mut s = 0;
for (i, &x) in nums.iter().enumerate() {
s += x;
if let Some(&j) = d.get(&(s - k)) {
ans = ans.max((i as i32) - j);
}
d.entry(s).or_insert(i as i32);
}
ans
}
}
|
325 |
Maximum Size Subarray Sum Equals k
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the maximum length of a </em><span data-keyword="subarray"><em>subarray</em></span><em> that sums to</em> <code>k</code>. If there is not one, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,-1,5,-2,3], k = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> The subarray [1, -1, 5, -2] sums to 3 and is the longest.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1,2,1], k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [-1, 2] sums to 1 and is the longest.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 2 * 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= k <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Prefix Sum
|
TypeScript
|
function maxSubArrayLen(nums: number[], k: number): number {
const d: Map<number, number> = new Map();
d.set(0, -1);
let ans = 0;
let s = 0;
for (let i = 0; i < nums.length; ++i) {
s += nums[i];
if (d.has(s - k)) {
ans = Math.max(ans, i - d.get(s - k)!);
}
if (!d.has(s)) {
d.set(s, i);
}
}
return ans;
}
|
326 |
Power of Three
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of three. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of three, if there exists an integer <code>x</code> such that <code>n == 3<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 27
<strong>Output:</strong> true
<strong>Explanation:</strong> 27 = 3<sup>3</sup>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = -1
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = (-1).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Recursion; Math
|
C++
|
class Solution {
public:
bool isPowerOfThree(int n) {
while (n > 2) {
if (n % 3) {
return false;
}
n /= 3;
}
return n == 1;
}
};
|
326 |
Power of Three
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of three. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of three, if there exists an integer <code>x</code> such that <code>n == 3<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 27
<strong>Output:</strong> true
<strong>Explanation:</strong> 27 = 3<sup>3</sup>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = -1
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = (-1).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Recursion; Math
|
Go
|
func isPowerOfThree(n int) bool {
for n > 2 {
if n%3 != 0 {
return false
}
n /= 3
}
return n == 1
}
|
326 |
Power of Three
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of three. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of three, if there exists an integer <code>x</code> such that <code>n == 3<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 27
<strong>Output:</strong> true
<strong>Explanation:</strong> 27 = 3<sup>3</sup>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = -1
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = (-1).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Recursion; Math
|
Java
|
class Solution {
public boolean isPowerOfThree(int n) {
while (n > 2) {
if (n % 3 != 0) {
return false;
}
n /= 3;
}
return n == 1;
}
}
|
326 |
Power of Three
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of three. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of three, if there exists an integer <code>x</code> such that <code>n == 3<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 27
<strong>Output:</strong> true
<strong>Explanation:</strong> 27 = 3<sup>3</sup>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = -1
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = (-1).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Recursion; Math
|
JavaScript
|
/**
* @param {number} n
* @return {boolean}
*/
var isPowerOfThree = function (n) {
while (n > 2) {
if (n % 3 !== 0) {
return false;
}
n = Math.floor(n / 3);
}
return n === 1;
};
|
326 |
Power of Three
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of three. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of three, if there exists an integer <code>x</code> such that <code>n == 3<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 27
<strong>Output:</strong> true
<strong>Explanation:</strong> 27 = 3<sup>3</sup>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = -1
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = (-1).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Recursion; Math
|
Python
|
class Solution:
def isPowerOfThree(self, n: int) -> bool:
while n > 2:
if n % 3:
return False
n //= 3
return n == 1
|
326 |
Power of Three
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of three. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of three, if there exists an integer <code>x</code> such that <code>n == 3<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 27
<strong>Output:</strong> true
<strong>Explanation:</strong> 27 = 3<sup>3</sup>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = -1
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = (-1).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Recursion; Math
|
Rust
|
impl Solution {
pub fn is_power_of_three(mut n: i32) -> bool {
while n > 2 {
if n % 3 != 0 {
return false;
}
n /= 3;
}
n == 1
}
}
|
326 |
Power of Three
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of three. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of three, if there exists an integer <code>x</code> such that <code>n == 3<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 27
<strong>Output:</strong> true
<strong>Explanation:</strong> 27 = 3<sup>3</sup>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = -1
<strong>Output:</strong> false
<strong>Explanation:</strong> There is no x where 3<sup>x</sup> = (-1).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Recursion; Math
|
TypeScript
|
function isPowerOfThree(n: number): boolean {
while (n > 2) {
if (n % 3 !== 0) {
return false;
}
n = Math.floor(n / 3);
}
return n === 1;
}
|
327 |
Count of Range Sum
|
Hard
|
<p>Given an integer array <code>nums</code> and two integers <code>lower</code> and <code>upper</code>, return <em>the number of range sums that lie in</em> <code>[lower, upper]</code> <em>inclusive</em>.</p>
<p>Range sum <code>S(i, j)</code> is defined as the sum of the elements in <code>nums</code> between indices <code>i</code> and <code>j</code> inclusive, where <code>i <= j</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,5,-1], lower = -2, upper = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0], lower = 0, upper = 0
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li><code>-10<sup>5</sup> <= lower <= upper <= 10<sup>5</sup></code></li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit</strong> integer.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
C++
|
class BinaryIndexedTree {
public:
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) {}
void update(int x, int v) {
while (x <= n) {
c[x] += v;
x += x & -x;
}
}
int query(int x) {
int s = 0;
while (x) {
s += c[x];
x -= x & -x;
}
return s;
}
private:
int n;
vector<int> c;
};
class Solution {
public:
int countRangeSum(vector<int>& nums, int lower, int upper) {
using ll = long long;
int n = nums.size();
ll s[n + 1];
s[0] = 0;
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
ll arr[(n + 1) * 3];
for (int i = 0, j = 0; i <= n; ++i, j += 3) {
arr[j] = s[i];
arr[j + 1] = s[i] - lower;
arr[j + 2] = s[i] - upper;
}
sort(arr, arr + (n + 1) * 3);
int m = unique(arr, arr + (n + 1) * 3) - arr;
BinaryIndexedTree tree(m);
int ans = 0;
for (int i = 0; i <= n; ++i) {
int l = lower_bound(arr, arr + m, s[i] - upper) - arr + 1;
int r = lower_bound(arr, arr + m, s[i] - lower) - arr + 1;
ans += tree.query(r) - tree.query(l - 1);
tree.update(lower_bound(arr, arr + m, s[i]) - arr + 1, 1);
}
return ans;
}
};
|
327 |
Count of Range Sum
|
Hard
|
<p>Given an integer array <code>nums</code> and two integers <code>lower</code> and <code>upper</code>, return <em>the number of range sums that lie in</em> <code>[lower, upper]</code> <em>inclusive</em>.</p>
<p>Range sum <code>S(i, j)</code> is defined as the sum of the elements in <code>nums</code> between indices <code>i</code> and <code>j</code> inclusive, where <code>i <= j</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,5,-1], lower = -2, upper = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0], lower = 0, upper = 0
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li><code>-10<sup>5</sup> <= lower <= upper <= 10<sup>5</sup></code></li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit</strong> integer.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
Go
|
type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += x & -x
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= x & -x
}
return s
}
func countRangeSum(nums []int, lower int, upper int) (ans int) {
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
arr := make([]int, (n+1)*3)
for i, j := 0, 0; i <= n; i, j = i+1, j+3 {
arr[j] = s[i]
arr[j+1] = s[i] - lower
arr[j+2] = s[i] - upper
}
sort.Ints(arr)
m := 0
for i := range arr {
if i == 0 || arr[i] != arr[i-1] {
arr[m] = arr[i]
m++
}
}
arr = arr[:m]
tree := newBinaryIndexedTree(m)
for _, x := range s {
l := sort.SearchInts(arr, x-upper) + 1
r := sort.SearchInts(arr, x-lower) + 1
ans += tree.query(r) - tree.query(l-1)
tree.update(sort.SearchInts(arr, x)+1, 1)
}
return
}
|
327 |
Count of Range Sum
|
Hard
|
<p>Given an integer array <code>nums</code> and two integers <code>lower</code> and <code>upper</code>, return <em>the number of range sums that lie in</em> <code>[lower, upper]</code> <em>inclusive</em>.</p>
<p>Range sum <code>S(i, j)</code> is defined as the sum of the elements in <code>nums</code> between indices <code>i</code> and <code>j</code> inclusive, where <code>i <= j</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,5,-1], lower = -2, upper = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0], lower = 0, upper = 0
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li><code>-10<sup>5</sup> <= lower <= upper <= 10<sup>5</sup></code></li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit</strong> integer.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
Java
|
class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
this.c = new int[n + 1];
}
public void update(int x, int v) {
while (x <= n) {
c[x] += v;
x += x & -x;
}
}
public int query(int x) {
int s = 0;
while (x != 0) {
s += c[x];
x -= x & -x;
}
return s;
}
}
class Solution {
public int countRangeSum(int[] nums, int lower, int upper) {
int n = nums.length;
long[] s = new long[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
long[] arr = new long[n * 3 + 3];
for (int i = 0, j = 0; i <= n; ++i, j += 3) {
arr[j] = s[i];
arr[j + 1] = s[i] - lower;
arr[j + 2] = s[i] - upper;
}
Arrays.sort(arr);
int m = 0;
for (int i = 0; i < arr.length; ++i) {
if (i == 0 || arr[i] != arr[i - 1]) {
arr[m++] = arr[i];
}
}
BinaryIndexedTree tree = new BinaryIndexedTree(m);
int ans = 0;
for (long x : s) {
int l = search(arr, m, x - upper);
int r = search(arr, m, x - lower);
ans += tree.query(r) - tree.query(l - 1);
tree.update(search(arr, m, x), 1);
}
return ans;
}
private int search(long[] nums, int r, long x) {
int l = 0;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l + 1;
}
}
|
327 |
Count of Range Sum
|
Hard
|
<p>Given an integer array <code>nums</code> and two integers <code>lower</code> and <code>upper</code>, return <em>the number of range sums that lie in</em> <code>[lower, upper]</code> <em>inclusive</em>.</p>
<p>Range sum <code>S(i, j)</code> is defined as the sum of the elements in <code>nums</code> between indices <code>i</code> and <code>j</code> inclusive, where <code>i <= j</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,5,-1], lower = -2, upper = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0], lower = 0, upper = 0
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li><code>-10<sup>5</sup> <= lower <= upper <= 10<sup>5</sup></code></li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit</strong> integer.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
Python
|
class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
def update(self, x, v):
while x <= self.n:
self.c[x] += v
x += x & -x
def query(self, x):
s = 0
while x > 0:
s += self.c[x]
x -= x & -x
return s
class Solution:
def countRangeSum(self, nums: List[int], lower: int, upper: int) -> int:
s = list(accumulate(nums, initial=0))
arr = sorted(set(v for x in s for v in (x, x - lower, x - upper)))
tree = BinaryIndexedTree(len(arr))
ans = 0
for x in s:
l = bisect_left(arr, x - upper) + 1
r = bisect_left(arr, x - lower) + 1
ans += tree.query(r) - tree.query(l - 1)
tree.update(bisect_left(arr, x) + 1, 1)
return ans
|
327 |
Count of Range Sum
|
Hard
|
<p>Given an integer array <code>nums</code> and two integers <code>lower</code> and <code>upper</code>, return <em>the number of range sums that lie in</em> <code>[lower, upper]</code> <em>inclusive</em>.</p>
<p>Range sum <code>S(i, j)</code> is defined as the sum of the elements in <code>nums</code> between indices <code>i</code> and <code>j</code> inclusive, where <code>i <= j</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,5,-1], lower = -2, upper = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0], lower = 0, upper = 0
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li><code>-10<sup>5</sup> <= lower <= upper <= 10<sup>5</sup></code></li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit</strong> integer.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
|
TypeScript
|
class BinaryIndexedTree {
private n: number;
private c: number[];
constructor(n: number) {
this.n = n;
this.c = Array(n + 1).fill(0);
}
update(x: number, v: number) {
while (x <= this.n) {
this.c[x] += v;
x += x & -x;
}
}
query(x: number): number {
let s = 0;
while (x > 0) {
s += this.c[x];
x -= x & -x;
}
return s;
}
}
function countRangeSum(nums: number[], lower: number, upper: number): number {
const n = nums.length;
const s = Array(n + 1).fill(0);
for (let i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
let arr: number[] = Array((n + 1) * 3);
for (let i = 0, j = 0; i <= n; ++i, j += 3) {
arr[j] = s[i];
arr[j + 1] = s[i] - lower;
arr[j + 2] = s[i] - upper;
}
arr.sort((a, b) => a - b);
let m = 0;
for (let i = 0; i < arr.length; ++i) {
if (i === 0 || arr[i] !== arr[i - 1]) {
arr[m++] = arr[i];
}
}
arr = arr.slice(0, m);
const tree = new BinaryIndexedTree(m);
let ans = 0;
for (const x of s) {
const l = search(arr, m, x - upper);
const r = search(arr, m, x - lower);
ans += tree.query(r) - tree.query(l - 1);
tree.update(search(arr, m, x), 1);
}
return ans;
}
function search(nums: number[], r: number, x: number): number {
let l = 0;
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l + 1;
}
|
328 |
Odd Even Linked List
|
Medium
|
<p>Given the <code>head</code> of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return <em>the reordered list</em>.</p>
<p>The <strong>first</strong> node is considered <strong>odd</strong>, and the <strong>second</strong> node is <strong>even</strong>, and so on.</p>
<p>Note that the relative order inside both the even and odd groups should remain as it was in the input.</p>
<p>You must solve the problem in <code>O(1)</code> extra space complexity and <code>O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven-linked-list.jpg" style="width: 300px; height: 123px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [1,3,5,2,4]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven2-linked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [2,1,3,5,6,4,7]
<strong>Output:</strong> [2,3,6,7,1,5,4]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the linked list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>6</sup> <= Node.val <= 10<sup>6</sup></code></li>
</ul>
|
Linked List
|
C++
|
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* oddEvenList(ListNode* head) {
if (!head) {
return nullptr;
}
ListNode* a = head;
ListNode *b = head->next, *c = b;
while (b && b->next) {
a->next = b->next;
a = a->next;
b->next = a->next;
b = b->next;
}
a->next = c;
return head;
}
};
|
328 |
Odd Even Linked List
|
Medium
|
<p>Given the <code>head</code> of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return <em>the reordered list</em>.</p>
<p>The <strong>first</strong> node is considered <strong>odd</strong>, and the <strong>second</strong> node is <strong>even</strong>, and so on.</p>
<p>Note that the relative order inside both the even and odd groups should remain as it was in the input.</p>
<p>You must solve the problem in <code>O(1)</code> extra space complexity and <code>O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven-linked-list.jpg" style="width: 300px; height: 123px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [1,3,5,2,4]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven2-linked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [2,1,3,5,6,4,7]
<strong>Output:</strong> [2,3,6,7,1,5,4]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the linked list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>6</sup> <= Node.val <= 10<sup>6</sup></code></li>
</ul>
|
Linked List
|
Go
|
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func oddEvenList(head *ListNode) *ListNode {
if head == nil {
