Datasets:
Formats:
parquet
Languages:
English
Size:
1M - 10M
ArXiv:
Tags:
english
sentence-similarity
sentence-pair-classification
semantic-retrieval
re-ranking
information-retrieval
License:
dataset_info: | |
- config_name: all | |
features: | |
- name: id | |
dtype: string | |
- name: source_idx | |
dtype: int32 | |
- name: source | |
dtype: string | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 243710748 | |
num_examples: 1047690 | |
- name: validation | |
num_bytes: 1433292 | |
num_examples: 8405 | |
- name: test | |
num_bytes: 11398927 | |
num_examples: 62021 | |
download_size: 160607039 | |
dataset_size: 256542967 | |
- config_name: apt | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 530903.1791243993 | |
num_examples: 3723 | |
- name: test | |
num_bytes: 182156.5678033307 | |
num_examples: 1252 | |
download_size: 240272 | |
dataset_size: 713059.74692773 | |
- config_name: mrpc | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 903495.0 | |
num_examples: 3668 | |
- name: validation | |
num_bytes: 101391.0 | |
num_examples: 408 | |
- name: test | |
num_bytes: 423435.0 | |
num_examples: 1725 | |
download_size: 995440 | |
dataset_size: 1428321.0 | |
- config_name: parade | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 1708400.0 | |
num_examples: 7550 | |
- name: validation | |
num_bytes: 284794.0 | |
num_examples: 1275 | |
- name: test | |
num_bytes: 309763.0 | |
num_examples: 1357 | |
download_size: 769311 | |
dataset_size: 2302957.0 | |
- config_name: paws | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 150704304.0 | |
num_examples: 645652 | |
- name: test | |
num_bytes: 2332165.0 | |
num_examples: 10000 | |
download_size: 108607809 | |
dataset_size: 153036469.0 | |
- config_name: pit2015 | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 1253905.0 | |
num_examples: 13063 | |
- name: validation | |
num_bytes: 429153.0 | |
num_examples: 4727 | |
- name: test | |
num_bytes: 87765.0 | |
num_examples: 972 | |
download_size: 595714 | |
dataset_size: 1770823.0 | |
- config_name: qqp | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 46898514.0 | |
num_examples: 363846 | |
- name: test | |
num_bytes: 5209024.0 | |
num_examples: 40430 | |
download_size: 34820387 | |
dataset_size: 52107538.0 | |
- config_name: sick | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 450269.0 | |
num_examples: 4439 | |
- name: validation | |
num_bytes: 51054.0 | |
num_examples: 495 | |
- name: test | |
num_bytes: 497312.0 | |
num_examples: 4906 | |
download_size: 346823 | |
dataset_size: 998635.0 | |
- config_name: stsb | |
features: | |
- name: sentence1 | |
dtype: string | |
- name: sentence2 | |
dtype: string | |
- name: label | |
dtype: int8 | |
splits: | |
- name: train | |
num_bytes: 714548.0 | |
num_examples: 5749 | |
- name: validation | |
num_bytes: 205564.0 | |
num_examples: 1500 | |
- name: test | |
num_bytes: 160321.0 | |
num_examples: 1379 | |
download_size: 707092 | |
dataset_size: 1080433.0 | |
configs: | |
- config_name: all | |
data_files: | |
- split: train | |
path: all/train-* | |
- split: validation | |
path: all/validation-* | |
- split: test | |
path: all/test-* | |
- config_name: apt | |
data_files: | |
- split: train | |
path: apt/train-* | |
- split: test | |
path: apt/test-* | |
- config_name: mrpc | |
data_files: | |
- split: train | |
path: mrpc/train-* | |
- split: validation | |
path: mrpc/validation-* | |
- split: test | |
path: mrpc/test-* | |
- config_name: parade | |
data_files: | |
- split: train | |
path: parade/train-* | |
- split: validation | |
path: parade/validation-* | |
- split: test | |
path: parade/test-* | |
- config_name: paws | |
data_files: | |
- split: train | |
path: paws/train-* | |
- split: test | |
path: paws/test-* | |
- config_name: pit2015 | |
data_files: | |
- split: train | |
path: pit2015/train-* | |
- split: validation | |
path: pit2015/validation-* | |
- split: test | |
path: pit2015/test-* | |
- config_name: qqp | |
data_files: | |
- split: train | |
path: qqp/train-* | |
- split: test | |
path: qqp/test-* | |
- config_name: sick | |
data_files: | |
- split: train | |
path: sick/train-* | |
- split: validation | |
path: sick/validation-* | |
