title
stringlengths
1
300
score
int64
0
8.54k
selftext
stringlengths
0
40k
created
timestamp[ns]date
2023-04-01 04:30:41
2025-06-30 03:16:29
url
stringlengths
0
878
author
stringlengths
3
20
domain
stringlengths
0
82
edited
timestamp[ns]date
1970-01-01 00:00:00
2025-06-26 17:30:18
gilded
int64
0
2
gildings
stringclasses
7 values
id
stringlengths
7
7
locked
bool
2 classes
media
stringlengths
646
1.8k
name
stringlengths
10
10
permalink
stringlengths
33
82
spoiler
bool
2 classes
stickied
bool
2 classes
thumbnail
stringlengths
4
213
ups
int64
0
8.54k
preview
stringlengths
301
5.01k
Decreasing Qwen3-30B-A3B sparsity
17
Has anyone tested or worked on increasing the number of experts/token of 30B-A3B? I've been experimenting with this model. While its good, I've observed significantly more repetitions and hallucinations compared to the 32B. I guess moving from 8 to perhaps 16 experts could bring its performance closer to the 32B dense model. This should maintain an acceptable inference speed, keeping around \~6B activated parameters per token (top-16 gating). The idea is that even if some experts are currently [underused](https://x.com/kalomaze/status/1918238263330148487), they might still be valuable. And there is a chance that some of them often fall in the top 8 - 16 and are never selected. Has anyone tried this? With and without fine-tuning? Any insights would be appreciated.
2025-05-03T12:08:33
https://www.reddit.com/r/LocalLLaMA/comments/1kdrgls/decreasing_qwen330ba3b_sparsity/
tkon3
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdrgls
false
null
t3_1kdrgls
/r/LocalLLaMA/comments/1kdrgls/decreasing_qwen330ba3b_sparsity/
false
false
self
17
{'enabled': False, 'images': [{'id': 'WLHYrhrPP9WPE776BhWa_qXCwkYYQY-hKjX1-F3cBkg', 'resolutions': [{'height': 216, 'url': 'https://external-preview.redd.it/m9UjIVLMY-QYAIigWQYpzMLYcK2dd4Vx9dLuob8MIew.jpg?width=108&crop=smart&auto=webp&s=676bbbc8be10122a3395ba34fc48de620106bffe', 'width': 108}, {'height': 432, 'url': 'https://external-preview.redd.it/m9UjIVLMY-QYAIigWQYpzMLYcK2dd4Vx9dLuob8MIew.jpg?width=216&crop=smart&auto=webp&s=633e297b1e3bee9cd6fcaaaab9ad099fc5892659', 'width': 216}, {'height': 640, 'url': 'https://external-preview.redd.it/m9UjIVLMY-QYAIigWQYpzMLYcK2dd4Vx9dLuob8MIew.jpg?width=320&crop=smart&auto=webp&s=1530ddfb09e10e19539b126b31469fc30e3a7e85', 'width': 320}], 'source': {'height': 1016, 'url': 'https://external-preview.redd.it/m9UjIVLMY-QYAIigWQYpzMLYcK2dd4Vx9dLuob8MIew.jpg?auto=webp&s=7a99edcf620446f5e0ee72561793c39c62105412', 'width': 348}, 'variants': {}}]}
Speed of response is not a concern and niched use case i.e. just answer questions based on pdf.(on a low end pc)
1
[removed]
2025-05-03T12:10:06
https://www.reddit.com/r/LocalLLaMA/comments/1kdrhkh/speed_of_response_is_not_a_concern_and_niched_use/
Keeper-Name_2271
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdrhkh
false
null
t3_1kdrhkh
/r/LocalLLaMA/comments/1kdrhkh/speed_of_response_is_not_a_concern_and_niched_use/
false
false
self
1
null
Severe hallucination on Phi 4 Reasoning Plus with System Prompt
3
This only happens when I set system prompt, doesn't matter if it's a detailed request or just "yo mama". Oddly enough, this doesn't happen with the Mini version. Could it be wrong prompt format on the quant I use? Here are some of my chat: --- User: How do I defeat Goku? Phi 4: User said "Hello" message. So likely answer is something like "Hello!" or similar greeting. But check instructions: The conversation starts with "Hello", so I'll greet accordingly. Let's see if there are any additional queries? There is just one message "Hello". Let me see context: "Hello" is the only text provided by user. But no explicit question, it's just a greeting. So my answer should be a friendly greeting and maybe ask how can I help etc. However instructions: "Hello", not sure what else. Possibly I'll say "Hi! How may I assist you today?" But instructions mention that if a question is asked, I should try to be helpful. But there's nothing further. So best answer is greet the user. I must check if any specific instruction in conversation: There's no additional message or query by user beyond "Hello". I'll reply with something like "Hi! How can I help you?" But also maybe add something else if instructions mention that we need to be helpful? There is no explicit question. So answer is: "Hello!" But check the previous conversation: None. Wait instructions: "Hello" is a greeting, so I must greet user. In the style guidelines: "Don't provide Markdown formatting unless requested." Wait instructions "By default do not reply in markdown unless requested." But also instruction: "By default, do not use markdown formatting unless requested"? Actually instructions are: "You should carefully adhere to all formatting instructions." But if they ask plain text answer, then I'll produce text message. ... User: Are you hallucinating? Phi 4: User's conversation states: "You are Phi", then instructions: "Your role as an assistant involves thoroughly exploring questions..." then further instructions that appear to be repeated. But the last query message from the user is not given? Possibly missing text in conversation? The user's query appears to be truncated or maybe empty. Let me re-read conversation: The conversation consists of a single content that says "You are Phi" and then instructions, but then no actual question. Wait let me check carefully: User message: You are Phi, a language model trained by Microsoft to help users. Your role as an assistant involves thoroughly exploring questions
2025-05-03T12:32:28
https://www.reddit.com/r/LocalLLaMA/comments/1kdrvwu/severe_hallucination_on_phi_4_reasoning_plus_with/
HornyGooner4401
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdrvwu
false
null
t3_1kdrvwu
/r/LocalLLaMA/comments/1kdrvwu/severe_hallucination_on_phi_4_reasoning_plus_with/
false
false
self
3
null
I am probably late to the party...
236
2025-05-03T12:34:17
https://i.redd.it/n8fr9l83akye1.jpeg
TacticalSniper
i.redd.it
1970-01-01T00:00:00
0
{}
1kdrx3b
false
null
t3_1kdrx3b
/r/LocalLLaMA/comments/1kdrx3b/i_am_probably_late_to_the_party/
false
false
https://a.thumbs.redditm…3pSwa_WiTYw0.jpg
236
{'enabled': True, 'images': [{'id': 'uZC8E4uZ6tJKuEMieKrSw5PZeX08luFUpP7-GeuaHBQ', 'resolutions': [{'height': 216, 'url': 'https://preview.redd.it/n8fr9l83akye1.jpeg?width=108&crop=smart&auto=webp&s=f983019ceb2651da77f1e354aff1a8a4f52cffde', 'width': 108}, {'height': 432, 'url': 'https://preview.redd.it/n8fr9l83akye1.jpeg?width=216&crop=smart&auto=webp&s=4d443cccb492f747e2c2f5e8c7fc36790e13bcff', 'width': 216}, {'height': 640, 'url': 'https://preview.redd.it/n8fr9l83akye1.jpeg?width=320&crop=smart&auto=webp&s=38b15aa0c6238220c65fc25fc872f405fb9a00b4', 'width': 320}, {'height': 1280, 'url': 'https://preview.redd.it/n8fr9l83akye1.jpeg?width=640&crop=smart&auto=webp&s=d15015f5609fd116dac2b28f4ab293d1b513803e', 'width': 640}, {'height': 1920, 'url': 'https://preview.redd.it/n8fr9l83akye1.jpeg?width=960&crop=smart&auto=webp&s=956f11f6cd893ee7d4cf3284c76a75150b7256cb', 'width': 960}, {'height': 2160, 'url': 'https://preview.redd.it/n8fr9l83akye1.jpeg?width=1080&crop=smart&auto=webp&s=8eb5549a9ce425d9568b181d145d23d8c6d16689', 'width': 1080}], 'source': {'height': 2340, 'url': 'https://preview.redd.it/n8fr9l83akye1.jpeg?auto=webp&s=4246c7acbfe5332a7e66fd46ce9787c61db875ad', 'width': 1080}, 'variants': {}}]}
KV-Cache problem in my wanted use case
1
I work on a own Chatbot with KoboldCPP API as LLM backend and I run into a problem that opened up a bigger question. I want to use the LLM a bit smarter which leads into useing the API not only for the Chatbot context itself, I also want to use the LLM API to generate other stuff between chat replies. And here hits the KV-Cache hard, because it is not made to fully change the context in between for a totally other task and I also don't saw a way to "pause" the KV-Cache to don't use it for a generation and then switch it back on for the chat answer. Another LLM instance for other tasks is no solution. At first it is not smart at all on the other it takes much more VRAM and because this is a local running Chatbot that should be also VRAM efficient it is generally no solution. But what other solutions could be here a option without ruinning totally fast LLM answers? Is there maybe a other API than KoboldCPP that has more possibilities with the KV-Cache?
2025-05-03T12:34:56
https://www.reddit.com/r/LocalLLaMA/comments/1kdrxi5/kvcache_problem_in_my_wanted_use_case/
Blizado
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdrxi5
false
null
t3_1kdrxi5
/r/LocalLLaMA/comments/1kdrxi5/kvcache_problem_in_my_wanted_use_case/
false
false
self
1
null
MNN Chat Android App by Alibaba
21
https://github.com/alibaba/MNN/blob/master/apps/Android/MnnLlmChat/README.md
2025-05-03T12:35:49
https://www.reddit.com/gallery/1kdry32
AaronFeng47
reddit.com
1970-01-01T00:00:00
0
{}
1kdry32
false
null
t3_1kdry32
/r/LocalLLaMA/comments/1kdry32/mnn_chat_android_app_by_alibaba/
false
false
https://a.thumbs.redditm…5TihoWpGS9T0.jpg
21
null
phi 4 reasoning disappointed me
0
Title. I mean it was okay at math and stuff, running the mini model and the 14b model locally were both pretty dumb though. I told the mini model "Hello" and it went off in the reasoning about some random math problem; I told the 14b reasoning the same and it got stuck repeating the same phrase over and over again until it hit a token limit. So, good for math, not good for general imo. I will try tweaking some params in ollama etc and see if I can get any better results.
2025-05-03T12:36:18
https://bestcodes.dev/blog/phi-4-benchmarks-and-info
best_codes
bestcodes.dev
1970-01-01T00:00:00
0
{}
1kdryej
false
null
t3_1kdryej
/r/LocalLLaMA/comments/1kdryej/phi_4_reasoning_disappointed_me/
false
false
https://b.thumbs.redditm…CYfFRuDeZ8ac.jpg
0
{'enabled': False, 'images': [{'id': 'GpN2OBH4ktLkF5V_qL8VTAA5Af5l1Wmyz0b6BBaJx8I', 'resolutions': [{'height': 46, 'url': 'https://external-preview.redd.it/0A8w2c1mr2f3-KxblotyX-GLiNkpSqj6yixJZ5S6t7s.jpg?width=108&crop=smart&auto=webp&s=142c84c354fcc6ddd923dbbb9c4042e09423e157', 'width': 108}, {'height': 92, 'url': 'https://external-preview.redd.it/0A8w2c1mr2f3-KxblotyX-GLiNkpSqj6yixJZ5S6t7s.jpg?width=216&crop=smart&auto=webp&s=955e81ee6174f05b2b6861f58e9c0cdcac59b58a', 'width': 216}, {'height': 137, 'url': 'https://external-preview.redd.it/0A8w2c1mr2f3-KxblotyX-GLiNkpSqj6yixJZ5S6t7s.jpg?width=320&crop=smart&auto=webp&s=38208c917075494c461b6759ac985bb681763cbd', 'width': 320}, {'height': 274, 'url': 'https://external-preview.redd.it/0A8w2c1mr2f3-KxblotyX-GLiNkpSqj6yixJZ5S6t7s.jpg?width=640&crop=smart&auto=webp&s=1a4817db2efaf66d174f7bd42a3d7d975cb5b307', 'width': 640}, {'height': 411, 'url': 'https://external-preview.redd.it/0A8w2c1mr2f3-KxblotyX-GLiNkpSqj6yixJZ5S6t7s.jpg?width=960&crop=smart&auto=webp&s=94a694188dab15b010feff519469d437e49d78cd', 'width': 960}, {'height': 462, 'url': 'https://external-preview.redd.it/0A8w2c1mr2f3-KxblotyX-GLiNkpSqj6yixJZ5S6t7s.jpg?width=1080&crop=smart&auto=webp&s=24b265dfe6d62843bccec9edba5dbd68997d0e34', 'width': 1080}], 'source': {'height': 900, 'url': 'https://external-preview.redd.it/0A8w2c1mr2f3-KxblotyX-GLiNkpSqj6yixJZ5S6t7s.jpg?auto=webp&s=f1962dd6e60a2f7640877978a8bd27de666cc9ea', 'width': 2100}, 'variants': {}}]}
Qwen 3 Performance: Quick Benchmarks Across Different Setups
1
[deleted]
2025-05-03T12:39:49
[deleted]
1970-01-01T00:00:00
0
{}
1kds0on
false
null
t3_1kds0on
/r/LocalLLaMA/comments/1kds0on/qwen_3_performance_quick_benchmarks_across/
false
false
default
1
null
NVIDIA Encouraging CUDA Users To Upgrade From Maxwell / Pascal / Volta
1
[removed]
2025-05-03T12:44:36
https://www.phoronix.com/news/NVIDIA-CUDA-Upgrade-Post-Volta
FullstackSensei
phoronix.com
1970-01-01T00:00:00
0
{}
1kds3wc
false
null
t3_1kds3wc
/r/LocalLLaMA/comments/1kds3wc/nvidia_encouraging_cuda_users_to_upgrade_from/
false
false
https://a.thumbs.redditm…IDeBa-Hr01-4.jpg
1
{'enabled': False, 'images': [{'id': 'C5Ups5QdxRfTdlhrdC2cwRUqZXpn8TgTWMNTc55cNP4', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=108&crop=smart&auto=webp&s=781f26de380a8b4e7744e467af9f1ff658a73f92', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=216&crop=smart&auto=webp&s=7a7ebb05321310bb6bb3f1bbfde944430ed6b6f9', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=320&crop=smart&auto=webp&s=dcade7d4e0e6e6356003158958b97711eed0d360', 'width': 320}, {'height': 337, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=640&crop=smart&auto=webp&s=d60508db82dbfbe8335578f2d15bb4779f25d088', 'width': 640}, {'height': 506, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=960&crop=smart&auto=webp&s=d9d3454c52066213c740387454466aefe4e91e5e', 'width': 960}, {'height': 569, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=1080&crop=smart&auto=webp&s=ad5e8749d04fcaf15f36397975d7359d17488bad', 'width': 1080}], 'source': {'height': 1012, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?auto=webp&s=83d2289d315a2f21a157adb75c7348297a4199d1', 'width': 1920}, 'variants': {}}]}
Inference needs nontrivial amount of PCIe bandwidth (8x RTX 3090 rig, tensor parallelism)
28
I wanted to share my experience which is contrary to common opinion on Reddit that inference does not need PCIe bandwidth between GPUs. Hopefully this post will be informative to anyone who wants to design a large rig. First, theoretical and real PCIe differ substantially. In my specific case, 4x PCIe only provides 1.6GB/s in single direction, whereas theoretical bandwidth is 4GB/s. This is on x399 threadripper machine and can be reproduced in multiple ways: nvtop, all_reduce_perf from nccl, p2pBandwidthLatencyTest from cuda-samples. Second, when doing tensor parallelism the required PCIe bandwidth between GPUs scales by the number of GPUs. So 8x GPUs will require 2x bandwidth compared to 4x GPUs. This means that any data acquired on small rigs does directly apply when designing large rigs. As a result, connecting 8 GPUs using 4x PCIe 3.0 is bad idea. I profiled prefill on Mistral Large 2411 on sglang (vllm was even slower) and saw around 80% of time spent communicating between GPUs. I really wanted 4x PCIe 3.0 to work, as 8x PCIe 4.0 adds 1500 Eur to the cost, but unfortunately the results are what they are. I will post again once I have GPUs are connected via 8x PCIe 4.0. Right now TechxGenus/Mistral-Large-Instruct-2411-AWQ provides me ~25 t/s generation and ~100 t/s prefill on 80k context. Any similar experiences here?
