id
int64 1
3.64k
| title
stringlengths 3
79
| difficulty
stringclasses 3
values | description
stringlengths 430
25.4k
| tags
stringlengths 0
131
| language
stringclasses 19
values | solution
stringlengths 47
20.6k
|
---|---|---|---|---|---|---|
112 |
Path Sum
|
Easy
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <code>true</code> if the tree has a <strong>root-to-leaf</strong> path such that adding up all the values along the path equals <code>targetSum</code>.</p>
<p>A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
<strong>Output:</strong> true
<strong>Explanation:</strong> The root-to-leaf path with the target sum is shown.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum2.jpg" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> false
<strong>Explanation:</strong> There are two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [], targetSum = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> Since the tree is empty, there are no root-to-leaf paths.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn has_path_sum(root: Option<Rc<RefCell<TreeNode>>>, target_sum: i32) -> bool {
match root {
None => false,
Some(node) => {
let mut node = node.borrow_mut();
// 确定叶结点身份
if node.left.is_none() && node.right.is_none() {
return target_sum - node.val == 0;
}
let val = node.val;
Self::has_path_sum(node.left.take(), target_sum - val)
|| Self::has_path_sum(node.right.take(), target_sum - val)
}
}
}
}
|
112 |
Path Sum
|
Easy
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <code>true</code> if the tree has a <strong>root-to-leaf</strong> path such that adding up all the values along the path equals <code>targetSum</code>.</p>
<p>A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
<strong>Output:</strong> true
<strong>Explanation:</strong> The root-to-leaf path with the target sum is shown.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0112.Path%20Sum/images/pathsum2.jpg" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> false
<strong>Explanation:</strong> There are two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [], targetSum = 0
<strong>Output:</strong> false
<strong>Explanation:</strong> Since the tree is empty, there are no root-to-leaf paths.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function hasPathSum(root: TreeNode | null, targetSum: number): boolean {
if (root === null) {
return false;
}
const { val, left, right } = root;
if (left === null && right === null) {
return targetSum - val === 0;
}
return hasPathSum(left, targetSum - val) || hasPathSum(right, targetSum - val);
}
|
113 |
Path Sum II
|
Medium
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <em>all <strong>root-to-leaf</strong> paths where the sum of the node values in the path equals </em><code>targetSum</code><em>. Each path should be returned as a list of the node <strong>values</strong>, not node references</em>.</p>
<p>A <strong>root-to-leaf</strong> path is a path starting from the root and ending at any leaf node. A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsumii1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
<strong>Output:</strong> [[5,4,11,2],[5,8,4,5]]
<strong>Explanation:</strong> There are two paths whose sum equals targetSum:
5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsum2.jpg" style="width: 212px; height: 181px;" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1,2], targetSum = 0
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Backtracking; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
vector<vector<int>> ans;
vector<int> t;
function<void(TreeNode*, int)> dfs = [&](TreeNode* root, int s) {
if (!root) return;
s -= root->val;
t.emplace_back(root->val);
if (!root->left && !root->right && s == 0) ans.emplace_back(t);
dfs(root->left, s);
dfs(root->right, s);
t.pop_back();
};
dfs(root, targetSum);
return ans;
}
};
|
113 |
Path Sum II
|
Medium
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <em>all <strong>root-to-leaf</strong> paths where the sum of the node values in the path equals </em><code>targetSum</code><em>. Each path should be returned as a list of the node <strong>values</strong>, not node references</em>.</p>
<p>A <strong>root-to-leaf</strong> path is a path starting from the root and ending at any leaf node. A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsumii1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
<strong>Output:</strong> [[5,4,11,2],[5,8,4,5]]
<strong>Explanation:</strong> There are two paths whose sum equals targetSum:
5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsum2.jpg" style="width: 212px; height: 181px;" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1,2], targetSum = 0
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Backtracking; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func pathSum(root *TreeNode, targetSum int) (ans [][]int) {
t := []int{}
var dfs func(*TreeNode, int)
dfs = func(root *TreeNode, s int) {
if root == nil {
return
}
s -= root.Val
t = append(t, root.Val)
if root.Left == nil && root.Right == nil && s == 0 {
ans = append(ans, slices.Clone(t))
}
dfs(root.Left, s)
dfs(root.Right, s)
t = t[:len(t)-1]
}
dfs(root, targetSum)
return
}
|
113 |
Path Sum II
|
Medium
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <em>all <strong>root-to-leaf</strong> paths where the sum of the node values in the path equals </em><code>targetSum</code><em>. Each path should be returned as a list of the node <strong>values</strong>, not node references</em>.</p>
<p>A <strong>root-to-leaf</strong> path is a path starting from the root and ending at any leaf node. A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsumii1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
<strong>Output:</strong> [[5,4,11,2],[5,8,4,5]]
<strong>Explanation:</strong> There are two paths whose sum equals targetSum:
5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsum2.jpg" style="width: 212px; height: 181px;" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1,2], targetSum = 0
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Backtracking; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
dfs(root, targetSum);
return ans;
}
private void dfs(TreeNode root, int s) {
if (root == null) {
return;
}
s -= root.val;
t.add(root.val);
if (root.left == null && root.right == null && s == 0) {
ans.add(new ArrayList<>(t));
}
dfs(root.left, s);
dfs(root.right, s);
t.remove(t.size() - 1);
}
}
|
113 |
Path Sum II
|
Medium
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <em>all <strong>root-to-leaf</strong> paths where the sum of the node values in the path equals </em><code>targetSum</code><em>. Each path should be returned as a list of the node <strong>values</strong>, not node references</em>.</p>
<p>A <strong>root-to-leaf</strong> path is a path starting from the root and ending at any leaf node. A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsumii1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
<strong>Output:</strong> [[5,4,11,2],[5,8,4,5]]
<strong>Explanation:</strong> There are two paths whose sum equals targetSum:
5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsum2.jpg" style="width: 212px; height: 181px;" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1,2], targetSum = 0
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Backtracking; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} targetSum
* @return {number[][]}
*/
var pathSum = function (root, targetSum) {
const ans = [];
const t = [];
function dfs(root, s) {
if (!root) return;
s -= root.val;
t.push(root.val);
if (!root.left && !root.right && s == 0) ans.push([...t]);
dfs(root.left, s);
dfs(root.right, s);
t.pop();
}
dfs(root, targetSum);
return ans;
};
|
113 |
Path Sum II
|
Medium
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <em>all <strong>root-to-leaf</strong> paths where the sum of the node values in the path equals </em><code>targetSum</code><em>. Each path should be returned as a list of the node <strong>values</strong>, not node references</em>.</p>
<p>A <strong>root-to-leaf</strong> path is a path starting from the root and ending at any leaf node. A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsumii1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
<strong>Output:</strong> [[5,4,11,2],[5,8,4,5]]
<strong>Explanation:</strong> There are two paths whose sum equals targetSum:
5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsum2.jpg" style="width: 212px; height: 181px;" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1,2], targetSum = 0
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Backtracking; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
def dfs(root, s):
if root is None:
return
s += root.val
t.append(root.val)
if root.left is None and root.right is None and s == targetSum:
ans.append(t[:])
dfs(root.left, s)
dfs(root.right, s)
t.pop()
ans = []
t = []
dfs(root, 0)
return ans
|
113 |
Path Sum II
|
Medium
|
<p>Given the <code>root</code> of a binary tree and an integer <code>targetSum</code>, return <em>all <strong>root-to-leaf</strong> paths where the sum of the node values in the path equals </em><code>targetSum</code><em>. Each path should be returned as a list of the node <strong>values</strong>, not node references</em>.</p>
<p>A <strong>root-to-leaf</strong> path is a path starting from the root and ending at any leaf node. A <strong>leaf</strong> is a node with no children.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsumii1.jpg" style="width: 500px; height: 356px;" />
<pre>
<strong>Input:</strong> root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
<strong>Output:</strong> [[5,4,11,2],[5,8,4,5]]
<strong>Explanation:</strong> There are two paths whose sum equals targetSum:
5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0113.Path%20Sum%20II/images/pathsum2.jpg" style="width: 212px; height: 181px;" />
<pre>
<strong>Input:</strong> root = [1,2,3], targetSum = 5
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1,2], targetSum = 0
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5000]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
<li><code>-1000 <= targetSum <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Backtracking; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(
root: Option<Rc<RefCell<TreeNode>>>,
paths: &mut Vec<i32>,
mut target_sum: i32,
res: &mut Vec<Vec<i32>>,
) {
if let Some(node) = root {
let mut node = node.borrow_mut();
target_sum -= node.val;
paths.push(node.val);
if node.left.is_none() && node.right.is_none() {
if target_sum == 0 {
res.push(paths.clone());
}
} else {
if node.left.is_some() {
Self::dfs(node.left.take(), paths, target_sum, res);
}
if node.right.is_some() {
Self::dfs(node.right.take(), paths, target_sum, res);
}
}
paths.pop();
}
}
pub fn path_sum(root: Option<Rc<RefCell<TreeNode>>>, target_sum: i32) -> Vec<Vec<i32>> {
let mut res = vec![];
let mut paths = vec![];
Self::dfs(root, &mut paths, target_sum, &mut res);
res
}
}
|
114 |
Flatten Binary Tree to Linked List
|
Medium
|
<p>Given the <code>root</code> of a binary tree, flatten the tree into a "linked list":</p>
<ul>
<li>The "linked list" should use the same <code>TreeNode</code> class where the <code>right</code> child pointer points to the next node in the list and the <code>left</code> child pointer is always <code>null</code>.</li>
<li>The "linked list" should be in the same order as a <a href="https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR" target="_blank"><strong>pre-order</strong><strong> traversal</strong></a> of the binary tree.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0114.Flatten%20Binary%20Tree%20to%20Linked%20List/images/flaten.jpg" style="width: 500px; height: 226px;" />
<pre>
<strong>Input:</strong> root = [1,2,5,3,4,null,6]
<strong>Output:</strong> [1,null,2,null,3,null,4,null,5,null,6]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [0]
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Can you flatten the tree in-place (with <code>O(1)</code> extra space)?
|
Stack; Tree; Depth-First Search; Linked List; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void flatten(TreeNode* root) {
while (root) {
if (root->left) {
TreeNode* pre = root->left;
while (pre->right) {
pre = pre->right;
}
pre->right = root->right;
root->right = root->left;
root->left = nullptr;
}
root = root->right;
}
}
};
|
114 |
Flatten Binary Tree to Linked List
|
Medium
|
<p>Given the <code>root</code> of a binary tree, flatten the tree into a "linked list":</p>
<ul>
<li>The "linked list" should use the same <code>TreeNode</code> class where the <code>right</code> child pointer points to the next node in the list and the <code>left</code> child pointer is always <code>null</code>.</li>
<li>The "linked list" should be in the same order as a <a href="https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR" target="_blank"><strong>pre-order</strong><strong> traversal</strong></a> of the binary tree.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0114.Flatten%20Binary%20Tree%20to%20Linked%20List/images/flaten.jpg" style="width: 500px; height: 226px;" />
<pre>
<strong>Input:</strong> root = [1,2,5,3,4,null,6]
<strong>Output:</strong> [1,null,2,null,3,null,4,null,5,null,6]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [0]
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Can you flatten the tree in-place (with <code>O(1)</code> extra space)?
