text
stringlengths
1
2.05k
use core::integer; use orion::numbers::fixed_point::implementations::fp8x23wide::math::lut; use orion::numbers::fixed_point::implementations::fp8x23wide::core::{ HALF, ONE, TWO, FP8x23W, FP8x23WImpl, FP8x23WAdd, FP8x23WSub, FP8x23WMul, FP8x23WDiv, FP8x23WIntoFelt252, FixedTrait }; const TWO_PI: u64 = 52707178; const PI: u64 = 26353589; const HALF_PI: u64 = 13176795; fn acos(a: FP8x23W) -> FP8x23W { let asin_arg = (FixedTrait::ONE() - a * a).sqrt(); let asin_res = asin(asin_arg); if (a.sign) { FixedTrait::new(PI, false) - asin_res } else { asin_res } } fn acos_fast(a: FP8x23W) -> FP8x23W { let asin_arg = (FixedTrait::ONE() - a * a).sqrt(); let asin_res = asin_fast(asin_arg); if (a.sign) { FixedTrait::new(PI, false) - asin_res } else { asin_res } } fn asin(a: FP8x23W) -> FP8x23W { if (a.mag == ONE) { return FixedTrait::new(HALF_PI, a.sign); } let div = (FixedTrait::ONE() - a * a).sqrt(); atan(a / div) } fn asin_fast(a: FP8x23W) -> FP8x23W { if (a.mag == ONE) { return FixedTrait::new(HALF_PI, a.sign); } let div = (FixedTrait::ONE() - a * a).sqrt(); atan_fast(a / div) } fn atan(a: FP8x23W) -> FP8x23W { let mut at = a.abs(); let mut shift = false; let mut invert = false; if (at.mag > ONE) { at = FixedTrait::ONE() / at; invert = true; } if (at.mag > 5872026) { let sqrt3_3 = FixedTrait::new(4843165, false); at = (at - sqrt3_3) / (FixedTrait::ONE() + at * sqrt3_3); shift = true; } let r10 = FixedTrait::new(15363, true) * at; let r9 = (r10 + FixedTrait::new(392482, true)) * at; let r8 = (r9 + FixedTrait::new(1629064, false)) * at; let r7 = (r8 + FixedTrait::new(2197820, true)) * at; let r6 = (r7 + FixedTrait::new(366693, false)) * at; let r5 = (r6 + FixedTrait::new(1594324, false)) * at; let r4 = (r5 + FixedTrait::new(11519, false)) * at; let r3 = (r4 + Fixed
Trait::new(2797104, true)) * at; let r2 = (r3 + FixedTrait::new(34, false)) * at; let mut res = (r2 + FixedTrait::new(8388608, false)) * at; if (shift) { res = res + FixedTrait::new(4392265, false); } if (invert) { res = res - FixedTrait::new(HALF_PI, false); } FixedTrait::new(res.mag, a.sign) } fn atan_fast(a: FP8x23W) -> FP8x23W { let mut at = a.abs(); let mut shift = false; let mut invert = false; if (at.mag > ONE) { at = FixedTrait::ONE() / at; invert = true; } if (at.mag > 5872026) { let sqrt3_3 = FixedTrait::new(4843165, false); at = (at - sqrt3_3) / (FixedTrait::ONE() + at * sqrt3_3); shift = true; } let (start, low, high) = lut::atan(at.mag); let partial_step = FixedTrait::new(at.mag - start, false) / FixedTrait::new(58720, false); let mut res = partial_step * FixedTrait::new(high - low, false) + FixedTrait::new(low, false); if (shift) { res = res + FixedTrait::new(4392265, false); } if (invert) { res = res - FixedTrait::<FP8x23W>::new(HALF_PI, false); } FixedTrait::new(res.mag, a.sign) } fn cos(a: FP8x23W) -> FP8x23W { sin(FixedTrait::new(HALF_PI, false) - a) } fn cos_fast(a: FP8x23W) -> FP8x23W { sin_fast(FixedTrait::new(HALF_PI, false) - a) } fn sin(a: FP8x23W) -> FP8x23W { let a1 = a.mag % TWO_PI; let (whole_rem, partial_rem) = integer::u64_safe_divmod(a1, integer::u64_as_non_zero(PI)); let a2 = FixedTrait::new(partial_rem, false); let partial_sign = whole_rem == 1; let loop_res = a2 * _sin_loop(a2, 7, FixedTrait::ONE()); FixedTrait::new(loop_res.mag, a.sign ^ partial_sign && loop_res.mag != 0) } fn sin_fast(a: FP8x23W) -> FP8x23W { let a1 = a.mag % TWO_PI; let (whole_rem, mut partial_rem) = integer::u64_safe_divmod(a1, integer::u64_as_non_zero(PI)); let partial_sign = whole_rem == 1; if partial_rem >= HALF_PI { partial_rem = PI - partial_rem; }
let (start, low, high) = lut::sin(partial_rem); let partial_step = FixedTrait::new(partial_rem - start, false) / FixedTrait::new(51472, false); let res = partial_step * (FixedTrait::new(high, false) - FixedTrait::new(low, false)) + FixedTrait::<FP8x23W>::new(low, false); FixedTrait::new(res.mag, a.sign ^ partial_sign && res.mag != 0) } fn tan(a: FP8x23W) -> FP8x23W { let sinx = sin(a); let cosx = cos(a); assert(cosx.mag != 0, 'tan undefined'); sinx / cosx } fn tan_fast(a: FP8x23W) -> FP8x23W { let sinx = sin_fast(a); let cosx = cos_fast(a); assert(cosx.mag != 0, 'tan undefined'); sinx / cosx } fn _sin_loop(a: FP8x23W, i: u64, acc: FP8x23W) -> FP8x23W { let div = (2 * i + 2) * (2 * i + 3); let term = a * a * acc / FixedTrait::new_unscaled(div, false); let new_acc = FixedTrait::ONE() - term; if (i == 0) { return new_acc; } _sin_loop(a, i - 1, new_acc) } mod tests { use orion::numbers::fixed_point::implementations::fp8x23wide::helpers::{ assert_precise, assert_relative }; use super::{ FixedTrait, acos, HALF_PI, ONE, acos_fast, PI, atan_fast, atan, asin, cos, cos_fast, sin, sin_fast, tan };
fn test_acos() { let error = Option::Some(84); let a = FixedTrait::ONE(); assert(acos(a).into() == 0, 'invalid one'); let a = FixedTrait::new(ONE / 2, false); assert_relative(acos(a), 8784530, 'invalid half', error); let a = FixedTrait::ZERO(); assert_relative(acos(a), HALF_PI.into(), 'invalid zero', Option::None(())); let a = FixedTrait::new(ONE / 2, true); assert_relative(acos(a), 17569060, 'invalid neg half', error); let a = FixedTrait::new(ONE, true); assert_relative(acos(a), PI.into(), 'invalid neg one', Option::None(())); }
fn test_acos_fast() { let error = Option::Some(84); let a = FixedTrait::ONE(); assert(acos_fast(a).into() == 0, 'invalid one'); let a = FixedTrait::new(ONE / 2, false); assert_relative(acos_fast(a), 8784530, 'invalid half', error); let a = FixedTrait::ZERO(); assert_relative(acos_fast(a), HALF_PI.into(), 'invalid zero', Option::None(())); let a = FixedTrait::new(ONE / 2, true); assert_relative(acos_fast(a), 17569060, 'invalid neg half', error); let a = FixedTrait::new(ONE, true); assert_relative(acos_fast(a), PI.into(), 'invalid neg one', Option::None(())); }
fn test_acos_fail() { let a = FixedTrait::new(2 * ONE, true); acos(a); }
fn test_atan_fast() { let error = Option::Some(84); let a = FixedTrait::new(2 * ONE, false); assert_relative(atan_fast(a), 9287437, 'invalid two', error); let a = FixedTrait::ONE(); assert_relative(atan_fast(a), 6588397, 'invalid one', error); let a = FixedTrait::new(ONE / 2, false); assert_relative(atan_fast(a), 3889358, 'invalid half', error); let a = FixedTrait::ZERO(); assert(atan_fast(a).into() == 0, 'invalid zero'); let a = FixedTrait::new(ONE / 2, true); assert_relative(atan_fast(a), -3889358, 'invalid neg half', error); let a = FixedTrait::new(ONE, true); assert_relative(atan_fast(a), -6588397, 'invalid neg one', error); let a = FixedTrait::new(2 * ONE, true); assert_relative(atan_fast(a), -9287437, 'invalid neg two', error); }
fn test_atan() { let a = FixedTrait::new(2 * ONE, false); assert_relative(atan(a), 9287437, 'invalid two', Option::None(())); let a = FixedTrait::ONE(); assert_relative(atan(a), 6588397, 'invalid one', Option::None(())); let a = FixedTrait::new(ONE / 2, false); assert_relative(atan(a), 3889358, 'invalid half', Option::None(())); let a = FixedTrait::ZERO(); assert(atan(a).into() == 0, 'invalid zero'); let a = FixedTrait::new(ONE / 2, true); assert_relative(atan(a), -3889358, 'invalid neg half', Option::None(())); let a = FixedTrait::new(ONE, true); assert_relative(atan(a), -6588397, 'invalid neg one', Option::None(())); let a = FixedTrait::new(2 * ONE, true); assert_relative(atan(a), -9287437, 'invalid neg two', Option::None(())); }
fn test_asin() { let error = Option::Some(84); let a = FixedTrait::ONE(); assert_relative(asin(a), HALF_PI.into(), 'invalid one', Option::None(())); let a = FixedTrait::new(ONE / 2, false); assert_relative(asin(a), 4392265, 'invalid half', error); let a = FixedTrait::ZERO(); assert_precise(asin(a), 0, 'invalid zero', Option::None(())); let a = FixedTrait::new(ONE / 2, true); assert_relative(asin(a), -4392265, 'invalid neg half', error); let a = FixedTrait::new(ONE, true); assert_relative(asin(a), -HALF_PI.into(), 'invalid neg one', Option::None(())); }
fn test_asin_fail() { let a = FixedTrait::new(2 * ONE, false); asin(a); }
fn test_cos() { let a = FixedTrait::new(HALF_PI, false); assert(cos(a).into() == 0, 'invalid half pi'); let a = FixedTrait::new(HALF_PI / 2, false); assert_relative( cos(a), 5931642, 'invalid quarter pi', Option::None(()) ); let a = FixedTrait::new(PI, false); assert_relative(cos(a), -1 * ONE.into(), 'invalid pi', Option::None(())); let a = FixedTrait::new(HALF_PI, true); assert_precise(cos(a), 0, 'invalid neg half pi', Option::None(())); let a = FixedTrait::new_unscaled(17, false); assert_relative(cos(a), -2308239, 'invalid 17', Option::None(())); let a = FixedTrait::new_unscaled(17, true); assert_relative(cos(a), -2308236, 'invalid -17', Option::None(())); }
fn test_cos_fast() { let error = Option::Some(84); let a = FixedTrait::new(HALF_PI, false); assert(cos_fast(a).into() == 0, 'invalid half pi'); let a = FixedTrait::new(HALF_PI / 2, false); assert_precise(cos_fast(a), 5931642, 'invalid quarter pi', error); let a = FixedTrait::new(PI, false); assert_precise(cos_fast(a), -1 * ONE.into(), 'invalid pi', error); let a = FixedTrait::new(HALF_PI, true); assert_precise(cos(a), 0, 'invalid neg half pi', Option::None(())); let a = FixedTrait::new_unscaled(17, false); assert_precise(cos_fast(a), -2308239, 'invalid 17', error); }
fn test_sin() { let a = FixedTrait::new(HALF_PI, false); assert_precise(sin(a), ONE.into(), 'invalid half pi', Option::None(())); let a = FixedTrait::new(HALF_PI / 2, false); assert_precise( sin(a), 5931642, 'invalid quarter pi', Option::None(()) ); let a = FixedTrait::new(PI, false); assert(sin(a).into() == 0, 'invalid pi'); let a = FixedTrait::new(HALF_PI, true); assert_precise( sin(a), -ONE.into(), 'invalid neg half pi', Option::None(()) ); let a = FixedTrait::new_unscaled(17, false); assert_precise(sin(a), -8064787, 'invalid 17', Option::None(())); let a = FixedTrait::new_unscaled(17, true); assert_precise(sin(a), 8064787, 'invalid -17', Option::None(())); }
fn test_sin_fast() { let error = Option::Some(84); let a = FixedTrait::new(HALF_PI, false); assert_precise(sin_fast(a), ONE.into(), 'invalid half pi', error); let a = FixedTrait::new(HALF_PI / 2, false); assert_precise(sin_fast(a), 5931642, 'invalid quarter pi', error); let a = FixedTrait::new(PI, false); assert(sin_fast(a).into() == 0, 'invalid pi'); let a = FixedTrait::new(HALF_PI, true); assert_precise( sin_fast(a), -ONE.into(), 'invalid neg half pi', error ); let a = FixedTrait::new_unscaled(17, false); assert_precise(sin_fast(a), -8064787, 'invalid 17', error); let a = FixedTrait::new_unscaled(17, true); assert_precise(sin_fast(a), 8064787, 'invalid -17', error); }
fn test_tan() { let a = FixedTrait::new(HALF_PI / 2, false); assert_precise(tan(a), ONE.into(), 'invalid quarter pi', Option::None(())); let a = FixedTrait::new(PI, false); assert_precise(tan(a), 0, 'invalid pi', Option::None(())); let a = FixedTrait::new_unscaled(17, false); assert_precise(tan(a), 29309069, 'invalid 17', Option::None(())); let a = FixedTrait::new_unscaled(17, true); assert_precise(tan(a), -29309106, 'invalid -17', Option::None(())); } }
use core::integer; const HALF_PRIME: felt252 = 1809251394333065606848661391547535052811553607665798349986546028067936010240; // Returns the sign of a signed `felt252` as with signed magnitude representation // true = negative // false = positive fn felt_sign(a: felt252) -> bool { integer::u256_from_felt252(a) > integer::u256_from_felt252(HALF_PRIME) } // Returns the absolute value of a signed `felt252` fn felt_abs(a: felt252) -> felt252 { let a_sign = felt_sign(a); if a_sign { return a * -1; } else { return a * 1; } } #[cfg(test)] mod tests { use super::{felt_sign, felt_abs}; #[test] fn test_sign() { let min = -1809251394333065606848661391547535052811553607665798349986546028067936010240; let max = 1809251394333065606848661391547535052811553607665798349986546028067936010240; assert(felt_sign(min), 'invalid result'); assert(felt_sign(-1), 'invalid result'); assert(!felt_sign(0), 'invalid result'); assert(!felt_sign(1), 'invalid result'); assert(!felt_sign(max), 'invalid result'); } #[test] fn test_abs() { assert(felt_abs(5) == 5, 'abs of pos should be pos'); assert(felt_abs(-5) == 5, 'abs of neg should be pos'); assert(felt_abs(0) == 0, 'abs of 0 should be 0'); } }
