file_path
stringlengths
7
180
content
stringlengths
0
811k
repo
stringclasses
11 values
test/DepthwiseConv2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("DepthwiseConv2D layer test", function () { this.timeout(100000000); it("(7,7,3) -> (5,5,3)", async () => { const INPUT = require("../models/depthwiseConv2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "DepthwiseConv2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/Flatten2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Flatten2D layer test", function () { this.timeout(100000000); it("(5,5,3) -> 75", async () => { const INPUT = require("../models/flatten2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Flatten2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/GlobalAveragePooling2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("GlobalAveragePooling2D layer test", function () { this.timeout(100000000); // GlobalAveragePooling with strides==poolSize it("(5,5,3) -> (3,)", async () => { const INPUT = require("../models/globalAveragePooling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "GlobalAveragePooling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/GlobalMaxPooling2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("GlobalMaxPooling2D layer test", function () { this.timeout(100000000); // GlobalMaxPooling with strides==poolSize it("(5,5,3) -> (3,)", async () => { const INPUT = require("../models/globalMaxPooling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "GlobalMaxPooling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/IsNegative.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("IsNegative test", function () { this.timeout(100000000); it("Negative -> 1", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsNegative_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": Fr.e(-1) } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(1))); }); it("Positive -> 0", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsNegative_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": "1" } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(0))); }); });
https://github.com/socathie/circomlib-ml
test/IsPositive.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("IsPositive test", function () { this.timeout(100000000); it("Positive -> 1", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsPositive_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": "1" } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(1))); }); it("Negative -> 0", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "IsPositive_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": Fr.e(-1) } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(0))); }); });
https://github.com/socathie/circomlib-ml
test/LeakyReLU.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("LeakyReLU layer test", function () { this.timeout(100000000); it("3 nodes", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "LeakyReLU_test.circom")); const INPUT = { "in": [Fr.e(-11),"0","3"], "out": [Fr.e(-4),"0","3"], "remainder": ["7","0","0"] } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/Max.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Max test", function () { this.timeout(100000000); it("Maximum of 4 numbers", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "Max_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 516); //assert.equal(circuit.constraints.length, 516); const INPUT = { "in": ["1","4","2","3"] } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(4))); }); });
https://github.com/socathie/circomlib-ml
test/MaxPooling2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("MaxPooling2D layer test", function () { this.timeout(100000000); // MaxPooling with strides==poolSize it("(5,5,3) -> (2,2,3)", async () => { const INPUT = require("../models/maxPooling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); // MaxPooling with strides!=poolSize it("(10,10,3) -> (3,3,3)", async () => { const INPUT = require("../models/maxPooling2D_stride_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2D_stride_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/MaxPooling2Dsame.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("MaxPooling2Dsame layer test", function () { this.timeout(100000000); // MaxPooling with strides==poolSize it("(5,5,3) -> (3,3,3)", async () => { const INPUT = require("../models/maxPooling2Dsame_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2Dsame_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); // MaxPooling with strides!=poolSize it("(10,10,3) -> (4,4,3)", async () => { const INPUT = require("../models/maxPooling2Dsame_stride_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "MaxPooling2Dsame_stride_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/PointwiseConv2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("PointwiseConv2D layer test", function () { this.timeout(100000000); it("(7,7,3) -> (5,5,3)", async () => { const INPUT = require("../models/pointwiseConv2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "PointwiseConv2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/ReLU.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("ReLU layer test", function () { this.timeout(100000000); it("3 nodes", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "ReLU_test.circom")); const INPUT = { "in": [Fr.e(-3),"0","3"], "out": ["0","0","3"] } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/Reshape2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("Reshape2D layer test", function () { this.timeout(100000000); it("75 -> (5,5,3)", async () => { const INPUT = require("../models/reshape2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "Reshape2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/SeparableConv2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("SeparableConv2D layer test", function () { this.timeout(100000000); it("(7,7,3) -> (5,5,3)", async () => { const INPUT = require("../models/separableConv2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "SeparableConv2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/SumPooling2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("SumPooling2D layer test", function () { this.timeout(100000000); // SumPooling with strides==poolSize it("(5,5,3) -> (2,2,3)", async () => { const json = require("../models/sumPooling2D_input.json"); const OUTPUT = require("../models/sumPooling2D_output.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "SumPooling2D_test.circom")); //await circuit.loadConstraints(); //assert.equal(circuit.nVars, 76); //assert.equal(circuit.constraints.length, 0); const INPUT = { "in": json.in } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); let ape = 0; for (var i=0; i<OUTPUT.out.length; i++) { // console.log("actual", OUTPUT.out[i], "predicted", Fr.toString(witness[i+1])); ape += Math.abs((OUTPUT.out[i]-parseInt(Fr.toString(witness[i+1])))/OUTPUT.out[i]); } const mape = ape/OUTPUT.out.length; console.log("mean absolute % error", mape); assert(mape < 0.01); }); // SumPooling with strides!=poolSize it("(10,10,3) -> (3,3,3)", async () => { const json = require("../models/sumPooling2D_stride_input.json"); const OUTPUT = require("../models/sumPooling2D_stride_output.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "SumPooling2D_stride_test.circom")); const INPUT = { "in": json.in } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); let ape = 0; for (var i=0; i<OUTPUT.out.length; i++) { // console.log("actual", OUTPUT.out[i], "predicted", Fr.toString(witness[i+1])); ape += Math.abs((OUTPUT.out[i]-parseInt(Fr.toString(witness[i+1])))/OUTPUT.out[i]); } const mape = ape/OUTPUT.out.length; console.log("mean absolute % error", mape); assert(mape < 0.01); }); });
https://github.com/socathie/circomlib-ml
test/UpSampling2D.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; describe("UpSampling2D layer test", function () { this.timeout(100000000); // UpSampling with strides==poolSize it("(1,2,3) -> (2,4,3)", async () => { const INPUT = require("../models/upSampling2D_input.json"); const circuit = await wasm_tester(path.join(__dirname, "circuits", "UpSampling2D_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); }); });
https://github.com/socathie/circomlib-ml
test/circuits/AveragePooling2D_stride_test.circom
pragma circom 2.0.0; include "../../circuits/AveragePooling2D.circom"; // poolSize!=strides component main = AveragePooling2D(10, 10, 3, 3, 2);
https://github.com/socathie/circomlib-ml
test/circuits/AveragePooling2D_test.circom
pragma circom 2.0.0; include "../../circuits/AveragePooling2D.circom"; // poolSize=strides - default Keras settings component main = AveragePooling2D(5, 5, 3, 2, 2);
https://github.com/socathie/circomlib-ml
test/circuits/BatchNormalization_test.circom
pragma circom 2.0.0; include "../../circuits/BatchNormalization2D.circom"; component main = BatchNormalization2D(5,5,3,10**36);
https://github.com/socathie/circomlib-ml
test/circuits/Conv1D_test.circom
pragma circom 2.0.0; include "../../circuits/Conv1D.circom"; component main = Conv1D(20, 3, 2, 4, 3, 10**36);
https://github.com/socathie/circomlib-ml
test/circuits/Conv2D_stride_test.circom
pragma circom 2.0.0; include "../../circuits/Conv2D.circom"; component main = Conv2D(10, 10, 3, 2, 4, 3, 10**36);
https://github.com/socathie/circomlib-ml
test/circuits/Conv2D_test.circom
pragma circom 2.0.0; include "../../circuits/Conv2D.circom"; component main = Conv2D(5, 5, 3, 2, 3, 1, 10**36);
https://github.com/socathie/circomlib-ml
test/circuits/Conv2Dsame_stride_test.circom
pragma circom 2.0.0; include "../../circuits/Conv2Dsame.circom"; component main = Conv2Dsame(10, 10, 3, 2, 4, 3, 10**36);
https://github.com/socathie/circomlib-ml
test/circuits/Conv2Dsame_test.circom
pragma circom 2.0.0; include "../../circuits/Conv2Dsame.circom"; component main = Conv2Dsame(5, 5, 3, 2, 3, 1, 10**36);
https://github.com/socathie/circomlib-ml
test/circuits/Dense_test.circom
pragma circom 2.0.0; include "../../circuits/Dense.circom"; component main = Dense(20,10,10**36);
https://github.com/socathie/circomlib-ml
test/circuits/DepthwiseConv2D_test.circom
pragma circom 2.0.0; include "../../circuits/DepthwiseConv2D.circom"; component main = DepthwiseConv2D(7, 7, 3, 3, 3, 1, 10**15);
https://github.com/socathie/circomlib-ml
test/circuits/Flatten2D_test.circom
pragma circom 2.0.0; include "../../circuits/Flatten2D.circom"; component main = Flatten2D(5, 5, 3);
https://github.com/socathie/circomlib-ml
test/circuits/GlobalAveragePooling2D_test.circom
pragma circom 2.0.0; include "../../circuits/GlobalAveragePooling2D.circom"; component main = GlobalAveragePooling2D(5, 5, 3);
https://github.com/socathie/circomlib-ml
test/circuits/GlobalMaxPooling2D_test.circom
pragma circom 2.0.0; include "../../circuits/GlobalMaxPooling2D.circom"; component main = GlobalMaxPooling2D(5, 5, 3);
https://github.com/socathie/circomlib-ml
test/circuits/IsNegative_test.circom
pragma circom 2.0.0; include "../../circuits/util.circom"; component main = IsNegative();
https://github.com/socathie/circomlib-ml
test/circuits/IsPositive_test.circom
pragma circom 2.0.0; include "../../circuits/util.circom"; component main = IsPositive();
https://github.com/socathie/circomlib-ml
test/circuits/LeakyReLU_test.circom
pragma circom 2.0.0; include "../../circuits/LeakyReLU.circom"; template leaky_relu_test() { signal input in[3]; signal input out[3]; signal input remainder[3]; component leaky_relu[3]; for (var i=0; i<3; i++) { leaky_relu[i] = LeakyReLU(3); leaky_relu[i].in <== in[i]; leaky_relu[i].out <== out[i]; leaky_relu[i].remainder <== remainder[i]; } } component main = leaky_relu_test();
https://github.com/socathie/circomlib-ml
test/circuits/MaxPooling2D_stride_test.circom
pragma circom 2.0.0; include "../../circuits/MaxPooling2D.circom"; component main = MaxPooling2D(10, 10, 3, 2, 3);
https://github.com/socathie/circomlib-ml
test/circuits/MaxPooling2D_test.circom
pragma circom 2.0.0; include "../../circuits/MaxPooling2D.circom"; // poolSize=strides - default Keras settings component main = MaxPooling2D(5, 5, 3, 2, 2);
https://github.com/socathie/circomlib-ml
test/circuits/MaxPooling2Dsame_stride_test.circom
pragma circom 2.0.0; include "../../circuits/MaxPooling2Dsame.circom"; component main = MaxPooling2Dsame(10, 10, 3, 2, 3);
https://github.com/socathie/circomlib-ml
test/circuits/MaxPooling2Dsame_test.circom
pragma circom 2.0.0; include "../../circuits/MaxPooling2Dsame.circom"; // poolSize=strides - default Keras settings component main = MaxPooling2Dsame(5, 5, 3, 2, 2);
https://github.com/socathie/circomlib-ml
test/circuits/Max_test.circom
pragma circom 2.0.0; include "../../circuits/util.circom"; component main = Max(4);
https://github.com/socathie/circomlib-ml
test/circuits/PointwiseConv2D_test.circom
pragma circom 2.0.0; include "../../circuits/PointwiseConv2D.circom"; component main = PointwiseConv2D(5, 5, 3, 6, 10**15);
https://github.com/socathie/circomlib-ml
test/circuits/ReLU_test.circom
pragma circom 2.0.0; include "../../circuits/ReLU.circom"; template relu_test() { signal input in[3]; signal input out[3]; component relu[3]; for (var i=0; i<3; i++) { relu[i] = ReLU(); relu[i].in <== in[i]; relu[i].out <== out[i]; } } component main = relu_test();
https://github.com/socathie/circomlib-ml
test/circuits/Reshape2D_test.circom
pragma circom 2.0.0; include "../../circuits/Reshape2D.circom"; component main = Reshape2D(5, 5, 3);
https://github.com/socathie/circomlib-ml
test/circuits/SeparableConv2D_test.circom
pragma circom 2.0.0; include "../../circuits/SeparableConv2D.circom"; component main = SeparableConv2D(7, 7, 3, 3, 6, 3, 1, 10**15);
https://github.com/socathie/circomlib-ml
test/circuits/SumPooling2D_stride_test.circom
pragma circom 2.0.0; include "../../circuits/SumPooling2D.circom"; component main = SumPooling2D(10, 10, 3, 2, 3);
https://github.com/socathie/circomlib-ml
test/circuits/SumPooling2D_test.circom
pragma circom 2.0.0; include "../../circuits/SumPooling2D.circom"; // poolSize=strides - default Keras settings component main = SumPooling2D(5, 5, 3, 2, 2);
https://github.com/socathie/circomlib-ml
test/circuits/UpSampling2D_test.circom
pragma circom 2.0.0; include "../../circuits/UpSampling2D.circom"; component main = UpSampling2D(1, 2, 3, 2);
https://github.com/socathie/circomlib-ml
test/circuits/decryptMultiple_test.circom
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = DecryptBits(1000);
https://github.com/socathie/circomlib-ml
test/circuits/decrypt_test.circom
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = Decrypt();
https://github.com/socathie/circomlib-ml
test/circuits/ecdh_test.circom
pragma circom 2.0.0; include "../../circuits/crypto/ecdh.circom"; component main = Ecdh();
https://github.com/socathie/circomlib-ml
test/circuits/encryptDecrypt_test.circom
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; include "../../circuits/crypto/ecdh.circom"; // from zk-ml/linear-regression-demo template Test() { signal input message; signal input shared_key; signal output out; signal input private_key; signal input public_key[2]; component ecdh = Ecdh(); ecdh.private_key <== private_key; ecdh.public_key[0] <== public_key[0]; ecdh.public_key[1] <== public_key[1]; log(ecdh.shared_key); log(shared_key); log(private_key); log(public_key[0]); log(public_key[1]); shared_key === ecdh.shared_key; component enc = Encrypt(); component dec = Decrypt(); message ==> enc.plaintext; shared_key ==> enc.shared_key; shared_key ==> dec.shared_key; enc.out[0] ==> dec.message[0]; enc.out[1] ==> dec.message[1]; log(dec.out); dec.out === message; out <== 1; } component main = Test();
https://github.com/socathie/circomlib-ml
test/circuits/encryptMultiple_test.circom
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = EncryptBits(1000);
https://github.com/socathie/circomlib-ml
test/circuits/encrypt_test.circom
pragma circom 2.0.0; include "../../circuits/crypto/encrypt.circom"; component main = Encrypt();
https://github.com/socathie/circomlib-ml
test/circuits/encrypted_mnist_latest_test.circom
pragma circom 2.0.0; include "../../circuits/Conv2D.circom"; include "../../circuits/Dense.circom"; include "../../circuits/ArgMax.circom"; include "../../circuits/Poly.circom"; include "../../circuits/AveragePooling2D.circom"; include "../../circuits/BatchNormalization2D.circom"; include "../../circuits/Flatten2D.circom"; include "../../circuits/crypto/encrypt.circom"; include "../../circuits/crypto/ecdh.circom"; template encrypted_mnist_latest() { signal input in[28][28][1]; signal input conv2d_1_weights[3][3][1][4]; signal input conv2d_1_bias[4]; signal input bn_1_a[4]; signal input bn_1_b[4]; signal input conv2d_2_weights[3][3][4][8]; signal input conv2d_2_bias[8]; signal input bn_2_a[8]; signal input bn_2_b[8]; signal input dense_weights[200][10]; signal input dense_bias[10]; signal output out; signal input private_key; signal input public_key[2]; component ecdh = Ecdh(); ecdh.private_key <== private_key; ecdh.public_key[0] <== public_key[0]; ecdh.public_key[1] <== public_key[1]; signal output message[3*3*1*4+4+4+4+3*3*4*8+8+8+8+200*10+10+1]; component enc = EncryptBits(3*3*1*4+4+4+4+3*3*4*8+8+8+8+200*10+10); enc.shared_key <== ecdh.shared_key; var idx = 0; component conv2d_1 = Conv2D(28,28,1,4,3,1); component bn_1 = BatchNormalization2D(26,26,4); component poly_1[26][26][4]; component avg2d_1 = AveragePooling2D(26,26,4,2,2,25); component conv2d_2 = Conv2D(13,13,4,8,3,1); component bn_2 = BatchNormalization2D(11,11,8); component poly_2[11][11][8]; component avg2d_2 = AveragePooling2D(11,11,8,2,2,25); component flatten = Flatten2D(5,5,8); component dense = Dense(200,10); component argmax = ArgMax(10); for (var i=0; i<28; i++) { for (var j=0; j<28; j++) { conv2d_1.in[i][j][0] <== in[i][j][0]; } } for (var i=0; i<3; i++) { for (var j=0; j<3; j++) { for (var m=0; m<4; m++) { conv2d_1.weights[i][j][0][m] <== conv2d_1_weights[i][j][0][m]; enc.plaintext[idx] <== conv2d_1_weights[i][j][0][m]; idx++; } } } for (var m=0; m<4; m++) { conv2d_1.bias[m] <== conv2d_1_bias[m]; enc.plaintext[idx] <== conv2d_1_bias[m]; idx++; } for (var k=0; k<4; k++) { bn_1.a[k] <== bn_1_a[k]; enc.plaintext[idx] <== bn_1_a[k]; idx++; } for (var k=0; k<4; k++) { bn_1.b[k] <== bn_1_b[k]; enc.plaintext[idx] <== bn_1_b[k]; idx++; for (var i=0; i<26; i++) { for (var j=0; j<26; j++) { bn_1.in[i][j][k] <== conv2d_1.out[i][j][k]; } } } for (var i=0; i<26; i++) { for (var j=0; j<26; j++) { for (var k=0; k<4; k++) { poly_1[i][j][k] = Poly(10**6); poly_1[i][j][k].in <== bn_1.out[i][j][k]; avg2d_1.in[i][j][k] <== poly_1[i][j][k].out; } } } for (var i=0; i<13; i++) { for (var j=0; j<13; j++) { for (var k=0; k<4; k++) { conv2d_2.in[i][j][k] <== avg2d_1.out[i][j][k]; } } } for (var i=0; i<3; i++) { for (var j=0; j<3; j++) { for (var k=0; k<4; k++) { for (var m=0; m<8; m++) { conv2d_2.weights[i][j][k][m] <== conv2d_2_weights[i][j][k][m]; enc.plaintext[idx] <== conv2d_2_weights[i][j][k][m]; idx++; } } } } for (var m=0; m<8; m++) { conv2d_2.bias[m] <== conv2d_2_bias[m]; enc.plaintext[idx] <== conv2d_2_bias[m]; idx++; } for (var k=0; k<8; k++) { bn_2.a[k] <== bn_2_a[k]; enc.plaintext[idx] <== bn_2_a[k]; idx++; } for (var k=0; k<8; k++) { bn_2.b[k] <== bn_2_b[k]; enc.plaintext[idx] <== bn_2_b[k]; idx++; for (var i=0; i<11; i++) { for (var j=0; j<11; j++) { bn_2.in[i][j][k] <== conv2d_2.out[i][j][k]; } } } for (var i=0; i<11; i++) { for (var j=0; j<11; j++) { for (var k=0; k<8; k++) { poly_2[i][j][k] = Poly(10**18); poly_2[i][j][k].in <== bn_2.out[i][j][k]; avg2d_2.in[i][j][k] <== poly_2[i][j][k].out; } } } for (var i=0; i<5; i++) { for (var j=0; j<5; j++) { for (var k=0; k<8; k++) { flatten.in[i][j][k] <== avg2d_2.out[i][j][k]; } } } for (var i=0; i<200; i++) { dense.in[i] <== flatten.out[i]; for (var j=0; j<10; j++) { dense.weights[i][j] <== dense_weights[i][j]; enc.plaintext[idx] <== dense_weights[i][j]; idx++; } } for (var i=0; i<10; i++) { dense.bias[i] <== dense_bias[i]; enc.plaintext[idx] <== dense_bias[i]; idx++; } for (var i=0; i<10; i++) { argmax.in[i] <== dense.out[i]; } out <== argmax.out; for (var i=0; i<3*3*1*4+4+4+4+3*3*4*8+8+8+8+200*10+10+1; i++) { message[i] <== enc.out[i]; } } component main = encrypted_mnist_latest();
