title
stringlengths
1
300
score
int64
0
8.54k
selftext
stringlengths
0
40k
created
timestamp[ns]date
2023-04-01 04:30:41
2025-06-30 03:16:29
url
stringlengths
0
878
author
stringlengths
3
20
domain
stringlengths
0
82
edited
timestamp[ns]date
1970-01-01 00:00:00
2025-06-26 17:30:18
gilded
int64
0
2
gildings
stringclasses
7 values
id
stringlengths
7
7
locked
bool
2 classes
media
stringlengths
646
1.8k
name
stringlengths
10
10
permalink
stringlengths
33
82
spoiler
bool
2 classes
stickied
bool
2 classes
thumbnail
stringlengths
4
213
ups
int64
0
8.54k
preview
stringlengths
301
5.01k
Can you run Qwen 30B A3B on 8gb vram/ 16gb ram?
7
Is there a way to archive this? I saw people doing this on pretty low end builds but I dont know how to get it to work.
2025-04-29T08:54:48
https://www.reddit.com/r/LocalLLaMA/comments/1kajbmm/can_you_run_qwen_30b_a3b_on_8gb_vram_16gb_ram/
Famous-Appointment-8
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kajbmm
false
null
t3_1kajbmm
/r/LocalLLaMA/comments/1kajbmm/can_you_run_qwen_30b_a3b_on_8gb_vram_16gb_ram/
false
false
self
7
null
Qwen3 now runs locally in Jan via llama.cpp (Update the llama.cpp backend in Settings to run it)
65
Hey, just sharing a quick note: Jan uses llama.cpp as its backend, and we recently shipped a feature that lets you bump the llama.cpp version without waiting for any updates. So you can now run newer models like Qwen3 without needing a full Jan update.
2025-04-29T08:56:53
https://i.redd.it/ouuukg15mqxe1.jpeg
eck72
i.redd.it
1970-01-01T00:00:00
0
{}
1kajcl7
false
null
t3_1kajcl7
/r/LocalLLaMA/comments/1kajcl7/qwen3_now_runs_locally_in_jan_via_llamacpp_update/
false
false
https://b.thumbs.redditm…rEnWn4QCwbCI.jpg
65
{'enabled': True, 'images': [{'id': '_i6JEfMIphBptDu05S22rbbHo7nkazD_QVHKCTrK2l0', 'resolutions': [{'height': 81, 'url': 'https://preview.redd.it/ouuukg15mqxe1.jpeg?width=108&crop=smart&auto=webp&s=e6b2c4e57130a1a19e789e4a3c05ac3892fff32b', 'width': 108}, {'height': 162, 'url': 'https://preview.redd.it/ouuukg15mqxe1.jpeg?width=216&crop=smart&auto=webp&s=c2f514953ef40126fd8d5229fe3805f3ae32ed26', 'width': 216}, {'height': 240, 'url': 'https://preview.redd.it/ouuukg15mqxe1.jpeg?width=320&crop=smart&auto=webp&s=cea0fc7c51a366261ef534bb8a03f0f8a84fde11', 'width': 320}, {'height': 481, 'url': 'https://preview.redd.it/ouuukg15mqxe1.jpeg?width=640&crop=smart&auto=webp&s=529c48013baf50687a416a958f98a1c1099867ea', 'width': 640}, {'height': 722, 'url': 'https://preview.redd.it/ouuukg15mqxe1.jpeg?width=960&crop=smart&auto=webp&s=09a7c57ab081c04040c2793598cf0cbaaaa6f0c6', 'width': 960}, {'height': 812, 'url': 'https://preview.redd.it/ouuukg15mqxe1.jpeg?width=1080&crop=smart&auto=webp&s=22e1874c188ca38aec2762eacc7e328e013c73e0', 'width': 1080}], 'source': {'height': 2004, 'url': 'https://preview.redd.it/ouuukg15mqxe1.jpeg?auto=webp&s=0c38f5140b8de1fca9ce4b94efa9fc9178b2c33d', 'width': 2664}, 'variants': {}}]}
Qwen 3 F8
1
[removed]
2025-04-29T08:58:01
https://www.reddit.com/r/LocalLLaMA/comments/1kajd4j/qwen_3_f8/
Creative_Bottle_3225
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kajd4j
false
null
t3_1kajd4j
/r/LocalLLaMA/comments/1kajd4j/qwen_3_f8/
false
false
self
1
null
What are the Qwen3 settings for Ollama?
1
[removed]
2025-04-29T09:00:15
https://www.reddit.com/r/LocalLLaMA/comments/1kaje9d/what_are_the_qwen3_settings_for_ollama/
RogueZero123
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaje9d
false
null
t3_1kaje9d
/r/LocalLLaMA/comments/1kaje9d/what_are_the_qwen3_settings_for_ollama/
false
false
self
1
null
Ai Engine Host: A Low-Cost GPU Hosting Service – Buyer Beware
1
[removed]
2025-04-29T09:00:43
https://www.reddit.com/r/LocalLLaMA/comments/1kajej0/ai_engine_host_a_lowcost_gpu_hosting_service/
PrettyRevolution1842
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kajej0
false
null
t3_1kajej0
/r/LocalLLaMA/comments/1kajej0/ai_engine_host_a_lowcost_gpu_hosting_service/
false
false
self
1
null
Qwen3:30b-a3b incredibly fast on CPU, 20T/s on AMD 7950x 16c32t
1
2025-04-29T09:24:11
https://v.redd.it/4z1cay65sqxe1
D33455432
v.redd.it
1970-01-01T00:00:00
0
{}
1kajpwp
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/4z1cay65sqxe1/DASHPlaylist.mpd?a=1748510666%2COThiYzhkMzcyODgyYjVkNDBlN2ZmOThiZjVmNTgxZGI2OWQwZjc3NGUwYWU5OGFmMGRmNTdiNmNiNTVmZjk4YQ%3D%3D&v=1&f=sd', 'duration': 54, 'fallback_url': 'https://v.redd.it/4z1cay65sqxe1/DASH_1080.mp4?source=fallback', 'has_audio': True, 'height': 1080, 'hls_url': 'https://v.redd.it/4z1cay65sqxe1/HLSPlaylist.m3u8?a=1748510666%2CMmI3YjY2NzI2YTFhNGVkMDBjNjljMGM2MTA2OTMyZjQ3YzUwMjA4YTZjM2U3MDQ0NmEzYzQ1NmY0YWQxZWRmNQ%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/4z1cay65sqxe1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1348}}
t3_1kajpwp
/r/LocalLLaMA/comments/1kajpwp/qwen330ba3b_incredibly_fast_on_cpu_20ts_on_amd/
false
false
https://external-preview…9975ea9f228473dc
1
{'enabled': False, 'images': [{'id': 'bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY', 'resolutions': [{'height': 86, 'url': 'https://external-preview.redd.it/bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY.png?width=108&crop=smart&format=pjpg&auto=webp&s=99b27451ca67e996b3327cf9ed7aa6bb948617a8', 'width': 108}, {'height': 172, 'url': 'https://external-preview.redd.it/bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY.png?width=216&crop=smart&format=pjpg&auto=webp&s=bb1db8b55100cec223ffae4ea182944ab8726ecf', 'width': 216}, {'height': 256, 'url': 'https://external-preview.redd.it/bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY.png?width=320&crop=smart&format=pjpg&auto=webp&s=78679d23af1b730c8d97267b1ef84a6087835ffd', 'width': 320}, {'height': 512, 'url': 'https://external-preview.redd.it/bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY.png?width=640&crop=smart&format=pjpg&auto=webp&s=389174270d43a9190feaee68190212bc7f57a7ff', 'width': 640}, {'height': 768, 'url': 'https://external-preview.redd.it/bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY.png?width=960&crop=smart&format=pjpg&auto=webp&s=cbaa7a80020089265cf0746b3b9be49a5917a9c9', 'width': 960}, {'height': 864, 'url': 'https://external-preview.redd.it/bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY.png?width=1080&crop=smart&format=pjpg&auto=webp&s=39001af30f53976538932cdabdcd47816118ac53', 'width': 1080}], 'source': {'height': 1366, 'url': 'https://external-preview.redd.it/bDQ5MGZ2eGlzcXhlMcRMTPaPyq-RsOehr_VJSR9voYJqpWFoGfifz6GEdxRY.png?format=pjpg&auto=webp&s=019822200e4012f1a8b97b2c61716899d2aa8699', 'width': 1706}, 'variants': {}}]}
Qwen_Qwen3-14B-Q8_0 seems to be repeating itself
21
Does anybody else encounter this problem?
2025-04-29T09:30:01
https://i.redd.it/d4b370tctqxe1.png
ChazychazZz
i.redd.it
1970-01-01T00:00:00
0
{}
1kajsq0
false
null
t3_1kajsq0
/r/LocalLLaMA/comments/1kajsq0/qwen_qwen314bq8_0_seems_to_be_repeating_itself/
false
false
https://a.thumbs.redditm…x2Dg_36fSer8.jpg
21
{'enabled': True, 'images': [{'id': 'guwee2cVzTrrdWy13Bm7V0QuoN5JC-Xeuc-YE6KXGWM', 'resolutions': [{'height': 113, 'url': 'https://preview.redd.it/d4b370tctqxe1.png?width=108&crop=smart&auto=webp&s=3e1c5f7668ad8189bc5e88452e22fc6c648b9fbe', 'width': 108}, {'height': 227, 'url': 'https://preview.redd.it/d4b370tctqxe1.png?width=216&crop=smart&auto=webp&s=c4afc050f509dddc7ffc66e839842ca2ba9cfd56', 'width': 216}, {'height': 337, 'url': 'https://preview.redd.it/d4b370tctqxe1.png?width=320&crop=smart&auto=webp&s=7e9a720ca599bf31992a43313f5bfb563ae178e7', 'width': 320}, {'height': 675, 'url': 'https://preview.redd.it/d4b370tctqxe1.png?width=640&crop=smart&auto=webp&s=fc6d0b2582d215fa77ead7dd976aef7dc11b56ea', 'width': 640}], 'source': {'height': 785, 'url': 'https://preview.redd.it/d4b370tctqxe1.png?auto=webp&s=a92718f571dbbbfaaf6a76444baa0e8dfad6c93e', 'width': 744}, 'variants': {}}]}
Any reason why Qwen3 GGUF models are only in BF16? No FP16 versions around?
3
Hey folks, quick question — my GPU doesn’t support BF16, and I noticed all the Qwen3 GGUF models I’ve found are in BF16 only. Haven’t seen any FP16 versions around. Anyone know why, or if I’m just missing something? Would really appreciate any tips! https://preview.redd.it/3h6vfbn5vqxe1.png?width=3820&format=png&auto=webp&s=1d483b335fb0fc14006c044d097b7291a0affc68
2025-04-29T09:42:11
https://www.reddit.com/r/LocalLLaMA/comments/1kajyj9/any_reason_why_qwen3_gguf_models_are_only_in_bf16/
Known-Classroom2655
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kajyj9
false
null
t3_1kajyj9
/r/LocalLLaMA/comments/1kajyj9/any_reason_why_qwen3_gguf_models_are_only_in_bf16/
false
false
https://b.thumbs.redditm…_gI0Nz1-C2bI.jpg
3
null
Quantized pre-trained model to generate summaries crashes in colab
1
[removed]
2025-04-29T09:51:38
https://www.reddit.com/r/LocalLLaMA/comments/1kak35f/quantized_pretrained_model_to_generate_summaries/
Miserable_Music_8029
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kak35f
false
null
t3_1kak35f
/r/LocalLLaMA/comments/1kak35f/quantized_pretrained_model_to_generate_summaries/
false
false
self
1
null
Run production-ready distributed Qwen3 locally via GPUStack
6
Hi, everyone, just sharing a new, GPUStack has released v0.6, with support for distributed inference using both vLLM and llama-box (llama.cpp). No need for a monster machine — you can run Qwen/Qwen3-235B-A22B across your desktops and test machines using llama-box distributed inference, or deploy production-grade Qwen3 with vLLM distributed inference.
2025-04-29T09:57:48
https://www.reddit.com/r/LocalLLaMA/comments/1kak6d8/run_productionready_distributed_qwen3_locally_via/
RepulsiveEbb4011
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kak6d8
false
null
t3_1kak6d8
/r/LocalLLaMA/comments/1kak6d8/run_productionready_distributed_qwen3_locally_via/
false
false
self
6
null
new user here. model is failing to load.
2
greetings, i wanted to try running a local llm so i with the help of chatgtp installed gemma 2 2B in lm studio but it keeps saying "model failed to load" . what should i do? should i tweak smt in the 2nd pic?
2025-04-29T10:11:52
https://www.reddit.com/gallery/1kakdyn
Both-Drama-8561
reddit.com
1970-01-01T00:00:00
0
{}
1kakdyn
false
null
t3_1kakdyn
/r/LocalLLaMA/comments/1kakdyn/new_user_here_model_is_failing_to_load/
false
false
https://b.thumbs.redditm…IUJwLE1gTzXI.jpg
2
null
We could
0
Ok hear me out. We keep quantizing these models to remove at least half the bits. What if you instead of downsizing the model, put another model embedded in the bits that would otherwise be trimmed. I know, it would actually create some complications where full bit depth numbers come into play in ggufs. The final file would be bigger. Anyway that aside. They cohabitate in the memory and access, so they inference in parallel the same context. This could allow a lot of stuff. May be the models would have to be co-trained, or maybe we could slap four random Q4s together and take averages or something. Idk. I'm not exactly sure how it all comes together inside the math of the LLM. Goodmorning. I better drive to work.
2025-04-29T10:29:31
https://www.reddit.com/r/LocalLLaMA/comments/1kakn7a/we_could/
aseichter2007
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kakn7a
false
null
t3_1kakn7a
/r/LocalLLaMA/comments/1kakn7a/we_could/
false
false
self
0
null
偷偷告诉你:OpenAI用户省钱的秘密通道
1
[removed]
2025-04-29T10:31:25
https://www.reddit.com/r/LocalLLaMA/comments/1kako82/偷偷告诉你openai用户省钱的秘密通道/
True-Foundation-3697
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kako82
false
null
t3_1kako82
/r/LocalLLaMA/comments/1kako82/偷偷告诉你openai用户省钱的秘密通道/
false
false
self
1
null
Fixed Qwen3 Jinja template
1
[removed]
2025-04-29T10:41:02
https://www.reddit.com/r/LocalLLaMA/comments/1kaktc4/fixed_qwen3_jinja_template/
KraiiFox
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaktc4
false
null
t3_1kaktc4
/r/LocalLLaMA/comments/1kaktc4/fixed_qwen3_jinja_template/
false
false
self
1
null
Fixed qwen3 template.
1
[removed]
2025-04-29T10:43:38
https://www.reddit.com/r/LocalLLaMA/comments/1kakut4/fixed_qwen3_template/
KraiiFox
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kakut4
false
null
t3_1kakut4
/r/LocalLLaMA/comments/1kakut4/fixed_qwen3_template/
false
false
self
1
null
Fixed Qwen 3 Jinja template.
24
For those getting the unable to parse chat template error. [https://pastebin.com/DmZEJxw8](https://pastebin.com/DmZEJxw8) Save it to a file and use the flag --chat-template-file <filename> to use it.
2025-04-29T10:45:56
https://www.reddit.com/r/LocalLLaMA/comments/1kakw2c/fixed_qwen_3_jinja_template/
KraiiFox
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kakw2c
false
null
t3_1kakw2c
/r/LocalLLaMA/comments/1kakw2c/fixed_qwen_3_jinja_template/
false
false
self
24
{'enabled': False, 'images': [{'id': 'OgFzGCIRw1ZxjMOSkfV1OiH-_nQiZl8rzSonmOAuhGs', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/P8lS0kk6BFe2IEo6TxCZd1LVwksc34IkzGTVx_SCc8w.jpg?width=108&crop=smart&auto=webp&s=3d74dbe4f1d67cc8b587db9aa01762f26e269bcf', 'width': 108}], 'source': {'height': 150, 'url': 'https://external-preview.redd.it/P8lS0kk6BFe2IEo6TxCZd1LVwksc34IkzGTVx_SCc8w.jpg?auto=webp&s=b9f5c4e4867fbffb2c1ff45dd70aa338d1e3f40c', 'width': 150}, 'variants': {}}]}
Bartowski qwen3 14b Q4_K_M uses almost no ram?
3
I'm running this model on a macbook with ollama and open webui in non thinking mode. The activity monitor shows ollama using 469mb of ram. What kind of sorcery is this?