mod tensor; mod nn; mod ml; mod matrix; mod vec; mod sequence;
use orion::numbers::NumberTrait; use orion::operators::vec::{VecTrait, NullableVec, NullableVecImpl}; struct MutMatrix<T> { data: NullableVec<T>, rows: usize, cols: usize, } impl MutMatrixDestruct<T, +Drop<T>> of Destruct<MutMatrix<T>> { fn destruct(self: MutMatrix<T>) nopanic { self.data.destruct() } } impl MutMatrixImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T> > of MutMatrixTrait<T> { fn new(rows: usize, cols: usize) -> MutMatrix<T> { MutMatrix { data: NullableVecImpl::new(), rows: rows, cols: cols } } fn get(ref self: MutMatrix<T>, row: usize, col: usize) -> Option<T> { if row >= self.rows || col >= self.cols { Option::None } else { self.data.get(row * self.cols + col) } } fn at(ref self: MutMatrix<T>, row: usize, col: usize) -> T { match self.get(row, col) { Option::Some(val) => val, Option::None => NumberTrait::zero(), } } fn matrix_vector_product<+Mul<T>, +Add<T>, +Div<T>, +AddEq<T>>( ref self: MutMatrix<T>, ref vec: NullableVec<T> ) -> NullableVec<T> { assert(self.cols == vec.len, 'wrong matrix shape for dot'); let m = self.rows; let n = self.cols; let mut result_vec = VecTrait::new(); let mut i = 0_usize; while i != m { let mut sum: T = NumberTrait::zero(); let mut k = 0_usize; while k != n { sum += MutMatrixImpl::at(ref self, i, k) * VecTrait::at(ref vec, k); k += 1; }; VecTrait::set(ref result_vec, i, sum); i += 1; }; result_vec }
fn set(ref self: MutMatrix<T>, row: usize, col: usize, value: T) { if row < self.rows && col < self.cols { let index = row * self.cols + col; self.data.set(index, value) } } fn shape(self: MutMatrix<T>) -> (usize, usize) { (self.rows, self.cols) } fn argmax(ref self: MutMatrix<T>, axis: usize) -> Span<usize> { assert(axis < 2, 'Invalid axis'); let mut result: Array<usize> = ArrayTrait::new(); if axis == 0 { let mut col: usize = 0; while col != self.cols { let mut max_value = self.get(0, col); let mut max_value = match max_value { Option::Some => { max_value.unwrap() }, Option::None => { NumberTrait::min_value() } }; let mut max_index = 0; let mut row: usize = 1; while row != self.rows { let mut value = self.get(row, col); let mut value = match value { Option::Some => { value.unwrap() }, Option::None => { NumberTrait::min_value() } }; if value > max_value { max_value = value; max_index = row; } row += 1; }; result.append(max_index); col += 1; }; return result.span(); } let mut row: usize = 0; while row != self.rows { let mut max_value = self.get(row, 0); let mut max_value = match max_value { Option::Some => { max_value.unwrap() }, Option::None => { NumberTrait::min_value() } }; let mut max_index = 0; let mut col: usize = 1; while col != self.cols { let mut value = self.get(row, col); let mut value = match valu
e { Option::Some => { value.unwrap() }, Option::None => { NumberTrait::min_value() } }; if value > max_value { max_value = value; max_index = col; } col += 1; }; result.append(max_index); row += 1; }; result.span() } fn softmax<+AddEq<T>, +Div<T>>(ref self: MutMatrix<T>, axis: usize) -> MutMatrix<T> { assert(axis < 2, 'Invalid axis'); let mut result = MutMatrixImpl::new(self.rows, self.cols); if axis == 0 { let mut col: usize = 0; while col != self.cols { let mut sum_exp = NumberTrait::zero(); let mut row: usize = 0; while row != self.rows { let value = self.get(row, col).unwrap().into(); sum_exp += value.exp(); row += 1; }; row = 0; while row != self.rows { let value = self.get(row, col).unwrap().into(); let softmax_value = (value.exp() / sum_exp).into(); result.set(row, col, softmax_value); row += 1; }; col += 1; }; } else { let mut row: usize = 0; while row != self.rows { let mut sum_exp = NumberTrait::zero(); let mut col: usize = 0; while col != self.cols { let value = self.get(row, col).unwrap().into(); sum_exp += value.exp(); col += 1; }; col = 0; while col != self.cols { let value = self.get(row, col).unwrap().into(); let softmax_value = (value.exp() / sum_exp).into(); result.set(row, col, softmax_value);
col += 1; }; row += 1; }; } result } fn softmax_zero<+AddEq<T>, +Div<T>, +PartialEq<T>>( ref self: MutMatrix<T>, axis: usize ) -> MutMatrix<T> { assert(axis < 2, 'Invalid axis'); let mut result = MutMatrixImpl::new(self.rows, self.cols); if axis == 0 { let mut col: usize = 0; while col != self.cols { let mut sum_exp = NumberTrait::zero(); let mut row: usize = 0; while row != self.rows { let value = self.get(row, col).unwrap().into(); if value != NumberTrait::zero() { sum_exp += value.exp(); } row += 1; }; row = 0; while row != self.rows { let value = self.get(row, col).unwrap().into(); if value != NumberTrait::zero() { let softmax_value = (value.exp() / sum_exp).into(); result.set(row, col, softmax_value); } else { result.set(row, col, NumberTrait::zero()); } row += 1; }; col += 1; }; } else { let mut row: usize = 0; while row != self.rows { let mut sum_exp = NumberTrait::zero(); let mut col: usize = 0; while col != self.cols { let value = self.get(row, col).unwrap().into(); if value != NumberTrait::zero() { sum_exp += value.exp(); } col += 1; }; col = 0; while col != self.cols { let value = self.get(row, col).unwrap().into(); if value != NumberTrait::zero() { let sof
tmax_value = (value.exp() / sum_exp).into(); result.set(row, col, softmax_value); } else { result.set(row, col, NumberTrait::zero()); } col += 1; }; row += 1; }; } result } fn sigmoid<+Mul<T>, +Add<T>, +Div<T>>(ref self: MutMatrix<T>) -> MutMatrix<T> { let mut result = MutMatrixImpl::new(self.rows, self.cols); let mut row: usize = 0; while row != self.rows { let mut col: usize = 0; while col != self.cols { let value = self.get(row, col); if value.is_some() { let value = NumberTrait::one() / (NumberTrait::one() + (value.unwrap() * NumberTrait::neg_one()).exp()); result.set(row, col, value); } col += 1; }; row += 1; }; result } }
mod tree_ensemble; mod linear; mod svm; mod normalizer; use orion::operators::ml::tree_ensemble::core::{ TreeEnsemble, TreeEnsembleAttributes, TreeEnsembleImpl, NODE_MODES }; use orion::operators::ml::tree_ensemble::tree_ensemble_classifier::{ TreeEnsembleClassifier, TreeEnsembleClassifierImpl, TreeEnsembleClassifierTrait }; use orion::operators::ml::tree_ensemble::tree_ensemble_regressor::{ TreeEnsembleRegressor, TreeEnsembleRegressorImpl, TreeEnsembleRegressorTrait, AGGREGATE_FUNCTION }; use orion::operators::ml::linear::linear_regressor::{ LinearRegressorTrait, LinearRegressorImpl, LinearRegressor }; use orion::operators::ml::linear::linear_classifier::{ LinearClassifierTrait, LinearClassifierImpl, LinearClassifier }; use orion::operators::ml::normalizer::normalizer::{NormalizerTrait, NORM}; #[derive(Copy, Drop)] enum POST_TRANSFORM { NONE, SOFTMAX, LOGISTIC, SOFTMAXZERO, PROBIT, }
mod linear_regressor; mod linear_classifier;
use core::array::ArrayTrait; use core::array::SpanTrait; use orion::numbers::FP16x16; use orion::operators::tensor::{Tensor, TensorTrait}; use orion::numbers::NumberTrait; use orion::operators::tensor::{I8Tensor, I32Tensor, U32Tensor, FP16x16Tensor, FP16x16TensorAdd}; use orion::numbers::{FP32x32, FP32x32Impl, FixedTrait}; use orion::operators::nn::{NNTrait, FP16x16NN}; use orion::operators::ml::POST_TRANSFORM; struct LinearClassifier<T> { classlabels: Option<Span<usize>>, coefficients: Span<T>, intercepts: Option<Span<T>>, multi_class: usize, post_transform: POST_TRANSFORM, } trait LinearClassifierTrait<T> { fn predict(classifier: LinearClassifier<T>, X: Tensor<T>) -> (Span<usize>, Tensor<T>); } impl LinearClassifierImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, +Add<Tensor<T>>, +NNTrait<T> > of LinearClassifierTrait<T> { fn predict(classifier: LinearClassifier<T>, X: Tensor<T>) -> (Span<usize>, Tensor<T>) { let n: usize = classifier.coefficients.len() / *(X.shape).at(1); let mut shape = ArrayTrait::<usize>::new(); shape.append(n); shape.append(*(X.shape).at(1)); let mut coefficients = TensorTrait::new(shape.span(), classifier.coefficients); let coefficients = coefficients.transpose(array![1, 0].span()); let mut scores = X.matmul(@coefficients); mat
ch classifier.intercepts { Option::Some(intercepts) => { let mut shape = ArrayTrait::<usize>::new(); shape.append(1); shape.append(intercepts.len()); let intercepts = TensorTrait::new(shape.span(), intercepts); scores = TensorTrait::add(scores, intercepts); }, Option::None => {}, }; let (n_classes, classlabels) = match classifier.classlabels { Option::Some(classlabels) => { (classlabels.len(), classlabels) }, Option::None => { (0, ArrayTrait::<usize>::new().span()) }, }; if *coefficients.shape.at(1) == 1 && n_classes == 2 { let mut new_scores = array![]; loop { match scores.data.pop_front() { Option::Some(item) => { new_scores.append(NumberTrait::neg(*item)); new_scores.append(*item); }, Option::None => { break; }, } }; scores = TensorTrait::new(array![*scores.shape.at(0), 2].span(), new_scores.span()); } scores = match classifier.post_transform { POST_TRANSFORM::NONE => { scores }, POST_TRANSFORM::SOFTMAX => { NNTrait::softmax(@scores, Option::Some(1)) }, POST_TRANSFORM::LOGISTIC => { NNTrait::sigmoid(@scores) }, POST_TRANSFORM::SOFTMAXZERO => { NNTrait::softmax_zero(@scores, 1) }, POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not supported yet'), }; let mut labels_list = array![]; if *scores.shape.at(1) > 1 { let mut labels = scores.argmax(1, Option::None, Option::None); loop { match labels.data.pop_front() { Option::Some(i) => { labels_list.append(*classlabels[(*i).try_into().unwrap()]); }, Option::None
=> { break; } }; }; } else { let mut i = 0; match classifier.post_transform { POST_TRANSFORM::NONE => { while i != scores .data .len() { if *scores.data.at(i) >= NumberTrait::zero() { labels_list.append(*classlabels[0]); } else { labels_list.append(0); } i += 1; }; }, POST_TRANSFORM::SOFTMAX => { while i != scores .data .len() { if *scores.data.at(i) >= NumberTrait::half() { labels_list.append(*classlabels[0]); } else { labels_list.append(0); } i += 1; }; }, POST_TRANSFORM::LOGISTIC => { while i != scores .data .len() { if *scores.data.at(i) >= NumberTrait::half() { labels_list.append(*classlabels[0]); } else { labels_list.append(0); } i += 1; }; }, POST_TRANSFORM::SOFTMAXZERO => { while i != scores .data .len() { if *scores.data.at(i) >= NumberTrait::half() { labels_list.append(*classlabels[0]); } else { labels_list.append(0); }
i += 1; }; }, POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not supported yet'), }; } (labels_list.span(), scores) } } fn max(a: usize, b: usize) -> usize { if a > b { a } else { b } }
use core::array::ArrayTrait; use core::clone::Clone; use core::traits::Into; use core::array::SpanTrait; use core::dict::Felt252DictTrait; use core::dict::Felt252DictEntryTrait; use orion::numbers::FP16x16; use orion::operators::tensor::{Tensor, TensorTrait}; use orion::numbers::NumberTrait; use orion::operators::tensor::{I8Tensor, I32Tensor, U32Tensor, FP16x16Tensor, FP16x16TensorAdd}; use orion::numbers::{FP32x32, FP32x32Impl, FixedTrait}; use core::debug::PrintTrait; use orion::operators::nn::{NNTrait, FP16x16NN}; use orion::operators::ml::POST_TRANSFORM; struct LinearRegressor<T> { coefficients: Span<T>, intercepts: Option<Span<T>>, target: usize, post_transform: POST_TRANSFORM, } trait LinearRegressorTrait<T> { fn predict(regressor: LinearRegressor<T>, X: Tensor<T>) -> Tensor<T>; } impl LinearRegressorImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, +Add<Tensor<T>>, +NNTrait<T>, > of LinearRegressorTrait<T> { fn predict(regressor: LinearRegressor<T>, X: Tensor<T>) -> Tensor<T> { let n: usize = regressor.coefficients.len() / regressor.target; let mut shape = ArrayTrait::<usize>::new(); shape.append(regressor.targe