|
Stack; Tree; Depth-First Search; Linked List; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func flatten(root *TreeNode) {
for root != nil {
if root.Left != nil {
pre := root.Left
for pre.Right != nil {
pre = pre.Right
}
pre.Right = root.Right
root.Right = root.Left
root.Left = nil
}
root = root.Right
}
}
|
114 |
Flatten Binary Tree to Linked List
|
Medium
|
<p>Given the <code>root</code> of a binary tree, flatten the tree into a "linked list":</p>
<ul>
<li>The "linked list" should use the same <code>TreeNode</code> class where the <code>right</code> child pointer points to the next node in the list and the <code>left</code> child pointer is always <code>null</code>.</li>
<li>The "linked list" should be in the same order as a <a href="https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR" target="_blank"><strong>pre-order</strong><strong> traversal</strong></a> of the binary tree.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0114.Flatten%20Binary%20Tree%20to%20Linked%20List/images/flaten.jpg" style="width: 500px; height: 226px;" />
<pre>
<strong>Input:</strong> root = [1,2,5,3,4,null,6]
<strong>Output:</strong> [1,null,2,null,3,null,4,null,5,null,6]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [0]
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Can you flatten the tree in-place (with <code>O(1)</code> extra space)?
|
Stack; Tree; Depth-First Search; Linked List; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public void flatten(TreeNode root) {
while (root != null) {
if (root.left != null) {
// 找到当前节点左子树的最右节点
TreeNode pre = root.left;
while (pre.right != null) {
pre = pre.right;
}
// 将左子树的最右节点指向原来的右子树
pre.right = root.right;
// 将当前节点指向左子树
root.right = root.left;
root.left = null;
}
root = root.right;
}
}
}
|
114 |
Flatten Binary Tree to Linked List
|
Medium
|
<p>Given the <code>root</code> of a binary tree, flatten the tree into a "linked list":</p>
<ul>
<li>The "linked list" should use the same <code>TreeNode</code> class where the <code>right</code> child pointer points to the next node in the list and the <code>left</code> child pointer is always <code>null</code>.</li>
<li>The "linked list" should be in the same order as a <a href="https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR" target="_blank"><strong>pre-order</strong><strong> traversal</strong></a> of the binary tree.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0114.Flatten%20Binary%20Tree%20to%20Linked%20List/images/flaten.jpg" style="width: 500px; height: 226px;" />
<pre>
<strong>Input:</strong> root = [1,2,5,3,4,null,6]
<strong>Output:</strong> [1,null,2,null,3,null,4,null,5,null,6]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [0]
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Can you flatten the tree in-place (with <code>O(1)</code> extra space)?
|
Stack; Tree; Depth-First Search; Linked List; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {void} Do not return anything, modify root in-place instead.
*/
var flatten = function (root) {
while (root) {
if (root.left) {
let pre = root.left;
while (pre.right) {
pre = pre.right;
}
pre.right = root.right;
root.right = root.left;
root.left = null;
}
root = root.right;
}
};
|
114 |
Flatten Binary Tree to Linked List
|
Medium
|
<p>Given the <code>root</code> of a binary tree, flatten the tree into a "linked list":</p>
<ul>
<li>The "linked list" should use the same <code>TreeNode</code> class where the <code>right</code> child pointer points to the next node in the list and the <code>left</code> child pointer is always <code>null</code>.</li>
<li>The "linked list" should be in the same order as a <a href="https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR" target="_blank"><strong>pre-order</strong><strong> traversal</strong></a> of the binary tree.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0114.Flatten%20Binary%20Tree%20to%20Linked%20List/images/flaten.jpg" style="width: 500px; height: 226px;" />
<pre>
<strong>Input:</strong> root = [1,2,5,3,4,null,6]
<strong>Output:</strong> [1,null,2,null,3,null,4,null,5,null,6]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [0]
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Can you flatten the tree in-place (with <code>O(1)</code> extra space)?
|
Stack; Tree; Depth-First Search; Linked List; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def flatten(self, root: Optional[TreeNode]) -> None:
"""
Do not return anything, modify root in-place instead.
"""
while root:
if root.left:
pre = root.left
while pre.right:
pre = pre.right
pre.right = root.right
root.right = root.left
root.left = None
root = root.right
|
114 |
Flatten Binary Tree to Linked List
|
Medium
|
<p>Given the <code>root</code> of a binary tree, flatten the tree into a "linked list":</p>
<ul>
<li>The "linked list" should use the same <code>TreeNode</code> class where the <code>right</code> child pointer points to the next node in the list and the <code>left</code> child pointer is always <code>null</code>.</li>
<li>The "linked list" should be in the same order as a <a href="https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR" target="_blank"><strong>pre-order</strong><strong> traversal</strong></a> of the binary tree.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0114.Flatten%20Binary%20Tree%20to%20Linked%20List/images/flaten.jpg" style="width: 500px; height: 226px;" />
<pre>
<strong>Input:</strong> root = [1,2,5,3,4,null,6]
<strong>Output:</strong> [1,null,2,null,3,null,4,null,5,null,6]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [0]
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Can you flatten the tree in-place (with <code>O(1)</code> extra space)?
|
Stack; Tree; Depth-First Search; Linked List; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
#[allow(dead_code)]
pub fn flatten(root: &mut Option<Rc<RefCell<TreeNode>>>) {
if root.is_none() {
return;
}
let mut v: Vec<Option<Rc<RefCell<TreeNode>>>> = Vec::new();
// Initialize the vector
Self::pre_order_traverse(&mut v, root);
// Traverse the vector
let n = v.len();
for i in 0..n - 1 {
v[i].as_ref().unwrap().borrow_mut().left = None;
v[i].as_ref().unwrap().borrow_mut().right = v[i + 1].clone();
}
}
#[allow(dead_code)]
fn pre_order_traverse(
v: &mut Vec<Option<Rc<RefCell<TreeNode>>>>,
root: &Option<Rc<RefCell<TreeNode>>>,
) {
if root.is_none() {
return;
}
v.push(root.clone());
let left = root.as_ref().unwrap().borrow().left.clone();
let right = root.as_ref().unwrap().borrow().right.clone();
Self::pre_order_traverse(v, &left);
Self::pre_order_traverse(v, &right);
}
}
|
114 |
Flatten Binary Tree to Linked List
|
Medium
|
<p>Given the <code>root</code> of a binary tree, flatten the tree into a "linked list":</p>
<ul>
<li>The "linked list" should use the same <code>TreeNode</code> class where the <code>right</code> child pointer points to the next node in the list and the <code>left</code> child pointer is always <code>null</code>.</li>
<li>The "linked list" should be in the same order as a <a href="https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR" target="_blank"><strong>pre-order</strong><strong> traversal</strong></a> of the binary tree.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0114.Flatten%20Binary%20Tree%20to%20Linked%20List/images/flaten.jpg" style="width: 500px; height: 226px;" />
<pre>
<strong>Input:</strong> root = [1,2,5,3,4,null,6]
<strong>Output:</strong> [1,null,2,null,3,null,4,null,5,null,6]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [0]
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Can you flatten the tree in-place (with <code>O(1)</code> extra space)?
|
Stack; Tree; Depth-First Search; Linked List; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
/**
Do not return anything, modify root in-place instead.
*/
function flatten(root: TreeNode | null): void {
while (root !== null) {
if (root.left !== null) {
let pre = root.left;
while (pre.right !== null) {
pre = pre.right;
}
pre.right = root.right;
root.right = root.left;
root.left = null;
}
root = root.right;
}
}
|
115 |
Distinct Subsequences
|
Hard
|
<p>Given two strings s and t, return <i>the number of distinct</i> <b><i>subsequences</i></b><i> of </i>s<i> which equals </i>t.</p>
<p>The test cases are generated so that the answer fits on a 32-bit signed integer.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "rabbbit", t = "rabbit"
<strong>Output:</strong> 3
<strong>Explanation:</strong>
As shown below, there are 3 ways you can generate "rabbit" from s.
<code><strong><u>rabb</u></strong>b<strong><u>it</u></strong></code>
<code><strong><u>ra</u></strong>b<strong><u>bbit</u></strong></code>
<code><strong><u>rab</u></strong>b<strong><u>bit</u></strong></code>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "babgbag", t = "bag"
<strong>Output:</strong> 5
<strong>Explanation:</strong>
As shown below, there are 5 ways you can generate "bag" from s.
<code><strong><u>ba</u></strong>b<u><strong>g</strong></u>bag</code>
<code><strong><u>ba</u></strong>bgba<strong><u>g</u></strong></code>
<code><u><strong>b</strong></u>abgb<strong><u>ag</u></strong></code>
<code>ba<u><strong>b</strong></u>gb<u><strong>ag</strong></u></code>
<code>babg<strong><u>bag</u></strong></code></pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length, t.length <= 1000</code></li>
<li><code>s</code> and <code>t</code> consist of English letters.</li>
</ul>
|
String; Dynamic Programming
|
C++
|
class Solution {
public:
int numDistinct(string s, string t) {
int m = s.size(), n = t.size();
unsigned long long f[m + 1][n + 1];
memset(f, 0, sizeof(f));
for (int i = 0; i < m + 1; ++i) {
f[i][0] = 1;
}
for (int i = 1; i < m + 1; ++i) {
for (int j = 1; j < n + 1; ++j) {
f[i][j] = f[i - 1][j];
if (s[i - 1] == t[j - 1]) {
f[i][j] += f[i - 1][j - 1];
}
}
}
return f[m][n];
}
};
|
115 |
Distinct Subsequences
|
Hard
|
<p>Given two strings s and t, return <i>the number of distinct</i> <b><i>subsequences</i></b><i> of </i>s<i> which equals </i>t.</p>
<p>The test cases are generated so that the answer fits on a 32-bit signed integer.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "rabbbit", t = "rabbit"
<strong>Output:</strong> 3
<strong>Explanation:</strong>
As shown below, there are 3 ways you can generate "rabbit" from s.
<code><strong><u>rabb</u></strong>b<strong><u>it</u></strong></code>
<code><strong><u>ra</u></strong>b<strong><u>bbit</u></strong></code>
<code><strong><u>rab</u></strong>b<strong><u>bit</u></strong></code>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "babgbag", t = "bag"
<strong>Output:</strong> 5
<strong>Explanation:</strong>
As shown below, there are 5 ways you can generate "bag" from s.
<code><strong><u>ba</u></strong>b<u><strong>g</strong></u>bag</code>
<code><strong><u>ba</u></strong>bgba<strong><u>g</u></strong></code>
<code><u><strong>b</strong></u>abgb<strong><u>ag</u></strong></code>
<code>ba<u><strong>b</strong></u>gb<u><strong>ag</strong></u></code>
<code>babg<strong><u>bag</u></strong></code></pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length, t.length <= 1000</code></li>
<li><code>s</code> and <code>t</code> consist of English letters.</li>
</ul>
|
String; Dynamic Programming
|
Go
|
func numDistinct(s string, t string) int {
m, n := len(s), len(t)
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
}
for i := 0; i <= m; i++ {
f[i][0] = 1
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
f[i][j] = f[i-1][j]
if s[i-1] == t[j-1] {
f[i][j] += f[i-1][j-1]
}
}
}
return f[m][n]
}
|
115 |
Distinct Subsequences
|
Hard
|
<p>Given two strings s and t, return <i>the number of distinct</i> <b><i>subsequences</i></b><i> of </i>s<i> which equals </i>t.</p>
<p>The test cases are generated so that the answer fits on a 32-bit signed integer.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "rabbbit", t = "rabbit"
<strong>Output:</strong> 3
<strong>Explanation:</strong>
As shown below, there are 3 ways you can generate "rabbit" from s.
<code><strong><u>rabb</u></strong>b<strong><u>it</u></strong></code>
<code><strong><u>ra</u></strong>b<strong><u>bbit</u></strong></code>
<code><strong><u>rab</u></strong>b<strong><u>bit</u></strong></code>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "babgbag", t = "bag"
<strong>Output:</strong> 5
<strong>Explanation:</strong>
As shown below, there are 5 ways you can generate "bag" from s.