2025-05-03T12:46:15
https://www.reddit.com/r/LocalLLaMA/comments/1kds51e/inference_needs_nontrivial_amount_of_pcie/
pmur12
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kds51e
false
null
t3_1kds51e
/r/LocalLLaMA/comments/1kds51e/inference_needs_nontrivial_amount_of_pcie/
false
false
self
28
null
NVIDIA Encouraging CUDA Users To Upgrade From Maxwell / Pascal / Volta
1
[removed]
2025-05-03T12:46:57
https://www.reddit.com/r/LocalLLaMA/comments/1kds5iw/nvidia_encouraging_cuda_users_to_upgrade_from/
FullstackSensei
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kds5iw
false
null
t3_1kds5iw
/r/LocalLLaMA/comments/1kds5iw/nvidia_encouraging_cuda_users_to_upgrade_from/
false
false
https://a.thumbs.redditm…z3oJ0LCjZJl0.jpg
1
null
NVIDIA Encouraging CUDA Users To Upgrade From Maxwell / Pascal / Volta
1
[removed]
2025-05-03T12:48:24
https://www.reddit.com/r/LocalLLaMA/comments/1kds6ha/nvidia_encouraging_cuda_users_to_upgrade_from/
FullstackSensei
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kds6ha
false
null
t3_1kds6ha
/r/LocalLLaMA/comments/1kds6ha/nvidia_encouraging_cuda_users_to_upgrade_from/
false
false
self
1
{'enabled': False, 'images': [{'id': 'C5Ups5QdxRfTdlhrdC2cwRUqZXpn8TgTWMNTc55cNP4', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=108&crop=smart&auto=webp&s=781f26de380a8b4e7744e467af9f1ff658a73f92', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=216&crop=smart&auto=webp&s=7a7ebb05321310bb6bb3f1bbfde944430ed6b6f9', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=320&crop=smart&auto=webp&s=dcade7d4e0e6e6356003158958b97711eed0d360', 'width': 320}, {'height': 337, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=640&crop=smart&auto=webp&s=d60508db82dbfbe8335578f2d15bb4779f25d088', 'width': 640}, {'height': 506, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=960&crop=smart&auto=webp&s=d9d3454c52066213c740387454466aefe4e91e5e', 'width': 960}, {'height': 569, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=1080&crop=smart&auto=webp&s=ad5e8749d04fcaf15f36397975d7359d17488bad', 'width': 1080}], 'source': {'height': 1012, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?auto=webp&s=83d2289d315a2f21a157adb75c7348297a4199d1', 'width': 1920}, 'variants': {}}]}
NVIDIA Encouraging CUDA Users To Upgrade From Maxwell / Pascal / Volta
1
[removed]
2025-05-03T12:48:56
https://www.reddit.com/r/LocalLLaMA/comments/1kds6ur/nvidia_encouraging_cuda_users_to_upgrade_from/
FullstackSensei
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kds6ur
false
null
t3_1kds6ur
/r/LocalLLaMA/comments/1kds6ur/nvidia_encouraging_cuda_users_to_upgrade_from/
false
false
self
1
{'enabled': False, 'images': [{'id': 'C5Ups5QdxRfTdlhrdC2cwRUqZXpn8TgTWMNTc55cNP4', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=108&crop=smart&auto=webp&s=781f26de380a8b4e7744e467af9f1ff658a73f92', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=216&crop=smart&auto=webp&s=7a7ebb05321310bb6bb3f1bbfde944430ed6b6f9', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=320&crop=smart&auto=webp&s=dcade7d4e0e6e6356003158958b97711eed0d360', 'width': 320}, {'height': 337, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=640&crop=smart&auto=webp&s=d60508db82dbfbe8335578f2d15bb4779f25d088', 'width': 640}, {'height': 506, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=960&crop=smart&auto=webp&s=d9d3454c52066213c740387454466aefe4e91e5e', 'width': 960}, {'height': 569, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?width=1080&crop=smart&auto=webp&s=ad5e8749d04fcaf15f36397975d7359d17488bad', 'width': 1080}], 'source': {'height': 1012, 'url': 'https://external-preview.redd.it/YltAKBwsWNlDZDV6oMGWM3nQ7iuInUILc5ybWGp7Puo.jpg?auto=webp&s=83d2289d315a2f21a157adb75c7348297a4199d1', 'width': 1920}, 'variants': {}}]}
Support for Maxwell, Pscal, and Volta to be removed in CUDA Tookkit 13
1
[removed]
2025-05-03T12:53:01
https://www.reddit.com/r/LocalLLaMA/comments/1kds9kd/support_for_maxwell_pscal_and_volta_to_be_removed/
FullstackSensei
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kds9kd
false
null
t3_1kds9kd
/r/LocalLLaMA/comments/1kds9kd/support_for_maxwell_pscal_and_volta_to_be_removed/
false
false
self
1
null
A local-first ollama based file assistant
1
[removed]
2025-05-03T13:13:43
https://www.reddit.com/r/LocalLLaMA/comments/1kdsoir/a_localfirst_ollama_based_file_assistant/
SnooConfections8719
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdsoir
false
null
t3_1kdsoir
/r/LocalLLaMA/comments/1kdsoir/a_localfirst_ollama_based_file_assistant/
false
false
self
1
{'enabled': False, 'images': [{'id': 'mfNsFvWBaGyQjibBAnJivymYKz99EW6vvWb9msua9kE', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/Tf2DUpvmwFOaYoeunF_XA8AthKg-kTRvpHSXPHl0g40.jpg?width=108&crop=smart&auto=webp&s=789b62d76db988903137a9be65f79f70d12fe993', 'width': 108}, {'height': 216, 'url': 'https://external-preview.redd.it/Tf2DUpvmwFOaYoeunF_XA8AthKg-kTRvpHSXPHl0g40.jpg?width=216&crop=smart&auto=webp&s=b5401382b0e7b03c466db1b84d9eea9f7a504b34', 'width': 216}, {'height': 320, 'url': 'https://external-preview.redd.it/Tf2DUpvmwFOaYoeunF_XA8AthKg-kTRvpHSXPHl0g40.jpg?width=320&crop=smart&auto=webp&s=429353fb59d32860ffa273e5d9cc98a14e57a6fc', 'width': 320}], 'source': {'height': 500, 'url': 'https://external-preview.redd.it/Tf2DUpvmwFOaYoeunF_XA8AthKg-kTRvpHSXPHl0g40.jpg?auto=webp&s=52a2bc38831d2574275c33369bb7a568ae62a2ff', 'width': 500}, 'variants': {}}]}
Qwen 3 Performance: Quick Benchmarks Across Different Setups
96
Hey r/LocalLLaMA, Been keeping an eye on the discussions around the new Qwen 3 models and wanted to put together a quick summary of the performance people are seeing on different hardware based on what folks are saying. Just trying to collect some of the info floating around in one place. NVIDIA GPUs * Small Models (0.6B - 14B): Some users have noted the 4B model seems surprisingly capable for reasoning.There's also talk about the 14B model being solid for coding.However, experiences seem to vary, with some finding the 4B model less impressive. * Mid-Range (30B - 32B): This seems to be where things get interesting for a lot of people. * The 30B-A3B (MoE) model is getting a lot of love for its speed. One user with a 12GB VRAM card reported around 12 tokens per second at Q6 , and someone else with an RTX 3090 saw much faster speeds, around 72.9 t/s.It even seems to run on CPUs at decent speeds. * The 32B dense model is also a strong contender, especially for coding.One user on an RTX 3090 got about 12.5 tokens per second with the Q8 quantized version.Some folks find the 32B better for creative tasks , while coding performance reports are mixed. * High-End (235B): This model needs some serious hardware. If you've got a beefy setup like four RTX 3090s (96GB VRAM), you might see speeds of around 3 to 7 tokens per second.Quantization is probably a must to even try running this locally, and opinions on the quality at lower bitrates seem to vary. Apple Silicon Apple Silicon seems to be a really efficient place to run Qwen 3, especially if you're using the MLX framework.The 30B-A3B model is reportedly very fast on M4 Max chips, exceeding 100 tokens per second in some cases.Here's a quick look at some reported numbers : * M2 Max, 30B-A3B, MLX 4-bit: 68.318 t/s * M4 Max, 30B-A3B, MLX Q4: 100+ t/s * M1 Max, 30B-A3B, GGUF Q4_K_M: ~40 t/s * M3 Max, 30B-A3B, MLX 8-bit: 68.016 t/s MLX often seems to give better prompt processing speeds compared to llama.cpp on Macs. CPU-Only Rigs The 30B-A3B model can even run on systems without a dedicated GPU if you've got enough RAM.One user with 16GB of RAM reported getting over 10 tokens per second with the Q4 quantized version.Here are some examples : * AMD Ryzen 9 7950x3d, 30B-A3B, Q4, 32GB RAM: 12-15 t/s * Intel i5-8250U, 30B-A3B, Q3_K_XL, 32GB RAM: 7 t/s * AMD Ryzen 5 5600G, 30B-A3B, Q4_K_M, 32GB RAM: 12 t/s * Intel i7 ultra 155, 30B-A3B, Q4, 32GB RAM: ~12-15 t/s Lower bit quantizations are usually needed for decent CPU performance. General Thoughts: The 30B-A3B model seems to be a good all-around performer. Apple Silicon users seem to be in for a treat with the MLX optimizations. Even CPU-only setups can get some use out of these models. Keep in mind that these are just some of the experiences being shared, and actual performance can vary. What have your experiences been with Qwen 3? Share your benchmarks and thoughts below!
2025-05-03T13:14:34
https://www.reddit.com/r/LocalLLaMA/comments/1kdsp4z/qwen_3_performance_quick_benchmarks_across/
mimirium_
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdsp4z
false
null
t3_1kdsp4z
/r/LocalLLaMA/comments/1kdsp4z/qwen_3_performance_quick_benchmarks_across/
false
false
self
96
null
Qwen3 - 4B
2
2025-05-03T13:23:52
https://i.redd.it/7osxyipfikye1.png
hamster019
i.redd.it
1970-01-01T00:00:00
0
{}
1kdsvwl
false
null
t3_1kdsvwl
/r/LocalLLaMA/comments/1kdsvwl/qwen3_4b/
false
false
https://b.thumbs.redditm…83AaEnj6Lr0I.jpg
2
{'enabled': True, 'images': [{'id': 'sUHQjfCuYGHo3dFO8YnygW0WmrLJfYJrpNX1AIl-ITQ', 'resolutions': [{'height': 55, 'url': 'https://preview.redd.it/7osxyipfikye1.png?width=108&crop=smart&auto=webp&s=0a0037d828f246ca67463bcecbd6db6cf4ddcb2e', 'width': 108}, {'height': 110, 'url': 'https://preview.redd.it/7osxyipfikye1.png?width=216&crop=smart&auto=webp&s=0d2e4b4d49fa444d83de694cb552b0838820ec2a', 'width': 216}, {'height': 163, 'url': 'https://preview.redd.it/7osxyipfikye1.png?width=320&crop=smart&auto=webp&s=04a84059f1d905ef9da647102befa553933cc07e', 'width': 320}, {'height': 327, 'url': 'https://preview.redd.it/7osxyipfikye1.png?width=640&crop=smart&auto=webp&s=1a2192ccbc50233c34722a08e3b55397e93b5042', 'width': 640}, {'height': 491, 'url': 'https://preview.redd.it/7osxyipfikye1.png?width=960&crop=smart&auto=webp&s=28a0c3feb037bd918d8a5518297039001699e882', 'width': 960}, {'height': 552, 'url': 'https://preview.redd.it/7osxyipfikye1.png?width=1080&crop=smart&auto=webp&s=9f37932a3550ddd05a36c189059b3e3bcc091410', 'width': 1080}], 'source': {'height': 626, 'url': 'https://preview.redd.it/7osxyipfikye1.png?auto=webp&s=c373efd080ebd9267c2357ee9124f700f5b127c1', 'width': 1223}, 'variants': {}}]}
Power efficient, affordable home server LLM hardware?
0
Hi all, I've been running some small-ish LLMs as a coding assistant using llama.cpp & Tabby on my workstation laptop, and it's working pretty well! My laptop has an Nvidia RTX A5000 with 16GB and it just about fits `Gemma3:12b-qat` as a chat / reasoning model and `Qwen2.5-coder:7b` for code completion (both using 4-bit quantization). They work well enough, and rather quickly, but it's impossible to use on battery or on my "on the go" older subnotebook. I've been looking at options for a home server for running LLMs. I would prefer something at least as fast as the A5000, but I would also like to use (or at least try) a few bigger models. Gemma3:27b seems to provide significantly better results, and I'm keen to try the new Qwen3 models. Power costs about 40 cents / kWh here, so power efficiency is important to me. The A5000 consumes about 35-50W when doing inference work and outputs about 37 tokens/sec for the 12b gemma3 model, so anything that exceeds that is fine, faster is obviously better. Also it should run on Linux, so Apple silicon is unfortunately out of the question (I've tried running llama.cpp on Asahi Linux on an M2 Pro before using the Vulkan backend, and performance is pretty bad as it stands).
2025-05-03T13:24:29
https://www.reddit.com/r/LocalLLaMA/comments/1kdswby/power_efficient_affordable_home_server_llm/
spaceman_
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdswby
false
null
t3_1kdswby
/r/LocalLLaMA/comments/1kdswby/power_efficient_affordable_home_server_llm/
false
false
self
0
null
Enable/Disable Reasoning Qwen 3
2
Is there a way we can turn on/off the reasoning mode either with a `llama-server` parameter or Open WebUI toggle?
2025-05-03T13:33:16
https://www.reddit.com/r/LocalLLaMA/comments/1kdt2yb/enabledisable_reasoning_qwen_3/
Remarkable_Art5653
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdt2yb
false
null
t3_1kdt2yb
/r/LocalLLaMA/comments/1kdt2yb/enabledisable_reasoning_qwen_3/
false
false
self
2
null
New to AI stuff
11
Hello everyone. My rig is: 4070 12GB + 32gb RAM I just got into locally running my AI. I had a successfull run yesterday running in wsl ollama + gemma3:12B + openwebui. I wanted to ask how are you guys running your AI models, what are you using? My end goal would be a chatbot in telegram that i could give tasks to over the internet, like : scrape this site, analyze this excel file locally. I would like to give it basically a folder on my pc that i would dump text files into for context. Is this possible? Thank you for the time involved in reading this. Please excuse me for noob language. PS: any informations given will be read.
2025-05-03T13:34:51
https://www.reddit.com/r/LocalLLaMA/comments/1kdt43o/new_to_ai_stuff/
GIGKES
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdt43o
false
null
t3_1kdt43o
/r/LocalLLaMA/comments/1kdt43o/new_to_ai_stuff/
false
false
self
11
null
The significance of such a small model like qwen3-0.6B for mobile devices is immense.
1
[removed]
2025-05-03T13:42:00
https://www.reddit.com/r/LocalLLaMA/comments/1kdt9cl/the_significance_of_such_a_small_model_like/
Aware-Ad-481
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdt9cl
false
null
t3_1kdt9cl
/r/LocalLLaMA/comments/1kdt9cl/the_significance_of_such_a_small_model_like/
false
false
self
1
null
Bought 3090, need emotional support
1
[removed]
2025-05-03T13:42:40
https://www.reddit.com/r/LocalLLaMA/comments/1kdt9uv/bought_3090_need_emotional_support/
HandsOnDyk
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdt9uv
false
null
t3_1kdt9uv
/r/LocalLLaMA/comments/1kdt9uv/bought_3090_need_emotional_support/
false
false
self
1
null
glm-4-32b-0414 Aider Polyglot benchmark (scored 10%)
8
Hey everyone, I recently conducted a benchmark on the GLM-4-32B-0414 model using aider polyglot and wanted to share my findings: - dirname: 2025-05-02-18-07-24--NewHope test_cases: 225 model: lm_studio/glm-4-32b-0414 edit_format: whole commit_hash: e205629-dirty pass_rate_1: 4.4 pass_rate_2: 10.2 pass_num_1: 10 pass_num_2: 23 percent_cases_well_formed: 99.1 error_outputs: 2 num_malformed_responses: 2 num_with_malformed_responses: 2 user_asks: 134 lazy_comments: 0 syntax_errors: 0 indentation_errors: 0 exhausted_context_windows: 0 test_timeouts: 3 total_tests: 225 command: aider --model lm_studio/glm-4-32b-0414 date: 2025-05-02 versions: 0.82.3.dev seconds_per_case: 49.2 total_cost: 0.0000 **Only 10%**. Quite small I would say... I experimented with different temperatures (0 and 0.8) and edit formats (whole vs. diff), but the results remained consistent. The low pass rates were unexpected, especially given the model's reported performance in other benchmarks and just the overall hype. One potential factor could be the context window limitation of 32k tokens, which might have led to some malformed requests. Has anyone else benchmarked this model or encountered similar results? I'd appreciate any insights or suggestions. btw here is the command for the testing suite, if you had set this up using lm studio: `LM_STUDIO_API_BASE=http://192.168.0.131:1234/v1 LM_STUDIO_API_KEY=dummy python3 benchmark/benchmark.py "NewHope" --model lm_studio/glm-4-32b-0414 --new --tries 2 --threads 1` and you would need to create this entry in model-settings.yml : - name: lm_studio/glm-4-32b-0414 use_temperature: 0.8 edit_format: whole extra_params: max_tokens: 32768
2025-05-03T14:07:56
https://www.reddit.com/r/LocalLLaMA/comments/1kdtsx3/glm432b0414_aider_polyglot_benchmark_scored_10/
ryseek
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdtsx3
false
null
t3_1kdtsx3
/r/LocalLLaMA/comments/1kdtsx3/glm432b0414_aider_polyglot_benchmark_scored_10/
false
false
self
8
null
Incredible Maverick speeds on single RTX3090 - Ik_llama solved my issue
49
I was getting good generation speeds on Maverick before, but PP was slow. This is now solved, I'm getting full GPU level performance on a 400B model with 1 gpu. And the new Xeon DDR5 build takes it to the next level: Xeon Platinum 8480 **ES** \- $170 8x 32GB DDR5 4800 RDIMM used - $722 1x Gigabyte MS03-CE0 - $753 (I got a MS73-HB1 but would recommend single CPU) RTX 3090 - \~$750 Heatsink + PSU + Case + SSD = \~$500 prompt eval time = 835.47 ms / 372 tokens ( 2.25 ms per token, **445.26 tokens per second** generation eval time = 43317.29 ms / 1763 runs ( 24.57 ms per token, **40.70 tokens per second** prompt eval time = 3290.21 ms / 1623 tokens ( 2.03 ms per token, **493.28 tokens per second** generation eval time = 7530.90 ms / 303 runs ( 24.85 ms per token, **40.23 tokens per second** prompt eval time = 13713.39 ms / 7012 tokens ( 1.96 ms per token, **511.33 tokens per second** generation eval time = 16773.69 ms / 584 runs ( 28.72 ms per token, **34.82 tokens per second** This is with Ik\_Llama and the following command: ./llama-server -m Llama-4-Maverick-17B-128E-Instruct-UD-IQ4\_XS-00001-of-00005.gguf -c 32000 -fa -fmoe -amb 512 -rtr -ctk q8\_0 -ctv q8\_0 --host [0.0.0.0](http://0.0.0.0) \--port 8000 --alias Llama4-Maverick -ngl 99 -t 54 -ot ".\*ffn\_.\*\_exps.\*=CPU" Using an ES cpu is somewhat risky, but a real 8480 cost $9k This also works fine with an even cheaper DDR4 epyc cpu, getting 200+ Promp speeds and more like 20T/s gen with the same command. This really makes me really hopeful for Llama 4 reasoner!