t); shape.append(n); let mut coefficients = TensorTrait::new(shape.span(), regressor.coefficients); let coefficients = coefficients.transpose(array![1, 0].span()); let mut score = X.matmul(@coefficients); match regressor.intercepts { Option::Some(intercepts) => { let mut shape: Array<usize> = array![]; shape.append(1); shape.append(intercepts.len()); let intercepts = TensorTrait::new(shape.span(), intercepts); score = TensorTrait::add(score, intercepts); }, Option::None => {}, }; let score = match regressor.post_transform { POST_TRANSFORM::NONE => score, POST_TRANSFORM::SOFTMAX => NNTrait::softmax(@score, Option::Some(1)), POST_TRANSFORM::LOGISTIC => NNTrait::sigmoid(@score), POST_TRANSFORM::SOFTMAXZERO => NNTrait::softmax_zero(@score, 1), POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not supported yet'), }; score } }
mod normalizer;
use core::array::ArrayTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::{TensorTrait, Tensor}; enum NORM { MAX, L1, L2, } trait NormalizerTrait<T> { fn predict(X: Tensor<T>, norm: NORM) -> Tensor<T>; } impl NormalizerImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +TensorTrait<T>, +AddEq<T>, +Div<Tensor<T>>, +Mul<T> > of NormalizerTrait<T> { fn predict(X: Tensor<T>, norm: NORM) -> Tensor<T> { assert(X.shape.len() == 2, 'input should be 2D: NxC'); let normalized_tensor = match norm { NORM::MAX => { norm_max(X) }, NORM::L1 => { norm_l1(X) }, NORM::L2 => { norm_l2(X) }, }; return normalized_tensor; } } fn norm_max< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, +PartialOrd<T>, +Div<Tensor<T>>, >( X: Tensor<T> ) -> Tensor<T> { let div_data = reduce_max_2D_axis_1(X.abs()); let div = TensorTrait::new( array![*X.shape.at(0), (div_data.len() / *X.shape.at(0))].span(), div_data ); let epsillon = TensorTrait::new(array![1, 1].span(), array![NumberTrait::from_felt(1)].span()); let safe_div = TensorTrait::max(tensors: array![div, epsillon].span()); return X / safe_div; } fn norm_l1< T, MAG, +Drop<T>, +Copy<T>, +AddEq<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, +PartialOrd<T>, +Div<Tensor<T>>, >( X: Tensor<T> ) -> Tensor<T> { let div_data = reduce_sum_2D_axis_1(X.abs()); let div = TensorTrait::new( array![*X.shape.at(0), (div_data.len() / *X.shape.at(0))].span(), div_data ); let epsi
llon = TensorTrait::new(array![1, 1].span(), array![NumberTrait::from_felt(1)].span()); let safe_div = TensorTrait::max(tensors: array![div, epsillon].span()); return X / safe_div; } fn norm_l2< T, MAG, +Drop<T>, +Copy<T>, +AddEq<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, +PartialOrd<T>, +Div<Tensor<T>>, +Mul<T> >( X: Tensor<T> ) -> Tensor<T> { let div_data = reduce_sum_2D_axis_1(square(X)); let div = TensorTrait::new( array![*X.shape.at(0), (div_data.len() / *X.shape.at(0))].span(), div_data ); let epsillon = TensorTrait::new(array![1, 1].span(), array![NumberTrait::from_felt(1)].span()); let safe_div = TensorTrait::max(tensors: array![div.sqrt(), epsillon].span()); return X / safe_div; } fn reduce_max_2D_axis_1< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, +PartialOrd<T>, >( X: Tensor<T> ) -> Span<T> { let mut new_data = ArrayTrait::new(); let N = *X.shape.at(0); let C = *X.shape.at(1); let mut i = 0; while i != N { let max = max(SpanTrait::slice(X.data, i * C, C)); new_data.append(max); i += 1; }; return new_data.span(); } fn max<T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, +PartialOrd<T>,>( mut a: Span<T> ) -> T { assert(a.len() > 0, 'span cannot be empty'); let mut max = *a.at(0); loop { match a.pop_front() { Option::Some(v) => { if *v > max { max = *v; }; }, Option::None => { break max; } }; } } fn sum<T, MAG, +Drop<T>, +Copy<T>, +AddEq<T>, +NumberTrait<T, MAG>,>(mut a: Span<T>) -> T { assert(a.len() > 0, 'span cannot be empty'); let mut sum = NumberTrait::zero(); loop { match a.pop_front() { Option::Some(v) => { sum += *v; }, Option::None => { break sum; } }; } } fn square< T, MAG, +Drop<T>, +Copy<T>, +AddEq<T>, +NumberTrait<T, MAG>, +Tenso
rTrait<T>, +PartialOrd<T>, +Mul<T> >( mut a: Tensor<T> ) -> Tensor<T> { let mut arr = ArrayTrait::new(); loop { match a.data.pop_front() { Option::Some(v) => { arr.append(*v * *v); }, Option::None => { break TensorTrait::new(a.shape, arr.span()); } }; } } fn reduce_sum_2D_axis_1< T, MAG, +Drop<T>, +Copy<T>, +AddEq<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, >( X: Tensor<T> ) -> Span<T> { let mut new_data = ArrayTrait::new(); let N = *X.shape.at(0); let C = *X.shape.at(1); let mut i = 0; while i != N { let sum = sum(SpanTrait::slice(X.data, i * C, C)); new_data.append(sum); i += 1; }; return new_data.span(); }
mod core; mod svm_regressor; mod svm_classifier;
use orion::numbers::NumberTrait; use orion::numbers::{FP16x16, FP16x16Impl, FP32x32, FP32x32Impl, FixedTrait}; use orion::operators::tensor::{ TensorTrait, Tensor, I8Tensor, I32Tensor, U32Tensor, FP16x16Tensor, BoolTensor }; use orion::utils::get_row; #[derive(Copy, Drop)] enum KERNEL_TYPE { LINEAR, POLY, RBF, SIGMOID, } fn kernel_dot< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, +Neg<T>, +Sub<T>, >( kernel_params: Span<T>, pA: Span<T>, pB: Span<T>, kernel: KERNEL_TYPE ) -> T { let s = match kernel { KERNEL_TYPE::LINEAR => sv_dot(pA, pB), KERNEL_TYPE::POLY => { let mut s = sv_dot(pA, pB); s = s * *kernel_params.at(0) + *kernel_params.at(1); s.pow(*kernel_params.at(2)) }, KERNEL_TYPE::RBF => { let mut s = squared_diff(pA, pB); NumberTrait::exp(-*kernel_params.at(0) * s) }, KERNEL_TYPE::SIGMOID => { let mut s = sv_dot(pA, pB); s = s * *kernel_params.at(0) + *kernel_params.at(1); NumberTrait::tanh(s) }, }; s } fn sv_dot< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, >( pA: Span<T>, pB: Span<T> ) -> T { let mut i = 0; let mut sum = NumberTrait::zero(); while i != pA.len() { sum = sum + *pA.at(i) * *pB.at(i); i += 1; }; sum } fn squared_diff< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, +Sub<T>, >( pA: Span<T>, pB: Span<T> ) -> T { let mut i = 0; let mut sum = NumberTrait::zero(); while i != pA.len() { sum = sum + (*pA.at(i) - *pB.at(i)).pow(NumberTrait::one() + NumberTrait::one()); i += 1; }; sum }
use core::array::ArrayTrait; use orion::numbers::NumberTrait; use orion::operators::tensor::{ TensorTrait, Tensor, I8Tensor, I32Tensor, U32Tensor, FP16x16Tensor, BoolTensor }; use orion::numbers::{FP16x16, FP16x16Impl, FP32x32, FP32x32Impl, FixedTrait}; use orion::operators::vec::{VecTrait, NullableVec, NullableVecImpl}; use orion::operators::matrix::{MutMatrix, MutMatrixImpl}; use orion::numbers::{FP64x64, FP64x64Impl}; use orion::operators::tensor::implementations::tensor_fp64x64::{FP64x64Tensor}; use orion::operators::nn::{NNTrait, FP16x16NN, FP64x64NN}; use orion::utils::get_row; use orion::operators::ml::svm::core::{kernel_dot, KERNEL_TYPE}; use orion::operators::ml::POST_TRANSFORM; struct SVMClassifier<T> { classlabels: Span<usize>, coefficients: Span<T>, kernel_params: Span<T>, kernel_type: KERNEL_TYPE, post_transform: POST_TRANSFORM, prob_a: Span<T>, prob_b: Span<T>, rho: Span<T>, support_vectors: Span<T>, vectors_per_class: Option<Span<usize>>, } enum MODE { SVM_LINEAR, SVM_SVC, } trait SVMClassifierTrait<T> {
fn predict(ref self: SVMClassifier<T>, X: Tensor<T>) -> (Span<usize>, Tensor<T>); } impl SVMClassifierImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Into<usize, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, +Neg<T>, +Sub<T>, +NNTrait<T>, > of SVMClassifierTrait<T> { fn predict(ref self: SVMClassifier<T>, X: Tensor<T>) -> (Span<usize>, Tensor<T>) { let mut vector_count_ = 0; let class_count_ = max(self.classlabels.len(), 1); let mut starting_vector_: Array<usize> = array![]; let (vectors_per_class_, starting_vector_) = match self.vectors_per_class { Option::Some(vectors_per_class) => { let mut i = 0; while i != vectors_per_class.len() { starting_vector_.append(vector_count_); vector_count_ += *vectors_per_class.at(i); i += 1; }; (vectors_per_class, starting_vector_.span()) }, Option::None => { (array![].span(), array![].span()) }, }; let (mode, kernel_type_, sv, coefs) = if vector_count_ > 0 { let mode = MODE::SVM_SVC; let kernel_type_ = self.kernel_type; let sv = TensorTrait::new( array![vector_count_, self.support_vectors.len() / vector_count_].span(), self.support_vectors ); let coefs = TensorTrait::new( array![self.coefficients.len() / vector_count_, vector_count_].span(), self.coefficients ); (mode, kernel_type_, sv, coefs) } else { let mode = MODE::SVM_LINEAR; let kernel_type_ = KERNEL_TYPE::LINEAR; let sv = TensorTrait::new( array![self.support_vectors.len()].span(), self.support_vectors ); let coefs = TensorTrait::
new( array![class_count_, self.coefficients.len() / class_count_].span(), self.coefficients ); (mode, kernel_type_, sv, coefs) }; let weights_are_all_positive_ = (min(self.coefficients) >= NumberTrait::zero()); let (res, votes) = match mode { MODE::SVM_LINEAR => { let mut res: Array<T> = array![]; let mut n = 0; while n != *X.shape.at(0) { let mut x_n = get_row(@X, n); let scores = run_linear(ref self, x_n, coefs, class_count_, kernel_type_); let mut i = 0; while i != scores.len() { res.append(*scores.at(i)); i += 1; }; n += 1; }; ( TensorTrait::new(array![*X.shape.at(0), class_count_].span(), res.span()), Option::None ) }, MODE::SVM_SVC => { let mut res: Array<T> = array![]; let mut votes: Array<T> = array![]; let mut n = 0; while n != *X.shape.at(0) { let mut x_n = get_row(@X, n); let (scores, mut vote) = run_svm( ref self, x_n, sv, vector_count_, kernel_type_, class_count_, starting_vector_, coefs, vectors_per_class_ ); let mut i = 0; while i != scores.len() { res.append(*scores.at(i)); i += 1; }; let mut i = 0; while i != vote.len() { votes.append(vote.at(i));
i += 1; }; n += 1; }; ( TensorTrait::new( array![*X.shape.at(0), class_count_ * (class_count_ - 1) / 2].span(), res.span() ), Option::Some( TensorTrait::new(array![*X.shape.at(0), class_count_].span(), votes.span()) ) ) }, }; let (scores, has_proba) = match mode { MODE::SVM_LINEAR => { (res, false) }, MODE::SVM_SVC => { let (scores, has_proba) = if self.prob_a.len() > 0 { let mut scores: Array<T> = array![]; let mut n = 0; while n != *res.shape.at(0) { let res_n = get_row(@res, n); let mut s = probablities(ref self, res_n, class_count_); let mut i = 0; while i != s.len() { scores.append(s.at(i)); i += 1; }; n += 1; }; ( TensorTrait::new( array![*res.shape.at(0), scores.len() / *res.shape.at(0)].span(), scores.span() ), true ) } else { (res, false) }; (scores, has_proba) }, }; let mut labels: Array<usize> = array![]; let mut final_scores: Array<T> = array![]; let mut n = 0; while n != *scores.shape.at(0) { let mut scores_n = get_row(@scores, n); match votes { Option::Some(votes) => { let mut votes_n = get_row(@votes, n); let (label, new_scores) = c
ompute_final_scores( ref self, votes_n, scores_n, weights_are_all_positive_, has_proba, self.classlabels ); let mut i = 0; while i != new_scores.data.len() { final_scores.append(*new_scores.data.at(i)); i += 1; }; labels.append(label); }, Option::None => { let (label, new_scores) = compute_final_scores( ref self, array![].span(), scores_n, weights_are_all_positive_, has_proba, self.classlabels ); let mut i = 0; while i != new_scores.data.len() { final_scores.append(*new_scores.data.at(i)); i += 1; }; labels.append(label); }, } n += 1; }; let labels = labels.span(); if self.classlabels.len() > 0 { let mut class_labels: Array<usize> = array![]; let mut i = 0; while i != labels.len() { class_labels.append(*self.classlabels.at(*labels.at(i))); i += 1; }; return ( class_labels.span(), TensorTrait::new( array![*X.shape.at(0), final_scores.len() / *X.shape.at(0)].span(), final_scores.span() ) ); } ( labels, TensorTrait::new( array![*X.shape.at(0), final_scores.len() / *X.shape.at(0)].span(), final_scores.span() ) ) } } fn run_svm<
