plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
lcnbeapp/beapp-master
|
denss.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dss/denss.m
| 3,216 |
utf_8
|
6682365eb0d33779435c21332112ad78
|
function [state, B, A] = denss(X_or_state, parameters)
% Main DSS algorithm
% [state, B, A] = denss(X or state)
% [state, B, A] = denss(X or state, [params])
% [state, B, A] = denss(X or state, {param1, 'value1', param2, 'value2', ...})
% X Mixed signals
% state Existing or new algorithm state structure
% parameters Optional parameters
% B Unmixing matrix S = B * X
% A Mixing matrix X = A * S
%
% Main entry point for DSS algorithm. When called with mixed
% signals (X) creates state structure. Given optional parameters
% are inserted into new or existing state structure.
% Calls algorithm core defined by 'algorithm' state/param
% variable.
%
% See dss_create_state for description of state and parameter
% variables.
% Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]).
% Distributed by Laboratory of Computer and Information Science,
% Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/.
% $Id$
% -- Initialize state
if nargin>=2 | ~isstruct(X_or_state)
% -- user gave X or parameters, initialize state
if nargin<2; parameters = []; end
state = dss_create_state(X_or_state, parameters);
else
state = X_or_state;
end
% -- Contract input dimensions
state = contract_dim(state, 'X');
state = contract_dim(state, 'Y');
state = contract_dim(state, 'S');
% read the version information
VERSION = fopen('VERSION','r');
if VERSION ~= -1
version = fgets(VERSION);
version = version(1:end-1);
dss_message(state,1,sprintf('Calculating DSS (release v%s)\n',version));
else
dss_message(state,1,'Calculating DSS (unknown release version)\n');
end
% -- Preprocessing
if ~isfield(state, 'Y')
state = dss_preprocess(state.X, state);
else
% Sphered data is already available, set sphering to identity
dss_message(state,2,'Sphered data exists, using it.');
if ~isfield(state, 'V') | ~isfield(state, 'dV')
state.V = diag(ones(size(state.Y,1),1));
state.dV = state.V;
dss_message(state,2,' No sphering matrix given. Assuming identity matrix.\n');
else
% using given sphering matrix
dss_message(state,2,'\n');
end
end
state.wdim = size(state.Y, 1);
if ~isfield(state, 'sdim'); state.sdim = state.wdim; end
% -- Call correct DSS algorithm implementation
state = feval(['dss_core_' state.algorithm], state);
% -- return the results
state.B = state.W * state.V;
B = state.B;
state.A = state.dV * state.W';
A = state.A;
%----------------------
function state = contract_dim(state, field_name)
if isfield(state, field_name)
% for ML65+: dims = size(state.(field_name));
dims = size(getfield(state, field_name));
if length(dims)>2
if isfield(state, 'input_dims') if state.input_dims ~= dims
error('Input signal dimension mismatch');
end; end;
state.input_dims = dims(2:length(dims));
% for ML65+: state.(field_name) = reshape(state.(field_name), dims(1), []);
state = setfield(state, field_name, reshape(getfield(state, field_name), dims(1), []));
dss_message(state,1,sprintf('Contracting [%s] dimensional input %s to [%s] dimension.\n', tostring(dims), field_name, tostring(size(getfield(state,field_name)))));
end
end
|
github
|
lcnbeapp/beapp-master
|
default_stop.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dss/default_stop.m
| 1,441 |
utf_8
|
219744b4c15669056f70c9575f12440a
|
function [stop, params] = default_stop(params, state)
% Default stopping criteria function.
% [stop, params] = default_stop(params, state)
% params Function specific modifiable parameters
% params.maxiters Maximum number of allowed iterations
% params.epsilon Treshold angle, iteration is stopped when
% angle beween consecutive iteration
% projection vectors goes below treshold.
% state DSS algorithm state
% stop Boolean, true when stopping criteria has been met
% Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]).
% Distributed by Laboratory of Computer and Information Science,
% Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/.
% $Id$
if ~isfield(params, 'maxiters') & ...
(~isfield(params, 'epsilon') | ~isfield(state, 'w'))
error('Either ''maxiters'' or ''epsilon'' must be defined as stopping criteria');
end
stop = 0;
if isfield(params, 'maxiters')
if state.iteration>=params.maxiters
stop = 1;
return;
end
end
if isfield(params, 'epsilon')
if isfield(state, 'w')
change = angle(state.w_old, state.w) / pi * 180;
else
change = angle(state.W_old, state.W) / pi * 180;
end
stop = all(change < params.epsilon);
end
% --------
function rad = angle(A, B)
sum_cross = sum(A .* B);
sum_A = sum(A .* A);
sum_B = sum(B .* B);
rad = acos(sum_cross .* sum_A.^(-1/2) .* sum_B.^(-1/2));
|
github
|
lcnbeapp/beapp-master
|
estimate_mask.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dss/estimate_mask.m
| 1,695 |
utf_8
|
2147549d4388aa7913a35d434f4aa692
|
function [mask] = estimate_mask(s, filter_params, iterations)
% Creates binary mask based on SNR estimate of the signal
% [mask] = estimate_mask(s, filter_params, iterations)
% s Source signal
% filter_params Filter parameters for smoothing variance estimate
% iterations Number of iterations for estimating noise variance
% Copyright (C) 2004, 2005 DSS MATLAB package team ([email protected]).
% Distributed by Laboratory of Computer and Information Science,
% Helsinki University of Technology. http://www.cis.hut.fi/projects/dss/.
% $Id$
filter_h = @denoise_filter;
if nargin<2;
% default filtering is lowpass DCT
T = length(s);
t = 1:T;
filter_params.filter_dct = exp(-0.5*(t-1).^2 / (T/64).^2 );
end
if nargin<3; iterations = 8; end
% noise variance estimate for gaussian noise
[p, var_smooth] = feval(filter_h, filter_params, randn(1, length(s)).^2, []);
noise_var = est_noise_var(var_smooth, 0);
normalization_c = 1 / noise_var;
% smoothed variance
[p, var_totsm] = feval(filter_h, filter_params, s.^2, []);
% iterate signal noise variance estimate
var_noise = 1;
for i = 1 : iterations
var_noise = est_noise_var(var_totsm, var_noise)*normalization_c;
end
% create binary mask
mask = var_totsm>var_noise;
%DEBUG
%fprintf('Noise: %d\n', var_noise);
%clf
%subplot(3, 1, 1);
%plot(s);
%subplot(3, 1, 2);
%plot(var_totsm);
%subplot(3, 1, 3);
%plot(mask);
%axis([0 length(s) -0.5 1.5])
% --------
function noise_var = est_noise_var(var_tot, var_noise)
% Estimates noise variance based on total variance estimate and
% previous noise variance estimate.
noise_var = exp(mean(log(var_tot+repmat(var_noise,1,size(var_tot,2))),2))-var_noise;
|
github
|
lcnbeapp/beapp-master
|
pcamat.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/fastica/pcamat.m
| 12,028 |
utf_8
|
b597f6c30d7c0ad437ab6a408e0cc1fb
|
function [E, D] = pcamat(vectors, firstEig, lastEig, s_interactive, ...
s_verbose);
%PCAMAT - Calculates the pca for data
%
% [E, D] = pcamat(vectors, firstEig, lastEig, ...
% interactive, verbose);
%
% Calculates the PCA matrices for given data (row) vectors. Returns
% the eigenvector (E) and diagonal eigenvalue (D) matrices containing the
% selected subspaces. Dimensionality reduction is controlled with
% the parameters 'firstEig' and 'lastEig' - but it can also be done
% interactively by setting parameter 'interactive' to 'on' or 'gui'.
%
% ARGUMENTS
%
% vectors Data in row vectors.
% firstEig Index of the largest eigenvalue to keep.
% Default is 1.
% lastEig Index of the smallest eigenvalue to keep.
% Default is equal to dimension of vectors.
% interactive Specify eigenvalues to keep interactively. Note that if
% you set 'interactive' to 'on' or 'gui' then the values
% for 'firstEig' and 'lastEig' will be ignored, but they
% still have to be entered. If the value is 'gui' then the
% same graphical user interface as in FASTICAG will be
% used. Default is 'off'.
% verbose Default is 'on'.
%
%
% EXAMPLE
% [E, D] = pcamat(vectors);
%
% Note
% The eigenvalues and eigenvectors returned by PCAMAT are not sorted.
%
% This function is needed by FASTICA and FASTICAG
% For historical reasons this version does not sort the eigenvalues or
% the eigen vectors in any ways. Therefore neither does the FASTICA or
% FASTICAG. Generally it seams that the components returned from
% whitening is almost in reversed order. (That means, they usually are,
% but sometime they are not - depends on the EIG-command of matlab.)
% @(#)$Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Default values:
if nargin < 5, s_verbose = 'on'; end
if nargin < 4, s_interactive = 'off'; end
if nargin < 3, lastEig = size(vectors, 1); end
if nargin < 2, firstEig = 1; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check the optional parameters;
switch lower(s_verbose)
case 'on'
b_verbose = 1;
case 'off'
b_verbose = 0;
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose));
end
switch lower(s_interactive)
case 'on'
b_interactive = 1;
case 'off'
b_interactive = 0;
case 'gui'
b_interactive = 2;
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''interactive''\n', ...
s_interactive));
end
oldDimension = size (vectors, 1);
if ~(b_interactive)
if lastEig < 1 | lastEig > oldDimension
error(sprintf('Illegal value [ %d ] for parameter: ''lastEig''\n', lastEig));
end
if firstEig < 1 | firstEig > lastEig
error(sprintf('Illegal value [ %d ] for parameter: ''firstEig''\n', firstEig));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate PCA
% Calculate the covariance matrix.
if b_verbose, fprintf ('Calculating covariance...\n'); end
covarianceMatrix = cov(vectors', 1);
% Calculate the eigenvalues and eigenvectors of covariance
% matrix.
[E, D] = eig (covarianceMatrix);
% The rank is determined from the eigenvalues - and not directly by
% using the function rank - because function rank uses svd, which
% in some cases gives a higher dimensionality than what can be used
% with eig later on (eig then gives negative eigenvalues).
rankTolerance = 1e-7;
maxLastEig = sum (diag (D) > rankTolerance);
if maxLastEig == 0,
fprintf (['Eigenvalues of the covariance matrix are' ...
' all smaller than tolerance [ %g ].\n' ...
'Please make sure that your data matrix contains' ...
' nonzero values.\nIf the values are very small,' ...
' try rescaling the data matrix.\n'], rankTolerance);
error ('Unable to continue, aborting.');
end
% Sort the eigenvalues - decending.
eigenvalues = flipud(sort(diag(D)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Interactive part - command-line
if b_interactive == 1
% Show the eigenvalues to the user
hndl_win=figure;
bar(eigenvalues);
title('Eigenvalues');
% ask the range from the user...
% ... and keep on asking until the range is valid :-)
areValuesOK=0;
while areValuesOK == 0
firstEig = input('The index of the largest eigenvalue to keep? (1) ');
lastEig = input(['The index of the smallest eigenvalue to keep? (' ...
int2str(oldDimension) ') ']);
% Check the new values...
% if they are empty then use default values
if isempty(firstEig), firstEig = 1;end
if isempty(lastEig), lastEig = oldDimension;end
% Check that the entered values are within the range
areValuesOK = 1;
if lastEig < 1 | lastEig > oldDimension
fprintf('Illegal number for the last eigenvalue.\n');
areValuesOK = 0;
end
if firstEig < 1 | firstEig > lastEig
fprintf('Illegal number for the first eigenvalue.\n');
areValuesOK = 0;
end
end
% close the window
close(hndl_win);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Interactive part - GUI
if b_interactive == 2
% Show the eigenvalues to the user
hndl_win = figure('Color',[0.8 0.8 0.8], ...
'PaperType','a4letter', ...
'Units', 'normalized', ...
'Name', 'FastICA: Reduce dimension', ...
'NumberTitle','off', ...
'Tag', 'f_eig');
h_frame = uicontrol('Parent', hndl_win, ...
'BackgroundColor',[0.701961 0.701961 0.701961], ...
'Units', 'normalized', ...
'Position',[0.13 0.05 0.775 0.17], ...
'Style','frame', ...
'Tag','f_frame');
b = uicontrol('Parent',hndl_win, ...
'Units','normalized', ...
'BackgroundColor',[0.701961 0.701961 0.701961], ...
'HorizontalAlignment','left', ...
'Position',[0.142415 0.0949436 0.712077 0.108507], ...
'String','Give the indices of the largest and smallest eigenvalues of the covariance matrix to be included in the reduced data.', ...
'Style','text', ...
'Tag','StaticText1');
e_first = uicontrol('Parent',hndl_win, ...
'Units','normalized', ...
'Callback',[ ...
'f=round(str2num(get(gcbo, ''String'')));' ...
'if (f < 1), f=1; end;' ...
'l=str2num(get(findobj(''Tag'',''e_last''), ''String''));' ...
'if (f > l), f=l; end;' ...
'set(gcbo, ''String'', int2str(f));' ...
], ...
'BackgroundColor',[1 1 1], ...
'HorizontalAlignment','right', ...
'Position',[0.284831 0.0678168 0.12207 0.0542535], ...
'Style','edit', ...
'String', '1', ...
'Tag','e_first');
b = uicontrol('Parent',hndl_win, ...
'Units','normalized', ...
'BackgroundColor',[0.701961 0.701961 0.701961], ...
'HorizontalAlignment','left', ...
'Position',[0.142415 0.0678168 0.12207 0.0542535], ...
'String','Range from', ...
'Style','text', ...
'Tag','StaticText2');
e_last = uicontrol('Parent',hndl_win, ...
'Units','normalized', ...
'Callback',[ ...
'l=round(str2num(get(gcbo, ''String'')));' ...
'lmax = get(gcbo, ''UserData'');' ...
'if (l > lmax), l=lmax; fprintf([''The selected value was too large, or the selected eigenvalues were close to zero\n'']); end;' ...
'f=str2num(get(findobj(''Tag'',''e_first''), ''String''));' ...
'if (l < f), l=f; end;' ...
'set(gcbo, ''String'', int2str(l));' ...
], ...
'BackgroundColor',[1 1 1], ...
'HorizontalAlignment','right', ...
'Position',[0.467936 0.0678168 0.12207 0.0542535], ...
'Style','edit', ...
'String', int2str(maxLastEig), ...
'UserData', maxLastEig, ...
'Tag','e_last');
% in the first version oldDimension was used instead of
% maxLastEig, but since the program would automatically
% drop the eigenvalues afte maxLastEig...
b = uicontrol('Parent',hndl_win, ...
'Units','normalized', ...
'BackgroundColor',[0.701961 0.701961 0.701961], ...
'HorizontalAlignment','left', ...
'Position',[0.427246 0.0678168 0.0406901 0.0542535], ...
'String','to', ...
'Style','text', ...
'Tag','StaticText3');
b = uicontrol('Parent',hndl_win, ...
'Units','normalized', ...
'Callback','uiresume(gcbf)', ...
'Position',[0.630697 0.0678168 0.12207 0.0542535], ...
'String','OK', ...
'Tag','Pushbutton1');
b = uicontrol('Parent',hndl_win, ...
'Units','normalized', ...
'Callback',[ ...
'gui_help(''pcamat'');' ...
], ...
'Position',[0.767008 0.0678168 0.12207 0.0542535], ...
'String','Help', ...
'Tag','Pushbutton2');
h_axes = axes('Position' ,[0.13 0.3 0.775 0.6]);
set(hndl_win, 'currentaxes',h_axes);
bar(eigenvalues);
title('Eigenvalues');
uiwait(hndl_win);
firstEig = str2num(get(e_first, 'String'));
lastEig = str2num(get(e_last, 'String'));
% close the window
close(hndl_win);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% See if the user has reduced the dimension enought
if lastEig > maxLastEig
lastEig = maxLastEig;
if b_verbose
fprintf('Dimension reduced to %d due to the singularity of covariance matrix\n',...
lastEig-firstEig+1);
end
else
% Reduce the dimensionality of the problem.
if b_verbose
if oldDimension == (lastEig - firstEig + 1)
fprintf ('Dimension not reduced.\n');
else
fprintf ('Reducing dimension...\n');
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Drop the smaller eigenvalues
if lastEig < oldDimension
lowerLimitValue = (eigenvalues(lastEig) + eigenvalues(lastEig + 1)) / 2;
else
lowerLimitValue = eigenvalues(oldDimension) - 1;
end
lowerColumns = diag(D) > lowerLimitValue;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Drop the larger eigenvalues
if firstEig > 1
higherLimitValue = (eigenvalues(firstEig - 1) + eigenvalues(firstEig)) / 2;
else
higherLimitValue = eigenvalues(1) + 1;
end
higherColumns = diag(D) < higherLimitValue;
% Combine the results from above
selectedColumns = lowerColumns & higherColumns;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% print some info for the user
if b_verbose
fprintf ('Selected [ %d ] dimensions.\n', sum (selectedColumns));
end
if sum (selectedColumns) ~= (lastEig - firstEig + 1),
error ('Selected a wrong number of dimensions.');
end
if b_verbose
fprintf ('Smallest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(lastEig));
fprintf ('Largest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(firstEig));
fprintf ('Sum of removed eigenvalues [ %g ]\n', sum(diag(D) .* ...
(~selectedColumns)));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Select the colums which correspond to the desired range
% of eigenvalues.
E = selcol(E, selectedColumns);
D = selcol(selcol(D, selectedColumns)', selectedColumns);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Some more information
if b_verbose
sumAll=sum(eigenvalues);
sumUsed=sum(diag(D));
retained = (sumUsed / sumAll) * 100;
fprintf('[ %g ] %% of (non-zero) eigenvalues retained.\n', retained);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function newMatrix = selcol(oldMatrix, maskVector);
% newMatrix = selcol(oldMatrix, maskVector);
%
% Selects the columns of the matrix that marked by one in the given vector.
% The maskVector is a column vector.
% 15.3.1998
if size(maskVector, 1) ~= size(oldMatrix, 2),
error ('The mask vector and matrix are of uncompatible size.');
end
numTaken = 0;
for i = 1 : size (maskVector, 1),
if maskVector(i, 1) == 1,
takingMask(1, numTaken + 1) = i;
numTaken = numTaken + 1;
end
end
newMatrix = oldMatrix(:, takingMask);
|
github
|
lcnbeapp/beapp-master
|
icaplot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/fastica/icaplot.m
| 13,211 |
utf_8
|
066670e2905b35f198920d743c74faf5
|
function icaplot(mode, varargin);
%ICAPLOT - plot signals in various ways
%
% ICAPLOT is mainly for plottinf and comparing the mixed signals and
% separated ica-signals.
%
% ICAPLOT has many different modes. The first parameter of the function
% defines the mode. Other parameters and their order depends on the
% mode. The explanation for the more common parameters is in the end.
%
% Classic
% icaplot('classic', s1, n1, range, xrange, titlestr)
%
% Plots the signals in the same manner as the FASTICA and FASTICAG
% programs do. All the signals are plotted in their own axis.
%
% Complot
% icaplot('complot', s1, n1, range, xrange, titlestr)
%
% The signals are plotted on the same axis. This is good for
% visualization of the shape of the signals. The scale of the signals
% has been altered so that they all fit nicely.
%
% Histogram
% icaplot('histogram', s1, n1, range, bins, style)
%
% The histogram of the signals is plotted. The number of bins can be
% specified with 'bins'-parameter. The style for the histograms can
% be either 'bar' (default) of 'line'.
%
% Scatter
% icaplot('scatter', s1, n1, s2, n2, range, titlestr, s1label,
% s2label, markerstr)
%
% A scatterplot is plotted so that the signal 1 is the 'X'-variable
% and the signal 2 is the 'Y'-variable. The 'markerstr' can be used
% to specify the maker used in the plot. The format for 'markerstr'
% is the same as for Matlab's PLOT.
%
% Compare
% icaplot('compare', s1, n1, s2, n2, range, xrange, titlestr,
% s1label, s2label)
%
% This for for comparing two signals. The main used in this context
% would probably be to see how well the separated ICA-signals explain
% the observed mixed signals. The s2 signals are first scaled with
% REGRESS function.
%
% Compare - Sum
% icaplot('sum', s1, n1, s2, n2, range, xrange, titlestr, s1label,
% s2label)
%
% The same as Compare, but this time the signals in s2 (specified by
% n2) are summed together.
%
% Compare - Sumerror
% icaplot('sumerror', s1, n1, s2, n2, range, xrange, titlestr,
% s1label, s2label)
%
% The same as Compare - Sum, but also the 'error' between the signal
% 1 and the summed IC's is plotted.
%
%
% More common parameters
% The signals to be plotted are in matrices s1 and s2. The n1 and n2
% are used to tell the index of the signal or signals to be plotted
% from s1 or s2. If n1 or n2 has a value of 0, then all the signals
% from corresponding matrix will be plotted. The values for n1 and n2
% can also be vectors (like: [1 3 4]) In some casee if there are more
% than 1 signal to be plotted from s1 or s2 then the plot will
% contain as many subplots as are needed.
%
% The range of the signals to be plotted can be limited with
% 'range'-parameter. It's value is a vector ( 10000:15000 ). If range
% is 0, then the whole range will be plotted.
%
% The 'xrange' is used to specify only the labels used on the
% x-axis. The value of 'xrange' is a vector containing the x-values
% for the plots or [start end] for begin and end of the range
% ( 10000:15000 or [10 15] ). If xrange is 0, then value of range
% will be used for x-labels.
%
% You can give a title for the plot with 'titlestr'. Also the
% 's1label' and 's2label' are used to give more meaningfull label for
% the signals.
%
% Lastly, you can omit some of the arguments from the and. You will
% have to give values for the signal matrices (s1, s2) and the
% indexes (n1, n2)
% @(#)$Id$
switch mode
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 'dispsig' is to replace the old DISPSIG
% '' & 'classic' are just another names - '' quite short one :-)
case {'', 'classic', 'dispsig'}
% icaplot(mode, s1, n1, range, xrange, titlestr)
if length(varargin) < 1, error('Not enough arguments.'); end
if length(varargin) < 5, titlestr = '';else titlestr = varargin{5}; end
if length(varargin) < 4, xrange = 0;else xrange = varargin{4}; end
if length(varargin) < 3, range = 0;else range = varargin{3}; end
if length(varargin) < 2, n1 = 0;else n1 = varargin{2}; end
s1 = varargin{1};
range=chkrange(range, s1);
xrange=chkxrange(xrange, range);
n1=chkn(n1, s1);
clf;
numSignals = size(n1, 2);
for i = 1:numSignals,
subplot(numSignals, 1, i);
plot(xrange, s1(n1(i), range));
end
subplot(numSignals,1, 1);
if (~isempty(titlestr))
title(titlestr);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'complot'
% icaplot(mode, s1, n1, range, xrange, titlestr)
if length(varargin) < 1, error('Not enough arguments.'); end
if length(varargin) < 5, titlestr = '';else titlestr = varargin{5}; end
if length(varargin) < 4, xrange = 0;else xrange = varargin{4}; end
if length(varargin) < 3, range = 0;else range = varargin{3}; end
if length(varargin) < 2, n1 = 0;else n1 = varargin{2}; end
s1 = remmean(varargin{1});
range=chkrange(range, s1);
xrange=chkxrange(xrange, range);
n1=chkn(n1, s1);
for i = 1:size(n1, 2)
S1(i, :) = s1(n1(i), range);
end
alpha = mean(max(S1')-min(S1'));
for i = 1:size(n1,2)
S2(i,:) = S1(i,:) - alpha*(i-1)*ones(size(S1(1,:)));
end
plot(xrange, S2');
axis([min(xrange) max(xrange) min(min(S2)) max(max(S2)) ]);
set(gca,'YTick',(-size(S1,1)+1)*alpha:alpha:0);
set(gca,'YTicklabel',fliplr(n1));
if (~isempty(titlestr))
title(titlestr);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'histogram'
% icaplot(mode, s1, n1, range, bins, style)
if length(varargin) < 1, error('Not enough arguments.'); end
if length(varargin) < 5, style = 'bar';else style = varargin{5}; end
if length(varargin) < 4, bins = 10;else bins = varargin{4}; end
if length(varargin) < 3, range = 0;else range = varargin{3}; end
if length(varargin) < 2, n1 = 0;else n1 = varargin{2}; end
s1 = varargin{1};
range = chkrange(range, s1);
n1 = chkn(n1, s1);
numSignals = size(n1, 2);
rows = floor(sqrt(numSignals));
columns = ceil(sqrt(numSignals));
while (rows * columns < numSignals)
columns = columns + 1;
end
switch style
case {'', 'bar'}
for i = 1:numSignals,
subplot(rows, columns, i);
hist(s1(n1(i), range), bins);
title(int2str(n1(i)));
drawnow;
end
case 'line'
for i = 1:numSignals,
subplot(rows, columns, i);
[Y, X]=hist(s1(n1(i), range), bins);
plot(X, Y);
title(int2str(n1(i)));
drawnow;
end
otherwise
fprintf('Unknown style.\n')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 'scatter'
% icaplot(mode, s1, n1, s2, n2, range, titlestr, xlabelstr, ylabelstr, markerstr)
if length(varargin) < 4, error('Not enough arguments.'); end
if length(varargin) < 9, markerstr = '.';else markerstr = varargin{9}; end
if length(varargin) < 8, ylabelstr = 'Signal 2';else ylabelstr = varargin{8}; end
if length(varargin) < 7, xlabelstr = 'Signal 1';else xlabelstr = varargin{7}; end
if length(varargin) < 6, titlestr = '';else titlestr = varargin{6}; end
if length(varargin) < 5, range = 0;else range = varargin{5}; end
n2 = varargin{4};
s2 = varargin{3};
n1 = varargin{2};
s1 = varargin{1};
range = chkrange(range, s1);
n1 = chkn(n1, s1);
n2 = chkn(n2, s2);
rows = size(n1, 2);
columns = size(n2, 2);
for r = 1:rows
for c = 1:columns
subplot(rows, columns, (r-1)*columns + c);
plot(s1(n1(r), range),s2(n2(c), range),markerstr);
if (~isempty(titlestr))
title(titlestr);
end
if (rows*columns == 1)
xlabel(xlabelstr);
ylabel(ylabelstr);
else
xlabel([xlabelstr ' (' int2str(n1(r)) ')']);
ylabel([ylabelstr ' (' int2str(n2(c)) ')']);
end
drawnow;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case {'compare', 'sum', 'sumerror'}
% icaplot(mode, s1, n1, s2, n2, range, xrange, titlestr, s1label, s2label)
if length(varargin) < 4, error('Not enough arguments.'); end
if length(varargin) < 9, s2label = 'IC';else s2label = varargin{9}; end
if length(varargin) < 8, s1label = 'Mix';else s1label = varargin{8}; end
if length(varargin) < 7, titlestr = '';else titlestr = varargin{7}; end
if length(varargin) < 6, xrange = 0;else xrange = varargin{6}; end
if length(varargin) < 5, range = 0;else range = varargin{5}; end
s1 = varargin{1};
n1 = varargin{2};
s2 = varargin{3};
n2 = varargin{4};
range = chkrange(range, s1);
xrange = chkxrange(xrange, range);
n1 = chkn(n1, s1);
n2 = chkn(n2, s2);
numSignals = size(n1, 2);
if (numSignals > 1)
externalLegend = 1;
else
externalLegend = 0;
end
rows = floor(sqrt(numSignals+externalLegend));
columns = ceil(sqrt(numSignals+externalLegend));
while (rows * columns < (numSignals+externalLegend))
columns = columns + 1;
end
clf;
for j = 1:numSignals
subplot(rows, columns, j);
switch mode
case 'compare'
plotcompare(s1, n1(j), s2,n2, range, xrange);
[legendtext,legendstyle]=legendcompare(n1(j),n2,s1label,s2label,externalLegend);
case 'sum'
plotsum(s1, n1(j), s2,n2, range, xrange);
[legendtext,legendstyle]=legendsum(n1(j),n2,s1label,s2label,externalLegend);
case 'sumerror'
plotsumerror(s1, n1(j), s2,n2, range, xrange);
[legendtext,legendstyle]=legendsumerror(n1(j),n2,s1label,s2label,externalLegend);
end
if externalLegend
title([titlestr ' (' s1label ' ' int2str(n1(j)) ')']);
else
legend(char(legendtext));
if (~isempty(titlestr))
title(titlestr);
end
end
end
if (externalLegend)
subplot(rows, columns, numSignals+1);
legendsize = size(legendtext, 2);
hold on;
for i=1:legendsize
plot([0 1],[legendsize-i legendsize-i], char(legendstyle(i)));
text(1.5, legendsize-i, char(legendtext(i)));
end
hold off;
axis([0 6 -1 legendsize]);
axis off;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotcompare(s1, n1, s2, n2, range, xrange);
style=getStyles;
K = regress(s1(n1,:)',s2');
plot(xrange, s1(n1,range), char(style(1)));
hold on
for i=1:size(n2,2)
plotstyle=char(style(i+1));
plot(xrange, K(n2(i))*s2(n2(i),range), plotstyle);
end
hold off
function [legendText, legendStyle]=legendcompare(n1, n2, s1l, s2l, externalLegend);
style=getStyles;
if (externalLegend)
legendText(1)={[s1l ' (see the titles)']};
else
legendText(1)={[s1l ' ', int2str(n1)]};
end
legendStyle(1)=style(1);
for i=1:size(n2, 2)
legendText(i+1) = {[s2l ' ' int2str(n2(i))]};
legendStyle(i+1) = style(i+1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotsum(s1, n1, s2, n2, range, xrange);
K = diag(regress(s1(n1,:)',s2'));
sigsum = sum(K(:,n2)*s2(n2,:));
plot(xrange, s1(n1, range),'k-', ...
xrange, sigsum(range), 'b-');
function [legendText, legendStyle]=legendsum(n1, n2, s1l, s2l, externalLegend);
if (externalLegend)
legendText(1)={[s1l ' (see the titles)']};
else
legendText(1)={[s1l ' ', int2str(n1)]};
end
legendText(2)={['Sum of ' s2l ': ', int2str(n2)]};
legendStyle={'k-';'b-'};
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotsumerror(s1, n1, s2, n2, range, xrange);
K = diag(regress(s1(n1,:)',s2'));
sigsum = sum(K(:,n2)*s2(n2,:));
plot(xrange, s1(n1, range),'k-', ...
xrange, sigsum(range), 'b-', ...
xrange, s1(n1, range)-sigsum(range), 'r-');
function [legendText, legendStyle]=legendsumerror(n1, n2, s1l, s2l, externalLegend);
if (externalLegend)
legendText(1)={[s1l ' (see the titles)']};
else
legendText(1)={[s1l ' ', int2str(n1)]};
end
legendText(2)={['Sum of ' s2l ': ', int2str(n2)]};
legendText(3)={'"Error"'};
legendStyle={'k-';'b-';'r-'};
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function style=getStyles;
color = {'k','r','g','b','m','c','y'};
line = {'-',':','-.','--'};
for i = 0:size(line,2)-1
for j = 1:size(color, 2)
style(j + i*size(color, 2)) = strcat(color(j), line(i+1));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function range=chkrange(r, s)
if r == 0
range = 1:size(s, 2);
else
range = r;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function xrange=chkxrange(xr,r);
if xr == 0
xrange = r;
elseif size(xr, 2) == 2
xrange = xr(1):(xr(2)-xr(1))/(size(r,2)-1):xr(2);
elseif size(xr, 2)~=size(r, 2)
error('Xrange and range have different sizes.');
else
xrange = xr;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function n=chkn(n,s)
if n == 0
n = 1:size(s, 1);
end
|
github
|
lcnbeapp/beapp-master
|
cond_indep_fisher_z.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMstats/cond_indep_fisher_z.m
| 3,635 |
utf_8
|
74e2c5c915700e2f7a672113e333f813
|
function [CI, r, p] = cond_indep_fisher_z(X, Y, S, C, N, alpha)
% COND_INDEP_FISHER_Z Test if X indep Y given Z using Fisher's Z test
% CI = cond_indep_fisher_z(X, Y, S, C, N, alpha)
%
% C is the covariance (or correlation) matrix
% N is the sample size
% alpha is the significance level (default: 0.05)
%
% See p133 of T. Anderson, "An Intro. to Multivariate Statistical Analysis", 1984
if nargin < 6, alpha = 0.05; end
r = partial_corr_coef(C, X, Y, S);
z = 0.5*log( (1+r)/(1-r) );
z0 = 0;
W = sqrt(N - length(S) - 3)*(z-z0); % W ~ N(0,1)
cutoff = norminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95
%cutoff = mynorminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95
if abs(W) < cutoff
CI = 1;
else % reject the null hypothesis that rho = 0
CI = 0;
end
p = normcdf(W);
%p = mynormcdf(W);
%%%%%%%%%
function p = normcdf(x,mu,sigma)
%NORMCDF Normal cumulative distribution function (cdf).
% P = NORMCDF(X,MU,SIGMA) computes the normal cdf with mean MU and
% standard deviation SIGMA at the values in X.
%
% The size of P is the common size of X, MU and SIGMA. A scalar input
% functions as a constant matrix of the same size as the other inputs.
%
% Default values for MU and SIGMA are 0 and 1 respectively.
% References:
% [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
% Functions", Government Printing Office, 1964, 26.2.
% Copyright (c) 1993-98 by The MathWorks, Inc.
% $Revision$ $Date: 2004/02/10 18:58:56 $
if nargin < 3,
sigma = 1;
end
if nargin < 2;
mu = 0;
end
[errorcode x mu sigma] = distchck(3,x,mu,sigma);
if errorcode > 0
error('Requires non-scalar arguments to match in size.');
end
% Initialize P to zero.
p = zeros(size(x));
% Return NaN if SIGMA is not positive.
k1 = find(sigma <= 0);
if any(k1)
tmp = NaN;
p(k1) = tmp(ones(size(k1)));
end
% Express normal CDF in terms of the error function.
k = find(sigma > 0);
if any(k)
p(k) = 0.5 * erfc( - (x(k) - mu(k)) ./ (sigma(k) * sqrt(2)));
end
% Make sure that round-off errors never make P greater than 1.
k2 = find(p > 1);
if any(k2)
p(k2) = ones(size(k2));
end
%%%%%%%%
function x = norminv(p,mu,sigma);
%NORMINV Inverse of the normal cumulative distribution function (cdf).
% X = NORMINV(P,MU,SIGMA) finds the inverse of the normal cdf with
% mean, MU, and standard deviation, SIGMA.
%
% The size of X is the common size of the input arguments. A scalar input
% functions as a constant matrix of the same size as the other inputs.
%
% Default values for MU and SIGMA are 0 and 1 respectively.
% References:
% [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
% Functions", Government Printing Office, 1964, 7.1.1 and 26.2.2
% Copyright (c) 1993-98 by The MathWorks, Inc.
% $Revision$ $Date: 2004/02/10 18:58:56 $
if nargin < 3,
sigma = 1;
end
if nargin < 2;
mu = 0;
end
[errorcode p mu sigma] = distchck(3,p,mu,sigma);
if errorcode > 0
error('Requires non-scalar arguments to match in size.');
end
% Allocate space for x.
x = zeros(size(p));
% Return NaN if the arguments are outside their respective limits.
k = find(sigma <= 0 | p < 0 | p > 1);
if any(k)
tmp = NaN;
x(k) = tmp(ones(size(k)));
end
% Put in the correct values when P is either 0 or 1.
k = find(p == 0);
if any(k)
tmp = Inf;
x(k) = -tmp(ones(size(k)));
end
k = find(p == 1);
if any(k)
tmp = Inf;
x(k) = tmp(ones(size(k)));
end
% Compute the inverse function for the intermediate values.
k = find(p > 0 & p < 1 & sigma > 0);
if any(k),
x(k) = sqrt(2) * sigma(k) .* erfinv(2 * p(k) - 1) + mu(k);
end
|
github
|
lcnbeapp/beapp-master
|
logistK.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMstats/logistK.m
| 7,253 |
utf_8
|
9539c8105ebca14d632373f5f9f4b70d
|
function [beta,post,lli] = logistK(x,y,w,beta)
% [beta,post,lli] = logistK(x,y,beta,w)
%
% k-class logistic regression with optional sample weights
%
% k = number of classes
% n = number of samples
% d = dimensionality of samples
%
% INPUT
% x dxn matrix of n input column vectors
% y kxn vector of class assignments
% [w] 1xn vector of sample weights
% [beta] dxk matrix of model coefficients
%
% OUTPUT
% beta dxk matrix of fitted model coefficients
% (beta(:,k) are fixed at 0)
% post kxn matrix of fitted class posteriors
% lli log likelihood
%
% Let p(i,j) = exp(beta(:,j)'*x(:,i)),
% Class j posterior for observation i is:
% post(j,i) = p(i,j) / (p(i,1) + ... p(i,k))
%
% See also logistK_eval.
%
% David Martin <[email protected]>
% May 3, 2002
% Copyright (C) 2002 David R. Martin <[email protected]>
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as
% published by the Free Software Foundation; either version 2 of the
% License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
% 02111-1307, USA, or see http://www.gnu.org/copyleft/gpl.html.
% TODO - this code would be faster if x were transposed
error(nargchk(2,4,nargin));
debug = 0;
if debug>0,
h=figure(1);
set(h,'DoubleBuffer','on');
end
% get sizes
[d,nx] = size(x);
[k,ny] = size(y);
% check sizes
if k < 2,
error('Input y must encode at least 2 classes.');
end
if nx ~= ny,
error('Inputs x,y not the same length.');
end
n = nx;
% make sure class assignments have unit L1-norm
sumy = sum(y,1);
if abs(1-sumy) > eps,
sumy = sum(y,1);
for i = 1:k, y(i,:) = y(i,:) ./ sumy; end
end
clear sumy;
% if sample weights weren't specified, set them to 1
if nargin < 3,
w = ones(1,n);
end
% normalize sample weights so max is 1
w = w / max(w);
% if starting beta wasn't specified, initialize randomly
if nargin < 4,
beta = 1e-3*rand(d,k);
beta(:,k) = 0; % fix beta for class k at zero
else
if sum(beta(:,k)) ~= 0,
error('beta(:,k) ~= 0');
end
end
stepsize = 1;
minstepsize = 1e-2;
post = computePost(beta,x);
lli = computeLogLik(post,y,w);
for iter = 1:100,
%disp(sprintf(' logist iter=%d lli=%g',iter,lli));
vis(x,y,beta,lli,d,k,iter,debug);
% gradient and hessian
[g,h] = derivs(post,x,y,w);
% make sure Hessian is well conditioned
if rcond(h) < eps,
% condition with Levenberg-Marquardt method
for i = -16:16,
h2 = h .* ((1 + 10^i)*eye(size(h)) + (1-eye(size(h))));
if rcond(h2) > eps, break, end
end
if rcond(h2) < eps,
warning(['Stopped at iteration ' num2str(iter) ...
' because Hessian can''t be conditioned']);
break
end
h = h2;
end
% save lli before update
lli_prev = lli;
% Newton-Raphson with step-size halving
while stepsize >= minstepsize,
% Newton-Raphson update step
step = stepsize * (h \ g);
beta2 = beta;
beta2(:,1:k-1) = beta2(:,1:k-1) - reshape(step,d,k-1);
% get the new log likelihood
post2 = computePost(beta2,x);
lli2 = computeLogLik(post2,y,w);
% if the log likelihood increased, then stop
if lli2 > lli,
post = post2; lli = lli2; beta = beta2;
break
end
% otherwise, reduce step size by half
stepsize = 0.5 * stepsize;
end
% stop if the average log likelihood has gotten small enough
if 1-exp(lli/n) < 1e-2, break, end
% stop if the log likelihood changed by a small enough fraction
dlli = (lli_prev-lli) / lli;
if abs(dlli) < 1e-3, break, end
% stop if the step size has gotten too small
if stepsize < minstepsize, brea, end
% stop if the log likelihood has decreased; this shouldn't happen
if lli < lli_prev,
warning(['Stopped at iteration ' num2str(iter) ...
' because the log likelihood decreased from ' ...
num2str(lli_prev) ' to ' num2str(lli) '.' ...
' This may be a bug.']);
break
end
end
if debug>0,
vis(x,y,beta,lli,d,k,iter,2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% class posteriors
function post = computePost(beta,x)
[d,n] = size(x);
[d,k] = size(beta);
post = zeros(k,n);
bx = zeros(k,n);
for j = 1:k,
bx(j,:) = beta(:,j)'*x;
end
for j = 1:k,
post(j,:) = 1 ./ sum(exp(bx - repmat(bx(j,:),k,1)),1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% log likelihood
function lli = computeLogLik(post,y,w)
[k,n] = size(post);
lli = 0;
for j = 1:k,
lli = lli + sum(w.*y(j,:).*log(post(j,:)+eps));
end
if isnan(lli),
error('lli is nan');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% gradient and hessian
%% These are computed in what seems a verbose manner, but it is
%% done this way to use minimal memory. x should be transposed
%% to make it faster.
function [g,h] = derivs(post,x,y,w)
[k,n] = size(post);
[d,n] = size(x);
% first derivative of likelihood w.r.t. beta
g = zeros(d,k-1);
for j = 1:k-1,
wyp = w .* (y(j,:) - post(j,:));
for ii = 1:d,
g(ii,j) = x(ii,:) * wyp';
end
end
g = reshape(g,d*(k-1),1);
% hessian of likelihood w.r.t. beta
h = zeros(d*(k-1),d*(k-1));
for i = 1:k-1, % diagonal
wt = w .* post(i,:) .* (1 - post(i,:));
hii = zeros(d,d);
for a = 1:d,
wxa = wt .* x(a,:);
for b = a:d,
hii_ab = wxa * x(b,:)';
hii(a,b) = hii_ab;
hii(b,a) = hii_ab;
end
end
h( (i-1)*d+1 : i*d , (i-1)*d+1 : i*d ) = -hii;
end
for i = 1:k-1, % off-diagonal
for j = i+1:k-1,
wt = w .* post(j,:) .* post(i,:);
hij = zeros(d,d);
for a = 1:d,
wxa = wt .* x(a,:);
for b = a:d,
hij_ab = wxa * x(b,:)';
hij(a,b) = hij_ab;
hij(b,a) = hij_ab;
end
end
h( (i-1)*d+1 : i*d , (j-1)*d+1 : j*d ) = hij;
h( (j-1)*d+1 : j*d , (i-1)*d+1 : i*d ) = hij;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% debug/visualization
function vis (x,y,beta,lli,d,k,iter,debug)
if debug<=0, return, end
disp(['iter=' num2str(iter) ' lli=' num2str(lli)]);
if debug<=1, return, end
if d~=3 | k>10, return, end
figure(1);
res = 100;
r = abs(max(max(x)));
dom = linspace(-r,r,res);
[px,py] = meshgrid(dom,dom);
xx = px(:); yy = py(:);
points = [xx' ; yy' ; ones(1,res*res)];
func = zeros(k,res*res);
for j = 1:k,
func(j,:) = exp(beta(:,j)'*points);
end
[mval,ind] = max(func,[],1);
hold off;
im = reshape(ind,res,res);
imagesc(xx,yy,im);
hold on;
syms = {'w.' 'wx' 'w+' 'wo' 'w*' 'ws' 'wd' 'wv' 'w^' 'w<'};
for j = 1:k,
[mval,ind] = max(y,[],1);
ind = find(ind==j);
plot(x(1,ind),x(2,ind),syms{j});
end
pause(0.1);
% eof
|
github
|
lcnbeapp/beapp-master
|
dhmm_em.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/hmm/dhmm_em.m
| 3,862 |
utf_8
|
83f088af19f326cf34ba80629cff4d01
|
function [LL, prior, transmat, obsmat] = dhmm_em(data, prior, transmat, obsmat, varargin)
% LEARN_DHMM Find the ML/MAP parameters of an HMM with discrete outputs using EM.
% [ll_trace, prior, transmat, obsmat] = learn_dhmm(data, prior0, transmat0, obsmat0, ...)
%
% Notation: Q(t) = hidden state, Y(t) = observation
%
% INPUTS:
% data{ex} or data(ex,:) if all sequences have the same length
% prior(i)
% transmat(i,j)
% obsmat(i,o)
%
% Optional parameters may be passed as 'param_name', param_value pairs.
% Parameter names are shown below; default values in [] - if none, argument is mandatory.
%
% 'max_iter' - max number of EM iterations [10]
% 'thresh' - convergence threshold [1e-4]
% 'verbose' - if 1, print out loglik at every iteration [1]
% 'obs_prior_weight' - weight to apply to uniform dirichlet prior on observation matrix [0]
%
% To clamp some of the parameters, so learning does not change them:
% 'adj_prior' - if 0, do not change prior [1]
% 'adj_trans' - if 0, do not change transmat [1]
% 'adj_obs' - if 0, do not change obsmat [1]
[max_iter, thresh, verbose, obs_prior_weight, adj_prior, adj_trans, adj_obs] = ...
process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ...
