file_path
stringlengths 20
207
| content
stringlengths 5
3.85M
| size
int64 5
3.85M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.26
0.93
|
---|---|---|---|---|---|---|
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/docs/ogn.rst
|
DebugDrawPointCloud
-------------------
['Take a point cloud as input and display it in the scene.']
**Inputs**
- **execIn** (*execution*): The input execution port.
- **depthTest** (*bool*): If true, the points will not render when behind other objects. Default to True.
- **transform** (*matrixd[4]*): The matrix to transform the points by.
- **pointCloudData** (*pointf[3][]*): Buffer of 3d points containing point cloud data. Default to [].
- **color** (*colorf[4]*): Color of points. Default to [0.75, 0.75, 1, 1].
- **width** (*float*): Size of points. Default to 0.02.
| 608 |
reStructuredText
| 39.599997 | 109 | 0.616776 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/docs/CHANGELOG.md
|
# Changelog
## [0.2.3] - 2023-01-19
### Fixed
- crash when trying to draw without a valid renderer
## [0.2.2] - 2022-12-14
### Fixed
- crash when deleting
## [0.2.1] - 2022-10-18
### Changed
- Debug Draw Point Cloud takes transform
- PrimitiveDrawingHelper::setVertices with poistion only
## [0.2.0] - 2022-10-06
### Added
- Debug Draw Point Cloud node
- PrimitiveDrawingHelper::setVertices with constant color and width
### Changed
- antialiasingWidth to 1 in PrimitiveDrawingHelper::draw()
## [0.1.4] - 2022-10-02
### Fixed
- Crash when stage was not ready
## [0.1.3] - 2022-09-07
### Fixed
- Fixes for kit 103.5
## [0.1.2] - 2022-03-07
### Added
- Added flag to disable depth check
## [0.1.1] - 2021-08-20
### Added
- world space flag to specify if width value is in world coordinates.
## [0.1.0] - 2021-07-27
### Added
- Initial version of extension
| 869 |
Markdown
| 17.913043 | 71 | 0.667434 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/docs/README.md
|
# Usage
To enable this extension, go to the Extension Manager menu and enable omni.isaac.debug_draw extension.
| 113 |
Markdown
| 21.799996 | 102 | 0.787611 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.debug_draw/docs/index.rst
|
Debug Drawing [omni.isaac.debug_draw]
###########################################
.. automodule:: omni.isaac.debug_draw._debug_draw
:platform: Windows-x86_64, Linux-x86_64
:members:
:undoc-members:
:show-inheritance:
:imported-members:
:exclude-members:
Omnigraph Nodes
=======================
.. include:: ogn.rst
| 344 |
reStructuredText
| 20.562499 | 49 | 0.543605 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/PACKAGE-LICENSES/omni.isaac.benchmark_environments-LICENSE.md
|
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
| 412 |
Markdown
| 57.999992 | 74 | 0.839806 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/config/extension.toml
|
[core]
reloadable = true
order = 0
[package]
version = "0.4.0"
category = "Simulation"
title = "Simulated Environments for use in Isaac Sim"
description = "Extension for programming simple environments for robots"
authors = ["NVIDIA"]
repository = ""
keywords = ["isaac", "samples", "environments"]
changelog = "docs/CHANGELOG.md"
readme = "docs/README.md"
icon = "data/icon.png"
[dependencies]
"omni.isaac.core" = {}
[[python.module]]
name = "omni.isaac.benchmark_environments"
[[python.module]]
name = "omni.isaac.benchmark_environments.tests"
| 550 |
TOML
| 21.039999 | 72 | 0.72 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/extension.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import omni.ext
from .environments import *
| 473 |
Python
| 38.499997 | 76 | 0.805497 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .extension import *
| 454 |
Python
| 40.363633 | 76 | 0.803965 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/objects.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from pxr import Gf
import numpy as np
from scipy.spatial.transform import Rotation as R
from .object_interface import Object
"""
An Object allows the manipulation of a group of prims as a single unit. A subclass of Object must implement
the construct() method to specify what prims comprise an object, and what their relative positions are.
When an Object is created, the base pose is specified in the constructor. Inside the construct() method,
the position of each prim in the object is specified relative to that base pose.
For example, the Cubby Object is constructed from a set of blocks that have translations specified relative to
the base of the Cubby. The relative rotation is not specified, and so is assumed to be the identity.
Target, Block, Sphere, and Capsule are the most basic possible variants of Object, as they are comprised of
just a single prim.
"""
class Target(Object):
def construct(self, **kwargs):
size = kwargs.get("size", 0.05)
target_color = kwargs.get("target_color", np.array([1.0, 0, 0]))
self.create_target(target_size=size, target_color=target_color)
def get_target(self, make_visible=True):
target = self.targets[0]
target.set_visibility(make_visible)
return target
class Block(Object):
def construct(self, **kwargs):
self.size = kwargs.get("size", 0.10 * np.ones(3))
# self.scales = kwargs.get("scales", np.array([1.0, 1.0, 1.0]))
self.create_block(self.size)
def get_component(self):
return self.components[0]
class Sphere(Object):
def construct(self, **kwargs):
self.radius = kwargs.get("radius", 0.10)
self.create_sphere(self.radius)
def get_geom(self):
return self.components[0]
class Capsule(Object):
def construct(self, **kwargs):
self.radius = kwargs.get("radius", 0.05)
self.height = kwargs.get("height", 0.10)
self.create_capsule(self.radius, self.height)
def get_geom(self):
return self.components[0]
class Cubbies(Object):
def construct(self, **kwargs):
self.size = kwargs.get("size", 1)
self.num_rows = kwargs.get("num_rows", 3)
self.num_cols = kwargs.get("num_cols", 3)
self.height = kwargs.get("height", 1.00) # z axis
self.width = kwargs.get("width", 1.00) # y axis
self.depth = kwargs.get("depth", 0.30) # x axis
self.target_depth = kwargs.get("target_depth", self.depth / 2)
self.cub_height = self.height / self.num_rows
self.cub_width = self.width / self.num_cols
back = self.create_block(
self.size * np.array([0.01, self.width, self.height]),
relative_translation=np.array([self.depth / 2, 0, self.height / 2]),
)
for i in range(self.num_rows + 1):
shelf = self.create_block(
self.size * np.array([self.depth, self.width, 0.01]),
relative_translation=np.array([0, 0, self.cub_height * i]),
)
for i in range(self.num_cols + 1):
shelf = self.create_block(
self.size * np.array([self.depth, 0.01, self.height]),
relative_translation=np.array([0, self.cub_width * i - self.width / 2, self.height / 2]),
)
# Put a target in each shelf.
target_x_offset = self.target_depth - self.depth / 2
target_start = np.array([target_x_offset, -self.width / 2 + self.cub_width / 2, self.cub_height / 2])
target_rot = R.from_rotvec([0, np.pi / 2, 0]).as_matrix()
for i in range(self.num_rows):
for j in range(self.num_cols):
pos = target_start + np.array([0, self.cub_width * j, self.cub_height * i])
target = self.create_target(relative_translation=pos, relative_rotation=target_rot)
class Cage(Object):
def construct(self, **kwargs):
self.ceiling_height = kwargs.get("ceiling_height", 0.75)
self.ceiling_thickenss = kwargs.get("ceiling_thickness", 0.01)
self.cage_width = kwargs.get("cage_width", 0.3)
self.cage_length = kwargs.get("cage_length", 0.3)
self.num_pillars = kwargs.get("num_pillars", 3)
self.pillar_thickness = kwargs.get("pillar_thickness", 0.1)
self.target_scalar = kwargs.get("target_scalar", 1.15)
ceiling = self.create_block(
np.array([2 * self.cage_width, 2 * self.cage_length, self.ceiling_thickenss]),
np.array([0, 0, self.ceiling_height]),
np.eye(3),
)
for i in range(self.num_pillars):
angle = 2 * (i + 0.5) * np.pi / self.num_pillars
pillar_x = self.cage_width * np.cos(angle)
pillar_y = self.cage_length * np.sin(angle)
pillar = self.create_block(
np.array([self.pillar_thickness, self.pillar_thickness, self.ceiling_height]),
np.array([pillar_x, pillar_y, self.ceiling_height / 2]),
np.eye(3),
)
for angle in np.arange(0, 2 * np.pi, 0.1):
target_x = (self.cage_width + self.pillar_thickness) * self.target_scalar * np.cos(angle)
target_y = (self.cage_length + self.pillar_thickness) * self.target_scalar * np.sin(angle)
self.create_target(np.array([target_x, target_y, self.ceiling_height / 2]))
class Windmill(Object):
def construct(self, **kwargs):
self.size = kwargs.get("size", 1) # scales entire windmill
self.num_blades = kwargs.get("num_blades", 2)
self.blade_width = kwargs.get("blade_width", 0.01) # y axis
self.blade_height = kwargs.get("blade_height", 1.00) # z axis
self.blade_depth = kwargs.get("blade_depth", 0.01) # x axis
for i in range(self.num_blades):
rot = R.from_rotvec([i * np.pi / self.num_blades, 0, 0])
blade = self.create_block(
self.size * np.array([self.blade_depth, self.blade_width, self.blade_height]),
relative_rotation=rot.as_matrix(),
)
class Window(Object):
def construct(self, **kwargs):
self.width = kwargs.get("width", 1.00) # y axis
self.depth = kwargs.get("depth", 0.05) # x axis
self.height = kwargs.get("height", 1.00) # z axis
self.size = kwargs.get("size", 1) # scales entire window
self.window_width = kwargs.get("window_width", 0.50)
self.window_height = kwargs.get("window_height", 0.50)
side_width = (self.width - self.window_width) / 2
side = self.create_block(
self.size * np.array([self.depth, side_width, self.height]),
relative_translation=np.array([0, -self.width / 2 + side_width / 2, 0]),
)
side = self.create_block(
self.size * np.array([self.depth, side_width, self.height]),
relative_translation=np.array([0, +self.width / 2 - side_width / 2, 0]),
)
top_height = (self.height - self.window_height) / 2
top = self.create_block(
self.size * np.array([self.depth, self.width, top_height]),
relative_translation=np.array([0, 0, self.height / 2 - top_height / 2]),
)
bottom = self.create_block(
self.size * np.array([self.depth, self.width, top_height]),
relative_translation=np.array([0, 0, -self.height / 2 + top_height / 2]),
)
self.center_target = self.create_target() # in center of window
self.behind_target = self.create_target(relative_translation=np.array([self.depth, 0, 0]))
self.front_target = self.create_target(relative_translation=np.array([-self.depth, 0, 0]))
| 8,135 |
Python
| 37.928229 | 111 | 0.613645 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/environment_interface.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import numpy as np
import omni.usd
from pxr import UsdPhysics, PhysxSchema
"""
Environments have a set of Objects in them that can move or change over time.
The default environment doesn't have any objects in it.
Subclasses of Environment implement
build_environment: instantiate all objects/targets in the environment according to **kwargs
update: called every frame, update moves all moving elements of the environment and does any necessary maintainence
get_new_scenario: return a series of targets that the robot should follow
Environments have random seeds to ensure repeatability. This means that all randomness in the environment should
be achieved through numpy's random module.
As a convention, environments are displaced from the robot along the positive x axis, and mostly centered about the y axis.
Some robots (such as the UR10) may need the environment to be rotated about the robot. The UR10's environment config file
rotates each environment by pi/2 about the z axis.
"""
class Environment:
def __init__(self, random_seed=0, **kwargs):
self._stage = omni.usd.get_context().get_stage()
self.objects = []
self.targetable_objects = []
self.random_seed = random_seed
np.random.seed(random_seed)
# get the frequency in Hz of the simulation
physxSceneAPI = None
for prim in self._stage.Traverse():
if prim.IsA(UsdPhysics.Scene):
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(prim)
if physxSceneAPI is not None:
self.fps = physxSceneAPI.GetTimeStepsPerSecondAttr().Get()
else:
self.fps = 60
self.timeout = 10 # simulated seconds before a test times out
self.camera_position = [-2.00, -1.00, 1.00]
self.camera_target = [0.50, 0, 0.50]
# Set thresholds for robot reaching translation/rotation targets
self.target_translation_thresh = 0.03
self.target_rotation_thresh = 0.1
self.name = ""
self.initial_robot_cspace_position = None
self.build_environment(**kwargs)
def get_timeout(self):
return self.timeout
def build_environment(self, **kwargs):
pass
def update(self):
# update positions of moving obstacles/targets in environment as a function of time
pass
def get_new_scenario(self):
"""
Returns
start_config (USD Geom): desired starting position of the robot (should be easy to reach to start the test)
if None, the robot should ignore this scenario
waypoints (USD Geom): desired goal position of the robot
if None, the robot will follow the start_target until timeout is reached
timeout (float): stop trial when timeout (seconds) have passes
"""
return None, [], self.timeout
def enable_collisions(self):
for obj in self.objects:
obj.set_enable_collisions(True)
def disable_collisions(self):
for obj in self.objects:
obj.set_enable_collisions(False)
def get_all_obstacles(self):
prims = []
for obj in self.objects:
prims.extend(obj.get_all_components())
return prims
def get_random_target(self, make_visible=True):
if len(self.targetable_objects) == 0:
return None
obj = np.random.choice(self.targetable_objects)
return obj.get_random_target(make_visible=make_visible)
def reset(self, new_seed=None):
if new_seed is not None:
self.random_seed = new_seed
self.first_update = True
np.random.seed(self.random_seed)
for obj in self.objects:
obj.reset()
def delete_all_objects(self):
for obj in self.targetable_objects:
obj.delete()
for obj in self.objects:
obj.delete()
def get_initial_robot_cspace_position(self):
return self.initial_robot_cspace_position
def get_target_thresholds(self):
return self.target_translation_thresh, self.target_rotation_thresh
def set_target_translation_threshold(self, thresh):
self.target_translation_thresh = thresh
def set_target_rotation_threshold(self, thresh):
self.target_rotation_thresh = thresh
| 4,765 |
Python
| 34.834586 | 126 | 0.670724 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/object_interface.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.client import delete
from pxr import UsdGeom, Gf, UsdPhysics
import numpy as np
import asyncio
import uuid
import omni.kit.app
from omni.isaac.core.utils.prims import delete_prim
from omni.isaac.core.utils.rotations import matrix_to_euler_angles, euler_angles_to_quat
from omni.isaac.core.objects import cuboid, sphere, capsule
from omni.isaac.core.prims import XFormPrim, GeometryPrimView
def matrix_to_quat(rot_mat):
return euler_angles_to_quat(matrix_to_euler_angles(rot_mat))
class Object:
"""
An Object is a collection of prims that move and change their properties together. A base Object has no prims
in it by default because the construct method is empty. The Object Class is inherited by specific types of
objects in objects.py and the construct function is implemented
Objects have a base translation and rotation. All prims that form the object have a
(fixed) translation and rotation that is relative to the base. The base pose can
be updated with set_base_pose, and the world coordinate positions of every prim will
be updated by their relative position to the base.
Objects have two lists of prims: self.components, and self.targets
self.components: prims that for the object that the robot must avoid
self.targets: possible targets to make a robot seek. Ex. the cubby object has possible targets
in each cubby that are transformed along with the base. A random target can be retrieved with
self.get_random_target()
Objects are made up of three primitives: capsules, spheres, and rectangular prisms
TODO: allow meshes to be loaded for an object
"""
def __init__(self, base_translation, base_rotation, color=np.array([1.0, 1.0, 0]), **kwargs):
self.initial_base_trans = base_translation
self.initial_base_rotation = base_rotation
self.components = []
self.color = color
self.targets = []
self.last_target = None
# make a random USD path for all the prims in this object
object_id = str(uuid.uuid4())
self.base_path = ("/scene/object-" + object_id).replace("-", "_")
self.base_xform = XFormPrim(self.base_path)
self.base_xform.set_world_pose(base_translation, matrix_to_quat(base_rotation))
self.construct(**kwargs)
self._geometry_view = GeometryPrimView(self.base_path + "/.*")
self._geometry_view.apply_collision_apis()
self.set_enable_collisions(False)
def construct(self, **kwargs):
pass
def get_random_target(self, make_visible=True):
if self.last_target is not None:
self.last_target.set_visibility(False)
if len(self.targets) > 0:
target = np.random.choice(self.targets)
target.set_visibility(make_visible)
self.last_target = target
return target
def get_all_components(self):
# get all prims that the robot should avoid
return self.components
def create_target(
self,
relative_translation=np.zeros(3),
relative_rotation=np.eye(3),
target_color=np.array([1.0, 0, 0]),
target_size=0.05,
):
path = self.base_path + "/target_" + str(len(self.targets))
target = cuboid.VisualCuboid(path, size=target_size, color=target_color)
target.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
target.set_visibility(False)
self.targets.append(target)
return target
def create_block(self, size, relative_translation=np.zeros(3), relative_rotation=np.eye(3)):
path = self.base_path + "/cuboid_" + str(len(self.components))
cube = cuboid.FixedCuboid(path, size=1.0, scale=size, color=self.color)
cube.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
self.components.append(cube)
return cube
def create_sphere(self, radius, relative_translation=np.zeros(3), relative_rotation=np.eye(3)):
path = self.base_path + "/sphere_" + str(len(self.components))
sphere = sphere.FixedSphere(path, radius=radius, color=self.color)
sphere.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
self.components.append(sphere)
return sphere
def create_capsule(self, radius, height, relative_translation=np.zeros(3), relative_rotation=np.eye(3)):
path = self.base_path + "/capsule_" + str(len(self.components))
capsule = capsule.FixedCapsule(path, radius=radius, height=height, color=self.color)
capsule.set_local_pose(relative_translation, matrix_to_quat(relative_rotation))
self.components.append(capsule)
return capsule
def set_base_pose(self, translation=np.zeros(3), rotation=np.eye(3)):
self.base_xform.set_world_pose(translation, matrix_to_quat(rotation))
def set_visibility(self, on=True):
for component in self.components:
component.set_visibility(on)
def set_enable_collisions(self, collisions_enabled=True):
if collisions_enabled:
self._geometry_view.enable_collision()
else:
self._geometry_view.disable_collision()
def delete(self):
for component in self.components:
delete_prim(component.prim_path)
self.components = []
for target in self.targets:
delete_prim(target.prim_path)
self.targets = []
def reset(self):
self.set_base_pose(self.initial_base_trans, self.initial_base_rotation)
for target in self.targets:
target.set_visibility(False)
| 6,127 |
Python
| 37.3 | 114 | 0.679615 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/environments.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import numpy as np
from scipy.spatial.transform import Rotation as R
from .environment_interface import Environment
from .objects import *
"""
The environment creator is used by the UI in Isaac Sim for the automatic discovery of environments
that appear in a drop down menu. Some environments may not be available for certain robots, and
the environment creator stores any relevant excluding of robots per environment.
The creator is also used to validate the choice of environment when testing from a standalone script.
"""
class EnvironmentCreator:
def __init__(self):
self.environments = ["Static Cage", "Cubby", "Window", "Evasion", "Guillotine"]
self.robot_exclusion_lists = {"Windmill": ["UR10"]}
self.policy_exclusion_list = {}
def create_environment(self, env_name, random_seed=0, **kwargs):
if env_name == "Cubby":
return CubbyEnv(random_seed=random_seed, **kwargs)
elif env_name == "Evasion":
return EvasionEnv(random_seed=random_seed, **kwargs)
elif env_name == "Window":
return WindowEnv(random_seed=random_seed, **kwargs)
elif env_name == "Windmill":
return WindmillEnv(random_seed=random_seed, **kwargs)
elif env_name == "Guillotine":
return GuillotineEnv(random_seed=random_seed, **kwargs)
elif env_name == "Static Cage":
return CageEnv(random_seed=random_seed, **kwargs)
elif env_name == "Empty":
return EmptyEnv(random_seed=random_seed, **kwargs)
else:
return None
def has_environment(self, env_name):
return env_name in self.environments
def get_environment_names(self):
return self.environments
def get_robot_exclusion_list(self, env_name):
# some robots should not be used in certain environments
return self.robot_exclusion_lists.get(env_name, [])
def get_motion_policy_exclusion_list(self, env_name):
# some motion policies should not be used in certain environments
# For example, global motion policies with slow update rates may not make sense
# for environments with quickly moving obstacles or targets.
return self.policy_exclusion_list.get(env_name, [])
"""
See comments above the Environment class in ./template_classes.py for information about the general behavior of all environments.
These comments explain some implementation details when implementing the Environment class.
Different environments are implemented below. Each environment has **kwargs that it can accept as an argument. Each robot has an environment
config file with the desired kwargs for each environment. Any kwargs that are explicitly listed in the environment config file
override the default kwargs seen in the kwargs.get() lines.
There is not a rigid style for naming kwargs or deciding what kwargs are in a certain environment. The environments are not made with the
assumption that every possible detail will be specified by a kwarg.
Most position information can be passed in as a kwarg, but the relative
positions of some objects may not be changeable. There are some magic numbers in the placement of certain objects when it would overcomplicate
things to use kwargs and it is not likely that the param will need to change.
Most parameters that are chosen arbitrarily, such as the speed of moving obstacles, are given as kwargs.
As a convention, environments are displaced from the robot along the positive x axis, and mostly centered about the y axis.
Some robots (such as the UR10) may need the environment to be rotated about the robot. The UR10's environment config file
rotates each environment by pi/2 about the z axis.
In general, the code for these environments are not written with the expectation that the user will never need to touch the code
for their desired custom behavior. The code serves as more of an example for how to create different behaviors in different
environments as needed.
"""
class CubbyEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Cubby")
initial_robot_cspace_position: If specified, this parameter can be accessed to
determine a good starting cspace position for a robot in this environment
timeout: simulated time (in seconds) before a test times out (default: 10)
collidable: turn on collision detection for the cubby (default: False)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
base_rotation: axis-angle rotation of the cubby base (default: [0,0,0])
base_offset: 3d translation of the cubby base (default [45.0,0,0])
depth: The depth of the cubby shelves (default 30)
target_depth: how deep the target is into the cubby (default half the depth)
"""
self.name = kwargs.get("name", "Cubby")
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.timeout = kwargs.get("timeout", 20)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
cub_rot = R.from_rotvec(kwargs.get("base_rotation", [0, 0, 0]))
base_offset = np.array(kwargs.get("base_offset", [0.45, 0.0, 0]))
depth = kwargs.get("depth", 0.30)
target_depth = kwargs.get("target_depth", depth / 2)
self.require_orientation = kwargs.get("require_orientation", True) # add an orientation target
cub_pos = base_offset + np.array([0, 0, 0.20])
c = Cubbies(cub_pos, cub_rot.as_matrix(), require_orientation=False, depth=depth, target_depth=target_depth)
target_pos = cub_pos / 2 + np.array([0.0, 0.0, c.height / 2])
self.start_target = Target(
target_pos,
R.from_rotvec([0, np.pi, 0]).as_matrix(),
target_color=np.array([0, 0, 1.0]),
require_orientation=True,
)
base_pos = base_offset + np.array([0, 0, 0.10])
cubby_base = Block(base_pos, cub_rot.as_matrix(), size=np.array([c.depth, c.width, 0.20]))
self.objects.append(c)
self.objects.append(cubby_base)
self.targetable_objects.append(c)
def get_new_scenario(self):
t1 = self.get_random_target(make_visible=False)
t2 = self.get_random_target(make_visible=False)
while t2 == t1:
t2 = self.get_random_target(make_visible=False)
waypoints = [t1, t2]
return self.start_target.get_target(make_visible=True), waypoints, self.timeout
class EvasionEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Evasion")
timeout: simulated time (in seconds) before a test times out (default: 300)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
target_speed: speed of the target along a sinusoidal path in rad/sec (default: .2)
block_speeds: 6d vector of speeds for the blocks moving along
sinusoidal paths in rad/sec (default: np.linspace(.1, .3, num=6))
block_sizes: 6d vector of the sizes of each block (default [15,15,15,15,15,15])
frames_per_update: number of frames that should pass before obstacle/target positions
are updated (default: 1) -- This approximates lag in perception
target_position_std_dev: standard deviation of target position offset from the set path
on every frame (default: 0)
obstacle_position_std_dev: standard deviation of obstacle positions offset from their set
path on every frame (default: 0)
height: height of target/average heights of obstacles off the ground
"""
self.name = kwargs.get("name", "Evasion")
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.timeout = kwargs.get("timeout", 300)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.target_speed = kwargs.get("target_speed", 0.2) # rad/sec
# blocks move sinusoidally with the given frequencies
self.block_speeds = np.array(kwargs.get("block_speeds", np.linspace(0.1, 0.3, num=6)))
self.block_sizes = np.array(kwargs.get("block_sizes", [0.15] * 6), dtype=int) # the size of each block
# Update postions once every frame by default.
self.frames_per_update = kwargs.get("frames_per_update", 1)
# std_dev of gaussian noise to target position
self.target_position_std_dev = kwargs.get("target_position_std_dev", 0)
self.obstacle_position_std_dev = kwargs.get("obstacle_position_std_dev", 0)
height = kwargs.get("height", 0.50)
self.target = Target(np.array([0.60, 0.0, height]), np.eye(3))
self.objects.append(self.target)
self.blocks = []
for i, position in enumerate(np.linspace([0.40, -0.50, height], [0.40, 0.50, height], num=6)):
self.blocks.append(Block(position, np.eye(3), size=0.150 * np.ones(3)))
self.objects.extend(self.blocks)
self.first_update = True
def get_new_scenario(self):
self.first_update = True
return self.target.get_target(make_visible=True), [], self.timeout
def update(self):
if self.first_update:
self.frame_number = 0
self.first_update = False
else:
self.frame_number += 1
# Because robot perception can be slow, this slows down the world updates by a factor of self.frames_per_update.
t = (self.frame_number // self.frames_per_update) * self.frames_per_update
pos = (
self.target.initial_base_trans
+ np.array([0, 0.50 * np.sin(self.target_speed / self.fps * t), 0])
+ np.random.normal(0, self.target_position_std_dev)
)
self.target.set_base_pose(translation=pos)
for block, speed in zip(self.blocks, self.block_speeds):
pos = (
block.initial_base_trans
+ np.array([0, 0, 0.40 * np.sin(speed / self.fps * t)])
+ np.random.normal(0, self.obstacle_position_std_dev)
)
block.set_base_pose(translation=pos)
class WindmillEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Windmill")
timeout: simulated time (in seconds) before a test times out (default: 300)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
windmill_1_speed: rotational speed of windmill 1 in rad/sec (default: pi/15)
windmill_2_speed: rotational speed of windmill 2 in rad/sec (default: pi/15)
windmill_1_translation: translational position of windmill 1 (default [35,0,50])
windmill_2_translation: translational position of windmill 1 (default [40,0,50])
target_pos: position of target behind windmills (default [50,0,70])
env_rotation: axis rotation of environmnet at the world origin (default [0,0,0])
"""
self.name = kwargs.get("name", "Windmill")
self.timeout = kwargs.get("timeout", 300)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.speed1 = kwargs.get("windmill_1_speed", np.pi / 15)
self.speed2 = kwargs.get("windmill_2_speed", np.pi / 25)
self.bt1 = np.array(kwargs.get("windmill_1_translation", [0.40, 0, 0.50]))
self.bt2 = np.array(kwargs.get("windmill_2_translation", [0.45, 0, 0.50]))
self.br1 = np.eye(3)
self.br2 = np.eye(3)
self.t_pos = np.array(kwargs.get("target_pos", [0.50, 0, 0.70]))
self.env_rotation = R.from_rotvec(
np.array(kwargs.get("env_rotation", [0, 0, 0]))
).as_matrix() # Rotate the entire environment about the robot.
self.bt1 = self.env_rotation @ self.bt1
self.bt2 = self.env_rotation @ self.bt2
self.br1 = self.env_rotation @ self.br1
self.br2 = self.env_rotation @ self.br2
self.t_pos = self.env_rotation @ self.t_pos
self.rot_axs = self.env_rotation @ np.array([1, 0, 0])
self.w1 = Windmill(self.bt1, self.br1)
self.w2 = Windmill(self.bt2, self.br2, num_blades=3)
self.objects.append(self.w1)
self.objects.append(self.w2)
self.target = Target(self.t_pos, np.eye(3))
self.start_target = Target(self.w1.initial_base_trans / 2, np.eye(3), target_color=np.array([0, 0, 1.0]))
self.mid_target = Target(self.w1.initial_base_trans / 2, np.eye(3))
self.frame_number = 0
def update(self):
self.frame_number += 1
t = self.frame_number
p1 = self.w1.initial_base_trans
p2 = self.w2.initial_base_trans
rot1 = R.from_rotvec(self.speed1 / self.fps * t * self.rot_axs).as_matrix() @ self.w1.initial_base_rotation
rot2 = R.from_rotvec(self.speed2 / self.fps * t * self.rot_axs).as_matrix() @ self.w2.initial_base_rotation
self.w1.set_base_pose(p1, rot1)
self.w2.set_base_pose(p2, rot2)
def get_new_scenario(self):
sg = self.start_target.get_target(make_visible=True)
mg = self.mid_target.get_target()
tg = self.target.get_target()
return sg, [tg, mg, tg], self.timeout
class WindowEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Window")
timeout: simulated time (in seconds) before a test times out (default: 20)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
window_translation: translational position of window (default [45,-30, 50])
env_rotation: axis rotation of environmnet at the world origin (default [0,0,0])
"""
self.name = kwargs.get("name", "Window")
self.timeout = kwargs.get("timeout", 20)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.window_trans = np.array(kwargs.get("window_translation", [0.45, -0.30, 0.50]))
self.window_rotation = np.eye(3)
env_rotation = R.from_rotvec(
np.array(kwargs.get("env_rotation", [0, 0, 0]))
).as_matrix() # Rotate the entire environment about the robot.
self.window_trans = env_rotation @ self.window_trans
self.window_rotation = env_rotation @ self.window_rotation
self.window = Window(self.window_trans, self.window_rotation, window_width=0.30, window_height=0.30)
self.start_target = Target(self.window_trans / 2, self.window_rotation, target_color=np.array([0, 0, 1.0]))
self.objects.append(self.window)
self.end_target = Target(np.array([*1.3 * self.window_trans[:2], self.window_trans[2]]), self.window_rotation)
def get_new_scenario(self):
return (
self.start_target.get_target(),
[
self.window.front_target,
self.window.center_target,
self.window.behind_target,
self.end_target.get_target(make_visible=False),
],
self.timeout,
)
class GuillotineEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Guillotine")
timeout: simulated time (in seconds) before a test times out (default: 20)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
wall_height: height of wall the robot has to reach through (default: 100)
windmill_speed: speed of windmill embedded in wall in rad/sec (default: pi/15)
window_translation: translational position of window embedded in wall (default [50,0, wall_height/2])
windmill_translation: translational position of windmill (default: [55,0,wall_height/2+30])
env_rotation: axis rotation of environmnet at the world origin (default [0,0,0])
"""
self.name = kwargs.get("name", "Guillotine")
self.timeout = kwargs.get("timeout", 20)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.wall_height = kwargs.get("wall_height", 1.00)
self.speed = kwargs.get("windmill_speed", np.pi / 15)
self.window_trans = np.array(kwargs.get("window_translation", [0.50, 0, self.wall_height / 2]))
end_target_trans = np.array([1.5 * self.window_trans[0], 0, self.wall_height / 2])
self.window_rotation = np.eye(3)
self.windmill_trans = np.array(kwargs.get("windmill_translation", [0.55, 0, self.wall_height / 2 + 0.30]))
self.windmill_rot_axs = np.array([1, 0, 0])
self.windmill_rotation = self.window_rotation
self.env_rotation = R.from_rotvec(
np.array(kwargs.get("env_rotation", [0, 0, 0]))
).as_matrix() # Rotate the entire environment about the robot.
self.window_trans = self.env_rotation @ self.window_trans
self.window_rotation = self.env_rotation @ self.window_rotation
self.windmill_trans = self.env_rotation @ self.windmill_trans
self.windmill_rotation = self.env_rotation @ self.windmill_rotation
self.windmill_rot_axs = self.env_rotation @ self.windmill_rot_axs
self.window = Window(
self.window_trans,
self.window_rotation,
height=self.wall_height,
window_width=0.30,
window_height=0.30,
depth=0.20,
)
self.windmill = Windmill(self.windmill_trans, self.windmill_rotation, blade_width=0.10)
self.start_target = Target(self.window_trans / 2, self.window_rotation, target_color=np.array([0, 0, 1.0]))
self.objects.append(self.window)
self.objects.append(self.windmill)
self.end_target = Target(self.env_rotation @ end_target_trans, self.window_rotation)
self.frame_number = 0
self.camera_position = self.env_rotation @ np.array([2.00, -1.00, 1.00])
self.camera_target = self.env_rotation @ np.array([0, 0, 0.50])
def update(self):
self.frame_number += 1
t = self.frame_number
rot = (
R.from_rotvec(self.speed / self.fps * t * self.windmill_rot_axs).as_matrix()
@ self.windmill.initial_base_rotation
)
self.windmill.set_base_pose(self.windmill.initial_base_trans, rot)
end_tgt = self.end_target.initial_base_trans + self.env_rotation @ (
10 * np.array([0, np.cos(t * self.speed / self.fps), np.sin(t * self.speed / self.fps)])
)
self.end_target.set_base_pose(end_tgt, self.window_rotation)
def get_new_scenario(self):
return (
self.start_target.get_target(),
[
self.window.front_target,
self.window.center_target,
self.window.behind_target,
self.end_target.get_target(make_visible=True),
],
self.timeout,
)
class CageEnv(Environment):
def build_environment(self, **kwargs):
"""
Kwargs:
name: human-readable name of this environment (default: "Cage")
timeout: simulated time (in seconds) before a test times out (default: 20)
target_translation_thresh: threshold for how close the robot end effector must be to
translation targets in meters (default: .03)
target_rotation_thresh: threshold for how close the robot end effector must be to
rotation targets in radians (default: .1)
ceiling_height: height of ceiling of cage (default .75 m)
ceiling_thickness: thickness (along z axis) of ceiling (default .01 m)
cage_width: width (along x axis) of cage (default .35 m)
cage_length: length (along y axis) of cage (default .35 m)
num_pillars: number of pillars defining the "bars" of the cage. The pillars will be evenly
spaced by angle around the elipse defined by cage_width and cage_length
pillar_thickness: thickness of pillars (default .1 m)
target_scalar: a scalar defining the distance from the robot to the targets. Potential targets
are arranged in an ovoid around the robot with a width of target_scalar*cage_width and a length
of target_scalar*cage_length. A value of 1 would place some targets inside the pillars (default 1.15)
"""
self.name = kwargs.get("name", "Cage")
self.timeout = kwargs.get("timeout", 20)
self.initial_robot_cspace_position = kwargs.get("initial_robot_cspace_position", None)
self.target_translation_thresh = kwargs.get("target_translation_thresh", 0.03)
self.target_rotation_thresh = kwargs.get("target_rotation_thresh", 0.1)
self.ceiling_height = kwargs.get("ceiling_height", 0.75)
self.ceiling_thickenss = kwargs.get("ceiling_thickness", 0.01)
self.cage_width = kwargs.get("cage_width", 0.35)
self.cage_length = kwargs.get("cage_length", 0.35)
self.num_pillars = kwargs.get("num_pillars", 4)
self.pillar_thickness = kwargs.get("pillar_thickness", 0.1)
self.target_scalar = kwargs.get("target_scalar", 1.15)
self.objects = []
self.cage = Cage(
np.zeros(3),
np.eye(3),
ceiling_height=self.ceiling_height,
ceiling_thickness=self.ceiling_thickenss,
cage_width=self.cage_width,
cage_length=self.cage_length,
num_pillars=self.num_pillars,
pillar_thickness=self.pillar_thickness,
target_scalar=self.target_scalar,
)
self.objects.append(self.cage)
self.start_target = Target(
np.array([(self.cage_width - self.pillar_thickness / 2) / 1.25, 0, self.ceiling_height / 2]),
np.eye(3),
target_color=np.array([0, 0, 1.0]),
)
def get_new_scenario(self):
return (
self.start_target.get_target(),
[
self.cage.get_random_target(False),
self.cage.get_random_target(False),
self.cage.get_random_target(False),
],
self.timeout,
)
class EmptyEnv(Environment):
def build_environment(self, **kwargs):
self.name = "Empty"
def get_new_scenario(self):
return None, [], self.timeout
| 25,286 |
Python
| 43.363158 | 148 | 0.635371 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/omni/isaac/benchmark_environments/tests/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
| 428 |
Python
| 46.666661 | 76 | 0.808411 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/docs/CHANGELOG.md
|
# Changelog
## [0.4.0] - 2022-07-06
### Added
- Added Cage environment
## [0.3.0] - 2022-05-09
### Changed
- Updated all hard coded USD object values to meters
## [0.2.0] - 2022-02-10
### Changed
- updated object instantiation to use Core API
## [0.1.2] - 2021-10-22
### Changed
- use delete_prim from omni.isaac.core
## [0.1.1] - 2021-10-09
### Changed
- Folder structure reorganized
## [0.1.0] - 2021-08-10
### Added
- Initial version of Isaac Sim Benchmark Environments Extension
| 494 |
Markdown
| 14.967741 | 63 | 0.653846 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.benchmark_environments/docs/README.md
|
# Usage
To enable this extension, go to the Extension Manager menu and enable omni.isaac.benchmark_environments extension.
| 125 |
Markdown
| 24.199995 | 114 | 0.808 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/PACKAGE-LICENSES/omni.isaac.urdf-LICENSE.md
|
Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
| 412 |
Markdown
| 57.999992 | 74 | 0.839806 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/config/extension.toml
|
[core]
reloadable = true
order = 0
[package]
version = "0.5.9"
category = "Simulation"
title = "Isaac Sim URDF Importer"
description = "URDF Importer for Isaac Sim"
authors = ["NVIDIA"]
repository = ""
keywords = ["isaac", "urdf", "import"]
changelog = "docs/CHANGELOG.md"
readme = "docs/README.md"
icon = "data/icon.png"
writeTarget.kit = true
[dependencies]
"omni.kit.uiapp" = {}
"omni.isaac.ui" = {}
"omni.kit.window.filepicker" = {}
"omni.kit.window.content_browser" = {}
"omni.kit.viewport.utility" = {}
"omni.kit.pip_archive" = {} # pulls in pillow
"omni.physx" = {}
[[python.module]]
name = "omni.isaac.urdf"
[[python.module]]
name = "omni.isaac.urdf.tests"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_carter"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_franka"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_kaya"
[[python.module]]
name = "omni.isaac.urdf.scripts.samples.import_ur10"
[[native.plugin]]
path = "bin/*.plugin"
recursive = false
[[test]]
# this is to catch issues where our assimp is out of sync with the one that comes with
# asset importer as this can cause segfaults due to binary incompatibility.
dependencies = ["omni.kit.tool.asset_importer"]
stdoutFailPatterns.exclude = [
"*extension object is still alive, something holds a reference on it*", # exclude warning as failure
]
| 1,384 |
TOML
| 22.87931 | 104 | 0.70448 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/__init__.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .scripts.extension import *
from .scripts.commands import *
| 499 |
Python
| 40.666663 | 76 | 0.803607 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/commands.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import omni.kit.commands
import omni.kit.utils
from omni.isaac.urdf import _urdf
import os
from pxr import Usd
from omni.client._omniclient import Result
import omni.client
class URDFCreateImportConfig(omni.kit.commands.Command):
"""
Returns an ImportConfig object that can be used while parsing and importing.