return nil
}
a := head
b, c := head.Next, head.Next
for b != nil && b.Next != nil {
a.Next = b.Next
a = a.Next
b.Next = a.Next
b = b.Next
}
a.Next = c
return head
}
|
328 |
Odd Even Linked List
|
Medium
|
<p>Given the <code>head</code> of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return <em>the reordered list</em>.</p>
<p>The <strong>first</strong> node is considered <strong>odd</strong>, and the <strong>second</strong> node is <strong>even</strong>, and so on.</p>
<p>Note that the relative order inside both the even and odd groups should remain as it was in the input.</p>
<p>You must solve the problem in <code>O(1)</code> extra space complexity and <code>O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven-linked-list.jpg" style="width: 300px; height: 123px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [1,3,5,2,4]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven2-linked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [2,1,3,5,6,4,7]
<strong>Output:</strong> [2,3,6,7,1,5,4]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the linked list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>6</sup> <= Node.val <= 10<sup>6</sup></code></li>
</ul>
|
Linked List
|
Java
|
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode oddEvenList(ListNode head) {
if (head == null) {
return null;
}
ListNode a = head;
ListNode b = head.next, c = b;
while (b != null && b.next != null) {
a.next = b.next;
a = a.next;
b.next = a.next;
b = b.next;
}
a.next = c;
return head;
}
}
|
328 |
Odd Even Linked List
|
Medium
|
<p>Given the <code>head</code> of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return <em>the reordered list</em>.</p>
<p>The <strong>first</strong> node is considered <strong>odd</strong>, and the <strong>second</strong> node is <strong>even</strong>, and so on.</p>
<p>Note that the relative order inside both the even and odd groups should remain as it was in the input.</p>
<p>You must solve the problem in <code>O(1)</code> extra space complexity and <code>O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven-linked-list.jpg" style="width: 300px; height: 123px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [1,3,5,2,4]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven2-linked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [2,1,3,5,6,4,7]
<strong>Output:</strong> [2,3,6,7,1,5,4]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the linked list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>6</sup> <= Node.val <= 10<sup>6</sup></code></li>
</ul>
|
Linked List
|
Python
|
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def oddEvenList(self, head: Optional[ListNode]) -> Optional[ListNode]:
if head is None:
return None
a = head
b = c = head.next
while b and b.next:
a.next = b.next
a = a.next
b.next = a.next
b = b.next
a.next = c
return head
|
328 |
Odd Even Linked List
|
Medium
|
<p>Given the <code>head</code> of a singly linked list, group all the nodes with odd indices together followed by the nodes with even indices, and return <em>the reordered list</em>.</p>
<p>The <strong>first</strong> node is considered <strong>odd</strong>, and the <strong>second</strong> node is <strong>even</strong>, and so on.</p>
<p>Note that the relative order inside both the even and odd groups should remain as it was in the input.</p>
<p>You must solve the problem in <code>O(1)</code> extra space complexity and <code>O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven-linked-list.jpg" style="width: 300px; height: 123px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [1,3,5,2,4]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0328.Odd%20Even%20Linked%20List/images/oddeven2-linked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [2,1,3,5,6,4,7]
<strong>Output:</strong> [2,3,6,7,1,5,4]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the linked list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>6</sup> <= Node.val <= 10<sup>6</sup></code></li>
</ul>
|
Linked List
|
TypeScript
|
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function oddEvenList(head: ListNode | null): ListNode | null {
if (!head) {
return null;
}
let [a, b, c] = [head, head.next, head.next];
while (b && b.next) {
a.next = b.next;
a = a.next;
b.next = a.next;
b = b.next;
}
a.next = c;
return head;
}
|
329 |
Longest Increasing Path in a Matrix
|
Hard
|
<p>Given an <code>m x n</code> integers <code>matrix</code>, return <em>the length of the longest increasing path in </em><code>matrix</code>.</p>
<p>From each cell, you can either move in four directions: left, right, up, or down. You <strong>may not</strong> move <strong>diagonally</strong> or move <strong>outside the boundary</strong> (i.e., wrap-around is not allowed).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/grid1.jpg" style="width: 242px; height: 242px;" />
<pre>
<strong>Input:</strong> matrix = [[9,9,4],[6,6,8],[2,1,1]]
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest increasing path is <code>[1, 2, 6, 9]</code>.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/tmp-grid.jpg" style="width: 253px; height: 253px;" />
<pre>
<strong>Input:</strong> matrix = [[3,4,5],[3,2,6],[2,2,1]]
<strong>Output:</strong> 4
<strong>Explanation: </strong>The longest increasing path is <code>[3, 4, 5, 6]</code>. Moving diagonally is not allowed.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [[1]]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 200</code></li>
<li><code>0 <= matrix[i][j] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort; Memoization; Array; Dynamic Programming; Matrix
|
C++
|
class Solution {
public:
int longestIncreasingPath(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
int f[m][n];
memset(f, 0, sizeof(f));
int ans = 0;
int dirs[5] = {-1, 0, 1, 0, -1};
function<int(int, int)> dfs = [&](int i, int j) -> int {
if (f[i][j]) {
return f[i][j];
}
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
f[i][j] = max(f[i][j], dfs(x, y));
}
}
return ++f[i][j];
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = max(ans, dfs(i, j));
}
}
return ans;
}
};
|
329 |
Longest Increasing Path in a Matrix
|
Hard
|
<p>Given an <code>m x n</code> integers <code>matrix</code>, return <em>the length of the longest increasing path in </em><code>matrix</code>.</p>
<p>From each cell, you can either move in four directions: left, right, up, or down. You <strong>may not</strong> move <strong>diagonally</strong> or move <strong>outside the boundary</strong> (i.e., wrap-around is not allowed).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/grid1.jpg" style="width: 242px; height: 242px;" />
<pre>
<strong>Input:</strong> matrix = [[9,9,4],[6,6,8],[2,1,1]]
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest increasing path is <code>[1, 2, 6, 9]</code>.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/tmp-grid.jpg" style="width: 253px; height: 253px;" />
<pre>
<strong>Input:</strong> matrix = [[3,4,5],[3,2,6],[2,2,1]]
<strong>Output:</strong> 4
<strong>Explanation: </strong>The longest increasing path is <code>[3, 4, 5, 6]</code>. Moving diagonally is not allowed.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [[1]]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 200</code></li>
<li><code>0 <= matrix[i][j] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort; Memoization; Array; Dynamic Programming; Matrix
|
Go
|
func longestIncreasingPath(matrix [][]int) (ans int) {
m, n := len(matrix), len(matrix[0])
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
dirs := [5]int{-1, 0, 1, 0, -1}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if f[i][j] != 0 {
return f[i][j]
}
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if 0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j] {
f[i][j] = max(f[i][j], dfs(x, y))
}
}
f[i][j]++
return f[i][j]
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
ans = max(ans, dfs(i, j))
}
}
return
}
|
329 |
Longest Increasing Path in a Matrix
|
Hard
|
<p>Given an <code>m x n</code> integers <code>matrix</code>, return <em>the length of the longest increasing path in </em><code>matrix</code>.</p>
<p>From each cell, you can either move in four directions: left, right, up, or down. You <strong>may not</strong> move <strong>diagonally</strong> or move <strong>outside the boundary</strong> (i.e., wrap-around is not allowed).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/grid1.jpg" style="width: 242px; height: 242px;" />
<pre>
<strong>Input:</strong> matrix = [[9,9,4],[6,6,8],[2,1,1]]
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest increasing path is <code>[1, 2, 6, 9]</code>.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/tmp-grid.jpg" style="width: 253px; height: 253px;" />
<pre>
<strong>Input:</strong> matrix = [[3,4,5],[3,2,6],[2,2,1]]
<strong>Output:</strong> 4
<strong>Explanation: </strong>The longest increasing path is <code>[3, 4, 5, 6]</code>. Moving diagonally is not allowed.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [[1]]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 200</code></li>
<li><code>0 <= matrix[i][j] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort; Memoization; Array; Dynamic Programming; Matrix
|
Java
|
class Solution {
private int m;
private int n;
private int[][] matrix;
private int[][] f;
public int longestIncreasingPath(int[][] matrix) {
m = matrix.length;
n = matrix[0].length;
f = new int[m][n];
this.matrix = matrix;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
}
private int dfs(int i, int j) {
if (f[i][j] != 0) {
return f[i][j];
}
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k];
int y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
f[i][j] = Math.max(f[i][j], dfs(x, y));
}
}
return ++f[i][j];
}
}
|
329 |
Longest Increasing Path in a Matrix
|
Hard
|
<p>Given an <code>m x n</code> integers <code>matrix</code>, return <em>the length of the longest increasing path in </em><code>matrix</code>.</p>
<p>From each cell, you can either move in four directions: left, right, up, or down. You <strong>may not</strong> move <strong>diagonally</strong> or move <strong>outside the boundary</strong> (i.e., wrap-around is not allowed).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/grid1.jpg" style="width: 242px; height: 242px;" />
<pre>
<strong>Input:</strong> matrix = [[9,9,4],[6,6,8],[2,1,1]]
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest increasing path is <code>[1, 2, 6, 9]</code>.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/tmp-grid.jpg" style="width: 253px; height: 253px;" />
<pre>
<strong>Input:</strong> matrix = [[3,4,5],[3,2,6],[2,2,1]]
<strong>Output:</strong> 4
<strong>Explanation: </strong>The longest increasing path is <code>[3, 4, 5, 6]</code>. Moving diagonally is not allowed.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [[1]]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 200</code></li>
<li><code>0 <= matrix[i][j] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort; Memoization; Array; Dynamic Programming; Matrix
|
Python
|
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
@cache
def dfs(i: int, j: int) -> int:
ans = 0
for a, b in pairwise((-1, 0, 1, 0, -1)):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and matrix[x][y] > matrix[i][j]:
ans = max(ans, dfs(x, y))
return ans + 1
m, n = len(matrix), len(matrix[0])
return max(dfs(i, j) for i in range(m) for j in range(n))
|
329 |
Longest Increasing Path in a Matrix
|
Hard
|
<p>Given an <code>m x n</code> integers <code>matrix</code>, return <em>the length of the longest increasing path in </em><code>matrix</code>.</p>
<p>From each cell, you can either move in four directions: left, right, up, or down. You <strong>may not</strong> move <strong>diagonally</strong> or move <strong>outside the boundary</strong> (i.e., wrap-around is not allowed).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/grid1.jpg" style="width: 242px; height: 242px;" />
<pre>
<strong>Input:</strong> matrix = [[9,9,4],[6,6,8],[2,1,1]]
<strong>Output:</strong> 4
<strong>Explanation:</strong> The longest increasing path is <code>[1, 2, 6, 9]</code>.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0329.Longest%20Increasing%20Path%20in%20a%20Matrix/images/tmp-grid.jpg" style="width: 253px; height: 253px;" />
<pre>
<strong>Input:</strong> matrix = [[3,4,5],[3,2,6],[2,2,1]]
<strong>Output:</strong> 4
<strong>Explanation: </strong>The longest increasing path is <code>[3, 4, 5, 6]</code>. Moving diagonally is not allowed.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [[1]]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 200</code></li>
<li><code>0 <= matrix[i][j] <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort; Memoization; Array; Dynamic Programming; Matrix
|
TypeScript
|
function longestIncreasingPath(matrix: number[][]): number {
const m = matrix.length;
const n = matrix[0].length;
const f: number[][] = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
const dirs = [-1, 0, 1, 0, -1];
const dfs = (i: number, j: number): number => {
if (f[i][j] > 0) {
return f[i][j];
}
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
f[i][j] = Math.max(f[i][j], dfs(x, y));
}
}
return ++f[i][j];
};
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
}
|
330 |
Patching Array
|
Hard
|
<p>Given a sorted integer array <code>nums</code> and an integer <code>n</code>, add/patch elements to the array such that any number in the range <code>[1, n]</code> inclusive can be formed by the sum of some elements in the array.</p>
<p>Return <em>the minimum number of patches required</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3], n = 6
<strong>Output:</strong> 1
Explanation:
Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,10], n = 20
<strong>Output:</strong> 2
Explanation: The two patches can be [2, 4].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,2], n = 5
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 1000</code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in <strong>ascending order</strong>.</li>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Greedy; Array
|
C++
|
class Solution {
public:
int minPatches(vector<int>& nums, int n) {
long long x = 1;
int ans = 0;
for (int i = 0; x <= n;) {
if (i < nums.size() && nums[i] <= x) {
x += nums[i++];
} else {
++ans;
x <<= 1;
}
}
return ans;
}
};
|
330 |
Patching Array
|
Hard
|
<p>Given a sorted integer array <code>nums</code> and an integer <code>n</code>, add/patch elements to the array such that any number in the range <code>[1, n]</code> inclusive can be formed by the sum of some elements in the array.</p>
<p>Return <em>the minimum number of patches required</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3], n = 6
<strong>Output:</strong> 1
Explanation:
Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,10], n = 20
<strong>Output:</strong> 2
Explanation: The two patches can be [2, 4].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,2], n = 5
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 1000</code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in <strong>ascending order</strong>.</li>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Greedy; Array
|
Go
|
func minPatches(nums []int, n int) (ans int) {
x := 1
for i := 0; x <= n; {
if i < len(nums) && nums[i] <= x {
x += nums[i]
i++
} else {
ans++
x <<= 1
}
}
return
}
|
330 |
Patching Array
|
Hard
|
<p>Given a sorted integer array <code>nums</code> and an integer <code>n</code>, add/patch elements to the array such that any number in the range <code>[1, n]</code> inclusive can be formed by the sum of some elements in the array.</p>
<p>Return <em>the minimum number of patches required</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3], n = 6
<strong>Output:</strong> 1
Explanation:
Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,10], n = 20
<strong>Output:</strong> 2
Explanation: The two patches can be [2, 4].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,2], n = 5
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 1000</code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in <strong>ascending order</strong>.</li>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Greedy; Array
|
Java
|
class Solution {
public int minPatches(int[] nums, int n) {
long x = 1;
int ans = 0;
for (int i = 0; x <= n;) {
if (i < nums.length && nums[i] <= x) {
x += nums[i++];
} else {
++ans;
x <<= 1;
}
}
return ans;
}
}
|
330 |
Patching Array
|
Hard
|
<p>Given a sorted integer array <code>nums</code> and an integer <code>n</code>, add/patch elements to the array such that any number in the range <code>[1, n]</code> inclusive can be formed by the sum of some elements in the array.</p>
<p>Return <em>the minimum number of patches required</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3], n = 6
<strong>Output:</strong> 1
Explanation:
Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,10], n = 20
<strong>Output:</strong> 2
Explanation: The two patches can be [2, 4].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,2], n = 5
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 1000</code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in <strong>ascending order</strong>.</li>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Greedy; Array
|
Python
|
class Solution:
def minPatches(self, nums: List[int], n: int) -> int:
x = 1
ans = i = 0