'obs_prior_weight', 0, 'adj_prior', 1, 'adj_trans', 1, 'adj_obs', 1);
previous_loglik = -inf;
loglik = 0;
converged = 0;
num_iter = 1;
LL = [];
if ~iscell(data)
data = num2cell(data, 2); % each row gets its own cell
end
while (num_iter <= max_iter) & ~converged
% E step
[loglik, exp_num_trans, exp_num_visits1, exp_num_emit] = ...
compute_ess_dhmm(prior, transmat, obsmat, data, obs_prior_weight);
% M step
if adj_prior
prior = normalise(exp_num_visits1);
end
if adj_trans & ~isempty(exp_num_trans)
transmat = mk_stochastic(exp_num_trans);
end
if adj_obs
obsmat = mk_stochastic(exp_num_emit);
end
if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end
num_iter = num_iter + 1;
converged = em_converged(loglik, previous_loglik, thresh);
previous_loglik = loglik;
LL = [LL loglik];
end
%%%%%%%%%%%%%%%%%%%%%%%
function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, exp_num_visitsT] = ...
compute_ess_dhmm(startprob, transmat, obsmat, data, dirichlet)
% COMPUTE_ESS_DHMM Compute the Expected Sufficient Statistics for an HMM with discrete outputs
% function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, exp_num_visitsT] = ...
% compute_ess_dhmm(startprob, transmat, obsmat, data, dirichlet)
%
% INPUTS:
% startprob(i)
% transmat(i,j)
% obsmat(i,o)
% data{seq}(t)
% dirichlet - weighting term for uniform dirichlet prior on expected emissions
%
% OUTPUTS:
% exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(X(t-1) = i, X(t) = j| Obs(l))
% exp_num_visits1(i) = sum_l Pr(X(1)=i | Obs(l))
% exp_num_visitsT(i) = sum_l Pr(X(T)=i | Obs(l))
% exp_num_emit(i,o) = sum_l sum_{t=1}^T Pr(X(t) = i, O(t)=o| Obs(l))
% where Obs(l) = O_1 .. O_T for sequence l.
numex = length(data);
[S O] = size(obsmat);
exp_num_trans = zeros(S,S);
exp_num_visits1 = zeros(S,1);
exp_num_visitsT = zeros(S,1);
exp_num_emit = dirichlet*ones(S,O);
loglik = 0;
for ex=1:numex
obs = data{ex};
T = length(obs);
%obslik = eval_pdf_cond_multinomial(obs, obsmat);
obslik = multinomial_prob(obs, obsmat);
[alpha, beta, gamma, current_ll, xi] = fwdback(startprob, transmat, obslik);
loglik = loglik + current_ll;
exp_num_trans = exp_num_trans + sum(xi,3);
exp_num_visits1 = exp_num_visits1 + gamma(:,1);
exp_num_visitsT = exp_num_visitsT + gamma(:,T);
% loop over whichever is shorter
if T < O
for t=1:T
o = obs(t);
exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t);
end
else
for o=1:O
ndx = find(obs==o);
if ~isempty(ndx)
exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2);
end
end
end
end
|
github
|
lcnbeapp/beapp-master
|
mhmm_em.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/hmm/mhmm_em.m
| 5,562 |
utf_8
|
5a337291416185ebcf567e46e08a3d09
|
function [LL, prior, transmat, mu, Sigma, mixmat] = ...
mhmm_em(data, prior, transmat, mu, Sigma, mixmat, varargin);
% LEARN_MHMM Compute the ML parameters of an HMM with (mixtures of) Gaussians output using EM.
% [ll_trace, prior, transmat, mu, sigma, mixmat] = learn_mhmm(data, ...
% prior0, transmat0, mu0, sigma0, mixmat0, ...)
%
% Notation: Q(t) = hidden state, Y(t) = observation, M(t) = mixture variable
%
% INPUTS:
% data{ex}(:,t) or data(:,t,ex) if all sequences have the same length
% prior(i) = Pr(Q(1) = i),
% transmat(i,j) = Pr(Q(t+1)=j | Q(t)=i)
% mu(:,j,k) = E[Y(t) | Q(t)=j, M(t)=k ]
% Sigma(:,:,j,k) = Cov[Y(t) | Q(t)=j, M(t)=k]
% mixmat(j,k) = Pr(M(t)=k | Q(t)=j) : set to [] or ones(Q,1) if only one mixture component
%
% Optional parameters may be passed as 'param_name', param_value pairs.
% Parameter names are shown below; default values in [] - if none, argument is mandatory.
%
% 'max_iter' - max number of EM iterations [10]
% 'thresh' - convergence threshold [1e-4]
% 'verbose' - if 1, print out loglik at every iteration [1]
% 'cov_type' - 'full', 'diag' or 'spherical' ['full']
%
% To clamp some of the parameters, so learning does not change them:
% 'adj_prior' - if 0, do not change prior [1]
% 'adj_trans' - if 0, do not change transmat [1]
% 'adj_mix' - if 0, do not change mixmat [1]
% 'adj_mu' - if 0, do not change mu [1]
% 'adj_Sigma' - if 0, do not change Sigma [1]
%
% If the number of mixture components differs depending on Q, just set the trailing
% entries of mixmat to 0, e.g., 2 components if Q=1, 3 components if Q=2,
% then set mixmat(1,3)=0. In this case, B2(1,3,:)=1.0.
if ~isstr(varargin{1}) % catch old syntax
error('optional arguments should be passed as string/value pairs')
end
[max_iter, thresh, verbose, cov_type, adj_prior, adj_trans, adj_mix, adj_mu, adj_Sigma] = ...
process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ...
'cov_type', 'full', 'adj_prior', 1, 'adj_trans', 1, 'adj_mix', 1, ...
'adj_mu', 1, 'adj_Sigma', 1);
previous_loglik = -inf;
loglik = 0;
converged = 0;
num_iter = 1;
LL = [];
if ~iscell(data)
data = num2cell(data, [1 2]); % each elt of the 3rd dim gets its own cell
end
numex = length(data);
O = size(data{1},1);
Q = length(prior);
if isempty(mixmat)
mixmat = ones(Q,1);
end
M = size(mixmat,2);
if M == 1
adj_mix = 0;
end
while (num_iter <= max_iter) & ~converged
% E step
[loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ...
ess_mhmm(prior, transmat, mixmat, mu, Sigma, data);
% M step
if adj_prior
prior = normalise(exp_num_visits1);
end
if adj_trans
transmat = mk_stochastic(exp_num_trans);
end
if adj_mix
mixmat = mk_stochastic(postmix);
end
if adj_mu | adj_Sigma
[mu2, Sigma2] = mixgauss_Mstep(postmix, m, op, ip, 'cov_type', cov_type);
if adj_mu
mu = reshape(mu2, [O Q M]);
end
if adj_Sigma
Sigma = reshape(Sigma2, [O O Q M]);
end
end
if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end
num_iter = num_iter + 1;
converged = em_converged(loglik, previous_loglik, thresh);
previous_loglik = loglik;
LL = [LL loglik];
end
%%%%%%%%%
function [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ...
ess_mhmm(prior, transmat, mixmat, mu, Sigma, data)
% ESS_MHMM Compute the Expected Sufficient Statistics for a MOG Hidden Markov Model.
%
% Outputs:
% exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(Q(t-1) = i, Q(t) = j| Obs(l))
% exp_num_visits1(i) = sum_l Pr(Q(1)=i | Obs(l))
%
% Let w(i,k,t,l) = P(Q(t)=i, M(t)=k | Obs(l))
% where Obs(l) = Obs(:,:,l) = O_1 .. O_T for sequence l
% Then
% postmix(i,k) = sum_l sum_t w(i,k,t,l) (posterior mixing weights/ responsibilities)
% m(:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l)
% ip(i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l)' * Obs(:,t,l)
% op(:,:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) * Obs(:,t,l)'
verbose = 0;
%[O T numex] = size(data);
numex = length(data);
O = size(data{1},1);
Q = length(prior);
M = size(mixmat,2);
exp_num_trans = zeros(Q,Q);
exp_num_visits1 = zeros(Q,1);
postmix = zeros(Q,M);
m = zeros(O,Q,M);
op = zeros(O,O,Q,M);
ip = zeros(Q,M);
mix = (M>1);
loglik = 0;
if verbose, fprintf(1, 'forwards-backwards example # '); end
for ex=1:numex
if verbose, fprintf(1, '%d ', ex); end
%obs = data(:,:,ex);
obs = data{ex};
T = size(obs,2);
if mix
[B, B2] = mixgauss_prob(obs, mu, Sigma, mixmat);
[alpha, beta, gamma, current_loglik, xi, gamma2] = ...
fwdback(prior, transmat, B, 'obslik2', B2, 'mixmat', mixmat);
else
B = mixgauss_prob(obs, mu, Sigma);
[alpha, beta, gamma, current_loglik, xi] = fwdback(prior, transmat, B);
end
loglik = loglik + current_loglik;
if verbose, fprintf(1, 'll at ex %d = %f\n', ex, loglik); end
exp_num_trans = exp_num_trans + sum(xi,3);
exp_num_visits1 = exp_num_visits1 + gamma(:,1);
if mix
postmix = postmix + sum(gamma2,3);
else
postmix = postmix + sum(gamma,2);
gamma2 = reshape(gamma, [Q 1 T]); % gamma2(i,m,t) = gamma(i,t)
end
for i=1:Q
for k=1:M
w = reshape(gamma2(i,k,:), [1 T]); % w(t) = w(i,k,t,l)
wobs = obs .* repmat(w, [O 1]); % wobs(:,t) = w(t) * obs(:,t)
m(:,i,k) = m(:,i,k) + sum(wobs, 2); % m(:) = sum_t w(t) obs(:,t)
op(:,:,i,k) = op(:,:,i,k) + wobs * obs'; % op(:,:) = sum_t w(t) * obs(:,t) * obs(:,t)'
ip(i,k) = ip(i,k) + sum(sum(wobs .* obs, 2)); % ip = sum_t w(t) * obs(:,t)' * obs(:,t)
end
end
end
if verbose, fprintf(1, '\n'); end
|
github
|
lcnbeapp/beapp-master
|
subv2ind.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/subv2ind.m
| 1,574 |
utf_8
|
e85d0bab88fc0d35b803436fa1dc0e15
|
function ndx = subv2ind(siz, subv)
% SUBV2IND Like the built-in sub2ind, but the subscripts are given as row vectors.
% ind = subv2ind(siz,subv)
%
% siz can be a row or column vector of size d.
% subv should be a collection of N row vectors of size d.
% ind will be of size N * 1.
%
% Example:
% subv = [1 1 1;
% 2 1 1;
% ...
% 2 2 2];
% subv2ind([2 2 2], subv) returns [1 2 ... 8]'
% i.e., the leftmost digit toggles fastest.
%
% See also IND2SUBV.
if isempty(subv)
ndx = [];
return;
end
if isempty(siz)
ndx = 1;
return;
end
[ncases ndims] = size(subv);
%if length(siz) ~= ndims
% error('length of subscript vector and sizes must be equal');
%end
if all(siz==2)
%rbits = subv(:,end:-1:1)-1; % read from right to left, convert to 0s/1s
%ndx = bitv2dec(rbits)+1;
twos = pow2(0:ndims-1);
ndx = ((subv-1) * twos(:)) + 1;
%ndx = sum((subv-1) .* twos(ones(ncases,1), :), 2) + 1; % equivalent to matrix * vector
%ndx = sum((subv-1) .* repmat(twos, ncases, 1), 2) + 1; % much slower than ones
%ndx = ndx(:)';
else
%siz = siz(:)';
cp = [1 cumprod(siz(1:end-1))]';
%ndx = ones(ncases, 1);
%for i = 1:ndims
% ndx = ndx + (subv(:,i)-1)*cp(i);
%end
ndx = (subv-1)*cp + 1;
end
%%%%%%%%%%%
function d = bitv2dec(bits)
% BITV2DEC Convert a bit vector to a decimal integer
% d = butv2dec(bits)
%
% This is just like the built-in bin2dec, except the argument is a vector, not a string.
% If bits is an array, each row will be converted.
[m n] = size(bits);
twos = pow2(n-1:-1:0);
d = sum(bits .* twos(ones(m,1),:),2);
|
github
|
lcnbeapp/beapp-master
|
zipload.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/zipload.m
| 1,611 |
utf_8
|
67412c21b14bebb640784443e9e3bbd8
|
%ZIPLOAD Load compressed data file created with ZIPSAVE
%
% [data] = zipload( filename )
% filename: string variable that contains the name of the
% compressed file (do not include '.zip' extension)
% Use only with files created with 'zipsave'
% pkzip25.exe has to be in the matlab path. This file is a compression utility
% made by Pkware, Inc. It can be dowloaded from: http://www.pkware.com
% Or directly from ftp://ftp.pkware.com/pk250c32.exe, for the Windows 95/NT version.
% This function was tested using 'PKZIP 2.50 Command Line for Windows 9x/NT'
% It is important to use version 2.5 of the utility. Otherwise the command line below
% has to be changed to include the proper options of the compression utility you
% wish to use.
% This function was tested in MATLAB Version 5.3 under Windows NT.
% Fernando A. Brucher - May/25/1999
%
% Example:
% [loadedData] = zipload('testfile');
%--------------------------------------------------------------------
function [data] = zipload( filename )
%--- Decompress data file by calling pkzip (comand line command) ---
% Options used:
% 'extract' = decompress file
% 'silent' = no console output
% 'over=all' = overwrite files
%eval( ['!pkzip25 -extract -silent -over=all ', filename, '.zip'] )
eval( ['!pkzip25 -extract -silent -over=all ', filename, '.zip'] )
%--- Load data from decompressed file ---
% try, catch takes care of cases when pkzip fails to decompress a
% valid matlab format file
try
tmpStruc = load( filename );
data = tmpStruc.data;
catch, return, end
%--- Delete decompressed file ---
delete( [filename,'.mat'] )
|
github
|
lcnbeapp/beapp-master
|
plot_ellipse.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plot_ellipse.m
| 507 |
utf_8
|
3a27bbd5c1bdfe99983171e96789da6d
|
% PLOT_ELLIPSE
% h=plot_ellipse(x,y,theta,a,b)
%
% This routine plots an ellipse with centre (x,y), axis lengths a,b
% with major axis at an angle of theta radians from the horizontal.
%
% Author: P. Fieguth
% Jan. 98
%
%http://ocho.uwaterloo.ca/~pfieguth/Teaching/372/plot_ellipse.m
function h=plot_ellipse(x,y,theta,a,b)
np = 100;
ang = [0:np]*2*pi/np;
R = [cos(theta) -sin(theta); sin(theta) cos(theta)];
pts = [x;y]*ones(size(ang)) + R*[cos(ang)*a; sin(ang)*b];
h=plot( pts(1,:), pts(2,:) );
|
github
|
lcnbeapp/beapp-master
|
conf2mahal.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/conf2mahal.m
| 2,424 |
utf_8
|
682226ca8c1183325f4204e0c22de0a7
|
% CONF2MAHAL - Translates a confidence interval to a Mahalanobis
% distance. Consider a multivariate Gaussian
% distribution of the form
%
% p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C)))
%
% where MD(x, m, P) is the Mahalanobis distance from x
% to m under P:
%
% MD(x, m, P) = (x - m) * P * (x - m)'
%
% A particular Mahalanobis distance k identifies an
% ellipsoid centered at the mean of the distribution.
% The confidence interval associated with this ellipsoid
% is the probability mass enclosed by it. Similarly,
% a particular confidence interval uniquely determines
% an ellipsoid with a fixed Mahalanobis distance.
%
% If X is an d dimensional Gaussian-distributed vector,
% then the Mahalanobis distance of X is distributed
% according to the Chi-squared distribution with d
% degrees of freedom. Thus, the Mahalanobis distance is
% determined by evaluating the inverse cumulative
% distribution function of the chi squared distribution
% up to the confidence value.
%
% Usage:
%
% m = conf2mahal(c, d);
%
% Inputs:
%
% c - the confidence interval
% d - the number of dimensions of the Gaussian distribution
%
% Outputs:
%
% m - the Mahalanobis radius of the ellipsoid enclosing the
% fraction c of the distribution's probability mass
%
% See also: MAHAL2CONF
% Copyright (C) 2002 Mark A. Paskin
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function m = conf2mahal(c, d)
m = chi2inv(c, d);
|
github
|
lcnbeapp/beapp-master
|
plotgauss2d.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plotgauss2d.m
| 970 |
utf_8
|
768501b0264c4510e2724b15b5be4e97
|
function h=plotgauss2d(mu, Sigma, plot_cross)
% PLOTGAUSS2D Plot a 2D Gaussian as an ellipse with optional cross hairs
% h=plotgauss2(mu, Sigma)
%
% h=plotgauss2(mu, Sigma, 1) also plots the major and minor axes
%
% Example
% clf; S=[2 1; 1 2]; plotgauss2d([0;0], S, 1); axis equal
h = plotcov2(mu, Sigma);
return;
%%%%%%%%%%%%%%%%%%%%%%%%
function old
if nargin < 3, plot_cross = 0; end
[V,D]=eig(Sigma);
lam1 = D(1,1);
lam2 = D(2,2);
v1 = V(:,1);
v2 = V(:,2);
%assert(approxeq(v1' * v2, 0))
if v1(1)==0
theta = 0; % horizontal
else
theta = atan(v1(2)/v1(1));
end
a = sqrt(lam1);
b = sqrt(lam2);
h=plot_ellipse(mu(1), mu(2), theta, a,b);
if plot_cross
mu = mu(:);
held = ishold;
hold on
minor1 = mu-a*v1; minor2 = mu+a*v1;
hminor = line([minor1(1) minor2(1)], [minor1(2) minor2(2)]);
major1 = mu-b*v2; major2 = mu+b*v2;
hmajor = line([major1(1) major2(1)], [major1(2) major2(2)]);
%set(hmajor,'color','r')
if ~held
hold off
end
end
|
github
|
lcnbeapp/beapp-master
|
zipsave.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/zipsave.m
| 1,480 |
utf_8
|
cc543374345b9e369d147c452008bc36
|
%ZIPSAVE Save data in compressed format
%
% zipsave( filename, data )
% filename: string variable that contains the name of the resulting
% compressed file (do not include '.zip' extension)
% pkzip25.exe has to be in the matlab path. This file is a compression utility
% made by Pkware, Inc. It can be dowloaded from: http://www.pkware.com
% This function was tested using 'PKZIP 2.50 Command Line for Windows 9x/NT'
% It is important to use version 2.5 of the utility. Otherwise the command line below
% has to be changed to include the proper options of the compression utility you
% wish to use.
% This function was tested in MATLAB Version 5.3 under Windows NT.
% Fernando A. Brucher - May/25/1999
%
% Example:
% testData = [1 2 3; 4 5 6; 7 8 9];
% zipsave('testfile', testData);
%
% Modified by Kevin Murphy, 26 Feb 2004, to use winzip
%------------------------------------------------------------------------
function zipsave( filename, data )
%--- Save data in a temporary file in matlab format (.mat)---
eval( ['save ''', filename, ''' data'] )
%--- Compress data by calling pkzip (comand line command) ---
% Options used:
% 'add' = add compressed files to the resulting zip file
% 'silent' = no console output
% 'over=all' = overwrite files
%eval( ['!pkzip25 -silent -add -over=all ', filename, '.zip ', filename,'.mat'] )
eval( ['!zip ', filename, '.zip ', filename,'.mat'] )
%--- Delete temporary matlab format file ---
delete( [filename,'.mat'] )
|
github
|
lcnbeapp/beapp-master
|
matprint.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/matprint.m
| 1,020 |
utf_8
|
e92a96dad0e0b9f25d2fe56280ba6393
|
% MATPRINT - prints a matrix with specified format string
%
% Usage: matprint(a, fmt, fid)
%
% a - Matrix to be printed.
% fmt - C style format string to use for each value.
% fid - Optional file id.
%
% Eg. matprint(a,'%3.1f') will print each entry to 1 decimal place
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk @ csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% March 2002
function matprint(a, fmt, fid)
if nargin < 3
fid = 1;
end
[rows,cols] = size(a);
% Construct a format string for each row of the matrix consisting of
% 'cols' copies of the number formating specification
fmtstr = [];
for c = 1:cols
fmtstr = [fmtstr, ' ', fmt];
end
fmtstr = [fmtstr '\n']; % Add a line feed
fprintf(fid, fmtstr, a'); % Print the transpose of the matrix because
% fprintf runs down the columns of a matrix.
|
github
|
lcnbeapp/beapp-master
|
plotcov3.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plotcov3.m
| 4,040 |
utf_8
|
1f186acd56002148a3da006a9fc8b6a2
|
% PLOTCOV3 - Plots a covariance ellipsoid with axes for a trivariate
% Gaussian distribution.
%
% Usage:
% [h, s] = plotcov3(mu, Sigma[, OPTIONS]);
%
% Inputs:
% mu - a 3 x 1 vector giving the mean of the distribution.
% Sigma - a 3 x 3 symmetric positive semi-definite matrix giving
% the covariance of the distribution (or the zero matrix).
%
% Options:
% 'conf' - a scalar between 0 and 1 giving the confidence
% interval (i.e., the fraction of probability mass to
% be enclosed by the ellipse); default is 0.9.
% 'num-pts' - if the value supplied is n, then (n + 1)^2 points
% to be used to plot the ellipse; default is 20.
% 'plot-opts' - a cell vector of arguments to be handed to PLOT3
% to contol the appearance of the axes, e.g.,
% {'Color', 'g', 'LineWidth', 1}; the default is {}
% 'surf-opts' - a cell vector of arguments to be handed to SURF
% to contol the appearance of the ellipsoid
% surface; a nice possibility that yields
% transparency is: {'EdgeAlpha', 0, 'FaceAlpha',
% 0.1, 'FaceColor', 'g'}; the default is {}
%
% Outputs:
% h - a vector of handles on the axis lines
% s - a handle on the ellipsoid surface object
%
% See also: PLOTCOV2
% Copyright (C) 2002 Mark A. Paskin
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h, s] = plotcov3(mu, Sigma, varargin)
if size(Sigma) ~= [3 3], error('Sigma must be a 3 by 3 matrix'); end
if length(mu) ~= 3, error('mu must be a 3 by 1 vector'); end
[p, ...
n, ...
plot_opts, ...
surf_opts] = process_options(varargin, 'conf', 0.9, ...
'num-pts', 20, ...
'plot-opts', {}, ...
'surf-opts', {});
h = [];
holding = ishold;
if (Sigma == zeros(3, 3))
z = mu;
else
% Compute the Mahalanobis radius of the ellipsoid that encloses
% the desired probability mass.
k = conf2mahal(p, 3);
% The axes of the covariance ellipse are given by the eigenvectors of
% the covariance matrix. Their lengths (for the ellipse with unit
% Mahalanobis radius) are given by the square roots of the
% corresponding eigenvalues.
if (issparse(Sigma))
[V, D] = eigs(Sigma);
else
[V, D] = eig(Sigma);
end
if (any(diag(D) < 0))
error('Invalid covariance matrix: not positive semi-definite.');
end
% Compute the points on the surface of the ellipsoid.
t = linspace(0, 2*pi, n);
[X, Y, Z] = sphere(n);
u = [X(:)'; Y(:)'; Z(:)'];
w = (k * V * sqrt(D)) * u;
z = repmat(mu(:), [1 (n + 1)^2]) + w;
% Plot the axes.
L = k * sqrt(diag(D));
h = plot3([mu(1); mu(1) + L(1) * V(1, 1)], ...
[mu(2); mu(2) + L(1) * V(2, 1)], ...
[mu(3); mu(3) + L(1) * V(3, 1)], plot_opts{:});
hold on;
h = [h; plot3([mu(1); mu(1) + L(2) * V(1, 2)], ...
[mu(2); mu(2) + L(2) * V(2, 2)], ...
[mu(3); mu(3) + L(2) * V(3, 2)], plot_opts{:})];
h = [h; plot3([mu(1); mu(1) + L(3) * V(1, 3)], ...
[mu(2); mu(2) + L(3) * V(2, 3)], ...
[mu(3); mu(3) + L(3) * V(3, 3)], plot_opts{:})];
end
s = surf(reshape(z(1, :), [(n + 1) (n + 1)]), ...
reshape(z(2, :), [(n + 1) (n + 1)]), ...
reshape(z(3, :), [(n + 1) (n + 1)]), ...
surf_opts{:});
if (~holding) hold off; end
|
github
|
lcnbeapp/beapp-master
|
exportfig.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/exportfig.m
| 30,663 |
utf_8
|
838a8ee93ca6a9b6a85a90fa68976617
|
function varargout = exportfig(varargin)
%EXPORTFIG Export a figure.
% EXPORTFIG(H, FILENAME) writes the figure H to FILENAME. H is
% a figure handle and FILENAME is a string that specifies the
% name of the output file.
%
% EXPORTFIG(H, FILENAME, OPTIONS) writes the figure H to FILENAME
% with options initially specified by the structure OPTIONS. The
% field names of OPTIONS must be legal parameters listed below
% and the field values must be legal values for the corresponding
% parameter. Default options can be set in releases prior to R12
% by storing the OPTIONS structure in the root object's appdata
% with the command
% setappdata(0,'exportfigdefaults', OPTIONS)
% and for releases after R12 by setting the preference with the
% command
% setpref('exportfig', 'defaults', OPTIONS)
%
% EXPORTFIG(...,PARAM1,VAL1,PARAM2,VAL2,...) specifies
% parameters that control various characteristics of the output
% file. Any parameter value can be the string 'auto' which means
% the parameter uses the default factory behavior, overriding
% any other default for the parameter.
%
% Format Paramter:
% 'Format' a string
% specifies the output format. Defaults to 'eps'. For a
% list of export formats type 'help print'.
% 'Preview' one of the strings 'none', 'tiff'
% specifies a preview for EPS files. Defaults to 'none'.
%
% Size Parameters:
% 'Width' a positive scalar
% specifies the width in the figure's PaperUnits
% 'Height' a positive scalar
% specifies the height in the figure's PaperUnits
% 'Bounds' one of the strings 'tight', 'loose'
% specifies a tight or loose bounding box. Defaults to 'tight'.
% 'Reference' an axes handle or a string
% specifies that the width and height parameters
% are relative to the given axes. If a string is
% specified then it must evaluate to an axes handle.
%
% Specifying only one dimension sets the other dimension
% so that the exported aspect ratio is the same as the
% figure's or reference axes' current aspect ratio.
% If neither dimension is specified the size defaults to
% the width and height from the figure's or reference
% axes' size. Tight bounding boxes are only computed for
% 2-D views and in that case the computed bounds enclose all
% text objects.
%
% Rendering Parameters:
% 'Color' one of the strings 'bw', 'gray', 'cmyk'
% 'bw' specifies that lines and text are exported in
% black and all other objects in grayscale
% 'gray' specifies that all objects are exported in grayscale
% 'rgb' specifies that all objects are exported in color
% using the RGB color space
% 'cmyk' specifies that all objects are exported in color
% using the CMYK color space
% 'Renderer' one of 'painters', 'zbuffer', 'opengl'
% specifies the renderer to use
% 'Resolution' a positive scalar
% specifies the resolution in dots-per-inch.
% 'LockAxes' one of 0 or 1
% specifies that all axes limits and ticks should be fixed
% while exporting.
%
% The default color setting is 'bw'.
%
% Font Parameters:
% 'FontMode' one of the strings 'scaled', 'fixed'
% 'FontSize' a positive scalar
% in 'scaled' mode multiplies with the font size of each
% text object to obtain the exported font size
% in 'fixed' mode specifies the font size of all text
% objects in points
% 'DefaultFixedFontSize' a positive scalar
% in 'fixed' mode specified the default font size in
% points
% 'FontSizeMin' a positive scalar
% specifies the minimum font size allowed after scaling
% 'FontSizeMax' a positive scalar
% specifies the maximum font size allowed after scaling
% 'FontEncoding' one of the strings 'latin1', 'adobe'
% specifies the character encoding of the font
% 'SeparateText' one of 0 or 1
% specifies that the text objects are stored in separate
% file as EPS with the base filename having '_t' appended.
%
% If FontMode is 'scaled' but FontSize is not specified then a
% scaling factor is computed from the ratio of the size of the
% exported figure to the size of the actual figure.
%
% The default 'FontMode' setting is 'scaled'.
%
% Line Width Parameters:
% 'LineMode' one of the strings 'scaled', 'fixed'
% 'LineWidth' a positive scalar
% 'DefaultFixedLineWidth' a positive scalar
% 'LineWidthMin' a positive scalar
% specifies the minimum line width allowed after scaling
% 'LineWidthMax' a positive scalar
% specifies the maximum line width allowed after scaling
% The semantics of 'Line' parameters are exactly the
% same as the corresponding 'Font' parameters, except that
% they apply to line widths instead of font sizes.
%
% Style Map Parameter:
% 'LineStyleMap' one of [], 'bw', or a function name or handle
% specifies how to map line colors to styles. An empty
% style map means styles are not changed. The style map
% 'bw' is a built-in mapping that maps lines with the same
% color to the same style and otherwise cycles through the
% available styles. A user-specified map is a function
% that takes as input a cell array of line objects and
% outputs a cell array of line style strings. The default
% map is [].
%
% Examples:
% exportfig(gcf,'fig1.eps','height',3);
% Exports the current figure to the file named 'fig1.eps' with
% a height of 3 inches (assuming the figure's PaperUnits is
% inches) and an aspect ratio the same as the figure's aspect
% ratio on screen.
%
% opts = struct('FontMode','fixed','FontSize',10,'height',3);
% exportfig(gcf, 'fig2.eps', opts, 'height', 5);
% Exports the current figure to 'fig2.eps' with all
% text in 10 point fonts and with height 5 inches.
%
% See also PREVIEWFIG, APPLYTOFIG, RESTOREFIG, PRINT.
% Copyright 2000 Ben Hinkle
% Email bug reports and comments to [email protected]
if (nargin < 2)
error('Too few input arguments');
end
% exportfig(H, filename, [options,] ...)
H = varargin{1};
if ~LocalIsHG(H,'figure')
error('First argument must be a handle to a figure.');
end
filename = varargin{2};
if ~ischar(filename)
error('Second argument must be a string.');
end
paramPairs = {varargin{3:end}};
if nargin > 2
if isstruct(paramPairs{1})
pcell = LocalToCell(paramPairs{1});
paramPairs = {pcell{:}, paramPairs{2:end}};
end
end
verstr = version;
majorver = str2num(verstr(1));
defaults = [];
if majorver > 5
if ispref('exportfig','defaults')
defaults = getpref('exportfig','defaults');
end
elseif exist('getappdata')
defaults = getappdata(0,'exportfigdefaults');
end
if ~isempty(defaults)
dcell = LocalToCell(defaults);
paramPairs = {dcell{:}, paramPairs{:}};
end
% Do some validity checking on param-value pairs
if (rem(length(paramPairs),2) ~= 0)
error(['Invalid input syntax. Optional parameters and values' ...
' must be in pairs.']);
end
auto.format = 'eps';
auto.preview = 'none';
auto.width = -1;
auto.height = -1;
auto.color = 'bw';
auto.defaultfontsize=10;
auto.fontsize = -1;
auto.fontmode='scaled';
auto.fontmin = 8;
auto.fontmax = 60;
auto.defaultlinewidth = 1.0;
auto.linewidth = -1;
auto.linemode=[];
auto.linemin = 0.5;
auto.linemax = 100;
auto.fontencoding = 'latin1';
auto.renderer = [];
auto.resolution = [];
auto.stylemap = [];
auto.applystyle = 0;
auto.refobj = -1;
auto.bounds = 'tight';
explicitbounds = 0;
auto.lockaxes = 1;
auto.separatetext = 0;
opts = auto;
% Process param-value pairs
args = {};
for k = 1:2:length(paramPairs)
param = lower(paramPairs{k});
if ~ischar(param)
error('Optional parameter names must be strings');
end
value = paramPairs{k+1};
switch (param)
case 'format'
opts.format = LocalCheckAuto(lower(value),auto.format);
if strcmp(opts.format,'preview')
error(['Format ''preview'' no longer supported. Use PREVIEWFIG' ...
' instead.']);
end
case 'preview'
opts.preview = LocalCheckAuto(lower(value),auto.preview);
if ~strcmp(opts.preview,{'none','tiff'})
error('Preview must be ''none'' or ''tiff''.');
end
case 'width'
opts.width = LocalToNum(value, auto.width);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.width)
error('Width must be a numeric scalar > 0');
end
end
case 'height'
opts.height = LocalToNum(value, auto.height);
if ~ischar(value) | ~strcmp(value,'auto')
if(~LocalIsPositiveScalar(opts.height))
error('Height must be a numeric scalar > 0');
end
end
case 'color'
opts.color = LocalCheckAuto(lower(value),auto.color);
if ~strcmp(opts.color,{'bw','gray','rgb','cmyk'})
error('Color must be ''bw'', ''gray'',''rgb'' or ''cmyk''.');
end
case 'fontmode'
opts.fontmode = LocalCheckAuto(lower(value),auto.fontmode);
if ~strcmp(opts.fontmode,{'scaled','fixed'})
error('FontMode must be ''scaled'' or ''fixed''.');
end
case 'fontsize'
opts.fontsize = LocalToNum(value,auto.fontsize);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.fontsize)
error('FontSize must be a numeric scalar > 0');
end
end
case 'defaultfixedfontsize'
opts.defaultfontsize = LocalToNum(value,auto.defaultfontsize);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.defaultfontsize)
error('DefaultFixedFontSize must be a numeric scalar > 0');
end
end
case 'fontsizemin'
opts.fontmin = LocalToNum(value,auto.fontmin);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.fontmin)
error('FontSizeMin must be a numeric scalar > 0');
end
end
case 'fontsizemax'
opts.fontmax = LocalToNum(value,auto.fontmax);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.fontmax)
error('FontSizeMax must be a numeric scalar > 0');
end
end
case 'fontencoding'
opts.fontencoding = LocalCheckAuto(lower(value),auto.fontencoding);
if ~strcmp(opts.fontencoding,{'latin1','adobe'})
error('FontEncoding must be ''latin1'' or ''adobe''.');
end
case 'linemode'
opts.linemode = LocalCheckAuto(lower(value),auto.linemode);
if ~strcmp(opts.linemode,{'scaled','fixed'})
error('LineMode must be ''scaled'' or ''fixed''.');
end
case 'linewidth'
opts.linewidth = LocalToNum(value,auto.linewidth);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.linewidth)
error('LineWidth must be a numeric scalar > 0');
end
end
case 'defaultfixedlinewidth'
opts.defaultlinewidth = LocalToNum(value,auto.defaultlinewidth);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.defaultlinewidth)
error(['DefaultFixedLineWidth must be a numeric scalar >' ...
' 0']);
end
end
case 'linewidthmin'
opts.linemin = LocalToNum(value,auto.linemin);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.linemin)
error('LineWidthMin must be a numeric scalar > 0');
end
end
case 'linewidthmax'
opts.linemax = LocalToNum(value,auto.linemax);
if ~ischar(value) | ~strcmp(value,'auto')
if ~LocalIsPositiveScalar(opts.linemax)
error('LineWidthMax must be a numeric scalar > 0');
end
end
case 'linestylemap'
opts.stylemap = LocalCheckAuto(value,auto.stylemap);
case 'renderer'
opts.renderer = LocalCheckAuto(lower(value),auto.renderer);
if ~ischar(value) | ~strcmp(value,'auto')
if ~strcmp(opts.renderer,{'painters','zbuffer','opengl'})
error(['Renderer must be ''painters'', ''zbuffer'' or' ...
' ''opengl''.']);
end
end
case 'resolution'
opts.resolution = LocalToNum(value,auto.resolution);
if ~ischar(value) | ~strcmp(value,'auto')
if ~(isnumeric(value) & (prod(size(value)) == 1) & (value >= 0));
error('Resolution must be a numeric scalar >= 0');
end
end
case 'applystyle' % means to apply the options and not export
opts.applystyle = 1;
case 'reference'
if ischar(value)
if strcmp(value,'auto')
opts.refobj = auto.refobj;
else
opts.refobj = eval(value);
end
else
opts.refobj = value;
end
if ~LocalIsHG(opts.refobj,'axes')
error('Reference object must evaluate to an axes handle.');
end
case 'bounds'
opts.bounds = LocalCheckAuto(lower(value),auto.bounds);
explicitbounds = 1;
if ~strcmp(opts.bounds,{'tight','loose'})
error('Bounds must be ''tight'' or ''loose''.');
end
case 'lockaxes'
opts.lockaxes = LocalToNum(value,auto.lockaxes);
case 'separatetext'
opts.separatetext = LocalToNum(value,auto.separatetext);
otherwise
error(['Unrecognized option ' param '.']);
end
end
% make sure figure is up-to-date
drawnow;
allLines = findall(H, 'type', 'line');
allText = findall(H, 'type', 'text');
allAxes = findall(H, 'type', 'axes');
allImages = findall(H, 'type', 'image');
allLights = findall(H, 'type', 'light');
allPatch = findall(H, 'type', 'patch');
allSurf = findall(H, 'type', 'surface');
allRect = findall(H, 'type', 'rectangle');
allFont = [allText; allAxes];
allColor = [allLines; allText; allAxes; allLights];
allMarker = [allLines; allPatch; allSurf];
allEdge = [allPatch; allSurf];
allCData = [allImages; allPatch; allSurf];
old.objs = {};
old.prop = {};
old.values = {};
% Process format
if strncmp(opts.format,'eps',3) & ~strcmp(opts.preview,'none')
args = {args{:}, ['-' opts.preview]};
end
hadError = 0;
oldwarn = warning;
try
% lock axes limits, ticks and labels if requested
if opts.lockaxes
old = LocalManualAxesMode(old, allAxes, 'TickMode');
old = LocalManualAxesMode(old, allAxes, 'TickLabelMode');
old = LocalManualAxesMode(old, allAxes, 'LimMode');
end
% Process size parameters
figurePaperUnits = get(H, 'PaperUnits');
oldFigureUnits = get(H, 'Units');
oldFigPos = get(H,'Position');
set(H, 'Units', figurePaperUnits);
figPos = get(H,'Position');
refsize = figPos(3:4);
if opts.refobj ~= -1
oldUnits = get(opts.refobj, 'Units');
set(opts.refobj, 'Units', figurePaperUnits);
r = get(opts.refobj, 'Position');
refsize = r(3:4);
set(opts.refobj, 'Units', oldUnits);
end
aspectRatio = refsize(1)/refsize(2);
if (opts.width == -1) & (opts.height == -1)
opts.width = refsize(1);
opts.height = refsize(2);
elseif (opts.width == -1)
opts.width = opts.height * aspectRatio;
elseif (opts.height == -1)
opts.height = opts.width / aspectRatio;
end
wscale = opts.width/refsize(1);
hscale = opts.height/refsize(2);
sizescale = min(wscale,hscale);
old = LocalPushOldData(old,H,'PaperPositionMode', ...
get(H,'PaperPositionMode'));
set(H, 'PaperPositionMode', 'auto');
newPos = [figPos(1) figPos(2)+figPos(4)*(1-hscale) ...
wscale*figPos(3) hscale*figPos(4)];
set(H, 'Position', newPos);
set(H, 'Units', oldFigureUnits);
% process line-style map
if ~isempty(opts.stylemap) & ~isempty(allLines)
oldlstyle = LocalGetAsCell(allLines,'LineStyle');
old = LocalPushOldData(old, allLines, {'LineStyle'}, ...
oldlstyle);
newlstyle = oldlstyle;
if ischar(opts.stylemap) & strcmpi(opts.stylemap,'bw')
newlstyle = LocalMapColorToStyle(allLines);
else
try
newlstyle = feval(opts.stylemap,allLines);
catch
warning(['Skipping stylemap. ' lasterr]);
end
end
set(allLines,{'LineStyle'},newlstyle);
end
% Process rendering parameters
switch (opts.color)
case {'bw', 'gray'}
if ~strcmp(opts.color,'bw') & strncmp(opts.format,'eps',3)
opts.format = [opts.format 'c'];
end
args = {args{:}, ['-d' opts.format]};
%compute and set gray colormap
oldcmap = get(H,'Colormap');
newgrays = 0.30*oldcmap(:,1) + 0.59*oldcmap(:,2) + 0.11*oldcmap(:,3);
newcmap = [newgrays newgrays newgrays];
old = LocalPushOldData(old, H, 'Colormap', oldcmap);
set(H, 'Colormap', newcmap);
%compute and set ColorSpec and CData properties
old = LocalUpdateColors(allColor, 'color', old);
old = LocalUpdateColors(allAxes, 'xcolor', old);
old = LocalUpdateColors(allAxes, 'ycolor', old);
old = LocalUpdateColors(allAxes, 'zcolor', old);
old = LocalUpdateColors(allMarker, 'MarkerEdgeColor', old);
old = LocalUpdateColors(allMarker, 'MarkerFaceColor', old);
old = LocalUpdateColors(allEdge, 'EdgeColor', old);
old = LocalUpdateColors(allEdge, 'FaceColor', old);
old = LocalUpdateColors(allCData, 'CData', old);
case {'rgb','cmyk'}
if strncmp(opts.format,'eps',3)
opts.format = [opts.format 'c'];
args = {args{:}, ['-d' opts.format]};
if strcmp(opts.color,'cmyk')
args = {args{:}, '-cmyk'};
end
else
args = {args{:}, ['-d' opts.format]};
end
otherwise
error('Invalid Color parameter');
end
if (~isempty(opts.renderer))
args = {args{:}, ['-' opts.renderer]};
end
if (~isempty(opts.resolution)) | ~strncmp(opts.format,'eps',3)
if isempty(opts.resolution)
opts.resolution = 0;
end
args = {args{:}, ['-r' int2str(opts.resolution)]};
end
% Process font parameters
if ~isempty(opts.fontmode)
oldfonts = LocalGetAsCell(allFont,'FontSize');
oldfontunits = LocalGetAsCell(allFont,'FontUnits');
set(allFont,'FontUnits','points');
switch (opts.fontmode)
case 'fixed'
if (opts.fontsize == -1)
set(allFont,'FontSize',opts.defaultfontsize);
else
set(allFont,'FontSize',opts.fontsize);
end
case 'scaled'
if (opts.fontsize == -1)
scale = sizescale;
else
scale = opts.fontsize;
end
newfonts = LocalScale(oldfonts,scale,opts.fontmin,opts.fontmax);
set(allFont,{'FontSize'},newfonts);
otherwise
error('Invalid FontMode parameter');
end
old = LocalPushOldData(old, allFont, {'FontSize'}, oldfonts);
old = LocalPushOldData(old, allFont, {'FontUnits'}, oldfontunits);
end
if strcmp(opts.fontencoding,'adobe') & strncmp(opts.format,'eps',3)
args = {args{:}, '-adobecset'};
end
% Process line parameters
if ~isempty(opts.linemode)
oldlines = LocalGetAsCell(allMarker,'LineWidth');
old = LocalPushOldData(old, allMarker, {'LineWidth'}, oldlines);
switch (opts.linemode)
case 'fixed'
if (opts.linewidth == -1)
set(allMarker,'LineWidth',opts.defaultlinewidth);
else
set(allMarker,'LineWidth',opts.linewidth);
end
case 'scaled'
if (opts.linewidth == -1)
scale = sizescale;
else
scale = opts.linewidth;
end
newlines = LocalScale(oldlines, scale, opts.linemin, opts.linemax);
set(allMarker,{'LineWidth'},newlines);
end
end
% adjust figure bounds to surround axes
if strcmp(opts.bounds,'tight')
if (~strncmp(opts.format,'eps',3) & LocalHas3DPlot(allAxes)) | ...
(strncmp(opts.format,'eps',3) & opts.separatetext)
if (explicitbounds == 1)
warning(['Cannot compute ''tight'' bounds. Using ''loose''' ...