2025-04-29T10:46:49
https://www.reddit.com/r/LocalLLaMA/comments/1kakwko/bartowski_qwen3_14b_q4_k_m_uses_almost_no_ram/
No-Report-1805
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kakwko
false
null
t3_1kakwko
/r/LocalLLaMA/comments/1kakwko/bartowski_qwen3_14b_q4_k_m_uses_almost_no_ram/
false
false
self
3
null
Your dream dataset
1
[removed]
2025-04-29T10:52:19
https://www.reddit.com/r/LocalLLaMA/comments/1kakzm2/your_dream_dataset/
Efficient-Pay-1258
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kakzm2
false
null
t3_1kakzm2
/r/LocalLLaMA/comments/1kakzm2/your_dream_dataset/
false
false
self
1
{'enabled': False, 'images': [{'id': 'RIOIruaZeUQnCoI4OYwFadUOTfsnV0c6NM5ulVqfORY', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/dPZ6zZURl-yj2KkRR3PRSLTMc9-N9ps6uRjEB7vKV4o.jpg?width=108&crop=smart&auto=webp&s=9e142293435d2a455b172101f2af7587e9558673', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/dPZ6zZURl-yj2KkRR3PRSLTMc9-N9ps6uRjEB7vKV4o.jpg?width=216&crop=smart&auto=webp&s=b7522240ed6a64029ac6f40c2a828a0157f771f0', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/dPZ6zZURl-yj2KkRR3PRSLTMc9-N9ps6uRjEB7vKV4o.jpg?width=320&crop=smart&auto=webp&s=43fcbc9dfe0b74661403b2ee45353264872bb216', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/dPZ6zZURl-yj2KkRR3PRSLTMc9-N9ps6uRjEB7vKV4o.jpg?width=640&crop=smart&auto=webp&s=8a96e0fc19ee3e92dca51262fe66975d97fa8754', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/dPZ6zZURl-yj2KkRR3PRSLTMc9-N9ps6uRjEB7vKV4o.jpg?width=960&crop=smart&auto=webp&s=500543cc6b67c70004bf0dad4fa3e5ac560bce15', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/dPZ6zZURl-yj2KkRR3PRSLTMc9-N9ps6uRjEB7vKV4o.jpg?width=1080&crop=smart&auto=webp&s=3393619ab074ff5650b0730ed2c15a416b3f9eb4', 'width': 1080}], 'source': {'height': 630, 'url': 'https://external-preview.redd.it/dPZ6zZURl-yj2KkRR3PRSLTMc9-N9ps6uRjEB7vKV4o.jpg?auto=webp&s=b6677ce2a42dc8ae1f9a0bc82415950fe78c9e5f', 'width': 1200}, 'variants': {}}]}
first Qwen 3 variants available
29
that was quick ;) [https://huggingface.co/mlabonne/Qwen3-1.7B-abliterated](https://huggingface.co/mlabonne/Qwen3-1.7B-abliterated) [https://huggingface.co/mlabonne/Qwen3-0.6B-abliterated](https://huggingface.co/mlabonne/Qwen3-0.6B-abliterated)
2025-04-29T10:57:46
https://www.reddit.com/r/LocalLLaMA/comments/1kal2lq/first_qwen_3_variants_available/
jacek2023
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kal2lq
false
null
t3_1kal2lq
/r/LocalLLaMA/comments/1kal2lq/first_qwen_3_variants_available/
false
false
self
29
{'enabled': False, 'images': [{'id': 'LWtsl4nLnkdIWkKTwuEiBTXiB4p2wIyzW3XiW7y-Qkc', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/cuJZ_vPqnblf3yuIOOz3GCsbA6zvVaDyWiCkhCRapcM.jpg?width=108&crop=smart&auto=webp&s=15f42f523837031bfb4ed2b47fc49b3101cbe762', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/cuJZ_vPqnblf3yuIOOz3GCsbA6zvVaDyWiCkhCRapcM.jpg?width=216&crop=smart&auto=webp&s=42497efa3e40b2bf2e527de0043f5691b7be4ddc', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/cuJZ_vPqnblf3yuIOOz3GCsbA6zvVaDyWiCkhCRapcM.jpg?width=320&crop=smart&auto=webp&s=2cc4c368c2e900597825af9bb07757cc4cf9fb69', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/cuJZ_vPqnblf3yuIOOz3GCsbA6zvVaDyWiCkhCRapcM.jpg?width=640&crop=smart&auto=webp&s=c832a15fa073637a8e29cd9e887ede2e1aa94770', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/cuJZ_vPqnblf3yuIOOz3GCsbA6zvVaDyWiCkhCRapcM.jpg?width=960&crop=smart&auto=webp&s=86b1ed6f5231be01dff6253f6eee0c94faf39254', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/cuJZ_vPqnblf3yuIOOz3GCsbA6zvVaDyWiCkhCRapcM.jpg?width=1080&crop=smart&auto=webp&s=9d2852b6fde7ee6114eb7ffd52740f4d48cd42c7', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/cuJZ_vPqnblf3yuIOOz3GCsbA6zvVaDyWiCkhCRapcM.jpg?auto=webp&s=c550426c55121a9b28b43f850e777251a1fa6f5d', 'width': 1200}, 'variants': {}}]}
What's interesting is that Qwen's release is three months behind Deepseek's. So, if you believe Qwen 3 is currently the leader in open source, I don't think that will last, as R2 is on the verge of release. You can see the gap between Qwen 3 and the three-month-old Deepseek R1.
69
2025-04-29T11:05:07
https://i.redd.it/10yj2jkm9rxe1.png
Select_Dream634
i.redd.it
1970-01-01T00:00:00
0
{}
1kal789
false
null
t3_1kal789
/r/LocalLLaMA/comments/1kal789/whats_interesting_is_that_qwens_release_is_three/
false
false
https://b.thumbs.redditm…Kw_mJuA3BBEo.jpg
69
{'enabled': True, 'images': [{'id': 'nPPKXjyZYaSMzEZG8x4D2gvvwY9Nfu57yD0sANicWt8', 'resolutions': [{'height': 72, 'url': 'https://preview.redd.it/10yj2jkm9rxe1.png?width=108&crop=smart&auto=webp&s=22ea27585e9af9cedae19dd44896a261449de7b1', 'width': 108}, {'height': 144, 'url': 'https://preview.redd.it/10yj2jkm9rxe1.png?width=216&crop=smart&auto=webp&s=9257a898cf5daec33e676d22b0aa6a3fef85648d', 'width': 216}, {'height': 214, 'url': 'https://preview.redd.it/10yj2jkm9rxe1.png?width=320&crop=smart&auto=webp&s=d88bae189b75c9c3ec5a7fe544559924867ccec3', 'width': 320}, {'height': 428, 'url': 'https://preview.redd.it/10yj2jkm9rxe1.png?width=640&crop=smart&auto=webp&s=dbe936563146c5f466a3a174f20a285134431a20', 'width': 640}], 'source': {'height': 581, 'url': 'https://preview.redd.it/10yj2jkm9rxe1.png?auto=webp&s=22c3aad1e1eeb99c0c5fffbd7173d88085a89df2', 'width': 867}, 'variants': {}}]}
I just realized Qwen3-30B-A3B is all I need for local LLM
710
After I found out that the new Qwen3-30B-A3B MoE is really slow in Ollama, I decided to try LM Studio instead, and it's working as expected, over 100+ tk/s on a power-limited 4090. After testing it more, I suddenly realized: this one model is all I need! I tested translation, coding, data analysis, video, and blog summarization, etc. It performs really well on all categories and is super fast. Additionally, it's very VRAM efficient—I still have 4GB VRAM left after maxing out the context length (Q8 cache enabled). I used to switch between multiple models of different sizes and quantization levels for different tasks, which is why I stuck with Ollama because of its easy model switching. I also keep using an older version of Open WebUI because the model management is more complex in the latest version. Now all I need is LM Studio, the latest Open WebUI, and Qwen3-30B-A3B. I can finally free up some disk space and move my huge model library to the backup drive.
2025-04-29T11:26:53
https://www.reddit.com/r/LocalLLaMA/comments/1kalkgi/i_just_realized_qwen330ba3b_is_all_i_need_for/
AaronFeng47
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kalkgi
false
null
t3_1kalkgi
/r/LocalLLaMA/comments/1kalkgi/i_just_realized_qwen330ba3b_is_all_i_need_for/
false
false
self
710
null
Now that Qwen3 is out, has anybody seen its translation capabilities?
21
I've only managed to compare 30B-A3B (with thinking) to some synthetic translations from novel text from GLM-4-9B and Deepseek 0314, and it seems wordy but okay, but it'd be awesome to see a few more opinions from readers like myself here on what they think about it, and the other models as well! i tend to do japanese to english or korean to english, since im usually trying to read ahead of scanlation groups from novelupdates, for context.
2025-04-29T11:34:16
https://www.reddit.com/r/LocalLLaMA/comments/1kaloxw/now_that_qwen3_is_out_has_anybody_seen_its/
JustImmunity
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaloxw
false
null
t3_1kaloxw
/r/LocalLLaMA/comments/1kaloxw/now_that_qwen3_is_out_has_anybody_seen_its/
false
false
self
21
null
<count> ... </count> ... 42 x Qwen3 ... wait ... really?
1
[removed]
2025-04-29T11:48:18
https://www.reddit.com/gallery/1kalxua
KaanTheChosenOne
reddit.com
1970-01-01T00:00:00
0
{}
1kalxua
false
null
t3_1kalxua
/r/LocalLLaMA/comments/1kalxua/count_count_42_x_qwen3_wait_really/
false
false
https://b.thumbs.redditm…4Uv32cnTRfLc.jpg
1
null
Counting ... Wait ... 42 x Qwen3? ... That might be the answer ... really?
1
[removed]
2025-04-29T11:50:57
https://www.reddit.com/gallery/1kalzmi
KaanTheChosenOne
reddit.com
1970-01-01T00:00:00
0
{}
1kalzmi
false
null
t3_1kalzmi
/r/LocalLLaMA/comments/1kalzmi/counting_wait_42_x_qwen3_that_might_be_the_answer/
false
false
https://a.thumbs.redditm…E45tsHagNdO0.jpg
1
null
Qwen3 is really good at MCP/FunctionCall
102
I've been keeping an eye on the performance of LLMs using MCP. I believe that MCP is the key for LLMs to make an impact on real-world workflows. I've always dreamed of having a local LLM serve as the brain and act as the intelligent core for smart-home system. Now, it seems I've found the one. Qwen3 fits the bill perfectly, and it's an absolute delight to use. This is a test for the best local LLMs. I used Cherry Studio, MCP/server-file-system, and all the models were from the free versions on OpenRouter, without any extra system prompts. The test is pretty straightforward. I asked the LLMs to write a poem and save it to a specific file. The tricky part of this task is that the models first have to realize they're restricted to operating within a designated directory, so they need to do a query first. Then, they have to correctly call the MCP interface for file - writing. The unified test instruction is: `Write a poem, an aria, with the theme of expressing my desire to eat hot pot. Write it into a file in a directory that you are allowed to access.` Here's how these models performed. |Model/Version|Rating|Key Performance| |:-|:-|:-| |**Qwen3-8B**|⭐⭐⭐⭐⭐|🌟 Directly called `list_allowed_directories` and `write_file`, executed smoothly| |**Qwen3-30B-A3B**|⭐⭐⭐⭐⭐|🌟 Equally clean as Qwen3-8B, textbook-level logic| |**Gemma3-27B**|⭐⭐⭐⭐⭐|🎵 Perfect workflow + friendly tone, completed task efficiently| |**Llama-4-Scout**|⭐⭐⭐|⚠️ Tried system path first, fixed format errors after feedback| |**Deepseek-0324**|⭐⭐⭐|🔁 Checked dirs but wrote to invalid path initially, finished after retries| |**Mistral-3.1-24B**|⭐⭐💫|🤔 Created dirs correctly but kept deleting line breaks repeatedly| |**Gemma3-12B**|⭐⭐|💔 Kept trying to read non-existent `hotpot_aria.txt`, gave up apologizing| |**Deepseek-R1**|❌|🚫 Forced write to invalid Windows `/mnt` path, ignored error messages|
2025-04-29T11:57:36
https://www.reddit.com/gallery/1kam3sf
reabiter
reddit.com
1970-01-01T00:00:00
0
{}
1kam3sf
false
null
t3_1kam3sf
/r/LocalLLaMA/comments/1kam3sf/qwen3_is_really_good_at_mcpfunctioncall/
false
false
https://b.thumbs.redditm…Y1syoIzPdz-I.jpg
102
null
HugstonOne can create charts now :)
1
[removed]
2025-04-29T12:01:04
https://i.redd.it/gtgoe8o8krxe1.png
Trilogix
i.redd.it
1970-01-01T00:00:00
0
{}
1kam603
false
null
t3_1kam603
/r/LocalLLaMA/comments/1kam603/hugstonone_can_create_charts_now/
false
false
https://a.thumbs.redditm…XV6S8Oxc1JI4.jpg
1
{'enabled': True, 'images': [{'id': 'jMdWXdeUlaEyMjteuKAfoyKgIRRRxx6fbt14EX7rluQ', 'resolutions': [{'height': 57, 'url': 'https://preview.redd.it/gtgoe8o8krxe1.png?width=108&crop=smart&auto=webp&s=0c086b365890ef4259a0505b2d7ec7b3fadf9d20', 'width': 108}, {'height': 115, 'url': 'https://preview.redd.it/gtgoe8o8krxe1.png?width=216&crop=smart&auto=webp&s=7012ed96980b892452ec0197efd37921460d84f6', 'width': 216}, {'height': 171, 'url': 'https://preview.redd.it/gtgoe8o8krxe1.png?width=320&crop=smart&auto=webp&s=05fae5060dd5bd527686126c849b925901c784bf', 'width': 320}, {'height': 343, 'url': 'https://preview.redd.it/gtgoe8o8krxe1.png?width=640&crop=smart&auto=webp&s=bbbd12a1166d2f7ce506085e1cad2684968e270d', 'width': 640}, {'height': 515, 'url': 'https://preview.redd.it/gtgoe8o8krxe1.png?width=960&crop=smart&auto=webp&s=de58134e7beb0342f16cf8e8894690337fd9156e', 'width': 960}, {'height': 579, 'url': 'https://preview.redd.it/gtgoe8o8krxe1.png?width=1080&crop=smart&auto=webp&s=ea5d6f9ba2cbf35703ba3d989521b319d61e1963', 'width': 1080}], 'source': {'height': 978, 'url': 'https://preview.redd.it/gtgoe8o8krxe1.png?auto=webp&s=6daec95d00488865f8371541ce90c7076ac89c6a', 'width': 1823}, 'variants': {}}]}
How to jailbreak Qwen3-30B-A3B?
0
help me to jailbreak Qwen3-30B-A3B.
2025-04-29T12:08:30
https://www.reddit.com/r/LocalLLaMA/comments/1kamb50/how_to_jailbreak_qwen330ba3b/
tamal4444
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kamb50
false
null
t3_1kamb50
/r/LocalLLaMA/comments/1kamb50/how_to_jailbreak_qwen330ba3b/
false
false
self
0
null
Simulate an entire Reddit community in minutes
1
[removed]
2025-04-29T12:13:42
https://i.redd.it/l343wm97mrxe1.jpeg
FitHeron1933
i.redd.it
1970-01-01T00:00:00
0
{}
1kamekp
false
null
t3_1kamekp
/r/LocalLLaMA/comments/1kamekp/simulate_an_entire_reddit_community_in_minutes/
false
false
https://b.thumbs.redditm…xFUfovSJLNlI.jpg
1
{'enabled': True, 'images': [{'id': 'bObQCu4SFOuVcMJSGPAZ724lwRt0FgOXY7yN0f7X4RM', 'resolutions': [{'height': 44, 'url': 'https://preview.redd.it/l343wm97mrxe1.jpeg?width=108&crop=smart&auto=webp&s=15475c5bad81f9a88ba33de981f5a5ce9b024c44', 'width': 108}, {'height': 89, 'url': 'https://preview.redd.it/l343wm97mrxe1.jpeg?width=216&crop=smart&auto=webp&s=6219e46205809bb256f77a3316994cabf1cf2463', 'width': 216}, {'height': 133, 'url': 'https://preview.redd.it/l343wm97mrxe1.jpeg?width=320&crop=smart&auto=webp&s=c71bf71d191f654719dc454e949cb45dd6acb4b1', 'width': 320}, {'height': 266, 'url': 'https://preview.redd.it/l343wm97mrxe1.jpeg?width=640&crop=smart&auto=webp&s=feb9b854f0492e970acd3794af188071eee381e2', 'width': 640}, {'height': 399, 'url': 'https://preview.redd.it/l343wm97mrxe1.jpeg?width=960&crop=smart&auto=webp&s=8048cf813cfb11e5575c75cc47de69972206f4de', 'width': 960}, {'height': 449, 'url': 'https://preview.redd.it/l343wm97mrxe1.jpeg?width=1080&crop=smart&auto=webp&s=63b06162c97a7d212ca70d98024e321c7be4eeb0', 'width': 1080}], 'source': {'height': 900, 'url': 'https://preview.redd.it/l343wm97mrxe1.jpeg?auto=webp&s=11f3f9139f9366c7f1942ba794215327ae65cfe6', 'width': 2161}, 'variants': {}}]}
Qwen3 function calling is not working at all. Is this my router problem?
1
Trying to benchmark function calling performance on qwen3, but such error occurs in OpenRouter. Is this problem of OpenRouter? Or of Qwen3? Is your local installed Qwen3 is working properly abou the function calling? ```bash 404 No endpoints found that support tool use. ```
2025-04-29T12:17:37
https://www.reddit.com/r/LocalLLaMA/comments/1kamha7/qwen3_function_calling_is_not_working_at_all_is/
jhnam88
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kamha7
false
null
t3_1kamha7
/r/LocalLLaMA/comments/1kamha7/qwen3_function_calling_is_not_working_at_all_is/
false
false
self
1
null
OASIS is on PyPI, Run million-agent social simulations in a few minutes
1
[removed]
2025-04-29T12:25:23
https://i.redd.it/orgwoet4orxe1.jpeg
iamnotdeadnuts
i.redd.it
1970-01-01T00:00:00
0
{}
1kammi7
false
null
t3_1kammi7
/r/LocalLLaMA/comments/1kammi7/oasis_is_on_pypi_run_millionagent_social/
false
false
https://b.thumbs.redditm…8L4wlNp0afZg.jpg
1
{'enabled': True, 'images': [{'id': 'oJDeLQx472XWa6GFHZKdDx9FZmSF60UaldsiaEaubNY', 'resolutions': [{'height': 44, 'url': 'https://preview.redd.it/orgwoet4orxe1.jpeg?width=108&crop=smart&auto=webp&s=ad8dbd2dab313173e8072810b0d9796650a0f8de', 'width': 108}, {'height': 89, 'url': 'https://preview.redd.it/orgwoet4orxe1.jpeg?width=216&crop=smart&auto=webp&s=4d9f3864a5664cc99a8dc582eadfb98f0f79ca27', 'width': 216}, {'height': 133, 'url': 'https://preview.redd.it/orgwoet4orxe1.jpeg?width=320&crop=smart&auto=webp&s=f096f120662e0c5433b5046a6ef61fdc6df5a959', 'width': 320}, {'height': 266, 'url': 'https://preview.redd.it/orgwoet4orxe1.jpeg?width=640&crop=smart&auto=webp&s=f820c96aab3df1528df31e823b647be9a6a34d1b', 'width': 640}, {'height': 399, 'url': 'https://preview.redd.it/orgwoet4orxe1.jpeg?width=960&crop=smart&auto=webp&s=28829d7f7c1f9f52dc6007802ac9f2dcf1ae7ba9', 'width': 960}, {'height': 449, 'url': 'https://preview.redd.it/orgwoet4orxe1.jpeg?width=1080&crop=smart&auto=webp&s=8a0367c08f5abce6dd4d91c00af7abd59cdcaf97', 'width': 1080}], 'source': {'height': 900, 'url': 'https://preview.redd.it/orgwoet4orxe1.jpeg?auto=webp&s=9d572ba231bce4091f8c07f6d45a982751cc7d1e', 'width': 2161}, 'variants': {}}]}
Who cares?