https://github.com/socathie/circomlib-ml
test/circuits/mnist_test.circom
pragma circom 2.0.0; include "../../circuits/Conv2D.circom"; include "../../circuits/Dense.circom"; include "../../circuits/ArgMax.circom"; include "../../circuits/ReLU.circom"; include "../../circuits/AveragePooling2D.circom"; include "../../circuits/BatchNormalization2D.circom"; include "../../circuits/Flatten2D.circom"; template mnist() { signal input in[28][28][1]; signal input conv2d_1_weights[3][3][1][4]; signal input conv2d_1_bias[4]; signal input conv2d_1_out[26][26][4]; signal input conv2d_1_remainder[26][26][4]; signal input bn_1_a[4]; signal input bn_1_b[4]; signal input bn_1_out[26][26][4]; signal input bn_1_remainder[26][26][4]; signal input relu_1_out[26][26][4]; signal input avg2d_1_out[13][13][4]; signal input avg2d_1_remainder[13][13][4]; signal input conv2d_2_weights[3][3][4][8]; signal input conv2d_2_bias[8]; signal input conv2d_2_out[11][11][8]; signal input conv2d_2_remainder[11][11][8]; signal input bn_2_a[8]; signal input bn_2_b[8]; signal input bn_2_out[11][11][8]; signal input bn_2_remainder[11][11][8]; signal input relu_2_out[11][11][8]; signal input avg2d_2_out[5][5][8]; signal input avg2d_2_remainder[5][5][8]; signal input flatten_out[200]; signal input dense_weights[200][10]; signal input dense_bias[10]; signal input dense_out[10]; signal input dense_remainder[10]; signal input argmax_out; signal output out; component conv2d_1 = Conv2D(28,28,1,4,3,1,10**18); component bn_1 = BatchNormalization2D(26,26,4,10**18); component relu_1[26][26][4]; component avg2d_1 = AveragePooling2D(26,26,4,2,2); component conv2d_2 = Conv2D(13,13,4,8,3,1,10**18); component bn_2 = BatchNormalization2D(11,11,8,10**18); component relu_2[11][11][8]; component avg2d_2 = AveragePooling2D(11,11,8,2,2); component flatten = Flatten2D(5,5,8); component dense = Dense(200,10,10**18); component argmax = ArgMax(10); for (var i=0; i<28; i++) { for (var j=0; j<28; j++) { conv2d_1.in[i][j][0] <== in[i][j][0]; } } for (var m=0; m<4; m++) { for (var i=0; i<3; i++) { for (var j=0; j<3; j++) { conv2d_1.weights[i][j][0][m] <== conv2d_1_weights[i][j][0][m]; } } conv2d_1.bias[m] <== conv2d_1_bias[m]; } for (var k=0; k<4; k++) { bn_1.a[k] <== bn_1_a[k]; bn_1.b[k] <== bn_1_b[k]; for (var i=0; i<26; i++) { for (var j=0; j<26; j++) { conv2d_1.out[i][j][k] <== conv2d_1_out[i][j][k]; conv2d_1.remainder[i][j][k] <== conv2d_1_remainder[i][j][k]; bn_1.in[i][j][k] <== conv2d_1.out[i][j][k]; } } } for (var i=0; i<26; i++) { for (var j=0; j<26; j++) { for (var k=0; k<4; k++) { bn_1.out[i][j][k] <== bn_1_out[i][j][k]; bn_1.remainder[i][j][k] <== bn_1_remainder[i][j][k]; relu_1[i][j][k] = ReLU(); relu_1[i][j][k].in <== bn_1.out[i][j][k]; relu_1[i][j][k].out <== relu_1_out[i][j][k]; avg2d_1.in[i][j][k] <== relu_1[i][j][k].out; } } } for (var i=0; i<13; i++) { for (var j=0; j<13; j++) { for (var k=0; k<4; k++) { avg2d_1.out[i][j][k] <== avg2d_1_out[i][j][k]; avg2d_1.remainder[i][j][k] <== avg2d_1_remainder[i][j][k]; conv2d_2.in[i][j][k] <== avg2d_1.out[i][j][k]; } } } for (var m=0; m<8; m++) { for (var i=0; i<3; i++) { for (var j=0; j<3; j++) { for (var k=0; k<4; k++) { conv2d_2.weights[i][j][k][m] <== conv2d_2_weights[i][j][k][m]; } } } conv2d_2.bias[m] <== conv2d_2_bias[m]; } for (var k=0; k<8; k++) { bn_2.a[k] <== bn_2_a[k]; bn_2.b[k] <== bn_2_b[k]; for (var i=0; i<11; i++) { for (var j=0; j<11; j++) { conv2d_2.out[i][j][k] <== conv2d_2_out[i][j][k]; conv2d_2.remainder[i][j][k] <== conv2d_2_remainder[i][j][k]; bn_2.in[i][j][k] <== conv2d_2.out[i][j][k]; } } } for (var i=0; i<11; i++) { for (var j=0; j<11; j++) { for (var k=0; k<8; k++) { bn_2.out[i][j][k] <== bn_2_out[i][j][k]; bn_2.remainder[i][j][k] <== bn_2_remainder[i][j][k]; relu_2[i][j][k] = ReLU(); relu_2[i][j][k].in <== bn_2.out[i][j][k]; relu_2[i][j][k].out <== relu_2_out[i][j][k]; avg2d_2.in[i][j][k] <== relu_2[i][j][k].out; } } } for (var i=0; i<5; i++) { for (var j=0; j<5; j++) { for (var k=0; k<8; k++) { avg2d_2.out[i][j][k] <== avg2d_2_out[i][j][k]; avg2d_2.remainder[i][j][k] <== avg2d_2_remainder[i][j][k]; flatten.in[i][j][k] <== avg2d_2.out[i][j][k]; } } } for (var i=0; i<200; i++) { flatten.out[i] <== flatten_out[i]; dense.in[i] <== flatten.out[i]; for (var j=0; j<10; j++) { dense.weights[i][j] <== dense_weights[i][j]; } } for (var i=0; i<10; i++) { dense.bias[i] <== dense_bias[i]; } for (var i=0; i<10; i++) { dense.out[i] <== dense_out[i]; dense.remainder[i] <== dense_remainder[i]; argmax.in[i] <== dense.out[i]; } argmax.out <== argmax_out; out <== argmax.out; } component main = mnist();
https://github.com/socathie/circomlib-ml
test/circuits/model1_test.circom
pragma circom 2.0.0; include "../../circuits/Dense.circom"; include "../../circuits/ReLU.circom"; template model1() { signal input in[3]; signal input Dense32weights[3][2]; signal input Dense32bias[2]; signal input Dense32out[2]; signal input Dense32remainder[2]; signal input ReLUout[2]; signal input Dense21weights[2][1]; signal input Dense21bias[1]; signal input Dense21out[1]; signal input Dense21remainder[1]; signal output out; component Dense32 = Dense(3,2, 10**36); component relu[2]; component Dense21 = Dense(2,1, 10**36); for (var i=0; i<3; i++) { Dense32.in[i] <== in[i]; for (var j=0; j<2; j++) { Dense32.weights[i][j] <== Dense32weights[i][j]; } } for (var i=0; i<2; i++) { Dense32.bias[i] <== 0; Dense32.out[i] <== Dense32out[i]; Dense32.remainder[i] <== Dense32remainder[i]; } for (var i=0; i<2; i++) { relu[i] = ReLU(); relu[i].in <== Dense32.out[i]; relu[i].out <== ReLUout[i]; } for (var i=0; i<2; i++) { Dense21.in[i] <== relu[i].out; Dense21.weights[i][0] <== Dense21weights[i][0]; } Dense21.bias[0] <== 0; Dense21.out[0] <== Dense21out[0]; Dense21.remainder[0] <== Dense21remainder[0]; out <== Dense21.out[0]; } component main = model1();
https://github.com/socathie/circomlib-ml
test/circuits/publicKey_test.circom
pragma circom 2.0.0; include "../../circuits/crypto/publickey_derivation.circom"; component main = PublicKey();
https://github.com/socathie/circomlib-ml
test/encryption.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; const { Keypair } = require("./modules/maci-domainobjs"); const { encrypt, decrypt } = require("./modules/maci-crypto"); describe("crypto circuits test", function () { this.timeout(100000000); it("public key test", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "publicKey_test.circom")); const keypair = new Keypair(); const INPUT = { 'private_key': keypair.privKey.asCircuitInputs(), } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]), Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]), Fr.e(keypair.pubKey.rawPubKey[0]))); assert(Fr.eq(Fr.e(witness[2]), Fr.e(keypair.pubKey.rawPubKey[1]))); }); it("ecdh full circuit test", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "ecdh_test.circom")); const keypair = new Keypair(); const keypair2 = new Keypair(); const ecdhSharedKey = Keypair.genEcdhSharedKey( keypair.privKey, keypair2.pubKey, ); const INPUT = { 'private_key': keypair.privKey.asCircuitInputs(), 'public_key': keypair2.pubKey.asCircuitInputs(), } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]), Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]), Fr.e(ecdhSharedKey))); }); it("encrypt/decrypt test", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "encryptDecrypt_test.circom")); const keypair = new Keypair(); const keypair2 = new Keypair(); const ecdhSharedKey = Keypair.genEcdhSharedKey( keypair.privKey, keypair2.pubKey, ); const INPUT = { 'message': '123456789', 'shared_key': ecdhSharedKey.toString(), 'private_key': keypair.privKey.asCircuitInputs(), 'public_key': keypair2.pubKey.asCircuitInputs(), } const witness = await circuit.calculateWitness(INPUT, true); //console.log(witness); assert(Fr.eq(Fr.e(witness[0]), Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]), Fr.e(1))); }); it("encrypt in circom, decrypt in js", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "encrypt_test.circom")); const keypair = new Keypair(); const keypair2 = new Keypair(); const ecdhSharedKey = Keypair.genEcdhSharedKey( keypair.privKey, keypair2.pubKey, ); const plaintext = 1234567890n; const INPUT = { 'plaintext': plaintext.toString(), 'shared_key': ecdhSharedKey.toString(), } const witness = await circuit.calculateWitness(INPUT, true); output1 = witness[1]; output2 = witness[2]; const ciphertext = { iv: output1, data: [output2], } assert(Fr.eq(Fr.e(decrypt(ciphertext, ecdhSharedKey)[0]), Fr.e(plaintext))); }); it("encrypt in js, decrypt in circom", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "decrypt_test.circom")); const keypair = new Keypair(); const keypair2 = new Keypair(); const ecdhSharedKey = Keypair.genEcdhSharedKey( keypair.privKey, keypair2.pubKey, ); const plaintext = 1234567890n; const ciphertext = encrypt([plaintext], ecdhSharedKey); const INPUT = { 'message': [ciphertext.iv.toString(), ciphertext.data[0].toString()], 'shared_key': ecdhSharedKey.toString(), } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[1]), Fr.e(plaintext))); }); it("encrypt multiple in circom, decrypt in js", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "encryptMultiple_test.circom")); const keypair = new Keypair(); const keypair2 = new Keypair(); const ecdhSharedKey = Keypair.genEcdhSharedKey( keypair.privKey, keypair2.pubKey, ); const plaintext = [...Array(1000).keys()]; const INPUT = { 'plaintext': plaintext.map(String), 'shared_key': ecdhSharedKey.toString(), } const witness = await circuit.calculateWitness(INPUT, true); const ciphertext = { iv: witness[1], data: witness.slice(2,1002), } decryptedText = decrypt(ciphertext, ecdhSharedKey); for (let i=0; i<1000; i++) { assert(Fr.eq(Fr.e(decryptedText[i]), Fr.e(plaintext[i]))); } }); it("encrypt multiple in js, decrypt in circom", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "decryptMultiple_test.circom")); const keypair = new Keypair(); const keypair2 = new Keypair(); const ecdhSharedKey = Keypair.genEcdhSharedKey( keypair.privKey, keypair2.pubKey, ); const plaintext = ([...Array(1000).keys()]).map(BigInt); const ciphertext = encrypt(plaintext, ecdhSharedKey); const INPUT = { 'message': [ciphertext.iv.toString(), ...ciphertext.data.map(String)], 'shared_key': ecdhSharedKey.toString(), } const witness = await circuit.calculateWitness(INPUT, true); for (let i=0; i<1000; i++) { assert(Fr.eq(Fr.e(witness[i+1]), Fr.e(plaintext[i]))); } }); // TODO: encrypt a model it.skip("encrypt entire model in circom, decrypt in js", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "encrypted_mnist_latest_test.circom")); const json = require("../models/mnist_latest_input.json"); let INPUT = {}; let plaintext = [ ...json['conv2d_1_weights'], ...json['conv2d_1_bias'], ...json['bn_1_a'], ...json['bn_1_b'], ...json['conv2d_2_weights'], ...json['conv2d_2_bias'], ...json['bn_2_a'], ...json['bn_2_b'], ...json['dense_weights'], ...json['dense_bias'], ]; for (const [key, value] of Object.entries(json)) { if (Array.isArray(value)) { let tmpArray = []; for (let i = 0; i < value.flat().length; i++) { tmpArray.push(Fr.e(value.flat()[i])); } INPUT[key] = tmpArray; } else { INPUT[key] = Fr.e(value); } } const keypair = new Keypair(); const keypair2 = new Keypair(); const ecdhSharedKey = Keypair.genEcdhSharedKey( keypair.privKey, keypair2.pubKey, ); INPUT['private_key'] = keypair.privKey.asCircuitInputs(); INPUT['public_key'] = keypair2.pubKey.asCircuitInputs(); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(7))); const ciphertext = { iv: witness[2], data: witness.slice(3,2373), } decryptedText = decrypt(ciphertext, ecdhSharedKey); for (let i=0; i<2370; i++) { assert(Fr.eq(Fr.e(decryptedText[i]), Fr.e(plaintext[i]))); } }); });
https://github.com/socathie/circomlib-ml
test/mnist.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; const INPUT = require("../models/mnist_input.json"); describe("mnist test", function () { this.timeout(100000000); it("should return correct output", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "mnist_test.circom")); const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(Fr.e(witness[1]),Fr.e(7))); }); });
https://github.com/socathie/circomlib-ml
test/model1.js
const chai = require("chai"); const path = require("path"); const wasm_tester = require("circom_tester").wasm; const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const Fr = new F1Field(exports.p); const assert = chai.assert; const INPUT = require("../models/model1_input.json"); describe("model1 test", function () { this.timeout(100000000); it("should return correct output", async () => { const circuit = await wasm_tester(path.join(__dirname, "circuits", "model1_test.circom")); // const INPUT = { // "in": json.in, // "Dense32weights": json.Dense32weights, // "Dense32bias": json.Dense32bias, // "Dense32out": json.Dense32out, // "Dense32remainder": json.Dense32remainder, // "ReLUout": json.ReLUout, // "Dense21weights": json.Dense21weights, // "Dense21bias": json.Dense21bias, // "Dense21out": json.Dense21out, // "Dense21remainder": json.Dense21remainder, // } const witness = await circuit.calculateWitness(INPUT, true); assert(Fr.eq(Fr.e(witness[0]),Fr.e(1))); assert(Fr.eq(witness[1],Fr.e(INPUT.Dense21out[0]))); }); });
https://github.com/socathie/circomlib-ml
test/modules/circomlib-0.5.1.js
exports.smt = require("./src/smt"); exports.eddsa = require("./src/eddsa"); exports.mimc7 = require("./src/mimc7"); exports.mimcsponge = require("./src/mimcsponge"); exports.babyJub = require("./src/babyjub"); exports.pedersenHash = require("./src/pedersenHash"); exports.SMT = require("./src/smt").SMT; exports.SMTMemDB = require("./src/smt_memdb"); exports.poseidon = require("./src/poseidon");
https://github.com/socathie/circomlib-ml
test/modules/maci-crypto.js
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.unpackPubKey = exports.packPubKey = exports.bigInt2Buffer = exports.SNARK_FIELD_SIZE = exports.NOTHING_UP_MY_SLEEVE_PUBKEY = exports.NOTHING_UP_MY_SLEEVE = exports.formatPrivKeyForBabyJub = exports.unstringifyBigInts = exports.stringifyBigInts = exports.verifySignature = exports.hashLeftRight = exports.hash11 = exports.hash5 = exports.hashOne = exports.sign = exports.decrypt = exports.encrypt = exports.genEcdhSharedKey = exports.genKeypair = exports.genPubKey = exports.genPrivKey = exports.genRandomSalt = void 0; const assert = require('assert'); const crypto = require("crypto"); const ethers = require("ethers"); const ff = require('ffjavascript'); const createBlakeHash = require('blake-hash'); const circomlib_0_5_1_1 = require("./circomlib-0.5.1"); const stringifyBigInts = ff.utils.stringifyBigInts; exports.stringifyBigInts = stringifyBigInts; const unstringifyBigInts = ff.utils.unstringifyBigInts; exports.unstringifyBigInts = unstringifyBigInts; const SNARK_FIELD_SIZE = BigInt('21888242871839275222246405745257275088548364400416034343698204186575808495617'); exports.SNARK_FIELD_SIZE = SNARK_FIELD_SIZE; // A nothing-up-my-sleeve zero value // Should be equal to 8370432830353022751713833565135785980866757267633941821328460903436894336785 const NOTHING_UP_MY_SLEEVE = BigInt(ethers.utils.solidityKeccak256(['bytes'], [ethers.utils.toUtf8Bytes('Maci')])) % SNARK_FIELD_SIZE; exports.NOTHING_UP_MY_SLEEVE = NOTHING_UP_MY_SLEEVE; // The pubkey is the first Pedersen base point from iden3's circomlib // See https://github.com/iden3/circomlib/blob/d5ed1c3ce4ca137a6b3ca48bec4ac12c1b38957a/src/pedersen_printbases.js const NOTHING_UP_MY_SLEEVE_PUBKEY = [ BigInt('10457101036533406547632367118273992217979173478358440826365724437999023779287'), BigInt('19824078218392094440610104313265183977899662750282163392862422243483260492317') ]; exports.NOTHING_UP_MY_SLEEVE_PUBKEY = NOTHING_UP_MY_SLEEVE_PUBKEY; /* * Convert a BigInt to a Buffer */ const bigInt2Buffer = (i) => { let hexStr = i.toString(16); while (hexStr.length < 64) { hexStr = '0' + hexStr; } return Buffer.from(hexStr, 'hex'); }; exports.bigInt2Buffer = bigInt2Buffer; // Hash up to 2 elements const poseidonT3 = (inputs) => { assert(inputs.length === 2); return (0, circomlib_0_5_1_1.poseidon)(inputs); }; // Hash up to 5 elements const poseidonT6 = (inputs) => { assert(inputs.length === 5); return (0, circomlib_0_5_1_1.poseidon)(inputs); }; const hash5 = (elements) => { const elementLength = elements.length; if (elements.length > 5) { throw new Error(`elements length should not greater than 5, got ${elements.length}`); } const elementsPadded = elements.slice(); if (elementLength < 5) { for (let i = elementLength; i < 5; i++) { elementsPadded.push(BigInt(0)); } } return poseidonT6(elementsPadded); }; exports.hash5 = hash5; /* * A convenience function for to use Poseidon to hash a Plaintext with * no more than 11 elements */ const hash11 = (elements) => { const elementLength = elements.length; if (elementLength > 11) { throw new TypeError(`elements length should not greater than 11, got ${elementLength}`); } const elementsPadded = elements.slice(); if (elementLength < 11) { for (let i = elementLength; i < 11; i++) { elementsPadded.push(BigInt(0)); } } return poseidonT3([ poseidonT3([ poseidonT6(elementsPadded.slice(0, 5)), poseidonT6(elementsPadded.slice(5, 10)) ]), elementsPadded[10] ]); }; exports.hash11 = hash11; /* * Hash a single BigInt with the Poseidon hash function */ const hashOne = (preImage) => { return poseidonT3([preImage, BigInt(0)]); }; exports.hashOne = hashOne; /* * Hash two BigInts with the Poseidon hash function */ const hashLeftRight = (left, right) => { return poseidonT3([left, right]); }; exports.hashLeftRight = hashLeftRight; /* * Returns a BabyJub-compatible random value. We create it by first generating * a random value (initially 256 bits large) modulo the snark field size as * described in EIP197. This results in a key size of roughly 253 bits and no * more than 254 bits. To prevent modulo bias, we then use this efficient * algorithm: * http://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/lib/libc/crypt/arc4random_uniform.c * @return A BabyJub-compatible random value. */ const genRandomBabyJubValue = () => { // Prevent modulo bias //const lim = BigInt('0x10000000000000000000000000000000000000000000000000000000000000000') //const min = (lim - SNARK_FIELD_SIZE) % SNARK_FIELD_SIZE const min = BigInt('6350874878119819312338956282401532410528162663560392320966563075034087161851'); let rand; while (true) { rand = BigInt('0x' + crypto.randomBytes(32).toString('hex')); if (rand >= min) { break; } } const privKey = rand % SNARK_FIELD_SIZE; assert(privKey < SNARK_FIELD_SIZE); return privKey; }; /* * @return A BabyJub-compatible private key. */ const genPrivKey = () => { return genRandomBabyJubValue(); }; exports.genPrivKey = genPrivKey; /* * @return A BabyJub-compatible salt. */ const genRandomSalt = () => { return genRandomBabyJubValue(); }; exports.genRandomSalt = genRandomSalt; /* * An internal function which formats a random private key to be compatible * with the BabyJub curve. This is the format which should be passed into the * PublicKey and other circuits. */ const formatPrivKeyForBabyJub = (privKey) => { const sBuff = circomlib_0_5_1_1.eddsa.pruneBuffer(createBlakeHash("blake512").update(bigInt2Buffer(privKey)).digest().slice(0, 32)); const s = ff.utils.leBuff2int(sBuff); return ff.Scalar.shr(s, 3); }; exports.formatPrivKeyForBabyJub = formatPrivKeyForBabyJub; /* * Losslessly reduces the size of the representation of a public key * @param pubKey The public key to pack * @return A packed public key */ const packPubKey = (pubKey) => { return circomlib_0_5_1_1.babyJub.packPoint(pubKey); }; exports.packPubKey = packPubKey; /* * Restores the original PubKey from its packed representation * @param packed The value to unpack * @return The unpacked public key */ const unpackPubKey = (packed) => { return circomlib_0_5_1_1.babyJub.unpackPoint(packed); }; exports.unpackPubKey = unpackPubKey; /* * @param privKey A private key generated using genPrivKey() * @return A public key associated with the private key */ const genPubKey = (privKey) => { privKey = BigInt(privKey.toString()); assert(privKey < SNARK_FIELD_SIZE); return circomlib_0_5_1_1.eddsa.prv2pub(bigInt2Buffer(privKey)); }; exports.genPubKey = genPubKey; const genKeypair = () => { const privKey = genPrivKey(); const pubKey = genPubKey(privKey); const Keypair = { privKey, pubKey }; return Keypair; }; exports.genKeypair = genKeypair; /* * Generates an Elliptic-curve Diffie–Hellman shared key given a private key * and a public key. * @return The ECDH shared key. */ const genEcdhSharedKey = (privKey, pubKey) => { return circomlib_0_5_1_1.babyJub.mulPointEscalar(pubKey, formatPrivKeyForBabyJub(privKey))[0]; }; exports.genEcdhSharedKey = genEcdhSharedKey; /* * Encrypts a plaintext using a given key. * @return The ciphertext. */ const encrypt = (plaintext, sharedKey) => { // Generate the IV const iv = circomlib_0_5_1_1.mimc7.multiHash(plaintext, BigInt(0)); const ciphertext = { iv, data: plaintext.map((e, i) => { return e + circomlib_0_5_1_1.mimc7.hash(sharedKey, iv + BigInt(i)); }), }; // TODO: add asserts here return ciphertext; }; exports.encrypt = encrypt; /* * Decrypts a ciphertext using a given key. * @return The plaintext. */ const decrypt = (ciphertext, sharedKey) => { const plaintext = ciphertext.data.map((e, i) => { return BigInt(e) - BigInt(circomlib_0_5_1_1.mimc7.hash(sharedKey, BigInt(ciphertext.iv) + BigInt(i))); }); return plaintext; }; exports.decrypt = decrypt; /* * Generates a signature given a private key and plaintext. * @return The signature. */ const sign = (privKey, msg) => { return circomlib_0_5_1_1.eddsa.signPoseidon(bigInt2Buffer(privKey), msg); }; exports.sign = sign; /* * Checks whether the signature of the given plaintext was created using the * private key associated with the given public key. * @return True if the signature is valid, and false otherwise. */ const verifySignature = (msg, signature, pubKey) => { return circomlib_0_5_1_1.eddsa.verifyPoseidon(msg, signature, pubKey); }; exports.verifySignature = verifySignature;