' bounds.']);
end
opts.bounds = 'loose';
end
end
warning('off');
if ~isempty(allAxes)
if strncmp(opts.format,'eps',3)
if strcmp(opts.bounds,'loose')
args = {args{:}, '-loose'};
end
old = LocalPushOldData(old,H,'Position', oldFigPos);
elseif strcmp(opts.bounds,'tight')
oldaunits = LocalGetAsCell(allAxes,'Units');
oldapos = LocalGetAsCell(allAxes,'Position');
oldtunits = LocalGetAsCell(allText,'units');
oldtpos = LocalGetAsCell(allText,'Position');
set(allAxes,'units','points');
apos = LocalGetAsCell(allAxes,'Position');
oldunits = get(H,'Units');
set(H,'units','points');
origfr = get(H,'position');
fr = [];
for k=1:length(allAxes)
if ~strcmpi(get(allAxes(k),'Tag'),'legend')
axesR = apos{k};
r = LocalAxesTightBoundingBox(axesR, allAxes(k));
r(1:2) = r(1:2) + axesR(1:2);
fr = LocalUnionRect(fr,r);
end
end
if isempty(fr)
fr = [0 0 origfr(3:4)];
end
for k=1:length(allAxes)
ax = allAxes(k);
r = apos{k};
r(1:2) = r(1:2) - fr(1:2);
set(ax,'Position',r);
end
old = LocalPushOldData(old, allAxes, {'Position'}, oldapos);
old = LocalPushOldData(old, allText, {'Position'}, oldtpos);
old = LocalPushOldData(old, allText, {'Units'}, oldtunits);
old = LocalPushOldData(old, allAxes, {'Units'}, oldaunits);
old = LocalPushOldData(old, H, 'Position', oldFigPos);
old = LocalPushOldData(old, H, 'Units', oldFigureUnits);
r = [origfr(1) origfr(2)+origfr(4)-fr(4) fr(3:4)];
set(H,'Position',r);
else
args = {args{:}, '-loose'};
old = LocalPushOldData(old,H,'Position', oldFigPos);
end
end
% Process text in a separate file if needed
if opts.separatetext & ~opts.applystyle
% First hide all text and export
oldtvis = LocalGetAsCell(allText,'visible');
set(allText,'visible','off');
oldax = LocalGetAsCell(allAxes,'XTickLabel',1);
olday = LocalGetAsCell(allAxes,'YTickLabel',1);
oldaz = LocalGetAsCell(allAxes,'ZTickLabel',1);
null = cell(length(oldax),1);
[null{:}] = deal([]);
set(allAxes,{'XTickLabel'},null);
set(allAxes,{'YTickLabel'},null);
set(allAxes,{'ZTickLabel'},null);
print(H, filename, args{:});
set(allText,{'Visible'},oldtvis);
set(allAxes,{'XTickLabel'},oldax);
set(allAxes,{'YTickLabel'},olday);
set(allAxes,{'ZTickLabel'},oldaz);
% Now hide all non-text and export as eps in painters
[path, name, ext] = fileparts(filename);
tfile = fullfile(path,[name '_t.eps']);
tfile2 = fullfile(path,[name '_t2.eps']);
foundRenderer = 0;
for k=1:length(args)
if strncmp('-d',args{k},2)
args{k} = '-deps';
elseif strncmp('-zbuffer',args{k},8) | ...
strncmp('-opengl', args{k},6)
args{k} = '-painters';
foundRenderer = 1;
end
end
if ~foundRenderer
args = {args{:}, '-painters'};
end
allNonText = [allLines; allLights; allPatch; ...
allImages; allSurf; allRect];
oldvis = LocalGetAsCell(allNonText,'visible');
oldc = LocalGetAsCell(allAxes,'color');
oldaxg = LocalGetAsCell(allAxes,'XGrid');
oldayg = LocalGetAsCell(allAxes,'YGrid');
oldazg = LocalGetAsCell(allAxes,'ZGrid');
[null{:}] = deal('off');
set(allAxes,{'XGrid'},null);
set(allAxes,{'YGrid'},null);
set(allAxes,{'ZGrid'},null);
set(allNonText,'Visible','off');
set(allAxes,'Color','none');
print(H, tfile2, args{:});
set(allNonText,{'Visible'},oldvis);
set(allAxes,{'Color'},oldc);
set(allAxes,{'XGrid'},oldaxg);
set(allAxes,{'YGrid'},oldayg);
set(allAxes,{'ZGrid'},oldazg);
%hack up the postscript file
fid1 = fopen(tfile,'w');
fid2 = fopen(tfile2,'r');
line = fgetl(fid2);
while ischar(line)
if strncmp(line,'%%Title',7)
fprintf(fid1,'%s\n',['%%Title: ', tfile]);
elseif (length(line) < 3)
fprintf(fid1,'%s\n',line);
elseif ~strcmp(line(end-2:end),' PR') & ...
~strcmp(line(end-1:end),' L')
fprintf(fid1,'%s\n',line);
end
line = fgetl(fid2);
end
fclose(fid1);
fclose(fid2);
delete(tfile2);
elseif ~opts.applystyle
drawnow;
print(H, filename, args{:});
end
warning(oldwarn);
catch
warning(oldwarn);
hadError = 1;
end
% Restore figure settings
if opts.applystyle
varargout{1} = old;
else
for n=1:length(old.objs)
if ~iscell(old.values{n}) & iscell(old.prop{n})
old.values{n} = {old.values{n}};
end
set(old.objs{n}, old.prop{n}, old.values{n});
end
end
if hadError
error(deblank(lasterr));
end
%
% Local Functions
%
function outData = LocalPushOldData(inData, objs, prop, values)
outData.objs = {objs, inData.objs{:}};
outData.prop = {prop, inData.prop{:}};
outData.values = {values, inData.values{:}};
function cellArray = LocalGetAsCell(fig,prop,allowemptycell);
cellArray = get(fig,prop);
if nargin < 3
allowemptycell = 0;
end
if ~iscell(cellArray) & (allowemptycell | ~isempty(cellArray))
cellArray = {cellArray};
end
function newArray = LocalScale(inArray, scale, minv, maxv)
n = length(inArray);
newArray = cell(n,1);
for k=1:n
newArray{k} = min(maxv,max(minv,scale*inArray{k}(1)));
end
function gray = LocalMapToGray1(color)
gray = color;
if ischar(color)
switch color(1)
case 'y'
color = [1 1 0];
case 'm'
color = [1 0 1];
case 'c'
color = [0 1 1];
case 'r'
color = [1 0 0];
case 'g'
color = [0 1 0];
case 'b'
color = [0 0 1];
case 'w'
color = [1 1 1];
case 'k'
color = [0 0 0];
end
end
if ~ischar(color)
gray = 0.30*color(1) + 0.59*color(2) + 0.11*color(3);
end
function newArray = LocalMapToGray(inArray);
n = length(inArray);
newArray = cell(n,1);
for k=1:n
color = inArray{k};
if ~isempty(color)
color = LocalMapToGray1(color);
end
if isempty(color) | ischar(color)
newArray{k} = color;
else
newArray{k} = [color color color];
end
end
function newArray = LocalMapColorToStyle(inArray);
inArray = LocalGetAsCell(inArray,'Color');
n = length(inArray);
newArray = cell(n,1);
styles = {'-','--',':','-.'};
uniques = [];
nstyles = length(styles);
for k=1:n
gray = LocalMapToGray1(inArray{k});
if isempty(gray) | ischar(gray) | gray < .05
newArray{k} = '-';
else
if ~isempty(uniques) & any(gray == uniques)
ind = find(gray==uniques);
else
uniques = [uniques gray];
ind = length(uniques);
end
newArray{k} = styles{mod(ind-1,nstyles)+1};
end
end
function newArray = LocalMapCData(inArray);
n = length(inArray);
newArray = cell(n,1);
for k=1:n
color = inArray{k};
if (ndims(color) == 3) & isa(color,'double')
gray = 0.30*color(:,:,1) + 0.59*color(:,:,2) + 0.11*color(:,:,3);
color(:,:,1) = gray;
color(:,:,2) = gray;
color(:,:,3) = gray;
end
newArray{k} = color;
end
function outData = LocalUpdateColors(inArray, prop, inData)
value = LocalGetAsCell(inArray,prop);
outData.objs = {inData.objs{:}, inArray};
outData.prop = {inData.prop{:}, {prop}};
outData.values = {inData.values{:}, value};
if (~isempty(value))
if strcmp(prop,'CData')
value = LocalMapCData(value);
else
value = LocalMapToGray(value);
end
set(inArray,{prop},value);
end
function bool = LocalIsPositiveScalar(value)
bool = isnumeric(value) & ...
prod(size(value)) == 1 & ...
value > 0;
function value = LocalToNum(value,auto)
if ischar(value)
if strcmp(value,'auto')
value = auto;
else
value = str2num(value);
end
end
%convert a struct to {field1,val1,field2,val2,...}
function c = LocalToCell(s)
f = fieldnames(s);
v = struct2cell(s);
opts = cell(2,length(f));
opts(1,:) = f;
opts(2,:) = v;
c = {opts{:}};
function c = LocalIsHG(obj,hgtype)
c = 0;
if (length(obj) == 1) & ishandle(obj)
c = strcmp(get(obj,'type'),hgtype);
end
function c = LocalHas3DPlot(a)
zticks = LocalGetAsCell(a,'ZTickLabel');
c = 0;
for k=1:length(zticks)
if ~isempty(zticks{k})
c = 1;
return;
end
end
function r = LocalUnionRect(r1,r2)
if isempty(r1)
r = r2;
elseif isempty(r2)
r = r1;
elseif max(r2(3:4)) > 0
left = min(r1(1),r2(1));
bot = min(r1(2),r2(2));
right = max(r1(1)+r1(3),r2(1)+r2(3));
top = max(r1(2)+r1(4),r2(2)+r2(4));
r = [left bot right-left top-bot];
else
r = r1;
end
function c = LocalLabelsMatchTicks(labs,ticks)
c = 0;
try
t1 = num2str(ticks(1));
n = length(ticks);
tend = num2str(ticks(n));
c = strncmp(labs(1),t1,length(labs(1))) & ...
strncmp(labs(n),tend,length(labs(n)));
end
function r = LocalAxesTightBoundingBox(axesR, a)
r = [];
atext = findall(a,'type','text','visible','on');
if ~isempty(atext)
set(atext,'units','points');
res=LocalGetAsCell(atext,'extent');
for n=1:length(atext)
r = LocalUnionRect(r,res{n});
end
end
if strcmp(get(a,'visible'),'on')
r = LocalUnionRect(r,[0 0 axesR(3:4)]);
oldunits = get(a,'fontunits');
set(a,'fontunits','points');
label = text(0,0,'','parent',a,...
'units','points',...
'fontsize',get(a,'fontsize'),...
'fontname',get(a,'fontname'),...
'fontweight',get(a,'fontweight'),...
'fontangle',get(a,'fontangle'),...
'visible','off');
fs = get(a,'fontsize');
% handle y axis tick labels
ry = [0 -fs/2 0 axesR(4)+fs];
ylabs = get(a,'yticklabels');
yticks = get(a,'ytick');
maxw = 0;
if ~isempty(ylabs)
for n=1:size(ylabs,1)
set(label,'string',ylabs(n,:));
ext = get(label,'extent');
maxw = max(maxw,ext(3));
end
if ~LocalLabelsMatchTicks(ylabs,yticks) & ...
strcmp(get(a,'xaxislocation'),'bottom')
ry(4) = ry(4) + 1.5*ext(4);
end
if strcmp(get(a,'yaxislocation'),'left')
ry(1) = -(maxw+5);
else
ry(1) = axesR(3);
end
ry(3) = maxw+5;
r = LocalUnionRect(r,ry);
end
% handle x axis tick labels
rx = [0 0 0 fs+5];
xlabs = get(a,'xticklabels');
xticks = get(a,'xtick');
if ~isempty(xlabs)
if strcmp(get(a,'xaxislocation'),'bottom')
rx(2) = -(fs+5);
if ~LocalLabelsMatchTicks(xlabs,xticks);
rx(4) = rx(4) + 2*fs;
rx(2) = rx(2) - 2*fs;
end
else
rx(2) = axesR(4);
% exponent is still below axes
if ~LocalLabelsMatchTicks(xlabs,xticks);
rx(4) = rx(4) + axesR(4) + 2*fs;
rx(2) = -2*fs;
end
end
set(label,'string',xlabs(1,:));
ext1 = get(label,'extent');
rx(1) = -ext1(3)/2;
set(label,'string',xlabs(size(xlabs,1),:));
ext2 = get(label,'extent');
rx(3) = axesR(3) + (ext2(3) + ext1(3))/2;
r = LocalUnionRect(r,rx);
end
set(a,'fontunits',oldunits);
delete(label);
end
function c = LocalManualAxesMode(old, allAxes, base)
xs = ['X' base];
ys = ['Y' base];
zs = ['Z' base];
oldXMode = LocalGetAsCell(allAxes,xs);
oldYMode = LocalGetAsCell(allAxes,ys);
oldZMode = LocalGetAsCell(allAxes,zs);
old = LocalPushOldData(old, allAxes, {xs}, oldXMode);
old = LocalPushOldData(old, allAxes, {ys}, oldYMode);
old = LocalPushOldData(old, allAxes, {zs}, oldZMode);
set(allAxes,xs,'manual');
set(allAxes,ys,'manual');
set(allAxes,zs,'manual');
c = old;
function val = LocalCheckAuto(val, auto)
if ischar(val) & strcmp(val,'auto')
val = auto;
end
|
github
|
lcnbeapp/beapp-master
|
plotcov2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/plotcov2.m
| 3,013 |
utf_8
|
4305f11ba0280ef8ebcad4c8a4c4013c
|
% PLOTCOV2 - Plots a covariance ellipse with major and minor axes
% for a bivariate Gaussian distribution.
%
% Usage:
% h = plotcov2(mu, Sigma[, OPTIONS]);
%
% Inputs:
% mu - a 2 x 1 vector giving the mean of the distribution.
% Sigma - a 2 x 2 symmetric positive semi-definite matrix giving
% the covariance of the distribution (or the zero matrix).
%
% Options:
% 'conf' - a scalar between 0 and 1 giving the confidence
% interval (i.e., the fraction of probability mass to
% be enclosed by the ellipse); default is 0.9.
% 'num-pts' - the number of points to be used to plot the
% ellipse; default is 100.
%
% This function also accepts options for PLOT.
%
% Outputs:
% h - a vector of figure handles to the ellipse boundary and
% its major and minor axes
%
% See also: PLOTCOV3
% Copyright (C) 2002 Mark A. Paskin
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = plotcov2(mu, Sigma, varargin)
if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end
if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end
[p, ...
n, ...
plot_opts] = process_options(varargin, 'conf', 0.9, ...
'num-pts', 100);
h = [];
holding = ishold;
if (Sigma == zeros(2, 2))
z = mu;
else
% Compute the Mahalanobis radius of the ellipsoid that encloses
% the desired probability mass.
k = conf2mahal(p, 2);
% The major and minor axes of the covariance ellipse are given by
% the eigenvectors of the covariance matrix. Their lengths (for
% the ellipse with unit Mahalanobis radius) are given by the
% square roots of the corresponding eigenvalues.
if (issparse(Sigma))
[V, D] = eigs(Sigma);
else
[V, D] = eig(Sigma);
end
% Compute the points on the surface of the ellipse.
t = linspace(0, 2*pi, n);
u = [cos(t); sin(t)];
w = (k * V * sqrt(D)) * u;
z = repmat(mu, [1 n]) + w;
% Plot the major and minor axes.
L = k * sqrt(diag(D));
h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ...
[mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:});
hold on;
h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ...
[mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})];
end
h = [h; plot(z(1, :), z(2, :), plot_opts{:})];
if (~holding) hold off; end
|
github
|
lcnbeapp/beapp-master
|
ind2subv.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/ind2subv.m
| 1,206 |
utf_8
|
5c2e8689803ece8fca091e60c913809d
|
function sub = ind2subv(siz, ndx)
% IND2SUBV Like the built-in ind2sub, but returns the answer as a row vector.
% sub = ind2subv(siz, ndx)
%
% siz and ndx can be row or column vectors.
% sub will be of size length(ndx) * length(siz).
%
% Example
% ind2subv([2 2 2], 1:8) returns
% [1 1 1
% 2 1 1
% ...
% 2 2 2]
% That is, the leftmost digit toggle fastest.
%
% See also SUBV2IND
n = length(siz);
if n==0
sub = ndx;
return;
end
if all(siz==2)
sub = dec2bitv(ndx-1, n);
sub = sub(:,n:-1:1)+1;
return;
end
cp = [1 cumprod(siz(:)')];
ndx = ndx(:) - 1;
sub = zeros(length(ndx), n);
for i = n:-1:1 % i'th digit
sub(:,i) = floor(ndx/cp(i))+1;
ndx = rem(ndx,cp(i));
end
%%%%%%%%%%
function bits = dec2bitv(d,n)
% DEC2BITV Convert a decimal integer to a bit vector.
% bits = dec2bitv(d,n) is just like the built-in dec2bin, except the answer is a vector, not a string.
% n is an optional minimum length on the bit vector.
% If d is a vector, each row of the output array will be a bit vector.
if (nargin<2)
n=1; % Need at least one digit even for 0.
end
d = d(:);
[f,e]=log2(max(d)); % How many digits do we need to represent the numbers?
bits=rem(floor(d*pow2(1-max(n,e):0)),2);
|
github
|
lcnbeapp/beapp-master
|
process_options.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/process_options.m
| 4,385 |
utf_8
|
bb0450331cd2e6af72679b642ca38e24
|
% PROCESS_OPTIONS - Processes options passed to a Matlab function.
% This function provides a simple means of
% parsing attribute-value options. Each option is
% named by a unique string and is given a default
% value.
%
% Usage: [var1, var2, ..., varn[, unused]] = ...
% process_options(args, ...
% str1, def1, str2, def2, ..., strn, defn)
%
% Arguments:
% args - a cell array of input arguments, such
% as that provided by VARARGIN. Its contents
% should alternate between strings and
% values.
% str1, ..., strn - Strings that are associated with a
% particular variable
% def1, ..., defn - Default values returned if no option
% is supplied
%
% Returns:
% var1, ..., varn - values to be assigned to variables
% unused - an optional cell array of those
% string-value pairs that were unused;
% if this is not supplied, then a
% warning will be issued for each
% option in args that lacked a match.
%
% Examples:
%
% Suppose we wish to define a Matlab function 'func' that has
% required parameters x and y, and optional arguments 'u' and 'v'.
% With the definition
%
% function y = func(x, y, varargin)
%
% [u, v] = process_options(varargin, 'u', 0, 'v', 1);
%
% calling func(0, 1, 'v', 2) will assign 0 to x, 1 to y, 0 to u, and 2
% to v. The parameter names are insensitive to case; calling
% func(0, 1, 'V', 2) has the same effect. The function call
%
% func(0, 1, 'u', 5, 'z', 2);
%
% will result in u having the value 5 and v having value 1, but
% will issue a warning that the 'z' option has not been used. On
% the other hand, if func is defined as
%
% function y = func(x, y, varargin)
%
% [u, v, unused_args] = process_options(varargin, 'u', 0, 'v', 1);
%
% then the call func(0, 1, 'u', 5, 'z', 2) will yield no warning,
% and unused_args will have the value {'z', 2}. This behaviour is
% useful for functions with options that invoke other functions
% with options; all options can be passed to the outer function and
% its unprocessed arguments can be passed to the inner function.
% Copyright (C) 2002 Mark A. Paskin
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [varargout] = process_options(args, varargin)
% Check the number of input arguments
n = length(varargin);
if (mod(n, 2))
error('Each option must be a string/value pair.');
end
% Check the number of supplied output arguments
if (nargout < (n / 2))
error('Insufficient number of output arguments given');
elseif (nargout == (n / 2))
warn = 1;
nout = n / 2;
else
warn = 0;
nout = n / 2 + 1;
end
% Set outputs to be defaults
varargout = cell(1, nout);
for i=2:2:n
varargout{i/2} = varargin{i};
end
% Now process all arguments
nunused = 0;
for i=1:2:length(args)
found = 0;
for j=1:2:n
if strcmpi(args{i}, varargin{j})
varargout{(j + 1)/2} = args{i + 1};
found = 1;
break;
end
end
if (~found)
if (warn)
warning('Option ''%s'' not used.', args{i});
args{i}
else
nunused = nunused + 1;
unused{2 * nunused - 1} = args{i};
unused{2 * nunused} = args{i + 1};
end
end
end
% Assign the unused arguments
if (~warn)
if (nunused)
varargout{nout} = unused;
else
varargout{nout} = cell(0);
end
end
|
github
|
lcnbeapp/beapp-master
|
nonmaxsup.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/murphy/KPMtools/nonmaxsup.m
| 1,708 |
utf_8
|
ad451680a9d414f907da2969e0809c22
|
% NONMAXSUP - Non-maximal Suppression
%
% Usage: cim = nonmaxsup(im, radius)
%
% Arguments:
% im - image to be processed.
% radius - radius of region considered in non-maximal
% suppression (optional). Typical values to use might
% be 1-3. Default is 1.
%
% Returns:
% cim - image with pixels that are not maximal within a
% square neighborhood zeroed out.
% Copyright (C) 2002 Mark A. Paskin
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cim = nonmaxsup(m, radius)
if (nargin == 1) radius = 1; end
% Extract local maxima by performing a grey scale morphological
% dilation and then finding points in the corner strength image that
% match the dilated image and are also greater than the threshold.
sze = 2 * radius + 1; % Size of mask.
mx = ordfilt2(m, sze^2, ones(sze)); % Grey-scale dilate.
cim = sparse(m .* (m == mx));
|
github
|
lcnbeapp/beapp-master
|
laplacedegenerate_ep.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/bayesianlogreg/laplacedegenerate_ep.m
| 18,982 |
utf_8
|
f7c41d02425138606269031927275e33
|
function [Gauss,terms,logp,comptime] = laplacedegenerate_ep(y,X,K,varargin)
% specialized version of our fast variant of
% Expectation Propagation for Logistic Regression (2 classes) with a (correlated) Laplace prior
% in the degenerate case, i.e., when the number of features >> number of samples
% (also works when number of samples > number of features, but then less stable!!!)
%
% input:
% labels = an N x 1 vector of class labels [1,2]
% examples = an N x M matrix of input data
% K = the prior precision matrix of size M x M
%
% Note: the bias term should be explicitly added to K and the examples!
%
% regression parameters refers to betas
% auxiliary variables refers to u and v whose precision matrix auxK = inv(Lambda) couples the features.
%
% we have a precision matrix of the form
%
% | K_beta |
% | K_u |
% | K_v |
%
% priorGauss: struct with fields
%
% hatK diagonal of precision matrix (number of samples x 1);
% (initially zero)
% diagK diagonal of precision matrix (number of features x 1)
% (initially zero)
%
% precision matrix of regression parameters K_beta = A' hatK A + diagK
%
% h canonical mean (number of features x 1)
% (initially zero)
%
% auxK precision matrix of auxiliary variables (number of features x number of features; sparse)
% (contains the covariance structure of interest)
%
% A feature matrix (number of samples x number of features)
%
% terms: struct with fields
%
% hatK as priorGauss
% diagK as priorGauss
% hath canonical mean (number of samples x 1)
% h canonical mean (number of features x 1)
% canonical mean of regression parameters = h + A' hath
% auxK as priorGauss, but then only diagonal elements (number of features x 1)
%
% opt: struct with fields (all optional, defaults in brackets)
%
% maxstepsize maximum step size [1]
% fraction fraction or power for fractional/power EP [1]
% niter maximum number of iterations [100]
% tol convergence criterion [1e-5]
% nweights number of points for numerical integration [20]
% temperature temperature for simulated annealing [1]
% verbose give output during run [1]
%
% Gauss: struct with fields as in priorGauss plus
%
% hatB diagonal of projected covariance (number of samples x 1)
% hatB = A Covariance A'
% hatn projected mean (number of samples x 1)
% hatn = A m
% diagC diagonal of covariance matrix of regression parameters (number of features x 1)
% auxC diagonal of covariance matrix of auxiliary variables (number of features x 1)
%
%
% logp: estimated marginal loglikelihood (implementation doubtful...)
%
% comptime: computation time
%% initialization
% parse opt
opt = [];
for i=1:2:length(varargin)
opt.(varargin{i}) = varargin{i+1};
end
if ~isfield(opt,'maxstepsize'), opt.maxstepsize = 1; end
if ~isfield(opt,'fraction'), opt.fraction = 0.95; end
if ~isfield(opt,'niter'), opt.niter = 1000; end
if ~isfield(opt,'tol'), opt.tol = 1e-5; end
if ~isfield(opt,'nweights'), opt.nweights = 50; end
if ~isfield(opt,'temperature'), opt.temperature = 1; end
if ~isfield(opt,'lambda'), opt.lambda = 1; end
if ~isfield(opt,'verbose'), opt.verbose = 1; end
if opt.verbose
fprintf('starting EP\n');
end
tic
[nsamples,nfeatures] = size(X);
%% create priorGauss and terms
A = X.*repmat(y,1,nfeatures);
% construct Gaussian representation
priorGauss.A = A;
priorGauss.hatK = zeros(nsamples,1);
priorGauss.h = zeros(nfeatures,1);
priorGauss.diagK = zeros(nfeatures,1);
priorGauss.auxK = K;
% compute additional terms for the EP free energy
[cholK,dummy,S] = chol(K,'lower');
LogPriorRestAux2 = (2*sum(log(full(diag(cholK))))); % -nfeatures*log(2*pi)); % redundant MvG
% construct term representation
terms.hatK = ones(nsamples,1)/10;
terms.hath = zeros(nsamples,1);
terms.diagK = ones(nfeatures,1)./(10*opt.lambda);
terms.auxK = zeros(nfeatures,1);
terms.h = zeros(nfeatures,1);
%% precompute points and weights for numerical integration
[xhermite,whermite] = gausshermite(opt.nweights);
xhermite = xhermite(:); % nhermite x 1
whermite = whermite(:); % nhermite x 1
[xlaguerre,wlaguerre] = gausslaguerre(opt.nweights);
xlaguerre = xlaguerre(:); % nlaguerre x 1
wlaguerre = wlaguerre(:); % nlaguerre x 1
% divide all canonical parameters by the temperature
if opt.temperature ~= 1,
[priorGauss,terms] = correct_for_temperature(priorGauss,terms,opt.temperature);
end
%% build initial Gauss
% add terms to prior
Gauss = update_Gauss(priorGauss,terms);
Gauss = canonical_to_moments(Gauss);
[myGauss,ok] = project_all(Gauss,terms,opt.fraction);
if ~ok,
error('improper cavity distributions\n');
end
prior = Gauss; % save prior Gauss
%% enter the iterations
logp = 0;
logpold = 2*opt.tol;
change = 0;
teller = 0;
stepsize = opt.maxstepsize;
while abs(logp-logpold) > stepsize*opt.tol && teller < opt.niter,
teller = teller+1;
logpold = logp;
oldchange = change;
% compute the new term approximation by applying an adf update on all the cavity approximations
[fullterms,logreglogz,crosslogz] = ...
adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,opt.fraction,opt.temperature);
ok = 0;
ok1 = 1;
ok2 = 1;
while ~ok,
% try to replace the old term approximations by the new term approximations and check whether the new Gauss is still fine
[newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,stepsize);
%[newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,0.5);
if ok1,
% compute all cavity approximations needed for the next EP updates and check whether they are all fine
[newGauss,myGauss,logZappx,ok2] = try_project(newGauss,newterms,opt.fraction);
end
ok = (ok1 & ok2);
if ok, % accept
terms = newterms;
Gauss = newGauss;
stepsize = min(opt.maxstepsize,stepsize*1.9);
else % try with smaller stepsize
stepsize = stepsize/2;
if ~ok1,
fprintf('improper full covariance: lowering stepsize to %g\n',stepsize');
elseif ~ok2,
fprintf('improper cavity covariance: lowering stepsize to %g\n',stepsize');
end
if stepsize < 1e-10,
warning('Cannot find an update that leads to proper cavity approximations');
teller = opt.niter;
break;
end
end
end
% compute marginal moments
if ok,
% compute marginal loglikelihood
%logp = sum(logz) + sum(crosslogz) + logdet/2 + contribQ;
% CorrTermCross1 = (myGauss.m.^2)./myGauss.diagC - (newGauss.m.^2)./newGauss.diagC + log(myGauss.diagC/newGauss.diagC);
% CorrTermCross2 = log(myGauss.auxC/newGauss.auxC);
% CorrTerm = 0.5*CorrTermCross1 + 0.5*(CorrTermCross2 + CorrTermCross2);
logp = (sum(crosslogz) + sum(logreglogz))./opt.fraction + logZappx + LogPriorRestAux2;
if opt.verbose
fprintf('%d: %g (stepsize: %g)\n',teller,logp,stepsize);
end
% check whether marginal loglikelihood is going up and down, if so, lower stepsize
change = logp-logpold;
if change*oldchange < 0, % possibly cycling
stepsize = stepsize/2;
end
oldchange = change;
end
end
comptime = toc;
if opt.verbose
fprintf('EP finished in %s seconds\n',num2str(comptime));
end
Gauss.prior = prior;
%%% END MAIN
%%%%%%%%%
%
% compute the cavity approximations that result when subtracting a fraction of the term approximations
function [myGauss,ok] = project_all(Gauss,terms,fraction)
if nargin < 3,
fraction = 1;
end
% take out and project in moment form
% (1) regression parameters
[myGauss.hatB,myGauss.hatn] = ...
rank_one_update(Gauss.hatB,Gauss.hatn,-fraction*terms.hatK,-fraction*terms.hath);
% (2) cross terms between regression parameters and auxiliary parameters
[myGauss.diagC,myGauss.m] = ...
rank_one_update(Gauss.diagC,Gauss.m,-fraction*terms.diagK,-fraction*terms.h);
myGauss.auxC = rank_one_update(Gauss.auxC,[],-fraction*terms.auxK);
% check whether all precision matrices are strictly positive definite
if nargout > 1,
ok = (all(myGauss.hatB > 0) & all(myGauss.diagC > 0) & all(myGauss.auxC > 0));
end
%%%%%%%%%
%
% compute the new term approximation by applying an adf update on all the cavity approximations
function [fullterms,logreglogz,crosslogz] = ...
adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,fraction,temperature)
if nargin < 8,
temperature = 1;
end
if nargin < 7,
fraction = 1;
end
%% (1) regression parameters
oldm = myGauss.hatn;
oldC = myGauss.hatB;
sqrtC = sqrt(oldC);
nsamples = length(oldm);
nhermite = length(whermite);
% translate and scale the sample points to get the correct mean and variance
x = repmat(oldm,1,nhermite) + sqrtC*xhermite';
% compute the terms at the sample points
g = logist(x); % returns - log (1 + exp(-x)) with special attention for very small and very large x
% correct for fraction and temperature and incorporate the sample weights
g = fraction*g/temperature + log(repmat(whermite',nsamples,1));
maxg = max(g,[],2);
g = g-repmat(maxg,1,nhermite);
expg = exp(g);
denominator = sum(expg,2);
neww = expg./repmat(denominator,1,nhermite);
% compute the moments
Ex = sum(x.*neww,2);
Exx = sum(x.^2.*neww,2);
newm = Ex;
newC = Exx-Ex.^2;
% derive the term approximation from the change in mean and variance
[fullterms.hatK,fullterms.hath,logzextra] = compute_termproxy(newC,newm,oldC,oldm,fraction);
% contributions to marginal loglikelihood
logreglogz = maxg + log(denominator) + logzextra;
%% (2) cross terms between regression parameters and auxiliary variables
oldm = myGauss.m;
oldC = myGauss.diagC;
oldlambda = myGauss.auxC;
nfeatures = length(oldm);
nlaguerre = length(wlaguerre);
% this part heavily relies on the accompanying note
% basic idea:
% - the cavity approximation on U is an exponential distribution
% - we have analytical formulas for the moments of x conditioned upon U
% - marginal moments can then be computed through numerical integration with Gauss-Laguerre
% translate and scale the sample points to get the correct mean
U = 2*oldlambda*xlaguerre'; % nfeatures x nlaguerre
mm = repmat(oldm,1,nlaguerre);
CC = repmat(oldC,1,nlaguerre);
% compute the partition function (integral over x) given U and turn this into weights required for computing the marginal moments
g = (1-fraction)*log(U)/2 - fraction*mm.^2./(U + fraction*CC)/2 - log(U+ fraction*CC)/2;
g = bsxfun(@plus,g,log(wlaguerre'));
maxg = max(g,[],2);
g = bsxfun(@minus,g,maxg);
expg = exp(g);
denominator = sum(expg,2);
neww = bsxfun(@rdivide,expg,denominator);
% compute the marginal moments through numerical integration
ExgU = mm.*U./(U + fraction*CC);
Ex = sum(ExgU.*neww,2);
ExxgU = ExgU.^2 + CC.*U./(U+fraction*CC);
Exx = sum(ExxgU.*neww,2);
EU = sum(U.*neww,2);
newm = Ex;
newC = Exx-Ex.^2;
newlambda = EU/2;
% derive the term approximation from the change in mean and variance
[fullterms.diagK,fullterms.h,logzextra1] = compute_termproxy(newC,newm,oldC,oldm,fraction);
[fullterms.auxK,dummy,logzextra2] = compute_termproxy(newlambda,zeros(nfeatures,1),oldlambda,zeros(nfeatures,1),fraction);
crosslogz = maxg + log(denominator) + logzextra1 + 2*logzextra2;
% multiplied the last term by two
%%%%%%%%%%
%
% compute the moments corresponding to the canonical parameters
function [Gauss,logp] = canonical_to_moments(Gauss)
[nsamples,nfeatures] = size(Gauss.A);
%% (1) regression parameters
if nsamples > nfeatures, % in the non-degenerate case, this direct route is more stable and faster
scaledA = Gauss.A.*(repmat(Gauss.hatK,1,nfeatures));
K = Gauss.A'*scaledA + diag(Gauss.diagK);
[C,logdet1] = invert_chol(K);
Gauss.m = C*Gauss.h;
Gauss.hatB = zeros(nsamples,1); % only need diagonal
for k=1:nsamples,
Gauss.hatB(k) = Gauss.A(k,:)*C*Gauss.A(k,:)';
end
Gauss.diagC = diag(C);
Gauss.hatn = Gauss.A*Gauss.m;
else
% this part heavily relies on the appendix of the accompanying note
% basic idea:
% - the precision matrix K is of the form A' hatK A + diagK, where both hatK and diagK are diagonal matrices
% - apply Woodbury's formula to replace inverting an (nfeat x nfeat) matrix by an (nsample x nsample) alternative
% - projections of the covariance matrix and the mean onto the feature matrix then follow immediately
scaledA = bsxfun(@rdivide,Gauss.A,Gauss.diagK');
W = Gauss.A*scaledA';
W = (W + W')/2; % make symmetric
[Q,logdet1] = invert_chol(diag(1./Gauss.hatK) + W);
Gauss.hatB = zeros(nsamples,1);
for k=1:nsamples,
Gauss.hatB(k) = W(k,k) - W(k,:)*Q*W(:,k);
end
Gauss.m = Gauss.h./Gauss.diagK - scaledA'*(Q*(scaledA*Gauss.h));
Gauss.hatn = Gauss.A*Gauss.m;
Gauss.diagC = 1./Gauss.diagK;
% for i=1:nfeatures,
% Gauss.diagC(i) = Gauss.diagC(i) - scaledA(:,i)'*Q*scaledA(:,i);
% end
% adriana's recipe
z = scaledA' * Q; for i=1:size(z), Gauss.diagC(i) = Gauss.diagC(i) - z(i,:) * scaledA(:,i); end
logdet1 = logdet1 + sum(log(Gauss.diagK)) + sum(log(Gauss.hatK));
end
% compute quadratic term (BC)
qterm = sum(Gauss.m .* Gauss.diagK .* Gauss.m); % = m' * diagK * m
qterm = qterm + sum(Gauss.hatn .* Gauss.hatK .* Gauss.hatn);
logp1 = 0.5*(qterm - logdet1);
%% (2) auxiliary variables; i.e., wrt scale mixture representation of
% Laplace prior
% this is (by far) the most expensive step when nsamples << nfeatures
% and the precision matrix of the auxiliary variables is non-diagonal
[auxC,logdet2] = invert_chol(Gauss.auxK); % only need diagonal terms
Gauss.auxC = full(diag(auxC)); % turn into full vector
logp2 = 0.5*( - logdet2);
logp = logp1 + 2*logp2;
%%%%%%%%%%
%
% take out the old term proxies and add the new termproxies and check whether the resulting Gaussian is still normalizable
function [newGauss,newterms,ok] = try_update(Gauss,fullterms,terms,stepsize)
if nargin < 4,
stepsize = 1;
end
% take out the old term proxies
newGauss = update_Gauss(Gauss,terms,-1);
% compute the new term proxies as a weighted combi of the old ones and the "full" (stepsize 1) term proxies
newterms = combine_terms(fullterms,terms,stepsize);
% add the new term proxies
newGauss = update_Gauss(newGauss,newterms,1);
[L,check,dummy] = chol(newGauss.auxK,'lower'); % check whether full covariance matrix is ok
% note that this is bit inefficient, since we redo the Cholesky later when everything is fine
ok = (check == 0 & all(newGauss.hatK > 0) & all(newGauss.diagK > 0)); % perhaps a bit too strong???
%%%%%%%%%%%%
%
% compute the moment form of the current Gauss and all cavity approximations and check whether they are fine
function [Gauss,myGauss,logdet,ok] = try_project(Gauss,terms,fraction)
if nargin < 3,
fraction = 1;
end
[Gauss,logdet] = canonical_to_moments(Gauss);
[myGauss,ok] = project_all(Gauss,terms,fraction);
%%%%%%%%%%
%
% if we use a temperature < 1, to get closer to the MAP solution, we have to change the prior and initial term proxies accordingly
function [Gauss,terms] = correct_for_temperature(Gauss,terms,temperature)
% note: choose temperature small to implement MAP-like behavior
Gauss.hatK = Gauss.hatK/temperature;
Gauss.h = Gauss.h/temperature;
Gauss.auxK = Gauss.auxK/temperature;
Gauss.diagK = Gauss.diagK/temperature;
terms.hatK = terms.hatK/temperature;
terms.hath = terms.hath/temperature;
terms.diagK = terms.diagK/temperature;
terms.auxK = terms.auxK/temperature;
terms.h = terms.h/temperature;
%%%%%%%%%%
%
% invert a positive definite matrix using Cholesky factorization
function [invA,logdet] = invert_chol(A)
if issparse(A)
if 0 % matlab version; slower but useful in case of mex problems
[L,dummy,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S
n = length(L);
invdiagL2 = 1./spdiags(L,0).^2;
invA = A;
for i=n:-1:1,
I = i+find(L(i+1:n,i));
invA(I,i) = -(invA(I,I)*L(I,i))/L(i,i);
invA(i,I) = invA(I,i)';
invA(i,i) = invdiagL2(i) - (invA(i,I)*L(I,i))/L(i,i);
end
invA = S*invA*S';
else
[L,dummy,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S
if dummy
error('matrix is not p.d.');
end
invA = fastinvc(L);
invA = S*invA*S';
end
else
[L,dummy] = chol(A,'lower');
if dummy
error('matrix is not p.d.');
end
invA = inv(A);
end
if nargout > 1,
logdet = 2*sum(log(full(diag(L))));
end
%%%%%%%%%%
%
% compute the term proxy when [oldC,oldm] changes to [newC,newm]
function [K,h,logz] = compute_termproxy(newC,newm,oldC,oldm,fraction)
if nargin < 5,
fraction = 1;
end
K = (1./newC - 1./oldC)/fraction;
h = (newm./newC - oldm./oldC)/fraction;
logz = oldm.^2./oldC/2 - newm.^2./newC/2 + log(full(oldC./newC))/2 ;
%%%%%%%%%%
%
% Sherman-Morrison formula to compute the change from [oldC,oldm] to [newC,newm] when we add [K,h] to the corresponding canonical parameters
function [newC,newm] = rank_one_update(oldC,oldm,K,h)
dummy = K.*oldC;
oneminusdelta = 1./(1+dummy);
newC = oneminusdelta.*oldC;
if nargout > 1,
newm = oneminusdelta.*(oldm + h.*oldC);
end
%%%%%%%%%%%
%
% general procedure for a weighted combi of the fields of two structures
function terms = combine_terms(terms1,terms2,stepsize)
names1 = fieldnames(terms1);
names2 = fieldnames(terms2);
names = intersect(names1,names2);
terms = struct;
for i=1:length(names)
terms.(names{i}) = stepsize*terms1.(names{i}) + (1-stepsize)*terms2.(names{i});
end
%%%%%%%%%%%
%
% updates the Gaussian representation with new term proxies
function Gauss = update_Gauss(Gauss,terms,const)
if nargin < 3,
const = 1;
end
Gauss.h = Gauss.h + const*Gauss.A'*terms.hath + const*terms.h;
Gauss.hatK = Gauss.hatK + const*terms.hatK;
Gauss.diagK = Gauss.diagK + const*terms.diagK;
% get diagonal elements
diagidx = 1:(size(Gauss.auxK,1)+1):numel(Gauss.auxK);
Gauss.auxK(diagidx) = Gauss.auxK(diagidx) + const*terms.auxK';
|
github
|
lcnbeapp/beapp-master
|
bayesianlinreg_ep.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/bayesianlogreg/bayesianlinreg_ep.m
| 17,556 |
utf_8
|
64edf12e5451aa53b2d6ab3ff064778f
|
function [Gauss,terms,logp,comptime] = bayesianlinreg_ep(labels,examples,K,varargin)
% Bayesian linear regression with a multivariate Laplace prior using a fast
% variant of EP.
%HERE
% input:
% labels = an N x 1 vector of class labels [1,2]
% examples = an N x M matrix of input data
% K = the prior precision matrix of size M x M
%
% Note: the bias term should be explicitly added to K and the examples!
%
% regression parameters refers to betas
% auxiliary variables refers to u and v whose precision matrix auxK = inv(Lambda) couples the features.
%
% we have a precision matrix of the form
%
% | K_beta |
% | K_u |
% | K_v |
%
% priorGauss: struct with fields
%
% hatK diagonal of precision matrix (number of samples x 1);
% (initially zero)
% diagK diagonal of precision matrix (number of features x 1)
% (initially zero)
%
% precision matrix of regression parameters K_beta = A' hatK A + diagK
%
% h canonical mean (number of features x 1)
% (initially zero)
%
% auxK precision matrix of auxiliary variables (number of features x number of features; sparse)
% (contains the covariance structure of interest)
%
% A feature matrix (number of samples x number of features)
%
% terms: struct with fields
%
% hatK as priorGauss
% diagK as priorGauss
% hath canonical mean (number of samples x 1)
% h canonical mean (number of features x 1)
% canonical mean of regression parameters = h + A' hath
% auxK as priorGauss, but then only diagonal elements (number of features x 1)
%
% opt: struct with fields (all optional, defaults in brackets)
%
% maxstepsize maximum step size [1]
% fraction fraction or power for fractional/power EP [1]
% niter maximum number of iterations [100]
% tol convergence criterion [1e-5]
% nweights number of points for numerical integration [20]
% temperature temperature for simulated annealing [1]
%
% Gauss: struct with fields as in priorGauss plus
%
% hatB diagonal of projected covariance (number of samples x 1)
% hatB = A Covariance A'
% hatn projected mean (number of samples x 1)
% hatn = A m
% diagC diagonal of covariance matrix of regression parameters (number of features x 1)
% auxC diagonal of covariance matrix of auxiliary variables (number of features x 1)
%
%
% logp: estimated marginal loglikelihood (implementation doubtful...)