Should be used with `URDFParseFile` and `URDFParseAndImportFile` commands
Returns:
:obj:`omni.isaac.urdf._urdf.ImportConfig`: Parsed URDF stored in an internal structure.
"""
def __init__(self) -> None:
pass
def do(self) -> _urdf.ImportConfig:
return _urdf.ImportConfig()
def undo(self) -> None:
pass
class URDFParseFile(omni.kit.commands.Command):
"""
This command parses a given urdf and returns a UrdfRobot object
Args:
arg0 (:obj:`str`): The absolute path to where the urdf file is
arg1 (:obj:`omni.isaac.urdf._urdf.ImportConfig`): Import Configuration
Returns:
:obj:`omni.isaac.urdf._urdf.UrdfRobot`: Parsed URDF stored in an internal structure.
"""
def __init__(self, urdf_path: str = "", import_config: _urdf.ImportConfig = _urdf.ImportConfig()) -> None:
self._root_path, self._filename = os.path.split(os.path.abspath(urdf_path))
self._import_config = import_config
self._urdf_interface = _urdf.acquire_urdf_interface()
pass
def do(self) -> _urdf.UrdfRobot:
return self._urdf_interface.parse_urdf(self._root_path, self._filename, self._import_config)
def undo(self) -> None:
pass
class URDFParseAndImportFile(omni.kit.commands.Command):
"""
This command parses and imports a given urdf and returns a UrdfRobot object
Args:
arg0 (:obj:`str`): The absolute path to where the urdf file is
arg1 (:obj:`omni.isaac.urdf._urdf.ImportConfig`): Import Configuration
arg2 (:obj:`str`): destination path for robot usd. Default is "" which will load the robot in-memory on the open stage.
Returns:
:obj:`str`: Path to the robot on the USD stage.
"""
def __init__(self, urdf_path: str = "", import_config=_urdf.ImportConfig(), dest_path: str = "") -> None:
self.dest_path = dest_path
self._urdf_path = urdf_path
self._root_path, self._filename = os.path.split(os.path.abspath(urdf_path))
self._import_config = import_config
self._urdf_interface = _urdf.acquire_urdf_interface()
pass
def do(self) -> str:
status, imported_robot = omni.kit.commands.execute(
"URDFParseFile", urdf_path=self._urdf_path, import_config=self._import_config
)
if self.dest_path:
self.dest_path = self.dest_path.replace(
"\\", "/"
) # Omni client works with both slashes cross platform, making it standard to make it easier later on
result = omni.client.read_file(self.dest_path)
if result[0] != Result.OK:
stage = Usd.Stage.CreateNew(self.dest_path)
stage.Save()
return self._urdf_interface.import_robot(
self._root_path, self._filename, imported_robot, self._import_config, self.dest_path
)
def undo(self) -> None:
pass
omni.kit.commands.register_all_commands_in_module(__name__)
| 3,772 |
Python
| 33.614679 | 127 | 0.659332 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/extension.py
|
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
import omni.ext
import omni.ui as ui
import weakref
import gc
import carb
import asyncio
from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription
from omni.isaac.ui.menu import make_menu_item_description
from pxr import Usd, UsdGeom, Sdf, UsdPhysics
import omni.client
from omni.isaac.urdf import _urdf
from omni.isaac.ui.ui_utils import (
float_builder,
dropdown_builder,
btn_builder,
cb_builder,
str_builder,
get_style,
setup_ui_headers,
)
EXTENSION_NAME = "URDF Importer"
def is_urdf_file(path: str):
_, ext = os.path.splitext(path.lower())
return ext in [".urdf", ".URDF"]
def on_filter_item(item) -> bool:
if not item or item.is_folder:
return not (item.name == "Omniverse" or item.path.startswith("omniverse:"))
return is_urdf_file(item.path)
def on_filter_folder(item) -> bool:
if item and item.is_folder:
return True
else:
return False
class Extension(omni.ext.IExt):
def on_startup(self, ext_id):
self._ext_id = ext_id
self._urdf_interface = _urdf.acquire_urdf_interface()
self._usd_context = omni.usd.get_context()
self._window = omni.ui.Window(
EXTENSION_NAME, width=400, height=500, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
self._window.set_visibility_changed_fn(self._on_window)
menu_items = [
make_menu_item_description(ext_id, EXTENSION_NAME, lambda a=weakref.proxy(self): a._menu_callback())
]
self._menu_items = [MenuItemDescription(name="Workflows", sub_menu=menu_items)]
add_menu_items(self._menu_items, "Isaac Utils")
self._file_picker = None
self._models = {}
result, self._config = omni.kit.commands.execute("URDFCreateImportConfig")
self._filepicker = None
self._last_folder = None
self._content_browser = None
self._extension_path = omni.kit.app.get_app().get_extension_manager().get_extension_path(ext_id)
self._imported_robot = None
# Set defaults
self._config.set_merge_fixed_joints(False)
self._config.set_convex_decomp(False)
self._config.set_fix_base(True)
self._config.set_import_inertia_tensor(False)
self._config.set_distance_scale(1.0)
self._config.set_density(0.0)
self._config.set_default_drive_type(1)
self._config.set_default_drive_strength(1e7)
self._config.set_default_position_drive_damping(1e5)
self._config.set_self_collision(False)
self._config.set_up_vector(0, 0, 1)
self._config.set_make_default_prim(True)
self._config.set_create_physics_scene(True)
def build_ui(self):
with self._window.frame:
with ui.VStack(spacing=5, height=0):
self._build_info_ui()
self._build_options_ui()
self._build_import_ui()
stage = self._usd_context.get_stage()
if stage:
if UsdGeom.GetStageUpAxis(stage) == UsdGeom.Tokens.y:
self._config.set_up_vector(0, 1, 0)
if UsdGeom.GetStageUpAxis(stage) == UsdGeom.Tokens.z:
self._config.set_up_vector(0, 0, 1)
units_per_meter = 1.0 / UsdGeom.GetStageMetersPerUnit(stage)
self._models["scale"].set_value(units_per_meter)
async def dock_window():
await omni.kit.app.get_app().next_update_async()
def dock(space, name, location, pos=0.5):
window = omni.ui.Workspace.get_window(name)
if window and space:
window.dock_in(space, location, pos)
return window
tgt = ui.Workspace.get_window("Viewport")
dock(tgt, EXTENSION_NAME, omni.ui.DockPosition.LEFT, 0.33)
await omni.kit.app.get_app().next_update_async()
self._task = asyncio.ensure_future(dock_window())
def _build_info_ui(self):
title = EXTENSION_NAME
doc_link = "https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html"
overview = "This utility is used to import URDF representations of robots into Isaac Sim. "
overview += "URDF is an XML format for representing a robot model in ROS."
overview += "\n\nPress the 'Open in IDE' button to view the source code."
setup_ui_headers(self._ext_id, __file__, title, doc_link, overview)
def _build_options_ui(self):
frame = ui.CollapsableFrame(
title="Import Options",
height=0,
collapsed=False,
style=get_style(),
style_type_name_override="CollapsableFrame",
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
cb_builder(
label="Merge Fixed Joints",
tooltip="Consolidate links that are connected by fixed joints.",
on_clicked_fn=lambda m, config=self._config: config.set_merge_fixed_joints(m),
)
cb_builder(
"Fix Base Link",
tooltip="Fix the robot base robot to where it's imported in world coordinates.",
default_val=True,
on_clicked_fn=lambda m, config=self._config: config.set_fix_base(m),
)
cb_builder(
"Import Inertia Tensor",
tooltip="Load inertia tensor directly from the URDF.",
on_clicked_fn=lambda m, config=self._config: config.set_import_inertia_tensor(m),
)
self._models["scale"] = float_builder(
"Stage Units Per Meter",
default_val=1.0,
tooltip="Sets the scaling factor to match the units used in the URDF. Default Stage units are (cm).",
)
self._models["scale"].add_value_changed_fn(
lambda m, config=self._config: config.set_distance_scale(m.get_value_as_float())
)
self._models["density"] = float_builder(
"Link Density",
default_val=0.0,
tooltip="Density value to compute mass based on link volume. Use 0.0 to automatically compute density.",
)
self._models["density"].add_value_changed_fn(
lambda m, config=self._config: config.set_density(m.get_value_as_float())
)
dropdown_builder(
"Joint Drive Type",
items=["None", "Position", "Velocity"],
default_val=1,
on_clicked_fn=lambda i, config=self._config: config.set_default_drive_type(
0 if i == "None" else (1 if i == "Position" else 2)
),
tooltip="Default Joint drive type.",
)
self._models["drive_strength"] = float_builder(
"Joint Drive Strength",
default_val=1e4,
tooltip="Joint stiffness for position drive, or damping for velocity driven joints. Set to -1 to prevent this parameter from getting used.",
)
self._models["drive_strength"].add_value_changed_fn(
lambda m, config=self._config: config.set_default_drive_strength(m.get_value_as_float())
)
self._models["position_drive_damping"] = float_builder(
"Joint Position Damping",
default_val=1e3,
tooltip="Default damping value when drive type is set to Position. Set to -1 to prevent this parameter from getting used.",
)
self._models["position_drive_damping"].add_value_changed_fn(
lambda m, config=self._config: config.set_default_position_drive_damping(m.get_value_as_float())
)
self._models["clean_stage"] = cb_builder(
label="Clear Stage", tooltip="Clear the Stage prior to loading the URDF."
)
dropdown_builder(
"Normals Subdivision",
items=["catmullClark", "loop", "bilinear", "none"],
default_val=2,
on_clicked_fn=lambda i, dict={
"catmullClark": 0,
"loop": 1,
"bilinear": 2,
"none": 3,
}, config=self._config: config.set_subdivision_scheme(dict[i]),
tooltip="Mesh surface normal subdivision scheme. Use `none` to avoid overriding authored values.",
)
cb_builder(
"Convex Decomposition",
tooltip="Decompose non-convex meshes into convex collision shapes. If false, convex hull will be used.",
on_clicked_fn=lambda m, config=self._config: config.set_convex_decomp(m),
)
cb_builder(
"Self Collision",
tooltip="Enables self collision between adjacent links.",
on_clicked_fn=lambda m, config=self._config: config.set_self_collision(m),
)
cb_builder(
"Create Physics Scene",
tooltip="Creates a default physics scene on the stage on import.",
default_val=True,
on_clicked_fn=lambda m, config=self._config: config.set_create_physics_scene(m),
)
cb_builder(
"Create Instanceable Asset",
tooltip="If true, creates an instanceable version of the asset. Meshes will be saved in a separate USD file",
default_val=False,
on_clicked_fn=lambda m, config=self._config: config.set_make_instanceable(m),
)
self._models["instanceable_usd_path"] = str_builder(
"Instanceable USD Path",
tooltip="USD file to store instanceable meshes in",
default_val="./instanceable_meshes.usd",
use_folder_picker=True,
folder_dialog_title="Select Output File",
folder_button_title="Select File",
)
self._models["instanceable_usd_path"].add_value_changed_fn(
lambda m, config=self._config: config.set_instanceable_usd_path(m.get_value_as_string())
)
def _build_import_ui(self):
frame = ui.CollapsableFrame(
title="Import",
height=0,
collapsed=False,
style=get_style(),
style_type_name_override="CollapsableFrame",
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
def check_file_type(model=None):
path = model.get_value_as_string()
if is_urdf_file(path) and "omniverse:" not in path.lower():
self._models["import_btn"].enabled = True
else:
carb.log_warn(f"Invalid path to URDF: {path}")
kwargs = {
"label": "Input File",
"default_val": "",
"tooltip": "Click the Folder Icon to Set Filepath",
"use_folder_picker": True,
"item_filter_fn": on_filter_item,
"bookmark_label": "Built In URDF Files",
"bookmark_path": f"{self._extension_path}/data/urdf",
"folder_dialog_title": "Select URDF File",
"folder_button_title": "Select URDF",
}
self._models["input_file"] = str_builder(**kwargs)
self._models["input_file"].add_value_changed_fn(check_file_type)
kwargs = {
"label": "Output Directory",
"type": "stringfield",
"default_val": self.get_dest_folder(),
"tooltip": "Click the Folder Icon to Set Filepath",
"use_folder_picker": True,
}
self.dest_model = str_builder(**kwargs)
# btn_builder("Import URDF", text="Select and Import", on_clicked_fn=self._parse_urdf)
self._models["import_btn"] = btn_builder("Import", text="Import", on_clicked_fn=self._load_robot)
self._models["import_btn"].enabled = False
def get_dest_folder(self):
stage = omni.usd.get_context().get_stage()
if stage:
path = stage.GetRootLayer().identifier
if not path.startswith("anon"):
basepath = path[: path.rfind("/")]
if path.rfind("/") < 0:
basepath = path[: path.rfind("\\")]
return basepath
return "(same as source)"
def _menu_callback(self):
self._window.visible = not self._window.visible
def _on_window(self, visible):
if self._window.visible:
self.build_ui()
self._events = self._usd_context.get_stage_event_stream()
self._stage_event_sub = self._events.create_subscription_to_pop(
self._on_stage_event, name="urdf importer stage event"
)
else:
self._events = None
self._stage_event_sub = None
def _on_stage_event(self, event):
stage = self._usd_context.get_stage()
if event.type == int(omni.usd.StageEventType.OPENED) and stage:
if UsdGeom.GetStageUpAxis(stage) == UsdGeom.Tokens.y:
self._config.set_up_vector(0, 1, 0)
if UsdGeom.GetStageUpAxis(stage) == UsdGeom.Tokens.z:
self._config.set_up_vector(0, 0, 1)
units_per_meter = 1.0 / UsdGeom.GetStageMetersPerUnit(stage)
self._models["scale"].set_value(units_per_meter)
self.dest_model.set_value(self.get_dest_folder())
def _load_robot(self, path=None):
path = self._models["input_file"].get_value_as_string()
if path:
dest_path = self.dest_model.get_value_as_string()
base_path = path[: path.rfind("/")]
basename = path[path.rfind("/") + 1 :]
basename = basename[: basename.rfind(".")]
if path.rfind("/") < 0:
base_path = path[: path.rfind("\\")]
basename = path[path.rfind("\\") + 1]
if dest_path != "(same as source)":
base_path = dest_path # + "/" + basename
dest_path = "{}/{}/{}.usd".format(base_path, basename, basename)
# counter = 1
# while result[0] == Result.OK:
# dest_path = "{}/{}_{:02}.usd".format(base_path, basename, counter)
# result = omni.client.read_file(dest_path)
# counter +=1
# result = omni.client.read_file(dest_path)
# if
# stage = Usd.Stage.Open(dest_path)
# else:
# stage = Usd.Stage.CreateNew(dest_path)
# UsdGeom.SetStageUpAxis(stage, UsdGeom.Tokens.z)
omni.kit.commands.execute(
"URDFParseAndImportFile", urdf_path=path, import_config=self._config, dest_path=dest_path
)
# print("Created file, instancing it now")
stage = Usd.Stage.Open(dest_path)
prim_name = str(stage.GetDefaultPrim().GetName())
# print(prim_name)
# stage.Save()
def add_reference_to_stage():
current_stage = omni.usd.get_context().get_stage()
if current_stage:
prim_path = omni.usd.get_stage_next_free_path(
current_stage, str(current_stage.GetDefaultPrim().GetPath()) + "/" + prim_name, False
)
robot_prim = current_stage.OverridePrim(prim_path)
if "anon:" in current_stage.GetRootLayer().identifier:
robot_prim.GetReferences().AddReference(dest_path)
else:
robot_prim.GetReferences().AddReference(
omni.client.make_relative_url(current_stage.GetRootLayer().identifier, dest_path)
)
if self._config.create_physics_scene:
UsdPhysics.Scene.Define(current_stage, Sdf.Path("/physicsScene"))
async def import_with_clean_stage():
await omni.usd.get_context().new_stage_async()
await omni.kit.app.get_app().next_update_async()
add_reference_to_stage()
await omni.kit.app.get_app().next_update_async()
if self._models["clean_stage"].get_value_as_bool():
asyncio.ensure_future(import_with_clean_stage())
else:
add_reference_to_stage()
def on_shutdown(self):
_urdf.release_urdf_interface(self._urdf_interface)
remove_menu_items(self._menu_items, "Isaac Utils")
if self._window:
self._window = None
gc.collect()
| 18,204 |
Python
| 43.511002 | 160 | 0.546968 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/__init__.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
| 433 |
Python
| 47.222217 | 76 | 0.808314 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/samples/common.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import os
import carb.tokens
import omni
from pxr import UsdGeom, PhysxSchema, UsdPhysics
def set_drive_parameters(drive, target_type, target_value, stiffness=None, damping=None, max_force=None):
"""Enable velocity drive for a given joint"""
if target_type == "position":
if not drive.GetTargetPositionAttr():
drive.CreateTargetPositionAttr(target_value)
else:
drive.GetTargetPositionAttr().Set(target_value)
elif target_type == "velocity":
if not drive.GetTargetVelocityAttr():
drive.CreateTargetVelocityAttr(target_value)
else:
drive.GetTargetVelocityAttr().Set(target_value)
if stiffness is not None:
if not drive.GetStiffnessAttr():
drive.CreateStiffnessAttr(stiffness)
else:
drive.GetStiffnessAttr().Set(stiffness)
if damping is not None:
if not drive.GetDampingAttr():
drive.CreateDampingAttr(damping)
else:
drive.GetDampingAttr().Set(damping)
if max_force is not None:
if not drive.GetMaxForceAttr():
drive.CreateMaxForceAttr(max_force)
else:
drive.GetMaxForceAttr().Set(max_force)
| 1,653 |
Python
| 34.191489 | 105 | 0.69147 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/samples/import_franka.py
|
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import omni
import asyncio
import math
import weakref
import omni.ui as ui
from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription
from omni.isaac.ui.menu import make_menu_item_description
from .common import set_drive_parameters
from pxr import UsdLux, Sdf, Gf, UsdPhysics, PhysxSchema
from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder
from omni.kit.viewport.utility.camera_state import ViewportCameraState
EXTENSION_NAME = "Import Franka"
class Extension(omni.ext.IExt):
def on_startup(self, ext_id: str):
ext_manager = omni.kit.app.get_app().get_extension_manager()
self._ext_id = ext_id
self._extension_path = ext_manager.get_extension_path(ext_id)
self._menu_items = [
MenuItemDescription(
name="Import Robots",
sub_menu=[
make_menu_item_description(ext_id, "Franka URDF", lambda a=weakref.proxy(self): a._menu_callback())
],
)
]
add_menu_items(self._menu_items, "Isaac Examples")
self._build_ui()
def _build_ui(self):
self._window = omni.ui.Window(
EXTENSION_NAME, width=0, height=0, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
with ui.VStack(spacing=5, height=0):
title = "Import a Franka Panda via URDF"
doc_link = "https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html"
overview = (
"This Example shows you import a URDF.\n\nPress the 'Open in IDE' button to view the source code."
)
setup_ui_headers(self._ext_id, __file__, title, doc_link, overview)
frame = ui.CollapsableFrame(
title="Command Panel",
height=0,
collapsed=False,
style=get_style(),
style_type_name_override="CollapsableFrame",
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with frame:
with ui.VStack(style=get_style(), spacing=5):
dict = {
"label": "Load Robot",
"type": "button",
"text": "Load",
"tooltip": "Load a UR10 Robot into the Scene",
"on_clicked_fn": self._on_load_robot,
}
btn_builder(**dict)
dict = {
"label": "Configure Drives",
"type": "button",
"text": "Configure",
"tooltip": "Configure Joint Drives",
"on_clicked_fn": self._on_config_robot,
}
btn_builder(**dict)
dict = {
"label": "Move to Pose",
"type": "button",
"text": "move",
"tooltip": "Drive the Robot to a specific pose",
"on_clicked_fn": self._on_config_drives,
}
btn_builder(**dict)
def on_shutdown(self):
remove_menu_items(self._menu_items, "Isaac Examples")
self._window = None
def _menu_callback(self):
self._window.visible = not self._window.visible
def _on_load_robot(self):
load_stage = asyncio.ensure_future(omni.usd.get_context().new_stage_async())
asyncio.ensure_future(self._load_franka(load_stage))
async def _load_franka(self, task):
done, pending = await asyncio.wait({task})
if task in done:
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = False
import_config.fix_base = True
import_config.make_default_prim = True
import_config.create_physics_scene = True
omni.kit.commands.execute(
"URDFParseAndImportFile",
urdf_path=self._extension_path + "/data/urdf/robots/franka_description/robots/panda_arm_hand.urdf",
import_config=import_config,
)
camera_state = ViewportCameraState("/OmniverseKit_Persp")
camera_state.set_position_world(Gf.Vec3d(1.22, -1.24, 1.13), True)
camera_state.set_target_world(Gf.Vec3d(-0.96, 1.08, 0.0), True)
stage = omni.usd.get_context().get_stage()
scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene"))
scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0))
scene.CreateGravityMagnitudeAttr().Set(9.81)
result, plane_path = omni.kit.commands.execute(
"AddGroundPlaneCommand",
stage=stage,
planePath="/groundPlane",
axis="Z",
size=1500.0,
position=Gf.Vec3f(0),
color=Gf.Vec3f(0.5),
)
# make sure the ground plane is under root prim and not robot
omni.kit.commands.execute(
"MovePrimCommand", path_from=plane_path, path_to="/groundPlane", keep_world_transform=True
)
distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight"))
distantLight.CreateIntensityAttr(500)
def _on_config_robot(self):
stage = omni.usd.get_context().get_stage()
# Set the solver parameters on the articulation
PhysxSchema.PhysxArticulationAPI.Get(stage, "/panda").CreateSolverPositionIterationCountAttr(64)
PhysxSchema.PhysxArticulationAPI.Get(stage, "/panda").CreateSolverVelocityIterationCountAttr(64)
self.joint_1 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_link0/panda_joint1"), "angular")
self.joint_2 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_link1/panda_joint2"), "angular")
self.joint_3 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_link2/panda_joint3"), "angular")
self.joint_4 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_link3/panda_joint4"), "angular")
self.joint_5 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_link4/panda_joint5"), "angular")
self.joint_6 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_link5/panda_joint6"), "angular")
self.joint_7 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_link6/panda_joint7"), "angular")
self.finger_1 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_hand/panda_finger_joint1"), "linear")
self.finger_2 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/panda/panda_hand/panda_finger_joint2"), "linear")
# Set the drive mode, target, stiffness, damping and max force for each joint
set_drive_parameters(self.joint_1, "position", math.degrees(0), math.radians(1e8), math.radians(1e7))
set_drive_parameters(self.joint_2, "position", math.degrees(0), math.radians(1e8), math.radians(1e7))
set_drive_parameters(self.joint_3, "position", math.degrees(0), math.radians(1e8), math.radians(1e7))
set_drive_parameters(self.joint_4, "position", math.degrees(0), math.radians(1e8), math.radians(1e7))
set_drive_parameters(self.joint_5, "position", math.degrees(0), math.radians(1e8), math.radians(1e7))
set_drive_parameters(self.joint_6, "position", math.degrees(0), math.radians(1e8), math.radians(1e7))
set_drive_parameters(self.joint_7, "position", math.degrees(0), math.radians(1e8), math.radians(1e7))
set_drive_parameters(self.finger_1, "position", 0, 1e7, 1e6)
set_drive_parameters(self.finger_2, "position", 0, 1e7, 1e6)
def _on_config_drives(self):
self._on_config_robot() # make sure drives are configured first
# Set the drive mode, target, stiffness, damping and max force for each joint
set_drive_parameters(self.joint_1, "position", math.degrees(0.012))
set_drive_parameters(self.joint_2, "position", math.degrees(-0.57))
set_drive_parameters(self.joint_3, "position", math.degrees(0))
set_drive_parameters(self.joint_4, "position", math.degrees(-2.81))
set_drive_parameters(self.joint_5, "position", math.degrees(0))
set_drive_parameters(self.joint_6, "position", math.degrees(3.037))
set_drive_parameters(self.joint_7, "position", math.degrees(0.741))
set_drive_parameters(self.finger_1, "position", 4)
set_drive_parameters(self.finger_2, "position", 4)
| 9,399 |
Python
| 49 | 119 | 0.601021 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/samples/import_kaya.py
|
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import omni
import omni.kit.commands
import asyncio
import math
import weakref
import omni.ui as ui
from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription
from omni.isaac.ui.menu import make_menu_item_description
from .common import set_drive_parameters
from pxr import UsdLux, Sdf, Gf, UsdPhysics
from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder
from omni.kit.viewport.utility.camera_state import ViewportCameraState
EXTENSION_NAME = "Import Kaya"
class Extension(omni.ext.IExt):
def on_startup(self, ext_id: str):
ext_manager = omni.kit.app.get_app().get_extension_manager()
self._ext_id = ext_id
self._extension_path = ext_manager.get_extension_path(ext_id)
self._menu_items = [
MenuItemDescription(
name="Import Robots",
sub_menu=[
make_menu_item_description(ext_id, "Kaya URDF", lambda a=weakref.proxy(self): a._menu_callback())
],
)
]
add_menu_items(self._menu_items, "Isaac Examples")
self._build_ui()
def _build_ui(self):
self._window = omni.ui.Window(
EXTENSION_NAME, width=0, height=0, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
with ui.VStack(spacing=5, height=0):
title = "Import a Kaya Robot via URDF"
doc_link = "https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html"
overview = "This Example shows you import an NVIDIA Kaya robot via URDF.\n\nPress the 'Open in IDE' button to view the source code."
setup_ui_headers(self._ext_id, __file__, title, doc_link, overview)
frame = ui.CollapsableFrame(
title="Command Panel",
height=0,
collapsed=False,
style=get_style(),
style_type_name_override="CollapsableFrame",
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with frame:
with ui.VStack(style=get_style(), spacing=5):
dict = {
"label": "Load Robot",
"type": "button",
"text": "Load",
"tooltip": "Load a UR10 Robot into the Scene",
"on_clicked_fn": self._on_load_robot,
}
btn_builder(**dict)
dict = {
"label": "Configure Drives",
"type": "button",
"text": "Configure",
"tooltip": "Configure Joint Drives",
"on_clicked_fn": self._on_config_robot,
}
btn_builder(**dict)
dict = {
"label": "Spin Robot",
"type": "button",
"text": "move",
"tooltip": "Spin the Robot in Place",
"on_clicked_fn": self._on_config_drives,
}
btn_builder(**dict)
def on_shutdown(self):
remove_menu_items(self._menu_items, "Isaac Examples")
self._window = None
def _menu_callback(self):
self._window.visible = not self._window.visible
def _on_load_robot(self):
load_stage = asyncio.ensure_future(omni.usd.get_context().new_stage_async())
asyncio.ensure_future(self._load_kaya(load_stage))
async def _load_kaya(self, task):
done, pending = await asyncio.wait({task})
if task in done:
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = True
import_config.import_inertia_tensor = False
# import_config.distance_scale = 1.0
import_config.fix_base = False
import_config.make_default_prim = True
import_config.create_physics_scene = True
omni.kit.commands.execute(
"URDFParseAndImportFile",
urdf_path=self._extension_path + "/data/urdf/robots/kaya/urdf/kaya.urdf",
import_config=import_config,
)
camera_state = ViewportCameraState("/OmniverseKit_Persp")
camera_state.set_position_world(Gf.Vec3d(-1.0, 1.5, 0.5), True)
camera_state.set_target_world(Gf.Vec3d(0.0, 0.0, 0.0), True)
stage = omni.usd.get_context().get_stage()
scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene"))
scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0))
scene.CreateGravityMagnitudeAttr().Set(9.81)
result, plane_path = omni.kit.commands.execute(
"AddGroundPlaneCommand",
stage=stage,
planePath="/groundPlane",
axis="Z",
size=1500.0,
position=Gf.Vec3f(0, 0, -0.25),
color=Gf.Vec3f(0.5),
)
# make sure the ground plane is under root prim and not robot
omni.kit.commands.execute(
"MovePrimCommand", path_from=plane_path, path_to="/groundPlane", keep_world_transform=True
)
distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight"))
distantLight.CreateIntensityAttr(500)
def _on_config_robot(self):
stage = omni.usd.get_context().get_stage()
# Make all rollers spin freely by removing extra drive API
for axle in range(0, 2 + 1):
for ring in range(0, 1 + 1):
for roller in range(0, 4 + 1):
prim_path = (
"/kaya/axle_"
+ str(axle)
+ "/roller_"
+ str(axle)
+ "_"
+ str(ring)
+ "_"
+ str(roller)
+ "_joint"
)
prim = stage.GetPrimAtPath(prim_path)
omni.kit.commands.execute(
"UnapplyAPISchemaCommand",
api=UsdPhysics.DriveAPI,
prim=prim,
api_prefix="drive",
multiple_api_token="angular",
)
def _on_config_drives(self):
self._on_config_robot() # make sure drives are configured first
stage = omni.usd.get_context().get_stage()
# set each axis to spin at a rate of 1 rad/s
axle_0 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/kaya/base_link/axle_0_joint"), "angular")
axle_1 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/kaya/base_link/axle_1_joint"), "angular")
axle_2 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/kaya/base_link/axle_2_joint"), "angular")
set_drive_parameters(axle_0, "velocity", math.degrees(1), 0, math.radians(1e7))
set_drive_parameters(axle_1, "velocity", math.degrees(1), 0, math.radians(1e7))
set_drive_parameters(axle_2, "velocity", math.degrees(1), 0, math.radians(1e7))
| 8,034 |
Python
| 41.967914 | 148 | 0.538835 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/samples/import_carter.py
|
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import omni
import math
import omni.kit.commands
import asyncio
import weakref
import omni.ui as ui
from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription
from omni.isaac.ui.menu import make_menu_item_description
from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder
from omni.kit.viewport.utility.camera_state import ViewportCameraState
from .common import set_drive_parameters
from pxr import UsdLux, Sdf, Gf, UsdPhysics
EXTENSION_NAME = "Import Carter"
class Extension(omni.ext.IExt):
def on_startup(self, ext_id: str):
ext_manager = omni.kit.app.get_app().get_extension_manager()
self._ext_id = ext_id
self._extension_path = ext_manager.get_extension_path(ext_id)
self._menu_items = [
MenuItemDescription(
name="Import Robots",
sub_menu=[
make_menu_item_description(ext_id, "Carter URDF", lambda a=weakref.proxy(self): a._menu_callback())
],
)
]
add_menu_items(self._menu_items, "Isaac Examples")
self._build_ui()
def _build_ui(self):
self._window = omni.ui.Window(
EXTENSION_NAME, width=0, height=0, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
with ui.VStack(spacing=5, height=0):
title = "Import a UR10 via URDF"
doc_link = "https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html"
overview = "This Example shows how to import a URDF in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code."
setup_ui_headers(self._ext_id, __file__, title, doc_link, overview)
frame = ui.CollapsableFrame(
title="Command Panel",
height=0,
collapsed=False,
style=get_style(),
style_type_name_override="CollapsableFrame",
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with frame:
with ui.VStack(style=get_style(), spacing=5):
dict = {
"label": "Load Robot",
"type": "button",
"text": "Load",
"tooltip": "Load a NVIDIA Carter robot into the Scene",
"on_clicked_fn": self._on_load_robot,
}
btn_builder(**dict)
dict = {
"label": "Configure Drives",
"type": "button",
"text": "Configure",
"tooltip": "Configure Wheel Drives",
"on_clicked_fn": self._on_config_robot,
}
btn_builder(**dict)
dict = {
"label": "Move to Pose",
"type": "button",
"text": "move",
"tooltip": "Drive the Robot to a specific pose",
"on_clicked_fn": self._on_config_drives,
}
btn_builder(**dict)
def on_shutdown(self):
remove_menu_items(self._menu_items, "Isaac Examples")
self._window = None
def _menu_callback(self):
self._window.visible = not self._window.visible
def _on_load_robot(self):
load_stage = asyncio.ensure_future(omni.usd.get_context().new_stage_async())
asyncio.ensure_future(self._load_carter(load_stage))
async def _load_carter(self, task):
done, pending = await asyncio.wait({task})
if task in done:
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = False
import_config.fix_base = False
import_config.make_default_prim = True
import_config.create_physics_scene = True
omni.kit.commands.execute(
"URDFParseAndImportFile",
urdf_path=self._extension_path + "/data/urdf/robots/carter/urdf/carter.urdf",
import_config=import_config,
)
camera_state = ViewportCameraState("/OmniverseKit_Persp")
camera_state.set_position_world(Gf.Vec3d(3.00, -3.50, 1.13), True)
camera_state.set_target_world(Gf.Vec3d(-0.96, 1.08, -0.20), True)
stage = omni.usd.get_context().get_stage()
scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene"))
scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0))
scene.CreateGravityMagnitudeAttr().Set(9.81)
result, plane_path = omni.kit.commands.execute(
"AddGroundPlaneCommand",
stage=stage,
planePath="/groundPlane",
axis="Z",
size=1500.0,
position=Gf.Vec3f(0, 0, -0.50),
color=Gf.Vec3f(0.5),
)
# make sure the ground plane is under root prim and not robot
omni.kit.commands.execute(
"MovePrimCommand", path_from=plane_path, path_to="/groundPlane", keep_world_transform=True
)
distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight"))
distantLight.CreateIntensityAttr(500)
def _on_config_robot(self):
stage = omni.usd.get_context().get_stage()
# Remove drive from rear wheel and pivot
prim = stage.GetPrimAtPath("/carter/chassis_link/rear_pivot")
omni.kit.commands.execute(
"UnapplyAPISchemaCommand",
api=UsdPhysics.DriveAPI,
prim=prim,
api_prefix="drive",
multiple_api_token="angular",
)
prim = stage.GetPrimAtPath("/carter/rear_pivot_link/rear_axle")
omni.kit.commands.execute(
"UnapplyAPISchemaCommand",
api=UsdPhysics.DriveAPI,
prim=prim,
api_prefix="drive",
multiple_api_token="angular",
)
def _on_config_drives(self):
self._on_config_robot() # make sure drives are configured first
stage = omni.usd.get_context().get_stage()
left_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/left_wheel"), "angular")
right_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/right_wheel"), "angular")
# Drive forward
set_drive_parameters(left_wheel_drive, "velocity", math.degrees(2.5), 0, math.radians(1e8))
set_drive_parameters(right_wheel_drive, "velocity", math.degrees(2.5), 0, math.radians(1e8))
| 7,495 |
Python
| 40.877095 | 141 | 0.566111 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/scripts/samples/import_ur10.py
|
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import omni
import asyncio
import math
import weakref
import omni.ui as ui
from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription
from omni.isaac.ui.menu import make_menu_item_description
from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder
from omni.kit.viewport.utility.camera_state import ViewportCameraState
from .common import set_drive_parameters
from pxr import UsdLux, Sdf, Gf, UsdPhysics, PhysxSchema
EXTENSION_NAME = "Import UR10"
class Extension(omni.ext.IExt):
def on_startup(self, ext_id: str):
"""Initialize extension and UI elements"""
ext_manager = omni.kit.app.get_app().get_extension_manager()
self._ext_id = ext_id
self._extension_path = ext_manager.get_extension_path(ext_id)
self._menu_items = [
MenuItemDescription(
name="Import Robots",
sub_menu=[
make_menu_item_description(ext_id, "UR10 URDF", lambda a=weakref.proxy(self): a._menu_callback())
],
)
]
add_menu_items(self._menu_items, "Isaac Examples")
self._build_ui()
def _build_ui(self):
self._window = omni.ui.Window(
EXTENSION_NAME, width=0, height=0, visible=False, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
with ui.VStack(spacing=5, height=0):
title = "Import a UR10 via URDF"
doc_link = "https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_urdf.html"
overview = "This Example shows you import a UR10 robot arm via URDF.\n\nPress the 'Open in IDE' button to view the source code."