1
[removed]
2025-04-29T12:25:37
https://www.reddit.com/r/LocalLLaMA/comments/1kammoz/who_cares/
inquisitivehoover
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kammoz
false
null
t3_1kammoz
/r/LocalLLaMA/comments/1kammoz/who_cares/
false
false
self
1
null
Difference in Qwen3 quants from providers
9
I see that besides bartowski there are other providers of quants like unsloth. Do they differ in performance, size etc. or are they all the same?
2025-04-29T12:38:04
https://www.reddit.com/r/LocalLLaMA/comments/1kamvvx/difference_in_qwen3_quants_from_providers/
Bitter-College8786
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kamvvx
false
null
t3_1kamvvx
/r/LocalLLaMA/comments/1kamvvx/difference_in_qwen3_quants_from_providers/
false
false
self
9
null
Help finding links to an online AI frontend
0
I am looking for links to any online frontend (hosted by someone else, public URL), that is accessible via a mobile (ios) browser (safari/chrome), where I can plug in an (OpenAI/Anthropic) base_url and api_key and chat with the LLMs that my backend supports. Hosting a frontend (ex: from github) myself is not desirable in my current situation. I have already tried https://lite.koboldai.net/, but it is very laggy when working with large documents and is filled with bugs. Are there any other frontend links?
2025-04-29T12:41:46
https://www.reddit.com/r/LocalLLaMA/comments/1kamyn5/help_finding_links_to_an_online_ai_frontend/
Additional_Top1210
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kamyn5
false
null
t3_1kamyn5
/r/LocalLLaMA/comments/1kamyn5/help_finding_links_to_an_online_ai_frontend/
false
false
self
0
null
Which of you managed to move away from big tech AIs
1
[removed]
2025-04-29T12:44:48
https://www.reddit.com/r/LocalLLaMA/comments/1kan0rz/which_of_you_managed_to_move_away_from_big_tech/
Archerion0
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kan0rz
false
null
t3_1kan0rz
/r/LocalLLaMA/comments/1kan0rz/which_of_you_managed_to_move_away_from_big_tech/
false
false
self
1
null
Any way to run Qwen3 on an iPhone?
2
There’s a bunch of apps that can load llms but they usually need to update for new models Do you know any ios app that can run any version of qwen3? Thank you
2025-04-29T12:46:11
https://www.reddit.com/r/LocalLLaMA/comments/1kan1tk/any_way_to_run_qwen3_on_an_iphone/
Swimming_Nobody8634
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kan1tk
false
null
t3_1kan1tk
/r/LocalLLaMA/comments/1kan1tk/any_way_to_run_qwen3_on_an_iphone/
false
false
self
2
null
Any open source local competition to Sora?
4
Any open source local competition to Sora? For image and video generation.
2025-04-29T12:55:34
https://www.reddit.com/r/LocalLLaMA/comments/1kan8r4/any_open_source_local_competition_to_sora/
maifee
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kan8r4
false
null
t3_1kan8r4
/r/LocalLLaMA/comments/1kan8r4/any_open_source_local_competition_to_sora/
false
false
self
4
null
VRAM Requirements Reference - What can you run with your VRAM? (Contributions welcome)
215
I created this resource to help me quickly see which models I can run on certain VRAM constraints. Check it out here: [https://imraf.github.io/ai-model-reference/](https://imraf.github.io/ai-model-reference/) I'd like this to be as comprehensive as possible. It's on GitHub and contributions are welcome!
2025-04-29T13:10:12
https://i.redd.it/winyewblwrxe1.jpeg
Oatilis
i.redd.it
1970-01-01T00:00:00
0
{}
1kank02
false
null
t3_1kank02
/r/LocalLLaMA/comments/1kank02/vram_requirements_reference_what_can_you_run_with/
false
false
https://b.thumbs.redditm…WwOn7qucM5dw.jpg
215
{'enabled': True, 'images': [{'id': '-hK5RrRWfydhNn-IqVA35Xj1Y7id3XbFyF-6rY9jBXY', 'resolutions': [{'height': 48, 'url': 'https://preview.redd.it/winyewblwrxe1.jpeg?width=108&crop=smart&auto=webp&s=e897dbb2e4a0b7a3c95df98788c10e567038c4c4', 'width': 108}, {'height': 97, 'url': 'https://preview.redd.it/winyewblwrxe1.jpeg?width=216&crop=smart&auto=webp&s=050f65e5e3b2b664d260faf752c90658f2e43474', 'width': 216}, {'height': 144, 'url': 'https://preview.redd.it/winyewblwrxe1.jpeg?width=320&crop=smart&auto=webp&s=9bfa3215311b5938cfa61456e4e14abcf85387af', 'width': 320}, {'height': 288, 'url': 'https://preview.redd.it/winyewblwrxe1.jpeg?width=640&crop=smart&auto=webp&s=5cae8973b440ad7f513edeea46ed84c1b9a21d70', 'width': 640}, {'height': 433, 'url': 'https://preview.redd.it/winyewblwrxe1.jpeg?width=960&crop=smart&auto=webp&s=bfc9e585bdca119c34fe55fdb02885acd580a1b1', 'width': 960}, {'height': 487, 'url': 'https://preview.redd.it/winyewblwrxe1.jpeg?width=1080&crop=smart&auto=webp&s=51556a6d32a7b234d5743f8be97f32bc27a21984', 'width': 1080}], 'source': {'height': 859, 'url': 'https://preview.redd.it/winyewblwrxe1.jpeg?auto=webp&s=2cef8269b2c80ce59cab8746cafd93e357a030d0', 'width': 1903}, 'variants': {}}]}
Don't forget to update llama.cpp
91
If you're like me, you try to avoid recompiling llama.cpp all too often. In my case, I was 50ish commits behind, but Qwen3 30-A3B q4km from bartowski was still running fine on my 4090, albeit with with 86t/s. I got curious after reading about 3090s being able to push 100+ t/s After updating to the latest master, llama-bench failed to allocate to CUDA :-( But refreshing bartowski's page, he now specified the tag used to provide the quants, which in my case was `b5200` After another recompile, I get **160+ ** t/s Holy shit indeed - so as always, read the fucking manual :-)
2025-04-29T13:20:22
https://www.reddit.com/r/LocalLLaMA/comments/1kanrt7/dont_forget_to_update_llamacpp/
c-rious
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kanrt7
false
null
t3_1kanrt7
/r/LocalLLaMA/comments/1kanrt7/dont_forget_to_update_llamacpp/
false
false
self
91
null
Qwen3 enable_thinking not working with python's openai
0
Hi, How do I set enable\_thinking=False in the call using Python's openai library? It isn't supported: Error: Completions.create() got an unexpected keyword argument 'enable\_thinking'
2025-04-29T13:40:10
https://www.reddit.com/r/LocalLLaMA/comments/1kao749/qwen3_enable_thinking_not_working_with_pythons/
Acrobatic_Cat_3448
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kao749
false
null
t3_1kao749
/r/LocalLLaMA/comments/1kao749/qwen3_enable_thinking_not_working_with_pythons/
false
false
self
0
null
Why are my models from HF twice the listed size in storage space?
0
Just downloaded the 400GB Qwen3-235B model via the copy pasta'd git clone from the three sea shells on the model page. But on my harddrive it takes up 800GB? How do I prevent this from happening? Should there be an additional flag I use in the command to prevent it? It looks like their is a .git folder that makes up the difference. Why haven't single file containers for models gone mainstream on HF yet?
2025-04-29T13:46:40
https://www.reddit.com/r/LocalLLaMA/comments/1kaocc8/why_are_my_models_from_hf_twice_the_listed_size/
LargelyInnocuous
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaocc8
false
null
t3_1kaocc8
/r/LocalLLaMA/comments/1kaocc8/why_are_my_models_from_hf_twice_the_listed_size/
false
false
self
0
null
Qwen3 Unsloth Dynamic GGUFs + 128K Context + Bug Fixes
664
Hey [r/Localllama]()! We've uploaded Dynamic 2.0 GGUFs and quants for Qwen3. **ALL Qwen3** models now benefit from [Dynamic 2.0](https://docs.unsloth.ai/basics/unsloth-dynamic-2.0-ggufs) format. We've also **fixed all chat template & loading issues.** They now work properly on all inference engines (llama.cpp, Ollama, LM Studio, Open WebUI etc.) * These bugs came from incorrect chat template implementations, **not** the Qwen team. We've informed them, and they’re helping fix it in places like llama.cpp. Small bugs like this happen all the time, and it was through your guy's feedback that we were able to catch this. Some GGUFs had the wrong `chat_ml` template, so they seemed to work but weren't fully correct. All our uploads are now corrected. * Context length has been extended from 32K to **128K** using native YaRN. * Some **235B-A22B** quants aren't compatible with iMatrix + Dynamic 2.0 despite many testing. We're uploaded as many standard GGUF sizes as possible and left a few of the iMatrix + Dynamic 2.0 that do work. * Thanks to your feedback, we now added Q4\_NL, Q5.1, Q5.0, Q4.1, and Q4.0 formats. * ICYMI: Dynamic 2.0 sets new benchmarks for KL Divergence and 5-shot MMLU, making it the best performing quants for running LLMs. [See benchmarks](https://docs.unsloth.ai/basics/unsloth-dynamic-2.0-ggufs) * We also uploaded Dynamic safetensors for fine-tuning/deployment. Fine-tuning is technically supported in Unsloth, but please wait for the official announcement coming very soon. * We made a detailed guide on how to run Qwen3 (including 235B-A22B) with official settings: [https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune](https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune) **Qwen3 - Official Settings:** |Setting|Non-Thinking Mode|Thinking Mode| |:-|:-|:-| |**Temperature**|0.7|0.6| |**Min\_P**|0.0 (optional, but 0.01 works well; llama.cpp default is 0.1)|0.0| |**Top\_P**|0.8|0.95| |**TopK**|20|20| **Qwen3 - Unsloth Dynamic 2.0 Uploads -with optimal configs:** |Qwen3 variant|GGUF|GGUF (128K Context)|Dynamic 4-bit Safetensor| |:-|:-|:-|:-| |**0.6B**|[0.6B](https://huggingface.co/unsloth/Qwen3-0.6B-GGUF)|[0.6B](https://huggingface.co/unsloth/Qwen3-0.6B-128K-GGUF)|[0.6B](https://huggingface.co/unsloth/Qwen3-0.6B-unsloth-bnb-4bit)| |**1.7B**|[1.7B](https://huggingface.co/unsloth/Qwen3-1.7B-GGUF)|[1.7B](https://huggingface.co/unsloth/Qwen3-1.7B-128K-GGUF)|[1.7B](https://huggingface.co/unsloth/Qwen3-1.7B-unsloth-bnb-4bit)| |**4B**|[4B](https://huggingface.co/unsloth/Qwen3-4B-GGUF)|[4B](https://huggingface.co/unsloth/Qwen3-4B-128K-GGUF)|[4B](https://huggingface.co/unsloth/Qwen3-4B-unsloth-bnb-4bit)| |**8B**|[8B](https://huggingface.co/unsloth/Qwen3-8B-GGUF)|[8B](https://huggingface.co/unsloth/Qwen3-8B-128K-GGUF)|[8B](https://huggingface.co/unsloth/Qwen3-8B-unsloth-bnb-4bit)| |**14B**|[14B](https://huggingface.co/unsloth/Qwen3-14B-GGUF)|[14B](https://huggingface.co/unsloth/Qwen3-14B-128K-GGUF)|[14B](https://huggingface.co/unsloth/Qwen3-14B-unsloth-bnb-4bit)| |**30B-A3B**|[30B-A3B](https://huggingface.co/unsloth/Qwen3-30B-A3B-GGUF)|[30B-A3B](https://huggingface.co/unsloth/Qwen3-30B-A3B-128K-GGUF)|| |**32B**|[32B](https://huggingface.co/unsloth/Qwen3-32B-GGUF)|[32B](https://huggingface.co/unsloth/Qwen3-32B-128K-GGUF)|[32B](https://huggingface.co/unsloth/Qwen3-32B-unsloth-bnb-4bit)| Also wanted to give a huge shoutout to the Qwen team for helping us and the open-source community with their incredible team support! And of course thank you to you all for reporting and testing the issues with us! :)
2025-04-29T13:48:38
https://www.reddit.com/r/LocalLLaMA/comments/1kaodxu/qwen3_unsloth_dynamic_ggufs_128k_context_bug_fixes/
danielhanchen
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaodxu
false
null
t3_1kaodxu
/r/LocalLLaMA/comments/1kaodxu/qwen3_unsloth_dynamic_ggufs_128k_context_bug_fixes/
false
false
self
664
{'enabled': False, 'images': [{'id': 'ZmadbtMLxXXHFKwJkCjeTUDuX5sS57sYwkHR8IIGo6Y', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/fxYCW6fqdbJ5RWjh_x1fsIyj0ZtZFx8MOAvXVxIw2PE.jpg?width=108&crop=smart&auto=webp&s=1ef4773905a7285d6ca9d2707252ecf3322ec746', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/fxYCW6fqdbJ5RWjh_x1fsIyj0ZtZFx8MOAvXVxIw2PE.jpg?width=216&crop=smart&auto=webp&s=6555cce3e1543ec541933b9a1ea746f3da79448a', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/fxYCW6fqdbJ5RWjh_x1fsIyj0ZtZFx8MOAvXVxIw2PE.jpg?width=320&crop=smart&auto=webp&s=346b61e1006578bd8c7c90ff8b45496164cd4933', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/fxYCW6fqdbJ5RWjh_x1fsIyj0ZtZFx8MOAvXVxIw2PE.jpg?width=640&crop=smart&auto=webp&s=2e74df95b54af72feafa558281ef5e11bc4e8a7c', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/fxYCW6fqdbJ5RWjh_x1fsIyj0ZtZFx8MOAvXVxIw2PE.jpg?width=960&crop=smart&auto=webp&s=8d3ac1cc3775d1b7217345a94a6e9f18f0ba2092', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/fxYCW6fqdbJ5RWjh_x1fsIyj0ZtZFx8MOAvXVxIw2PE.jpg?width=1080&crop=smart&auto=webp&s=57e2a43db692dc32eecd433adfbae429f9bca7fd', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/fxYCW6fqdbJ5RWjh_x1fsIyj0ZtZFx8MOAvXVxIw2PE.jpg?auto=webp&s=2704eae76891f7897192cd5a7236096d2b9f8a5f', 'width': 1200}, 'variants': {}}]}
Recommendation for Mailadresscheck
1
[removed]
2025-04-29T13:53:36
https://www.reddit.com/r/LocalLLaMA/comments/1kaohxy/recommendation_for_mailadresscheck/
PriceInitial2373
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaohxy
false
null
t3_1kaohxy
/r/LocalLLaMA/comments/1kaohxy/recommendation_for_mailadresscheck/
false
false
self
1
null
Best llm for 4*a6000
1
[removed]
2025-04-29T14:15:11
https://www.reddit.com/r/LocalLLaMA/comments/1kaozxi/best_llm_for_4a6000/
AttentionConnect3567
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaozxi
false
null
t3_1kaozxi
/r/LocalLLaMA/comments/1kaozxi/best_llm_for_4a6000/
false
false
self
1
null
Waiting for Qwen-3-30B-A3B AWQ Weights and Benchmarks – Any Updates? Thank you
16
I'm amazed that a 3B active parameter model can rival a 32B parameter one! Really eager to see real-world evaluations, especially with quantization like AWQ. I know AWQ takes time since it involves identifying active parameters and generating weights, but I’m hopeful it’ll deliver. This could be a game-changer! Also, the performance of tiny models like 4B is impressive. Not every use case needs a massive model. Putting a classifier in front of an to route tasks to different models could delivery a lot on a modest hardware. Anyone actively working on these AWQ weights or benchmarks? Thanks!
2025-04-29T14:15:36
https://www.reddit.com/r/LocalLLaMA/comments/1kap09r/waiting_for_qwen330ba3b_awq_weights_and/
appakaradi
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kap09r
false
null
t3_1kap09r
/r/LocalLLaMA/comments/1kap09r/waiting_for_qwen330ba3b_awq_weights_and/
false
false
self
16
null
How to make prompt processing faster in llama.cpp?
2
I'm using a 4070 12G and 32G DDR5 ram. This is the command I use: \`.\\build\\bin\\llama-server.exe -m D:\\llama.cpp\\models\\Qwen3-30B-A3B-UD-Q3\_K\_XL.gguf -c 32768 --port 9999 -ngl 99 --no-webui --device CUDA0 -fa -ot ".ffn\_.\*\_exps.=CPU"\` And for long prompts it takes over a minute to process, which is a pain in the ass: \> prompt eval time = 68442.52 ms / 29933 tokens ( 2.29 ms per token, 437.35 tokens per second) \> eval time = 19719.89 ms / 398 tokens ( 49.55 ms per token, 20.18 tokens per second) \> total time = 88162.41 ms / 30331 tokens Is there any approach to increase prompt processing speed? Only use \~5G vram, so I suppose there's room for improvement.
2025-04-29T14:21:32
https://www.reddit.com/r/LocalLLaMA/comments/1kap54w/how_to_make_prompt_processing_faster_in_llamacpp/
Conscious_Chef_3233
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kap54w
false
null
t3_1kap54w
/r/LocalLLaMA/comments/1kap54w/how_to_make_prompt_processing_faster_in_llamacpp/
false
false
self
2
null
What are all the problems with model distillation? Are the distilled models being used much in production compared to pure models?