%
% comptime: computation time
fprintf('starting EP\n');
tic
%% initialization
% parse opt
opt = [];
for i=1:2:length(varargin)
opt.(varargin{i}) = varargin{i+1};
end
if ~isfield(opt,'maxstepsize'), opt.maxstepsize = 1; end
if ~isfield(opt,'fraction'), opt.fraction = 0.99; end
if ~isfield(opt,'niter'), opt.niter = 100; end
if ~isfield(opt,'tol'), opt.tol = 1e-5; end
if ~isfield(opt,'nweights'), opt.nweights = 50; end
if ~isfield(opt,'temperature'), opt.temperature = 1; end
if ~isfield(opt,'lambda'), opt.lambda = 0.001; end
stepsize = opt.maxstepsize;
[nsamples,nfeatures] = size(examples);
%% create priorGauss and terms
% transform data to +1/-1 representation
A = examples;
y = 3-2*labels;
A = A.*repmat(y,1,nfeatures);
% construct Gaussian representation
priorGauss.A = A;
priorGauss.hatK = zeros(nsamples,1);
priorGauss.h = zeros(nfeatures,1);
priorGauss.diagK = zeros(nfeatures,1);
priorGauss.auxK = K;
% construct term representation
terms.hatK = ones(nsamples,1)/10;
terms.hath = zeros(nsamples,1);
terms.diagK = ones(nfeatures,1)/opt.lambda/10;
terms.auxK = zeros(nfeatures,1);
terms.h = zeros(nfeatures,1);
%% precompute points and weights for numerical integration
[xhermite,whermite] = gausshermite(opt.nweights);
xhermite = xhermite(:); % nhermite x 1
whermite = whermite(:); % nhermite x 1
[xlaguerre,wlaguerre] = gausslaguerre(opt.nweights);
xlaguerre = xlaguerre(:); % nlaguerre x 1
wlaguerre = wlaguerre(:); % nlaguerre x 1
% divide all canonical parameters by the temperature
if opt.temperature ~= 1,
[priorGauss,terms] = correct_for_temperature(priorGauss,terms,opt.temperature);
end
% compute cholesky of the prior precision matrix
% used when computing the model evidence
[cholK,dummy,S] = chol(K,'lower');
contribQ = sum(log(diag(cholK).^2));
%% build initial Gauss
% add terms to prior
Gauss = update_Gauss(priorGauss,terms);
%% convert from canonical to moment form
Gauss = canonical_to_moments(Gauss);
%% compute all cavity approximations needed for the EP updates and check whether they are all fine
[myGauss,ok] = project_all(Gauss,terms,opt.fraction);
if ~ok,
error('improper cavity distributions\n');
end
%% enter the iterations
logp = 0;
logpold = 2*opt.tol;
change = 0;
teller = 0;
while abs(logp-logpold) > stepsize*opt.tol && teller < opt.niter,
teller = teller+1;
logpold = logp;
oldchange = change;
% compute the new term approximation by applying an adf update on all the cavity approximations
[fullterms,logz,crosslogz] = ...
adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,opt.fraction,opt.temperature);
ok = 0;
while ~ok,
% try to replace the old term approximations by the new term approximations and check whether the new Gauss is still fine
[newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,stepsize);
if ok1,
% compute all cavity approximations needed for the next EP updates and check whether they are all fine
[newGauss,myGauss,logdet,ok2] = try_project(newGauss,newterms,opt.fraction);
end
ok = (ok1 & ok2);
if ok, % accept
terms = newterms;
Gauss = newGauss;
stepsize = min(opt.maxstepsize,stepsize*1.9);
else % try with smaller stepsize
stepsize = stepsize/2;
if ~ok1,
fprintf('improper full covariance: lowering stepsize to %g\n',stepsize');
elseif ~ok2,
fprintf('improper cavity covariance: lowering stepsize to %g\n',stepsize');
end
if stepsize < 1e-10,
warning('Cannot find an update that leads to proper cavity approximations\ldots');
teller = opt.niter;
break;
end
end
end
% compute marginal moments
if ok,
% compute marginal loglikelihood
%logp = sum(logz) + sum(crosslogz) + logdet/2 + contribQ;
logp = sum(logz)./opt.fraction + sum(crosslogz)./opt.fraction + logdet/2 + contribQ;
% note:
%
% logdet/2 = 1/2 log |K| for the posterior K
% contribQ = log |Q| for the prior Q (MvG)
% quadratic term added (BC)
% don't trust the calculation anyway, in particular for fractional updates...
fprintf('%d: %g (stepsize: %g)\n',teller,logp,stepsize);
% check whether marginal loglikelihood is going up and down, if so, lower stepsize
change = logp-logpold;
if change*oldchange < 0, % possibly cycling
stepsize = stepsize/2;
end
oldchange = change;
end
end
comptime = toc;
fprintf('EP finished in %s seconds\n',num2str(comptime));
%%% END MAIN
%%%%%%%%%
%
% compute the cavity approximations that result when subtracting a fraction of the term approximations
function [myGauss,ok] = project_all(Gauss,terms,fraction)
if nargin < 3,
fraction = 1;
end
% take out and project in moment form
% (1) regression parameters
[myGauss.hatB,myGauss.hatn] = ...
rank_one_update(Gauss.hatB,Gauss.hatn,-fraction*terms.hatK,-fraction*terms.hath);
% (2) cross terms between regression parameters and auxiliary parameters
[myGauss.diagC,myGauss.m] = ...
rank_one_update(Gauss.diagC,Gauss.m,-fraction*terms.diagK,-fraction*terms.h);
myGauss.auxC = rank_one_update(Gauss.auxC,[],-fraction*terms.auxK);
% check whether all precision matrices are strictly positive definite
if nargout > 1,
ok = (all(myGauss.hatB > 0) & all(myGauss.diagC > 0) & all(myGauss.auxC > 0));
end
%%%%%%%%%
%
% compute the new term approximation by applying an adf update on all the cavity approximations
function [fullterms,logz,crosslogz] = ...
adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,fraction,temperature)
if nargin < 8,
temperature = 1;
end
if nargin < 7,
fraction = 1;
end
%% (1) regression parameters
oldm = myGauss.hatn;
oldC = myGauss.hatB;
sqrtC = sqrt(oldC);
nsamples = length(oldm);
nhermite = length(whermite);
% translate and scale the sample points to get the correct mean and variance
x = repmat(oldm,1,nhermite) + sqrtC*xhermite';
% compute the terms at the sample points
g = logistic(x); % returns - log (1 + exp(-x)) with special attention for very small and very large x
% correct for fraction and temperature and incorporate the sample weights
g = fraction*g/temperature + log(repmat(whermite',nsamples,1));
% some care take for numerical stability
maxg = max(g,[],2);
g = g-repmat(maxg,1,nhermite);
expg = exp(g);
denominator = sum(expg,2);
neww = expg./repmat(denominator,1,nhermite);
% compute the moments
Ex = sum(x.*neww,2);
Exx = sum(x.^2.*neww,2);
newm = Ex;
newC = Exx-Ex.^2;
% derive the term approximation from the change in mean and variance
[fullterms.hatK,fullterms.hath,logzextra] = ...
compute_termproxy(newC,newm,oldC,oldm,fraction);
% contributions to marginal loglikelihood
logz = maxg + log(denominator) + logzextra;
%% (2) cross terms between regression parameters and auxiliary variables
oldm = myGauss.m;
oldC = myGauss.diagC;
oldlambda = myGauss.auxC;
nfeatures = length(oldm);
nlaguerre = length(wlaguerre);
% this part heavily relies on the accompanying note
% basic idea:
% - the cavity approximation on U is an exponential distribution
% - we have analytical formulas for the moments of x conditioned upon U
% - marginal moments can then be computed through numerical integration with Gauss-Laguerre
% translate and scale the sample points to get the correct mean
U = 2*oldlambda*xlaguerre'; % nfeatures x nlaguerre
mm = repmat(oldm,1,nlaguerre);
CC = repmat(oldC,1,nlaguerre);
% compute the partition function (integral over x) given U and turn this into weights required for computing the marginal moments
g = -mm.^2./(U+CC)/2 - log(U+CC)/2 - log(2*pi)/2;
g = fraction*g + log(repmat(wlaguerre',nfeatures,1));
maxg = max(g,[],2);
g = g-repmat(maxg,1,nlaguerre);
expg = exp(g);
denominator = sum(expg,2);
neww = expg./repmat(denominator,1,nlaguerre);
% compute the marginal moments through numerical integration
ExgU = mm.*U./(U+CC);
Ex = sum(ExgU.*neww,2);
ExxgU = ExgU.^2 + CC.*U./(U+CC);
Exx = sum(ExxgU.*neww,2);
EU = sum(U.*neww,2);
newm = Ex;
newC = Exx-Ex.^2;
newlambda = EU/2;
% derive the term approximation from the change in mean and variance
[fullterms.diagK,fullterms.h,logzextra1] = ...
compute_termproxy(newC,newm,oldC,oldm,fraction);
% same for the auxiliary variables, where we note that the mean will always be zero
[fullterms.auxK,dummy,logzextra2] = ...
compute_termproxy(newlambda,zeros(nfeatures,1),oldlambda,zeros(nfeatures,1),fraction);
crosslogz = maxg + log(denominator) + logzextra1 + logzextra2;
%%%%%%%%%%
%
% compute the moments corresponding to the canonical parameters
function [Gauss,logdet] = canonical_to_moments(Gauss)
[nsamples,nfeatures] = size(Gauss.A);
%% (1) regression parameters
if nsamples > nfeatures, % in the non-degenerate case, this direct route is more stable and faster
scaledA = Gauss.A.*(repmat(Gauss.hatK,1,nfeatures));
K = Gauss.A'*scaledA + diag(Gauss.diagK);
[C,logdet1] = invert_chol(K);
Gauss.m = C*Gauss.h;
Gauss.hatB = zeros(nsamples,1); % only need diagonal
for k=1:nsamples,
Gauss.hatB(k) = Gauss.A(k,:)*C*Gauss.A(k,:)';
end
Gauss.diagC = diag(C);
Gauss.hatn = Gauss.A*Gauss.m;
%logdet1 = 2*sum(log(diag(L)));
else
% this part heavily relies on the appendix of the accompanying note
% basic idea:
% - the precision matrix K is of the form A' hatK A + diagK, where both hatK and diagK are diagonal matrices
% - apply Woodbury's formula to replace inverting an (nfeat x nfeat) matrix by an (nsample x nsample) alternative
% - projections of the covariance matrix and the mean onto the feature matrix then follow immediately
scaledA = Gauss.A./(repmat(Gauss.diagK',nsamples,1));
W = Gauss.A*scaledA';
W = (W + W')/2; % make symmetric
[Q,logdet1] = invert_chol(diag(1./Gauss.hatK) + W);
Gauss.hatB = zeros(nsamples,1);
for k=1:nsamples,
Gauss.hatB(k) = W(k,k) - W(k,:)*Q*W(:,k);
end
Gauss.m = Gauss.h./Gauss.diagK - scaledA'*(Q*(scaledA*Gauss.h));
Gauss.hatn = Gauss.A*Gauss.m;
Gauss.diagC = 1./Gauss.diagK;
for i=1:nfeatures,
Gauss.diagC(i) = Gauss.diagC(i) - scaledA(:,i)'*Q*scaledA(:,i);
end
logdet1 = logdet1 + sum(log(Gauss.diagK)) + sum(log(Gauss.hatK));
% compute quadratic term (BC)
qterm = sum(Gauss.m .* Gauss.diagK .* Gauss.m); % = m' * diagK * m
qterm = qterm + sum(Gauss.hatn .* Gauss.hatK .* Gauss.hatn);
logdet1 = -logdet1 + qterm;
end
%% (2) auxiliary variables; i.e., wrt scale mixture representation of
% Laplace prior
% this is (by far) the most expensive step when nsamples << nfeatures
% and the precision matrix of the auxiliary variables is non-diagonal
[auxC,logdet2] = invert_chol(Gauss.auxK); % only need diagonal terms
Gauss.auxC = full(diag(auxC)); % turn into full vector
logdet = logdet1 - 2*logdet2;
% added 2*logdet2
%%%%%%%%%%
%
% take out the old term proxies and add the new termproxies and check whether the resulting Gaussian is still normalizable
function [newGauss,newterms,ok] = try_update(Gauss,fullterms,terms,stepsize)
if nargin < 4,
stepsize = 1;
end
% take out the old term proxies
newGauss = update_Gauss(Gauss,terms,-1);
% compute the new term proxies as a weighted combi of the old ones and the "full" (stepsize 1) term proxies
newterms = combine_terms(fullterms,terms,stepsize);
% add the new term proxies
newGauss = update_Gauss(newGauss,newterms,1);
[L,check,dummy] = chol(newGauss.auxK,'lower'); % check whether full covariance matrix is ok
% note that this is bit inefficient, since we redo the Cholesky later when everything is fine
ok = (check == 0 & all(newGauss.hatK > 0) & all(newGauss.diagK > 0)); % perhaps a bit too strong???
%%%%%%%%%%%%
%
% compute the moment form of the current Gauss and all cavity approximations and check whether they are fine
function [Gauss,myGauss,logdet,ok] = try_project(Gauss,terms,fraction)
if nargin < 3,
fraction = 1;
end
[Gauss,logdet] = canonical_to_moments(Gauss);
[myGauss,ok] = project_all(Gauss,terms,fraction);
%%%%%%%%%%
%
% if we use a temperature < 1, to get closer to the MAP solution, we have to change the prior and initial term proxies accordingly
function [Gauss,terms] = correct_for_temperature(Gauss,terms,temperature)
% note: choose temperature small to implement MAP-like behavior
Gauss.hatK = Gauss.hatK/temperature;
Gauss.h = Gauss.h/temperature;
Gauss.auxK = Gauss.auxK/temperature;
Gauss.diagK = Gauss.diagK/temperature;
terms.hatK = terms.hatK/temperature;
terms.hath = terms.hath/temperature;
terms.diagK = terms.diagK/temperature;
terms.auxK = terms.auxK/temperature;
terms.h = terms.h/temperature;
%%%%%%%%%%
%
% invert a positive definite matrix using Cholesky factorization
function [invA,logdet] = invert_chol(A)
[L,dummy,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S
invA = fastinvc(L);
invA = S*invA*S';
if nargout > 1,
logdet = 2*sum(log(diag(L)));
end
%%%%%%%%%%
%
% compute the term proxy when [oldC,oldm] changes to [newC,newm]
function [K,h,logz] = compute_termproxy(newC,newm,oldC,oldm,fraction)
if nargin < 5,
fraction = 1;
end
K = (1./newC - 1./oldC)/fraction;
h = (newm./newC - oldm./oldC)/fraction;
logz = - log(newC./oldC)/2 + oldm.^2./oldC/2 - newm.^2./newC/2;
%%%%%%%%%%
%
% Sherman-Morrison formula to compute the change from [oldC,oldm] to [newC,newm] when we add [K,h] to the corresponding canonical parameters
function [newC,newm] = rank_one_update(oldC,oldm,K,h)
dummy = K.*oldC;
oneminusdelta = 1./(1+dummy);
newC = oneminusdelta.*oldC;
if nargout > 1,
newm = oneminusdelta.*(oldm + h.*oldC);
end
%%%%%%%%%%%
%
% general procedure for a weighted combi of the fields of two structures
function terms = combine_terms(terms1,terms2,stepsize)
names1 = fieldnames(terms1);
names2 = fieldnames(terms2);
names = intersect(names1,names2);
terms = struct;
for i=1:length(names)
terms.(names{i}) = stepsize*terms1.(names{i}) + (1-stepsize)*terms2.(names{i});
end
%%%%%%%%%%%
%
% updates the Gaussian representation with new term proxies
function Gauss = update_Gauss(Gauss,terms,const)
if nargin < 3,
const = 1;
end
Gauss.h = Gauss.h + const*Gauss.A'*terms.hath + const*terms.h;
Gauss.hatK = Gauss.hatK + const*terms.hatK;
Gauss.diagK = Gauss.diagK + const*terms.diagK;
% get diagonal elements
diagidx = 1:(size(Gauss.auxK,1)+1):numel(Gauss.auxK);
Gauss.auxK(diagidx) = Gauss.auxK(diagidx) + const*terms.auxK';
|
github
|
lcnbeapp/beapp-master
|
LinRegLaplaceEP.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/bayesianlogreg/LinRegLaplaceEP.m
| 16,909 |
utf_8
|
1182837ca7d49d2ab0cd9588f826fffb
|
function [Gauss,terms,logp,EP_ERR,logphist] = LinRegLaplaceEP(y,X,K,sig2,varargin)
% specialized version of our fast variant of
% Expectation Propagation for Logistic Regression (2 classes) with a (correlated) Laplace prior
% in the degenerate case, i.e., when the number of features >> number of samples
% (also works when number of samples > number of features, but then less stable!!!)
%
% input:
% labels = an N x 1 vector of class labels [1,2]
% examples = an N x M matrix of input data
% K = the prior precision matrix of size M x M
%
% Note: the bias term should be explicitly added to K and the examples!
%
% regression parameters refers to betas
% auxiliary variables refers to u and v whose precision matrix auxK = inv(Lambda) couples the features.
%
% we have a precision matrix of the form
%
% | K_beta |
% | K_u |
% | K_v |
%
% priorGauss: struct with fields
%
% hatK diagonal of precision matrix (number of samples x 1);
% (initially zero)
% diagK diagonal of precision matrix (number of features x 1)
% (initially zero)
%
% precision matrix of regression parameters K_beta = A' hatK A + diagK
%
% h canonical mean (number of features x 1)
% (initially zero)
%
% auxK precision matrix of auxiliary variables (number of features x number of features; sparse)
% (contains the covariance structure of interest)
%
% A feature matrix (number of samples x number of features)
%
% terms: struct with fields
%
% hatK as priorGauss
% diagK as priorGauss
% hath canonical mean (number of samples x 1)
% h canonical mean (number of features x 1)
% canonical mean of regression parameters = h + A' hath
% auxK as priorGauss, but then only diagonal elements (number of features x 1)
%
% opt: struct with fields (all optional, defaults in brackets)
%
% maxstepsize maximum step size [1]
% fraction fraction or power for fractional/power EP [1]
% niter maximum number of iterations [100]
% tol convergence criterion [1e-5]
% nweights number of points for numerical integration [20]
% temperature temperature for simulated annealing [1]
%
% Gauss: struct with fields as in priorGauss plus
%
% hatB diagonal of projected covariance (number of samples x 1)
% hatB = A Covariance A'
% hatn projected mean (number of samples x 1)
% hatn = A m
% diagC diagonal of covariance matrix of regression parameters (number of features x 1)
% auxC diagonal of covariance matrix of auxiliary variables (number of features x 1)
%
%
% logp: estimated marginal loglikelihood (implementation doubtful...)
%
% comptime: computation time
fprintf('starting EP\n');
EP_ERR = 0;
tic
%% initialization
% parse opt
%disp(varargin{:})
%length(varargin{:})
opt = [];
for i=1:2:(length(varargin)-1)
opt.(varargin{i}) = varargin{i+1};
end
if ~isfield(opt,'maxstepsize'), opt.maxstepsize = 1; end
if ~isfield(opt,'fraction'), opt.fraction = 0.95; end
if ~isfield(opt,'niter'), opt.niter = 1000; end
if ~isfield(opt,'tol'), opt.tol = 1e-5; end
if ~isfield(opt,'nweights'), opt.nweights = 50; end
if ~isfield(opt,'temperature'), opt.temperature = 1; end
if ~isfield(opt,'lambda'), opt.lambda = 1; end
stepsize = opt.maxstepsize;
[nobs,nfeatures] = size(X);
%% create priorGauss and terms
% construct Gaussian representation
v = 1./sig2;
priorGauss.A = X;
priorGauss.hatK = v*ones(nobs,1);
priorGauss.h = v*X'*y;
priorGauss.diagK = zeros(nfeatures,1);
priorGauss.auxK = K;
% compute the additional terms coming form the prior for the evidence
cholK = chol(priorGauss.auxK,'lower');
LogPriorRestAux2 = (2*sum(log(full(diag(cholK))))-nfeatures*log(2*pi)); % no half because we need it two times
LogPriorRestLL = 0.5*(-v*y'*y - nobs*log(2*pi) + nobs*log(v) );
% construct term representation
%terms.hatK = zeros(nobs,1);
%terms.hath = zeros(nobs,1);
terms.diagK = ones(nfeatures,1)*opt.lambda/10;
terms.auxK = zeros(nfeatures,1);
terms.h = zeros(nfeatures,1);
%% precompute points and weights for numerical integration
[xhermite,whermite] = gausshermite(opt.nweights);
xhermite = xhermite(:); % nhermite x 1
whermite = whermite(:); % nhermite x 1
[xlaguerre,wlaguerre] = gausslaguerre(opt.nweights);
xlaguerre = xlaguerre(:); % nlaguerre x 1
wlaguerre = wlaguerre(:); % nlaguerre x 1
% divide all canonical parameters by the temperature
if opt.temperature ~= 1,
[priorGauss,terms] = correct_for_temperature(priorGauss,terms,opt.temperature);
end
%% build initial Gauss
Gauss = update_Gauss(priorGauss,terms);
Gauss = canonical_to_moments(Gauss);
[myGauss,ok] = project_all(Gauss,terms,opt.fraction);
if ~ok,
error('improper cavity distributions\n');
end
%% enter the iterations
logp = 0;
logpold = 2*opt.tol;
change = 0;
teller = 0;
logphist = zeros(1,opt.niter);
while abs(logp-logpold) > stepsize*opt.tol && teller < opt.niter,
teller = teller+1;
logpold = logp;
oldchange = change;
% compute the new term approximation by applying an adf update on all the cavity approximations
[fullterms,crosslogz] = ...
adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,opt.fraction,opt.temperature);
ok = 0;
ok1 = 1;
ok2 = 1;
while ~ok,
% try to replace the old term approximations by the new term approximations and check whether the new Gauss is still fine
% !!! THIS IS THE ORIGINAL LINE !!!
% [newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,stepsize);
% you might use this instead - sometimes it works better
[newGauss,newterms,ok1] = try_update(Gauss,fullterms,terms,0.1);
if ok1,
% compute all cavity approximations needed for the next EP updates and check whether they are all fine
[newGauss,myGauss,logZappx,ok2] = try_project(newGauss,newterms,opt.fraction);
end
ok = (ok1 & ok2);
if ok, % accept
terms = newterms;
Gauss = newGauss;
stepsize = min(opt.maxstepsize,stepsize*1.9);
else % try with smaller stepsize
stepsize = stepsize/2;
if ~ok1,
fprintf('improper full covariance: lowering stepsize to %g\n',stepsize');
elseif ~ok2,
fprintf('improper cavity covariance: lowering stepsize to %g\n',stepsize');
end
if stepsize < 1e-10,
warning('Cannot find an update that leads to proper cavity approximations.');
EP_ERR = 1;
teller = opt.niter;
break;
end
end
end
% compute marginal moments
if ok,
% compute marginal loglikelihood
%logp = sum(crosslogz) + logdet/2 + rest
CorrTerm1 = (myGauss.m.^2)./myGauss.diagC + log(full(myGauss.diagC)) - (newGauss.m.^2)./newGauss.diagC - log(full(newGauss.diagC));
CorrTerm2 = log(myGauss.auxC) - log(newGauss.auxC);
CorrTerm = 0.5*CorrTerm1 + 0.5*(CorrTerm2 + CorrTerm2);
logp = sum(crosslogz + CorrTerm)./opt.fraction + logZappx + (LogPriorRestLL + LogPriorRestAux2);
logphist(teller) = logp;
% don't trust the calculation anyway, in particular for fractional updates...
fprintf('%d: %g (stepsize: %g)\n',teller,logp,stepsize);
% check whether marginal loglikelihood is going up and down, if so, lower stepsize
change = logp-logpold;
if change*oldchange < 0, % possibly cycling
stepsize = stepsize/2;
end
oldchange = change;
end
end
if teller == opt.niter
EP_ERR = 2;
warning('Maximum number of iterations exceeded!\n');
end
logphist = logphist(1:teller);
comptime = toc;
fprintf('EP finished in %s seconds with EP_ERR=%d \n',num2str(comptime),EP_ERR);
%%% END MAIN
%%%%%%%%%
%
% compute the cavity approximations that result when subtracting a fraction of the term approximations
function [myGauss,ok] = project_all(Gauss,terms,fraction)
if nargin < 3,
fraction = 1;
end
% take out and project in moment form
% (2) cross terms between regression parameters and auxiliary parameters
[myGauss.diagC,myGauss.m] = ...
rank_one_update(Gauss.diagC,Gauss.m,-fraction*terms.diagK,-fraction*terms.h);
myGauss.auxC = rank_one_update(Gauss.auxC,[],-fraction*terms.auxK);
% check whether all precision matrices are strictly positive definite
if nargout > 1,
ok = (all(myGauss.diagC > 0) & all(myGauss.auxC > 0));
end
%%%%%%%%%
%
% compute the new term approximation by applying an adf update on all the cavity approximations
function [fullterms,crosslogz] = ...
adfupdate_all(myGauss,terms,xhermite,whermite,xlaguerre,wlaguerre,fraction,temperature)
if nargin < 8,
temperature = 1;
end
if nargin < 7,
fraction = 1;
end
%% (2) cross terms between regression parameters and auxiliary variables
oldm = myGauss.m;
oldC = myGauss.diagC;
oldlambda = myGauss.auxC;
nfeatures = length(oldm);
nlaguerre = length(wlaguerre);
% this part heavily relies on the accompanying note
% basic idea:
% - the cavity approximation on U is an exponential distribution
% - we have analytical formulas for the moments of x conditioned upon U
% - marginal moments can then be computed through numerical integration with Gauss-Laguerre
% translate and scale the sample points to get the correct mean
U = 2*oldlambda*xlaguerre'; % nfeatures x nlaguerre
mm = repmat(oldm,1,nlaguerre);
CC = repmat(oldC,1,nlaguerre);
% compute the partition function (integral over x) given U and turn this into weights required for computing the marginal moments
g = (1-fraction)*log(U)/2 - fraction*mm.^2./(U + fraction*CC)/2 - log(U+ fraction*CC)/2 - (1+2*fraction)*log(2*pi)/2;
g = g + log(repmat(wlaguerre',nfeatures,1));
maxg = max(g,[],2);
g = g-repmat(maxg,1,nlaguerre);
expg = exp(g);
denominator = sum(expg,2);
neww = expg./repmat(denominator,1,nlaguerre);
% compute the marginal moments through numerical integration
ExgU = mm.*U./(U + fraction*CC);
Ex = sum(ExgU.*neww,2);
ExxgU = ExgU.^2 + CC.*U./(U+fraction*CC);
Exx = sum(ExxgU.*neww,2);
EU = sum(U.*neww,2);
newm = Ex;
newC = Exx-Ex.^2;
newlambda = EU/2;
% derive the term approximation from the change in mean and variance
[fullterms.diagK,fullterms.h,logzextra1] = ...
compute_termproxy(newC,newm,oldC,oldm,fraction);
% same for the auxiliary variables, where we note that the mean will always be zero
[fullterms.auxK,dummy,logzextra2] = ...
compute_termproxy(newlambda,zeros(nfeatures,1),oldlambda,zeros(nfeatures,1),fraction);
%crosslogz = maxg + log(denominator) + logzextra1 + (logzextra2 + logzextra2);
crosslogz = maxg + log(denominator);
%%%%%%%%%%
%
% compute the moments corresponding to the canonical parameters
function [Gauss,logp] = canonical_to_moments(Gauss)
[nsamples,nfeatures] = size(Gauss.A);
%% (1) regression parameters
if nsamples > nfeatures, % in the non-degenerate case, this direct route is more stable and faster
scaledA = Gauss.A.*(repmat(Gauss.hatK,1,nfeatures));
K = Gauss.A'*scaledA + diag(Gauss.diagK);
[C,logdet1] = invert_chol(K);
Gauss.m = C*Gauss.h;
Gauss.diagC = diag(C);
else
% this part heavily relies on the appendix of the accompanying note
% basic idea:
% - the precision matrix K is of the form A' hatK A + diagK, where both hatK and diagK are diagonal matrices
% - apply Woodbury's formula to replace inverting an (nfeat x nfeat) matrix by an (nsample x nsample) alternative
% - projections of the covariance matrix and the mean onto the feature matrix then follow immediately
scaledA = Gauss.A./(repmat(Gauss.diagK',nsamples,1));
W = Gauss.A*scaledA';
W = (W + W')/2; % make symmetric
[Q,logdet1] = invert_chol(diag(1./Gauss.hatK) + W);
logdet1 = logdet1 + sum(log(Gauss.diagK)) + sum(log(Gauss.hatK));
Gauss.diagC = 1./Gauss.diagK;
for i=1:nfeatures,
Gauss.diagC(i) = Gauss.diagC(i) - scaledA(:,i)'*Q*scaledA(:,i);
end
Gauss.m = Gauss.h./Gauss.diagK - scaledA'*(Q*(scaledA*Gauss.h));
end
Gauss.hatn = Gauss.A*Gauss.m;
qterm = sum(Gauss.m .* Gauss.diagK .* Gauss.m); % = m' * diagK * m
qterm = qterm + sum(Gauss.hatn .* Gauss.hatK .* Gauss.hatn); % = m'*A'*K_hat*A*m
logp1 = 0.5*(qterm - logdet1);
%% (2) auxiliary variables; i.e., wrt scale mixture representation of
% Laplace prior
% this is (by far) the most expensive step when nsamples << nfeatures
% and the precision matrix of the auxiliary variables is non-diagonal
[auxC,logdet2] = invert_chol(Gauss.auxK); % only need diagonal terms
Gauss.auxC = full(diag(auxC)); % turn into full vector
logp2 = 0.5*( - logdet2);
logp = logp1 + 2*logp2;
%%%%%%%%%%
%
% take out the old term proxies and add the new termproxies and check whether the resulting Gaussian is still normalizable
function [newGauss,newterms,ok] = try_update(Gauss,fullterms,terms,stepsize)
if nargin < 4,
stepsize = 1;
end
% take out the old term proxies
newGauss = update_Gauss(Gauss,terms,-1);
% compute the new term proxies as a weighted combi of the old ones and the "full" (stepsize 1) term proxies
newterms = combine_terms(fullterms,terms,stepsize);
% add the new term proxies
newGauss = update_Gauss(newGauss,newterms,1);
[L,check] = chol(newGauss.auxK,'lower'); % check whether full covariance matrix is ok
% note that this is bit inefficient, since we redo the Cholesky later when everything is fine
ok = (check == 0 & all(newGauss.hatK > 0) & all(newGauss.diagK > 0)); % perhaps a bit too strong???
%%%%%%%%%%%%
%
% compute the moment form of the current Gauss and all cavity approximations and check whether they are fine
function [Gauss,myGauss,logdet,ok] = try_project(Gauss,terms,fraction)
if nargin < 3,
fraction = 1;
end
[Gauss,logdet] = canonical_to_moments(Gauss);
[myGauss,ok] = project_all(Gauss,terms,fraction);
%%%%%%%%%%
%
% if we use a temperature < 1, to get closer to the MAP solution, we have to change the prior and initial term proxies accordingly
function [Gauss,terms] = correct_for_temperature(Gauss,terms,temperature)
% note: choose temperature small to implement MAP-like behavior
Gauss.hatK = Gauss.hatK/temperature;
Gauss.h = Gauss.h/temperature;
Gauss.auxK = Gauss.auxK/temperature;
Gauss.diagK = Gauss.diagK/temperature;
% terms.hatK = terms.hatK/temperature;
% terms.hath = terms.hath/temperature;
terms.diagK = terms.diagK/temperature;
terms.auxK = terms.auxK/temperature;
terms.h = terms.h/temperature;
%%%%%%%%%%
%
% invert a positive definite matrix using Cholesky factorization
function [invA,logdet] = invert_chol(A)
[L,CHOL_ERR,S] = chol(sparse(A),'lower'); % now A = S*(L*L')*S' and (L*L') = S'*A*S
if CHOL_ERR
error('Matrix not p.d.!');
end
invA = fastinvc(L);
invA = S*invA*S';
if nargout > 1,
logdet = 2*sum(log(full(diag(L))));
end
%%%%%%%%%%
%
% compute the term proxy when [oldC,oldm] changes to [newC,newm]
function [K,h,logz] = compute_termproxy(newC,newm,oldC,oldm,fraction)
if nargin < 5,
fraction = 1;
end
K = (1./newC - 1./oldC)/fraction;
h = (newm./newC - oldm./oldC)/fraction;
logz = - log(newC./oldC)/2 + oldm.^2./oldC/2 - newm.^2./newC/2;
%%%%%%%%%%
%
% Sherman-Morrison formula to compute the change from [oldC,oldm] to [newC,newm] when we add [K,h] to the corresponding canonical parameters
function [newC,newm] = rank_one_update(oldC,oldm,K,h)
dummy = K.*oldC;
oneminusdelta = 1./(1+dummy);
newC = oneminusdelta.*oldC;
if nargout > 1,
newm = oneminusdelta.*(oldm + h.*oldC);
end
%%%%%%%%%%%
%
% general procedure for a weighted combi of the fields of two structures
function terms = combine_terms(terms1,terms2,stepsize)
names1 = fieldnames(terms1);
names2 = fieldnames(terms2);
names = intersect(names1,names2);
terms = struct;
for i=1:length(names)
terms.(names{i}) = stepsize*terms1.(names{i}) + (1-stepsize)*terms2.(names{i});
end
%%%%%%%%%%%
%
% updates the Gaussian representation with new term proxies
function Gauss = update_Gauss(Gauss,terms,const)
if nargin < 3,
const = 1;
end
Gauss.h = Gauss.h + const*terms.h;
Gauss.diagK = Gauss.diagK + const*terms.diagK;
% get diagonal elements
diagidx = 1:(size(Gauss.auxK,1)+1):numel(Gauss.auxK);
Gauss.auxK(diagidx) = Gauss.auxK(diagidx) + const*terms.auxK';
|
github
|
lcnbeapp/beapp-master
|
elasticlin.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/elasticnet/elasticlin.m
| 4,041 |
utf_8
|
5795b073168c65dbf9bb3d3425e075f4
|
function [beta,beta0,conv] = elasticlin(X,Y,nu,lambda,options,beta,beta0)
% ELASTICLIN Elastic net implementation using coordinate descent,
% particularly suited for sparse high-dimensional models
% X: ninput x nsamples input data
% Y: 1 x nsamples output data
% nu: ninput x 1 weights for L1 penalty
% lambda: ninput x ninput matrix for ridge penalty
% options: struct with fields
% offset: 1 if offset is learned as well [1]
% maxiter: maximum number of iterations [10000]
% tol: tolerance (mean absolute difference) [1e-6]
% beta: initial beta
% beta0: initial offset
%
% beta: ninput x 1 vector
% beta0: offset ([] if not applicable)
% conv: convergence
% Parsing inputs
if nargin < 5,
options = make_options;
else
options = make_options(options);
end
[ninput,nsamples] = size(X);
if nargin < 4,
lambda = 1;
end
if isscalar(lambda),
lambda = lambda*ones(ninput,1);
end
if any(size(lambda) == 1),
lambda = diag(lambda);
end
if nargin < 3,
nu = 1;
end
if isscalar(nu),
nu = nu*ones(ninput,1);
end
% Incorporating bias
nvar = ninput;
if options.offset,
X = [X;ones(1,nsamples)]; % expand data with 1
nvar = nvar+1;
lambda(nvar,nvar) = 0;
nu = [nu;0]; % expand nu with 0 (no regularization)
end
% Initialization
if nargin < 7,
if options.offset,
beta0 = 0;
else
beta0 = [];
end
end
if nargin < 6,
beta = zeros(ninput,1);
end
beta = [beta;beta0];
% numerator of 10
T = X*Y'/nsamples; % nvar x 1
Q = zeros(nvar,nvar);
qcomputed = zeros(nvar,1);
activeset = (beta ~= 0);
qcomputed(activeset) = 1;
Q(:,activeset) = X*X(activeset,:)'/nsamples + lambda(:,activeset); % precompute Q for nonzero beta
Q(diag(activeset)) = 0;
V = T-Q*beta;
% denominator of Eq. 10 for nonstandardized variables
U = diag(lambda) + mean(X.^2,2);
% Start iterations
betaold = beta;
iter = 0;
activeset = true(1,nvar);
conv = zeros(options.maxiter,1);
while true
iter = iter+1;
% one full pass with all variables and then only with active set
activeset = coorddescent(activeset);
% fprintf('iteration %d of %d: %g\n',iter,options.maxiter,sum(abs(beta-betaold)));
conv(iter) = sum(abs(beta-betaold));
if iter==options.maxiter, break; end
if sum(abs(beta-betaold)) < options.tol
% again one full pass with all variables
oldset = activeset;
activeset = coorddescent(true(1,nvar));
% if the active sets are the same we are done; otherwise continue
if all(oldset==activeset)
break;
end
end
betaold = beta;
end
if iter == options.maxiter,
fprintf(' be careful: maximum number of iterations reached\n');
end
% Parsing output
if nargout > 1,
if options.offset,
beta0 = beta(end);
beta = beta(1:ninput);
else
beta0 = [];
end
end
function newset = coorddescent(activeset)
beta(activeset) = 0;
newset = false(1,nvar);
for i=fliplr(find(activeset)) % run over weights and start with offset, if applicable
if abs(V(i)) > nu(i) % active
if V(i) > 0,
beta(i) = (V(i) - nu(i))/U(i);
else
beta(i) = (V(i) + nu(i))/U(i);
end
newset(i) = 1;
end
if beta(i) ~= betaold(i)
if ~qcomputed(i), % compute Q when needed
Q(:,i) = X*X(i,:)'/nsamples + lambda(:,i);
Q(i,i) = 0;
qcomputed(i) = 1;
end
V = V - Q(:,i)*(beta(i) - betaold(i));
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%
function options = make_options(options)
if nargin < 1,
options = struct;
end
fnames = {'offset','maxiter','tol'};
defaults = {1,1e4,1e-3};
for i=1:length(fnames),
if ~isfield(options,fnames{i}),
options = setfield(options,fnames{i},defaults{i});
end
end
end
|
github
|
lcnbeapp/beapp-master
|
elasticlog.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/elasticnet/elasticlog.m
| 4,626 |
utf_8
|
1515764e86a85226867842c7a06c18d0
|
function [beta,beta0,conv] = elasticlog(X,Y,nu,lambda,options,beta,beta0)
% ELASTICLOG Elastic net implementation using coordinate descent,
% particularly suited for sparse high-dimensional models
% X: ninput x nsamples input data
% Y: 1 x nsamples output data (class labels 0 and 1)
% nu: ninput x 1 weights for L1 penalty
% lambda: ninput x ninput matrix for ridge penalty
% options: struct with fields
% offset: 1 if offset is learned as well [1]
% maxiter: maximum number of iterations [10000]
% tol: tolerance (mean absolute difference) [1e-6]
% beta: initial beta
% beta0: initial offset
%
% beta: ninput x 1 vector
% beta0: offset ([] if not applicable)
% conv: convergence
% Parsing inputs
if nargin < 5,
options = make_options;
else
options = make_options(options);
end
[ninput,nsamples] = size(X);
if nargin < 4,
lambda = 1;
end
if isscalar(lambda),
lambda = lambda*ones(ninput,1);
end
if any(size(lambda) == 1),
lambda = diag(lambda);
end
if nargin < 3,
nu = 1;
end
if isscalar(nu),
nu = nu*ones(ninput,1);
end
% Incorporating bias
nvar = ninput;
if options.offset,
X = [X;ones(1,nsamples)]; % expand data with 1
nvar = nvar+1;
lambda(nvar,nvar) = 0;
nu = [nu;0]; % expand nu with 0 (no regularization)
end
% Initialization
if nargin < 7,
if options.offset,
beta0 = 0;
else
beta0 = [];
end
end
if nargin < 6
beta = zeros(ninput,1);
end
beta = [beta; beta0];
% start iterations
V = []; U = []; qcomputed = []; w = []; Q=[];
betaold = beta;
iter = 0;
activeset = true(1,nvar);
conv = zeros(options.maxiter,1);
while true
iter = iter+1;
quadratic_approximation();
% one full pass with all variables and then only with active set
activeset = coorddescent(activeset);
% fprintf('iteration %d of %d: %g\n',iter,options.maxiter,sum(abs(beta-betaold)));
conv(iter) = sum(abs(beta-betaold));
if iter==options.maxiter, break; end
if sum(abs(beta-betaold)) < options.tol
quadratic_approximation();
% again one full pass with all variables
oldset = activeset;
activeset = coorddescent(true(1,nvar));
% if the active sets are the same we are done; otherwise continue
if all(oldset==activeset)
break;
end
end
betaold = beta;
end
if iter == options.maxiter,
fprintf(' be careful: maximum number of iterations reached\n');
end
% Parsing output
if nargout > 1,
if options.offset,
beta0 = beta(end);
beta = beta(1:ninput);
else
beta0 = [];
end
end
function newset = coorddescent(activeset)
beta(activeset) = 0;
newset = false(1,nvar);
for i=fliplr(find(activeset)) % run over weights and start with offset, if applicable
if abs(V(i)) > nu(i) % active
if V(i) > 0,
beta(i) = (V(i) - nu(i))/U(i); % z - gamma of soft thresholding
else
beta(i) = (V(i) + nu(i))/U(i); % z + gamma of soft thresholding
end
newset(i) = 1;
end
if beta(i) ~= betaold(i)
if ~qcomputed(i), % compute Q when needed
Q(:,i) = bsxfun(@times,X,w)*X(i,:)' + lambda(:,i);
Q(i,i) = 0;
qcomputed(i) = 1;
end
V = V - Q(:,i)*(beta(i) - betaold(i));
end
end
end
function quadratic_approximation()
ptild=1./(1+exp(- beta'*X)); % ntrials x 1
ptild(ptild<1e-5)=0;
ptild(ptild>0.99999)=1;
w=ptild.*(1-ptild); % ntrials x 1 weights (17)
w(w==0)=1e-5;
Z = beta'*X + (Y-ptild)./w; % working response (16)
% numerator of 10; needs updating after each change in w
T = bsxfun(@times,X,w)*Z'; % nvar x 1
Q = zeros(nvar,nvar);
qcomputed = zeros(nvar,1);
activeset = (beta ~= 0)';
qcomputed(activeset) = 1;
Q(:,activeset) = bsxfun(@times,X,w)*X(activeset,:)' + lambda(:,activeset); % precompute Q for nonzero beta
Q(diag(activeset)) = 0;
V = T-Q*beta;
% denominator of Eq. 10; needs updating after each change in w
U = diag(lambda) + X.^2 * w';
end
end
%%%%%%%%%%%%%%%%%%%%%%%
function options = make_options(options)
if nargin < 1,
options = struct;
end
fnames = {'offset','maxiter','tol'};
defaults = {1,1e4,1e-6};
for i=1:length(fnames),
if ~isfield(options,fnames{i}),
options = setfield(options,fnames{i},defaults{i});
end
end
end
|
github
|
lcnbeapp/beapp-master
|
bls.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/pls/bls.m
| 2,337 |
utf_8
|
9e3e3838737dacc7f5b2dace9b43e117
|
function [A,B,Ypredict] = bls(X,Y,nhidden,algorithm)
% BLS Bottleneck least squares aka sparse orthogonalized least squares
%
% X: ninput x nsamples input data matrix
% Y: noutput x nsamples output data matrix
% nhidden: dimension of hidden
%
% A: noutput x nhidden weight matrix
% B: ninput x nhidden weight matrix
if nargin < 3,
nhidden = min(size(Y,1),2);
end
if nargin < 4,
algorithm = 'direct';
end
[ninput,nsamples] = size(X);
Sxx = symmetric(X*X')/nsamples;
switch algorithm
case 'direct'
Syx = Y*X'/nsamples;
Sxy = Syx';
Sxxinv = symmetric(pinv(Sxx));
S = symmetric(Syx * Sxxinv * Sxy);
opts.disp = 0;
opts.issym = 'true';
[A,D] = eigs(S,nhidden,'LM',opts); % first nhidden eigenvectors of S
B = Sxxinv*Sxy*A;
case 'indirect' % same result and subspace as 'direct', but then different linear combination
Syx = Y*X'/nsamples;
Sxy = Syx';
Sxxinv = symmetric(pinv(Sxx));
% initialize randomly
B = randn(ninput,nhidden);
iter = 0;
maxiter = 1000;
tol = nhidden*ninput*(1e-10);
Bold = B;
while iter < maxiter,
Z = B'*X;
% Szz = symmetric(Z*Z')/nsamples;
Szz = symmetric(B'*Sxx*B);
% Syz = symmetric(Y*Z')/nsamples;
Syz = Syx*B;
A = Syz*pinv(Szz);
B = Sxxinv*Sxy*A*pinv(A'*A);
if sumsqr(B - Bold) < tol,
fprintf('done after %d iterations!!\n',iter+1);
iter = maxiter;
else
iter = iter + 1;
Bold = B;
end
end
case 'sequential' % same result as 'direct', up to minus sign per hidden unit
R = Y;
noutput = size(Y,1);
A = zeros(noutput,nhidden);
B = zeros(ninput,nhidden);
for i=1:nhidden,
[A(:,i),B(:,i)] = bls(X,R,1,'direct');
if i < nhidden,
R = R - A(:,i)*B(:,i)'*X;
end
end
end
% transform to make latent variable orthonormal
Szz = symmetric(B'*Sxx*B);
Szzinv = symmetric(pinv(Szz));
sqrtSzzinv = chol(Szzinv(end:-1:1,end:-1:1)); % such that the rescaled B(i,:) is a linear combi of the unscaled B(1:i,:); this only makes sense for the direct method
sqrtSzzinv = sqrtSzzinv(end:-1:1,end:-1:1);
B = B*sqrtSzzinv;
A = A*pinv(sqrtSzzinv);
if nargout > 2,
Ypredict = A*B'*X;
end
function A = symmetric(A)
A = (A+A')/2;
|
github
|
lcnbeapp/beapp-master
|
elastic.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/pls/elastic.m
| 3,250 |
utf_8
|
0a8ac22b23d8aab23f77c4e49a0644a4
|
function [beta,beta0] = elastic(X,Y,nu,lambda,options,beta,beta0)
% ELASTICNET Elastic net implementation using coordinate descent,
% particularly suited for sparse high-dimensional models
% X: ninput x nsamples input data
% Y: 1 x nsamples output data
% nu: ninput x 1 weights for L1 penalty
% lambda: ninput x ninput matrix for ridge penalty
% options: struct with fields
% offset: 1 if offset is learned as well [1]
% maxiter: maximum number of iterations [10000]
% tol: tolerance (mean absolute difference) [1e-6]
% beta: initial beta
% beta0: initial offset
%
% beta: ninput x 1 vector
% beta0: offset ([] if not applicable)
% Parsing inputs
if nargin < 5,
options = make_options;
else
options = make_options(options);
end
[ninput,nsamples] = size(X);
if nargin < 4,
lambda = 1;
end
if isscalar(lambda),
lambda = lambda*ones(ninput,1);
end
if any(size(lambda) == 1),
lambda = diag(lambda);
end
if nargin < 3,
nu = 1;
end
if isscalar(nu),
nu = nu*ones(ninput,1);
end
% Incorporating bias
nvar = ninput;
if options.offset,
X = [X;ones(1,nsamples)]; % expand data with 1
nvar = nvar+1;
lambda(nvar,nvar) = 0;
nu = [nu;0]; % expand nu with 0 (no regularization)
end
% Initialization
T = X*Y'/nsamples; % nvar x 1
U = diag(lambda) + mean(X.^2,2);
if nargin < 7,
if options.offset,
beta0 = 0;
else
beta0 = [];
end
end
if nargin < 6,
beta = zeros(ninput,1);
end
beta = [beta;beta0];
Q = zeros(nvar,nvar);
qcomputed = zeros(nvar,1);
active = find(beta);
qcomputed(active) = 1;
Q(:,active) = X*X(active,:)'/nsamples + lambda(:,active); % precompute Q for nonzero beta
for i=1:length(active),
Q(active(i),active(i)) = 0; % zero on diagonal
end
V = T-Q*beta;
% Start iterations
betaold = beta;
iter = 0;
done = 0;
while ~done,
iter = iter+1;
for i=nvar:-1:1, % run over weights and start with offset, if applicable
if abs(V(i)) <= nu(i), % inactive
beta(i) = 0;
else % active
if V(i) > 0,
beta(i) = (V(i) - nu(i))/U(i);
else
beta(i) = (V(i) + nu(i))/U(i);
end
end
if beta(i) ~= betaold(i)
if ~qcomputed(i), % compute Q when needed
Q(:,i) = X*X(i,:)'/nsamples + lambda(:,i);
Q(i,i) = 0;
qcomputed(i) = 1;
end
V = V - Q(:,i)*(beta(i) - betaold(i));
end
end
done = (iter == options.maxiter | sum(abs(beta-betaold)) < options.tol);
betaold = beta;
end
if iter == options.maxiter,
fprintf(' be careful: maximum number of iterations reached\n');
end
% Parsing output
if nargout > 1,
if options.offset,
beta0 = beta(end);
beta = beta(1:ninput);
else
beta0 = [];
end
end
%%%%%%%%%%%%%%%%%%%%%%%
function options = make_options(options)
if nargin < 1,
options = struct;
end
fnames = {'offset','maxiter','tol'};
defaults = {1,1e4,1e-3};
for i=1:length(fnames),
if ~isfield(options,fnames{i}),
options = setfield(options,fnames{i},defaults{i});
end
end
|
github
|
lcnbeapp/beapp-master
|
opls.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/pls/opls.m
| 2,338 |
utf_8
|
413ad9957ca8651409ebf4479f96f580
|
function [A,B,Ypredict] = opls(X,Y,nhidden,algorithm)
% BLS Bottleneck least squares aka sparse orthogonalized least squares
%
% X: ninput x nsamples input data matrix
% Y: noutput x nsamples output data matrix
% nhidden: dimension of hidden
%
% A: noutput x nhidden weight matrix
% B: ninput x nhidden weight matrix
if nargin < 3,
nhidden = min(size(Y,1),2);
end
if nargin < 4,
algorithm = 'direct';
end
[ninput,nsamples] = size(X);
Sxx = symmetric(X*X')/nsamples;
switch algorithm
case 'direct'
Syx = Y*X'/nsamples;
Sxy = Syx';
Sxxinv = symmetric(pinv(Sxx));
S = symmetric(Syx * Sxxinv * Sxy);
opts.disp = 0;
opts.issym = 'true';
[A,D] = eigs(S,nhidden,'LM',opts); % first nhidden eigenvectors of S
B = Sxxinv*Sxy*A;
case 'indirect' % same result and subspace as 'direct', but then different linear combination
Syx = Y*X'/nsamples;
Sxy = Syx';
Sxxinv = symmetric(pinv(Sxx));
% initialize randomly
B = randn(ninput,nhidden);
iter = 0;
maxiter = 1000;
tol = nhidden*ninput*(1e-10);
Bold = B;
while iter < maxiter,
Z = B'*X;
% Szz = symmetric(Z*Z')/nsamples;
Szz = symmetric(B'*Sxx*B);
% Syz = symmetric(Y*Z')/nsamples;
Syz = Syx*B;
A = Syz*pinv(Szz);
B = Sxxinv*Sxy*A*pinv(A'*A);
if sumsqr(B - Bold) < tol,
fprintf('done after %d iterations!!\n',iter+1);
iter = maxiter;
else
iter = iter + 1;
Bold = B;
end
end
case 'sequential' % same result as 'direct', up to minus sign per hidden unit
R = Y;
noutput = size(Y,1);
A = zeros(noutput,nhidden);
B = zeros(ninput,nhidden);
for i=1:nhidden,
[A(:,i),B(:,i)] = bls(X,R,1,'direct');
if i < nhidden,
R = R - A(:,i)*B(:,i)'*X;
end
end
end
% transform to make latent variable orthonormal
Szz = symmetric(B'*Sxx*B);
Szzinv = symmetric(pinv(Szz));
sqrtSzzinv = chol(Szzinv(end:-1:1,end:-1:1)); % such that the rescaled B(i,:) is a linear combi of the unscaled B(1:i,:); this only makes sense for the direct method
sqrtSzzinv = sqrtSzzinv(end:-1:1,end:-1:1);
B = B*sqrtSzzinv;
A = A*pinv(sqrtSzzinv);
if nargout > 2,
Ypredict = A*B'*X;
end
function A = symmetric(A)
A = (A+A')/2;
|
github
|
lcnbeapp/beapp-master
|
dvComp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/svm/dvComp.m
| 1,449 |
utf_8
|
935cb0c3970f3d1dbfa2c2a9c2d9d6c6
|
function [dv]=dvComp(Xtst,Xtrn,kernel,alphab,varargin)
% Compute the decision values for a kernel classifier
%
% [dv]=dvComp(Xtst,kernel,Xtrn,alphab,...)