setup_ui_headers(self._ext_id, __file__, title, doc_link, overview)
frame = ui.CollapsableFrame(
title="Command Panel",
height=0,
collapsed=False,
style=get_style(),
style_type_name_override="CollapsableFrame",
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with frame:
with ui.VStack(style=get_style(), spacing=5):
dict = {
"label": "Load Robot",
"type": "button",
"text": "Load",
"tooltip": "Load a UR10 Robot into the Scene",
"on_clicked_fn": self._on_load_robot,
}
btn_builder(**dict)
dict = {
"label": "Configure Drives",
"type": "button",
"text": "Configure",
"tooltip": "Configure Joint Drives",
"on_clicked_fn": self._on_config_robot,
}
btn_builder(**dict)
dict = {
"label": "Move to Pose",
"type": "button",
"text": "move",
"tooltip": "Drive the Robot to a specific pose",
"on_clicked_fn": self._on_config_drives,
}
btn_builder(**dict)
def on_shutdown(self):
remove_menu_items(self._menu_items, "Isaac Examples")
self._window = None
def _menu_callback(self):
self._window.visible = not self._window.visible
def _on_load_robot(self):
load_stage = asyncio.ensure_future(omni.usd.get_context().new_stage_async())
asyncio.ensure_future(self._load_robot(load_stage))
async def _load_robot(self, task):
done, pending = await asyncio.wait({task})
if task in done:
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = False
import_config.fix_base = True
import_config.make_default_prim = True
import_config.create_physics_scene = True
omni.kit.commands.execute(
"URDFParseAndImportFile",
urdf_path=self._extension_path + "/data/urdf/robots/ur10/urdf/ur10.urdf",
import_config=import_config,
)
camera_state = ViewportCameraState("/OmniverseKit_Persp")
camera_state.set_position_world(Gf.Vec3d(2.0, -2.0, 0.5), True)
camera_state.set_target_world(Gf.Vec3d(0.0, 0.0, 0.0), True)
stage = omni.usd.get_context().get_stage()
scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene"))
scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0))
scene.CreateGravityMagnitudeAttr().Set(9.81)
distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight"))
distantLight.CreateIntensityAttr(500)
def _on_config_robot(self):
stage = omni.usd.get_context().get_stage()
PhysxSchema.PhysxArticulationAPI.Get(stage, "/ur10").CreateSolverPositionIterationCountAttr(64)
PhysxSchema.PhysxArticulationAPI.Get(stage, "/ur10").CreateSolverVelocityIterationCountAttr(64)
self.joint_1 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/ur10/base_link/shoulder_pan_joint"), "angular")
self.joint_2 = UsdPhysics.DriveAPI.Get(
stage.GetPrimAtPath("/ur10/shoulder_link/shoulder_lift_joint"), "angular"
)
self.joint_3 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/ur10/upper_arm_link/elbow_joint"), "angular")
self.joint_4 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/ur10/forearm_link/wrist_1_joint"), "angular")
self.joint_5 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/ur10/wrist_1_link/wrist_2_joint"), "angular")
self.joint_6 = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/ur10/wrist_2_link/wrist_3_joint"), "angular")
# Set the drive mode, target, stiffness, damping and max force for each joint
set_drive_parameters(self.joint_1, "position", math.degrees(0), math.radians(1e8), math.radians(5e7))
set_drive_parameters(self.joint_2, "position", math.degrees(0), math.radians(1e8), math.radians(5e7))
set_drive_parameters(self.joint_3, "position", math.degrees(0), math.radians(1e8), math.radians(5e7))
set_drive_parameters(self.joint_4, "position", math.degrees(0), math.radians(1e8), math.radians(5e7))
set_drive_parameters(self.joint_5, "position", math.degrees(0), math.radians(1e8), math.radians(5e7))
set_drive_parameters(self.joint_6, "position", math.degrees(0), math.radians(1e8), math.radians(5e7))
def _on_config_drives(self):
self._on_config_robot() # make sure drives are configured first
set_drive_parameters(self.joint_1, "position", 45)
set_drive_parameters(self.joint_2, "position", 45)
set_drive_parameters(self.joint_3, "position", 45)
set_drive_parameters(self.joint_4, "position", 45)
set_drive_parameters(self.joint_5, "position", 45)
set_drive_parameters(self.joint_6, "position", 45)
| 7,837 |
Python
| 46.216867 | 144 | 0.596019 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/tests/test_urdf.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
import omni.kit.commands
import os
from pxr import Sdf, Gf, UsdShade, PhysicsSchemaTools, UsdGeom, UsdPhysics
import pxr
import asyncio
import numpy as np
# Having a test class dervived from omni.kit.test.AsyncTestCase declared on the root of module will make it auto-discoverable by omni.kit.test
class TestUrdf(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
self._timeline = omni.timeline.get_timeline_interface()
ext_manager = omni.kit.app.get_app().get_extension_manager()
ext_id = ext_manager.get_enabled_extension_id("omni.isaac.urdf")
self._extension_path = ext_manager.get_extension_path(ext_id)
self.dest_path = os.path.abspath(self._extension_path + "/tests_out")
await omni.usd.get_context().new_stage_async()
await omni.kit.app.get_app().next_update_async()
pass
# After running each test
async def tearDown(self):
# _urdf.release_urdf_interface(self._urdf_interface)
await omni.kit.app.get_app().next_update_async()
pass
# Tests to make sure visual mesh names are incremented
async def test_urdf_mesh_naming(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_names.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = True
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
prim = stage.GetPrimAtPath("/test_names/cube/visuals")
prim_range = prim.GetChildren()
# There should be a total of 6 visual meshes after import
self.assertEqual(len(prim_range), 6)
# basic urdf test: joints and links are imported correctly
async def test_urdf_basic(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_basic.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.import_inertia_tensor = True
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
prim = stage.GetPrimAtPath("/test_basic")
self.assertNotEqual(prim.GetPath(), Sdf.Path.emptyPath)
# make sure the joints exist
root_joint = stage.GetPrimAtPath("/test_basic/root_joint")
self.assertNotEqual(root_joint.GetPath(), Sdf.Path.emptyPath)
wristJoint = stage.GetPrimAtPath("/test_basic/link_2/wrist_joint")
self.assertNotEqual(wristJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(wristJoint.GetTypeName(), "PhysicsRevoluteJoint")
fingerJoint = stage.GetPrimAtPath("/test_basic/palm_link/finger_1_joint")
self.assertNotEqual(fingerJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(fingerJoint.GetTypeName(), "PhysicsPrismaticJoint")
self.assertAlmostEqual(fingerJoint.GetAttribute("physics:upperLimit").Get(), 0.08)
fingerLink = stage.GetPrimAtPath("/test_basic/finger_link_2")
self.assertAlmostEqual(fingerLink.GetAttribute("physics:diagonalInertia").Get()[0], 2.0)
self.assertAlmostEqual(fingerLink.GetAttribute("physics:mass").Get(), 3)
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
self.assertAlmostEqual(UsdGeom.GetStageMetersPerUnit(stage), 1.0)
pass
async def test_urdf_save_to_file(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_basic.urdf")
dest_path = os.path.abspath(self.dest_path + "/test_basic.usd")
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.import_inertia_tensor = True
omni.kit.commands.execute(
"URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=dest_path
)
await omni.kit.app.get_app().next_update_async()
stage = pxr.Usd.Stage.Open(dest_path)
prim = stage.GetPrimAtPath("/test_basic")
self.assertNotEqual(prim.GetPath(), Sdf.Path.emptyPath)
# make sure the joints exist
root_joint = stage.GetPrimAtPath("/test_basic/root_joint")
self.assertNotEqual(root_joint.GetPath(), Sdf.Path.emptyPath)
wristJoint = stage.GetPrimAtPath("/test_basic/link_2/wrist_joint")
self.assertNotEqual(wristJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(wristJoint.GetTypeName(), "PhysicsRevoluteJoint")
fingerJoint = stage.GetPrimAtPath("/test_basic/palm_link/finger_1_joint")
self.assertNotEqual(fingerJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(fingerJoint.GetTypeName(), "PhysicsPrismaticJoint")
self.assertAlmostEqual(fingerJoint.GetAttribute("physics:upperLimit").Get(), 0.08)
fingerLink = stage.GetPrimAtPath("/test_basic/finger_link_2")
self.assertAlmostEqual(fingerLink.GetAttribute("physics:diagonalInertia").Get()[0], 2.0)
self.assertAlmostEqual(fingerLink.GetAttribute("physics:mass").Get(), 3)
self.assertAlmostEqual(UsdGeom.GetStageMetersPerUnit(stage), 1.0)
stage = None
pass
async def test_urdf_textured_obj(self):
base_path = self._extension_path + "/data/urdf/tests/test_textures_urdf"
basename = "cube_obj"
dest_path = "{}/{}/{}.usd".format(self.dest_path, basename, basename)
mats_path = "{}/{}/materials".format(self.dest_path, basename)
omni.client.create_folder("{}/{}".format(self.dest_path, basename))
omni.client.create_folder(mats_path)
urdf_path = "{}/{}.urdf".format(base_path, basename)
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute(
"URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=dest_path
)
await omni.kit.app.get_app().next_update_async()
result = omni.client.list(mats_path)
self.assertEqual(result[0], omni.client._omniclient.Result.OK)
self.assertEqual(len(result[1]), 4) # Metallic texture is unsuported by assimp on OBJ
pass
async def test_urdf_textured_in_memory(self):
base_path = self._extension_path + "/data/urdf/tests/test_textures_urdf"
basename = "cube_obj"
urdf_path = "{}/{}.urdf".format(base_path, basename)
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
pass
async def test_urdf_textured_dae(self):
base_path = self._extension_path + "/data/urdf/tests/test_textures_urdf"
basename = "cube_dae"
dest_path = "{}/{}/{}.usd".format(self.dest_path, basename, basename)
mats_path = "{}/{}/materials".format(self.dest_path, basename)
omni.client.create_folder("{}/{}".format(self.dest_path, basename))
omni.client.create_folder(mats_path)
urdf_path = "{}/{}.urdf".format(base_path, basename)
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute(
"URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=dest_path
)
await omni.kit.app.get_app().next_update_async()
result = omni.client.list(mats_path)
self.assertEqual(result[0], omni.client._omniclient.Result.OK)
self.assertEqual(len(result[1]), 1) # only albedo is supported for Collada
pass
async def test_urdf_overwrite_file(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_basic.urdf")
dest_path = os.path.abspath(self._extension_path + "/data/urdf/tests/tests_out/test_basic.usd")
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.import_inertia_tensor = True
omni.kit.commands.execute(
"URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=dest_path
)
await omni.kit.app.get_app().next_update_async()
omni.kit.commands.execute(
"URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config, dest_path=dest_path
)
await omni.kit.app.get_app().next_update_async()
stage = pxr.Usd.Stage.Open(dest_path)
prim = stage.GetPrimAtPath("/test_basic")
self.assertNotEqual(prim.GetPath(), Sdf.Path.emptyPath)
# make sure the joints exist
root_joint = stage.GetPrimAtPath("/test_basic/root_joint")
self.assertNotEqual(root_joint.GetPath(), Sdf.Path.emptyPath)
wristJoint = stage.GetPrimAtPath("/test_basic/link_2/wrist_joint")
self.assertNotEqual(wristJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(wristJoint.GetTypeName(), "PhysicsRevoluteJoint")
fingerJoint = stage.GetPrimAtPath("/test_basic/palm_link/finger_1_joint")
self.assertNotEqual(fingerJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(fingerJoint.GetTypeName(), "PhysicsPrismaticJoint")
self.assertAlmostEqual(fingerJoint.GetAttribute("physics:upperLimit").Get(), 0.08)
fingerLink = stage.GetPrimAtPath("/test_basic/finger_link_2")
self.assertAlmostEqual(fingerLink.GetAttribute("physics:diagonalInertia").Get()[0], 2.0)
self.assertAlmostEqual(fingerLink.GetAttribute("physics:mass").Get(), 3)
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
self.assertAlmostEqual(UsdGeom.GetStageMetersPerUnit(stage), 1.0)
stage = None
pass
# advanced urdf test: test for all the categories of inputs that an urdf can hold
async def test_urdf_advanced(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_advanced.urdf")
stage = omni.usd.get_context().get_stage()
# enable merging fixed joints
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = True
import_config.default_position_drive_damping = -1 # ignore this setting by making it -1
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
# check if object is there
prim = stage.GetPrimAtPath("/test_advanced")
self.assertNotEqual(prim.GetPath(), Sdf.Path.emptyPath)
# check color are imported
mesh = stage.GetPrimAtPath("/test_advanced/link_1/visuals")
self.assertNotEqual(mesh.GetPath(), Sdf.Path.emptyPath)
mat, rel = UsdShade.MaterialBindingAPI(mesh).ComputeBoundMaterial()
shader = UsdShade.Shader(stage.GetPrimAtPath(mat.GetPath().pathString + "/Shader"))
self.assertTrue(Gf.IsClose(shader.GetInput("diffuse_color_constant").Get(), Gf.Vec3f(0, 0.8, 0), 1e-5))
# check joint properties
elbowPrim = stage.GetPrimAtPath("/test_advanced/link_1/elbow_joint")
self.assertNotEqual(elbowPrim.GetPath(), Sdf.Path.emptyPath)
self.assertAlmostEqual(elbowPrim.GetAttribute("physxJoint:jointFriction").Get(), 0.1)
self.assertAlmostEqual(elbowPrim.GetAttribute("drive:angular:physics:damping").Get(), 0.1)
# check position of a link
joint_pos = elbowPrim.GetAttribute("physics:localPos0").Get()
self.assertTrue(Gf.IsClose(joint_pos, Gf.Vec3f(0, 0, 0.40), 1e-5))
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
pass
# test for importing urdf where fixed joints are merged
async def test_urdf_merge_joints(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_merge_joints.urdf")
stage = omni.usd.get_context().get_stage()
# enable merging fixed joints
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = True
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
# the merged link shouldn't be there
prim = stage.GetPrimAtPath("/test_merge_joints/link_2")
self.assertEqual(prim.GetPath(), Sdf.Path.emptyPath)
pass
async def test_urdf_mtl(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_mtl.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
mesh = stage.GetPrimAtPath("/test_mtl/cube/visuals")
self.assertTrue(UsdShade.MaterialBindingAPI(mesh) is not None)
mat, rel = UsdShade.MaterialBindingAPI(mesh).ComputeBoundMaterial()
shader = UsdShade.Shader(stage.GetPrimAtPath(mat.GetPath().pathString + "/Shader"))
print(shader)
self.assertTrue(Gf.IsClose(shader.GetInput("diffuse_color_constant").Get(), Gf.Vec3f(0.8, 0.0, 0), 1e-5))
async def test_urdf_mtl_stl(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_mtl_stl.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
mesh = stage.GetPrimAtPath("/test_mtl_stl/cube/visuals")
self.assertTrue(UsdShade.MaterialBindingAPI(mesh) is not None)
mat, rel = UsdShade.MaterialBindingAPI(mesh).ComputeBoundMaterial()
shader = UsdShade.Shader(stage.GetPrimAtPath(mat.GetPath().pathString + "/Shader"))
print(shader)
self.assertTrue(Gf.IsClose(shader.GetInput("diffuse_color_constant").Get(), Gf.Vec3f(0.8, 0.0, 0), 1e-5))
async def test_urdf_carter(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/robots/carter/urdf/carter.urdf")
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = False
status, path = omni.kit.commands.execute(
"URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config
)
self.assertTrue(path, "/carter")
# TODO add checks here
async def test_urdf_franka(self):
urdf_path = os.path.abspath(
self._extension_path + "/data/urdf/robots/franka_description/robots/panda_arm_hand.urdf"
)
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
# TODO add checks here'
async def test_urdf_ur10(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/robots/ur10/urdf/ur10.urdf")
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
# TODO add checks here'
async def test_urdf_kaya(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/robots/kaya/urdf/kaya.urdf")
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = False
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
# TODO add checks here
async def test_missing(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_missing.urdf")
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
# This sample corresponds to the example in the docs, keep this and the version in the docs in sync
async def test_doc_sample(self):
import omni.kit.commands
from pxr import UsdLux, Sdf, Gf, UsdPhysics
# setting up import configuration:
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = False
import_config.convex_decomp = False
import_config.import_inertia_tensor = True
import_config.fix_base = False
# Get path to extension data:
ext_manager = omni.kit.app.get_app().get_extension_manager()
ext_id = ext_manager.get_enabled_extension_id("omni.isaac.urdf")
extension_path = ext_manager.get_extension_path(ext_id)
# import URDF
omni.kit.commands.execute(
"URDFParseAndImportFile",
urdf_path=extension_path + "/data/urdf/robots/carter/urdf/carter.urdf",
import_config=import_config,
)
# get stage handle
stage = omni.usd.get_context().get_stage()
# enable physics
scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene"))
# set gravity
scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0))
scene.CreateGravityMagnitudeAttr().Set(9.81)
# add ground plane
PhysicsSchemaTools.addGroundPlane(stage, "/World/groundPlane", "Z", 1500, Gf.Vec3f(0, 0, -50), Gf.Vec3f(0.5))
# add lighting
distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight"))
distantLight.CreateIntensityAttr(500)
####
#### Next Docs section
####
# get handle to the Drive API for both wheels
left_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/left_wheel"), "angular")
right_wheel_drive = UsdPhysics.DriveAPI.Get(stage.GetPrimAtPath("/carter/chassis_link/right_wheel"), "angular")
# Set the velocity drive target in degrees/second
left_wheel_drive.GetTargetVelocityAttr().Set(150)
right_wheel_drive.GetTargetVelocityAttr().Set(150)
# Set the drive damping, which controls the strength of the velocity drive
left_wheel_drive.GetDampingAttr().Set(15000)
right_wheel_drive.GetDampingAttr().Set(15000)
# Set the drive stiffness, which controls the strength of the position drive
# In this case because we want to do velocity control this should be set to zero
left_wheel_drive.GetStiffnessAttr().Set(0)
right_wheel_drive.GetStiffnessAttr().Set(0)
# Make sure that a urdf with more than 63 links imports
async def test_64(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_large.urdf")
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
stage = omni.usd.get_context().get_stage()
prim = stage.GetPrimAtPath("/test_large")
self.assertTrue(prim)
# basic urdf test: joints and links are imported correctly
async def test_urdf_floating(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_floating.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.import_inertia_tensor = True
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
prim = stage.GetPrimAtPath("/test_floating")
self.assertNotEqual(prim.GetPath(), Sdf.Path.emptyPath)
# make sure the joints exist
root_joint = stage.GetPrimAtPath("/test_floating/root_joint")
self.assertNotEqual(root_joint.GetPath(), Sdf.Path.emptyPath)
link_1 = stage.GetPrimAtPath("/test_floating/link_1")
self.assertNotEqual(link_1.GetPath(), Sdf.Path.emptyPath)
link_1_trans = np.array(omni.usd.utils.get_world_transform_matrix(link_1).ExtractTranslation())
self.assertAlmostEqual(np.linalg.norm(link_1_trans - np.array([0, 0, 0.45])), 0, delta=0.03)
floating_link = stage.GetPrimAtPath("/test_floating/floating_link")
self.assertNotEqual(floating_link.GetPath(), Sdf.Path.emptyPath)
floating_link_trans = np.array(omni.usd.utils.get_world_transform_matrix(floating_link).ExtractTranslation())
self.assertAlmostEqual(np.linalg.norm(floating_link_trans - np.array([0, 0, 1.450])), 0, delta=0.03)
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
pass
async def test_urdf_scale(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_basic.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.distance_scale = 1.0
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
self.assertAlmostEqual(UsdGeom.GetStageMetersPerUnit(stage), 1.0)
pass
async def test_urdf_drive_none(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_basic.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
from omni.isaac.urdf._urdf import UrdfJointTargetType
import_config.default_drive_type = UrdfJointTargetType.JOINT_DRIVE_NONE
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
self.assertFalse(stage.GetPrimAtPath("/test_basic/root_joint").HasAPI(UsdPhysics.DriveAPI))
self.assertTrue(stage.GetPrimAtPath("/test_basic/link_1/elbow_joint").HasAPI(UsdPhysics.DriveAPI))
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
pass
async def test_urdf_usd(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_usd.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
from omni.isaac.urdf._urdf import UrdfJointTargetType
import_config.default_drive_type = UrdfJointTargetType.JOINT_DRIVE_NONE
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
self.assertNotEqual(stage.GetPrimAtPath("/test_usd/cube/visuals/mesh_0/Cylinder"), Sdf.Path.emptyPath)
self.assertNotEqual(stage.GetPrimAtPath("/test_usd/cube/visuals/mesh_1/Torus"), Sdf.Path.emptyPath)
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
pass
# test negative joint limits
async def test_urdf_limits(self):
urdf_path = os.path.abspath(self._extension_path + "/data/urdf/tests/test_limits.urdf")
stage = omni.usd.get_context().get_stage()
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.import_inertia_tensor = True
omni.kit.commands.execute("URDFParseAndImportFile", urdf_path=urdf_path, import_config=import_config)
await omni.kit.app.get_app().next_update_async()
# ensure the import completed.
prim = stage.GetPrimAtPath("/test_limits")
self.assertNotEqual(prim.GetPath(), Sdf.Path.emptyPath)
# ensure the joint limits are set on the elbow
elbowJoint = stage.GetPrimAtPath("/test_limits/link_1/elbow_joint")
self.assertNotEqual(elbowJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(elbowJoint.GetTypeName(), "PhysicsRevoluteJoint")
self.assertTrue(elbowJoint.HasAPI(UsdPhysics.DriveAPI))
# ensure the joint limits are set on the wrist
wristJoint = stage.GetPrimAtPath("/test_limits/link_2/wrist_joint")
self.assertNotEqual(wristJoint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(wristJoint.GetTypeName(), "PhysicsRevoluteJoint")
self.assertTrue(wristJoint.HasAPI(UsdPhysics.DriveAPI))
# ensure the joint limits are set on the finger1
finger1Joint = stage.GetPrimAtPath("/test_limits/palm_link/finger_1_joint")
self.assertNotEqual(finger1Joint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(finger1Joint.GetTypeName(), "PhysicsPrismaticJoint")
self.assertTrue(finger1Joint.HasAPI(UsdPhysics.DriveAPI))
# ensure the joint limits are set on the finger2
finger2Joint = stage.GetPrimAtPath("/test_limits/palm_link/finger_2_joint")
self.assertNotEqual(finger2Joint.GetPath(), Sdf.Path.emptyPath)
self.assertEqual(finger2Joint.GetTypeName(), "PhysicsPrismaticJoint")
self.assertTrue(finger2Joint.HasAPI(UsdPhysics.DriveAPI))
# Start Simulation and wait
self._timeline.play()
await omni.kit.app.get_app().next_update_async()
await asyncio.sleep(1.0)
# nothing crashes
self._timeline.stop()
pass
| 27,453 |
Python
| 46.171821 | 142 | 0.679671 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/omni/isaac/urdf/tests/__init__.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .test_urdf import *
| 459 |
Python
| 40.818178 | 76 | 0.801743 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/docs/CHANGELOG.md
|
# Changelog
## [0.5.9] - 2023-02-28
### Fixed
- Appearance of carb warnings when setting the joint damping and stiffness to 0 for `NONE` drive type
## [0.5.8] - 2023-02-22
### Fixed
- removed max joint effort scaling by 60 during import
- removed custom collision api when the shape is a cylinder
## [0.5.7] - 2023-02-17
### Added
- Unit test for joint limits.
- URDF data file for joint limit unit test (test_limits.urdf)
## [0.5.6] - 2023-02-14
### Fixed
- Imported negative URDF effort and velocity joint constraints set the physics constraint value to infinity.
## [0.5.5] - 2023-01-06
### Fixed
- onclick_fn warning when creating UI
## [0.5.4] - 2022-10-13
### Fixed
- Fixes materials on instanceable imports
## [0.5.3] - 2022-10-13
### Fixed
- Added Test for import stl with custom material
## [0.5.2] - 2022-09-07
### Fixed
- Fixes for kit 103.5
## [0.5.1] - 2022-01-02
### Changed
- Use omni.kit.viewport.utility when setting camera
## [0.5.0] - 2022-08-30
### Changed
- Remove direct legacy viewport calls
## [0.4.1] - 2022-08-30
### Changed
- Modified default gains in URDF -> USD converter to match gains for Franka and UR10 robots
## [0.4.0] - 2022-08-09
### Added
- Cobotta 900 urdf data files
## [0.3.1] - 2022-08-08
### Fixed
- Missing argument in example docstring
## [0.3.0] - 2022-07-09
### Added
- Add instanceable option to importer
## [0.2.2] - 2022-06-02
### Changed
- Fix title for file picker
## [0.2.1] - 2022-05-23
### Changed
- Fix units for samples
## [0.2.0] - 2022-05-17
### Changed
- Add joint values API
## [0.1.16] - 2022-04-19
### Changed
- Add Texture import compatibility for Windows.
## [0.1.16] - 2022-02-08
### Changed
- Revamped UI
## [0.1.15] - 2021-12-20
### Changed
- Fixed bug where missing mesh on part with urdf material assigned would crash on material binding in a non-existing prim.
## [0.1.14] - 2021-12-20
### Changed
- Fix bug where material was indexed by name and removing false duplicates.
- Add Normal subdivision group import parameter.
## [0.1.13] - 2021-12-10
### Changed
- Texture support for OBJ and Collada assets.
- Remove bug where an invalid link on a joint would stop importing the remainder of the urdf. raises an error message instead.
## [0.1.12] - 2021-12-03
### Changed
- Default to save Imported assets on a new USD and reference it on open stage.
- Change base robot prim to also use orientOP instead of rotateOP
- Change behavior where any stage event (e.g selection changed) was resetting some options on the UI
## [0.1.11] - 2021-11-29
### Changed
- Use double precision for xform ops to match isaac sim defaults
## [0.1.10] - 2021-11-04
### Changed
- create physics scene is false for import config
- create physics scene will not create a scene if one exists
- set default prim is false for import config
## [0.1.9] - 2021-10-25
### Added
- Support to specify usd paths for urdf meshes.
### Changed
- distance_scale sets the stage to the same units for consistency
- None drive mode still applies DriveAPI, but keeps the stiffness/damping at zero
- rootJoint prim is renamed to root_joint for consistency with other joint names.
### Fixed
- warnings when setting attributes as double when they should have been float
## [0.1.8] - 2021-10-18
### Added
- Floating joints are ignored but place any child links at the correct location.
### Fixed
- Crash when urdf contained a floating joint
## [0.1.7] - 2021-09-23
### Added
- Default position drive damping to UI
### Fixed
- Default config parameters are now respected
## [0.1.6] - 2021-08-31
### Changed
- Updated to New UI
- Spheres and Cubes are treated as shapes
- Cylinders are by default imported with custom geometry enabled
- Joint drives are default force instead of acceleration
### Fixed
- Meshes were not imported correctly, fixed subdivision scheme setting
### Removed
- Parsing URDF is not a separate step with its own UI
## [0.1.5] - 2021-07-30
### Fixed
- Zero joint velocity issue
- Artifact when dragging URDF file due to transform matrix
## [0.1.4] - 2021-06-09
### Added
- Fixed bugs with default density
## [0.1.3] - 2021-05-26
### Added
- Fixed bugs with import units
- Streamlined UI and fixed missing elements
- Fixed issues with creating new stage on import
## [0.1.2] - 2020-12-11
### Added
- Unit tests to extension
- Add test urdf files
- Fix unit issues with samples
- Fix unit conversion issue with import
## [0.1.1] - 2020-12-03
### Added
- Sample URDF files for carter, franka ur10 and kaya
## [0.1.0] - 2020-12-03
### Added
- Initial version of URDF importer extension
| 4,600 |
Markdown
| 21.334951 | 126 | 0.697174 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/docs/README.md
|
# Usage
To enable this extension, go to the Extension Manager menu and enable omni.isaac.urdf extension.
| 107 |
Markdown
| 20.599996 | 96 | 0.785047 |
swadaskar/Isaac_Sim_Folder/exts/omni.isaac.urdf/docs/index.rst
|
URDF Import Extension [omni.isaac.urdf]
#######################################
URDF Import Commands
====================
The following commands can be used to simplify the import process.
Below is a sample demonstrating how to import the Carter URDF included with this extension
.. code-block:: python
:linenos:
import omni.kit.commands
from pxr import UsdLux, Sdf, Gf, UsdPhysics, PhysicsSchemaTools
# setting up import configuration:
status, import_config = omni.kit.commands.execute("URDFCreateImportConfig")
import_config.merge_fixed_joints = False
import_config.convex_decomp = False
import_config.import_inertia_tensor = True
import_config.fix_base = False
# Get path to extension data:
ext_manager = omni.kit.app.get_app().get_extension_manager()
ext_id = ext_manager.get_enabled_extension_id("omni.isaac.urdf")
extension_path = ext_manager.get_extension_path(ext_id)
# import URDF
omni.kit.commands.execute(
"URDFParseAndImportFile",
urdf_path=extension_path + "/data/urdf/robots/carter/urdf/carter.urdf",
import_config=import_config,
)
# get stage handle
stage = omni.usd.get_context().get_stage()
# enable physics
scene = UsdPhysics.Scene.Define(stage, Sdf.Path("/physicsScene"))
# set gravity
scene.CreateGravityDirectionAttr().Set(Gf.Vec3f(0.0, 0.0, -1.0))
scene.CreateGravityMagnitudeAttr().Set(9.81)
# add ground plane
PhysicsSchemaTools.addGroundPlane(stage, "/World/groundPlane", "Z", 1500, Gf.Vec3f(0, 0, -50), Gf.Vec3f(0.5))
# add lighting
distantLight = UsdLux.DistantLight.Define(stage, Sdf.Path("/DistantLight"))
distantLight.CreateIntensityAttr(500)
.. automodule:: omni.isaac.urdf.scripts.commands
:members:
:undoc-members:
:exclude-members: do, undo
.. automodule:: omni.isaac.urdf._urdf
.. autoclass:: omni.isaac.urdf._urdf.Urdf
:members:
:undoc-members:
:no-show-inheritance:
.. autoclass:: omni.isaac.urdf._urdf.ImportConfig
:members:
:undoc-members:
:no-show-inheritance:
| 2,088 |
reStructuredText
| 30.651515 | 113 | 0.681034 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/isaac_tutorials/scripts/ros2_publisher.py
|
#!/usr/bin/env python3
# Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import JointState
import numpy as np
import time
class TestROS2Bridge(Node):
def __init__(self):
super().__init__("test_ros2bridge")
# Create the publisher. This publisher will publish a JointState message to the /joint_command topic.
self.publisher_ = self.create_publisher(JointState, "joint_command", 10)
# Create a JointState message
self.joint_state = JointState()
self.joint_state.name = [
"panda_joint1",
"panda_joint2",
"panda_joint3",
"panda_joint4",
"panda_joint5",
"panda_joint6",
"panda_joint7",
"panda_finger_joint1",
"panda_finger_joint2",
]
num_joints = len(self.joint_state.name)
# make sure kit's editor is playing for receiving messages
self.joint_state.position = np.array([0.0] * num_joints, dtype=np.float64).tolist()
self.default_joints = [0.0, -1.16, -0.0, -2.3, -0.0, 1.6, 1.1, 0.4, 0.4]
# limiting the movements to a smaller range (this is not the range of the robot, just the range of the movement
self.max_joints = np.array(self.default_joints) + 0.5
self.min_joints = np.array(self.default_joints) - 0.5
# position control the robot to wiggle around each joint
self.time_start = time.time()
timer_period = 0.05 # seconds
self.timer = self.create_timer(timer_period, self.timer_callback)
def timer_callback(self):
self.joint_state.header.stamp = self.get_clock().now().to_msg()
joint_position = (
np.sin(time.time() - self.time_start) * (self.max_joints - self.min_joints) * 0.5 + self.default_joints
)
self.joint_state.position = joint_position.tolist()
# Publish the message to the topic
self.publisher_.publish(self.joint_state)
def main(args=None):
rclpy.init(args=args)
ros2_publisher = TestROS2Bridge()
rclpy.spin(ros2_publisher)
# Destroy the node explicitly
ros2_publisher.destroy_node()
rclpy.shutdown()
if __name__ == "__main__":
main()
| 2,662 |
Python
| 31.084337 | 119 | 0.644252 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/launch/carter_navigation.launch.py
|
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
## NVIDIA CORPORATION and its licensors retain all intellectual property
## and proprietary rights in and to this software, related documentation
## and any modifications thereto. Any use, reproduction, disclosure or
## distribution of this software and related documentation without an express
## license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from ament_index_python.packages import get_package_share_directory
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument
from launch.actions import IncludeLaunchDescription
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import LaunchConfiguration
from launch_ros.actions import Node
def generate_launch_description():
use_sim_time = LaunchConfiguration("use_sim_time", default="True")
map_dir = LaunchConfiguration(
"map",
default=os.path.join(
get_package_share_directory("carter_navigation"), "maps", "carter_warehouse_navigation.yaml"
),
)
param_dir = LaunchConfiguration(
"params_file",
default=os.path.join(
get_package_share_directory("carter_navigation"), "params", "carter_navigation_params.yaml"
),
)
nav2_bringup_launch_dir = os.path.join(get_package_share_directory("nav2_bringup"), "launch")
rviz_config_dir = os.path.join(get_package_share_directory("carter_navigation"), "rviz2", "carter_navigation.rviz")
return LaunchDescription(
[
DeclareLaunchArgument("map", default_value=map_dir, description="Full path to map file to load"),
DeclareLaunchArgument(
"params_file", default_value=param_dir, description="Full path to param file to load"
),
DeclareLaunchArgument(
"use_sim_time", default_value="true", description="Use simulation (Omniverse Isaac Sim) clock if true"
),
IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(nav2_bringup_launch_dir, "rviz_launch.py")),
launch_arguments={"namespace": "", "use_namespace": "False", "rviz_config": rviz_config_dir}.items(),
),
IncludeLaunchDescription(
PythonLaunchDescriptionSource([nav2_bringup_launch_dir, "/bringup_launch.py"]),
launch_arguments={"map": map_dir, "use_sim_time": use_sim_time, "params_file": param_dir}.items(),
),
]
)
| 2,582 |
Python
| 42.77966 | 119 | 0.684741 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/launch/carter_navigation_individual.launch.py
|
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
## NVIDIA CORPORATION and its licensors retain all intellectual property
## and proprietary rights in and to this software, related documentation
## and any modifications thereto. Any use, reproduction, disclosure or
## distribution of this software and related documentation without an express
## license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from ament_index_python.packages import get_package_share_directory
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument, ExecuteProcess, IncludeLaunchDescription
from launch.conditions import IfCondition
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import LaunchConfiguration, PythonExpression
from launch_ros.actions import Node
def generate_launch_description():
# Get the launch directory
nav2_launch_dir = os.path.join(get_package_share_directory("nav2_bringup"), "launch")
# Create the launch configuration variables
slam = LaunchConfiguration("slam")
namespace = LaunchConfiguration("namespace")
use_namespace = LaunchConfiguration("use_namespace")
map_yaml_file = LaunchConfiguration("map")
use_sim_time = LaunchConfiguration("use_sim_time")
params_file = LaunchConfiguration("params_file")
default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename")
autostart = LaunchConfiguration("autostart")
# Declare the launch arguments
declare_namespace_cmd = DeclareLaunchArgument("namespace", default_value="", description="Top-level namespace")
declare_use_namespace_cmd = DeclareLaunchArgument(
"use_namespace", default_value="false", description="Whether to apply a namespace to the navigation stack"
)
declare_slam_cmd = DeclareLaunchArgument("slam", default_value="False", description="Whether run a SLAM")
declare_map_yaml_cmd = DeclareLaunchArgument(
"map",
default_value=os.path.join(nav2_launch_dir, "maps", "turtlebot3_world.yaml"),
description="Full path to map file to load",
)
declare_use_sim_time_cmd = DeclareLaunchArgument(
"use_sim_time", default_value="True", description="Use simulation (Isaac Sim) clock if true"
)
declare_params_file_cmd = DeclareLaunchArgument(
"params_file",
default_value=os.path.join(nav2_launch_dir, "params", "nav2_params.yaml"),
description="Full path to the ROS2 parameters file to use for all launched nodes",
)
declare_bt_xml_cmd = DeclareLaunchArgument(
"default_bt_xml_filename",
default_value=os.path.join(
get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml"
),
description="Full path to the behavior tree xml file to use",
)
declare_autostart_cmd = DeclareLaunchArgument(
"autostart", default_value="true", description="Automatically startup the nav2 stack"
)
bringup_cmd = IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(nav2_launch_dir, "bringup_launch.py")),
launch_arguments={
"namespace": namespace,
"use_namespace": use_namespace,
"slam": slam,
"map": map_yaml_file,
"use_sim_time": use_sim_time,
"params_file": params_file,
"default_bt_xml_filename": default_bt_xml_filename,
"autostart": autostart,
}.items(),
)
# Create the launch description and populate
ld = LaunchDescription()
# Declare the launch options
ld.add_action(declare_namespace_cmd)
ld.add_action(declare_use_namespace_cmd)
ld.add_action(declare_slam_cmd)
ld.add_action(declare_map_yaml_cmd)
ld.add_action(declare_use_sim_time_cmd)
ld.add_action(declare_params_file_cmd)
ld.add_action(declare_bt_xml_cmd)
ld.add_action(declare_autostart_cmd)
ld.add_action(bringup_cmd)
return ld
| 4,044 |
Python
| 39.049505 | 120 | 0.710435 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/launch/multiple_robot_carter_navigation_hospital.launch.py
|
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
## NVIDIA CORPORATION and its licensors retain all intellectual property
## and proprietary rights in and to this software, related documentation
## and any modifications thereto. Any use, reproduction, disclosure or
## distribution of this software and related documentation without an express
## license agreement from NVIDIA CORPORATION is strictly prohibited.
"""
Example for spawing multiple robots in Gazebo.
This is an example on how to create a launch file for spawning multiple robots into Gazebo
and launch multiple instances of the navigation stack, each controlling one robot.
The robots co-exist on a shared environment and are controlled by independent nav stacks
"""
import os
from ament_index_python.packages import get_package_share_directory
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument, ExecuteProcess, GroupAction, IncludeLaunchDescription, LogInfo
from launch.conditions import IfCondition
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import LaunchConfiguration, TextSubstitution
def generate_launch_description():
# Get the launch and rviz directories
carter_nav2_bringup_dir = get_package_share_directory("carter_navigation")
nav2_bringup_dir = get_package_share_directory("nav2_bringup")
nav2_bringup_launch_dir = os.path.join(nav2_bringup_dir, "launch")
rviz_config_dir = os.path.join(carter_nav2_bringup_dir, "rviz2", "carter_navigation_namespaced.rviz")
# Names and poses of the robots
robots = [{"name": "carter1"}, {"name": "carter2"}, {"name": "carter3"}]
# Common settings
ENV_MAP_FILE = "carter_hospital_navigation.yaml"
use_sim_time = LaunchConfiguration("use_sim_time", default="True")
map_yaml_file = LaunchConfiguration("map")
default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename")
autostart = LaunchConfiguration("autostart")
rviz_config_file = LaunchConfiguration("rviz_config")
use_rviz = LaunchConfiguration("use_rviz")
log_settings = LaunchConfiguration("log_settings", default="true")
# Declare the launch arguments
declare_map_yaml_cmd = DeclareLaunchArgument(
"map",
default_value=os.path.join(carter_nav2_bringup_dir, "maps", ENV_MAP_FILE),
description="Full path to map file to load",
)
declare_robot1_params_file_cmd = DeclareLaunchArgument(
"carter1_params_file",
default_value=os.path.join(
carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_1.yaml"
),
description="Full path to the ROS2 parameters file to use for robot1 launched nodes",
)
declare_robot2_params_file_cmd = DeclareLaunchArgument(
"carter2_params_file",
default_value=os.path.join(
carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_2.yaml"
),
description="Full path to the ROS2 parameters file to use for robot2 launched nodes",
)
declare_robot3_params_file_cmd = DeclareLaunchArgument(
"carter3_params_file",
default_value=os.path.join(
carter_nav2_bringup_dir, "params", "hospital", "multi_robot_carter_navigation_params_3.yaml"
),
description="Full path to the ROS2 parameters file to use for robot3 launched nodes",
)
declare_bt_xml_cmd = DeclareLaunchArgument(
"default_bt_xml_filename",
default_value=os.path.join(
get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml"
),
description="Full path to the behavior tree xml file to use",
)
declare_autostart_cmd = DeclareLaunchArgument(
"autostart", default_value="True", description="Automatically startup the stacks"
)
declare_rviz_config_file_cmd = DeclareLaunchArgument(
"rviz_config", default_value=rviz_config_dir, description="Full path to the RVIZ config file to use."
)
declare_use_rviz_cmd = DeclareLaunchArgument("use_rviz", default_value="True", description="Whether to start RVIZ")
# Define commands for launching the navigation instances
nav_instances_cmds = []
for robot in robots:
params_file = LaunchConfiguration(robot["name"] + "_params_file")
group = GroupAction(
[
IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(nav2_bringup_launch_dir, "rviz_launch.py")),
condition=IfCondition(use_rviz),
launch_arguments={
"namespace": TextSubstitution(text=robot["name"]),
"use_namespace": "True",
"rviz_config": rviz_config_file,
}.items(),
),
IncludeLaunchDescription(
PythonLaunchDescriptionSource(
os.path.join(carter_nav2_bringup_dir, "launch", "carter_navigation_individual.launch.py")
),
launch_arguments={
"namespace": robot["name"],
"use_namespace": "True",
"map": map_yaml_file,
"use_sim_time": use_sim_time,
"params_file": params_file,
"default_bt_xml_filename": default_bt_xml_filename,
"autostart": autostart,
"use_rviz": "False",
"use_simulator": "False",
"headless": "False",
}.items(),
),
LogInfo(condition=IfCondition(log_settings), msg=["Launching ", robot["name"]]),
LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " map yaml: ", map_yaml_file]),
LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " params yaml: ", params_file]),
LogInfo(
condition=IfCondition(log_settings),
msg=[robot["name"], " behavior tree xml: ", default_bt_xml_filename],
),
LogInfo(
condition=IfCondition(log_settings), msg=[robot["name"], " rviz config file: ", rviz_config_file]
),
LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " autostart: ", autostart]),
]
)
nav_instances_cmds.append(group)
# Create the launch description and populate
ld = LaunchDescription()
# Declare the launch options
ld.add_action(declare_map_yaml_cmd)
ld.add_action(declare_robot1_params_file_cmd)
ld.add_action(declare_robot2_params_file_cmd)
ld.add_action(declare_robot3_params_file_cmd)
ld.add_action(declare_bt_xml_cmd)
ld.add_action(declare_use_rviz_cmd)
ld.add_action(declare_autostart_cmd)
ld.add_action(declare_rviz_config_file_cmd)
for simulation_instance_cmd in nav_instances_cmds:
ld.add_action(simulation_instance_cmd)
return ld
| 7,216 |
Python
| 42.215569 | 120 | 0.640244 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/launch/multiple_robot_carter_navigation_office.launch.py
|
## Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
## NVIDIA CORPORATION and its licensors retain all intellectual property
## and proprietary rights in and to this software, related documentation
## and any modifications thereto. Any use, reproduction, disclosure or
## distribution of this software and related documentation without an express
## license agreement from NVIDIA CORPORATION is strictly prohibited.
"""
Example for spawing multiple robots in Gazebo.