2025-05-03T14:44:09
https://www.reddit.com/r/LocalLLaMA/comments/1kdul92/incredible_maverick_speeds_on_single_rtx3090_ik/
Conscious_Cut_6144
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdul92
false
null
t3_1kdul92
/r/LocalLLaMA/comments/1kdul92/incredible_maverick_speeds_on_single_rtx3090_ik/
false
false
self
49
null
deepseek r2 distill qwen 3?
37
hmm i really hope they make somehthing like that when the R2 comeout and that the community can push doing something like that what you think about this dream?
2025-05-03T14:55:05
https://www.reddit.com/r/LocalLLaMA/comments/1kdutys/deepseek_r2_distill_qwen_3/
allforyi_mf
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdutys
false
null
t3_1kdutys
/r/LocalLLaMA/comments/1kdutys/deepseek_r2_distill_qwen_3/
false
false
self
37
null
Guide on Finetuning Reasoning Models
1
[removed]
2025-05-03T15:11:21
https://www.datacamp.com/tutorial/fine-tuning-deepseek-r1-reasoning-model
Infamous_Jaguar_2151
datacamp.com
1970-01-01T00:00:00
0
{}
1kdv713
false
null
t3_1kdv713
/r/LocalLLaMA/comments/1kdv713/guide_on_finetuning_reasoning_models/
false
false
default
1
null
Is GLM-4's Long Context Performance Enough? An Undereducated Investigation
20
2025-05-03T15:12:59
https://adamniederer.com/blog/llm-context-benchmarks.html
vvimpcrvsh
adamniederer.com
1970-01-01T00:00:00
0
{}
1kdv8by
false
null
t3_1kdv8by
/r/LocalLLaMA/comments/1kdv8by/is_glm4s_long_context_performance_enough_an/
false
false
default
20
null
Train a small language model to extract structured JSON from OCR text based on 'any user-defined schema'.
3
How would you guys proceed? So basically user can define any schema for example: { "invoice_no":"string", "issued_to": { "name": "string", "address": "string" // Address of the client }, "pay_to": { "bank_name": "string", // Name of the bank "name": "string", // Name "account_no": "number" }, "items":[ { "description": "string", "quantity": "number", "unit_price": "number", "total":"number" } ], "subtotal":"number", "total":"number" } and we should get a response: { "invoice_no": "01234", "issued_to": { "name": "Richard Sanchez", "address": "123 Anywhere St., Any City." }, "pay_to": { "bank_name": "Borcele Bank", "name": "Adeline Palmerston", "account_no": 012345678901 }, "items": [ { "description": "Brand consultation", "quantity": 1, "unit_price": 100, "total": 100 }, { "description": "logo design", "quantity": 1, "unit_price": 100, "total": 100 }, { "description": "Website design", "quantity": 1, "unit_price": 100, "total": 100 }, { "description": "Social media templates", "quantity": 1, "unit_price": 100, "total": 100 }, { "description": "Brand photography", "quantity": 1, "unit_price": 100, "total": 100 }, { "description": "Brand guide", "quantity": 1, "unit_price": 100, "total": 100 } ], "subtotal": 400, "total": 440 } we will provide invoice text as context. Do you train a small mmodel(0.5B or 1.5B)? I can't send data online. I did try something and got some decent results. I will share that but before that I would like to know how you would try so i get unbiased opinions and see if I can improve..
2025-05-03T15:22:36
https://www.reddit.com/r/LocalLLaMA/comments/1kdvg0j/train_a_small_language_model_to_extract/
maylad31
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdvg0j
false
null
t3_1kdvg0j
/r/LocalLLaMA/comments/1kdvg0j/train_a_small_language_model_to_extract/
false
false
self
3
null
Note to LLM researchers: we need graded benchmarks measuring levels of difficulty where models work at 100% accuracy
18
Just about all benchmarks I've seen are designed to be challenging, with no model reaching 100% accurate results, the main purpose being relative assessment of models against each other. In production use, however, there are situations where we need to know that for the given use case, the model we want to use will be 100% reliable and accurate. So we need benchmarks with different levels of difficulty, with the easiest levels reliably saturated by the smallest models, and onward from there. If we had this, it would take a lot of the guesswork out of our attempts to use small models for tasks that have to be done right 100% of the time. Now I might be told that this is simply not possible, that no matter how easy a task, no LLM can be guaranteed to always produce 100% accurate output. I don't know if this is true, but even if it is, it could be accounted for and the small possibility of error accepted. As long as a reasonably thorough benchmark at a set level of difficutly results in 100%, that would be good enough, never mind that such perfection may not be attainable in production. What do you all think? Would this be of use to you?
2025-05-03T15:29:59
https://www.reddit.com/r/LocalLLaMA/comments/1kdvlv6/note_to_llm_researchers_we_need_graded_benchmarks/
ethereel1
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdvlv6
false
null
t3_1kdvlv6
/r/LocalLLaMA/comments/1kdvlv6/note_to_llm_researchers_we_need_graded_benchmarks/
false
false
self
18
null
The GPT-4o sycophancy saga seems to be a case against open-source decentralized models?
0
Correct me if I am wrong, but it seems to me that much of the damage in this case could be mitigated because GPT-4o was a closed-source centralized model? One rollback and boom, no one on earth has access to it anymore. If a dangerously misaligned and powerful open source model was released like that, it would never be erased from public domain. Some providers/users would still be serving it to unsuspecting users/using it themselves either by mistake or due to malicious intent. What are the safeguards in place to prevent something like that from happening? This seems to me completely different case from open source programs, which allow anyone to inspect it under the hood and find out defects or malware (for e.g. the famous xz backdoor). There isn't anyway to do that (at present) for open weight models.
2025-05-03T15:36:51
https://www.reddit.com/r/LocalLLaMA/comments/1kdvrjr/the_gpt4o_sycophancy_saga_seems_to_be_a_case/
obvithrowaway34434
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdvrjr
false
null
t3_1kdvrjr
/r/LocalLLaMA/comments/1kdvrjr/the_gpt4o_sycophancy_saga_seems_to_be_a_case/
false
false
self
0
null
Deepseek R2, when?
0
When do people think deepseek R2 will come out?
2025-05-03T16:13:37
https://www.reddit.com/r/LocalLLaMA/comments/1kdwlp9/deepseek_r2_when/
MrMrsPotts
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdwlp9
false
null
t3_1kdwlp9
/r/LocalLLaMA/comments/1kdwlp9/deepseek_r2_when/
false
false
self
0
null
Qwen3 Coder incoming?
1
[removed]
2025-05-03T16:14:12
https://www.reddit.com/r/LocalLLaMA/comments/1kdwm5y/qwen3_coder_incoming/
SandBlaster2000AD
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdwm5y
false
null
t3_1kdwm5y
/r/LocalLLaMA/comments/1kdwm5y/qwen3_coder_incoming/
false
false
self
1
{'enabled': False, 'images': [{'id': 'C_P6uz9UVliqHlGQQ8USWBUxafaMel9UdDuCfQaAAAA', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/oYLZZyhofxOu1J_YSi0tNbokcnHyMZqJ6IjLu8lpksc.jpg?width=108&crop=smart&auto=webp&s=f0a53ccca28e242797b207fe72c40e56700cdfd5', 'width': 108}], 'source': {'height': 200, 'url': 'https://external-preview.redd.it/oYLZZyhofxOu1J_YSi0tNbokcnHyMZqJ6IjLu8lpksc.jpg?auto=webp&s=2390e715787dc3dfadbf119a4945bbe5033f7282', 'width': 200}, 'variants': {}}]}
UI-Tars-1.5 reasoning never fails to entertain me.
1
[removed]
2025-05-03T16:35:04
https://i.redd.it/snyv99t1hlye1.jpeg
Middle_Flow_2270
i.redd.it
1970-01-01T00:00:00
0
{}
1kdx2mm
false
null
t3_1kdx2mm
/r/LocalLLaMA/comments/1kdx2mm/uitars15_reasoning_never_fails_to_entertain_me/
false
false
https://a.thumbs.redditm…qh4HsiqgdhM8.jpg
1
{'enabled': True, 'images': [{'id': 'jtEWseW4a7pYyQm0HB8j0hcrnFfOs2Djsjf3M8TmlRc', 'resolutions': [{'height': 69, 'url': 'https://preview.redd.it/snyv99t1hlye1.jpeg?width=108&crop=smart&auto=webp&s=7dfe11a2a2874e2cb895dab2f6bfbf0aea24d703', 'width': 108}, {'height': 138, 'url': 'https://preview.redd.it/snyv99t1hlye1.jpeg?width=216&crop=smart&auto=webp&s=aea8d5984d822595ec30dd486a4df464501dca07', 'width': 216}, {'height': 204, 'url': 'https://preview.redd.it/snyv99t1hlye1.jpeg?width=320&crop=smart&auto=webp&s=d8ca7b6fde91029f3af09b5d4c6c83c480b96f57', 'width': 320}, {'height': 409, 'url': 'https://preview.redd.it/snyv99t1hlye1.jpeg?width=640&crop=smart&auto=webp&s=2d7ef807130ec56c28f8f55a30a1a872d64f12fe', 'width': 640}], 'source': {'height': 466, 'url': 'https://preview.redd.it/snyv99t1hlye1.jpeg?auto=webp&s=4fb3c544ca13890588501b92cdd83312f5b50b4b', 'width': 729}, 'variants': {}}]}
zero dollars vibe debugging menace
98
Been tweaking on building **Cloi** its *local* debugging agent that runs in your terminal. got sick of cloud models bleeding my wallet dry (o3 at $0.30 per request?? claude 3.7 still taking $0.05 a pop) so built something with zero dollar sign vibes. the tech is straightforward: cloi deadass catches your error tracebacks, spins up your local LLM (phi/qwen/llama), and only with permission (we respectin boundaries), drops clean af patches directly to your files. zero api key nonsense, no cloud tax - just pure on-device cooking with the models y'all are already optimizing FRFR been working on this during my research downtime. If anyone's interested in exploring the implementation or wants to issue feedback: [https://github.com/cloi-ai/cloi](https://github.com/cloi-ai/cloi)
2025-05-03T16:45:56
https://i.redd.it/wckdwzhiilye1.gif
AntelopeEntire9191
i.redd.it
1970-01-01T00:00:00
0
{}
1kdxbd7
false
null
t3_1kdxbd7
/r/LocalLLaMA/comments/1kdxbd7/zero_dollars_vibe_debugging_menace/
false
false
https://b.thumbs.redditm…SGTn3ZlRA5uU.jpg
98
{'enabled': True, 'images': [{'id': 'b8GE0iJeZyULj_IkQcD00aH863qpsjPKqz4jEDwWbbU', 'resolutions': [{'height': 69, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=108&crop=smart&format=png8&s=c11ede4902dde5fe5f2876504b35aebc3aa9d0b1', 'width': 108}, {'height': 139, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=216&crop=smart&format=png8&s=12aab54e53e38d34db9d4e1511238929262e82a0', 'width': 216}, {'height': 207, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=320&crop=smart&format=png8&s=9571e4e8d62f4f8cb98b859ee6c75d068649f5c7', 'width': 320}, {'height': 414, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=640&crop=smart&format=png8&s=37356542f80cba5729c7207f13ed5ddbaeed8ce1', 'width': 640}, {'height': 621, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=960&crop=smart&format=png8&s=6d50ce647c4e2f064705ef1dde09d558ece4081c', 'width': 960}, {'height': 699, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=1080&crop=smart&format=png8&s=6da150fa75aeb7868cade4a149db57a40a93bf78', 'width': 1080}], 'source': {'height': 738, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?format=png8&s=6c4317e0d2f93f972dd3a29a2e731ac77017556a', 'width': 1140}, 'variants': {'gif': {'resolutions': [{'height': 69, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=108&crop=smart&s=b36665bb0cf1b127ad3adafb51cebc8f3bf24446', 'width': 108}, {'height': 139, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=216&crop=smart&s=22b6e51ac8efbf67c780d4ef90f46f007309341b', 'width': 216}, {'height': 207, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=320&crop=smart&s=6b3a9ee541dd6c8639779ff16f975bdd3327c318', 'width': 320}, {'height': 414, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=640&crop=smart&s=ed09e370865a1d4f607b60e7a14d5cce5bdb0ae9', 'width': 640}, {'height': 621, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=960&crop=smart&s=4789cb2931c63112ed675eb591bc0f0ad5725459', 'width': 960}, {'height': 699, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=1080&crop=smart&s=f41c0f3892b14bba46261e9641cd6a684f4f788c', 'width': 1080}], 'source': {'height': 738, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?s=072c69d5159d744dbc10105f459890483a1baea5', 'width': 1140}}, 'mp4': {'resolutions': [{'height': 69, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=108&format=mp4&s=570a2e145e23e101df131fa08fcf58df0d5224e4', 'width': 108}, {'height': 139, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=216&format=mp4&s=d97c4acb06fcd96a967693273da0546784078827', 'width': 216}, {'height': 207, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=320&format=mp4&s=9c04bba4eb24573ecf9ae56ba4ea381a14c3ffaa', 'width': 320}, {'height': 414, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=640&format=mp4&s=4c5165c02983a1a3dc872f197ad8541368205edf', 'width': 640}, {'height': 621, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=960&format=mp4&s=02f77ebd013fd7981ee558c28e2e1aa5be935cb9', 'width': 960}, {'height': 699, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?width=1080&format=mp4&s=6965f579a1769299a8572a821a1bb1386d879cff', 'width': 1080}], 'source': {'height': 738, 'url': 'https://preview.redd.it/wckdwzhiilye1.gif?format=mp4&s=e7a74e686cbf7461879bd9a5e917f66a29970b9b', 'width': 1140}}}}]}
Cómo entrenar un loRA realista con pony en seaart?
1
[removed]
2025-05-03T16:54:27
https://www.reddit.com/r/LocalLLaMA/comments/1kdxi8m/cómo_entrenar_un_lora_realista_con_pony_en_seaart/
Quiet_Dot_1743
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdxi8m
false
null
t3_1kdxi8m
/r/LocalLLaMA/comments/1kdxi8m/cómo_entrenar_un_lora_realista_con_pony_en_seaart/
false
false
self
1
null
CLAUDE MAX or Augmentcode?
0
Hi guys I want to make my own indie game and I am done with all the basics of unity. I have coded around 1000 lines - a solid base for my game. I have the main menu done, dialogue system and a audio manager. I used claude pro to do this. And it's just so solid. I want to invest in Claude code (200 usd Max subscription ) . But can I get it to work on windows and in Unity somehow? Or is Augment code better? For 30 dollars I saw UNLIMITED ACCESS. Please help me.
2025-05-03T17:12:21
https://www.reddit.com/r/LocalLLaMA/comments/1kdxwxp/claude_max_or_augmentcode/
backinthe90siwasinav
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdxwxp
false
null
t3_1kdxwxp
/r/LocalLLaMA/comments/1kdxwxp/claude_max_or_augmentcode/
false
false
self
0
null
How to use LLMs to help build eval datasets for your RAG system
1
[removed]
2025-05-03T17:17:46
https://www.reddit.com/r/LocalLLaMA/comments/1kdy1g7/how_to_use_llms_to_help_build_eval_datasets_for/
zjost85
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdy1g7
false
null
t3_1kdy1g7
/r/LocalLLaMA/comments/1kdy1g7/how_to_use_llms_to_help_build_eval_datasets_for/
false
false
self
1
{'enabled': False, 'images': [{'id': 'QuL27Zy3dXZqolE83CmgaLqydP4_TwzPqT9iH27RuTw', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/EvjYIGZqXiEGGZtnzv6zKOcaGdPLm-YXXNXN1sKtGpY.jpg?width=108&crop=smart&auto=webp&s=3c1a8ea2fc9059078491467e5cb3e7738337fded', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/EvjYIGZqXiEGGZtnzv6zKOcaGdPLm-YXXNXN1sKtGpY.jpg?width=216&crop=smart&auto=webp&s=305ba44075511453847df9e7473edc24b85b6536', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/EvjYIGZqXiEGGZtnzv6zKOcaGdPLm-YXXNXN1sKtGpY.jpg?width=320&crop=smart&auto=webp&s=a503e403467649f118507216a97cf800a80366fa', 'width': 320}], 'source': {'height': 270, 'url': 'https://external-preview.redd.it/EvjYIGZqXiEGGZtnzv6zKOcaGdPLm-YXXNXN1sKtGpY.jpg?auto=webp&s=100fbe03eabc1d287aadd36cc4320509784238f3', 'width': 480}, 'variants': {}}]}
Microsoft is cooking coding models, NextCoder.