%
% dv = K(Xtrn,Xtst)*alphab(1:end-1)+alphab(end)
%
% Inputs:
% Xtst -- [N x d] test set
% Xtrn -- [Ntrn x d] training set
% kernel -- the kernel function *as used in training*,
% will be passed to compKernel
% alphab -- [Ntrn+1 x 1] set of decision function parameters [alpha;b]
% ... -- additional parameters to pass to compKernel
%
% Outputs:
% dv -- [N x 1] decision values
%
% Copyright 2006- by Jason D.R. Farquhar ([email protected])
% Permission is granted for anyone to copy, use, or modify this
% software and accompanying documents for any uncommercial
% purposes, provided this copyright notice is retained, and note is
% made of any changes that have been made. This software and
% documents are distributed without any warranty, express or
% implied
K = compKernel(Xtst,Xtrn,kernel,varargin{:});
dv = K*alphab(1:end-1)+alphab(end);
return;
%----------------------------------------------------------
function testCase()
[X,Y]=mkMultiClassTst([-1 0; 1 0; .2 .5],[400 400 50],[.3 .3; .3 .3; .2 .2],[],[-1 1 1]);[dim,N]=size(X);
trnInd = randn(N,1)>0;
K=compKernel(X(:,trnInd)',[],'nlinear');
[alphab,f,J]=rkls(K,Y(trnInd),1);
dv = dvComp(X(:,trnInd)',[],'nlinear',alphab);
max(abs(dv-f))
dv = dvComp(X(:,~trnInd)',X(:,trnInd)','nlinear',alphab);
|
github
|
lcnbeapp/beapp-master
|
l2svm_cg.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/svm/l2svm_cg.m
| 15,343 |
utf_8
|
9d8b76e63b49da516da17d4dfcc04574
|
function [wb,f,J,obj]=l2svm_cg(K,Y,C,varargin);
% [alphab,f,J]=l2svm(K,Y,C,varargin)
% Quadratic Loss Support Vector machine using a pre-conditioned conjugate
% gradient solver so extends to large input kernels.
%
% J = C(1) w' K w + sum_i max(0 , 1 - y_i ( w'*K_i + b ) ).^2
%
% Inputs:
% K - [NxN] kernel matrix
% Y - [Nx1] matrix of -1/0/+1 labels, (0 label pts are implicitly ignored)
% C - the regularisation parameter, roughly max allowed length of the weight vector
% good default is: .1*var(data) = .1*(mean(diag(K))-mean(K(:))))
%
% Outputs:
% alphab - [(N+1)x1] matrix of the kernel weights and the bias [alpha;b]
% f - [Nx1] vector of decision values
% J - the final objective value
% obj - [J Ed Ew]
% p - [Nx1] vector of conditional probabilities, Pr(y|x)
%
% Options:
% alphab - [(N+1)x1] initial guess at the kernel parameters, [alpha;b] ([])
% ridge - [float] ridge to add to the kernel to improve convergence.
% ridge<0 -- absolute ridge value
% ridge>0 -- size relative to the mean kernel eigenvalue
% maxEval - [int] max number for function evaluations (N*5)
% maxIter - [int] max number of CG steps to do (inf)
% maxLineSrch - [int] max number of line search iterations to perform (50)
% objTol0 - [float] relative objective gradient tolerance (1e-5)
% objTol - [float] absolute objective gradient tolerance (0)
% tol0 - [float] relative gradient tolerance, w.r.t. initial value (0)
% lstol0 - [float] line-search relative gradient tolerance, w.r.t. initial value (1e-2)
% tol - [float] absolute gradient tolerance (0)
% verb - [int] verbosity (0)
% step - initial step size guess (1)
% wght - point weights [Nx1] vector of label accuracy probabilities ([])
% [2x1] for per class weightings
% [1x1] relative weight of the positive class
% nobias - [bool] flag we don't want the bias computed (false)
% Copyright 2006- by Jason D.R. Farquhar ([email protected])
% Permission is granted for anyone to copy, use, or modify this
% software and accompanying documents for any uncommercial
% purposes, provided this copyright notice is retained, and note is
% made of any changes that have been made. This software and
% documents are distributed without any warranty, express or
% implied
if ( nargin < 3 ) C(1)=0; end;
opts=struct('alphab',[],'nobias',0,'dim',[],...
'maxIter',inf,'maxEval',[],'tol',0,'tol0',0,'lstol0',1e-4,'objTol',0,'objTol0',1e-5,...
'verb',0,'step',0,'wght',[],'X',[],'ridge',0,'maxLineSrch',50,...
'maxStep',3,'minStep',5e-2,'weightDecay',0,'marate',.95,'bPC',[],'incThresh',.75);
[opts,varargin]=parseOpts(opts,varargin{:});
opts.ridge=opts.ridge(:);
if ( isempty(opts.maxEval) ) opts.maxEval=5*sum(Y(:)~=0); end
% Ensure all inputs have a consistent precision
if(isa(K,'double') & isa(Y,'single') ) Y=double(Y); end;
if(isa(K,'single')) eps=1e-7; else eps=1e-16; end;
opts.tol=max(opts.tol,eps); % gradient magnitude tolerence
[dim,N]=size(K); Y=Y(:); % ensure Y is col vector
% check for degenerate inputs
if ( all(Y>=0) || all(Y<=0) )
warning('Degnerate inputs, 1 class problem');
end
if ( opts.ridge>0 ) % make the ridge relative to the max eigen-value
opts.ridge = opts.ridge*median(abs(diag(K)));
ridge = opts.ridge;
else % negative value means absolute ridge
ridge = abs(opts.ridge);
end
% generate an initial seed solution if needed
wb=opts.alphab; % N.B. set the initial solution
if ( isempty(wb) )
wb=zeros(N+1,1,class(K));
% prototype classifier seed
wb(Y>0)=.5./sum(Y>0); wb(Y<0)=-.5./sum(Y<0); % vector between pos/neg class centers
wK = wb(1:end-1)'*K;
wb(end) = -(wK(Y<0)*abs(wb(Y<0))*sum(Y>0) + wK(Y>0)*abs(wb(Y>0))*sum(Y<0))./sum(Y~=0); % weighted mean
% find least squares optimal scaling and bias
sb = pinv([C(1)*wK*wb(1:end-1)+wK*wK' sum(wK); sum(wK) sum(Y~=0)])*[wK*Y; sum(Y)];
wb(1:end-1)=wb(1:end-1)*sb(1); wb(end)=sb(2);
end
if ( opts.nobias ) wb(end)=0; end;
% check if it's more efficient to sub-set the kernel, because of lots of ignored points
oK=K; oY=Y;
incIdx=(Y(:)~=0);
if ( sum(incIdx)./numel(Y) < opts.incThresh ) % if enough ignored to be worth it
if ( sum(incIdx)==0 ) error('Empty training set!'); end;
K=K(incIdx,incIdx); Y=Y(incIdx); wb=wb([incIdx; true]);
end
wght=1; wghtY=Y;
if ( ~isempty(opts.wght) ) % point weighting -- only needed in wghtY
if ( numel(opts.wght)==1 ) % weight ratio between classes
wght=zeros(size(Y));
wght(Y<0)=1./sum(Y<0); wght(Y>0)=(1./sum(Y>0))*opts.wght;
wght = wght*sum(abs(Y))./sum(abs(wght)); % ensure total weighting is unchanged
elseif ( numel(opts.wght)==2 ) % per class weights
wght=zeros(size(Y));
wght(Y<0)=1*opts.wght(1); wght(Y>0)=1*opts.wght(2);
elseif ( numel(opts.wght)==N )
else
error('Weight must be 2 or N elements long');
end
wghtY=wght.*Y;
else
wght=1;
end
% Normalise the kernel to prevent rounding issues causing convergence problems
% = average kernel eigen-value + regularisation const = ave row norm
diagK= K(1:size(K,1)+1:end);
if ( sum(incIdx)<size(K,1) ) diagK=diagK(incIdx); end;
muEig=median(diagK); % approx hessian scaling, for numerical precision
% adjust alpha and regul-constant to leave solution unchanged
wb(1:end-1)=wb(1:end-1)*muEig;
C(1) = C(1)./muEig;
% set the bias (i.e. b) pre-conditioner
bPC=opts.bPC;
if ( isempty(bPC) ) % bias pre-condn with the diagonal of the hessian
bPC = sqrt(abs(muEig + 2*C(1))./muEig); % N.B. use sqrt for safety?
bPC = 1./bPC;
%fprintf('bPC=%g\n',bPC);
end
% include ridge and re-scale by muEig for numerical stability
wK = (wb(1:end-1)'*K + ridge'.*wb(1:end-1)')./muEig; % include ridge
err = 1-Y.*(wK'+wb(end)); svs=err>0 & Y~=0;
Yerr = wghtY.*err; % weighted error
% pre-condinationed gradient,
% K^-1*dJdw = K^-1(2 C(1)Kw - 2 K I_sv(Y-f)) = 2*(C(1)w - Isv (Y-f) )
MdJ = [(2*C(1)*wb(1:end-1) - 2*(Yerr.*svs)); ...
-2*sum(Yerr(svs))./bPC];
dJ = [(K*MdJ(1:end-1)+ridge*MdJ(1:end-1))./muEig; ...
-2*sum(Yerr(svs))];
if ( opts.nobias ) MdJ(end)=0; dJ(end)=0; end;
Mr =-MdJ;
d = Mr;
dtdJ =-(d'*dJ);
r2 = dtdJ;
r02 = r2;
Ed = (wght.*err(svs))'*err(svs);
Ew = wK*wb(1:end-1);
J = Ed + C(1)*Ew; % SVM objective
% Set the initial line-search step size
step=opts.step;
if( step<=0 ) step=min(sqrt(abs(J/max(dtdJ,eps))),1); end %init step assuming opt is at 0
step=abs(step); tstep=step;
neval=1; lend='\r';
if(opts.verb>0) % debug code
if ( opts.verb>1 ) lend='\n'; else fprintf('\n'); end;
fprintf(['%3d) %3d x=[%5f,%5f,.] J=%5f (%5f+%5f) |dJ|=%8g\n'],0,neval,wb(1),wb(2),J,Ew./muEig,Ed,r2);
end
% pre-cond non-lin CG iteration
J0=J; madJ=abs(J); % init-grad est is init val
wb0=wb; Kd=zeros(size(wb),class(wb)); dJ=zeros(size(wb),class(wb));
for iter=1:min(opts.maxIter,2e6); % stop some matlab versions complaining about index too big
oJ= J; oMr = Mr; or2=r2; owb=wb; % record info about prev result we need
%---------------------------------------------------------------------
% Secant method for the root search.
if ( opts.verb > 2 )
fprintf('.%d %g=%g @ %g (%g+%g)\n',0,0,dtdJ,J,Ed,Ew./muEig);
if ( opts.verb>3 )
hold off;plot(0,dtdJ,'r*');hold on;text(0,double(dtdJ),num2str(0));
grid on;
end
end;
ostep=inf;step=tstep;%max(tstep,abs(1e-6/dtdJ)); % prev step size is first guess!
odtdJ=dtdJ; % one step before is same as current
wK0 = wK;
dK = (d(1:end-1)'*K+d(1:end-1)'.*ridge')./muEig; % N.B. v'*M is 50% faster than M*v'!!!
db = d(end);
dKw = dK*wb(1:end-1); dKd=dK*d(1:end-1);
% wb = wb + step*d;
% Kd(1:end-1) = (d(1:end-1)'*K+d(1:end-1)'.*ridge')./muEig; % N.B. v'*M is 50% faster than M*v'!!!
% Kd(end) = bPC*d(end);
%Kd = [;bPC*d(end)];%cache, so don't comp dJ
dtdJ0=abs(dtdJ); % initial gradient, for Wolfe 2 convergence test
for j=1:opts.maxLineSrch;
neval=neval+1;
oodtdJ=odtdJ; odtdJ=dtdJ; % prev and 1 before grad values
% Eval the gradient at this point. N.B. only gradient needed for secant
%wK = (wb(1:end-1)'*K + ridge'.*wb(1:end-1)')./muEig; % include ridge
wK = wK0 + tstep*dK;
err = 1-Y.*(wK'+wb(end)+tstep*d(end)); svs=err>0 & Y~=0;
Yerr = wghtY.*err;
% MdJ = [(2*C(1)*wb(1:end-1) - 2*(Yerr.*svs)); ...
% -2*sum(Yerr(svs))./bPC];
% if ( opts.nobias ) MdJ(end)=0; end;
% dtdJ =-Kd'*MdJ; % gradient along the line @ new position
dtdJ =-(2*C(1)*(dKw+tstep*dKd) - 2*dK*(Yerr.*svs) + -2*db*sum(Yerr(svs))); % gradient along the line @ new position
if ( opts.verb > 2 )
Ed = (wght.*err(svs))*err(svs)';
Ew = wK*wb(1:end-1);
J = Ed + C(1)*Ew; % SVM objective
fprintf('.%d %g=%g @ %g (%g+%g)\n',j,tstep,dtdJ,J,Ed,Ew./muEig);
if ( opts.verb > 3 )
plot(tstep,dtdJ,'*'); text(double(tstep),double(dtdJ),num2str(j));
end
end;
% convergence test, and numerical res test
if(iter>1|j>3) % Ensure we do decent line search for 1st step size!
if ( abs(dtdJ) < opts.lstol0*abs(dtdJ0) | ... % Wolfe 2, gradient enough smaller
abs(dtdJ*step) <= opts.tol ) % numerical resolution
break;
end
end
% now compute the new step size
% backeting check, so it always decreases
if ( oodtdJ*odtdJ < 0 & odtdJ*dtdJ > 0 ... % oodtdJ still brackets
& abs(step*dtdJ) > abs(odtdJ-dtdJ)*(abs(ostep+step)) ) % would jump outside
step = ostep + step; % make as if we jumped here directly.
% but prev points gradient, this is necessary stop very steep orginal gradient preventing decent step sizes
odtdJ = -sign(odtdJ)*sqrt(abs(odtdJ))*sqrt(abs(oodtdJ)); % geometric mean
end
ostep = step;
% *RELATIVE* secant step size
ddtdJ = odtdJ-dtdJ;
if ( ddtdJ~=0 ) nstep = dtdJ/ddtdJ; end; % secant step size, guard div by 0
nstep = sign(nstep)*max(opts.minStep,min(abs(nstep),opts.maxStep)); % bound growth/min-step size
step = step * nstep ; % absolute step
tstep = tstep + step; % total step size
% % move to the new point
% wb = wb + step*d ;
end
if ( opts.verb > 2 ) fprintf('\n'); end;
% update the solution with this step
wb = wb + tstep*d;
% compute the other bits needed for CG iteration
MdJ = [(2*C(1)*wb(1:end-1) - 2*(Yerr.*svs)); ...
-2*sum(Yerr(svs))./bPC];
dJ(1:end-1) = (MdJ(1:end-1)'*K+MdJ(1:end-1)'.*ridge)./muEig;
dJ(end) = bPC*MdJ(end);
% dJ = [(K*MdJ(1:end-1)+ridge.*MdJ(1:end-1))./muEig; ...
% bPC*MdJ(end)];
if ( opts.nobias ) dJ(end)=0; end;
Mr =-MdJ;
r2 =abs(Mr'*dJ);
% compute the function evaluation
Ed = (wght.*err(svs))'*err(svs);
Ew = wK*wb(1:end-1);
J = Ed + C(1)*Ew; % SVM objective
if(opts.verb>0) % debug code
fprintf(['%3d) %3d x=[%8f,%8f,.] J=%5f (%5f+%5f) |dJ|=%8g' lend],...
iter,neval,wb(1),wb(2),J,Ew./muEig,Ed,r2);
end
if ( J > oJ*(1+1e-3) || isnan(J) ) % check for stuckness
if ( opts.verb>=1 ) warning('Line-search Non-reduction - aborted'); end;
J=oJ; wb=owb; break;
end;
%------------------------------------------------
% convergence test
if ( iter==1 ) madJ=abs(oJ-J); dJ0=max(abs(madJ),eps); r02=r2;
elseif( iter<5 ) dJ0=max(dJ0,abs(oJ-J)); r02=max(r02,r2); % conv if smaller than best single step
end
madJ=madJ*(1-opts.marate)+abs(oJ-J)*(opts.marate);%move-ave objective grad est
if ( r2<=opts.tol || ... % small gradient + numerical precision
r2< r02*opts.tol0 || ... % Wolfe condn 2, gradient enough smaller
neval > opts.maxEval || ... % abs(odtdJ-dtdJ) < eps || ... % numerical resolution
madJ <= opts.objTol || madJ < opts.objTol0*dJ0 ) % objective function change
break;
end;
%------------------------------------------------
% conjugate direction selection
delta = max((Mr-oMr)'*(-dJ)/or2,0); % Polak-Ribier
%delta = max(r2/or2,0); % Fletcher-Reeves
d = Mr+delta*d; % conj grad direction
dtdJ =-d'*dJ; % new search dir grad.
if( dtdJ <= 0 ) % non-descent dir switch to steepest
if ( opts.verb >= 2 ) fprintf('non-descent dir\n'); end;
d=Mr; dtdJ=-d'*dJ;
end;
if ( opts.weightDecay > 0 ) % decay term to 0 non-svs faster
pts=~svs' & wb(1:end-1).*d(1:end-1) < 0;
%wb(pts)=wb(pts)*opts.weightDecay;
d(pts) =d(pts)*opts.weightDecay;
end
end;
if ( opts.verb >= 0 )
fprintf(['%3d) %3d x=[%8f,%8f,.] J=%5f (%5f+%5f) |dJ|=%8g\n'],...
iter,neval,wb(1),wb(2),J,Ew./muEig,Ed,r2);
end
if ( J > J0*(1+1e-4) || isnan(J) )
if ( opts.verb>=0 ) warning('Non-reduction'); end;
wb=wb0;
end;
% fix the stabilising K normalisation
wb(1:end-1) = wb(1:end-1)./muEig;
% compute final decision values.
if ( numel(Y)~=numel(incIdx) ) % map back to the full kernel space, if needed
nwb=zeros(size(oK,1)+1,1); nwb(incIdx)=wb(1:end-1); nwb(end)=wb(end); wb=nwb;
K=oK; Y=oY;
end
f = wb(1:end-1)'*K + wb(end); f = reshape(f,size(Y));
obj = [J Ew./muEig Ed];
return;
%-----------------------------------------------------------------------
function [opts,varargin]=parseOpts(opts,varargin)
% refined and simplified option parser with structure flatten
i=1;
while i<=numel(varargin);
if ( iscell(varargin{i}) ) % flatten cells
varargin={varargin{1:i} varargin{i}{:} varargin{i+1:end}};
elseif ( isstruct(varargin{i}) )% flatten structures
cellver=[fieldnames(varargin{i})'; struct2cell(varargin{i})'];
varargin={varargin{1:i} cellver{:} varargin{i+1:end} };
elseif( isfield(opts,varargin{i}) ) % assign fields
opts.(varargin{i})=varargin{i+1}; i=i+1;
else
error('Unrecognised option');
end
i=i+1;
end
return;
%-----------------------------------------------------------------------------
function []=testCase()
%TESTCASE 1) hinge vs. logistic (unregularised)
[X,Y]=mkMultiClassTst([-1 0; 1 0; .2 .5],[400 400 50],[.3 .3; .3 .3; .2 .2],[],[-1 1 1]);
K=X'*X; % Simple linear kernel
N=size(X,2);
fInds=gennFold(Y,10,'perm',1); trnInd=any(fInds(:,1:9),2); tstInd=fInds(:,10);
[alphab,J]=l2svm_cg(K(trnInd,trnInd),Y(trnInd),1,'verb',2);
dv=K(tstInd,trnInd)*alphab(1:end-1)+alphab(end);
dv2conf(Y(tstInd),dv)
% for linear kernel
alpha=zeros(N,1);alpha(find(trnInd))=alphab(1:end-1); % equiv alpha
w=X(:,trnInd)*alphab(1:end-1); b=alphab(end); plotLinDecisFn(X,Y,w,b,alpha);
% check the primal dual gap!
w=alphab(1:end-1); b=alphab(end);
Jd = C(1)*(2*sum(w.*Y(trnInd)) - C(1)*w'*w - w'*K(trnInd,trnInd)*w);
% imbalance test
[X,Y]=mkMultiClassTst([-1 0; 1 0],[400 400],[.5 .5; .5 .5],[],[-1 1]);
[X,Y]=mkMultiClassTst([-1 0; 1 0],[400 40],[.5 .5; .5 .5],[],[-1 1]);
[alphab,J]=l2svm_cg(K(trnInd,trnInd),Y(trnInd),1,'verb',2,'wght',[.1 1]);
|
github
|
lcnbeapp/beapp-master
|
csp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/svm/csp.m
| 6,469 |
utf_8
|
17b337166f090c24d162dfc7e010f835
|
function [sf,d,Sigmai,Sigmac,SigmaAll]=csp(X,Y,dim,cent,ridge,singThresh)
% Generate spatial filters using CSP
%
% [sf,d,Sigmai,Sigmac,SigmaAll]=csp(X,Y,[dim]);
% N.B. if inputs are singular then d will contain 0 eigenvalues & sf==0
% Inputs:
% X -- n-d data matrix, e.g. [nCh x nSamp x nTrials] data set, OR
% [nCh x nCh x nTrials] set of *trial* covariance matrices, OR
% [nCh x nCh x nClass ] set of *class* covariance matrices
% Y -- [nTrials x 1] set of trial labels, with nClass unique labels, OR
% [nTrials x nClass] set of +/-1 (&0) trial lables per class, OR
% [nClass x 1] set of class labels when X=[nCh x nCh x nClass] (1:size(X,dim))
% N.B. in all cases a label of 0 indicates ignored trial
% dim -- [1 x 2] dimension of X which contains the trials, and
% (optionally) the the one which contains the channels. If
% channel dim not given the next available dim is used. ([-1 1])
% cent -- [bool] center the data (0)
% ridge -- [float] size of ridge (as fraction of mean eigenvalue) to add for numerical stability (1e-7)
% singThresh -- [float] threshold to detect singular values in inputs (1e-3)
% Outputs:
% sf -- [nCh x nCh x nClass] sets of 1-vs-rest spatial *filters*
% sorted in order of increasing eigenvalue.
% N.B. sf is normalised such that: mean_i sf'*cov(X_i)*sf = I
% N.B. to obtain spatial *patterns* just use, sp = Sigma*sf ;
% d -- [nCh x nClass] spatial filter eigen values
% Sigmai-- [nCh x nCh x nTrials] set of *trial* covariance matrices
% Sigmac-- [nCh x nCh x nClass] set of *class* covariance matrices
% SigmaAll -- [nCh x nCh] all (non excluded) data covariance matrix
%
if ( nargin < 3 || isempty(dim) ) dim=[-1 1]; end;
if ( numel(dim) < 2 ) if ( dim(1)==1 ) dim(2)=2; else dim(2)=1; end; end
dim(dim<0)=ndims(X)+dim(dim<0)+1; % convert negative dims
if ( nargin < 4 || isempty(cent) ) cent=0; end;
if ( nargin < 5 || isempty(ridge) )
if ( isequal(class(X),'single') ) ridge=1e-7; else ridge=0; end;
end;
if ( nargin < 6 || isempty(singThresh) ) singThresh=1e-3; end
nCh = size(X,dim(2)); N=size(X,dim(1)); nSamp=prod(size(X))./nCh./N;
% compute the per-trial covariances
if ( ~isequal(dim,[3 1]) || ndims(X)>3 || nCh ~= size(X,2) )
idx1=-(1:ndims(X)); idx2=-(1:ndims(X)); % sum out everything but ch, trials
idx1(dim(1))=3; idx2(dim(1))=3; % linear over trial dimension
idx1(dim(2))=1; idx2(dim(2))=2; % Outer product over ch dimension
Sigmai = tprod(X,idx1,[],idx2,'n');
if ( cent ) % center the co-variances, N.B. tprod to comp means for mem
error('Unsupported -- numerically unsound, center before instead');
% sizeX=size(X); muSz=sizeX; muSz(dim)=1; mu=ones(muSz,class(X));
% idx2(dim)=0; mu=tprod(X,idx1,mu,idx2); % nCh x 1 x nTr
% % subtract the means
% Sigmai = Sigmai - tprod(mu,[1 0 3],[],[2 0 3])/prod(muSz);
end
% Fallback code
% if(dim(1)==3) for i=1:size(X,3); Sigmai(:,:,i)=X(:,:,i)*X(:,:,i)'; end
% elseif(dim(1)==1) for i=1:size(X,1); Sigmai(:,:,i)=shiftdim(X(i,:,:))*shiftdim(X(i,:,:))'; end
% end
else
Sigmai = X;
end
% N.B. Sigmai *must* be [nCh x nCh x N]
if ( ndims(Y)==2 && min(size(Y))==1 && ~(all(Y(:)==-1 | Y(:)==0 | Y(:)==1)) )
oY=Y;
Y=lab2ind(Y,[],[],[],0);
end;
nClass=size(Y,2);
if ( nClass==2 ) nClass=1; end; % only 1 for binary problems
allY0 = all(Y==0,2); % trials which have label 0 in all sub-prob
SigmaAll = sum(double(Sigmai(:,:,~allY0)),3); % sum all non-0 labeled trials
sf = zeros([nCh,nCh,nClass],class(X)); d=zeros(nCh,nClass,class(X));
for c=1:nClass; % generate sf's for each sub-problem
Sigmac(:,:,c) = sum(double(Sigmai(:,:,Y(:,c)>0)),3); % +class covariance
if ( isequal(Y(:,c)==0,allY0) ) % rest covariance, i.e. excludes 0 class
Sigma=SigmaAll; % can use sum of everything
else
Sigma=sum(Sigmai(:,:,Y(:,c)~=0),3); % rest for this class
end
Sigma=double(Sigma);
% solve the generalised eigenvalue problem,
if ( ridge>0 ) % Add ridge if wanted to help with numeric issues in the inv
Sigmac(:,:,c)=Sigmac(:,:,c)+eye(size(Sigma))*ridge*mean(diag(Sigmac(:,:,c)));
Sigma =Sigma +eye(size(Sigma))*ridge*mean(diag(Sigma));
end
% N.B. use double to avoid rounding issues with the inv(Sigma) bit
[W D]=eig(Sigmac(:,:,c),Sigma);D=diag(D);
[dc,di]=sort(D,'descend'); W=W(:,di); % order in decreasing eigenvalue
% Check for and correct for singular inputs
% singular if eigval out of range
nf = sum(W.*(Sigma*W),1)'; % eig-value for this direction in full cov
si= dc>1-singThresh | dc<0+singThresh | imag(dc)~=0 | isnan(dc) | nf<1e-4*sum(abs(nf));
if ( sum(si)>0 ) % remove the singular eigen values & effect on other sf's
% Identify singular directions which leak redundant information into
% the other eigenvectors, i.e. are mapped to 0 by both Sigmac and Sigma
% N.B. if the numerics are OK this is probably uncessary!
Na = sum((double(Sigmac(:,:,c))*W(:,si)).^2)./sum(W(:,si).^2);
ssi=find(si);ssi=ssi(abs(Na)<singThresh & imag(Na)==0);%ssi=dc>1-singThresh|dc<0+singThresh;
if ( ~isempty(ssi) ) % remove anything in this dir in other eigenvectors
% Compute the projection of the rest onto the singular direction(s)
Pssi = repop(W(:,ssi)'*W(:,~si),'./',sum(W(:,ssi).*W(:,ssi),1)');
W(:,~si)= W(:,~si) - W(:,ssi)*Pssi; %remove this singular contribution
end
W=W(:,~si); dc=dc(~si); nf=nf(~si);% discard singular components
end
%Normalise, so that diag(W'*Sigma*W)=N, i.e.mean_i W'*(X_i*X_i')*W/nSamp = 1
% i.e. so that the resulting features have unit variance (and are
% approx white?)
W = repop(W,'*',nf'.^-.5)*sqrt(sum(Y(:,c)~=0)*nSamp);
% Save the normalised filters & eigenvalues
sf(:,1:size(W,2),c)= W;
d(1:size(W,2),c) = dc;
end
% Compute last class covariance if wanted
if ( nClass==1 & nargout>3 ) Sigmac(:,:,2)=sum(double(Sigmai(:,:,Y(:,1)<0)),3);end;
return;
%-----------------------------------------------------------------------------
function []=testCase()
nCh = 64; nSamp = 100; N=300;
X=randn(nCh,nSamp,N);
Y=sign(randn(N,1));
[sf,d,Sigmai,Sigmac]=jf_csp(X,Y);
[sf,d,Sigmai,Sigmac]=jf_csp(X,Y,1); % with data centering
[sf2,d2]=jf_csp(Sigmac,[-1 1]);
[sf3,d3]=csp(Sigmac);
mimage(sf,sf2,'diff',1,'clim','limits')
|
github
|
lcnbeapp/beapp-master
|
whiten.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/svm/whiten.m
| 7,608 |
utf_8
|
37ffeab940403c215817ba5e7251cfd4
|
function [W,D,wX,U,mu,Sigma,alpha]=whiten(X,dim,alpha,centerp,stdp,symp,linMapMx,tol,unitCov,order)
% whiten the input data
%
% [W,D,wX,U,mu,Sigma,alpha]=whiten(X,dim[,alpha,center,stdp,symp,linMapMx,tol,unitCov,order])
%
% Inputs:
% X - n-d input data set
% dim - dim(1)=dimension to whiten
% dim(2:end) whiten per each entry in these dim
% alpha - [float] regularisation parameter: (1)
% \Sigma' = (alpha)*\Sigma + (1-alpha) I * sum(\Sigma)
% 0=no-whitening, 1=normal-whitening, 'opt'= Optimal-Shrinkage est
% alpha<0 -> 0=no-whitening, -1=normal-whitening, regularise with alpha'th entry of the spe
% centerp- [bool] flag if we should center the data before whitening (1)
% stdp - [bool] flag if we should standardize input for numerical stability before whitening (0)
% symp - [bool] generate the symetric whitening transform (0)
% linMapMx - [size(X,dim(2:end)) x size(X,dim(2:end))] linear mapping over non-acc dim
% use to smooth over these dimensions ([])
% tol - [float] relative tolerance w.r.t. largest eigenvalue used to
% reject eigen-values as being effectively 0. (1e-6)
% unitCov - [bool] make the covariance have unit norm for numerical accuracy (1)
% order - [float] order of inverse to use (-.5)
% Outputs:
% W - [size(X,dim(1)) x nF x size(X,dim(2:end))]
% whitening matrix which maps from dim(1) to its whitened version
% with number of factors nF
% N.B. whitening matrix: W = U*diag(D.^order);
% and inverse whitening matrix: W^-1 = U*diag(D.^-order);
% D - [nF x size(X,dim(2:end))] orginal eigenvalues for each coefficient
% wX - [size(X)] the whitened version of X
% U - [size(X,dim(1)) x nF x size(X,dim(2:end))]
% eigen-decomp of the inputs
% Sigma- [size(X,dim(1)) size(X,dim(1)) x size(X,dim(2:end))] the
% covariance matrices for dim(1) for each dim(2:end)
% mu - [size(X) with dim(2:end)==1] mean to center everything else
if ( nargin < 3 || isempty(alpha) ) alpha=1; elseif(isnumeric(alpha)) alpha=sign(alpha)*min(1,max(abs(alpha),0)); end;
if ( nargin < 4 || isempty(centerp) ) centerp=1; end;
if ( nargin < 5 || isempty(stdp) ) stdp=0; end;
if ( nargin < 6 || isempty(symp) ) symp=0; end;
if ( nargin < 7 ) linMapMx=[]; end;
if ( nargin < 8 || isempty(tol) ) % set the tolerance
if ( isa(X,'single') ) tol=1e-6; else tol=1e-9; end;
end
if ( nargin < 9 || isempty(unitCov) ) unitCov=1; end; % improve condition number before inversion
if ( nargin < 10 || isempty(order) ) order=-.5; end;
dim(dim<0)=dim(dim<0)+ndims(X)+1;
sz=size(X); sz(end+1:max(dim))=1; % pad with unit dims as necessary
accDims=setdiff(1:ndims(X),dim); % set the dims we should accumulate over
N = prod(sz(accDims));
% covariance + eigenvalue method
idx1 = -(1:ndims(X)); idx1(dim)=[1 1+(2:numel(dim))]; % skip for OP dim
idx2 = -(1:ndims(X)); idx2(dim)=[2 1+(2:numel(dim))]; % skip for OP dim
if ( isreal(X) ) % work with complex inputs
XX = tprod(X,idx1,[],idx2,'n');%[szX(dim(1)) szX(dim(1)) x szX(dim(2:end))]
else
XX = tprod(real(X),idx1,[],idx2,'n') + tprod(imag(X),idx1,[],idx2,'n');
end
if ( centerp ) % centered
sX = msum(X,accDims); % size(X)\dim
sXsX = tprod(double(real(sX)),idx1,[],idx2,'n');
if( ~isreal(sX) ) sXsX = sXsX + tprod(double(imag(sX)),idx1,[],idx2,'n'); end
Sigma= (double(XX) - sXsX/N)/N;
else % uncentered
sX=[];
Sigma= double(XX)/N;
end
clear XX;
if ( isstr(alpha) )
switch (alpha);
case 'opt'; % optimal shrinkage regularisation estimate
alpha=optShrinkage(X,dim(1),sum(Sigma,3),sum(sX,2)./N,centerp);
alpha=1-alpha; % invert type of alpha to be strength of whitening
error('not fixed yet!');
otherwise; error('Unrec alpha type');
end
end
if ( stdp ) % standardise the channels before whitening
X2 = tprod(real(X),idx1,[],idx1,'n'); % var each entry
if( isreal(X) ) X2 = X2 + tprod(imag(X),idx1,[],idx1,'n'); end
if ( centerp ) % include the centering correction
sX2 = tprod(real(sX),idx1,[],idx1,'n'); % var mean
if ( ~isreal(X) ) sX2=sX2 + tprod(imag(sX),idx1,[],idx1,'n'); end
varX = (double(X2) - sX2/N)/N; % channel variance
else
varX = X2./N;
end
istdX = 1./sqrt(max(varX,eps)); % inverse stdX
% pre+post mult to correct
szstdX=size(istdX);
Sigma = repop(istdX,'*',repop(Sigma,'*',reshape(istdX,[szstdX(2) szstdX([1 3:end])])));
end
if ( ~isempty(linMapMx) ) % smooth the covariance estimates
Sigma=tprod(Sigma,[1 2 -(1:ndims(Sigma)-2)],full(linMapMx),[-(1:ndims(Sigma-2)) 1:ndims(Sigma)-2]);
end
% give the covariance matrix unit norm to improve numerical accuracy
if ( unitCov ) unitCov=median(diag(Sigma)); Sigma=Sigma./unitCov; end;
W=zeros(size(Sigma),class(X));
if(numel(dim)>1) Dsz=[sz(dim(1)) sz(dim(2:end))];else Dsz=[sz(dim(1)) 1];end
D=zeros(Dsz,class(X));
nF=0;
for dd=1:size(Sigma(:,:,:),3); % for each dir
[Udd,Ddd]=eig(Sigma(:,:,dd)); Ddd=diag(Ddd);
[ans,si]=sort(abs(Ddd),'descend'); Ddd=Ddd(si); Udd=Udd(:,si); % dec abs order
if( alpha>=0 ) % regularise the covariance
Ddd = alpha*Ddd + (1-alpha)*mean(Ddd); % absolute factor to add
elseif ( alpha<0 ) % percentage of spectrum to use
%s = exp(log(Ddd(1))*(1+alpha)+(-alpha)*log(Ddd(end)));%1-s(round(numel(s)*alpha))./sum(s); % strength is % to leave
t = Ddd(round(-alpha*numel(Ddd))); % strength we want
Ddd = (Ddd + t)*sum(Ddd)./(sum(Ddd)+t);
end
% only eig sufficiently big are selected
si=Ddd>max(abs(Ddd))*tol; % remove small and negative eigenvalues
rDdd=ones(size(Ddd),class(Ddd)); if( order==-.5 ) rDdd(si) = 1./sqrt(Ddd(si)); else rDdd(si)=power(Ddd(si),order); end;
if ( symp ) % symetric whiten
W(:,:,dd) = repop(Udd(:,si),'*',rDdd(si)')*Udd(:,si)';
nF=size(W,1);
else % non-symetric
W(:,1:sum(si),dd) = repop(Udd(:,si),'*',rDdd(si)');
nF = max(nF,sum(si)); % record the max number of factors actually used
end
U(:,1:sum(si),dd) = Udd(:,si);
D(1:sum(si),dd) = Ddd(si);
end
% Only keep the max nF
W=reshape(W(:,1:nF,:),[sz(dim(1)) nF sz(dim(2:end)) 1]);
D=reshape(D(1:nF,:),[nF sz(dim(2:end)) 1]);
% undo the effects of the standardisation
if ( stdp ) W=repop(W,'*',istdX); end
% undo numerical re-scaling
if ( unitCov ) W=W./sqrt(unitCov); D=D.*unitCov; end
if ( nargout>2 ) % compute the whitened output if wanted
if (centerp) wX = repop(X,'-',sX./N); else wX=X; end % center the data
% N.B. would be nice to use the sparsity of W to speed this up
idx1 = 1:ndims(X); idx1(dim(1))=-dim(1);
wX = tprod(wX,idx1,W,[-dim(1) dim(1) dim(2:end)]); % apply whitening
end
if ( nargout>3 && centerp) mu=sX/N; else mu=[]; end;
return;
%------------------------------------------------------
function testCase()
z=jf_mksfToy();
clf;image3ddi(z.X,z.di,1,'colorbar','nw','ticklabs','sw');packplots('sizes','equal');
[W,D,wX,U,mu,Sigma]=whiten(z.X,1);
imagesc(wX(:,:)*wX(:,:)'./size(wX(:,:),2)); % plot output covariance
[W,D,wX,U,mu,Sigma]=whiten(z.X,1,'opt'); % opt-shrinkage
% check that the std-code works
A=randn(11,10); A(1,:)=A(1,:)*1000; % spatial filter with lin dependence
sX=randn(10,1000); sC=sX*sX'; [sU,sD]=eig(sC); sD=diag(sD); wsU=repop(sU,'./',sqrt(sD)');
X=A*sX; C=X*X'; [U,D]=eig(C); D=diag(D); wU=repop(U,'./',sqrt(D)');
mimage(wU'*C*wU,wsU'*sC*wsU)
mimage(repop(1./d,'*',wsU)'*C*repop(1./d,'*',wsU))
[W,D,wX,Sigma]=whiten(X,1,0,0);
[sW,sD,swX,sSigma]=whiten(X,1,0,1);
|
github
|
lcnbeapp/beapp-master
|
repop_testcases.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/svm/repop/repop_testcases.m
| 11,158 |
utf_8
|
79bc2813b0a64a4efbc64e27cf0ef960
|
function []=repop_testcases(testType)
%
% This file contains lots of test-cases to test the performance of the repop
% files vs. the matlab built-ins.