while x <= n:
if i < len(nums) and nums[i] <= x:
x += nums[i]
i += 1
else:
ans += 1
x <<= 1
return ans
|
330 |
Patching Array
|
Hard
|
<p>Given a sorted integer array <code>nums</code> and an integer <code>n</code>, add/patch elements to the array such that any number in the range <code>[1, n]</code> inclusive can be formed by the sum of some elements in the array.</p>
<p>Return <em>the minimum number of patches required</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,3], n = 6
<strong>Output:</strong> 1
Explanation:
Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,10], n = 20
<strong>Output:</strong> 2
Explanation: The two patches can be [2, 4].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,2], n = 5
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 1000</code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
<li><code>nums</code> is sorted in <strong>ascending order</strong>.</li>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Greedy; Array
|
TypeScript
|
function minPatches(nums: number[], n: number): number {
let x = 1;
let ans = 0;
for (let i = 0; x <= n; ) {
if (i < nums.length && nums[i] <= x) {
x += nums[i++];
} else {
++ans;
x *= 2;
}
}
return ans;
}
|
331 |
Verify Preorder Serialization of a Binary Tree
|
Medium
|
<p>One way to serialize a binary tree is to use <strong>preorder traversal</strong>. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as <code>'#'</code>.</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0331.Verify%20Preorder%20Serialization%20of%20a%20Binary%20Tree/images/pre-tree.jpg" style="width: 362px; height: 293px;" />
<p>For example, the above binary tree can be serialized to the string <code>"9,3,4,#,#,1,#,#,2,#,6,#,#"</code>, where <code>'#'</code> represents a null node.</p>
<p>Given a string of comma-separated values <code>preorder</code>, return <code>true</code> if it is a correct preorder traversal serialization of a binary tree.</p>
<p>It is <strong>guaranteed</strong> that each comma-separated value in the string must be either an integer or a character <code>'#'</code> representing null pointer.</p>
<p>You may assume that the input format is always valid.</p>
<ul>
<li>For example, it could never contain two consecutive commas, such as <code>"1,,3"</code>.</li>
</ul>
<p><strong>Note: </strong>You are not allowed to reconstruct the tree.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> preorder = "9,3,4,#,#,1,#,#,2,#,6,#,#"
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> preorder = "1,#"
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> preorder = "9,#,#,1"
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 10<sup>4</sup></code></li>
<li><code>preorder</code> consist of integers in the range <code>[0, 100]</code> and <code>'#'</code> separated by commas <code>','</code>.</li>
</ul>
|
Stack; Tree; String; Binary Tree
|
C++
|
class Solution {
public:
bool isValidSerialization(string preorder) {
vector<string> stk;
stringstream ss(preorder);
string s;
while (getline(ss, s, ',')) {
stk.push_back(s);
while (stk.size() >= 3 && stk[stk.size() - 1] == "#" && stk[stk.size() - 2] == "#" && stk[stk.size() - 3] != "#") {
stk.pop_back();
stk.pop_back();
stk.pop_back();
stk.push_back("#");
}
}
return stk.size() == 1 && stk[0] == "#";
}
};
|
331 |
Verify Preorder Serialization of a Binary Tree
|
Medium
|
<p>One way to serialize a binary tree is to use <strong>preorder traversal</strong>. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as <code>'#'</code>.</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0331.Verify%20Preorder%20Serialization%20of%20a%20Binary%20Tree/images/pre-tree.jpg" style="width: 362px; height: 293px;" />
<p>For example, the above binary tree can be serialized to the string <code>"9,3,4,#,#,1,#,#,2,#,6,#,#"</code>, where <code>'#'</code> represents a null node.</p>
<p>Given a string of comma-separated values <code>preorder</code>, return <code>true</code> if it is a correct preorder traversal serialization of a binary tree.</p>
<p>It is <strong>guaranteed</strong> that each comma-separated value in the string must be either an integer or a character <code>'#'</code> representing null pointer.</p>
<p>You may assume that the input format is always valid.</p>
<ul>
<li>For example, it could never contain two consecutive commas, such as <code>"1,,3"</code>.</li>
</ul>
<p><strong>Note: </strong>You are not allowed to reconstruct the tree.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> preorder = "9,3,4,#,#,1,#,#,2,#,6,#,#"
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> preorder = "1,#"
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> preorder = "9,#,#,1"
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 10<sup>4</sup></code></li>
<li><code>preorder</code> consist of integers in the range <code>[0, 100]</code> and <code>'#'</code> separated by commas <code>','</code>.</li>
</ul>
|
Stack; Tree; String; Binary Tree
|
Go
|
func isValidSerialization(preorder string) bool {
stk := []string{}
for _, s := range strings.Split(preorder, ",") {
stk = append(stk, s)
for len(stk) >= 3 && stk[len(stk)-1] == "#" && stk[len(stk)-2] == "#" && stk[len(stk)-3] != "#" {
stk = stk[:len(stk)-3]
stk = append(stk, "#")
}
}
return len(stk) == 1 && stk[0] == "#"
}
|
331 |
Verify Preorder Serialization of a Binary Tree
|
Medium
|
<p>One way to serialize a binary tree is to use <strong>preorder traversal</strong>. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as <code>'#'</code>.</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0331.Verify%20Preorder%20Serialization%20of%20a%20Binary%20Tree/images/pre-tree.jpg" style="width: 362px; height: 293px;" />
<p>For example, the above binary tree can be serialized to the string <code>"9,3,4,#,#,1,#,#,2,#,6,#,#"</code>, where <code>'#'</code> represents a null node.</p>
<p>Given a string of comma-separated values <code>preorder</code>, return <code>true</code> if it is a correct preorder traversal serialization of a binary tree.</p>
<p>It is <strong>guaranteed</strong> that each comma-separated value in the string must be either an integer or a character <code>'#'</code> representing null pointer.</p>
<p>You may assume that the input format is always valid.</p>
<ul>
<li>For example, it could never contain two consecutive commas, such as <code>"1,,3"</code>.</li>
</ul>
<p><strong>Note: </strong>You are not allowed to reconstruct the tree.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> preorder = "9,3,4,#,#,1,#,#,2,#,6,#,#"
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> preorder = "1,#"
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> preorder = "9,#,#,1"
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 10<sup>4</sup></code></li>
<li><code>preorder</code> consist of integers in the range <code>[0, 100]</code> and <code>'#'</code> separated by commas <code>','</code>.</li>
</ul>
|
Stack; Tree; String; Binary Tree
|
Java
|
class Solution {
public boolean isValidSerialization(String preorder) {
List<String> stk = new ArrayList<>();
for (String s : preorder.split(",")) {
stk.add(s);
while (stk.size() >= 3 && stk.get(stk.size() - 1).equals("#")
&& stk.get(stk.size() - 2).equals("#") && !stk.get(stk.size() - 3).equals("#")) {
stk.remove(stk.size() - 1);
stk.remove(stk.size() - 1);
stk.remove(stk.size() - 1);
stk.add("#");
}
}
return stk.size() == 1 && stk.get(0).equals("#");
}
}
|
331 |
Verify Preorder Serialization of a Binary Tree
|
Medium
|
<p>One way to serialize a binary tree is to use <strong>preorder traversal</strong>. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as <code>'#'</code>.</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0331.Verify%20Preorder%20Serialization%20of%20a%20Binary%20Tree/images/pre-tree.jpg" style="width: 362px; height: 293px;" />
<p>For example, the above binary tree can be serialized to the string <code>"9,3,4,#,#,1,#,#,2,#,6,#,#"</code>, where <code>'#'</code> represents a null node.</p>
<p>Given a string of comma-separated values <code>preorder</code>, return <code>true</code> if it is a correct preorder traversal serialization of a binary tree.</p>
<p>It is <strong>guaranteed</strong> that each comma-separated value in the string must be either an integer or a character <code>'#'</code> representing null pointer.</p>
<p>You may assume that the input format is always valid.</p>
<ul>
<li>For example, it could never contain two consecutive commas, such as <code>"1,,3"</code>.</li>
</ul>
<p><strong>Note: </strong>You are not allowed to reconstruct the tree.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> preorder = "9,3,4,#,#,1,#,#,2,#,6,#,#"
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> preorder = "1,#"
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> preorder = "9,#,#,1"
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 10<sup>4</sup></code></li>
<li><code>preorder</code> consist of integers in the range <code>[0, 100]</code> and <code>'#'</code> separated by commas <code>','</code>.</li>
</ul>
|
Stack; Tree; String; Binary Tree
|
Python
|
class Solution:
def isValidSerialization(self, preorder: str) -> bool:
stk = []
for c in preorder.split(","):
stk.append(c)
while len(stk) > 2 and stk[-1] == stk[-2] == "#" and stk[-3] != "#":
stk = stk[:-3]
stk.append("#")
return len(stk) == 1 and stk[0] == "#"
|
331 |
Verify Preorder Serialization of a Binary Tree
|
Medium
|
<p>One way to serialize a binary tree is to use <strong>preorder traversal</strong>. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as <code>'#'</code>.</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0331.Verify%20Preorder%20Serialization%20of%20a%20Binary%20Tree/images/pre-tree.jpg" style="width: 362px; height: 293px;" />
<p>For example, the above binary tree can be serialized to the string <code>"9,3,4,#,#,1,#,#,2,#,6,#,#"</code>, where <code>'#'</code> represents a null node.</p>
<p>Given a string of comma-separated values <code>preorder</code>, return <code>true</code> if it is a correct preorder traversal serialization of a binary tree.</p>
<p>It is <strong>guaranteed</strong> that each comma-separated value in the string must be either an integer or a character <code>'#'</code> representing null pointer.</p>
<p>You may assume that the input format is always valid.</p>
<ul>
<li>For example, it could never contain two consecutive commas, such as <code>"1,,3"</code>.</li>
</ul>
<p><strong>Note: </strong>You are not allowed to reconstruct the tree.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> preorder = "9,3,4,#,#,1,#,#,2,#,6,#,#"
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> preorder = "1,#"
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> preorder = "9,#,#,1"
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= preorder.length <= 10<sup>4</sup></code></li>
<li><code>preorder</code> consist of integers in the range <code>[0, 100]</code> and <code>'#'</code> separated by commas <code>','</code>.</li>
</ul>
|
Stack; Tree; String; Binary Tree
|
TypeScript
|
function isValidSerialization(preorder: string): boolean {
const stk: string[] = [];
for (const s of preorder.split(',')) {
stk.push(s);
while (stk.length >= 3 && stk.at(-1) === '#' && stk.at(-2) === '#' && stk.at(-3) !== '#') {
stk.splice(-3, 3, '#');
}
}
return stk.length === 1 && stk[0] === '#';
}
|
332 |
Reconstruct Itinerary
|
Hard
|
<p>You are given a list of airline <code>tickets</code> where <code>tickets[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> represent the departure and the arrival airports of one flight. Reconstruct the itinerary in order and return it.</p>
<p>All of the tickets belong to a man who departs from <code>"JFK"</code>, thus, the itinerary must begin with <code>"JFK"</code>. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string.</p>
<ul>
<li>For example, the itinerary <code>["JFK", "LGA"]</code> has a smaller lexical order than <code>["JFK", "LGB"]</code>.</li>
</ul>
<p>You may assume all tickets form at least one valid itinerary. You must use all the tickets once and only once.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary1-graph.jpg" style="width: 382px; height: 222px;" />
<pre>
<strong>Input:</strong> tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
<strong>Output:</strong> ["JFK","MUC","LHR","SFO","SJC"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary2-graph.jpg" style="width: 222px; height: 230px;" />
<pre>
<strong>Input:</strong> tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
<strong>Output:</strong> ["JFK","ATL","JFK","SFO","ATL","SFO"]
<strong>Explanation:</strong> Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"] but it is larger in lexical order.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= tickets.length <= 300</code></li>
<li><code>tickets[i].length == 2</code></li>
<li><code>from<sub>i</sub>.length == 3</code></li>
<li><code>to<sub>i</sub>.length == 3</code></li>
<li><code>from<sub>i</sub></code> and <code>to<sub>i</sub></code> consist of uppercase English letters.</li>
<li><code>from<sub>i</sub> != to<sub>i</sub></code></li>
</ul>
|
Depth-First Search; Graph; Eulerian Circuit
|
C++
|
class Solution {
public:
vector<string> findItinerary(vector<vector<string>>& tickets) {
sort(tickets.rbegin(), tickets.rend());
unordered_map<string, vector<string>> g;
for (const auto& ticket : tickets) {
g[ticket[0]].push_back(ticket[1]);
}
vector<string> ans;
auto dfs = [&](this auto&& dfs, string& f) -> void {
while (!g[f].empty()) {
string t = g[f].back();
g[f].pop_back();
dfs(t);
}
ans.emplace_back(f);
};
string f = "JFK";
dfs(f);
reverse(ans.begin(), ans.end());
return ans;
}
};
|
332 |
Reconstruct Itinerary
|
Hard
|
<p>You are given a list of airline <code>tickets</code> where <code>tickets[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> represent the departure and the arrival airports of one flight. Reconstruct the itinerary in order and return it.</p>
<p>All of the tickets belong to a man who departs from <code>"JFK"</code>, thus, the itinerary must begin with <code>"JFK"</code>. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string.</p>
<ul>
<li>For example, the itinerary <code>["JFK", "LGA"]</code> has a smaller lexical order than <code>["JFK", "LGB"]</code>.</li>
</ul>
<p>You may assume all tickets form at least one valid itinerary. You must use all the tickets once and only once.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary1-graph.jpg" style="width: 382px; height: 222px;" />
<pre>
<strong>Input:</strong> tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
<strong>Output:</strong> ["JFK","MUC","LHR","SFO","SJC"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary2-graph.jpg" style="width: 222px; height: 230px;" />
<pre>
<strong>Input:</strong> tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
<strong>Output:</strong> ["JFK","ATL","JFK","SFO","ATL","SFO"]
<strong>Explanation:</strong> Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"] but it is larger in lexical order.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= tickets.length <= 300</code></li>
<li><code>tickets[i].length == 2</code></li>
<li><code>from<sub>i</sub>.length == 3</code></li>
<li><code>to<sub>i</sub>.length == 3</code></li>
<li><code>from<sub>i</sub></code> and <code>to<sub>i</sub></code> consist of uppercase English letters.</li>
<li><code>from<sub>i</sub> != to<sub>i</sub></code></li>
</ul>
|
Depth-First Search; Graph; Eulerian Circuit
|
Go
|
func findItinerary(tickets [][]string) (ans []string) {
sort.Slice(tickets, func(i, j int) bool {
return tickets[i][0] > tickets[j][0] || (tickets[i][0] == tickets[j][0] && tickets[i][1] > tickets[j][1])
})
g := make(map[string][]string)
for _, ticket := range tickets {
g[ticket[0]] = append(g[ticket[0]], ticket[1])
}
var dfs func(f string)
dfs = func(f string) {
for len(g[f]) > 0 {
t := g[f][len(g[f])-1]
g[f] = g[f][:len(g[f])-1]
dfs(t)
}
ans = append(ans, f)
}
dfs("JFK")
for i := 0; i < len(ans)/2; i++ {
ans[i], ans[len(ans)-1-i] = ans[len(ans)-1-i], ans[i]
}
return
}
|
332 |
Reconstruct Itinerary
|
Hard
|
<p>You are given a list of airline <code>tickets</code> where <code>tickets[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> represent the departure and the arrival airports of one flight. Reconstruct the itinerary in order and return it.</p>
<p>All of the tickets belong to a man who departs from <code>"JFK"</code>, thus, the itinerary must begin with <code>"JFK"</code>. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string.</p>
<ul>
<li>For example, the itinerary <code>["JFK", "LGA"]</code> has a smaller lexical order than <code>["JFK", "LGB"]</code>.</li>
</ul>
<p>You may assume all tickets form at least one valid itinerary. You must use all the tickets once and only once.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary1-graph.jpg" style="width: 382px; height: 222px;" />
<pre>
<strong>Input:</strong> tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
<strong>Output:</strong> ["JFK","MUC","LHR","SFO","SJC"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary2-graph.jpg" style="width: 222px; height: 230px;" />
<pre>
<strong>Input:</strong> tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
<strong>Output:</strong> ["JFK","ATL","JFK","SFO","ATL","SFO"]
<strong>Explanation:</strong> Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"] but it is larger in lexical order.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= tickets.length <= 300</code></li>