https://github.com/socathie/circomlib-ml
test/modules/maci-domainobjs.js
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.PrivKey = exports.PubKey = exports.Keypair = exports.Message = exports.Command = exports.StateLeaf = void 0; const assert = require('assert'); const maci_crypto_1 = require("./maci-crypto"); const SERIALIZED_PRIV_KEY_PREFIX = 'macisk.'; class PrivKey { constructor(rawPrivKey) { this.copy = () => { return new PrivKey(BigInt(this.rawPrivKey.toString())); }; this.asCircuitInputs = () => { return (0, maci_crypto_1.formatPrivKeyForBabyJub)(this.rawPrivKey).toString(); }; this.serialize = () => { return SERIALIZED_PRIV_KEY_PREFIX + this.rawPrivKey.toString(16); }; this.rawPrivKey = rawPrivKey; } } exports.PrivKey = PrivKey; PrivKey.unserialize = (s) => { const x = s.slice(SERIALIZED_PRIV_KEY_PREFIX.length); return new PrivKey(BigInt('0x' + x)); }; PrivKey.isValidSerializedPrivKey = (s) => { const correctPrefix = s.startsWith(SERIALIZED_PRIV_KEY_PREFIX); const x = s.slice(SERIALIZED_PRIV_KEY_PREFIX.length); let validValue = false; try { const value = BigInt('0x' + x); validValue = value < maci_crypto_1.SNARK_FIELD_SIZE; } catch { // comment to make linter happy } return correctPrefix && validValue; }; const SERIALIZED_PUB_KEY_PREFIX = 'macipk.'; class PubKey { constructor(rawPubKey) { this.copy = () => { return new PubKey([ BigInt(this.rawPubKey[0].toString()), BigInt(this.rawPubKey[1].toString()), ]); }; this.asContractParam = () => { return { x: this.rawPubKey[0].toString(), y: this.rawPubKey[1].toString(), }; }; this.asCircuitInputs = () => { return this.rawPubKey.map((x) => x.toString()); }; this.asArray = () => { return [ this.rawPubKey[0], this.rawPubKey[1], ]; }; this.serialize = () => { // Blank leaves have pubkey [0, 0], which packPubKey does not support if (BigInt(this.rawPubKey[0]) === BigInt(0) && BigInt(this.rawPubKey[1]) === BigInt(0)) { return SERIALIZED_PUB_KEY_PREFIX + 'z'; } const packed = (0, maci_crypto_1.packPubKey)(this.rawPubKey).toString('hex'); return SERIALIZED_PUB_KEY_PREFIX + packed.toString(); }; assert(rawPubKey.length === 2); assert(rawPubKey[0] < maci_crypto_1.SNARK_FIELD_SIZE); assert(rawPubKey[1] < maci_crypto_1.SNARK_FIELD_SIZE); this.rawPubKey = rawPubKey; } } exports.PubKey = PubKey; PubKey.unserialize = (s) => { // Blank leaves have pubkey [0, 0], which packPubKey does not support if (s === SERIALIZED_PUB_KEY_PREFIX + 'z') { return new PubKey([BigInt(0), BigInt(0)]); } const len = SERIALIZED_PUB_KEY_PREFIX.length; const packed = Buffer.from(s.slice(len), 'hex'); return new PubKey((0, maci_crypto_1.unpackPubKey)(packed)); }; PubKey.isValidSerializedPubKey = (s) => { const correctPrefix = s.startsWith(SERIALIZED_PUB_KEY_PREFIX); let validValue = false; try { PubKey.unserialize(s); validValue = true; } catch { // comment to make linter happy } return correctPrefix && validValue; }; class Keypair { constructor(privKey) { this.copy = () => { return new Keypair(this.privKey.copy()); }; if (privKey) { this.privKey = privKey; this.pubKey = new PubKey((0, maci_crypto_1.genPubKey)(privKey.rawPrivKey)); } else { const rawKeyPair = (0, maci_crypto_1.genKeypair)(); this.privKey = new PrivKey(rawKeyPair.privKey); this.pubKey = new PubKey(rawKeyPair.pubKey); } } static genEcdhSharedKey(privKey, pubKey) { return (0, maci_crypto_1.genEcdhSharedKey)(privKey.rawPrivKey, pubKey.rawPubKey); } equals(keypair) { const equalPrivKey = this.privKey.rawPrivKey === keypair.privKey.rawPrivKey; const equalPubKey = this.pubKey.rawPubKey[0] === keypair.pubKey.rawPubKey[0] && this.pubKey.rawPubKey[1] === keypair.pubKey.rawPubKey[1]; // If this assertion fails, something is very wrong and this function // should not return anything // XOR is equivalent to: (x && !y) || (!x && y ) const x = (equalPrivKey && equalPubKey); const y = (!equalPrivKey && !equalPubKey); assert((x && !y) || (!x && y)); return equalPrivKey; } } exports.Keypair = Keypair; /* * An encrypted command and signature. */ class Message { constructor(iv, data) { this.asArray = () => { return [ this.iv, ...this.data, ]; }; this.asContractParam = () => { return { iv: this.iv.toString(), data: this.data.map((x) => x.toString()), }; }; this.asCircuitInputs = () => { return this.asArray(); }; this.hash = () => { return (0, maci_crypto_1.hash11)(this.asArray()); }; this.copy = () => { return new Message(BigInt(this.iv.toString()), this.data.map((x) => BigInt(x.toString()))); }; assert(data.length === 10); this.iv = iv; this.data = data; } } exports.Message = Message; /* * A leaf in the state tree, which maps public keys to votes */ class StateLeaf { constructor(pubKey, voteOptionTreeRoot, voiceCreditBalance, nonce) { this.asArray = () => { return [ ...this.pubKey.asArray(), this.voteOptionTreeRoot, this.voiceCreditBalance, this.nonce, ]; }; this.asCircuitInputs = () => { return this.asArray(); }; this.hash = () => { return (0, maci_crypto_1.hash5)(this.asArray()); }; this.serialize = () => { const j = { pubKey: this.pubKey.serialize(), voteOptionTreeRoot: this.voteOptionTreeRoot.toString(16), voiceCreditBalance: this.voiceCreditBalance.toString(16), nonce: this.nonce.toString(16), }; return Buffer.from(JSON.stringify(j, null, 0), 'utf8').toString('base64'); }; this.pubKey = pubKey; this.voteOptionTreeRoot = voteOptionTreeRoot; this.voiceCreditBalance = voiceCreditBalance; // The this is the current nonce. i.e. a user who has published 0 valid // command should have this value at 0, and the first command should // have a nonce of 1 this.nonce = nonce; } copy() { return new StateLeaf(this.pubKey.copy(), BigInt(this.voteOptionTreeRoot.toString()), BigInt(this.voiceCreditBalance.toString()), BigInt(this.nonce.toString())); } static genBlankLeaf(emptyVoteOptionTreeRoot) { return new StateLeaf(new PubKey(maci_crypto_1.NOTHING_UP_MY_SLEEVE_PUBKEY), emptyVoteOptionTreeRoot, BigInt(0), BigInt(0)); } static genRandomLeaf() { return new StateLeaf(new PubKey(maci_crypto_1.NOTHING_UP_MY_SLEEVE_PUBKEY), (0, maci_crypto_1.genRandomSalt)(), (0, maci_crypto_1.genRandomSalt)(), (0, maci_crypto_1.genRandomSalt)()); } } exports.StateLeaf = StateLeaf; StateLeaf.unserialize = (serialized) => { const j = JSON.parse(Buffer.from(serialized, 'base64').toString('utf8')); return new StateLeaf(PubKey.unserialize(j.pubKey), BigInt('0x' + j.voteOptionTreeRoot), BigInt('0x' + j.voiceCreditBalance), BigInt('0x' + j.nonce)); }; /* * Unencrypted data whose fields include the user's public key, vote etc. */ class Command { constructor(stateIndex, newPubKey, voteOptionIndex, newVoteWeight, nonce, salt = (0, maci_crypto_1.genRandomSalt)()) { this.copy = () => { return new Command(BigInt(this.stateIndex.toString()), this.newPubKey.copy(), BigInt(this.voteOptionIndex.toString()), BigInt(this.newVoteWeight.toString()), BigInt(this.nonce.toString()), BigInt(this.salt.toString())); }; this.asArray = () => { return [ this.stateIndex, ...this.newPubKey.asArray(), this.voteOptionIndex, this.newVoteWeight, this.nonce, this.salt, ]; }; /* * Check whether this command has deep equivalence to another command */ this.equals = (command) => { return this.stateIndex == command.stateIndex && this.newPubKey[0] == command.newPubKey[0] && this.newPubKey[1] == command.newPubKey[1] && this.voteOptionIndex == command.voteOptionIndex && this.newVoteWeight == command.newVoteWeight && this.nonce == command.nonce && this.salt == command.salt; }; this.hash = () => { return (0, maci_crypto_1.hash11)(this.asArray()); }; /* * Signs this command and returns a Signature. */ this.sign = (privKey) => { return (0, maci_crypto_1.sign)(privKey.rawPrivKey, this.hash()); }; /* * Returns true if the given signature is a correct signature of this * command and signed by the private key associated with the given public * key. */ this.verifySignature = (signature, pubKey) => { return (0, maci_crypto_1.verifySignature)(this.hash(), signature, pubKey.rawPubKey); }; /* * Encrypts this command along with a signature to produce a Message. */ this.encrypt = (signature, sharedKey) => { const plaintext = [ ...this.asArray(), signature.R8[0], signature.R8[1], signature.S, ]; const ciphertext = (0, maci_crypto_1.encrypt)(plaintext, sharedKey); const message = new Message(ciphertext.iv, ciphertext.data); return message; }; this.stateIndex = stateIndex; this.newPubKey = newPubKey; this.voteOptionIndex = voteOptionIndex; this.newVoteWeight = newVoteWeight; this.nonce = nonce; this.salt = salt; } } exports.Command = Command; /* * Decrypts a Message to produce a Command. */ Command.decrypt = (message, sharedKey) => { const decrypted = (0, maci_crypto_1.decrypt)(message, sharedKey); const command = new Command(decrypted[0], new PubKey([decrypted[1], decrypted[2]]), decrypted[3], decrypted[4], decrypted[5], decrypted[6]); const signature = { R8: [decrypted[7], decrypted[8]], S: decrypted[9], }; return { command, signature }; };
https://github.com/socathie/circomlib-ml
test/modules/src/babyjub.js
const F1Field = require("ffjavascript").F1Field; const Scalar = require("ffjavascript").Scalar; const utils = require("ffjavascript").utils; exports.addPoint = addPoint; exports.mulPointEscalar = mulPointEscalar; exports.inCurve = inCurve; exports.inSubgroup = inSubgroup; exports.packPoint = packPoint; exports.unpackPoint = unpackPoint; exports.p = Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"); const F = new F1Field(exports.p); exports.F = F; exports.Generator = [ F.e("995203441582195749578291179787384436505546430278305826713579947235728471134"), F.e("5472060717959818805561601436314318772137091100104008585924551046643952123905") ]; exports.Base8 = [ F.e("5299619240641551281634865583518297030282874472190772894086521144482721001553"), F.e("16950150798460657717958625567821834550301663161624707787222815936182638968203") ]; exports.order = Scalar.fromString("21888242871839275222246405745257275088614511777268538073601725287587578984328"); exports.subOrder = Scalar.shiftRight(exports.order, 3); exports.A = F.e("168700"); exports.D = F.e("168696"); function addPoint(a,b) { const res = []; /* does the equivalent of: res[0] = bigInt((a[0]*b[1] + b[0]*a[1]) * bigInt(bigInt("1") + d*a[0]*b[0]*a[1]*b[1]).inverse(q)).affine(q); res[1] = bigInt((a[1]*b[1] - cta*a[0]*b[0]) * bigInt(bigInt("1") - d*a[0]*b[0]*a[1]*b[1]).inverse(q)).affine(q); */ const beta = F.mul(a[0],b[1]); const gamma = F.mul(a[1],b[0]); const delta = F.mul( F.sub(a[1], F.mul(exports.A, a[0])), F.add(b[0], b[1]) ); const tau = F.mul(beta, gamma); const dtau = F.mul(exports.D, tau); res[0] = F.div( F.add(beta, gamma), F.add(F.one, dtau) ); res[1] = F.div( F.add(delta, F.sub(F.mul(exports.A,beta), gamma)), F.sub(F.one, dtau) ); return res; } function mulPointEscalar(base, e) { let res = [F.e("0"),F.e("1")]; let rem = e; let exp = base; while (! Scalar.isZero(rem)) { if (Scalar.isOdd(rem)) { res = addPoint(res, exp); } exp = addPoint(exp, exp); rem = Scalar.shiftRight(rem, 1); } return res; } function inSubgroup(P) { if (!inCurve(P)) return false; const res= mulPointEscalar(P, exports.subOrder); return (F.isZero(res[0]) && F.eq(res[1], F.one)); } function inCurve(P) { const x2 = F.square(P[0]); const y2 = F.square(P[1]); if (!F.eq( F.add(F.mul(exports.A, x2), y2), F.add(F.one, F.mul(F.mul(x2, y2), exports.D)))) return false; return true; } function packPoint(P) { const buff = utils.leInt2Buff(P[1], 32); if (F.lt(P[0], F.zero)) { buff[31] = buff[31] | 0x80; } return buff; } function unpackPoint(_buff) { const buff = Buffer.from(_buff); let sign = false; const P = new Array(2); if (buff[31] & 0x80) { sign = true; buff[31] = buff[31] & 0x7F; } P[1] = utils.leBuff2int(buff); if (Scalar.gt(P[1], exports.p)) return null; const y2 = F.square(P[1]); let x = F.sqrt(F.div( F.sub(F.one, y2), F.sub(exports.A, F.mul(exports.D, y2)))); if (x == null) return null; if (sign) x = F.neg(x); P[0] = x; return P; }
https://github.com/socathie/circomlib-ml
test/modules/src/eddsa.js
const createBlakeHash = require("blake-hash"); const Scalar = require("ffjavascript").Scalar; const F1Field = require("ffjavascript").F1Field; const babyJub = require("./babyjub"); const utils = require("ffjavascript").utils; const pedersenHash = require("./pedersenHash").hash; const mimc7 = require("./mimc7"); const poseidon = require("./poseidon.js"); const mimcsponge = require("./mimcsponge"); exports.prv2pub= prv2pub; exports.sign = sign; exports.signMiMC = signMiMC; exports.signPoseidon = signPoseidon; exports.signMiMCSponge = signMiMCSponge; exports.verify = verify; exports.verifyMiMC = verifyMiMC; exports.verifyPoseidon = verifyPoseidon; exports.verifyMiMCSponge = verifyMiMCSponge; exports.packSignature = packSignature; exports.unpackSignature = unpackSignature; exports.pruneBuffer = pruneBuffer; function pruneBuffer(_buff) { const buff = Buffer.from(_buff); buff[0] = buff[0] & 0xF8; buff[31] = buff[31] & 0x7F; buff[31] = buff[31] | 0x40; return buff; } function prv2pub(prv) { const sBuff = pruneBuffer(createBlakeHash("blake512").update(prv).digest().slice(0,32)); let s = utils.leBuff2int(sBuff); const A = babyJub.mulPointEscalar(babyJub.Base8, Scalar.shr(s,3)); return A; } function sign(prv, msg) { const h1 = createBlakeHash("blake512").update(prv).digest(); const sBuff = pruneBuffer(h1.slice(0,32)); const s = utils.leBuff2int(sBuff); const A = babyJub.mulPointEscalar(babyJub.Base8, Scalar.shr(s, 3)); const rBuff = createBlakeHash("blake512").update(Buffer.concat([h1.slice(32,64), msg])).digest(); let r = utils.leBuff2int(rBuff); const Fr = new F1Field(babyJub.subOrder); r = Fr.e(r); const R8 = babyJub.mulPointEscalar(babyJub.Base8, r); const R8p = babyJub.packPoint(R8); const Ap = babyJub.packPoint(A); const hmBuff = pedersenHash(Buffer.concat([R8p, Ap, msg])); const hm = utils.leBuff2int(hmBuff); const S = Fr.add(r , Fr.mul(hm, s)); return { R8: R8, S: S }; } function signMiMC(prv, msg) { const h1 = createBlakeHash("blake512").update(prv).digest(); const sBuff = pruneBuffer(h1.slice(0,32)); const s = utils.leBuff2int(sBuff); const A = babyJub.mulPointEscalar(babyJub.Base8, Scalar.shr(s, 3)); const msgBuff = utils.leInt2Buff(msg, 32); const rBuff = createBlakeHash("blake512").update(Buffer.concat([h1.slice(32,64), msgBuff])).digest(); let r = utils.leBuff2int(rBuff); const Fr = new F1Field(babyJub.subOrder); r = Fr.e(r); const R8 = babyJub.mulPointEscalar(babyJub.Base8, r); const hm = mimc7.multiHash([R8[0], R8[1], A[0], A[1], msg]); const S = Fr.add(r , Fr.mul(hm, s)); return { R8: R8, S: S }; } function signMiMCSponge(prv, msg) { const h1 = createBlakeHash("blake512").update(prv).digest(); const sBuff = pruneBuffer(h1.slice(0,32)); const s = utils.leBuff2int(sBuff); const A = babyJub.mulPointEscalar(babyJub.Base8, Scalar.shr(s, 3)); const msgBuff = utils.leInt2Buff(msg, 32); const rBuff = createBlakeHash("blake512").update(Buffer.concat([h1.slice(32,64), msgBuff])).digest(); let r = utils.leBuff2int(rBuff); const Fr = new F1Field(babyJub.subOrder); r = Fr.e(r); const R8 = babyJub.mulPointEscalar(babyJub.Base8, r); const hm = mimcsponge.multiHash([R8[0], R8[1], A[0], A[1], msg]); const S = Fr.add(r , Fr.mul(hm, s)); return { R8: R8, S: S }; } function signPoseidon(prv, msg) { const h1 = createBlakeHash("blake512").update(prv).digest(); const sBuff = pruneBuffer(h1.slice(0,32)); const s = utils.leBuff2int(sBuff); const A = babyJub.mulPointEscalar(babyJub.Base8, Scalar.shr(s, 3)); const msgBuff = utils.leInt2Buff(msg, 32); const rBuff = createBlakeHash("blake512").update(Buffer.concat([h1.slice(32,64), msgBuff])).digest(); let r = utils.leBuff2int(rBuff); const Fr = new F1Field(babyJub.subOrder); r = Fr.e(r); const R8 = babyJub.mulPointEscalar(babyJub.Base8, r); const hm = poseidon([R8[0], R8[1], A[0], A[1], msg]); const S = Fr.add(r , Fr.mul(hm, s)); return { R8: R8, S: S }; } function verify(msg, sig, A) { // Check parameters if (typeof sig != "object") return false; if (!Array.isArray(sig.R8)) return false; if (sig.R8.length!= 2) return false; if (!babyJub.inCurve(sig.R8)) return false; if (!Array.isArray(A)) return false; if (A.length!= 2) return false; if (!babyJub.inCurve(A)) return false; if (sig.S>= babyJub.subOrder) return false; const R8p = babyJub.packPoint(sig.R8); const Ap = babyJub.packPoint(A); const hmBuff = pedersenHash(Buffer.concat([R8p, Ap, msg])); const hm = utils.leBuff2int(hmBuff); const Pleft = babyJub.mulPointEscalar(babyJub.Base8, sig.S); let Pright = babyJub.mulPointEscalar(A, Scalar.mul(hm,8)); Pright = babyJub.addPoint(sig.R8, Pright); if (!babyJub.F.eq(Pleft[0],Pright[0])) return false; if (!babyJub.F.eq(Pleft[1],Pright[1])) return false; return true; } function verifyMiMC(msg, sig, A) { // Check parameters if (typeof sig != "object") return false; if (!Array.isArray(sig.R8)) return false; if (sig.R8.length!= 2) return false; if (!babyJub.inCurve(sig.R8)) return false; if (!Array.isArray(A)) return false; if (A.length!= 2) return false; if (!babyJub.inCurve(A)) return false; if (sig.S>= babyJub.subOrder) return false; const hm = mimc7.multiHash([sig.R8[0], sig.R8[1], A[0], A[1], msg]); const Pleft = babyJub.mulPointEscalar(babyJub.Base8, sig.S); let Pright = babyJub.mulPointEscalar(A, Scalar.mul(hm, 8)); Pright = babyJub.addPoint(sig.R8, Pright); if (!babyJub.F.eq(Pleft[0],Pright[0])) return false; if (!babyJub.F.eq(Pleft[1],Pright[1])) return false; return true; } function verifyPoseidon(msg, sig, A) { // Check parameters if (typeof sig != "object") return false; if (!Array.isArray(sig.R8)) return false; if (sig.R8.length!= 2) return false; if (!babyJub.inCurve(sig.R8)) return false; if (!Array.isArray(A)) return false; if (A.length!= 2) return false; if (!babyJub.inCurve(A)) return false; if (sig.S>= babyJub.subOrder) return false; const hm = poseidon([sig.R8[0], sig.R8[1], A[0], A[1], msg]); const Pleft = babyJub.mulPointEscalar(babyJub.Base8, sig.S); let Pright = babyJub.mulPointEscalar(A, Scalar.mul(hm, 8)); Pright = babyJub.addPoint(sig.R8, Pright); if (!babyJub.F.eq(Pleft[0],Pright[0])) return false; if (!babyJub.F.eq(Pleft[1],Pright[1])) return false; return true; } function verifyMiMCSponge(msg, sig, A) { // Check parameters if (typeof sig != "object") return false; if (!Array.isArray(sig.R8)) return false; if (sig.R8.length!= 2) return false; if (!babyJub.inCurve(sig.R8)) return false; if (!Array.isArray(A)) return false; if (A.length!= 2) return false; if (!babyJub.inCurve(A)) return false; if (sig.S>= babyJub.subOrder) return false; const hm = mimcsponge.multiHash([sig.R8[0], sig.R8[1], A[0], A[1], msg]); const Pleft = babyJub.mulPointEscalar(babyJub.Base8, sig.S); let Pright = babyJub.mulPointEscalar(A, hm.times(bigInt("8"))); Pright = babyJub.addPoint(sig.R8, Pright); if (!babyJub.F.eq(Pleft[0],Pright[0])) return false; if (!babyJub.F.eq(Pleft[1],Pright[1])) return false; return true; } function packSignature(sig) { const R8p = babyJub.packPoint(sig.R8); const Sp = utils.leInt2Buff(sig.S, 32); return Buffer.concat([R8p, Sp]); } function unpackSignature(sigBuff) { return { R8: babyJub.unpackPoint(sigBuff.slice(0,32)), S: utils.leBuff2int(sigBuff.slice(32,64)) }; }