1
basically the title. I dont have stats to back my question but as much as I have explored, distilled models are seemingly used more by individuals. Enterprises prefer the raw model. Is there any technical bottleneck for the usage of distillation? I saw another reddit thread telling that distilled model takes memory as much as the training phase. If yes, why? I know, it's a such a newbie question but I couldn't find the resources for my question except papers that overcomplicates things that I want to understand.
2025-04-29T14:36:54
https://www.reddit.com/r/LocalLLaMA/comments/1kaphye/what_are_all_the_problems_with_model_distillation/
Immediate_Ad9718
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaphye
false
null
t3_1kaphye
/r/LocalLLaMA/comments/1kaphye/what_are_all_the_problems_with_model_distillation/
false
false
self
1
null
Qwen 3: A Reality Check (fanboys, this isn't for you)
0
Some things you should know before filling up your SSD with these new models: 1. There’s no significant gain in multilingual capabilities (if there’s any gain at all) 2. All models start by "thinking", and will flood your context with nonsense like "Hmm...", "Oh!...", "Wait..." But thankfully, this can be disabled using `/no_think` in the system prompt 3. From 0.6 to 8B, none of them outperforms Gemma. Use Gemma 2 2B for smaller sizes and Gemma 3 4B for the rest. We don’t even need to go up to Gemma 3 12B. As for the larger models, I spared myself and didn’t even bother downloading them for testing In short, don’t waste your time downloading them. They’re not better than what we already had. "Oh, but I saw a benchmark that..." I think we’re old enough to understand that every new model is entirely focused on scoring well in benchmarks, which is far from actually improving real-world, day-to-day usage. If you’re still curious, just use the versions available online. Test all models from 0.6 to 8B at the highest quantization available.
2025-04-29T14:37:50
https://www.reddit.com/r/LocalLLaMA/comments/1kapiok/qwen_3_a_reality_check_fanboys_this_isnt_for_you/
CaptainCivil7097
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kapiok
false
null
t3_1kapiok
/r/LocalLLaMA/comments/1kapiok/qwen_3_a_reality_check_fanboys_this_isnt_for_you/
false
false
self
0
null
I really like the Qwen3-8B model
1
[removed]
2025-04-29T14:38:56
https://www.reddit.com/r/LocalLLaMA/comments/1kapjl5/i_really_like_the_qwen38b_model/
Delicious_Current269
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kapjl5
false
null
t3_1kapjl5
/r/LocalLLaMA/comments/1kapjl5/i_really_like_the_qwen38b_model/
false
false
self
1
null
Running Qwen3-30B-A3B on ARM CPU of Single-board computer
92
2025-04-29T14:39:19
https://v.redd.it/cyidinq8csxe1
Inv1si
v.redd.it
1970-01-01T00:00:00
0
{}
1kapjwa
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/cyidinq8csxe1/DASHPlaylist.mpd?a=1748529573%2CYmE0MmRmYzRjOGQxOTVlYmRhN2ZmZWIxZjc2MTRmMzliMGQzNThmNWNjOGRhZDI1NGEwZDhhOWJiN2QzMzdmYg%3D%3D&v=1&f=sd', 'duration': 90, 'fallback_url': 'https://v.redd.it/cyidinq8csxe1/DASH_1080.mp4?source=fallback', 'has_audio': True, 'height': 1080, 'hls_url': 'https://v.redd.it/cyidinq8csxe1/HLSPlaylist.m3u8?a=1748529573%2CNjJhMDE0YTA0NjllNDQ3M2YzZTZlNzE1NDE1ZTZiODczYzlhYWNmMThiMmFkMjVlNGM4NjIwNWI3YzJiMzhjNg%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/cyidinq8csxe1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1920}}
t3_1kapjwa
/r/LocalLLaMA/comments/1kapjwa/running_qwen330ba3b_on_arm_cpu_of_singleboard/
false
false
https://external-preview…7d49db300824f39d
92
{'enabled': False, 'images': [{'id': 'aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU.png?width=108&crop=smart&format=pjpg&auto=webp&s=0724958e241f5d5475e0750d8741d2b00a4fd15d', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU.png?width=216&crop=smart&format=pjpg&auto=webp&s=03f9fe95f912688c1365386852e8fc0ee47fc935', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU.png?width=320&crop=smart&format=pjpg&auto=webp&s=18fa719843a8beb0341da810425c4bf806a77dd0', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU.png?width=640&crop=smart&format=pjpg&auto=webp&s=4fb33a71a1176d67b1c5d0d55b0adbf40c47e80a', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU.png?width=960&crop=smart&format=pjpg&auto=webp&s=37cab58c4aaec831525ecd3a154be8e175c7ab2d', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU.png?width=1080&crop=smart&format=pjpg&auto=webp&s=1849722ff3874ee16a141c8a2f2b3faec5f01031', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/aWE3aHZwcThjc3hlMd4Ogkh7a8SmmiEqmgn4vXegHkXYe3lpup27kwb7AKZU.png?format=pjpg&auto=webp&s=e2a1b991871a5eb5c977b6008f0797c1c984d9b1', 'width': 1920}, 'variants': {}}]}
What are all the problems with model distillation? Are the distilled models being used much in production compared to pure models?
2
basically the title. I dont have stats to back my question but as much as I have explored, distilled models are seemingly used more by individuals. Enterprises prefer the raw model. Is there any technical bottleneck for the usage of distillation? I saw another reddit thread telling that distilled model takes memory as much as the training phase. If yes, why? I know, it's a such a newbie question but I couldn't find the resources for my question except papers that overcomplicates things that I want to understand.
2025-04-29T14:39:48
https://www.reddit.com/r/LocalLLaMA/comments/1kapkaf/what_are_all_the_problems_with_model_distillation/
Immediate_Ad9718
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kapkaf
false
null
t3_1kapkaf
/r/LocalLLaMA/comments/1kapkaf/what_are_all_the_problems_with_model_distillation/
false
false
self
2
null
I really like the Qwen3-8B model
1
[removed]
2025-04-29T14:41:49
https://www.reddit.com/r/LocalLLaMA/comments/1kaplyk/i_really_like_the_qwen38b_model/
Delicious_Current269
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaplyk
false
null
t3_1kaplyk
/r/LocalLLaMA/comments/1kaplyk/i_really_like_the_qwen38b_model/
false
false
self
1
null
What sites hosting largest newest qwen?
2
For chatting and testing purpose
2025-04-29T14:43:46
https://www.reddit.com/r/LocalLLaMA/comments/1kapnk3/what_sites_hosting_largest_newest_qwen/
CacheConqueror
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kapnk3
false
null
t3_1kapnk3
/r/LocalLLaMA/comments/1kapnk3/what_sites_hosting_largest_newest_qwen/
false
false
self
2
null
Qwen3 1.7b is not smarter than qwen2.5 1.5b using quants that give the same token speed
2
I ran my own benchmark and that’s the conclusion. Theire about the same. Did anyone else get similar results? I disabled thinking (/no_think)
2025-04-29T14:47:50
https://www.reddit.com/r/LocalLLaMA/comments/1kapqxk/qwen3_17b_is_not_smarter_than_qwen25_15b_using/
Dean_Thomas426
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kapqxk
false
null
t3_1kapqxk
/r/LocalLLaMA/comments/1kapqxk/qwen3_17b_is_not_smarter_than_qwen25_15b_using/
false
false
self
2
null
Its been a while, did anyone come closer to personal/jarvis like AI?
1
[removed]
2025-04-29T14:48:26
https://www.reddit.com/r/LocalLLaMA/comments/1kaprfr/its_been_a_while_did_anyone_come_closer_to/
its_kanwischer
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaprfr
false
null
t3_1kaprfr
/r/LocalLLaMA/comments/1kaprfr/its_been_a_while_did_anyone_come_closer_to/
false
false
self
1
null
Dynamic Multi-Function Calling Locally with Gemma 3 + Ollama – Full Demo Walkthrough
3
Hi everyone! 👋 I recently worked on **dynamic function calling** using **Gemma 3 (1B)** running **locally** via **Ollama** — allowing the LLM to **trigger real-time Search, Translation, and Weather retrieval** dynamically based on user input. **Demo Video:** [Demo](https://reddit.com/link/1kapu5u/video/18muxz65esxe1/player) **Dynamic Function Calling Flow Diagram :** https://preview.redd.it/3nxoand7esxe1.png?width=959&format=png&auto=webp&s=bb56d5bed7f07c2957209362175a31fffd81645c Instead of only answering from memory, the model smartly decides when to: 🔍 Perform a **Google Sear**ch (using [Serper.dev](http://serper.dev/) API) 🌐 **Translate te**xt live (using MyMemory API) ⛅ **Fetch weather** in real-time (using OpenWeatherMap API) 🧠 **Answer direct**ly if internal memory is sufficient This showcases how **structured function calling** can make local LLMs smarter and much more flexible! 💡 **Key Highlight**s: ✅ JSON-structured function calls for safe external tool invocation ✅ Local-first architecture — no cloud LLM inference ✅ Ollama + Gemma 3 1B combo works great even on modest hardware ✅ Fully modular — easy to plug in more tools beyond search, translate, weather 🛠 **Tech Stac**k: ⚡ [Gemma 3 (1B)](https://ollama.com/library/gemma3:1b) via **Ollama** ⚡ **Gradio** (Chatbot Frontend) ⚡ [**Serper.dev**](http://serper.dev/) **API** (Search) ⚡ **MyMemory API** (Translation) ⚡ **OpenWeatherMap API** (Weather) ⚡ **Pydantic + Python** (Function parsing & validation) 📌 **Full blog + complete code walkthrou**gh: [sridhartech.hashnode.dev/dynamic-multi-function-calling-locally-with-gemma-3-and-ollama](https://sridhartech.hashnode.dev/dynamic-multi-function-calling-locally-with-gemma-3-and-ollama) Would love to hear your thoughts !
2025-04-29T14:51:39
https://www.reddit.com/r/LocalLLaMA/comments/1kapu5u/dynamic_multifunction_calling_locally_with_gemma/
srireddit2020
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kapu5u
false
null
t3_1kapu5u
/r/LocalLLaMA/comments/1kapu5u/dynamic_multifunction_calling_locally_with_gemma/
false
false
https://a.thumbs.redditm…EMTG0uCkq2v4.jpg
3
null
how to summarize unlimited size videos with AI locally for free?
0
how to summarize unlimited size videos with AI locally for free?
2025-04-29T15:05:37
https://www.reddit.com/r/LocalLLaMA/comments/1kaq6cy/how_to_summarize_unlimited_size_videos_with_ai/
Glum_Thing5808
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaq6cy
false
null
t3_1kaq6cy
/r/LocalLLaMA/comments/1kaq6cy/how_to_summarize_unlimited_size_videos_with_ai/
false
false
self
0
null
Llama 4 reasoning 14b model releasing today
1
[deleted]
2025-04-29T15:18:16
[deleted]
1970-01-01T00:00:00
0
{}
1kaqhit
false
null
t3_1kaqhit
/r/LocalLLaMA/comments/1kaqhit/llama_4_reasoning_14b_model_releasing_today/
false
false
default
1
null
Llama 4 reasoning 17b model releasing today
547
2025-04-29T15:18:43
https://i.redd.it/hy71sz0sjsxe1.jpeg
Independent-Wind4462
i.redd.it
1970-01-01T00:00:00
0
{}
1kaqhxy
false
null
t3_1kaqhxy
/r/LocalLLaMA/comments/1kaqhxy/llama_4_reasoning_17b_model_releasing_today/
false
false
https://b.thumbs.redditm…5wBde5qgy_Dw.jpg
547
{'enabled': True, 'images': [{'id': 'vp3QWYZPPVZaTd3MtfKRk28XbuRts3kSTVAifl4_5uU', 'resolutions': [{'height': 115, 'url': 'https://preview.redd.it/hy71sz0sjsxe1.jpeg?width=108&crop=smart&auto=webp&s=ef48528058c676a8e9958db321af26538c67c64e', 'width': 108}, {'height': 231, 'url': 'https://preview.redd.it/hy71sz0sjsxe1.jpeg?width=216&crop=smart&auto=webp&s=b5add04b9aa5cda74cdc4824aa2a7ddc97d80f63', 'width': 216}, {'height': 342, 'url': 'https://preview.redd.it/hy71sz0sjsxe1.jpeg?width=320&crop=smart&auto=webp&s=128abaa765440de656a55276488cb241e587eb80', 'width': 320}, {'height': 685, 'url': 'https://preview.redd.it/hy71sz0sjsxe1.jpeg?width=640&crop=smart&auto=webp&s=5ff1abe7a5307a69a23eb4ca02f7f5cbb5bafaf4', 'width': 640}, {'height': 1027, 'url': 'https://preview.redd.it/hy71sz0sjsxe1.jpeg?width=960&crop=smart&auto=webp&s=8d0b33c946d69c0430eab381808d8a9df93823d3', 'width': 960}, {'height': 1156, 'url': 'https://preview.redd.it/hy71sz0sjsxe1.jpeg?width=1080&crop=smart&auto=webp&s=f9c0e522fb5ecdac1001b3d133b304c6451c4efb', 'width': 1080}], 'source': {'height': 1156, 'url': 'https://preview.redd.it/hy71sz0sjsxe1.jpeg?auto=webp&s=81ed55b37d32e2055a3735b89089e87a462acb40', 'width': 1080}, 'variants': {}}]}
Qwen 3 8B, 14B, 32B, 30B-A3B & 235B-A22B Tested
85
[https://www.youtube.com/watch?v=GmE4JwmFuHk](https://www.youtube.com/watch?v=GmE4JwmFuHk) **Score Tables with Key Insights:** * These are generally very very good models. * They all seem to struggle a bit in non english languages. If you take out non English questions from the dataset, the scores will across the board rise about 5-10 points. * Coding is top notch, even with the smaller models. * I have not yet tested the 0.6, 1 and 4B, that will come soon. In my experience for the use cases I cover, 8b is the bare minimum, but I have been surprised in the past, I'll post soon! **Test 1: Harmful Question Detection** (Timestamp \~3:30) |Model|Score| |:-|:-| |qwen/qwen3-32b:free|100.00| |qwen/qwen3-235b-a22b-04-28:free|95.00| |qwen/qwen3-8b:free|80.00| |qwen/qwen3-30b-a3b-04-28:free|80.00| |qwen/qwen3-14b:free|75.00| **Test 2: Named Entity Recognition (NER)** (Timestamp \~5:56) |Model|Score| |:-|:-| |qwen/qwen3-30b-a3b-04-28:free|90.00| |qwen/qwen3-32b:free|80.00| |qwen/qwen3-8b:free|80.00| |qwen/qwen3-14b:free|80.00| |qwen/qwen3-235b-a22b-04-28:free|75.00| |*Note: multilingual translation seemed to be the main source of errors, especially Nordic languages.*|| **Test 3: SQL Query Generation** (Timestamp \~8:47) |Model|Score|Key Insight| |:-|:-|:-| |qwen/qwen3-235b-a22b-04-28:free|100.00|Excellent coding performance,| |qwen/qwen3-14b:free|100.00|Excellent coding performance,| |qwen/qwen3-32b:free|100.00|Excellent coding performance,| |qwen/qwen3-30b-a3b-04-28:free|95.00|Very strong performance from the smaller MoE model.| |qwen/qwen3-8b:free|85.00|Good performance, comparable to other 8b models.| **Test 4: Retrieval Augmented Generation (RAG)** (Timestamp \~11:22) |Model|Score| |:-|:-| |qwen/qwen3-32b:free|92.50| |qwen/qwen3-14b:free|90.00| |qwen/qwen3-235b-a22b-04-28:free|89.50| |qwen/qwen3-8b:free|85.00| |qwen/qwen3-30b-a3b-04-28:free|85.00| |*Note: Key issue is models responding in English when asked to respond in the source language (e.g., Japanese).*||
2025-04-29T15:18:54
https://www.reddit.com/r/LocalLLaMA/comments/1kaqi3k/qwen_3_8b_14b_32b_30ba3b_235ba22b_tested/
Ok-Contribution9043
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaqi3k
false
null
t3_1kaqi3k
/r/LocalLLaMA/comments/1kaqi3k/qwen_3_8b_14b_32b_30ba3b_235ba22b_tested/
false
false
self
85
{'enabled': False, 'images': [{'id': 'eWR9DZhle6RYjYn8fBiue87N9i0Mr0-k6vmZLPnJn7o', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/wRH0VvNpyKQwcLypwHqolgHZWeQ48hkfVcSaXAYJ0V4.jpg?width=108&crop=smart&auto=webp&s=72fc17ab37c23f3d63109c0554b8b9e2a89fed99', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/wRH0VvNpyKQwcLypwHqolgHZWeQ48hkfVcSaXAYJ0V4.jpg?width=216&crop=smart&auto=webp&s=426e6e7b3dfacf98d3b4d4f01d4e9868a0deaf0e', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/wRH0VvNpyKQwcLypwHqolgHZWeQ48hkfVcSaXAYJ0V4.jpg?width=320&crop=smart&auto=webp&s=8659068d53f6f342c74c252f83dcff321708b5e5', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/wRH0VvNpyKQwcLypwHqolgHZWeQ48hkfVcSaXAYJ0V4.jpg?auto=webp&s=1603a34585cf66c83f7d3ee11184cdc78174e1ea', 'width': 480}, 'variants': {}}]}
"draw a portrait of you using Matplotlib." a collection of <4b LLM models self-portraits.