<code><strong><u>ba</u></strong>b<u><strong>g</strong></u>bag</code>
<code><strong><u>ba</u></strong>bgba<strong><u>g</u></strong></code>
<code><u><strong>b</strong></u>abgb<strong><u>ag</u></strong></code>
<code>ba<u><strong>b</strong></u>gb<u><strong>ag</strong></u></code>
<code>babg<strong><u>bag</u></strong></code></pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length, t.length <= 1000</code></li>
<li><code>s</code> and <code>t</code> consist of English letters.</li>
</ul>
|
String; Dynamic Programming
|
Java
|
class Solution {
public int numDistinct(String s, String t) {
int m = s.length(), n = t.length();
int[][] f = new int[m + 1][n + 1];
for (int i = 0; i < m + 1; ++i) {
f[i][0] = 1;
}
for (int i = 1; i < m + 1; ++i) {
for (int j = 1; j < n + 1; ++j) {
f[i][j] = f[i - 1][j];
if (s.charAt(i - 1) == t.charAt(j - 1)) {
f[i][j] += f[i - 1][j - 1];
}
}
}
return f[m][n];
}
}
|
115 |
Distinct Subsequences
|
Hard
|
<p>Given two strings s and t, return <i>the number of distinct</i> <b><i>subsequences</i></b><i> of </i>s<i> which equals </i>t.</p>
<p>The test cases are generated so that the answer fits on a 32-bit signed integer.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "rabbbit", t = "rabbit"
<strong>Output:</strong> 3
<strong>Explanation:</strong>
As shown below, there are 3 ways you can generate "rabbit" from s.
<code><strong><u>rabb</u></strong>b<strong><u>it</u></strong></code>
<code><strong><u>ra</u></strong>b<strong><u>bbit</u></strong></code>
<code><strong><u>rab</u></strong>b<strong><u>bit</u></strong></code>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "babgbag", t = "bag"
<strong>Output:</strong> 5
<strong>Explanation:</strong>
As shown below, there are 5 ways you can generate "bag" from s.
<code><strong><u>ba</u></strong>b<u><strong>g</strong></u>bag</code>
<code><strong><u>ba</u></strong>bgba<strong><u>g</u></strong></code>
<code><u><strong>b</strong></u>abgb<strong><u>ag</u></strong></code>
<code>ba<u><strong>b</strong></u>gb<u><strong>ag</strong></u></code>
<code>babg<strong><u>bag</u></strong></code></pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length, t.length <= 1000</code></li>
<li><code>s</code> and <code>t</code> consist of English letters.</li>
</ul>
|
String; Dynamic Programming
|
Python
|
class Solution:
def numDistinct(self, s: str, t: str) -> int:
m, n = len(s), len(t)
f = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
f[i][0] = 1
for i, a in enumerate(s, 1):
for j, b in enumerate(t, 1):
f[i][j] = f[i - 1][j]
if a == b:
f[i][j] += f[i - 1][j - 1]
return f[m][n]
|
115 |
Distinct Subsequences
|
Hard
|
<p>Given two strings s and t, return <i>the number of distinct</i> <b><i>subsequences</i></b><i> of </i>s<i> which equals </i>t.</p>
<p>The test cases are generated so that the answer fits on a 32-bit signed integer.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "rabbbit", t = "rabbit"
<strong>Output:</strong> 3
<strong>Explanation:</strong>
As shown below, there are 3 ways you can generate "rabbit" from s.
<code><strong><u>rabb</u></strong>b<strong><u>it</u></strong></code>
<code><strong><u>ra</u></strong>b<strong><u>bbit</u></strong></code>
<code><strong><u>rab</u></strong>b<strong><u>bit</u></strong></code>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "babgbag", t = "bag"
<strong>Output:</strong> 5
<strong>Explanation:</strong>
As shown below, there are 5 ways you can generate "bag" from s.
<code><strong><u>ba</u></strong>b<u><strong>g</strong></u>bag</code>
<code><strong><u>ba</u></strong>bgba<strong><u>g</u></strong></code>
<code><u><strong>b</strong></u>abgb<strong><u>ag</u></strong></code>
<code>ba<u><strong>b</strong></u>gb<u><strong>ag</strong></u></code>
<code>babg<strong><u>bag</u></strong></code></pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length, t.length <= 1000</code></li>
<li><code>s</code> and <code>t</code> consist of English letters.</li>
</ul>
|
String; Dynamic Programming
|
Rust
|
impl Solution {
#[allow(dead_code)]
pub fn num_distinct(s: String, t: String) -> i32 {
let n = s.len();
let m = t.len();
let mut dp: Vec<Vec<u64>> = vec![vec![0; m + 1]; n + 1];
// Initialize the dp vector
for i in 0..=n {
dp[i][0] = 1;
}
// Begin the actual dp process
for i in 1..=n {
for j in 1..=m {
dp[i][j] = if s.as_bytes()[i - 1] == t.as_bytes()[j - 1] {
dp[i - 1][j] + dp[i - 1][j - 1]
} else {
dp[i - 1][j]
};
}
}
dp[n][m] as i32
}
}
|
115 |
Distinct Subsequences
|
Hard
|
<p>Given two strings s and t, return <i>the number of distinct</i> <b><i>subsequences</i></b><i> of </i>s<i> which equals </i>t.</p>
<p>The test cases are generated so that the answer fits on a 32-bit signed integer.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "rabbbit", t = "rabbit"
<strong>Output:</strong> 3
<strong>Explanation:</strong>
As shown below, there are 3 ways you can generate "rabbit" from s.
<code><strong><u>rabb</u></strong>b<strong><u>it</u></strong></code>
<code><strong><u>ra</u></strong>b<strong><u>bbit</u></strong></code>
<code><strong><u>rab</u></strong>b<strong><u>bit</u></strong></code>
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "babgbag", t = "bag"
<strong>Output:</strong> 5
<strong>Explanation:</strong>
As shown below, there are 5 ways you can generate "bag" from s.
<code><strong><u>ba</u></strong>b<u><strong>g</strong></u>bag</code>
<code><strong><u>ba</u></strong>bgba<strong><u>g</u></strong></code>
<code><u><strong>b</strong></u>abgb<strong><u>ag</u></strong></code>
<code>ba<u><strong>b</strong></u>gb<u><strong>ag</strong></u></code>
<code>babg<strong><u>bag</u></strong></code></pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length, t.length <= 1000</code></li>
<li><code>s</code> and <code>t</code> consist of English letters.</li>
</ul>
|
String; Dynamic Programming
|
TypeScript
|
function numDistinct(s: string, t: string): number {
const m = s.length;
const n = t.length;
const f: number[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = 0; i <= m; ++i) {
f[i][0] = 1;
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
f[i][j] = f[i - 1][j];
if (s[i - 1] === t[j - 1]) {
f[i][j] += f[i - 1][j - 1];
}
}
}
return f[m][n];
}
|
116 |
Populating Next Right Pointers in Each Node
|
Medium
|
<p>You are given a <strong>perfect binary tree</strong> where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0116.Populating%20Next%20Right%20Pointers%20in%20Each%20Node/images/116_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,6,7,#]
<strong>Explanation: </strong>Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2<sup>12</sup> - 1]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
C++
|
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
Node* connect(Node* root) {
if (!root) {
return root;
}
queue<Node*> q{{root}};
while (!q.empty()) {
Node* p = nullptr;
for (int n = q.size(); n; --n) {
Node* node = q.front();
q.pop();
if (p) {
p->next = node;
}
p = node;
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
}
return root;
}
};
|
116 |
Populating Next Right Pointers in Each Node
|
Medium
|
<p>You are given a <strong>perfect binary tree</strong> where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0116.Populating%20Next%20Right%20Pointers%20in%20Each%20Node/images/116_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,6,7,#]
<strong>Explanation: </strong>Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2<sup>12</sup> - 1]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
Go
|
/**
* Definition for a Node.
* type Node struct {
* Val int
* Left *Node
* Right *Node
* Next *Node
* }
*/
func connect(root *Node) *Node {
if root == nil {
return root
}
q := []*Node{root}
for len(q) > 0 {
var p *Node
for n := len(q); n > 0; n-- {
node := q[0]
q = q[1:]
if p != nil {
p.Next = node
}
p = node
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
}
return root
}
|
116 |
Populating Next Right Pointers in Each Node
|
Medium
|
<p>You are given a <strong>perfect binary tree</strong> where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0116.Populating%20Next%20Right%20Pointers%20in%20Each%20Node/images/116_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,6,7,#]
<strong>Explanation: </strong>Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2<sup>12</sup> - 1]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
Java
|
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
if (root == null) {
return root;
}
Deque<Node> q = new ArrayDeque<>();
q.offer(root);
while (!q.isEmpty()) {
Node p = null;
for (int n = q.size(); n > 0; --n) {
Node node = q.poll();
if (p != null) {
p.next = node;
}
p = node;
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
}
return root;
}
}
|
116 |
Populating Next Right Pointers in Each Node
|
Medium
|
<p>You are given a <strong>perfect binary tree</strong> where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0116.Populating%20Next%20Right%20Pointers%20in%20Each%20Node/images/116_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,6,7,#]
<strong>Explanation: </strong>Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2<sup>12</sup> - 1]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
Python
|
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution:
def connect(self, root: "Optional[Node]") -> "Optional[Node]":
if root is None:
return root
q = deque([root])
while q:
p = None
for _ in range(len(q)):
node = q.popleft()
if p:
p.next = node
p = node
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return root
|
116 |
Populating Next Right Pointers in Each Node
|
Medium
|
<p>You are given a <strong>perfect binary tree</strong> where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0116.Populating%20Next%20Right%20Pointers%20in%20Each%20Node/images/116_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,6,7,#]
<strong>Explanation: </strong>Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 2<sup>12</sup> - 1]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
TypeScript
|
/**
* Definition for Node.
* class Node {
* val: number
* left: Node | null
* right: Node | null
* next: Node | null
* constructor(val?: number, left?: Node, right?: Node, next?: Node) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function connect(root: Node | null): Node | null {
if (root == null || root.left == null) {
return root;
}
const { left, right, next } = root;
left.next = right;
if (next != null) {
right.next = next.left;
}
connect(left);
connect(right);
return root;
}
|
117 |
Populating Next Right Pointers in Each Node II
|
Medium
|
<p>Given a binary tree</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0117.Populating%20Next%20Right%20Pointers%20in%20Each%20Node%20II/images/117_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,null,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,7,#]
<strong>Explanation: </strong>Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 6000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
C++
|
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
Node* connect(Node* root) {
if (!root) {
return root;
}
queue<Node*> q{{root}};
while (!q.empty()) {
Node* p = nullptr;
for (int n = q.size(); n; --n) {
Node* node = q.front();
q.pop();
if (p) {
p->next = node;
}
p = node;
if (node->left) {
q.push(node->left);
}
if (node->right) {
q.push(node->right);
}
}
}
return root;
}
};
|
117 |
Populating Next Right Pointers in Each Node II
|
Medium
|
<p>Given a binary tree</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0117.Populating%20Next%20Right%20Pointers%20in%20Each%20Node%20II/images/117_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,null,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,7,#]
<strong>Explanation: </strong>Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 6000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
C#
|
/*
// Definition for a Node.
public class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
}
*/
public class Solution {
public Node Connect(Node root) {
if (root == null) {
return null;
}
var q = new Queue<Node>();
q.Enqueue(root);
while (q.Count > 0) {
Node p = null;
for (int i = q.Count; i > 0; --i) {
var node = q.Dequeue();
if (p != null) {
p.next = node;
}
p = node;
if (node.left != null) {
q.Enqueue(node.left);
}
if (node.right != null) {
q.Enqueue(node.right);
}
}
}
return root;
}
}
|
117 |
Populating Next Right Pointers in Each Node II
|
Medium
|
<p>Given a binary tree</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0117.Populating%20Next%20Right%20Pointers%20in%20Each%20Node%20II/images/117_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,null,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,7,#]
<strong>Explanation: </strong>Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 6000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
Go
|
/**
* Definition for a Node.