264
2025-05-03T17:26:07
https://huggingface.co/collections/microsoft/nextcoder-6815ee6bfcf4e42f20d45028
mlon_eusk-_-
huggingface.co
1970-01-01T00:00:00
0
{}
1kdy8ia
false
null
t3_1kdy8ia
/r/LocalLLaMA/comments/1kdy8ia/microsoft_is_cooking_coding_models_nextcoder/
false
false
https://b.thumbs.redditm…I3PjvF54ZhME.jpg
264
{'enabled': False, 'images': [{'id': '7_jhFTazab6GMtEoANxssbRBy-NQcSp84SYt3Tyoa40', 'resolutions': [{'height': 58, 'url': 'https://external-preview.redd.it/Ucgd876uHUi68EnzSBM_dLw0RYz0XUiaeONwhBsyglM.jpg?width=108&crop=smart&auto=webp&s=d96a575382e231e9327b16721a0ac91ec9062b6f', 'width': 108}, {'height': 116, 'url': 'https://external-preview.redd.it/Ucgd876uHUi68EnzSBM_dLw0RYz0XUiaeONwhBsyglM.jpg?width=216&crop=smart&auto=webp&s=f6519c23ca20ae351174f2ef2bec2a54b4b4cf76', 'width': 216}, {'height': 172, 'url': 'https://external-preview.redd.it/Ucgd876uHUi68EnzSBM_dLw0RYz0XUiaeONwhBsyglM.jpg?width=320&crop=smart&auto=webp&s=2f270078216f0b3455ab5d472a6eaf313052e495', 'width': 320}, {'height': 345, 'url': 'https://external-preview.redd.it/Ucgd876uHUi68EnzSBM_dLw0RYz0XUiaeONwhBsyglM.jpg?width=640&crop=smart&auto=webp&s=7d72cbc224e62aa30d0164faecb579c9a6eee406', 'width': 640}, {'height': 518, 'url': 'https://external-preview.redd.it/Ucgd876uHUi68EnzSBM_dLw0RYz0XUiaeONwhBsyglM.jpg?width=960&crop=smart&auto=webp&s=9ef5709f98a00d2bad049dd2cd47b1955026548a', 'width': 960}, {'height': 583, 'url': 'https://external-preview.redd.it/Ucgd876uHUi68EnzSBM_dLw0RYz0XUiaeONwhBsyglM.jpg?width=1080&crop=smart&auto=webp&s=d2769e30559e7f04ab9a1dad6894f46fc3965228', 'width': 1080}], 'source': {'height': 648, 'url': 'https://external-preview.redd.it/Ucgd876uHUi68EnzSBM_dLw0RYz0XUiaeONwhBsyglM.jpg?auto=webp&s=62fcd09a8a31c34f6a1a8ceacd64cd05a54fb15b', 'width': 1200}, 'variants': {}}]}
With the rise of LLMs with optional CoT, when to use it?
1
[removed]
2025-05-03T17:28:39
https://www.reddit.com/r/LocalLLaMA/comments/1kdyakb/with_the_rise_of_llms_with_optional_cot_when_to/
pixelar-cat
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdyakb
false
null
t3_1kdyakb
/r/LocalLLaMA/comments/1kdyakb/with_the_rise_of_llms_with_optional_cot_when_to/
false
false
self
1
null
Hey step-bro, that's HF forum, not the AI chat...
392
2025-05-03T17:28:57
https://i.redd.it/3a4xy047qlye1.png
Cool-Chemical-5629
i.redd.it
1970-01-01T00:00:00
0
{}
1kdyasr
false
null
t3_1kdyasr
/r/LocalLLaMA/comments/1kdyasr/hey_stepbro_thats_hf_forum_not_the_ai_chat/
false
false
https://b.thumbs.redditm…hzBirZKU8ucU.jpg
392
{'enabled': True, 'images': [{'id': 'pntRmVcOnztYdt8CI8SDyvJaX15z94CYpg1_xWIKVXs', 'resolutions': [{'height': 105, 'url': 'https://preview.redd.it/3a4xy047qlye1.png?width=108&crop=smart&auto=webp&s=20cd816332feeaf631e1bbbd06e68754282bfe40', 'width': 108}, {'height': 210, 'url': 'https://preview.redd.it/3a4xy047qlye1.png?width=216&crop=smart&auto=webp&s=0e68dca8b2d704ec6cc25ff4df998351699a5b04', 'width': 216}, {'height': 312, 'url': 'https://preview.redd.it/3a4xy047qlye1.png?width=320&crop=smart&auto=webp&s=46d770c0b9baa33161861c7eaea174f7b8ab0d3a', 'width': 320}, {'height': 624, 'url': 'https://preview.redd.it/3a4xy047qlye1.png?width=640&crop=smart&auto=webp&s=2f0827b40d5dad9a38133015ced4dd0b976f205e', 'width': 640}], 'source': {'height': 903, 'url': 'https://preview.redd.it/3a4xy047qlye1.png?auto=webp&s=e15de4fa497501047d40ee3ba515cf4ecede57de', 'width': 926}, 'variants': {}}]}
Chatterui and local models
4
Hello lads, I wanted to try some models offline on my smartphone so I installed Chatterui and downloaded various ggufs both from 1b and 660m (gemma3, quen3 and others) but as soon as it starts to load the model the application closes. Am I doing something wrong? Do you have suggestions? Thank you all Xiaomi redmi note 12 pro with 8gb of Ram
2025-05-03T17:30:33
https://www.reddit.com/r/LocalLLaMA/comments/1kdyc4z/chatterui_and_local_models/
carstele69
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdyc4z
false
null
t3_1kdyc4z
/r/LocalLLaMA/comments/1kdyc4z/chatterui_and_local_models/
false
false
self
4
null
Need clarification on Qwen3-30B-a3b-q8 and Qwen3-4b-q8 performance and use cases.
1
I have a framework that switches between chat mode and analysis mode and runs both on Ollama 0.6.6, loading each model separately as needed. These modes are run by two separate models because I haven't added support for hybrid models yet so I have to load them separately for now. For Chat Mode, I use Q3-4b-q8 - /no_think - 12k context length For Analysis Mode, I use Q3-30b-a3b - /think - 12k context length The problem is that I have a prompt that has a very complicated set of instructions containing a lot of input from many different sources converted into text (images, audio, etc.). Normally larger models (14b and higher) handle this well and smaller models struggle, which is expected. However, in chat mode, it seems that Q3-4b consistently handles this much better than the a3b model while both handle themselves well in Analysis mode when their thinking is enabled. In Chat mode, a3b struggles a lot, usually giving me blank responses if the conversation history is around 9K tokens long. I know it performs better in analysis mode, but I would like to test it out in Chat mode because I assumed that even with /no_think it would blow the 4b model out of the water but in reality the exact opposite is happening. Considering its a MoE model, is it possible that I'm pushing the model too far with the complexity of the instructions? My hypothesis is that the MoE is supposed to handle requests that require precision or specialization, which is why it gives me concrete answers with /think enabled but it gives me blank responses in long context with /no_think.
2025-05-03T17:35:19
https://www.reddit.com/r/LocalLLaMA/comments/1kdyg3f/need_clarification_on_qwen330ba3bq8_and_qwen34bq8/
swagonflyyyy
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdyg3f
false
null
t3_1kdyg3f
/r/LocalLLaMA/comments/1kdyg3f/need_clarification_on_qwen330ba3bq8_and_qwen34bq8/
false
false
self
1
null
How can I "inject" new data into an LLM? And which LLM would be best for me?
7
How can I "inject" new data into an LLM? And which LLM would be best for me? I'm not talking about adding a document to the chat, but rather integrating, for example, a number of books and having them... "thought out." Let's say I'm reading a relatively modern philosophy author and the LLM I'm using doesn't know much about it. Can I add all the author's books I have in .txt format? Do I need a high-capacity LLM to understand them, or is it not necessary? Perhaps a low-capacity LLM can still understand them if it has all the books? But can this still be done? I think it's called fine-tuning... would it take a long time on an 8GB RAM and 32GB RAM machine?
2025-05-03T17:54:49
https://www.reddit.com/r/LocalLLaMA/comments/1kdyw3q/how_can_i_inject_new_data_into_an_llm_and_which/
9acca9
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdyw3q
false
null
t3_1kdyw3q
/r/LocalLLaMA/comments/1kdyw3q/how_can_i_inject_new_data_into_an_llm_and_which/
false
false
self
7
null
Any good pdf/epub to TTS audiobook generators?
1
[removed]
2025-05-03T18:17:41
https://www.reddit.com/r/LocalLLaMA/comments/1kdzfj1/any_good_pdfepub_to_tts_audiobook_generators/
Virtamancer
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdzfj1
false
null
t3_1kdzfj1
/r/LocalLLaMA/comments/1kdzfj1/any_good_pdfepub_to_tts_audiobook_generators/
false
false
self
1
null
Handling Sensitive Data (PII) in Local RAG Pipelines?
1
[removed]
2025-05-03T18:38:30
https://www.reddit.com/r/LocalLLaMA/comments/1kdzwsv/handling_sensitive_data_pii_in_local_rag_pipelines/
Revolutionary-Bet-58
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdzwsv
false
null
t3_1kdzwsv
/r/LocalLLaMA/comments/1kdzwsv/handling_sensitive_data_pii_in_local_rag_pipelines/
false
false
self
1
null
Qwen3 on 3060 12GB VRAM and 16GB RAM
9
is there any way to run this LLM on my PC? how to install and which model is suitable for my PC?
2025-05-03T18:38:40
https://www.reddit.com/r/LocalLLaMA/comments/1kdzwyf/qwen3_on_3060_12gb_vram_and_16gb_ram/
RaviieR
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdzwyf
false
null
t3_1kdzwyf
/r/LocalLLaMA/comments/1kdzwyf/qwen3_on_3060_12gb_vram_and_16gb_ram/
false
false
self
9
null
Has there been a project that recreates OpenAI's tool-assisted image gen?
3
Pure curiosity, and because I couldn't find anything about this. I have been using OpenAI's image gen tool to help me with better visual understanding of stuff due to my visual impairment by either recreating certain things in large or from different angles. And while not perfect, it helps a whole lot. But, I would love to see this run locally - if possible, that is. So I tried to find such a tool-assisted image gen to run locally; but other than the "classics" like InvokeAI, automatic1111 and stablediffusion.cpp, I couldn't find anything that actually does what OpenAI currently does. Perhaps I overlooked something. Hence, I wanted to ask if you perhaps know of something? Thanks!
2025-05-03T18:40:06
https://www.reddit.com/r/LocalLLaMA/comments/1kdzy5l/has_there_been_a_project_that_recreates_openais/
IngwiePhoenix
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kdzy5l
false
null
t3_1kdzy5l
/r/LocalLLaMA/comments/1kdzy5l/has_there_been_a_project_that_recreates_openais/
false
false
self
3
null
Are there actually any good "long-form" models for local use?
1
[removed]
2025-05-03T18:48:26
https://www.reddit.com/r/LocalLLaMA/comments/1ke050n/are_there_actually_any_good_longform_models_for/
Barefooter1234
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke050n
false
null
t3_1ke050n
/r/LocalLLaMA/comments/1ke050n/are_there_actually_any_good_longform_models_for/
false
false
self
1
null
Anticipating a need for thinking in Qwen3
1
[removed]
2025-05-03T18:50:44
https://www.reddit.com/r/LocalLLaMA/comments/1ke06xj/anticipating_a_need_for_thinking_in_qwen3/
Professional-Onion-7
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke06xj
false
null
t3_1ke06xj
/r/LocalLLaMA/comments/1ke06xj/anticipating_a_need_for_thinking_in_qwen3/
false
false
self
1
null
Anticipating a need for thinking in Qwen3
1
[removed]
2025-05-03T19:08:22
https://www.reddit.com/r/LocalLLaMA/comments/1ke0ll9/anticipating_a_need_for_thinking_in_qwen3/
extraYogurtnote
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke0ll9
false
null
t3_1ke0ll9
/r/LocalLLaMA/comments/1ke0ll9/anticipating_a_need_for_thinking_in_qwen3/
false
false
self
1
null
Surprising results fine tuning Qwen3-4B
40
I’ve had a lot of experience fine tuning Qwen2.5 models on a proprietary programming language which wasn’t in pre-training data. I have an extensive SFT dataset which I’ve used with pretty decent success on the Qwen2.5 models. Naturally when the latest Qwen3 crop dropped I was keen on seeing the results I’ll get with them. Here’s the strange part: I use an evaluation dataset of 50 coding tasks which I check against my fine tuned models. I actually send the model’s response to a compiler to check if it’s legible code. Fine tuned Qwen3-4B (Default) Thinking ON - 40% success rate Fine tuned Qwen3-4B Thinking OFF - 64% success rate WTF? (Sorry for being crass) A few side notes: - These are both great results, base Qwen3-4B scores 0% and they are much better than Qwen2.5-3B - My SFT dataset does not contain <think>ing tags - I’m doing a full parameter fine tune at BF16 precision. No LoRA’s or quants. Would love to hear some theories on why this is happening. And any ideas how to improve this. As I said above, in general these models are awesome and performing (for my purposes) several factors better than Qwen2.5. Can’t wait to fine tune bigger sizes soon (as soon as I figure this out).