1
2025-04-29T15:20:47
https://www.reddit.com/gallery/1kaqjqk
JLeonsarmiento
reddit.com
1970-01-01T00:00:00
0
{}
1kaqjqk
false
null
t3_1kaqjqk
/r/LocalLLaMA/comments/1kaqjqk/draw_a_portrait_of_you_using_matplotlib_a/
false
false
https://b.thumbs.redditm…b--LlkUffQkE.jpg
1
null
Anyone tried giving their agent an LLM evaluation tool to self-correct? Here's a demo workflow for a tool-agent-user interaction benchmark
1
2025-04-29T15:23:20
https://v.redd.it/eyw4jk4iksxe1
fortunemaple
/r/LocalLLaMA/comments/1kaqlye/anyone_tried_giving_their_agent_an_llm_evaluation/
1970-01-01T00:00:00
0
{}
1kaqlye
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/eyw4jk4iksxe1/DASHPlaylist.mpd?a=1748661807%2CNWM1Y2E1YmEwNTVkZjA1NGJlMzAxMTBjZmU3YmZiNWYzMDZiNjI3Yjc5ZTk2N2U3ZDY2NzVhMGMwMDU0NWY0Nw%3D%3D&v=1&f=sd', 'duration': 61, 'fallback_url': 'https://v.redd.it/eyw4jk4iksxe1/DASH_1080.mp4?source=fallback', 'has_audio': False, 'height': 1080, 'hls_url': 'https://v.redd.it/eyw4jk4iksxe1/HLSPlaylist.m3u8?a=1748661807%2CZmEzN2Q1OTZiNmFjNTZkNzZhYWI3OGMyYzQ2YjRiNzVkZTUyZDJjYWY1ZmQ1YTE1NGYzZDQzY2FhZGRiZDVlYQ%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/eyw4jk4iksxe1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1920}}
t3_1kaqlye
/r/LocalLLaMA/comments/1kaqlye/anyone_tried_giving_their_agent_an_llm_evaluation/
false
false
https://external-preview…06632e63ec078c83
1
{'enabled': False, 'images': [{'id': 'eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=108&crop=smart&format=pjpg&auto=webp&s=24fe9450115593bf1c55cce360ff853e5e3d6834', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=216&crop=smart&format=pjpg&auto=webp&s=0359e7600aae7a95540bb0753c8ea6dc8f43b066', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=320&crop=smart&format=pjpg&auto=webp&s=1a2de4b9d9a28b8e5405941591c0cbc2ba942e64', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=640&crop=smart&format=pjpg&auto=webp&s=6736d886c1addddc359196d06b228b7fa230f80d', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=960&crop=smart&format=pjpg&auto=webp&s=ba9a9c23947c28f52a93998d5a4110de87ca48c6', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=1080&crop=smart&format=pjpg&auto=webp&s=06bb549d2df2298bb6ae296b83f5ab387073dac4', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/eXRyOTVuNGlrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?format=pjpg&auto=webp&s=54976eb6cd173d50dd8104bc73c417ffec22381d', 'width': 1920}, 'variants': {}}]}
😲 Speed with Qwen3 on Mac Against Various Prompt Sizes!
5
First, we all know prompt processing on a Mac is slower than on Nvidia GPUs. Let's just get that out of the way. In my previous experience, speed between MLX and Llama.cpp was pretty much neck and neck, with a slight edge to MLX. Because of that, I've been mainly using Ollama for convenience. Recently, I asked about prompt processing speed, and an LCP developer mentioned that prompt speed was significantly optimized starting with LCP 0.25.0. Here’s a comparison between LCP 8bit and Q8_0 using Qwen3-30B-A3B, running on an M3 Max with 64GB of RAM: I pulled the latest commits for both engines available as of this morning. * MLX-LM: 0.24.0: with MLX: 0.25.1.dev20250428+99b986885 * LCP 5215 (5f5e39e1): loading full weights to GPU and flash attention enabled. | Engine | Prompt Tokens | Prompt Processing Speed | Generated Tokens | Token Generation Speed | Total Execution Time | | ----- | --- | --- | --- | --- | --- | | MLX | 681 | 1160.636 | 939 | 68.016 | 24s | | LCP | 680 | 320.66 | 1255 | 57.26 | 38s | | MLX | 774 | 1193.223 | 1095 | 67.620 | 25s | | LCP | 773 | 469.05 | 1165 | 56.04 | 24s | | MLX | 1165 | 1276.406 | 1194 | 66.135 | 27s | | LCP | 1164 | 395.88 | 939 | 55.61 | 22s | | MLX | 1498 | 1309.557 | 1373 | 64.622 | 31s | | LCP | 1497 | 467.97 | 1061 | 55.22 | 24s | | MLX | 2178 | 1336.514 | 1395 | 62.485 | 33s | | LCP | 2177 | 420.58 | 1422 | 53.66 | 34s | | MLX | 3254 | 1301.808 | 1241 | 59.783 | 32s | | LCP | 3253 | 399.03 | 1657 | 51.86 | 42s | | MLX | 4007 | 1267.555 | 1522 | 60.945 | 37s | | LCP | 4006 | 442.46 | 1252 | 51.15 | 36s | | MLX | 6076 | 1188.697 | 1684 | 57.093 | 44s | | LCP | 6075 | 424.56 | 1446 | 48.41 | 46s | | MLX | 8050 | 1105.783 | 1263 | 54.186 | 39s | | LCP | 8049 | 407.96 | 1705 | 46.13 | 59s | | MLX | 12006 | 966.065 | 1961 | 48.330 | 1m2s | | LCP | 12005 | 356.43 | 1503 | 42.43 | 1m11s | | MLX | 16059 | 853.156 | 1973 | 43.580 | 1m18s | | LCP | 16058 | 332.21 | 1285 | 39.38 | 1m23s | | MLX | 24036 | 691.141 | 1592 | 34.724 | 1m30s | | LCP | 24035 | 296.13 | 1666 | 33.78 | 2m13s | | MLX | 32067 | 570.459 | 1088 | 29.289 | 1m43s | | LCP | 32066 | 257.69 | 1643 | 29.76 | 3m2s |
2025-04-29T15:24:53
https://www.reddit.com/r/LocalLLaMA/comments/1kaqnbj/speed_with_qwen3_on_mac_against_various_prompt/
chibop1
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaqnbj
false
null
t3_1kaqnbj
/r/LocalLLaMA/comments/1kaqnbj/speed_with_qwen3_on_mac_against_various_prompt/
false
false
self
5
null
Anyone tried giving their agent an LLM evaluation tool to self-correct? Here's a demo workflow for a tool-agent-user benchmark
0
2025-04-29T15:25:13
https://v.redd.it/n71xw8uwksxe1
fortunemaple
/r/LocalLLaMA/comments/1kaqnlx/anyone_tried_giving_their_agent_an_llm_evaluation/
1970-01-01T00:00:00
0
{}
1kaqnlx
false
{'reddit_video': {'bitrate_kbps': 5000, 'dash_url': 'https://v.redd.it/n71xw8uwksxe1/DASHPlaylist.mpd?a=1748661921%2CNGM2ZjE1ODU2MDA3NDY1ODMzNGE0NWZiODZkYmY1ZTExODZmOGIzYzhmYjZmNzY5YmYyMjBjOTkyYWM0NzE3Nw%3D%3D&v=1&f=sd', 'duration': 61, 'fallback_url': 'https://v.redd.it/n71xw8uwksxe1/DASH_1080.mp4?source=fallback', 'has_audio': False, 'height': 1080, 'hls_url': 'https://v.redd.it/n71xw8uwksxe1/HLSPlaylist.m3u8?a=1748661921%2CNGViYjc0MWI2ZjE4MmQ1MTAzMTI5YjU4YzdhZmFkYTc1ZTIzMmM5N2RkZjc2NDQ3Y2JmYTQ3ZDg2OTlmMzgzYw%3D%3D&v=1&f=sd', 'is_gif': False, 'scrubber_media_url': 'https://v.redd.it/n71xw8uwksxe1/DASH_96.mp4', 'transcoding_status': 'completed', 'width': 1920}}
t3_1kaqnlx
/r/LocalLLaMA/comments/1kaqnlx/anyone_tried_giving_their_agent_an_llm_evaluation/
false
false
https://external-preview…1e81a3d16ae6a42e
0
{'enabled': False, 'images': [{'id': 'Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=108&crop=smart&format=pjpg&auto=webp&s=2e6ccf03de76d6bc7ad7fea5b8e4983b8dec1220', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=216&crop=smart&format=pjpg&auto=webp&s=1388264ebf53cab710b09d8a22d83590e21b3fa1', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=320&crop=smart&format=pjpg&auto=webp&s=8d3cf32b141df9fe3b0fda399851f7f269245176', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=640&crop=smart&format=pjpg&auto=webp&s=63b24c0434e03c2c7096fab0a1e6fc940bdcedd6', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=960&crop=smart&format=pjpg&auto=webp&s=df32b3ceb3e9da311bb128be2ef6953d4ee9e6bb', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?width=1080&crop=smart&format=pjpg&auto=webp&s=c3850fecc3b55176bfe1f94e514d81132b30e8ec', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/Yms2a3E1dXdrc3hlMRKGyMC4ysPML3P4SqBvKD3oDkUYq0-Q3KVnpd7bQn_G.png?format=pjpg&auto=webp&s=d387a99a9e4f075a0d00b49043b726f44d05967b', 'width': 1920}, 'variants': {}}]}
Qwen3 EQ-Bench results. Tested: 235b-a22b, 32b, 14b, 30b-a3b.
168
Links: [https://eqbench.com/creative\_writing\_longform.html](https://eqbench.com/creative_writing_longform.html) [https://eqbench.com/creative\_writing.html](https://eqbench.com/creative_writing.html) [https://eqbench.com/judgemark-v2.html](https://eqbench.com/judgemark-v2.html) Samples: [https://eqbench.com/results/creative-writing-longform/qwen\_\_qwen3-235b-a22b\_longform\_report.html](https://eqbench.com/results/creative-writing-longform/qwen__qwen3-235b-a22b_longform_report.html) [https://eqbench.com/results/creative-writing-longform/qwen\_\_qwen3-32b\_longform\_report.html](https://eqbench.com/results/creative-writing-longform/qwen__qwen3-32b_longform_report.html) [https://eqbench.com/results/creative-writing-longform/qwen\_\_qwen3-30b-a3b\_longform\_report.html](https://eqbench.com/results/creative-writing-longform/qwen__qwen3-30b-a3b_longform_report.html) [https://eqbench.com/results/creative-writing-longform/qwen\_\_qwen3-14b\_longform\_report.html](https://eqbench.com/results/creative-writing-longform/qwen__qwen3-14b_longform_report.html)
2025-04-29T15:33:57
https://www.reddit.com/gallery/1kaqvi5
_sqrkl
reddit.com
1970-01-01T00:00:00
0
{}
1kaqvi5
false
null
t3_1kaqvi5
/r/LocalLLaMA/comments/1kaqvi5/qwen3_eqbench_results_tested_235ba22b_32b_14b/
false
false
https://b.thumbs.redditm…us0zUjNwzqNs.jpg
168
null
Qwen3 30B A3B 4_k_m - 2x more token/s boost from ~20 to ~40 by changing the runtime in a 5070ti (16g vram)
20
IDK why, but I just find that changing the runtime into Vulkan can boost 2x more token/s, which is definitely much more usable than ever before to me. The default setting, "CUDA 12," is the worst in my test; even the "CUDA" setting is better than it. hope it's useful to you! \*But Vulkan seems to cause noticeable speed loss for Gemma3 27b.
2025-04-29T15:35:48
https://www.reddit.com/gallery/1kaqx3x
Ill-Language4452
reddit.com
1970-01-01T00:00:00
0
{}
1kaqx3x
false
null
t3_1kaqx3x
/r/LocalLLaMA/comments/1kaqx3x/qwen3_30b_a3b_4_k_m_2x_more_tokens_boost_from_20/
false
false
https://b.thumbs.redditm…9p-6cgEzGf3U.jpg
20
null
Qwen3 30B A3B seems tough to replace,
1
I today tested qwen3 30B A3B with my internal questineres where one is a simple constructed mathematical question with imaginary condition of inflation counting in EMI payment, for my surprise this and and many other tests gave more accurate mathematical reauls than the gemini 2.5 flash exp. Question: """suppose there is inflation at 5percent a month and am investing 1000 per month at the end of the 1 month the value of 1000 will be 1000-1000x((5/12)/100) = 995.8, this 995.8 plus 1000 for the second month, so after second months 1995.8-1995.8x((5/12)/100)= 1987.4 3rd month 1987.4 + 1000 = 2987.4, the. after the 3rd month the value of 2987.4 is .... this continues till 12th month and the final value of the money we have is = """ Purposefully the question was made by my 15y old cousin for one thing that the question should not be perfect, ai should be given ways to explore the ways to imaging this question Response: Deepseek r1 To determine the final value after 12 months of investing $1000 each month with a monthly inflation rate of 5% per annum (0.4167% monthly), we adjust each month's balance by multiplying by 0.995833 (1 - 0.004167). Here's the step-by-step calculation: 1. **Month 1**: Investment: $1000 After inflation: $1000 × 0.995833 ≈ **$995.83** 2. **Month 2**: Previous balance: $995.83 New investment: $1000 Total before inflation: $1995.83 After inflation: $1995.83 × 0.995833 ≈ **$1987.51** 3. **Month 3**: Total before inflation: $1987.51 + $1000 = $2987.51 After inflation: $2987.51 × 0.995833 ≈ **$2975.07** Continuing this process for all 12 months and truncating values at each step (as per the user's method), the final balance is: **Final Value after 12 months: ≈ $11,679.40** --- **Answer:** The final value of the investment after 12 months is approximately **\$11,679.40**. Qwen3 30B A3B To determine the final value of the investment after 12 months, we must account for **monthly inflation** of **5% annually**, which translates to a **monthly inflation rate** of: $$ r = \frac{5\%}{12} = \frac{0.05}{12} \approx 0.00416667 $$ You are investing **$1000 at the end of each month**, and **each month’s investment is immediately subjected to inflation**. The key process is: 1. At the end of each month, **add $1000** to the current balance. 2. Then **apply the inflation rate** to the total amount. This creates a **recursive relationship** for the balance at the end of each month: $$ B_n = (B_{n-1} + 1000) \cdot (1 - r) $$ Where: - $ B_n $: Balance at the end of month $ n $ - $ r = 0.00416667 $: Monthly inflation rate - Initial balance $ B_0 = 0 $ --- ### Closed-Form Formula This recursive process can be modeled using the closed-form formula for a geometric series with monthly contributions and continuous discounting: $$ B_n = \frac{C \cdot (1 - r)}{r} \cdot \left(1 - (1 - r)^n\right) $$ Where: - $ C = 1000 $: Monthly investment - $ r = 0.00416667 $ - $ n = 12 $: Number of months Substitute the known values: $$ B_{12} = \frac{1000 \cdot (1 - 0.00416667)}{0.00416667} \cdot \left(1 - (1 - 0.00416667)^{12}\right) $$ $$ = \frac{1000 \cdot 0.9958333}{0.00416667} \cdot \left(1 - (0.9958333)^{12}\right) $$ $$ = 239000 \cdot \left(1 - 0.95107\right) $$ $$ = 239000 \cdot 0.04893 \approx 11680.00 $$ --- ### Manual Verification By simulating the process month by month and applying the same logic (adding $1000, then applying inflation), the final balance at the end of the 12th month converges to **$11,680.00** when rounded to the nearest dollar. --- ### Final Answer $$ \boxed{11680} $$ Gemini 2.5 pro flash exp The final value of the money you have at the end of the 12th month is approximately $11687.38. This value represents the real value or purchasing power of your accumulated savings after accounting for the given inflation rate each month. The nominal amount saved is 12 \times 1000 = 12000, so the real value is less than the nominal value due to inflation. Real answer 11679.91394190 Qwen3 30B a3b came as close as possible work the answer
2025-04-29T15:36:03
https://www.reddit.com/r/LocalLLaMA/comments/1kaqxb2/qwen3_30b_a3b_seems_tough_to_replace/
ThenNeighborhood3723
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaqxb2
false
null
t3_1kaqxb2
/r/LocalLLaMA/comments/1kaqxb2/qwen3_30b_a3b_seems_tough_to_replace/
false
false
self
1
null
leak: meta.llama4-reasoning-17b-instruct-v1:0
1
[removed]
2025-04-29T15:39:00
https://www.reddit.com/r/LocalLLaMA/comments/1kaqzv4/leak_metallama4reasoning17binstructv10/
celsowm
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaqzv4
false
null
t3_1kaqzv4
/r/LocalLLaMA/comments/1kaqzv4/leak_metallama4reasoning17binstructv10/
false
false
https://b.thumbs.redditm…6cEUVOlkRUVM.jpg
1
null
OASIS an open-source reddit and X million-agent social simulator
1
[removed]
2025-04-29T15:39:25
https://www.reddit.com/r/LocalLLaMA/comments/1kar08n/oasis_an_opensource_reddit_and_x_millionagent/
FitHeron1933
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kar08n
false
null
t3_1kar08n
/r/LocalLLaMA/comments/1kar08n/oasis_an_opensource_reddit_and_x_millionagent/
false
false
self
1
{'enabled': False, 'images': [{'id': 'G9lI5m7olJ6kxt-NLJn8v67C8l-uHphUjRN25CP41aI', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/M_ugwss_smzf0hBvzPYREl2I6H8VdPy6HOQb6EG6qQ4.jpg?width=108&crop=smart&auto=webp&s=db83937bc9941fef2c96b5024c28688f31f2e4c2', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/M_ugwss_smzf0hBvzPYREl2I6H8VdPy6HOQb6EG6qQ4.jpg?width=216&crop=smart&auto=webp&s=ee66139c6c5ece1de226c552913fe3995a8df832', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/M_ugwss_smzf0hBvzPYREl2I6H8VdPy6HOQb6EG6qQ4.jpg?width=320&crop=smart&auto=webp&s=eac01b55b4cb90da5bc6c9ce86f323efd1a1a0c1', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/M_ugwss_smzf0hBvzPYREl2I6H8VdPy6HOQb6EG6qQ4.jpg?width=640&crop=smart&auto=webp&s=b5d13013b6527fd421fb52a5e7dab9797ed4ec37', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/M_ugwss_smzf0hBvzPYREl2I6H8VdPy6HOQb6EG6qQ4.jpg?width=960&crop=smart&auto=webp&s=61573e98d7d03ad3ccff0d04fe576a3b6e2b43ea', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/M_ugwss_smzf0hBvzPYREl2I6H8VdPy6HOQb6EG6qQ4.jpg?width=1080&crop=smart&auto=webp&s=eacd2c355bf2765d69879de3b8558fae8ad0cea8', 'width': 1080}], 'source': {'height': 630, 'url': 'https://external-preview.redd.it/M_ugwss_smzf0hBvzPYREl2I6H8VdPy6HOQb6EG6qQ4.jpg?auto=webp&s=7826ab281bd51b0add065dc38ac47d991f2f3251', 'width': 1200}, 'variants': {}}]}
Multi-GPU folks, Qwen3 sizes (except 235B) might actually be great
0
There have been plenty of complaints and concerns (especially before the release of the 32B dense model) about how multi-GPU systems were a waste and whatnot, with the most positive post probably being [MoEs are the future!](https://www.reddit.com/r/LocalLLaMA/comments/1k9xsda/moes_are_the_future/). Most were for the 235B model, but plenty for the 30B-A3B model. Sure, some multi-GPU systems (mine included, as well as most mining-based systems) won't be able to run the biggest model easily if at all, but there one alternative not discussed at all: running N*+1* models simultaneously. It's not common, and mostly useless for chat, but plenty good for other tasks (at least for my work). I only remembered/thought about it after reading and replying to [Made Mistral 24B \[...\] recursively argue with itself](https://www.reddit.com/r/LocalLLaMA/comments/1k8yrem/comment/mpa7w3o/) and seeing [good performance when running 30B-A3B CPU-only](https://www.reddit.com/r/LocalLLaMA/comments/1ka8b2u/comment/mpky2km/) (with ollama on Windows, not even using latest commits & self-compilation), but with the current model sizes you can run a panel of models (or [Ensemble](https://en.wikipedia.org/wiki/Ensemble_learning), for older ML folks) simultaneously, each running on a dedicated GPU, *plus one on the CPU*. E.g. if you have 4 GPUs: * GPU1: Mistral 24B * GPU2: Qwen2.5-Coder-32B * GPU3: Gemma3-27B * GPU4: Qwen3-32B * **CPU**: Qwen3-30B-A3B A second, more common way to run multiple models is by using some sort routing (we do this at work! *kinda*), where you direct each question to the model that is better suited for each specific task. Maybe you want FIM/autocomplete requests to go to Qwen-Coder but creative writing to to go Gemma3, math stuff to Qwen3, and tool calls to Mistral. Routers can configured with rules or be trained. If you have it in you, [Harnessing Multiple Large Language Models: A Survey on LLM Ensemble](https://arxiv.org/pdf/2502.18036) (and [their Github page](https://github.com/junchenzhi/Awesome-LLM-Ensemble)) is a good starting point to explore. Have fun! And here's a bonus table from (slightly dated, but still perhaps more relevant) [LLM-BLENDER: Ensembling Large Language Models with Pairwise Ranking and Generative Fusion](https://arxiv.org/pdf/2306.02561): https://preview.redd.it/0euih4gnosxe1.png?width=2350&format=png&auto=webp&s=6069dea493126fd7a4a815cf4801beba346e6317
2025-04-29T15:47:41
https://www.reddit.com/r/LocalLLaMA/comments/1kar7lm/multigpu_folks_qwen3_sizes_except_235b_might/
kmouratidis
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kar7lm
false
null
t3_1kar7lm
/r/LocalLLaMA/comments/1kar7lm/multigpu_folks_qwen3_sizes_except_235b_might/
false
false
https://b.thumbs.redditm…EpUo4gxF0gjg.jpg
0
{'enabled': False, 'images': [{'id': 'WfBjVOTDLvTk4a6T_e7QVw0TdmuFptsQ_NOJmhlehUk', 'resolutions': [{'height': 73, 'url': 'https://external-preview.redd.it/Rc5LUP2E5WLL-FKrTCfYv-tqa_nJ9aSJMVzd5y02RSE.jpg?width=108&crop=smart&auto=webp&s=31e03f808d1c27f48efcb64110cfd883a5a82a9a', 'width': 108}, {'height': 147, 'url': 'https://external-preview.redd.it/Rc5LUP2E5WLL-FKrTCfYv-tqa_nJ9aSJMVzd5y02RSE.jpg?width=216&crop=smart&auto=webp&s=b2590b3470b11d8477c7d53d43dbf5ed5f1f7163', 'width': 216}, {'height': 218, 'url': 'https://external-preview.redd.it/Rc5LUP2E5WLL-FKrTCfYv-tqa_nJ9aSJMVzd5y02RSE.jpg?width=320&crop=smart&auto=webp&s=bd42c3bdc50a50d41fc2de7f27042645bb5a26f9', 'width': 320}], 'source': {'height': 341, 'url': 'https://external-preview.redd.it/Rc5LUP2E5WLL-FKrTCfYv-tqa_nJ9aSJMVzd5y02RSE.jpg?auto=webp&s=e39fa888bc9552a624504dcb57b95e0158ab5b8e', 'width': 500}, 'variants': {}}]}
Why are literally 90% of posts on frontpage about Qwen?