* type Node struct {
* Val int
* Left *Node
* Right *Node
* Next *Node
* }
*/
func connect(root *Node) *Node {
if root == nil {
return root
}
q := []*Node{root}
for len(q) > 0 {
var p *Node
for n := len(q); n > 0; n-- {
node := q[0]
q = q[1:]
if p != nil {
p.Next = node
}
p = node
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
}
return root
}
|
117 |
Populating Next Right Pointers in Each Node II
|
Medium
|
<p>Given a binary tree</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0117.Populating%20Next%20Right%20Pointers%20in%20Each%20Node%20II/images/117_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,null,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,7,#]
<strong>Explanation: </strong>Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 6000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
Java
|
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
if (root == null) {
return root;
}
Deque<Node> q = new ArrayDeque<>();
q.offer(root);
while (!q.isEmpty()) {
Node p = null;
for (int n = q.size(); n > 0; --n) {
Node node = q.poll();
if (p != null) {
p.next = node;
}
p = node;
if (node.left != null) {
q.offer(node.left);
}
if (node.right != null) {
q.offer(node.right);
}
}
}
return root;
}
}
|
117 |
Populating Next Right Pointers in Each Node II
|
Medium
|
<p>Given a binary tree</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0117.Populating%20Next%20Right%20Pointers%20in%20Each%20Node%20II/images/117_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,null,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,7,#]
<strong>Explanation: </strong>Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 6000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
Python
|
"""
# Definition for a Node.
class Node:
def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
class Solution:
def connect(self, root: "Node") -> "Node":
if root is None:
return root
q = deque([root])
while q:
p = None
for _ in range(len(q)):
node = q.popleft()
if p:
p.next = node
p = node
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return root
|
117 |
Populating Next Right Pointers in Each Node II
|
Medium
|
<p>Given a binary tree</p>
<pre>
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
</pre>
<p>Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to <code>NULL</code>.</p>
<p>Initially, all next pointers are set to <code>NULL</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0117.Populating%20Next%20Right%20Pointers%20in%20Each%20Node%20II/images/117_sample.png" style="width: 500px; height: 171px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,null,7]
<strong>Output:</strong> [1,#,2,3,#,4,5,7,#]
<strong>Explanation: </strong>Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 6000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong></p>
<ul>
<li>You may only use constant extra space.</li>
<li>The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.</li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Linked List; Binary Tree
|
TypeScript
|
/**
* Definition for Node.
* class Node {
* val: number
* left: Node | null
* right: Node | null
* next: Node | null
* constructor(val?: number, left?: Node, right?: Node, next?: Node) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function connect(root: Node | null): Node | null {
if (!root) {
return null;
}
const q: Node[] = [root];
while (q.length) {
const nq: Node[] = [];
let p: Node | null = null;
for (const node of q) {
if (p) {
p.next = node;
}
p = node;
const { left, right } = node;
left && nq.push(left);
right && nq.push(right);
}
q.splice(0, q.length, ...nq);
}
return root;
}
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
C++
|
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> f;
f.push_back(vector<int>(1, 1));
for (int i = 0; i < numRows - 1; ++i) {
vector<int> g;
g.push_back(1);
for (int j = 1; j < f[i].size(); ++j) {
g.push_back(f[i][j - 1] + f[i][j]);
}
g.push_back(1);
f.push_back(g);
}
return f;
}
};
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
C#
|
public class Solution {
public IList<IList<int>> Generate(int numRows) {
var f = new List<IList<int>> { new List<int> { 1 } };
for (int i = 1; i < numRows; ++i) {
var g = new List<int> { 1 };
for (int j = 1; j < f[i - 1].Count; ++j) {
g.Add(f[i - 1][j - 1] + f[i - 1][j]);
}
g.Add(1);
f.Add(g);
}
return f;
}
}
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
Go
|
func generate(numRows int) [][]int {
f := [][]int{[]int{1}}
for i := 0; i < numRows-1; i++ {
g := []int{1}
for j := 1; j < len(f[i]); j++ {
g = append(g, f[i][j-1]+f[i][j])
}
g = append(g, 1)
f = append(f, g)
}
return f
}
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
Java
|
class Solution {
public List<List<Integer>> generate(int numRows) {
List<List<Integer>> f = new ArrayList<>();
f.add(List.of(1));
for (int i = 0; i < numRows - 1; ++i) {
List<Integer> g = new ArrayList<>();
g.add(1);
for (int j = 1; j < f.get(i).size(); ++j) {
g.add(f.get(i).get(j - 1) + f.get(i).get(j));
}
g.add(1);
f.add(g);
}
return f;
}
}
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
JavaScript
|
/**
* @param {number} numRows
* @return {number[][]}
*/
var generate = function (numRows) {
const f = [[1]];
for (let i = 0; i < numRows - 1; ++i) {
const g = [1];
for (let j = 1; j < f[i].length; ++j) {
g.push(f[i][j - 1] + f[i][j]);
}
g.push(1);
f.push(g);
}
return f;
};
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
Python
|
class Solution:
def generate(self, numRows: int) -> List[List[int]]:
f = [[1]]
for i in range(numRows - 1):
g = [1] + [a + b for a, b in pairwise(f[-1])] + [1]
f.append(g)
return f
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
Rust
|
impl Solution {
pub fn generate(num_rows: i32) -> Vec<Vec<i32>> {
let mut f = vec![vec![1]];
for i in 1..num_rows {
let mut g = vec![1];
for j in 1..f[i as usize - 1].len() {
g.push(f[i as usize - 1][j - 1] + f[i as usize - 1][j]);
}
g.push(1);
f.push(g);
}
f
}
}
|
118 |
Pascal's Triangle
|
Easy
|
<p>Given an integer <code>numRows</code>, return the first numRows of <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0118.Pascal%27s%20Triangle/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> numRows = 5
<strong>Output:</strong> [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> numRows = 1
<strong>Output:</strong> [[1]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numRows <= 30</code></li>
</ul>
|
Array; Dynamic Programming
|
TypeScript
|
function generate(numRows: number): number[][] {
const f: number[][] = [[1]];
for (let i = 0; i < numRows - 1; ++i) {
const g: number[] = [1];
for (let j = 1; j < f[i].length; ++j) {
g.push(f[i][j - 1] + f[i][j]);
}
g.push(1);
f.push(g);
}
return f;
}
|
119 |
Pascal's Triangle II
|
Easy
|
<p>Given an integer <code>rowIndex</code>, return the <code>rowIndex<sup>th</sup></code> (<strong>0-indexed</strong>) row of the <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0119.Pascal%27s%20Triangle%20II/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> rowIndex = 3
<strong>Output:</strong> [1,3,3,1]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> rowIndex = 0
<strong>Output:</strong> [1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> rowIndex = 1
<strong>Output:</strong> [1,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= rowIndex <= 33</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you optimize your algorithm to use only <code>O(rowIndex)</code> extra space?</p>
|
Array; Dynamic Programming
|
C++
|
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> f(rowIndex + 1, 1);
for (int i = 2; i < rowIndex + 1; ++i) {
for (int j = i - 1; j; --j) {
f[j] += f[j - 1];
}
}
return f;
}
};
|
119 |
Pascal's Triangle II
|
Easy
|
<p>Given an integer <code>rowIndex</code>, return the <code>rowIndex<sup>th</sup></code> (<strong>0-indexed</strong>) row of the <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0119.Pascal%27s%20Triangle%20II/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> rowIndex = 3
<strong>Output:</strong> [1,3,3,1]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> rowIndex = 0
<strong>Output:</strong> [1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> rowIndex = 1
<strong>Output:</strong> [1,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= rowIndex <= 33</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you optimize your algorithm to use only <code>O(rowIndex)</code> extra space?</p>
|
Array; Dynamic Programming
|
Go
|
func getRow(rowIndex int) []int {
f := make([]int, rowIndex+1)
for i := range f {
f[i] = 1
}
for i := 2; i < rowIndex+1; i++ {
for j := i - 1; j > 0; j-- {
f[j] += f[j-1]
}
}
return f
}
|
119 |
Pascal's Triangle II
|
Easy
|
<p>Given an integer <code>rowIndex</code>, return the <code>rowIndex<sup>th</sup></code> (<strong>0-indexed</strong>) row of the <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0119.Pascal%27s%20Triangle%20II/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> rowIndex = 3
<strong>Output:</strong> [1,3,3,1]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> rowIndex = 0
<strong>Output:</strong> [1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> rowIndex = 1
<strong>Output:</strong> [1,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= rowIndex <= 33</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you optimize your algorithm to use only <code>O(rowIndex)</code> extra space?</p>
|
Array; Dynamic Programming
|
Java
|
class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> f = new ArrayList<>();
for (int i = 0; i < rowIndex + 1; ++i) {
f.add(1);
}
for (int i = 2; i < rowIndex + 1; ++i) {
for (int j = i - 1; j > 0; --j) {
f.set(j, f.get(j) + f.get(j - 1));
}
}
return f;
}
}
|
119 |
Pascal's Triangle II
|
Easy
|
<p>Given an integer <code>rowIndex</code>, return the <code>rowIndex<sup>th</sup></code> (<strong>0-indexed</strong>) row of the <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0119.Pascal%27s%20Triangle%20II/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> rowIndex = 3
<strong>Output:</strong> [1,3,3,1]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> rowIndex = 0
<strong>Output:</strong> [1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> rowIndex = 1
<strong>Output:</strong> [1,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= rowIndex <= 33</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you optimize your algorithm to use only <code>O(rowIndex)</code> extra space?</p>
|
Array; Dynamic Programming
|
JavaScript
|
/**
* @param {number} rowIndex
* @return {number[]}
*/
var getRow = function (rowIndex) {
const f = Array(rowIndex + 1).fill(1);
for (let i = 2; i < rowIndex + 1; ++i) {
for (let j = i - 1; j; --j) {
f[j] += f[j - 1];
}
}
return f;
};
|
119 |
Pascal's Triangle II
|
Easy
|
<p>Given an integer <code>rowIndex</code>, return the <code>rowIndex<sup>th</sup></code> (<strong>0-indexed</strong>) row of the <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0119.Pascal%27s%20Triangle%20II/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> rowIndex = 3
<strong>Output:</strong> [1,3,3,1]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> rowIndex = 0
<strong>Output:</strong> [1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> rowIndex = 1
<strong>Output:</strong> [1,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= rowIndex <= 33</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you optimize your algorithm to use only <code>O(rowIndex)</code> extra space?</p>
|
Array; Dynamic Programming
|
Python
|
class Solution:
def getRow(self, rowIndex: int) -> List[int]:
f = [1] * (rowIndex + 1)
for i in range(2, rowIndex + 1):
for j in range(i - 1, 0, -1):
f[j] += f[j - 1]
return f
|
119 |
Pascal's Triangle II
|
Easy
|
<p>Given an integer <code>rowIndex</code>, return the <code>rowIndex<sup>th</sup></code> (<strong>0-indexed</strong>) row of the <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0119.Pascal%27s%20Triangle%20II/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> rowIndex = 3
<strong>Output:</strong> [1,3,3,1]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> rowIndex = 0
<strong>Output:</strong> [1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> rowIndex = 1
<strong>Output:</strong> [1,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= rowIndex <= 33</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you optimize your algorithm to use only <code>O(rowIndex)</code> extra space?</p>
|
Array; Dynamic Programming
|
Rust
|
impl Solution {
pub fn get_row(row_index: i32) -> Vec<i32> {
let n = (row_index + 1) as usize;
let mut f = vec![1; n];
for i in 2..n {
for j in (1..i).rev() {
f[j] += f[j - 1];
}
}
f
}
}
|
119 |
Pascal's Triangle II
|
Easy
|
<p>Given an integer <code>rowIndex</code>, return the <code>rowIndex<sup>th</sup></code> (<strong>0-indexed</strong>) row of the <strong>Pascal's triangle</strong>.</p>
<p>In <strong>Pascal's triangle</strong>, each number is the sum of the two numbers directly above it as shown:</p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0119.Pascal%27s%20Triangle%20II/images/PascalTriangleAnimated2.gif" style="height:240px; width:260px" />
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> rowIndex = 3
<strong>Output:</strong> [1,3,3,1]
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> rowIndex = 0
<strong>Output:</strong> [1]
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> rowIndex = 1
<strong>Output:</strong> [1,1]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= rowIndex <= 33</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you optimize your algorithm to use only <code>O(rowIndex)</code> extra space?</p>
|
Array; Dynamic Programming
|
TypeScript
|
function getRow(rowIndex: number): number[] {
const f: number[] = Array(rowIndex + 1).fill(1);
for (let i = 2; i < rowIndex + 1; ++i) {
for (let j = i - 1; j; --j) {
f[j] += f[j - 1];
}
}
return f;
}
|
120 |
Triangle
|
Medium
|
<p>Given a <code>triangle</code> array, return <em>the minimum path sum from top to bottom</em>.</p>
<p>For each step, you may move to an adjacent number of the row below. More formally, if you are on index <code>i</code> on the current row, you may move to either index <code>i</code> or index <code>i + 1</code> on the next row.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
<strong>Output:</strong> 11
<strong>Explanation:</strong> The triangle looks like:
<u>2</u>
<u>3</u> 4
6 <u>5</u> 7
4 <u>1</u> 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[-10]]
<strong>Output:</strong> -10
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= triangle.length <= 200</code></li>
<li><code>triangle[0].length == 1</code></li>
<li><code>triangle[i].length == triangle[i - 1].length + 1</code></li>
<li><code>-10<sup>4</sup> <= triangle[i][j] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you do this using only <code>O(n)</code> extra space, where <code>n</code> is the total number of rows in the triangle?
