aditeyabaral-redis's picture
Update README.md
aa50dc6 verified
---
dataset_info:
- config_name: all
features:
- name: id
dtype: string
- name: source_idx
dtype: int32
- name: source
dtype: string
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 243710748
num_examples: 1047690
- name: validation
num_bytes: 1433292
num_examples: 8405
- name: test
num_bytes: 11398927
num_examples: 62021
download_size: 160607039
dataset_size: 256542967
- config_name: apt
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 530903.1791243993
num_examples: 3723
- name: test
num_bytes: 182156.5678033307
num_examples: 1252
download_size: 240272
dataset_size: 713059.74692773
- config_name: mrpc
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 903495.0
num_examples: 3668
- name: validation
num_bytes: 101391.0
num_examples: 408
- name: test
num_bytes: 423435.0
num_examples: 1725
download_size: 995440
dataset_size: 1428321.0
- config_name: parade
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 1708400.0
num_examples: 7550
- name: validation
num_bytes: 284794.0
num_examples: 1275
- name: test
num_bytes: 309763.0
num_examples: 1357
download_size: 769311
dataset_size: 2302957.0
- config_name: paws
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 150704304.0
num_examples: 645652
- name: test
num_bytes: 2332165.0
num_examples: 10000
download_size: 108607809
dataset_size: 153036469.0
- config_name: pit2015
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 1253905.0
num_examples: 13063
- name: validation
num_bytes: 429153.0
num_examples: 4727
- name: test
num_bytes: 87765.0
num_examples: 972
download_size: 595714
dataset_size: 1770823.0
- config_name: qqp
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 46898514.0
num_examples: 363846
- name: test
num_bytes: 5209024.0
num_examples: 40430
download_size: 34820387
dataset_size: 52107538.0
- config_name: sick
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 450269.0
num_examples: 4439
- name: validation
num_bytes: 51054.0
num_examples: 495
- name: test
num_bytes: 497312.0
num_examples: 4906
download_size: 346823
dataset_size: 998635.0
- config_name: stsb
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: int8
splits:
- name: train
num_bytes: 714548.0
num_examples: 5749
- name: validation
num_bytes: 205564.0
num_examples: 1500
- name: test
num_bytes: 160321.0
num_examples: 1379
download_size: 707092
dataset_size: 1080433.0
configs:
- config_name: all
data_files:
- split: train
path: all/train-*
- split: validation
path: all/validation-*
- split: test
path: all/test-*
- config_name: apt
data_files:
- split: train
path: apt/train-*
- split: test
path: apt/test-*
- config_name: mrpc
data_files:
- split: train
path: mrpc/train-*
- split: validation
path: mrpc/validation-*
- split: test
path: mrpc/test-*
- config_name: parade
data_files:
- split: train
path: parade/train-*
- split: validation
path: parade/validation-*
- split: test
path: parade/test-*
- config_name: paws
data_files:
- split: train
path: paws/train-*
- split: test
path: paws/test-*
- config_name: pit2015
data_files:
- split: train
path: pit2015/train-*
- split: validation
path: pit2015/validation-*
- split: test
path: pit2015/test-*
- config_name: qqp
data_files:
- split: train
path: qqp/train-*
- split: test
path: qqp/test-*
- config_name: sick
data_files:
- split: train
path: sick/train-*
- split: validation
path: sick/validation-*
- split: test
path: sick/test-*
- config_name: stsb
data_files:
- split: train
path: stsb/train-*
- split: validation
path: stsb/validation-*
- split: test
path: stsb/test-*
task_categories:
- text-classification
- sentence-similarity
- text-ranking
- text-retrieval
tags:
- english
- sentence-similarity
- sentence-pair-classification
- semantic-retrieval
- re-ranking
- information-retrieval
- embedding-training
- semantic-search
- paraphrase-detection
language:
- en
size_categories:
- 1M<n<10M
license: apache-2.0
pretty_name: RedisLangCache SentecePairs v1
---
# Redis LangCache Sentence Pairs Dataset
<!-- Provide a quick summary of the dataset. -->
A large, consolidated collection of English sentence pairs for training and evaluating semantic similarity, retrieval, and re-ranking models.
It merges widely used benchmarks into a single schema with consistent fields and ready-made splits.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Name:** langcache-sentencepairs-v1
- **Summary:** Sentence-pair dataset created to fine-tune encoder-based embedding and re-ranking models. It combines multiple high-quality corpora spanning diverse styles (short questions, long paraphrases, Twitter, adversarial pairs, technical queries, news headlines, etc.), with both positive and negative examples and preserved splits.
- **Curated by:** Redis
- **Shared by:** Aditeya Baral
- **Language(s):** English
- **License:** Apache-2.0
- **Homepage / Repository:** https://huggingface.co/datasets/redis/langcache-sentencepairs-v1
**Configs and coverage**
- **`all`**: Unified view over all sources with extra metadata columns (`id`, `source`, `source_idx`).
- **Source-specific configs:** `apt`, `mrpc`, `parade`, `paws`, `pit2015`, `qqp`, `sick`, `stsb`.
**Size & splits (overall)**
Total **~1.12M** pairs: **~1.05M train**, **8.4k validation**, **62k test**. See per-config sizes in the viewer.