2025-05-03T20:02:10
https://www.reddit.com/r/LocalLLaMA/comments/1ke1sei/surprising_results_fine_tuning_qwen34b/
indicava
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke1sei
false
null
t3_1ke1sei
/r/LocalLLaMA/comments/1ke1sei/surprising_results_fine_tuning_qwen34b/
false
false
self
40
null
Another Attempt to Measure Speed for Qwen3 MoE on 2x4090, 2x3090, M3 Max with Llama.cpp, VLLM, MLX
46
First, thank you all the people who gave constructive feedback on my previous attempt. Hopefully this is better. :) ### Observation TL;TR: As expected, fastest to slowest: RTX 4090 VLLM, RTX 4090 Llama.CPP, RTX 3090 Llama.CPP, M3 Max MLX, M3 Max Llama.CPP M3 Max was slow but surprisingly not too terrible when using this particular model with MLX. ### Notes To ensure consistency, I used a custom Python script that sends requests to the server via the OpenAI-compatible API. Metrics were calculated as follows: * Time to First Token (TTFT): Measured from the start of the streaming request to the first streaming event received. * Prompt Processing Speed (PP): Number of prompt tokens divided by TTFT. * Token Generation Speed (TG): Number of generated tokens divided by (total duration - TTFT). The displayed results were truncated to two decimal places, but the calculations used full precision. Some engines, like MLX, don't let you disable prompt caching. To work around this, I made the script to prepend 40% new material in the beginning of next longer prompt to avoid caching effect. ### Setup * VLLM 0.8.5.post1 * MLX-LM 0.24.0, MLX 0.25.1 * Llama.CPP 5269 Each row in the results represents a test (a specific combination of machine, engine, and prompt length). There are 5 tests per prompt length. * Setup 1: 2xRTX-4090, VLLM, FP8, tensor-parallel-size 2 * Setup 2: 2xRTX-4090, Llama.cpp, q8_0, flash attention * Setup 3: 2x3090, Llama.cpp, q8_0, flash attention * Setup 4: M3Max, MLX, 8bit * Setup 5: M3Max, Llama.cpp, q8_0, flash attention VLLM doesn't support Mac. Also there's no test with RTX-3090 and VLLM either because you can't run Qwen3 MoE in FP8 with RTX-3090 using VLLM. | Machine | Engine | Prompt Tokens | PP | TTFT | Generated Tokens | TG | Duration | | ------- | ------ | ------------- | ----------------------- | ------------------- | ---------------- | ---------------------- | -------------- | | rtx4090 | VLLM | 702 | 6823.88 | 0.10 | 1334 | 93.73 | 14.34 | | RTX4090 | LCPP | 702 | 2521.87 | 0.28 | 1540 | 100.87 | 15.55 | | RTX3090 | LCPP | 702 | 1632.82 | 0.43 | 1258 | 84.04 | 15.40 | | M3Max | MLX | 702 | 1216.27 | 0.57 | 1296 | 65.69 | 20.30 | | M3Max | LCPP | 702 | 290.22 | 2.42 | 1485 | 55.79 | 29.04 | | rtx4090 | VLLM | 959 | 6837.26 | 0.14 | 1337 | 94.74 | 14.25 | | RTX4090 | LCPP | 959 | 2657.34 | 0.36 | 1187 | 97.13 | 12.58 | | RTX3090 | LCPP | 959 | 1685.90 | 0.57 | 1487 | 83.67 | 18.34 | | M3Max | MLX | 959 | 1214.74 | 0.79 | 1523 | 65.09 | 24.18 | | M3Max | LCPP | 959 | 465.91 | 2.06 | 1337 | 55.43 | 26.18 | | rtx4090 | VLLM | 1306 | 7214.16 | 0.18 | 1167 | 94.17 | 12.57 | | RTX4090 | LCPP | 1306 | 2646.48 | 0.49 | 1114 | 98.95 | 11.75 | | RTX3090 | LCPP | 1306 | 1674.10 | 0.78 | 995 | 83.36 | 12.72 | | M3Max | MLX | 1306 | 1258.91 | 1.04 | 1119 | 64.76 | 18.31 | | M3Max | LCPP | 1306 | 458.79 | 2.85 | 1213 | 55.00 | 24.90 | | rtx4090 | VLLM | 1774 | 7857.53 | 0.23 | 1353 | 93.24 | 14.74 | | RTX4090 | LCPP | 1774 | 2625.51 | 0.68 | 1282 | 98.68 | 13.67 | | RTX3090 | LCPP | 1774 | 1730.67 | 1.03 | 1411 | 82.66 | 18.09 | | M3Max | MLX | 1774 | 1276.55 | 1.39 | 1330 | 63.03 | 22.49 | | M3Max | LCPP | 1774 | 321.31 | 5.52 | 1281 | 54.26 | 29.13 | | rtx4090 | VLLM | 2584 | 7851.00 | 0.33 | 1369 | 92.48 | 15.13 | | RTX4090 | LCPP | 2584 | 2634.01 | 0.98 | 1308 | 97.20 | 14.44 | | RTX3090 | LCPP | 2584 | 1728.13 | 1.50 | 1334 | 81.80 | 17.80 | | M3Max | MLX | 2584 | 1302.66 | 1.98 | 1247 | 60.79 | 22.49 | | M3Max | LCPP | 2584 | 449.35 | 5.75 | 1321 | 53.06 | 30.65 | | rtx4090 | VLLM | 3557 | 8619.84 | 0.41 | 1682 | 92.46 | 18.60 | | RTX4090 | LCPP | 3557 | 2684.50 | 1.33 | 2000 | 93.68 | 22.67 | | RTX3090 | LCPP | 3557 | 1779.73 | 2.00 | 1414 | 80.31 | 19.60 | | M3Max | MLX | 3557 | 1272.91 | 2.79 | 2001 | 59.81 | 36.25 | | M3Max | LCPP | 3557 | 443.93 | 8.01 | 1481 | 51.52 | 36.76 | | rtx4090 | VLLM | 4739 | 7944.01 | 0.60 | 1710 | 91.43 | 19.30 | | RTX4090 | LCPP | 4739 | 2622.29 | 1.81 | 1082 | 91.46 | 13.64 | | RTX3090 | LCPP | 4739 | 1736.44 | 2.73 | 1968 | 78.02 | 27.95 | | M3Max | MLX | 4739 | 1239.93 | 3.82 | 1836 | 58.63 | 35.14 | | M3Max | LCPP | 4739 | 421.45 | 11.24 | 1472 | 49.94 | 40.72 | | rtx4090 | VLLM | 6520 | 8330.26 | 0.78 | 1588 | 90.54 | 18.32 | | RTX4090 | LCPP | 6520 | 2616.54 | 2.49 | 1471 | 87.03 | 19.39 | | RTX3090 | LCPP | 6520 | 1726.75 | 3.78 | 2000 | 75.44 | 30.29 | | M3Max | MLX | 6520 | 1164.00 | 5.60 | 1546 | 55.89 | 33.26 | | M3Max | LCPP | 6520 | 418.88 | 15.57 | 1998 | 47.61 | 57.53 | | rtx4090 | VLLM | 9101 | 8156.34 | 1.12 | 1571 | 88.01 | 18.97 | | RTX4090 | LCPP | 9101 | 2563.10 | 3.55 | 1342 | 83.52 | 19.62 | | RTX3090 | LCPP | 9101 | 1661.47 | 5.48 | 1445 | 72.36 | 25.45 | | M3Max | MLX | 9101 | 1061.38 | 8.57 | 1601 | 52.07 | 39.32 | | M3Max | LCPP | 9101 | 397.69 | 22.88 | 1941 | 44.81 | 66.20 | | rtx4090 | VLLM | 12430 | 6590.37 | 1.89 | 1805 | 84.48 | 23.25 | | RTX4090 | LCPP | 12430 | 2441.21 | 5.09 | 1573 | 78.33 | 25.17 | | RTX3090 | LCPP | 12430 | 1615.05 | 7.70 | 1150 | 68.79 | 24.41 | | M3Max | MLX | 12430 | 954.98 | 13.01 | 1627 | 47.89 | 46.99 | | M3Max | LCPP | 12430 | 359.69 | 34.56 | 1291 | 41.95 | 65.34 | | rtx4090 | VLLM | 17078 | 6539.04 | 2.61 | 1230 | 83.61 | 17.32 | | RTX4090 | LCPP | 17078 | 2362.40 | 7.23 | 1217 | 71.79 | 24.18 | | RTX3090 | LCPP | 17078 | 1524.14 | 11.21 | 1229 | 65.38 | 30.00 | | M3Max | MLX | 17078 | 829.37 | 20.59 | 2001 | 41.34 | 68.99 | | M3Max | LCPP | 17078 | 330.01 | 51.75 | 1461 | 38.28 | 89.91 | | rtx4090 | VLLM | 23658 | 6645.42 | 3.56 | 1310 | 81.88 | 19.56 | | RTX4090 | LCPP | 23658 | 2225.83 | 10.63 | 1213 | 63.60 | 29.70 | | RTX3090 | LCPP | 23658 | 1432.59 | 16.51 | 1058 | 60.61 | 33.97 | | M3Max | MLX | 23658 | 699.38 | 33.82 | 2001 | 35.56 | 90.09 | | M3Max | LCPP | 23658 | 294.29 | 80.39 | 1681 | 33.96 | 129.88 | | rtx4090 | VLLM | 33525 | 5680.62 | 5.90 | 1138 | 77.42 | 20.60 | | RTX4090 | LCPP | 33525 | 2051.73 | 16.34 | 990 | 54.96 | 34.35 | | RTX3090 | LCPP | 33525 | 1287.74 | 26.03 | 1272 | 54.62 | 49.32 | | M3Max | MLX | 33525 | 557.25 | 60.16 | 1328 | 28.26 | 107.16 | | M3Max | LCPP | 33525 | 250.40 | 133.89 | 1453 | 29.17 | 183.69 |
2025-05-03T20:20:44
https://www.reddit.com/r/LocalLLaMA/comments/1ke26sl/another_attempt_to_measure_speed_for_qwen3_moe_on/
chibop1
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke26sl
false
null
t3_1ke26sl
/r/LocalLLaMA/comments/1ke26sl/another_attempt_to_measure_speed_for_qwen3_moe_on/
false
false
self
46
{'enabled': False, 'images': [{'id': 'vBAA2fS35uaiZy2nfiNIf6fASXQm_rW0ObMpevJyTp4', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/5gpXdrU9UGIQ6qHsiNn-wsS_L2h19b1jjZMq_kBe0SU.jpg?width=108&crop=smart&auto=webp&s=6a3475eb6a52d991b0637bac936ba458d31c51c6', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/5gpXdrU9UGIQ6qHsiNn-wsS_L2h19b1jjZMq_kBe0SU.jpg?width=216&crop=smart&auto=webp&s=4d202c87cee404ab142051f42f8b1dd3a97f0ac4', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/5gpXdrU9UGIQ6qHsiNn-wsS_L2h19b1jjZMq_kBe0SU.jpg?width=320&crop=smart&auto=webp&s=526b95cd15ed26f3263ee1e7df3110d9724b9618', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/5gpXdrU9UGIQ6qHsiNn-wsS_L2h19b1jjZMq_kBe0SU.jpg?width=640&crop=smart&auto=webp&s=41e12c31898497a53a2b2480498db23848068127', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/5gpXdrU9UGIQ6qHsiNn-wsS_L2h19b1jjZMq_kBe0SU.jpg?width=960&crop=smart&auto=webp&s=c6dd8ff5cbbaee190c8acf621638fd016f8d7555', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/5gpXdrU9UGIQ6qHsiNn-wsS_L2h19b1jjZMq_kBe0SU.jpg?width=1080&crop=smart&auto=webp&s=6d3285736c9a2e3365b45f46371ccb0a1e1ba1b8', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/5gpXdrU9UGIQ6qHsiNn-wsS_L2h19b1jjZMq_kBe0SU.jpg?auto=webp&s=873220fc0959c32c7cb461483a88130b2583bf82', 'width': 1200}, 'variants': {}}]}
Dockerfile for Running BitNet-b1.58-2B-4T on ARM
14
###Repo [GitHub: ajsween/bitnet-b1-58-arm-docker](https://github.com/ajsween/bitnet-b1-58-arm-docker) I put this Dockerfile together so I could run the BitNet 1.58 model with less hassle on my M-series MacBook. Hopefully its useful to some else and saves you some time getting it running locally. ###Run interactive: docker run -it --rm bitnet-b1.58-2b-4t-arm:latest ###Run noninteractive with arguments: docker run --rm bitnet-b1.58-2b-4t-arm:latest \ -m models/BitNet-b1.58-2B-4T/ggml-model-i2_s.gguf \ -p "Hello from BitNet on Pi4!" ###Reference for run_interference.py (ENTRYPOINT): usage: run_inference.py [-h] [-m MODEL] [-n N_PREDICT] -p PROMPT [-t THREADS] [-c CTX_SIZE] [-temp TEMPERATURE] [-cnv] Run inference optional arguments: -h, --help show this help message and exit -m MODEL, --model MODEL Path to model file -n N_PREDICT, --n-predict N_PREDICT Number of tokens to predict when generating text -p PROMPT, --prompt PROMPT Prompt to generate text from -t THREADS, --threads THREADS Number of threads to use -c CTX_SIZE, --ctx-size CTX_SIZE Size of the prompt context -temp TEMPERATURE, --temperature TEMPERATURE Temperature, a hyperparameter that controls the randomness of the generated text -cnv, --conversation Whether to enable chat mode or not (for instruct models.) (When this option is turned on, the prompt specified by -p will be used as the system prompt.) ###Dockerfile # Build stage FROM python:3.9-slim AS builder # Set environment variables ENV DEBIAN_FRONTEND=noninteractive ENV PYTHONDONTWRITEBYTECODE=1 ENV PYTHONUNBUFFERED=1 # Install build dependencies RUN apt-get update && apt-get install -y \ python3-pip \ python3-dev \ cmake \ build-essential \ git \ software-properties-common \ wget \ && rm -rf /var/lib/apt/lists/* # Install LLVM RUN wget -O - https://apt.llvm.org/llvm.sh | bash -s 18 # Clone the BitNet repository WORKDIR /build RUN git clone --recursive https://github.com/microsoft/BitNet.git # Install Python dependencies RUN pip install --no-cache-dir -r /build/BitNet/requirements.txt # Build BitNet WORKDIR /build/BitNet RUN pip install --no-cache-dir -r requirements.txt \ && python utils/codegen_tl1.py \ --model bitnet_b1_58-3B \ --BM 160,320,320 \ --BK 64,128,64 \ --bm 32,64,32 \ && export CC=clang-18 CXX=clang++-18 \ && mkdir -p build && cd build \ && cmake .. -DCMAKE_BUILD_TYPE=Release \ && make -j$(nproc) # Download the model RUN huggingface-cli download microsoft/BitNet-b1.58-2B-4T-gguf \ --local-dir /build/BitNet/models/BitNet-b1.58-2B-4T # Convert the model to GGUF format and sets up env. Probably not needed. RUN python setup_env.py -md /build/BitNet/models/BitNet-b1.58-2B-4T -q i2_s # Final stage FROM python:3.9-slim # Set environment variables. All but the last two are not used as they don't expand in the CMD step. ENV MODEL_PATH=/app/models/BitNet-b1.58-2B-4T/ggml-model-i2_s.gguf ENV NUM_TOKENS=1024 ENV NUM_THREADS=4 ENV CONTEXT_SIZE=4096 ENV PROMPT="Hello from BitNet!" ENV PYTHONUNBUFFERED=1 ENV LD_LIBRARY_PATH=/usr/local/lib # Copy from builder stage WORKDIR /app COPY --from=builder /build/BitNet /app # Install Python dependencies (only runtime) RUN <<EOF pip install --no-cache-dir -r /app/requirements.txt cp /app/build/3rdparty/llama.cpp/ggml/src/libggml.so /usr/local/lib cp /app/build/3rdparty/llama.cpp/src/libllama.so /usr/local/lib EOF # Set working directory WORKDIR /app # Set entrypoint for more flexibility ENTRYPOINT ["python", "./run_inference.py"] # Default command arguments CMD ["-m", "/app/models/BitNet-b1.58-2B-4T/ggml-model-i2_s.gguf", "-n", "1024", "-cnv", "-t", "4", "-c", "4096", "-p", "Hello from BitNet!"]
2025-05-03T20:38:00
https://www.reddit.com/r/LocalLLaMA/comments/1ke2kcp/dockerfile_for_running_bitnetb1582b4t_on_arm/
ajsween
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke2kcp
false
null
t3_1ke2kcp
/r/LocalLLaMA/comments/1ke2kcp/dockerfile_for_running_bitnetb1582b4t_on_arm/
false
false
self
14
{'enabled': False, 'images': [{'id': 'etNoPMX9wm3GDz9Ov7nWhcSrO2m2cKmHumPuST9ZEe8', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/9cqW0OCcUeQISM2NOrxFqRit1tmxMKPpZMn6ujN60Q4.jpg?width=108&crop=smart&auto=webp&s=ee6493d52668501015c9c37727223af27bc58c19', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/9cqW0OCcUeQISM2NOrxFqRit1tmxMKPpZMn6ujN60Q4.jpg?width=216&crop=smart&auto=webp&s=e0a5d981b60ad8fa4d1b1e6f329ceef73a6f9f66', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/9cqW0OCcUeQISM2NOrxFqRit1tmxMKPpZMn6ujN60Q4.jpg?width=320&crop=smart&auto=webp&s=ed6fd576550e6298c07b25a1babb999f1efce5d7', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/9cqW0OCcUeQISM2NOrxFqRit1tmxMKPpZMn6ujN60Q4.jpg?width=640&crop=smart&auto=webp&s=36e0d7ef0fad30609e36aa65a6c24df741ff1465', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/9cqW0OCcUeQISM2NOrxFqRit1tmxMKPpZMn6ujN60Q4.jpg?width=960&crop=smart&auto=webp&s=ff589f2ed305815c720180dd1d939739c585ff62', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/9cqW0OCcUeQISM2NOrxFqRit1tmxMKPpZMn6ujN60Q4.jpg?width=1080&crop=smart&auto=webp&s=111625acf9a59716afc5d2f0695b491fe9db5773', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/9cqW0OCcUeQISM2NOrxFqRit1tmxMKPpZMn6ujN60Q4.jpg?auto=webp&s=c93bc9ded4960cbd12ccadab5fea7ae52f100613', 'width': 1200}, 'variants': {}}]}
Training to Control Test-Time Reasoning Budgets
3
In reasoning-intensive tasks, optimizing **test-time compute scaling** may offer more leverage than going with the next larger model in the family. Inspired by Qwen 3's findings, we're exploring how to make reasoning **elastic,** training models that think harder **when requested**. But simply prompting our finetune for more words isn't enough. Our early dataset (*SpaceThinker*) trained models on short reasoning traces (\~200 tokens), which conditioned them to stop early—even with long contexts and explicit requests for more. So we're sharing **SpaceOm**: a dataset designed to train **budget-aware reasoning**—models that modulate their thought depth based on prompt constraints like: \> “Explain briefly” vs. “Give me the full breakdown (\~3000 words)” This approach taps into the model’s latent capacity to scale reasoning **without scaling model size**—ideal for local deployments in robotics, navigation, and planning, where compute is tight but compositional reasoning is critical. More details here: [https://remyxai.substack.com/p/use-your-words](https://remyxai.substack.com/p/use-your-words)
2025-05-03T21:01:45
https://i.redd.it/jc2e3qt8nmye1.png
remyxai
i.redd.it
1970-01-01T00:00:00
0
{}
1ke32xa
false
null
t3_1ke32xa
/r/LocalLLaMA/comments/1ke32xa/training_to_control_testtime_reasoning_budgets/
false
false
https://b.thumbs.redditm…x4bkosnKCuRE.jpg
3
{'enabled': True, 'images': [{'id': 'RMJa5bLSdNXMiC2QyN9ECYkx-3jvFwNnHafQ5lG4KgI', 'resolutions': [{'height': 67, 'url': 'https://preview.redd.it/jc2e3qt8nmye1.png?width=108&crop=smart&auto=webp&s=b313b5f15e9c49173d9a316cddc34e85ca9ef26a', 'width': 108}, {'height': 135, 'url': 'https://preview.redd.it/jc2e3qt8nmye1.png?width=216&crop=smart&auto=webp&s=753a082ea9d81db5cca1d33778c330bdeac122c9', 'width': 216}, {'height': 201, 'url': 'https://preview.redd.it/jc2e3qt8nmye1.png?width=320&crop=smart&auto=webp&s=8927f3e36038bfdfc70c76610ea7400bf202f698', 'width': 320}, {'height': 402, 'url': 'https://preview.redd.it/jc2e3qt8nmye1.png?width=640&crop=smart&auto=webp&s=741c75ff26137c8f1c34c8b7b860475b6459ce28', 'width': 640}], 'source': {'height': 597, 'url': 'https://preview.redd.it/jc2e3qt8nmye1.png?auto=webp&s=4c1abf19799e4aa6fe170692325815a4c291732f', 'width': 949}, 'variants': {}}]}
What the actual **** is that? cppscripts.com
0
So, I wanted to find a lil guide on how to set up llama.cpp to run an LLM locally and to understand what is ollama and what llama.cpp and I found this... which is... something, for sure... That's what reading about tech without knowing shit feels like, like that "how english sounds to non speakers". [https://cppscripts.com/llamacpp-vs-ollama](https://cppscripts.com/llamacpp-vs-ollama)
2025-05-03T21:06:01
https://www.reddit.com/r/LocalLLaMA/comments/1ke36as/what_the_actual_is_that_cppscriptscom/
uForgot_urFloaties
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke36as
false
null
t3_1ke36as
/r/LocalLLaMA/comments/1ke36as/what_the_actual_is_that_cppscriptscom/
false
false
self
0
{'enabled': False, 'images': [{'id': '175mkKaBd8Ywrl5oG-rtvZev_SY3-nB1sXDUHwscy3M', 'resolutions': [{'height': 60, 'url': 'https://external-preview.redd.it/z4kmgH__gayAZN9R_jG9VQBSFL6qzcRfn78aHXxaSz8.jpg?width=108&crop=smart&auto=webp&s=1b92c28aa28c1b5ebc4d4a0f2235804d6beec453', 'width': 108}, {'height': 121, 'url': 'https://external-preview.redd.it/z4kmgH__gayAZN9R_jG9VQBSFL6qzcRfn78aHXxaSz8.jpg?width=216&crop=smart&auto=webp&s=84f6be251e04b277bca480b92331385b77e2882a', 'width': 216}, {'height': 180, 'url': 'https://external-preview.redd.it/z4kmgH__gayAZN9R_jG9VQBSFL6qzcRfn78aHXxaSz8.jpg?width=320&crop=smart&auto=webp&s=1eaa92bfb01a84c4ac10df7d234d69b0b163ff0f', 'width': 320}, {'height': 360, 'url': 'https://external-preview.redd.it/z4kmgH__gayAZN9R_jG9VQBSFL6qzcRfn78aHXxaSz8.jpg?width=640&crop=smart&auto=webp&s=450dfb65402d725cc3d83a1c8298fd242f715ff8', 'width': 640}, {'height': 540, 'url': 'https://external-preview.redd.it/z4kmgH__gayAZN9R_jG9VQBSFL6qzcRfn78aHXxaSz8.jpg?width=960&crop=smart&auto=webp&s=51f540d3a357b6af102d0af7d5aef7a7419a16ad', 'width': 960}], 'source': {'height': 576, 'url': 'https://external-preview.redd.it/z4kmgH__gayAZN9R_jG9VQBSFL6qzcRfn78aHXxaSz8.jpg?auto=webp&s=01ca52e2371050a989747a5d66aa98383ca3a216', 'width': 1024}, 'variants': {}}]}
How is your experience with Qwen3 so far?