|
Array; Dynamic Programming
|
C++
|
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
int f[n + 1];
memset(f, 0, sizeof(f));
for (int i = n - 1; ~i; --i) {
for (int j = 0; j <= i; ++j) {
f[j] = min(f[j], f[j + 1]) + triangle[i][j];
}
}
return f[0];
}
};
|
120 |
Triangle
|
Medium
|
<p>Given a <code>triangle</code> array, return <em>the minimum path sum from top to bottom</em>.</p>
<p>For each step, you may move to an adjacent number of the row below. More formally, if you are on index <code>i</code> on the current row, you may move to either index <code>i</code> or index <code>i + 1</code> on the next row.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
<strong>Output:</strong> 11
<strong>Explanation:</strong> The triangle looks like:
<u>2</u>
<u>3</u> 4
6 <u>5</u> 7
4 <u>1</u> 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[-10]]
<strong>Output:</strong> -10
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= triangle.length <= 200</code></li>
<li><code>triangle[0].length == 1</code></li>
<li><code>triangle[i].length == triangle[i - 1].length + 1</code></li>
<li><code>-10<sup>4</sup> <= triangle[i][j] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you do this using only <code>O(n)</code> extra space, where <code>n</code> is the total number of rows in the triangle?
|
Array; Dynamic Programming
|
Go
|
func minimumTotal(triangle [][]int) int {
n := len(triangle)
f := make([]int, n+1)
for i := n - 1; i >= 0; i-- {
for j := 0; j <= i; j++ {
f[j] = min(f[j], f[j+1]) + triangle[i][j]
}
}
return f[0]
}
|
120 |
Triangle
|
Medium
|
<p>Given a <code>triangle</code> array, return <em>the minimum path sum from top to bottom</em>.</p>
<p>For each step, you may move to an adjacent number of the row below. More formally, if you are on index <code>i</code> on the current row, you may move to either index <code>i</code> or index <code>i + 1</code> on the next row.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
<strong>Output:</strong> 11
<strong>Explanation:</strong> The triangle looks like:
<u>2</u>
<u>3</u> 4
6 <u>5</u> 7
4 <u>1</u> 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[-10]]
<strong>Output:</strong> -10
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= triangle.length <= 200</code></li>
<li><code>triangle[0].length == 1</code></li>
<li><code>triangle[i].length == triangle[i - 1].length + 1</code></li>
<li><code>-10<sup>4</sup> <= triangle[i][j] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you do this using only <code>O(n)</code> extra space, where <code>n</code> is the total number of rows in the triangle?
|
Array; Dynamic Programming
|
Java
|
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
int[] f = new int[n + 1];
for (int i = n - 1; i >= 0; --i) {
for (int j = 0; j <= i; ++j) {
f[j] = Math.min(f[j], f[j + 1]) + triangle.get(i).get(j);
}
}
return f[0];
}
}
|
120 |
Triangle
|
Medium
|
<p>Given a <code>triangle</code> array, return <em>the minimum path sum from top to bottom</em>.</p>
<p>For each step, you may move to an adjacent number of the row below. More formally, if you are on index <code>i</code> on the current row, you may move to either index <code>i</code> or index <code>i + 1</code> on the next row.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
<strong>Output:</strong> 11
<strong>Explanation:</strong> The triangle looks like:
<u>2</u>
<u>3</u> 4
6 <u>5</u> 7
4 <u>1</u> 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[-10]]
<strong>Output:</strong> -10
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= triangle.length <= 200</code></li>
<li><code>triangle[0].length == 1</code></li>
<li><code>triangle[i].length == triangle[i - 1].length + 1</code></li>
<li><code>-10<sup>4</sup> <= triangle[i][j] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you do this using only <code>O(n)</code> extra space, where <code>n</code> is the total number of rows in the triangle?
|
Array; Dynamic Programming
|
Python
|
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
f = [[0] * (n + 1) for _ in range(n + 1)]
for i in range(n - 1, -1, -1):
for j in range(i + 1):
f[i][j] = min(f[i + 1][j], f[i + 1][j + 1]) + triangle[i][j]
return f[0][0]
|
120 |
Triangle
|
Medium
|
<p>Given a <code>triangle</code> array, return <em>the minimum path sum from top to bottom</em>.</p>
<p>For each step, you may move to an adjacent number of the row below. More formally, if you are on index <code>i</code> on the current row, you may move to either index <code>i</code> or index <code>i + 1</code> on the next row.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
<strong>Output:</strong> 11
<strong>Explanation:</strong> The triangle looks like:
<u>2</u>
<u>3</u> 4
6 <u>5</u> 7
4 <u>1</u> 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[-10]]
<strong>Output:</strong> -10
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= triangle.length <= 200</code></li>
<li><code>triangle[0].length == 1</code></li>
<li><code>triangle[i].length == triangle[i - 1].length + 1</code></li>
<li><code>-10<sup>4</sup> <= triangle[i][j] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you do this using only <code>O(n)</code> extra space, where <code>n</code> is the total number of rows in the triangle?
|
Array; Dynamic Programming
|
Rust
|
impl Solution {
pub fn minimum_total(triangle: Vec<Vec<i32>>) -> i32 {
let n = triangle.len();
let mut f = vec![0; n + 1];
for i in (0..n).rev() {
for j in 0..=i {
f[j] = f[j].min(f[j + 1]) + triangle[i][j];
}
}
f[0]
}
}
|
120 |
Triangle
|
Medium
|
<p>Given a <code>triangle</code> array, return <em>the minimum path sum from top to bottom</em>.</p>
<p>For each step, you may move to an adjacent number of the row below. More formally, if you are on index <code>i</code> on the current row, you may move to either index <code>i</code> or index <code>i + 1</code> on the next row.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
<strong>Output:</strong> 11
<strong>Explanation:</strong> The triangle looks like:
<u>2</u>
<u>3</u> 4
6 <u>5</u> 7
4 <u>1</u> 8 3
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> triangle = [[-10]]
<strong>Output:</strong> -10
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= triangle.length <= 200</code></li>
<li><code>triangle[0].length == 1</code></li>
<li><code>triangle[i].length == triangle[i - 1].length + 1</code></li>
<li><code>-10<sup>4</sup> <= triangle[i][j] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you do this using only <code>O(n)</code> extra space, where <code>n</code> is the total number of rows in the triangle?