This is an example on how to create a launch file for spawning multiple robots into Gazebo
and launch multiple instances of the navigation stack, each controlling one robot.
The robots co-exist on a shared environment and are controlled by independent nav stacks
"""
import os
from ament_index_python.packages import get_package_share_directory
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument, ExecuteProcess, GroupAction, IncludeLaunchDescription, LogInfo
from launch.conditions import IfCondition
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import LaunchConfiguration, TextSubstitution
def generate_launch_description():
# Get the launch and rviz directories
carter_nav2_bringup_dir = get_package_share_directory("carter_navigation")
nav2_bringup_dir = get_package_share_directory("nav2_bringup")
nav2_bringup_launch_dir = os.path.join(nav2_bringup_dir, "launch")
rviz_config_dir = os.path.join(carter_nav2_bringup_dir, "rviz2", "carter_navigation_namespaced.rviz")
# Names and poses of the robots
robots = [{"name": "carter1"}, {"name": "carter2"}, {"name": "carter3"}]
# Common settings
ENV_MAP_FILE = "carter_office_navigation.yaml"
use_sim_time = LaunchConfiguration("use_sim_time", default="True")
map_yaml_file = LaunchConfiguration("map")
default_bt_xml_filename = LaunchConfiguration("default_bt_xml_filename")
autostart = LaunchConfiguration("autostart")
rviz_config_file = LaunchConfiguration("rviz_config")
use_rviz = LaunchConfiguration("use_rviz")
log_settings = LaunchConfiguration("log_settings", default="true")
# Declare the launch arguments
declare_map_yaml_cmd = DeclareLaunchArgument(
"map",
default_value=os.path.join(carter_nav2_bringup_dir, "maps", ENV_MAP_FILE),
description="Full path to map file to load",
)
declare_robot1_params_file_cmd = DeclareLaunchArgument(
"carter1_params_file",
default_value=os.path.join(
carter_nav2_bringup_dir, "params", "office", "multi_robot_carter_navigation_params_1.yaml"
),
description="Full path to the ROS2 parameters file to use for robot1 launched nodes",
)
declare_robot2_params_file_cmd = DeclareLaunchArgument(
"carter2_params_file",
default_value=os.path.join(
carter_nav2_bringup_dir, "params", "office", "multi_robot_carter_navigation_params_2.yaml"
),
description="Full path to the ROS2 parameters file to use for robot2 launched nodes",
)
declare_robot3_params_file_cmd = DeclareLaunchArgument(
"carter3_params_file",
default_value=os.path.join(
carter_nav2_bringup_dir, "params", "office", "multi_robot_carter_navigation_params_3.yaml"
),
description="Full path to the ROS2 parameters file to use for robot3 launched nodes",
)
declare_bt_xml_cmd = DeclareLaunchArgument(
"default_bt_xml_filename",
default_value=os.path.join(
get_package_share_directory("nav2_bt_navigator"), "behavior_trees", "navigate_w_replanning_and_recovery.xml"
),
description="Full path to the behavior tree xml file to use",
)
declare_autostart_cmd = DeclareLaunchArgument(
"autostart", default_value="True", description="Automatically startup the stacks"
)
declare_rviz_config_file_cmd = DeclareLaunchArgument(
"rviz_config", default_value=rviz_config_dir, description="Full path to the RVIZ config file to use."
)
declare_use_rviz_cmd = DeclareLaunchArgument("use_rviz", default_value="True", description="Whether to start RVIZ")
# Define commands for launching the navigation instances
nav_instances_cmds = []
for robot in robots:
params_file = LaunchConfiguration(robot["name"] + "_params_file")
group = GroupAction(
[
IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(nav2_bringup_launch_dir, "rviz_launch.py")),
condition=IfCondition(use_rviz),
launch_arguments={
"namespace": TextSubstitution(text=robot["name"]),
"use_namespace": "True",
"rviz_config": rviz_config_file,
}.items(),
),
IncludeLaunchDescription(
PythonLaunchDescriptionSource(
os.path.join(carter_nav2_bringup_dir, "launch", "carter_navigation_individual.launch.py")
),
launch_arguments={
"namespace": robot["name"],
"use_namespace": "True",
"map": map_yaml_file,
"use_sim_time": use_sim_time,
"params_file": params_file,
"default_bt_xml_filename": default_bt_xml_filename,
"autostart": autostart,
"use_rviz": "False",
"use_simulator": "False",
"headless": "False",
}.items(),
),
LogInfo(condition=IfCondition(log_settings), msg=["Launching ", robot["name"]]),
LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " map yaml: ", map_yaml_file]),
LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " params yaml: ", params_file]),
LogInfo(
condition=IfCondition(log_settings),
msg=[robot["name"], " behavior tree xml: ", default_bt_xml_filename],
),
LogInfo(
condition=IfCondition(log_settings), msg=[robot["name"], " rviz config file: ", rviz_config_file]
),
LogInfo(condition=IfCondition(log_settings), msg=[robot["name"], " autostart: ", autostart]),
]
)
nav_instances_cmds.append(group)
# Create the launch description and populate
ld = LaunchDescription()
# Declare the launch options
ld.add_action(declare_map_yaml_cmd)
ld.add_action(declare_robot1_params_file_cmd)
ld.add_action(declare_robot2_params_file_cmd)
ld.add_action(declare_robot3_params_file_cmd)
ld.add_action(declare_bt_xml_cmd)
ld.add_action(declare_use_rviz_cmd)
ld.add_action(declare_autostart_cmd)
ld.add_action(declare_rviz_config_file_cmd)
for simulation_instance_cmd in nav_instances_cmds:
ld.add_action(simulation_instance_cmd)
return ld
| 7,208 |
Python
| 42.167664 | 120 | 0.639845 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/maps/carter_office_navigation.yaml
|
image: carter_office_navigation.png
resolution: 0.05
origin: [-29.975, -39.975, 0.0000]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.196
| 139 |
YAML
| 18.999997 | 35 | 0.733813 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/maps/carter_hospital_navigation.yaml
|
image: carter_hospital_navigation.png
resolution: 0.05
origin: [-49.625, -4.675, 0.0000]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.196
| 140 |
YAML
| 19.142854 | 37 | 0.735714 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/carter_navigation/maps/carter_warehouse_navigation.yaml
|
image: carter_warehouse_navigation.png
resolution: 0.05
origin: [-11.975, -17.975, 0.0000]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.196
| 142 |
YAML
| 19.428569 | 38 | 0.739437 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/setup.py
|
from setuptools import setup
from glob import glob
import os
package_name = "isaac_ros_navigation_goal"
setup(
name=package_name,
version="0.0.1",
packages=[package_name, package_name + "/goal_generators"],
data_files=[
("share/ament_index/resource_index/packages", ["resource/" + package_name]),
("share/" + package_name, ["package.xml"]),
(os.path.join("share", package_name, "launch"), glob("launch/*.launch.py")),
("share/" + package_name + "/assets", glob("assets/*")),
],
install_requires=["setuptools"],
zip_safe=True,
maintainer="isaac sim",
maintainer_email="[email protected]",
description="Package to set goals for navigation stack.",
license="NVIDIA Isaac ROS Software License",
tests_require=["pytest"],
entry_points={"console_scripts": ["SetNavigationGoal = isaac_ros_navigation_goal.set_goal:main"]},
)
| 906 |
Python
| 33.884614 | 102 | 0.651214 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/test/test_flake8.py
|
# Copyright 2017 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ament_flake8.main import main_with_errors
import pytest
@pytest.mark.flake8
@pytest.mark.linter
def test_flake8():
rc, errors = main_with_errors(argv=[])
assert rc == 0, "Found %d code style errors / warnings:\n" % len(errors) + "\n".join(errors)
| 864 |
Python
| 35.041665 | 96 | 0.741898 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/test/test_pep257.py
|
# Copyright 2015 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ament_pep257.main import main
import pytest
@pytest.mark.linter
@pytest.mark.pep257
def test_pep257():
rc = main(argv=[".", "test"])
assert rc == 0, "Found code style errors / warnings"
| 803 |
Python
| 32.499999 | 74 | 0.743462 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/launch/isaac_ros_navigation_goal.launch.py
|
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from ament_index_python.packages import get_package_share_directory
from launch import LaunchDescription
from launch.substitutions import LaunchConfiguration
from launch_ros.actions import Node
def generate_launch_description():
map_yaml_file = LaunchConfiguration(
"map_yaml_path",
default=os.path.join(
get_package_share_directory("isaac_ros_navigation_goal"), "assets", "carter_warehouse_navigation.yaml"
),
)
goal_text_file = LaunchConfiguration(
"goal_text_file_path",
default=os.path.join(get_package_share_directory("isaac_ros_navigation_goal"), "assets", "goals.txt"),
)
navigation_goal_node = Node(
name="set_navigation_goal",
package="isaac_ros_navigation_goal",
executable="SetNavigationGoal",
parameters=[
{
"map_yaml_path": map_yaml_file,
"iteration_count": 3,
"goal_generator_type": "RandomGoalGenerator",
"action_server_name": "navigate_to_pose",
"obstacle_search_distance_in_meters": 0.2,
"goal_text_file_path": goal_text_file,
"initial_pose": [-6.4, -1.04, 0.0, 0.0, 0.0, 0.99, 0.02],
}
],
output="screen",
)
return LaunchDescription([navigation_goal_node])
| 1,782 |
Python
| 35.387754 | 114 | 0.654882 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/obstacle_map.py
|
import numpy as np
import yaml
import os
import math
from PIL import Image
class GridMap:
def __init__(self, yaml_file_path):
self.__get_meta_from_yaml(yaml_file_path)
self.__get_raw_map()
self.__add_max_range_to_meta()
# print(self.__map_meta)
def __get_meta_from_yaml(self, yaml_file_path):
"""
Reads map meta from the yaml file.
Parameters
----------
yaml_file_path: path of the yaml file.
"""
with open(yaml_file_path, "r") as f:
file_content = f.read()
self.__map_meta = yaml.safe_load(file_content)
self.__map_meta["image"] = os.path.join(os.path.dirname(yaml_file_path), self.__map_meta["image"])
def __get_raw_map(self):
"""
Reads the map image and generates the grid map.\n
Grid map is a 2D boolean matrix where True=>occupied space & False=>Free space.
"""
img = Image.open(self.__map_meta.get("image"))
img = np.array(img)
# Anything greater than free_thresh is considered as occupied
if self.__map_meta["negate"]:
res = np.where((img / 255)[:, :, 0] > self.__map_meta["free_thresh"])
else:
res = np.where(((255 - img) / 255)[:, :, 0] > self.__map_meta["free_thresh"])
self.__grid_map = np.zeros(shape=(img.shape[:2]), dtype=bool)
for i in range(res[0].shape[0]):
self.__grid_map[res[0][i], res[1][i]] = 1
def __add_max_range_to_meta(self):
"""
Calculates and adds the max value of pose in x & y direction to the meta.
"""
max_x = self.__grid_map.shape[1] * self.__map_meta["resolution"] + self.__map_meta["origin"][0]
max_y = self.__grid_map.shape[0] * self.__map_meta["resolution"] + self.__map_meta["origin"][1]
self.__map_meta["max_x"] = round(max_x, 2)
self.__map_meta["max_y"] = round(max_y, 2)
def __pad_obstacles(self, distance):
pass
def get_range(self):
"""
Returns the bounds of pose values in x & y direction.\n
Returns
-------
[List]:\n
Where list[0][0]: min value in x direction
list[0][1]: max value in x direction
list[1][0]: min value in y direction
list[1][1]: max value in y direction
"""
return [
[self.__map_meta["origin"][0], self.__map_meta["max_x"]],
[self.__map_meta["origin"][1], self.__map_meta["max_y"]],
]
def __transform_to_image_coordinates(self, point):
"""
Transforms a pose in meters to image pixel coordinates.
Parameters
----------
Point: A point as list. where list[0]=>pose.x and list[1]=pose.y
Returns
-------
[Tuple]: tuple[0]=>pixel value in x direction. i.e column index.
tuple[1]=> pixel vlaue in y direction. i.e row index.
"""
p_x, p_y = point
i_x = math.floor((p_x - self.__map_meta["origin"][0]) / self.__map_meta["resolution"])
i_y = math.floor((p_y - self.__map_meta["origin"][1]) / self.__map_meta["resolution"])
# because origin in yaml is at bottom left of image
i_y = self.__grid_map.shape[0] - i_y
return i_x, i_y
def __transform_distance_to_pixels(self, distance):
"""
Converts the distance in meters to number of pixels based on the resolution.
Parameters
----------
distance: value in meters
Returns
-------
[Integer]: number of pixel which represent the same distance.
"""
return math.ceil(distance / self.__map_meta["resolution"])
def __is_obstacle_in_distance(self, img_point, distance):
"""
Checks if any obstacle is in vicinity of the given image point.
Parameters
----------
img_point: pixel values of the point
distance: distnace in pixels in which there shouldn't be any obstacle.
Returns
-------
[Bool]: True if any obstacle found else False.
"""
# need to make sure that patch xmin & ymin are >=0,
# because of python's negative indexing capability
row_start_idx = 0 if img_point[1] - distance < 0 else img_point[1] - distance
col_start_idx = 0 if img_point[0] - distance < 0 else img_point[0] - distance
# image point acts as the center of the square, where each side of square is of size
# 2xdistance
patch = self.__grid_map[row_start_idx : img_point[1] + distance, col_start_idx : img_point[0] + distance]
obstacles = np.where(patch == True)
return len(obstacles[0]) > 0
def is_valid_pose(self, point, distance=0.2):
"""
Checks if a given pose is "distance" away from a obstacle.
Parameters
----------
point: pose in 2D space. where point[0]=pose.x and point[1]=pose.y
distance: distance in meters.
Returns
-------
[Bool]: True if pose is valid else False
"""
assert len(point) == 2
img_point = self.__transform_to_image_coordinates(point)
img_pixel_distance = self.__transform_distance_to_pixels(distance)
# Pose is not valid if there is obstacle in the vicinity
return not self.__is_obstacle_in_distance(img_point, img_pixel_distance)
| 5,443 |
Python
| 33.455696 | 113 | 0.553188 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/set_goal.py
|
import rclpy
from rclpy.action import ActionClient
from rclpy.node import Node
from nav2_msgs.action import NavigateToPose
from .obstacle_map import GridMap
from .goal_generators import RandomGoalGenerator, GoalReader
import sys
from geometry_msgs.msg import PoseWithCovarianceStamped
import time
class SetNavigationGoal(Node):
def __init__(self):
super().__init__("set_navigation_goal")
self.declare_parameters(
namespace="",
parameters=[
("iteration_count", 1),
("goal_generator_type", "RandomGoalGenerator"),
("action_server_name", "navigate_to_pose"),
("obstacle_search_distance_in_meters", 0.2),
("frame_id", "map"),
("map_yaml_path", None),
("goal_text_file_path", None),
("initial_pose", None),
],
)
self.__goal_generator = self.__create_goal_generator()
action_server_name = self.get_parameter("action_server_name").value
self._action_client = ActionClient(self, NavigateToPose, action_server_name)
self.MAX_ITERATION_COUNT = self.get_parameter("iteration_count").value
assert self.MAX_ITERATION_COUNT > 0
self.curr_iteration_count = 1
self.__initial_goal_publisher = self.create_publisher(PoseWithCovarianceStamped, "/initialpose", 1)
self.__initial_pose = self.get_parameter("initial_pose").value
self.__is_initial_pose_sent = True if self.__initial_pose is None else False
def __send_initial_pose(self):
"""
Publishes the initial pose.
This function is only called once that too before sending any goal pose
to the mission server.
"""
goal = PoseWithCovarianceStamped()
goal.header.frame_id = self.get_parameter("frame_id").value
goal.header.stamp = self.get_clock().now().to_msg()
goal.pose.pose.position.x = self.__initial_pose[0]
goal.pose.pose.position.y = self.__initial_pose[1]
goal.pose.pose.position.z = self.__initial_pose[2]
goal.pose.pose.orientation.x = self.__initial_pose[3]
goal.pose.pose.orientation.y = self.__initial_pose[4]
goal.pose.pose.orientation.z = self.__initial_pose[5]
goal.pose.pose.orientation.w = self.__initial_pose[6]
self.__initial_goal_publisher.publish(goal)
def send_goal(self):
"""
Sends the goal to the action server.
"""
if not self.__is_initial_pose_sent:
self.get_logger().info("Sending initial pose")
self.__send_initial_pose()
self.__is_initial_pose_sent = True
# Assumption is that initial pose is set after publishing first time in this duration.
# Can be changed to more sophisticated way. e.g. /particlecloud topic has no msg until
# the initial pose is set.
time.sleep(10)
self.get_logger().info("Sending first goal")
self._action_client.wait_for_server()
goal_msg = self.__get_goal()
if goal_msg is None:
rclpy.shutdown()
sys.exit(1)
self._send_goal_future = self._action_client.send_goal_async(
goal_msg, feedback_callback=self.__feedback_callback
)
self._send_goal_future.add_done_callback(self.__goal_response_callback)
def __goal_response_callback(self, future):
"""
Callback function to check the response(goal accpted/rejected) from the server.\n
If the Goal is rejected it stops the execution for now.(We can change to resample the pose if rejected.)
"""
goal_handle = future.result()
if not goal_handle.accepted:
self.get_logger().info("Goal rejected :(")
rclpy.shutdown()
return
self.get_logger().info("Goal accepted :)")
self._get_result_future = goal_handle.get_result_async()
self._get_result_future.add_done_callback(self.__get_result_callback)
def __get_goal(self):
"""
Get the next goal from the goal generator.
Returns
-------
[NavigateToPose][goal] or None if the next goal couldn't be generated.
"""
goal_msg = NavigateToPose.Goal()
goal_msg.pose.header.frame_id = self.get_parameter("frame_id").value
goal_msg.pose.header.stamp = self.get_clock().now().to_msg()
pose = self.__goal_generator.generate_goal()
# couldn't sample a pose which is not close to obstacles. Rare but might happen in dense maps.
if pose is None:
self.get_logger().error(
"Could not generate next goal. Returning. Possible reasons for this error could be:"
)
self.get_logger().error(
"1. If you are using GoalReader then please make sure iteration count <= number of goals avaiable in file."
)
self.get_logger().error(
"2. If RandomGoalGenerator is being used then it was not able to sample a pose which is given distance away from the obstacles."
)
return
self.get_logger().info("Generated goal pose: {0}".format(pose))
goal_msg.pose.pose.position.x = pose[0]
goal_msg.pose.pose.position.y = pose[1]
goal_msg.pose.pose.orientation.x = pose[2]
goal_msg.pose.pose.orientation.y = pose[3]
goal_msg.pose.pose.orientation.z = pose[4]
goal_msg.pose.pose.orientation.w = pose[5]
return goal_msg
def __get_result_callback(self, future):
"""
Callback to check result.\n
It calls the send_goal() function in case current goal sent count < required goals count.
"""
# Nav2 is sending empty message for success as well as for failure.
result = future.result().result
self.get_logger().info("Result: {0}".format(result.result))
if self.curr_iteration_count < self.MAX_ITERATION_COUNT:
self.curr_iteration_count += 1
self.send_goal()
else:
rclpy.shutdown()
def __feedback_callback(self, feedback_msg):
"""
This is feeback callback. We can compare/compute/log while the robot is on its way to goal.
"""
# self.get_logger().info('FEEDBACK: {}\n'.format(feedback_msg))
pass
def __create_goal_generator(self):
"""
Creates the GoalGenerator object based on the specified ros param value.
"""
goal_generator_type = self.get_parameter("goal_generator_type").value
goal_generator = None
if goal_generator_type == "RandomGoalGenerator":
if self.get_parameter("map_yaml_path").value is None:
self.get_logger().info("Yaml file path is not given. Returning..")
sys.exit(1)
yaml_file_path = self.get_parameter("map_yaml_path").value
grid_map = GridMap(yaml_file_path)
obstacle_search_distance_in_meters = self.get_parameter("obstacle_search_distance_in_meters").value
assert obstacle_search_distance_in_meters > 0
goal_generator = RandomGoalGenerator(grid_map, obstacle_search_distance_in_meters)
elif goal_generator_type == "GoalReader":
if self.get_parameter("goal_text_file_path").value is None:
self.get_logger().info("Goal text file path is not given. Returning..")
sys.exit(1)
file_path = self.get_parameter("goal_text_file_path").value
goal_generator = GoalReader(file_path)
else:
self.get_logger().info("Invalid goal generator specified. Returning...")
sys.exit(1)
return goal_generator
def main():
rclpy.init()
set_goal = SetNavigationGoal()
result = set_goal.send_goal()
rclpy.spin(set_goal)
if __name__ == "__main__":
main()
| 7,971 |
Python
| 37.887805 | 144 | 0.605696 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/goal_generators/goal_reader.py
|
from .goal_generator import GoalGenerator
class GoalReader(GoalGenerator):
def __init__(self, file_path):
self.__file_path = file_path
self.__generator = self.__get_goal()
def generate_goal(self, max_num_of_trials=1000):
try:
return next(self.__generator)
except StopIteration:
return
def __get_goal(self):
for row in open(self.__file_path, "r"):
yield list(map(float, row.strip().split(" ")))
| 486 |
Python
| 26.055554 | 58 | 0.584362 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/goal_generators/random_goal_generator.py
|
import numpy as np
from .goal_generator import GoalGenerator
class RandomGoalGenerator(GoalGenerator):
"""
Random goal generator.
parameters
----------
grid_map: GridMap Object
distance: distance in meters to check vicinity for obstacles.
"""
def __init__(self, grid_map, distance):
self.__grid_map = grid_map
self.__distance = distance
def generate_goal(self, max_num_of_trials=1000):
"""
Generate the goal.
Parameters
----------
max_num_of_trials: maximum number of pose generations when generated pose keep is not a valid pose.
Returns
-------
[List][Pose]: Pose in format [pose.x,pose.y,orientaion.x,orientaion.y,orientaion.z,orientaion.w]
"""
range_ = self.__grid_map.get_range()
trial_count = 0
while trial_count < max_num_of_trials:
x = np.random.uniform(range_[0][0], range_[0][1])
y = np.random.uniform(range_[1][0], range_[1][1])
orient_x = np.random.uniform(0, 1)
orient_y = np.random.uniform(0, 1)
orient_z = np.random.uniform(0, 1)
orient_w = np.random.uniform(0, 1)
if self.__grid_map.is_valid_pose([x, y], self.__distance):
goal = [x, y, orient_x, orient_y, orient_z, orient_w]
return goal
trial_count += 1
| 1,405 |
Python
| 30.954545 | 107 | 0.560854 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/goal_generators/__init__.py
|
from .random_goal_generator import RandomGoalGenerator
from .goal_reader import GoalReader
| 91 |
Python
| 29.666657 | 54 | 0.857143 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/isaac_ros_navigation_goal/goal_generators/goal_generator.py
|
from abc import ABC, abstractmethod
class GoalGenerator(ABC):
"""
Parent class for the Goal generators
"""
def __init__(self):
pass
@abstractmethod
def generate_goal(self, max_num_of_trials=2000):
"""
Generate the goal.
Parameters
----------
max_num_of_trials: maximum number of pose generations when generated pose keep is not a valid pose.
Returns
-------
[List][Pose]: Pose in format [pose.x,pose.y,orientaion.x,orientaion.y,orientaion.z,orientaion.w]
"""
pass
| 582 |
Python
| 21.423076 | 107 | 0.580756 |
swadaskar/Isaac_Sim_Folder/ros2_workspace/src/navigation/isaac_ros_navigation_goal/assets/carter_warehouse_navigation.yaml
|
image: carter_warehouse_navigation.png
resolution: 0.05
origin: [-11.975, -17.975, 0.0000]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.196
| 142 |
YAML
| 19.428569 | 38 | 0.739437 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/__init__.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from omni.isaac.examples.path_planning.path_planning import PathPlanning
from omni.isaac.examples.path_planning.path_planning_extension import PathPlanningExtension
from omni.isaac.examples.path_planning.path_planning_task import PathPlanningTask
from omni.isaac.examples.path_planning.path_planning_controller import PathPlannerController
| 772 |
Python
| 58.461534 | 92 | 0.838083 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample import BaseSample
from .path_planning_task import FrankaPathPlanningTask
from .path_planning_controller import FrankaRrtController
class PathPlanning(BaseSample):
def __init__(self) -> None:
super().__init__()
self._controller = None
self._articulation_controller = None
def setup_scene(self):
world = self.get_world()
world.add_task(FrankaPathPlanningTask("Plan To Target Task"))
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("sim_step"):
world.remove_physics_callback("sim_step")
self._controller.reset()
return
def world_cleanup(self):
self._controller = None
return
async def setup_post_load(self):
self._franka_task = list(self._world.get_current_tasks().values())[0]
self._task_params = self._franka_task.get_params()
my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"])
self._controller = FrankaRrtController(name="franka_rrt_controller", robot_articulation=my_franka)
self._articulation_controller = my_franka.get_articulation_controller()
return
async def _on_follow_target_event_async(self):
world = self.get_world()
self._pass_world_state_to_controller()
await world.play_async()
if not world.physics_callback_exists("sim_step"):
world.add_physics_callback("sim_step", self._on_follow_target_simulation_step)
def _pass_world_state_to_controller(self):
self._controller.reset()
for wall in self._franka_task.get_obstacles():
self._controller.add_obstacle(wall)
def _on_follow_target_simulation_step(self, step_size):
if self._franka_task.target_reached():
return
observations = self._world.get_observations()
actions = self._controller.forward(
target_end_effector_position=observations[self._task_params["target_name"]["value"]]["position"],
target_end_effector_orientation=observations[self._task_params["target_name"]["value"]]["orientation"],
)
kps, kds = self._franka_task.get_custom_gains()
self._articulation_controller.set_gains(kps, kds)
self._articulation_controller.apply_action(actions)
return
def _on_add_wall_event(self):
world = self.get_world()
current_task = list(world.get_current_tasks().values())[0]
cube = current_task.add_obstacle()
return
def _on_remove_wall_event(self):
world = self.get_world()
current_task = list(world.get_current_tasks().values())[0]
obstacle_to_delete = current_task.get_obstacle_to_delete()
current_task.remove_obstacle()
return
def _on_logging_event(self, val):
world = self.get_world()
data_logger = world.get_data_logger()
if not world.get_data_logger().is_started():
robot_name = self._task_params["robot_name"]["value"]
target_name = self._task_params["target_name"]["value"]
def frame_logging_func(tasks, scene):
return {
"joint_positions": scene.get_object(robot_name).get_joint_positions().tolist(),
"applied_joint_positions": scene.get_object(robot_name)
.get_applied_action()
.joint_positions.tolist(),
"target_position": scene.get_object(target_name).get_world_pose()[0].tolist(),
}
data_logger.add_data_frame_logging_func(frame_logging_func)
if val:
data_logger.start()
else:
data_logger.pause()
return
def _on_save_data_event(self, log_path):
world = self.get_world()
data_logger = world.get_data_logger()
data_logger.save(log_path=log_path)
data_logger.reset()
return
| 4,442 |
Python
| 38.669643 | 115 | 0.632823 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning_task.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from omni.isaac.core.tasks import BaseTask
from omni.isaac.franka import Franka
from omni.isaac.core.prims import XFormPrim
from omni.isaac.core.utils.prims import is_prim_path_valid
from omni.isaac.core.utils.string import find_unique_string_name
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.core.scenes.scene import Scene
from omni.isaac.core.objects import FixedCuboid, VisualCuboid
from omni.isaac.core.utils.stage import get_stage_units
from collections import OrderedDict
from typing import Optional, List, Tuple
import numpy as np
class PathPlanningTask(BaseTask):
def __init__(
self,
name: str,
target_prim_path: Optional[str] = None,
target_name: Optional[str] = None,
target_position: Optional[np.ndarray] = None,
target_orientation: Optional[np.ndarray] = None,
offset: Optional[np.ndarray] = None,
) -> None:
BaseTask.__init__(self, name=name, offset=offset)
self._robot = None
self._target_name = target_name
self._target = None
self._target_prim_path = target_prim_path
self._target_position = target_position
self._target_orientation = target_orientation
self._target_visual_material = None
self._obstacle_walls = OrderedDict()
if self._target_position is None:
self._target_position = np.array([0.8, 0.3, 0.4]) / get_stage_units()
return
def set_up_scene(self, scene: Scene) -> None:
"""[summary]
Args:
scene (Scene): [description]
"""
super().set_up_scene(scene)
scene.add_default_ground_plane()
if self._target_orientation is None:
self._target_orientation = euler_angles_to_quat(np.array([-np.pi, 0, np.pi]))
if self._target_prim_path is None:
self._target_prim_path = find_unique_string_name(
initial_name="/World/TargetCube", is_unique_fn=lambda x: not is_prim_path_valid(x)
)
if self._target_name is None:
self._target_name = find_unique_string_name(
initial_name="target", is_unique_fn=lambda x: not self.scene.object_exists(x)
)
self.set_params(
target_prim_path=self._target_prim_path,
target_position=self._target_position,
target_orientation=self._target_orientation,
target_name=self._target_name,
)
self._robot = self.set_robot()
scene.add(self._robot)
self._task_objects[self._robot.name] = self._robot
self._move_task_objects_to_their_frame()
return
def set_params(
self,
target_prim_path: Optional[str] = None,
target_name: Optional[str] = None,
target_position: Optional[np.ndarray] = None,
target_orientation: Optional[np.ndarray] = None,
) -> None:
"""[summary]
Args:
target_prim_path (Optional[str], optional): [description]. Defaults to None.
target_name (Optional[str], optional): [description]. Defaults to None.
target_position (Optional[np.ndarray], optional): [description]. Defaults to None.
target_orientation (Optional[np.ndarray], optional): [description]. Defaults to None.
"""
if target_prim_path is not None:
if self._target is not None:
del self._task_objects[self._target.name]
if is_prim_path_valid(target_prim_path):
self._target = self.scene.add(
XFormPrim(
prim_path=target_prim_path,
position=target_position,
orientation=target_orientation,
name=target_name,
)
)
else:
self._target = self.scene.add(
VisualCuboid(
name=target_name,
prim_path=target_prim_path,
position=target_position,
orientation=target_orientation,
color=np.array([1, 0, 0]),
size=1.0,
scale=np.array([0.03, 0.03, 0.03]) / get_stage_units(),
)
)
self._task_objects[self._target.name] = self._target
self._target_visual_material = self._target.get_applied_visual_material()
if self._target_visual_material is not None:
if hasattr(self._target_visual_material, "set_color"):
self._target_visual_material.set_color(np.array([1, 0, 0]))
else:
self._target.set_local_pose(position=target_position, orientation=target_orientation)
return
def get_params(self) -> dict:
"""[summary]
Returns:
dict: [description]
"""
params_representation = dict()
params_representation["target_prim_path"] = {"value": self._target.prim_path, "modifiable": True}
params_representation["target_name"] = {"value": self._target.name, "modifiable": True}
position, orientation = self._target.get_local_pose()
params_representation["target_position"] = {"value": position, "modifiable": True}
params_representation["target_orientation"] = {"value": orientation, "modifiable": True}
params_representation["robot_name"] = {"value": self._robot.name, "modifiable": False}
return params_representation
def get_task_objects(self) -> dict:
"""[summary]
Returns:
dict: [description]
"""
return self._task_objects
def get_observations(self) -> dict:
"""[summary]
Returns:
dict: [description]
"""
joints_state = self._robot.get_joints_state()
target_position, target_orientation = self._target.get_local_pose()
return {
self._robot.name: {
"joint_positions": np.array(joints_state.positions),
"joint_velocities": np.array(joints_state.velocities),
},
self._target.name: {"position": np.array(target_position), "orientation": np.array(target_orientation)},
}
def target_reached(self) -> bool:
"""[summary]
Returns:
bool: [description]
"""
end_effector_position, _ = self._robot.end_effector.get_world_pose()
target_position, _ = self._target.get_world_pose()
if np.mean(np.abs(np.array(end_effector_position) - np.array(target_position))) < (0.035 / get_stage_units()):
return True
else:
return False
def pre_step(self, time_step_index: int, simulation_time: float) -> None:
"""[summary]
Args:
time_step_index (int): [description]
simulation_time (float): [description]
"""
if self._target_visual_material is not None:
if hasattr(self._target_visual_material, "set_color"):
if self.target_reached():
self._target_visual_material.set_color(color=np.array([0, 1.0, 0]))
else:
self._target_visual_material.set_color(color=np.array([1.0, 0, 0]))
return
def add_obstacle(self, position: np.ndarray = None, orientation=None):
"""[summary]
Args:
position (np.ndarray, optional): [description]. Defaults to np.array([0.1, 0.1, 1.0]).
"""
# TODO: move to task frame if there is one
cube_prim_path = find_unique_string_name(
initial_name="/World/WallObstacle", is_unique_fn=lambda x: not is_prim_path_valid(x)
)
cube_name = find_unique_string_name(initial_name="wall", is_unique_fn=lambda x: not self.scene.object_exists(x))
if position is None:
position = np.array([0.6, 0.1, 0.3]) / get_stage_units()
if orientation is None:
orientation = euler_angles_to_quat(np.array([0, 0, np.pi / 3]))
cube = self.scene.add(
VisualCuboid(
name=cube_name,
position=position + self._offset,
orientation=orientation,
prim_path=cube_prim_path,
size=1.0,
scale=np.array([0.1, 0.5, 0.6]) / get_stage_units(),
color=np.array([0, 0, 1.0]),
)
)
self._obstacle_walls[cube.name] = cube
return cube
def remove_obstacle(self, name: Optional[str] = None) -> None:
"""[summary]
Args:
name (Optional[str], optional): [description]. Defaults to None.