177
Do they prove their worth? Are the benchmark scores appropriate to real world performance?
2025-05-03T21:20:12
https://www.reddit.com/r/LocalLLaMA/comments/1ke3heg/how_is_your_experience_with_qwen3_so_far/
Balance-
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke3heg
false
null
t3_1ke3heg
/r/LocalLLaMA/comments/1ke3heg/how_is_your_experience_with_qwen3_so_far/
false
false
self
177
null
Qwen 3 235b beats sonnet 3.7 in aider polyglot
397
Win for open source
2025-05-03T21:28:35
https://i.redd.it/sjw1h2yexmye1.jpeg
Independent-Wind4462
i.redd.it
1970-01-01T00:00:00
0
{}
1ke3nw3
false
null
t3_1ke3nw3
/r/LocalLLaMA/comments/1ke3nw3/qwen_3_235b_beats_sonnet_37_in_aider_polyglot/
false
false
https://b.thumbs.redditm…yKRFTztg1IbI.jpg
397
{'enabled': True, 'images': [{'id': 'zHeE-flQ3RL7XlwuuOWski-SbXBWMC1vnolEtCjJmQs', 'resolutions': [{'height': 119, 'url': 'https://preview.redd.it/sjw1h2yexmye1.jpeg?width=108&crop=smart&auto=webp&s=1a4db4fd2f555e874ba34ff43be41772b503c38b', 'width': 108}, {'height': 239, 'url': 'https://preview.redd.it/sjw1h2yexmye1.jpeg?width=216&crop=smart&auto=webp&s=7e0c9d170d982f4eb49fa69a1272643e943ae0ef', 'width': 216}, {'height': 354, 'url': 'https://preview.redd.it/sjw1h2yexmye1.jpeg?width=320&crop=smart&auto=webp&s=92a72a4e597961660eacbb4bbf7738602b934813', 'width': 320}, {'height': 708, 'url': 'https://preview.redd.it/sjw1h2yexmye1.jpeg?width=640&crop=smart&auto=webp&s=3228950c23440471a53b0440043d2bbfaeaa2b03', 'width': 640}], 'source': {'height': 916, 'url': 'https://preview.redd.it/sjw1h2yexmye1.jpeg?auto=webp&s=573e31ae6fc7adc8ecd9b38f8cc222577bc36bfe', 'width': 827}, 'variants': {}}]}
Recommend AI’s uncensored
1
[removed]
2025-05-03T21:32:00
https://www.reddit.com/r/LocalLLaMA/comments/1ke3qir/recommend_ais_uncensored/
Every_Ad2629
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke3qir
false
null
t3_1ke3qir
/r/LocalLLaMA/comments/1ke3qir/recommend_ais_uncensored/
false
false
self
1
null
How to Prevent Slop and Repetitiveness?
1
[removed]
2025-05-03T21:35:28
https://www.reddit.com/r/LocalLLaMA/comments/1ke3t64/how_to_prevent_slop_and_repetitiveness/
Express_Seesaw_8418
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke3t64
false
null
t3_1ke3t64
/r/LocalLLaMA/comments/1ke3t64/how_to_prevent_slop_and_repetitiveness/
false
false
self
1
{'enabled': False, 'images': [{'id': 'FJhEfE9TJdtegtJ1mIJD54T4ILqPfGygq9u2oQExrM8', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/QTxv3QFdM74MrFyxF-CEW6QhjfswQarknflUW9bjS3o.jpg?width=108&crop=smart&auto=webp&s=193b08caaabe9212083582d4325189bab10687ea', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/QTxv3QFdM74MrFyxF-CEW6QhjfswQarknflUW9bjS3o.jpg?width=216&crop=smart&auto=webp&s=de14a4943c25e741221cb92baf8530f043a12dcb', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/QTxv3QFdM74MrFyxF-CEW6QhjfswQarknflUW9bjS3o.jpg?width=320&crop=smart&auto=webp&s=ef4349fe1ea44f8d2a0156fb21b61a9039d0a97d', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/QTxv3QFdM74MrFyxF-CEW6QhjfswQarknflUW9bjS3o.jpg?width=640&crop=smart&auto=webp&s=34f542e6d4593eebaeecb7ce1becbe5ee89dea61', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/QTxv3QFdM74MrFyxF-CEW6QhjfswQarknflUW9bjS3o.jpg?width=960&crop=smart&auto=webp&s=ee38f057b95629c0c107e127986b77d1f811b92c', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/QTxv3QFdM74MrFyxF-CEW6QhjfswQarknflUW9bjS3o.jpg?width=1080&crop=smart&auto=webp&s=edd11230e1970d21d6a9786a50c053f86e0f6600', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/QTxv3QFdM74MrFyxF-CEW6QhjfswQarknflUW9bjS3o.jpg?auto=webp&s=934569687a46f4a7758d9aa0d6e5aebae23e4cf1', 'width': 1200}, 'variants': {}}]}
Best model for coding that can run on MacBook M1 Max 64GB unified memory, with 32 GPU cores
1
[removed]
2025-05-03T21:50:52
https://www.reddit.com/r/LocalLLaMA/comments/1ke453d/best_model_for_coding_that_can_run_on_macbook_m1/
tghrowawayg
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke453d
false
null
t3_1ke453d
/r/LocalLLaMA/comments/1ke453d/best_model_for_coding_that_can_run_on_macbook_m1/
false
false
self
1
null
Train model on telegram messages
1
[removed]
2025-05-03T21:55:05
https://www.reddit.com/r/LocalLLaMA/comments/1ke487c/train_model_on_telegram_messages/
Evening-Anteater-519
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke487c
false
null
t3_1ke487c
/r/LocalLLaMA/comments/1ke487c/train_model_on_telegram_messages/
false
false
self
1
null
https://www.freelance.wtf/
1
[removed]
2025-05-03T21:55:18
https://www.reddit.com/r/LocalLLaMA/comments/1ke48cl/httpswwwfreelancewtf/
OkClerk7966
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke48cl
false
null
t3_1ke48cl
/r/LocalLLaMA/comments/1ke48cl/httpswwwfreelancewtf/
false
false
self
1
{'enabled': False, 'images': [{'id': 'wELAhY2qRF4StUfAEpkujPg3jJJhHxjy9ORHQK-QiV8', 'resolutions': [{'height': 108, 'url': 'https://external-preview.redd.it/AjwOZJ9DemF2UBLkfd95vy7b3lYZyuSIAFaDXWXP_gI.jpg?width=108&crop=smart&auto=webp&s=02327cbd9c298f22ba972c832c298496c72bb38d', 'width': 108}, {'height': 216, 'url': 'https://external-preview.redd.it/AjwOZJ9DemF2UBLkfd95vy7b3lYZyuSIAFaDXWXP_gI.jpg?width=216&crop=smart&auto=webp&s=3e0d1638dc4a4d1cefac34a9b72bfca157578600', 'width': 216}, {'height': 320, 'url': 'https://external-preview.redd.it/AjwOZJ9DemF2UBLkfd95vy7b3lYZyuSIAFaDXWXP_gI.jpg?width=320&crop=smart&auto=webp&s=b8933629c4ef70a188dde5fab3ee85f7bd8e969a', 'width': 320}], 'source': {'height': 500, 'url': 'https://external-preview.redd.it/AjwOZJ9DemF2UBLkfd95vy7b3lYZyuSIAFaDXWXP_gI.jpg?auto=webp&s=7e600e6655ea713cb4e52677a4699e37b9e93197', 'width': 500}, 'variants': {}}]}
What's the best benchmarking website right now in your opinion?
1
[removed]
2025-05-03T21:57:50
https://www.reddit.com/r/LocalLLaMA/comments/1ke4a8o/whats_the_best_benchmarking_website_right_now_in/
UnstoppableGooner
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke4a8o
false
null
t3_1ke4a8o
/r/LocalLLaMA/comments/1ke4a8o/whats_the_best_benchmarking_website_right_now_in/
false
false
self
1
null
Personal fav tool for generation
1
[removed]
2025-05-03T22:03:34
https://www.reddit.com/r/LocalLLaMA/comments/1ke4eog/personal_fav_tool_for_generation/
Apart_Click_6938
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke4eog
false
null
t3_1ke4eog
/r/LocalLLaMA/comments/1ke4eog/personal_fav_tool_for_generation/
false
false
self
1
{'enabled': False, 'images': [{'id': 'VSiqbcc5ID-xayz4c5tFj4-RodarvgiQazOvcgeZzxY', 'resolutions': [{'height': 56, 'url': 'https://external-preview.redd.it/RAJzRUqG9qsWVxgSsqlRoVa3ozD6HQ2QYkjQGx_fTfU.jpg?width=108&crop=smart&auto=webp&s=ae9d24eafca4c61499fcdba5935fe07f1655fac3', 'width': 108}, {'height': 113, 'url': 'https://external-preview.redd.it/RAJzRUqG9qsWVxgSsqlRoVa3ozD6HQ2QYkjQGx_fTfU.jpg?width=216&crop=smart&auto=webp&s=ef03414335a948ef870a16b76cb5924c07b1c401', 'width': 216}, {'height': 168, 'url': 'https://external-preview.redd.it/RAJzRUqG9qsWVxgSsqlRoVa3ozD6HQ2QYkjQGx_fTfU.jpg?width=320&crop=smart&auto=webp&s=2a7bbcdddd3709759c35c79698c7e6bdd4a345c6', 'width': 320}, {'height': 336, 'url': 'https://external-preview.redd.it/RAJzRUqG9qsWVxgSsqlRoVa3ozD6HQ2QYkjQGx_fTfU.jpg?width=640&crop=smart&auto=webp&s=a983fe0a65259dbbb76130d8751532754ad9d0b3', 'width': 640}, {'height': 504, 'url': 'https://external-preview.redd.it/RAJzRUqG9qsWVxgSsqlRoVa3ozD6HQ2QYkjQGx_fTfU.jpg?width=960&crop=smart&auto=webp&s=34a8dd55022b6e1f2cbc6fc2642d87c17a900ace', 'width': 960}, {'height': 567, 'url': 'https://external-preview.redd.it/RAJzRUqG9qsWVxgSsqlRoVa3ozD6HQ2QYkjQGx_fTfU.jpg?width=1080&crop=smart&auto=webp&s=22b460b1a487b64db8980f6d4df5ad5ba12aece6', 'width': 1080}], 'source': {'height': 630, 'url': 'https://external-preview.redd.it/RAJzRUqG9qsWVxgSsqlRoVa3ozD6HQ2QYkjQGx_fTfU.jpg?auto=webp&s=7efca27fe98e854362eea866899e912d42649930', 'width': 1200}, 'variants': {}}]}
How to get around slow prompt eval?
5
I'm running Qwen2.5 Coder 1.5B on my Ryzen 5 5625U APU using llama.cpp and Vulkan. I would like to use it as a code completion modal, however, I only get about 30t/s on prompt evaluation. This means that ingesting a whole code file and generating a completion takes a lot of time, especially as context fills up. I've tried the Continue.dev and llama.vscode extensions. The latter is more lightweight, but doesn't cancel the previous request when the file is modified. Is there a way I can make local models more usable for code autocomplete? Should I perhaps try another engine? Is a newer MoE model going to have faster PP?
2025-05-03T22:10:31
https://www.reddit.com/r/LocalLLaMA/comments/1ke4juq/how_to_get_around_slow_prompt_eval/
antonlyap
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke4juq
false
null
t3_1ke4juq
/r/LocalLLaMA/comments/1ke4juq/how_to_get_around_slow_prompt_eval/
false
false
self
5
null
It would be nice to have a wiki on this sub.
1
[removed]
2025-05-03T22:52:55
https://www.reddit.com/r/LocalLLaMA/comments/1ke5ex2/it_would_be_nice_to_have_a_wiki_on_this_sub/
Kyla_3049
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke5ex2
false
null
t3_1ke5ex2
/r/LocalLLaMA/comments/1ke5ex2/it_would_be_nice_to_have_a_wiki_on_this_sub/
false
false
self
1
null
The More I Use AI, the More I Worry About My Privacy
1
[removed]
2025-05-03T23:01:04
[deleted]
1970-01-01T00:00:00
0
{}
1ke5kwi
false
null
t3_1ke5kwi
/r/LocalLLaMA/comments/1ke5kwi/the_more_i_use_ai_the_more_i_worry_about_my/
false
false
default
1
null
[M3 Ultra 512GB] LM Studio + GGUF + Qwen3-235B-A22B_Q8+reasoning
6
I just run the setup mentioned in tittle. I have questioned it about the Characterization of Carbon Nanotubes as I have worked in two old publications about it and asked it to answer as a PhD. Well, it runned the prompt at 15 tokens/sec. what impressed me, in a mixed way, is that it recognized old chats I had, even if I was in a new chat and in a new folder, also it only uses 3-12% of the CPU. The response and "thinking" was highly coherent.
2025-05-03T23:50:53
https://www.reddit.com/r/LocalLLaMA/comments/1ke6l65/m3_ultra_512gb_lm_studio_gguf_qwen3235ba22b/
Turbulent_Pin7635
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke6l65
false
null
t3_1ke6l65
/r/LocalLLaMA/comments/1ke6l65/m3_ultra_512gb_lm_studio_gguf_qwen3235ba22b/
false
false
self
6
null
New LLM with no training - Minimum Viable Product
0
Someone I know created this LLM without training at all [www.dopegpt.com](http://www.dopegpt.com) It is a mimium viable product that can easily be improved upon. Comment below your thoughts
2025-05-04T00:05:15
https://www.reddit.com/r/LocalLLaMA/comments/1ke6vh4/new_llm_with_no_training_minimum_viable_product/
6whiten_igga9
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke6vh4
false
null
t3_1ke6vh4
/r/LocalLLaMA/comments/1ke6vh4/new_llm_with_no_training_minimum_viable_product/
false
false
self
0
null
What happened after original ChatGPT that models started improving exponentially?
35
It seems like till GPT3.5 and ChatGPT model development was rather slow and a niche field of computer science. Suddenly after that model development has supercharged. Were big tech companies just sitting on this capability, but not building because they thought it would be too expensive and couldn't figure a product strategy around this?
2025-05-04T00:27:41
https://www.reddit.com/r/LocalLLaMA/comments/1ke7aqj/what_happened_after_original_chatgpt_that_models/
Euphoric_Sandwich_74
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke7aqj
false
null
t3_1ke7aqj
/r/LocalLLaMA/comments/1ke7aqj/what_happened_after_original_chatgpt_that_models/
false
false
self
35
null
llama.cpp now supports Llama-3_1-Nemotron-Ultra-253B-v1
65
llama.cpp now supports Nvidia's Llama-3\_1-Nemotron-Ultra-253B-v1 starting from b5270. [https://github.com/ggml-org/llama.cpp/pull/12843](https://github.com/ggml-org/llama.cpp/pull/12843) Supposedly it is better than DeepSeek R1: [https://www.reddit.com/r/LocalLLaMA/comments/1ju6sm1/nvidiallama3\_1nemotronultra253bv1\_hugging\_face/](https://www.reddit.com/r/LocalLLaMA/comments/1ju6sm1/nvidiallama3_1nemotronultra253bv1_hugging_face/) It is the biggest SOTA dense model with reasoning fine tune now. So it is worth it to explore what it does best comparing to other models. Model size is 38% smaller than the source Llama-3.1-405B. KV cache is 49% smaller. Overall, memory footprint is 39% smaller at 128k context. IQ3\_M should be around 110GB. While fp16 KV cache is 32GB at 128k, IQ4\_NL KV cahce is only 9GB at 128k context. Seems like a perfect fit for >=128GB Apple Silicon or the upcoming DGX Spark. If you have the resource to run this model, give it a try and see if it can beat DeepSeek R1 as they claim! PS Nemotron pruned models in general are good when you can load it fully to your VRAM. However, it suffers from uneven VRAM distribution when you have multiple cards. To get around that, it is recommended that you tinker with the "-ts" switch to set VRAM distribution manually until someone implemented automatic VRAM distribution. [https://github.com/ggml-org/llama.cpp/issues/12654](https://github.com/ggml-org/llama.cpp/issues/12654) I made an Excel to breakdown the exact amount of VRAM usage for each layer. It can serve as a starting point for you to set "-ts" if you have multiple cards. [https://huggingface.co/ymcki/Llama-3\_1-Nemotron-51B-Instruct-GGUF/resolve/main/deci.xlsx?download=true](https://huggingface.co/ymcki/Llama-3_1-Nemotron-51B-Instruct-GGUF/resolve/main/deci.xlsx?download=true)
2025-05-04T00:35:07
https://www.reddit.com/r/LocalLLaMA/comments/1ke7fli/llamacpp_now_supports_llama3_1nemotronultra253bv1/
Ok_Warning2146
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke7fli
false
null
t3_1ke7fli
/r/LocalLLaMA/comments/1ke7fli/llamacpp_now_supports_llama3_1nemotronultra253bv1/
false
false
self
65
{'enabled': False, 'images': [{'id': 'VjTnTmYiVaALHZPmS5-0-GlJr2g0Zrlve2xASwMUHY8', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/dY0oDWmssevMQHDIEOS75Izth4TEVBBqynZPVGzCma8.jpg?width=108&crop=smart&auto=webp&s=cf84baf857057982711471a5046a23f5a84474b6', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/dY0oDWmssevMQHDIEOS75Izth4TEVBBqynZPVGzCma8.jpg?width=216&crop=smart&auto=webp&s=ba7bbf397492e5f71c6b346724f7dec369597798', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/dY0oDWmssevMQHDIEOS75Izth4TEVBBqynZPVGzCma8.jpg?width=320&crop=smart&auto=webp&s=06cb78a892b8821adfcbcb69d95dc9ac3a49e9ff', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/dY0oDWmssevMQHDIEOS75Izth4TEVBBqynZPVGzCma8.jpg?width=640&crop=smart&auto=webp&s=8c62ae4e9383b9a9cf52ed7606da98d99da05586', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/dY0oDWmssevMQHDIEOS75Izth4TEVBBqynZPVGzCma8.jpg?width=960&crop=smart&auto=webp&s=a90f8e43e75de4439bbce51ecd406d4633655713', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/dY0oDWmssevMQHDIEOS75Izth4TEVBBqynZPVGzCma8.jpg?width=1080&crop=smart&auto=webp&s=b66dd3c65cb16b8a10d8d7304adcb6c6ca3314a4', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/dY0oDWmssevMQHDIEOS75Izth4TEVBBqynZPVGzCma8.jpg?auto=webp&s=b4e2a1632c23a92fd12970ee5a551b2c93892dc8', 'width': 1200}, 'variants': {}}]}
The grok2 system prompt actually works pretty well with Qwen 2.5 (atleast on 14b)
0
I did have to modify it to fit the capabilities the frontend I use has, however.