https://github.com/socathie/circomlib-ml
test/modules/src/evmasm.js
// Copyright (c) 2018 Jordi Baylina // License: LGPL-3.0+ // const Web3Utils = require("web3-utils"); class Contract { constructor() { this.code = []; this.labels = {}; this.pendingLabels = {}; } createTxData() { let C; // Check all labels are defined const pendingLabels = Object.keys(this.pendingLabels); if (pendingLabels.length>0) { throw new Error("Lables not defined: "+ pendingLabels.join(", ")); } let setLoaderLength = 0; let genLoadedLength = -1; while (genLoadedLength!=setLoaderLength) { setLoaderLength = genLoadedLength; C = new module.exports(); C.codesize(); C.push(setLoaderLength); C.push(0); C.codecopy(); C.push(this.code.length); C.push(0); C.return(); genLoadedLength = C.code.length; } return Web3Utils.bytesToHex(C.code.concat(this.code)); } stop() { this.code.push(0x00); } add() { this.code.push(0x01); } mul() { this.code.push(0x02); } sub() { this.code.push(0x03); } div() { this.code.push(0x04); } sdiv() { this.code.push(0x05); } mod() { this.code.push(0x06); } smod() { this.code.push(0x07); } addmod() { this.code.push(0x08); } mulmod() { this.code.push(0x09); } exp() { this.code.push(0x0a); } signextend() { this.code.push(0x0b); } lt() { this.code.push(0x10); } gt() { this.code.push(0x11); } slt() { this.code.push(0x12); } sgt() { this.code.push(0x13); } eq() { this.code.push(0x14); } iszero() { this.code.push(0x15); } and() { this.code.push(0x16); } or() { this.code.push(0x17); } shor() { this.code.push(0x18); } not() { this.code.push(0x19); } byte() { this.code.push(0x1a); } keccak() { this.code.push(0x20); } sha3() { this.code.push(0x20); } // alias address() { this.code.push(0x30); } balance() { this.code.push(0x31); } origin() { this.code.push(0x32); } caller() { this.code.push(0x33); } callvalue() { this.code.push(0x34); } calldataload() { this.code.push(0x35); } calldatasize() { this.code.push(0x36); } calldatacopy() { this.code.push(0x37); } codesize() { this.code.push(0x38); } codecopy() { this.code.push(0x39); } gasprice() { this.code.push(0x3a); } extcodesize() { this.code.push(0x3b); } extcodecopy() { this.code.push(0x3c); } returndatasize() { this.code.push(0x3d); } returndatacopy() { this.code.push(0x3e); } blockhash() { this.code.push(0x40); } coinbase() { this.code.push(0x41); } timestamp() { this.code.push(0x42); } number() { this.code.push(0x43); } difficulty() { this.code.push(0x44); } gaslimit() { this.code.push(0x45); } pop() { this.code.push(0x50); } mload() { this.code.push(0x51); } mstore() { this.code.push(0x52); } mstore8() { this.code.push(0x53); } sload() { this.code.push(0x54); } sstore() { this.code.push(0x55); } _pushLabel(label) { if (typeof this.labels[label] != "undefined") { this.push(this.labels[label]); } else { this.pendingLabels[label] = this.pendingLabels[label] || []; this.pendingLabels[label].push(this.code.length); this.push("0x000000"); } } _fillLabel(label) { if (!this.pendingLabels[label]) return; let dst = this.labels[label]; const dst3 = [dst >> 16, (dst >> 8) & 0xFF, dst & 0xFF]; this.pendingLabels[label].forEach((p) => { for (let i=0; i<3; i++) { this.code[p+i+1] = dst3[i]; } }); delete this.pendingLabels[label]; } jmp(label) { if (typeof label !== "undefined") { this._pushLabel(label); } this.code.push(0x56); } jmpi(label) { if (typeof label !== "undefined") { this._pushLabel(label); } this.code.push(0x57); } pc() { this.code.push(0x58); } msize() { this.code.push(0x59); } gas() { this.code.push(0x5a); } label(name) { if (typeof this.labels[name] != "undefined") { throw new Error("Label already defined"); } this.labels[name] = this.code.length; this.code.push(0x5b); this._fillLabel(name); } push(data) { if (typeof data === "number") { let isNeg; if (data<0) { isNeg = true; data = -data; } data = data.toString(16); if (data.length % 2 == 1) data = "0" + data; data = "0x" + data; if (isNeg) data = "-"+data; } const d = Web3Utils.hexToBytes(Web3Utils.toHex(data)); if (d.length == 0 || d.length > 32) { throw new Error("Assertion failed"); } this.code = this.code.concat([0x5F + d.length], d); } dup(n) { if (n < 0 || n >= 16) { throw new Error("Assertion failed"); } this.code.push(0x80 + n); } swap(n) { if (n < 1 || n > 16) { throw new Error("Assertion failed"); } this.code.push(0x8f + n); } log0() { this.code.push(0xa0); } log1() { this.code.push(0xa1); } log2() { this.code.push(0xa2); } log3() { this.code.push(0xa3); } log4() { this.code.push(0xa4); } create() { this.code.push(0xf0); } call() { this.code.push(0xf1); } callcode() { this.code.push(0xf2); } return() { this.code.push(0xf3); } delegatecall() { this.code.push(0xf4); } staticcall() { this.code.push(0xfa); } revert() { this.code.push(0xfd); } invalid() { this.code.push(0xfe); } selfdestruct() { this.code.push(0xff); } } module.exports = Contract;
https://github.com/socathie/circomlib-ml
test/modules/src/g2_gencontract.js
// Copyright (c) 2018 Jordi Baylina // License: LGPL-3.0+ // const Contract = require("./evmasm"); const G2 = require("snarkjs").bn128.G2; function toHex256(a) { let S = a.toString(16); while (S.length < 64) S="0"+S; return "0x" + S; } function createCode(P, w) { const C = new Contract(); const NPOINTS = 1 << (w-1); const VAR_POS = C.allocMem(32); const VAR_POINTS = C.allocMem( (NPOINTS)*4*32); const savedP = C.allocMem(32); const savedZ3 = C.allocMem(32); // Check selector C.push("0x0100000000000000000000000000000000000000000000000000000000"); C.push(0); C.calldataload(); C.div(); C.push("b65c7c74"); // mulexp(uint256) C.eq(); C.jmpi("start"); C.invalid(); C.label("start"); storeVals(); C.push( Math.floor(255/w)*w ); // pos := 255 C.push(VAR_POS); C.mstore(); C.push("21888242871839275222246405745257275088696311157297823662689037894645226208583"); C.push(0); C.push(0); C.push(0); C.push(0); C.push(0); C.push(0); C.label("begin_loop"); // ACC_X ACC_Y ACC_Z q C.internalCall("double"); // g = (e>>pos)&MASK C.push(4); C.calldataload(); // e ACC_X ACC_Y ACC_Z q C.push(VAR_POS); C.mload(); // pos e ACC_X ACC_Y ACC_Z q C.shr(); C.push(NPOINTS-1); C.and(); // g ACC_X ACC_Y ACC_Z q C.internalCall("add"); // acc_x acc_y acc_z C.push(VAR_POS); C.mload(); // pos acc_x acc_y acc_z C.dup(0); // pos pos acc_x acc_y acc_z C.push(0); // 0 pos pos acc_x acc_y acc_z C.eq(); // eq pos acc_x acc_y acc_z C.jmpi("after_loop"); // pos acc_x acc_y acc_z C.push(w); // 5 pos acc_x acc_y acc_z C.sub(); // pos acc_x acc_y acc_z C.push(VAR_POS); C.mstore(); // acc_x acc_y acc_z C.jmp("begin_loop"); C.label("after_loop"); // pos acc_x acc_y acc_z C.pop(); // acc_x acc_y acc_z C.internalCall("affine"); // acc_x acc_y C.push(0); C.mstore(); C.push(20); C.mstore(); C.push(40); C.mstore(); C.push(60); C.mstore(); C.push("0x80"); C.push("0x00"); C.return(); double(); addPoint(); affine(); return C.createTxData(); function add(a,b,q) { C.dup(q); C.dup(a+1 + 1); C.dup(b+1 + 2); C.addmod(); C.dup(q + 1); C.dup(a + 2); C.dup(b + 3); C.addmod(); } function sub(a,b,q) { C.dup(q); // q C.dup(a+1 + 1); // ai q C.dub(q + 2); // q ai q C.dup(b+1 + 3); // bi q ai q C.sub(); // -bi ai q C.addmod(); // ci C.dup(q + 1); // q ci C.dup(a + 2); // ar q ci C.dup(q + 3); // q ar q ci C.dup(b + 4); // br q ar q ci C.sub(); // -br ar q ci C.addmod(); // cr ci } function mul(a, b, q) { C.dup(q); // q C.dup(q + 1); // q q C.dup(a + 2); // ar q q C.dup(b+1 + 3); // bi ar q q C.mulmod(); // ci1 q C.dup(q + 2); // q ci1 q C.dup(a+1 + 3); // ai q ci1 q C.dup(b + 4); // ar ai q ci1 q C.mulmod(); // ci2 ci1 q C.addmod(); // ci C.dup(q + 1); // q ci C.dup(q + 2); // q q ci C.dup(q + 3); // q q q ci C.dup(a+1 + 4); // ai q q ci C.dup(b+1 + 5); // bi ai q q ci C.mulmod(); // cr2 q q ci C.sub(); // -cr2 q ci C.dup(q + 3); // q -cr2 q ci C.dup(a + 4); // ar q -cr2 q ci C.dup(b + 5); // br ar q -cr2 q ci C.mulmod(); // cr1 -cr2 q ci C.addmod(); // cr ci } function square(a, q) { C.dup(q); // q C.dup(q + 1); // q q C.dup(a + 2); // ar q q C.dup(a+1 + 3); // ai ar q q C.mulmod(); // arai q C.dup(0); // arai arai q C.addmod(); // ci C.dup(q + 1); // q ci C.dup(q + 2); // q q ci C.dup(q + 3); // q q q ci C.dup(a+1 + 4); // ai q q ci C.dup(a+1 + 5); // ai ai q q ci C.mulmod(); // cr2 q q ci C.sub(); // -cr2 q ci C.dup(q + 3); // q -cr2 q ci C.dup(a + 4); // ar q -cr2 q ci C.dup(a + 5); // br ar q -cr2 q ci C.mulmod(); // cr1 -cr2 q ci C.addmod(); // cr ci } function add1(a, q) { C.dup(a+1); // im C.dup(1 + q); // q C.dup(2 + a); // re q im C.push(1); // 1 re q im C.addmod(); } function cmp(a, b) { C.dup(a); C.dup(b); C.eq(); C.dup(a+1); C.dup(a+1); C.and(); } function rm(a) { if (a>0) C.swap(a); C.pop(); if (a>0) C.swap(a); C.pop(); } function double() { C.label("double"); // xR, xI, yR, yI, zR zI, q C.dup(4); C.iszero(); C.dup(6); C.iszero(); C.and(); C.jumpi("enddouble"); // X Y Z q // Z3 = 2*Y*Z // Remove Z mul(2, 4, 6); // yz X Y Z q rm(6); // X Y yz q add(4, 4, 6); // 2yz X Y yz q rm(6); // X Y Z3 q // A = X^2 square(0,6); // A X Y Z3 q // B = Y^2 // Remove Y square(4,8); // B A X Y Z3 q rm(6); // A X B Z3 q // C = B^2 square(4,8); // C A X B Z3 q // D = (X+B)^2-A-C // Remove X, Remove B add(4,6, 10); // X+B C A X B Z3 q rm(6); // C A X+B B Z3 q rm(6); // A X+B C Z3 q square(2,8); // (X+B)^2 A X+B C Z3 q rm(4); // A (X+B)^2 C Z3 q sub(2, 0, 8); // (X+B)^2-A A (X+B)^2 C Z3 q rm(4); // A (X+B)^2-A C Z3 q sub(2, 4, 8); // (X+B)^2-A-C A (X+B)^2-A C Z3 q rm(4); // A D C Z3 q // D = D+D add(2,2, 8); // D+D A D C Z3 q rm(4); // A D C Z3 q // E=A+A+A add(0, 0, 8); // 2A A D C Z3 q add(0, 2, 10); // 3A 2A A D C Z3 q rm(4); // 2A 3A D C Z3 q rm(0); // E D C Z3 q // F=E^2 square(0, 8); // F E D C Z3 q // X3= F - 2*D // Remove F add(4, 4, 10); // 2D F E D C Z3 q sub(2, 0, 12); // F-2D 2D F E D C Z3 q rm(4); // 2D X3 E D C Z3 q rm(0); // X3 E D C Z3 q // Y3 = E * (D - X3) - 8 * C // Remove D C E sub(4, 0, 10); // D-X3 X3 E D C Z3 q rm(6); // X3 E D-X3 C Z3 q mul(2, 4, 10); // E*(D-X3) X3 E D-X3 C Z3 q rm(6); // X3 E E*(D-X3) C Z3 q rm(2); // X3 E*(D-X3) C Z3 q add(4, 4, 8); // 2C X3 E*(D-X3) C Z3 q rm(6); // X3 E*(D-X3) 2C Z3 q add(4, 4, 8); // 4C X3 E*(D-X3) 2C Z3 q rm(6); // X3 E*(D-X3) 4C Z3 q add(4, 4, 8); // 8C X3 E*(D-X3) 4C Z3 q rm(6); // X3 E*(D-X3) 8C Z3 q sub(2, 4, 8); // E*(D-X3)-8C X3 E*(D-X3) 8C Z3 q rm(6); // X3 E*(D-X3) Y3 Z3 q rm(2); // X3 Y3 Z3 q C.label("enddouble"); C.returnCall(); } function addPoint() { // p, xR, xI, yR, yI, zR zI, q C.dup(0); // p p X2 Y2 Z2 q C.push(savedP); C.mstore(); C.iszero(); // X2 Y2 Z2 q C.jumpi("endpadd"); C.dup(4); C.iszero(); C.dup(6); C.iszero(); C.and(); C.jumpi("returnP"); // X2 Y2 Z2 q // lastZ3 = (Z2+1)^2 - Z2^2 add1(4, 6); // Z2+1 X2 Y2 Z2 q square(0, 8); // (Z2+1)^2 Z2+1 X2 Y2 Z2 q rm(2); // (Z2+1)^2 X2 Y2 Z2 q square(6, 8); // Z2^2 (Z2+1)^2 X2 Y2 Z2 q sub(2, 0, 10); // (Z2+1)^2-Z2^2 Z2^2 (Z2+1)^2 X2 Y2 Z2 q saveZ3(); // Z2^2 (Z2+1)^2 X2 Y2 Z2 q rm(2); // Z2^2 X2 Y2 Z2 q // U2 = X2 // S2 = Y2 // Z2^2 U2 S2 Z2 q // U1 = X1 * Z2^2 loadX(); // X1 Z2^2 U2 S2 Z2 q mul(0, 2, 10); // X1*Z2^2 X1 Z2^2 U2 S2 Z2 q rm(2); // X1*Z2^2 Z2^2 U2 S2 Z2 q mul(2, 8, 10); // Z2^3 U1 Z2^2 U2 S2 Z2 q rm(4); // U1 Z2^3 U2 S2 Z2 q rm(8); // Z2^3 U2 S2 U1 q // S1 = Y1 * Z1^3 loadY(); // Y1 Z2^3 U2 S2 U1 q mul(0, 2, 10); // S1 Y1 Z2^3 U2 S2 U1 q rm(4); // Y1 S1 U2 S2 U1 q rm(0); // S1 U2 S2 U1 q cmp(0, 4); // c1 S1 U2 S2 U1 q cmp(3, 7); // c2 c1 S1 U2 S2 U1 q C.and(); // c2&c1 S1 U2 S2 U1 q C.jumpi("double1"); // S1 U2 S2 U1 q // Returns the double // H = U2-U1 // Remove U2 C.sub(4, 8, 10); // H S1 U2 S2 U1 q rm(4); // S1 H S2 U1 q // // r = 2 * (S2-S1) // Remove S2 C.sub(4, 4, 8); // S1-S2 S1 H S2 U1 q rm(6); // S1 H S1-S2 U1 q C.add(4, 4, 8); // 2*(S1-S2) S1 H S1-S2 U1 q rm(6); // S1 H r U1 q // I = (2 * H)^2 C.add(2, 2, 8); // 2*H S1 H r U1 q C.square(0, 10); // (2*H)^2 2*H S1 H r U1 q rm(2); // I S1 H r U1 q // V = U1 * I mul(8, 0, 10); // V I S1 H r U1 q rm(10); // I S1 H r V q // J = H * I // Remove I mul(4, 0, 10); // J I S1 H r V q rm(2); // J S1 H r V q // X3 = r^2 - J - 2 * V // S1J2 = (S1*J)*2 // Remove S1 mul(2, 0, 10); // S1*J J S1 H r V q rm(4); // J S1*J H r V q add(2,2, 10); // (S1*J)*2 J S1*J H r V q rm(4); // J S1J2 H r V q // X3 = r^2 - J - 2 * V square(6, 10); // r^2 J S1J2 H r V q sub(0, 2, 12); // r^2-J r^2 J S1J2 H r V q rm(2); // r^2-J J S1J2 H r V q rm(2); // r^2-J S1J2 H r V q add(8, 8, 10); // 2*V r^2-J S1J2 H r V q sub(2, 0, 12); // r^2-J-2*V 2*V r^2-J S1J2 H r V q rm(4); // 2*V X3 S1J2 H r V q rm(0); // X3 S1J2 H r V q // Y3 = r * (V-X3)-S1J2 sub(8, 0, 10); // V-X3 X3 S1J2 H r V q rm(10); // X3 S1J2 H r V-X3 q mul(6, 8, 10); // r*(V-X3) X3 S1J2 H r V-X3 q rm(8); // X3 S1J2 H r*(V-X3) V-X3 q rm(8); // S1J2 H r*(V-X3) X3 q sub(4, 0, 8); // Y3 S1J2 H r*(V-X3) X3 q rm(6); // S1J2 H Y3 X3 q rm(0); // H Y3 X3 q // Z3 = lastZ * H loadZ3(); // lastZ3 H Y3 X3 q mul(0, 2, 8); // Z3 lastZ3 H Y3 X3 q rm(4); // lastZ3 Z3 Y3 X3 q rm(0); // Z3 Y3 X3 q C.swap(1); C.swap(5); C.swap(1); C.swap(4); // X3 Y3 Z3 q // returns the point in memory C.label("returnP"); // X Y Z q rm(0); rm(0); rm(0); C.push(0); C.push(1); loadX(); loadY(); C.jump("endpadd"); C.label("double1"); // S1 U2 S2 U1 q rm(0); rm(0); rm(0); rm(0); C.push(0); C.push(1); loadX(); loadY(); C.jump("double"); C.label("endpadd"); C.returnCall(); function loadX() { C.push(savedP); C.mload(); // p C.push(32); C.mul(); // P*32 C.push(VAR_POINTS+32); C.add(); // P*32+32 C.dup(); // P*32+32 P*32+32 C.mload(); // im P*32+32 C.swap(1); // P*32+32 im C.push(0x20); // 32 P*32+32 im C.sub(); // P*32 im C.mload(); // re im } function loadY() { C.push(savedP); C.mload(); // p C.push(32); C.mul(); // P*32 C.push(VAR_POINTS+32*3); C.add(); // P*32+32 C.dup(); // P*32+32 P*32+32 C.mload(); // im P*32+32 C.swap(1); // P*32+32 im C.push(0x20); // 32 P*32+32 im C.sub(); // P*32 im C.mload(); // re im } function loadZ3() { C.push(savedZ3+32); C.mload(); // p C.push(savedZ3); C.mload(); } function saveZ3() { C.push(savedZ3); C.mstore(); C.push(savedZ3+32); C.mstore(); } } function affine() { // X Y Z q // If Z2=0 return 0 C.label("affine"); C.dup(4); C.dup(5 + 1); C.or(); C.jumpi("notZero"); // X Y Z q rm(0); rm(0); C.push(0); C.push(0); C.jmp("endAffine"); C.label("notZero"); inverse2(4,6); // Z_inv X Y Z q square(2, 8); // Z2_inv Z_inv X Y Z q mul(0, 2, 10); // Z3_inv Z2_inv Z_inv X Y Z q rm(4); // Z2_inv Z3_inv X Y Z q C.push(1); C.push(0); // 1 Z2_inv Z3_inv X Y Z q rm(10); // Z2_inv Z3_inv X Y 1 q mul(2, 6, 10); // YI Z2_inv Z3_inv X Y 1 q rm(8); // Z2_inv Z3_inv X YI 1 q mul(0, 4, 10); // XI Z2_inv Z3_inv X YI 1 q rm(6); // Z2_inv Z3_inv XI YI 1 q rm(0); // Z3_inv XI YI 1 q rm(0); // XI YI 1 q C.label("endAffine"); C.returnCall(); } function inverse2(a, q) { C.dup(q); // q C.dup(q + 1); // q q C.push(2); // 2 q q C.sub(); // q-2 q C.dup(q + 2); // q q-2 q C.dup(q + 3); // q q q-2 q C.dup(a + 4); // ar q q q-2 q C.dup(a + 5); // ar ar q q q-2 q C.mulmod(); // t0 q q-2 q C.dup(q + 4); // q t0 q q-2 q C.dup(a+1 + 5); // ai q t0 q q-2 q C.dup(a+1 + 6); // ai ai q t0 q q-2 q C.mulmod(); // t1 t0 q q-2 q C.addmod(); // t2 q-2 q C.expmod(); // t3 C.dup(q + 1); // q t3 C.dup(q + 2); // q q t3 C.dup(q + 3); // q q q t3 C.dup(1); // t3 q q q t3 C.sub(); // -t3 q q t3 C.dup(a+1 + 3); // ai -t3 q q t3 C.mulmod(); // ii q t3 C.swap(2); // t3 q ii C.dup(a + 3); // ar t3 q ii C.mulmod(); // ir ii } function storeVals() { C.push(VAR_POINTS); // p for (let i=0; i<NPOINTS; i++) { const MP = G2.affine(G2.mulScalar(P, i)); for (let j=0; j<2; j++) { for (let k=0; k<2; k++) { C.push(toHex256(MP[j][k])); // MP[0][0] p C.dup(1); // p MP[0][0] p C.mstore(); // p C.push(32); // 32 p C.add(); // p+32 } } } } } module.exports.abi = [ { "constant": true, "inputs": [ { "name": "escalar", "type": "uint256" } ], "name": "mulexp", "outputs": [ { "name": "", "type": "uint256" }, { "name": "", "type": "uint256" } ], "payable": false, "stateMutability": "pure", "type": "function" } ]; module.exports.createCode = createCode;
https://github.com/socathie/circomlib-ml
test/modules/src/mimc7.js
const Scalar = require("ffjavascript").Scalar; const ZqField = require("ffjavascript").ZqField; const Web3Utils = require("web3-utils"); const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); exports.F = F; const SEED = "mimc"; const NROUNDS = 91; exports.getIV = (seed) => { if (typeof seed === "undefined") seed = SEED; const c = Web3Utils.keccak256(seed+"_iv"); const cn = Scalar.FromString(Web3Utils.toBN(c).toString()); const iv = cn.mod(F.p); return iv; }; exports.getConstants = (seed, nRounds) => { if (typeof seed === "undefined") seed = SEED; if (typeof nRounds === "undefined") nRounds = NROUNDS; const cts = new Array(nRounds); let c = Web3Utils.keccak256(SEED); for (let i=1; i<nRounds; i++) { c = Web3Utils.keccak256(c); const n1 = Web3Utils.toBN(c).mod(Web3Utils.toBN(F.p.toString())); const c2 = Web3Utils.padLeft(Web3Utils.toHex(n1), 64); cts[i] = Scalar.fromString(Web3Utils.toBN(c2).toString()); } cts[0] = F.e(0); return cts; }; const cts = exports.getConstants(SEED, 91); exports.hash = (_x_in, _k) =>{ const x_in = F.e(_x_in); const k = F.e(_k); let r; for (let i=0; i<NROUNDS; i++) { const c = cts[i]; const t = (i==0) ? F.add(x_in, k) : F.add(F.add(r, k), c); r = F.pow(t, 7); } return F.add(r, k); }; exports.multiHash = (arr, key) => { let r; if (typeof(key) === "undefined") { r = F.zero; } else { r = key; } for (let i=0; i<arr.length; i++) { r = F.add( F.add( r, arr[i] ), exports.hash(F.e(arr[i]), r) ); } return r; };
https://github.com/socathie/circomlib-ml
test/modules/src/mimc_gencontract.js
// Copyright (c) 2018 Jordi Baylina // License: LGPL-3.0+ // const Web3Utils = require("web3-utils"); const Contract = require("./evmasm"); function createCode(seed, n) { let ci = Web3Utils.keccak256(seed); const C = new Contract(); C.push(0x44); C.push("0x00"); C.push("0x00"); C.calldatacopy(); C.push("0x0100000000000000000000000000000000000000000000000000000000"); C.push("0x00"); C.mload(); C.div(); C.push("0xd15ca109"); // MiMCpe7(uint256,uint256) // C.push("0x8c42199e"); // MiMCpe7(uint256,uint256,uint256) C.eq(); C.jmpi("start"); C.invalid(); C.label("start"); C.push("0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001"); // q C.push("0x24"); C.mload(); // k q C.dup(1); // q k q C.dup(0); // q q k q C.push("0x04"); C.mload(); // x q q k q C.dup(3); // k x q q k q C.addmod(); // t=x+k q k q C.dup(1); // q t q k q C.dup(0); // q q t q k q C.dup(2); // t q q t q k q C.dup(0); // t t q q t q k q C.mulmod(); // a=t^2 q t q k q C.dup(1); // q a q t q k q C.dup(1); // a q a q t q k q C.dup(0); // a a q a q t q k q C.mulmod(); // b=t^4 a q t q k q C.mulmod(); // c=t^6 t q k q C.mulmod(); // r=t^7 k q for (let i=0; i<n-1; i++) { ci = Web3Utils.keccak256(ci); C.dup(2); // q r k q C.dup(0); // q q r k q C.dup(0); // q q q r k q C.swap(3); // r q q q k q C.push(ci); // c r q q k q C.addmod(); // s=c+r q q k q C.dup(3); // k s q q k q C.addmod(); // t=s+k q k q C.dup(1); // q t q k q C.dup(0); // q q t q k q C.dup(2); // t q q t q k q C.dup(0); // t t q q t q k q C.mulmod(); // a=t^2 q t q k q C.dup(1); // q a q t q k q C.dup(1); // a q a q t q k q C.dup(0); // a a q a q t q k q C.mulmod(); // b=t^4 a q t q k q C.mulmod(); // c=t^6 t q k q C.mulmod(); // r=t^7 k q } C.addmod(); // res=t^7+k C.push("0x00"); C.mstore(); // Save it to pos 0; C.push("0x20"); C.push("0x00"); C.return(); return C.createTxData(); } module.exports.abi = [ { "constant": true, "inputs": [ { "name": "in_x", "type": "uint256" }, { "name": "in_k", "type": "uint256" } ], "name": "MiMCpe7", "outputs": [ { "name": "out_x", "type": "uint256" } ], "payable": false, "stateMutability": "pure", "type": "function" } ]; module.exports.createCode = createCode;