T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, +Neg<T>, +Sub<T>, +PartialOrd<T>, >( ref self: SVMClassifier<T>, X: Span<T>, sv: Tensor<T>, vector_count_: usize, kernel: KERNEL_TYPE, class_count_: usize, starting_vector_: Span<usize>, coefs: Tensor<T>, vectors_per_class_: Span<usize> ) -> (Array<T>, NullableVec<T>) { let mut evals = 0; let mut kernels: Array<T> = array![]; let mut j = 0; while j != vector_count_ { let sv_j = get_row(@sv, j); kernels.append(kernel_dot(self.kernel_params, X, sv_j, kernel)); j += 1; }; let kernels = kernels.span(); let mut scores: Array<T> = array![]; let mut votes = VecTrait::new(); VecTrait::set(ref votes, class_count_ - 1, NumberTrait::zero()); let mut i = 0; while i != class_count_ { let si_i = *starting_vector_.at(i); let class_i_sc = *vectors_per_class_.at(i); let mut j = i + 1; while j != class_count_ { let si_j = *starting_vector_.at(j); let class_j_sc = *vectors_per_class_.at(j); let s1 = dot_start_end( coefs.data, kernels, (j - 1) * *coefs.shape.at(0) + si_i, (j - 1) * *coefs.shape.at(0) + si_i + class_i_sc, si_i, si_i + class_i_sc ); let s2 = dot_start_end( coefs.data, kernels, i * *coefs.shape.at(0) + si_j, i * *coefs.shape.at(0) + si_j + class_j_sc, si_j, si_j + class_j_sc ); let s = *self.rho.at(evals) + s1 + s2; scores.append(s); if s > NumberTrait::zero() { VecTrait::set(ref votes, i, VecTrait::at(ref votes, i) + NumberTrait::one()); } else { VecTrait::set(ref votes, j, VecTrait::at(ref votes,
j) + NumberTrait::one()); } evals += 1; j += 1; }; i += 1; }; (scores, votes) } fn run_linear< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, +Neg<T>, +Sub<T>, >( ref self: SVMClassifier<T>, X: Span<T>, coefs: Tensor<T>, class_count_: usize, kernel: KERNEL_TYPE ) -> Array<T> { let mut scores: Array<T> = array![]; let mut j = 0; while j != class_count_ { let coefs_j = get_row(@coefs, j); let d = kernel_dot(self.kernel_params, X, coefs_j, kernel); let score = *self.rho.at(0) + d; scores.append(score); j += 1; }; scores } fn compute_final_scores< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +NNTrait<T>, +Into<usize, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, +Neg<T>, +Sub<T>, +Div<T>, +PartialOrd<T>, >( ref self: SVMClassifier<T>, votes: Span<T>, scores: Span<T>, weights_are_all_positive_: bool, has_proba: bool, classlabels: Span<usize> ) -> (usize, Tensor<T>) { let (max_class, max_weight) = if votes.len() > 0 { let max_class = argmax_span(votes); let max_weight = *votes.at(max_class); (max_class, max_weight) } else { let max_class = argmax_span(scores); let max_weight = *scores.at(max_class); (max_class, max_weight) }; let (label, write_additional_scores) = if self.rho.len() == 1 { let (label, write_additional_scores) = set_score_svm( max_weight, max_class, weights_are_all_positive_, has_proba, classlabels, 1, 0 ); (label, write_additional_scores) } else if classlabels.len() > 0 { let label = *classlabels.at(max_class); (label, 4) } else { (max_class, 4) }; let new_scores = write_scores( scores.len(), TensorTrait::new(array![
scores.len()].span(), scores), self.post_transform, write_additional_scores ); (label, new_scores) } fn write_scores< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, +PartialOrd<T>, +NNTrait<T>, +Neg<T>, +Sub<T>, >( n_classes: usize, scores: Tensor<T>, post_transform: POST_TRANSFORM, add_second_class: usize ) -> Tensor<T> { let new_scores = if n_classes >= 2 { let new_scores = match post_transform { POST_TRANSFORM::NONE => scores, POST_TRANSFORM::SOFTMAX => NNTrait::softmax(@scores, Option::Some(0)), POST_TRANSFORM::LOGISTIC => NNTrait::sigmoid(@scores), POST_TRANSFORM::SOFTMAXZERO => NNTrait::softmax_zero(@scores, 0), POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not supported yet'), }; new_scores } else { let new_scores = match post_transform { POST_TRANSFORM::NONE => { let scores = if add_second_class == 0 || add_second_class == 1 { TensorTrait::new( array![2].span(), array![NumberTrait::one() - *scores.data.at(0), *scores.data.at(0)].span() ) } else if add_second_class == 2 || add_second_class == 3 { TensorTrait::new( array![2].span(), array![-*scores.data.at(0), *scores.data.at(0)].span() ) } else { TensorTrait::new(array![1].span(), array![*scores.data.at(0)].span()) }; scores }, POST_TRANSFORM::SOFTMAX => { let scores = if add_second_class == 0 || add_second_class == 1 { TensorTrait::new( array![2].span(), array![NumberTrait::one() - *scores.data.at(0), *scores.data.at(0)].span() ) } else if add_second_cla
ss == 2 || add_second_class == 3 { NNTrait::softmax( @TensorTrait::new( array![2].span(), array![-*scores.data.at(0), *scores.data.at(0)].span() ), Option::Some(0) ) } else { TensorTrait::new(array![1].span(), array![*scores.data.at(0)].span()) }; scores }, POST_TRANSFORM::LOGISTIC => { let scores = if add_second_class == 0 || add_second_class == 1 { TensorTrait::new( array![2].span(), array![NumberTrait::one() - *scores.data.at(0), *scores.data.at(0)].span() ) } else if add_second_class == 2 || add_second_class == 3 { NNTrait::sigmoid( @TensorTrait::new( array![2].span(), array![-*scores.data.at(0), *scores.data.at(0)].span() ) ) } else { TensorTrait::new(array![1].span(), array![*scores.data.at(0)].span()) }; scores }, POST_TRANSFORM::SOFTMAXZERO => { let scores = if add_second_class == 0 || add_second_class == 1 { TensorTrait::new( array![2].span(), array![NumberTrait::one() - *scores.data.at(0), *scores.data.at(0)].span() ) } else if add_second_class == 2 || add_second_class == 3 { NNTrait::softmax_zero( @TensorTrait::new( array![2].span(), array![-*scores.data.at(0), *scores.data.at(0)].span() ), 0 ) } else {
TensorTrait::new(array![1].span(), array![*scores.data.at(0)].span()) }; scores }, POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not applicable here.'), }; new_scores }; new_scores } fn set_score_svm< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +TensorTrait<T>, +PartialOrd<T>, >( max_weight: T, maxclass: usize, weights_are_all_positive_: bool, has_proba: bool, classlabels: Span<usize>, posclass: usize, negclass: usize ) -> (usize, usize) { let mut write_additional_scores = 0; if classlabels.len() == 2 { write_additional_scores = 2; if !has_proba { if weights_are_all_positive_ && max_weight >= NumberTrait::half() { return (*classlabels.at(1), write_additional_scores); }; }; return (*classlabels.at(maxclass), write_additional_scores); } if max_weight >= NumberTrait::zero() { return (posclass, write_additional_scores); }; (negclass, write_additional_scores) } fn argmax_span<T, +Drop<T>, +Copy<T>, +PartialOrd<T>,>(span: Span<T>) -> usize { let mut max = 0; let mut i = 0; while i != span.len() { if *span.at(i) > *span.at(max) { max = i; } i += 1; }; max } fn probablities< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Into<usize, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, +Neg<T>, +Sub<T>, +Div<T>, +PartialOrd<T>, >( ref self: SVMClassifier<T>, scores: Span<T>, class_count_: usize ) -> NullableVec<T> { let mut probsp2: MutMatrix<T> = MutMatrixImpl::new(class_count_, class_count_); let mut index = 0; let mut i = 0; while i != class_count_ { let mut j = i + 1; while j != class_count_ { let val1 = sigmoid_probability( *scores.at(index), *self.prob_a.at(index), *self.prob_b.at(index)
); let mut val2 = NumberTrait::min( val1, NumberTrait::one() ); probsp2.set(i, j, val2); probsp2.set(j, i, NumberTrait::one() - val2); j += 1; index += 1; }; i += 1; }; multiclass_probability(class_count_, ref probsp2) } fn multiclass_probability< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +Add<T>, +Mul<T>, +Div<T>, +Sub<T>, +Neg<T>, +AddEq<T>, +Into<usize, MAG>, >( k: usize, ref R: MutMatrix<T> ) -> NullableVec<T> { let max_iter = max(100, k); let k_fp = NumberTrait::<T>::new_unscaled(k.into(), false); let mut Q: MutMatrix<T> = MutMatrixImpl::new(k, k); MutMatrixImpl::set(ref Q, k - 1, k - 1, NumberTrait::zero()); let mut P = VecTrait::new(); VecTrait::set(ref P, k - 1, NumberTrait::zero()); let a: usize = 100; let eps = (NumberTrait::half() / NumberTrait::new_unscaled(a.into(), false)) / k_fp; let mut t = 0; while t != k { VecTrait::set(ref P, t, NumberTrait::one() / k_fp); let mut i = 0; let mut acc1 = NumberTrait::zero(); while i != t { let r_i = MutMatrixImpl::at(ref R, i, t); acc1 += r_i * r_i; i += 1; }; MutMatrixImpl::set(ref Q, t, t, acc1); let mut i = 0; while i != t { MutMatrixImpl::set(ref Q, t, i, MutMatrixImpl::at(ref Q, i, t)); i += 1; }; let mut i = t + 1; let mut acc2 = NumberTrait::zero(); while i != k { let r_i = MutMatrixImpl::at(ref R, i, t); acc2 += r_i * r_i; i += 1; }; MutMatrixImpl::set(ref Q, t, t, acc1 + acc2); let mut i = t + 1; let mut acc = NumberTrait::zero(); while i != k { acc += -MutMatrixImpl::at(ref R, i, t) * MutMatrixImpl::at(ref R, t, i); i += 1; }; let mut i
= t + 1; while i != k { MutMatrixImpl::set(ref Q, t, i, acc); i += 1; }; t += 1; }; let mut i = 0; while i != max_iter { let mut Qp = MutMatrixImpl::matrix_vector_product(ref Q, ref P); let mut pQp = dot(ref P, ref Qp); let mut max_error = NumberTrait::zero(); let mut t = 0; while t != k { let error = NumberTrait::abs(Qp.at(t) - pQp); if error > max_error { max_error = error; } t += 1; }; if max_error < eps { break; } let mut t = 0; while t != k { let diff = (-VecTrait::at(ref Qp, t) + pQp) / MutMatrixImpl::at(ref Q, t, t); VecTrait::set(ref P, t, VecTrait::at(ref P, t) + diff); pQp = (pQp + diff * (diff * MutMatrixImpl::at(ref Q, t, t) + (NumberTrait::one() + NumberTrait::one()) * VecTrait::at(ref Qp, t))) / ((NumberTrait::one() + diff) * (NumberTrait::one() + diff)); div_element_wise(ref P, NumberTrait::one() + diff); Qp_computation(ref Q, ref Qp, diff, t); t += 1; }; i += 1; }; P } fn Qp_computation< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +Mul<T>, +Add<T>, +Div<T>, +AddEq<T> >( ref Q: MutMatrix<T>, ref Qp: NullableVec<T>, diff: T, t: usize ) { let m = Qp.len; let mut i = 0_usize; while i != m { let elem = (VecTrait::at(ref Qp, i) + diff * MutMatrixImpl::at(ref Q, t, i)) / (NumberTrait::one() + diff); VecTrait::set(ref Qp, i, elem); i += 1; }; } fn sigmoid_probability< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +Add<T>, +Mul<T>, +Div<T>, +Sub<T>, +Neg<T>, >( score: T, prob_a: T, prob_b: T ) -
> T { let val = score * prob_a + prob_b; let mut v = NumberTrait::one() / (NumberTrait::one() + NumberTrait::exp(-NumberTrait::abs(val))); v = if val < NumberTrait::zero() { NumberTrait::one() - v } else { v }; NumberTrait::one() - v } fn max(a: usize, b: usize) -> usize { if a > b { return a; }; b } fn min<T, +Copy<T>, +Drop<T>, +PartialOrd<T>,>(a: Span<T>) -> T { let mut min = *a.at(0); let mut i = 0; while i != a.len() { if min > *a.at(i) { min = *a.at(i); } i += 1; }; min } fn dot_start_end< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, >( pA: Span<T>, pB: Span<T>, a_start: usize, a_end: usize, b_start: usize, b_end: usize ) -> T { let mut sum = NumberTrait::zero(); let mut index_a = a_start; let mut index_b = b_start; while index_a != a_end && index_b != b_end { sum = sum + *pA.at(index_a) * *pB.at(index_b); index_a += 1; index_b += 1; }; sum } fn sv_dot< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, >( pA: Span<T>, pB: Span<T> ) -> T { let mut i = 0; let mut sum = NumberTrait::zero(); while i != pA.len() { sum = sum + *pA.at(i) * *pB.at(i); i += 1; }; sum } fn squared_diff< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Add<T>, +TensorTrait<T>, +AddEq<T>, +Mul<T>, +Sub<T>, >( pA: Span<T>, pB: Span<T> ) -> T { let mut i = 0; let mut sum = NumberTrait::zero(); while i != pA.len() { sum = sum + (*pA.at(i) - *pB.at(i)).pow(NumberTrait::one() + NumberTrait::one()); i += 1; }; sum } fn dot<T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +Mul<T>, +AddEq<T>, +Add<T>, +Div<T>>( ref self: NullableVec<T>, ref vec: NullableVec<T> ) -> T { assert(self.len == vec.len, 'wrong vec len for dot prod