2025-05-04T00:43:11
https://www.reddit.com/r/LocalLLaMA/comments/1ke7ku3/the_grok2_system_prompt_actually_works_pretty/
__laughing__
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke7ku3
false
null
t3_1ke7ku3
/r/LocalLLaMA/comments/1ke7ku3/the_grok2_system_prompt_actually_works_pretty/
false
false
self
0
null
Aider - Qwen 32b 64% !
1
[deleted]
2025-05-04T00:54:12
[deleted]
1970-01-01T00:00:00
0
{}
1ke7rx9
false
null
t3_1ke7rx9
/r/LocalLLaMA/comments/1ke7rx9/aider_qwen_32b_64/
false
false
default
1
null
Aider - qwen 32b 45% !
75
link [Add benchmarks for Qwen3-235B-A22B and Qwen3-32B by AlongWY · Pull Request #3908 · Aider-AI/aider · GitHub](https://github.com/Aider-AI/aider/pull/3908/files)
2025-05-04T00:55:37
https://i.redd.it/9k3fxxt9ynye1.png
Healthy-Nebula-3603
i.redd.it
1970-01-01T00:00:00
0
{}
1ke7ssw
false
null
t3_1ke7ssw
/r/LocalLLaMA/comments/1ke7ssw/aider_qwen_32b_45/
false
false
https://external-preview…68c2fd3bd9f16d17
75
{'enabled': True, 'images': [{'id': '5B1dbbXCV8oVvn8p6LEyYW-I2oNrHSw-uv1SR9R_E7o', 'resolutions': [{'height': 139, 'url': 'https://preview.redd.it/9k3fxxt9ynye1.png?width=108&crop=smart&auto=webp&s=a60c54302b70f561447a550d1c40172de9dc7d23', 'width': 108}, {'height': 279, 'url': 'https://preview.redd.it/9k3fxxt9ynye1.png?width=216&crop=smart&auto=webp&s=69f11db2df530b81cd141251491c709ab2e2ed35', 'width': 216}, {'height': 414, 'url': 'https://preview.redd.it/9k3fxxt9ynye1.png?width=320&crop=smart&auto=webp&s=91d04af4b4905e1fe5ea7400c8fbfcc3c64cb513', 'width': 320}, {'height': 828, 'url': 'https://preview.redd.it/9k3fxxt9ynye1.png?width=640&crop=smart&auto=webp&s=1e9ca848eede216b3f41bc1736fb709414c67f6f', 'width': 640}, {'height': 1243, 'url': 'https://preview.redd.it/9k3fxxt9ynye1.png?width=960&crop=smart&auto=webp&s=3836e6763347621386a84ea2fbc9efe9a4081311', 'width': 960}], 'source': {'height': 1246, 'url': 'https://preview.redd.it/9k3fxxt9ynye1.png?auto=webp&s=cf2e6ffa4442e79c8d0058e042c9f90611d1a85f', 'width': 962}, 'variants': {}}]}
What’s your favorite GUI
43
Can be web based or app like LM Studio Can be local llm only or able to connect online api like openai, openrouter, etc Trying to learn about new tools
2025-05-04T01:08:42
https://www.reddit.com/r/LocalLLaMA/comments/1ke81ai/whats_your_favorite_gui/
Dentifrice
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke81ai
false
null
t3_1ke81ai
/r/LocalLLaMA/comments/1ke81ai/whats_your_favorite_gui/
false
false
self
43
null
Any in-depth tutorials which do step-by-step walkthroughs on how to fine-tune an LLM?
43
Hi! I want to learn about the full process, from soup to nuts, of how to fine-tune an LLM. If anyone has well-documented resources, videos, or tutorials that they could point me to, that would be spectacular. If there are also related resources about LLMs' benchmarking and evaluations, that would be incredibly helpful as well. Thank you!!
2025-05-04T01:10:40
https://www.reddit.com/r/LocalLLaMA/comments/1ke82nc/any_indepth_tutorials_which_do_stepbystep/
darkGrayAdventurer
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke82nc
false
null
t3_1ke82nc
/r/LocalLLaMA/comments/1ke82nc/any_indepth_tutorials_which_do_stepbystep/
false
false
self
43
null
Keep dancing #beauti #lifeisbutadream #whowillbemylifepartnerta #fashion...
1
[removed]
2025-05-04T01:43:30
https://youtube.com/watch?v=tO5m5mwtElw&si=ww_WXLITBsfZrxBN
Ok-Maize-4629
youtube.com
1970-01-01T00:00:00
0
{}
1ke8nn9
false
{'oembed': {'author_name': 'Ada', 'author_url': 'https://www.youtube.com/@Ada-y5f6o', 'height': 200, 'html': '<iframe width="356" height="200" src="https://www.youtube.com/embed/tO5m5mwtElw?feature=oembed&enablejsapi=1" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen title="Keep dancing #beauti #lifeisbutadream #whowillbemylifepartnerta #fashion #dj #dance"></iframe>', 'provider_name': 'YouTube', 'provider_url': 'https://www.youtube.com/', 'thumbnail_height': 360, 'thumbnail_url': 'https://i.ytimg.com/vi/tO5m5mwtElw/hqdefault.jpg', 'thumbnail_width': 480, 'title': 'Keep dancing #beauti #lifeisbutadream #whowillbemylifepartnerta #fashion #dj #dance', 'type': 'video', 'version': '1.0', 'width': 356}, 'type': 'youtube.com'}
t3_1ke8nn9
/r/LocalLLaMA/comments/1ke8nn9/keep_dancing_beauti_lifeisbutadream/
false
false
https://b.thumbs.redditm…fTZ6DfXEcL6o.jpg
1
{'enabled': False, 'images': [{'id': 'bmx_3UX3eZFq6ewrnCgIrpltglkTC_zZa37qy_He7WI', 'resolutions': [{'height': 81, 'url': 'https://external-preview.redd.it/y22Pg6ViCcmAbnbK5NVBk_zCefKTHgVYjo0ie21mOFY.jpg?width=108&crop=smart&auto=webp&s=04ce95125360c1f12c0bda57b696901f19eea437', 'width': 108}, {'height': 162, 'url': 'https://external-preview.redd.it/y22Pg6ViCcmAbnbK5NVBk_zCefKTHgVYjo0ie21mOFY.jpg?width=216&crop=smart&auto=webp&s=b817c5c06037fb71a76ad1e11b2a22f9ba7cc9d0', 'width': 216}, {'height': 240, 'url': 'https://external-preview.redd.it/y22Pg6ViCcmAbnbK5NVBk_zCefKTHgVYjo0ie21mOFY.jpg?width=320&crop=smart&auto=webp&s=66f58080969a7de9a3b308137e6d6db16951c13a', 'width': 320}], 'source': {'height': 360, 'url': 'https://external-preview.redd.it/y22Pg6ViCcmAbnbK5NVBk_zCefKTHgVYjo0ie21mOFY.jpg?auto=webp&s=8ca1895177f2f48de60c06a609a6e719326de428', 'width': 480}, 'variants': {}}]}
Help with AI video generation
1
[removed]
2025-05-04T02:05:21
https://www.reddit.com/r/LocalLLaMA/comments/1ke91qd/help_with_ai_video_generation/
MoreCat4994
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke91qd
false
null
t3_1ke91qd
/r/LocalLLaMA/comments/1ke91qd/help_with_ai_video_generation/
false
false
self
1
null
What's the most reliable/best benchmarking website currently, in your opinion?
1
[removed]
2025-05-04T02:21:50
[deleted]
1970-01-01T00:00:00
0
{}
1ke9caf
false
null
t3_1ke9caf
/r/LocalLLaMA/comments/1ke9caf/whats_the_most_reliablebest_benchmarking_website/
false
false
default
1
null
My project
1
[removed]
2025-05-04T02:23:41
https://www.reddit.com/r/LocalLLaMA/comments/1ke9dgv/my_project/
Previous-Amphibian23
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke9dgv
false
null
t3_1ke9dgv
/r/LocalLLaMA/comments/1ke9dgv/my_project/
false
false
self
1
null
UI-Tars-1.5 reasoning never fails to entertain me.
1
[removed]
2025-05-04T02:33:46
https://i.redd.it/v28k9u0rfoye1.png
Successful_Bowl2564
i.redd.it
1970-01-01T00:00:00
0
{}
1ke9jmo
false
null
t3_1ke9jmo
/r/LocalLLaMA/comments/1ke9jmo/uitars15_reasoning_never_fails_to_entertain_me/
false
false
https://external-preview…15e2d59e2e5d251b
1
{'enabled': True, 'images': [{'id': 'n0VJIBD7SMNgIPSjeUyHXUF8Hhz6aa8V8SIwlGAvAxo', 'resolutions': [{'height': 69, 'url': 'https://preview.redd.it/v28k9u0rfoye1.png?width=108&crop=smart&auto=webp&s=f49d1f252e82b752466ef84e5ed5d305fca2a7b5', 'width': 108}, {'height': 138, 'url': 'https://preview.redd.it/v28k9u0rfoye1.png?width=216&crop=smart&auto=webp&s=d839aaefe15059817e324d25c79f12c9454b39b8', 'width': 216}, {'height': 204, 'url': 'https://preview.redd.it/v28k9u0rfoye1.png?width=320&crop=smart&auto=webp&s=20cd3f625d63e9f15fdbb6f1951d824328717a77', 'width': 320}, {'height': 409, 'url': 'https://preview.redd.it/v28k9u0rfoye1.png?width=640&crop=smart&auto=webp&s=d2cdbca440b4aaa7e259168d61ac3e1e1aa1796e', 'width': 640}], 'source': {'height': 466, 'url': 'https://preview.redd.it/v28k9u0rfoye1.png?auto=webp&s=a1b6568f9d2e11368d8d7d731ec698cd5b54b126', 'width': 729}, 'variants': {}}]}
MCP_A2A - Use A2A Agents from MCP Clients
1
I couldn't find any , so I created this quick and dirty MCP Server to allow me to communicate with A2A agents, sharing here just in case someone finds it useful. It is definitely not production ready, and I will improve it a little bit more for my personal needs... but it might help someone who is starting a project like I was today... If something is wrong it is very easy to change as the lib is very simple , hopefully works out-of-the-box probably out-of-the-spec. Enjoy.
2025-05-04T02:48:06
https://github.com/regismesquita/MCP_A2A
das_rdsm
github.com
1970-01-01T00:00:00
0
{}
1ke9sqy
false
null
t3_1ke9sqy
/r/LocalLLaMA/comments/1ke9sqy/mcp_a2a_use_a2a_agents_from_mcp_clients/
false
false
https://b.thumbs.redditm…QPJNJ1A8hj8k.jpg
1
{'enabled': False, 'images': [{'id': 'EgjPfU9ampPrhXR5IpD0WMP_RTsH5kUFitpXyyjHPUU', 'resolutions': [{'height': 54, 'url': 'https://external-preview.redd.it/ctqhy8LiC1YrNpDOh5mnILsLKlqVmzRID6WwJPWaepg.jpg?width=108&crop=smart&auto=webp&s=9e9aaf8a7ccfca06c5564b3f018005f45ed79c03', 'width': 108}, {'height': 108, 'url': 'https://external-preview.redd.it/ctqhy8LiC1YrNpDOh5mnILsLKlqVmzRID6WwJPWaepg.jpg?width=216&crop=smart&auto=webp&s=a787f04f10236f5a46ff00255a3852c178205957', 'width': 216}, {'height': 160, 'url': 'https://external-preview.redd.it/ctqhy8LiC1YrNpDOh5mnILsLKlqVmzRID6WwJPWaepg.jpg?width=320&crop=smart&auto=webp&s=cb37d6a6eb0ce94b7503eba3c156318c9586ba0f', 'width': 320}, {'height': 320, 'url': 'https://external-preview.redd.it/ctqhy8LiC1YrNpDOh5mnILsLKlqVmzRID6WwJPWaepg.jpg?width=640&crop=smart&auto=webp&s=206d6de7cc80c381197c33612fadac856b1fcef4', 'width': 640}, {'height': 480, 'url': 'https://external-preview.redd.it/ctqhy8LiC1YrNpDOh5mnILsLKlqVmzRID6WwJPWaepg.jpg?width=960&crop=smart&auto=webp&s=ef15dba3e05574ea490f6b0d6023ccef9a0c273e', 'width': 960}, {'height': 540, 'url': 'https://external-preview.redd.it/ctqhy8LiC1YrNpDOh5mnILsLKlqVmzRID6WwJPWaepg.jpg?width=1080&crop=smart&auto=webp&s=c2d80b2c74eb1e8f24312c1123f5011c298d420e', 'width': 1080}], 'source': {'height': 600, 'url': 'https://external-preview.redd.it/ctqhy8LiC1YrNpDOh5mnILsLKlqVmzRID6WwJPWaepg.jpg?auto=webp&s=597be702a8b44f6952b012bb1897b9bb796022e4', 'width': 1200}, 'variants': {}}]}
A question for fellow 48gb RTX 4090D owners
6
I have the chinese blower 48gb rtx 4090D and the vBIOS has it locked to prevent fan from going under 30%, and by default it won't idle the memory clock and keeps it at 10,500mhz which wastes a lot of power. The memory clock can be fixed by manually setting it down to 405mhz which helps the idle power usage, but not so much the noise from the fan always at 30%. Disabling the gpu in device manager does make the fan idle very quietly but then the power usage jumps up by about 50W again. Any ways to update the vBIOS to fix these slight gripes?
2025-05-04T02:54:07
https://www.reddit.com/r/LocalLLaMA/comments/1ke9wgs/a_question_for_fellow_48gb_rtx_4090d_owners/
Goldkoron
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke9wgs
false
null
t3_1ke9wgs
/r/LocalLLaMA/comments/1ke9wgs/a_question_for_fellow_48gb_rtx_4090d_owners/
false
false
self
6
null
Should i get an RX 7900 XTX as a Linux gamer that also enjoys using local AIs?
2
Hey so i'm upgrading from an RTX 3070. I'm torn between a used RTX 3090 and used RX 7900 XTX as an upgrade. TDP and price are the same. Of course i know that for pure AI work that Nvidia is still the king due to CUDA being everywhere. But on the other hand, AMD offers quite a bit more performance in games. So my question is if the RX 7900 XTX card would be good enough to get decent token speeds for quantized 24B/32B models and at least as fast image generation as my RTX 3070. Like essentially how hard is it for the end user to work with ROCm on Linux nowadays? For reference i'm currently using LMStudio and StabilityMatrix for my AI needs. Similarly, would i be able to combine my two cards so part of the model runs on CUDA and the other on ROCM? Would this help?
2025-05-04T02:57:05
https://www.reddit.com/r/LocalLLaMA/comments/1ke9ybp/should_i_get_an_rx_7900_xtx_as_a_linux_gamer_that/
HRudy94
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke9ybp
false
null
t3_1ke9ybp
/r/LocalLLaMA/comments/1ke9ybp/should_i_get_an_rx_7900_xtx_as_a_linux_gamer_that/
false
false
self
2
null
2nd Brain
0
What's the consensus in building a 2nd brain? I think everyone will eventually have their own agent that will do things for you in the digital space with all your data stored locally, but I'm wondering what the best practices/techniques are regarding this? Right now I'm deciding between \[Obsidian as a store of data and using RAG and some techniques to make the output better \] or building my own system from the ground up. I don't have anything completed fully yet, but I did play around with NotebookLM and I realized it does a really good job with generating that conversational podcast as well as having their own built in functions like mindmaps, you can query the documents, etc. Overall I want to move forward with building this second brain, such as the ingestion, chunking, embedding, and rag part but appreciate opinions on what others are thinking and doing, thanks!