https://github.com/socathie/circomlib-ml
test/modules/src/mimc_print_iv.js
const mimc7 = require("./mimc7.js"); console.log("IV: "+mimc7.getIV().toString());
https://github.com/socathie/circomlib-ml
test/modules/src/mimc_printconstants.js
const mimc7 = require("./mimc7.js"); const nRounds = 91; let S = "[\n"; const cts = mimc7.getConstants(); for (let i=0; i<nRounds; i++) { S = S + cts[i].toString(); if (i<nRounds-1) S = S + ","; S=S+"\n"; } S = S + "]\n"; console.log(S);
https://github.com/socathie/circomlib-ml
test/modules/src/mimc_printcontract.js
const mimcGenContract = require("./mimc_gencontract"); const SEED = "mimc"; let nRounds; if (typeof process.argv[2] != "undefined") { nRounds = parseInt(process.argv[2]); } else { nRounds = 91; } console.log(mimcGenContract.createCode(SEED, nRounds));
https://github.com/socathie/circomlib-ml
test/modules/src/mimcsponge.js
const Scalar = require("ffjavascript").Scalar const Web3Utils = require("web3-utils"); const ZqField = require("ffjavascript").ZqField; const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); const SEED = "mimcsponge"; const NROUNDS = 220; exports.getIV = (seed) => { if (typeof seed === "undefined") seed = SEED; const c = Web3Utils.keccak256(seed+"_iv"); const cn = Scalar.fromString(Web3Utils.toBN(c).toString()); const iv = cn.mod(F.p); return iv; }; exports.getConstants = (seed, nRounds) => { if (typeof seed === "undefined") seed = SEED; if (typeof nRounds === "undefined") nRounds = NROUNDS; const cts = new Array(nRounds); let c = Web3Utils.keccak256(SEED); for (let i=1; i<nRounds; i++) { c = Web3Utils.keccak256(c); const n1 = Web3Utils.toBN(c).mod(Web3Utils.toBN(F.p.toString())); const c2 = Web3Utils.padLeft(Web3Utils.toHex(n1), 64); cts[i] = F.e(Web3Utils.toBN(c2).toString()); } cts[0] = F.e(0); cts[cts.length - 1] = F.e(0); return cts; }; const cts = exports.getConstants(SEED, NROUNDS); exports.hash = (_xL_in, _xR_in, _k) =>{ let xL = F.e(_xL_in); let xR = F.e(_xR_in); const k = F.e(_k); for (let i=0; i<NROUNDS; i++) { const c = cts[i]; const t = (i==0) ? F.add(xL, k) : F.add(F.add(xL, k), c); const xR_tmp = F.e(xR); if (i < (NROUNDS - 1)) { xR = xL; xL = F.add(xR_tmp, F.pow(t, 5)); } else { xR = F.add(xR_tmp, F.pow(t, 5)); } } return { xL: F.normalize(xL), xR: F.normalize(xR), }; }; exports.multiHash = (arr, key, numOutputs) => { if (typeof(numOutputs) === "undefined") { numOutputs = 1; } if (typeof(key) === "undefined") { key = F.zero; } let R = F.zero; let C = F.zero; for (let i=0; i<arr.length; i++) { R = F.add(R, F.e(arr[i])); const S = exports.hash(R, C, key); R = S.xL; C = S.xR; } let outputs = [R]; for (let i=1; i < numOutputs; i++) { const S = exports.hash(R, C, key); R = S.xL; C = S.xR; outputs.push(R); } if (numOutputs == 1) { return F.normalize(outputs[0]); } else { return outputs.map(x => F.normalize(x)); } };
https://github.com/socathie/circomlib-ml
test/modules/src/mimcsponge_gencontract.js
// Copyright (c) 2018 Jordi Baylina // License: LGPL-3.0+ // const Web3Utils = require("web3-utils"); const Contract = require("./evmasm"); function createCode(seed, n) { let ci = Web3Utils.keccak256(seed); const C = new Contract(); C.push(0x64); C.push("0x00"); C.push("0x00"); C.calldatacopy(); C.push("0x0100000000000000000000000000000000000000000000000000000000"); C.push("0x00"); C.mload(); C.div(); C.push("0x3f1a1187"); // MiMCSponge(uint256,uint256,uint256) C.eq(); C.jmpi("start"); C.invalid(); C.label("start"); C.push("0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001"); // q C.push("0x44"); C.mload(); // k q C.push("0x04"); C.mload(); // xL k q C.dup(2); // q xL k q C.push("0x24"); C.mload(); // xR q xL k q C.dup(1); // q xR q xL k q C.dup(0); // q q xR q xL k q C.dup(4); // xL q q xR q xL k q C.dup(6); // k xL q q xR q xL k q C.addmod(); // t=k+xL q xR q xL k q C.dup(1); // q t q xR q xL k q C.dup(0); // q q t q xR q xL k q C.dup(2); // t q q t q xR q xL k q C.dup(0); // t t q q t q xR q xL k q C.mulmod(); // b=t^2 q t q xR q xL k q C.dup(0); // b b q t q xR q xL k q C.mulmod(); // c=t^4 t q xR q xL k q C.mulmod(); // d=t^5 xR q xL k q C.addmod(); // e=t^5+xR xL k q (for next round: xL xR k q) for (let i=0; i<n-1; i++) { if (i < n-2) { ci = Web3Utils.keccak256(ci); } else { ci = "0x00"; } C.swap(1); // xR xL k q C.dup(3); // q xR xL k q C.dup(3); // k q xR xL k q C.dup(1); // q k q xR xL k q C.dup(4); // xL q k q xR xL k q C.push(ci); // ci xL q k q xR xL k q C.addmod(); // a=ci+xL k q xR xL k q C.addmod(); // t=a+k xR xL k q C.dup(4); // q t xR xL k q C.swap(1); // t q xR xL k q C.dup(1); // q t q xR xL k q C.dup(0); // q q t q xR xL k q C.dup(2); // t q q t q xR xL k q C.dup(0); // t t q q t q xR xL k q C.mulmod(); // b=t^2 q t q xR xL k q C.dup(0); // b b q t q xR xL k q C.mulmod(); // c=t^4 t q xR xL k q C.mulmod(); // d=t^5 xR xL k q C.dup(4); // q d xR xL k q C.swap(2); // xR d q xL k q C.addmod(); // e=t^5+xR xL k q (for next round: xL xR k q) } C.push("0x20"); C.mstore(); // Save it to pos 0; C.push("0x00"); C.mstore(); // Save it to pos 1; C.push("0x40"); C.push("0x00"); C.return(); return C.createTxData(); } module.exports.abi = [ { "constant": true, "inputs": [ { "name": "xL_in", "type": "uint256" }, { "name": "xR_in", "type": "uint256" }, { "name": "k", "type": "uint256" } ], "name": "MiMCSponge", "outputs": [ { "name": "xL", "type": "uint256" }, { "name": "xR", "type": "uint256" } ], "payable": false, "stateMutability": "pure", "type": "function" } ]; module.exports.createCode = createCode;
https://github.com/socathie/circomlib-ml
test/modules/src/mimcsponge_printconstants.js
const mimcsponge = require("./mimcsponge.js"); const nRounds = 220; let S = "[\n"; const cts = mimcsponge.getConstants(); for (let i=0; i<nRounds; i++) { S = S + cts[i].toString(); if (i<nRounds-1) S = S + ","; S=S+"\n"; } S = S + "]\n"; console.log(S);
https://github.com/socathie/circomlib-ml
test/modules/src/mimcsponge_printcontract.js
const mimcGenContract = require("./mimcsponge_gencontract"); const SEED = "mimcsponge"; let nRounds; if (typeof process.argv[2] != "undefined") { nRounds = parseInt(process.argv[2]); } else { nRounds = 220; } console.log(mimcGenContract.createCode(SEED, nRounds));
https://github.com/socathie/circomlib-ml
test/modules/src/pedersenHash.js
const babyJub = require("./babyjub"); const createBlakeHash = require("blake-hash"); const blake2b = require("blake2b"); const Scalar = require("ffjavascript").Scalar; const GENPOINT_PREFIX = "PedersenGenerator"; const windowSize = 4; const nWindowsPerSegment = 50; exports.hash = pedersenHash; exports.getBasePoint = getBasePoint; function baseHash(type, S) { if (type == "blake") { return createBlakeHash("blake256").update(S).digest(); } else if (type == "blake2b") { return Buffer.from(blake2b(32).update(Buffer.from(S)).digest()); } } function pedersenHash(msg, options) { options = options || {}; options.baseHash = options.baseHash || "blake"; const bitsPerSegment = windowSize*nWindowsPerSegment; const bits = buffer2bits(msg); const nSegments = Math.floor((bits.length - 1)/(windowSize*nWindowsPerSegment)) +1; let accP = [babyJub.F.zero,babyJub.F.one]; for (let s=0; s<nSegments; s++) { let nWindows; if (s == nSegments-1) { nWindows = Math.floor(((bits.length - (nSegments - 1)*bitsPerSegment) - 1) / windowSize) +1; } else { nWindows = nWindowsPerSegment; } let escalar = Scalar.e(0); let exp = Scalar.e(1); for (let w=0; w<nWindows; w++) { let o = s*bitsPerSegment + w*windowSize; let acc = Scalar.e(1); for (let b=0; ((b<windowSize-1)&&(o<bits.length)) ; b++) { if (bits[o]) { acc = Scalar.add(acc, Scalar.shl(Scalar.e(1), b) ); } o++; } if (o<bits.length) { if (bits[o]) { acc = Scalar.neg(acc); } o++; } escalar = Scalar.add(escalar, Scalar.mul(acc, exp)); exp = Scalar.shl(exp, windowSize+1); } if (Scalar.lt(escalar, 0)) { escalar = Scalar.add( escalar, babyJub.subOrder); } accP = babyJub.addPoint(accP, babyJub.mulPointEscalar(getBasePoint(options.baseHash, s), escalar)); } return babyJub.packPoint(accP); } let bases = []; function getBasePoint(baseHashType, pointIdx) { if (pointIdx<bases.length) return bases[pointIdx]; let p= null; let tryIdx = 0; while (p==null) { const S = GENPOINT_PREFIX + "_" + padLeftZeros(pointIdx, 32) + "_" + padLeftZeros(tryIdx, 32); const h = baseHash(baseHashType, S); h[31] = h[31] & 0xBF; // Set 255th bit to 0 (256th is the signal and 254th is the last possible bit to 1) p = babyJub.unpackPoint(h); tryIdx++; } const p8 = babyJub.mulPointEscalar(p, 8); if (!babyJub.inSubgroup(p8)) { throw new Error("Point not in curve"); } bases[pointIdx] = p8; return p8; } function padLeftZeros(idx, n) { let sidx = "" + idx; while (sidx.length<n) sidx = "0"+sidx; return sidx; } /* Input a buffer Returns an array of booleans. 0 is LSB of first byte and so on. */ function buffer2bits(buff) { const res = new Array(buff.length*8); for (let i=0; i<buff.length; i++) { const b = buff[i]; res[i*8] = b & 0x01; res[i*8+1] = b & 0x02; res[i*8+2] = b & 0x04; res[i*8+3] = b & 0x08; res[i*8+4] = b & 0x10; res[i*8+5] = b & 0x20; res[i*8+6] = b & 0x40; res[i*8+7] = b & 0x80; } return res; }
https://github.com/socathie/circomlib-ml
test/modules/src/pedersen_printbases.js
const pedersenHash = require("./pedersenHash.js"); let nBases; if (typeof process.argv[2] != "undefined") { nBases = parseInt(process.argv[2]); } else { nBases = 5; } let baseHash; if (typeof process.argv[3] != "undefined") { baseHash = process.argv[3]; } else { baseHash = "blake"; } for (let i=0; i < nBases; i++) { const p = pedersenHash.getBasePoint(baseHash, i); console.log(`[${p[0]},${p[1]}]`); }
https://github.com/socathie/circomlib-ml
test/modules/src/poseidon.js
const assert = require("assert"); const Scalar = require("ffjavascript").Scalar; const ZqField = require("ffjavascript").ZqField; const { unstringifyBigInts } = require("ffjavascript").utils; // Prime 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); // Parameters are generated by a reference script https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_parameters_grain.sage // Used like so: sage generate_parameters_grain.sage 1 0 254 2 8 56 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 const { C, M } = unstringifyBigInts(require("./poseidon_constants.json")); // Using recommended parameters from whitepaper https://eprint.iacr.org/2019/458.pdf (table 2, table 8) // Generated by https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/calc_round_numbers.py // And rounded up to nearest integer that divides by t const N_ROUNDS_F = 8; const N_ROUNDS_P = [56, 57, 56, 60, 60, 63, 64, 63]; const pow5 = a => F.mul(a, F.square(F.square(a, a))); function poseidon(inputs) { assert(inputs.length > 0); assert(inputs.length < N_ROUNDS_P.length - 1); const t = inputs.length + 1; const nRoundsF = N_ROUNDS_F; const nRoundsP = N_ROUNDS_P[t - 2]; let state = [F.zero, ...inputs.map(a => F.e(a))]; for (let r = 0; r < nRoundsF + nRoundsP; r++) { state = state.map((a, i) => F.add(a, C[t - 2][r * t + i])); if (r < nRoundsF / 2 || r >= nRoundsF / 2 + nRoundsP) { state = state.map(a => pow5(a)); } else { state[0] = pow5(state[0]); } state = state.map((_, i) => state.reduce((acc, a, j) => F.add(acc, F.mul(M[t - 2][i][j], a)), F.zero) ); } return F.normalize(state[0]); } module.exports = poseidon;
https://github.com/socathie/circomlib-ml
test/modules/src/poseidon_gencontract.js
// Copyright (c) 2018 Jordi Baylina // License: LGPL-3.0+ // const Contract = require("./evmasm"); const { unstringifyBigInts } = require("ffjavascript").utils; const Web3Utils = require("web3-utils"); const { C:K, M } = unstringifyBigInts(require("./poseidon_constants.json")); const N_ROUNDS_F = 8; const N_ROUNDS_P = [56, 57, 56, 60, 60, 63, 64, 63]; function toHex256(a) { let S = a.toString(16); while (S.length < 64) S="0"+S; return "0x" + S; } function createCode(nInputs) { if (( nInputs<1) || (nInputs>8)) throw new Error("Invalid number of inputs. Must be 1<=nInputs<=8"); const t = nInputs + 1; const nRoundsF = N_ROUNDS_F; const nRoundsP = N_ROUNDS_P[t - 2]; const C = new Contract(); function saveM() { for (let i=0; i<t; i++) { for (let j=0; j<t; j++) { C.push(toHex256(M[t-2][i][j])); C.push((1+i*t+j)*32); C.mstore(); } } } function ark(r) { // st, q for (let i=0; i<t; i++) { C.dup(t); // q, st, q C.push(toHex256(K[t-2][r*t+i])); // K, q, st, q C.dup(2+i); // st[i], K, q, st, q C.addmod(); // newSt[i], st, q C.swap(1 + i); // xx, st, q C.pop(); } } function sigma(p) { // sq, q C.dup(t); // q, st, q C.dup(1+p); // st[p] , q , st, q C.dup(1); // q, st[p] , q , st, q C.dup(0); // q, q, st[p] , q , st, q C.dup(2); // st[p] , q, q, st[p] , q , st, q C.dup(0); // st[p] , st[p] , q, q, st[p] , q , st, q C.mulmod(); // st2[p], q, st[p] , q , st, q C.dup(0); // st2[p], st2[p], q, st[p] , q , st, q C.mulmod(); // st4[p], st[p] , q , st, q C.mulmod(); // st5[p], st, q C.swap(1+p); C.pop(); // newst, q } function mix() { C.label("mix"); for (let i=0; i<t; i++) { for (let j=0; j<t; j++) { if (j==0) { C.dup(i+t); // q, newSt, oldSt, q C.push((1+i*t+j)*32); C.mload(); // M, q, newSt, oldSt, q C.dup(2+i+j); // oldSt[j], M, q, newSt, oldSt, q C.mulmod(); // acc, newSt, oldSt, q } else { C.dup(1+i+t); // q, acc, newSt, oldSt, q C.push((1+i*t+j)*32); C.mload(); // M, q, acc, newSt, oldSt, q C.dup(3+i+j); // oldSt[j], M, q, acc, newSt, oldSt, q C.mulmod(); // aux, acc, newSt, oldSt, q C.dup(2+i+t); // q, aux, acc, newSt, oldSt, q C.swap(2); // acc, aux, q, newSt, oldSt, q C.addmod(); // acc, newSt, oldSt, q } } } for (let i=0; i<t; i++) { C.swap((t -i) + (t -i-1)); C.pop(); } C.push(0); C.mload(); C.jmp(); } // Check selector C.push("0x0100000000000000000000000000000000000000000000000000000000"); C.push(0); C.calldataload(); C.div(); C.dup(0); C.push(Web3Utils.keccak256(`poseidon(uint256[${nInputs}])`).slice(0, 10)); // poseidon(uint256[n]) C.eq(); C.swap(1); C.push(Web3Utils.keccak256(`poseidon(bytes32[${nInputs}])`).slice(0, 10)); // poseidon(bytes32[n]) C.eq(); C.or(); C.jmpi("start"); C.invalid(); C.label("start"); saveM(); C.push("0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001"); // q // Load t values from the call data. // The function has a single array param param // [Selector (4)] [item1 (32)] [item2 (32)] .... // Stack positions 0-nInputs. for (let i=0; i<nInputs; i++) { C.push(0x04+(0x20*(nInputs-i-1))); C.calldataload(); } C.push(0); for (let i=0; i<nRoundsF+nRoundsP; i++) { ark(i); if ((i<nRoundsF/2) || (i>=nRoundsP+nRoundsF/2)) { for (let j=0; j<t; j++) { sigma(j); } } else { sigma(0); } const strLabel = "aferMix"+i; C._pushLabel(strLabel); C.push(0); C.mstore(); C.jmp("mix"); C.label(strLabel); } C.push("0x00"); C.mstore(); // Save it to pos 0; C.push("0x20"); C.push("0x00"); C.return(); mix(); return C.createTxData(); } function generateABI(nInputs) { return [ { "constant": true, "inputs": [ { "internalType": `bytes32[${nInputs}]`, "name": "input", "type": `bytes32[${nInputs}]` } ], "name": "poseidon", "outputs": [ { "internalType": "bytes32", "name": "", "type": "bytes32" } ], "payable": false, "stateMutability": "pure", "type": "function" }, { "constant": true, "inputs": [ { "internalType": `uint256[${nInputs}]`, "name": "input", "type": `uint256[${nInputs}]` } ], "name": "poseidon", "outputs": [ { "internalType": "uint256", "name": "", "type": "uint256" } ], "payable": false, "stateMutability": "pure", "type": "function" } ]; } module.exports.generateABI = generateABI; module.exports.createCode = createCode;
https://github.com/socathie/circomlib-ml
test/modules/src/poseidon_printcontract.js
const poseidonGenContract = require("./poseidon_gencontract"); if (process.argv.length != 3) { console.log("Usage: node poseidon_gencontract.js [numberOfInputs]"); process.exit(1); } const nInputs = Number(process.argv[2]); console.log(nInputs); console.log(poseidonGenContract.createCode(nInputs));
https://github.com/socathie/circomlib-ml
test/modules/src/poseidon_printmatrix.js
const Poseidon = require("./poseidon.js"); const M = Poseidon.getMatrix(); let S = "[\n "; for (let i=0; i<M.length; i++) { const LC = M[i]; S = S + "[\n"; for (let j=0; j<LC.length; j++) { S = S + " " + M[i][j].toString(); if (j<LC.length-1) S = S + ","; S = S + "\n"; } S = S + " ]"; if (i<M.length-1) S = S + ","; } S=S+ "\n]\n"; console.log(S);
https://github.com/socathie/circomlib-ml
test/modules/src/smt.js