<li><code>tickets[i].length == 2</code></li>
<li><code>from<sub>i</sub>.length == 3</code></li>
<li><code>to<sub>i</sub>.length == 3</code></li>
<li><code>from<sub>i</sub></code> and <code>to<sub>i</sub></code> consist of uppercase English letters.</li>
<li><code>from<sub>i</sub> != to<sub>i</sub></code></li>
</ul>
|
Depth-First Search; Graph; Eulerian Circuit
|
Java
|
class Solution {
private Map<String, List<String>> g = new HashMap<>();
private List<String> ans = new ArrayList<>();
public List<String> findItinerary(List<List<String>> tickets) {
Collections.sort(tickets, (a, b) -> b.get(1).compareTo(a.get(1)));
for (List<String> ticket : tickets) {
g.computeIfAbsent(ticket.get(0), k -> new ArrayList<>()).add(ticket.get(1));
}
dfs("JFK");
Collections.reverse(ans);
return ans;
}
private void dfs(String f) {
while (g.containsKey(f) && !g.get(f).isEmpty()) {
String t = g.get(f).remove(g.get(f).size() - 1);
dfs(t);
}
ans.add(f);
}
}
|
332 |
Reconstruct Itinerary
|
Hard
|
<p>You are given a list of airline <code>tickets</code> where <code>tickets[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> represent the departure and the arrival airports of one flight. Reconstruct the itinerary in order and return it.</p>
<p>All of the tickets belong to a man who departs from <code>"JFK"</code>, thus, the itinerary must begin with <code>"JFK"</code>. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string.</p>
<ul>
<li>For example, the itinerary <code>["JFK", "LGA"]</code> has a smaller lexical order than <code>["JFK", "LGB"]</code>.</li>
</ul>
<p>You may assume all tickets form at least one valid itinerary. You must use all the tickets once and only once.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary1-graph.jpg" style="width: 382px; height: 222px;" />
<pre>
<strong>Input:</strong> tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
<strong>Output:</strong> ["JFK","MUC","LHR","SFO","SJC"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary2-graph.jpg" style="width: 222px; height: 230px;" />
<pre>
<strong>Input:</strong> tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
<strong>Output:</strong> ["JFK","ATL","JFK","SFO","ATL","SFO"]
<strong>Explanation:</strong> Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"] but it is larger in lexical order.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= tickets.length <= 300</code></li>
<li><code>tickets[i].length == 2</code></li>
<li><code>from<sub>i</sub>.length == 3</code></li>
<li><code>to<sub>i</sub>.length == 3</code></li>
<li><code>from<sub>i</sub></code> and <code>to<sub>i</sub></code> consist of uppercase English letters.</li>
<li><code>from<sub>i</sub> != to<sub>i</sub></code></li>
</ul>
|
Depth-First Search; Graph; Eulerian Circuit
|
Python
|
class Solution:
def findItinerary(self, tickets: List[List[str]]) -> List[str]:
def dfs(f: str):
while g[f]:
dfs(g[f].pop())
ans.append(f)
g = defaultdict(list)
for f, t in sorted(tickets, reverse=True):
g[f].append(t)
ans = []
dfs("JFK")
return ans[::-1]
|
332 |
Reconstruct Itinerary
|
Hard
|
<p>You are given a list of airline <code>tickets</code> where <code>tickets[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> represent the departure and the arrival airports of one flight. Reconstruct the itinerary in order and return it.</p>
<p>All of the tickets belong to a man who departs from <code>"JFK"</code>, thus, the itinerary must begin with <code>"JFK"</code>. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string.</p>
<ul>
<li>For example, the itinerary <code>["JFK", "LGA"]</code> has a smaller lexical order than <code>["JFK", "LGB"]</code>.</li>
</ul>
<p>You may assume all tickets form at least one valid itinerary. You must use all the tickets once and only once.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary1-graph.jpg" style="width: 382px; height: 222px;" />
<pre>
<strong>Input:</strong> tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
<strong>Output:</strong> ["JFK","MUC","LHR","SFO","SJC"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0332.Reconstruct%20Itinerary/images/itinerary2-graph.jpg" style="width: 222px; height: 230px;" />
<pre>
<strong>Input:</strong> tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
<strong>Output:</strong> ["JFK","ATL","JFK","SFO","ATL","SFO"]
<strong>Explanation:</strong> Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"] but it is larger in lexical order.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= tickets.length <= 300</code></li>
<li><code>tickets[i].length == 2</code></li>
<li><code>from<sub>i</sub>.length == 3</code></li>
<li><code>to<sub>i</sub>.length == 3</code></li>
<li><code>from<sub>i</sub></code> and <code>to<sub>i</sub></code> consist of uppercase English letters.</li>
<li><code>from<sub>i</sub> != to<sub>i</sub></code></li>
</ul>
|
Depth-First Search; Graph; Eulerian Circuit
|
TypeScript
|
function findItinerary(tickets: string[][]): string[] {
const g: Record<string, string[]> = {};
tickets.sort((a, b) => b[1].localeCompare(a[1]));
for (const [f, t] of tickets) {
g[f] = g[f] || [];
g[f].push(t);
}
const ans: string[] = [];
const dfs = (f: string) => {
while (g[f] && g[f].length) {
const t = g[f].pop()!;
dfs(t);
}
ans.push(f);
};
dfs('JFK');
return ans.reverse();
}
|
333 |
Largest BST Subtree
|
Medium
|
<p>Given the root of a binary tree, find the largest <span data-keyword="subtree">subtree</span>, which is also a Binary Search Tree (BST), where the largest means subtree has the largest number of nodes.</p>
<p>A <strong>Binary Search Tree (BST)</strong> is a tree in which all the nodes follow the below-mentioned properties:</p>
<ul>
<li>The left subtree values are less than the value of their parent (root) node's value.</li>
<li>The right subtree values are greater than the value of their parent (root) node's value.</li>
</ul>
<p><strong>Note:</strong> A subtree must include all of its descendants.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<p><strong><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0333.Largest%20BST%20Subtree/images/tmp.jpg" style="width: 571px; height: 302px;" /></strong></p>
<pre>
<strong>Input:</strong> root = [10,5,15,1,8,null,7]
<strong>Output:</strong> 3
<strong>Explanation: </strong>The Largest BST Subtree in this case is the highlighted one. The return value is the subtree's size, which is 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [4,2,7,2,3,5,null,2,null,null,null,null,null,1]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Can you figure out ways to solve it with <code>O(n)</code> time complexity?</p>
|
Tree; Depth-First Search; Binary Search Tree; Dynamic Programming; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int ans;
int largestBSTSubtree(TreeNode* root) {
ans = 0;
dfs(root);
return ans;
}
vector<int> dfs(TreeNode* root) {
if (!root) return {INT_MAX, INT_MIN, 0};
auto left = dfs(root->left);
auto right = dfs(root->right);
if (left[1] < root->val && root->val < right[0]) {
ans = max(ans, left[2] + right[2] + 1);
return {min(root->val, left[0]), max(root->val, right[1]), left[2] + right[2] + 1};
}
return {INT_MIN, INT_MAX, 0};
}
};
|
333 |
Largest BST Subtree
|
Medium
|
<p>Given the root of a binary tree, find the largest <span data-keyword="subtree">subtree</span>, which is also a Binary Search Tree (BST), where the largest means subtree has the largest number of nodes.</p>
<p>A <strong>Binary Search Tree (BST)</strong> is a tree in which all the nodes follow the below-mentioned properties:</p>
<ul>
<li>The left subtree values are less than the value of their parent (root) node's value.</li>
<li>The right subtree values are greater than the value of their parent (root) node's value.</li>
</ul>
<p><strong>Note:</strong> A subtree must include all of its descendants.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<p><strong><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0333.Largest%20BST%20Subtree/images/tmp.jpg" style="width: 571px; height: 302px;" /></strong></p>
<pre>
<strong>Input:</strong> root = [10,5,15,1,8,null,7]
<strong>Output:</strong> 3
<strong>Explanation: </strong>The Largest BST Subtree in this case is the highlighted one. The return value is the subtree's size, which is 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [4,2,7,2,3,5,null,2,null,null,null,null,null,1]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Can you figure out ways to solve it with <code>O(n)</code> time complexity?</p>
|
Tree; Depth-First Search; Binary Search Tree; Dynamic Programming; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func largestBSTSubtree(root *TreeNode) int {
ans := 0
var dfs func(root *TreeNode) []int
dfs = func(root *TreeNode) []int {
if root == nil {
return []int{math.MaxInt32, math.MinInt32, 0}
}
left := dfs(root.Left)
right := dfs(root.Right)
if left[1] < root.Val && root.Val < right[0] {
ans = max(ans, left[2]+right[2]+1)
return []int{min(root.Val, left[0]), max(root.Val, right[1]), left[2] + right[2] + 1}
}
return []int{math.MinInt32, math.MaxInt32, 0}
}
dfs(root)
return ans
}
|
333 |
Largest BST Subtree
|
Medium
|
<p>Given the root of a binary tree, find the largest <span data-keyword="subtree">subtree</span>, which is also a Binary Search Tree (BST), where the largest means subtree has the largest number of nodes.</p>
<p>A <strong>Binary Search Tree (BST)</strong> is a tree in which all the nodes follow the below-mentioned properties:</p>
<ul>
<li>The left subtree values are less than the value of their parent (root) node's value.</li>
<li>The right subtree values are greater than the value of their parent (root) node's value.</li>
</ul>
<p><strong>Note:</strong> A subtree must include all of its descendants.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<p><strong><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0333.Largest%20BST%20Subtree/images/tmp.jpg" style="width: 571px; height: 302px;" /></strong></p>
<pre>
<strong>Input:</strong> root = [10,5,15,1,8,null,7]
<strong>Output:</strong> 3
<strong>Explanation: </strong>The Largest BST Subtree in this case is the highlighted one. The return value is the subtree's size, which is 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [4,2,7,2,3,5,null,2,null,null,null,null,null,1]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Can you figure out ways to solve it with <code>O(n)</code> time complexity?</p>
|
Tree; Depth-First Search; Binary Search Tree; Dynamic Programming; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans;
public int largestBSTSubtree(TreeNode root) {
ans = 0;
dfs(root);
return ans;
}
private int[] dfs(TreeNode root) {
if (root == null) {
return new int[] {Integer.MAX_VALUE, Integer.MIN_VALUE, 0};
}
int[] left = dfs(root.left);
int[] right = dfs(root.right);
if (left[1] < root.val && root.val < right[0]) {
ans = Math.max(ans, left[2] + right[2] + 1);
return new int[] {
Math.min(root.val, left[0]), Math.max(root.val, right[1]), left[2] + right[2] + 1};
}
return new int[] {Integer.MIN_VALUE, Integer.MAX_VALUE, 0};
}
}
|
333 |
Largest BST Subtree
|
Medium
|
<p>Given the root of a binary tree, find the largest <span data-keyword="subtree">subtree</span>, which is also a Binary Search Tree (BST), where the largest means subtree has the largest number of nodes.</p>
<p>A <strong>Binary Search Tree (BST)</strong> is a tree in which all the nodes follow the below-mentioned properties:</p>
<ul>
<li>The left subtree values are less than the value of their parent (root) node's value.</li>
<li>The right subtree values are greater than the value of their parent (root) node's value.</li>
</ul>
<p><strong>Note:</strong> A subtree must include all of its descendants.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<p><strong><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0333.Largest%20BST%20Subtree/images/tmp.jpg" style="width: 571px; height: 302px;" /></strong></p>
<pre>
<strong>Input:</strong> root = [10,5,15,1,8,null,7]
<strong>Output:</strong> 3
<strong>Explanation: </strong>The Largest BST Subtree in this case is the highlighted one. The return value is the subtree's size, which is 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = [4,2,7,2,3,5,null,2,null,null,null,null,null,1]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>-10<sup>4</sup> <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Can you figure out ways to solve it with <code>O(n)</code> time complexity?</p>
|
Tree; Depth-First Search; Binary Search Tree; Dynamic Programming; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def largestBSTSubtree(self, root: Optional[TreeNode]) -> int:
def dfs(root):
if root is None:
return inf, -inf, 0
lmi, lmx, ln = dfs(root.left)
rmi, rmx, rn = dfs(root.right)
nonlocal ans
if lmx < root.val < rmi:
ans = max(ans, ln + rn + 1)
return min(lmi, root.val), max(rmx, root.val), ln + rn + 1
return -inf, inf, 0
ans = 0
dfs(root)
return ans
|
334 |
Increasing Triplet Subsequence
|
Medium
|
<p>Given an integer array <code>nums</code>, return <code>true</code><em> if there exists a triple of indices </em><code>(i, j, k)</code><em> such that </em><code>i < j < k</code><em> and </em><code>nums[i] < nums[j] < nums[k]</code>. If no such indices exists, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> true
<strong>Explanation:</strong> Any triplet where i < j < k is valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,4,3,2,1]
<strong>Output:</strong> false
<strong>Explanation:</strong> No triplet exists.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,1,5,0,4,6]
<strong>Output:</strong> true
<strong>Explanation:</strong> The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you implement a solution that runs in <code>O(n)</code> time complexity and <code>O(1)</code> space complexity?
|
Greedy; Array
|
C++
|
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int mi = INT_MAX, mid = INT_MAX;
for (int num : nums) {
if (num > mid) return true;
if (num <= mi)
mi = num;
else
mid = num;
}
return false;
}
};
|
334 |
Increasing Triplet Subsequence
|
Medium
|
<p>Given an integer array <code>nums</code>, return <code>true</code><em> if there exists a triple of indices </em><code>(i, j, k)</code><em> such that </em><code>i < j < k</code><em> and </em><code>nums[i] < nums[j] < nums[k]</code>. If no such indices exists, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> true
<strong>Explanation:</strong> Any triplet where i < j < k is valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,4,3,2,1]
<strong>Output:</strong> false
<strong>Explanation:</strong> No triplet exists.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,1,5,0,4,6]
<strong>Output:</strong> true
<strong>Explanation:</strong> The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you implement a solution that runs in <code>O(n)</code> time complexity and <code>O(1)</code> space complexity?
|
Greedy; Array
|
Go
|
func increasingTriplet(nums []int) bool {
min, mid := math.MaxInt32, math.MaxInt32
for _, num := range nums {
if num > mid {
return true
}
if num <= min {
min = num
} else {
mid = num
}
}
return false
}
|
334 |
Increasing Triplet Subsequence
|
Medium
|
<p>Given an integer array <code>nums</code>, return <code>true</code><em> if there exists a triple of indices </em><code>(i, j, k)</code><em> such that </em><code>i < j < k</code><em> and </em><code>nums[i] < nums[j] < nums[k]</code>. If no such indices exists, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> true
<strong>Explanation:</strong> Any triplet where i < j < k is valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,4,3,2,1]
<strong>Output:</strong> false
<strong>Explanation:</strong> No triplet exists.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,1,5,0,4,6]
<strong>Output:</strong> true
<strong>Explanation:</strong> The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you implement a solution that runs in <code>O(n)</code> time complexity and <code>O(1)</code> space complexity?
|
Greedy; Array
|
Java
|
class Solution {
public boolean increasingTriplet(int[] nums) {
int n = nums.length;
int[] lmi = new int[n];
int[] rmx = new int[n];
lmi[0] = Integer.MAX_VALUE;
rmx[n - 1] = Integer.MIN_VALUE;
for (int i = 1; i < n; ++i) {
lmi[i] = Math.min(lmi[i - 1], nums[i - 1]);
}
for (int i = n - 2; i >= 0; --i) {
rmx[i] = Math.max(rmx[i + 1], nums[i + 1]);
}
for (int i = 0; i < n; ++i) {
if (lmi[i] < nums[i] && nums[i] < rmx[i]) {
return true;
}
}
return false;
}
}
|
334 |
Increasing Triplet Subsequence
|
Medium
|
<p>Given an integer array <code>nums</code>, return <code>true</code><em> if there exists a triple of indices </em><code>(i, j, k)</code><em> such that </em><code>i < j < k</code><em> and </em><code>nums[i] < nums[j] < nums[k]</code>. If no such indices exists, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> true
<strong>Explanation:</strong> Any triplet where i < j < k is valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,4,3,2,1]
<strong>Output:</strong> false
<strong>Explanation:</strong> No triplet exists.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,1,5,0,4,6]
<strong>Output:</strong> true
<strong>Explanation:</strong> The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you implement a solution that runs in <code>O(n)</code> time complexity and <code>O(1)</code> space complexity?