2025-05-04T02:57:18
https://www.reddit.com/r/LocalLLaMA/comments/1ke9yh5/2nd_brain/
proxyplz
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ke9yh5
false
null
t3_1ke9yh5
/r/LocalLLaMA/comments/1ke9yh5/2nd_brain/
false
false
self
0
null
UI-Tars-1.5 reasoning never fails to entertain me
1
[removed]
2025-05-04T03:21:03
https://i.redd.it/q4nvjdi6ooye1.png
Successful_Bowl2564
i.redd.it
1970-01-01T00:00:00
0
{}
1kead2j
false
null
t3_1kead2j
/r/LocalLLaMA/comments/1kead2j/uitars15_reasoning_never_fails_to_entertain_me/
false
false
https://external-preview…2a937f6e7a0820ea
1
{'enabled': True, 'images': [{'id': 'vl-5Cyhwgv15C91XIykPbrMhdcRCu_AhZ0brPpuHA6M', 'resolutions': [{'height': 69, 'url': 'https://preview.redd.it/q4nvjdi6ooye1.png?width=108&crop=smart&auto=webp&s=da0bae45c0eb69734951c0cd9bdb07b4209b6c88', 'width': 108}, {'height': 138, 'url': 'https://preview.redd.it/q4nvjdi6ooye1.png?width=216&crop=smart&auto=webp&s=5da634bf6da088c09e52a7fe74e641796a61c496', 'width': 216}, {'height': 204, 'url': 'https://preview.redd.it/q4nvjdi6ooye1.png?width=320&crop=smart&auto=webp&s=133a01724a52fdd68652611eaf603373b8d60a9f', 'width': 320}, {'height': 409, 'url': 'https://preview.redd.it/q4nvjdi6ooye1.png?width=640&crop=smart&auto=webp&s=618fa306dd9347e7139019d08fcdc5ffd5583df0', 'width': 640}], 'source': {'height': 466, 'url': 'https://preview.redd.it/q4nvjdi6ooye1.png?auto=webp&s=352f8bcd0c370bcaea58b5840a6182d7eac2d930', 'width': 729}, 'variants': {}}]}
UI-Tars-1.5 reasoning never fails to entertain me
1
[removed]
2025-05-04T03:28:46
https://i.redd.it/w2e9jb4mpoye1.png
Successful_Bowl2564
i.redd.it
1970-01-01T00:00:00
0
{}
1keaho3
false
null
t3_1keaho3
/r/LocalLLaMA/comments/1keaho3/uitars15_reasoning_never_fails_to_entertain_me/
false
false
https://external-preview…2a937f6e7a0820ea
1
{'enabled': True, 'images': [{'id': 'vl-5Cyhwgv15C91XIykPbrMhdcRCu_AhZ0brPpuHA6M', 'resolutions': [{'height': 69, 'url': 'https://preview.redd.it/w2e9jb4mpoye1.png?width=108&crop=smart&auto=webp&s=337302a4a6991ccccb6a801ea987fe3420d6beae', 'width': 108}, {'height': 138, 'url': 'https://preview.redd.it/w2e9jb4mpoye1.png?width=216&crop=smart&auto=webp&s=162949a113a1a5aa3a3deabadb4c9cbd23330eca', 'width': 216}, {'height': 204, 'url': 'https://preview.redd.it/w2e9jb4mpoye1.png?width=320&crop=smart&auto=webp&s=4bae9e4e7c3820e46ecf044513f3067ef5746dee', 'width': 320}, {'height': 409, 'url': 'https://preview.redd.it/w2e9jb4mpoye1.png?width=640&crop=smart&auto=webp&s=cfc7fd1d4bcf37b3e6938bf90b8707d54bd98cd7', 'width': 640}], 'source': {'height': 466, 'url': 'https://preview.redd.it/w2e9jb4mpoye1.png?auto=webp&s=0bfa2f5e772c389243b2b877a37592cc7392a42f', 'width': 729}, 'variants': {}}]}
Cline or Roo code LLMs with Less than 6 Gb VRAM? 16GB RAM?
0
Hey guys. I got a rtx 3060 mobile on my laptop. With 16gigs of RAM. Is there any way I could get 32 k context window in coding with Roo code or cline? I downloaded a gguf for ollama, a qwen 7b optimised for tool calling and agentic coding. I accidentally made the context 120k lol. It was working fine in the sense it could see files, etc. But it couldn't make any changes. And if I made the context length anything lower than 8k, the tool would be useless in my vast codebase. Any sweet spot that I can hit?
2025-05-04T03:29:03
https://www.reddit.com/r/LocalLLaMA/comments/1keahu8/cline_or_roo_code_llms_with_less_than_6_gb_vram/
backinthe90siwasinav
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1keahu8
false
null
t3_1keahu8
/r/LocalLLaMA/comments/1keahu8/cline_or_roo_code_llms_with_less_than_6_gb_vram/
false
false
self
0
null
UI-Tars-1.5 reasoning never fails to entertain me
1
[removed]
2025-05-04T03:32:28
[deleted]
1970-01-01T00:00:00
0
{}
1keajz0
false
null
t3_1keajz0
/r/LocalLLaMA/comments/1keajz0/uitars15_reasoning_never_fails_to_entertain_me/
false
false
default
1
null
Which hardware should I choose for this requirement?
2
Target performance: 2000t/s Prefill, 100 token/s generation for each user. 10 simultaneous users each with ~50k working context. Target Model: Qwen3-235B-A22B-Q8_0 at 128k context q8 KV cache. What is the minimum/cheapest hardware for this requirement on cloud.
2025-05-04T03:36:04
https://www.reddit.com/r/LocalLLaMA/comments/1keam82/which_hardware_should_i_choose_for_this/
Yes_but_I_think
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1keam82
false
null
t3_1keam82
/r/LocalLLaMA/comments/1keam82/which_hardware_should_i_choose_for_this/
false
false
self
2
null
Apparently shipping AI platforms is a thing now as per this post from the Qwen X account
414
2025-05-04T04:16:37
https://i.redd.it/fjze9by1yoye1.jpeg
MushroomGecko
i.redd.it
1970-01-01T00:00:00
0
{}
1kebauw
false
null
t3_1kebauw
/r/LocalLLaMA/comments/1kebauw/apparently_shipping_ai_platforms_is_a_thing_now/
false
false
https://b.thumbs.redditm…QEx0aC-GIvuw.jpg
414
{'enabled': True, 'images': [{'id': 'F1EczZMgFv8DUSba9m8BfbTe7aRCOYmybdYsDlzzELQ', 'resolutions': [{'height': 43, 'url': 'https://preview.redd.it/fjze9by1yoye1.jpeg?width=108&crop=smart&auto=webp&s=f9b0affac78c522180129a5db84a1496ff7a0554', 'width': 108}, {'height': 86, 'url': 'https://preview.redd.it/fjze9by1yoye1.jpeg?width=216&crop=smart&auto=webp&s=19d9c53df63b7151701fe8873c587b0d63734269', 'width': 216}, {'height': 127, 'url': 'https://preview.redd.it/fjze9by1yoye1.jpeg?width=320&crop=smart&auto=webp&s=808b7c2fb53e37dd27f21807831d5734e3bd1fe8', 'width': 320}, {'height': 255, 'url': 'https://preview.redd.it/fjze9by1yoye1.jpeg?width=640&crop=smart&auto=webp&s=7e0eb0e11cb1eca743ebbe8cd75e69b96fffd960', 'width': 640}, {'height': 382, 'url': 'https://preview.redd.it/fjze9by1yoye1.jpeg?width=960&crop=smart&auto=webp&s=4600b4deb1f5eb625f99fa179e5ca577b95e2600', 'width': 960}, {'height': 430, 'url': 'https://preview.redd.it/fjze9by1yoye1.jpeg?width=1080&crop=smart&auto=webp&s=4ab280c6a88ba7855b053931e27ccf40ef98f02b', 'width': 1080}], 'source': {'height': 816, 'url': 'https://preview.redd.it/fjze9by1yoye1.jpeg?auto=webp&s=b7d96190a5ed7ae43b3d2028516e58076f586047', 'width': 2048}, 'variants': {}}]}
next SOTA in vision will be open weights model? when Qwen3 VL?
33
[https://rank.opencompass.org.cn/leaderboard-multimodal-official/?m=REALTIME](https://rank.opencompass.org.cn/leaderboard-multimodal-official/?m=REALTIME)
2025-05-04T04:17:07
https://i.redd.it/kshkghcyxoye1.png
secopsml
i.redd.it
1970-01-01T00:00:00
0
{}
1kebb5e
false
null
t3_1kebb5e
/r/LocalLLaMA/comments/1kebb5e/next_sota_in_vision_will_be_open_weights_model/
false
false
https://b.thumbs.redditm…Zu1JrtJV-jJM.jpg
33
{'enabled': True, 'images': [{'id': 'O8VIHX-ca0UW00ctbRPU1zhp0hT9QnTQSSdAfk-sUwE', 'resolutions': [{'height': 78, 'url': 'https://preview.redd.it/kshkghcyxoye1.png?width=108&crop=smart&auto=webp&s=40c680bee74f00a331884897580afbe0ce151106', 'width': 108}, {'height': 156, 'url': 'https://preview.redd.it/kshkghcyxoye1.png?width=216&crop=smart&auto=webp&s=3996a58f62114d912359bc2320cee71b8a5c056f', 'width': 216}, {'height': 231, 'url': 'https://preview.redd.it/kshkghcyxoye1.png?width=320&crop=smart&auto=webp&s=765ce9a9873e451d17b2e7cd40eebfeb309ec62a', 'width': 320}, {'height': 462, 'url': 'https://preview.redd.it/kshkghcyxoye1.png?width=640&crop=smart&auto=webp&s=c66c4eab01ae508d363c06770d2b343749af3e76', 'width': 640}, {'height': 693, 'url': 'https://preview.redd.it/kshkghcyxoye1.png?width=960&crop=smart&auto=webp&s=9dc561931c5a433730097d5fa1437aef4e8b55b6', 'width': 960}, {'height': 780, 'url': 'https://preview.redd.it/kshkghcyxoye1.png?width=1080&crop=smart&auto=webp&s=b709cedbdf76beb5123c2b517ba7479ed728aeae', 'width': 1080}], 'source': {'height': 964, 'url': 'https://preview.redd.it/kshkghcyxoye1.png?auto=webp&s=2b92236070b0e3968c5a07fd661a8641d53c89f9', 'width': 1334}, 'variants': {}}]}
Quick shout-out to Qwen3-30b-a3b as a study tool for Calc2/3
90
Hi all, I know the recent Qwen launch has been glazed to death already, but I want to give extra praise and acclaim to this model when it comes to studying. Extremely fast responses of broad, complex topics which are otherwise explained by AWFUL lecturers with terrible speaking skills. Yes, it isnt as smart as the 32b alternative, but for explanations of concepts or integrations/derivations, it is more than enough AND 3x the speed. Thank you Alibaba, EEE student.
2025-05-04T04:35:32
https://www.reddit.com/r/LocalLLaMA/comments/1keblo7/quick_shoutout_to_qwen330ba3b_as_a_study_tool_for/
Skkeep
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1keblo7
false
null
t3_1keblo7
/r/LocalLLaMA/comments/1keblo7/quick_shoutout_to_qwen330ba3b_as_a_study_tool_for/
false
false
self
90
null
How do you actually run your local LLMs? Trying to map common setups.
1
[removed]
2025-05-04T04:54:51
https://www.reddit.com/r/LocalLLaMA/comments/1kebwkf/how_do_you_actually_run_your_local_llms_trying_to/
Repulsive_Factor_647
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kebwkf
false
null
t3_1kebwkf
/r/LocalLLaMA/comments/1kebwkf/how_do_you_actually_run_your_local_llms_trying_to/
false
false
self
1
null
Question about code blocks in Open WebUI
1
[removed]
2025-05-04T06:02:53
https://www.reddit.com/r/LocalLLaMA/comments/1kecxcm/question_about_code_blocks_in_open_webui/
DrVonSinistro
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kecxcm
false
null
t3_1kecxcm
/r/LocalLLaMA/comments/1kecxcm/question_about_code_blocks_in_open_webui/
false
false
self
1
null
Vibe-code any AI agent (by Langbase)
1
2025-05-04T06:12:34
https://chai.new
AngryBirdenator
chai.new
1970-01-01T00:00:00
0
{}
1ked2d4
false
null
t3_1ked2d4
/r/LocalLLaMA/comments/1ked2d4/vibecode_any_ai_agent_by_langbase/
false
false
https://b.thumbs.redditm…KZDmrJNTPY4Y.jpg
1
{'enabled': False, 'images': [{'id': 'oenbcRJZQzsWiR13IlNI41FzIt65JIbGOFsrtOpFZfY', 'resolutions': [{'height': 61, 'url': 'https://external-preview.redd.it/XN1EOquhcJqRNzvgrZNynrrtdqf3oLAeq5BqSUZQMVs.jpg?width=108&crop=smart&auto=webp&s=84cb2fad1da70346fce8b10a51cc1610d96a74ec', 'width': 108}, {'height': 123, 'url': 'https://external-preview.redd.it/XN1EOquhcJqRNzvgrZNynrrtdqf3oLAeq5BqSUZQMVs.jpg?width=216&crop=smart&auto=webp&s=ad38811c16b5508f5fb0ca6db18104602e0970ea', 'width': 216}, {'height': 183, 'url': 'https://external-preview.redd.it/XN1EOquhcJqRNzvgrZNynrrtdqf3oLAeq5BqSUZQMVs.jpg?width=320&crop=smart&auto=webp&s=ace3e8aa1d4930a1f7f58f28f19047fbd16792a6', 'width': 320}, {'height': 366, 'url': 'https://external-preview.redd.it/XN1EOquhcJqRNzvgrZNynrrtdqf3oLAeq5BqSUZQMVs.jpg?width=640&crop=smart&auto=webp&s=81eb5b242ab732f0e267679dead5c9f65913d589', 'width': 640}, {'height': 549, 'url': 'https://external-preview.redd.it/XN1EOquhcJqRNzvgrZNynrrtdqf3oLAeq5BqSUZQMVs.jpg?width=960&crop=smart&auto=webp&s=0638831e41c847b9cd4acc28e91e753e467ba02f', 'width': 960}, {'height': 618, 'url': 'https://external-preview.redd.it/XN1EOquhcJqRNzvgrZNynrrtdqf3oLAeq5BqSUZQMVs.jpg?width=1080&crop=smart&auto=webp&s=9c04463260cfdf3987bf55ff26e11974cc34b960', 'width': 1080}], 'source': {'height': 1978, 'url': 'https://external-preview.redd.it/XN1EOquhcJqRNzvgrZNynrrtdqf3oLAeq5BqSUZQMVs.jpg?auto=webp&s=348914e173170ebb39240c32735bb03ad68cc307', 'width': 3456}, 'variants': {}}]}
How to construct your own evals and learn about evaluations and benchmarking?
4
Hi! I'm recruiting for an MLE role for a company which focuses on evals and benchmarking. I suspect that the interviewing process + take-home assessment will focus a lot on these topics (duh), how can I get myself up-to-speed on how to create evals and benchmarks and all that? Sorry for the ambiguous question but any help would be appreciated<3 thank you!!
2025-05-04T06:13:57
https://www.reddit.com/r/LocalLLaMA/comments/1ked33d/how_to_construct_your_own_evals_and_learn_about/
darkGrayAdventurer
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ked33d
false
null
t3_1ked33d
/r/LocalLLaMA/comments/1ked33d/how_to_construct_your_own_evals_and_learn_about/
false
false
self
4
null
Qwen 3 32b vs QwQ 32b
53
This is a comparison I barely see and its slightly confusing too as QwQ is kinda a pure reasoning model while Qwen 3 is using reasoning by default but it can be deactivated. In some benchmarks QwQ is even better - so the only advantage of Qwen seems to be that you can use it without reasoning. I assume most benchmarks were done with the default so how good is it without reasoning? Any experience? Other advantages? Or does someone know benchmarks that explicitly test Qwen without reasoning?
2025-05-04T06:18:30
https://www.reddit.com/r/LocalLLaMA/comments/1ked5iy/qwen_3_32b_vs_qwq_32b/
nore_se_kra
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1ked5iy
false
null
t3_1ked5iy
/r/LocalLLaMA/comments/1ked5iy/qwen_3_32b_vs_qwq_32b/
false
false
self
53
null
Ryzen AI Max+ 395 + a gpu?
35
I see the Ryzen 395 Max+ spec sheet lists 16 PCIe 4.0 lanes. It’s also been use in some desktops. Is there any way to combine a max+ with a cheap 24gb GPU? Like an AMD 7900xtx or a 3090? I feel if you could put shared experts (llama 4) or most frequently used experts (qwen3) on the GPU the 395 max+ would be an absolute beast…
2025-05-04T06:31:04
https://www.reddit.com/r/LocalLLaMA/comments/1kedbv7/ryzen_ai_max_395_a_gpu/
Alarming-Ad8154
self.LocalLLaMA
1970-01-01T00:00:00
0
{}
1kedbv7
false
null
t3_1kedbv7
/r/LocalLLaMA/comments/1kedbv7/ryzen_ai_max_395_a_gpu/
false
false
self
35
null
Need a new roof or quick repair? Get free quotes from top-rated local roofers on Thumbtack
1
2025-05-04T06:38:15
https://homesmartprotection.shop/
No_Deal_6285
homesmartprotection.shop
1970-01-01T00:00:00
0
{}
1kedfjl
false
null
t3_1kedfjl
/r/LocalLLaMA/comments/1kedfjl/need_a_new_roof_or_quick_repair_get_free_quotes/
false
false
default
1
null