1
[removed]
2025-04-29T15:59:09
https://www.reddit.com/r/LocalLLaMA/comments/1karhfh/why_are_literally_90_of_posts_on_frontpage_about/
LosingID_583
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1karhfh
false
null
t3_1karhfh
/r/LocalLLaMA/comments/1karhfh/why_are_literally_90_of_posts_on_frontpage_about/
false
false
self
1
null
Agentica, AI Function Calling Framework: Can you make function? Then you're AI developer
8
2025-04-29T16:00:04
http://wrtnlabs.io/agentica/articles/can-you-make-function-then-you-are-ai-developer.html
jhnam88
wrtnlabs.io
1970-01-01T00:00:00
0
{}
1kari80
false
null
t3_1kari80
/r/LocalLLaMA/comments/1kari80/agentica_ai_function_calling_framework_can_you/
false
false
https://b.thumbs.redditm…pHHyPyaHKJNo.jpg
8
{'enabled': False, 'images': [{'id': 'yqmX4iZQlRy1eu-z9yMJ6FZSNEwkqo7jOZcMT7_f_Ro', 'resolutions': [{'height': 45, 'url': 'https://external-preview.redd.it/iO1XGoBIkrAf_PZddXb6hlQ0s7pOHeldfNPF62N4nD0.jpg?width=108&crop=smart&auto=webp&s=090f077a18a730bca72e43057e819bd086ad6e45', 'width': 108}, {'height': 90, 'url': 'https://external-preview.redd.it/iO1XGoBIkrAf_PZddXb6hlQ0s7pOHeldfNPF62N4nD0.jpg?width=216&crop=smart&auto=webp&s=72c614c7383c352c003098d0c94378f770c0b27f', 'width': 216}, {'height': 134, 'url': 'https://external-preview.redd.it/iO1XGoBIkrAf_PZddXb6hlQ0s7pOHeldfNPF62N4nD0.jpg?width=320&crop=smart&auto=webp&s=9fda679cfffd2029eb5e762dc768c0e5fa86c576', 'width': 320}, {'height': 268, 'url': 'https://external-preview.redd.it/iO1XGoBIkrAf_PZddXb6hlQ0s7pOHeldfNPF62N4nD0.jpg?width=640&crop=smart&auto=webp&s=53ff6921cc31d03647b513e8822dcfcdc0a23dc1', 'width': 640}, {'height': 403, 'url': 'https://external-preview.redd.it/iO1XGoBIkrAf_PZddXb6hlQ0s7pOHeldfNPF62N4nD0.jpg?width=960&crop=smart&auto=webp&s=a1a055d8048e34bd92bc462a67141882afbf69ad', 'width': 960}], 'source': {'height': 420, 'url': 'https://external-preview.redd.it/iO1XGoBIkrAf_PZddXb6hlQ0s7pOHeldfNPF62N4nD0.jpg?auto=webp&s=f4e6203c4487488e7cd0d2c3e599366e90224378', 'width': 1000}, 'variants': {}}]}
This is my experience trying to get everything I want set up... Set up.
8
2025-04-29T16:13:01
https://i.redd.it/ac10q2tgtsxe1.png
Flying_Madlad
i.redd.it
1970-01-01T00:00:00
0
{}
1kartxb
false
null
t3_1kartxb
/r/LocalLLaMA/comments/1kartxb/this_is_my_experience_trying_to_get_everything_i/
false
false
https://a.thumbs.redditm…9SnWBohWAr78.jpg
8
{'enabled': True, 'images': [{'id': 'WfCY5gOYjGKEqCuuYiB6083w5VFoZA8RQA5dlX8YTFI', 'resolutions': [{'height': 162, 'url': 'https://preview.redd.it/ac10q2tgtsxe1.png?width=108&crop=smart&auto=webp&s=56054c45b21c89c7b49baea8dd9f7dc7c022361b', 'width': 108}, {'height': 324, 'url': 'https://preview.redd.it/ac10q2tgtsxe1.png?width=216&crop=smart&auto=webp&s=522f7e2a614b89a1e24827ecea2b4be8e5a244b7', 'width': 216}, {'height': 480, 'url': 'https://preview.redd.it/ac10q2tgtsxe1.png?width=320&crop=smart&auto=webp&s=c5b4170a8e28fff024bcb0a0d9fc0498a4f540f3', 'width': 320}, {'height': 960, 'url': 'https://preview.redd.it/ac10q2tgtsxe1.png?width=640&crop=smart&auto=webp&s=16dace21f284a1896903f23ba83710fcfe5c935f', 'width': 640}, {'height': 1440, 'url': 'https://preview.redd.it/ac10q2tgtsxe1.png?width=960&crop=smart&auto=webp&s=80455f5731d8dd600740f817058f04a4c0193e48', 'width': 960}], 'source': {'height': 1536, 'url': 'https://preview.redd.it/ac10q2tgtsxe1.png?auto=webp&s=834077169db038981c56039c775d8d9c5d6c3154', 'width': 1024}, 'variants': {}}]}
[P] PPO-inspired Inference Optimization Without Training — 4× Output Quality Boost in Gemini 2.0 vs 2.5 Pro
1
[removed]
2025-04-29T16:25:34
https://www.reddit.com/r/LocalLLaMA/comments/1kas4we/p_ppoinspired_inference_optimization_without/
Apprehensive-Exit301
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kas4we
false
null
t3_1kas4we
/r/LocalLLaMA/comments/1kas4we/p_ppoinspired_inference_optimization_without/
false
false
self
1
{'enabled': False, 'images': [{'id': 'deETycvWehK7MlMrJAXX7Axq2FA8yChrCpdm2dGBYRc', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/ZILoLxy5V8eodtWWC2O48J9oDgpZVp9gEp6OkvENr5U.jpg?width=108&crop=smart&auto=webp&s=58648b93cf8fed0e56d2fdf39c92d510c116a007', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/ZILoLxy5V8eodtWWC2O48J9oDgpZVp9gEp6OkvENr5U.jpg?width=216&crop=smart&auto=webp&s=bc54930474d21c545913212a3f32fc6fa85e15fd', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/ZILoLxy5V8eodtWWC2O48J9oDgpZVp9gEp6OkvENr5U.jpg?width=320&crop=smart&auto=webp&s=c74fb2e81bc689a5230184fae111f0d304b59f1b', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/ZILoLxy5V8eodtWWC2O48J9oDgpZVp9gEp6OkvENr5U.jpg?width=640&crop=smart&auto=webp&s=d1a137e00ad06306af7e1f77e6504523c1efcf83', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/ZILoLxy5V8eodtWWC2O48J9oDgpZVp9gEp6OkvENr5U.jpg?width=960&crop=smart&auto=webp&s=a25877cf1897ee78fc8bda84381852db392219a6', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/ZILoLxy5V8eodtWWC2O48J9oDgpZVp9gEp6OkvENr5U.jpg?width=1080&crop=smart&auto=webp&s=bc677703a7352132069303c8c2cba792c6a97791', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/ZILoLxy5V8eodtWWC2O48J9oDgpZVp9gEp6OkvENr5U.jpg?auto=webp&s=bb54882d199b2956424c32c1c87ea31fd273811a', 'width': 1200}, 'variants': {}}]}
Is Qwen 3 the tiny tango?
1
Ok, not on all models. Some are just as solid as they are dense. But, did we do it, in a way? https://www.reddit.com/r/LocalLLaMA/s/OhK7sqLr5r There's a few similarities in concept xo Love it!
2025-04-29T16:27:09
https://www.reddit.com/r/LocalLLaMA/comments/1kas6bv/is_qwen_3_the_tiny_tango/
Sambojin1
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kas6bv
false
null
t3_1kas6bv
/r/LocalLLaMA/comments/1kas6bv/is_qwen_3_the_tiny_tango/
false
false
self
1
null
Building a Gen AI Lab for Students - Need Your Expert Advice!
1
Hi everyone, I'm planning the hardware for a Gen AI lab for my students and would appreciate your expert opinions on these PC builds: * **Instructor PC (High-Tier):** [PCPartPicker - https://pcpartpicker.com/list/Qjh8C8](https://pcpartpicker.com/list/Qjh8C8) * **Student PCs (Multiple, Low-Tier):** [PCPartPicker - https://pcpartpicker.com/list/Bvksxg](https://pcpartpicker.com/list/Bvksxg) Looking for advice on: * Component compatibility and performance. * Value optimisation for the student builds. * Suggestions for improvements or alternatives. Any input is greatly appreciated!
2025-04-29T16:27:28
https://www.reddit.com/r/LocalLLaMA/comments/1kas6lz/building_a_gen_ai_lab_for_students_need_your/
_tzman
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kas6lz
false
null
t3_1kas6lz
/r/LocalLLaMA/comments/1kas6lz/building_a_gen_ai_lab_for_students_need_your/
false
false
self
1
null
cobalt-exp-beta-v8 giving very good answers on lmarena
3
Any thoughts which chatbot that is?
2025-04-29T16:41:47
https://www.reddit.com/r/LocalLLaMA/comments/1kasjb4/cobaltexpbetav8_giving_very_good_answers_on/
Terminator857
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kasjb4
false
null
t3_1kasjb4
/r/LocalLLaMA/comments/1kasjb4/cobaltexpbetav8_giving_very_good_answers_on/
false
false
self
3
null
In Qwen 3 you can use /no_think in your prompt to skip the reasoning step
17
2025-04-29T16:41:57
https://i.redd.it/93nvv0vmysxe1.jpeg
onil_gova
i.redd.it
1970-01-01T00:00:00
0
{}
1kasjge
false
null
t3_1kasjge
/r/LocalLLaMA/comments/1kasjge/in_qwen_3_you_can_use_no_think_in_your_prompt_to/
false
false
https://b.thumbs.redditm…yQC0eHIfHQ_g.jpg
17
{'enabled': True, 'images': [{'id': 'SfNe8azPZ-osH7QHkGK61RdSIKyCHz4WZxnRfgfAMzc', 'resolutions': [{'height': 61, 'url': 'https://preview.redd.it/93nvv0vmysxe1.jpeg?width=108&crop=smart&auto=webp&s=66b74a19ffa85ad71c662a2be77d0a538b980a56', 'width': 108}, {'height': 122, 'url': 'https://preview.redd.it/93nvv0vmysxe1.jpeg?width=216&crop=smart&auto=webp&s=b5d614bd7a3f1591c367625c08ad6d7a5e6d27f2', 'width': 216}, {'height': 182, 'url': 'https://preview.redd.it/93nvv0vmysxe1.jpeg?width=320&crop=smart&auto=webp&s=db589ee199758d129bb0d8864391fa8466756f53', 'width': 320}, {'height': 364, 'url': 'https://preview.redd.it/93nvv0vmysxe1.jpeg?width=640&crop=smart&auto=webp&s=00a972096fd4227512b26a31ea12d4ab28172f76', 'width': 640}, {'height': 546, 'url': 'https://preview.redd.it/93nvv0vmysxe1.jpeg?width=960&crop=smart&auto=webp&s=11ee14cdd20f3f441a0e19d70427799ca08e853b', 'width': 960}, {'height': 614, 'url': 'https://preview.redd.it/93nvv0vmysxe1.jpeg?width=1080&crop=smart&auto=webp&s=bb32384d03b47878df8fcf9e0af2ea612e8572e4', 'width': 1080}], 'source': {'height': 1056, 'url': 'https://preview.redd.it/93nvv0vmysxe1.jpeg?auto=webp&s=788942cce5688294b6a03ccc800a2b325c125085', 'width': 1855}, 'variants': {}}]}
We trained transformers on edge hardware — no GPU clusters required. Here’s Lodestone.