'); let n = self.len; let mut sum: T = NumberTrait::zero(); let mut i = 0_usize; while i != n { sum += self.at(i) * vec.at(i); i += 1; }; sum } fn div_element_wise<T, MAG, +Mul<T>, +Add<T>, +Div<T>, +NumberTrait<T, MAG>, +Drop<T>, +Copy<T>>( ref self: NullableVec<T>, elem: T ) { let m = self.len; let mut i = 0_usize; while i != m { VecTrait::set(ref self, i, VecTrait::at(ref self, i) / elem); i += 1; }; }
use core::traits::TryInto; use core::array::ArrayTrait; use core::array::SpanTrait; use core::traits::Into; use orion::numbers::NumberTrait; use orion::operators::tensor::{ TensorTrait, Tensor, I8Tensor, I32Tensor, U32Tensor, FP16x16Tensor, BoolTensor }; use orion::numbers::{FP16x16, FP16x16Impl, FP32x32, FP32x32Impl, FixedTrait}; use core::debug::PrintTrait; use orion::operators::nn::{NNTrait, FP16x16NN}; use orion::utils::get_row; use orion::operators::ml::POST_TRANSFORM; use orion::operators::ml::svm::core::{kernel_dot, KERNEL_TYPE}; struct SVMRegressor<T> { coefficients: Span<T>, kernel_params: Span<T>, kernel_type: KERNEL_TYPE, n_supports: usize, one_class: usize, post_transform: POST_TRANSFORM, rho: Span<T>, support_vectors: Span<T>, } enum MODE { SVM_LINEAR, SVM_SVC, } trait SVMRegressorTrait<T> { fn predict(ref self: SVMRegressor<T>, X: Tensor<T>) -> Tensor<T>; } impl SVMRegressorImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, +Neg<T>, +Sub<T>, +NNTrait<T>, > of SVMRegressorTrait<T> { fn predict(ref self: SVMRegressor<T>, X: Tensor<T>) -> Tensor<T> { let (mode_, kernel_type_, sv) = if self.n_supports > 0 { let mode_ = MODE::SVM_SVC; let kernel_type_ = self.kernel_type; let sv = Ten
sorTrait::new( array![self.n_supports, self.support_vectors.len() / self.n_supports].span(), self.support_vectors ); (mode_, kernel_type_, sv) } else { let mode_ = MODE::SVM_LINEAR; let kernel_type_ = KERNEL_TYPE::LINEAR; let sv = TensorTrait::new( array![self.support_vectors.len()].span(), self.support_vectors ); (mode_, kernel_type_, sv) }; let mut z: Array<T> = array![]; let mut n = 0; while n != *X.shape.at(0) { let mut s = NumberTrait::zero(); match mode_ { MODE::SVM_LINEAR => { let mut x_n = get_row(@X, n); s = kernel_dot(self.kernel_params, x_n, self.coefficients, kernel_type_); s += *self.rho.at(0); }, MODE::SVM_SVC => { let mut x_n = get_row(@X, n); let mut j = 0; while j != self.n_supports { let mut sv_j = get_row(@sv, j); let d = kernel_dot(self.kernel_params, x_n, sv_j, kernel_type_); s += *self.coefficients.at(j) * d; j += 1; }; s += *self.rho.at(0); }, } if self.one_class == 1 { let elem = if s > NumberTrait::zero() { NumberTrait::one() } else { -NumberTrait::one() }; z.append(elem); } else { z.append(s); }; n += 1; }; let mut score = TensorTrait::new(array![*X.shape.at(0)].span(), z.span()); score = match self.post_transform { POST_TRANSFORM::NONE => score, POST_TRANSFORM::SOFTMAX => NNTrait::softmax(@score, Option::Some(1)), POST_TRANSFORM::
LOGISTIC => NNTrait::sigmoid(@score), POST_TRANSFORM::SOFTMAXZERO => NNTrait::softmax_zero(@score, 1), POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not supported yet'), }; score } }
mod core; mod tree_ensemble_classifier; mod tree_ensemble_regressor;
use alexandria_data_structures::array_ext::SpanTraitExt; use alexandria_merkle_tree::merkle_tree::{pedersen::PedersenHasherImpl}; use alexandria_data_structures::array_ext::ArrayTraitExt; use orion::numbers::NumberTrait; use orion::operators::tensor::{Tensor, TensorTrait, U32Tensor}; use orion::utils::get_row; struct TreeEnsembleAttributes<T> { nodes_falsenodeids: Span<usize>, nodes_featureids: Span<usize>, nodes_missing_value_tracks_true: Span<usize>, nodes_modes: Span<NODE_MODES>, nodes_nodeids: Span<usize>, nodes_treeids: Span<usize>, nodes_truenodeids: Span<usize>, nodes_values: Span<T>, } struct TreeEnsemble<T> { atts: TreeEnsembleAttributes<T>, tree_ids: Span<usize>, root_index: Felt252Dict<usize>, node_index: Felt252Dict<usize>, } enum NODE_MODES { BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF } impl TreeEnsembleImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T> > of TreeEnsembleTrait<T> { fn leaf_index_tree(ref self: TreeEnsemble<T>, x: Span<T>, tree_id: usize) -> usize { let mut index: usize = self.root_index.get(tree_id.into()); loop { match *self.atts.nodes_modes.at(index) { NODE_MODES::BRANCH_LEQ => {}, NODE_MODES::BRANCH_LT => {}, NODE_MODES::BRANCH_GTE => {}, NODE_MODES::BRANCH_GT => {}, NODE_MODES::BRANCH_EQ => {}, NODE_MODES::BRANCH_NEQ => {}, NODE_MODES::LEAF => { break; }, }; let x_value = *x.at(*(self.atts.nodes_featureids).at(index)); let r = if x_value.is_nan() { *self.atts.nodes_missing_value_tracks_true.at(index) >= 1 } else { match *self.atts.nodes_modes.at(index) { NODE_MODES::BRANCH_LEQ => x_value <= *self.atts.nodes_values[index], NODE_MODES::BRANCH_LT => x_value
< *self.atts.nodes_values[index], NODE_MODES::BRANCH_GTE => x_value >= *self.atts.nodes_values[index], NODE_MODES::BRANCH_GT => x_value > *self.atts.nodes_values[index], NODE_MODES::BRANCH_EQ => x_value == *self.atts.nodes_values[index], NODE_MODES::BRANCH_NEQ => x_value != *self.atts.nodes_values[index], NODE_MODES::LEAF => { panic(array!['Unexpected rule for node index ', index.into()]) }, } }; let nid = if r { *self.atts.nodes_truenodeids[index] } else { *self.atts.nodes_falsenodeids[index] }; let mut key = PedersenHasherImpl::new(); let key: felt252 = key.hash(tree_id.into(), nid.into()); index = self.node_index.get(key); }; index } fn leave_index_tree(ref self: TreeEnsemble<T>, x: Tensor<T>) -> Tensor<usize> { let mut outputs: Array<usize> = array![]; let mut i: usize = 0; let breaker: usize = *x.shape[0]; while i != breaker { let row_data: Span<T> = get_row(@x, i); let mut outs: Array<usize> = array![]; let mut tree_ids = self.tree_ids; loop { match tree_ids.pop_front() { Option::Some(tree_id) => { outs .append( TreeEnsembleImpl::<T>::leaf_index_tree(ref self, row_data, *tree_id) ) }, Option::None => { break; } }; }; outputs.append_all(ref outs); i += 1; }; TensorTrait::new(array![*x.shape[0], self.tree_ids.len()].span(), outputs.span()) } }
use core::array::ArrayTrait; use core::clone::Clone; use core::box::BoxTrait; use core::traits::Into; use core::option::OptionTrait; use orion::operators::matrix::MutMatrixTrait; use core::array::SpanTrait; use core::nullable::NullableTrait; use core::dict::Felt252DictTrait; use core::dict::Felt252DictEntryTrait; use core::nullable::{match_nullable, FromNullableResult}; use orion::operators::tensor::{Tensor, TensorTrait}; use orion::operators::ml::tree_ensemble::core::{TreeEnsemble, TreeEnsembleImpl, TreeEnsembleTrait}; use orion::numbers::NumberTrait; use orion::utils::get_row; use alexandria_merkle_tree::merkle_tree::{pedersen::PedersenHasherImpl}; use alexandria_data_structures::array_ext::{SpanTraitExt}; use orion::operators::matrix::{MutMatrix, MutMatrixImpl}; use orion::operators::vec::{VecTrait, NullableVec, NullableVecImpl}; use orion::operators::ml::POST_TRANSFORM; use core::debug::PrintTrait; struct TreeEnsembleClassifier<T> { ensemble: TreeEnsemble<T>, class_ids: Span<usize>, class_nodeids: Span<usize>, class_treeids: Span<usize>, class_weights: Span<T>, classlabels: Span<usize>, base_values: Option<Span<T>>, post_transform: POST_TRANSFORM, } trait TreeEnsembleClassifierTrait<T> {
fn predict( classifier: TreeEnsembleClassifier<T>, X: Tensor<T> ) -> (Span<usize>, MutMatrix::<T>); } impl TreeEnsembleClassifierImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T> > of TreeEnsembleClassifierTrait<T> { fn predict( classifier: TreeEnsembleClassifier<T>, X: Tensor<T> ) -> (Span<usize>, MutMatrix::<T>) { let mut classifier = classifier; let leaves_index = classifier.ensemble.leave_index_tree(X); let n_classes = classifier.classlabels.len(); let mut res: MutMatrix<T> = MutMatrixImpl::new(*leaves_index.shape.at(0), n_classes); if classifier.base_values.is_some() { let mut base_values = classifier.base_values.unwrap(); let mut row: usize = 0; loop { if row == res.rows { break; } let mut col: usize = 0; loop { if col == res.cols { break; } let value = *base_values.pop_front().unwrap(); res.set(row, col, value); col += 1 }; row += 1; } } else { let mut row: usize = 0; loop { if row == res.rows { break; } let mut col: usize = 0; loop { if col == res.cols { break; } res.set(row, col, NumberTrait::zero()); col += 1 };
row += 1; } } let mut class_index: Felt252Dict<Nullable<Span<usize>>> = Default::default(); let mut i: usize = 0; loop { if i == classifier.class_treeids.len() { break; } let tid = *classifier.class_treeids[i]; let nid = *classifier.class_nodeids[i]; let mut key = PedersenHasherImpl::new(); let key: felt252 = key.hash(tid.into(), nid.into()); match match_nullable(class_index.get(key)) { FromNullableResult::Null(()) => { class_index.insert(key, NullableTrait::new(array![i].span())); }, FromNullableResult::NotNull(val) => { let mut new_val = val.unbox(); let new_val = new_val.concat(array![i].span()); class_index.insert(key, NullableTrait::new(new_val)); }, } i += 1; }; let mut i: usize = 0; loop { if i == res.rows { break; } let mut indices = get_row(@leaves_index, i); let mut t_index: Array<Span<core::integer::u32>> = ArrayTrait::new(); loop { match indices.pop_front() { Option::Some(index) => { let mut key = PedersenHasherImpl::new(); let key: felt252 = key .hash( (*classifier.ensemble.atts.nodes_treeids[*index]).into(), (*classifier.ensemble.atts.nodes_nodeids[*index]).into() ); t_index.append(class_index.get(key).deref()); }, Option::None => { break; } }; }; let mut t_index = t_index.span(); loop { match t_index.pop_front() { Option::Some(its
) => { let mut its = *its; loop { match its.pop_front() { Option::Some(it) => { match res.get(i, *classifier.class_ids[*it]) { Option::Some(val) => { res .set( i, *classifier.class_ids[*it], val + *classifier.class_weights[*it] ); }, Option::None => { res .set( i, *classifier.class_ids[*it], *classifier.class_weights[*it] ); }, }; }, Option::None => { break; } }; }; }, Option::None => { break; } }; }; i += 1; }; let mut binary = false; let mut i: usize = 0; let mut class_ids = classifier.class_ids; let mut class_id: usize = 0; match class_ids.pop_front() { Option::Some(c_id) => { class_id = *c_id; }, Option::None => { class_id = 0; } }; loop { if i == classifier.class_ids.len() { break; } match class_ids.pop_front() { Option::Some(c_id
) => { if *c_id == class_id { binary = true; continue; } else { binary = false; break; } }, Option::None => { break; } }; }; if binary { let mut new_res: MutMatrix<T> = MutMatrixImpl::new(res.rows, res.cols); let mut i: usize = 0; loop { if i == res.rows { break; } match res.get(i, 0) { Option::Some(res_0) => { new_res.set(i, 1, res_0); }, Option::None => { new_res.set(i, 1, NumberTrait::zero()); }, }; i += 1; }; match classifier.post_transform { POST_TRANSFORM::NONE => { let mut i: usize = 0; loop { if i == res.rows { break; } match new_res.get(i, 1) { Option::Some(res_1) => { let value = NumberTrait::sub(NumberTrait::one(), res_1); new_res.set(i, 0, value); }, Option::None => { new_res.set(i, 0, NumberTrait::zero()); }, }; i += 1; }; }, POST_TRANSFORM::SOFTMAX => { let mut i: usize = 0; loop { if i == res.rows { break; } match new_res.get(i, 1) { Option::Some(res_1) => { new_res.set(i, 0, res_1.neg()); }, Option::None => { new_res.set(i, 0
, NumberTrait::zero()); }, }; i += 1; }; }, POST_TRANSFORM::LOGISTIC => { let mut i: usize = 0; loop { if i == res.rows { break; } match new_res.get(i, 1) { Option::Some(res_1) => { new_res.set(i, 0, res_1.neg()); }, Option::None => { new_res.set(i, 0, NumberTrait::zero()); }, }; i += 1; }; }, POST_TRANSFORM::SOFTMAXZERO => { let mut i: usize = 0; loop { if i == res.rows { break; } match new_res.get(i, 1) { Option::Some(res_1) => { new_res.set(i, 0, res_1.neg()); }, Option::None => { new_res.set(i, 0, NumberTrait::zero()); }, }; i += 1; }; }, POST_TRANSFORM::PROBIT => { let mut i: usize = 0; loop { if i == res.rows { break; } match new_res.get(i, 1) { Option::Some(res_1) => { let value = NumberTrait::sub(NumberTrait::one(), res_1); new_res.set(i, 0, value); }, Option::None => { new_res.set(i, 0, NumberTrait::zero()); }, }; i += 1; }; }, }; res = new_res; }