%
% N.B. there appears to be a bug in MATLAB when comparing mixed
% complex/real + double/single values in a max/min
%
% Copyright 2006- by Jason D.R. Farquhar ([email protected])
% Permission is granted for anyone to copy, use, or modify this
% software and accompanying documents for any uncommercial
% purposes, provided this copyright notice is retained, and note is
% made of any changes that have been made. This software and
% documents are distributed without any warranty, express or
% implied
if ( nargin<1 || isempty(testType) ) testType={'acc','timing'}; end;
if ( ~isempty(strmatch('acc',testType)) )
fprintf('------------------- Accuracy tests -------------------\n');
X=complex(randn(10,100),randn(10,100));
Y=complex(randn(size(X)),randn(size(X)));
fprintf('\n****************\n Double Real X, Double Real Y\n******************\n')
accuracyTests(real(X),real(Y),'dRdR')
fprintf('\n****************\n Double Complex X, Double Real Y\n******************\n')
accuracyTests(X,real(Y),'dCdR')
fprintf('\n****************\n Double Real X, Double Complex Y\n******************\n')
accuracyTests(real(X),Y,'dRdC')
fprintf('\n****************\n Double Complex X, Double Complex Y\n******************\n')
accuracyTests(X,Y,'dCdC')
fprintf('\n****************\n Double Real X, Single Real Y\n******************\n')
accuracyTests(real((X)),real(single(Y)),'dRsR')
fprintf('\n****************\n Double Complex X, Single Real Y\n******************\n')
accuracyTests((X),real(single(Y)),'dCsR')
fprintf('\n****************\n Double Real X, Single Complex Y\n******************\n')
accuracyTests((real(X)),single(Y),'dRsC')
fprintf('\n****************\n Double Complex X, Single Complex Y\n******************\n')
accuracyTests((X),single(Y),'dCsC')
fprintf('\n****************\n Single Real X, Double Real Y\n******************\n')
accuracyTests(real(single(X)),real((Y)),'sRdR')
fprintf('\n****************\n Single Complex X, Double Real Y\n******************\n')
accuracyTests(single(X),real((Y)),'sCdR')
fprintf('\n****************\n Single Real X, Double Complex Y\n******************\n')
accuracyTests(single(real(X)),(Y),'sRdC')
fprintf('\n****************\n Single Complex X,Double Complex Y\n******************\n')
accuracyTests(single(X),(Y),'sCdC')
fprintf('\n****************\n Single Real X, Single Real Y\n******************\n')
accuracyTests(real(single(X)),real(single(Y)),'sRsR')
fprintf('\n****************\n Single Complex X, Single Real Y\n******************\n')
accuracyTests(single(X),real(single(Y)),'sCsR')
fprintf('\n****************\n Single Real X, Single Complex Y\n******************\n')
accuracyTests(single(real(X)),single(Y),'sRsC')
fprintf('\n****************\n Single Complex X, Single Complex Y\n******************\n')
accuracyTests(single(X),single(Y),'sCsC')
fprintf('All tests passed\n');
end
if ( ~isempty(strmatch('timing',testType)) )
fprintf('------------------- Timing tests -------------------\n');
X=complex(randn(100,1000),randn(100,1000));
Y=complex(randn(size(X)),randn(size(X)));
timingTests(real(X),real(Y),'[100x1000] RR');
timingTests(X,Y,'[100x1000] CC');
end
return;
function []=accuracyTests(X,Y,str)
% PLUS
unitTest([str ' Matx + col Vec'],X,'+',Y(:,1),repop(X,'+',Y(:,1)),X+repmat(Y(:,1),[1,size(X,2)]));
unitTest([str ' Matx + row Vec'],X,'+',Y(1,:),repop(X,'+',Y(1,:)),X+repmat(Y(1,:),[size(X,1),1]));
unitTest([str ' Matx + Matx(:,1:2)'],X,'+',Y(:,1:2),repop(X,'+',Y(:,1:2),'m'),X+repmat(Y(:,1:2),[1,size(X,2)/2]));
unitTest([str ' Matx + Matx'],X,'+',Y(:,:),repop(X,'+',Y(:,:)),X+repmat(Y(:,:),[1,1]));
% TIMES
unitTest([str ' Matx * col Vec'],X,'*',Y(:,1),repop(X,'*',Y(:,1)),X.*repmat(Y(:,1),[1,size(X,2)]));
unitTest([str ' Matx * row Vec'],X,'*',Y(1,:),repop(X,'*',Y(1,:)),X.*repmat(Y(1,:),[size(X,1),1]));
unitTest([str ' Matx * Matx(:,1:2)'],X,'*',Y(:,1:2),repop(X,'*',Y(:,1:2),'m'),X.*repmat(Y(:,1:2),[1,size(X,2)/2]));
unitTest([str ' Matx * Matx'],X,'*',Y(:,:),repop(X,'*',Y(:,:)),X.*repmat(Y(:,:),[1,1]));
% other operations
unitTest([str ' Matx - row vec'],X,'-',Y(:,1),repop(X,'-',Y(:,1)),X-repmat(Y(:,1),[1,size(X,2)]));
unitTest([str ' Matx / row vec'],X,'/',Y(:,1),repop(X,'/',Y(:,1)),X./repmat(Y(:,1),[1,size(X,2)]));
unitTest([str ' Matx \ row vec'],X,'\',Y(:,1),repop(X,'\',Y(:,1)),X.\repmat(Y(:,1),[1,size(X,2)]));
unitTest([str ' Matx ^ row vec'],X,'^',Y(:,1),repop(X,'^',Y(:,1)),X.^repmat(Y(:,1),[1,size(X,2)]),1e-5);
unitTest([str ' Matx == row vec'],X,'==',Y(:,1),repop(X,'==',Y(:,1)),X==repmat(Y(:,1),[1,size(X,2)]));
unitTest([str ' Matx ~= row vec'],X,'~=',Y(:,1),repop(X,'~=',Y(:,1)),X~=repmat(Y(:,1),[1,size(X,2)]));
% N.B. repop tests with complex inputs use the magnitude of the input!
tX=X; tY=Y; if( ~isreal(X) | ~isreal(Y) ) tX=abs(X); tY=abs(Y); end;
unitTest([str ' Matx < row vec'],X,'<',Y(:,1),repop(X,'<',Y(:,1)),tX<repmat(tY(:,1),[1,size(X,2)]));
unitTest([str ' Matx > row vec'],X,'>',Y(:,1),repop(X,'>',Y(:,1)),tX>repmat(tY(:,1),[1,size(X,2)]));
unitTest([str ' Matx <= row vec'],X,'<=',Y(:,1),repop(X,'<=',Y(:,1)),tX<=repmat(tY(:,1),[1,size(X,2)]));
unitTest([str ' Matx >= row vec'],X,'>=',Y(:,1),repop(X,'>=',Y(:,1)),tX>=repmat(tY(:,1),[1,size(X,2)]));
%unitTest([str ' min Matx, row vec'],repop('min',X,Y(:,1)),min(X,repmat(Y(:,1),[1, size(X,2)])));
%unitTest([str ' max Matx, row vec'],repop('max',X,Y(:,1)),max(X,repmat(Y(:,1),[1,size(X,2)])));
%return;
%function []=inplaceaccuracyTests(X,Y,str)
return;
% Inplace operations test
% PLUS
% N.B. need the Z(1)=Z(1); to force to make a "deep" copy, i.e. not just
% equal pointers
Z=X;unitTest([str ' Matx + col Vec (inplace)'],Z,'+',Y(:,1),repop(Z,'+',Y(:,1),'i'),X+repmat(Y(:,1),[1,size(X,2)]));
Z=X;unitTest([str ' Matx + row Vec (inplace)'],Z,'+',Y(1,:),repop(Z,'+',Y(1,:),'i'),X+repmat(Y(1,:),[size(X,1),1]));
Z=X;unitTest([str ' Matx + Matx(:,1:2) (inplace)'],Z,'+',Y(:,1:2),repop(Z,'+',Y(:,1:2),'mi'),X+repmat(Y(:,1:2),[1,size(X,2)/2]));
Z=X;unitTest([str ' Matx + Matx (inplace)'],Z,'+',Y(:,:),repop(Z,'+',Y(:,:),'i'),X+repmat(Y(:,:),[1,1]));
% TIMES
Z=X;unitTest([str ' Matx * col Vec (inplace)'],Z,'*',Y(:,1),repop(Z,'*',Y(:,1),'i'),X.*repmat(Y(:,1),[1,size(X,2)]));
Z=X;unitTest([str ' Matx * row Vec (inplace)'],Z,'*',Y(1,:),repop(Z,'*',Y(1,:),'i'),X.*repmat(Y(1,:),[size(X,1),1]));
Z=X;unitTest([str ' Matx * Matx(:,1:2) (inplace)'],Z,'*',Y(:,1:2),repop(Z,'*',Y(:,1:2),'mi'),X.*repmat(Y(:,1:2),[1,size(X,2)/2]));
Z=X;unitTest([str ' Matx * Matx (inplace)'],Z,'*',Y(:,:),repop(Z,'*',Y(:,:),'i'),X.*repmat(Y(:,:),[1,1]));
% other operations
Z=X;unitTest([str ' Matx - row vec (inplace)'],Z,'-',Y(:,1),repop(Z,'-',Y(:,1),'i'),X-repmat(Y(:,1),[1,size(X,2)]));
Z=X;unitTest([str ' Matx \ row vec (inplace)'],Z,'\',Y(:,1),repop(Z,'\',Y(:,1),'i'),X.\repmat(Y(:,1),[1,size(X,2)]));
Z=X;unitTest([str ' Matx / row vec (inplace)'],Z,'/',Y(:,1),repop(Z,'/',Y(:,1),'i'),X./repmat(Y(:,1),[1,size(X,2)]));
Z=X;unitTest([str ' Matx ^ row vec (inplace)'],Z,'^',Y(:,1),repop(Z,'^',Y(:,1),'i'),X.^repmat(Y(:,1),[1,size(X,2)]),1e-5);
%unitTest([str ' min Matx, row vec (inplace)'],repop('min',X,Y(:,1),'i'),min(X,repmat(Y(:,1),[1, size(X,2)])));
%unitTest([str ' max Matx, row vec (inplace)'],repop('max',X,Y(:,1),'i'),max(X,repmat(Y(:,1),[1,size(X,2)])));
function []=timingTests(X,Y,str)
%PLUS
fprintf('%s Matx + Scalar\n',str);
tic; for i=1:1000; Z=repop(X,'+',10); end;
fprintf('%30s %gs\n','repop',toc/1000);
tic; Z=X;Z(1)=Z(1);for i=1:1000; Z=repop(Z,'+',10,'i'); end;
fprintf('%30s %gs\n','repop (inplace)',toc/1000);
tic; for i=1:1000; T=X+10;end;
fprintf('%30s %gs\n','MATLAB',toc/1000);
fprintf('%s Matx + col vec\n',str);
tic, for i=1:1000; Z=repop(X,'+',Y(:,1)); end;
fprintf('%30s %gs\n','repop',toc/1000); % = .05 / .01
tic, Z=X;Z(1)=Z(1); for i=1:1000; Z=repop(Z,'+',Y(:,1),'i'); end;
fprintf('%30s %gs\n','repop (inplace)',toc/1000); % = .05 / .01
tic, for i=1:1000; Z=X+repmat(Y(:,1),1,size(X,2));end;
fprintf('%30s %gs\n','MATLAB',toc/1000); % = .05 / .01
fprintf('%s Matx + row vec\n',str);
tic, for i=1:1000; Z=repop(X,'+',Y(1,:)); end;
fprintf('%30s %gs\n','repop',toc/1000); % = .05 / .01
tic, Z=X;Z(1)=Z(1); for i=1:1000; Z=repop(Z,'+',Y(1,:),'i'); end;
fprintf('%30s %gs\n','repop (inplace)',toc/1000); % = .05 / .01
tic, for i=1:1000; Z=X+repmat(Y(1,:),size(X,1),1);end;
fprintf('%30s %gs\n','MATLAB',toc/1000); % = .05 / .01
fprintf('%s Matx + Matx(:,1:2)\n',str);
tic; for i=1:1000; Z=repop(X,'+',Y(:,1:2),'m'); end;
fprintf('%30s %gs\n','repop',toc/1000); % = .05 / .01
tic, Z=X;Z(1)=Z(1); for i=1:1000; Z=repop(Z,'+',Y(:,1:2),'im'); end;
fprintf('%30s %gs\n','repop (inplace)',toc/1000); % = .05 / .01
tic; for i=1:1000; T=X+repmat(Y(:,1:2),[1,size(X,2)/2]);end;
fprintf('%30s %gs\n','MATLAB',toc/1000); % = .05 / .01
%TIMES
fprintf('%s Matx * col Vec\n',str);
tic; for i=1:1000; Z=repop(X,'*',Y(:,1)); end;
fprintf('%30s %gs\n','repop',toc/1000);
tic; Z=X;Z(1)=Z(1); for i=1:1000; Z=repop(Z,'*',Y(:,1),'i'); end;
fprintf('%30s %gs\n','repop (inplace)',toc/1000);
tic; for i=1:1000; Z=X.*repmat(Y(:,1),1,size(X,2));end;
fprintf('%30s %gs\n','MATLAB',toc/1000);
tic; for i=1:1000; Z=spdiags(Y(:,1),0,size(X,1),size(X,1))*X;end;
fprintf('%30s %gs\n','MATLAB (spdiags)',toc/1000);
fprintf('%s Matx * row Vec\n',str);
tic; for i=1:1000; Z=repop(X,'*',Y(1,:)); end;
fprintf('%30s %gs\n','repop',toc/1000);
tic; Z=X;Z(1)=Z(1); for i=1:1000; Z=repop(Z,'*',Y(1,:),'i'); end;
fprintf('%30s %gs\n','repop (inplace)',toc/1000);
tic; for i=1:1000; Z=X.*repmat(Y(:,1),1,size(X,2));end;
fprintf('%30s %gs\n','MATLAB',toc/1000);
tic; for i=1:1000; Z=X*spdiags(Y(1,:)',0,size(X,2),size(X,2));end;
fprintf('%30s %gs\n','MATLAB (spdiags)',toc/1000);
fprintf('%s Matx * Matx(:,1:2)\n',str);
tic; for i=1:1000; Z=repop(X,'*',Y); end;
fprintf('%30s %gs\n','repop',toc/1000);
tic; Z=X;Z(1)=Z(1); for i=1:1000; Z=repop(Z,'*',Y,'i'); end;
fprintf('%30s %gs\n','repop (inplace)',toc/1000);
tic; for i=1:1000; Z=X.*repmat(Y(:,1:2),[1,size(X,2)/2]);end;
fprintf('%30s %gs\n','MATLAB',toc/1000);
return;
% simple function to check the accuracy of a test and report the result
function [testRes,trueRes,diff]=unitTest(testStr,A,op,B,testRes,trueRes,tol)
global LOGFILE;
if ( ~isempty(LOGFILE) ) % write tests and result to disc
writeMxInfo(LOGFILE,A);
fprintf(LOGFILE,'%s\n',op);
writeMxInfo(LOGFILE,B);
fprintf(LOGFILE,'=\n');
writeMxInfo(LOGFILE,trueRes);
fprintf(LOGFILE,'\n');
end
if ( nargin < 7 )
if ( isa(trueRes,'double') ) tol=1e-11;
elseif ( isa(trueRes,'single') ) tol=1e-5;
elseif ( isa(trueRes,'integer') )
warning('Integer inputs!'); tol=1;
elseif ( isa(trueRes,'logical') ) tol=0;
end
end;
diff=abs(testRes-trueRes)./max(1,abs(testRes+trueRes));
fprintf('%45s = %0.3g ',testStr,max(diff(:)));
if ( max(diff(:)) > tol )
if ( exist('mimage') )
mimage(squeeze(testRes),squeeze(trueRes),squeeze(diff))
end
warning([testStr ': failed!']);
fprintf('Type return to continue\n'); keyboard;
else
fprintf('Passed \n');
end
|
github
|
lcnbeapp/beapp-master
|
tprod_testcases.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/svm/tprod/tprod_testcases.m
| 17,197 |
utf_8
|
26b0e1b54b6867e5d62e8956c84e01bd
|
function []=tprod_testcases(testCases,debugin)
% This file contains lots of test-cases to test the performance of the tprod
% files vs. the matlab built-ins.
%
%
% Copyright 2006- by Jason D.R. Farquhar ([email protected])
% Permission is granted for anyone to copy, use, or modify this
% software and accompanying documents for any uncommercial
% purposes, provided this copyright notice is retained, and note is
% made of any changes that have been made. This software and
% documents are distributed without any warranty, express or
% implied
if ( nargin < 1 || isempty(testCases) ) testCases={'acc','timing','blksz'}; end;
if ( ~iscell(testCases) ) testCases={testCases}; end;
if ( nargin < 2 ) debugin=1; end;
global DEBUG; DEBUG=debugin;
% fprintf('------------------ memory execption test ------------\n');
% ans=tprod(randn(100000,1),1,randn(100000,1)',1);
% ans=tprod(randn(100000,1),1,randn(100000,1)',1,'m');
%-----------------------------------------------------------------------
% Real , Real
if ( ~isempty(strmatch('acc',testCases)) )
fprintf('------------------- Accuracy tests -------------------\n');
X=complex(randn(101,101,101),randn(101,101,101));
Y=complex(randn(101,101),randn(101,101));
fprintf('\n****************\n Double Real X, Double Real Y\n******************\n')
accuracyTests(real(X),real(Y),'dRdR');
fprintf('\n****************\n Double Real X, Double Complex Y\n******************\n')
accuracyTests(real(X),Y,'dRdC');
fprintf('\n****************\n Double Complex X, Double Real Y\n******************\n')
accuracyTests(X,real(Y),'dCdR');
fprintf('\n****************\n Double Complex X, Double Complex Y\n******************\n')
accuracyTests(X,Y,'dCdC');
fprintf('\n****************\n Double Real X, Single Real Y\n******************\n')
accuracyTests(real(X),single(real(Y)),'dRsR');
fprintf('\n****************\n Double Real X, Single Complex Y\n******************\n')
accuracyTests(real(X),single(Y),'dRsC');
fprintf('\n****************\n Double Complex X, Single Real Y\n******************\n')
accuracyTests(X,single(real(Y)),'dCsR');
fprintf('\n****************\n Double Complex X, Single Complex Y\n******************\n')
accuracyTests(X,single(Y),'dCsC');
fprintf('\n****************\n Single Real X, Double Real Y\n******************\n')
accuracyTests(single(real(X)),real(Y),'sRdR');
fprintf('\n****************\n Single Real X, Double Complex Y\n******************\n')
accuracyTests(single(real(X)),Y,'sRdC');
fprintf('\n****************\n Single Complex X, Double Real Y\n******************\n')
accuracyTests(single(X),real(Y),'sCdR');
fprintf('\n****************\n Single Complex X, Double Complex Y\n******************\n')
accuracyTests(single(X),Y,'sCdC');
fprintf('\n****************\n Single Real X, Single Real Y\n******************\n')
accuracyTests(single(real(X)),single(real(Y)),'sRsR');
fprintf('\n****************\n Single Real X, Single Complex Y\n******************\n')
accuracyTests(single(real(X)),single(Y),'sRsC');
fprintf('\n****************\n Single Complex X, Single Real Y\n******************\n')
accuracyTests(single(X),single(real(Y)),'sCsR');
fprintf('\n****************\n Single Complex X, Single Complex Y\n******************\n')
accuracyTests(single(X),single(Y),'sCsC');
fprintf('All tests passed\n');
end
% fprintf('------------------- Timing tests -------------------\n');
if ( ~isempty(strmatch('timing',testCases)) )
%Timing tests
X=complex(randn(101,101,101),randn(101,101,101));
Y=complex(randn(101,101),randn(101,101));
fprintf('\n****************\n Real X, Real Y\n******************\n')
timingTests(real(X),real(Y),'RR');
fprintf('\n****************\n Real X, Complex Y\n******************\n')
timingTests(real(X),Y,'RC');
fprintf('\n****************\n Complex X, Real Y\n******************\n')
timingTests(X,real(Y),'CR');
fprintf('\n****************\n Complex X, Complex Y\n******************\n')
timingTests(X,Y,'CC');
end
% fprintf('------------------- Scaling tests -------------------\n');
% scalingTests([32,64,128,256]);
if( ~isempty(strmatch('blksz',testCases)) )
fprintf('------------------- Blksz tests -------------------\n');
blkSzTests([128 96 64 48 40 32 24 16 0],[128,256,512,1024,2048]);
end
return;
function []=accuracyTests(X,Y,str)
unitTest([str ' OuterProduct, [1],[2]'],tprod(X(:,1),1,Y(:,1),2,'m'),X(:,1)*Y(:,1).');
unitTest([str ' Inner product, [-1],[-1]'],tprod(X(:,1),-1,Y(:,1),-1,'m'),X(:,1).'*Y(:,1));
unitTest([str ' Matrix product, [1 -1],[-1 2]'],tprod(X(:,:,1),[1 -1],Y,[-1 2],'m'),X(:,:,1)*Y);
unitTest([str ' transposed matrix product, [-1 1],[-1 2]'],tprod(X(:,:,1),[-1 1],Y,[-1 2],'m'),X(:,:,1).'*Y);
unitTest([str ' Matrix frobenius norm, [-1 -2],[-1 -2]'],tprod(X(:,:,1),[-1 -2],Y,[-1 -2],'m'),sum(sum(X(:,:,1).*Y)));
unitTest([str ' transposed matrix frobenius norm, [-1 -2],[-2 -1]'],tprod(X(:,:,1),[-1 -2],Y,[-2 -1],'m'),sum(sum(X(:,:,1).'.*Y)));
unitTest([str ' ignored dims, [0 -2],[-2 2 1]'],tprod(Y(1,:),[0 -2],X(:,:,:),[-2 2 1],'m'),reshape(Y(1,:)*reshape(X,size(X,1),[]),size(X,2),size(X,3)).');
% Higher order matrix operations
unitTest([str ' spatio-temporal filter [-1 -2 1],[-1 -2]'],tprod(X,[-1 -2 1],Y,[-1 -2],'m'),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1]));
unitTest([str ' spatio-temporal filter (fallback) [-1 -2 1],[-1 -2]'],tprod(X,[-1 -2 1],Y,[-1 -2]),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1]));
unitTest([str ' spatio-temporal filter (order) [-1 -2],[-1 -2 1]'],tprod(Y,[-1 -2],X,[-1 -2 1]),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1]));
unitTest([str ' spatio-temporal filter (order) [-1 -2],[-1 -2 3]'],tprod(Y,[-1 -2],X,[-1 -2 3]),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[1 1 size(X,3)]));
unitTest([str ' transposed spatio-temporal filter [1 -2 -3],[-2 -3]'],tprod(X,[1 -2 -3],Y,[-2 -3],'m'),reshape(reshape(X,size(X,1),size(X,2)*size(X,3))*Y(:),[size(X,1) 1]));
unitTest([str ' matrix-vector product [-1 1 2][-1]'],tprod(X,[-1 1 2],Y(:,1),[-1],'m'),reshape(Y(:,1).'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[size(X,2) size(X,3)]));
unitTest([str ' spatial filter (fallback): [-1 2 3],[-1 1]'],tprod(X,[-1 2 3],Y,[-1 1]),reshape(Y.'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[size(Y,2) size(X,2) size(X,3)]));
unitTest([str ' spatial filter: [-1 2 3],[-1 1]'],tprod(X,[-1 2 3],Y,[-1 1],'m'),reshape(Y.'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[size(Y,2) size(X,2) size(X,3)]));
unitTest([str ' temporal filter [1 -2 3],[2 -2]'],tprod(X,[1 -2 3],Y(1,:),[2 -2],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2));
unitTest([str ' temporal filter [2 -2],[1 -2 3]'],tprod(Y(1,:),[2 -2],X,[1 -2 3],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2));
unitTest([str ' temporal filter [-2 2],[1 -2 3]'],tprod(Y(1,:).',[-2 2],X,[1 -2 3],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2));
unitTest([str ' temporal filter [-2 2],[1 -2 3]'],tprod(Y(1,:).',[-2 2],X,[1 -2 3],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2));
Xp=permute(X,[1 3 2]);
unitTest([str ' blk-code [-1 1 -2][-1 2 -2]'],tprod(X,[-1 1 -2],X,[-1 2 -2],'m'),reshape(Xp,[],size(Xp,3)).'*reshape(Xp,[],size(Xp,3)));
return;
function []=timingTests(X,Y,str);
% outer product simulation
fprintf([str ' OuterProduct [1][2]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic; for i=1:1000; Z=tprod(X(:,1),1,Y(:,1),2); end
fprintf('%30s %gs\n','tprod',toc/1000); % = .05 / .01
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic; for i=1:1000; Zm=tprod(X(:,1),1,Y(:,1),2,'m'); end
fprintf('%30s %gs\n','tprod m',toc/1000); % = .05 / .01
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic, for i=1:1000;T=X(:,1)*Y(:,1).';end;
fprintf('%30s %gs\n','MATLAB',toc/1000); % = .03 / .01
% matrix product
fprintf([str ' MatrixProduct [1 -1][-1 2]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic, for i=1:1000;Z=tprod(X(:,:,1),[1 -1],Y,[-1 2]);end
fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic, for i=1:1000;Zm=tprod(X(:,:,1),[1 -1],Y,[-1 2],'m');end
fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic, for i=1:1000;T=X(:,:,1)*Y;end
fprintf('%30s %gs\n','MATLAB',toc/1000);% = .17 / .06
% transposed matrix product simulation
fprintf([str ' transposed Matrix Product [-1 1][2 -1]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic, for i=1:1000;Z=tprod(X(:,:,1),[-1 1],Y,[2 -1]);end
fprintf('%30s %gs\n','tprod',toc/1000);% =.3 / .06
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic, for i=1:1000;Zm=tprod(X(:,:,1),[-1 1],Y,[2 -1],'m');end
fprintf('%30s %gs\n','tprod m',toc/1000);% =.3 / .06
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic, for i=1:1000;T=X(:,:,1).'*Y.';end
fprintf('%30s %gs\n','MATLAB',toc/1000); % =.17 / .06
% Higher order matrix operations % times: P3-m 1.8Ghz 2048k / P4 2.4Ghz 512k
fprintf([str ' spatio-temporal filter [-1 -2 1] [-1 -2]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:500;Z=tprod(X,[-1 -2 1],Y,[-1 -2]);end,
fprintf('%30s %gs\n','tprod',toc/500);% =.26 / .18
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:500;Zm=tprod(X,[-1 -2 1],Y,[-1 -2],'m');end,
fprintf('%30s %gs\n','tprod m',toc/500);% =.26 / .18
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:500;T=reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1]);end,
fprintf('%30s %gs\n','MATLAB',toc/500); %=.21 / .18
fprintf([str ' transposed spatio-temporal filter [1 -2 -3] [-2 -3]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50;Z=tprod(X,[1 -2 -3],Y,[-2 -3]);end,
fprintf('%30s %gs\n','tprod',toc/50);% =.27 / .28
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50;Zm=tprod(X,[1 -2 -3],Y,[-2 -3],'m');end,
fprintf('%30s %gs\n','tprod m',toc/50);% =.27 / .28
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50;T=reshape(reshape(X,size(X,1),size(X,2)*size(X,3))*Y(:),[size(X,1) 1]);end,
fprintf('%30s %gs\n','MATLAB',toc/50); %=.24 / .26
% MATRIX vector product
fprintf([str ' matrix-vector product [-1 1 2] [-1]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:500; Z=tprod(X,[-1 1 2],Y(:,1),[-1]);end,
fprintf('%30s %gs\n','tprod',toc/500); %=.27 / .26
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:500; Zm=tprod(X,[-1 1 2],Y(:,1),[-1],'m');end,
fprintf('%30s %gs\n','tprod m',toc/500); %=.27 / .26
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:500; T=reshape(Y(:,1).'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[1 size(X,2) size(X,3)]);end,
fprintf('%30s %gs\n','MATLAB (reshape)',toc/500);%=.21 / .28
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:500; T=zeros([size(X,1),1,size(X,3)]);for k=1:size(X,3); T(:,:,k)=Y(1,:)*X(:,:,k); end,end,
fprintf('%30s %gs\n','MATLAB (loop)',toc/500); %=.49 /
% spatial filter
fprintf([str ' Spatial filter: [-1 2 3],[-1 1]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic;for i=1:500;Z=tprod(X,[-1 2 3],Y(:,1:2),[-1 1]);end;
fprintf('%30s %gs\n','tprod',toc/500);%=.39/.37
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic;for i=1:500;Zm=tprod(X,[-1 2 3],Y(:,1:2),[-1 1],'m');end;
fprintf('%30s %gs\n','tprod m',toc/500);%=.39/.37
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic;for i=1:500; T=reshape(Y(:,1:2).'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[2 size(X,2) size(X,3)]);end;
fprintf('%30s %gs\n','MATLAB',toc/500);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic;for i=1:500;T=zeros(2,size(X,2),size(X,3));for k=1:size(X,3);T(:,:,k)=Y(:,1:2).'*X(:,:,k);end;end;
fprintf('%30s %gs\n','MATLAB (loop)',toc/500); %=.76/.57
% temporal filter
fprintf([str ' Temporal filter: [1 -2 3],[2 -2]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50; Z=tprod(X,[1 -2 3],Y,[2 -2]);end
fprintf('%30s %gs\n','tprod',toc/50); %=.27 / .31
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50; T=zeros([size(X,1),size(Y,1),size(X,3)]);for k=1:size(X,3); T(:,:,k)=X(:,:,k)*Y(:,:).'; end,end,
fprintf('%30s %gs\n','MATLAB (loop)',toc/50); %= .50 /
%tic,for i=1:50; T=zeros([size(X,1),size(Y,1),size(X,3)]); for k=1:size(Y,1); T(:,k,:)=sum(X.*repmat(Y(k,:),[size(X,1) 1 size(X,3)]),2);end,end;
%fprintf('%30s %gs\n','MATLAB (repmat)',toc/50); %=3.9 / 3.3
fprintf([str ' Temporal filter2: [1 -2 3],[-2 2]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50; Z=tprod(X,[1 -2 3],Y,[-2 2]);end
fprintf('%30s %gs\n','tprod',toc/50); %=.27 / .31
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50; T=zeros([size(X,1),size(Y,1),size(X,3)]);for k=1:size(X,3); T(:,:,k)=X(:,:,k)*Y(:,:); end,end,
fprintf('%30s %gs\n','MATLAB (loop)',toc/50); %= .50 /
% Data Covariances
fprintf([str ' Channel-covariance/trial(3) [1 -1 3] [2 -1 3]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic;for i=1:50;Z=tprod(X,[1 -1 3],[],[2 -1 3]);end;
fprintf('%30s %gs\n','tprod',toc/50); %=8.36/7.6
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:50;T=zeros(size(X,1),size(X,1),size(X,3));for k=1:size(X,3); T(:,:,k)=X(:,:,k)*X(:,:,k)';end;end,
fprintf('%30s %gs\n','MATLAB (loop)',toc/50); %=9.66/7.0
% N.B. --- aligned over dim 1 takes 2x longer!
fprintf([str ' Channel-covariance/trial(1) [1 -1 2] [1 -1 3]\n']);
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic;for i=1:10;Z=tprod(X,[1 -1 2],[],[1 -1 3]);end;
fprintf('%30s %gs\n','tprod',toc/10); %= /37.2
A=complex(randn(size(X)),randn(size(X))); % flush cache?
tic,for i=1:10;T=zeros(size(X,1),size(X,1),size(X,3));for k=1:size(X,3);T(k,:,:)=shiftdim(X(k,:,:))'*shiftdim(X(k,:,:));end;end,
fprintf('%30s %gs\n','MATLAB',toc/10); %=17.2/25.8
return;
function []=scalingTests(Ns);
% Scaling test
fprintf('Simple test of the effect of the acc size\n');
for N=Ns;
fprintf('X=[%d x %d]\n',N,N*N);X=randn(N,N*N);Y=randn(N*N,1);
fprintf('[1 -1][-1]\n');
tic, for i=1:1000;Z=tprod(X,[1 -1],Y,[-1],'n');end
fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06
tic, for i=1:1000;Z=tprod(X,[1 -1],Y,[-1],'mn');end
fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06
end
fprintf('Simple mat vs non mat tests\n');
for N=Ns;
fprintf('N=%d\n',N);X=randn(N,N,N);Y=randn(N,N);
fprintf('[1 -1 -2][-1 -2]\n');
tic, for i=1:1000;Z=tprod(X,[1 -1 -2],Y,[-1 -2]);end
fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06
tic, for i=1:1000;Z=tprod(X,[1 -1 -2],Y,[-1 -2],'m');end
fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06
fprintf('[-1 -2 1][-1 -2]\n');
tic, for i=1:1000;Z=tprod(X,[-1 -2 1],Y,[-1 -2]);end
fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06
tic, for i=1:1000;Z=tprod(X,[-1 -2 1],Y,[-1 -2],'m');end
fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06
fprintf('[-1 2 3][-1 1]\n');
tic, for i=1:100;Z=tprod(X,[-1 2 3],Y,[-1 1]);end
fprintf('%30s %gs\n','tprod',toc/100);% = .28 / .06
tic, for i=1:100;Z=tprod(X,[-1 2 3],Y,[-1 1],'m');end
fprintf('%30s %gs\n','tprod m',toc/100);% = .28 / .06
end
function []=blkSzTests(blkSzs,Ns);
fprintf('Blksz optimisation tests\n');
%blkSzs=[64 48 40 32 24 16 0];
tptime=zeros(numel(blkSzs+2));
for N=Ns;%[128,256,512,1024,2048];
X=randn(N,N);Y=randn(size(X));
for i=1:5;
% use tprod without matlab
for b=1:numel(blkSzs); blkSz=blkSzs(b);
clear T;T=randn(1024,1024); % clear cache
tic,for j=1:3;tprod(X,[1 -1],Y,[-1 2],'mn',blkSz);end;
tptime(b)=tptime(b)+toc;
end;
% tprod with defaults & matlab if possible
clear T;T=randn(1024,1024); % clear cache
tic,for j=1:3;tprod(X,[1 -1],Y,[-1 2]);end;
tptime(numel(blkSzs)+1)=tptime(numel(blkSzs)+1)+toc;
% the pure matlab code
clear T;T=randn(1024,1024); % clear cache
tic,for j=1:3; Z=X*Y;end;
tptime(numel(blkSzs)+2)=tptime(numel(blkSzs)+2)+toc;
end;
for j=1:numel(blkSzs);
fprintf('blk=%d, N = %d -> %gs \n',blkSzs(j),N,tptime(j));
end
fprintf('tprod, N = %d -> %gs \n',N,tptime(numel(blkSzs)+1));
fprintf('MATLAB, N = %d -> %gs \n',N,tptime(numel(blkSzs)+2));
fprintf('\n');
end;
return;
% simple function to check the accuracy of a test and report the result
function [testRes,trueRes,diff]=unitTest(testStr,testRes,trueRes,tol)
global DEBUG;
if ( nargin < 4 )
if ( isa(trueRes,'double') ) tol=1e-11;
elseif ( isa(trueRes,'single') ) tol=1e-5;
elseif ( isa(trueRes,'integer') )
warning('Integer inputs!'); tol=1;
elseif ( isa(trueRes,'logical') ) tol=0;
end
end
diff=abs(testRes-trueRes)./max(1,abs(testRes+trueRes));
fprintf('%60s = %0.3g ',testStr,max(diff(:)));
if ( max(diff(:)) > tol )
if ( exist('mimage') )
mimage(squeeze(testRes),squeeze(trueRes),squeeze(diff))
end
fprintf(' **FAILED***\n');
if ( DEBUG>0 )
warning([testStr ': failed!']),
fprintf('Type return to continue\b');keyboard;
end;
else
fprintf('Passed \n');
end
|
github
|
lcnbeapp/beapp-master
|
etprod.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/svm/tprod/etprod.m
| 3,882 |
utf_8
|
2f529c6b86be54251a59ae7f9db81d98
|
function [C,Atp,Btp]=etprod(Cidx,A,Aidx,B,Bidx)
% tprod wrapper to make calls more similar to Einstein Summation Convention
%
% [C,Atp,Btp]=etprod(Cidx,A,Aidx,B,Bidx);
% Wrapper function for tprod to map between Einstein summation
% convetion (ESC) and tprod's numeric calling convention e.g.
% 1) Matrix Matrix product:
% ESC: C_ij = A_ik B_kj <=> C = etprod('ij',A,'ik',B,'kj');
% 2) Vector outer product
% ESC: C_ij = A_i B_j <=> C = etprod('ij',A,'i',B,'j'); % A,B col vec
% C = etprod('ij',A,' i',B,' j'); % A,B row vec
% N.B. use spaces ' ' to indicate empty/ignored *singlenton* dimensions
% 3) Matrix vector product
% ESC: C_i = A_ik B_k <=> C = etprod('i',A,'ik',B,'k');
% 4) Spatial Filtering
% ESC: FX_fte = A_cte B_cf <=> C = etprod('fte',A,'cte',B,'cf')
% OR:
% C = etprod({'feat','time','epoch'},A,{'ch','time','epoch'},B,{'ch','feat'})
%
% Inputs:
% Cidx -- the list of dimension labels for the output
% A -- [n-d] array of the A values
% Aidx -- [ndims(A) x 1] (array, string, or cell array of strings)
% list of dimension labels for A array
% B -- [m-d] array of the B values
% Bidx -- [ndims(B) x 1] (array, string or cell array of strings)
% list of dimension labels for B array
% Outputs:
% C -- [p-d] array of output values. Dimension labels are as in Cidx
% Atp -- [ndims(A) x 1] A's dimspec as used in the core tprod call
% Btp -- [ndims(B) x 1] B's dimspec as used in the core tprod call
%
% See Also: tprod, tprod_testcases
%
% Copyright 2006- by Jason D.R. Farquhar ([email protected])
% Permission is granted for anyone to copy, use, or modify this
% software and accompanying documents for any uncommercial
% purposes, provided this copyright notice is retained, and note is
% made of any changes that have been made. This software and
% documents are distributed without any warranty, express or
% implied
if ( iscell(Aidx)~=iscell(Bidx) || iscell(Cidx)~=iscell(Aidx) )
error('Aidx,Bidx and Cidx cannot be of different types, all cells or arrays');
end
Atp = zeros(size(Aidx));
Btp = zeros(size(Bidx));
% Map inner product dimensions, to unique *negative* index
for i=1:numel(Aidx)
if ( iscell(Aidx) ) Bmatch = strcmp(Aidx{i}, Bidx);
else Bmatch = (Aidx(i)==Bidx);
end
if ( any(Bmatch) ) Btp(Bmatch)=-i; Atp(i)=-i; end;
end
% Spaces/empty values in the input become 0's, i.e. ignored dimensions
if ( iscell(Aidx) )
Btp(strcmp(' ',Bidx))=0;Btp(strcmp('',Bidx))=0;
Atp(strcmp(' ',Aidx))=0;Atp(strcmp('',Aidx))=0;
else
Btp(' '==Bidx)=0;
Atp(' '==Aidx)=0;
end
% Map to output position numbers, to correct *positive* index
for i=1:numel(Cidx);
if ( iscell(Aidx) )
Atp(strcmp(Cidx{i}, Aidx))=i;
Btp(strcmp(Cidx{i}, Bidx))=i;
else
Atp(Cidx(i)==Aidx)=i;
Btp(Cidx(i)==Bidx)=i;
end
end
% now do the tprod call.
global LOG; if ( isempty(LOG) ) LOG=0; end; % N.B. set LOG to valid fd to log
if ( LOG>0 )
fprintf(LOG,'tprod(%s,[%s], %s,[%s])\n',mxPrint(A),sprintf('%d ',Atp),mxPrint(B),sprintf('%d ',Btp));
end
C=tprod(A,Atp,B,Btp,'n');
return;
function [str]=mxPrint(mx)
sz=size(mx);
if ( isa(mx,'double') ) str='d'; else str='s'; end;
if ( isreal(mx)) str=[str 'r']; else str=[str 'c']; end;
str=[str ' [' sprintf('%dx',sz(1:end-1)) sprintf('%d',sz(end)) '] '];
return;
%----------------------------------------------------------------------------
function testCase();
A=randn(10,10); B=randn(10,10);
C2 = tprod(A,[1 -2],B,[-2 2]);
C = etprod('ij',A,'ik',B,'kj'); mad(C2,C)
C = etprod({'i' 'j'},A,{'i' 'k'},B,{'k' 'j'});
A=randn(100,100);B=randn(100,100,4);
C3 = tprod(A,[-1 -2],B,[-1 -2 3]);
C3 = tprod(B,[-1 -2 1],A,[-1 -2]);
C3 = tprod(A,[-1 -2],B,[-1 -2 1]);
C = etprod('3',A,'12',B,'123');
C = etprod([3],A,[1 2],B,[1 2 3]);
C = etprod({'3'},A,{'1' '2'},B,{'1' '2' '3'})
|
github
|
lcnbeapp/beapp-master
|
covshrinkKPM.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/slda/covshrinkKPM.m
| 2,367 |
utf_8
|
5dec20c5cd59e71f053003124ae98c46
|
function [s, lam] = covshrinkKPM(x, shrinkvar)
% Shrinkage estimate of a covariance matrix, using optimal shrinkage coefficient.
% INPUT:
% x is n*p data matrix
% shrinkvar :
% 0: corshrink (default)
% 1: varshrink
%
% OUTPUT:
% s is the posdef p*p cov matrix
% lam is the shrinkage coefficient
%
% See J. Schaefer and K. Strimmer. 2005. A shrinkage approach to
% large-scale covariance matrix estimation and implications
% for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32.
% This code is based on their original code http://strimmerlab.org/software.html
% but has been vectorized and simplified by Kevin Murphy.
% Adapted by Marcel van Gerven
if nargin < 2, shrinkvar = 0; end
[n p] = size(x);
if p==1, s=var(x); return; end
switch num2str(shrinkvar)
case '1' % Eqns 10 and 11 of Opgen-Rhein and Strimmer (2007)
[v, lam] = varshrink(x);
dsv = diag(sqrt(v));
r = corshrink(x);
s = dsv*r*dsv;
otherwise % case 'D' of Schafer and Strimmer
v = var(x);
dsv = diag(sqrt(v));
[r, lam] = corshrink(x);
s = dsv*r*dsv;
end
%%%%%%%%
function [sv, lambda] = varshrink (x)
% Eqns 10 and 11 of Opgen-Rhein and Strimmer (2007)
[v, vv] = varcov(x);
v = diag(v); vv = diag(vv);
vtarget = median(v);
numerator = sum(vv);
denominator = sum((v-vtarget).^2);
lambda = numerator/denominator;
lambda = min(lambda, 1); lambda = max(lambda, 0);
sv = (1-lambda)*v + lambda*vtarget;
function [Rhat, lambda] = corshrink(x)
% Eqn on p4 of Schafer and Strimmer 2005
[n, p] = size(x);
sx = makeMeanZero(x); sx = makeStdOne(sx); % convert S to R
[r, vr] = varcov(sx);
offdiagsumrij2 = sum(sum(tril(r,-1).^2));
offdiagsumvrij = sum(sum(tril(vr,-1)));
lambda = offdiagsumvrij/offdiagsumrij2;
lambda = min(lambda, 1); lambda = max(lambda, 0);
Rhat = (1-lambda)*r;
Rhat(logical(eye(p))) = 1;
function [S, VS] = varcov(x)
% s(i,j) = cov X(i,j)
% vs(i,j) = est var s(i,j)
[n,p] = size(x);
xc = makeMeanZero(x);
S = cov(xc);
XC1 = repmat(reshape(xc', [p 1 n]), [1 p 1]); % size p*p*n !
XC2 = repmat(reshape(xc', [1 p n]), [p 1 1]); % size p*p*n !
VS = var(XC1 .* XC2, 0, 3) * n/((n-1)^2);
function xc = makeMeanZero(x)
% make column means zero
[n,p] = size(x);
m = mean(x);
xc = x - ones(n, 1)*m;
function xc = makeStdOne(x)
% make column variances one
[n,p] = size(x);
sd = ones(n, 1)*std(x);
xc = x ./ sd;
|
github
|
lcnbeapp/beapp-master
|
glmnet.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/glmnet/glmnet.m
| 12,230 |
utf_8
|
8b349969d0712566867f87fff7e75396
|
function fit = glmnet(x, y, family, options)
%--------------------------------------------------------------------------
% glmnet.m: fit an elasticnet model path
%--------------------------------------------------------------------------
%
% DESCRIPTION:
% Fit a regularization path for the elasticnet at a grid of values for
% the regularization parameter lambda. Can deal with all shapes of data.