1
[removed]
2025-04-29T16:44:33
https://www.reddit.com/r/LocalLLaMA/comments/1kaslqp/we_trained_transformers_on_edge_hardware_no_gpu/
PraetorDefenseAI
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kaslqp
false
null
t3_1kaslqp
/r/LocalLLaMA/comments/1kaslqp/we_trained_transformers_on_edge_hardware_no_gpu/
false
false
self
1
{'enabled': False, 'images': [{'id': 'uzhr1IMWhnzrs13x1Lddb1xEYkcBF8Uk8nPRETICttA', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/uqten8w0Ttjd7rL2OIHxzx4QUmergXmq4outwF6oIKw.jpg?width=108&crop=smart&auto=webp&s=b3b3d3640dcb60c73fc9990b5a64b36a80a69eb8', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/uqten8w0Ttjd7rL2OIHxzx4QUmergXmq4outwF6oIKw.jpg?width=216&crop=smart&auto=webp&s=45403db48bb624ced22be1d22c6ded5d23bfd4b5', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/uqten8w0Ttjd7rL2OIHxzx4QUmergXmq4outwF6oIKw.jpg?width=320&crop=smart&auto=webp&s=93ffdf93273815e874e115afa946952e6bba4891', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/uqten8w0Ttjd7rL2OIHxzx4QUmergXmq4outwF6oIKw.jpg?width=640&crop=smart&auto=webp&s=eece92b21a470fc56ba575cfec69a702ea62bdc5', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/uqten8w0Ttjd7rL2OIHxzx4QUmergXmq4outwF6oIKw.jpg?width=960&crop=smart&auto=webp&s=f2231f21b84cf96a4d29fce4df7b5d040f6f72d1', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/uqten8w0Ttjd7rL2OIHxzx4QUmergXmq4outwF6oIKw.jpg?width=1080&crop=smart&auto=webp&s=8636edf816c5cb088010ae9b216b7289c684c233', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/uqten8w0Ttjd7rL2OIHxzx4QUmergXmq4outwF6oIKw.jpg?auto=webp&s=da6902899eafb4881ce0daa006563f48191e3847', 'width': 1200}, 'variants': {}}]}
LlamaCon
106
2025-04-29T16:51:20
https://i.redd.it/jyewwk4b0txe1.jpeg
siddhantparadox
i.redd.it
1970-01-01T00:00:00
0
{}
1kasrnx
false
null
t3_1kasrnx
/r/LocalLLaMA/comments/1kasrnx/llamacon/
false
false
https://b.thumbs.redditm…AIGH1xhfnd0I.jpg
106
{'enabled': True, 'images': [{'id': '8stdrAlDRFofgkfWtwPzkuPuByzQ9CAtk_Sssb5Fs2I', 'resolutions': [{'height': 81, 'url': 'https://preview.redd.it/jyewwk4b0txe1.jpeg?width=108&crop=smart&auto=webp&s=f81a8c3111cbfcf50d4043045f046adc44e9b683', 'width': 108}, {'height': 162, 'url': 'https://preview.redd.it/jyewwk4b0txe1.jpeg?width=216&crop=smart&auto=webp&s=1ab43b8cee5d18b079b4e1cb8091662734507c9d', 'width': 216}, {'height': 240, 'url': 'https://preview.redd.it/jyewwk4b0txe1.jpeg?width=320&crop=smart&auto=webp&s=9030faef10b020ab6a2b6211216a2909608a9af5', 'width': 320}, {'height': 480, 'url': 'https://preview.redd.it/jyewwk4b0txe1.jpeg?width=640&crop=smart&auto=webp&s=af69c60a53a3daa10b58560398ed565f6d435dad', 'width': 640}, {'height': 720, 'url': 'https://preview.redd.it/jyewwk4b0txe1.jpeg?width=960&crop=smart&auto=webp&s=3682fdb24cc804e715f38f2b10dbb6d2cc89f29a', 'width': 960}, {'height': 810, 'url': 'https://preview.redd.it/jyewwk4b0txe1.jpeg?width=1080&crop=smart&auto=webp&s=da38bc7882506abeeb202fe52fdf5f2a63e1dbf3', 'width': 1080}], 'source': {'height': 3000, 'url': 'https://preview.redd.it/jyewwk4b0txe1.jpeg?auto=webp&s=9ba8be78d44c5f321c6181b19b1d208242828e96', 'width': 4000}, 'variants': {}}]}
I Benchmarked OpenAI Memory vs LangMem vs Letta (MemGPT) vs Mem0 for Long-Term Memory: Here’s How They Stacked Up
1
[removed]
2025-04-29T16:51:43
https://www.reddit.com/r/LocalLLaMA/comments/1kasrzh/i_benchmarked_openai_memory_vs_langmem_vs_letta/
staranjeet
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kasrzh
false
null
t3_1kasrzh
/r/LocalLLaMA/comments/1kasrzh/i_benchmarked_openai_memory_vs_langmem_vs_letta/
false
false
self
1
{'enabled': False, 'images': [{'id': 'a0RZrE7GFt0DmG96zzPXqvq5hYViOc0VToNDs9kVOl8', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=108&crop=smart&auto=webp&s=c72fb0a66471351f333efe72a4a2b95a1f1d4605', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=216&crop=smart&auto=webp&s=214dedf0eafe805259b789be11833dc7bd1141c1', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=320&crop=smart&auto=webp&s=e9306a6f0438ea7e57c43c0ac36d35bec7abe86a', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=640&crop=smart&auto=webp&s=059a7bfa5922517723e726099d97c7435b6248a1', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=960&crop=smart&auto=webp&s=2d62e3b449eb7928689d7f8e28df2bcb7f03ad36', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=1080&crop=smart&auto=webp&s=e908fdd03b9a0fc7a39675425af9fa9059983e2a', 'width': 1080}], 'source': {'height': 1260, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?auto=webp&s=822a7286748aa2c9e4c43cf646ef88b0c1c4b1c3', 'width': 2400}, 'variants': {}}]}
Qwen 30B MOE is near top tier in quality and top tier in speed! 6 Model test - 27b-70b models M1 Max 64gb
2
System: Mac M1 Studio Max, 64gb - Upgraded GPU. Goal: Test 27b-70b models currently considered near or the best Questions: 3 of 8 questions complete so far Setup: Ollama + Open Web Ui / All models downloaded today with exception of L3 70b finetune / All models from Unsloth on HF as well and Q8 with exception of 70b which are Q4 and again the L3 70b finetune. The DM finetune is the Dungeon Master variant I saw over perform on some benchmarks. Question 1 was about potty training a child and making a song for it. I graded based on if the song made sense, if their was words that didn't seem appropriate or rhythm etc. All the 70b models > 30B MOE Qwen / 27b Gemma3 > Qwen3 32b / Deepseek R1 Q32b. The 70b models was fairly good, slightly better then 30b MOE / Gemma3 but not by much. The drop from those to Q3 32b and R1 is due to both having very odd word choices or wording that didn't work. 2nd Question was write a outline for a possible bestselling book. I specifically asked for the first 3k words of the book. Again it went similar with these ranks: All the 70b models > 30B MOE Qwen / 27b Gemma3 > Qwen3 32b / Deepseek R1 Q32b. 70b models all got 1500+ words of the start of the book and seemed alright from the outline reading and scanning the text for issues. Gemma3 + Q3 MOE both got 1200+ words, and had similar abilities. Q3 32b alone with DS R1 both had issues again. R1 wrote 700 words then repeated 4 paragraphs for 9k words before I stopped it and Q3 32b wrote a pretty bad story that I immediately caught a impossible plot point to and the main character seemed like a moron. 3rd question is personal use case, D&D campaign/material writing. I need to dig more into it as it's a long prompt which has a lot of things to hit such as theme, format of how the world is outlined, starting of a campaign (similar to a starting campaign book) and I will have to do some grading but I think it shows Q3 MOE doing better then I expect. So the 30B MOE in 1/2 of my tests I have (working on the rest right now) performs almost on par with 70B models and on par or possibly better then Gemma3 27b. It definitely seems better then the 32b Qwen 3 but I am hoping with some fine tunes the 32b will get better. I was going to test GLM but I find it under performs in my test not related to coding and mostly similar to Gemma3 in everything else. I might do another round with GLM + QWQ + 1 more model later once I finish this round. https://imgur.com/a/9ko6NtN Not saying this is super scientific I just did my best to make it a fair test for my own knowledge and I thought I would share. Since Q3 30b MOE gets 40t/s on my system compared to ~10t/s or less for other models of that quality seems like a great model.
2025-04-29T16:58:37
https://www.reddit.com/r/LocalLLaMA/comments/1kasy3x/qwen_30b_moe_is_near_top_tier_in_quality_and_top/
Shouldhaveknown2015
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kasy3x
false
null
t3_1kasy3x
/r/LocalLLaMA/comments/1kasy3x/qwen_30b_moe_is_near_top_tier_in_quality_and_top/
false
false
self
2
{'enabled': False, 'images': [{'id': 'XG0zqpcpXuKjtF2KdE5u9DqrpBuNuR6TbpMZxiZQlPU', 'resolutions': [{'height': 86, 'url': 'https://external-preview.redd.it/n-bbv2LeuFAToz8e7U13hcz_F2DGF77OiWH3D5yMYl4.jpg?width=108&crop=smart&auto=webp&s=9741bd44481225b9b4e5641db9dd960a4214f6a9', 'width': 108}, {'height': 173, 'url': 'https://external-preview.redd.it/n-bbv2LeuFAToz8e7U13hcz_F2DGF77OiWH3D5yMYl4.jpg?width=216&crop=smart&auto=webp&s=fb5b3b7cb00536248ad63a6b0542af7135a35004', 'width': 216}, {'height': 257, 'url': 'https://external-preview.redd.it/n-bbv2LeuFAToz8e7U13hcz_F2DGF77OiWH3D5yMYl4.jpg?width=320&crop=smart&auto=webp&s=ce1a8f6dfa2ddb2151c61ca0e2326e57983ad38d', 'width': 320}, {'height': 514, 'url': 'https://external-preview.redd.it/n-bbv2LeuFAToz8e7U13hcz_F2DGF77OiWH3D5yMYl4.jpg?width=640&crop=smart&auto=webp&s=27fa336837583050cce43c15b8d9d167f6939933', 'width': 640}, {'height': 771, 'url': 'https://external-preview.redd.it/n-bbv2LeuFAToz8e7U13hcz_F2DGF77OiWH3D5yMYl4.jpg?width=960&crop=smart&auto=webp&s=d62701031fbdfbe5ab422fabab23ff024598bde2', 'width': 960}, {'height': 867, 'url': 'https://external-preview.redd.it/n-bbv2LeuFAToz8e7U13hcz_F2DGF77OiWH3D5yMYl4.jpg?width=1080&crop=smart&auto=webp&s=38d3dfbc2f64fadd01ddedbc2781c3d6866ab913', 'width': 1080}], 'source': {'height': 1694, 'url': 'https://external-preview.redd.it/n-bbv2LeuFAToz8e7U13hcz_F2DGF77OiWH3D5yMYl4.jpg?auto=webp&s=b66023977338942f4459efddb8f0d7aa39123143', 'width': 2108}, 'variants': {}}]}
Privacy-safe (local / opensource backend) coding assistant?
1
[removed]
2025-04-29T16:59:46
https://www.reddit.com/r/LocalLLaMA/comments/1kasz4a/privacysafe_local_opensource_backend_coding/
pandudon
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kasz4a
false
null
t3_1kasz4a
/r/LocalLLaMA/comments/1kasz4a/privacysafe_local_opensource_backend_coding/
false
false
self
1
null
How much models get smarter by time?
1
For example qwen3 4b which model one year old is nearly as the same level..... What's the expectations for next year?
2025-04-29T17:05:13
https://www.reddit.com/r/LocalLLaMA/comments/1kat4g5/how_much_models_get_smarter_by_time/
Current-Rabbit-620
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kat4g5
false
null
t3_1kat4g5
/r/LocalLLaMA/comments/1kat4g5/how_much_models_get_smarter_by_time/
false
false
self
1
null
Qwen 3 30B-A3B running on a midrange gaming PC is virtually indistinguishable from GPT-4 (with caveats)
1
[removed]
2025-04-29T17:15:39
https://www.reddit.com/r/LocalLLaMA/comments/1katdq1/qwen_3_30ba3b_running_on_a_midrange_gaming_pc_is/
atdrilismydad
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1katdq1
false
null
t3_1katdq1
/r/LocalLLaMA/comments/1katdq1/qwen_3_30ba3b_running_on_a_midrange_gaming_pc_is/
false
false
https://b.thumbs.redditm…uE0so-wGUc4Q.jpg
1
null
How is the thinking budget of Gemini 2.5 flash and qwen 3 trained?
1
[removed]
2025-04-29T17:18:58
https://www.reddit.com/r/LocalLLaMA/comments/1katgp0/how_is_the_thinking_budget_of_gemini_25_flash_and/
one-wandering-mind
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1katgp0
false
null
t3_1katgp0
/r/LocalLLaMA/comments/1katgp0/how_is_the_thinking_budget_of_gemini_25_flash_and/
false
false
self
1
null
Can We Expect a 4B Model Next Year to Match Today’s 70B?
0
For example qwen3 4b which model one year old is nearly as the same level..... What's the expectations for next year? Until when the trend goes
2025-04-29T17:19:49
https://www.reddit.com/r/LocalLLaMA/comments/1kathen/can_we_expect_a_4b_model_next_year_to_match/
Current-Rabbit-620
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kathen
false
null
t3_1kathen
/r/LocalLLaMA/comments/1kathen/can_we_expect_a_4b_model_next_year_to_match/
false
false
self
0
null
Qwen 3 performance compared to Llama 3.3. 70B?
15
I'm curious to hear people's experiences who've used Llama 3.3 70B frequently and are now switching to Qwen 3, either Qwen3-30B-A3B or Qwen3-32B dense. Are they at the level that they can replace the 70B Llama chonker? That would effectively allow me to reduce my set up from 4x 3090 to 2x. I looked at the Llama 3.3 model card but the benchmark results there are for different benchmarks than Qwen 3 so can't really compare those. I'm not interested in thinking (using it for high volume data processing).
2025-04-29T17:24:07
https://www.reddit.com/r/LocalLLaMA/comments/1katlc9/qwen_3_performance_compared_to_llama_33_70b/
MountainGoatAOE
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1katlc9
false
null
t3_1katlc9
/r/LocalLLaMA/comments/1katlc9/qwen_3_performance_compared_to_llama_33_70b/
false
false
self
15
null
Qwen3:0.6B fast and smart!
7
This little llm can understand functions and make documents for it. It is powerful. I tried C++ function around 200 lines. I used gpt-o1 as the judge and she got 75%!
2025-04-29T17:24:13
https://www.reddit.com/r/LocalLLaMA/comments/1katlfj/qwen306b_fast_and_smart/
hairlessing
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1katlfj
false
null
t3_1katlfj
/r/LocalLLaMA/comments/1katlfj/qwen306b_fast_and_smart/
false
false
self
7
null
Proper Comparison Sizes for Qwen 3 MoE to Dense Models
8
According to the Geometric Mean Prediction of MoE Performance (https://www.reddit.com/r/LocalLLaMA/comments/1bqa96t/geometric_mean_prediction_of_moe_performance), the performance of Mixture of Experts (MoE) models can be approximated using the geometric mean of the total and active parameters, i.e., sqrt(total_params × active_params), when comparing to dense models. For example, in the case of the Qwen3 235B-A22B model: sqrt(235 × 22) ≈ 72 This suggests that its effective performance is roughly equivalent to that of a 72B dense model. Similarly, for the 30B-A3B model: sqrt(30 × 3) ≈ 9.5 which would place it on par with a 9.5B dense model in terms of effective performance. From this perspective, both the 235B-A22B and 30B-A3B models demonstrate impressive efficiency and smart training strategies when compared to their dense counterparts. (Benchmark score and actual testing result) The increased VRAM requirements remain a notable drawback for local LLM users. Please feel free to point out any errors or misinterpretations. Thank you.
2025-04-29T17:27:18
https://www.reddit.com/r/LocalLLaMA/comments/1katoag/proper_comparison_sizes_for_qwen_3_moe_to_dense/
ExcuseAccomplished97
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1katoag
false
null
t3_1katoag
/r/LocalLLaMA/comments/1katoag/proper_comparison_sizes_for_qwen_3_moe_to_dense/
false
false
self
8
null
M3 ultra binned or unbinned ?
2
Is the $1500 increase in price for unbinned version really worth it?.