"""
if name is not None:
self.scene.remove_object(name)
del self._obstacle_walls[name]
else:
obstacle_to_delete = list(self._obstacle_walls.keys())[-1]
self.scene.remove_object(obstacle_to_delete)
del self._obstacle_walls[obstacle_to_delete]
return
def get_obstacles(self) -> List:
return list(self._obstacle_walls.values())
def get_obstacle_to_delete(self) -> None:
"""[summary]
Returns:
[type]: [description]
"""
obstacle_to_delete = list(self._obstacle_walls.keys())[-1]
return self.scene.get_object(obstacle_to_delete)
def obstacles_exist(self) -> bool:
"""[summary]
Returns:
bool: [description]
"""
if len(self._obstacle_walls) > 0:
return True
else:
return False
def cleanup(self) -> None:
"""[summary]
"""
obstacles_to_delete = list(self._obstacle_walls.keys())
for obstacle_to_delete in obstacles_to_delete:
self.scene.remove_object(obstacle_to_delete)
del self._obstacle_walls[obstacle_to_delete]
return
def get_custom_gains(self) -> Tuple[np.array, np.array]:
return None, None
class FrankaPathPlanningTask(PathPlanningTask):
def __init__(
self,
name: str,
target_prim_path: Optional[str] = None,
target_name: Optional[str] = None,
target_position: Optional[np.ndarray] = None,
target_orientation: Optional[np.ndarray] = None,
offset: Optional[np.ndarray] = None,
franka_prim_path: Optional[str] = None,
franka_robot_name: Optional[str] = None,
) -> None:
PathPlanningTask.__init__(
self,
name=name,
target_prim_path=target_prim_path,
target_name=target_name,
target_position=target_position,
target_orientation=target_orientation,
offset=offset,
)
self._franka_prim_path = franka_prim_path
self._franka_robot_name = franka_robot_name
self._franka = None
return
def set_robot(self) -> Franka:
"""[summary]
Returns:
Franka: [description]
"""
if self._franka_prim_path is None:
self._franka_prim_path = find_unique_string_name(
initial_name="/World/Franka", is_unique_fn=lambda x: not is_prim_path_valid(x)
)
if self._franka_robot_name is None:
self._franka_robot_name = find_unique_string_name(
initial_name="my_franka", is_unique_fn=lambda x: not self.scene.object_exists(x)
)
self._franka = Franka(prim_path=self._franka_prim_path, name=self._franka_robot_name)
return self._franka
def get_custom_gains(self) -> Tuple[np.array, np.array]:
return (
6 * np.array([1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e08, 1.0e07, 1.0e07]),
10
* np.array(
[
10000000.0,
10000000.0,
10000000.0,
10000000.0,
10000000.0,
10000000.0,
10000000.0,
1000000.0,
1000000.0,
]
),
)
| 12,634 |
Python
| 36.716418 | 120 | 0.56435 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.path_planning import PathPlanning
import asyncio
import omni.ui as ui
from omni.isaac.ui.ui_utils import btn_builder, str_builder, state_btn_builder
import carb
class PathPlanningExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="Manipulation",
submenu_name="",
name="Path Planning",
title="Path Planning Task",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html",
overview="This Example shows how to plan a path through a complicated static environment with the Franka robot in Isaac Sim.\n\nPress the 'Open in IDE' button to view the source code.",
sample=PathPlanning(),
file_path=os.path.abspath(__file__),
number_of_extra_frames=2,
)
self.task_ui_elements = {}
frame = self.get_frame(index=0)
self.build_task_controls_ui(frame)
frame = self.get_frame(index=1)
self.build_data_logging_ui(frame)
return
def _on_follow_target_button_event(self):
asyncio.ensure_future(self.sample._on_follow_target_event_async())
return
def _on_add_wall_button_event(self):
self.sample._on_add_wall_event()
self.task_ui_elements["Remove Wall"].enabled = True
return
def _on_remove_wall_button_event(self):
self.sample._on_remove_wall_event()
world = self.sample.get_world()
current_task = list(world.get_current_tasks().values())[0]
if not current_task.obstacles_exist():
self.task_ui_elements["Remove Wall"].enabled = False
return
def _on_logging_button_event(self, val):
self.sample._on_logging_event(val)
self.task_ui_elements["Save Data"].enabled = True
return
def _on_save_data_button_event(self):
self.sample._on_save_data_event(self.task_ui_elements["Output Directory"].get_value_as_string())
return
def post_reset_button_event(self):
self.task_ui_elements["Move To Target"].enabled = True
self.task_ui_elements["Remove Wall"].enabled = False
self.task_ui_elements["Add Wall"].enabled = True
self.task_ui_elements["Start Logging"].enabled = True
self.task_ui_elements["Save Data"].enabled = False
return
def post_load_button_event(self):
self.task_ui_elements["Move To Target"].enabled = True
self.task_ui_elements["Add Wall"].enabled = True
self.task_ui_elements["Start Logging"].enabled = True
self.task_ui_elements["Save Data"].enabled = False
return
def post_clear_button_event(self):
self.task_ui_elements["Move To Target"].enabled = False
self.task_ui_elements["Remove Wall"].enabled = False
self.task_ui_elements["Add Wall"].enabled = False
self.task_ui_elements["Start Logging"].enabled = False
self.task_ui_elements["Save Data"].enabled = False
return
def shutdown_cleanup(self):
return
def build_task_controls_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
# Update the Frame Title
frame.title = "Task Controls"
frame.visible = True
dict = {
"label": "Move To Target",
"type": "button",
"text": "Move To Target",
"tooltip": "Plan a Path and Move to Target",
"on_clicked_fn": self._on_follow_target_button_event,
}
self.task_ui_elements["Move To Target"] = btn_builder(**dict)
self.task_ui_elements["Move To Target"].enabled = False
dict = {
"label": "Add Wall",
"type": "button",
"text": "ADD",
"tooltip": "Add a Wall",
"on_clicked_fn": self._on_add_wall_button_event,
}
self.task_ui_elements["Add Wall"] = btn_builder(**dict)
self.task_ui_elements["Add Wall"].enabled = False
dict = {
"label": "Remove Wall",
"type": "button",
"text": "REMOVE",
"tooltip": "Remove Wall",
"on_clicked_fn": self._on_remove_wall_button_event,
}
self.task_ui_elements["Remove Wall"] = btn_builder(**dict)
self.task_ui_elements["Remove Wall"].enabled = False
def build_data_logging_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
frame.title = "Data Logging"
frame.visible = True
dict = {
"label": "Output Directory",
"type": "stringfield",
"default_val": os.path.join(os.getcwd(), "output_data.json"),
"tooltip": "Output Directory",
"on_clicked_fn": None,
"use_folder_picker": False,
"read_only": False,
}
self.task_ui_elements["Output Directory"] = str_builder(**dict)
dict = {
"label": "Start Logging",
"type": "button",
"a_text": "START",
"b_text": "PAUSE",
"tooltip": "Start Logging",
"on_clicked_fn": self._on_logging_button_event,
}
self.task_ui_elements["Start Logging"] = state_btn_builder(**dict)
self.task_ui_elements["Start Logging"].enabled = False
dict = {
"label": "Save Data",
"type": "button",
"text": "Save Data",
"tooltip": "Save Data",
"on_clicked_fn": self._on_save_data_button_event,
}
self.task_ui_elements["Save Data"] = btn_builder(**dict)
self.task_ui_elements["Save Data"].enabled = False
return
| 6,745 |
Python
| 39.154762 | 197 | 0.553595 |
swadaskar/Isaac_Sim_Folder/extension_examples/path_planning/path_planning_controller.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from omni.isaac.core.controllers import BaseController
from omni.isaac.motion_generation import PathPlannerVisualizer, PathPlanner
from omni.isaac.motion_generation.lula import RRT
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.core.articulations import Articulation
from omni.isaac.motion_generation import interface_config_loader
import omni.isaac.core.objects
import carb
from typing import Optional
import numpy as np
class PathPlannerController(BaseController):
def __init__(
self,
name: str,
path_planner_visualizer: PathPlannerVisualizer,
cspace_interpolation_max_dist: float = 0.5,
frames_per_waypoint: int = 30,
):
BaseController.__init__(self, name)
self._path_planner_visualizer = path_planner_visualizer
self._path_planner = path_planner_visualizer.get_path_planner()
self._cspace_interpolation_max_dist = cspace_interpolation_max_dist
self._frames_per_waypoint = frames_per_waypoint
self._plan = None
self._frame_counter = 1
def _make_new_plan(
self, target_end_effector_position: np.ndarray, target_end_effector_orientation: Optional[np.ndarray] = None
) -> None:
self._path_planner.set_end_effector_target(target_end_effector_position, target_end_effector_orientation)
self._path_planner.update_world()
self._plan = self._path_planner_visualizer.compute_plan_as_articulation_actions(
max_cspace_dist=self._cspace_interpolation_max_dist
)
if self._plan is None or self._plan == []:
carb.log_warn("No plan could be generated to target pose: " + str(target_end_effector_position))
def forward(
self, target_end_effector_position: np.ndarray, target_end_effector_orientation: Optional[np.ndarray] = None
) -> ArticulationAction:
if self._plan is None:
# This will only happen the first time the forward function is used
self._make_new_plan(target_end_effector_position, target_end_effector_orientation)
if len(self._plan) == 0:
# The plan is completed; return null action to remain in place
self._frame_counter = 1
return ArticulationAction()
if self._frame_counter % self._frames_per_waypoint != 0:
# Stop at each waypoint in the plan for self._frames_per_waypoint frames
self._frame_counter += 1
return self._plan[0]
else:
self._frame_counter += 1
return self._plan.pop(0)
def add_obstacle(self, obstacle: omni.isaac.core.objects, static: bool = False) -> None:
self._path_planner.add_obstacle(obstacle, static)
def remove_obstacle(self, obstacle: omni.isaac.core.objects) -> None:
self._path_planner.remove_obstacle(obstacle)
def reset(self) -> None:
# PathPlannerController will make one plan per reset
self._path_planner.reset()
self._plan = None
self._frame_counter = 1
def get_path_planner_visualizer(self) -> PathPlannerVisualizer:
return self._path_planner_visualizer
def get_path_planner(self) -> PathPlanner:
return self._path_planner
class FrankaRrtController(PathPlannerController):
def __init__(
self,
name,
robot_articulation: Articulation,
cspace_interpolation_max_dist: float = 0.5,
frames_per_waypoint: int = 30,
):
rrt_config = interface_config_loader.load_supported_path_planner_config("Franka", "RRT")
rrt = RRT(**rrt_config)
visualizer = PathPlannerVisualizer(robot_articulation, rrt)
PathPlannerController.__init__(self, name, visualizer, cspace_interpolation_max_dist, frames_per_waypoint)
| 4,221 |
Python
| 38.830188 | 116 | 0.685383 |
swadaskar/Isaac_Sim_Folder/extension_examples/base_sample/base_sample.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core import World
from omni.isaac.core.scenes.scene import Scene
from omni.isaac.core.utils.stage import create_new_stage_async, update_stage_async
import gc
from abc import abstractmethod
class BaseSample(object):
def __init__(self) -> None:
self._world = None
self._current_tasks = None
self._world_settings = {"physics_dt": 1.0 / 60.0, "stage_units_in_meters": 1.0, "rendering_dt": 1.0 / 60.0}
# self._logging_info = ""
return
def get_world(self):
return self._world
def set_world_settings(self, physics_dt=None, stage_units_in_meters=None, rendering_dt=None):
if physics_dt is not None:
self._world_settings["physics_dt"] = physics_dt
if stage_units_in_meters is not None:
self._world_settings["stage_units_in_meters"] = stage_units_in_meters
if rendering_dt is not None:
self._world_settings["rendering_dt"] = rendering_dt
return
async def load_world_async(self):
"""Function called when clicking load buttton
"""
if World.instance() is None:
await create_new_stage_async()
self._world = World(**self._world_settings)
await self._world.initialize_simulation_context_async()
self.setup_scene()
else:
self._world = World.instance()
self._current_tasks = self._world.get_current_tasks()
await self._world.reset_async()
await self._world.pause_async()
await self.setup_post_load()
if len(self._current_tasks) > 0:
self._world.add_physics_callback("tasks_step", self._world.step_async)
return
async def reset_async(self):
"""Function called when clicking reset buttton
"""
if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0:
self._world.remove_physics_callback("tasks_step")
await self._world.play_async()
await update_stage_async()
await self.setup_pre_reset()
await self._world.reset_async()
await self._world.pause_async()
await self.setup_post_reset()
if self._world.is_tasks_scene_built() and len(self._current_tasks) > 0:
self._world.add_physics_callback("tasks_step", self._world.step_async)
return
@abstractmethod
def setup_scene(self, scene: Scene) -> None:
"""used to setup anything in the world, adding tasks happen here for instance.
Args:
scene (Scene): [description]
"""
return
@abstractmethod
async def setup_post_load(self):
"""called after first reset of the world when pressing load,
intializing provate variables happen here.
"""
return
@abstractmethod
async def setup_pre_reset(self):
""" called in reset button before resetting the world
to remove a physics callback for instance or a controller reset
"""
return
@abstractmethod
async def setup_post_reset(self):
""" called in reset button after resetting the world which includes one step with rendering
"""
return
@abstractmethod
async def setup_post_clear(self):
"""called after clicking clear button
or after creating a new stage and clearing the instance of the world with its callbacks
"""
return
# def log_info(self, info):
# self._logging_info += str(info) + "\n"
# return
def _world_cleanup(self):
self._world.stop()
self._world.clear_all_callbacks()
self._current_tasks = None
self.world_cleanup()
return
def world_cleanup(self):
"""Function called when extension shutdowns and starts again, (hot reloading feature)
"""
return
async def clear_async(self):
"""Function called when clicking clear buttton
"""
await create_new_stage_async()
if self._world is not None:
self._world_cleanup()
self._world.clear_instance()
self._world = None
gc.collect()
await self.setup_post_clear()
return
| 4,657 |
Python
| 34.287879 | 115 | 0.624222 |
swadaskar/Isaac_Sim_Folder/extension_examples/base_sample/base_sample_extension.py
|
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from abc import abstractmethod
import omni.ext
import omni.ui as ui
from omni.kit.menu.utils import add_menu_items, remove_menu_items, MenuItemDescription
from omni.isaac.ui.menu import make_menu_item_description
import weakref
from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder, scrolling_frame_builder
import asyncio
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core import World
class BaseSampleExtension(omni.ext.IExt):
def on_startup(self, ext_id: str):
self._menu_items = None
self._buttons = None
self._ext_id = ext_id
self._sample = None
self._extra_frames = []
return
def start_extension(
self,
menu_name: str,
submenu_name: str,
name: str,
title: str,
doc_link: str,
overview: str,
file_path: str,
sample=None,
number_of_extra_frames=1,
window_width=350,
keep_window_open=False,
):
if sample is None:
self._sample = BaseSample()
else:
self._sample = sample
menu_items = [make_menu_item_description(self._ext_id, name, lambda a=weakref.proxy(self): a._menu_callback())]
if menu_name == "" or menu_name is None:
self._menu_items = menu_items
elif submenu_name == "" or submenu_name is None:
self._menu_items = [MenuItemDescription(name=menu_name, sub_menu=menu_items)]
else:
self._menu_items = [
MenuItemDescription(
name=menu_name, sub_menu=[MenuItemDescription(name=submenu_name, sub_menu=menu_items)]
)
]
add_menu_items(self._menu_items, "Isaac Examples")
self._buttons = dict()
self._build_ui(
name=name,
title=title,
doc_link=doc_link,
overview=overview,
file_path=file_path,
number_of_extra_frames=number_of_extra_frames,
window_width=window_width,
keep_window_open=keep_window_open,
)
return
@property
def sample(self):
return self._sample
def get_frame(self, index):
if index >= len(self._extra_frames):
raise Exception("there were {} extra frames created only".format(len(self._extra_frames)))
return self._extra_frames[index]
def get_world(self):
return World.instance()
def get_buttons(self):
return self._buttons
def _build_ui(
self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width, keep_window_open
):
self._window = omni.ui.Window(
name, width=window_width, height=0, visible=keep_window_open, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
with ui.VStack(spacing=5, height=0):
setup_ui_headers(self._ext_id, file_path, title, doc_link, overview)
self._controls_frame = ui.CollapsableFrame(
title="World Controls",
width=ui.Fraction(1),
height=0,
collapsed=False,
style=get_style(),
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with ui.VStack(style=get_style(), spacing=5, height=0):
for i in range(number_of_extra_frames):
self._extra_frames.append(
ui.CollapsableFrame(
title="",
width=ui.Fraction(0.33),
height=0,
visible=False,
collapsed=False,
style=get_style(),
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
)
with self._controls_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
dict = {
"label": "Load World",
"type": "button",
"text": "Load",
"tooltip": "Load World and Task",
"on_clicked_fn": self._on_load_world,
}
self._buttons["Load World"] = btn_builder(**dict)
self._buttons["Load World"].enabled = True
dict = {
"label": "Reset",
"type": "button",
"text": "Reset",
"tooltip": "Reset robot and environment",
"on_clicked_fn": self._on_reset,
}
self._buttons["Reset"] = btn_builder(**dict)
self._buttons["Reset"].enabled = False
return
def _set_button_tooltip(self, button_name, tool_tip):
self._buttons[button_name].set_tooltip(tool_tip)
return
def _on_load_world(self):
async def _on_load_world_async():
await self._sample.load_world_async()
await omni.kit.app.get_app().next_update_async()
self._sample._world.add_stage_callback("stage_event_1", self.on_stage_event)
self._enable_all_buttons(True)
self._buttons["Load World"].enabled = False
self.post_load_button_event()
self._sample._world.add_timeline_callback("stop_reset_event", self._reset_on_stop_event)
asyncio.ensure_future(_on_load_world_async())
return
def _on_reset(self):
async def _on_reset_async():
await self._sample.reset_async()
await omni.kit.app.get_app().next_update_async()
self.post_reset_button_event()
asyncio.ensure_future(_on_reset_async())
return
@abstractmethod
def post_reset_button_event(self):
return
@abstractmethod
def post_load_button_event(self):
return
@abstractmethod
def post_clear_button_event(self):
return
def _enable_all_buttons(self, flag):
for btn_name, btn in self._buttons.items():
if isinstance(btn, omni.ui._ui.Button):
btn.enabled = flag
return
def _menu_callback(self):
self._window.visible = not self._window.visible
return
def _on_window(self, status):
# if status:
return
def on_shutdown(self):
self._extra_frames = []
if self._sample._world is not None:
self._sample._world_cleanup()
if self._menu_items is not None:
self._sample_window_cleanup()
if self._buttons is not None:
self._buttons["Load World"].enabled = True
self._enable_all_buttons(False)
self.shutdown_cleanup()
return
def shutdown_cleanup(self):
return
def _sample_window_cleanup(self):
remove_menu_items(self._menu_items, "Isaac Examples")
self._window = None
self._menu_items = None
self._buttons = None
return
def on_stage_event(self, event):
if event.type == int(omni.usd.StageEventType.CLOSED):
if World.instance() is not None:
self.sample._world_cleanup()
self.sample._world.clear_instance()
if hasattr(self, "_buttons"):
if self._buttons is not None:
self._enable_all_buttons(False)
self._buttons["Load World"].enabled = True
return
def _reset_on_stop_event(self, e):
if e.type == int(omni.timeline.TimelineEventType.STOP):
self._buttons["Load World"].enabled = False
self._buttons["Reset"].enabled = True
self.post_clear_button_event()
return
| 8,714 |
Python
| 35.927966 | 119 | 0.543608 |
swadaskar/Isaac_Sim_Folder/extension_examples/base_sample/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.base_sample.base_sample import BaseSample
from omni.isaac.examples.base_sample.base_sample_extension import BaseSampleExtension
| 582 |
Python
| 47.583329 | 85 | 0.821306 |
swadaskar/Isaac_Sim_Folder/extension_examples/unitree_quadruped/quadruped_example.py
|
from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
self.delay=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.10078, -5.19303, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-3.78767, -5.00871, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mock_robot",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-5.26025, 1.25718, 0.03551]),
orientation=np.array([0.5, 0.5, -0.5, -0.5]),
)
)
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-7.60277, -5.70312, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"task_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
self.screw_ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
"bool_counter": self._bool_event
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]<-5.3:
self._task_event = 51
self._bool_event+=1
self.task_done[self._task_event] = True
elif self._task_event == 51:
if np.mean(np.abs(ee_pose.p - np.array([-5.00127, -4.80822, 0.53949])))<0.02:
self._task_event = 71
self._bool_event+=1
elif self._task_event == 71:
if np.mean(np.abs(screw_ee_pose.p - np.array([-3.70349, -4.41856, 0.56125])))<0.058:
self._task_event=2
elif self._task_event == 2:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 3:
pass
return
def post_reset(self):
self._task_event = 0
return
class QuadrupedExample(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
self.delay=0
print("inside setup_scene", self.motion_task_counter)
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"])
# static suspensions on the table
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.83704, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.54469, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_03", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.3843, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_04", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.22546, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_05", np.array([0.001,0.001,0.001]), np.array([-6.10203, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_06", np.array([0.001,0.001,0.001]), np.array([-5.96018, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_07", np.array([0.001,0.001,0.001]), np.array([-5.7941, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_08", np.array([0.001,0.001,0.001]), np.array([-5.63427, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_09", np.array([0.001,0.001,0.001]), np.array([-5.47625, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
self.screw_articulation_controller = self.screw_ur10.get_articulation_controller()
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
# actions.joint_velocities = [0.0001,0.0001,0.0001,0.0001,0.0001,0.0001]
# actions.joint_velocities = [1,1,1,1,1,1]
print(actions)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
# time.sleep(0.3)
print("Completed one motion plan: ", self.motion_task_counter)
def do_screw_driving(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.screw_my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
self.screw_articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/Screw_driving_UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
# def do_screw_driving(self, locations, task_name=""):
# print(self.motion_task_counter)
# target_location = locations[self.motion_task_counter]
# print("Doing "+str(target_location["index"])+"th motion plan")
# actions, success = self.screw_my_controller.compute_inverse_kinematics(
# target_position=target_location["position"],
# target_orientation=target_location["orientation"],
# )
# if success:
# print("still homing on this location")
# controller_name = getattr(self,"screw_articulation_controller"+task_name)
# controller_name.apply_action(actions)
# else:
# carb.log_warn("IK did not converge to a solution. No action is being taken.")
# # check if reached location
# curr_location = self.give_location(f"/World/Screw_driving_UR10{task_name}/ee_link")
# print("Curr:",curr_location.p)
# print("Goal:", target_location["goal_position"])
# print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
# if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
# self.motion_task_counter+=1
# print("Completed one motion plan: ", self.motion_task_counter)
def transform_for_screw_ur10(self, position):
position[0]-=0
position[1]+=0
position[2]+=-0
return position
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
# Terminology
# mp - moving platform
# iteration 1
# go forward
if current_observations["task_event"] == 1:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
# small mp brings in part
elif current_observations["task_event"] == 51:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, -0.05477, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":3, "position": np.array([-0.96615-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.13459, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":4, "position": np.array([-1.10845-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-4.99229, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":5, "position": np.array([-1.10842-0.16, -0.39583, 0.29724]), "orientation": np.array([-0.00055, 0.0008, -0.82242, -0.56888]), "goal_position":np.array([-5.00127, -4.80822, 0.53949]), "goal_orientation":np.array([0.56437, 0.82479, 0.02914, 0.01902])}]
# {"index":0, "position": np.array([1.11096, -0.01839, 0.31929-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.56252]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":1, "position": np.array([1.11096, -0.01839, 0.19845-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.44167]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":2, "position": np.array([1.11096, -0.01839, 0.31929]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.56252]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
self.move_ur10(motion_plan)
if self.motion_task_counter==2 and not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
self.remove_part("World/Environment", "FSuspensionBack_01")
self.add_part_custom("World/UR10/ee_link","FSuspensionBack", "qFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1]))
if self.motion_task_counter==6:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# arm_robot picks and places part
elif current_observations["task_event"] == 71:
if not self.isDone[current_observations["task_event"]]:
if not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
print("Part removal done")
self.remove_part("World/UR10/ee_link", "qFSuspensionBack")
self.motion_task_counter=0
self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.87892, 0.0239, 0.82432]), np.array([0.40364, -0.58922, 0.57252, -0.40262]))
motion_plan = [{"index":0, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": self.transform_for_screw_ur10(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":4, "position": self.transform_for_screw_ur10(np.array([0.87215+0.16, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.66069, -4.84629,0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":5, "position": self.transform_for_screw_ur10(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":6, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":7, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":8, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":9, "position": self.transform_for_screw_ur10(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":10, "position": self.transform_for_screw_ur10(np.array([0.91167+0.16, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.69933, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":11, "position": self.transform_for_screw_ur10(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":12, "position": self.transform_for_screw_ur10(np.array([-0.08295-0.16, -0.58914, 0.32041-0.15])), "orientation": np.array([0,0.70711, 0, -0.70711]), "goal_position":np.array([-3.70349, -4.41856, 0.56125]), "goal_orientation":np.array([0.70711,0,0.70711,0])}]
print(self.motion_task_counter)
self.do_screw_driving(motion_plan)
if self.motion_task_counter==13:
self.isDone[current_observations["task_event"]]=True
self.done = True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":1, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
print("done", self.motion_task_counter)
# remove engine and add engine
elif current_observations["task_event"] == 2:
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
self.done = True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":1, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
print("task 2 delay")
elif current_observations["task_event"] == 3:
print("task 3")
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 35,604 |
Python
| 63.268953 | 441 | 0.605578 |
swadaskar/Isaac_Sim_Folder/extension_examples/unitree_quadruped/__init__.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE: Import here your extension examples to be propagated to ISAAC SIM Extensions startup
from omni.isaac.examples.unitree_quadruped.quadruped_example import QuadrupedExample
from omni.isaac.examples.unitree_quadruped.quadruped_example_extension import QuadrupedExampleExtension
| 717 |
Python
| 50.285711 | 103 | 0.828452 |
swadaskar/Isaac_Sim_Folder/extension_examples/unitree_quadruped/quadruped_example_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.unitree_quadruped import QuadrupedExample
class QuadrupedExampleExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
overview = "This Example shows how to simulate an Unitree A1 quadruped in Isaac Sim."
super().start_extension(
menu_name="",
submenu_name="",
name="cell 2 suspension",
title="Unitree A1 Quadruped Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_quadruped.html",
overview=overview,
file_path=os.path.abspath(__file__),
sample=QuadrupedExample(),
)
return
| 1,233 |
Python
| 38.80645 | 113 | 0.704785 |
swadaskar/Isaac_Sim_Folder/extension_examples/franka_nut_and_bolt/nut_bolt_controller.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.utils.stage import get_stage_units
from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles
import numpy as np
import typing
from omni.isaac.manipulators.controllers.pick_place_controller import PickPlaceController
from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController
from .screw_controller import ScrewController
from omni.isaac.franka.franka import Franka
from .nut_vibra_table_controller import VibraFSM
class NutBoltController(BaseController):
"""
A state machine to tie nuts onto bolts with a vibrating table feeding the nuts
- State 0: Pick and Place from pickup location on vibration table to different bolts
- State 1: Screw nut onto bolt
Args:
name (str): Name id of the controller
franka (Franka): Franka Robot
"""
def __init__(self, name: str, franka: Franka) -> None:
BaseController.__init__(self, name=name)
self._event = 0
self._franka = franka
self._gripper = self._franka.gripper
self._end_effector_initial_height = self._franka.get_world_pose()[0][2] + (0.4 / get_stage_units())
self._pause = False
self._cspace_controller = RMPFlowController(name="pickplace_cspace_controller", robot_articulation=self._franka)
pick_place_events_dt = [0.008, 0.005, 1, 0.1, 0.05, 0.01, 0.0025]
self._pick_place_controller = PickPlaceController(
name="pickplace_controller",
cspace_controller=self._cspace_controller,
gripper=self._gripper,
end_effector_initial_height=self._end_effector_initial_height,
events_dt=pick_place_events_dt,
)
self._screw_controller = ScrewController(
name=f"screw_controller", cspace_controller=self._cspace_controller, gripper=self._gripper
)
self._vibraSM = VibraFSM()
self._i = self._vibraSM._i
self._vibraSM.stop_feed_after_delay(delay_sec=5.0)
return
def is_paused(self) -> bool:
"""
Returns:
bool: True if the state machine is paused. Otherwise False.
"""
return self._pause
def get_current_event(self) -> int:
"""
Returns:
int: Current event/ phase of the state machine
"""
return self._event
def forward(
self,
initial_picking_position: np.ndarray,
bolt_top: np.ndarray,
gripper_to_nut_offset: np.ndarray,
x_offset: np.ndarray,
) -> np.ndarray:
"""Runs the controller one step.
Args:
initial_picking_position (np.ndarray): initial nut position at table feeder
bolt_top (np.ndarray): bolt target position
# """
_vibra_table_transforms = np.array([0.0, 0.0, 0.0])
if self.is_paused():
return _vibra_table_transforms
offsetPos = self._vibraSM.update()
_vibra_table_transforms = np.array(offsetPos, dtype=float)
if self._vibraSM._state == "stop" and self._event == 0:
initial_effector_orientation = quat_to_euler_angles(self._gripper.get_world_pose()[1])
initial_effector_orientation[2] = np.pi / 2
initial_end_effector_orientation = euler_angles_to_quat(initial_effector_orientation)
actions = self._pick_place_controller.forward(
picking_position=initial_picking_position + gripper_to_nut_offset,
placing_position=bolt_top - np.array([x_offset, 0.0, 0.0]),
current_joint_positions=self._franka.get_joint_positions(),
end_effector_orientation=initial_end_effector_orientation,
)
self._franka.apply_action(actions)
if self._pick_place_controller.is_done():
self._vibraSM._set_delayed_state_change(delay_sec=1.0, nextState="backward")
self._event = 1
if self._event == 1:
actions2 = self._screw_controller.forward(
franka_art_controller=self._franka.get_articulation_controller(),
bolt_position=bolt_top,
current_joint_positions=self._franka.get_joint_positions(),
current_joint_velocities=self._franka.get_joint_velocities(),
)
self._franka.apply_action(actions2)
if self._screw_controller.is_paused():
self.pause()
self._i += 1
return _vibra_table_transforms
def reset(self, franka: Franka) -> None:
"""Resets the state machine to start from the first phase/ event
Args:
franka (Franka): Franka Robot
"""
BaseController.reset(self)
self._event = 0
self._pause = False
self._franka = franka
self._gripper = self._franka.gripper
self._end_effector_initial_height = self._franka.get_world_pose()[0][2] + (0.4 / get_stage_units())
self._pick_place_controller.reset(end_effector_initial_height=self._end_effector_initial_height)
self._screw_controller.reset()
return
def pause(self) -> None:
"""Pauses the state machine's time and phase.
"""
self._pause = True
return
def resume(self) -> None:
"""Resumes the state machine's time and phase.
"""
self._pause = False
return
| 5,948 |
Python
| 38.66 | 120 | 0.624748 |
swadaskar/Isaac_Sim_Folder/extension_examples/franka_nut_and_bolt/screw_controller.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.controllers.articulation_controller import ArticulationController
from omni.isaac.core.utils.stage import get_stage_units
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.core.articulations import Articulation
from omni.isaac.core.utils.rotations import euler_angles_to_quat, quat_to_euler_angles
import numpy as np
import typing
from omni.isaac.franka.controllers.rmpflow_controller import RMPFlowController
from omni.isaac.manipulators.grippers.gripper import Gripper
class ScrewController(BaseController):
"""
A state machine for screwing nuts on bolts
Each phase runs for 1 second, which is the internal time of the state machine
Dt of each phase/ event step is defined
- State 0: Lower end_effector down to encircle the nut
- State 1: Close grip
- State 2: Re-Center end-effector grip with that of the nut and bolt
- State 3: Screw Clockwise
- State 4: Open grip (initiates at this state and cycles until limit)
- State 5: Screw counter-clockwise
Args:
name (str): Name id of the controller
cspace_controller (BaseController): a cartesian space controller that returns an ArticulationAction type
gripper (Gripper): a gripper controller for open/ close actions.
events_dt (typing.Optional[typing.List[float]], optional): Dt of each phase/ event step. 10 phases dt has to be defined. Defaults to None.
Raises:
Exception: events dt need to be list or numpy array
Exception: events dt need have length of 5 or less
"""
def __init__(
self,
name: str,
cspace_controller: BaseController,
gripper: Gripper,
events_dt: typing.Optional[typing.List[float]] = None,
) -> None:
BaseController.__init__(self, name=name)
self._event = 4
self._t = 0
self._events_dt = events_dt
if self._events_dt is None:
self._events_dt = [0.005, 0.1, 0.05, 0.005, 0.1, 0.01]
else:
if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list):
raise Exception("events dt need to be list or numpy array")
elif isinstance(self._events_dt, np.ndarray):
self._events_dt = self._events_dt.tolist()
if len(self._events_dt) > 5:
raise Exception("events dt need have length of 5 or less")
self._cspace_controller = cspace_controller
self._gripper = gripper
self._pause = False
self._start = True
self._screw_position = np.array([0.0, 0.0, 0.0])
self._screw_speed = 60.0 / 180.0 * np.pi
self._screw_speed_back = 120.0 / 180.0 * np.pi
return
def is_paused(self) -> bool:
"""
Returns:
bool: True if the state machine is paused. Otherwise False.
"""
return self._pause
def get_current_event(self) -> int:
"""
Returns:
int: Current event/ phase of the state machine
"""
return self._event
def forward(
self,
franka_art_controller: ArticulationController,
bolt_position: np.ndarray,
current_joint_positions: np.ndarray,
current_joint_velocities: np.ndarray,
) -> ArticulationAction:
"""Runs the controller one step.
Args:
franka_art_controller (ArticulationController): Robot's Articulation Controller.
bolt_position (np.ndarray): bolt position to reference for screwing position.
current_joint_positions (np.ndarray): Current joint positions of the robot.
current_joint_velocities (np.ndarray): Current joint velocities of the robot.
Returns:
ArticulationAction: action to be executed by the ArticulationController
"""
if self._pause or self._event >= len(self._events_dt):
target_joints = [None] * current_joint_positions.shape[0]
return ArticulationAction(joint_positions=target_joints)
if self._event == 0 and self._start:
self._screw_position = bolt_position
self._start = False
self._target_end_effector_orientation = self._gripper.get_world_pose()[1]
if self._event == 0:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
orientation_quat = self._gripper.get_world_pose()[1]
self.orientation_euler = quat_to_euler_angles(orientation_quat)
target_orientation_euler = np.array([self.orientation_euler[0], self.orientation_euler[1], -np.pi / 2])
target_orientation_quat = euler_angles_to_quat(target_orientation_euler)
target_joints = self._cspace_controller.forward(
target_end_effector_position=self._screw_position,
target_end_effector_orientation=target_orientation_quat,
)
if self._event == 1:
self._lower = False
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
target_joints = self._gripper.forward(action="close")
if self._event == 2:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
orientation_quat = self._gripper.get_world_pose()[1]
self.orientation_euler = quat_to_euler_angles(orientation_quat)
target_orientation_euler = np.array([self.orientation_euler[0], self.orientation_euler[1], -np.pi / 2])
target_orientation_quat = euler_angles_to_quat(target_orientation_euler)
finger_pos = current_joint_positions[-2:]
positive_x_offset = finger_pos[1] - finger_pos[0]
target_joints = self._cspace_controller.forward(
target_end_effector_position=self._screw_position - np.array([positive_x_offset, -0.002, 0.001]),
target_end_effector_orientation=target_orientation_quat,
)
if self._event == 3:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="velocity")
target_joint_velocities = [None] * current_joint_velocities.shape[0]
target_joint_velocities[6] = self._screw_speed
if current_joint_positions[6] > 2.7:
target_joint_velocities[6] = 0.0
target_joints = ArticulationAction(joint_velocities=target_joint_velocities)
if self._event == 4:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="position")
target_joints = self._gripper.forward(action="open")
if self._event == 5:
franka_art_controller.switch_dof_control_mode(dof_index=6, mode="velocity")
target_joint_velocities = [None] * current_joint_velocities.shape[0]
target_joint_velocities[6] = -self._screw_speed_back
if current_joint_positions[6] < -0.4:
target_joint_velocities[6] = 0.0
target_joints = ArticulationAction(joint_velocities=target_joint_velocities)
self._t += self._events_dt[self._event]
if self._t >= 1.0:
self._event = (self._event + 1) % 6
self._t = 0
if self._event == 5:
if not self._start and (bolt_position[2] - self._screw_position[2] > 0.0198):
self.pause()
return ArticulationAction(joint_positions=[None] * current_joint_positions.shape[0])
if self._start:
self._screw_position[2] -= 0.001
self._screw_position[2] -= 0.0018
return target_joints
def reset(self, events_dt: typing.Optional[typing.List[float]] = None) -> None:
"""Resets the state machine to start from the first phase/ event
Args:
events_dt (typing.Optional[typing.List[float]], optional): Dt of each phase/ event step. Defaults to None.
Raises:
Exception: events dt need to be list or numpy array
Exception: events dt need have length of 5 or less
"""
BaseController.reset(self)
self._cspace_controller.reset()
self._event = 4
self._t = 0
self._pause = False
self._start = True
self._screw_position = np.array([0.0, 0.0, 0.0])
self._screw_speed = 60.0 / 180.0 * np.pi
self._screw_speed_back = 120.0 / 180.0 * np.pi
# self._gripper = gripper
if events_dt is not None:
self._events_dt = events_dt
if not isinstance(self._events_dt, np.ndarray) and not isinstance(self._events_dt, list):
raise Exception("events dt need to be list or numpy array")
elif isinstance(self._events_dt, np.ndarray):
self._events_dt = self._events_dt.tolist()
if len(self._events_dt) > 5:
raise Exception("events dt need have length of 5 or less")
return
def is_done(self) -> bool:
"""
Returns:
bool: True if the state machine reached the last phase. Otherwise False.
"""
if self._event >= len(self._events_dt):
return True
else:
return False
def pause(self) -> None:
"""Pauses the state machine's time and phase.
"""
self._pause = True
return
def resume(self) -> None:
"""Resumes the state machine's time and phase.