% Fits linear, logistic and multinomial regression models.
%
% USAGE:
% fit = glmnet(x, y)
% fit = glmnet(x, y, family, options)
%
% EXTERNAL FUNCTIONS:
% options = glmnetSet; provided with glmnet.m
%
% INPUT ARGUMENTS:
% x Input matrix, of dimension nobs x nvars; each row is an
% observation vector. Can be in sparse column format.
% y Response variable. Quantitative for family =
% 'gaussian'. For family = 'binomial' should be either a vector
% of two levels, or a two-column matrix of counts or
% proportions. For family = 'multinomial', can be either a
% vector of nc>=2 levels, or a matrix with nc columns of counts
% or proportions.
% family Reponse type. (See above). Default is 'gaussian'.
% options A structure that may be set and altered by glmnetSet (type
% help glmnetSet).
%
% OUTPUT ARGUMENTS:
% fit A structure.
% fit.a0 Intercept sequence of length length(fit.lambda).
% fit.beta For "elnet" and "lognet" models, a nvars x length(lambda)
% matrix of coefficients. For "multnet", a list of nc such
% matrices, one for each class.
% fit.lambda The actual sequence of lambda values used.
% fit.dev The fraction of (null) deviance explained (for "elnet", this
% is the R-square).
% fit.nulldev Null deviance (per observation).
% fit.df The number of nonzero coefficients for each value of lambda.
% For "multnet", this is the number of variables with a nonzero
% coefficient for any class.
% fit.dfmat For "multnet" only. A matrix consisting of the number of
% nonzero coefficients per class.
% fit.dim Dimension of coefficient matrix (ices).
% fit.npasses Total passes over the data summed over all lambda values.
% fit.jerr Error flag, for warnings and errors (largely for internal
% debugging).
% fit.class Type of regression - internal usage.
%
% DETAILS:
% The sequence of models implied by lambda is fit by coordinate descent.
% For family = 'gaussian' this is the lasso sequence if alpha = 1, else
% it is the elasticnet sequence. For family = 'binomial' or family =
% "multinomial", this is a lasso or elasticnet regularization path for
% fitting the linear logistic or multinomial logistic regression paths.
% Sometimes the sequence is truncated before options.nlambda values of
% lambda have been used, because of instabilities in the logistic or
% multinomial models near a saturated fit. glmnet(..., family =
% 'binomial') fits a traditional logistic regression model for the
% log-odds. glmnet(..., family = 'multinomial') fits a symmetric
% multinomial model, where each class is represented by a linear model
% (on the log-scale). The penalties take care of redundancies. A
% two-class "multinomial" model will produce the same fit as the
% corresponding "binomial" model, except the pair of coefficient
% matrices will be equal in magnitude and opposite in sign, and half the
% "binomial" values. Note that the objective function for
% "gaussian" is
% 1 / (2 * nobs) RSS + lambda * penalty
% , and for the logistic models it is
% 1 / nobs - loglik + lambda * penalty
%
% LICENSE: GPL-2
%
% DATE: 14 Jul 2009
%
% AUTHORS:
% Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani
% Fortran code was written by Jerome Friedman
% R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hasite
% MATLAB wrapper was written and maintained by Hui Jiang, [email protected]
% Department of Statistics, Stanford University, Stanford, California, USA.
%
% REFERENCES:
% Friedman, J., Hastie, T. and Tibshirani, R. (2009)
% Regularization Paths for Generalized Linear Models via Coordinate Descent.
% Journal of Statistical Software, 33(1), 2010
%
% SEE ALSO:
% glmnetSet, glmnetPrint, glmnetPlot, glmnetPredict and glmnetCoef methods.
%
% EXAMPLES:
% x=randn(100,20);
% y=randn(100,1);
% g2=randsample(2,100,true);
% g4=randsample(4,100,true);
% fit1=glmnet(x,y);
% glmnetPrint(fit1);
% glmnetCoef(fit1,0.01) % extract coefficients at a single value of lambda
% glmnetPredict(fit1,'response',x(1:10,:),[0.01,0.005]') % make predictions
% fit2=glmnet(x,g2,'binomial');
% fit3=glmnet(x,g4,'multinomial');
%
% DEVELOPMENT:
% 14 Jul 2009: Original version of glmnet.m written.
% 26 Jan 2010: Fixed a bug in the description of y, pointed out by
% Peter Rijnbeek from Erasmus University.
% 09 Mar 2010: Fixed a bug of printing "ka = 2", pointed out by
% Ramon Casanova from Wake Forest University.
% 25 Mar 2010: Fixed a bug when p > n in multinomial fitting, pointed
% out by Gerald Quon from University of Toronto
% Check input arguments
if nargin < 2
error('more input arguments needed.');
end
if nargin < 3
family = 'gaussian';
end
if nargin < 4
options = glmnetSet;
end
% Prepare parameters
nlam = options.nlambda;
[nobs,nvars] = size(x);
weights = options.weights;
if isempty(weights)
weights = ones(nobs,1);
end
maxit = options.maxit;
if strcmp(family, 'binomial') || strcmp(family, 'multinomial')
[noo,nc] = size(y);
kopt = double(options.HessianExact);
if noo ~= nobs
error('x and y have different number of rows');
end
if nc == 1
classes = unique(y);
nc = length(classes);
indexes = eye(nc);
y = indexes(y,:);
end
if strcmp(family, 'binomial')
if nc > 2
error ('More than two classes; use multinomial family instead');
end
nc = 1; % for calling multinet
end
if ~isempty(weights)
% check if any are zero
o = weights > 0;
if ~all(o) %subset the data
y = y(o,:);
x = x(o,:);
weights = weights(o);
nobs = sum(o);
end
[my,ny] = size(y);
y = y .* repmat(weights,1,ny);
end
% Compute the null deviance
prior = sum(y,1);
sumw = sum(sum(y));
prior = prior / sumw;
nulldev = -2 * sum(sum(y .* (ones(nobs, 1) * log(prior)))) / sumw;
elseif strcmp(family, 'gaussian')
% Compute the null deviance
ybar = y' * weights/ sum(weights);
nulldev = (y' - ybar).^2 * weights / sum(weights);
if strcmp(options.type, 'covariance')
ka = 1;
elseif strcmp(options.type, 'naive')
ka = 2;
else
error('unrecognized type');
end
else
error('unrecognized family');
end
ne = options.dfmax;
if ne == 0
ne = nvars + 1;
end
nx = options.pmax;
if nx == 0
nx = min(ne * 1.2, nvars);
end
exclude = options.exclude;
if ~isempty(exclude)
exclude = unique(exclude);
if ~all(exclude > 0 & exclude <= nvars)
error('Some excluded variables out of range');
end
jd = [length(exclude); exclude];
else
jd = 0;
end
vp = options.penalty_factor;
if isempty(vp)
vp = ones(nvars,1);
end
isd = double(options.standardize);
thresh = options.thresh;
lambda = options.lambda;
lambda_min = options.lambda_min;
if lambda_min == 0
if nobs < nvars
lambda_min = 5e-2;
else
lambda_min = 1e-4;
end
end
if isempty(lambda)
if (lambda_min >= 1)
error('lambda_min should be less than 1');
end
flmin = lambda_min;
ulam = 0;
else
flmin = 1.0;
if any(lambda < 0)
error ('lambdas should be non-negative');
end
ulam = -sort(-lambda);
nlam = length(lambda);
end
parm = options.alpha;
if strcmp(family, 'gaussian')
[a0,ca,ia,nin,rsq,alm,nlp,jerr] = glmnetMex(parm,x,y,jd,vp,ne,nx,nlam,flmin,ulam,thresh,isd,weights,ka);
else
[a0,ca,ia,nin,dev,alm,nlp,jerr] = glmnetMex(parm,x,y,jd,vp,ne,nx,nlam,flmin,ulam,thresh,isd,nc,maxit,kopt);
end
% Prepare output
lmu = length(alm);
ninmax = max(nin);
lam = alm;
if isempty(options.lambda)
lam = fix_lam(lam); % first lambda is infinity; changed to entry point
end
errmsg = err(jerr, maxit, nx);
if errmsg.n == 1
error(errmsg.msg);
elseif errmsg.n == -1
warning(errmsg.msg);
end
if strcmp(family, 'multinomial')
beta_list = {};
a0 = a0 - repmat(mean(a0), nc, 1);
dfmat=a0;
dd=[nvars, lmu];
if ninmax > 0
ca = reshape(ca, nx, nc, lmu);
ca = ca(1:ninmax,:,:);
ja = ia(1:ninmax);
[ja1,oja] = sort(ja);
df = any(abs(ca) > 0, 2);
df = sum(df, 1);
df = df(:);
for k=1:nc
ca1 = reshape(ca(:,k,:), ninmax, lmu);
cak = ca1(oja,:);
dfmat(k,:) = sum(sum(abs(cak) > 0));
beta = zeros(nvars, lmu);
beta(ja1,:) = cak;
beta_list{k} = beta;
end
else
for k = 1:nc
dfmat(k,:) = zeros(1,lmu);
beta_list{k} = zeros(nvars, lmu);
end
end
fit.a0 = a0;
fit.beta = beta_list;
fit.dev = dev;
fit.nulldev = nulldev;
fit.dfmat = dfmat;
fit.df = df';
fit.lambda = lam;
fit.npasses = nlp;
fit.jerr = jerr;
fit.dim = dd;
fit.class = 'multnet';
else
dd=[nvars, lmu];
if ninmax > 0
ca = ca(1:ninmax,:);
df = sum(abs(ca) > 0, 1);
ja = ia(1:ninmax);
[ja1,oja] = sort(ja);
beta = zeros(nvars, lmu);
beta (ja1, :) = ca(oja,:);
else
beta = zeros(nvars,lmu);
df = zeros(1,lmu);
end
if strcmp(family, 'binomial')
a0 = -a0;
fit.a0 = a0;
fit.beta = -beta; %sign flips make 2 arget class
fit.dev = dev;
fit.nulldev = nulldev;
fit.df = df';
fit.lambda = lam;
fit.npasses = nlp;
fit.jerr = jerr;
fit.dim = dd;
fit.class = 'lognet';
else
fit.a0 = a0;
fit.beta = beta;
fit.dev = rsq;
fit.nulldev = nulldev;
fit.df = df';
fit.lambda = lam;
fit.npasses = nlp;
fit.jerr = jerr;
fit.dim = dd;
fit.class = 'elnet';
end
end
%------------------------------------------------------------------
% End function glmnet
%------------------------------------------------------------------
function new_lam = fix_lam(lam)
new_lam = lam;
llam=log(lam);
new_lam(1)=exp(2*llam(2)-llam(3));
%------------------------------------------------------------------
% End private function fix_lam
%------------------------------------------------------------------
function output = err(n,maxit,pmax)
if n==0
output.n=0;
output.msg='';
elseif n>0 %fatal error
if n<7777
msg='Memory allocation error; contact package maintainer';
elseif n==7777
msg='All used predictors have zero variance';
elseif (8000<n) && (n<9000)
msg=sprintf('Null probability for class %d < 1.0e-5', n-8000);
elseif (9000<n) && (n<10000)
msg=sprintf('Null probability for class %d > 1.0 - 1.0e-5', n-9000);
elseif n==10000
msg='All penalty factors are <= 0';
end
output.n=1
output.msg=['in glmnet fortran code - %s',msg];
elseif n<0 %non fatal error
if n > -10000
msg=sprintf('Convergence for %dth lambda value not reached after maxit=%d iterations; solutions for larger lambdas returned', -n, maxit);
elseif n < -10000
msg=sprintf('Number of nonzero coefficients along the path exceeds pmax=%d at %dth lambda value; solutions for larger lambdas returned', pmax, -n-10000);
end
output.n=-1;
output.msg=['from glmnet fortran code - ',msg];
end
%------------------------------------------------------------------
% End private function err
%------------------------------------------------------------------
|
github
|
lcnbeapp/beapp-master
|
glmnetPlot.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/glmnet/glmnetPlot.m
| 3,485 |
utf_8
|
25bef119d3957074e024d7afafff205f
|
function glmnetPlot( x, xvar, label )
%--------------------------------------------------------------------------
% glmnetPlot.m: plot coefficients from a "glmnet" object
%--------------------------------------------------------------------------
%
% DESCRIPTION:
% Produces a coefficient profile plot fo the coefficient paths for a
% fitted "glmnet" object.
%
% USAGE:
% glmnetPlot(fit);
% glmnetPlot(fit, xvar);
% glmnetPlot(fit, xvar, label);
%
% INPUT ARGUMENTS:
% x fitted "glmnet" model.
% xvar What is on the X-axis. "norm" plots against the L1-norm of
% the coefficients, "lambda" against the log-lambda sequence,
% and "dev" against the percent deviance explained.
% label if TRUE, label the curves with variable sequence numbers.
%
% DETAILS:
% A coefficient profile plot is produced. If x is a multinomial model, a
% coefficient plot is produced for each class.
%
% LICENSE: GPL-2
%
% DATE: 14 Jul 2009
%
% AUTHORS:
% Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani
% Fortran code was written by Jerome Friedman
% R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hasite
% MATLAB wrapper was written and maintained by Hui Jiang, [email protected]
% Department of Statistics, Stanford University, Stanford, California, USA.
%
% REFERENCES:
% Friedman, J., Hastie, T. and Tibshirani, R. (2009)
% Regularization Paths for Generalized Linear Models via Coordinate Descent.
% Journal of Statistical Software, 33(1), 2010
%
% SEE ALSO:
% glmnet, glmnetSet, glmnetPrint, glmnetPredict and glmnetCoef methods.
%
% EXAMPLES:
% x=randn(100,20);
% y=randn(100,1);
% g2=randsample(2,100,true);
% g4=randsample(4,100,true);
% fit1=glmnet(x,y);
% glmnetPlot(fit1);
% glmnetPlot(fit1, 'lambda', true);
% fit3=glmnet(x,g4,'multinomial');
% glmnetPlot(fit3);
%
% DEVELOPMENT: 14 Jul 2009: Original version of glmnet.m written.
if nargin < 2
xvar = 'norm';
end
if nargin < 3
label = false;
end
if strcmp(x.class,'multnet')
beta=x.beta;
if strcmp(xvar,'norm')
norm = 0;
for i=1:length(beta);
which = nonzeroCoef(beta{i});
beta{i} = beta{i}(which,:);
norm = norm + sum(abs(beta{i}),1);
end
else
norm = 0;
end
dfmat=x.dfmat;
ncl=size(dfmat,1);
for i=1:ncl
plotCoef(beta{i},norm,x.lambda,dfmat(i,:),x.dev,label,xvar,'',sprintf('Coefficients: Class %d', i));
end
else
plotCoef(x.beta,[],x.lambda,x.df,x.dev,label,xvar,'','Coefficients');
end
%----------------------------------------------------------------
% End function glmnetPlot
%----------------------------------------------------------------
function plotCoef(beta,norm,lambda,df,dev,label,xvar,xlab,ylab)
which = nonzeroCoef(beta);
beta = beta(which,:);
if strcmp(xvar, 'norm')
if isempty(norm)
index = sum(abs(beta),1);
else
index = norm;
end
iname = 'L1 Norm';
elseif strcmp(xvar, 'lambda')
index=log(lambda);
iname='Log Lambda';
elseif strcmp(xvar, 'dev')
index=dev;
iname='Fraction Deviance Explained';
end
if isempty(xlab)
xlab = iname;
end
plot(index,transpose(beta));
xlabel(xlab);
ylabel(ylab);
%----------------------------------------------------------------
% End private function plotCoef
%----------------------------------------------------------------
|
github
|
lcnbeapp/beapp-master
|
glmnetPredict.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/glmnet/glmnetPredict.m
| 9,023 |
utf_8
|
fd2d04fce352a52a0c6616c95fc90bd1
|
function result = glmnetPredict(object, type, newx, s)
%--------------------------------------------------------------------------
% glmnetPredict.m: make predictions from a "glmnet" object.
%--------------------------------------------------------------------------
%
% DESCRIPTION:
% Similar to other predict methods, this functions predicts fitted
% values, logits, coefficients and more from a fitted "glmnet" object.
%
% USAGE:
% glmnetPredict(object)
% glmnetPredict(object, type)
% glmnetPredict(object, type, newx)
% glmnetPredict(object, type, newx, s)
%
% INPUT ARGUMENTS:
% fit Fitted "glmnet" model object.
% type Type of prediction required. Type "link" gives the linear
% predictors for "binomial" or "multinomial" models; for
% "gaussian" models it gives the fitted values. Type "response"
% gives the fitted probabilities for "binomial" or
% "multinomial"; for "gaussian" type "response" is equivalent
% to type "link". Type "coefficients" computes the coefficients
% at the requested values for s. Note that for "binomial"
% models, results are returned only for the class corresponding
% to the second level of the factor response. Type "class"
% applies only to "binomial" or "multinomial" models, and
% produces the class label corresponding to the maximum
% probability. Type "nonzero" returns a list of the indices of
% the nonzero coefficients for each value of s.
% newx Matrix of new values for x at which predictions are to be
% made. Must be a matrix; This argument is not used for
% type=c("coefficients","nonzero")
% s Value(s) of the penalty parameter lambda at which predictions
% are required. Default is the entire sequence used to create
% the model.
%
% DETAILS:
% The shape of the objects returned are different for "multinomial"
% objects. glmnetCoef(fit, ...) is equivalent to glmnetPredict(fit, "coefficients", ...)
%
% LICENSE: GPL-2
%
% DATE: 14 Jul 2009
%
% AUTHORS:
% Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani
% Fortran code was written by Jerome Friedman
% R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hasite
% MATLAB wrapper was written and maintained by Hui Jiang, [email protected]
% Department of Statistics, Stanford University, Stanford, California, USA.
%
% REFERENCES:
% Friedman, J., Hastie, T. and Tibshirani, R. (2009)
% Regularization Paths for Generalized Linear Models via Coordinate Descent.
% Journal of Statistical Software, 33(1), 2010
%
% SEE ALSO:
% glmnet, glmnetSet, glmnetPrint, glmnetPlot and glmnetCoef methods.
%
% EXAMPLES:
% x=randn(100,20);
% y=randn(100,1);
% g2=randsample(2,100,true);
% g4=randsample(4,100,true);
% fit1=glmnet(x,y);
% glmnetPredict(fit1,'link',x(1:5,:),[0.01,0.005]') % make predictions
% glmnetPredict(fit1,'coefficients')
% fit2=glmnet(x,g2,'binomial');
% glmnetPredict(fit2, 'response', x(2:5,:))
% glmnetPredict(fit2, 'nonzero')
% fit3=glmnet(x,g4,'multinomial');
% glmnetPredict(fit3, 'response', x(1:3,:), 0.01)
%
% DEVELOPMENT:
% 14 Jul 2009: Original version of glmnet.m written.
% 20 Oct 2009: Fixed a bug in bionomial response, pointed out by Ramon
% Casanov from Wake Forest University.
% 26 Jan 2010: Fixed a bug in multinomial link and class, pointed out by
% Peter Rijnbeek from Erasmus University.
if nargin < 2
type = 'link';
end
if nargin < 3
newx = [];
end
if nargin < 4
s = object.lambda;
end
if strcmp(object.class, 'elnet')
a0=transpose(object.a0);
nbeta=[a0; object.beta];
if nargin == 4
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
end
if strcmp(type, 'coefficients')
result = nbeta;
elseif strcmp(type, 'link')
result = [ones(size(newx,1),1), newx] * nbeta;
elseif strcmp(type, 'response')
result = [ones(size(newx,1),1), newx] * nbeta;
elseif strcmp(type, 'nonzero')
result = nonzeroCoef(nbeta(2:size(nbeta,1),:), true);
else
error('Unrecognized type');
end
elseif strcmp(object.class, 'lognet')
a0=transpose(object.a0);
nbeta=[object.a0; object.beta];
if nargin == 4
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
end
%%% remember that although the fortran lognet makes predictions
%%% for the first class, we make predictions for the second class
%%% to avoid confusion with 0/1 responses.
%%% glmnet flipped the signs of the coefficients
if strcmp(type,'coefficients')
result = nbeta;
elseif strcmp(type,'nonzero')
result = nonzeroCoef(nbeta(2:size(nbeta,1),:), true);
else
nfit = [ones(size(newx,1),1), newx] * nbeta;
if strcmp(type,'response')
pp=exp(-nfit);
result = 1./(1+pp);
elseif strcmp(type,'link')
result = nfit;
elseif strcmp(type,'class')
result = (nfit > 0) * 2 + (nfit <= 0) * 1;
else
error('Unrecognized type');
end
end
elseif strcmp(object.class, 'multnet')
a0=object.a0;
nbeta=object.beta;
nclass=size(a0,1);
nlambda=length(s);
if nargin == 4
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
for i=1:nclass
kbeta=[a0(i,:); nbeta{i}];
kbeta=kbeta(:,lamlist.left)*lamlist.frac +kbeta(:,lamlist.right)*(1-lamlist.frac);
nbeta{i}=kbeta;
end
else
for i=1:nclass
nbeta{i} = [a0(i,:);nbeta{i}];
end
end
if strcmp(type, 'coefficients')
result = nbeta;
elseif strcmp(type, 'nonzero')
for i=1:nclass
result{i}=nonzeroCoef(nbeta{i}(2:size(nbeta{i},1),:),true);
end
else
npred=size(newx,1);
dp = zeros(nclass,nlambda,npred);
for i=1:nclass
fitk = [ones(size(newx,1),1), newx] * nbeta{i};
dp(i,:,:)=dp(i,:,:)+reshape(transpose(fitk),1,nlambda,npred);
end
if strcmp(type, 'response')
pp=exp(dp);
psum=sum(pp,1);
result = permute(pp./repmat(psum,nclass,1),[3,1,2]);
elseif strcmp(type, 'link')
result=permute(dp,[3,1,2]);
elseif strcmp(type, 'class')
dp=permute(dp,[3,1,2]);
result = [];
for i=1:size(dp,3)
result = [result, softmax(dp(:,:,i))];
end
else
error('Unrecognized type');
end
end
else
error('Unrecognized class');
end
%-------------------------------------------------------------
% End private function glmnetPredict
%-------------------------------------------------------------
function result = lambda_interp(lambda,s)
% lambda is the index sequence that is produced by the model
% s is the new vector at which evaluations are required.
% the value is a vector of left and right indices, and a vector of fractions.
% the new values are interpolated bewteen the two using the fraction
% Note: lambda decreases. you take:
% sfrac*left+(1-sfrac*right)
if length(lambda)==1 % degenerate case of only one lambda
nums=length(s);
left=ones(nums,1);
right=left;
sfrac=ones(nums,1);
else
s(s > max(lambda)) = max(lambda);
s(s < min(lambda)) = min(lambda);
k=length(lambda);
sfrac =(lambda(1)-s)/(lambda(1) - lambda(k));
lambda = (lambda(1) - lambda)/(lambda(1) - lambda(k));
coord = interp1(lambda, 1:length(lambda), sfrac);
left = floor(coord);
right = ceil(coord);
sfrac=(sfrac-lambda(right))./(lambda(left) - lambda(right));
sfrac(left==right)=1;
end
result.left = left;
result.right = right;
result.frac = sfrac;
%-------------------------------------------------------------
% End private function lambda_interp
%-------------------------------------------------------------
function result = softmax(x, gap)
if nargin < 2
gap = false;
end
d = size(x);
maxdist = x(:, 1);
pclass = repmat(1, d(1), 1);
for i =2:d(2)
l = x(:, i) > maxdist;
pclass(l) = i;
maxdist(l) = x(l, i);
end
if gap
x = abs(maxdist - x);
x(1:d(1), pclass) = x * repmat(1, d(2));
gaps = pmin(x);
end
if gap
result = {pclass, gaps};
else
result = pclass;
end
%-------------------------------------------------------------
% End private function softmax
%-------------------------------------------------------------
|
github
|
lcnbeapp/beapp-master
|
m2kml.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/misc/m2kml.m
| 1,807 |
utf_8
|
6ab3b7f8f1cac70d62e51ac3b881ffdf
|
% M2KML Converts GP prediction results to a KML file
%
% Input:
% input_file - Name of the .mat file containing GP results
% cellsize - Size of the cells in meters
% output_file - Name of the output file without the file extension!
% If output is not given the name of the input file is used
% and the results are written to <input_name>.kmz
%
% Assumes that the .mat-file contains (atleast) the following variables:
% Ef - Logarithm of the relative risk to be displayed
% X1 - Grid of cells. The size of the data-array is determined from this.
% xxii - Indexes of non-zero elements in the cell grid
%
function m2kml(input_file,cellsize,output_file)
if nargin < 3
name = input_file(1:end-4);
zip_name = [name, '.kmz'];
output_file = [name, '.kml'];
else
zip_name = [output_file, '.kmz'];
output_file = [output_file, '.kml'];
end
use ge_toolbox
addpath /proj/bayes/software/jmjharti/maps
load(input_file)
% Form the data for output
data = zeros(size(X1));
data = data(:);
data(:) = NaN;
data(xxii) = exp(Ef);
cellsize = 5000;
% is there some mistake in coordinates?
x=(3050000:cellsize:3750000-1)+cellsize;
y=(6600000:cellsize:7800000-1)+cellsize;
data = reshape(data,length(y),length(x));
% create kml code for polygon overlay
output = ge_imagesc_ykj(x, y, data, ...
'altitudeMode', 'clampToGround', ...
'transparency', 'ff');
% Write the KML string to output file
ge_output(output_file, [output]);
% Zip the KML file
zip(zip_name,output_file);
movefile([zip_name,'.zip'],zip_name);
|
github
|
lcnbeapp/beapp-master
|
mapcolor2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/misc/mapcolor2.m
| 1,973 |
utf_8
|
808a8a3bca47cf7634126af39ec9c1a2
|
function map = mapcolor2(A, breaks)
%MAPCOLOR2 Create a blue-gray-red colormap.
% MAPCOLOR2(A, BREAKS), when A is a matrix and BREAKS a vector, returns a
% colormap that can be used as a parameter in COLORMAP function. BREAKS
% has to contain six break values for a 7-class colormap. The break
% values define the points at which the scheme changes color. The first
% three colors are blue, the middle one gray and the last three ones
% are red.
%
% Example: A = ones(100, 100);
% for i=1:10:100
% A(i:end, i:end) = A(i,i) + 5;
% end
% A = A + rand(100, 100);
% map = mapcolor2(A, [10 15 20 25 30 35]);
% pcolor(A), shading flat
% colormap(map), colorbar
%
% Copyright (c) 2006 Markus Siivola
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
% there must be 6 break values for seven colors
if length(breaks) ~= 6
error('Break point vector must have 6 elements.');
end
% sort break values in ascending order if necessary
if ~issorted(breaks)
breaks = sort(breaks);
end
% check the value range consumed by the data
rng = [min(A(:)) max(A(:))];
if any(breaks > rng(2)) | any(breaks < rng(1))
error('Break point out of value range');
end
if ispc
n = 256;
else
n = 1000;
end
% a color scheme from blue through gray to red
colors = flipud([ 140 0 0;
194 80 68;
204 143 151;
191 191 191;
128 142 207;
70 84 158;
7 39 115 ] / 255);
% create a colormap with 256 colors
map = []; n = 256; ibeg = 1;
for i = 1:6
iend = round(n * (breaks(i) - rng(1)) / (rng(2) - rng(1)));
map = [map; repmat(colors(i,:), [iend-ibeg+1 1])];
ibeg = iend+1;
end
map = [map; repmat(colors(7,:), [n - size(map, 1) 1])];
|
github
|
lcnbeapp/beapp-master
|
test_regression_sparse1.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_sparse1.m
| 2,394 |
utf_8
|
ed030b7ce8f86b52cfc2037d0c1d216d
|
function test_suite = test_regression_sparse1
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_SPARSE1
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_regression_sparse1')
demo_regression_sparse1
path = which('test_regression_sparse1');
path = strrep(path,'test_regression_sparse1.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_sparse1');
save(path, 'Eft_fic', 'Eft_pic', 'Eft_var', 'Eft_dtc', 'Eft_cs');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsCS
values.real = load('realValuesRegression_sparse1', 'Eft_cs');
values.test = load(strrep(which('test_regression_sparse1.m'), 'test_regression_sparse1.m', 'testValues/testRegression_sparse1'), 'Eft_cs');
assertElementsAlmostEqual((values.real.Eft_cs), (values.test.Eft_cs), 'absolute', 0.1);
function testPredictionsFIC
values.real = load('realValuesRegression_sparse1', 'Eft_fic');
values.test = load(strrep(which('test_regression_sparse1.m'), 'test_regression_sparse1.m', 'testValues/testRegression_sparse1'), 'Eft_fic');
assertElementsAlmostEqual((values.real.Eft_fic), (values.test.Eft_fic), 'absolute', 0.1);
function testPredictionsPIC
values.real = load('realValuesRegression_sparse1', 'Eft_pic');
values.test = load(strrep(which('test_regression_sparse1.m'), 'test_regression_sparse1.m', 'testValues/testRegression_sparse1'), 'Eft_pic');
assertElementsAlmostEqual((values.real.Eft_pic), (values.test.Eft_pic), 'absolute', 0.1);
function testPredictionsVAR
values.real = load('realValuesRegression_sparse1', 'Eft_var');
values.test = load(strrep(which('test_regression_sparse1.m'), 'test_regression_sparse1.m', 'testValues/testRegression_sparse1'), 'Eft_var');
assertElementsAlmostEqual((values.real.Eft_var), (values.test.Eft_var), 'absolute', 0.1);
function testPredictionsDTC
values.real = load('realValuesRegression_sparse1', 'Eft_dtc');
values.test = load(strrep(which('test_regression_sparse1.m'), 'test_regression_sparse1.m', 'testValues/testRegression_sparse1'), 'Eft_dtc');
assertElementsAlmostEqual((values.real.Eft_dtc), (values.test.Eft_dtc), 'absolute', 0.1);
|
github
|
lcnbeapp/beapp-master
|
test_multiclass.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_multiclass.m
| 1,348 |
utf_8
|
6de4245c71740a6340e2cd4852cad0e7
|
function test_suite = test_multiclass
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_MULTICLASS
initTestSuite;
function testDemo
% Set random number stream so that test failing isn't because randomness.
% Run demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_multiclass')
demo_multiclass
Eft=Eft(1:100,1:3);
Varft=Varft(1:3,1:3,1:100);
Covft=Covft(1:3,1:3,1:100);
path = which('test_multiclass.m');
path = strrep(path,'test_multiclass.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testMulticlass');
save(path,'Eft','Varft','Covft');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictions
values.real = load('realValuesMulticlass.mat');
values.test = load(strrep(which('test_multiclass.m'), 'test_multiclass.m', 'testValues/testMulticlass.mat'));
assertElementsAlmostEqual(mean(values.real.Eft), mean(values.test.Eft), 'relative', 0.01);
assertElementsAlmostEqual(mean(values.real.Varft), mean(values.test.Varft), 'relative', 0.01);
assertElementsAlmostEqual(mean(values.real.Covft), mean(values.test.Covft), 'relative', 0.01);
|
github
|
lcnbeapp/beapp-master
|
test_regression_additive2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_additive2.m
| 1,200 |
utf_8
|
5cfacab33d356c758648eb98795b4b25
|
function test_suite = test_regression_additive2
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_ADDITIVE2
initTestSuite;
function testDemo
% Set random number stream so that test failing isn't because randomness.
% Run demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_regression_additive2')
demo_regression_additive2
path = which('test_regression_additive2.m');
path = strrep(path,'test_regression_additive2.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_additive2');
save(path, 'Eft_map');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testNeuralNetworkCFPrediction
values.real = load('realValuesRegression_additive2.mat','Eft_map');
values.test = load(strrep(which('test_regression_additive2.m'), 'test_regression_additive2.m', 'testValues/testRegression_additive2.mat'),'Eft_map');
assertElementsAlmostEqual(mean(values.real.Eft_map), mean(values.test.Eft_map), 'relative', 0.05);
|
github
|
lcnbeapp/beapp-master
|
test_regression_meanf.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_meanf.m
| 1,003 |
utf_8
|
1ad49d761a9849fba70028e4a0deae3d
|
function test_suite = test_regression_meanf
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_MEANF
initTestSuite;
function testDemo
% Set random number stream so that test failing isn't because randomness.
% Run demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_regression_meanf')
demo_regression_meanf
path = which('test_regression_meanf.m');
path = strrep(path,'test_regression_meanf.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_meanf');
save(path, 'Eft');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
function testPredictions
values.real = load('realValuesRegression_meanf.mat', 'Eft');
values.test = load(strrep(which('test_regression_meanf.m'), 'test_regression_meanf.m', 'testValues/testRegression_meanf.mat'), 'Eft');
assertElementsAlmostEqual(mean(values.real.Eft), mean(values.test.Eft), 'relative', 0.10);
|
github
|
lcnbeapp/beapp-master
|
test_regression_ppcs.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_ppcs.m
| 1,373 |
utf_8
|
7fda1165ed379fa8accab66db375fd9d
|
function test_suite = test_regression_ppcs
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_PPCS
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_regression_ppcs')
demo_regression_ppcs
K = K(1:50, 1:50);
Ef = Ef(1:100);
path = which('test_regression_ppcs.m');
path = strrep(path,'test_regression_ppcs.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_ppcs');
save(path, 'K', 'Ef')
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testCovarianceMatrix
values.real = load('realValuesRegression_ppcs.mat', 'K');
values.test = load(strrep(which('test_regression_ppcs.m'), 'test_regression_ppcs.m', 'testValues/testRegression_ppcs.mat'), 'K');
assertElementsAlmostEqual(mean(full(values.real.K)), mean(full(values.test.K)), 'relative', 0.1)
function testPrediction
values.real = load('realValuesRegression_ppcs.mat', 'Ef');
values.test = load(strrep(which('test_regression_ppcs.m'), 'test_regression_ppcs.m', 'testValues/testRegression_ppcs.mat'), 'Ef');
assertElementsAlmostEqual(mean(values.real.Ef), mean(values.test.Ef), 'relative', 0.1);
|
github
|
lcnbeapp/beapp-master
|
test_spatial1.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_spatial1.m
| 1,460 |
utf_8
|
51de1c938a75607200183816de226e34
|
function test_suite = test_spatial1
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_SPATIAL1
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_spatial1')
demo_spatial1
Ef = Ef(1:100);
Varf = Varf(1:100);
path = which('test_spatial1.m');
path = strrep(path,'test_spatial1.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testSpatial1');
save(path, 'Elth', 'Elth2', 'Ef', 'Varf');
% Set back initial random stream
setrandstream(prevstream);
% Compare test values to real values.
function testEstimatesIA
values.real = load('realValuesSpatial1.mat', 'Elth', 'Elth2');
values.test = load(strrep(which('test_spatial1.m'), 'test_spatial1.m', 'testValues/testSpatial1.mat'), 'Elth', 'Elth2');
assertElementsAlmostEqual(values.real.Elth, values.test.Elth, 'relative', 0.1);
assertElementsAlmostEqual(values.real.Elth2, values.test.Elth2, 'relative', 0.1);
function testPredictionIA
values.real = load('realValuesSpatial1.mat', 'Ef', 'Varf');
values.test = load(strrep(which('test_spatial1.m'), 'test_spatial1.m', 'testValues/testSpatial1.mat'), 'Ef', 'Varf');
assertElementsAlmostEqual(mean(values.real.Ef), mean(values.test.Ef), 'relative', 0.1);
assertElementsAlmostEqual(mean(values.real.Varf), mean(values.test.Varf), 'relative', 0.1);
|
github
|
lcnbeapp/beapp-master
|
test_periodic.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_periodic.m
| 1,906 |
utf_8
|
d63046190abe59ab1b11667e35546492
|
function test_suite = test_periodic
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_PERIODIC
initTestSuite;
function testDemo
% Set random number stream so that test failing isn't because randomness.
% Run demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_periodic')
demo_periodic
path = which('test_periodic.m');
path = strrep(path,'test_periodic.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testPeriodic');
save(path, 'Eft_full1', 'Varft_full1', 'Eft_full2', 'Varft_full2', ...
'Eft_full', 'Varft_full');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsMaunaLoa
values.real = load('realValuesPeriodic.mat', 'Eft_full1', 'Eft_full2','Varft_full1','Varft_full2');
values.test = load(strrep(which('test_periodic.m'), 'test_periodic.m', 'testValues/testPeriodic.mat'), 'Eft_full1', 'Eft_full2','Varft_full1','Varft_full2');
assertElementsAlmostEqual(mean(values.real.Eft_full1), mean(values.test.Eft_full1), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Eft_full2), mean(values.test.Eft_full2), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Varft_full1), mean(values.test.Varft_full1), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Varft_full2), mean(values.test.Varft_full2), 'relative', 0.05);
function testPredictionsDrowning
values.real = load('realValuesPeriodic.mat', 'Eft_full', 'Varft_full');
values.test = load(strrep(which('test_periodic.m'), 'test_periodic.m', 'testValues/testPeriodic.mat'), 'Eft_full', 'Varft_full');
assertElementsAlmostEqual(mean(values.real.Eft_full), mean(values.test.Eft_full), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Varft_full), mean(values.test.Varft_full), 'relative', 0.05);
|
github
|
lcnbeapp/beapp-master
|
test_regression_additive1.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_additive1.m
| 2,344 |
utf_8
|
346daba327586ff75f7c9b113cd9224b
|
function test_suite = test_regression_additive1
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_ADDITIVE1
initTestSuite;
function testDemo
% Set random number stream so that test failing isn't because randomness.
% Run demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_regression_additive1')
demo_regression_additive1
path = which('test_regression_additive1.m');
path = strrep(path,'test_regression_additive1.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_additive1');
save(path, 'Eft_fic', 'Varft_fic', 'Eft_pic', 'Varft_pic', ...
'Eft_csfic', 'Varft_csfic');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsFIC
values.real = load('realValuesRegression_additive1.mat', 'Eft_fic', 'Varft_fic');
values.test = load(strrep(which('test_regression_additive1.m'), 'test_regression_additive1.m', 'testValues/testRegression_additive1.mat'), 'Eft_fic', 'Varft_fic');
assertElementsAlmostEqual((values.real.Eft_fic), (values.test.Eft_fic), 'absolute', 0.1);
assertElementsAlmostEqual(mean(values.real.Varft_fic), mean(values.test.Varft_fic), 'absolute', 0.1);
function testPredictionsPIC
values.real = load('realValuesRegression_additive1.mat', 'Eft_pic', 'Varft_pic');
values.test = load(strrep(which('test_regression_additive1.m'), 'test_regression_additive1.m', 'testValues/testRegression_additive1.mat'), 'Eft_pic', 'Varft_pic');
assertElementsAlmostEqual((values.real.Eft_pic), (values.test.Eft_pic), 'absolute', 0.1);
assertElementsAlmostEqual((values.real.Varft_pic), (values.test.Varft_pic), 'absolute', 0.1);
function testPredictionsSparse
values.real = load('realValuesRegression_additive1.mat', 'Eft_csfic', 'Varft_csfic');
values.test = load(strrep(which('test_regression_additive1.m'), 'test_regression_additive1.m', 'testValues/testRegression_additive1.mat'), 'Eft_csfic', 'Varft_csfic');
assertElementsAlmostEqual((values.real.Eft_csfic), (values.test.Eft_csfic), 'absolute', 0.1);
assertElementsAlmostEqual((values.real.Varft_csfic), (values.test.Varft_csfic), 'absolute', 0.1);
|
github
|
lcnbeapp/beapp-master
|
test_survival_weibull.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_survival_weibull.m
| 1,382 |
utf_8
|
3b33524a51abd8435e5757f2ce935c4e
|
function test_suite = test_survival_weibull
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_SURVIVAL_WEIBULL
% Copyright (c) 2011-2012 Ville Tolvanen
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_survival_weibull')
demo_survival_weibull;
path = which('test_survival_weibull.m');
path = strrep(path,'test_survival_weibull.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testSurvival_weibull');
save(path, 'Ef1', 'Ef2', 'Varf1', 'Varf2');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsWeibull
values.real = load('realValuesSurvival_weibull', 'Ef1', 'Varf1', 'Ef2', 'Varf2');
values.test = load(strrep(which('test_survival_weibull.m'), 'test_survival_weibull.m', 'testValues/testSurvival_weibull'), 'Ef1', 'Varf1', 'Ef2', 'Varf2');
assertElementsAlmostEqual(values.real.Ef1, values.test.Ef1, 'relative', 0.10);
assertElementsAlmostEqual(values.real.Ef2, values.test.Ef2, 'relative', 0.10);
assertElementsAlmostEqual(values.real.Varf1, values.test.Varf1, 'relative', 0.10);
assertElementsAlmostEqual(values.real.Varf2, values.test.Varf2, 'relative', 0.10);
|
github
|
lcnbeapp/beapp-master
|
test_zinegbin.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_zinegbin.m
| 1,120 |
utf_8
|
d8a5a32418b9e85ce3b6a3de126a3c46
|
function test_suite = test_zinegbin
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_ZINEGBIN
% Copyright (c) 2011-2012 Ville Tolvanen
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_zinegbin')
demo_zinegbin;
path = which('test_zinegbin.m');
path = strrep(path,'test_zinegbin.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testZinegbin');
Ef=Ef(1:100); Varf=diag(Varf(1:100,1:100));
save(path, 'Ef', 'Varf');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsZinegbin
values.real = load('realValuesZinegbin', 'Ef', 'Varf');
values.test = load(strrep(which('test_zinegbin.m'), 'test_zinegbin.m', 'testValues/testZinegbin'), 'Ef', 'Varf');
assertElementsAlmostEqual(values.real.Ef, values.test.Ef, 'relative', 0.10);
assertElementsAlmostEqual(values.real.Varf, values.test.Varf, 'relative', 0.10);
|
github
|
lcnbeapp/beapp-master
|
test_regression_sparse2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_sparse2.m
| 1,820 |
utf_8
|
c3167a5e33d483573669205845efb0b6
|
function test_suite = test_regression_sparse2
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_SPARSE2
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_regression_sparse2')
demo_regression_sparse2
Eft_full = Eft_full(1:100);
Eft_var = Eft_var(1:100);
Varft_full = Varft_full(1:100);
Varft_var = Varft_var(1:100);
path = which('test_regression_sparse2.m');
path = strrep(path,'test_regression_sparse2.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_sparse2');
save(path, 'Eft_full', 'Eft_var', 'Varft_full', 'Varft_var');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsFull
values.real = load('realValuesRegression_sparse2.mat', 'Eft_full', 'Varft_full');
values.test = load(strrep(which('test_regression_sparse2.m'), 'test_regression_sparse2.m', 'testValues/testRegression_sparse2.mat'),'Eft_full', 'Varft_full');
assertElementsAlmostEqual(mean(values.real.Eft_full), mean(values.test.Eft_full), 'relative', 0.1);
assertElementsAlmostEqual(mean(values.real.Varft_full), mean(values.test.Varft_full), 'relative', 0.1);
function testPredictionsVar
values.real = load('realValuesRegression_sparse2.mat', 'Eft_var', 'Varft_var');
values.test = load(strrep(which('test_regression_sparse2.m'), 'test_regression_sparse2.m', 'testValues/testRegression_sparse2.mat'), 'Eft_var', 'Varft_var');
assertElementsAlmostEqual((values.real.Eft_var), (values.test.Eft_var), 'relative', 0.1);
assertElementsAlmostEqual((values.real.Varft_var), (values.test.Varft_var), 'relative', 0.1);
|
github
|
lcnbeapp/beapp-master
|
test_spatial2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_spatial2.m
| 1,396 |
utf_8
|
82431e99b626dd45f3691e828f9f209b
|
function test_suite = test_spatial2
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_SPATIAL2
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_spatial2')
demo_spatial2
Ef = Ef(1:100);
Varf = Varf(1:100);
C = C(1:50, 1:50);
path = which('test_spatial2.m');
path = strrep(path,'test_spatial2.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testSpatial2');
save(path, 'Ef', 'Varf', 'C');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsEP
values.real = load('realValuesSpatial2.mat', 'Ef', 'Varf');
values.test = load(strrep(which('test_spatial2.m'), 'test_spatial2.m', 'testValues/testSpatial2.mat'), 'Ef', 'Varf');
assertElementsAlmostEqual(mean(values.test.Ef), mean(values.real.Ef), 'relative', 0.1);
assertElementsAlmostEqual(mean(values.test.Varf), mean(values.real.Varf), 'relative', 0.1);
function testCovarianceMatrix
values.real = load('realValuesSpatial2.mat', 'C');
values.test = load(strrep(which('test_spatial2.m'), 'test_spatial2.m', 'testValues/testSpatial2.mat'), 'C');
assertElementsAlmostEqual(mean(values.real.C), mean(values.test.C), 'relative', 0.1);
|
github
|
lcnbeapp/beapp-master
|
test_regression_hier.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_hier.m
| 992 |
utf_8
|
ed6062874abff9cbf8ae1925856aff6d
|
function test_suite = test_regression_hier
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_HIER
initTestSuite;
% Set random number stream so that test failing isn't because randomness.