- split: test | |
path: sick/test-* | |
- config_name: stsb | |
data_files: | |
- split: train | |
path: stsb/train-* | |
- split: validation | |
path: stsb/validation-* | |
- split: test | |
path: stsb/test-* | |
task_categories: | |
- text-classification | |
- sentence-similarity | |
- text-ranking | |
- text-retrieval | |
tags: | |
- english | |
- sentence-similarity | |
- sentence-pair-classification | |
- semantic-retrieval | |
- re-ranking | |
- information-retrieval | |
- embedding-training | |
- semantic-search | |
- paraphrase-detection | |
language: | |
- en | |
size_categories: | |
- 1M<n<10M | |
license: apache-2.0 | |
pretty_name: RedisLangCache SentecePairs v1 | |
# Redis LangCache Sentence Pairs Dataset | |
<!-- Provide a quick summary of the dataset. --> | |
A large, consolidated collection of English sentence pairs for training and evaluating semantic similarity, retrieval, and re-ranking models. | |
It merges widely used benchmarks into a single schema with consistent fields and ready-made splits. | |
## Dataset Details | |
### Dataset Description | |
<!-- Provide a longer summary of what this dataset is. --> | |
- **Name:** langcache-sentencepairs-v1 | |
- **Summary:** Sentence-pair dataset created to fine-tune encoder-based embedding and re-ranking models. It combines multiple high-quality corpora spanning diverse styles (short questions, long paraphrases, Twitter, adversarial pairs, technical queries, news headlines, etc.), with both positive and negative examples and preserved splits. | |
- **Curated by:** Redis | |
- **Shared by:** Aditeya Baral | |
- **Language(s):** English | |
- **License:** Apache-2.0 | |
- **Homepage / Repository:** https://huggingface.co/datasets/redis/langcache-sentencepairs-v1 | |
**Configs and coverage** | |
- **`all`**: Unified view over all sources with extra metadata columns (`id`, `source`, `source_idx`). | |
- **Source-specific configs:** `apt`, `mrpc`, `parade`, `paws`, `pit2015`, `qqp`, `sick`, `stsb`. | |
**Size & splits (overall)** | |
Total **~1.12M** pairs: **~1.05M train**, **8.4k validation**, **62k test**. See per-config sizes in the viewer. | |
### Dataset Sources | |
- **APT (Adversarial Paraphrasing Task)** β [Paper](https://aclanthology.org/2021.acl-long.552/) | [Dataset](https://github.com/Advancing-Machine-Human-Reasoning-Lab/apt) | |
- **MRPC (Microsoft Research Paraphrase Corpus)** β [Paper](https://aclanthology.org/I05-5002.pdf) | [Dataset](https://huggingface.co/datasets/glue/viewer/mrpc) | |
- **PARADE (Paraphrase Identification requiring Domain Knowledge)** β [Paper](https://aclanthology.org/2020.emnlp-main.611/) | [Dataset](https://github.com/heyunh2015/PARADE_dataset) | |
- **PAWS (Paraphrase Adversaries from Word Scrambling)** β [Paper](https://arxiv.org/abs/1904.01130) | [Dataset](https://huggingface.co/datasets/paws) | |
- **PIT2015 (SemEval 2015 Twitter Paraphrase)** β [Website](https://alt.qcri.org/semeval2015/task1/) | [Dataset](https://github.com/cocoxu/SemEval-PIT2015) | |
- **QQP (Quora Question Pairs)** β [Website](https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs) | [Dataset](https://huggingface.co/datasets/glue/viewer/qqp) | |
- **SICK (Sentences Involving Compositional Knowledge)** β [Website](http://marcobaroni.org/composes/sick.html) | [Dataset](https://zenodo.org/records/2787612) | |
- **STS-B (Semantic Textual Similarity Benchmark)** β [Website](https://alt.qcri.org/semeval2017/task1/) | [Dataset](https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb) | |
## Uses | |
- Train/fine-tune sentence encoders for **semantic retrieval** and **re-ranking**. | |
- Supervised **sentence-pair classification** tasks like paraphrase detection. | |
- Evaluation of **semantic similarity** and building general-purpose retrieval and ranking systems. | |
### Direct Use | |
```python | |
from datasets import load_dataset | |
# Unified corpus | |
ds = load_dataset("aditeyabaral-redis/langcache-sentencepairs-v1", "all") | |
# A single source, e.g., PAWS | |
paws = load_dataset("aditeyabaral-redis/langcache-sentencepairs-v1", "paws") | |
# Columns: sentence1, sentence2, label (+ idx, source_idx in 'all') | |
``` | |