let mut new_scores = match classifier.post_transform { POST_TRANSFORM::NONE => res, POST_TRANSFORM::SOFTMAX => res.softmax(1), POST_TRANSFORM::LOGISTIC => res.sigmoid(), POST_TRANSFORM::SOFTMAXZERO => res.softmax_zero(1), POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not supported yet'), }; let mut labels = new_scores.argmax(1); let mut labels_list = ArrayTrait::new(); loop { match labels.pop_front() { Option::Some(i) => { labels_list.append(*classifier.classlabels[*i]); }, Option::None => { break; } }; }; return (labels_list.span(), new_scores); } }
use core::array::ArrayTrait; use core::clone::Clone; use core::box::BoxTrait; use core::traits::Into; use core::option::OptionTrait; use orion::operators::matrix::MutMatrixTrait; use core::array::SpanTrait; use core::nullable::NullableTrait; use core::dict::Felt252DictTrait; use core::dict::Felt252DictEntryTrait; use core::nullable::{match_nullable, FromNullableResult}; use orion::operators::tensor::{Tensor, TensorTrait}; use orion::operators::ml::tree_ensemble::core::{TreeEnsemble, TreeEnsembleImpl, TreeEnsembleTrait}; use orion::numbers::NumberTrait; use orion::utils::get_row; use alexandria_merkle_tree::merkle_tree::{pedersen::PedersenHasherImpl}; use alexandria_data_structures::array_ext::{SpanTraitExt}; use orion::operators::matrix::{MutMatrix, MutMatrixImpl}; use orion::operators::vec::{VecTrait, NullableVec, NullableVecImpl}; use orion::operators::ml::POST_TRANSFORM; use core::debug::PrintTrait; struct TreeEnsembleRegressor<T> { ensemble: TreeEnsemble<T>, target_ids: Span<usize>, target_nodeids: Span<usize>, target_treeids: Span<usize>, target_weights: Span<T>, base_values: Option<Span<T>>, n_targets: usize, aggregate_function: AGGREGATE_FUNCTION, post_transform: POST_TRANSFORM, } enum AGGREGATE_FUNCTION { SUM, AVERAGE, MIN, MAX, } trait TreeEnsembleRegressorTrait<T> {
fn predict(regressor: TreeEnsembleRegressor<T>, X: Tensor<T>) -> MutMatrix::<T>; } impl TreeEnsembleRegressorImpl< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, > of TreeEnsembleRegressorTrait<T> { fn predict(regressor: TreeEnsembleRegressor<T>, X: Tensor<T>) -> MutMatrix::<T> { let mut regressor = regressor; let leaves_index = regressor.ensemble.leave_index_tree(X); let n_targets = regressor.n_targets; let mut res: MutMatrix<T> = MutMatrixImpl::new(*leaves_index.shape.at(0), n_targets); let n_trees = regressor.ensemble.tree_ids.len(); let mut target_index: Felt252Dict<Nullable<Span<usize>>> = Default::default(); let mut i: usize = 0; loop { if i == regressor.target_treeids.len() { break; } let tid = *regressor.target_treeids[i]; let nid = *regressor.target_nodeids[i]; let mut key = PedersenHasherImpl::new(); let key: felt252 = key.hash(tid.into(), nid.into()); match match_nullable(target_index.get(key)) { FromNullableResult::Null(()) => { target_index.insert(key, NullableTrait::new(array![i].span())); }, FromNullableResult::NotNull(val) => { let mut new_val = val.unbox(); let new_val = new_val.concat(array![i].span()); target_index.insert(key, NullableTrait::new(new_val)); }, } i += 1; }; let mut i: usize = 0; loop { if i == res.rows { break; } let mu
t indices = get_row(@leaves_index, i); let mut t_index: Array<Span<core::integer::u32>> = ArrayTrait::new(); loop { match indices.pop_front() { Option::Some(index) => { let mut key = PedersenHasherImpl::new(); let key: felt252 = key .hash( (*regressor.ensemble.atts.nodes_treeids[*index]).into(), (*regressor.ensemble.atts.nodes_nodeids[*index]).into() ); t_index.append(target_index.get(key).deref()); }, Option::None => { break; } }; }; let mut t_index = t_index.span(); match regressor.aggregate_function { AGGREGATE_FUNCTION::SUM => { compute_res_SUM(ref regressor, ref res, ref t_index, i); }, AGGREGATE_FUNCTION::AVERAGE => { compute_res_AVERAGE(ref regressor, ref res, ref t_index, n_trees, i); }, AGGREGATE_FUNCTION::MIN => { compute_res_MIN(ref regressor, ref res, ref t_index, i); }, AGGREGATE_FUNCTION::MAX => { compute_res_MAX(ref regressor, ref res, ref t_index, i); }, }; i += 1; }; if regressor.base_values.is_some() { let mut base_values = regressor.base_values.unwrap(); let mut row: usize = 0; loop { if row == res.rows { break; } let mut col: usize = 0; loop { if col == res.cols { break; } let value = *base_values.pop_front().unwrap(); match res.get(row, col) { Option::Some
(val) => { res.set(row, col, val + value); }, Option::None => { res.set(row, col, value); }, }; col += 1 }; row += 1; } } let mut new_scores = match regressor.post_transform { POST_TRANSFORM::NONE => res, POST_TRANSFORM::SOFTMAX => res.softmax(1), POST_TRANSFORM::LOGISTIC => res.sigmoid(), POST_TRANSFORM::SOFTMAXZERO => res.softmax_zero(1), POST_TRANSFORM::PROBIT => core::panic_with_felt252('Probit not supported yet'), }; return new_scores; } } fn compute_res_SUM< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, >( ref self: TreeEnsembleRegressor<T>, ref res: MutMatrix<T>, ref t_index: Span<Span<core::integer::u32>>, i: usize ) { loop { match t_index.pop_front() { Option::Some(its) => { let mut its = *its; loop { match its.pop_front() { Option::Some(it) => { match res.get(i, *self.target_ids[*it]) { Option::Some(val) => { res .set( i, *self.target_ids[*it], val + *self.target_weights[*it] ); }, Option::None => { res.set(i, *self.target_ids[*it], *self.target_weights[*it]); }, }; }, Option::None => { b
reak; } }; }; }, Option::None => { break; } }; }; } fn compute_res_AVERAGE< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T> >( ref self: TreeEnsembleRegressor<T>, ref res: MutMatrix<T>, ref t_index: Span<Span<core::integer::u32>>, n_trees: usize, i: usize ) { let n_trees_felt: felt252 = (n_trees * 65536).into(); let n_trees: T = NumberTrait::from_felt(n_trees_felt); loop { match t_index.pop_front() { Option::Some(its) => { let mut its = *its; loop { match its.pop_front() { Option::Some(it) => { match res.get(i, *self.target_ids[*it]) { Option::Some(val) => { res .set( i, *self.target_ids[*it], val + (*self.target_weights[*it]) / n_trees ); }, Option::None => { res .set( i, *self.target_ids[*it], *self.target_weights[*it] / n_trees ); }, }; }, Option::None => { break; } }; }; }, Option::None => { break; } }; }; } fn compute_res_MIN< T, MAG, +D
rop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, >( ref self: TreeEnsembleRegressor<T>, ref res: MutMatrix<T>, ref t_index: Span<Span<core::integer::u32>>, i: usize ) { let mut j = 0; loop { if j == res.cols { break; } res.set(i, j, NumberTrait::max_value()); j += 1; }; loop { match t_index.pop_front() { Option::Some(its) => { let mut its = *its; loop { match its.pop_front() { Option::Some(it) => { match res.get(i, *self.target_ids[*it]) { Option::Some(val) => { res .set( i, *self.target_ids[*it], NumberTrait::min(val, *self.target_weights[*it]) ); }, Option::None => { res.set(i, *self.target_ids[*it], *self.target_weights[*it]); }, }; }, Option::None => { break; } }; }; }, Option::None => { break; } }; }; } fn compute_res_MAX< T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +PartialOrd<T>, +PartialEq<T>, +Add<T>, +TensorTrait<usize>, +TensorTrait<T>, +PrintTrait<T>, +AddEq<T>, +Div<T>, +Mul<T>, >( ref self: TreeEnsembleRegressor<T>, ref res: MutMatrix<T>, ref t_index: Span<Span<core::integer::u32>>, i: usize ) { let mut j = 0; lo
op { if j == res.cols { break; } res.set(i, j, NumberTrait::min_value()); j += 1; }; loop { match t_index.pop_front() { Option::Some(its) => { let mut its = *its; loop { match its.pop_front() { Option::Some(it) => { match res.get(i, *self.target_ids[*it]) { Option::Some(val) => { res .set( i, *self.target_ids[*it], NumberTrait::max(val, *self.target_weights[*it]) ); }, Option::None => { res.set(i, *self.target_ids[*it], *self.target_weights[*it]); }, }; }, Option::None => { break; } }; }; }, Option::None => { break; } }; }; }
mod core; mod implementations; mod functional; use orion::operators::nn::core::NNTrait; use orion::operators::nn::implementations::nn_fp8x23::FP8x23NN; use orion::operators::nn::implementations::nn_fp16x16::FP16x16NN; use orion::operators::nn::implementations::nn_fp32x32::FP32x32NN; use orion::operators::nn::implementations::nn_fp64x64::FP64x64NN; use orion::operators::nn::implementations::nn_i8::I8NN; use orion::operators::nn::implementations::nn_i32::I32NN; use orion::operators::nn::implementations::nn_u32::U32NN;
use orion::operators::tensor::core::Tensor; trait NNTrait<T> { fn relu(tensor: @Tensor<T>) -> Tensor<T>; fn softmax(tensor: @Tensor<T>, axis: Option<i32>) -> Tensor<T>; fn softmax_zero(tensor: @Tensor<T>, axis: usize) -> Tensor<T>; fn logsoftmax(tensor: @Tensor<T>, axis: usize) -> Tensor<T>; fn sigmoid(tensor: @Tensor<T>) -> Tensor<T>; fn softsign(tensor: @Tensor<T>) -> Tensor<T>;
fn softplus(tensor: @Tensor<T>) -> Tensor<T>; fn linear(inputs: Tensor<T>, weights: Tensor<T>, bias: Tensor<T>) -> Tensor<T>; fn leaky_relu(inputs: @Tensor<T>, alpha: @T) -> Tensor<T>; fn hard_sigmoid(tensor: @Tensor<T>, alpha: @T, beta: @T) -> Tensor<T>; fn thresholded_relu(tensor: @Tensor<T>, alpha: @T) -> Tensor<T>; fn space_to_depth(tensor: @Tensor<T>, blocksize: usize) -> Tensor<T>;
fn depth_to_space(tensor: @Tensor<T>, blocksize: usize, mode: felt252) -> Tensor<T>; fn gemm( A: Tensor<T>, B: Tensor<T>, C: Option<Tensor<T>>, alpha: Option<T>, beta: Option<T>, transA: bool, transB: bool ) -> Tensor<T>; fn conv( X: @Tensor<T>, W: @Tensor<T>, B: Option<Span<T>>, auto_pad: Option<orion::operators::nn::functional::conv::AUTO_PAD>, dilations: Option<Span<usize>>, group: Option<usize>, kernel_shape: Option<Span<usize>>, pads: Option<Span<usize>>, strides: Option<Span<usize>>, ) -> Tensor<T>;
fn conv_transpose( X: @Tensor<T>, W: @Tensor<T>, B: Option<@Tensor<T>>, auto_pad: Option<orion::operators::nn::functional::conv_transpose::AUTO_PAD>, dilations: Option<Span<usize>>, group: Option<usize>, kernel_shape: Option<Span<usize>>, output_padding: Option<Span<usize>>, output_shape: Option<Span<usize>>, pads: Option<Span<usize>>, strides: Option<Span<usize>>, ) -> Tensor<T>; fn col2im( data: @Tensor<T>, image_shape: Span<usize>, block_shape: Span<usize>, dilations: Option<Span<usize>>, pads: Option<Span<usize>>, strides: Option<Span<usize>>, ) -> Tensor<T>;
fn grid_sample( X: @Tensor<T>, grid: @Tensor<T>, align_corner: Option<usize>, mode: Option<orion::operators::nn::functional::grid_sample::MODE>, padding_mode: Option<orion::operators::nn::functional::grid_sample::PADDING_MODE>, ) -> Tensor<T>; }
mod relu; mod leaky_relu; mod sigmoid; mod softmax; mod softmax_zero; mod softsign; mod softplus; mod linear; mod logsoftmax; mod thresholded_relu; mod hard_sigmoid; mod gemm; mod grid_sample; mod col2im; mod conv_transpose; mod depth_to_space; mod space_to_depth; mod conv;