|
Greedy; Array
|
Python
|
class Solution:
def increasingTriplet(self, nums: List[int]) -> bool:
mi, mid = inf, inf
for num in nums:
if num > mid:
return True
if num <= mi:
mi = num
else:
mid = num
return False
|
334 |
Increasing Triplet Subsequence
|
Medium
|
<p>Given an integer array <code>nums</code>, return <code>true</code><em> if there exists a triple of indices </em><code>(i, j, k)</code><em> such that </em><code>i < j < k</code><em> and </em><code>nums[i] < nums[j] < nums[k]</code>. If no such indices exists, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> true
<strong>Explanation:</strong> Any triplet where i < j < k is valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,4,3,2,1]
<strong>Output:</strong> false
<strong>Explanation:</strong> No triplet exists.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,1,5,0,4,6]
<strong>Output:</strong> true
<strong>Explanation:</strong> The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you implement a solution that runs in <code>O(n)</code> time complexity and <code>O(1)</code> space complexity?
|
Greedy; Array
|
Rust
|
impl Solution {
pub fn increasing_triplet(nums: Vec<i32>) -> bool {
let n = nums.len();
if n < 3 {
return false;
}
let mut min = i32::MAX;
let mut mid = i32::MAX;
for num in nums.into_iter() {
if num <= min {
min = num;
} else if num <= mid {
mid = num;
} else {
return true;
}
}
false
}
}
|
334 |
Increasing Triplet Subsequence
|
Medium
|
<p>Given an integer array <code>nums</code>, return <code>true</code><em> if there exists a triple of indices </em><code>(i, j, k)</code><em> such that </em><code>i < j < k</code><em> and </em><code>nums[i] < nums[j] < nums[k]</code>. If no such indices exists, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> true
<strong>Explanation:</strong> Any triplet where i < j < k is valid.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,4,3,2,1]
<strong>Output:</strong> false
<strong>Explanation:</strong> No triplet exists.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,1,5,0,4,6]
<strong>Output:</strong> true
<strong>Explanation:</strong> The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>5</sup></code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you implement a solution that runs in <code>O(n)</code> time complexity and <code>O(1)</code> space complexity?
|
Greedy; Array
|
TypeScript
|
function increasingTriplet(nums: number[]): boolean {
let n = nums.length;
if (n < 3) return false;
let min = nums[0],
mid = Number.MAX_SAFE_INTEGER;
for (let num of nums) {
if (num <= min) {
min = num;
} else if (num <= mid) {
mid = num;
} else if (num > mid) {
return true;
}
}
return false;
}
|
335 |
Self Crossing
|
Hard
|
<p>You are given an array of integers <code>distance</code>.</p>
<p>You start at the point <code>(0, 0)</code> on an <strong>X-Y plane,</strong> and you move <code>distance[0]</code> meters to the north, then <code>distance[1]</code> meters to the west, <code>distance[2]</code> meters to the south, <code>distance[3]</code> meters to the east, and so on. In other words, after each move, your direction changes counter-clockwise.</p>
<p>Return <code>true</code> <em>if your path crosses itself or </em><code>false</code><em> if it does not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/11.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [2,1,1,2]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/22.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,2,3,4]
<strong>Output:</strong> false
<strong>Explanation:</strong> The path does not cross itself at any point.
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/33.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,1,1,2,1]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 0).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= distance.length <= 10<sup>5</sup></code></li>
<li><code>1 <= distance[i] <= 10<sup>5</sup></code></li>
</ul>
|
Geometry; Array; Math
|
C++
|
class Solution {
public:
bool isSelfCrossing(vector<int>& distance) {
vector<int> d = distance;
for (int i = 3; i < d.size(); ++i) {
if (d[i] >= d[i - 2] && d[i - 1] <= d[i - 3]) return true;
if (i >= 4 && d[i - 1] == d[i - 3] && d[i] + d[i - 4] >= d[i - 2]) return true;
if (i >= 5 && d[i - 2] >= d[i - 4] && d[i - 1] <= d[i - 3] && d[i] >= d[i - 2] - d[i - 4] && d[i - 1] + d[i - 5] >= d[i - 3]) return true;
}
return false;
}
};
|
335 |
Self Crossing
|
Hard
|
<p>You are given an array of integers <code>distance</code>.</p>
<p>You start at the point <code>(0, 0)</code> on an <strong>X-Y plane,</strong> and you move <code>distance[0]</code> meters to the north, then <code>distance[1]</code> meters to the west, <code>distance[2]</code> meters to the south, <code>distance[3]</code> meters to the east, and so on. In other words, after each move, your direction changes counter-clockwise.</p>
<p>Return <code>true</code> <em>if your path crosses itself or </em><code>false</code><em> if it does not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/11.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [2,1,1,2]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/22.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,2,3,4]
<strong>Output:</strong> false
<strong>Explanation:</strong> The path does not cross itself at any point.
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/33.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,1,1,2,1]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 0).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= distance.length <= 10<sup>5</sup></code></li>
<li><code>1 <= distance[i] <= 10<sup>5</sup></code></li>
</ul>
|
Geometry; Array; Math
|
C#
|
public class Solution {
public bool IsSelfCrossing(int[] x) {
for (var i = 3; i < x.Length; ++i)
{
if (x[i] >= x[i - 2] && x[i - 1] <= x[i - 3]) return true;
if (i > 3 && x[i] + x[i - 4] >= x[i - 2])
{
if (x[i - 1] == x[i - 3]) return true;
if (i > 4 && x[i - 2] >= x[i - 4] && x[i - 1] <= x[i - 3] && x[i - 1] + x[i - 5] >= x[i - 3]) return true;
}
}
return false;
}
}
|
335 |
Self Crossing
|
Hard
|
<p>You are given an array of integers <code>distance</code>.</p>
<p>You start at the point <code>(0, 0)</code> on an <strong>X-Y plane,</strong> and you move <code>distance[0]</code> meters to the north, then <code>distance[1]</code> meters to the west, <code>distance[2]</code> meters to the south, <code>distance[3]</code> meters to the east, and so on. In other words, after each move, your direction changes counter-clockwise.</p>
<p>Return <code>true</code> <em>if your path crosses itself or </em><code>false</code><em> if it does not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/11.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [2,1,1,2]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/22.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,2,3,4]
<strong>Output:</strong> false
<strong>Explanation:</strong> The path does not cross itself at any point.
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/33.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,1,1,2,1]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 0).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= distance.length <= 10<sup>5</sup></code></li>
<li><code>1 <= distance[i] <= 10<sup>5</sup></code></li>
</ul>
|
Geometry; Array; Math
|
Go
|
func isSelfCrossing(distance []int) bool {
d := distance
for i := 3; i < len(d); i++ {
if d[i] >= d[i-2] && d[i-1] <= d[i-3] {
return true
}
if i >= 4 && d[i-1] == d[i-3] && d[i]+d[i-4] >= d[i-2] {
return true
}
if i >= 5 && d[i-2] >= d[i-4] && d[i-1] <= d[i-3] && d[i] >= d[i-2]-d[i-4] && d[i-1]+d[i-5] >= d[i-3] {
return true
}
}
return false
}
|
335 |
Self Crossing
|
Hard
|
<p>You are given an array of integers <code>distance</code>.</p>
<p>You start at the point <code>(0, 0)</code> on an <strong>X-Y plane,</strong> and you move <code>distance[0]</code> meters to the north, then <code>distance[1]</code> meters to the west, <code>distance[2]</code> meters to the south, <code>distance[3]</code> meters to the east, and so on. In other words, after each move, your direction changes counter-clockwise.</p>
<p>Return <code>true</code> <em>if your path crosses itself or </em><code>false</code><em> if it does not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/11.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [2,1,1,2]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/22.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,2,3,4]
<strong>Output:</strong> false
<strong>Explanation:</strong> The path does not cross itself at any point.
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/33.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,1,1,2,1]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 0).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= distance.length <= 10<sup>5</sup></code></li>
<li><code>1 <= distance[i] <= 10<sup>5</sup></code></li>
</ul>
|
Geometry; Array; Math
|
Java
|
class Solution {
public boolean isSelfCrossing(int[] distance) {
int[] d = distance;
for (int i = 3; i < d.length; ++i) {
if (d[i] >= d[i - 2] && d[i - 1] <= d[i - 3]) {
return true;
}
if (i >= 4 && d[i - 1] == d[i - 3] && d[i] + d[i - 4] >= d[i - 2]) {
return true;
}
if (i >= 5 && d[i - 2] >= d[i - 4] && d[i - 1] <= d[i - 3]
&& d[i] >= d[i - 2] - d[i - 4] && d[i - 1] + d[i - 5] >= d[i - 3]) {
return true;
}
}
return false;
}
}
|
335 |
Self Crossing
|
Hard
|
<p>You are given an array of integers <code>distance</code>.</p>
<p>You start at the point <code>(0, 0)</code> on an <strong>X-Y plane,</strong> and you move <code>distance[0]</code> meters to the north, then <code>distance[1]</code> meters to the west, <code>distance[2]</code> meters to the south, <code>distance[3]</code> meters to the east, and so on. In other words, after each move, your direction changes counter-clockwise.</p>
<p>Return <code>true</code> <em>if your path crosses itself or </em><code>false</code><em> if it does not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/11.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [2,1,1,2]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/22.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,2,3,4]
<strong>Output:</strong> false
<strong>Explanation:</strong> The path does not cross itself at any point.
</pre>
<p><strong class="example">Example 3:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0335.Self%20Crossing/images/33.jpg" style="width: 400px; height: 413px;" />
<pre>
<strong>Input:</strong> distance = [1,1,1,2,1]
<strong>Output:</strong> true
<strong>Explanation:</strong> The path crosses itself at the point (0, 0).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= distance.length <= 10<sup>5</sup></code></li>
<li><code>1 <= distance[i] <= 10<sup>5</sup></code></li>
</ul>
|
Geometry; Array; Math
|
Python
|
class Solution:
def isSelfCrossing(self, distance: List[int]) -> bool:
d = distance
for i in range(3, len(d)):
if d[i] >= d[i - 2] and d[i - 1] <= d[i - 3]:
return True
if i >= 4 and d[i - 1] == d[i - 3] and d[i] + d[i - 4] >= d[i - 2]:
return True
if (
i >= 5
and d[i - 2] >= d[i - 4]
and d[i - 1] <= d[i - 3]
and d[i] >= d[i - 2] - d[i - 4]
and d[i - 1] + d[i - 5] >= d[i - 3]
):
return True
return False
|
336 |
Palindrome Pairs
|
Hard
|
<p>You are given a <strong>0-indexed</strong> array of <strong>unique</strong> strings <code>words</code>.</p>
<p>A <strong>palindrome pair</strong> is a pair of integers <code>(i, j)</code> such that:</p>
<ul>
<li><code>0 <= i, j < words.length</code>,</li>
<li><code>i != j</code>, and</li>
<li><code>words[i] + words[j]</code> (the concatenation of the two strings) is a <span data-keyword="palindrome-string">palindrome</span>.</li>
</ul>
<p>Return <em>an array of all the <strong>palindrome pairs</strong> of </em><code>words</code>.</p>
<p>You must write an algorithm with <code>O(sum of words[i].length)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> words = ["abcd","dcba","lls","s","sssll"]
<strong>Output:</strong> [[0,1],[1,0],[3,2],[2,4]]
<strong>Explanation:</strong> The palindromes are ["abcddcba","dcbaabcd","slls","llssssll"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> words = ["bat","tab","cat"]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["battab","tabbat"]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> words = ["a",""]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["a","a"]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= words.length <= 5000</code></li>
<li><code>0 <= words[i].length <= 300</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
</ul>
|
Trie; Array; Hash Table; String
|
C#
|
using System.Collections.Generic;
using System.Linq;
public class Solution {
public IList<IList<int>> PalindromePairs(string[] words) {
var results = new List<IList<int>>();
var reverseDict = words.Select((w, i) => new {Word = w, Index = i}).ToDictionary(w => new string(w.Word.Reverse().ToArray()), w => w.Index);
for (var i = 0; i < words.Length; ++i)
{
var word = words[i];
for (var j = 0; j <= word.Length; ++j)
{
if (j > 0 && IsPalindrome(word, 0, j - 1))
{
var suffix = word.Substring(j);
int pairIndex;
if (reverseDict.TryGetValue(suffix, out pairIndex) && i != pairIndex)
{
results.Add(new [] { pairIndex, i});
}
}
if (IsPalindrome(word, j, word.Length - 1))
{
var prefix = word.Substring(0, j);
int pairIndex;
if (reverseDict.TryGetValue(prefix, out pairIndex) && i != pairIndex)
{
results.Add(new [] { i, pairIndex});
}
}
}
}
return results;
}
private bool IsPalindrome(string word, int startIndex, int endIndex)
{
var i = startIndex;
var j = endIndex;
while (i < j)
{
if (word[i] != word[j]) return false;
++i;
--j;
}
return true;
}
}
|
336 |
Palindrome Pairs
|
Hard
|
<p>You are given a <strong>0-indexed</strong> array of <strong>unique</strong> strings <code>words</code>.</p>
<p>A <strong>palindrome pair</strong> is a pair of integers <code>(i, j)</code> such that:</p>
<ul>
<li><code>0 <= i, j < words.length</code>,</li>
<li><code>i != j</code>, and</li>
<li><code>words[i] + words[j]</code> (the concatenation of the two strings) is a <span data-keyword="palindrome-string">palindrome</span>.</li>
</ul>
<p>Return <em>an array of all the <strong>palindrome pairs</strong> of </em><code>words</code>.</p>
<p>You must write an algorithm with <code>O(sum of words[i].length)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> words = ["abcd","dcba","lls","s","sssll"]
<strong>Output:</strong> [[0,1],[1,0],[3,2],[2,4]]
<strong>Explanation:</strong> The palindromes are ["abcddcba","dcbaabcd","slls","llssssll"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> words = ["bat","tab","cat"]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["battab","tabbat"]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> words = ["a",""]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["a","a"]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= words.length <= 5000</code></li>
<li><code>0 <= words[i].length <= 300</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
</ul>
|
Trie; Array; Hash Table; String
|
Go
|
func palindromePairs(words []string) [][]int {
base := 131
mod := int(1e9) + 7
mul := make([]int, 310)
mul[0] = 1
for i := 1; i < len(mul); i++ {
mul[i] = (mul[i-1] * base) % mod
}
n := len(words)
prefix := make([]int, n)
suffix := make([]int, n)
for i, word := range words {
m := len(word)
for j, c := range word {
t := int(c-'a') + 1
s := int(word[m-j-1]-'a') + 1
prefix[i] = (prefix[i]*base)%mod + t
suffix[i] = (suffix[i]*base)%mod + s
}
}
check := func(i, j, n, m int) bool {
t := ((prefix[i]*mul[n])%mod + prefix[j]) % mod
s := ((suffix[j]*mul[m])%mod + suffix[i]) % mod
return t == s
}
var ans [][]int
for i := 0; i < n; i++ {
for j := i + 1; j < n; j++ {
if check(i, j, len(words[j]), len(words[i])) {
ans = append(ans, []int{i, j})
}
if check(j, i, len(words[i]), len(words[j])) {
ans = append(ans, []int{j, i})
}
}
}
return ans
}
|
336 |
Palindrome Pairs
|
Hard
|
<p>You are given a <strong>0-indexed</strong> array of <strong>unique</strong> strings <code>words</code>.</p>
<p>A <strong>palindrome pair</strong> is a pair of integers <code>(i, j)</code> such that:</p>
<ul>
<li><code>0 <= i, j < words.length</code>,</li>
<li><code>i != j</code>, and</li>
<li><code>words[i] + words[j]</code> (the concatenation of the two strings) is a <span data-keyword="palindrome-string">palindrome</span>.</li>
</ul>
<p>Return <em>an array of all the <strong>palindrome pairs</strong> of </em><code>words</code>.</p>
<p>You must write an algorithm with <code>O(sum of words[i].length)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> words = ["abcd","dcba","lls","s","sssll"]
<strong>Output:</strong> [[0,1],[1,0],[3,2],[2,4]]
<strong>Explanation:</strong> The palindromes are ["abcddcba","dcbaabcd","slls","llssssll"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> words = ["bat","tab","cat"]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["battab","tabbat"]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> words = ["a",""]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["a","a"]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= words.length <= 5000</code></li>