"""
self._pause = False
return
| 10,114 |
Python
| 42.412017 | 150 | 0.614198 |
swadaskar/Isaac_Sim_Folder/extension_examples/franka_nut_and_bolt/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.franka_nut_and_bolt.franka_nut_and_bolt import FrankaNutAndBolt
from omni.isaac.examples.franka_nut_and_bolt.franka_nut_and_bolt_extension import FrankaNutAndBoltExtension
| 626 |
Python
| 51.249996 | 107 | 0.821086 |
swadaskar/Isaac_Sim_Folder/extension_examples/franka_nut_and_bolt/franka_nut_and_bolt.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.core.physics_context.physics_context import PhysicsContext
from omni.isaac.core.materials.physics_material import PhysicsMaterial
from omni.isaac.franka.franka import Franka
from pxr import Gf, Usd, UsdPhysics, PhysxSchema, UsdShade
from .nut_bolt_controller import NutBoltController
import numpy as np
# Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
class FrankaNutAndBolt(BaseSample):
def __init__(self) -> None:
super().__init__()
# SCENE GEOMETRY
# env (group) spacing:
self._env_spacing = 2.0
# franka
self._stool_height = 0.15
self._franka_position = np.array([0.269, 0.1778, 0.0]) # Gf.Vec3f(0.269, 0.1778, 0.0)
# table and vibra table:
self._table_position = np.array([0.5, 0.0, 0.0]) # Gf.Vec3f(0.5, 0.0, 0.0)
self._table_scale = 0.01
self._tooling_plate_offset = np.array([0.0, 0.0, 0.0])
self._vibra_table_position_offset = np.array([0.157, -0.1524, 0.0])
self._vibra_top_offset = np.array([0.0, 0.0, 0.15])
self._vibra_table_top_to_collider_offset = np.array([0.05, 2.5, -0.59]) * 0.01
# xyz relative to the vibra table where the nut should be picked up
self._vibra_table_nut_pickup_pos_offset = np.array([0.124, 0.24, 0.158])
# nut
self._nut_height = 0.016
self._nut_spiral_center_vibra_offset = np.array([-0.04, -0.17, 0.01])
# randomize initial nut and bolt positions
self._nut_radius = 0.055
self._nut_height_delta = 0.03
self._nut_dist_delta = 0.03
self._mass_nut = 0.065
# pipe and bolt parameters
self._bolt_length = 0.1
self._bolt_radius = 0.11
self._pipe_pos_on_table = np.array([0.2032, 0.381, 0.0])
self._bolt_z_offset_to_pipe = 0.08
self._gripper_to_nut_offset = np.array([0.0, 0.0, 0.005])
self._top_of_bolt = (
np.array([0.0, 0.0, self._bolt_length + (self._nut_height / 2)]) + self._gripper_to_nut_offset
)
# randomization
self._randomize_nut_positions = True
self._nut_position_noise_minmax = 0.005
self._rng_seed = 8
# states
self._reset_hydra_instancing_on_shutdown = False
self._time = 0.0
self._fsm_time = 0.0
# some global sim options:
self._time_steps_per_second = 240 # 4.167ms aprx
self._fsm_update_rate = 60
self._solverPositionIterations = 4
self._solverVelocityIterations = 1
self._solver_type = "TGS"
self._ik_damping = 0.1
# setup asset paths:
self.nucleus_server = get_assets_root_path()
self.asset_folder = self.nucleus_server + "/Isaac/Samples/Examples/FrankaNutBolt/"
self.asset_paths = {
"shop_table": self.asset_folder + "SubUSDs/Shop_Table/Shop_Table.usd",
"tooling_plate": self.asset_folder + "SubUSDs/Tooling_Plate/Tooling_Plate.usd",
"nut": self.asset_folder + "SubUSDs/Nut/M20_Nut_Tight_R256_Franka_SI.usd",
"bolt": self.asset_folder + "SubUSDs/Bolt/M20_Bolt_Tight_R512_Franka_SI.usd",
"vibra_table_top": self.asset_folder + "SubUSDs/VibrationTable_Top/VibrationTable_Top.usd",
"vibra_table_bot": self.asset_folder + "SubUSDs/VibrationTable_Base/VibrationTable_Base.usd",
"vibra_table_collision": self.asset_folder + "SubUSDs/VibrationTable_Top_collision.usd",
"vibra_table_clamps": self.asset_folder + "SubUSDs/Clamps/Clamps.usd",
"pipe": self.asset_folder + "SubUSDs/Pipe/Pipe.usd",
}
self._num_bolts = 6
self._num_nuts = 6
self._sim_dt = 1.0 / self._time_steps_per_second
self._fsm_update_dt = 1.0 / self._fsm_update_rate
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
world.scene.add(XFormPrim(prim_path="/World/collisionGroups", name="collision_groups_xform"))
self._setup_simulation()
# add_table_assets
add_reference_to_stage(usd_path=self.asset_paths["shop_table"], prim_path="/World/env/table") # gives asset ref path
world.scene.add(GeometryPrim(prim_path="/World/env/table", name=f"table_ref_geom", collision=True)) # declares in the world
add_reference_to_stage(usd_path=self.asset_paths["tooling_plate"], prim_path="/World/env/tooling_plate")
world.scene.add(GeometryPrim(prim_path="/World/env/tooling_plate", name=f"tooling_plate_geom", collision=True))
add_reference_to_stage(usd_path=self.asset_paths["pipe"], prim_path="/World/env/pipe")
world.scene.add(GeometryPrim(prim_path="/World/env/pipe", name=f"pipe_geom", collision=True))
# add_vibra_table_assets
add_reference_to_stage(usd_path=self.asset_paths["vibra_table_bot"], prim_path="/World/env/vibra_table_bottom")
world.scene.add(GeometryPrim(prim_path="/World/env/vibra_table_bottom", name=f"vibra_table_bottom_geom"))
add_reference_to_stage(
usd_path=self.asset_paths["vibra_table_clamps"], prim_path="/World/env/vibra_table_clamps"
)
world.scene.add(
GeometryPrim(prim_path="/World/env/vibra_table_clamps", name=f"vibra_table_clamps_geom", collision=True)
)
world.scene.add(XFormPrim(prim_path="/World/env/vibra_table", name=f"vibra_table_xform"))
add_reference_to_stage(usd_path=self.asset_paths["vibra_table_top"], prim_path="/World/env/vibra_table/visual")
add_reference_to_stage(
usd_path=self.asset_paths["vibra_table_collision"], prim_path="/World/env/vibra_table/collision"
)
world.scene.add(XFormPrim(prim_path="/World/env/vibra_table/visual", name=f"vibra_table_visual_xform"))
world.scene.add(
GeometryPrim(
prim_path="/World/env/vibra_table/collision", name=f"vibra_table_collision_ref_geom", collision=True
)
)
# add_nuts_bolts_assets
for bolt in range(self._num_bolts):
add_reference_to_stage(usd_path=self.asset_paths["bolt"], prim_path=f"/World/env/bolt{bolt}")
world.scene.add(GeometryPrim(prim_path=f"/World/env/bolt{bolt}", name=f"bolt{bolt}_geom"))
for nut in range(self._num_nuts):
add_reference_to_stage(usd_path=self.asset_paths["nut"], prim_path=f"/World/env/nut{nut}")
world.scene.add(GeometryPrim(prim_path=f"/World/env/nut{nut}", name=f"nut{nut}_geom"))
# add_franka_assets
world.scene.add(Franka(prim_path="/World/env/franka", name=f"franka"))
return
async def setup_post_load(self):
self._world = self.get_world()
self._rng = np.random.default_rng(self._rng_seed)
self._world.scene.enable_bounding_boxes_computations()
await self._setup_materials()
# next four functions are for setting up the right positions and orientations for all assets
await self._add_table()
await self._add_vibra_table()
await self._add_nuts_and_bolt(add_debug_nut=self._num_nuts == 2)
await self._add_franka()
self._controller = NutBoltController(name="nut_bolt_controller", franka=self._franka)
self._franka.gripper.open()
self._rbApi2 = UsdPhysics.RigidBodyAPI.Apply(self._vibra_table_xform.prim.GetPrim())
self._world.add_physics_callback(f"sim_step", callback_fn=self.physics_step)
await self._world.play_async()
return
def physics_step(self, step_size):
if self._controller.is_paused():
if self._controller._i >= min(self._num_nuts, self._num_bolts):
self._rbApi2.CreateVelocityAttr().Set(Gf.Vec3f(0.0, 0.0, 0.0))
return
self._controller.reset(self._franka)
if self._controller._i < min(self._num_nuts, self._num_bolts):
initial_position = self._vibra_table_nut_pickup_pos_offset + self._vibra_table_position
self._bolt_geom = self._world.scene.get_object(f"bolt{self._controller._i}_geom")
finger_pos = self._franka.get_joint_positions()[-2:]
positive_x_offset = finger_pos[1] - finger_pos[0]
bolt_position, _ = self._bolt_geom.get_world_pose()
placing_position = bolt_position + self._top_of_bolt
_vibra_table_transforms = self._controller.forward(
initial_picking_position=initial_position,
bolt_top=placing_position,
gripper_to_nut_offset=self._gripper_to_nut_offset,
x_offset=positive_x_offset,
)
self._rbApi2.CreateVelocityAttr().Set(
Gf.Vec3f(_vibra_table_transforms[0], _vibra_table_transforms[1], _vibra_table_transforms[2])
)
return
async def _setup_materials(self):
self._bolt_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/BoltMaterial",
name="bolt_material_physics",
static_friction=0.2,
dynamic_friction=0.2,
)
self._nut_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/NutMaterial",
name="nut_material_physics",
static_friction=0.2,
dynamic_friction=0.2,
)
self._vibra_table_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/VibraTableMaterial",
name="vibra_table_material_physics",
static_friction=0.3,
dynamic_friction=0.3,
)
self._franka_finger_physics_material = PhysicsMaterial(
prim_path="/World/PhysicsMaterials/FrankaFingerMaterial",
name="franka_finger_material_physics",
static_friction=0.7,
dynamic_friction=0.7,
)
await self._world.reset_async()
async def _add_table(self):
##shop_table
self._table_ref_geom = self._world.scene.get_object(f"table_ref_geom")
self._table_ref_geom.set_local_scale(np.array([self._table_scale]))
self._table_ref_geom.set_world_pose(position=self._table_position)
self._table_ref_geom.set_default_state(position=self._table_position)
lb = self._world.scene.compute_object_AABB(name=f"table_ref_geom")
zmin = lb[0][2]
zmax = lb[1][2]
self._table_position[2] = -zmin
self._table_height = zmax
self._table_ref_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._table_ref_geom.prim_path)
##tooling_plate
self._tooling_plate_geom = self._world.scene.get_object(f"tooling_plate_geom")
self._tooling_plate_geom.set_local_scale(np.array([self._table_scale]))
lb = self._world.scene.compute_object_AABB(name=f"tooling_plate_geom")
zmin = lb[0][2]
zmax = lb[1][2]
tooling_transform = self._tooling_plate_offset
tooling_transform[2] = -zmin + self._table_height
tooling_transform = tooling_transform + self._table_position
self._tooling_plate_geom.set_world_pose(position=tooling_transform)
self._tooling_plate_geom.set_default_state(position=tooling_transform)
self._tooling_plate_geom.set_collision_approximation("boundingCube")
self._table_height += zmax - zmin
self._convexIncludeRel.AddTarget(self._tooling_plate_geom.prim_path)
##pipe
self._pipe_geom = self._world.scene.get_object(f"pipe_geom")
self._pipe_geom.set_local_scale(np.array([self._table_scale]))
lb = self._world.scene.compute_object_AABB(name=f"pipe_geom")
zmin = lb[0][2]
zmax = lb[1][2]
self._pipe_height = zmax - zmin
pipe_transform = self._pipe_pos_on_table
pipe_transform[2] = -zmin + self._table_height
pipe_transform = pipe_transform + self._table_position
self._pipe_geom.set_world_pose(position=pipe_transform, orientation=np.array([0, 0, 0, 1]))
self._pipe_geom.set_default_state(position=pipe_transform, orientation=np.array([0, 0, 0, 1]))
self._pipe_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._pipe_geom.prim_path)
await self._world.reset_async()
async def _add_vibra_table(self):
self._vibra_table_bottom_geom = self._world.scene.get_object(f"vibra_table_bottom_geom")
self._vibra_table_bottom_geom.set_local_scale(np.array([self._table_scale]))
lb = self._world.scene.compute_object_AABB(name=f"vibra_table_bottom_geom")
zmin = lb[0][2]
bot_part_pos = self._vibra_table_position_offset
bot_part_pos[2] = -zmin + self._table_height
bot_part_pos = bot_part_pos + self._table_position
self._vibra_table_bottom_geom.set_world_pose(position=bot_part_pos)
self._vibra_table_bottom_geom.set_default_state(position=bot_part_pos)
self._vibra_table_bottom_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._vibra_table_bottom_geom.prim_path)
# clamps
self._vibra_table_clamps_geom = self._world.scene.get_object(f"vibra_table_clamps_geom")
self._vibra_table_clamps_geom.set_collision_approximation("none")
self._convexIncludeRel.AddTarget(self._vibra_table_clamps_geom.prim_path)
# vibra_table
self._vibra_table_xform = self._world.scene.get_object(f"vibra_table_xform")
self._vibra_table_position = bot_part_pos
vibra_kinematic_prim = self._vibra_table_xform.prim
rbApi = UsdPhysics.RigidBodyAPI.Apply(vibra_kinematic_prim.GetPrim())
rbApi.CreateRigidBodyEnabledAttr(True)
rbApi.CreateKinematicEnabledAttr(True)
# visual
self._vibra_table_visual_xform = self._world.scene.get_object(f"vibra_table_visual_xform")
self._vibra_table_visual_xform.set_world_pose(position=self._vibra_top_offset)
self._vibra_table_visual_xform.set_default_state(position=self._vibra_top_offset)
self._vibra_table_visual_xform.set_local_scale(np.array([self._table_scale]))
# collision
self._vibra_table_collision_ref_geom = self._world.scene.get_object(f"vibra_table_collision_ref_geom")
offset = self._vibra_top_offset + self._vibra_table_top_to_collider_offset
self._vibra_table_collision_ref_geom.set_local_scale(np.array([1.0]))
self._vibra_table_collision_ref_geom.set_world_pose(position=offset)
self._vibra_table_collision_ref_geom.set_default_state(position=offset)
self._vibra_table_collision_ref_geom.apply_physics_material(self._vibra_table_physics_material)
self._convexIncludeRel.AddTarget(self._vibra_table_collision_ref_geom.prim_path)
self._vibra_table_collision_ref_geom.set_collision_approximation("convexHull")
vibra_kinematic_prim.SetInstanceable(True)
self._vibra_table_xform.set_world_pose(position=self._vibra_table_position, orientation=np.array([0, 0, 0, 1]))
self._vibra_table_xform.set_default_state(
position=self._vibra_table_position, orientation=np.array([0, 0, 0, 1])
)
self._vibra_table_visual_xform.set_default_state(
position=self._vibra_table_visual_xform.get_world_pose()[0],
orientation=self._vibra_table_visual_xform.get_world_pose()[1],
)
self._vibra_table_collision_ref_geom.set_default_state(
position=self._vibra_table_collision_ref_geom.get_world_pose()[0],
orientation=self._vibra_table_collision_ref_geom.get_world_pose()[1],
)
await self._world.reset_async()
async def _add_nuts_and_bolt(self, add_debug_nut=False):
angle_delta = np.pi * 2.0 / self._num_bolts
for j in range(self._num_bolts):
self._bolt_geom = self._world.scene.get_object(f"bolt{j}_geom")
self._bolt_geom.prim.SetInstanceable(True)
bolt_pos = np.array(self._pipe_pos_on_table) + self._table_position
bolt_pos[0] += np.cos(j * angle_delta) * self._bolt_radius
bolt_pos[1] += np.sin(j * angle_delta) * self._bolt_radius
bolt_pos[2] = self._bolt_z_offset_to_pipe + self._table_height
self._bolt_geom.set_world_pose(position=bolt_pos)
self._bolt_geom.set_default_state(position=bolt_pos)
self._boltMeshIncludeRel.AddTarget(self._bolt_geom.prim_path)
self._bolt_geom.apply_physics_material(self._bolt_physics_material)
await self._generate_nut_initial_poses()
for nut_idx in range(self._num_nuts):
nut_pos = self._nut_init_poses[nut_idx, :3].copy()
if add_debug_nut and nut_idx == 0:
nut_pos[0] = 0.78
nut_pos[1] = self._vibra_table_nut_pickup_pos_offset[1] + self._vibra_table_position[1] # 0.0264
if add_debug_nut and nut_idx == 1:
nut_pos[0] = 0.78
nut_pos[1] = 0.0264 - 0.04
self._nut_geom = self._world.scene.get_object(f"nut{nut_idx}_geom")
self._nut_geom.prim.SetInstanceable(True)
self._nut_geom.set_world_pose(position=np.array(nut_pos.tolist()))
self._nut_geom.set_default_state(position=np.array(nut_pos.tolist()))
physxRBAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(self._nut_geom.prim)
physxRBAPI.CreateSolverPositionIterationCountAttr().Set(self._solverPositionIterations)
physxRBAPI.CreateSolverVelocityIterationCountAttr().Set(self._solverVelocityIterations)
self._nut_geom.apply_physics_material(self._nut_physics_material)
self._convexIncludeRel.AddTarget(self._nut_geom.prim_path + "/M20_Nut_Tight_Convex")
self._nutMeshIncludeRel.AddTarget(self._nut_geom.prim_path + "/M20_Nut_Tight_SDF")
rbApi3 = UsdPhysics.RigidBodyAPI.Apply(self._nut_geom.prim.GetPrim())
rbApi3.CreateRigidBodyEnabledAttr(True)
physxAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(self._nut_geom.prim.GetPrim())
physxAPI.CreateSleepThresholdAttr().Set(0.0)
massAPI = UsdPhysics.MassAPI.Apply(self._nut_geom.prim.GetPrim())
massAPI.CreateMassAttr().Set(self._mass_nut)
await self._world.reset_async()
async def _generate_nut_initial_poses(self):
self._nut_init_poses = np.zeros((self._num_nuts, 7), dtype=np.float32)
self._nut_init_poses[:, -1] = 1 # quat to identity
nut_spiral_center = self._vibra_table_position + self._nut_spiral_center_vibra_offset
nut_spiral_center += self._vibra_top_offset
for nut_idx in range(self._num_nuts):
self._nut_init_poses[nut_idx, :3] = np.array(nut_spiral_center)
self._nut_init_poses[nut_idx, 0] += self._nut_radius * np.sin(
np.pi / 3.0 * nut_idx
) + self._nut_dist_delta * (nut_idx // 6)
self._nut_init_poses[nut_idx, 1] += self._nut_radius * np.cos(
np.pi / 3.0 * nut_idx
) + self._nut_dist_delta * (nut_idx // 6)
self._nut_init_poses[nut_idx, 2] += self._nut_height_delta * (nut_idx // 6)
if self._randomize_nut_positions:
self._nut_init_poses[nut_idx, 0] += self._rng.uniform(
-self._nut_position_noise_minmax, self._nut_position_noise_minmax
)
self._nut_init_poses[nut_idx, 1] += self._rng.uniform(
-self._nut_position_noise_minmax, self._nut_position_noise_minmax
)
await self._world.reset_async()
async def _add_franka(self):
self._franka = self._world.scene.get_object(f"franka")
franka_pos = np.array(self._franka_position)
franka_pos[2] = franka_pos[2] + self._table_height
self._franka.set_world_pose(position=franka_pos)
self._franka.set_default_state(position=franka_pos)
self._franka.gripper.open()
self._convexIncludeRel.AddTarget(self._franka.prim_path + "/panda_leftfinger")
self._convexIncludeRel.AddTarget(self._franka.prim_path + "/panda_rightfinger")
franka_left_finger = self._world.stage.GetPrimAtPath(
"/World/env/franka/panda_leftfinger/geometry/panda_leftfinger"
)
x = UsdShade.MaterialBindingAPI.Apply(franka_left_finger)
x.Bind(
self._franka_finger_physics_material.material,
bindingStrength="weakerThanDescendants",
materialPurpose="physics",
)
franka_right_finger = self._world.stage.GetPrimAtPath(
"/World/env/franka/panda_rightfinger/geometry/panda_rightfinger"
)
x2 = UsdShade.MaterialBindingAPI.Apply(franka_right_finger)
x2.Bind(
self._franka_finger_physics_material.material,
bindingStrength="weakerThanDescendants",
materialPurpose="physics",
)
await self._world.reset_async()
def _setup_simulation(self):
self._scene = PhysicsContext()
self._scene.set_solver_type(self._solver_type)
self._scene.set_broadphase_type("GPU")
self._scene.enable_gpu_dynamics(flag=True)
self._scene.set_friction_offset_threshold(0.01)
self._scene.set_friction_correlation_distance(0.0005)
self._scene.set_gpu_total_aggregate_pairs_capacity(10 * 1024)
self._scene.set_gpu_found_lost_pairs_capacity(10 * 1024)
self._scene.set_gpu_heap_capacity(64 * 1024 * 1024)
self._scene.set_gpu_found_lost_aggregate_pairs_capacity(10 * 1024)
self._meshCollisionGroup = UsdPhysics.CollisionGroup.Define(
self._world.scene.stage, "/World/collisionGroups/meshColliders"
)
collectionAPI = Usd.CollectionAPI.ApplyCollection(self._meshCollisionGroup.GetPrim(), "colliders")
self._nutMeshIncludeRel = collectionAPI.CreateIncludesRel()
self._convexCollisionGroup = UsdPhysics.CollisionGroup.Define(
self._world.scene.stage, "/World/collisionGroups/convexColliders"
)
collectionAPI = Usd.CollectionAPI.ApplyCollection(self._convexCollisionGroup.GetPrim(), "colliders")
self._convexIncludeRel = collectionAPI.CreateIncludesRel()
self._boltCollisionGroup = UsdPhysics.CollisionGroup.Define(
self._world.scene.stage, "/World/collisionGroups/boltColliders"
)
collectionAPI = Usd.CollectionAPI.ApplyCollection(self._boltCollisionGroup.GetPrim(), "colliders")
self._boltMeshIncludeRel = collectionAPI.CreateIncludesRel()
# invert group logic so only groups that filter each-other will collide:
self._scene.set_invert_collision_group_filter(True)
# # the SDF mesh collider nuts should only collide with the bolts
filteredRel = self._meshCollisionGroup.CreateFilteredGroupsRel()
filteredRel.AddTarget("/World/collisionGroups/boltColliders")
# # the convex hull nuts should collide with each other, the vibra table, and the grippers
filteredRel = self._convexCollisionGroup.CreateFilteredGroupsRel()
filteredRel.AddTarget("/World/collisionGroups/convexColliders")
# # the SDF mesh bolt only collides with the SDF mesh nut colliders
filteredRel = self._boltCollisionGroup.CreateFilteredGroupsRel()
filteredRel.AddTarget("/World/collisionGroups/meshColliders")
async def setup_pre_reset(self):
return
async def setup_post_reset(self):
self._controller._vibraSM.reset()
self._controller._vibraSM._i = 0
self._controller.reset(franka=self._franka)
self._controller._i = self._controller._vibraSM._i
self._franka.gripper.open()
self._controller._vibraSM.stop_feed_after_delay(delay_sec=5.0)
await self._world.play_async()
return
def world_cleanup(self):
self._controller = None
return
| 24,713 |
Python
| 49.747433 | 131 | 0.642698 |
swadaskar/Isaac_Sim_Folder/extension_examples/franka_nut_and_bolt/franka_nut_and_bolt_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.franka_nut_and_bolt import FrankaNutAndBolt
class FrankaNutAndBoltExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="Manipulation",
submenu_name="",
name="Franka Nut and Bolt",
title="Franka Nut and Bolt",
doc_link="",
overview="Franka robot arms picking and screwing nuts onto bolts",
file_path=os.path.abspath(__file__),
sample=FrankaNutAndBolt(),
)
return
| 1,103 |
Python
| 38.42857 | 78 | 0.698096 |
swadaskar/Isaac_Sim_Folder/extension_examples/franka_nut_and_bolt/nut_vibra_table_controller.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import numpy as np
class VibraFSM:
_amplitudes = {
"stop": np.array((0.0, 0.0, 0.0), dtype=np.float32), # [m]
"run_feed": np.array((0.000, 0.03, 0.02), dtype=np.float32), # [m]
"backward": np.array((0.000, -0.03, 0.02), dtype=np.float32), # [m]
"realign": np.array((-0.03, 0.0, 0.02), dtype=np.float32), # [m]
}
_motion_frequency = 60.0 # [Hz]
# configure unblock-cycle:
_feed_time = 5.0
_stop_time = 5.0
_backward_time = 1.5
_realign_time = 1.5
def __init__(self, dt=None):
self.reset()
self._i = 0
if dt is not None:
self._dt = dt
def reset(self):
self._dt = 1.0 / 240.0
self._time = 0.0
self.state = "stop"
self._after_delay_state = None
def start_feed(self):
self.state = "run_feed"
# kick off unblock cycle
self._set_delayed_state_change(delay_sec=self._feed_time, nextState="backward")
def stop_feed_after_delay(self, delay_sec: float):
self.state = "run_feed"
self._set_delayed_state_change(delay_sec=delay_sec, nextState="stop")
def _set_delayed_state_change(self, delay_sec: float, nextState: str):
self._after_delay_state = nextState
self._wait_end_time = self._time + delay_sec
def update(self):
self._time += self._dt
# process wait if necessary
if self._after_delay_state is not None and self._time > self._wait_end_time:
self.state = self._after_delay_state
# auto-unblock cycle
if self._state == "run_feed":
self.stop_feed_after_delay(self._stop_time)
elif self._state == "backward":
self._set_delayed_state_change(delay_sec=self._backward_time, nextState="realign")
elif self._state == "realign":
self._set_delayed_state_change(delay_sec=self._realign_time, nextState="run_feed")
else:
self._after_delay_state = None
return self._motion_amplitude
def is_stopped(self):
return self._state == "stop"
def is_stopping(self):
return self.is_stopped() or self._after_delay_state == "stop"
@property
def state(self):
return self._state
@state.setter
def state(self, newState):
self._state = newState
if self._state in self._amplitudes:
self._motion_amplitude = self._amplitudes[self._state]
else:
self._motion_amplitude = self._amplitudes["stop"]
| 2,978 |
Python
| 34.047058 | 98 | 0.600403 |
swadaskar/Isaac_Sim_Folder/extension_examples/omnigraph_keyboard/omnigraph_keyboard_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.omnigraph_keyboard import OmnigraphKeyboard
class OmnigraphKeyboardExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
overview = "This Example shows how to change the size of a cube using the keyboard through omnigraph progrmaming in Isaac Sim."
overview += "\n\tKeybord Input:"
overview += "\n\t\ta: Grow"
overview += "\n\t\td: Shrink"
overview += "\n\nPress the 'Open in IDE' button to view the source code."
overview += "\nOpen Visual Scripting Window to see Omnigraph"
super().start_extension(
menu_name="Input Devices",
submenu_name="",
name="Omnigraph Keyboard",
title="NVIDIA Omnigraph Scripting Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_advanced_input_devices.html",
overview=overview,
file_path=os.path.abspath(__file__),
sample=OmnigraphKeyboard(),
)
| 1,557 |
Python
| 44.823528 | 135 | 0.696853 |
swadaskar/Isaac_Sim_Folder/extension_examples/omnigraph_keyboard/omnigraph_keyboard.py
|
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import omni.ext
import numpy as np
import omni.graph.core as og
from omni.isaac.core.utils.viewports import set_camera_view
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.objects import VisualCuboid
class OmnigraphKeyboard(BaseSample):
def __init__(self) -> None:
super().__init__()
self._gamepad_gains = (40.0, 40.0, 2.0)
self._gamepad_deadzone = 0.15
def setup_scene(self):
world = self.get_world()
world.scene.add(
VisualCuboid(
prim_path="/Cube", # The prim path of the cube in the USD stage
name="cube", # The unique name used to retrieve the object from the scene later on
position=np.array([0, 0, 10.0]), # Using the current stage units which is cms by default.
size=10.0, # most arguments accept mainly numpy arrays.
color=np.array([0, 1.0, 1.0]), # RGB channels, going from 0-1
)
)
world.scene.add_default_ground_plane()
set_camera_view(eye=np.array([75, 75, 45]), target=np.array([0, 0, 0]))
# setup graph
keys = og.Controller.Keys
og.Controller.edit(
{"graph_path": "/controller_graph", "evaluator_name": "execution"},
{
keys.CREATE_NODES: [
("OnTick", "omni.graph.action.OnTick"),
("A", "omni.graph.nodes.ReadKeyboardState"),
("D", "omni.graph.nodes.ReadKeyboardState"),
("ToDouble1", "omni.graph.nodes.ToDouble"),
("ToDouble2", "omni.graph.nodes.ToDouble"),
("Negate", "omni.graph.nodes.Multiply"),
("DeltaAdd", "omni.graph.nodes.Add"),
("SizeAdd", "omni.graph.nodes.Add"),
("NegOne", "omni.graph.nodes.ConstantInt"),
("CubeWrite", "omni.graph.nodes.WritePrimAttribute"), # write prim property translate
("CubeRead", "omni.graph.nodes.ReadPrimAttribute"),
],
keys.SET_VALUES: [
("A.inputs:key", "A"),
("D.inputs:key", "D"),
("OnTick.inputs:onlyPlayback", True), # only tick when simulator is playing
("NegOne.inputs:value", -1),
("CubeWrite.inputs:name", "size"),
("CubeWrite.inputs:primPath", "/Cube"),
("CubeWrite.inputs:usePath", True),
("CubeRead.inputs:name", "size"),
("CubeRead.inputs:primPath", "/Cube"),
("CubeRead.inputs:usePath", True),
],
keys.CONNECT: [
("OnTick.outputs:tick", "CubeWrite.inputs:execIn"),
("A.outputs:isPressed", "ToDouble1.inputs:value"),
("D.outputs:isPressed", "ToDouble2.inputs:value"),
("ToDouble2.outputs:converted", "Negate.inputs:a"),
("NegOne.inputs:value", "Negate.inputs:b"),
("ToDouble1.outputs:converted", "DeltaAdd.inputs:a"),
("Negate.outputs:product", "DeltaAdd.inputs:b"),
("DeltaAdd.outputs:sum", "SizeAdd.inputs:a"),
("CubeRead.outputs:value", "SizeAdd.inputs:b"),
("SizeAdd.outputs:sum", "CubeWrite.inputs:value"),
],
},
)
def world_cleanup(self):
pass
| 3,957 |
Python
| 45.564705 | 106 | 0.544099 |
swadaskar/Isaac_Sim_Folder/extension_examples/omnigraph_keyboard/__init__.py
|
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.omnigraph_keyboard.omnigraph_keyboard import OmnigraphKeyboard
from omni.isaac.examples.omnigraph_keyboard.omnigraph_keyboard_extension import OmnigraphKeyboardExtension
| 624 |
Python
| 51.083329 | 106 | 0.833333 |
swadaskar/Isaac_Sim_Folder/extension_examples/isaac_demo/isaac_demo_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.hello_world import HelloWorld
class IsaacDemoExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="",
submenu_name="",
name="Isaac Demo",
title="Isaac Sim Demo",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html",
overview="A standard Simulation software demo.",
file_path=os.path.abspath(__file__),
sample=HelloWorld(),
)
return
| 1,122 |
Python
| 39.107141 | 114 | 0.69697 |
swadaskar/Isaac_Sim_Folder/extension_examples/isaac_demo/__init__.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE: Import here your extension examples to be propagated to ISAAC SIM Extensions startup
from omni.isaac.examples.isaac_demo.isaac_demo import IsaacDemo
from omni.isaac.examples.isaac_demo.isaac_demo_extension import IsaacDemoExtension
| 673 |
Python
| 55.166662 | 92 | 0.820208 |
swadaskar/Isaac_Sim_Folder/extension_examples/isaac_demo/isaac_demo.py
|
from omni.isaac.examples.base_sample import BaseSample
import numpy as np
from omni.isaac.core.objects import DynamicCuboid
class IsaacDemo(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
fancy_cube = world.scene.add(
DynamicCuboid(
prim_path="/World/random_cube",
name="fancy_cube",
position=np.array([0, 0, 1.0]),
scale=np.array([0.5015, 0.5015, 0.5015]),
color=np.array([0, 0, 1.0]),
))
return
async def setup_post_load(self):
self._world = self.get_world()
self._cube = self._world.scene.get_object("fancy_cube")
self._world.add_physics_callback("sim_step", callback_fn=self.print_cube_info) #callback names have to be unique
return
# here we define the physics callback to be called before each physics step, all physics callbacks must take
# step_size as an argument
def print_cube_info(self, step_size):
position, orientation = self._cube.get_world_pose()
linear_velocity = self._cube.get_linear_velocity()
# will be shown on terminal
print("Cube position is : " + str(position))
print("Cube's orientation is : " + str(orientation))
print("Cube's linear velocity is : " + str(linear_velocity))
# # Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
# #
# # NVIDIA CORPORATION and its licensors retain all intellectual property
# # and proprietary rights in and to this software, related documentation
# # and any modifications thereto. Any use, reproduction, disclosure or
# # distribution of this software and related documentation without an express
# # license agreement from NVIDIA CORPORATION is strictly prohibited.
# from omni.isaac.examples.base_sample import BaseSample
# # Note: checkout the required tutorials at https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html
# class HelloWorld(BaseSample):
# def __init__(self) -> None:
# super().__init__()
# return
# def setup_scene(self):
# world = self.get_world()
# world.scene.add_default_ground_plane()
# return
# async def setup_post_load(self):
# return
# async def setup_pre_reset(self):
# return
# async def setup_post_reset(self):
# return
# def world_cleanup(self):
# return
| 2,649 |
Python
| 15.060606 | 120 | 0.613439 |
swadaskar/Isaac_Sim_Folder/extension_examples/surface_gripper/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE: Import here your extension examples to be propagated to ISAAC SIM Extensions startup
from omni.isaac.examples.surface_gripper.surface_gripper import BatteryTask
from omni.isaac.examples.surface_gripper.surface_gripper_extension import BatteryTaskExtension
| 693 |
Python
| 52.384611 | 94 | 0.825397 |
swadaskar/Isaac_Sim_Folder/extension_examples/surface_gripper/surface_gripper_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.surface_gripper.surface_gripper import BatteryTask
class BatteryTaskExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
overview = "This Example shows how to simulate an Unitree A1 quadruped in Isaac Sim."
super().start_extension(
menu_name="",
submenu_name="",
name="cell 4 battery",
title="Unitree A1 Quadruped Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/ext_omni_isaac_quadruped.html",
overview=overview,
file_path=os.path.abspath(__file__),
sample=BatteryTask(),
)
return
| 1,229 |
Python
| 38.677418 | 113 | 0.702197 |
swadaskar/Isaac_Sim_Folder/extension_examples/surface_gripper/surface_gripper.py
|
from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
self.delay=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_show_without_robots.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-16.5464, -16.02288, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-16.35161, -18.32382, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mock_robot",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-10.23701, -17.06208, 0.03551]),
orientation=np.array([0, 0, -0.70711, -0.70711]),
)
)
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-7.60277, -5.70312, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"task_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
self.screw_ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
"bool_counter": self._bool_event
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]<-5.3:
self._task_event = 51
self._bool_event+=1
self.task_done[self._task_event] = True
elif self._task_event == 51:
if np.mean(np.abs(ee_pose.p - np.array([-5.00127, -4.80822, 0.53949])))<0.02:
self._task_event = 71
self._bool_event+=1
elif self._task_event == 71:
if np.mean(np.abs(screw_ee_pose.p - np.array([-3.70349, -4.41856, 0.56125])))<0.058:
self._task_event=2
elif self._task_event == 2:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 3:
pass
return
def post_reset(self):
self._task_event = 0
return
class BatteryTask(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
self.delay=0
print("inside setup_scene", self.motion_task_counter)
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"])
# static suspensions on the table
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.83704, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.69733, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.54469, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_03", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.3843, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_04", np.array([0.001,0.001,0.001]), np.array([-6.66288, -4.22546, 0.41322]), np.array([0.5, 0.5, -0.5, 0.5]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_05", np.array([0.001,0.001,0.001]), np.array([-6.10203, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_06", np.array([0.001,0.001,0.001]), np.array([-5.96018, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_07", np.array([0.001,0.001,0.001]), np.array([-5.7941, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_08", np.array([0.001,0.001,0.001]), np.array([-5.63427, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("World/Environment","FSuspensionBack", "FSuspensionBack_09", np.array([0.001,0.001,0.001]), np.array([-5.47625, -4.74457, 0.41322]), np.array([0.70711, 0, -0.70711, 0]))
self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
self.screw_articulation_controller = self.screw_ur10.get_articulation_controller()
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
# actions.joint_velocities = [0.0001,0.0001,0.0001,0.0001,0.0001,0.0001]
# actions.joint_velocities = [1,1,1,1,1,1]
print(actions)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
# time.sleep(0.3)
print("Completed one motion plan: ", self.motion_task_counter)
def do_screw_driving(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.screw_my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
self.screw_articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/Screw_driving_UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
# def do_screw_driving(self, locations, task_name=""):
# print(self.motion_task_counter)
# target_location = locations[self.motion_task_counter]
# print("Doing "+str(target_location["index"])+"th motion plan")
# actions, success = self.screw_my_controller.compute_inverse_kinematics(
# target_position=target_location["position"],
# target_orientation=target_location["orientation"],
# )
# if success:
# print("still homing on this location")
# controller_name = getattr(self,"screw_articulation_controller"+task_name)
# controller_name.apply_action(actions)
# else:
# carb.log_warn("IK did not converge to a solution. No action is being taken.")
# # check if reached location
# curr_location = self.give_location(f"/World/Screw_driving_UR10{task_name}/ee_link")
# print("Curr:",curr_location.p)
# print("Goal:", target_location["goal_position"])
# print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
# if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.02:
# self.motion_task_counter+=1
# print("Completed one motion plan: ", self.motion_task_counter)
def transform_for_screw_ur10(self, position):
position[0]-=0
position[1]+=0
position[2]+=-0
return position
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
# Terminology
# mp - moving platform
# iteration 1
# go forward
if current_observations["task_event"] == 1:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
# small mp brings in part
elif current_observations["task_event"] == 51:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":1, "position": np.array([0.72034, -0.05477, 0.33852-0.16]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":2, "position": np.array([0.72034, -0.05477, 0.33852-0.16+0.2]), "orientation": np.array([0.5,-0.5,0.5,0.5]), "goal_position":np.array([-6.822, -5.13962, 0.58122+0.2]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":3, "position": np.array([-0.96615-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.13459, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":4, "position": np.array([-1.10845-0.16, -0.56853+0.12, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-4.99229, -4.62413-0.12, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":5, "position": np.array([-1.10842-0.16, -0.39583, 0.29724]), "orientation": np.array([-0.00055, 0.0008, -0.82242, -0.56888]), "goal_position":np.array([-5.00127, -4.80822, 0.53949]), "goal_orientation":np.array([0.56437, 0.82479, 0.02914, 0.01902])}]
# {"index":0, "position": np.array([1.11096, -0.01839, 0.31929-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.56252]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":1, "position": np.array([1.11096, -0.01839, 0.19845-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.44167]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
# {"index":2, "position": np.array([1.11096, -0.01839, 0.31929]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-7.2154, -5.17695, 0.56252]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
self.move_ur10(motion_plan)
if self.motion_task_counter==2 and not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
self.remove_part("World/Environment", "FSuspensionBack_01")
self.add_part_custom("World/UR10/ee_link","FSuspensionBack", "qFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1]))
if self.motion_task_counter==6:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# arm_robot picks and places part
elif current_observations["task_event"] == 71:
if not self.isDone[current_observations["task_event"]]:
if not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
print("Part removal done")
self.remove_part("World/UR10/ee_link", "qFSuspensionBack")
self.motion_task_counter=0
self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.87892, 0.0239, 0.82432]), np.array([0.40364, -0.58922, 0.57252, -0.40262]))
motion_plan = [{"index":0, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": self.transform_for_screw_ur10(np.array([-0.56003, 0.05522, -0.16+0.43437+0.25])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.2273, -5.06269, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": self.transform_for_screw_ur10(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":4, "position": self.transform_for_screw_ur10(np.array([0.87215+0.16, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.66069, -4.84629,0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":5, "position": self.transform_for_screw_ur10(np.array([0.83141+0.16-0.2, -0.16343, 0.34189])), "orientation": np.array([1,0,0,0]), "goal_position":np.array([-4.61995+0.2, -4.84629, 0.58477]), "goal_orientation":np.array([0,0,0,1])},
{"index":6, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":7, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":8, "position": self.transform_for_screw_ur10(np.array([-0.55625, -0.1223, -0.16+0.43437+0.2])), "orientation": np.array([0, -0.70711,0,0.70711]), "goal_position":np.array([-3.23108, -4.88517, 0.67593+0.25]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":9, "position": self.transform_for_screw_ur10(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":10, "position": self.transform_for_screw_ur10(np.array([0.91167+0.16, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.69933, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":11, "position": self.transform_for_screw_ur10(np.array([0.81036+0.16-0.1, -0.26815, 0.24723])), "orientation": np.array([0,-1, 0, 0]), "goal_position":np.array([-4.59801+0.1, -4.7396, 0.49012]), "goal_orientation":np.array([0,0,1,0])},
{"index":12, "position": self.transform_for_screw_ur10(np.array([-0.08295-0.16, -0.58914, 0.32041-0.15])), "orientation": np.array([0,0.70711, 0, -0.70711]), "goal_position":np.array([-3.70349, -4.41856, 0.56125]), "goal_orientation":np.array([0.70711,0,0.70711,0])}]
print(self.motion_task_counter)
self.do_screw_driving(motion_plan)
if self.motion_task_counter==13:
self.isDone[current_observations["task_event"]]=True
self.done = True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":1, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
print("done", self.motion_task_counter)
# remove engine and add engine
elif current_observations["task_event"] == 2:
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
self.done = True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([-0.95325-0.16, -0.38757, 0.31143]), "orientation": np.array([-0.00257, 0.00265, -0.82633, -0.56318]), "goal_position":np.array([-5.14749, -4.80509, 0.55254]), "goal_orientation":np.array([0.56316, 0.82633, -0.00001, -0.00438])},
{"index":1, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
print("task 2 delay")
elif current_observations["task_event"] == 3:
print("task 3")
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 35,625 |
Python
| 63.306859 | 441 | 0.605811 |
swadaskar/Isaac_Sim_Folder/extension_examples/bin_filling/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.bin_filling.bin_filling import BinFilling
from omni.isaac.examples.bin_filling.bin_filling_extension import BinFillingExtension
| 582 |
Python
| 47.583329 | 85 | 0.821306 |
swadaskar/Isaac_Sim_Folder/extension_examples/bin_filling/bin_filling_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.bin_filling import BinFilling
import asyncio
import omni.ui as ui
from omni.isaac.ui.ui_utils import btn_builder
class BinFillingExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="Manipulation",
submenu_name="",
name="Bin Filling",
title="Bin Filling",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/menu_examples.html?",
overview="This Example shows how to do bin filling using UR10 robot in Isaac Sim.\n It showcases a realistic surface gripper that breaks with heavy bin load.\nPress the 'Open in IDE' button to view the source code.",
sample=BinFilling(),
file_path=os.path.abspath(__file__),
number_of_extra_frames=1,
)
self.task_ui_elements = {}
frame = self.get_frame(index=0)
self.build_task_controls_ui(frame)
return
def _on_fill_bin_button_event(self):
asyncio.ensure_future(self.sample.on_fill_bin_event_async())
self.task_ui_elements["Start Bin Filling"].enabled = False
return
def post_reset_button_event(self):
self.task_ui_elements["Start Bin Filling"].enabled = True
return
def post_load_button_event(self):
self.task_ui_elements["Start Bin Filling"].enabled = True
return
def post_clear_button_event(self):
self.task_ui_elements["Start Bin Filling"].enabled = False
return
def build_task_controls_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
# Update the Frame Title
frame.title = "Task Controls"
frame.visible = True
dict = {
"label": "Start Bin Filling",
"type": "button",
"text": "Start Bin Filling",
"tooltip": "Start Bin Filling",
"on_clicked_fn": self._on_fill_bin_button_event,
}
self.task_ui_elements["Start Bin Filling"] = btn_builder(**dict)
self.task_ui_elements["Start Bin Filling"].enabled = False
| 2,772 |
Python
| 39.188405 | 228 | 0.630231 |
swadaskar/Isaac_Sim_Folder/extension_examples/bin_filling/bin_filling.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.utils.rotations import euler_angles_to_quat
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.universal_robots.tasks import BinFilling as BinFillingTask
from omni.isaac.universal_robots.controllers import PickPlaceController
import numpy as np
class BinFilling(BaseSample):
def __init__(self) -> None:
super().__init__()
self._controller = None
self._articulation_controller = None
self._added_screws = False
def setup_scene(self):
world = self.get_world()
world.add_task(BinFillingTask(name="bin_filling"))
return
async def setup_post_load(self):
self._ur10_task = self._world.get_task(name="bin_filling")
self._task_params = self._ur10_task.get_params()
my_ur10 = self._world.scene.get_object(self._task_params["robot_name"]["value"])
self._controller = PickPlaceController(
name="pick_place_controller", gripper=my_ur10.gripper, robot_articulation=my_ur10
)
self._articulation_controller = my_ur10.get_articulation_controller()
return
def _on_fill_bin_physics_step(self, step_size):
observations = self._world.get_observations()
actions = self._controller.forward(
picking_position=observations[self._task_params["bin_name"]["value"]]["position"],
placing_position=observations[self._task_params["bin_name"]["value"]]["target_position"],
current_joint_positions=observations[self._task_params["robot_name"]["value"]]["joint_positions"],
end_effector_offset=np.array([0, -0.098, 0.03]),
end_effector_orientation=euler_angles_to_quat(np.array([np.pi, 0, np.pi / 2.0])),
)
if not self._added_screws and self._controller.get_current_event() == 6 and not self._controller.is_paused():
self._controller.pause()
self._ur10_task.add_screws(screws_number=20)
self._added_screws = True
if self._controller.is_done():
self._world.pause()
self._articulation_controller.apply_action(actions)
return
async def on_fill_bin_event_async(self):
world = self.get_world()
world.add_physics_callback("sim_step", self._on_fill_bin_physics_step)
await world.play_async()
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("sim_step"):
world.remove_physics_callback("sim_step")
self._controller.reset()
self._added_screws = False
return
def world_cleanup(self):
self._controller = None
self._added_screws = False
return
| 3,149 |
Python
| 40.999999 | 117 | 0.662115 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/simple_case.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
from omni.isaac.kit import SimulationApp
import numpy as np
import omni
# This sample loads a usd stage and starts simulation
CONFIG = {"width": 1280, "height": 720, "sync_loads": True, "headless": False, "renderer": "RayTracedLighting"}
# Set up command line arguments
parser = argparse.ArgumentParser("Usd Load sample")
parser.add_argument("--headless", default=False, action="store_true", help="Run stage headless")
args, unknown = parser.parse_known_args()
# Start the omniverse application
CONFIG["headless"] = args.headless
simulation_app = SimulationApp(launch_config=CONFIG)
from omni.isaac.core import World
from omni.isaac.core.robots import Robot
from omni.isaac.core.utils.types import ArticulationAction
# open stage
omni.usd.get_context().open_stage("simple_case.usd")
# wait two frames so that stage starts loading
simulation_app.update()
simulation_app.update()
print("Loading stage...")