use orion::numbers::NumberTrait; use orion::operators::tensor::core::{stride}; use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor,}; use orion::operators::vec::{NullableVec, NullableVecImpl}; fn col2im<T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +Copy<T>, +Drop<T>, +Add<T>, +Mul<T>,>( data: @Tensor<T>, image_shape: Span<usize>, block_shape: Span<usize>, dilations: Option<Span<usize>>, pads: Option<Span<usize>>, strides: Option<Span<usize>>, ) -> Tensor<T> { let dilations = match dilations { Option::Some(dilations) => dilations, Option::None => { let mut dilations: Array<usize> = array![]; let mut i = 0; while i != image_shape.len() { dilations.append(1); i += 1; }; dilations.span() }, }; let pads = match pads { Option::Some(pads) => pads, Option::None => { let mut pads: Array<usize> = array![]; let mut i = 0; while i != image_shape.len() { pads.append(0); pads.append(0); i += 1; }; pads.span() }, }; let strides = match strides { Option::Some(strides) => strides, Option::None => { let mut strides: Array<usize> = array![]; let mut i = 0; while i != image_shape.len() { strides.append(1); i += 1; }; strides.span() }, }; let bl = prod(block_shape, 0); let C = *(*data).shape.at(1) / bl; let mut new_shape: Array<i32> = array![ (*(*data).shape.at(0)).try_into().unwrap(), C.try_into().unwrap(), bl.try_into().unwrap() ]; let mut i = 2; while i != (*data) .shape .len() { new_shape.append((*(*data).shape.at(i)).try_into().unwrap()); i += 1; }; let data = data.reshape(new_shape.span(), false); let mut res: Array<
T> = array![]; let data_stride = stride(data.shape); let mut n = 0; while n != *data .shape .at(0) { let mut c = 0; while c != *data .shape .at(1) { let data_n_c = TensorTrait::new( SpanTrait::slice(data.shape, 2, data.shape.len() - 2), SpanTrait::slice( data.data, n * *data_stride.at(0) + c * *data_stride.at(1), *data_stride.at(1) ) ); let mut out = col2im_naive_implementation( @data_n_c, image_shape, block_shape, dilations, pads, strides ); let mut i = 0; while i != out.len() { res.append(out.at(i)); i += 1; }; c += 1; }; n += 1; }; let mut new_shape = array![*data.shape.at(0), *data.shape.at(1)]; let mut i = 0; while i != image_shape.len() { new_shape.append(*image_shape.at(i)); i += 1; }; TensorTrait::new(new_shape.span(), res.span()) } fn get_image<T, +Drop<T>, +Copy<T>>(self: @Tensor<T>, row: usize) -> Span<T> { assert((*self).shape.len() == 2, 'Expected a 2D tensor'); let row_length = *self.shape[1]; let start = row * row_length; (*self).data.slice(start, row_length) } fn col2im_naive_implementation< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +Copy<T>, +Drop<T>, +Add<T>, >( data: @Tensor<T>, image_shape: Span<usize>, kernel_shape: Span<usize>, dilations: Span<usize>, pads: Span<usize>, strides: Span<usize>, ) -> NullableVec<T> { let n_dims = pads.len() / 2; col2im_shape_check(data, image_shape, kernel_shape, dilations, pads, strides); let mut dim_col: Array<usize> = array![]; let mut i = 0; whil
e i != n_dims { dim_col .append( (*image_shape.at(i) + (*pads.at(i) + *pads.at(i + n_dims)) - (*dilations.at(i) * (*kernel_shape.at(i) - 1) + 1)) / *strides.at(i) + 1 ); i += 1; }; let dim_col = dim_col.span(); let stride_img = stride(image_shape); let mut data_im = NullableVecImpl::new(); data_im.set(*image_shape.at(0) * *stride_img.at(0) - 1, NumberTrait::zero()); let kernel_size = prod(kernel_shape, 0); let col_size = prod(dim_col, 0); let mut c_col = 0; while c_col != kernel_size { let offset = get_indices(c_col, kernel_shape).span(); let mut col = 0; while col != col_size { let ind_col = get_indices(col, dim_col).span(); let mut ind_im: Array<usize> = array![]; let mut i = 0; while i != n_dims { if (*ind_col.at(i) * *strides.at(i) + *offset.at(i) * *dilations.at(i)) < *pads .at(i) { let neg_index = *pads.at(i) - (*ind_col.at(i) * *strides.at(i) + *offset.at(i) * *dilations.at(i)); ind_im.append(*image_shape.at(i) + neg_index); } else { ind_im .append( *ind_col.at(i) * *strides.at(i) + *offset.at(i) * *dilations.at(i) - *pads.at(i) ); } i += 1; }; let ind_im = ind_im.span(); if !is_out(ind_im, image_shape) { let mut index = 0; let mut i = 0; while i != image_shape.len() { index += *stride_img.at(i) * *ind_im.at(i); i += 1; }; data_im.set(index, data_im.at(index) + *(*data).data.at(c_col * col_size + col));
} col += 1; }; c_col += 1; }; data_im } fn col2im_shape_check<T, +TensorTrait<T>, +Copy<T>, +Drop<T>,>( X: @Tensor<T>, output_shape: Span<usize>, kernel_shape: Span<usize>, dilations: Span<usize>, pads: Span<usize>, strides: Span<usize>, ) { let n_input_plane = *(*X).shape.at(0); let kernel_size = prod(kernel_shape, 0); assert(n_input_plane % kernel_size == 0, 'wrong input dimension'); let input_length = *(*X).shape.at(1); let n_dims = output_shape.len(); let mut n_blocks: Array<usize> = array![]; let mut i = 0; while i != n_dims { n_blocks .append( (*output_shape.at(i) + (*pads.at(i) + *pads.at(i + n_dims)) - *dilations.at(i) * (*kernel_shape.at(i) - 1) - 1) / *strides.at(i) + 1 ); i += 1; }; let block_size = prod(n_blocks.span(), 0); assert(input_length == block_size, 'input_length != block_size'); } fn get_indices(index: usize, shape: Span<usize>,) -> Array<usize> { let mut i = index; let mut res: Array<usize> = array![]; let mut k = shape.len() - 1; while k != 0 { let m = i % *shape.at(k); res.append(m); i -= m; i /= *shape.at(k); k -= 1; }; let mut new_res: Array<usize> = array![]; new_res.append(i); let mut i = shape.len() - 1; while i != 0 { new_res.append(*res.at(i - 1)); i -= 1; }; new_res } fn is_out(ind: Span<usize>, shape: Span<usize>,) -> bool { let mut n = 0; let is_out = loop { if n == ind.len() { break false; } let s = *shape.at(n); let i = *ind.at(n); if i < 0 { break true; } if i >= s { break true; } n += 1; }; is_out } fn prod<T, MAG, +Drop<T>, +Copy<T>, +NumberTrait<T, MAG>, +TensorTrait<T>
, +Mul<T>,>( pA: Span<T>, start: usize ) -> T { let mut i = start; let mut prod = NumberTrait::one(); while i != pA.len() { prod = prod * (*pA.at(i)); i += 1; }; prod }
use core::debug::PrintTrait; use orion::numbers::NumberTrait; use orion::numbers::{U32IntoI32, I32IntoU32, I32Div, I32Number}; use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor,}; use orion::operators::vec::{NullableVec, NullableVecImpl}; use orion::operators::tensor::core::{stride}; enum AUTO_PAD { NOTSET, SAME_UPPER, SAME_LOWER, VALID } fn conv< T, MAG, +TensorTrait<T>, +NumberTrait<T, MAG>, +Copy<T>, +Drop<T>, +Add<T>, +Mul<T>, +AddEq<T>, +PrintTrait<T>, >( X: @Tensor<T>, W: @Tensor<T>, B: Option<Span<T>>, auto_pad: Option<AUTO_PAD>, dilations: Option<Span<usize>>, group: Option<usize>, kernel_shape: Option<Span<usize>>, pads: Option<Span<usize>>, strides: Option<Span<usize>>, ) -> Tensor<T> { let nd = (*X).shape.len() - 2; assert((*X).shape.len() >= 3, 'X must have at least 3 dim'); let dilations = match dilations { Option::Some(dilations) => dilations, Option::None => { let mut dilations: Array<usize> = array![]; let mut i = 2; while i != (*X).shape.len() { dilations.append(1); i += 1; }; dilations.span() }, }; let kernel_shape = match kernel_shape { Option::Some(kernel_shape) => kernel_shape, Option::None => { let mut kernel_shape: Array<usize> = array![]; let mut i = 2; while i != (*W).shape.len() { kernel_shape.append(*(*W).shape.at(i)); i += 1; }; kernel_shape.span() }, }; let pads = match pads { Option::Some(pads) => pads, Option::None => { let mut pads: Array<usize> = array![]; let mut i = 2; while i != (*X).shape.len() { pads.append(0); pads.append(0); i += 1; }; pads.span() }, }; let strides = mat
ch strides { Option::Some(strides) => strides, Option::None => { let mut strides: Array<usize> = array![]; let mut i = 2; while i != (*X).shape.len() { strides.append(1); i += 1; }; strides.span() }, }; let group = match group { Option::Some(group) => group, Option::None => { 1 }, }; let auto_pad = match auto_pad { Option::Some(auto_pad) => auto_pad, Option::None => { AUTO_PAD::NOTSET }, }; if group > 1 { let sN = *(*X).shape.at(0); let mut res_b: Array<usize> = array![]; let mut res_cv = array![]; let mut td = 0; let mg = *(*W).shape.at(0) / group; let dw = *(*W).shape.at(1); let X_stride = stride((*X).shape); let mut gx_shape = array![1, dw]; let mut i = 2; while i != (*X).shape.len() { gx_shape.append(*(*X).shape.at(i)); i += 1; }; let gx_shape = gx_shape.span(); let W_stride = stride((*W).shape); let mut gw_shape = array![mg]; let mut i = 1; while i != (*W).shape.len() { gw_shape.append(*(*W).shape.at(i)); i += 1; }; let gw_shape = gw_shape.span(); let mut b = 0; while b != sN { let mut g = 0; while g != group { let gx = TensorTrait::new( gx_shape, SpanTrait::slice( (*X).data, b * *X_stride.at(0) + (g * dw) * *X_stride.at(1), *X_stride.at(1) * dw ) ); let gw = TensorTrait::new( gw_shape, SpanTrait::slice((*W).data, (g * mg) * *W_stride.at(0), *W_stride.at(0) * mg) ); let cv = conv( @gx, @gw, Optio
n::None, Option::Some(auto_pad), Option::Some(dilations), Option::Some(1), Option::Some(kernel_shape), Option::Some(pads), Option::Some(strides) ); if b == 0 { td += *cv.shape.at(1); } res_b.append(b); res_cv.append(cv); g += 1; }; b += 1; }; let res_b = res_b.span(); let res_cv = res_cv.span(); let mut final_shape = array![sN, td]; let mut cv = *res_cv.at(0); let mut i = 2; while i != cv.shape.len() { final_shape.append(*cv.shape.at(i)); i += 1; }; let final_shape = final_shape.span(); let mut final: Array<T> = array![]; let mut p = 0; let mut i = 0; while i != res_b.len() { let cv = *res_cv.at(i); let mut n = 0; while n != cv.data.len() { final.append(*cv.data.at(n)); n += 1; }; p += *cv.shape.at(1); if p >= td { p = 0; } i += 1; }; let final = final.span(); let final = match B { Option::Some(B) => { let mut final_b: Array<T> = array![]; let final_stride = stride(final_shape); let mut i = 0; while i != *final_shape.at(0) { let mut j = 0; while j != B.len() { let mut k = 0; while k != *final_stride.at(1) { final_b .append( *final.at(i * *final_stride.at(0) + j * *final_stride.at(1) + k) + *B.at(j) );
k += 1; }; j += 1; }; i += 1; }; final_b.span() }, Option::None => { final }, }; return TensorTrait::new(final_shape, final); } if *dilations.at(0) != 1 || min(dilations.clone()) != max(dilations.clone()) { let nd = dilations.len(); let mut new_kernel_shape: Array<usize> = array![]; let mut new_shape: Array<usize> = array![]; new_shape.append_span(SpanTrait::slice((*W).shape, 0, (*W).shape.len() - nd)); let mut i = 0; while i != dilations.len() { let d = *dilations.at(i); let di = (*W).shape.len() - nd + i; new_shape.append(*(*W).shape.at(di) + (*(*W).shape.at(di) - 1) * (d - 1)); new_kernel_shape.append(*kernel_shape.at(i) + (*kernel_shape.at(i) - 1) * (d - 1)); i += 1; }; let new_shape = new_shape.span(); let new_w_strides = stride(new_shape); let mut new_w = NullableVecImpl::new(); new_w.set(*new_shape.at(0) * *new_w_strides.at(0) - 1, NumberTrait::zero()); let mut indices = array![]; indices.append(arange(0, *new_shape.at(0), 1)); indices.append(arange(0, *new_shape.at(1), 1)); let mut i = 0; while i != dilations.len() { let d = *dilations.at(i); let di = (*W).shape.len() - nd + i; indices.append(arange(0, *new_shape.at(di), d)); i += 1; }; let set_of_all_indices = cartesian(indices.span()); let mut new_w_arr: Array<T> = array![]; let mut i = 0; let mut prev = 0; while i != (*W).data.len() { let nd_index = *set_of_all_indices.at(i); let mut flatten_index = 0; let mut j = 0; while j != nd_index.len() { flatten_index += *nd_index.at(j) * *new_w_strides.at(j);
j += 1; }; if flatten_index > prev + 1 { let mut j = prev + 1; while j != flatten_index { new_w_arr.append(NumberTrait::zero()); }; j += 1; } new_w_arr.append(*(*W).data.at(i)); new_w.set(flatten_index, *(*W).data.at(i)); prev = flatten_index; i += 1; }; } let pads = match auto_pad { AUTO_PAD::NOTSET => { pads }, AUTO_PAD::SAME_UPPER => { let mut head: Array<usize> = array![]; let mut tail: Array<usize> = array![]; let mut i = 0; while i != nd { let d = *(*X).shape.at(i); let target_size = (d + *strides.at(i) - 1) / *strides.at(i); let pad_needed = (target_size - 1) * *strides.at(i) + *kernel_shape.at(i) - d; let pad_head = pad_needed / 2; let pad_tail = pad_needed - pad_head; head.append(pad_head); tail.append(pad_tail); i += 1; }; head.append_span(tail.span()); let pads = head.span(); pads }, AUTO_PAD::SAME_LOWER => { let mut head: Array<usize> = array![]; let mut tail: Array<usize> = array![]; let mut i = 0; while i != nd { let d = *(*X).shape.at(i); let target_size = (d + *strides.at(i) - 1) / *strides.at(i); let pad_needed = (target_size - 1) * *strides.at(i) + *kernel_shape.at(i) - d; let pad_head = (pad_needed + 1) / 2; let pad_tail = pad_needed - pad_head; head.append(pad_head); tail.append(pad_tail); i += 1; }; head.append_span(tail.span()); let pads = head.span(); pads }, AUTO_PAD::VALID => { let mut head: Array<usize