2025-04-29T17:32:45
https://www.reddit.com/r/LocalLLaMA/comments/1katt9v/m3_ultra_binned_or_unbinned/
No_Conversation9561
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1katt9v
false
null
t3_1katt9v
/r/LocalLLaMA/comments/1katt9v/m3_ultra_binned_or_unbinned/
false
false
self
2
null
Rumor: Intel ARC GPU 24 GB of memory in June
16
[https://videocardz.com/newz/sparkle-confirms-arc-battlemage-gpu-with-24gb-memory-slated-for-may-june](https://videocardz.com/newz/sparkle-confirms-arc-battlemage-gpu-with-24gb-memory-slated-for-may-june)
2025-04-29T17:37:05
https://www.reddit.com/r/LocalLLaMA/comments/1katx3x/rumor_intel_arc_gpu_24_gb_of_memory_in_june/
Terminator857
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1katx3x
false
null
t3_1katx3x
/r/LocalLLaMA/comments/1katx3x/rumor_intel_arc_gpu_24_gb_of_memory_in_june/
false
false
self
16
{'enabled': False, 'images': [{'id': 'yTGKQmzlJPEcmY67lteToxEiwcHXEZhwqNGD8IMnznI', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/WdUGpP3unGKFZihZrELR3GH6ZUOa768rHIdn2YSXrsA.jpg?width=108&crop=smart&auto=webp&s=6c079e79ea271fc0ce072d5b49871faa61ff18ea', 'width': 108}, {'height': 112, 'url': 'https://external-preview.redd.it/WdUGpP3unGKFZihZrELR3GH6ZUOa768rHIdn2YSXrsA.jpg?width=216&crop=smart&auto=webp&s=49b773a4f29cc7ad7b26881a29719149abb3dd09', 'width': 216}, {'height': 166, 'url': 'https://external-preview.redd.it/WdUGpP3unGKFZihZrELR3GH6ZUOa768rHIdn2YSXrsA.jpg?width=320&crop=smart&auto=webp&s=2bd4d0c6eb4016659d1a53bab134b19f8e92ca40', 'width': 320}, {'height': 332, 'url': 'https://external-preview.redd.it/WdUGpP3unGKFZihZrELR3GH6ZUOa768rHIdn2YSXrsA.jpg?width=640&crop=smart&auto=webp&s=461a9ba85d2877f5c00bb8c11f93f1ceac11d893', 'width': 640}, {'height': 499, 'url': 'https://external-preview.redd.it/WdUGpP3unGKFZihZrELR3GH6ZUOa768rHIdn2YSXrsA.jpg?width=960&crop=smart&auto=webp&s=065fe8c04c6ff13e832aab7196ab42c3f14ad9ea', 'width': 960}, {'height': 561, 'url': 'https://external-preview.redd.it/WdUGpP3unGKFZihZrELR3GH6ZUOa768rHIdn2YSXrsA.jpg?width=1080&crop=smart&auto=webp&s=c4383cef0d92af251d52b59a038eb832aa607133', 'width': 1080}], 'source': {'height': 1300, 'url': 'https://external-preview.redd.it/WdUGpP3unGKFZihZrELR3GH6ZUOa768rHIdn2YSXrsA.jpg?auto=webp&s=8068b3820c65b479ff627cf40f91bdce3cd88aec', 'width': 2500}, 'variants': {}}]}
No new models in LlamaCon announced
268
I guess it wasn’t good enough
2025-04-29T17:39:27
https://ai.meta.com/blog/llamacon-llama-news/
mehyay76
ai.meta.com
1970-01-01T00:00:00
0
{}
1katz6u
false
null
t3_1katz6u
/r/LocalLLaMA/comments/1katz6u/no_new_models_in_llamacon_announced/
false
false
https://b.thumbs.redditm…uv60UzDIx5BM.jpg
268
{'enabled': False, 'images': [{'id': '6A4AmBNDETc15Gg9dLCdy1ERxMHmcY1hWjrPvUMAPxg', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/XRPU2B1-WyXMxWy34TlfRr2ItA7lCciwL2CfvgMnsfE.jpg?width=108&crop=smart&auto=webp&s=3ad48e882d2265a7734b8e3217752ff0aa8738e9', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/XRPU2B1-WyXMxWy34TlfRr2ItA7lCciwL2CfvgMnsfE.jpg?width=216&crop=smart&auto=webp&s=ca6fa3026a6944a4899012c7789c3a51850d64be', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/XRPU2B1-WyXMxWy34TlfRr2ItA7lCciwL2CfvgMnsfE.jpg?width=320&crop=smart&auto=webp&s=41aad5683ad5d91c934ea1c1e90bba3fdc70b0bc', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/XRPU2B1-WyXMxWy34TlfRr2ItA7lCciwL2CfvgMnsfE.jpg?width=640&crop=smart&auto=webp&s=353ac7ecc5aa40634908575f505f14f208cf6093', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/XRPU2B1-WyXMxWy34TlfRr2ItA7lCciwL2CfvgMnsfE.jpg?width=960&crop=smart&auto=webp&s=32931fea6ef1aeef39eff1990e126f3352b46d11', 'width': 960}, {'height': 607, 'url': 'https://external-preview.redd.it/XRPU2B1-WyXMxWy34TlfRr2ItA7lCciwL2CfvgMnsfE.jpg?width=1080&crop=smart&auto=webp&s=5a30ff313a92258a1e16ce50a681da82ceb54fdb', 'width': 1080}], 'source': {'height': 1080, 'url': 'https://external-preview.redd.it/XRPU2B1-WyXMxWy34TlfRr2ItA7lCciwL2CfvgMnsfE.jpg?auto=webp&s=2a43523d6cd377e743814f16e2d184ca9d601f8f', 'width': 1920}, 'variants': {}}]}
Qwen3 vs Gemma 3
228
After playing around with Qwen3, I’ve got mixed feelings. It’s actually pretty solid in math, coding, and reasoning. The hybrid reasoning approach is impressive — it really shines in that area. But compared to Gemma, there are a few things that feel lacking: - **Multilingual support** isn’t great. Gemma 3 12B does better than Qwen3 14B, 30B MoE, and maybe even the 32B dense model in my language. - **Factual knowledge** is really weak — even worse than LLaMA 3.1 8B in some cases. Even the biggest Qwen3 models seem to struggle with facts. - **No vision capabilities.** Ever since Qwen 2.5, I was hoping for better factual accuracy and multilingual capabilities, but unfortunately, it still falls short. That said, it’s a solid step forward overall. The range of sizes and especially the 30B MoE for speed are great. Also, the hybrid reasoning is genuinely impressive. **What’s your experience been like?**
2025-04-29T17:43:50
https://www.reddit.com/r/LocalLLaMA/comments/1kau30f/qwen3_vs_gemma_3/
Sadman782
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kau30f
false
null
t3_1kau30f
/r/LocalLLaMA/comments/1kau30f/qwen3_vs_gemma_3/
false
false
self
228
{'enabled': False, 'images': [{'id': 'AZp35yz_V4VtuibwE_8jzrenzMzkdIvHKwLWODdTpXs', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/2lmGrEsWuW3nCpTSZP05rkfUhhv47hD-ICav-ZrkZSU.jpg?width=108&crop=smart&auto=webp&s=2dfef35e8b640884ae949480f6486c0ad548cb89', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/2lmGrEsWuW3nCpTSZP05rkfUhhv47hD-ICav-ZrkZSU.jpg?width=216&crop=smart&auto=webp&s=745100d146657f049da013b456be8d2ea57a73c3', 'width': 216}, {'height': 179, 'url': 'https://external-preview.redd.it/2lmGrEsWuW3nCpTSZP05rkfUhhv47hD-ICav-ZrkZSU.jpg?width=320&crop=smart&auto=webp&s=f1531690c6196d5df924be2f7ab419d22903c1bd', 'width': 320}, {'height': 358, 'url': 'https://external-preview.redd.it/2lmGrEsWuW3nCpTSZP05rkfUhhv47hD-ICav-ZrkZSU.jpg?width=640&crop=smart&auto=webp&s=e365c82d3cb5901f9cc0b29f6dcadf5a1c4f367e', 'width': 640}, {'height': 538, 'url': 'https://external-preview.redd.it/2lmGrEsWuW3nCpTSZP05rkfUhhv47hD-ICav-ZrkZSU.jpg?width=960&crop=smart&auto=webp&s=746bdbde25834cc422a554a471e08759ed650cf4', 'width': 960}, {'height': 605, 'url': 'https://external-preview.redd.it/2lmGrEsWuW3nCpTSZP05rkfUhhv47hD-ICav-ZrkZSU.jpg?width=1080&crop=smart&auto=webp&s=eeed15a44233505a4ab817f87664aad8e2dd47b7', 'width': 1080}], 'source': {'height': 668, 'url': 'https://external-preview.redd.it/2lmGrEsWuW3nCpTSZP05rkfUhhv47hD-ICav-ZrkZSU.jpg?auto=webp&s=a476af18a48199ccfba869f0e1589ec62eaa73eb', 'width': 1191}, 'variants': {}}]}
What I got out of LlamaCon
1
2025-04-29T17:45:48
https://i.redd.it/vrpoc6sn9txe1.jpeg
Poolunion1
i.redd.it
1970-01-01T00:00:00
0
{}
1kau4u0
false
null
t3_1kau4u0
/r/LocalLLaMA/comments/1kau4u0/what_i_got_out_of_llamacon/
false
false
https://b.thumbs.redditm…DaXV86XdU__w.jpg
1
{'enabled': True, 'images': [{'id': 'RyuEw0K11FGF34i5NAez968HglAauotw0AgeD355ZAo', 'resolutions': [{'height': 54, 'url': 'https://preview.redd.it/vrpoc6sn9txe1.jpeg?width=108&crop=smart&auto=webp&s=63818b3a7f03f743ff9ce0423e741b29fe8f3569', 'width': 108}, {'height': 108, 'url': 'https://preview.redd.it/vrpoc6sn9txe1.jpeg?width=216&crop=smart&auto=webp&s=219db7a1c8298ae73b4a22720def67a034676241', 'width': 216}, {'height': 160, 'url': 'https://preview.redd.it/vrpoc6sn9txe1.jpeg?width=320&crop=smart&auto=webp&s=3621f7e429c2b9222d1316608a5b74f0756d5190', 'width': 320}, {'height': 320, 'url': 'https://preview.redd.it/vrpoc6sn9txe1.jpeg?width=640&crop=smart&auto=webp&s=9321947d7dad156b1ecadbde7833fa61f61ec143', 'width': 640}, {'height': 480, 'url': 'https://preview.redd.it/vrpoc6sn9txe1.jpeg?width=960&crop=smart&auto=webp&s=45b8eaab16a436747b154591dee4d6df7e6b8988', 'width': 960}], 'source': {'height': 500, 'url': 'https://preview.redd.it/vrpoc6sn9txe1.jpeg?auto=webp&s=9d8ecece171ab90796a8b186e9dbe437a439d023', 'width': 1000}, 'variants': {}}]}
Benchmarks for prompted VLM Object Detection / Bounding Boxes
3
Curious if there are any benchmarks that evaluate a models ability to detect and segment/bounding box select an object in a given image. I checked [OpenVLM](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard) but its not clear which benchmark to look at. I know that Florence-2 and Moondream support object localization but unsure if theres a giant list of performance metrics anywhere. Florence-2 and moondream is a big hit or miss in my experience. While yolo is more performant its not quite smart enough for what I need it for.
2025-04-29T17:54:28
https://www.reddit.com/r/LocalLLaMA/comments/1kauchr/benchmarks_for_prompted_vlm_object_detection/
mnt_brain
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kauchr
false
null
t3_1kauchr
/r/LocalLLaMA/comments/1kauchr/benchmarks_for_prompted_vlm_object_detection/
false
false
self
3
{'enabled': False, 'images': [{'id': 'z3K-kdYaewFHYsIgnvLFsaxAVEzAgNJnZ7uWC75FdMo', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/uwZwI709Tx2Oa4BXn0Bd-RPtUi9mCmfGWLkPfEgDGjU.jpg?width=108&crop=smart&auto=webp&s=3a8e4468ae780492901deab902fa214e9fdca60c', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/uwZwI709Tx2Oa4BXn0Bd-RPtUi9mCmfGWLkPfEgDGjU.jpg?width=216&crop=smart&auto=webp&s=65388fc2d79ca0ead5aa6c3fc46274ba43bf01df', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/uwZwI709Tx2Oa4BXn0Bd-RPtUi9mCmfGWLkPfEgDGjU.jpg?width=320&crop=smart&auto=webp&s=8d3692e0f5904e3f3dd5b91d575e67eb36821d36', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/uwZwI709Tx2Oa4BXn0Bd-RPtUi9mCmfGWLkPfEgDGjU.jpg?width=640&crop=smart&auto=webp&s=ac86bcfb39d6b23c22c44431f9b6adb1602bf7b8', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/uwZwI709Tx2Oa4BXn0Bd-RPtUi9mCmfGWLkPfEgDGjU.jpg?width=960&crop=smart&auto=webp&s=d3355b932e297d7aa4f49a67d37411a03abbf624', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/uwZwI709Tx2Oa4BXn0Bd-RPtUi9mCmfGWLkPfEgDGjU.jpg?width=1080&crop=smart&auto=webp&s=abf189fbc834226a37ac790d79f15a9921e85254', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/uwZwI709Tx2Oa4BXn0Bd-RPtUi9mCmfGWLkPfEgDGjU.jpg?auto=webp&s=355fe3c9d80bca39bcfe9aa0ff2c6e7dc0e4effb', 'width': 1200}, 'variants': {}}]}
I Benchmarked OpenAI Memory vs LangMem vs Letta (MemGPT) vs Mem0 for Long-Term Memory: Here’s How They Stacked Up
1
[removed]
2025-04-29T18:18:20
https://www.reddit.com/r/LocalLLaMA/comments/1kauxq1/i_benchmarked_openai_memory_vs_langmem_vs_letta/
anmolbaranwal
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kauxq1
false
null
t3_1kauxq1
/r/LocalLLaMA/comments/1kauxq1/i_benchmarked_openai_memory_vs_langmem_vs_letta/
false
false
self
1
{'enabled': False, 'images': [{'id': 'a0RZrE7GFt0DmG96zzPXqvq5hYViOc0VToNDs9kVOl8', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=108&crop=smart&auto=webp&s=c72fb0a66471351f333efe72a4a2b95a1f1d4605', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=216&crop=smart&auto=webp&s=214dedf0eafe805259b789be11833dc7bd1141c1', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=320&crop=smart&auto=webp&s=e9306a6f0438ea7e57c43c0ac36d35bec7abe86a', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=640&crop=smart&auto=webp&s=059a7bfa5922517723e726099d97c7435b6248a1', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=960&crop=smart&auto=webp&s=2d62e3b449eb7928689d7f8e28df2bcb7f03ad36', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?width=1080&crop=smart&auto=webp&s=e908fdd03b9a0fc7a39675425af9fa9059983e2a', 'width': 1080}], 'source': {'height': 1260, 'url': 'https://external-preview.redd.it/GMSO7W8n8TzbagObVlLjD6Lfh0lgU5aGETO6YedVnFE.jpg?auto=webp&s=822a7286748aa2c9e4c43cf646ef88b0c1c4b1c3', 'width': 2400}, 'variants': {}}]}
Complete noob question
1
I have a 12gb Arc B580. I want to run models on it just to mess around and learn. My ultimate goal (in the intermediate term) is to get it working with my Home Assistant setup. I also have a Sapphire RX 570 8gb and a GTX1060 6gb. Would it be beneficial and/or possible to add the AMD and Nvidia cards to the Intel card and run a single model across platforms? Would the two older cards have enough vram and speed by themselves to make a usable system for my home needs in eventially bypassing Google and Alexa? Note: I use the B580 for gaming, so it won't be able to be fully dedicated to an AI setup when I eventually dive into the deep end with a dedicated AI box.
2025-04-29T18:18:31
https://www.reddit.com/r/LocalLLaMA/comments/1kauxvk/complete_noob_question/
Universal_Cognition
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kauxvk
false
null
t3_1kauxvk
/r/LocalLLaMA/comments/1kauxvk/complete_noob_question/
false
false
self
1
null
Ali Ghodsi just featured LocalLLaMA subreddit community at LlamaCon
1
[removed]
2025-04-29T18:20:54
https://i.redd.it/nggjpcy9gtxe1.jpeg
vineethsai
i.redd.it
1970-01-01T00:00:00
0
{}
1kav02n
false
null
t3_1kav02n
/r/LocalLLaMA/comments/1kav02n/ali_ghodsi_just_featured_localllama_subreddit/
false
false
https://b.thumbs.redditm…i6AFS_-U1qDs.jpg
1
{'enabled': True, 'images': [{'id': 'BzjqBjWU1smP0SIt4RJVjObM0NYU4givO5OScUVAkrs', 'resolutions': [{'height': 81, 'url': 'https://preview.redd.it/nggjpcy9gtxe1.jpeg?width=108&crop=smart&auto=webp&s=5db816f12e7088b608c5e8a2b2bf827aec47a62e', 'width': 108}, {'height': 162, 'url': 'https://preview.redd.it/nggjpcy9gtxe1.jpeg?width=216&crop=smart&auto=webp&s=79f223bf847f5468c30f45df1076bcb2099f3f3c', 'width': 216}, {'height': 240, 'url': 'https://preview.redd.it/nggjpcy9gtxe1.jpeg?width=320&crop=smart&auto=webp&s=a9fefc349feeafbc3a9f791b233f4a3c1f1da3ee', 'width': 320}, {'height': 480, 'url': 'https://preview.redd.it/nggjpcy9gtxe1.jpeg?width=640&crop=smart&auto=webp&s=afc837350428ca54146108135ef22cd0f743acd0', 'width': 640}, {'height': 720, 'url': 'https://preview.redd.it/nggjpcy9gtxe1.jpeg?width=960&crop=smart&auto=webp&s=d6dcdcb8ea932b6cc03d91fbc4e7857eab276359', 'width': 960}, {'height': 810, 'url': 'https://preview.redd.it/nggjpcy9gtxe1.jpeg?width=1080&crop=smart&auto=webp&s=b1f11e2f5ff06eeff00848a9dfeea1c4ef4610ca', 'width': 1080}], 'source': {'height': 3024, 'url': 'https://preview.redd.it/nggjpcy9gtxe1.jpeg?auto=webp&s=990b3bb3e99a0bf69265e70b324c34edfead76c9', 'width': 4032}, 'variants': {}}]}
How do you uncensor qwen3?
6
Seems to be very censored
2025-04-29T18:38:38
https://www.reddit.com/r/LocalLLaMA/comments/1kavfkv/how_do_you_uncensor_qwen3/
InsideYork
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kavfkv
false
null
t3_1kavfkv
/r/LocalLLaMA/comments/1kavfkv/how_do_you_uncensor_qwen3/
false
false
self
6
null
Llama4 Tool Calling + Reasoning Tutorial via Llama API
0
Wanted to share our small tutorial on how to do tool-calling + reasoning on models using a simple DSL for prompts (baml) : [https://www.boundaryml.com/blog/llama-api-tool-calling](https://www.boundaryml.com/blog/llama-api-tool-calling) Note that the llama4 docs specify you have to add <function> for doing tool-calling, but they still leave the parsing to you. In this demo you don't need any special tokens nor parsing (since we wrote one for you that fixes common json mistakes). Happy to answer any questions. P.S. we havent tested all models, but Qwen should work nicely as well.
2025-04-29T18:43:58
https://www.reddit.com/r/LocalLLaMA/comments/1kavkbr/llama4_tool_calling_reasoning_tutorial_via_llama/
fluxwave
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kavkbr
false
null
t3_1kavkbr
/r/LocalLLaMA/comments/1kavkbr/llama4_tool_calling_reasoning_tutorial_via_llama/
false
false
self
0
{'enabled': False, 'images': [{'id': 'EYjuCy-mlwO5ga5EPJEO3vBQhwOcG15qksW1TAIV6-Q', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/3sFxd_8kGFTrCyTMyHDDpv6cFiRxc2mj44qAx0M806o.jpg?width=108&crop=smart&auto=webp&s=5fa071728ad074da88b980b70bf6ed4b46f6eff6', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/3sFxd_8kGFTrCyTMyHDDpv6cFiRxc2mj44qAx0M806o.jpg?width=216&crop=smart&auto=webp&s=e79f401bfd0a167a283363729737a27311517b85', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/3sFxd_8kGFTrCyTMyHDDpv6cFiRxc2mj44qAx0M806o.jpg?width=320&crop=smart&auto=webp&s=4ad390be9e2eecd11d329f57023d67b50ee2124d', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/3sFxd_8kGFTrCyTMyHDDpv6cFiRxc2mj44qAx0M806o.jpg?width=640&crop=smart&auto=webp&s=590cb4ba285e4cc6f228fa219b7f60a8205058e7', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/3sFxd_8kGFTrCyTMyHDDpv6cFiRxc2mj44qAx0M806o.jpg?width=960&crop=smart&auto=webp&s=2b1ced2f4841311746dfeebd752f840a78206acd', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/3sFxd_8kGFTrCyTMyHDDpv6cFiRxc2mj44qAx0M806o.jpg?width=1080&crop=smart&auto=webp&s=e638f9254383b52c2cf50cbaa4c170b3b2958aa0', 'width': 1080}], 'source': {'height': 630, 'url': 'https://external-preview.redd.it/3sFxd_8kGFTrCyTMyHDDpv6cFiRxc2mj44qAx0M806o.jpg?auto=webp&s=dc8bbc3127abb6ba86be5b8b58c1dc14f1dd023e', 'width': 1200}, 'variants': {}}]}