### Out-of-Scope Use | |
- **Non-English or multilingual modeling:** The dataset is entirely in English and will not perform well for training or evaluating multilingual models. | |
- **Uncalibrated similarity regression:** The STS-B portion has been integerized in this release, so it should not be used for fine-grained regression tasks requiring the original continuous similarity scores. | |
## Dataset Structure | |
**Fields** | |
* `sentence1` *(string)* β First sentence. | |
* `sentence2` *(string)* β Second sentence. | |
* `label` *(int64)* β Task label. `1` β paraphrase/similar, `0` β non-paraphrase/dissimilar. For sources with continuous similarity (e.g., STS-B), labels are integerized in this release; consult the source subset if you need original continuous scores. | |
* *(config `all` only)*: | |
* `id` *(string)* β Dataset identifier. Follows the pattern `langcache_{split}_{row number}`. | |
* `source` *(string)* β Source dataset name. | |
* `source_idx` *(int64)* β Source-local row id. | |
**Splits** | |
* `train`, `validation` (where available), `test` β original dataset splits preserved whenever provided by the source. | |
**Schemas by config** | |
* `all`: 5 columns (`idx`, `source_idx`, `sentence1`, `sentence2`, `label`). | |
* All other configs: 3 columns (`sentence1`, `sentence2`, `label`). | |
## Dataset Creation | |
### Curation Rationale | |
To fine-tune stronger encoder models for retrieval and re-ranking, we curated a large, diverse pool of labeled sentence pairs (positives & negatives) covering multiple real-world styles and domains. | |
Consolidating canonical benchmarks into a single schema reduces engineering overhead and encourages generalization beyond any single dataset. | |
### Source Data | |
#### Data Collection and Processing | |
* Ingested each selected dataset and **preserved original splits** when available. | |
* Normalized to a common schema; no manual relabeling was performed. | |
* Merged into `all` with added `source` and `source_idx` for traceability. | |
#### Who are the source data producers? | |
Original creators of the upstream datasets (e.g., Microsoft Research for MRPC, Quora for QQP, Google Research for PAWS, etc.). | |
#### Personal and Sensitive Information | |
The corpus may include public-text sentences that mention people, organizations, or places (e.g., news, Wikipedia, tweets). It is **not** intended for identifying or inferring sensitive attributes of individuals. If you require strict PII controls, filter or exclude sources accordingly before downstream use. | |
## Bias, Risks, and Limitations | |
* **Label noise:** Some sources include **noisily labeled** pairs (e.g., PAWS large weakly-labeled set). | |
* **Granularity mismatch:** STS-B's continuous similarity is represented as integers here; treat with care if you need fine-grained scoring. | |
* **English-only:** Not suitable for multilingual evaluation without adaptation. | |
### Recommendations | |
- Use the `all` configuration for large-scale training, but be aware that some datasets dominate in size (e.g., PAWS, QQP). Apply **sampling or weighting** if you want balanced learning across domains. | |
- Treat **STS-B labels** with caution: they are integerized in this release. For regression-style similarity scoring, use the original STS-B dataset. | |
- This dataset is **best suited for training retrieval and re-ranking models**. Avoid re-purposing it for unrelated tasks (e.g., user profiling, sensitive attribute prediction, or multilingual training). | |
- Track the `source` field (in the `all` config) during training to analyze how performance varies by dataset type, which can guide fine-tuning or domain adaptation. | |
## Citation | |
If you use this dataset, please cite the Hugging Face entry and the original upstream datasets you rely on. | |
**BibTeX:** | |
```bibtex | |
@misc{langcache_sentencepairs_v1_2025, | |
title = {langcache-sentencepairs-v1}, | |
author = {Baral, Aditeya and Redis}, | |
howpublished = {\url{https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1}}, | |
year = {2025}, | |
note = {Version 1} | |
} | |
``` | |
## Dataset Card Authors | |
Aditeya Baral | |
## Dataset Card Contact | |
[[email protected]](mailto:[email protected]) |