|
Array; Dynamic Programming
|
TypeScript
|
function minimumTotal(triangle: number[][]): number {
const n = triangle.length;
const f: number[] = Array(n + 1).fill(0);
for (let i = n - 1; ~i; --i) {
for (let j = 0; j <= i; ++j) {
f[j] = Math.min(f[j], f[j + 1]) + triangle[i][j];
}
}
return f[0];
}
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
C++
|
class Solution {
public:
int maxProfit(vector<int>& prices) {
int ans = 0, mi = prices[0];
for (int& v : prices) {
ans = max(ans, v - mi);
mi = min(mi, v);
}
return ans;
}
};
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
C#
|
public class Solution {
public int MaxProfit(int[] prices) {
int ans = 0, mi = prices[0];
foreach (int v in prices) {
ans = Math.Max(ans, v - mi);
mi = Math.Min(mi, v);
}
return ans;
}
}
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Go
|
func maxProfit(prices []int) (ans int) {
mi := prices[0]
for _, v := range prices {
ans = max(ans, v-mi)
mi = min(mi, v)
}
return
}
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Java
|
class Solution {
public int maxProfit(int[] prices) {
int ans = 0, mi = prices[0];
for (int v : prices) {
ans = Math.max(ans, v - mi);
mi = Math.min(mi, v);
}
return ans;
}
}
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
JavaScript
|
/**
* @param {number[]} prices
* @return {number}
*/
var maxProfit = function (prices) {
let ans = 0;
let mi = prices[0];
for (const v of prices) {
ans = Math.max(ans, v - mi);
mi = Math.min(mi, v);
}
return ans;
};
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
PHP
|
class Solution {
/**
* @param Integer[] $prices
* @return Integer
*/
function maxProfit($prices) {
$ans = 0;
$mi = $prices[0];
foreach ($prices as $v) {
$ans = max($ans, $v - $mi);
$mi = min($mi, $v);
}
return $ans;
}
}
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Python
|
class Solution:
def maxProfit(self, prices: List[int]) -> int:
ans, mi = 0, inf
for v in prices:
ans = max(ans, v - mi)
mi = min(mi, v)
return ans
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Rust
|
impl Solution {
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut ans = 0;
let mut mi = prices[0];
for &v in &prices {
ans = ans.max(v - mi);
mi = mi.min(v);
}
ans
}
}
|
121 |
Best Time to Buy and Sell Stock
|
Easy
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>You want to maximize your profit by choosing a <strong>single day</strong> to buy one stock and choosing a <strong>different day in the future</strong> to sell that stock.</p>
<p>Return <em>the maximum profit you can achieve from this transaction</em>. If you cannot achieve any profit, return <code>0</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 5
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transactions are done and the max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
TypeScript
|
function maxProfit(prices: number[]): number {
let ans = 0;
let mi = prices[0];
for (const v of prices) {
ans = Math.max(ans, v - mi);
mi = Math.min(mi, v);
}
return ans;
}
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
C++
|
class Solution {
public:
int maxProfit(vector<int>& prices) {
int ans = 0;
for (int i = 1; i < prices.size(); ++i) ans += max(0, prices[i] - prices[i - 1]);
return ans;
}
};
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
C#
|
public class Solution {
public int MaxProfit(int[] prices) {
int ans = 0;
for (int i = 1; i < prices.Length; ++i) {
ans += Math.Max(0, prices[i] - prices[i - 1]);
}
return ans;
}
}
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
Go
|
func maxProfit(prices []int) (ans int) {
for i, v := range prices[1:] {
t := v - prices[i]
if t > 0 {
ans += t
}
}
return
}
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
Java
|
class Solution {
public int maxProfit(int[] prices) {
int ans = 0;
for (int i = 1; i < prices.length; ++i) {
ans += Math.max(0, prices[i] - prices[i - 1]);
}
return ans;
}
}
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
JavaScript
|
/**
* @param {number[]} prices
* @return {number}
*/
var maxProfit = function (prices) {
let ans = 0;
for (let i = 1; i < prices.length; i++) {
ans += Math.max(0, prices[i] - prices[i - 1]);
}
return ans;
};
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
Python
|
class Solution:
def maxProfit(self, prices: List[int]) -> int:
return sum(max(0, b - a) for a, b in pairwise(prices))
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
Rust
|
impl Solution {
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut res = 0;
for i in 1..prices.len() {
res += (0).max(prices[i] - prices[i - 1]);
}
res
}
}
|
122 |
Best Time to Buy and Sell Stock II
|
Medium
|
<p>You are given an integer array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>On each day, you may decide to buy and/or sell the stock. You can only hold <strong>at most one</strong> share of the stock at any time. However, you can buy it then immediately sell it on the <strong>same day</strong>.</p>
<p>Find and return <em>the <strong>maximum</strong> profit you can achieve</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,1,5,3,6,4]
<strong>Output:</strong> 7
<strong>Explanation:</strong> Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 3 * 10<sup>4</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>4</sup></code></li>
</ul>
|
Greedy; Array; Dynamic Programming
|
TypeScript
|
function maxProfit(prices: number[]): number {
let ans = 0;
for (let i = 1; i < prices.length; i++) {
ans += Math.max(0, prices[i] - prices[i - 1]);
}
return ans;
}
|
123 |
Best Time to Buy and Sell Stock III
|
Hard
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>Find the maximum profit you can achieve. You may complete <strong>at most two transactions</strong>.</p>
<p><strong>Note:</strong> You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [3,3,5,0,0,3,1,4]
<strong>Output:</strong> 6
<strong>Explanation:</strong> Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transaction is done, i.e. max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>5</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
C++
|
class Solution {
public:
int maxProfit(vector<int>& prices) {
int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
for (int i = 1; i < prices.size(); ++i) {
f1 = max(f1, -prices[i]);
f2 = max(f2, f1 + prices[i]);
f3 = max(f3, f2 - prices[i]);
f4 = max(f4, f3 + prices[i]);
}
return f4;
}
};
|
123 |
Best Time to Buy and Sell Stock III
|
Hard
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>Find the maximum profit you can achieve. You may complete <strong>at most two transactions</strong>.</p>
<p><strong>Note:</strong> You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [3,3,5,0,0,3,1,4]
<strong>Output:</strong> 6
<strong>Explanation:</strong> Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transaction is done, i.e. max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>5</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
C#
|
public class Solution {
public int MaxProfit(int[] prices) {
int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
for (int i = 1; i < prices.Length; ++i) {
f1 = Math.Max(f1, -prices[i]);
f2 = Math.Max(f2, f1 + prices[i]);
f3 = Math.Max(f3, f2 - prices[i]);
f4 = Math.Max(f4, f3 + prices[i]);
}
return f4;
}
}
|
123 |
Best Time to Buy and Sell Stock III
|
Hard
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>Find the maximum profit you can achieve. You may complete <strong>at most two transactions</strong>.</p>
<p><strong>Note:</strong> You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [3,3,5,0,0,3,1,4]
<strong>Output:</strong> 6
<strong>Explanation:</strong> Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transaction is done, i.e. max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>5</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Go
|
func maxProfit(prices []int) int {
f1, f2, f3, f4 := -prices[0], 0, -prices[0], 0
for i := 1; i < len(prices); i++ {
f1 = max(f1, -prices[i])
f2 = max(f2, f1+prices[i])
f3 = max(f3, f2-prices[i])
f4 = max(f4, f3+prices[i])
}
return f4
}
|
123 |
Best Time to Buy and Sell Stock III
|
Hard
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>Find the maximum profit you can achieve. You may complete <strong>at most two transactions</strong>.</p>
<p><strong>Note:</strong> You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [3,3,5,0,0,3,1,4]
<strong>Output:</strong> 6
<strong>Explanation:</strong> Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transaction is done, i.e. max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>5</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Java
|
class Solution {
public int maxProfit(int[] prices) {
// 第一次买入,第一次卖出,第二次买入,第二次卖出
int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
for (int i = 1; i < prices.length; ++i) {
f1 = Math.max(f1, -prices[i]);
f2 = Math.max(f2, f1 + prices[i]);
f3 = Math.max(f3, f2 - prices[i]);
f4 = Math.max(f4, f3 + prices[i]);
}
return f4;
}
}
|
123 |
Best Time to Buy and Sell Stock III
|
Hard
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>Find the maximum profit you can achieve. You may complete <strong>at most two transactions</strong>.</p>
<p><strong>Note:</strong> You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [3,3,5,0,0,3,1,4]
<strong>Output:</strong> 6
<strong>Explanation:</strong> Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transaction is done, i.e. max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>5</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Python
|
class Solution:
def maxProfit(self, prices: List[int]) -> int:
# 第一次买入,第一次卖出,第二次买入,第二次卖出
f1, f2, f3, f4 = -prices[0], 0, -prices[0], 0
for price in prices[1:]:
f1 = max(f1, -price)
f2 = max(f2, f1 + price)
f3 = max(f3, f2 - price)
f4 = max(f4, f3 + price)
return f4
|
123 |
Best Time to Buy and Sell Stock III
|
Hard
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>Find the maximum profit you can achieve. You may complete <strong>at most two transactions</strong>.</p>
<p><strong>Note:</strong> You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [3,3,5,0,0,3,1,4]
<strong>Output:</strong> 6
<strong>Explanation:</strong> Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transaction is done, i.e. max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>5</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
Rust
|
impl Solution {
#[allow(dead_code)]
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut f1 = -prices[0];
let mut f2 = 0;
let mut f3 = -prices[0];
let mut f4 = 0;
let n = prices.len();
for i in 1..n {
f1 = std::cmp::max(f1, -prices[i]);
f2 = std::cmp::max(f2, f1 + prices[i]);
f3 = std::cmp::max(f3, f2 - prices[i]);
f4 = std::cmp::max(f4, f3 + prices[i]);
}
f4
}
}
|
123 |
Best Time to Buy and Sell Stock III
|
Hard
|
<p>You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day.</p>
<p>Find the maximum profit you can achieve. You may complete <strong>at most two transactions</strong>.</p>
<p><strong>Note:</strong> You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> prices = [3,3,5,0,0,3,1,4]
<strong>Output:</strong> 6
<strong>Explanation:</strong> Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> prices = [1,2,3,4,5]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> prices = [7,6,4,3,1]
<strong>Output:</strong> 0
<strong>Explanation:</strong> In this case, no transaction is done, i.e. max profit = 0.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= prices.length <= 10<sup>5</sup></code></li>
<li><code>0 <= prices[i] <= 10<sup>5</sup></code></li>
</ul>
|
Array; Dynamic Programming
|
TypeScript
|
function maxProfit(prices: number[]): number {
let [f1, f2, f3, f4] = [-prices[0], 0, -prices[0], 0];
for (let i = 1; i < prices.length; ++i) {
f1 = Math.max(f1, -prices[i]);