const Scalar = require("ffjavascript").Scalar; const SMTMemDB = require("./smt_memdb"); const {hash0, hash1, F} = require("./smt_hashes_poseidon"); class SMT { constructor(db, root) { this.db = db; this.root = root; } _splitBits(_key) { const res = Scalar.bits(_key); while (res.length<256) res.push(false); return res; } async update(_key, _newValue) { const key = Scalar.e(_key); const newValue = F.e(_newValue); const resFind = await this.find(key); const res = {}; res.oldRoot = this.root; res.oldKey = key; res.oldValue = resFind.foundValue; res.newKey = key; res.newValue = newValue; res.siblings = resFind.siblings; const ins = []; const dels = []; let rtOld = hash1(key, resFind.foundValue); let rtNew = hash1(key, newValue); ins.push([rtNew, [1, key, newValue ]]); dels.push(rtOld); const keyBits = this._splitBits(key); for (let level = resFind.siblings.length-1; level >=0; level--) { let oldNode, newNode; const sibling = resFind.siblings[level]; if (keyBits[level]) { oldNode = [sibling, rtOld]; newNode = [sibling, rtNew]; } else { oldNode = [rtOld, sibling]; newNode = [rtNew, sibling]; } rtOld = hash0(oldNode[0], oldNode[1]); rtNew = hash0(newNode[0], newNode[1]); dels.push(rtOld); ins.push([rtNew, newNode]); } res.newRoot = rtNew; await this.db.multiDel(dels); await this.db.multiIns(ins); await this.db.setRoot(rtNew); this.root = rtNew; return res; } async delete(_key) { const key = Scalar.e(_key); const resFind = await this.find(key); if (!resFind.found) throw new Error("Key does not exists"); const res = { siblings: [], delKey: key, delValue: resFind.foundValue }; const dels = []; const ins = []; let rtOld = hash1(key, resFind.foundValue); let rtNew; dels.push(rtOld); let mixed; if (resFind.siblings.length > 0) { const record = await this.db.get(resFind.siblings[resFind.siblings.length - 1]); if ((record.length == 3)&&(F.eq(record[0], F.one))) { mixed = false; res.oldKey = record[1]; res.oldValue = record[2]; res.isOld0 = false; rtNew = resFind.siblings[resFind.siblings.length - 1]; } else if (record.length == 2) { mixed = true; res.oldKey = key; res.oldValue = F.zero; res.isOld0 = true; rtNew = F.zero; } else { throw new Error("Invalid node. Database corrupted"); } } else { rtNew = F.zero; res.oldKey = key; res.oldValue = F.zero; res.isOld0 = true; } const keyBits = this._splitBits(key); for (let level = resFind.siblings.length-1; level >=0; level--) { let newSibling = resFind.siblings[level]; if ((level == resFind.siblings.length-1)&&(!res.isOld0)) { newSibling = F.zero; } const oldSibling = resFind.siblings[level]; if (keyBits[level]) { rtOld = hash0(oldSibling, rtOld); } else { rtOld = hash0(rtOld, oldSibling); } dels.push(rtOld); if (!F.isZero(newSibling)) { mixed = true; } if (mixed) { res.siblings.unshift(resFind.siblings[level]); let newNode; if (keyBits[level]) { newNode = [newSibling, rtNew]; } else { newNode = [rtNew, newSibling]; } rtNew = hash0(newNode[0], newNode[1]); ins.push([rtNew, newNode]); } } await this.db.multiIns(ins); await this.db.setRoot(rtNew); this.root = rtNew; await this.db.multiDel(dels); res.newRoot = rtNew; res.oldRoot = rtOld; return res; } async insert(_key, _value) { const key = Scalar.e(_key); const value = F.e(_value); let addedOne = false; const res = {}; res.oldRoot = this.root; const newKeyBits = this._splitBits(key); let rtOld; const resFind = await this.find(key); if (resFind.found) throw new Error("Key already exists"); res.siblings = resFind.siblings; let mixed; if (!resFind.isOld0) { const oldKeyits = this._splitBits(resFind.notFoundKey); for (let i= res.siblings.length; oldKeyits[i] == newKeyBits[i]; i++) { res.siblings.push(F.zero); } rtOld = hash1(resFind.notFoundKey, resFind.notFoundValue); res.siblings.push(rtOld); addedOne = true; mixed = false; } else if (res.siblings.length >0) { mixed = true; rtOld = F.zero; } const inserts = []; const dels = []; let rt = hash1(key, value); inserts.push([rt,[1, key, value]] ); for (let i=res.siblings.length-1; i>=0; i--) { if ((i<res.siblings.length-1)&&(!F.isZero(res.siblings[i]))) { mixed = true; } if (mixed) { const oldSibling = resFind.siblings[i]; if (newKeyBits[i]) { rtOld = hash0(oldSibling, rtOld); } else { rtOld = hash0(rtOld, oldSibling); } dels.push(rtOld); } let newRt; if (newKeyBits[i]) { newRt = hash0(res.siblings[i], rt); inserts.push([newRt,[res.siblings[i], rt]] ); } else { newRt = hash0(rt, res.siblings[i]); inserts.push([newRt,[rt, res.siblings[i]]] ); } rt = newRt; } if (addedOne) res.siblings.pop(); while ((res.siblings.length>0) && (F.isZero(res.siblings[res.siblings.length-1]))) { res.siblings.pop(); } res.oldKey = resFind.notFoundKey; res.oldValue = resFind.notFoundValue; res.newRoot = rt; res.isOld0 = resFind.isOld0; await this.db.multiIns(inserts); await this.db.setRoot(rt); this.root = rt; await this.db.multiDel(dels); return res; } async find(key) { const keyBits = this._splitBits(key); return await this._find(key, keyBits, this.root, 0); } async _find(key, keyBits, root, level) { if (typeof root === "undefined") root = this.root; let res; if (F.isZero(root)) { res = { found: false, siblings: [], notFoundKey: key, notFoundValue: F.zero, isOld0: true }; return res; } const record = await this.db.get(root); if ((record.length==3)&&(F.eq(record[0],F.one))) { if (F.eq(record[1],key)) { res = { found: true, siblings: [], foundValue: record[2], isOld0: false }; } else { res = { found: false, siblings: [], notFoundKey: record[1], notFoundValue: record[2], isOld0: false }; } } else { if (keyBits[level] == 0) { res = await this._find(key, keyBits, record[0], level+1); res.siblings.unshift(record[1]); } else { res = await this._find(key, keyBits, record[1], level+1); res.siblings.unshift(record[0]); } } return res; } } async function loadFromFile(fileName) { } async function newMemEmptyTrie() { const db = new SMTMemDB(); const rt = await db.getRoot(); const smt = new SMT(db, rt); return smt; } module.exports.loadFromFile = loadFromFile; module.exports.newMemEmptyTrie = newMemEmptyTrie; module.exports.SMT = SMT; module.exports.SMTMemDB = SMTMemDB;
https://github.com/socathie/circomlib-ml
test/modules/src/smt_hashes_mimc.js
const mimc7 = require("./mimc7"); const bigInt = require("big-integer"); exports.hash0 = function (left, right) { return mimc7.multiHash(left, right); }; exports.hash1 = function(key, value) { return mimc7.multiHash([key, value], bigInt.one); }; exports.F = mimc7.F;
https://github.com/socathie/circomlib-ml
test/modules/src/smt_hashes_poseidon.js
const ZqField = require("ffjavascript").ZqField; const Scalar = require("ffjavascript").Scalar; const poseidon = require("./poseidon"); const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); exports.hash0 = function (left, right) { return poseidon([left, right]); }; exports.hash1 = function(key, value) { return poseidon([key, value, F.one]); }; exports.F = F;
https://github.com/socathie/circomlib-ml
test/modules/src/smt_memdb.js
const Scalar = require("ffjavascript").Scalar; const ZqField = require("ffjavascript").ZqField; // Prime 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); class SMTMemDb { constructor() { this.nodes = {}; this.root = F.zero; } async getRoot() { return this.root; } _key2str(k) { // const keyS = bigInt(key).leInt2Buff(32).toString("hex"); const keyS = k.toString(); return keyS; } _normalize(n) { for (let i=0; i<n.length; i++) { n[i] = F.e(n[i]); } } async get(key) { const keyS = this._key2str(key); return this.nodes[keyS]; } async multiGet(keys) { const promises = []; for (let i=0; i<keys.length; i++) { promises.push(this.get(keys[i])); } return await Promise.all(promises); } async setRoot(rt) { this.root = rt; } async multiIns(inserts) { for (let i=0; i<inserts.length; i++) { const keyS = this._key2str(inserts[i][0]); this._normalize(inserts[i][1]); this.nodes[keyS] = inserts[i][1]; } } async multiDel(dels) { for (let i=0; i<dels.length; i++) { const keyS = this._key2str(dels[i]); delete this.nodes[keyS]; } } } module.exports = SMTMemDb;
https://github.com/socathie/circomlib-ml
build.rs
use eyre::{bail, eyre, Result, WrapErr as _}; use std::{ env::{var, VarError}, fs, path::Path, process::Command, }; use time::{format_description::well_known::Rfc3339, OffsetDateTime, UtcOffset}; fn main() -> Result<()> { let commit = rerun_if_git_changes().unwrap_or_else(|e| { eprintln!("Warning: {}", e); None }); println!( "cargo:rustc-env=COMMIT_SHA={}", env_or_cmd("COMMIT_SHA", &["git", "rev-parse", "HEAD"]).unwrap_or_else(|e| { eprintln!("Warning: {}", e); commit.unwrap_or_else(|| "0000000000000000000000000000000000000000".to_string()) }) ); let build_date = OffsetDateTime::now_utc(); let commit_date = env_or_cmd("COMMIT_DATE", &[ "git", "log", "-n1", "--pretty=format:'%aI'", ]) .and_then(|str| Ok(OffsetDateTime::parse(str.trim_matches('\''), &Rfc3339)?)) .unwrap_or_else(|e| { eprintln!("Warning: {}", e); OffsetDateTime::UNIX_EPOCH }); println!( "cargo:rustc-env=COMMIT_DATE={}", commit_date.to_offset(UtcOffset::UTC).date() ); println!( "cargo:rustc-env=BUILD_DATE={}", build_date.to_offset(UtcOffset::UTC).date() ); println!( "cargo:rustc-env=TARGET={}", var("TARGET").wrap_err("Fetching environment variable TARGET")? ); Ok(()) } fn env_or_cmd(env: &str, cmd: &[&str]) -> Result<String> { // Try env first match var(env) { Ok(s) => return Ok(s), Err(VarError::NotPresent) => (), Err(e) => bail!(e), }; // Try command let err = || { format!( "Variable {} is unset and command \"{}\" failed", env, cmd.join(" ") ) }; let output = Command::new(cmd[0]) .args(&cmd[1..]) .output() .with_context(err)?; if output.status.success() { Ok(String::from_utf8(output.stdout)?.trim().to_string()) } else { bail!(err()) } } fn rerun_if_git_changes() -> Result<Option<String>> { let git_head = Path::new(".git/HEAD"); // Skip if not in a git repo if !git_head.exists() { eprintln!("No .git/HEAD found, not rerunning on git change"); return Ok(None); } // TODO: Worktree support where `.git` is a file println!("cargo:rerun-if-changed=.git/HEAD"); // If HEAD contains a ref, then echo that path also. let contents = fs::read_to_string(git_head).wrap_err("Error reading .git/HEAD")?; let head_ref = contents.split(": ").collect::<Vec<_>>(); let commit = if head_ref.len() == 2 && head_ref[0] == "ref" { let ref_path = Path::new(".git").join(head_ref[1].trim()); let ref_path_str = ref_path .to_str() .ok_or_else(|| eyre!("Could not convert ref path {:?} to string", ref_path))?; println!("cargo:rerun-if-changed={}", ref_path_str); fs::read_to_string(&ref_path).with_context(|| format!("Error reading {}", ref_path_str))? } else { contents }; Ok(Some(commit)) }
https://github.com/worldcoin/proto-neural-zkp
criterion.rs
use neural_zkp as lib; fn main() { let mut criterion = criterion::Criterion::default().configure_from_args(); lib::bench::group(&mut criterion); criterion.final_summary(); }
https://github.com/worldcoin/proto-neural-zkp
ref_cnn/benchmark_cnn.py
### Will take a long time! Took 13.2min on my machine (M1 Max MBP - DC) import timeit import numpy as np from vanilla_cnn import * if __name__ == "__main__": # instantiate matrices outside of time it block np.random.seed(12345) x = np.random.randint(low=-5, high=5, size=(120, 80, 3)) f = np.random.randint(low=-10, high=+10, size=(32, 5, 5, 3)) k = np.random.randint(low=-10, high=+10, size=(32,5,5,32)) weights1 = np.random.randint(low=-10, high=+10, size=(1000, 14688)) biases1 = np.random.randint(low=-10, high=+10, size=(1000)) weights2 = np.random.randint(low=-10, high=+10, size=(5, 1000)) biases2 = np.random.randint(low=-10, high=+10, size=(5)) times = [] runs = 100 for _ in range(runs): starttime = timeit.default_timer() # conv layer x, n_params, n_multiplications, name = conv_layer(x, f) # max pooling x, n_params, n_multiplications, name = max_pooling_layer(x, 2) # relu layer x, n_params, n_multiplications, name = relu_layer(x) # conv layer x, n_params, n_multiplications, name = conv_layer(x, k) # max pooling x, n_params, n_multiplications, name = max_pooling_layer(x, 2) # relu layer x, n_params, n_multiplications, name = relu_layer(x) # flatten x, n_params, n_multiplications, name = flatten_layer(x) # fully connected x, n_params, n_multiplications, name = fully_connected_layer(x, weights1, biases1) # relu layer x, n_params, n_multiplications, name = relu_layer(x) # fully connected x, n_params, n_multiplications, name = fully_connected_layer(x, weights2, biases2) # normalization x, n_params, n_multiplications, name = normalize(x) times.append(timeit.default_timer() - starttime) np.random.seed(12345) x = np.random.randint(low=-5, high=5, size=(120, 80, 3)) average = sum(times) / len(times) print(f'The average time is {average} seconds for {runs} runs') # Result = 0.8297840171150046 for 1000 runs
https://github.com/worldcoin/proto-neural-zkp
ref_cnn/generate_cnn_json.py
# Imports import json from json import JSONEncoder import numpy as np from enum import Enum import re # Encoder class Encoder(JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, Layer): return obj.value[0] return JSONEncoder.default(self, obj) # Layer definitions def conv_layer(input, f): """ Evaluate the output of a convolutional layer using the filter f. input.shape = (h, w, c) f.shape = (c_out, hf, wf, c_in) """ h, w, c = input.shape c_out, hf, wf, c_in = f.shape assert c == c_in, "Input channels must match!" assert hf%2 == 1, "Height of the filter (f.shape[1]) must be an uneven number!" assert wf%2 == 1, "Width of the filter (f.shape[2]) must be an uneven number!" # unilateral width and heght dh = hf//2 dw = wf//2 # after convolution dw and dh get substracted from all sides of the image, c_out is number of convolutions which dictates # of channels # initialize matrix with 0s output = np.zeros(shape=(h-2*dh, w-2*dw, c_out)) # run convolution # go over image height - kernel padding (2*dh) for i in range(dh, h-dh): # go over image width - kernel padding (2*dw) for j in range(dw, w-dw): # kernel slice a = input[i-dh:i+dh+1, j-dw:j+dw+1] for k in range(c_out): # filter channel 1..c_out b = f[k,:,:,:] # apply filter output[i-dh, j-dw, k] = (a*b).sum() # a.size multiplication n_params = f.size n_multiplications = a.size * c_out * (w-2*dw) * (h-2*dh) name = f"conv {'x'.join([str(e) for e in f.shape])}" return output, n_params, n_multiplications, name def relu_layer(input): output = input.copy() output[output<0] = 0 n_params = 0 n_multiplications = input.size return output, n_params, n_multiplications, "relu" def max_pooling_layer(input, s): """ Apply max pooling layer using a sxs patch. """ h, w, c = input.shape assert h%s == 0, "Height must be divisible by s!" assert w%s == 0, "Width must be dibisible by s!" output = np.zeros(shape=(h//s, w//s, c)) for i in range(0, h, s): for j in range(0, w, s): for k in range(c): a = input[i:i+s, j:j+s, k] output[i//s, j//s, k] = a.max() n_params = 0 n_multiplications = input.size return output, n_params, n_multiplications, "max-pool" def flatten_layer(input): output = input.flatten() n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "flatten" def fully_connected_layer(input, weights, biases): """ Evaluate the output of a fully connected layer. input.shape = (output_dim) weights.shape = (output_dim, input_dim) f.shape = (output_dim) """ assert input.ndim == 1, "Input must be a flattend array!" assert weights.shape[1] == input.shape[0], "Input shapes must match!" assert weights.shape[0] == biases.shape[0], "Output shapes must match!" output = np.dot(weights, input) + biases n_params = weights.size + biases.size n_multiplications = weights.size name = f"full {'x'.join([str(e) for e in weights.shape])}" return output, n_params, n_multiplications, name def normalize(input): output = input / np.linalg.norm(input) n_params = 0 n_multiplications = 1 + input.size return output, n_params, n_multiplications, "normalize" ############ # Model # ############ class Layer(Enum): Convolution = 'convolution', MaxPool = 'max_pool', Relu = 'relu', Flatten = 'flatten', FullyConnected = 'fully_connected', Normalize = 'normalize', np.random.seed(12345) p = "{:>20} | {:>15} | {:>15} | {:>15} " print(p.format("layer", "output shape", "#parameters", "#ops")) print(p.format("-"*20, "-"*15, "-"*15, "-"*15)) shape = (120,80,3) # input x = np.random.randint(low=-5, high=5, size=shape) initial = x.flatten().astype(np.float32, copy=False) data = { "v": 1, "dim": shape, "data": initial } # conv layer shape = (32,5,5,3) f = np.random.randint(low=-10, high=+10, size=shape) conv1 = f.flatten().astype(np.float32, copy=False) data = { "v": 1, "dim": shape, "data": conv1 } conv = { "layer_type": Layer.Convolution, "input_shape": x.shape, "kernel": data, } model = [conv] x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) # max pooling maxpool = { "layer_type": Layer.MaxPool, "input_shape": x.shape, "window": 2, } model.append(maxpool) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(name, str(x.shape), n_params, n_multiplications)) # relu layer relu = { "layer_type": Layer.Relu, "input_shape": x.shape } model.append(relu) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # conv layer shape = (32,5,5,32) f = np.random.randint(low=-10, high=+10, size=shape) conv2 = f.flatten().astype(np.float32, copy=False) data = { "v": 1, "dim": shape, "data": conv2 } conv = { "layer_type": Layer.Convolution, "input_shape": x.shape, "kernel":data } model.append(conv) x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) # max pooling maxpool = { "layer_type": Layer.MaxPool, "input_shape": x.shape, "window": 2 } model.append(maxpool) x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(name, str(x.shape), n_params, n_multiplications)) # relu layer relu = { "layer_type": Layer.Relu, "input_shape": x.shape, } model.append(relu) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # flatten flatten = { "layer_type": Layer.Flatten, "input_shape": x.shape, } model.append(flatten) x, n_params, n_multiplications, name = flatten_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # fully connected shape = (1000, x.shape[0]) weights = np.random.randint(low=-10, high=+10, size=shape) # weights json data = { "v": 1, "dim": shape, "data": weights.flatten().astype(np.float32, copy=False) } # biases json shape = [1000] biases = np.random.randint(low=-10, high=+10, size=(1000)) data2 = { "v": 1, # ndarray can't take a single value, needs to be in json array "dim": shape, "data": biases.flatten().astype(np.float32, copy=False) } fully_connected = { "layer_type": Layer.FullyConnected, "input_shape": x.shape, "weights":data, "biases": data2 } model.append(fully_connected) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplications)) # relu layer relu = { "layer_type": Layer.Relu, "input_shape": x.shape, } model.append(relu) x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # fully connected shape = (5, x.shape[0]) weights = np.random.randint(low=-10, high=+10, size=shape) data = { "v": 1, "dim": shape, "data": weights.flatten().astype(np.float32, copy=False) } shape = [5] biases = np.random.randint(low=-10, high=+10, size=shape) data2 = { "v": 1, # ndarray can't take a single value, needs to be in json array "dim": [5], "data": biases.flatten().astype(np.float32, copy=False) } fully_connected = { "layer_type": Layer.FullyConnected, "input_shape": x.shape, "weights":data, "biases": data2 } model.append(fully_connected) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplications)) assert(np.isclose(x, [ -9404869, -11033050, -34374361, -20396580, 70483360.]).all()) # normalization norm = { "layer_type": Layer.Normalize, "input_shape": x.shape, } model.append(norm) model = { "layers": model } x, n_params, n_multiplications, name = normalize(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) print("\nfinal output:", x) model_data = json.dumps(model, cls=Encoder) with open('../src/json/model.json', "w") as f: print('\ncreated model.json in the proto-neural-zkp/src/json folder') f.write(model_data)
https://github.com/worldcoin/proto-neural-zkp
ref_cnn/prover_perf.ipynb
{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "cf9cc6d3-87d9-4c07-8773-39cfcc94d0f5", "metadata": {}, "outputs": [], "source": [ "# !pip install numpy pandas matplotlib watermark" ] }, { "cell_type": "code", "execution_count": null, "id": "cb8f77a5-dc82-4c34-8ee8-4d510afb175d", "metadata": {}, "outputs": [], "source": [ "import os" ] }, { "cell_type": "code", "execution_count": null, "id": "dc648e92-7bfa-4991-829b-012822604d0f", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "id": "d306a253-dc0d-425f-b77a-44b0dfadcaa3", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "id": "b73322c2-d188-4dae-8480-558a3317fd17", "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "\n", "# Defaults more suitable for 4K monitors\n", "mpl.rcParams[\"figure.dpi\"] = 120\n", "mpl.rcParams[\"figure.figsize\"] = [12.0, 8.0]\n", "# Change font to match Latex\n", "mpl.rcParams['mathtext.fontset'] = 'cm'\n", "mpl.rcParams['font.family'] = 'CMU Serif'\n", "# Export settings\n", "mpl.rcParams[\"savefig.bbox\"] = 'tight'\n", "mpl.rcParams[\"savefig.dpi\"] = 300\n", "mpl.rcParams[\"savefig.facecolor\"] = 'white'\n", "# High compression lossless WebP for animations using ffmpeg -> libwebp\n", "mpl.rcParams[\"animation.writer\"] = 'ffmpeg'\n", "mpl.rcParams[\"animation.codec\"] = 'webp'\n", "mpl.rcParams[\"animation.ffmpeg_args\"] = [\"-lossless\", \"1\", \"-qscale\", \"100\"]\n", "# Use anim.save(\"movie.webp\", fps=60)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "64b79d42-6bcf-49d4-899f-113f193f6d11", "metadata": {}, "outputs": [], "source": [ "import watermark.watermark as watermark\n", "print(watermark(machine=True, iso8601=True, python=True, iversions=True, globals_=globals()))\n", "print(os.getcwd())" ] }, { "cell_type": "code", "execution_count": null, "id": "33eec25e-635a-4779-b34f-09f638a246d2", "metadata": {}, "outputs": [], "source": [ "df1 = pd.read_csv('../bench-1.csv')\n", "df1['ops'] = df.input_size * df.output_size\n", "df1" ] }, { "cell_type": "code", "execution_count": null, "id": "e0a47916-268f-42fb-8880-7298aef847e6", "metadata": {}, "outputs": [], "source": [ "df2 = pd.read_csv('../bench-2.csv')\n", "df2['ops'] = df.input_size * df.output_size\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "id": "fd37c694-d984-46af-af89-febee74eefcf", "metadata": {}, "outputs": [], "source": [ "df5 = pd.read_csv('../bench-5.csv')\n", "df5['ops'] = df.input_size * df.output_size\n", "df5" ] }, { "cell_type": "code", "execution_count": null, "id": "d1d9a5d1-a8fa-417d-9ea3-378018f9ff36", "metadata": {}, "outputs": [], "source": [ "df10 = pd.read_csv('../bench-10.csv')\n", "df10['ops'] = df10.input_size * df10.output_size\n", "df10" ] }, { "cell_type": "code", "execution_count": null, "id": "952a923e-8241-4b78-a156-961bf1b85570", "metadata": {}, "outputs": [], "source": [ "plt.title('Prover performance')\n", "plt.xlabel('# of muladds')\n", "plt.ylabel('proof time [s]')\n", "plt.plot(df1.ops, df1.proof_time_s, label='1 thread')\n", "plt.plot(df2.ops, df2.proof_time_s, label='2 thread')\n", "plt.plot(df5.ops, df5.proof_time_s, label='5 thread')\n", "plt.plot(df10.ops, df10.proof_time_s, label='10 threads')\n", "plt.ylim([0, 120])\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": null, "id": "149a5d0c-a272-4fc4-b8fe-18771b9d6d44", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "f758c3a7-4694-4673-971b-f5087b70c2ad", "metadata": {}, "outputs": [], "source": [ "plt.title('Prover performance')\n", "plt.xlabel('# of muladds')\n", "plt.ylabel('utilization')\n", "plt.plot(df1.ops, df1.proof_time_s / (df2.proof_time_s * 2), label='2 thread utilization')\n", "plt.plot(df1.ops, df1.proof_time_s / (df5.proof_time_s * 5), label='5 thread utilization')\n", "plt.plot(df.ops, df1.proof_time_s / (df.proof_time_s * 10), label='10 thread utilization')\n", "plt.ylim([0, 1])\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": null, "id": "25aaf206-4a58-47f1-8272-3df48b5e6e54", "metadata": {}, "outputs": [], "source": [ "plt.title('Prover performance (1 threads)')\n", "plt.xlabel('# of muladds')\n", "plt.ylabel('memory [b]')\n", "plt.plot(df1.ops, df1.proof_mem_b, label='1 threads')\n", "plt.plot(df5.ops, df5.proof_mem_b, label='5 threads')\n", "plt.plot(df10.ops, df10.proof_mem_b, label='10 threads')\n", "plt.ylim([0, 1.1*np.max(df.proof_mem_b)])\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": null, "id": "3cef9590-7689-477f-bac3-21d68ff591c2", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "99d7647e-e9f2-48ba-8ea3-27ab41b06808", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.10" } }, "nbformat": 4, "nbformat_minor": 5 }