<li><code>0 <= words[i].length <= 300</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
</ul>
|
Trie; Array; Hash Table; String
|
Java
|
class Solution {
private static final int BASE = 131;
private static final long[] MUL = new long[310];
private static final int MOD = (int) 1e9 + 7;
static {
MUL[0] = 1;
for (int i = 1; i < MUL.length; ++i) {
MUL[i] = (MUL[i - 1] * BASE) % MOD;
}
}
public List<List<Integer>> palindromePairs(String[] words) {
int n = words.length;
long[] prefix = new long[n];
long[] suffix = new long[n];
for (int i = 0; i < n; ++i) {
String word = words[i];
int m = word.length();
for (int j = 0; j < m; ++j) {
int t = word.charAt(j) - 'a' + 1;
int s = word.charAt(m - j - 1) - 'a' + 1;
prefix[i] = (prefix[i] * BASE) % MOD + t;
suffix[i] = (suffix[i] * BASE) % MOD + s;
}
}
List<List<Integer>> ans = new ArrayList<>();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (check(i, j, words[j].length(), words[i].length(), prefix, suffix)) {
ans.add(Arrays.asList(i, j));
}
if (check(j, i, words[i].length(), words[j].length(), prefix, suffix)) {
ans.add(Arrays.asList(j, i));
}
}
}
return ans;
}
private boolean check(int i, int j, int n, int m, long[] prefix, long[] suffix) {
long t = ((prefix[i] * MUL[n]) % MOD + prefix[j]) % MOD;
long s = ((suffix[j] * MUL[m]) % MOD + suffix[i]) % MOD;
return t == s;
}
}
|
336 |
Palindrome Pairs
|
Hard
|
<p>You are given a <strong>0-indexed</strong> array of <strong>unique</strong> strings <code>words</code>.</p>
<p>A <strong>palindrome pair</strong> is a pair of integers <code>(i, j)</code> such that:</p>
<ul>
<li><code>0 <= i, j < words.length</code>,</li>
<li><code>i != j</code>, and</li>
<li><code>words[i] + words[j]</code> (the concatenation of the two strings) is a <span data-keyword="palindrome-string">palindrome</span>.</li>
</ul>
<p>Return <em>an array of all the <strong>palindrome pairs</strong> of </em><code>words</code>.</p>
<p>You must write an algorithm with <code>O(sum of words[i].length)</code> runtime complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> words = ["abcd","dcba","lls","s","sssll"]
<strong>Output:</strong> [[0,1],[1,0],[3,2],[2,4]]
<strong>Explanation:</strong> The palindromes are ["abcddcba","dcbaabcd","slls","llssssll"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> words = ["bat","tab","cat"]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["battab","tabbat"]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> words = ["a",""]
<strong>Output:</strong> [[0,1],[1,0]]
<strong>Explanation:</strong> The palindromes are ["a","a"]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= words.length <= 5000</code></li>
<li><code>0 <= words[i].length <= 300</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
</ul>
|
Trie; Array; Hash Table; String
|
Python
|
class Solution:
def palindromePairs(self, words: List[str]) -> List[List[int]]:
d = {w: i for i, w in enumerate(words)}
ans = []
for i, w in enumerate(words):
for j in range(len(w) + 1):
a, b = w[:j], w[j:]
ra, rb = a[::-1], b[::-1]
if ra in d and d[ra] != i and b == rb:
ans.append([i, d[ra]])
if j and rb in d and d[rb] != i and a == ra:
ans.append([d[rb], i])
return ans
|
337 |
House Robber III
|
Medium
|
<p>The thief has found himself a new place for his thievery again. There is only one entrance to this area, called <code>root</code>.</p>
<p>Besides the <code>root</code>, each house has one and only one parent house. After a tour, the smart thief realized that all houses in this place form a binary tree. It will automatically contact the police if <strong>two directly-linked houses were broken into on the same night</strong>.</p>
<p>Given the <code>root</code> of the binary tree, return <em>the maximum amount of money the thief can rob <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob1-tree.jpg" style="width: 277px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,2,3,null,3,null,1]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob2-tree.jpg" style="width: 357px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,4,5,1,3,null,1]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 4 + 5 = 9.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int rob(TreeNode* root) {
function<pair<int, int>(TreeNode*)> dfs = [&](TreeNode* root) -> pair<int, int> {
if (!root) {
return make_pair(0, 0);
}
auto [la, lb] = dfs(root->left);
auto [ra, rb] = dfs(root->right);
return make_pair(root->val + lb + rb, max(la, lb) + max(ra, rb));
};
auto [a, b] = dfs(root);
return max(a, b);
}
};
|
337 |
House Robber III
|
Medium
|
<p>The thief has found himself a new place for his thievery again. There is only one entrance to this area, called <code>root</code>.</p>
<p>Besides the <code>root</code>, each house has one and only one parent house. After a tour, the smart thief realized that all houses in this place form a binary tree. It will automatically contact the police if <strong>two directly-linked houses were broken into on the same night</strong>.</p>
<p>Given the <code>root</code> of the binary tree, return <em>the maximum amount of money the thief can rob <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob1-tree.jpg" style="width: 277px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,2,3,null,3,null,1]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob2-tree.jpg" style="width: 357px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,4,5,1,3,null,1]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 4 + 5 = 9.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rob(root *TreeNode) int {
var dfs func(*TreeNode) (int, int)
dfs = func(root *TreeNode) (int, int) {
if root == nil {
return 0, 0
}
la, lb := dfs(root.Left)
ra, rb := dfs(root.Right)
return root.Val + lb + rb, max(la, lb) + max(ra, rb)
}
a, b := dfs(root)
return max(a, b)
}
|
337 |
House Robber III
|
Medium
|
<p>The thief has found himself a new place for his thievery again. There is only one entrance to this area, called <code>root</code>.</p>
<p>Besides the <code>root</code>, each house has one and only one parent house. After a tour, the smart thief realized that all houses in this place form a binary tree. It will automatically contact the police if <strong>two directly-linked houses were broken into on the same night</strong>.</p>
<p>Given the <code>root</code> of the binary tree, return <em>the maximum amount of money the thief can rob <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob1-tree.jpg" style="width: 277px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,2,3,null,3,null,1]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob2-tree.jpg" style="width: 357px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,4,5,1,3,null,1]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 4 + 5 = 9.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int rob(TreeNode root) {
int[] ans = dfs(root);
return Math.max(ans[0], ans[1]);
}
private int[] dfs(TreeNode root) {
if (root == null) {
return new int[2];
}
int[] l = dfs(root.left);
int[] r = dfs(root.right);
return new int[] {root.val + l[1] + r[1], Math.max(l[0], l[1]) + Math.max(r[0], r[1])};
}
}
|
337 |
House Robber III
|
Medium
|
<p>The thief has found himself a new place for his thievery again. There is only one entrance to this area, called <code>root</code>.</p>
<p>Besides the <code>root</code>, each house has one and only one parent house. After a tour, the smart thief realized that all houses in this place form a binary tree. It will automatically contact the police if <strong>two directly-linked houses were broken into on the same night</strong>.</p>
<p>Given the <code>root</code> of the binary tree, return <em>the maximum amount of money the thief can rob <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob1-tree.jpg" style="width: 277px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,2,3,null,3,null,1]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob2-tree.jpg" style="width: 357px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,4,5,1,3,null,1]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 4 + 5 = 9.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: Optional[TreeNode]) -> int:
def dfs(root: Optional[TreeNode]) -> (int, int):
if root is None:
return 0, 0
la, lb = dfs(root.left)
ra, rb = dfs(root.right)
return root.val + lb + rb, max(la, lb) + max(ra, rb)
return max(dfs(root))
|
337 |
House Robber III
|
Medium
|
<p>The thief has found himself a new place for his thievery again. There is only one entrance to this area, called <code>root</code>.</p>
<p>Besides the <code>root</code>, each house has one and only one parent house. After a tour, the smart thief realized that all houses in this place form a binary tree. It will automatically contact the police if <strong>two directly-linked houses were broken into on the same night</strong>.</p>
<p>Given the <code>root</code> of the binary tree, return <em>the maximum amount of money the thief can rob <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob1-tree.jpg" style="width: 277px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,2,3,null,3,null,1]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0337.House%20Robber%20III/images/rob2-tree.jpg" style="width: 357px; height: 293px;" />
<pre>
<strong>Input:</strong> root = [3,4,5,1,3,null,1]
<strong>Output:</strong> 9
<strong>Explanation:</strong> Maximum amount of money the thief can rob = 4 + 5 = 9.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function rob(root: TreeNode | null): number {
const dfs = (root: TreeNode | null): [number, number] => {
if (!root) {
return [0, 0];
}
const [la, lb] = dfs(root.left);
const [ra, rb] = dfs(root.right);
return [root.val + lb + rb, Math.max(la, lb) + Math.max(ra, rb)];
};
return Math.max(...dfs(root));
}
|
338 |
Counting Bits
|
Easy
|
<p>Given an integer <code>n</code>, return <em>an array </em><code>ans</code><em> of length </em><code>n + 1</code><em> such that for each </em><code>i</code><em> </em>(<code>0 <= i <= n</code>)<em>, </em><code>ans[i]</code><em> is the <strong>number of </strong></em><code>1</code><em><strong>'s</strong> in the binary representation of </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> [0,1,1]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 5
<strong>Output:</strong> [0,1,1,2,1,2]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 10<sup>5</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong></p>
<ul>
<li>It is very easy to come up with a solution with a runtime of <code>O(n log n)</code>. Can you do it in linear time <code>O(n)</code> and possibly in a single pass?</li>
<li>Can you do it without using any built-in function (i.e., like <code>__builtin_popcount</code> in C++)?</li>
</ul>
|
Bit Manipulation; Dynamic Programming
|
C++
|
class Solution {
public:
vector<int> countBits(int n) {
vector<int> ans(n + 1);
for (int i = 0; i <= n; ++i) {
ans[i] = __builtin_popcount(i);
}
return ans;
}
};
|
338 |
Counting Bits
|
Easy
|
<p>Given an integer <code>n</code>, return <em>an array </em><code>ans</code><em> of length </em><code>n + 1</code><em> such that for each </em><code>i</code><em> </em>(<code>0 <= i <= n</code>)<em>, </em><code>ans[i]</code><em> is the <strong>number of </strong></em><code>1</code><em><strong>'s</strong> in the binary representation of </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> [0,1,1]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 5
<strong>Output:</strong> [0,1,1,2,1,2]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 10<sup>5</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong></p>
<ul>
<li>It is very easy to come up with a solution with a runtime of <code>O(n log n)</code>. Can you do it in linear time <code>O(n)</code> and possibly in a single pass?</li>
<li>Can you do it without using any built-in function (i.e., like <code>__builtin_popcount</code> in C++)?</li>
</ul>
|
Bit Manipulation; Dynamic Programming
|
Go
|
func countBits(n int) []int {
ans := make([]int, n+1)
for i := 0; i <= n; i++ {
ans[i] = bits.OnesCount(uint(i))
}
return ans
}
|
338 |
Counting Bits
|
Easy
|
<p>Given an integer <code>n</code>, return <em>an array </em><code>ans</code><em> of length </em><code>n + 1</code><em> such that for each </em><code>i</code><em> </em>(<code>0 <= i <= n</code>)<em>, </em><code>ans[i]</code><em> is the <strong>number of </strong></em><code>1</code><em><strong>'s</strong> in the binary representation of </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> [0,1,1]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 5
<strong>Output:</strong> [0,1,1,2,1,2]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 10<sup>5</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong></p>
<ul>
<li>It is very easy to come up with a solution with a runtime of <code>O(n log n)</code>. Can you do it in linear time <code>O(n)</code> and possibly in a single pass?</li>
<li>Can you do it without using any built-in function (i.e., like <code>__builtin_popcount</code> in C++)?</li>
</ul>
|
Bit Manipulation; Dynamic Programming
|
Java
|
class Solution {
public int[] countBits(int n) {
int[] ans = new int[n + 1];
for (int i = 0; i <= n; ++i) {
ans[i] = Integer.bitCount(i);
}
return ans;
}
}
|
338 |
Counting Bits
|
Easy
|
<p>Given an integer <code>n</code>, return <em>an array </em><code>ans</code><em> of length </em><code>n + 1</code><em> such that for each </em><code>i</code><em> </em>(<code>0 <= i <= n</code>)<em>, </em><code>ans[i]</code><em> is the <strong>number of </strong></em><code>1</code><em><strong>'s</strong> in the binary representation of </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> [0,1,1]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 5
<strong>Output:</strong> [0,1,1,2,1,2]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 10<sup>5</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong></p>
<ul>
<li>It is very easy to come up with a solution with a runtime of <code>O(n log n)</code>. Can you do it in linear time <code>O(n)</code> and possibly in a single pass?</li>
<li>Can you do it without using any built-in function (i.e., like <code>__builtin_popcount</code> in C++)?</li>
</ul>
|
Bit Manipulation; Dynamic Programming
|
Python
|
class Solution:
def countBits(self, n: int) -> List[int]:
return [i.bit_count() for i in range(n + 1)]
|
338 |
Counting Bits
|
Easy
|
<p>Given an integer <code>n</code>, return <em>an array </em><code>ans</code><em> of length </em><code>n + 1</code><em> such that for each </em><code>i</code><em> </em>(<code>0 <= i <= n</code>)<em>, </em><code>ans[i]</code><em> is the <strong>number of </strong></em><code>1</code><em><strong>'s</strong> in the binary representation of </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> [0,1,1]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 5
<strong>Output:</strong> [0,1,1,2,1,2]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 10<sup>5</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong></p>
<ul>
<li>It is very easy to come up with a solution with a runtime of <code>O(n log n)</code>. Can you do it in linear time <code>O(n)</code> and possibly in a single pass?</li>
<li>Can you do it without using any built-in function (i.e., like <code>__builtin_popcount</code> in C++)?</li>
</ul>
|
Bit Manipulation; Dynamic Programming
|
TypeScript
|
function countBits(n: number): number[] {
const ans: number[] = Array(n + 1).fill(0);
for (let i = 0; i <= n; ++i) {
ans[i] = bitCount(i);
}
return ans;
}
function bitCount(n: number): number {
let count = 0;
while (n) {
n &= n - 1;
++count;
}
return count;
}
|
339 |
Nested List Weight Sum
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists.</p>
<p>The <strong>depth</strong> of an integer is the number of lists that it is inside of. For example, the nested list <code>[1,[2,2],[[3],2],1]</code> has each integer's value set to its <strong>depth</strong>.</p>
<p>Return <em>the sum of each integer in </em><code>nestedList</code><em> multiplied by its <strong>depth</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0339.Nested%20List%20Weight%20Sum/images/nestedlistweightsumex1.png" style="width: 405px; height: 99px;" />
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> 10
<strong>Explanation:</strong> Four 1's at depth 2, one 2 at depth 1. 1*2 + 1*2 + 2*1 + 1*2 + 1*2 = 10.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0339.Nested%20List%20Weight%20Sum/images/nestedlistweightsumex2.png" style="width: 315px; height: 106px;" />
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> 27
<strong>Explanation:</strong> One 1 at depth 1, one 4 at depth 2, and one 6 at depth 3. 1*1 + 4*2 + 6*3 = 27.</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [0]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 50</code></li>
<li>The values of the integers in the nested list is in the range <code>[-100, 100]</code>.</li>
<li>The maximum <strong>depth</strong> of any integer is less than or equal to <code>50</code>.</li>
</ul>
|
Depth-First Search; Breadth-First Search
|
Java
|
/**
* // This is the interface that allows for creating nested lists.