f2 = Math.max(f2, f1 + prices[i]);
f3 = Math.max(f3, f2 - prices[i]);
f4 = Math.max(f4, f3 + prices[i]);
}
return f4;
}
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxPathSum(TreeNode* root) {
int ans = -1001;
function<int(TreeNode*)> dfs = [&](TreeNode* root) {
if (!root) {
return 0;
}
int left = max(0, dfs(root->left));
int right = max(0, dfs(root->right));
ans = max(ans, left + right + root->val);
return root->val + max(left, right);
};
dfs(root);
return ans;
}
};
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
C#
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private int ans = -1001;
public int MaxPathSum(TreeNode root) {
dfs(root);
return ans;
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int left = Math.Max(0, dfs(root.left));
int right = Math.Max(0, dfs(root.right));
ans = Math.Max(ans, left + right + root.val);
return root.val + Math.Max(left, right);
}
}
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func maxPathSum(root *TreeNode) int {
ans := -1001
var dfs func(*TreeNode) int
dfs = func(root *TreeNode) int {
if root == nil {
return 0
}
left := max(0, dfs(root.Left))
right := max(0, dfs(root.Right))
ans = max(ans, left+right+root.Val)
return max(left, right) + root.Val
}
dfs(root)
return ans
}
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans = -1001;
public int maxPathSum(TreeNode root) {
dfs(root);
return ans;
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int left = Math.max(0, dfs(root.left));
int right = Math.max(0, dfs(root.right));
ans = Math.max(ans, root.val + left + right);
return root.val + Math.max(left, right);
}
}
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxPathSum = function (root) {
let ans = -1001;
const dfs = root => {
if (!root) {
return 0;
}
const left = Math.max(0, dfs(root.left));
const right = Math.max(0, dfs(root.right));
ans = Math.max(ans, left + right + root.val);
return Math.max(left, right) + root.val;
};
dfs(root);
return ans;
};
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxPathSum(self, root: Optional[TreeNode]) -> int:
def dfs(root: Optional[TreeNode]) -> int:
if root is None:
return 0
left = max(0, dfs(root.left))
right = max(0, dfs(root.right))
nonlocal ans
ans = max(ans, root.val + left + right)
return root.val + max(left, right)
ans = -inf
dfs(root)
return ans
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut i32) -> i32 {
if root.is_none() {
return 0;
}
let node = root.as_ref().unwrap().borrow();
let left = (0).max(Self::dfs(&node.left, res));
let right = (0).max(Self::dfs(&node.right, res));
*res = (node.val + left + right).max(*res);
node.val + left.max(right)
}
pub fn max_path_sum(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
let mut res = -1000;
Self::dfs(&root, &mut res);
res
}
}
|
124 |
Binary Tree Maximum Path Sum
|
Hard
|
<p>A <strong>path</strong> in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence <strong>at most once</strong>. Note that the path does not need to pass through the root.</p>
<p>The <strong>path sum</strong> of a path is the sum of the node's values in the path.</p>
<p>Given the <code>root</code> of a binary tree, return <em>the maximum <strong>path sum</strong> of any <strong>non-empty</strong> path</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx1.jpg" style="width: 322px; height: 182px;" />
<pre>
<strong>Input:</strong> root = [1,2,3]
<strong>Output:</strong> 6
<strong>Explanation:</strong> The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0100-0199/0124.Binary%20Tree%20Maximum%20Path%20Sum/images/exx2.jpg" />
<pre>
<strong>Input:</strong> root = [-10,9,20,null,null,15,7]
<strong>Output:</strong> 42
<strong>Explanation:</strong> The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3 * 10<sup>4</sup>]</code>.</li>
<li><code>-1000 <= Node.val <= 1000</code></li>
</ul>
|
Tree; Depth-First Search; Dynamic Programming; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function maxPathSum(root: TreeNode | null): number {
let ans = -1001;
const dfs = (root: TreeNode | null): number => {
if (!root) {
return 0;
}
const left = Math.max(0, dfs(root.left));
const right = Math.max(0, dfs(root.right));
ans = Math.max(ans, left + right + root.val);
return Math.max(left, right) + root.val;
};
dfs(root);
return ans;
}
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
C++
|
class Solution {
public:
bool isPalindrome(string s) {
int i = 0, j = s.size() - 1;
while (i < j) {
if (!isalnum(s[i])) {
++i;
} else if (!isalnum(s[j])) {
--j;
} else if (tolower(s[i]) != tolower(s[j])) {
return false;
} else {
++i;
--j;
}
}
return true;
}
};
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
C#
|
public class Solution {
public bool IsPalindrome(string s) {
int i = 0, j = s.Length - 1;
while (i < j) {
if (!char.IsLetterOrDigit(s[i])) {
++i;
} else if (!char.IsLetterOrDigit(s[j])) {
--j;
} else if (char.ToLower(s[i++]) != char.ToLower(s[j--])) {
return false;
}
}
return true;
}
}
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
Go
|
func isPalindrome(s string) bool {
i, j := 0, len(s)-1
for i < j {
if !isalnum(s[i]) {
i++
} else if !isalnum(s[j]) {
j--
} else if tolower(s[i]) != tolower(s[j]) {
return false
} else {
i, j = i+1, j-1
}
}
return true
}
func isalnum(ch byte) bool {
return (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')
}
func tolower(ch byte) byte {
if ch >= 'A' && ch <= 'Z' {
return ch + 32
}
return ch
}
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
Java
|
class Solution {
public boolean isPalindrome(String s) {
int i = 0, j = s.length() - 1;
while (i < j) {
if (!Character.isLetterOrDigit(s.charAt(i))) {
++i;
} else if (!Character.isLetterOrDigit(s.charAt(j))) {
--j;
} else if (Character.toLowerCase(s.charAt(i)) != Character.toLowerCase(s.charAt(j))) {
return false;
} else {
++i;
--j;
}
}
return true;
}
}
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
JavaScript
|
/**
* @param {string} s
* @return {boolean}
*/
var isPalindrome = function (s) {
let i = 0;
let j = s.length - 1;
while (i < j) {
if (!/[a-zA-Z0-9]/.test(s[i])) {
++i;
} else if (!/[a-zA-Z0-9]/.test(s[j])) {
--j;
} else if (s[i].toLowerCase() !== s[j].toLowerCase()) {
return false;
} else {
++i;
--j;
}
}
return true;
};
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
PHP
|
class Solution {
/**
* @param String $s
* @return Boolean
*/
function isPalindrome($s) {
$regex = '/[a-z0-9]/';
$s = strtolower($s);
preg_match_all($regex, $s, $matches);
if ($matches[0] == null) {
return true;
}
$len = floor(count($matches[0]) / 2);
for ($i = 0; $i < $len; $i++) {
if ($matches[0][$i] != $matches[0][count($matches[0]) - 1 - $i]) {
return false;
}
}
return true;
}
}
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
Python
|
class Solution:
def isPalindrome(self, s: str) -> bool:
i, j = 0, len(s) - 1
while i < j:
if not s[i].isalnum():
i += 1
elif not s[j].isalnum():
j -= 1
elif s[i].lower() != s[j].lower():
return False
else:
i, j = i + 1, j - 1
return True
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
Rust
|
impl Solution {
pub fn is_palindrome(s: String) -> bool {
let s = s.to_lowercase();
let s = s.as_bytes();
let n = s.len();
let (mut l, mut r) = (0, n - 1);
while l < r {
while l < r && !s[l].is_ascii_alphanumeric() {
l += 1;
}
while l < r && !s[r].is_ascii_alphanumeric() {
r -= 1;
}
if s[l] != s[r] {
return false;
}
l += 1;
if r != 0 {
r -= 1;
}
}
true
}
}
|
125 |
Valid Palindrome
|
Easy
|
<p>A phrase is a <strong>palindrome</strong> if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.</p>
<p>Given a string <code>s</code>, return <code>true</code><em> if it is a <strong>palindrome</strong>, or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "A man, a plan, a canal: Panama"
<strong>Output:</strong> true
<strong>Explanation:</strong> "amanaplanacanalpanama" is a palindrome.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = "race a car"
<strong>Output:</strong> false
<strong>Explanation:</strong> "raceacar" is not a palindrome.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = " "
<strong>Output:</strong> true
<strong>Explanation:</strong> s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 2 * 10<sup>5</sup></code></li>
<li><code>s</code> consists only of printable ASCII characters.</li>
</ul>
|
Two Pointers; String
|
TypeScript
|
function isPalindrome(s: string): boolean {
let i = 0;
let j = s.length - 1;
while (i < j) {
if (!/[a-zA-Z0-9]/.test(s[i])) {
++i;
} else if (!/[a-zA-Z0-9]/.test(s[j])) {
--j;
} else if (s[i].toLowerCase() !== s[j].toLowerCase()) {
return false;
} else {
++i;
--j;
}
}
return true;
}
|
126 |
Word Ladder II
|
Hard
|
<p>A <strong>transformation sequence</strong> from word <code>beginWord</code> to word <code>endWord</code> using a dictionary <code>wordList</code> is a sequence of words <code>beginWord -> s<sub>1</sub> -> s<sub>2</sub> -> ... -> s<sub>k</sub></code> such that:</p>
<ul>
<li>Every adjacent pair of words differs by a single letter.</li>
<li>Every <code>s<sub>i</sub></code> for <code>1 <= i <= k</code> is in <code>wordList</code>. Note that <code>beginWord</code> does not need to be in <code>wordList</code>.</li>
<li><code>s<sub>k</sub> == endWord</code></li>
</ul>
<p>Given two words, <code>beginWord</code> and <code>endWord</code>, and a dictionary <code>wordList</code>, return <em>all the <strong>shortest transformation sequences</strong> from</em> <code>beginWord</code> <em>to</em> <code>endWord</code><em>, or an empty list if no such sequence exists. Each sequence should be returned as a list of the words </em><code>[beginWord, s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>k</sub>]</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
<strong>Output:</strong> [["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
<strong>Explanation:</strong> There are 2 shortest transformation sequences:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
<strong>Output:</strong> []
<strong>Explanation:</strong> The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= beginWord.length <= 5</code></li>
<li><code>endWord.length == beginWord.length</code></li>
<li><code>1 <= wordList.length <= 500</code></li>
<li><code>wordList[i].length == beginWord.length</code></li>
<li><code>beginWord</code>, <code>endWord</code>, and <code>wordList[i]</code> consist of lowercase English letters.</li>
<li><code>beginWord != endWord</code></li>
<li>All the words in <code>wordList</code> are <strong>unique</strong>.</li>
<li>The <strong>sum</strong> of all shortest transformation sequences does not exceed <code>10<sup>5</sup></code>.</li>
</ul>
|
Breadth-First Search; Hash Table; String; Backtracking
|
Go
|
func findLadders(beginWord string, endWord string, wordList []string) [][]string {
var ans [][]string
words := make(map[string]bool)
for _, word := range wordList {
words[word] = true
}
if !words[endWord] {
return ans
}
words[beginWord] = false
dist := map[string]int{beginWord: 0}
prev := map[string]map[string]bool{}
q := []string{beginWord}
found := false
step := 0
for len(q) > 0 && !found {
step++
for i := len(q); i > 0; i-- {
p := q[0]
q = q[1:]
chars := []byte(p)
for j := 0; j < len(chars); j++ {
ch := chars[j]
for k := 'a'; k <= 'z'; k++ {
chars[j] = byte(k)
t := string(chars)
if v, ok := dist[t]; ok {
if v == step {
prev[t][p] = true
}
}
if !words[t] {
continue
}
if len(prev[t]) == 0 {
prev[t] = make(map[string]bool)
}
prev[t][p] = true
words[t] = false
q = append(q, t)
dist[t] = step
if endWord == t {
found = true
}
}
chars[j] = ch
}
}
}
var dfs func(path []string, begin, cur string)
dfs = func(path []string, begin, cur string) {
if cur == beginWord {
cp := make([]string, len(path))
copy(cp, path)
ans = append(ans, cp)
return
}
for k := range prev[cur] {
path = append([]string{k}, path...)