from omni.isaac.core.utils.stage import is_stage_loading
while is_stage_loading():
simulation_app.update()
print("Loading Complete")
world = World(stage_units_in_meters=1.0)
robot = world.scene.add(Robot(prim_path="/World/panda", name="robot"))
world.reset()
while simulation_app.is_running():
world.step(render=not args.headless)
# deal with pause/stop
if world.is_playing():
if world.current_time_step_index == 0:
world.reset()
# apply actions
robot.get_articulation_controller().apply_action(
ArticulationAction(joint_positions=np.random.random(9))
)
simulation_app.close()
| 2,016 |
Python
| 30.515625 | 111 | 0.745536 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.user_examples.disassembly import Disassembly
from omni.isaac.examples.user_examples.disassembly_extension import DisassemblyExtension
| 588 |
Python
| 48.083329 | 88 | 0.826531 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/my_application.py
|
#launch Isaac Sim before any other imports
#default first two lines in any standalone application
from omni.isaac.kit import SimulationApp
simulation_app = SimulationApp({"headless": False}) # we can also run as headless.
from omni.isaac.core import World
from omni.isaac.core.objects import DynamicCuboid
import numpy as np
world = World()
world.scene.add_default_ground_plane()
fancy_cube = world.scene.add(
DynamicCuboid(
prim_path="/World/random_cube",
name="fancy_cube",
position=np.array([0, 0, 1.0]),
scale=np.array([0.5015, 0.5015, 0.5015]),
color=np.array([0, 0, 1.0]),
))
# Resetting the world needs to be called before querying anything related to an articulation specifically.
# Its recommended to always do a reset after adding your assets, for physics handles to be propagated properly
world.reset()
for i in range(1000):
position, orientation = fancy_cube.get_world_pose()
linear_velocity = fancy_cube.get_linear_velocity()
# will be shown on terminal
print("Cube position is : " + str(position))
print("Cube's orientation is : " + str(orientation))
print("Cube's linear velocity is : " + str(linear_velocity))
# we have control over stepping physics and rendering in this workflow
# things run in sync
world.step(render=True) # execute one physics step and one rendering step
simulation_app.close() # close Isaac Sim
| 1,420 |
Python
| 40.794116 | 110 | 0.714789 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/disassembly_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.user_examples.disassembly import Disassembly
class DisassemblyExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="",
submenu_name="",
name="Awesome example",
title="Awesome Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=Disassembly(),
)
return
| 1,221 |
Python
| 42.642856 | 135 | 0.710074 |
swadaskar/Isaac_Sim_Folder/extension_examples/user_examples/disassembly.py
|
from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom, Gf
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
from omni.physx.scripts import utils
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
self.mp_goal_position = [np.array([-28.07654, 18.06421, 0]),
np.array([-25.04914, 18.06421, 0])]
self._task_event = 0
self.task_done = [False]*120
self.delay = 0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_show_without_robots_l.usd"
large_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform_unfinished/mobile_platform_flattened.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/Cover_Gripper/Cover_Gripper.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-17.73638,-17.06779, 0.81965]), orientation=np.array([0.70711, 0, 0, -0.70711]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_02 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_02")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_02/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_02/ee_link", translate=0.1611, direction="x")
self.ur10_02 = scene.add(
SingleManipulator(prim_path="/World/UR10_02", name="my_ur10_02", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-14.28725, -16.26194, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1]))
)
self.ur10_02.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_01 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10_01")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10_01/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10_01/ee_link", translate=0.1611, direction="x")
self.ur10_01 = scene.add(
SingleManipulator(prim_path="/World/UR10_01", name="my_ur10_01", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-14.28725, -18.32192, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-15.71653, -16.26185, 0.24133]), orientation=np.array([1,0,0,0]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10_01 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10_01")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10_01/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10_01/ee_link", translate=0, direction="x")
self.screw_ur10_01 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10_01", name="my_screw_ur10_01", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-15.7071, -18.31962, 0.24133]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.screw_ur10_01.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mobile_platform",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-16.80027, -17.26595, 0]),
orientation=np.array([0.70711, 0, 0, -0.70711])
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"delay": self.delay,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
}
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
# iteration 1
if self._task_event == 0:
print(self._task_event)
self._task_event =21
if self.task_done[self._task_event]:
self._task_event =21
self.task_done[self._task_event] = True
elif self._task_event == 21:
if np.mean(np.abs(ee_pose.p-np.array([-18.01444, -15.97435, 1.40075])))<0.01:
self._task_event = 60
elif self._task_event == 60:
if self.task_done[self._task_event]:
if self.delay == 320:
self._task_event = 11
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 11:
if self.task_done[self._task_event] and current_mp_position[1]<-24.98:
self._task_event =12
self.task_done[self._task_event] = True
elif self._task_event == 12:
print(np.mean(np.abs(current_mp_orientation-np.array([0,0,0,-1]))))
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([0,0,0,-1]))) < 0.503:
self._task_event = 13
self.task_done[self._task_event] = True
elif self._task_event == 13:
if self.task_done[self._task_event] and current_mp_position[0]<-36.3:
self._task_event =14
self.task_done[self._task_event] = True
elif self._task_event == 14:
print(np.mean(np.abs(current_mp_orientation-np.array([0.70711,0,0,0.70711]))))
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([0.70711,0,0,0.70711]))) < 0.0042:
self._task_event = 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]>17.3:
self._task_event +=1
self.task_done[self._task_event] = True
elif self._task_event == 2:
print(np.mean(np.abs(current_mp_orientation-np.array([1,0,0,0]))))
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([1,0,0,0]))) < 0.008:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 3:
if self.task_done[self._task_event] and current_mp_position[0]>-20.25:
self._task_event +=1
self.task_done[self._task_event] = True
# disassembling parts
elif self._task_event == 4:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 5:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 6:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 7:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 8:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 9:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 10:
if self.task_done[self._task_event]:
if self.delay == 100:
self._task_event +=1
self.delay=0
else:
self.delay+=1
self.task_done[self._task_event] = True
elif self._task_event == 11:
pass
# iteration 9
elif self._task_event == 22:
_, current_mp_orientation = self.moving_platform.get_world_pose()
if self.task_done[self._task_event] and np.mean(np.abs(current_mp_orientation-np.array([0, 0, 0.70711, 0.70711]))) < 0.035:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 23:
current_mp_position, _ = self.moving_platform.get_world_pose()
if self.task_done[self._task_event] and current_mp_position[0]<-36:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 24:
if self.count >100:
if self.task_done[self._task_event]:
self._task_event += 1
self.count=0
else:
self.count+=1
self.task_done[self._task_event] = True
elif self._task_event == 25:
if self.count >100:
if self.task_done[self._task_event]:
self._task_event += 1
self.count=0
else:
self.count+=1
self.task_done[self._task_event] = True
return
def post_reset(self):
self._task_event = 0
return
class Disassembly(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
# add main cover on table
self.add_part_custom("World","main_cover", "ymain_cover", np.array([0.001,0.001,0.001]), np.array([-18.7095, -15.70872, 0.28822]), np.array([0.70711, 0.70711,0,0]))
# add parts
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FFrame", "FFrame", np.array([1,1,1]), np.array([-5.82832, 0, 0]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","engine_no_rigid", "engine", np.array([1,1,1]), np.array([311.20868, 598.91546, 181.74458]), np.array([0.7,-0.1298,-0.10842,-0.69374]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FSuspensionFront", "FSuspensionFront", np.array([1,1,1]), np.array([721.62154, 101.55373, 215.10539]), np.array([0.5564, -0.43637, -0.43637, 0.5564]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FSuspensionFront", "FSuspensionFront_01", np.array([1,1,1]), np.array([797.10001, 103.5, 422.80001]), np.array([0.44177, -0.55212, -0.55212, 0.44177]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","FSuspensionBack", "FSuspensionBack", np.array([1,1,1]), np.array([443.3, 1348.4, 462.9]), np.array([0.09714, -0.03325, -0.76428, 0.63666]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","battery", "battery", np.array([1,1,1]), np.array([377.63, 788.49883, 270.90454]), np.array([0, 0, -0.70711, -0.70711]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","fuel", "fuel", np.array([1,1,1]), np.array([230.13538, 289.31525, 377.64262]), np.array([0.5,0.5,0.5,0.5]))
# self.add_part_custom("mobile_platform/platform/unfinished_stuff","main_cover", "main_cover", np.array([1,1,1]), np.array([596.47952, 1231.52815, -151.59531]), np.array([0.51452, 0.48504, -0.51452, -0.48504]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","lower_cover", "lower_cover", np.array([1,1,1]), np.array([435.65021, 418.57531,21.83379]), np.array([0.50942, 0.50942,0.4904, 0.4904]))
self.add_part_custom("mobile_platform/platform/unfinished_stuff","lower_cover", "lower_cover_01", np.array([1,1,1]), np.array([36.473, 415.8277, 25.66846]), np.array([0.5,0.5, 0.5, 0.5]))
# self.add_part_custom("mobile_platform/platform/unfinished_stuff","Seat", "Seat", np.array([1,1,1]), np.array([179.725, 448.55839, 383.33431]), np.array([0.5,0.5, 0.5, 0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_03", np.array([1,1,1]), np.array([0.15255, -0.1948, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_01", np.array([1,1,1]), np.array([0.1522, 0.33709, 0.56377]), np.array([0.5, -0.5, 0.5, -0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_04", np.array([1,1,1]), np.array([-0.80845, -0.22143, 0.43737]), np.array([0.5, -0.5, 0.5, -0.5]))
self.add_part_custom(f"mobile_platform/platform/unfinished_stuff","FWheel", f"wheel_02", np.array([1,1,1]), np.array([-0.80934, 0.35041, 0.43888]), np.array([0.5, -0.5, 0.5, -0.5]))
# self.moving_platform = self._world.scene.get_object("moving_platform")
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
# add ee cover on robot
# self.add_part_custom("World/UR10/ee_link","main_cover", "main_cover", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5,0.5, -0.5, 0.5]))
# human body movements declaration
# self.set_new_transform("/World/male_human_01/Character_Source/Root/Root/Pelvis/Spine1", [0, 7.16492, -0.03027], [-0.68407, 0.6840694, 0.1790224, -0.1790201])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/L_Clavicle/L_UpArm", [18.5044, 0.00001, 0], [0.5378302, -0.2149462, 0.791071, 0.1968338])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/R_Clavicle/R_UpArm", [-18.50437, -0.00021, -0.00001], [0.5108233, -0.1681133, 0.8128292, 0.223844])
# for i in range(4):
# if i==0:
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1", [0, 7.16492, -0.03027], [-0.68407, 0.6840694, 0.1790224, -0.1790201])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/L_Clavicle/L_UpArm", [18.5044, 0.00001, 0], [0.5378302, -0.2149462, 0.791071, 0.1968338])
# self.set_new_transform("/World/male_human/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/R_Clavicle/R_UpArm", [-18.50437, -0.00021, -0.00001], [0.5108233, -0.1681133, 0.8128292, 0.223844])
# else:
# self.set_new_transform("/World/male_human"+f"_0{i}"+"/Character_Source/Root/Root/Pelvis/Spine1", [0, 7.16492, -0.03027], [-0.68407, 0.6840694, 0.1790224, -0.1790201])
# self.set_new_transform("/World/male_human"+f"_0{i}"+"/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/L_Clavicle/L_UpArm", [18.5044, 0.00001, 0], [0.5378302, -0.2149462, 0.791071, 0.1968338])
# self.set_new_transform("/World/male_human"+f"_0{i}"+"/Character_Source/Root/Root/Pelvis/Spine1/Spine2/Spine3/Chest/R_Clavicle/R_UpArm", [-18.50437, -0.00021, -0.00001], [0.5108233, -0.1681133, 0.8128292, 0.223844])
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def set_new_transform(self, prim_path, translation, orientation):
dc = _dynamic_control.acquire_dynamic_control_interface()
# Get the prim you want to move
prim = dc.get_rigid_body(prim_path)
# Set the new location
new_location = Gf.Vec3f(translation[0], translation[1], translation[2]) # Replace with your desired location
new_rotation = Gf.Rotation(orientation[0], orientation[1], orientation[2], orientation[3]) # Replace with your desired rotation
# Create a new transform
new_transform = UsdGeom.TransformAPI(prim)
new_transform.SetTransform(UsdGeom.XformOp.Transform(Gf.Matrix4d(new_rotation.GetMatrix(), new_location)))
# Apply the new transform
dc.set_rigid_body_pose(prim, new_transform.GetLocalTransformation())
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
print(actions)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.05:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
if current_observations["task_event"] == 0:
print("task 0")
print(current_observations["task_event"])
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
if current_observations["task_event"] == 21:
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":1, "position": np.array([-1.09352, -0.27789, 0.19772-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.01392]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":2, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])},
{"index":3, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])},
{"index":4, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])},
{"index":5, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{"index":6, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])},
{"index":7, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":8, "position": np.array([0.11095, 0.94627, 0.2926-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.11226]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":9, "position": np.array([0.11095, 0.94627, 0.19682-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.01648]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":10, "position": np.array([0.11095, 0.94627, 0.15697-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 0.97663]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":11, "position": np.array([0.11095, 0.94627, 0.11895-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 0.93861]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":12, "position": np.array([0.11095, 0.94627, 0.07882-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 0.89848]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":13, "position": np.array([0.11095, 0.94627, 0.49096-0.16]), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-16.79175, -17.17995, 1.31062]), "goal_orientation":np.array([0.5,0.5,0.5,-0.5])},
{"index":14, "position": np.array([-0.28875, 0.74261, 0.51038-0.16]), "orientation": np.array([0.70458, -0.0597, 0.70458, 0.0597]), "goal_position":np.array([-16.99268, -16.77844, 1.33072]), "goal_orientation":np.array([0.54043, 0.456, 0.54043, -0.456])},
{"index":15, "position": np.array([-0.5015, 0.55795, 0.51038-0.16]), "orientation": np.array([0.6954, -0.12814, 0.6954, 0.12814]), "goal_position":np.array([-17.17748, -16.5655, 1.33072]), "goal_orientation":np.array([0.58233, 0.40111, 0.58233, -0.40111])},
{"index":16, "position": np.array([-0.74286, 0.42878, 0.51038-0.16]), "orientation": np.array([0.6511, -0.2758, 0.6511, 0.2758]), "goal_position":np.array([-17.30707, -16.32381, 1.33072]), "goal_orientation":np.array([0.65542, 0.26538, 0.65542, -0.26538])},
{"index":17, "position": np.array([-0.89016, 0.32513, 0.51038-0.16]), "orientation": np.array([0.60698, -0.36274, 0.60698, 0.36274]), "goal_position":np.array([-17.41105, -16.1764, 1.33072]), "goal_orientation":np.array([0.68569, 0.1727, 0.68569, -0.1727])},
{"index":18, "position": np.array([-1.09352, -0.27789, 0.58455-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-18.01444, -15.97435, 1.40075]), "goal_orientation":np.array([0.70711, 0, 0.70711, 0])}]
self.move_ur10(motion_plan)
# remove world main cover and add ee main cover
if self.motion_task_counter==2 and not self.bool_done[20]:
self.bool_done[20] = True
self.remove_part_custom("World", "ymain_cover")
self.add_part_custom("World/UR10/ee_link","main_cover", "main_cover", np.array([0.001,0.001,0.001]), np.array([0.71735, 0.26961, -0.69234]), np.array([0.5,0.5, -0.5, 0.5]))
# remove ee main cover and add mobile platform main cover
if self.motion_task_counter==13 and not self.bool_done[21]:
self.bool_done[21] = True
self.remove_part_custom("World/UR10/ee_link", "main_cover")
self.add_part_custom("mobile_platform/platform/unfinished_stuff","main_cover", "xmain_cover", np.array([1,1,1]), np.array([596.47952, 1231.52815, -151.59531]), np.array([0.51452, 0.48504, -0.51452, -0.48504]))
if self.motion_task_counter==19:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# delay
elif current_observations["task_event"] == 60:
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 60 delay:", current_observations["delay"])
# iteration 0
# go forward
elif current_observations["task_event"] == 11:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 11")
# turns
elif current_observations["task_event"] == 12:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
print("task 12")
# go forward
elif current_observations["task_event"] == 13:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 13")
# turn
elif current_observations["task_event"] == 14:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
print("task 14")
# iteration 1
# go forward
elif current_observations["task_event"] == 1:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 1")
# turn
elif current_observations["task_event"] == 2:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[0,0,0,0],np.pi/2]))
print("task 2")
# go forward
elif current_observations["task_event"] == 3:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
print("task 3")
# stop, remove and add part
elif current_observations["task_event"] == 10:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("engine")
# prims.delete_prim("/mobile_platform/platform/engine")
self.add_part_custom("World/Environment/disassembled_parts","engine_no_rigid", "qengine", np.array([1,1,1]), np.array([-19511.01549, 16368.42662, 451.93828]), np.array([0.99362,0,-0.11281,0]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 9:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("FSuspensionFront")
self.remove_part("FSuspensionFront_01")
self.remove_part("FSuspensionBack")
# self.add_part_custom("World/Environment/disassembled_parts","FSuspensionFront", "suspension_front", np.array([1,1,1]), np.array([-21252.07916, 16123.85255, -95.12237]), np.array([0.68988,-0.15515,0.17299,0.68562]))
# self.add_part_custom("World/Environment/disassembled_parts","FSuspensionFront", "suspension_front_1", np.array([1,1,1]), np.array([-21253.69102, 15977.78923, -98.17269]), np.array([0.68988,-0.15515,0.17299,0.68562]))
self.add_part_custom("World/Environment/disassembled_parts","FSuspensionBack", "suspension_back", np.array([1,1,1]), np.array([-21250.02819, 16296.28288, -79.20706]), np.array([0.69191,-0.16341,0.16465,0.6837]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 7:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("fuel")
self.add_part_custom("World/Environment/disassembled_parts","FFuelTank", "FFuelTank", np.array([1,1,1]), np.array([-23473.90962, 16316.56526, 266.94776]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 8:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("battery")
self.add_part_custom("World/Environment/disassembled_parts","battery", "qbattery", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 6:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("wheel_01")
self.remove_part("wheel_02")
self.remove_part("wheel_03")
self.remove_part("wheel_04")
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_01", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_02", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_03", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","FWheel", "qwheel_04", np.array([1,1,1]), np.array([-18656.70206, 19011.82244, 283.39021]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 5:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("lower_cover")
self.remove_part("lower_cover_01")
self.add_part_custom("World/Environment/disassembled_parts","lower_cover", "qlower_cover", np.array([1,1,1]), np.array([-20141.19845, 18913.49002, 272.27849]), np.array([0.5,0.5,0.5,0.5]))
self.add_part_custom("World/Environment/disassembled_parts","lower_cover", "qlower_cover_1", np.array([1,1,1]), np.array([-21228.07681, 18923.38351, 272.27849]), np.array([0.5,0.5,0.5,0.5]))
self.isDone[current_observations["task_event"]]=True
# remove and add part
elif current_observations["task_event"] == 4:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0, 0]))
if not self.isDone[current_observations["task_event"]] and current_observations["delay"]==100:
self.remove_part("xmain_cover")
self.add_part_custom("World/Environment/disassembled_parts","main_cover", "qmain_cover", np.array([1,1,1]), np.array([-23651.85127, 19384.76572, 102.60316]), np.array([0.70428,0.70428,0.06314,-0.06314]))
self.isDone[current_observations["task_event"]]=True
elif current_observations["task_event"] == 11:
print("delay")
elif current_observations["task_event"] == 12:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5, 0]))
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_world(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_world_pose(position=position, orientation=orientation)
return part
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, prim_path):
prims.delete_prim("/mobile_platform/platform/unfinished_stuff/"+prim_path)
def remove_part_custom(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 46,252 |
Python
| 63.062327 | 353 | 0.611887 |
swadaskar/Isaac_Sim_Folder/extension_examples/replay_follow_target/replay_follow_target_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.replay_follow_target import ReplayFollowTarget
import asyncio
import omni.ui as ui
from omni.isaac.ui.ui_utils import btn_builder, str_builder
class ReplayFollowTargetExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="Manipulation",
submenu_name="",
name="Replay Follow Target",
title="Replay Follow Target Task",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_advanced_data_logging.html",
overview="This Example shows how to use data logging to replay data collected\n\n from the follow target extension example.\n\n Press the 'Open in IDE' button to view the source code.",
sample=ReplayFollowTarget(),
file_path=os.path.abspath(__file__),
number_of_extra_frames=2,
window_width=700,
)
self.task_ui_elements = {}
frame = self.get_frame(index=0)
self.build_data_logging_ui(frame)
return
def _on_replay_trajectory_button_event(self):
asyncio.ensure_future(
self.sample._on_replay_trajectory_event_async(self.task_ui_elements["Data File"].get_value_as_string())
)
self.task_ui_elements["Replay Trajectory"].enabled = False
self.task_ui_elements["Replay Scene"].enabled = False
return
def _on_replay_scene_button_event(self):
asyncio.ensure_future(
self.sample._on_replay_scene_event_async(self.task_ui_elements["Data File"].get_value_as_string())
)
self.task_ui_elements["Replay Trajectory"].enabled = False
self.task_ui_elements["Replay Scene"].enabled = False
return
def post_reset_button_event(self):
self.task_ui_elements["Replay Trajectory"].enabled = True
self.task_ui_elements["Replay Scene"].enabled = True
return
def post_load_button_event(self):
self.task_ui_elements["Replay Trajectory"].enabled = True
self.task_ui_elements["Replay Scene"].enabled = True
return
def post_clear_button_event(self):
self.task_ui_elements["Replay Trajectory"].enabled = False
self.task_ui_elements["Replay Scene"].enabled = False
return
def build_data_logging_ui(self, frame):
with frame:
with ui.VStack(spacing=5):
frame.title = "Data Replay"
frame.visible = True
example_data_file = os.path.abspath(
os.path.join(os.path.abspath(__file__), "../../../../../data/example_data_file.json")
)
dict = {
"label": "Data File",
"type": "stringfield",
"default_val": example_data_file,
"tooltip": "Data File",
"on_clicked_fn": None,
"use_folder_picker": False,
"read_only": False,
}
self.task_ui_elements["Data File"] = str_builder(**dict)
dict = {
"label": "Replay Trajectory",
"type": "button",
"text": "Replay Trajectory",
"tooltip": "Replay Trajectory",
"on_clicked_fn": self._on_replay_trajectory_button_event,
}
self.task_ui_elements["Replay Trajectory"] = btn_builder(**dict)
self.task_ui_elements["Replay Trajectory"].enabled = False
dict = {
"label": "Replay Scene",
"type": "button",
"text": "Replay Scene",
"tooltip": "Replay Scene",
"on_clicked_fn": self._on_replay_scene_button_event,
}
self.task_ui_elements["Replay Scene"] = btn_builder(**dict)
self.task_ui_elements["Replay Scene"].enabled = False
return
| 4,564 |
Python
| 41.663551 | 197 | 0.586766 |
swadaskar/Isaac_Sim_Folder/extension_examples/replay_follow_target/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.replay_follow_target.replay_follow_target import ReplayFollowTarget
from omni.isaac.examples.replay_follow_target.replay_follow_target_extension import ReplayFollowTargetExtension
| 634 |
Python
| 51.916662 | 111 | 0.829653 |
swadaskar/Isaac_Sim_Folder/extension_examples/replay_follow_target/replay_follow_target.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.core.utils.types import ArticulationAction
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.franka.tasks import FollowTarget as FollowTargetTask
import numpy as np
class ReplayFollowTarget(BaseSample):
def __init__(self) -> None:
super().__init__()
self._articulation_controller = None
def setup_scene(self):
world = self.get_world()
world.add_task(FollowTargetTask())
return
async def setup_pre_reset(self):
world = self.get_world()
if world.physics_callback_exists("replay_trajectory"):
world.remove_physics_callback("replay_trajectory")
if world.physics_callback_exists("replay_scene"):
world.remove_physics_callback("replay_scene")
return
async def setup_post_load(self):
self._franka_task = list(self._world.get_current_tasks().values())[0]
self._task_params = self._franka_task.get_params()
my_franka = self._world.scene.get_object(self._task_params["robot_name"]["value"])
self._articulation_controller = my_franka.get_articulation_controller()
self._data_logger = self._world.get_data_logger()
return
async def _on_replay_trajectory_event_async(self, data_file):
self._data_logger.load(log_path=data_file)
world = self.get_world()
await world.play_async()
world.add_physics_callback("replay_trajectory", self._on_replay_trajectory_step)
return
async def _on_replay_scene_event_async(self, data_file):
self._data_logger.load(log_path=data_file)
world = self.get_world()
await world.play_async()
world.add_physics_callback("replay_scene", self._on_replay_scene_step)
return
def _on_replay_trajectory_step(self, step_size):
if self._world.current_time_step_index < self._data_logger.get_num_of_data_frames():
data_frame = self._data_logger.get_data_frame(data_frame_index=self._world.current_time_step_index)
self._articulation_controller.apply_action(
ArticulationAction(joint_positions=data_frame.data["applied_joint_positions"])
)
return
def _on_replay_scene_step(self, step_size):
if self._world.current_time_step_index < self._data_logger.get_num_of_data_frames():
target_name = self._task_params["target_name"]["value"]
data_frame = self._data_logger.get_data_frame(data_frame_index=self._world.current_time_step_index)
self._articulation_controller.apply_action(
ArticulationAction(joint_positions=data_frame.data["applied_joint_positions"])
)
self._world.scene.get_object(target_name).set_world_pose(
position=np.array(data_frame.data["target_position"])
)
return
| 3,297 |
Python
| 42.973333 | 111 | 0.67061 |
swadaskar/Isaac_Sim_Folder/extension_examples/robo_factory/robo_factory.py
|
from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.09744, -16.5124, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-4.02094, -16.52902, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mock_robot",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-5.26025, -9.96157, 0.03551]),
orientation=np.array([0.5, 0.5, -0.5, -0.5]),
)
)
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-7.47898, -16.15971, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"task_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
self.screw_ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
"bool_counter": self._bool_event
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event += 1
self.task_done[self._task_event] = True
elif self._task_event == 1:
if self.task_done[self._task_event] and current_mp_position[1]<-16.69:
self._task_event = 51
self._bool_event+=1
self.task_done[self._task_event] = True
elif self._task_event == 51:
if np.mean(np.abs(ee_pose.p - np.array([-5.005, -16.7606, 0.76714])))<0.02:
self._task_event = 71
self._bool_event+=1
elif self._task_event == 71:
if np.mean(np.abs(ee_pose.p - np.array([-4.18372, 7.03628, 0.44567])))<0.058:
self._task_event=2
pass
elif self._task_event == 2:
pass
return
def post_reset(self):
self._task_event = 0
return
class RoboFactory(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
self.delay=0
print("inside setup_scene", self.motion_task_counter)
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"])
self.add_part_custom("engine_bringer/platform","fuel", "fuel", np.array([0.001,0.001,0.001]), np.array([-0.1769, 0.13468, 0.24931]), np.array([0.5,0.5,-0.5,-0.5]))
self.add_part_custom("mock_robot/platform","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.90761, 0.03096, 0.69056]), np.array([0.48732, -0.51946, 0.50085, -0.49176]))
self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
self.screw_articulation_controller = self.screw_ur10.get_articulation_controller()
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
# actions.joint_velocities = [0.0001,0.0001,0.0001,0.0001,0.0001,0.0001]
# actions.joint_velocities = [1,1,1,1,1,1]
print(actions)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
# time.sleep(0.3)
print("Completed one motion plan: ", self.motion_task_counter)
def do_screw_driving(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.screw_my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
self.screw_articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/Screw_driving_UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
def transform_for_screw_ur10(self, position):
position[0]+=0.16171
position[1]+=0.00752
position[2]+=-0.00419
return position
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
# Terminology
# mp - moving platform
# iteration 1
# go forward
if current_observations["task_event"] == 1:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
# small mp brings in part
elif current_observations["task_event"] == 51:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([0.90691+0.16, 0.01077, 0.19514]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-7.00386, -16.5233, 0.43633]), "goal_orientation":np.array([0,0, 0.70711, 0.70711])},
{"index":1, "position": np.array([0.97165+0.16, 0.01077, 0.19514]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-7.00686, -16.5233, 0.43633]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":2, "position": np.array([0.97165+0.16, 0.01077, 0.31194]), "orientation": np.array([0.70711,0.70711,0,0]), "goal_position":np.array([-7.0686, -16.5233, 0.55313]), "goal_orientation":np.array([0, 0, 0.70711, 0.70711])},
{"index":3, "position": np.array([-1.09292-0.16, 0.24836, 0.52594]), "orientation": np.array([0,0,0.70711,0.70711]), "goal_position":np.array([-5.005, -16.7606, 0.76714]), "goal_orientation":np.array([0.70711, 0.70711, 0,0])}]
self.move_ur10(motion_plan)
ee_pose = self.give_location("/World/UR10/ee_link")
print(ee_pose)
if self.motion_task_counter==2 and not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
print("position:", ee_pose.p)
print("rotation:", ee_pose.r)
self.remove_part("engine_bringer/platform", "fuel")
self.add_part_custom("World/UR10/ee_link","fuel", "qfuel", np.array([0.001,0.001,0.001]), np.array([0.22927, -0.16445, -0.08733]), np.array([0.70711,0,-0.70711,0]))
if self.motion_task_counter==4:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# arm_robot picks and places part
elif current_observations["task_event"] == 71:
if not self.isDone[current_observations["task_event"]]:
if not self.bool_done[current_observations["bool_counter"]]:
self.bool_done[current_observations["bool_counter"]] = True
print("Part removal done")
self.remove_part("World/UR10/ee_link", "qfuel")
self.motion_task_counter=0
self.add_part_custom("mock_robot/platform","fuel", "xfuel", np.array([0.001,0.001,0.001]), np.array([-0.03273, 0.09227, 0.58731]), np.array([0.70711,0.70711,0,0]))
def transform(points):
points[0]-=0.16
points[2]-=0.15
return points
motion_plan = [{"index":0, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":1, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.15931, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":2, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.15931, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.68786, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":3, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":4, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.4077, 0.5447]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.78736]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":5, "position": self.transform_for_screw_ur10(transform(np.array([0.74393, 0.4077, 0.61626]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-4.76508, -16.93625, 0.85892]), "goal_orientation":np.array([0,-0.70711,0,0.70711])},
{"index":6, "position": self.transform_for_screw_ur10(transform(np.array([-0.04511, 0.7374, 0.41493]))), "orientation": np.array([0.70711, 0, 0.70711, 0]), "goal_position":np.array([-3.97604, -17.26595,0.6576]), "goal_orientation":np.array([0,-0.70711,0,0.70711])}]
print(self.motion_task_counter)
self.do_screw_driving(motion_plan)
ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
print("EE_Pose",ee_pose)
if np.mean(np.abs(ee_pose.p - motion_plan[6]["goal_position"]))<0.058:
self.isDone[current_observations["task_event"]]=True
self.motion_task_counter=0
motion_plan = [{"index":0, "position": np.array([0.07, -0.81, 0.21]), "orientation": np.array([-0.69, 0, 0, 0.72]), "goal_position":np.array([-4.18372, 7.03628, 0.44567]), "goal_orientation":np.array([0.9999, 0, 0, 0])}]
self.move_ur10(motion_plan)
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
print("done", self.motion_task_counter)
# remove engine and add engine
elif current_observations["task_event"] == 2:
self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0.5,0]))
# elif current_observations["task_event"] == 3:
# self.moving_platform.apply_action(self._my_custom_controller.turn(command=[[-0.5, 0.5, -0.5, 0.5],0]))
# self.motion_task_counter=0
# elif current_observations["task_event"] == 4:
# self.moving_platform.apply_action(self._my_custom_controller.forward(command=[0,0]))
# if not self.isDone[current_observations["task_event"]]:
# motion_plan = [{"index":0, "position": self.transform_for_screw_ur10(np.array([0.7558, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.42428, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":1, "position": self.transform_for_screw_ur10(np.array([0.92167, 0.59565, 0.17559])), "orientation": np.array([0.24137, -0.97029, -0.00397, -0.0163]), "goal_position":np.array([-5.3358, 5.59014, 0.41358]), "goal_orientation":np.array([0.18255, -0.68481, -0.68739, 0.15875])},
# {"index":2, "position": self.transform_for_screw_ur10(np.array([0.7743, 0.13044, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.44277, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])},
# {"index":3, "position": self.transform_for_screw_ur10(np.array([0.92789, 0.13045, 0.24968])), "orientation": np.array([0.14946, 0.98863, 0.00992, 0.01353]), "goal_position":np.array([-4.8676, 5.59636, 0.48787]), "goal_orientation":np.array([0.09521, 0.6933, 0.70482, 0.1162])},
# {"index":4, "position": np.array([-0.03152, -0.69498, 0.14425]), "orientation": np.array([0.69771, -0.07322, 0.09792, -0.70587]), "goal_position":np.array([-4.04212, 4.63272, 0.38666]), "goal_orientation":np.array([0.99219, -0.12149, 0.01374, 0.02475])}]
# self.do_screw_driving(motion_plan)
# ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# print("EE_Pose",ee_pose)
# if self.motion_task_counter>1 and np.mean(np.abs(ee_pose.p - motion_plan[4]["goal_position"]))<0.058:
# self.isDone[current_observations["task_event"]]=True
# print("done", self.motion_task_counter)
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 30,709 |
Python
| 58.515504 | 441 | 0.610766 |
swadaskar/Isaac_Sim_Folder/extension_examples/robo_factory/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.robo_factory.robo_factory import RoboFactory
from omni.isaac.examples.robo_factory.robo_factory_extension import RoboFactoryExtension
| 588 |
Python
| 48.083329 | 88 | 0.823129 |
swadaskar/Isaac_Sim_Folder/extension_examples/robo_factory/robo_factory_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.robo_factory import RoboFactory
import asyncio
import omni.ui as ui
from omni.isaac.ui.ui_utils import btn_builder
class RoboFactoryExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="",
submenu_name="",
name="cell 3 fuel",
title="RoboFactory",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html",
overview="This Example shows how to run multiple tasks in the same scene.\n\nPress the 'Open in IDE' button to view the source code.",
sample=RoboFactory(),
file_path=os.path.abspath(__file__),
number_of_extra_frames=1,
)
# self.task_ui_elements = {}
# frame = self.get_frame(index=0)
# self.build_task_controls_ui(frame)
return
# def _on_start_stacking_button_event(self):
# asyncio.ensure_future(self.sample._on_start_stacking_event_async())
# self.task_ui_elements["Start Stacking"].enabled = False
# return
# def post_reset_button_event(self):
# self.task_ui_elements["Start Stacking"].enabled = True
# return
# def post_load_button_event(self):
# self.task_ui_elements["Start Stacking"].enabled = True
# return
# def post_clear_button_event(self):
# self.task_ui_elements["Start Stacking"].enabled = False
# return
# def build_task_controls_ui(self, frame):
# with frame:
# with ui.VStack(spacing=5):
# # Update the Frame Title
# frame.title = "Task Controls"
# frame.visible = True
# dict = {
# "label": "Start Stacking",
# "type": "button",
# "text": "Start Stacking",
# "tooltip": "Start Stacking",
# "on_clicked_fn": self._on_start_stacking_button_event,
# }
# self.task_ui_elements["Start Stacking"] = btn_builder(**dict)
# self.task_ui_elements["Start Stacking"].enabled = False
| 2,730 |
Python
| 38.57971 | 146 | 0.610989 |
swadaskar/Isaac_Sim_Folder/extension_examples/robo_party/robo_party_extension.py
|
# Copyright (c) 2020-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.robo_party import RoboParty
import asyncio
import omni.ui as ui
from omni.isaac.ui.ui_utils import btn_builder
class RoboPartyExtension(BaseSampleExtension):
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="",
submenu_name="",
name="suspension feeding",
title="RoboParty",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html",
overview="This Example shows how to run multiple tasks in the same scene.\n\nPress the 'Open in IDE' button to view the source code.",
sample=RoboParty(),
file_path=os.path.abspath(__file__),
number_of_extra_frames=1,
)
# self.task_ui_elements = {}
# frame = self.get_frame(index=0)
# self.build_task_controls_ui(frame)
return
# def _on_start_party_button_event(self):
# asyncio.ensure_future(self.sample._on_start_party_event_async())
# self.task_ui_elements["Start Party"].enabled = False
# return
# def post_reset_button_event(self):
# self.task_ui_elements["Start Party"].enabled = True
# return
# def post_load_button_event(self):
# self.task_ui_elements["Start Party"].enabled = True
# return
# def post_clear_button_event(self):
# self.task_ui_elements["Start Party"].enabled = False
# return
# def build_task_controls_ui(self, frame):
# with frame:
# with ui.VStack(spacing=5):
# # Update the Frame Title
# frame.title = "Task Controls"
# frame.visible = True
# dict = {
# "label": "Start Party",
# "type": "button",
# "text": "Start Party",
# "tooltip": "Start Party",
# "on_clicked_fn": self._on_start_party_button_event,
# }
# self.task_ui_elements["Start Party"] = btn_builder(**dict)
# self.task_ui_elements["Start Party"].enabled = False
| 2,691 |
Python
| 38.014492 | 146 | 0.605723 |
swadaskar/Isaac_Sim_Folder/extension_examples/robo_party/robo_party.py
|
from omni.isaac.core.prims import GeometryPrim, XFormPrim
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.nucleus import get_assets_root_path
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.universal_robots.controllers.pick_place_controller import PickPlaceController
from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.types import ArticulationAction
# This extension includes several generic controllers that could be used with multiple robots
from omni.isaac.motion_generation import WheelBasePoseController
# Robot specific controller
from omni.isaac.wheeled_robots.controllers.differential_controller import DifferentialController
from omni.isaac.core.controllers import BaseController
from omni.isaac.core.tasks import BaseTask
from omni.isaac.manipulators import SingleManipulator
from omni.isaac.manipulators.grippers import SurfaceGripper
import numpy as np
from omni.isaac.core.objects import VisualCuboid, DynamicCuboid
from omni.isaac.core.utils import prims
from pxr import UsdLux, Sdf, UsdGeom
import omni.usd
from omni.isaac.dynamic_control import _dynamic_control
from omni.isaac.universal_robots import KinematicsSolver
import carb
from collections import deque, defaultdict
import time
class CustomDifferentialController(BaseController):
def __init__(self):
super().__init__(name="my_cool_controller")
# An open loop controller that uses a unicycle model
self._wheel_radius = 0.125
self._wheel_base = 1.152
return
def forward(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
def turn(self, command):