* // You should not implement it, or speculate about its implementation
* public interface NestedInteger {
* // Constructor initializes an empty nested list.
* public NestedInteger();
*
* // Constructor initializes a single integer.
* public NestedInteger(int value);
*
* // @return true if this NestedInteger holds a single integer, rather than a nested list.
* public boolean isInteger();
*
* // @return the single integer that this NestedInteger holds, if it holds a single integer
* // Return null if this NestedInteger holds a nested list
* public Integer getInteger();
*
* // Set this NestedInteger to hold a single integer.
* public void setInteger(int value);
*
* // Set this NestedInteger to hold a nested list and adds a nested integer to it.
* public void add(NestedInteger ni);
*
* // @return the nested list that this NestedInteger holds, if it holds a nested list
* // Return empty list if this NestedInteger holds a single integer
* public List<NestedInteger> getList();
* }
*/
class Solution {
public int depthSum(List<NestedInteger> nestedList) {
return dfs(nestedList, 1);
}
private int dfs(List<NestedInteger> nestedList, int depth) {
int depthSum = 0;
for (NestedInteger item : nestedList) {
if (item.isInteger()) {
depthSum += item.getInteger() * depth;
} else {
depthSum += dfs(item.getList(), depth + 1);
}
}
return depthSum;
}
}
|
339 |
Nested List Weight Sum
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists.</p>
<p>The <strong>depth</strong> of an integer is the number of lists that it is inside of. For example, the nested list <code>[1,[2,2],[[3],2],1]</code> has each integer's value set to its <strong>depth</strong>.</p>
<p>Return <em>the sum of each integer in </em><code>nestedList</code><em> multiplied by its <strong>depth</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0339.Nested%20List%20Weight%20Sum/images/nestedlistweightsumex1.png" style="width: 405px; height: 99px;" />
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> 10
<strong>Explanation:</strong> Four 1's at depth 2, one 2 at depth 1. 1*2 + 1*2 + 2*1 + 1*2 + 1*2 = 10.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0339.Nested%20List%20Weight%20Sum/images/nestedlistweightsumex2.png" style="width: 315px; height: 106px;" />
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> 27
<strong>Explanation:</strong> One 1 at depth 1, one 4 at depth 2, and one 6 at depth 3. 1*1 + 4*2 + 6*3 = 27.</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [0]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 50</code></li>
<li>The values of the integers in the nested list is in the range <code>[-100, 100]</code>.</li>
<li>The maximum <strong>depth</strong> of any integer is less than or equal to <code>50</code>.</li>
</ul>
|
Depth-First Search; Breadth-First Search
|
JavaScript
|
/**
* // This is the interface that allows for creating nested lists.
* // You should not implement it, or speculate about its implementation
* function NestedInteger() {
*
* Return true if this NestedInteger holds a single integer, rather than a nested list.
* @return {boolean}
* this.isInteger = function() {
* ...
* };
*
* Return the single integer that this NestedInteger holds, if it holds a single integer
* Return null if this NestedInteger holds a nested list
* @return {integer}
* this.getInteger = function() {
* ...
* };
*
* Set this NestedInteger to hold a single integer equal to value.
* @return {void}
* this.setInteger = function(value) {
* ...
* };
*
* Set this NestedInteger to hold a nested list and adds a nested integer elem to it.
* @return {void}
* this.add = function(elem) {
* ...
* };
*
* Return the nested list that this NestedInteger holds, if it holds a nested list
* Return null if this NestedInteger holds a single integer
* @return {NestedInteger[]}
* this.getList = function() {
* ...
* };
* };
*/
/**
* @param {NestedInteger[]} nestedList
* @return {number}
*/
var depthSum = function (nestedList) {
const dfs = (nestedList, depth) => {
let depthSum = 0;
for (const item of nestedList) {
if (item.isInteger()) {
depthSum += item.getInteger() * depth;
} else {
depthSum += dfs(item.getList(), depth + 1);
}
}
return depthSum;
};
return dfs(nestedList, 1);
};
|
339 |
Nested List Weight Sum
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists.</p>
<p>The <strong>depth</strong> of an integer is the number of lists that it is inside of. For example, the nested list <code>[1,[2,2],[[3],2],1]</code> has each integer's value set to its <strong>depth</strong>.</p>
<p>Return <em>the sum of each integer in </em><code>nestedList</code><em> multiplied by its <strong>depth</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0339.Nested%20List%20Weight%20Sum/images/nestedlistweightsumex1.png" style="width: 405px; height: 99px;" />
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> 10
<strong>Explanation:</strong> Four 1's at depth 2, one 2 at depth 1. 1*2 + 1*2 + 2*1 + 1*2 + 1*2 = 10.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0300-0399/0339.Nested%20List%20Weight%20Sum/images/nestedlistweightsumex2.png" style="width: 315px; height: 106px;" />
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> 27
<strong>Explanation:</strong> One 1 at depth 1, one 4 at depth 2, and one 6 at depth 3. 1*1 + 4*2 + 6*3 = 27.</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [0]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 50</code></li>
<li>The values of the integers in the nested list is in the range <code>[-100, 100]</code>.</li>
<li>The maximum <strong>depth</strong> of any integer is less than or equal to <code>50</code>.</li>
</ul>
|
Depth-First Search; Breadth-First Search
|
Python
|
# """
# This is the interface that allows for creating nested lists.
# You should not implement it, or speculate about its implementation
# """
# class NestedInteger:
# def __init__(self, value=None):
# """
# If value is not specified, initializes an empty list.
# Otherwise initializes a single integer equal to value.
# """
#
# def isInteger(self):
# """
# @return True if this NestedInteger holds a single integer, rather than a nested list.
# :rtype bool
# """
#
# def add(self, elem):
# """
# Set this NestedInteger to hold a nested list and adds a nested integer elem to it.
# :rtype void
# """
#
# def setInteger(self, value):
# """
# Set this NestedInteger to hold a single integer equal to value.
# :rtype void
# """
#
# def getInteger(self):
# """
# @return the single integer that this NestedInteger holds, if it holds a single integer
# Return None if this NestedInteger holds a nested list
# :rtype int
# """
#
# def getList(self):
# """
# @return the nested list that this NestedInteger holds, if it holds a nested list
# Return None if this NestedInteger holds a single integer
# :rtype List[NestedInteger]
# """
class Solution:
def depthSum(self, nestedList: List[NestedInteger]) -> int:
def dfs(nestedList, depth):
depth_sum = 0
for item in nestedList:
if item.isInteger():
depth_sum += item.getInteger() * depth
else:
depth_sum += dfs(item.getList(), depth + 1)
return depth_sum
return dfs(nestedList, 1)
|
340 |
Longest Substring with At Most K Distinct Characters
|
Medium
|
<p>Given a string <code>s</code> and an integer <code>k</code>, return <em>the length of the longest </em><span data-keyword="substring-nonempty"><em>substring</em></span><em> of</em> <code>s</code> <em>that contains at most</em> <code>k</code> <em><strong>distinct</strong> characters</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "eceba", k = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The substring is "ece" with length 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "aa", k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The substring is "aa" with length 2.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>0 <= k <= 50</code></li>
</ul>
|
Hash Table; String; Sliding Window
|
C++
|
class Solution {
public:
int lengthOfLongestSubstringKDistinct(string s, int k) {
unordered_map<char, int> cnt;
int l = 0;
for (char& c : s) {
++cnt[c];
if (cnt.size() > k) {
if (--cnt[s[l]] == 0) {
cnt.erase(s[l]);
}
++l;
}
}
return s.size() - l;
}
};
|
340 |
Longest Substring with At Most K Distinct Characters
|
Medium
|
<p>Given a string <code>s</code> and an integer <code>k</code>, return <em>the length of the longest </em><span data-keyword="substring-nonempty"><em>substring</em></span><em> of</em> <code>s</code> <em>that contains at most</em> <code>k</code> <em><strong>distinct</strong> characters</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "eceba", k = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The substring is "ece" with length 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "aa", k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The substring is "aa" with length 2.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>0 <= k <= 50</code></li>
</ul>
|
Hash Table; String; Sliding Window
|
Go
|
func lengthOfLongestSubstringKDistinct(s string, k int) int {
cnt := map[byte]int{}
l := 0
for _, c := range s {
cnt[byte(c)]++
if len(cnt) > k {
cnt[s[l]]--
if cnt[s[l]] == 0 {
delete(cnt, s[l])
}
l++
}
}
return len(s) - l
}
|
340 |
Longest Substring with At Most K Distinct Characters
|
Medium
|
<p>Given a string <code>s</code> and an integer <code>k</code>, return <em>the length of the longest </em><span data-keyword="substring-nonempty"><em>substring</em></span><em> of</em> <code>s</code> <em>that contains at most</em> <code>k</code> <em><strong>distinct</strong> characters</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "eceba", k = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The substring is "ece" with length 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "aa", k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The substring is "aa" with length 2.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>0 <= k <= 50</code></li>
</ul>
|
Hash Table; String; Sliding Window
|
Java
|
class Solution {
public int lengthOfLongestSubstringKDistinct(String s, int k) {
Map<Character, Integer> cnt = new HashMap<>();
int l = 0;
char[] cs = s.toCharArray();
for (char c : cs) {
cnt.merge(c, 1, Integer::sum);
if (cnt.size() > k) {
if (cnt.merge(cs[l], -1, Integer::sum) == 0) {
cnt.remove(cs[l]);
}
++l;
}
}
return cs.length - l;
}
}
|
340 |
Longest Substring with At Most K Distinct Characters
|
Medium
|
<p>Given a string <code>s</code> and an integer <code>k</code>, return <em>the length of the longest </em><span data-keyword="substring-nonempty"><em>substring</em></span><em> of</em> <code>s</code> <em>that contains at most</em> <code>k</code> <em><strong>distinct</strong> characters</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "eceba", k = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The substring is "ece" with length 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "aa", k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The substring is "aa" with length 2.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>0 <= k <= 50</code></li>
</ul>
|
Hash Table; String; Sliding Window
|
Python
|
class Solution:
def lengthOfLongestSubstringKDistinct(self, s: str, k: int) -> int:
l = 0
cnt = Counter()
for c in s:
cnt[c] += 1
if len(cnt) > k:
cnt[s[l]] -= 1
if cnt[s[l]] == 0:
del cnt[s[l]]
l += 1
return len(s) - l
|
340 |
Longest Substring with At Most K Distinct Characters
|
Medium
|
<p>Given a string <code>s</code> and an integer <code>k</code>, return <em>the length of the longest </em><span data-keyword="substring-nonempty"><em>substring</em></span><em> of</em> <code>s</code> <em>that contains at most</em> <code>k</code> <em><strong>distinct</strong> characters</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "eceba", k = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> The substring is "ece" with length 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "aa", k = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong> The substring is "aa" with length 2.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>0 <= k <= 50</code></li>
</ul>
|
Hash Table; String; Sliding Window
|
TypeScript
|
function lengthOfLongestSubstringKDistinct(s: string, k: number): number {
const cnt: Map<string, number> = new Map();
let l = 0;
for (const c of s) {
cnt.set(c, (cnt.get(c) ?? 0) + 1);
if (cnt.size > k) {
cnt.set(s[l], cnt.get(s[l])! - 1);
if (cnt.get(s[l]) === 0) {
cnt.delete(s[l]);
}
l++;
}
}
return s.length - l;
}
|
341 |
Flatten Nested List Iterator
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.</p>
<p>Implement the <code>NestedIterator</code> class:</p>
<ul>
<li><code>NestedIterator(List<NestedInteger> nestedList)</code> Initializes the iterator with the nested list <code>nestedList</code>.</li>
<li><code>int next()</code> Returns the next integer in the nested list.</li>
<li><code>boolean hasNext()</code> Returns <code>true</code> if there are still some integers in the nested list and <code>false</code> otherwise.</li>
</ul>
<p>Your code will be tested with the following pseudocode:</p>
<pre>
initialize iterator with nestedList
res = []
while iterator.hasNext()
append iterator.next() to the end of res
return res
</pre>
<p>If <code>res</code> matches the expected flattened list, then your code will be judged as correct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> [1,1,2,1,1]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> [1,4,6]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6].
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 500</code></li>
<li>The values of the integers in the nested list is in the range <code>[-10<sup>6</sup>, 10<sup>6</sup>]</code>.</li>
</ul>
|
Stack; Tree; Depth-First Search; Design; Queue; Iterator
|
C++
|
/**
* // This is the interface that allows for creating nested lists.
* // You should not implement it, or speculate about its implementation
* class NestedInteger {
* public:
* // Return true if this NestedInteger holds a single integer, rather than a nested list.
* bool isInteger() const;
*
* // Return the single integer that this NestedInteger holds, if it holds a single integer
* // The result is undefined if this NestedInteger holds a nested list
* int getInteger() const;
*
* // Return the nested list that this NestedInteger holds, if it holds a nested list
* // The result is undefined if this NestedInteger holds a single integer
* const vector<NestedInteger> &getList() const;
* };
*/
class NestedIterator {
public:
NestedIterator(vector<NestedInteger>& nestedList) {
auto dfs = [&](this auto&& dfs, vector<NestedInteger>& ls) -> void {
for (auto& x : ls) {
if (x.isInteger()) {
nums.push_back(x.getInteger());
} else {
dfs(x.getList());
}
}
};
dfs(nestedList);
}
int next() {
return nums[++i];
}
bool hasNext() {
return i + 1 < nums.size();
}
private:
vector<int> nums;
int i = -1;
};
/**
* Your NestedIterator object will be instantiated and called as such:
* NestedIterator i(nestedList);
* while (i.hasNext()) cout << i.next();
*/
|
341 |
Flatten Nested List Iterator
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.</p>
<p>Implement the <code>NestedIterator</code> class:</p>
<ul>
<li><code>NestedIterator(List<NestedInteger> nestedList)</code> Initializes the iterator with the nested list <code>nestedList</code>.</li>
<li><code>int next()</code> Returns the next integer in the nested list.</li>
<li><code>boolean hasNext()</code> Returns <code>true</code> if there are still some integers in the nested list and <code>false</code> otherwise.</li>
</ul>
<p>Your code will be tested with the following pseudocode:</p>
<pre>
initialize iterator with nestedList
res = []
while iterator.hasNext()
append iterator.next() to the end of res
return res
</pre>
<p>If <code>res</code> matches the expected flattened list, then your code will be judged as correct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> [1,1,2,1,1]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> [1,4,6]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6].