dfs(path, beginWord, k)
path = path[1:]
}
}
if found {
path := []string{endWord}
dfs(path, beginWord, endWord)
}
return ans
}
|
126 |
Word Ladder II
|
Hard
|
<p>A <strong>transformation sequence</strong> from word <code>beginWord</code> to word <code>endWord</code> using a dictionary <code>wordList</code> is a sequence of words <code>beginWord -> s<sub>1</sub> -> s<sub>2</sub> -> ... -> s<sub>k</sub></code> such that:</p>
<ul>
<li>Every adjacent pair of words differs by a single letter.</li>
<li>Every <code>s<sub>i</sub></code> for <code>1 <= i <= k</code> is in <code>wordList</code>. Note that <code>beginWord</code> does not need to be in <code>wordList</code>.</li>
<li><code>s<sub>k</sub> == endWord</code></li>
</ul>
<p>Given two words, <code>beginWord</code> and <code>endWord</code>, and a dictionary <code>wordList</code>, return <em>all the <strong>shortest transformation sequences</strong> from</em> <code>beginWord</code> <em>to</em> <code>endWord</code><em>, or an empty list if no such sequence exists. Each sequence should be returned as a list of the words </em><code>[beginWord, s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>k</sub>]</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
<strong>Output:</strong> [["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
<strong>Explanation:</strong> There are 2 shortest transformation sequences:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
<strong>Output:</strong> []
<strong>Explanation:</strong> The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= beginWord.length <= 5</code></li>
<li><code>endWord.length == beginWord.length</code></li>
<li><code>1 <= wordList.length <= 500</code></li>
<li><code>wordList[i].length == beginWord.length</code></li>
<li><code>beginWord</code>, <code>endWord</code>, and <code>wordList[i]</code> consist of lowercase English letters.</li>
<li><code>beginWord != endWord</code></li>
<li>All the words in <code>wordList</code> are <strong>unique</strong>.</li>
<li>The <strong>sum</strong> of all shortest transformation sequences does not exceed <code>10<sup>5</sup></code>.</li>
</ul>
|
Breadth-First Search; Hash Table; String; Backtracking
|
Java
|
class Solution {
private List<List<String>> ans;
private Map<String, Set<String>> prev;
public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
ans = new ArrayList<>();
Set<String> words = new HashSet<>(wordList);
if (!words.contains(endWord)) {
return ans;
}
words.remove(beginWord);
Map<String, Integer> dist = new HashMap<>();
dist.put(beginWord, 0);
prev = new HashMap<>();
Queue<String> q = new ArrayDeque<>();
q.offer(beginWord);
boolean found = false;
int step = 0;
while (!q.isEmpty() && !found) {
++step;
for (int i = q.size(); i > 0; --i) {
String p = q.poll();
char[] chars = p.toCharArray();
for (int j = 0; j < chars.length; ++j) {
char ch = chars[j];
for (char k = 'a'; k <= 'z'; ++k) {
chars[j] = k;
String t = new String(chars);
if (dist.getOrDefault(t, 0) == step) {
prev.get(t).add(p);
}
if (!words.contains(t)) {
continue;
}
prev.computeIfAbsent(t, key -> new HashSet<>()).add(p);
words.remove(t);
q.offer(t);
dist.put(t, step);
if (endWord.equals(t)) {
found = true;
}
}
chars[j] = ch;
}
}
}
if (found) {
Deque<String> path = new ArrayDeque<>();
path.add(endWord);
dfs(path, beginWord, endWord);
}
return ans;
}
private void dfs(Deque<String> path, String beginWord, String cur) {
if (cur.equals(beginWord)) {
ans.add(new ArrayList<>(path));
return;
}
for (String precursor : prev.get(cur)) {
path.addFirst(precursor);
dfs(path, beginWord, precursor);
path.removeFirst();
}
}
}
|
126 |
Word Ladder II
|
Hard
|
<p>A <strong>transformation sequence</strong> from word <code>beginWord</code> to word <code>endWord</code> using a dictionary <code>wordList</code> is a sequence of words <code>beginWord -> s<sub>1</sub> -> s<sub>2</sub> -> ... -> s<sub>k</sub></code> such that:</p>
<ul>
<li>Every adjacent pair of words differs by a single letter.</li>
<li>Every <code>s<sub>i</sub></code> for <code>1 <= i <= k</code> is in <code>wordList</code>. Note that <code>beginWord</code> does not need to be in <code>wordList</code>.</li>
<li><code>s<sub>k</sub> == endWord</code></li>
</ul>
<p>Given two words, <code>beginWord</code> and <code>endWord</code>, and a dictionary <code>wordList</code>, return <em>all the <strong>shortest transformation sequences</strong> from</em> <code>beginWord</code> <em>to</em> <code>endWord</code><em>, or an empty list if no such sequence exists. Each sequence should be returned as a list of the words </em><code>[beginWord, s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>k</sub>]</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
<strong>Output:</strong> [["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
<strong>Explanation:</strong> There are 2 shortest transformation sequences:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
<strong>Output:</strong> []
<strong>Explanation:</strong> The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= beginWord.length <= 5</code></li>
<li><code>endWord.length == beginWord.length</code></li>
<li><code>1 <= wordList.length <= 500</code></li>
<li><code>wordList[i].length == beginWord.length</code></li>
<li><code>beginWord</code>, <code>endWord</code>, and <code>wordList[i]</code> consist of lowercase English letters.</li>
<li><code>beginWord != endWord</code></li>
<li>All the words in <code>wordList</code> are <strong>unique</strong>.</li>
<li>The <strong>sum</strong> of all shortest transformation sequences does not exceed <code>10<sup>5</sup></code>.</li>
</ul>
|
Breadth-First Search; Hash Table; String; Backtracking
|
Python
|
class Solution:
def findLadders(
self, beginWord: str, endWord: str, wordList: List[str]
) -> List[List[str]]:
def dfs(path, cur):
if cur == beginWord:
ans.append(path[::-1])
return
for precursor in prev[cur]:
path.append(precursor)
dfs(path, precursor)
path.pop()
ans = []
words = set(wordList)
if endWord not in words:
return ans
words.discard(beginWord)
dist = {beginWord: 0}
prev = defaultdict(set)
q = deque([beginWord])
found = False
step = 0
while q and not found:
step += 1
for i in range(len(q), 0, -1):
p = q.popleft()
s = list(p)
for i in range(len(s)):
ch = s[i]
for j in range(26):
s[i] = chr(ord('a') + j)
t = ''.join(s)
if dist.get(t, 0) == step:
prev[t].add(p)
if t not in words:
continue
prev[t].add(p)
words.discard(t)
q.append(t)
dist[t] = step
if endWord == t:
found = True
s[i] = ch
if found:
path = [endWord]
dfs(path, endWord)
return ans
|
127 |
Word Ladder
|
Hard
|
<p>A <strong>transformation sequence</strong> from word <code>beginWord</code> to word <code>endWord</code> using a dictionary <code>wordList</code> is a sequence of words <code>beginWord -> s<sub>1</sub> -> s<sub>2</sub> -> ... -> s<sub>k</sub></code> such that:</p>
<ul>
<li>Every adjacent pair of words differs by a single letter.</li>
<li>Every <code>s<sub>i</sub></code> for <code>1 <= i <= k</code> is in <code>wordList</code>. Note that <code>beginWord</code> does not need to be in <code>wordList</code>.</li>
<li><code>s<sub>k</sub> == endWord</code></li>
</ul>
<p>Given two words, <code>beginWord</code> and <code>endWord</code>, and a dictionary <code>wordList</code>, return <em>the <strong>number of words</strong> in the <strong>shortest transformation sequence</strong> from</em> <code>beginWord</code> <em>to</em> <code>endWord</code><em>, or </em><code>0</code><em> if no such sequence exists.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
<strong>Output:</strong> 5
<strong>Explanation:</strong> One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
<strong>Output:</strong> 0
<strong>Explanation:</strong> The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= beginWord.length <= 10</code></li>
<li><code>endWord.length == beginWord.length</code></li>
<li><code>1 <= wordList.length <= 5000</code></li>
<li><code>wordList[i].length == beginWord.length</code></li>
<li><code>beginWord</code>, <code>endWord</code>, and <code>wordList[i]</code> consist of lowercase English letters.</li>
<li><code>beginWord != endWord</code></li>
<li>All the words in <code>wordList</code> are <strong>unique</strong>.</li>
</ul>
|
Breadth-First Search; Hash Table; String
|
C++
|
class Solution {
public:
int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> words(wordList.begin(), wordList.end());
queue<string> q{{beginWord}};
int ans = 1;
while (!q.empty()) {
++ans;
for (int i = q.size(); i > 0; --i) {
string s = q.front();
q.pop();
for (int j = 0; j < s.size(); ++j) {
char ch = s[j];
for (char k = 'a'; k <= 'z'; ++k) {
s[j] = k;
if (!words.count(s)) continue;
if (s == endWord) return ans;
q.push(s);
words.erase(s);
}
s[j] = ch;
}
}
}
return 0;
}
};
|
127 |
Word Ladder
|
Hard
|
<p>A <strong>transformation sequence</strong> from word <code>beginWord</code> to word <code>endWord</code> using a dictionary <code>wordList</code> is a sequence of words <code>beginWord -> s<sub>1</sub> -> s<sub>2</sub> -> ... -> s<sub>k</sub></code> such that:</p>
<ul>
<li>Every adjacent pair of words differs by a single letter.</li>
<li>Every <code>s<sub>i</sub></code> for <code>1 <= i <= k</code> is in <code>wordList</code>. Note that <code>beginWord</code> does not need to be in <code>wordList</code>.</li>
<li><code>s<sub>k</sub> == endWord</code></li>
</ul>
<p>Given two words, <code>beginWord</code> and <code>endWord</code>, and a dictionary <code>wordList</code>, return <em>the <strong>number of words</strong> in the <strong>shortest transformation sequence</strong> from</em> <code>beginWord</code> <em>to</em> <code>endWord</code><em>, or </em><code>0</code><em> if no such sequence exists.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
<strong>Output:</strong> 5
<strong>Explanation:</strong> One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
<strong>Output:</strong> 0
<strong>Explanation:</strong> The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= beginWord.length <= 10</code></li>
<li><code>endWord.length == beginWord.length</code></li>
<li><code>1 <= wordList.length <= 5000</code></li>
<li><code>wordList[i].length == beginWord.length</code></li>
<li><code>beginWord</code>, <code>endWord</code>, and <code>wordList[i]</code> consist of lowercase English letters.</li>
<li><code>beginWord != endWord</code></li>
<li>All the words in <code>wordList</code> are <strong>unique</strong>.</li>
</ul>
|
Breadth-First Search; Hash Table; String
|
C#
|
using System.Collections;
using System.Collections.Generic;
using System.Linq;
public class Solution {
public int LadderLength(string beginWord, string endWord, IList<string> wordList) {
var words = Enumerable.Repeat(beginWord, 1).Concat(wordList).Select((word, i) => new { Word = word, Index = i }).ToList();
var endWordIndex = words.Find(w => w.Word == endWord)?.Index;
if (endWordIndex == null) {
return 0;
}
var paths = new List<int>[words.Count];
for (var i = 0; i < paths.Length; ++i)
{
paths[i] = new List<int>();
}
for (var i = 0; i < beginWord.Length; ++i)
{
var hashMap = new Hashtable();
foreach (var item in words)
{
var newWord = string.Format("{0}_{1}", item.Word.Substring(0, i), item.Word.Substring(i + 1));
List<int> similars;
if (!hashMap.ContainsKey(newWord))
{
similars = new List<int>();
hashMap.Add(newWord, similars);
}
else
{
similars = (List<int>)hashMap[newWord];
}
foreach (var similar in similars)
{
paths[similar].Add(item.Index);
paths[item.Index].Add(similar);
}
similars.Add(item.Index);
}
}
var left = words.Count - 1;
var lastRound = new List<int> { 0 };
var visited = new bool[words.Count];
visited[0] = true;
for (var result = 2; left > 0; ++result)
{
var thisRound = new List<int>();
foreach (var index in lastRound)
{
foreach (var next in paths[index])
{
if (!visited[next])
{
visited[next] = true;
if (next == endWordIndex) return result;
thisRound.Add(next);
}
}
}
if (thisRound.Count == 0) break;
lastRound = thisRound;
}
return 0;
}
}
|
127 |
Word Ladder
|
Hard
|
<p>A <strong>transformation sequence</strong> from word <code>beginWord</code> to word <code>endWord</code> using a dictionary <code>wordList</code> is a sequence of words <code>beginWord -> s<sub>1</sub> -> s<sub>2</sub> -> ... -> s<sub>k</sub></code> such that:</p>
<ul>
<li>Every adjacent pair of words differs by a single letter.</li>
<li>Every <code>s<sub>i</sub></code> for <code>1 <= i <= k</code> is in <code>wordList</code>. Note that <code>beginWord</code> does not need to be in <code>wordList</code>.</li>
<li><code>s<sub>k</sub> == endWord</code></li>
</ul>
<p>Given two words, <code>beginWord</code> and <code>endWord</code>, and a dictionary <code>wordList</code>, return <em>the <strong>number of words</strong> in the <strong>shortest transformation sequence</strong> from</em> <code>beginWord</code> <em>to</em> <code>endWord</code><em>, or </em><code>0</code><em> if no such sequence exists.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
<strong>Output:</strong> 5
<strong>Explanation:</strong> One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
<strong>Output:</strong> 0
<strong>Explanation:</strong> The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= beginWord.length <= 10</code></li>
<li><code>endWord.length == beginWord.length</code></li>
<li><code>1 <= wordList.length <= 5000</code></li>
<li><code>wordList[i].length == beginWord.length</code></li>
<li><code>beginWord</code>, <code>endWord</code>, and <code>wordList[i]</code> consist of lowercase English letters.</li>
<li><code>beginWord != endWord</code></li>
<li>All the words in <code>wordList</code> are <strong>unique</strong>.</li>
</ul>
|
Breadth-First Search; Hash Table; String
|
Go
|
func ladderLength(beginWord string, endWord string, wordList []string) int {
words := make(map[string]bool)
for _, word := range wordList {
words[word] = true
}
q := []string{beginWord}
ans := 1
for len(q) > 0 {
ans++
for i := len(q); i > 0; i-- {
s := q[0]
q = q[1:]
chars := []byte(s)
for j := 0; j < len(chars); j++ {
ch := chars[j]
for k := 'a'; k <= 'z'; k++ {
chars[j] = byte(k)
t := string(chars)
if !words[t] {
continue
}
if t == endWord {
return ans
}
q = append(q, t)
words[t] = false
}
chars[j] = ch
}
}
}
return 0
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.