> = array![]; let mut tail: Array<usize> = array![]; let mut i = 0; while i != nd { let d = *(*X).shape.at(i); let target_size = (d + *strides.at(i) - 1) / *strides.at(i); let pad_needed = (target_size - 1) * *strides.at(i) + *kernel_shape.at(i) - d; let pad_head = pad_needed / 2; let pad_tail = pad_needed - pad_head; head.append(pad_head); tail.append(pad_tail); i += 1; }; head.append_span(tail.span()); let pads = head.span(); pads }, }; if (*X).shape.len() == 3 { let sN = *(*X).shape.at(0); let sC = *(*X).shape.at(1); let sH = *(*X).shape.at(2); let sM = *(*W).shape.at(0); let kh = *kernel_shape.at(0); let sth = *strides.at(0); let h_out = ((sH - kh + *pads.at(0) + *pads.at(1)) / sth) + 1; let h0 = *pads.at(0); let oh: i32 = -1 * (kh % 2).into(); let bh: i32 = -h0.into(); let eh = h_out * sth; let mut res = NullableVecImpl::new(); let res_shape = array![sN, sM, h_out].span(); let res_strides = stride(res_shape); res.set(sN * *res_strides.at(0) - 1, NumberTrait::zero()); match B { Option::Some(B) => { let mut i = 0; while i != sN { let mut j = 0; while j != sM { let b_j = *B.at(j); let mut k = 0; while k != h_out { res.set(i * *res_strides.at(0) + j * *res_strides.at(1) + k, b_j); k += 1; }; j += 1; }; i += 1; }; }, Option::None => {}, } let mut n = 0; while n != sN { let mut nw = 0;
while nw != sM { let mut c = 0; while c != sC { let w = SpanTrait::slice((*W).data, nw * sC * kh + c * kh, kh); let mut io = bh; while io < eh.into() { let hr = (io - bh) / sth.into(); if hr < h_out.into() { let i = io + (kh % 2).into(); let ih1 = I32Number::max(0, i + oh).into(); let ih2 = I32Number::min(i + oh + kh.into(), sH.into()).into(); let img = SpanTrait::slice((*X).data, n * sN + c * sC + ih1, ih2 - ih1); let s = if w.len() != img.len() { let jh1 = I32Number::max(0, -i - oh).into(); let jh2 = I32Number::min(sH.into() - (i + oh), kh.into()).into(); let w_ = SpanTrait::slice(w, jh1, jh2 - jh1); assert(w_.len() == img.len(), 'unexpected w and img len'); dot(img, w_) } else { dot(img, w) }; let hr = if hr < 0 { *res_strides.at(1) - hr.into() } else { hr.into() }; res .set( n * *res_strides.at(0) + nw * *res_strides.at(1) + hr, res.at(n * *res_strides.at(0) + nw * *res_strides.at(1) + hr) + s ); } io += sth.into(); }; c += 1; }; nw += 1; }; n += 1; }; let mut res_d
ata: Array<T> = array![]; let mut i = 0; while i != res.len() { res_data.append(res.at(i)); i += 1; }; return TensorTrait::new(res_shape, res_data.span()); } if (*X).shape.len() == 4 { let sN = *(*X).shape.at(0); let sC = *(*X).shape.at(1); let sH = *(*X).shape.at(2); let sW = *(*X).shape.at(3); let sM = *(*W).shape.at(0); let kh = *kernel_shape.at(0); let kw = *kernel_shape.at(1); let sth = *strides.at(0); let stw = *strides.at(1); let h_out = ((sH - kh + *pads.at(0) + *pads.at(2)) / sth) + 1; let w_out = ((sW - kw + *pads.at(1) + *pads.at(3)) / stw) + 1; let h0 = *pads.at(0); let w0 = *pads.at(1); let oh: i32 = -1 * (kh % 2).into(); let ow: i32 = -1 * (kw % 2).into(); let bh: i32 = -h0.into(); let bw: i32 = -w0.into(); let eh = h_out * sth; let ew = w_out * stw; let mut res = NullableVecImpl::new(); let res_shape = array![sN, sM, h_out, w_out].span(); let res_strides = stride(res_shape); res.set(sN * *res_strides.at(0) - 1, NumberTrait::zero()); match B { Option::Some(B) => { let mut i = 0; while i != sN { let mut j = 0; while j != sM { let b_j = *B.at(j); let mut k = 0; while k != h_out { let mut l = 0; while l != w_out { res .set( i * *res_strides.at(0) + j * *res_strides.at(1) + k * *res_strides.at(2) + l, b_j );
l += 1; }; k += 1; }; j += 1; }; i += 1; }; }, Option::None => {}, } let mut n = 0; while n != sN { let mut nw = 0; while nw != sM { let mut c = 0; while c != sC { let w = SpanTrait::slice( (*W).data, nw * (sC * kh * kw) + c * (kh * kw), kh * kw ); let mut io = bh; while io < eh.into() { let hr = (io - bh) / sth.into(); if hr < h_out.into() { let i = io + (kh % 2).into(); let ih1 = I32Number::max(0, i + oh).into(); let ih2 = I32Number::min(i + oh + kh.into(), sH.into()).into(); let mut jo = bw; while jo < ew.into() { let wr = (jo - bw) / stw.into(); if wr < w_out.into() { let j = jo + (kw % 2).into(); let iw1 = I32Number::max(0, j + ow).into(); let iw2 = I32Number::min(j + ow + kw.into(), sW.into()).into(); let mut img: Array<T> = array![]; let mut ihi = ih1; while ihi != ih2 { img .append_span( SpanTrait::slice( (*X).data, n * (sC * sH * sW) + c * (sH * sW)
+ ihi * sW + iw1, iw2 - iw1 ) ); ihi += 1; }; let img = img.span(); let s = if w.len() != img.len() { let jh1 = I32Number::max(0, -i - oh).into(); let jh2 = I32Number::min(sH.into() - (i + oh), kh.into()) .into(); let jw1 = I32Number::max(0, -j - ow).into(); let jw2 = I32Number::min(sW.into() - (j + ow), kw.into()) .into(); let mut w_: Array<T> = array![]; let mut jhj = jh1; while jhj != jh2 { w_ .append_span( SpanTrait::slice(w, jhj * kw + jw1, jw2 - jw1) ); jhj += 1; }; let w_ = w_.span(); assert(w_.len() == img.len(), 'unexpected w and img len'); dot(img, w_) } else { dot(img, w) }; let hr = if hr < 0 { h_out - hr.into() } else {
hr.into() }; let wr = if wr < 0 { w_out - wr.into() } else { wr.into() }; res .set( n * *res_strides.at(0) + nw * *res_strides.at(1) + hr * *res_strides.at(2) + wr, res .at( n * *res_strides.at(0) + nw * *res_strides.at(1) + hr * *res_strides.at(2) + wr ) + s ); } jo += stw.into(); }; } io += sth.into(); }; c += 1; }; nw += 1; }; n += 1; }; let mut res_data: Array<T> = array![]; let mut i = 0; while i != res.len() { res_data.append(res.at(i)); i += 1; }; return TensorTrait::new(res_shape, res_data.span()); } if (*X).shape.len() == 5 { let sN = *(*X).shape.at(0); let sC = *(*X).shape.at(1); let sH = *(*X).shape.at(2); let sW = *(*X).shape.at(3); let sZ = *(*X).shape.at(4); let sM = *(*W).shape.at(0); let kh = *ker
nel_shape.at(0); let kw = *kernel_shape.at(1); let kz = *kernel_shape.at(2); let sth = *strides.at(0); let stw = *strides.at(1); let stz = *strides.at(2); let h_out = ((sH - kh + *pads.at(0) + *pads.at(3)) / sth) + 1; let w_out = ((sW - kw + *pads.at(1) + *pads.at(4)) / stw) + 1; let z_out = ((sZ - kz + *pads.at(2) + *pads.at(5)) / stz) + 1; let h0 = *pads.at(0); let w0 = *pads.at(1); let z0 = *pads.at(2); let oh: i32 = -1 * (kh % 2).into(); let ow: i32 = -1 * (kw % 2).into(); let oz: i32 = -1 * (kz % 2).into(); let bh: i32 = -h0.into(); let bw: i32 = -w0.into(); let bz: i32 = -z0.into(); let eh = h_out * sth; let ew = w_out * stw; let ez = z_out * stz; let mut res = NullableVecImpl::new(); let res_shape = array![sN, sM, h_out, w_out, z_out].span(); let res_strides = stride(res_shape); res.set(sN * *res_strides.at(0) - 1, NumberTrait::zero()); match B { Option::Some(B) => { let mut i = 0; while i != sN { let mut j = 0; while j != sM { let b_j = *B.at(j); let mut k = 0; while k != h_out { let mut l = 0; while l != w_out { let mut m = 0; while m != z_out { res .set( i * *res_strides.at(0) + j * *res_strides.at(1) + k * *res_strides.at(2) + l * *res_strides.at(3) + m, b_j
); m += 1; }; l += 1; }; k += 1; }; j += 1; }; i += 1; }; }, Option::None => {}, } let mut n = 0; while n != sN { let mut nw = 0; while nw != sM { let mut c = 0; while c != sC { let w = SpanTrait::slice( (*W).data, nw * (sC * kh * kw * kz) + c * (kh * kw * kz), kh * kw * kz ); let mut io = bh; while io < eh.into() { let hr = (io - bh) / sth.into(); if hr < h_out.into() { let i = io + (kh % 2).into(); let ih1 = I32Number::max(0, i + oh).into(); let ih2 = I32Number::min(i + oh + kh.into(), sH.into()).into(); let mut jo = bw; while jo < ew.into() { let wr = (jo - bw) / stw.into(); if wr < w_out.into() { let j = jo + (kw % 2).into(); let iw1 = I32Number::max(0, j + ow).into(); let iw2 = I32Number::min(j + ow + kw.into(), sW.into()).into(); let mut zo = bz; while zo < ez.into() { let zr = (zo - bz) / stz.into(); if zr < z_out.into() { let z = zo + (kz % 2).into(); let iz1 = I32Number::max(0, z + oz).into();
let iz2 = I32Number::min(z + oz + kz.into(), sW.into()) .into(); let mut img: Array<T> = array![]; let mut ihi = ih1; while ihi != ih2 { let mut iwi = iw1; while iwi != iw2 { img .append_span( SpanTrait::slice( (*X).data, n * (sC * sH * sW * sZ) + c * (sH * sW * sZ) + ihi * (sW * sZ) + iwi * sZ + iz1, iz2 - iz1 ) ); iwi += 1; }; ihi += 1; }; let img = img.span(); let s = if w.len() != img.len() { let jh1 = I32Number::max(0, -i - oh).into(); let jh2 = I32Number::min( sH.into() - (i + oh), kh.into() )
.into(); let jw1 = I32Number::max(0, -j - ow).into(); let jw2 = I32Number::min( sW.into() - (j + ow), kw.into() ) .into(); let jz1 = I32Number::max(0, -z - oz).into(); let jz2 = I32Number::min( sZ.into() - (z + oz), kz.into() ) .into(); let mut w_: Array<T> = array![]; let mut jhj = jh1; while jhj != jh2 { let mut jwj = jw1; while jwj != jw2 { w_ .append_span( SpanTrait::slice( w, jhj * kw * kz + jwj * kz + jz1, jz2 - jz1 ) ); jwj += 1; }; jhj += 1; }; let w_ = w_.span();
assert( w_.len() == img.len(), 'unexpected w and img len' ); dot(img, w_) } else { dot(img, w) }; let hr = if hr < 0 { h_out - hr.into() } else { hr.into() }; let wr = if wr < 0 { w_out - wr.into() } else { wr.into() }; let zr = if zr < 0 { z_out - zr.into() } else { zr.into() }; res .set( n * *res_strides.at(0) + nw * *res_strides.at(1) + hr * *res_strides.at(2) + wr * *res_strides.at(3) + zr, res .at( n * *res_strides.at(0)
+ nw * *res_strides.at(1) + hr * *res_strides.at(2) + wr * *res_strides.at(3) + zr ) + s ); } zo += stz.into(); }; } jo += stw.into(); }; } io += sth.into(); }; c += 1; }; nw += 1; }; n += 1; }; let mut res_data: Array<T> = array![]; let mut i = 0; while i != res.len() { res_data.append(res.at(i)); i += 1; }; return TensorTrait::new(res_shape, res_data.span()); } let sN = *(*X).shape.at(0); let sC = *(*X).shape.at(1); let sM = *(*W).shape.at(0); let w_stride = stride((*W).shape); let x_stride = stride((*X).shape); let mut shape_out: Array<usize> = array![]; let mut o_index: Array<i32> = array![]; let mut b_index: Array<i32> = array![]; let mut e_index: Array<usize> = array![]; let mut range_len: Array<usize> = array![]; let mut i = 0; while i != nd { shape_out .append( ((*(*X).shape.at(2 + i) - *kernel_shape.at(i) + *pads.at(i) + *pads.at(i + nd)) / *strides.at(i)) + 1 ); let k = *kernel_shape.at(i); o_index.append(-1 * (k % 2).into()); b_index.append(-(*pads.at(i)).into()); e_index.append(*shape_out.at(i) * *strides.at(i)); range_len.app
end((((*e_index.at(i)).into() - *b_index.at(i)).into()) / *strides.at(i)); i += 1; }; let o_index = o_index.span(); let b_index = b_index.span(); let shape_out = shape_out.span(); let range_len = range_len.span(); let range_stride = stride(range_len); let mut res_shape = array![sN, sM]; res_shape.append_span(shape_out); let res_shape = res_shape.span(); let res_strides = stride(res_shape); let mut res = NullableVecImpl::new(); res.set(sN * *res_strides.at(0) - 1, NumberTrait::zero()); match B { Option::Some(B) => { let mut i = 0; while i != sN { let mut j = 0; while j != sM { let b_j = *B.at(j); let mut k = 0; while k != *res_strides.at(1) { res.set(i * *res_strides.at(0) + j * *res_strides.at(1) + k, b_j); k += 1; }; j += 1; }; i += 1; }; }, Option::None => {}, } let mut n = 0; while n != sN { let mut nw = 0; while nw != sM { let mut c = 0; while c != sC { let w = SpanTrait::slice( (*W).data, nw * *w_stride.at(0) + c * *w_stride.at(1), *w_stride.at(1) ); let mut i = 0; while i != *range_len.at(0) * *range_stride.at(0) { let mut io_index: Array<i32> = array![]; let mut r_index: Array<i32> = array![]; let mut flatten_index = i; let mut nx = 0; while nx != nd { let (n_index, rem) = DivRem::div_rem( flatten_index, (*range_stride.at(nx)).try_into().unwrap() ); flatten_index = rem; io_index .append(n