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 500</code></li>
<li>The values of the integers in the nested list is in the range <code>[-10<sup>6</sup>, 10<sup>6</sup>]</code>.</li>
</ul>
|
Stack; Tree; Depth-First Search; Design; Queue; Iterator
|
Go
|
/**
* // This is the interface that allows for creating nested lists.
* // You should not implement it, or speculate about its implementation
* type NestedInteger struct {
* }
*
* // Return true if this NestedInteger holds a single integer, rather than a nested list.
* func (this NestedInteger) IsInteger() bool {}
*
* // Return the single integer that this NestedInteger holds, if it holds a single integer
* // The result is undefined if this NestedInteger holds a nested list
* // So before calling this method, you should have a check
* func (this NestedInteger) GetInteger() int {}
*
* // Set this NestedInteger to hold a single integer.
* func (n *NestedInteger) SetInteger(value int) {}
*
* // Set this NestedInteger to hold a nested list and adds a nested integer to it.
* func (this *NestedInteger) Add(elem NestedInteger) {}
*
* // Return the nested list that this NestedInteger holds, if it holds a nested list
* // The list length is zero if this NestedInteger holds a single integer
* // You can access NestedInteger's List element directly if you want to modify it
* func (this NestedInteger) GetList() []*NestedInteger {}
*/
type NestedIterator struct {
nums []int
i int
}
func Constructor(nestedList []*NestedInteger) *NestedIterator {
var dfs func([]*NestedInteger)
nums := []int{}
i := -1
dfs = func(ls []*NestedInteger) {
for _, x := range ls {
if x.IsInteger() {
nums = append(nums, x.GetInteger())
} else {
dfs(x.GetList())
}
}
}
dfs(nestedList)
return &NestedIterator{nums, i}
}
func (this *NestedIterator) Next() int {
this.i++
return this.nums[this.i]
}
func (this *NestedIterator) HasNext() bool {
return this.i+1 < len(this.nums)
}
|
341 |
Flatten Nested List Iterator
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.</p>
<p>Implement the <code>NestedIterator</code> class:</p>
<ul>
<li><code>NestedIterator(List<NestedInteger> nestedList)</code> Initializes the iterator with the nested list <code>nestedList</code>.</li>
<li><code>int next()</code> Returns the next integer in the nested list.</li>
<li><code>boolean hasNext()</code> Returns <code>true</code> if there are still some integers in the nested list and <code>false</code> otherwise.</li>
</ul>
<p>Your code will be tested with the following pseudocode:</p>
<pre>
initialize iterator with nestedList
res = []
while iterator.hasNext()
append iterator.next() to the end of res
return res
</pre>
<p>If <code>res</code> matches the expected flattened list, then your code will be judged as correct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> [1,1,2,1,1]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> [1,4,6]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6].
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 500</code></li>
<li>The values of the integers in the nested list is in the range <code>[-10<sup>6</sup>, 10<sup>6</sup>]</code>.</li>
</ul>
|
Stack; Tree; Depth-First Search; Design; Queue; Iterator
|
Java
|
/**
* // This is the interface that allows for creating nested lists.
* // You should not implement it, or speculate about its implementation
* public interface NestedInteger {
*
* // @return true if this NestedInteger holds a single integer, rather than a nested list.
* public boolean isInteger();
*
* // @return the single integer that this NestedInteger holds, if it holds a single integer
* // Return null if this NestedInteger holds a nested list
* public Integer getInteger();
*
* // @return the nested list that this NestedInteger holds, if it holds a nested list
* // Return empty list if this NestedInteger holds a single integer
* public List<NestedInteger> getList();
* }
*/
public class NestedIterator implements Iterator<Integer> {
private List<Integer> nums = new ArrayList<>();
private int i = -1;
public NestedIterator(List<NestedInteger> nestedList) {
dfs(nestedList);
}
@Override
public Integer next() {
return nums.get(++i);
}
@Override
public boolean hasNext() {
return i + 1 < nums.size();
}
private void dfs(List<NestedInteger> ls) {
for (var x : ls) {
if (x.isInteger()) {
nums.add(x.getInteger());
} else {
dfs(x.getList());
}
}
}
}
/**
* Your NestedIterator object will be instantiated and called as such:
* NestedIterator i = new NestedIterator(nestedList);
* while (i.hasNext()) v[f()] = i.next();
*/
|
341 |
Flatten Nested List Iterator
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.</p>
<p>Implement the <code>NestedIterator</code> class:</p>
<ul>
<li><code>NestedIterator(List<NestedInteger> nestedList)</code> Initializes the iterator with the nested list <code>nestedList</code>.</li>
<li><code>int next()</code> Returns the next integer in the nested list.</li>
<li><code>boolean hasNext()</code> Returns <code>true</code> if there are still some integers in the nested list and <code>false</code> otherwise.</li>
</ul>
<p>Your code will be tested with the following pseudocode:</p>
<pre>
initialize iterator with nestedList
res = []
while iterator.hasNext()
append iterator.next() to the end of res
return res
</pre>
<p>If <code>res</code> matches the expected flattened list, then your code will be judged as correct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> [1,1,2,1,1]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> [1,4,6]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6].
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 500</code></li>
<li>The values of the integers in the nested list is in the range <code>[-10<sup>6</sup>, 10<sup>6</sup>]</code>.</li>
</ul>
|
Stack; Tree; Depth-First Search; Design; Queue; Iterator
|
Python
|
# """
# This is the interface that allows for creating nested lists.
# You should not implement it, or speculate about its implementation
# """
# class NestedInteger:
# def isInteger(self) -> bool:
# """
# @return True if this NestedInteger holds a single integer, rather than a nested list.
# """
#
# def getInteger(self) -> int:
# """
# @return the single integer that this NestedInteger holds, if it holds a single integer
# Return None if this NestedInteger holds a nested list
# """
#
# def getList(self) -> [NestedInteger]:
# """
# @return the nested list that this NestedInteger holds, if it holds a nested list
# Return None if this NestedInteger holds a single integer
# """
class NestedIterator:
def __init__(self, nestedList: [NestedInteger]):
def dfs(ls):
for x in ls:
if x.isInteger():
self.nums.append(x.getInteger())
else:
dfs(x.getList())
self.nums = []
self.i = -1
dfs(nestedList)
def next(self) -> int:
self.i += 1
return self.nums[self.i]
def hasNext(self) -> bool:
return self.i + 1 < len(self.nums)
# Your NestedIterator object will be instantiated and called as such:
# i, v = NestedIterator(nestedList), []
# while i.hasNext(): v.append(i.next())
|
341 |
Flatten Nested List Iterator
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.</p>
<p>Implement the <code>NestedIterator</code> class:</p>
<ul>
<li><code>NestedIterator(List<NestedInteger> nestedList)</code> Initializes the iterator with the nested list <code>nestedList</code>.</li>
<li><code>int next()</code> Returns the next integer in the nested list.</li>
<li><code>boolean hasNext()</code> Returns <code>true</code> if there are still some integers in the nested list and <code>false</code> otherwise.</li>
</ul>
<p>Your code will be tested with the following pseudocode:</p>
<pre>
initialize iterator with nestedList
res = []
while iterator.hasNext()
append iterator.next() to the end of res
return res
</pre>
<p>If <code>res</code> matches the expected flattened list, then your code will be judged as correct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> [1,1,2,1,1]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> [1,4,6]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6].
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 500</code></li>
<li>The values of the integers in the nested list is in the range <code>[-10<sup>6</sup>, 10<sup>6</sup>]</code>.</li>
</ul>
|
Stack; Tree; Depth-First Search; Design; Queue; Iterator
|
Rust
|
// #[derive(Debug, PartialEq, Eq)]
// pub enum NestedInteger {
// Int(i32),
// List(Vec<NestedInteger>)
// }
struct NestedIterator {
nums: Vec<i32>,
i: usize,
}
/**
* `&self` means the method takes an immutable reference.
* If you need a mutable reference, change it to `&mut self` instead.
*/
impl NestedIterator {
fn new(nested_list: Vec<NestedInteger>) -> Self {
let mut nums = Vec::new();
Self::dfs(&nested_list, &mut nums);
NestedIterator { nums, i: 0 }
}
fn next(&mut self) -> i32 {
let result = self.nums[self.i];
self.i += 1;
result
}
fn has_next(&self) -> bool {
self.i < self.nums.len()
}
fn dfs(nested_list: &Vec<NestedInteger>, nums: &mut Vec<i32>) {
for ni in nested_list {
match ni {
NestedInteger::Int(x) => nums.push(*x),
NestedInteger::List(list) => Self::dfs(list, nums),
}
}
}
}
|
341 |
Flatten Nested List Iterator
|
Medium
|
<p>You are given a nested list of integers <code>nestedList</code>. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.</p>
<p>Implement the <code>NestedIterator</code> class:</p>
<ul>
<li><code>NestedIterator(List<NestedInteger> nestedList)</code> Initializes the iterator with the nested list <code>nestedList</code>.</li>
<li><code>int next()</code> Returns the next integer in the nested list.</li>
<li><code>boolean hasNext()</code> Returns <code>true</code> if there are still some integers in the nested list and <code>false</code> otherwise.</li>
</ul>
<p>Your code will be tested with the following pseudocode:</p>
<pre>
initialize iterator with nestedList
res = []
while iterator.hasNext()
append iterator.next() to the end of res
return res
</pre>
<p>If <code>res</code> matches the expected flattened list, then your code will be judged as correct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [[1,1],2,[1,1]]
<strong>Output:</strong> [1,1,2,1,1]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nestedList = [1,[4,[6]]]
<strong>Output:</strong> [1,4,6]
<strong>Explanation:</strong> By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6].
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nestedList.length <= 500</code></li>
<li>The values of the integers in the nested list is in the range <code>[-10<sup>6</sup>, 10<sup>6</sup>]</code>.</li>
</ul>
|
Stack; Tree; Depth-First Search; Design; Queue; Iterator
|
TypeScript
|
/**
* // This is the interface that allows for creating nested lists.
* // You should not implement it, or speculate about its implementation
* class NestedInteger {
* If value is provided, then it holds a single integer
* Otherwise it holds an empty nested list
* constructor(value?: number) {
* ...
* };
*
* Return true if this NestedInteger holds a single integer, rather than a nested list.
* isInteger(): boolean {
* ...
* };
*
* Return the single integer that this NestedInteger holds, if it holds a single integer
* Return null if this NestedInteger holds a nested list
* getInteger(): number | null {
* ...
* };
*
* Set this NestedInteger to hold a single integer equal to value.
* setInteger(value: number) {
* ...
* };
*
* Set this NestedInteger to hold a nested list and adds a nested integer elem to it.
* add(elem: NestedInteger) {
* ...
* };
*
* Return the nested list that this NestedInteger holds,
* or an empty list if this NestedInteger holds a single integer
* getList(): NestedInteger[] {
* ...
* };
* };
*/
class NestedIterator {
private nums: number[] = [];
private i = -1;
constructor(nestedList: NestedInteger[]) {
const dfs = (ls: NestedInteger[]) => {
for (const x of ls) {
if (x.isInteger()) {
this.nums.push(x.getInteger());
} else {
dfs(x.getList());
}
}
};
dfs(nestedList);
}
hasNext(): boolean {
return this.i + 1 < this.nums.length;
}
next(): number {
return this.nums[++this.i];
}
}
/**
* Your ParkingSystem object will be instantiated and called as such:
* var obj = new NestedIterator(nestedList)
* var a: number[] = []
* while (obj.hasNext()) a.push(obj.next());
*/
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
C++
|
class Solution {
public:
bool isPowerOfFour(int n) {
return n > 0 && (n & (n - 1)) == 0 && (n & 0xaaaaaaaa) == 0;
}
};
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
C#
|
public class Solution {
public bool IsPowerOfFour(int n) {
return n > 0 && (n & (n - 1)) == 0 && (n & 0xaaaaaaaa) == 0;
}
}
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Go
|
func isPowerOfFour(n int) bool {
return n > 0 && (n&(n-1)) == 0 && (n&0xaaaaaaaa) == 0
}
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Java
|
class Solution {
public boolean isPowerOfFour(int n) {
return n > 0 && (n & (n - 1)) == 0 && (n & 0xaaaaaaaa) == 0;
}
}
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
JavaScript
|
/**
* @param {number} n
* @return {boolean}
*/
var isPowerOfFour = function (n) {
return n > 0 && (n & (n - 1)) == 0 && (n & 0xaaaaaaaa) == 0;
};
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Python
|
class Solution:
def isPowerOfFour(self, n: int) -> bool:
return n > 0 and (n & (n - 1)) == 0 and (n & 0xAAAAAAAA) == 0
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Rust
|
impl Solution {
pub fn is_power_of_four(n: i32) -> bool {
n > 0 && (n & (n - 1)) == 0 && (n & 0xaaaaaaaa_u32 as i32) == 0
}
}
|
342 |
Power of Four
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of four. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of four, if there exists an integer <code>x</code> such that <code>n == 4<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> n = 16
<strong>Output:</strong> true
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> n = 5
<strong>Output:</strong> false
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> n = 1
<strong>Output:</strong> true
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
TypeScript
|
function isPowerOfFour(n: number): boolean {
return n > 0 && (n & (n - 1)) == 0 && (n & 0xaaaaaaaa) == 0;
}
|
343 |
Integer Break
|
Medium
|
<p>Given an integer <code>n</code>, break it into the sum of <code>k</code> <strong>positive integers</strong>, where <code>k >= 2</code>, and maximize the product of those integers.</p>
<p>Return <em>the maximum product you can get</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> 1
<strong>Explanation:</strong> 2 = 1 + 1, 1 × 1 = 1.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 36
<strong>Explanation:</strong> 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 58</code></li>
</ul>
|
Math; Dynamic Programming
|
C
|
#define max(a, b) (((a) > (b)) ? (a) : (b))
int integerBreak(int n) {
int* f = (int*) malloc((n + 1) * sizeof(int));
f[1] = 1;
for (int i = 2; i <= n; ++i) {
f[i] = 0;
for (int j = 1; j < i; ++j) {
f[i] = max(f[i], max(f[i - j] * j, (i - j) * j));
}
}
return f[n];
}
|
343 |
Integer Break
|
Medium
|
<p>Given an integer <code>n</code>, break it into the sum of <code>k</code> <strong>positive integers</strong>, where <code>k >= 2</code>, and maximize the product of those integers.</p>
<p>Return <em>the maximum product you can get</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> 1
<strong>Explanation:</strong> 2 = 1 + 1, 1 × 1 = 1.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 36
<strong>Explanation:</strong> 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 58</code></li>
</ul>
|
Math; Dynamic Programming
|
C++
|
class Solution {
public:
int integerBreak(int n) {
vector<int> f(n + 1);
f[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 1; j < i; ++j) {
f[i] = max({f[i], f[i - j] * j, (i - j) * j});
}
}
return f[n];
}
};
|
343 |
Integer Break
|
Medium
|
<p>Given an integer <code>n</code>, break it into the sum of <code>k</code> <strong>positive integers</strong>, where <code>k >= 2</code>, and maximize the product of those integers.</p>
<p>Return <em>the maximum product you can get</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> 1
<strong>Explanation:</strong> 2 = 1 + 1, 1 × 1 = 1.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 36
<strong>Explanation:</strong> 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 58</code></li>
</ul>
|
Math; Dynamic Programming
|
C#
|
public class Solution {
public int IntegerBreak(int n) {
int[] f = new int[n + 1];
f[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 1; j < i; ++j) {
f[i] = Math.Max(Math.Max(f[i], f[i - j] * j), (i - j) * j);
}
}
return f[n];
}
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.