# command will have two elements, first element is the forward velocity
# second element is the angular velocity (yaw only).
joint_velocities = [0.0, 0.0, 0.0, 0.0]
joint_velocities[0] = ((2 * command[0][0]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[1] = ((2 * command[0][1]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[2] = ((2 * command[0][2]) - (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
joint_velocities[3] = ((2 * command[0][3]) + (command[1] * self._wheel_base)) / (2 * self._wheel_radius)
# A controller has to return an ArticulationAction
return ArticulationAction(joint_velocities=joint_velocities)
class RobotsPlaying(BaseTask):
def __init__(self, name):
super().__init__(name=name, offset=None)
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
# self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]), np.array([-5.40137, -4.88, 0.03551]), np.array([-5.40137, -17.69, 0.03551]), np.array([-20.45, -17.69, 0.03551]), np.array([-36.03, -17.69, 0.03551]), np.array([-36.03, -4.71, 0.03551]), np.array([-20.84, -4.71, 0.03551]), np.array([-20.84, 7.36, 0.03551]), np.array([-36.06, 7.36, 0.03551]), np.array([-36.06, 19.64, 0.03551]), np.array([-5.40137, 19.64, 0.03551])]
self.mp_goal_position = [np.array([-5.40137, 5.54515, 0.03551]),
np.array([-5.40137, -2.628, 0.03551]),
np.array([-5.40137, -15.69, 0.03551]),
np.array([-20.45, -17.69, 0.03551]),
np.array([-36.03, -17.69, 0.03551]),
np.array([-36.03, -4.71, 0.03551]),
np.array([-20.84, -4.71, 0.03551]),
np.array([-20.84, 7.36, 0.03551]),
np.array([-36.06, 7.36, 0.03551]),
np.array([-36.06, 19.64, 0.03551]),
np.array([-5.40137, 19.64, 0.03551])]
self.eb_goal_position = np.array([-4.39666, 7.64828, 0.035])
self.ur10_goal_position = np.array([])
# self.mp_goal_orientation = np.array([1, 0, 0, 0])
self._task_event = 0
self.task_done = [False]*120
self.motion_event = 0
self.motion_done = [False]*120
self._bool_event = 0
self.count=0
return
def set_up_scene(self, scene):
super().set_up_scene(scene)
assets_root_path = get_assets_root_path() # http://omniverse-content-production.s3-us-west-2.amazonaws.com/Assets/Isaac/2022.2.1
asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/photos/real_microfactory_1_2.usd"
robot_arm_path = assets_root_path + "/Isaac/Robots/UR10/ur10.usd"
# adding UR10 for pick and place
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/UR10")
# gripper_usd = assets_root_path + "/Isaac/Robots/UR10/Props/short_gripper.usd"
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/RG2_v2/RG2_v2.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/UR10/ee_link")
gripper = SurfaceGripper(end_effector_prim_path="/World/UR10/ee_link", translate=0.1611, direction="x")
self.ur10 = scene.add(
SingleManipulator(prim_path="/World/UR10", name="my_ur10", end_effector_prim_name="ee_link", gripper=gripper, translation = np.array([-6.10078, -5.19303, 0.24168]), orientation=np.array([0,0,0,1]), scale=np.array([1,1,1]))
)
self.ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
# adding UR10 for screwing in part
add_reference_to_stage(usd_path=robot_arm_path, prim_path="/World/Screw_driving_UR10")
gripper_usd = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/robot_tools/screw_driver_link/screw_driver_link.usd"
add_reference_to_stage(usd_path=gripper_usd, prim_path="/World/Screw_driving_UR10/ee_link")
screw_gripper = SurfaceGripper(end_effector_prim_path="/World/Screw_driving_UR10/ee_link", translate=0, direction="x")
self.screw_ur10 = scene.add(
SingleManipulator(prim_path="/World/Screw_driving_UR10", name="my_screw_ur10", end_effector_prim_name="ee_link", gripper=screw_gripper, translation = np.array([-3.78767, -5.00871, 0.24168]), orientation=np.array([0, 0, 0, 1]), scale=np.array([1,1,1]))
)
self.screw_ur10.set_joints_default_state(positions=np.array([-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2, np.pi / 2, 0]))
large_robot_asset_path = small_robot_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/Collected_full_warehouse_microfactory/Collected_mobile_platform_improved/Collected_mobile_platform/mobile_platform.usd"
# add floor
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Environment")
# add moving platform
self.moving_platform = scene.add(
WheeledRobot(
prim_path="/mock_robot",
name="moving_platform",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=large_robot_asset_path,
position=np.array([-5.26025, 1.25718, 0.03551]),
orientation=np.array([0.5, 0.5, -0.5, -0.5]),
)
)
self.engine_bringer = scene.add(
WheeledRobot(
prim_path="/engine_bringer",
name="engine_bringer",
wheel_dof_names=["wheel_tl_joint", "wheel_tr_joint", "wheel_bl_joint", "wheel_br_joint"],
create_robot=True,
usd_path=small_robot_asset_path,
position=np.array([-10.39486, -5.70953, 0.035]),
orientation=np.array([0,0,0.70711, 0.70711]),
)
)
return
def get_observations(self):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
current_joint_positions_ur10 = self.ur10.get_joint_positions()
observations= {
"task_event": self._task_event,
"task_event": self._task_event,
self.moving_platform.name: {
"position": current_mp_position,
"orientation": current_mp_orientation,
"goal_position": self.mp_goal_position
},
self.engine_bringer.name: {
"position": current_eb_position,
"orientation": current_eb_orientation,
"goal_position": self.eb_goal_position
},
self.ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
self.screw_ur10.name: {
"joint_positions": current_joint_positions_ur10,
},
"bool_counter": self._bool_event
}
return observations
def get_params(self):
params_representation = {}
params_representation["arm_name"] = {"value": self.ur10.name, "modifiable": False}
params_representation["screw_arm"] = {"value": self.screw_ur10.name, "modifiable": False}
params_representation["mp_name"] = {"value": self.moving_platform.name, "modifiable": False}
params_representation["eb_name"] = {"value": self.engine_bringer.name, "modifiable": False}
return params_representation
def check_prim_exists(self, prim):
if prim:
return True
return False
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def pre_step(self, control_index, simulation_time):
current_mp_position, current_mp_orientation = self.moving_platform.get_world_pose()
current_eb_position, current_eb_orientation = self.engine_bringer.get_world_pose()
ee_pose = self.give_location("/World/UR10/ee_link")
screw_ee_pose = self.give_location("/World/Screw_driving_UR10/ee_link")
# iteration 1
if self._task_event == 0:
if self.task_done[self._task_event]:
self._task_event = 61
self.task_done[self._task_event] = True
elif self._task_event == 61:
if self.task_done[self._task_event] and current_eb_position[0]>=-6.20:
self._task_event = 51
self._bool_event+=1
self.task_done[self._task_event] = True
elif self._task_event == 51:
if np.mean(np.abs(ee_pose.p - np.array([-5.00127, -4.80822, 0.53949])))<0.02:
self._task_event = 71
self._bool_event+=1
elif self._task_event == 71:
if np.mean(np.abs(ee_pose.p - np.array([-4.18372, 7.03628, 0.44567])))<0.058:
self._task_event=2
elif self._task_event == 2:
pass
return
def post_reset(self):
self._task_event = 0
return
class RoboParty(BaseSample):
def __init__(self) -> None:
super().__init__()
self.done = False
return
def setup_scene(self):
world = self.get_world()
# adding light
l = UsdLux.SphereLight.Define(world.stage, Sdf.Path("/World/Lights"))
# l.CreateExposureAttr(...)
l.CreateColorTemperatureAttr(10000)
l.CreateIntensityAttr(7500)
l.CreateRadiusAttr(75)
l.AddTranslateOp()
XFormPrim("/World/Lights").set_local_pose(translation=np.array([0,0,100]))
world.add_task(RobotsPlaying(name="awesome_task"))
self.isDone = [False]*120
self.bool_done = [False]*120
self.motion_task_counter=0
self.delay=0
print("inside setup_scene", self.motion_task_counter)
return
async def setup_post_load(self):
self._world = self.get_world()
task_params = self._world.get_task("awesome_task").get_params()
# bring in moving platforms
self.moving_platform = self._world.scene.get_object(task_params["mp_name"]["value"])
self.engine_bringer = self._world.scene.get_object(task_params["eb_name"]["value"])
self.add_part_custom("engine_bringer/platform","FSuspensionBack", "FSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-0.84168, -0.14814, 0.31508]), np.array([0.70711, 0, 0.70711, 0]))
self.add_part_custom("engine_bringer/platform","FSuspensionBack", "FSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([-0.69423, -0.14778, 0.31508]), np.array([0.70711, 0, 0.70711, 0]))
self.add_part_custom("engine_bringer/platform","FSuspensionBack", "FSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([-0.53982, -0.14629, 0.31508]), np.array([0.70711, 0, 0.70711, 0]))
self.add_part_custom("engine_bringer/platform","FSuspensionBack", "FSuspensionBack_03", np.array([0.001,0.001,0.001]), np.array([-0.37795, -0.147, 0.31508]), np.array([0.70711, 0, 0.70711, 0]))
self.add_part_custom("engine_bringer/platform","FSuspensionBack", "FSuspensionBack_04", np.array([0.001,0.001,0.001]), np.array([-0.22874, -0.14663, 0.31508]), np.array([0.70711, 0, 0.70711, 0]))
self.add_part_custom("engine_bringer/platform","FSuspensionBack", "FSuspensionBack_05", np.array([0.001,0.001,0.001]), np.array([-0.08344, -0.14627, 0.31508]), np.array([0.70711, 0, 0.70711, 0]))
self.add_part_custom("mock_robot/platform","engine_no_rigid", "engine", np.array([0.001,0.001,0.001]), np.array([-0.16041, -0.00551, 0.46581]), np.array([0.98404, -0.00148, -0.17792, -0.00274]))
self.add_part("FFrame", "frame", np.array([0.001, 0.001, 0.001]), np.array([0.45216, -0.32084, 0.28512]), np.array([0, 0, 0.70711, 0.70711]))
self._world.add_physics_callback("sending_actions", callback_fn=self.send_robot_actions)
# Initialize our controller after load and the first reset
self._my_custom_controller = CustomDifferentialController()
self._my_controller = WheelBasePoseController(name="cool_controller", open_loop_wheel_controller=DifferentialController(name="simple_control", wheel_radius=0.125, wheel_base=0.46), is_holonomic=False)
self.ur10 = self._world.scene.get_object(task_params["arm_name"]["value"])
self.screw_ur10 = self._world.scene.get_object(task_params["screw_arm"]["value"])
self.my_controller = KinematicsSolver(self.ur10, attach_gripper=True)
self.screw_my_controller = KinematicsSolver(self.screw_ur10, attach_gripper=True)
self.articulation_controller = self.ur10.get_articulation_controller()
self.screw_articulation_controller = self.screw_ur10.get_articulation_controller()
return
async def setup_post_reset(self):
self._my_controller.reset()
await self._world.play_async()
return
def give_location(self, prim_path):
dc=_dynamic_control.acquire_dynamic_control_interface()
object=dc.get_rigid_body(prim_path)
object_pose=dc.get_rigid_body_pose(object)
return object_pose # position: object_pose.p, rotation: object_pose.r
def move_ur10(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
self.articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
def do_screw_driving(self, locations):
target_location = locations[self.motion_task_counter]
print("Doing "+str(target_location["index"])+"th motion plan")
actions, success = self.screw_my_controller.compute_inverse_kinematics(
target_position=target_location["position"],
target_orientation=target_location["orientation"],
)
if success:
print("still homing on this location")
self.screw_articulation_controller.apply_action(actions)
else:
carb.log_warn("IK did not converge to a solution. No action is being taken.")
# check if reached location
curr_location = self.give_location("/World/Screw_driving_UR10/ee_link")
print("Curr:",curr_location.p)
print("Goal:", target_location["goal_position"])
print(np.mean(np.abs(curr_location.p - target_location["goal_position"])))
if np.mean(np.abs(curr_location.p - target_location["goal_position"]))<0.015:
self.motion_task_counter+=1
print("Completed one motion plan: ", self.motion_task_counter)
def transform_for_screw_ur10(self, position):
position[0]+=0.16171
position[1]+=0.00752
position[2]+=-0.00419
return position
def send_robot_actions(self, step_size):
current_observations = self._world.get_observations()
task_params = self._world.get_task("awesome_task").get_params()
## Task event numbering:
# 1 - 30 normal events: forward, stop and add piece, turn
# 51 - 61 smaller moving platforms events: forward, stop, disappear piece
# 71 - pick place tasks
# Terminology
# mp - moving platform
# iteration 1
if current_observations["task_event"] == 61:
self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[-0.5,0]))
if not self.isDone[current_observations["task_event"]]:
self.isDone[current_observations["task_event"]]=True
# small mp brings in part
elif current_observations["task_event"] == 51:
self.engine_bringer.apply_action(self._my_custom_controller.forward(command=[0,0]))
if not self.isDone[current_observations["task_event"]]:
motion_plan = [{"index":0, "position": np.array([-0.318, 0.88177, 0.2+0.2012-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-5.78548, -6.07645, 0.2+0.44332]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":1, "position": np.array([-0.318, 0.88177, 0.2012-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-5.78548, -6.07645, 0.44332]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":2, "position": np.array([-0.318, 0.88177, 0.2+0.2012-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-5.78548, -6.07645, 0.2+0.44332]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":3, "position": np.array([0.7248, 0.10255, 0.3432+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -5.29498, 0.58419+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":4, "position": np.array([0.7248, 0.10255, 0.3432-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -5.29498, 0.58419]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":5, "position": np.array([0.7248, 0.10255, 0.3432+0.2-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -5.29498, 0.58419+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":6, "position": np.array([-0.17293, 0.88177, 0.2012-0.16+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-5.93055, -6.07645, 0.44332+0.2]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":7, "position": np.array([-0.17293, 0.88177, 0.2012-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-5.93055, -6.07645, 0.44332]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":8, "position": np.array([-0.17293, 0.88177, 0.2012-0.16+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-5.93055, -6.07645, 0.44332+0.2]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":9, "position": np.array([0.7248, -0.06149, 0.3432-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -5.13094, 0.58419+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":10, "position": np.array([0.7248, -0.06149, 0.3432-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -5.13094, 0.58419]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":11, "position": np.array([0.7248, -0.06149, 0.3432-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -5.13094, 0.58419+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":12, "position": np.array([-0.0188, 0.88177, 0.2012-0.16+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-6.08468, -6.07645, 0.44332+0.2]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":13, "position": np.array([-0.0188, 0.88177, 0.2012-0.16]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-6.08468, -6.07645, 0.44332]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":14, "position": np.array([-0.0188, 0.88177, 0.2012-0.16+0.2]), "orientation": np.array([0, -0.70711, 0, 0.70711]), "goal_position":np.array([-6.08468, -6.07645, 0.44332+0.2]), "goal_orientation":np.array([0.70711,0,0.70711,0])},
{"index":15, "position": np.array([0.7248, -0.22445, 0.3432-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -4.96798, 0.58419+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":16, "position": np.array([0.7248, -0.22445, 0.3432-0.16]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -4.96798, 0.58419]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])},
{"index":17, "position": np.array([0.7248, -0.22445, 0.3432-0.16+0.2]), "orientation": np.array([0.5, -0.5, 0.5, 0.5]), "goal_position":np.array([-6.82643, -4.96798, 0.58419+0.2]), "goal_orientation":np.array([0.5, 0.5, 0.5, -0.5])}]
self.move_ur10(motion_plan)
# pick up suspension
if self.motion_task_counter==2 and not self.bool_done[21]:
self.bool_done[21] = True
self.remove_part("engine_bringer/platform", "FSuspensionBack")
self.add_part_custom("World/UR10/ee_link","FSuspensionBack", "qFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1]))
# drop suspension
if self.motion_task_counter==5 and not self.bool_done[22]:
self.bool_done[22] = True
self.remove_part("World/UR10/ee_link", "qFSuspensionBack")
self.add_part_custom("World/Environment","FSuspensionBack", "xFSuspensionBack", np.array([0.001,0.001,0.001]), np.array([-6.66734, -4.8518, 0.41407]), np.array([0.5,0.5,-0.5,0.5]))
# pick up suspension
if self.motion_task_counter==8 and not self.bool_done[23]:
self.bool_done[23] = True
self.remove_part("engine_bringer/platform", "FSuspensionBack_01")
self.add_part_custom("World/UR10/ee_link","FSuspensionBack", "qFSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1]))
# drop suspension
if self.motion_task_counter==11 and not self.bool_done[24]:
self.bool_done[24] = True
self.remove_part("World/UR10/ee_link", "qFSuspensionBack_01")
self.add_part_custom("World/Environment","FSuspensionBack", "xFSuspensionBack_01", np.array([0.001,0.001,0.001]), np.array([-6.66734, -4.68841, 0.41407]), np.array([0.5,0.5,-0.5,0.5]))
# pick up suspension
if self.motion_task_counter==14 and not self.bool_done[25]:
self.bool_done[25] = True
self.remove_part("engine_bringer/platform", "FSuspensionBack_02")
self.add_part_custom("World/UR10/ee_link","FSuspensionBack", "qFSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([0.16839, 0.158, -0.44332]), np.array([0,0,0,1]))
# drop suspension
if self.motion_task_counter==17 and not self.bool_done[26]:
self.bool_done[26] = True
self.remove_part("World/UR10/ee_link", "qFSuspensionBack_02")
self.add_part_custom("World/Environment","FSuspensionBack", "xFSuspensionBack_02", np.array([0.001,0.001,0.001]), np.array([-6.66734, -4.52502, 0.41407]), np.array([0.5,0.5,-0.5,0.5]))
if self.motion_task_counter==18:
print("Done motion plan")
self.isDone[current_observations["task_event"]]=True
# arm_robot picks and places part
elif current_observations["task_event"] == 71:
pass
return
def add_part(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/mock_robot/platform/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/mock_robot/platform/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
def add_part_custom(self, parent_prim_name, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/{parent_prim_name}/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/{parent_prim_name}/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def add_part_without_parent(self, part_name, prim_name, scale, position, orientation):
world = self.get_world()
base_asset_path = "/home/lm-2023/Isaac_Sim/isaac sim samples/real_microfactory/Materials/atvsstlfiles/"
add_reference_to_stage(usd_path=base_asset_path+f"{part_name}/{part_name}.usd", prim_path=f"/World/{prim_name}") # gives asset ref path
part= world.scene.add(XFormPrim(prim_path=f'/World/{prim_name}', name=f"q{prim_name}")) # declares in the world
## add part
part.set_local_scale(scale)
part.set_local_pose(translation=position, orientation=orientation)
return part
def remove_part(self, parent_prim_name, child_prim_name):
prim_path = f"/{parent_prim_name}/{child_prim_name}"
# world = self.get_world()
prims.delete_prim(prim_path)
def move(self, task):
mp = self._world.get_observations()[self._world.get_task("awesome_task").get_params()["mp_name"]["value"]]
print(mp)
position, orientation, goal_position = mp['position'], mp['orientation'], mp['goal_position'][task-1]
# In the function where you are sending robot commands
print(goal_position)
action = self._my_controller.forward(start_position=position, start_orientation=orientation, goal_position=goal_position) # Change the goal position to what you want
full_action = ArticulationAction(joint_efforts=np.concatenate([action.joint_efforts, action.joint_efforts]) if action.joint_efforts else None, joint_velocities=np.concatenate([action.joint_velocities, action.joint_velocities]), joint_positions=np.concatenate([action.joint_positions, action.joint_positions]) if action.joint_positions else None)
self.moving_platform.apply_action(full_action)
| 30,782 |
Python
| 60.566 | 441 | 0.608018 |
swadaskar/Isaac_Sim_Folder/extension_examples/robo_party/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.robo_party.robo_party import RoboParty
from omni.isaac.examples.robo_party.robo_party_extension import RoboPartyExtension
| 576 |
Python
| 47.083329 | 82 | 0.819444 |
swadaskar/Isaac_Sim_Folder/extension_examples/follow_target/__init__.py
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from omni.isaac.examples.follow_target.follow_target import FollowTarget
from omni.isaac.examples.follow_target.follow_target_extension import FollowTargetExtension
| 594 |
Python
| 48.583329 | 91 | 0.824916 |
swadaskar/Isaac_Sim_Folder/extension_examples/follow_target/follow_target.py
|
import carb
import asyncio
from omni.isaac.examples.base_sample import BaseSample
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.robots import Robot
import rospy
import rosgraph
# import actionlib
# # Isaac sim cannot find these two modules for some reason...
# from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
# from obstacle_map import GridMap
# # Using /move_base_simple/goal for now
from geometry_msgs.msg import PoseStamped
import numpy as np
class FollowTarget(BaseSample):
def __init__(self) -> None:
super().__init__()
return
def setup_scene(self):
world = self.get_world()
world.scene.add_default_ground_plane()
# FIXME
add_reference_to_stage(usd_path='/home/lm-2023/Isaac_Sim/navigation/Collected_real_microfactory_show/real_microfactory_show.usd', prim_path="/World")
world.scene.add(Robot(prim_path="/World/damobile_platform", name="damobile_platform"))
return
async def setup_post_load(self):
self._world = self.get_world()
self._mp = self._world.scene.get_object("damobile_platform")
if not rosgraph.is_master_online():
print("Please run roscore before executing this script")
return
try:
rospy.init_node("set_goal_py")
except rospy.exceptions.ROSException as e:
print("Node has already been initialized, do nothing")
# FIXME
# self._initial_goal_publisher = rospy.Publisher("initialpose", PoseWithCovarianceStamped, queue_size=1)
# self.__send_initial_pose()
# await asyncio.sleep(1.0)
# self._action_client = actionlib.SimpleActionClient("move_base", MoveBaseAction)
self._goal_pub = rospy.Publisher("/move_base_simple/goal", PoseStamped, queue_size=1)
return
# def __send_initial_pose(self):
# mp_position, mp_orientation = self._mp.get_world_pose()
# current_pose = PoseWithCovarianceStamped()
# current_pose.header.frame_id = "map"
# current_pose.header.stamp = rospy.get_rostime()
# current_pose.pose.pose.position.x = mp_position[0]
# current_pose.pose.pose.position.y = mp_position[1]
# current_pose.pose.pose.position.z = mp_position[2]
# current_pose.pose.pose.orientation.x = mp_orientation[0]
# current_pose.pose.pose.orientation.y = mp_orientation[1]
# current_pose.pose.pose.orientation.z = mp_orientation[2]
# current_pose.pose.pose.orientation.w = mp_orientation[3]
# # rospy.sleep will stall Isaac sim simulation
# # rospy.sleep(1)
# self._initial_goal_publisher.publish(current_pose)
# def __goal_response_callback(self, current_state, result):
# if current_state not in [0, 1, 3]:
# print("Goal rejected :(")
# return
# print("Goal accepted :)")
# wait = self._action_client.wait_for_result()
# self.__get_result_callback(wait)
# def __get_result_callback(self, wait):
# print("Result: "+str(wait))
# def send_navigation_goal(self, x, y, a):
# FIXME
# map_yaml_path = "/home/shihanzh/ros_ws/src/mp_2dnav/map/mp_microfactory_navigation.yaml"
# grid_map = GridMap(map_yaml_path)
# # generate random goal
# if x is None:
# print("No goal received. Generating random goal...")
# range_ = grid_map.get_range()
# x = np.random.uniform(range_[0][0], range_[0][1])
# y = np.random.uniform(range_[1][0], range_[1][1])
# orient_x = 0 # not needed because robot is in x,y plane
# orient_y = 0 # not needed because robot is in x,y plane
# orient_z = np.random.uniform(0, 1)
# orient_w = np.random.uniform(0, 1)
# else:
# orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a)
# pose = [x, y, orient_x, orient_y, orient_z, orient_w]
# if grid_map.is_valid_pose([x, y], 0.2):
# self._action_client.wait_for_server()
# goal_msg = MoveBaseGoal()
# goal_msg.target_pose.header.frame_id = "map"
# goal_msg.target_pose.header.stamp = rospy.get_rostime()
# print("goal pose: "+str(pose))
# goal_msg.target_pose.pose.position.x = pose[0]
# goal_msg.target_pose.pose.position.y = pose[1]
# goal_msg.target_pose.pose.orientation.x = pose[2]
# goal_msg.target_pose.pose.orientation.y = pose[3]
# goal_msg.target_pose.pose.orientation.z = pose[4]
# goal_msg.target_pose.pose.orientation.w = pose[5]
# self._action_client.send_goal(goal_msg, done_cb=self.__goal_response_callback)
# else:
# print("Invalid goal "+str(pose))
# return
async def setup_pre_reset(self):
return
async def setup_post_reset(self):
return
def world_cleanup(self):
return
| 5,080 |
Python
| 39.325397 | 157 | 0.605906 |
swadaskar/Isaac_Sim_Folder/extension_examples/follow_target/follow_target_extension.py
|
import os
from omni.isaac.examples.base_sample import BaseSampleExtension
from omni.isaac.examples.follow_target import FollowTarget
import omni.ext
import omni.ui as ui
from omni.isaac.ui.ui_utils import setup_ui_headers, get_style, btn_builder
import asyncio
import numpy as np
import rospy
from geometry_msgs.msg import PoseStamped
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from math import pi
class FollowTargetExtension(BaseSampleExtension):
# same as in mp_2dnav package base_local_planner_params.yaml
_xy_goal_tolerance = 0.25
_yaw_goal_tolerance = 0.05
def on_startup(self, ext_id: str):
super().on_startup(ext_id)
super().start_extension(
menu_name="",
submenu_name="",
name="Navigation",
title="My Awesome Example",
doc_link="https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/tutorial_core_hello_world.html",
overview="This Example introduces the user on how to do cool stuff with Isaac Sim through scripting in asynchronous mode.",
file_path=os.path.abspath(__file__),
sample=FollowTarget(),
)
return
def _build_ui(
self, name, title, doc_link, overview, file_path, number_of_extra_frames, window_width, keep_window_open
):
self._window = omni.ui.Window(
name, width=window_width, height=0, visible=keep_window_open, dockPreference=ui.DockPreference.LEFT_BOTTOM
)
with self._window.frame:
with ui.VStack(spacing=5, height=0):
setup_ui_headers(self._ext_id, file_path, title, doc_link, overview)
self._controls_frame = ui.CollapsableFrame(
title="World Controls",
width=ui.Fraction(1),
height=0,
collapsed=False,
style=get_style(),
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
with ui.VStack(style=get_style(), spacing=5, height=0):
for i in range(number_of_extra_frames):
self._extra_frames.append(
ui.CollapsableFrame(
title="",
width=ui.Fraction(0.33),
height=0,
visible=False,
collapsed=False,
style=get_style(),
horizontal_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_AS_NEEDED,
vertical_scrollbar_policy=ui.ScrollBarPolicy.SCROLLBAR_ALWAYS_ON,
)
)
with self._controls_frame:
with ui.VStack(style=get_style(), spacing=5, height=0):
dict = {
"label": "Load World",
"type": "button",
"text": "Load",
"tooltip": "Load World and Task",
"on_clicked_fn": self._on_load_world,
}
self._buttons["Load World"] = btn_builder(**dict)
self._buttons["Load World"].enabled = True
dict = {
"label": "Reset",
"type": "button",
"text": "Reset",
"tooltip": "Reset robot and environment",
"on_clicked_fn": self._on_reset,
}
self._buttons["Reset"] = btn_builder(**dict)
self._buttons["Reset"].enabled = False
dict = {
"label": "Send Goal",
"type": "button",
"text": "Goal",
"tooltip": "",
"on_clicked_fn": self._send_navigation_goal,
}
self._buttons["Send Goal"] = btn_builder(**dict)
self._buttons["Send Goal"].enabled = False
return
def post_load_button_event(self):
self._buttons["Send Goal"].enabled = True
def _check_goal_reached(self, goal_pose):
# Cannot get result from ROS because /move_base/result also uses move_base_msgs module
mp_position, mp_orientation = self._sample._mp.get_world_pose()
_, _, mp_yaw = euler_from_quaternion(mp_orientation)
_, _, goal_yaw = euler_from_quaternion(goal_pose[3:])
# FIXME: pi needed for yaw tolerance here because map rotated 180 degrees
if np.allclose(mp_position[:2], goal_pose[:2], atol=self._xy_goal_tolerance) \
and abs(mp_yaw-goal_yaw) <= pi + self._yaw_goal_tolerance:
print("Goal "+str(goal_pose)+" reached!")
# This seems to crash Isaac sim...
# self.get_world().remove_physics_callback("mp_nav_check")
# Goal hardcoded for now
def _send_navigation_goal(self, x=None, y=None, a=None):
# x, y, a = -18, 14, 3.14
x,y,a = -1,7,3.14
orient_x, orient_y, orient_z, orient_w = quaternion_from_euler(0, 0, a)
pose = [x, y, 0, orient_x, orient_y, orient_z, orient_w]
goal_msg = PoseStamped()
goal_msg.header.frame_id = "map"
goal_msg.header.stamp = rospy.get_rostime()
print("goal pose: "+str(pose))
goal_msg.pose.position.x = pose[0]
goal_msg.pose.position.y = pose[1]
goal_msg.pose.position.z = pose[2]
goal_msg.pose.orientation.x = pose[3]
goal_msg.pose.orientation.y = pose[4]
goal_msg.pose.orientation.z = pose[5]
goal_msg.pose.orientation.w = pose[6]
self._sample._goal_pub.publish(goal_msg)
# self._check_goal_reached(pose)
world = self.get_world()
if not world.physics_callback_exists("mp_nav_check"):
world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose))
# Overwrite check with new goal
else:
world.remove_physics_callback("mp_nav_check")
world.add_physics_callback("mp_nav_check", lambda step_size: self._check_goal_reached(pose))
| 6,559 |
Python
| 44.241379 | 135 | 0.523403 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_replay_follow_target.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
from omni.isaac.core.utils.extensions import get_extension_path_from_name
import omni.kit.test
import omni.kit
import asyncio
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
from omni.isaac.examples.replay_follow_target import ReplayFollowTarget
from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async
import os
class TestReplayFollowTargetExampleExtension(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
await create_new_stage_async()
await update_stage_async()
self._sample = ReplayFollowTarget()
self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0)
await self._sample.load_world_async()
await update_stage_async()
while is_stage_loading():
await update_stage_async()
return
# After running each test
async def tearDown(self):
# In some cases the test will end before the asset is loaded, in this case wait for assets to load
while is_stage_loading():
print("tearDown, assets still loading, waiting to finish...")
await asyncio.sleep(1.0)
await self._sample.clear_async()
await update_stage_async()
self._sample = None
pass
async def test_reset(self):
await self._sample.reset_async()
await update_stage_async()
await update_stage_async()
await self._sample.reset_async()
await update_stage_async()
await update_stage_async()
pass
async def test_replay_trajectory(self):
await self._sample.reset_async()
await update_stage_async()
await self._sample._on_replay_trajectory_event_async(
os.path.abspath(
os.path.join(get_extension_path_from_name("omni.isaac.examples"), "data/example_data_file.json")
)
)
await update_stage_async()
# run for 2500 frames and print time
for i in range(500):
await update_stage_async()
pass
async def test_replay_scene(self):
await self._sample.reset_async()
await update_stage_async()
await self._sample._on_replay_scene_event_async(
os.path.abspath(
os.path.join(get_extension_path_from_name("omni.isaac.examples"), "data/example_data_file.json")
)
)
await update_stage_async()
# run for 2500 frames and print time
for i in range(500):
await update_stage_async()
pass
| 3,296 |
Python
| 37.337209 | 119 | 0.668386 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_path_planning.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
import omni.kit
import asyncio
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
from omni.isaac.examples.path_planning import PathPlanning
from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async
import numpy as np
class TestPathPlanningExampleExtension(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
await create_new_stage_async()
await update_stage_async()
self._sample = PathPlanning()
self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0)
await self._sample.load_world_async()
await update_stage_async()
while is_stage_loading():
await update_stage_async()
return
# After running each test
async def tearDown(self):
# In some cases the test will end before the asset is loaded, in this case wait for assets to load
while is_stage_loading():
print("tearDown, assets still loading, waiting to finish...")
await asyncio.sleep(1.0)
await self._sample.clear_async()
await update_stage_async()
self._sample = None
pass
# Run all functions with simulation enabled
async def test_follow_target(self):
await self._sample.reset_async()
await update_stage_async()
await self._sample._on_follow_target_event_async()
await update_stage_async()
# run for 2500 frames and print time
for i in range(500):
await update_stage_async()
pass
# Run all functions with simulation enabled
async def test_add_obstacle(self):
await self._sample.reset_async()
await update_stage_async()
# run for 2500 frames and print time
for i in range(500):
await update_stage_async()
if i % 50 == 0:
self._sample._on_add_wall_event()
await update_stage_async()
await self._sample._on_follow_target_event_async()
await update_stage_async()
await self._sample.reset_async()
await update_stage_async()
pass
async def test_reset(self):
await self._sample.reset_async()
await update_stage_async()
pass
| 3,026 |
Python
| 35.914634 | 119 | 0.66887 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/test_nut_bolt.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# NOTE:
# omni.kit.test - std python's unittest module with additional wrapping to add suport for async/await tests
# For most things refer to unittest docs: https://docs.python.org/3/library/unittest.html
import omni.kit.test
import omni.kit
import asyncio
# Import extension python module we are testing with absolute import path, as if we are external user (other extension)
from omni.isaac.examples.franka_nut_and_bolt import FrankaNutAndBolt
from omni.isaac.core.utils.stage import create_new_stage_async, is_stage_loading, update_stage_async
from math import isclose
class NutBoltExampleExtension(omni.kit.test.AsyncTestCase):
# Before running each test
async def setUp(self):
await create_new_stage_async()
await update_stage_async()
self._sample = FrankaNutAndBolt()
self._sample.set_world_settings(physics_dt=1.0 / 60.0, stage_units_in_meters=1.0)
await self._sample.load_world_async()
await update_stage_async()
while is_stage_loading():
await update_stage_async()
return
# After running each test
async def tearDown(self):
# In some cases the test will end before the asset is loaded, in this case wait for assets to load
while is_stage_loading():
print("tearDown, assets still loading, waiting to finish...")
await asyncio.sleep(1.0)
await self._sample.clear_async()
await update_stage_async()
self._sample = None
pass
# Run all functions with simulation enabled
async def test_nut_bolt(self):
world = self._sample.get_world()
await update_stage_async()
# run for 4000 frames
for i in range(4000):
await update_stage_async()
nut_on_bolt = False
bolt = world.scene.get_object(f"bolt0_geom")
bolt_pos, _ = bolt.get_world_pose()
for j in range(self._sample._num_nuts):
nut = world.scene.get_object(f"nut{j}_geom")
nut_pos, _ = nut.get_world_pose()
if (
isclose(nut_pos[0], bolt_pos[0], abs_tol=0.0009)
and isclose(nut_pos[1], bolt_pos[1], abs_tol=0.0009)
and isclose(nut_pos[2], bolt_pos[2] + 0.09, abs_tol=0.015)
):
nut_on_bolt = True
self.assertTrue(nut_on_bolt)
pass
async def test_reset(self):
await self._sample.reset_async()
await update_stage_async()
world = self._sample.get_world()
await update_stage_async()
for i in range(4000):
await update_stage_async()
nut_on_bolt = False
bolt = world.scene.get_object(f"bolt0_geom")
bolt_pos, _ = bolt.get_world_pose()
for j in range(self._sample._num_nuts):
nut = world.scene.get_object(f"nut{j}_geom")
nut_pos, _ = nut.get_world_pose()
if (
isclose(nut_pos[0], bolt_pos[0], abs_tol=0.0009)
and isclose(nut_pos[1], bolt_pos[1], abs_tol=0.0009)
and isclose(nut_pos[2], bolt_pos[2] + 0.09, abs_tol=0.015)
):
nut_on_bolt = True
self.assertTrue(nut_on_bolt)
pass
| 3,659 |
Python
| 37.526315 | 119 | 0.626401 |
swadaskar/Isaac_Sim_Folder/extension_examples/tests/__init__.py
|
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
from .test_kaya_gamepad import *
from .test_bin_filling import *
from .test_follow_target import *
from .test_omnigraph_keyboard import *
from .test_robo_factory import *
from .test_robo_party import *
from .test_simple_stack import *
from .test_hello_world import *
from .test_replay_follow_target import *
from .test_path_planning import *
from .test_nut_bolt import *
| 805 |
Python
| 37.380951 | 76 | 0.785093 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.