https://github.com/worldcoin/proto-neural-zkp
ref_cnn/vanilla_cnn.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "d5c490d4", "metadata": {}, "source": [ "# Vanilla CNN layers implementation with numpy" ] }, { "cell_type": "code", "execution_count": null, "id": "794b9914-cce9-4d71-b20d-96df96f6403b", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "id": "4c3349aa-434a-4c9b-a451-feeb341aaa72", "metadata": {}, "outputs": [], "source": [ "def conv_layer(input, f):\n", " \"\"\"\n", " Evaluate the output of a convolutional layer using the filter f.\n", " input.shape = (h, w, c)\n", " f.shape = (c_out, hf, wf, c_in)\n", " \"\"\"\n", " h, w, c = input.shape\n", " c_out, hf, wf, c_in = f.shape\n", "\n", " assert c == c_in, \"Input channels must match!\"\n", " assert hf%2 == 1, \"Height of the filter (f.shape[1]) must be an uneven number!\"\n", " assert wf%2 == 1, \"Width of the filter (f.shape[2]) must be an uneven number!\"\n", "\n", " # unilateral width and heght\n", " dh = hf//2\n", " dw = wf//2\n", "\n", " # after convolution dw and dh get substracted from all sides of the image, c_out is number of convolutions which dictates # of channels\n", " # initialize matrix with 0s\n", " output = np.zeros(shape=(h-2*dh, w-2*dw, c_out))\n", "\n", "# run convolution\n", "# go over image height - kernel padding (2*dh)\n", " for i in range(dh, h-dh):\n", " # go over image width - kernel padding (2*dw)\n", " for j in range(dw, w-dw):\n", " # kernel slice\n", " a = input[i-dh:i+dh+1, j-dw:j+dw+1]\n", " for k in range(c_out):\n", " # filter channel 1..c_out\n", " b = f[k,:,:,:]\n", " # apply filter\n", " output[i-dh, j-dw, k] = (a*b).sum() # a.size multiplication\n", " \n", " n_params = f.size\n", " n_multiplications = a.size * c_out * (w-2*dw) * (h-2*dh)\n", " name = f\"conv {'x'.join([str(e) for e in f.shape])}\"\n", " \n", " return output, n_params, n_multiplications, name\n", "\n", "\n", "def relu_layer(input): \n", " output = input.copy()\n", " output[output<0] = 0\n", " \n", " n_params = 0\n", " n_multiplications = input.size\n", " \n", " return output, n_params, n_multiplications, \"relu\"\n", "\n", "\n", "def max_pooling_layer(input, s):\n", " \"\"\"\n", " Apply max pooling layer using a sxs patch.\n", " \"\"\"\n", " h, w, c = input.shape\n", "\n", " assert h%s == 0, \"Height must be divisible by s!\"\n", " assert w%s == 0, \"Width must be dibisible by s!\"\n", "\n", " output = np.zeros(shape=(h//s, w//s, c))\n", "\n", " for i in range(0, h, s):\n", " for j in range(0, w, s):\n", " for k in range(c):\n", " a = input[i:i+s, j:j+s, k]\n", " output[i//s, j//s, k] = a.max()\n", " \n", " n_params = 0\n", " n_multiplications = input.size\n", " return output, n_params, n_multiplications, \"max-pool\"\n", "\n", "\n", "def flatten_layer(input):\n", " output = input.flatten()\n", " n_params = 0\n", " n_multiplications = 0\n", " return output, n_params, n_multiplications, \"flatten\"\n", "\n", "\n", "def fully_connected_layer(input, weights, biases):\n", " \"\"\"\n", " Evaluate the output of a fully connected layer.\n", " input.shape = (output_dim)\n", " weights.shape = (output_dim, input_dim)\n", " f.shape = (output_dim)\n", " \"\"\"\n", " assert input.ndim == 1, \"Input must be a flattend array!\"\n", " assert weights.shape[1] == input.shape[0], \"Input shapes must match!\"\n", " assert weights.shape[0] == biases.shape[0], \"Output shapes must match!\"\n", "\n", " output = np.dot(weights, input) + biases\n", " \n", " n_params = weights.size + biases.size\n", " n_multiplications = weights.size\n", " name = f\"full {'x'.join([str(e) for e in weights.shape])}\"\n", " \n", " return output, n_params, n_multiplications, name\n", "\n", "\n", "def normalize(input):\n", " output = input / np.linalg.norm(input)\n", " n_params = 0\n", " n_multiplications = 1 + input.size\n", " return output, n_params, n_multiplications, \"normalize\"\n" ] }, { "cell_type": "markdown", "id": "2896d5ed", "metadata": {}, "source": [ "# Vanilla CNN model" ] }, { "cell_type": "code", "execution_count": null, "id": "00fd6550", "metadata": {}, "outputs": [], "source": [ "np.random.seed(12345)\n", "\n", "p = \"{:>20} | {:>15} | {:>15} | {:>15} \"\n", "print(p.format(\"layer\", \"output shape\", \"#parameters\", \"#ops\"))\n", "print(p.format(\"-\"*20, \"-\"*15, \"-\"*15, \"-\"*15))\n", "\n", "# input\n", "x = np.random.randint(low=-5, high=5, size=(120,80,3))\n", "\n", "# conv layer\n", "f = np.random.randint(low=-10, high=+10, size=(32,5,5,3)) \n", "x, n_params, n_multiplications, name = conv_layer(x, f)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# max pooling\n", "x, n_params, n_multiplications, name = max_pooling_layer(x, 2)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# relu layer\n", "x, n_params, n_multiplications, name = relu_layer(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# conv layer\n", "f = np.random.randint(low=-10, high=+10, size=(32,5,5,32)) \n", "x, n_params, n_multiplications, name = conv_layer(x, f)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# max pooling\n", "x, n_params, n_multiplications, name = max_pooling_layer(x, 2)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# relu layer\n", "x, n_params, n_multiplications, name = relu_layer(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# flatten\n", "x, n_params, n_multiplications, name = flatten_layer(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# fully connected\n", "weights = np.random.randint(low=-10, high=+10, size=(1000, x.shape[0])) \n", "biases = np.random.randint(low=-10, high=+10, size=(1000)) \n", "x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# relu layer\n", "x, n_params, n_multiplications, name = relu_layer(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "# fully connected\n", "weights = np.random.randint(low=-10, high=+10, size=(5, x.shape[0])) \n", "biases = np.random.randint(low=-10, high=+10, size=(5)) \n", "x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "assert(np.isclose(x, [ -9404869, -11033050, -34374361, -20396580, 70483360.]).all())\n", "\n", "# normalization\n", "x, n_params, n_multiplications, name = normalize(x)\n", "print(p.format(name, str(x.shape), n_params, n_multiplications))\n", "\n", "print(\"\\nfinal output:\", x)" ] }, { "cell_type": "markdown", "id": "43c065d3-e68b-4a63-9e7e-237dbf704819", "metadata": {}, "source": [ "# JSON example" ] }, { "cell_type": "code", "execution_count": null, "id": "d97c695a-f706-401f-b85c-b46396a8c42f", "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "# Encoder\n", "from json import JSONEncoder\n", "\n", "class Encoder(JSONEncoder):\n", " def default(self, obj):\n", " if isinstance(obj, np.ndarray):\n", " return obj.tolist()\n", " return JSONEncoder.default(self, obj)\n", "\n", "np.random.seed(12345)\n", "\n", "shape = (3,3,3)\n", "x = np.random.randint(low=-5, high=5, size=shape)\n", "\n", "x = x.flatten()\n", "\n", "# Serialization\n", "data = {\n", " \"v\": 1,\n", " \"dim\": shape,\n", " \"data\": x\n", " }\n", "\n", "json_data = json.dumps(data, cls=Encoder)\n", "\n", "with open(\"../src/json/test.json\", \"w\") as f:\n", " f.write(json_data)" ] }, { "cell_type": "markdown", "id": "e9f4e31a", "metadata": {}, "source": [ "# Miscellaneous" ] }, { "cell_type": "code", "execution_count": null, "id": "a619bbbb-fad3-46ae-83b4-b74398cb953b", "metadata": {}, "outputs": [], "source": [ "8388608" ] }, { "cell_type": "code", "execution_count": null, "id": "5a1787ed-b448-40e2-96e7-7d597a4660e2", "metadata": {}, "outputs": [], "source": [ "4897963 / 8388608" ] }, { "cell_type": "code", "execution_count": null, "id": "33087999-ac7f-4ebd-b290-8dbbe3d0c51b", "metadata": {}, "outputs": [], "source": [ "np.log(262144)/np.log(2)" ] }, { "cell_type": "code", "execution_count": null, "id": "ae322e92-7fcb-4270-9025-392773fc6da4", "metadata": {}, "outputs": [], "source": [ "4896000 * 3 / (14688 * 1000)" ] }, { "cell_type": "code", "execution_count": null, "id": "3078557e-adc4-4385-be93-567aa7d93e2d", "metadata": {}, "outputs": [], "source": [ "np.log(14688 * 800 / 3) / np.log(2)" ] }, { "cell_type": "code", "execution_count": null, "id": "8316d646-b622-47b1-a58c-2ceb5de41c74", "metadata": {}, "outputs": [], "source": [ "14688 * 400" ] }, { "cell_type": "code", "execution_count": null, "id": "8abe8302-5958-427f-9453-7e2c4ff2cdc9", "metadata": {}, "outputs": [], "source": [ "14688 * 1600" ] }, { "cell_type": "code", "execution_count": null, "id": "70387136-104a-4a18-9f20-72847ecee8a0", "metadata": {}, "outputs": [], "source": [ "234076 * 100" ] }, { "cell_type": "code", "execution_count": null, "id": "93298188-6ed4-4e9e-b3cc-20f9778e38bc", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "output = [-6276474000, 8343393300, 8266027500, -7525360600, 7814137000]\n", "norm = np.linalg.norm(output)\n", "norm" ] }, { "cell_type": "code", "execution_count": null, "id": "d1b09558", "metadata": {}, "outputs": [], "source": [ "import math\n", "math.sqrt(6276474000**2 + 8343393300**2 + 8266027500**2 + 7525360600**2 + 7814137000**2)" ] }, { "cell_type": "code", "execution_count": null, "id": "c9c85ea1", "metadata": {}, "outputs": [], "source": [ "output/norm" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.13 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e" } } }, "nbformat": 4, "nbformat_minor": 5 }
https://github.com/worldcoin/proto-neural-zkp
ref_cnn/vanilla_cnn.py
import numpy as np def conv_layer(input, f): """ Evaluate the output of a convolutional layer using the filter f. input.shape = (h, w, c) f.shape = (c_out, hf, wf, c_in) """ h, w, c = input.shape c_out, hf, wf, c_in = f.shape assert c == c_in, "Input channels must match!" assert hf%2 == 1, "Height of the filter (f.shape[1]) must be an uneven number!" assert wf%2 == 1, "Width of the filter (f.shape[2]) must be an uneven number!" dh = hf//2 dw = wf//2 output = np.zeros(shape=(h-2*dh, w-2*dw, c_out)) for i in range(dh, h-dh): for j in range(dw, w-dw): a = input[i-dh:i+dh+1, j-dw:j+dw+1] for k in range(c_out): b = f[k,:,:,:] output[i-dh, j-dw, k] = (a*b).sum() # a.size multiplication n_params = f.size n_multiplications = a.size * c_out * (w-2*dw) * (h-2*dh) name = f"conv {'x'.join([str(e) for e in f.shape])}" return output, n_params, n_multiplications, name def relu_layer(input): output = input.copy() output[output<0] = 0 n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "relu" def max_pooling_layer(input, s): """ Apply max pooling layer using a sxs patch. """ h, w, c = input.shape assert h%s == 0, "Height must be devisable by s!" assert w%s == 0, "Width must be devisable by s!" output = np.zeros(shape=(h//s, w//s, c)) for i in range(0, h, s): for j in range(0, w, s): for k in range(c): a = input[i:i+s, j:j+s, k] output[i//s, j//s, k] = a.max() n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "max-pool" def flatten_layer(input): output = input.flatten() n_params = 0 n_multiplications = 0 return output, n_params, n_multiplications, "flatten" def fully_connected_layer(input, weights, biases): """ Evaluate the output of a fully connected layer. input.shape = (output_dim) weights.shape = (output_dim, input_dim) f.shape = (output_dim) """ assert input.ndim == 1, "Input must be a flattend array!" assert weights.shape[1] == input.shape[0], "Input shapes must match!" assert weights.shape[0] == biases.shape[0], "Output shapes must match!" output = np.dot(weights, input) + biases n_params = weights.size + biases.size n_multiplications = weights.size name = f"conv {'x'.join([str(e) for e in weights.shape])}" return output, n_params, n_multiplications, name def normalize(input): output = input / np.linalg.norm(input) n_params = 0 n_multiplications = 1 + input.size return output, n_params, n_multiplications, "normalize" if __name__ == "__main__": np.random.seed(12345) p = "{:>20} | {:>15} | {:>15} | {:>15} " print(p.format("layer", "output shape", "#parameters", "#ops")) print(p.format("-"*20, "-"*15, "-"*15, "-"*15)) # input x = np.random.randint(low=-5, high=5, size=(120,80,3)) # conv layer f = np.random.randint(low=-10, high=+10, size=(32,5,5,3)) x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) # max pooling x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(name, str(x.shape), n_params, n_multiplications)) # relu layer x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # conv layer f = np.random.randint(low=-10, high=+10, size=(32,5,5,32)) x, n_params, n_multiplications, name = conv_layer(x, f) print(p.format(name, str(x.shape), n_params, n_multiplications)) # max pooling x, n_params, n_multiplications, name = max_pooling_layer(x, 2) print(p.format(name, str(x.shape), n_params, n_multiplications)) # relu layer x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # flatten x, n_params, n_multiplications, name = flatten_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # fully connected weights = np.random.randint(low=-10, high=+10, size=(1000, x.shape[0])) biases = np.random.randint(low=-10, high=+10, size=(1000)) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplications)) # relu layer x, n_params, n_multiplications, name = relu_layer(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) # fully connected weights = np.random.randint(low=-10, high=+10, size=(5, x.shape[0])) biases = np.random.randint(low=-10, high=+10, size=(5)) x, n_params, n_multiplications, name = fully_connected_layer(x, weights, biases) print(p.format(name, str(x.shape), n_params, n_multiplications)) assert(np.isclose(x, [ -9404869, -11033050, -34374361, -20396580, 70483360.]).all()) # normalization x, n_params, n_multiplications, name = normalize(x) print(p.format(name, str(x.shape), n_params, n_multiplications)) print("\nfinal output:", x)
https://github.com/worldcoin/proto-neural-zkp
src/allocator.rs
use core::sync::atomic::{AtomicUsize, Ordering::Relaxed}; pub use std::alloc::System as StdAlloc; use std::alloc::{GlobalAlloc, Layout}; #[cfg(feature = "mimalloc")] pub use mimalloc::MiMalloc; #[cfg_attr(feature = "std", derive(Debug))] pub struct Allocator<T: GlobalAlloc> { inner: T, pub allocated: AtomicUsize, pub peak_allocated: AtomicUsize, pub total_allocated: AtomicUsize, pub largest_allocated: AtomicUsize, pub num_allocations: AtomicUsize, } #[cfg(not(feature = "mimalloc"))] // TODO: Turn this into a generic constructor taking an `inner: T` once // #![feature(const_fn_trait_bound)] is stable. pub const fn new_std() -> Allocator<StdAlloc> { Allocator::new(StdAlloc) } #[cfg(feature = "mimalloc")] pub const fn new_mimalloc() -> Allocator<MiMalloc> { Allocator::new(MiMalloc) } impl<T: GlobalAlloc> Allocator<T> { pub const fn new(alloc: T) -> Self { Self { inner: alloc, allocated: AtomicUsize::new(0), peak_allocated: AtomicUsize::new(0), total_allocated: AtomicUsize::new(0), largest_allocated: AtomicUsize::new(0), num_allocations: AtomicUsize::new(0), } } fn count_alloc(&self, size: usize) { // TODO: We are doing a lot of atomic operations here, what is // the performance impact? let allocated = self.allocated.fetch_add(size, Relaxed); self.total_allocated.fetch_add(size, Relaxed); self.num_allocations.fetch_add(1, Relaxed); // HACK: Using `allocated` here again is not completely fool proof self.peak_allocated.fetch_max(allocated, Relaxed); self.largest_allocated.fetch_max(size, Relaxed); } fn count_dealloc(&self, size: usize) { self.allocated.fetch_sub(size, Relaxed); } } // GlobalAlloc is an unsafe trait for allocators #[allow(unsafe_code)] unsafe impl<T: GlobalAlloc> GlobalAlloc for Allocator<T> { unsafe fn alloc(&self, layout: Layout) -> *mut u8 { self.count_alloc(layout.size()); self.inner.alloc(layout) } unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) { self.count_dealloc(layout.size()); self.inner.dealloc(ptr, layout); } unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 { self.count_alloc(layout.size()); self.inner.alloc_zeroed(layout) } unsafe fn realloc(&self, ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 { let old_size = layout.size(); if new_size >= old_size { self.count_alloc(new_size - old_size); } else { self.count_dealloc(old_size - new_size); } self.inner.realloc(ptr, layout, new_size) } }
https://github.com/worldcoin/proto-neural-zkp
src/anyhow.rs
use eyre::eyre; pub trait MapAny<T> { fn map_any(self) -> eyre::Result<T>; } impl<T> MapAny<T> for anyhow::Result<T> { fn map_any(self) -> eyre::Result<T> { self.map_err(|e| eyre!(e.to_string())) } }
https://github.com/worldcoin/proto-neural-zkp
src/cli/logging.rs
#![warn(clippy::all, clippy::pedantic, clippy::cargo, clippy::nursery)] use core::str::FromStr; use eyre::{bail, Error as EyreError, Result as EyreResult, WrapErr as _}; use std::process::id as pid; use structopt::StructOpt; use tracing::{info, Level, Subscriber}; use tracing_log::{AsLog as _, LogTracer}; use tracing_subscriber::{ filter::{LevelFilter, Targets}, fmt::{self, time::Uptime}, layer::SubscriberExt, Layer, Registry, }; #[derive(Debug, PartialEq)] enum LogFormat { Compact, Pretty, Json, } impl LogFormat { fn to_layer<S>(&self) -> impl Layer<S> where S: Subscriber + for<'a> tracing_subscriber::registry::LookupSpan<'a> + Send + Sync, { let layer = fmt::Layer::new().with_writer(std::io::stderr); match self { LogFormat::Compact => { Box::new(layer.event_format(fmt::format().with_timer(Uptime::default()).compact())) as Box<dyn Layer<S> + Send + Sync> } LogFormat::Pretty => Box::new(layer.event_format(fmt::format().pretty())), LogFormat::Json => Box::new(layer.event_format(fmt::format().json())), } } } impl FromStr for LogFormat { type Err = EyreError; fn from_str(s: &str) -> Result<Self, Self::Err> { Ok(match s { "compact" => Self::Compact, "pretty" => Self::Pretty, "json" => Self::Json, _ => bail!("Invalid log format: {}", s), }) } } #[derive(Debug, PartialEq, StructOpt)] pub struct Options { /// Verbose mode (-v, -vv, -vvv, etc.) #[structopt(short, long, parse(from_occurrences))] verbose: usize, /// Apply an env_filter compatible log filter #[structopt(long, env, default_value)] log_filter: String, /// Log format, one of 'compact', 'pretty' or 'json' #[structopt(long, env, default_value = "compact")] log_format: LogFormat, } impl Options { #[allow(dead_code)] pub fn init(&self) -> EyreResult<()> { // Log filtering is a combination of `--log-filter` and `--verbose` arguments. let verbosity = { let (all, app) = match self.verbose { 0 => (Level::INFO, Level::INFO), 1 => (Level::INFO, Level::DEBUG), 2 => (Level::INFO, Level::TRACE), 3 => (Level::DEBUG, Level::TRACE), _ => (Level::TRACE, Level::TRACE), }; Targets::new() .with_default(all) .with_target("lib", app) .with_target(env!("CARGO_CRATE_NAME"), app) }; let log_filter = if self.log_filter.is_empty() { Targets::new() } else { self.log_filter .parse() .wrap_err("Error parsing log-filter")? }; // FIXME: The log-filter can not overwrite the global log level. let targets = verbosity.with_targets(log_filter); // Route events to stderr let subscriber = Registry::default().with(self.log_format.to_layer().with_filter(targets)); tracing::subscriber::set_global_default(subscriber)?; // Enable `log` crate compatibility with max level hint LogTracer::builder() .with_max_level(LevelFilter::current().as_log()) .init()?; // Log version information info!( host = env!("TARGET"), pid = pid(), main = &crate::main as *const _ as usize, commit = &env!("COMMIT_SHA")[..8], "{name} {version}", name = env!("CARGO_CRATE_NAME"), version = env!("CARGO_PKG_VERSION"), ); Ok(()) } } #[cfg(test)] pub mod test { use super::*; #[test] fn test_parse_args() { let cmd = "arg0 -v --log-filter foo -vvv"; let options = Options::from_iter_safe(cmd.split(' ')).unwrap(); assert_eq!(options, Options { verbose: 4, log_filter: "foo".to_owned(), log_format: LogFormat::Compact, }); } }