### Dataset Sources
- **APT (Adversarial Paraphrasing Task)** β€” [Paper](https://aclanthology.org/2021.acl-long.552/) | [Dataset](https://github.com/Advancing-Machine-Human-Reasoning-Lab/apt)
- **MRPC (Microsoft Research Paraphrase Corpus)** β€” [Paper](https://aclanthology.org/I05-5002.pdf) | [Dataset](https://huggingface.co/datasets/glue/viewer/mrpc)
- **PARADE (Paraphrase Identification requiring Domain Knowledge)** β€” [Paper](https://aclanthology.org/2020.emnlp-main.611/) | [Dataset](https://github.com/heyunh2015/PARADE_dataset)
- **PAWS (Paraphrase Adversaries from Word Scrambling)** β€” [Paper](https://arxiv.org/abs/1904.01130) | [Dataset](https://huggingface.co/datasets/paws)
- **PIT2015 (SemEval 2015 Twitter Paraphrase)** β€” [Website](https://alt.qcri.org/semeval2015/task1/) | [Dataset](https://github.com/cocoxu/SemEval-PIT2015)
- **QQP (Quora Question Pairs)** β€” [Website](https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs) | [Dataset](https://huggingface.co/datasets/glue/viewer/qqp)
- **SICK (Sentences Involving Compositional Knowledge)** β€” [Website](http://marcobaroni.org/composes/sick.html) | [Dataset](https://zenodo.org/records/2787612)
- **STS-B (Semantic Textual Similarity Benchmark)** β€” [Website](https://alt.qcri.org/semeval2017/task1/) | [Dataset](https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb)
## Uses
- Train/fine-tune sentence encoders for **semantic retrieval** and **re-ranking**.
- Supervised **sentence-pair classification** tasks like paraphrase detection.
- Evaluation of **semantic similarity** and building general-purpose retrieval and ranking systems.
### Direct Use
```python
from datasets import load_dataset
# Unified corpus
ds = load_dataset("aditeyabaral-redis/langcache-sentencepairs-v1", "all")
# A single source, e.g., PAWS
paws = load_dataset("aditeyabaral-redis/langcache-sentencepairs-v1", "paws")
# Columns: sentence1, sentence2, label (+ idx, source_idx in 'all')
```
### Out-of-Scope Use
- **Non-English or multilingual modeling:** The dataset is entirely in English and will not perform well for training or evaluating multilingual models.
- **Uncalibrated similarity regression:** The STS-B portion has been integerized in this release, so it should not be used for fine-grained regression tasks requiring the original continuous similarity scores.
## Dataset Structure
**Fields**
* `sentence1` *(string)* β€” First sentence.
* `sentence2` *(string)* β€” Second sentence.
* `label` *(int64)* β€” Task label. `1` β‰ˆ paraphrase/similar, `0` β‰ˆ non-paraphrase/dissimilar. For sources with continuous similarity (e.g., STS-B), labels are integerized in this release; consult the source subset if you need original continuous scores.
* *(config `all` only)*:
* `id` *(string)* β€” Dataset identifier. Follows the pattern `langcache_{split}_{row number}`.
* `source` *(string)* β€” Source dataset name.
* `source_idx` *(int64)* β€” Source-local row id.
**Splits**
* `train`, `validation` (where available), `test` β€” original dataset splits preserved whenever provided by the source.
**Schemas by config**
* `all`: 5 columns (`idx`, `source_idx`, `sentence1`, `sentence2`, `label`).
* All other configs: 3 columns (`sentence1`, `sentence2`, `label`).
## Dataset Creation
### Curation Rationale
To fine-tune stronger encoder models for retrieval and re-ranking, we curated a large, diverse pool of labeled sentence pairs (positives & negatives) covering multiple real-world styles and domains.
Consolidating canonical benchmarks into a single schema reduces engineering overhead and encourages generalization beyond any single dataset.
### Source Data
#### Data Collection and Processing
* Ingested each selected dataset and **preserved original splits** when available.
* Normalized to a common schema; no manual relabeling was performed.
* Merged into `all` with added `source` and `source_idx` for traceability.
#### Who are the source data producers?
Original creators of the upstream datasets (e.g., Microsoft Research for MRPC, Quora for QQP, Google Research for PAWS, etc.).
#### Personal and Sensitive Information
The corpus may include public-text sentences that mention people, organizations, or places (e.g., news, Wikipedia, tweets). It is **not** intended for identifying or inferring sensitive attributes of individuals. If you require strict PII controls, filter or exclude sources accordingly before downstream use.
## Bias, Risks, and Limitations
* **Label noise:** Some sources include **noisily labeled** pairs (e.g., PAWS large weakly-labeled set).
* **Granularity mismatch:** STS-B's continuous similarity is represented as integers here; treat with care if you need fine-grained scoring.
* **English-only:** Not suitable for multilingual evaluation without adaptation.
### Recommendations
- Use the `all` configuration for large-scale training, but be aware that some datasets dominate in size (e.g., PAWS, QQP). Apply **sampling or weighting** if you want balanced learning across domains.
- Treat **STS-B labels** with caution: they are integerized in this release. For regression-style similarity scoring, use the original STS-B dataset.
- This dataset is **best suited for training retrieval and re-ranking models**. Avoid re-purposing it for unrelated tasks (e.g., user profiling, sensitive attribute prediction, or multilingual training).
- Track the `source` field (in the `all` config) during training to analyze how performance varies by dataset type, which can guide fine-tuning or domain adaptation.
## Citation
If you use this dataset, please cite the Hugging Face entry and the original upstream datasets you rely on.
**BibTeX:**
```bibtex
@misc{langcache_sentencepairs_v1_2025,
title = {langcache-sentencepairs-v1},
author = {Baral, Aditeya and Redis},
howpublished = {\url{https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1}},
year = {2025},
note = {Version 1}
}
```
## Dataset Card Authors
Aditeya Baral
## Dataset Card Contact
[[email protected]](mailto:[email protected])