https://github.com/worldcoin/proto-neural-zkp
src/cli/main.rs
#![warn(clippy::all, clippy::pedantic, clippy::cargo, clippy::nursery)] use neural_zkp as lib; mod logging; mod random; use eyre::{Result as EyreResult, WrapErr as _}; use structopt::StructOpt; use tokio::runtime::{self, Runtime}; use tracing::info; const VERSION: &str = concat!( env!("CARGO_PKG_VERSION"), "\n", env!("COMMIT_SHA"), " ", env!("COMMIT_DATE"), "\n", env!("TARGET"), " ", env!("BUILD_DATE"), "\n", env!("CARGO_PKG_AUTHORS"), "\n", env!("CARGO_PKG_HOMEPAGE"), "\n", env!("CARGO_PKG_DESCRIPTION"), ); #[derive(StructOpt)] struct Options { #[structopt(flatten)] log: logging::Options, #[structopt(flatten)] app: lib::Options, #[structopt(flatten)] random: random::Options, /// Number of compute threads to use (defaults to number of cores) #[structopt(long)] threads: Option<usize>, } fn main() -> EyreResult<()> { // Install error handler color_eyre::install()?; // Parse CLI and handle help and version (which will stop the application). let matches = Options::clap().long_version(VERSION).get_matches(); let options = Options::from_clap(&matches); // Start subsystems options.log.init()?; let rng = options.random.init(); init_rayon(options.threads)?; let runtime = init_tokio()?; // Run main let main_future = lib::main(rng, options.app); runtime.block_on(main_future)?; // Terminate successfully info!("Program terminating normally"); Ok(()) } fn init_rayon(threads: Option<usize>) -> EyreResult<()> { if let Some(threads) = threads { rayon::ThreadPoolBuilder::new() .num_threads(threads) .build_global() .context("Failed to build thread pool.")?; } info!( "Using {} compute threads on {} cores", rayon::current_num_threads(), num_cpus::get() ); Ok(()) } fn init_tokio() -> EyreResult<Runtime> { runtime::Builder::new_multi_thread() .enable_all() .build() .wrap_err("Error creating Tokio runtime") // TODO: Log num_workers once RuntimeMetrics are stable } #[cfg(test)] pub mod test { use super::*; use tracing::{error, warn}; use tracing_test::traced_test; #[test] #[traced_test] fn test_with_log_output() { error!("logged on the error level"); assert!(logs_contain("logged on the error level")); } #[tokio::test] #[traced_test] #[allow(clippy::semicolon_if_nothing_returned)] // False positive async fn async_test_with_log() { // Local log info!("This is being logged on the info level"); // Log from a spawned task (which runs in a separate thread) tokio::spawn(async { warn!("This is being logged on the warn level from a spawned task"); }) .await .unwrap(); // Ensure that `logs_contain` works as intended assert!(logs_contain("logged on the info level")); assert!(logs_contain("logged on the warn level")); assert!(!logs_contain("logged on the error level")); } }
https://github.com/worldcoin/proto-neural-zkp
src/cli/random.rs
use rand::{rngs::OsRng, RngCore, SeedableRng}; use rand_pcg::Mcg128Xsl64; use structopt::StructOpt; use tracing::info; pub type Generator = Mcg128Xsl64; #[derive(StructOpt)] pub struct Options { /// Random seed for deterministic random number generation. /// If not specified a seed is periodically generated from OS entropy. #[structopt(long, parse(try_from_str = parse_hex_u64))] seed: Option<u64>, } impl Options { #[must_use] pub fn init(self) -> Generator { let rng_seed = self.seed.unwrap_or_else(random_seed); info!("Using random seed {rng_seed:16x}"); Mcg128Xsl64::seed_from_u64(rng_seed) } } #[must_use] fn random_seed() -> u64 { OsRng::default().next_u64() } #[must_use] fn parse_hex_u64(src: &str) -> Result<u64, std::num::ParseIntError> { u64::from_str_radix(src, 16) }
https://github.com/worldcoin/proto-neural-zkp
src/layers/conv.rs
use ndarray::{s, Array, Array3, Array4, ArrayD, ArrayViewD, Ix3}; use serde::Serialize; use super::{Layer, LayerJson}; #[derive(Clone, Serialize)] pub struct Convolution { kernel: Array4<f32>, name: String, input_shape: Vec<usize>, } impl Convolution { #[must_use] pub fn new(kernel: Array4<f32>, input_shape: Vec<usize>) -> Convolution { let (c_out, hf, wf, c_in) = kernel.dim(); let name = format!("conv {}x{}x{}x{}", c_out, hf, wf, c_in); Convolution { kernel, name, input_shape, } } } impl Layer for Convolution { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { // height, width, channels let input = input.clone().into_dimensionality::<Ix3>().unwrap(); let (h, w, c) = input.dim(); // output channels, kernel height, kernel width, input channels let (c_out, hf, wf, c_in) = self.kernel.dim(); assert_eq!(c, c_in, "input channels must match"); assert!(hf % 2 == 1, "height of the kernel must be an odd number"); assert!(wf % 2 == 1, "width of the kernel must be an odd number"); let window_dim = (hf, wf, c_in); let output_shape = (h - hf + 1, w - wf + 1); let mut output = Array3::zeros((output_shape.0, output_shape.1, c_out)); for i in 0..c_out { let mut output_mut = output.slice_mut(s![.., .., i]); let kernel = self.kernel.slice(s![i, .., .., ..]); let values = input .windows(window_dim) .into_iter() .map(|w| (&w * &kernel).sum()); let values = Array::from_iter(values) .into_shape(output_shape) .expect("Kernel result dimensions mismatch"); output_mut.assign(&values); } output.into_dyn() } fn input_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { self.kernel.len() } fn num_muls(&self) -> usize { // output channels, kernel height, kernel width, input channels let (c_out, hf, wf, _) = self.kernel.dim(); let output_shape = self.output_shape(); output_shape[0] * output_shape[1] * c_out * hf * wf } fn output_shape(&self) -> Vec<usize> { let input_shape = self.input_shape(); let h = input_shape[0]; let w = input_shape[1]; let c = input_shape[2]; // output channels, kernel height, kernel width, input channels let (c_out, hf, wf, c_in) = self.kernel.dim(); assert_eq!(c, c_in, "input channels must match"); assert!(hf % 2 == 1, "height of the kernel must be an odd number"); assert!(wf % 2 == 1, "width of the kernel must be an odd number"); vec![h - hf + 1, w - wf + 1, c_out] } fn to_json(&self) -> LayerJson { LayerJson::Convolution { kernel: self.kernel.clone().into(), input_shape: self.input_shape(), } } } #[cfg(test)] pub mod test { use super::*; #[test] fn test_small() { use ndarray::array; let input = array![ [ [0.51682377_f32], [-2.3552072], [-0.120499134], [2.3132505], [-3.470844] ], [[-1.1741579], [3.4295654], [-1.2318683], [-1.9749749], [ -0.8161392 ]], [[4.7562046], [-2.8918338], [2.308525], [2.6111293], [ -1.0765815 ]], [[-4.1224194], [3.022316], [-4.5339823], [4.2970715], [ 2.6773367 ]], [[-4.289216], [-3.3795083], [-2.651745], [-1.1392272], [ 3.9378529 ]] ]; let kernel: Array4<f32> = array![ [[1.0336475_f32], [-4.7104144], [-0.24099827]], [[4.626501], [-6.941688], [-2.3483157]], [[6.859131], [-2.4637365], [-3.9499497]] ] .into_shape((1, 3, 3, 1)) .unwrap(); let expected = array![ [[15.940444], [-9.205237], [13.396301]], [[1.7727833], [-10.784569], [-48.952152]], [[-22.043327], [8.725433], [-97.68271]] ]; let conv = Convolution::new(kernel, vec![1, 5, 5, 1]); let result = conv.apply(&input.into_dyn().view()); let delta = result - &expected; let max_error = delta.into_iter().map(f32::abs).fold(0.0, f32::max); dbg!(max_error); assert!(max_error < 10.0 * f32::EPSILON); } #[test] fn conv_test() { use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng; // man of culture fixed randomness seed let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array3::random_using((120, 80, 3), Uniform::<f32>::new(-5., 5.), &mut rng); let kernel = Array4::random_using((32, 5, 5, 3), Uniform::<f32>::new(-10., 10.), &mut rng); let conv = Convolution::new(kernel, vec![120, 80, 3]); let result = conv .apply(&input.into_dyn().view()) .into_dimensionality::<Ix3>() .unwrap(); assert_eq!(conv.output_shape(), vec![116, 76, 32]); let (dim_x, dim_y, dim_z) = result.dim(); println!( "# of parameters: {}\n output dim: {}x{}x{}\n # of multiplications: {} {} output:\n {}", conv.num_params(), dim_x, dim_y, dim_z, conv.num_muls(), conv.name(), result ); } }
https://github.com/worldcoin/proto-neural-zkp
src/layers/flatten.rs
use ndarray::{Array1, ArrayD, ArrayViewD}; use serde::Serialize; use super::{Layer, LayerJson}; #[derive(Clone, Serialize)] pub struct Flatten { name: String, input_shape: Vec<usize>, } impl Flatten { #[must_use] pub fn new(input_shape: Vec<usize>) -> Flatten { Flatten { name: "flatten".into(), input_shape, } } } impl Layer for Flatten { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { Array1::from_iter(input.iter().copied()).into_dyn() } fn input_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { 0 } fn num_muls(&self) -> usize { 0 } fn output_shape(&self) -> Vec<usize> { let mut output_shape = 1; for i in self.input_shape() { output_shape *= i; } vec![output_shape] } fn to_json(&self) -> LayerJson { LayerJson::Flatten { input_shape: self.input_shape(), } } } #[cfg(test)] mod test { use super::*; use ndarray::Array3; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng; #[test] fn flatten_test() { let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array3::random_using((27, 17, 32), Uniform::<f32>::new(-5.0, 5.0), &mut rng); let flat = Flatten::new(vec![27, 17, 32]); let output = flat.apply(&input.into_dyn().view()); let n_multiplications = flat.num_muls(); let n_params = flat.num_params(); assert_eq!(output.len(), 14688); println!( " {} \n # of parameters: {}\n output dim: {} \n # of ops: {}\n output:\n {}", flat.name, n_params, output.len(), n_multiplications, output ); } }
https://github.com/worldcoin/proto-neural-zkp
src/layers/fully_connected.rs
use ndarray::{Array1, Array2, ArrayD, ArrayViewD, Ix1}; use serde::Serialize; use super::{Layer, LayerJson}; #[derive(Clone, Serialize)] pub struct FullyConnected { weights: Array2<f32>, biases: Array1<f32>, name: String, } impl FullyConnected { #[must_use] pub fn new(weights: Array2<f32>, biases: Array1<f32>) -> FullyConnected { FullyConnected { weights, biases, name: "full".into(), } } } impl Layer for FullyConnected { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { assert!(input.ndim() == 1, "Input must be a flattenened array!"); assert!( self.weights.shape()[1] == input.shape()[0], "Input shapes must match (for the dot product to work)!" ); assert!( self.weights.shape()[0] == self.biases.shape()[0], "Output shapes must match!" ); let output = self .weights .dot(&input.clone().into_dimensionality::<Ix1>().unwrap()) + self.biases.clone(); output.into_dyn() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { self.weights.len() + self.biases.len() } fn num_muls(&self) -> usize { self.weights.len() } fn output_shape(&self) -> Vec<usize> { assert!( self.weights.shape()[0] == self.biases.shape()[0], "Output shapes must match!" ); vec![self.weights.shape()[0]] } fn input_shape(&self) -> Vec<usize> { vec![self.weights.shape()[1]] } fn to_json(&self) -> LayerJson { LayerJson::FullyConnected { weights: self.weights.clone().into(), biases: self.biases.clone().into(), } } } #[cfg(test)] pub mod test { use super::*; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng; #[test] fn fully_connected_test() { let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array1::random_using(14688, Uniform::<f32>::new(-10.0, 10.0), &mut rng); let weights = Array2::random_using((1000, 14688), Uniform::<f32>::new(-10.0, 10.0), &mut rng); let biases = Array1::random_using(1000, Uniform::<f32>::new(-10.0, 10.0), &mut rng); let fully_connected = FullyConnected::new(weights, biases); let output = fully_connected.apply(&input.into_dyn().view()); let n_params = fully_connected.num_params(); let n_multiplications = fully_connected.num_muls(); println!( " {} # of parameters: {} output dim: {}x1 # of ops: {} output:\n{}", fully_connected.name, n_params, output.len(), n_multiplications, output ); } }
https://github.com/worldcoin/proto-neural-zkp
src/layers/maxpool.rs
use ndarray::{s, Array3, ArrayD, ArrayViewD, Ix3}; use ndarray_stats::QuantileExt; use serde::Serialize; use super::{Layer, LayerJson}; #[derive(Clone, Serialize)] pub struct MaxPool { kernel_side: usize, name: String, input_shape: Vec<usize>, } impl MaxPool { #[must_use] pub fn new(kernel_side: usize, input_shape: Vec<usize>) -> MaxPool { MaxPool { name: "max-pool".into(), kernel_side, input_shape, } } } impl Layer for MaxPool { fn box_clone(&self) -> Box<dyn Layer> { Box::new(self.clone()) } fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32> { let input = input.clone().into_dimensionality::<Ix3>().unwrap(); let (h, w, c) = input.dim(); assert!(h % self.kernel_side == 0, "Height must be divisible by s!"); assert!(w % self.kernel_side == 0, "Width must be divisible by s!"); let mut output = Array3::<f32>::zeros((h / self.kernel_side, w / self.kernel_side, c)); // TODO: turn loops into iterators and parallelize with rayon or // ndarray::parallel // let h_iter = (0..h).into_par_iter().filter(|x| x % s == 0); for i in (0..h).step_by(self.kernel_side) { for j in (0..w).step_by(self.kernel_side) { for k in 0..c { let a = input.slice(s![i..i + self.kernel_side, j..j + self.kernel_side, k]); // https://docs.rs/ndarray-stats/latest/ndarray_stats/trait.QuantileExt.html#tymethod.max output[[i / self.kernel_side, j / self.kernel_side, k]] = *a.max().unwrap(); } } } output.into_dyn() } fn name(&self) -> &str { &self.name } fn num_params(&self) -> usize { 0 } fn num_muls(&self) -> usize { let mut muls = 1; for i in self.input_shape() { muls *= i; } muls } fn output_shape(&self) -> Vec<usize> { let input_shape = self.input_shape(); let h = input_shape[0]; let w = input_shape[1]; let c = input_shape[2]; assert!(h % self.kernel_side == 0, "Height must be divisible by s!"); assert!(w % self.kernel_side == 0, "Width must be divisible by s!"); vec![w / self.kernel_side, h / self.kernel_side, c] } fn input_shape(&self) -> Vec<usize> { self.input_shape.clone() } fn to_json(&self) -> LayerJson { LayerJson::MaxPool { window: self.kernel_side, input_shape: self.input_shape(), } } } #[cfg(test)] pub mod test { use super::*; use ndarray_rand::{rand::SeedableRng, rand_distr::Uniform, RandomExt}; use rand::rngs::StdRng; #[test] fn maxpool_test() { let seed = 694201337; let mut rng = StdRng::seed_from_u64(seed); let input = Array3::random_using((116, 76, 32), Uniform::<f32>::new(-5.0, 5.0), &mut rng); let maxpool = MaxPool::new(2, vec![126, 76, 32]); let output = maxpool .apply(&input.into_dyn().view()) .into_dimensionality::<Ix3>() .unwrap(); let n_params = maxpool.num_params(); let n_multiplications = maxpool.num_muls(); assert_eq!(output.dim(), (58, 38, 32)); let (dim_x, dim_y, dim_z) = output.dim(); println!( " {} \n # of parameters: {}\n output dim: {}x{}x{}\n # of ops: {}\n output:\n {}", maxpool.name, n_params, dim_x, dim_y, dim_z, n_multiplications, output ); } }
https://github.com/worldcoin/proto-neural-zkp
src/layers/mod.rs
use std::fmt::{Display, Formatter, Result}; use erased_serde::serialize_trait_object; use ndarray::{ArcArray, ArrayD, ArrayViewD, Ix1, Ix2, Ix4}; use serde::{Deserialize, Serialize}; pub mod conv; pub mod flatten; pub mod fully_connected; pub mod maxpool; pub mod normalize; pub mod relu; pub trait Layer: erased_serde::Serialize { #[must_use] fn apply(&self, input: &ArrayViewD<f32>) -> ArrayD<f32>; fn input_shape(&self) -> Vec<usize>; #[must_use] fn name(&self) -> &str; #[must_use] fn num_params(&self) -> usize; #[must_use] fn num_muls(&self) -> usize; fn output_shape(&self) -> Vec<usize>; #[must_use] fn to_json(&self) -> LayerJson; fn box_clone(&self) -> Box<dyn Layer>; } serialize_trait_object!(Layer); impl Display for Box<dyn Layer> { fn fmt(&self, f: &mut Formatter<'_>) -> Result { write!( f, "{:<20} | {:?}{:<5} | {:<5} | {:<5}", self.name(), self.output_shape(), "", self.num_params(), self.num_muls(), ) } } impl Clone for Box<dyn Layer> { fn clone(&self) -> Self { // self -> &Box<dyn Layer> // *self -> Box<dyn Layer> // **self -> dyn Layer // &**self -> &dyn Layer Layer::box_clone(&**self) } } #[derive(Clone, PartialEq, Deserialize, Serialize)] #[serde(rename_all = "snake_case")] #[serde(tag = "layer_type")] pub enum LayerJson { Convolution { kernel: ArcArray<f32, Ix4>, input_shape: Vec<usize>, }, MaxPool { window: usize, input_shape: Vec<usize>, }, FullyConnected { weights: ArcArray<f32, Ix2>, biases: ArcArray<f32, Ix1>, }, Relu { input_shape: Vec<usize>, }, Flatten { input_shape: Vec<usize>, }, Normalize { input_shape: Vec<usize>, }, } #[derive(Clone, PartialEq, Serialize, Deserialize)] #[serde(rename_all = "snake_case")] pub struct NNJson { pub layers: Vec<LayerJson>, } impl TryFrom<LayerJson> for Box<dyn Layer> { type Error = (); fn try_from(value: LayerJson) -> std::result::Result<Self, ()> { Ok(match value { LayerJson::Convolution { kernel, input_shape, } => Box::new(conv::Convolution::new(kernel.to_owned(), input_shape)), LayerJson::MaxPool { window, input_shape, } => Box::new(maxpool::MaxPool::new(window.to_owned(), input_shape)), LayerJson::FullyConnected { weights, biases } => Box::new( fully_connected::FullyConnected::new(weights.to_owned(), biases.to_owned()), ), LayerJson::Flatten { input_shape } => Box::new(flatten::Flatten::new(input_shape)), LayerJson::Relu { input_shape } => Box::new(relu::Relu::new(input_shape)), LayerJson::Normalize { input_shape } => { Box::new(normalize::Normalize::new(input_shape)) } }) } } impl FromIterator<LayerJson> for NNJson { fn from_iter<T: IntoIterator<Item = LayerJson>>(iter: T) -> Self { let mut nnvec = vec![]; for i in iter { nnvec.push(i); } Self { layers: nnvec } } } impl From<NeuralNetwork> for NNJson { fn from(nn: NeuralNetwork) -> Self { nn.layers.into_iter().map(|l| l.to_json()).collect() } } impl TryFrom<NNJson> for NeuralNetwork { type Error = (); fn try_from(value: NNJson) -> std::result::Result<Self, ()> { Ok(Self { layers: value .layers .into_iter() .map(|i| i.try_into().unwrap()) .collect(), }) } } #[derive(Clone, Serialize)] pub struct NeuralNetwork { layers: Vec<Box<dyn Layer>>, } impl NeuralNetwork { pub fn new() -> Self { Self { layers: vec![] } } pub fn add_layer(&mut self, layer: Box<dyn Layer>) { self.layers.push(layer); } pub fn apply(&self, input: &ArrayViewD<f32>, dim: usize) -> Option<ArrayD<f32>> { if dim == 3 { let mut output = input.view().into_owned(); for layer in &self.layers { // TODO: add dimensionality sanity checks output = layer.apply(&output.view()); println!("{}", layer); } Some(output) } else { None } } } impl Default for NeuralNetwork { fn default() -> Self { Self::new() } }
https://github.com/worldcoin/proto-neural-zkp