% Run demo & save test values.
function testDemo
prevstream=setrandstream(0);
disp('Running: demo_regression_hier')
demo_regression_hier
path = which('test_regression_hier.m');
path = strrep(path,'test_regression_hier.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_hier');
save(path, 'Eff');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
function testPredictionMissingData
values.real = load('realValuesRegression_hier', 'Eff');
values.test = load(strrep(which('test_regression_hier.m'), 'test_regression_hier.m', 'testValues/testRegression_hier'), 'Eff');
assertVectorsAlmostEqual(mean(values.real.Eff), mean(values.test.Eff), 'relative', 0.01);
|
github
|
lcnbeapp/beapp-master
|
test_neuralnetcov.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_neuralnetcov.m
| 1,432 |
utf_8
|
cf9e6362388bd59b2da5c1760ddf809c
|
function test_suite = test_neuralnetcov
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_NEURALNETCOV
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_neuralnetcov')
demo_neuralnetcov
path = which('test_neuralnetcov.m');
path = strrep(path,'test_neuralnetcov.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testNeuralnetcov');
save(path, 'Eft_map', 'Varft_map', 'Eft_map2', 'Varft_map2');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictions
values.real = load('realValuesNeuralnetcov.mat','Eft_map', 'Eft_map2','Varft_map','Varft_map2');
values.test = load(strrep(which('test_neuralnetcov.m'), 'test_neuralnetcov.m', 'testValues/testNeuralnetcov.mat'), 'Eft_map', 'Eft_map2','Varft_map','Varft_map2');
assertElementsAlmostEqual(mean(values.real.Eft_map), mean(values.test.Eft_map), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Eft_map2), mean(values.test.Eft_map2), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Varft_map), mean(values.test.Varft_map), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Varft_map2), mean(values.test.Varft_map2), 'relative', 0.05);
|
github
|
lcnbeapp/beapp-master
|
test_multinom.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_multinom.m
| 1,082 |
utf_8
|
f0950b45a324a1f3ca22c5691fac21c3
|
function test_suite = test_multinom
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_ZINEGBIN
% Copyright (c) 2011-2012 Ville Tolvanen
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_multinom')
demo_multinom;
path = which('test_multinom.m');
path = strrep(path,'test_multinom.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testMultinom');
save(path, 'Eft', 'pyt2');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsMultinom
values.real = load('realValuesMultinom', 'Eft', 'pyt2');
values.test = load(strrep(which('test_multinom.m'), 'test_multinom.m', 'testValues/testMultinom'), 'Eft', 'pyt2');
assertElementsAlmostEqual(values.real.Eft, values.test.Eft, 'absolute', 0.10);
assertElementsAlmostEqual(values.real.pyt2, values.test.pyt2, 'absolute', 0.10);
|
github
|
lcnbeapp/beapp-master
|
test_regression_robust.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_regression_robust.m
| 1,567 |
utf_8
|
941d7778d6b1aeaf4b1a7b70a1639d28
|
function test_suite = test_regression_robust
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_REGRESSION_ROBUST
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_regression_robust')
demo_regression_robust
path = which('test_regression_robust.m');
path = strrep(path,'test_regression_robust.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testRegression_robust');
w=gp_pak(rr);
save(path, 'Eft', 'Varft', 'w')
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionEP
values.real = load('realValuesRegression_robust', 'Eft', 'Varft');
values.test = load(strrep(which('test_regression_robust.m'), 'test_regression_robust.m', 'testValues/testRegression_robust'), 'Eft', 'Varft');
assertElementsAlmostEqual(mean(values.real.Eft), mean(values.test.Eft), 'relative', 0.05);
assertElementsAlmostEqual(mean(values.real.Varft), mean(values.test.Varft), 'relative', 0.05);
function testMCMCSamples
values.real = load('realValuesRegression_robust', 'w');
values.test = load(strrep(which('test_regression_robust.m'), 'test_regression_robust.m', 'testValues/testRegression_robust'), 'w');
assertElementsAlmostEqual(mean(values.real.w), mean(values.test.w), 'relative', 0.01);
assertElementsAlmostEqual(mean(values.real.w), mean(values.test.w), 'relative', 0.01);
|
github
|
lcnbeapp/beapp-master
|
test_survival_coxph.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/xunit/test_survival_coxph.m
| 1,358 |
utf_8
|
98ec11c9517f7656fb584f0cf36596e3
|
function test_suite = test_survival_coxph
% Run specific demo and save values for comparison.
%
% See also
% TEST_ALL, DEMO_SURVIVAL_COXPH
% Copyright (c) 2011-2012 Ville Tolvanen
initTestSuite;
function testDemo
% Set random number stream so that failing isn't because randomness. Run
% demo & save test values.
prevstream=setrandstream(0);
disp('Running: demo_survival_coxph')
demo_survival_coxph;
path = which('test_survival_coxph.m');
path = strrep(path,'test_survival_coxph.m', 'testValues');
if ~(exist(path, 'dir') == 7)
mkdir(path)
end
path = strcat(path, '/testSurvival_coxph');
save(path, 'Ef1', 'Ef2', 'Varf1', 'Varf2');
% Set back initial random stream
setrandstream(prevstream);
drawnow;clear;close all
% Compare test values to real values.
function testPredictionsCoxph
values.real = load('realValuesSurvival_coxph', 'Ef1', 'Varf1', 'Ef2', 'Varf2');
values.test = load(strrep(which('test_survival_coxph.m'), 'test_survival_coxph.m', 'testValues/testSurvival_coxph'), 'Ef1', 'Varf1', 'Ef2', 'Varf2');
assertElementsAlmostEqual(values.real.Ef1, values.test.Ef1, 'absolute', 0.10);
assertElementsAlmostEqual(values.real.Ef2, values.test.Ef2, 'absolute', 0.10);
assertElementsAlmostEqual(values.real.Varf1, values.test.Varf1, 'absolute', 0.10);
assertElementsAlmostEqual(values.real.Varf2, values.test.Varf2, 'absolute', 0.10);
|
github
|
lcnbeapp/beapp-master
|
fminlbfgs.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/optim/fminlbfgs.m
| 35,278 |
utf_8
|
bbb5921f455647a8404163243c3fff60
|
function [x,fval,exitflag,output,grad]=fminlbfgs(funfcn,x_init,optim)
%FMINLBFGS finds a local minimum of a function of several variables.
% This optimizer is developed for image registration
% methods with large amounts of unknown variables.
%
% Description
% Optimization methods supported:
% - Quasi Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS)
% - Limited memory BFGS (L-BFGS)
% - Steepest Gradient Descent optimization.
%
% [X,FVAL,EXITFLAG,OUTPUT,GRAD] = FMINLBFGS(FUN,X0,OPTIONS)
%
% Inputs,
% FUN Function handle or string which is minimized,
% returning an error value and optional the error
% gradient.
% X0 Initial values of unknowns can be a scalar, vector
% or matrix
% OPTIONS Structure with optimizer options, made by a struct or
% optimset. (optimset does not support all input options)
% Outputs,
% X The found location (values) which minimize the function.
% FVAL The minimum found
% EXITFLAG Gives value, which explains why the minimizer stopped
% OUTPUT Structure with all important output values and parameters
% GRAD The gradient at this location
%
% Extended description of inputs/outputs
% OPTIONS,
% GoalsExactAchieve - If set to 0, a line search method is
% used which uses a few function calls to
% do a good line search. When set to 1 a
% normal line search method with Wolfe
% conditions is used (default).
% GradConstr - Set this variable to 'on' if gradient
% calls are cpu-expensive. If 'off' more
% gradient calls are used and less
% function calls (default).
% HessUpdate - If set to 'bfgs', Broyden-Fletcher-Goldfarb-Shanno
% optimization is used (default), when the
% number of unknowns is larger then 3000
% the function will switch to Limited
% memory BFGS, or if you set it to
% 'lbfgs'. When set to 'steepdesc',
% steepest decent optimization is used.
% StoreN - Number of iterations used to approximate
% the Hessian, in L-BFGS, 20 is default. A
% lower value may work better with non
% smooth functions, because than the
% Hessian is only valid for a specific
% position. A higher value is recommend
% with quadratic equations.
% GradObj - Set to 'on' if gradient available otherwise
% finite difference is used.
% Display - Level of display. 'off' displays no output;
% 'plot' displays all linesearch results
% in figures. 'iter' displays output at
% each iteration; 'final' displays just
% the final output; 'notify' displays
% output only if the function does not
% converge;
% TolX - Termination tolerance on x, default 1e-6.
% TolFun - Termination tolerance on the function value,
% default 1e-6.
% MaxIter - Maximum number of iterations allowed, default 400.
% MaxFunEvals - Maximum number of function evaluations allowed,
% default 100 times the amount of unknowns.
% DiffMaxChange - Maximum stepsize used for finite difference
% gradients.
% DiffMinChange - Minimum stepsize used for finite difference
% gradients.
% OutputFcn - User-defined function that an optimization
% function calls at each iteration.
% rho - Wolfe condition on gradient (c1 on Wikipedia),
% default 0.01.
% sigma - Wolfe condition on gradient (c2 on Wikipedia),
% default 0.9.
% tau1 - Bracket expansion if stepsize becomes larger,
% default 3.
% tau2 - Left bracket reduction used in section phase,
% default 0.1.
% tau3 - Right bracket reduction used in section phase,
% default 0.5.
% FUN,
% The speed of this optimizer can be improved by also
% providing the gradient at X. Write the FUN function as
% follows function [f,g]=FUN(X)
% f , value calculation at X;
% if ( nargout > 1 )
% g , gradient calculation at X;
% end
% EXITFLAG,
% Possible values of EXITFLAG, and the corresponding exit
% conditions are
% 1, 'Change in the objective function value was less than TolFun.';
% 2, 'Change in x was smaller than the specified tolerance TolX.';
% 3, 'Magnitude of gradient smaller than the specified tolerance';
% 4, 'Boundary fminimum reached.';
% 0, 'Number of iterations exceeded options.MaxIter or
% number of function evaluations exceeded
% options.FunEvals.';
% -1, 'Algorithm was terminated by the output function.';
% -2, 'Line search cannot find an acceptable point along the
% current search direction';
%
% Examples
% options = optimset('GradObj','on');
% X = fminlbfgs(@myfun,2,options)
%
% % where myfun is a MATLAB function such as:
% function [f,g] = myfun(x)
% f = sin(x) + 3;
% if ( nargout > 1 ), g = cos(x); end
%
% See also OPTIMSET, FMINSEARCH, FMINBND, FMINCON, FMINUNC, @, INLINE.
%
% Function is written by D.Kroon University of Twente (Updated Nov. 2010)
% 2010-10-29 Aki Vehtari : GradConstr is 'off' by default.
% 2011-9-28 Ville Tolvanen : Reduce step size until function returns finite
% value
% 2012-10-10 Aki Vehtari : Improved robustness if function returns NaN or Inf
% Spell check and some beautification
%Copyright (c) 2009, Dirk-Jan Kroon
%All rights reserved.
%
%Redistribution and use in source and binary forms, with or without
%modification, are permitted provided that the following conditions are
%met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
%THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
%AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
%IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
%ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
%LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
%CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
%SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
%INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
%CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
%ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
%POSSIBILITY OF SUCH DAMAGE.
% Read Optimization Parameters
defaultopt = struct('Display','final',...
'HessUpdate','bfgs',...
'GoalsExactAchieve',1,...
'GradConstr','off', ...
'TolX',1e-6,...
'TolFun',1e-6,...
'GradObj','off',...
'MaxIter',400,...
'MaxFunEvals',100*numel(x_init)-1,...
'DiffMaxChange',1e-1,...
'DiffMinChange',1e-8,...
'OutputFcn',[], ...
'rho',0.0100,...
'sigma',0.900,...
'tau1',3,...
'tau2', 0.1,...
'tau3', 0.5,...
'StoreN',20);
if (~exist('optim','var'))
optim=defaultopt;
else
f = fieldnames(defaultopt);
for i=1:length(f),
if (~isfield(optim,f{i})||(isempty(optim.(f{i})))), optim.(f{i})=defaultopt.(f{i}); end
end
end
% Initialize the data structure
data.fval=0;
data.gradient=0;
data.fOld=[];
data.xsizes=size(x_init);
data.numberOfVariables = numel(x_init);
data.xInitial = x_init(:);
data.alpha=1;
data.xOld=data.xInitial;
data.iteration=0;
data.funcCount=0;
data.gradCount=0;
data.exitflag=[];
data.nStored=0;
data.timeTotal=tic;
data.timeExtern=0;
% Switch to L-BFGS in case of more than 3000 unknown variables
if(optim.HessUpdate(1)=='b')
if(data.numberOfVariables<3000),
optim.HessUpdate='bfgs';
else
optim.HessUpdate='lbfgs';
end
end
if(optim.HessUpdate(1)=='l')
succes=false;
while(~succes)
try
data.deltaX=zeros(data.numberOfVariables,optim.StoreN);
data.deltaG=zeros(data.numberOfVariables,optim.StoreN);
data.saveD=zeros(data.numberOfVariables,optim.StoreN);
succes=true;
catch ME
warning('fminlbfgs:memory','Decreasing StoreN value because out of memory');
succes=false;
data.deltaX=[]; data.deltaG=[]; data.saveD=[];
optim.StoreN=optim.StoreN-1;
if(optim.StoreN<1)
rethrow(ME);
end
end
end
end
exitflag=[];
% Display column headers
if(strcmp(optim.Display,'iter'))
disp(' Iteration Func-count Grad-count f(x) Step-size');
end
% Calculate the initial error and gradient
data.initialStepLength=1;
[data,fval,grad]=gradient_function(data.xInitial,funfcn, data, optim);
data.gradient=grad;
data.dir = -data.gradient;
data.fInitial = fval;
data.fPrimeInitial= data.gradient'*data.dir(:);
data.fOld=data.fInitial;
data.xOld=data.xInitial;
data.gOld=data.gradient;
gNorm = norm(data.gradient,Inf); % Norm of gradient
data.initialStepLength = min(1/gNorm,5);
% Show the current iteration
if(strcmp(optim.Display,'iter'))
s=sprintf(' %5.0f %5.0f %5.0f %13.6g ',data.iteration,data.funcCount,data.gradCount,data.fInitial); disp(s);
end
% Hessian intialization
if(optim.HessUpdate(1)=='b')
data.Hessian=eye(data.numberOfVariables);
end
% Call output function
if(call_output_function(data,optim,'init')), exitflag=-1; end
% Start Minimizing
while(true)
% Update number of iterations
data.iteration=data.iteration+1;
% Set current lineSearch parameters
data.TolFunLnS = eps(max(1,abs(data.fInitial )));
data.fminimum = data.fInitial - 1e16*(1+abs(data.fInitial));
% Make arrays to store linesearch results
data.storefx=[]; data.storepx=[]; data.storex=[]; data.storegx=[];
% If option display plot, than start new figure
if(optim.Display(1)=='p'), figure, hold on; end
% Find a good step size in the direction of the gradient: Linesearch
if(optim.GoalsExactAchieve==1)
data=linesearch(funfcn, data,optim);
else
data=linesearch_simple(funfcn, data, optim);
end
% Make linesearch plot
if(optim.Display(1)=='p');
plot(data.storex,data.storefx,'r*');
plot(data.storex,data.storefx,'b');
alpha_test= linspace(min(data.storex(:))/3, max(data.storex(:))*1.3, 10);
falpha_test=zeros(1,length(alpha_test));
for i=1:length(alpha_test)
[data,falpha_test(i)]=gradient_function(data.xInitial(:)+alpha_test(i)*data.dir(:),funfcn, data, optim);
end
plot(alpha_test,falpha_test,'g');
plot(data.alpha,data.f_alpha,'go','MarkerSize',8);
end
% Check if exitflag is set
if(~isempty(data.exitflag)),
exitflag=data.exitflag;
data.xInitial=data.xOld;
data.fInitial=data.fOld;
data.gradient=data.gOld;
break,
end;
% Update x with the alpha step
data.xInitial = data.xInitial + data.alpha*data.dir;
% Set the current error and gradient
data.fInitial = data.f_alpha;
data.gradient = data.grad;
% Set initial step-length to 1
data.initialStepLength = 1;
gNorm = norm(data.gradient,Inf); % Norm of gradient
% Set exit flags
if(gNorm <optim.TolFun), exitflag=1; end
if(max(abs(data.xOld-data.xInitial)) <optim.TolX), exitflag=2; end
if(data.iteration>=optim.MaxIter), exitflag=0; end
% Check if exitflag is set
if(~isempty(exitflag)), break, end;
% Update the inverse Hessian matrix
if(optim.HessUpdate(1)~='s')
% Do the Quasi-Newton Hessian update.
data = updateQuasiNewtonMatrix_LBFGS(data,optim);
else
data.dir = -data.gradient;
end
% Derivative of direction
data.fPrimeInitial= data.gradient'*data.dir(:);
% Call output function
if(call_output_function(data,optim,'iter')), exitflag=-1; end
% Show the current iteration
if(strcmp(optim.Display(1),'i')||strcmp(optim.Display(1),'p'))
s=sprintf(' %5.0f %5.0f %5.0f %13.6g %13.6g',data.iteration,data.funcCount,data.gradCount,data.fInitial,data.alpha); disp(s);
end
% Keep the variables for next iteration
data.fOld=data.fInitial;
data.xOld=data.xInitial;
data.gOld=data.gradient;
end
% Set output parameters
fval=data.fInitial;
grad=data.gradient;
x = data.xInitial;
% Reshape x to original shape
x=reshape(x,data.xsizes);
% Call output function
if(call_output_function(data,optim,'done')), exitflag=-1; end
% Make exist output structure
if(optim.HessUpdate(1)=='b'), output.algorithm='Broyden-Fletcher-Goldfarb-Shanno (BFGS)';
elseif(optim.HessUpdate(1)=='l'), output.algorithm='limited memory BFGS (L-BFGS)';
else output.algorithm='Steepest Gradient Descent';
end
output.message=getexitmessage(exitflag);
output.iteration = data.iteration;
output.funccount = data.funcCount;
output.fval = data.fInitial;
output.stepsize = data.alpha;
output.directionalderivative = data.fPrimeInitial;
output.gradient = reshape(data.gradient, data.xsizes);
output.searchdirection = data.dir;
output.timeTotal=toc(data.timeTotal);
output.timeExtern=data.timeExtern;
output.timeIntern=output.timeTotal-output.timeExtern;
% Display final results
if(~strcmp(optim.Display,'off'))
disp(' Optimizer Results')
disp([' Algorithm Used: ' output.algorithm]);
disp([' Exit message : ' output.message]);
disp([' Iterations : ' int2str(data.iteration)]);
disp([' Function Count : ' int2str(data.funcCount)]);
disp([' Minimum found : ' num2str(fval)]);
disp([' Intern Time : ' num2str(output.timeIntern) ' seconds']);
disp([' Total Time : ' num2str(output.timeTotal) ' seconds']);
end
function message=getexitmessage(exitflag)
switch(exitflag)
case 1, message='Change in the objective function value was less than TolFun.';
case 2, message='Change in x was smaller than the specified tolerance TolX.';
case 3, message='Magnitude of gradient smaller than the specified tolerance';
case 4, message='Boundary fminimum reached.';
case 0, message='Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.';
case -1, message='Algorithm was terminated by the output function.';
case -2, message='Line search cannot find an acceptable point along the current search direction';
otherwise, message='Undefined exit code';
end
function stopt=call_output_function(data,optim,where)
stopt=false;
if(~isempty(optim.OutputFcn))
output.iteration = data.iteration;
output.funccount = data.funcCount;
output.fval = data.fInitial;
output.stepsize = data.alpha;
output.directionalderivative = data.fPrimeInitial;
output.gradient = reshape(data.gradient, data.xsizes);
output.searchdirection = data.dir;
stopt=feval(optim.OutputFcn,reshape(data.xInitial,data.xsizes),output,where);
end
function data=linesearch_simple(funfcn, data, optim)
% Find a bracket of acceptable points
data = bracketingPhase_simple(funfcn, data, optim);
if (data.bracket_exitflag == 2)
% BracketingPhase found a bracket containing acceptable points;
% now find acceptable point within bracket
data = sectioningPhase_simple(funfcn, data, optim);
data.exitflag = data.section_exitflag;
else
% Already acceptable point found or MaxFunEvals reached
data.exitflag = data.bracket_exitflag;
end
function data = bracketingPhase_simple(funfcn, data,optim)
% Number of iterations
itw=0;
% Point with smaller value, initial
data.beta=0;
data.f_beta=data.fInitial;
data.fPrime_beta=data.fPrimeInitial;
% Initial step is equal to alpha of previous step.
alpha = data.initialStepLength;
% Going uphill?
hill=false;
% Search for brackets
while(true)
% Calculate the error registration gradient
if isequal(optim.GradConstr,'on')
[data,f_alpha]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
while isnan(f_alpha) || isinf(f_alpha)
% Go to smaller stepsize
alpha=alpha*optim.tau3;
% Set hill variable
hill=true;
[data,f_alpha]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data,optim);
end
fPrime_alpha=nan;
grad=nan;
else
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data,optim);
while isnan(f_alpha) || isinf(f_alpha) || any(isnan(grad)) || any(isinf(grad))
% Go to smaller stepsize
alpha=alpha*optim.tau3;
% Set hill variable
hill=true;
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data,optim);
end
fPrime_alpha = grad'*data.dir(:);
end
% Store values linesearch
data.storefx=[data.storefx f_alpha];
data.storepx=[data.storepx fPrime_alpha];
data.storex=[data.storex alpha];
data.storegx=[data.storegx grad(:)];
% Update step value
if(data.f_beta<f_alpha),
% Go to smaller stepsize
alpha=alpha*optim.tau3;
% Set hill variable
hill=true;
else
% Save current minimum point
data.beta=alpha; data.f_beta=f_alpha; data.fPrime_beta=fPrime_alpha; data.grad=grad;
if(~hill)
alpha=alpha*optim.tau1;
end
end
% Update number of loop iterations
itw=itw+1;
if(itw>(log(optim.TolFun)/log(optim.tau3))),
% No new optimum found, linesearch failed.
data.bracket_exitflag=-2; break;
end
if(data.beta>0&&hill)
% Get the brackets around minimum point
% Pick bracket A from stored trials
[t,i]=sort(data.storex,'ascend');
storefx=data.storefx(i);storepx=data.storepx(i); storex=data.storex(i);
[t,i]=find(storex>data.beta,1);
if(isempty(i)), [t,i]=find(storex==data.beta,1); end
alpha=storex(i); f_alpha=storefx(i); fPrime_alpha=storepx(i);
% Pick bracket B from stored trials
[t,i]=sort(data.storex,'descend');
storefx=data.storefx(i);storepx=data.storepx(i); storex=data.storex(i);
[t,i]=find(storex<data.beta,1);
if(isempty(i)), [t,i]=find(storex==data.beta,1); end
beta=storex(i); f_beta=storefx(i); fPrime_beta=storepx(i);
% Calculate derivatives if not already calculated
if isequal(optim.GradConstr,'on')
gstep=data.initialStepLength/1e6;
if(gstep>optim.DiffMaxChange), gstep=optim.DiffMaxChange; end
if(gstep<optim.DiffMinChange), gstep=optim.DiffMinChange; end
[data,f_alpha2]=gradient_function(data.xInitial(:)+(alpha+gstep)*data.dir(:),funfcn, data, optim);
[data,f_beta2]=gradient_function(data.xInitial(:)+(beta+gstep)*data.dir(:),funfcn, data, optim);
fPrime_alpha=(f_alpha2-f_alpha)/gstep;
fPrime_beta=(f_beta2-f_beta)/gstep;
end
% Set the brackets A and B
data.a=alpha; data.f_a=f_alpha; data.fPrime_a=fPrime_alpha;
data.b=beta; data.f_b=f_beta; data.fPrime_b=fPrime_beta;
% Finished bracketing phase
data.bracket_exitflag = 2; return
end
% Reached max function evaluations
if(data.funcCount>=optim.MaxFunEvals), data.bracket_exitflag=0; return; end
end
function data = sectioningPhase_simple(funfcn, data, optim)
% Get the brackets
brcktEndpntA=data.a; brcktEndpntB=data.b;
% Calculate minimum between brackets
[alpha,f_alpha_estimated] = pickAlphaWithinInterval(brcktEndpntA,brcktEndpntB,data.a,data.b,data.f_a,data.fPrime_a,data.f_b,data.fPrime_b,optim);
if(isfield(data,'beta')&&(data.f_beta<f_alpha_estimated)), alpha=data.beta; end
[t,i]=find(data.storex==alpha,1);
if((~isempty(i))&&(~isnan(data.storegx(i))))
f_alpha=data.storefx(i); grad=data.storegx(:,i);
else
% Calculate the error and gradient for the next minimizer iteration
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data,optim);
if(isfield(data,'beta')&&(data.f_beta<f_alpha)),
alpha=data.beta;
if((~isempty(i))&&(~isnan(data.storegx(i))))
f_alpha=data.storefx(i); grad=data.storegx(:,i);
else
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data,optim);
end
end
end
% Store values linesearch
data.storefx=[data.storefx f_alpha]; data.storex=[data.storex alpha];
fPrime_alpha = grad'*data.dir(:);
data.alpha=alpha;
data.fPrime_alpha= fPrime_alpha;
data.f_alpha= f_alpha;
data.grad=grad;
% Set the exit flag to success
data.section_exitflag=[];
function data=linesearch(funfcn, data, optim)
% Find a bracket of acceptable points
data = bracketingPhase(funfcn, data,optim);
%if abs(data.a-data.b)<eps
% data = bracketingPhase_simple(funfcn, data,optim);
%end
if (data.bracket_exitflag == 2)
% BracketingPhase found a bracket containing acceptable points;
% now find acceptable point within bracket
data = sectioningPhase(funfcn, data, optim);
data.exitflag = data.section_exitflag;
else
% Already acceptable point found or MaxFunEvals reached
data.exitflag = data.bracket_exitflag;
end
function data = sectioningPhase(funfcn, data, optim)
%
% sectioningPhase finds an acceptable point alpha within a given bracket [a,b]
% containing acceptable points. Notice that funcCount counts the total number of
% function evaluations including those of the bracketing phase.
while(true)
% Pick alpha in reduced bracket
brcktEndpntA = data.a + min(optim.tau2,optim.sigma)*(data.b - data.a);
brcktEndpntB = data.b - optim.tau3*(data.b - data.a);
% Find global minimizer in bracket [brcktEndpntA,brcktEndpntB] of 3rd-degree
% polynomial that interpolates f() and f'() at "a" and at "b".
alpha = pickAlphaWithinInterval(brcktEndpntA,brcktEndpntB,data.a,data.b,data.f_a,data.fPrime_a,data.f_b,data.fPrime_b,optim);
% No acceptable point could be found
if (abs( (alpha - data.a)*data.fPrime_a ) <= data.TolFunLnS), data.section_exitflag = -2; return; end
% Calculate value (and gradient if no extra time cost) of current alpha
if ~isequal(optim.GradConstr,'on')
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
fPrime_alpha = grad'*data.dir(:);
else
gstep=data.initialStepLength/1e6;
if(gstep>optim.DiffMaxChange), gstep=optim.DiffMaxChange; end
if(gstep<optim.DiffMinChange), gstep=optim.DiffMinChange; end
[data,f_alpha]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data,optim);
[data,f_alpha2]=gradient_function(data.xInitial(:)+(alpha+gstep)*data.dir(:),funfcn, data, optim);
fPrime_alpha=(f_alpha2-f_alpha)/gstep;
end
% Store values linesearch
data.storefx=[data.storefx f_alpha]; data.storex=[data.storex alpha];
% Store current bracket position of A
aPrev = data.a;
f_aPrev = data.f_a;
fPrime_aPrev = data.fPrime_a;
% Update the current brackets
if ((f_alpha > data.fInitial + alpha*optim.rho*data.fPrimeInitial) || (f_alpha >= data.f_a))
% Update bracket B to current alpha
data.b = alpha; data.f_b = f_alpha; data.fPrime_b = fPrime_alpha;
else
% Wolfe conditions, if true then acceptable point found
if (abs(fPrime_alpha) <= -optim.sigma*data.fPrimeInitial),
if isequal(optim.GradConstr,'on')
% Gradient was not yet calculated because of time costs
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
fPrime_alpha = grad'*data.dir(:);
end
% Store the found alpha values
data.alpha=alpha; data.fPrime_alpha= fPrime_alpha; data.f_alpha= f_alpha;
data.grad=grad;
data.section_exitflag = []; return,
end
% Update bracket A
data.a = alpha; data.f_a = f_alpha; data.fPrime_a = fPrime_alpha;
if (data.b - data.a)*fPrime_alpha >= 0
% B becomes old bracket A;
data.b = aPrev; data.f_b = f_aPrev; data.fPrime_b = fPrime_aPrev;
end
end
% No acceptable point could be found
if (abs(data.b-data.a) < eps)
if f_alpha<data.fInitial;
% however, point with a smaller function value found
data.alpha=alpha; data.fPrime_alpha= fPrime_alpha; data.f_alpha= f_alpha;
data.grad=grad;
data.section_exitflag = []; return
else
% No acceptable point could be found
data.section_exitflag = -2; return
end
end
% maxFunEvals reached
if(data.funcCount >optim.MaxFunEvals), data.section_exitflag = -1; return, end
end
function data = bracketingPhase(funfcn, data, optim)
% bracketingPhase finds a bracket [a,b] that contains acceptable
% points; a bracket is the same as a closed interval, except that a
% > b is allowed.
%
% The outputs f_a and fPrime_a are the values of the function and
% the derivative evaluated at the bracket endpoint 'a'. Similar
% notation applies to the endpoint 'b'.
% Parameters of bracket A
data.a = [];
data.f_a = [];
data.fPrime_a = [];
% Parameters of bracket B
data.b = [];
data.f_b = [];
data.fPrime_b = [];
% First trial alpha is user-supplied
% f_alpha will contain f(alpha) for all trial points alpha
% fPrime_alpha will contain f'(alpha) for all trial points alpha
alpha = data.initialStepLength;
f_alpha = data.fInitial;
fPrime_alpha = data.fPrimeInitial;
% Set maximum value of alpha (determined by fminimum)
alphaMax = (data.fminimum - data.fInitial)/(optim.rho*data.fPrimeInitial);
alphaPrev = 0;
here_be_dragons=false;
while(true)
% Evaluate f(alpha) and f'(alpha)
fPrev = f_alpha;
fPrimePrev = fPrime_alpha;
% Calculate value (and gradient if no extra time cost) of current alpha
if ~isequal(optim.GradConstr,'on')
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
while isnan(f_alpha) || isinf(f_alpha) || any(isnan(grad)) || any(isinf(grad))
% NaN or Inf encountered, switch to safe mode
here_be_dragons=true;
alphaMax=alpha;
alpha = alphaPrev+0.25*(alpha-alphaPrev);
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
end
fPrime_alpha = grad'*data.dir(:);
else
gstep=data.initialStepLength/1e6;
if(gstep>optim.DiffMaxChange), gstep=optim.DiffMaxChange; end
if(gstep<optim.DiffMinChange), gstep=optim.DiffMinChange; end
[data,f_alpha]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
while isnan(f_alpha) || isinf(f_alpha)
% NaN or Inf encountered, switch to safe mode
here_be_dragons=true;
alphaMax=alpha;
alpha = alphaPrev+0.25*(alpha-alphaPrev);
[data,f_alpha]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
end
[data,f_alpha2]=gradient_function(data.xInitial(:)+(alpha+gstep)*data.dir(:),funfcn, data, optim);
fPrime_alpha=(f_alpha2-f_alpha)/gstep;
end
% Store values linesearch
data.storefx=[data.storefx f_alpha]; data.storex=[data.storex alpha];
% Terminate if f < fminimum
if (f_alpha <= data.fminimum), data.bracket_exitflag = 4; return; end
% Bracket located - case 0 (near NaN or Inf switch to safe solution)
if here_be_dragons && (f_alpha >= fPrev)
% a smaller function value was found on previous step
data.a = 0; data.f_a = data.fInitial; data.fPrime_a = data.fPrimeInitial;
data.b = alpha; data.f_b = f_alpha; data.fPrime_b = fPrime_alpha;
% Finished bracketing phase
data.bracket_exitflag = 2; return
end
% Bracket located - case 1 (Wolfe conditions)
if (f_alpha > (data.fInitial + alpha*optim.rho*data.fPrimeInitial)) || (f_alpha >= fPrev)
% Set the bracket values
data.a = alphaPrev; data.f_a = fPrev; data.fPrime_a = fPrimePrev;
data.b = alpha; data.f_b = f_alpha; data.fPrime_b = fPrime_alpha;
% Finished bracketing phase
data.bracket_exitflag = 2; return
end
% Acceptable step-length found
if (abs(fPrime_alpha) <= -optim.sigma*data.fPrimeInitial),
if isequal(optim.GradConstr,'on')
% Gradient was not yet calculated because of time costs
[data,f_alpha, grad]=gradient_function(data.xInitial(:)+alpha*data.dir(:),funfcn, data, optim);
fPrime_alpha = grad'*data.dir(:);
end
% Store the found alpha values
data.alpha=alpha;
data.fPrime_alpha= fPrime_alpha; data.f_alpha= f_alpha; data.grad=grad;
% Finished bracketing phase, and no need to call sectioning phase
data.bracket_exitflag = []; return
end
% Bracket located - case 2
if (fPrime_alpha >= 0)
% Set the bracket values
data.a = alpha; data.f_a = f_alpha; data.fPrime_a = fPrime_alpha;
data.b = alphaPrev; data.f_b = fPrev; data.fPrime_b = fPrimePrev;
% Finished bracketing phase
data.bracket_exitflag = 2; return
end
% Update alpha
if (2*alpha - alphaPrev < alphaMax )
brcktEndpntA = 2*alpha-alphaPrev;
brcktEndpntB = min(alphaMax,alpha+optim.tau1*(alpha-alphaPrev));
% Find global minimizer in bracket [brcktEndpntA,brcktEndpntB] of 3rd-degree polynomial
% that interpolates f() and f'() at alphaPrev and at alpha
alphaNew = pickAlphaWithinInterval(brcktEndpntA,brcktEndpntB,alphaPrev,alpha,fPrev, ...
fPrimePrev,f_alpha,fPrime_alpha,optim);
alphaPrev = alpha;
alpha = alphaNew;
else
alpha = alphaMax;
end
% maxFunEvals reached
if(data.funcCount >optim.MaxFunEvals), data.bracket_exitflag = -1; return, end
end
function [alpha,f_alpha]= pickAlphaWithinInterval(brcktEndpntA,brcktEndpntB,alpha1,alpha2,f1,fPrime1,f2,fPrime2,optim)
% finds a global minimizer alpha within the bracket [brcktEndpntA,brcktEndpntB] of the cubic polynomial
% that interpolates f() and f'() at alpha1 and alpha2. Here f(alpha1) = f1, f'(alpha1) = fPrime1,
% f(alpha2) = f2, f'(alpha2) = fPrime2.
% determines the coefficients of the cubic polynomial with c(alpha1) = f1,
% c'(alpha1) = fPrime1, c(alpha2) = f2, c'(alpha2) = fPrime2.
coeff = [(fPrime1+fPrime2)*(alpha2-alpha1)-2*(f2-f1) ...
3*(f2-f1)-(2*fPrime1+fPrime2)*(alpha2-alpha1) (alpha2-alpha1)*fPrime1 f1];
% Convert bounds to the z-space
lowerBound = (brcktEndpntA - alpha1)/(alpha2 - alpha1);
upperBound = (brcktEndpntB - alpha1)/(alpha2 - alpha1);
% Swap if lower bound is higher than the upper bound
if (lowerBound > upperBound), t=upperBound; upperBound=lowerBound; lowerBound=t; end
% Find minima and maxima from the roots of the derivative of the polynomial.
sPoints = roots([3*coeff(1) 2*coeff(2) coeff(3)]);
% Remove imaginary and points outside range
sPoints(imag(sPoints)~=0)=[];
sPoints(sPoints<lowerBound)=[]; sPoints(sPoints>upperBound)=[];
% Make vector with all possible solutions
sPoints=[lowerBound sPoints(:)' upperBound];
% Select the global minimum point
[f_alpha,index]=min(polyval(coeff,sPoints)); z=sPoints(index);
% Add the offset and scale back from [0..1] to the alpha domain
alpha = alpha1 + z*(alpha2 - alpha1);
% Show polynomial search
if(optim.Display(1)=='p');
vPoints=polyval(coeff,sPoints);
plot(sPoints*(alpha2 - alpha1)+alpha1,vPoints,'co');
plot([sPoints(1) sPoints(end)]*(alpha2 - alpha1)+alpha1,[vPoints(1) vPoints(end)],'c*');
xPoints=linspace(lowerBound/3, upperBound*1.3, 50);
vPoints=polyval(coeff,xPoints);
plot(xPoints*(alpha2 - alpha1)+alpha1,vPoints,'c');
end
function [data,fval,grad]=gradient_function(x,funfcn, data, optim)
% Call the error function for error (and gradient)
if ( nargout <3 )
timem=tic;
fval=funfcn(reshape(x,data.xsizes));
data.timeExtern=data.timeExtern+toc(timem);
data.funcCount=data.funcCount+1;
else
if(strcmp(optim.GradObj,'on'))
timem=tic;
[fval, grad]=feval(funfcn,reshape(x,data.xsizes));
data.timeExtern=data.timeExtern+toc(timem);
data.funcCount=data.funcCount+1;
data.gradCount=data.gradCount+1;
else
% Calculate gradient with forward difference if not provided by the function
grad=zeros(length(x),1);
fval=funfcn(reshape(x,data.xsizes));
gstep=data.initialStepLength/1e6;
if(gstep>optim.DiffMaxChange), gstep=optim.DiffMaxChange; end
if(gstep<optim.DiffMinChange), gstep=optim.DiffMinChange; end
for i=1:length(x),
x_temp=x; x_temp(i)=x_temp(i)+gstep;
timem=tic;
[fval_g]=feval(funfcn,reshape(x_temp,data.xsizes)); data.funcCount=data.funcCount+1;
data.timeExtern=data.timeExtern+toc(timem);
grad(i)=(fval_g-fval)/gstep;
end
end
grad=grad(:);
end
function data = updateQuasiNewtonMatrix_LBFGS(data,optim)
% updates the quasi-Newton matrix that approximates the inverse to the Hessian.
% Two methods are support BFGS and L-BFGS, in L-BFGS the hessian is not
% constructed or stored.
% Calculate position, and gradient difference between the
% iterations
deltaX=data.alpha* data.dir;
deltaG=data.gradient-data.gOld;
if ((deltaX'*deltaG) >= sqrt(eps)*max( eps,norm(deltaX)*norm(deltaG) ))
if(optim.HessUpdate(1)=='b')
% Default BFGS as described by Nocedal
p_k = 1 / (deltaG'*deltaX);
Vk = eye(data.numberOfVariables) - p_k*deltaG*deltaX';
% Set Hessian
data.Hessian = Vk'*data.Hessian *Vk + p_k * deltaX*deltaX';
% Set new Direction
data.dir = -data.Hessian*data.gradient;
else
% L-BFGS with scaling as described by Nocedal
% Update a list with the history of deltaX and deltaG
data.deltaX(:,2:optim.StoreN)=data.deltaX(:,1:optim.StoreN-1); data.deltaX(:,1)=deltaX;
data.deltaG(:,2:optim.StoreN)=data.deltaG(:,1:optim.StoreN-1); data.deltaG(:,1)=deltaG;
data.nStored=data.nStored+1; if(data.nStored>optim.StoreN), data.nStored=optim.StoreN; end
% Initialize variables
a=zeros(1,data.nStored);
p=zeros(1,data.nStored);
q = data.gradient;
for i=1:data.nStored
p(i)= 1 / (data.deltaG(:,i)'*data.deltaX(:,i));
a(i) = p(i)* data.deltaX(:,i)' * q;
q = q - a(i) * data.deltaG(:,i);
end
% Scaling of initial Hessian (identity matrix)
p_k = data.deltaG(:,1)'*data.deltaX(:,1) / sum(data.deltaG(:,1).^2);
% Make r = - Hessian * gradient
r = p_k * q;
for i=data.nStored:-1:1,
b = p(i) * data.deltaG(:,i)' * r;
r = r + data.deltaX(:,i)*(a(i)-b);
end
% Set new direction
data.dir = -r;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_gaussian.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_gaussian.m
| 3,537 |
UNKNOWN
|
7a422794084fa6f6e913f9712c2db4c9
|
function p = prior_gaussian(varargin)
%PRIOR_GAUSSIAN Gaussian prior structure
%
% Description
% P = PRIOR_GAUSSIAN('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Gaussian prior structure in which the named
% parameters have the specified values. Any unspecified
% parameters are set to default values.
%
% P = PRIOR_GAUSSIAN(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameters for Gaussian prior [default]
% mu - location [0]
% s2 - scale squared (variance) [1]
% mu_prior - prior for mu [prior_fixed]
% s2_prior - prior for s2 [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_GAUSSIAN';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x) && x>0);
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Gaussian';
else
if ~isfield(p,'type') && ~isequal(p.type,'Gaussian')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init
% set functions
p.fh.pak = @prior_gaussian_pak;
p.fh.unpak = @prior_gaussian_unpak;
p.fh.lp = @prior_gaussian_lp;
p.fh.lpg = @prior_gaussian_lpg;
p.fh.recappend = @prior_gaussian_recappend;
end
end
function [w, s] = prior_gaussian_pak(p)
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 'Gaussian.mu'];
end
if ~isempty(p.p.s2)
w = [w log(p.s2)];
s=[s; 'log(Gaussian.s2)'];
end
end
function [p, w] = prior_gaussian_unpak(p, w)
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_gaussian_lp(x, p)
lp = 0.5*sum(-log(2*pi) -log(p.s2)- 1./p.s2 .* sum((x-p.mu).^2,1));
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);
end
end
function lpg = prior_gaussian_lpg(x, p)
lpg = (1./p.s2).*(p.mu-x);
if ~isempty(p.p.mu)
lpgmu = sum((1./p.s2).*(x-p.mu)) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s2)
lpgs2 = (sum(-0.5*(1./p.s2-1./p.s2.^2.*(x-p.mu).^2 )) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
end
function rec = prior_gaussian_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
end
|
github
|
lcnbeapp/beapp-master
|
kernelp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/kernelp.m
| 1,374 |
utf_8
|
3784b6e72d83468627af9252dd902b7c
|
function [p,xx,sh]=kernelp(x,xx)
%KERNELP 1D Kernel density estimation of data, with automatic kernel width
%
% [P,XX]=KERNELP(X,XX) return density estimates P in points XX,
% given data and optionally ecvaluation points XX. Density
% estimate is based on simple Gaussian kernel density estimate
% where all kernels have equal width and this width is selected by
% optimising plug-in partial predictive density. Works well with
% reasonable sized X.
%
% Copyright (C) 2001-2003,2010 Aki Vehtari
%
% This software is distributed under the GNU General Public
% Licence (version 3 or later); please refer to the file
% Licence.txt, included with the software, for details.
if nargin < 1
error('Too few arguments');
end
[n,m]=size(x);
if n>1 && m>1
error('X must be a vector');
end
x=x(:);
[n,m]=size(x);
xa=min(x);xb=max(x);xab=xb-xa;
if nargin < 2
nn=200;
xa=xa-xab/20;xb=xb+xab/20;
xx=linspace(xa,xb,nn);
else
[mm,nn]=size(xx);
if nn>1 && mm>1
error('XX must be a vector');
end
end
xx=xx(:);
m=length(x)/2;
rp=randperm(n);
xd=bsxfun(@minus,x(rp(1:m)),x(rp(m+1:end))');
sh=fminbnd(@(s) err(s,xd),xab/n*4,xab,optimset('TolX',xab/n*4));
p=mean(normpdf(bsxfun(@minus,x(rp(1:m)),xx'),0,sh));
function e=err(s,xd)
e=-sum(log(sum(normpdf(xd,0,s))));
function y = normpdf(x,mu,sigma)
y = -0.5 * ((x-mu)./sigma).^2 -log(sigma) -log(2*pi)/2;
y=exp(y);
|
github
|
lcnbeapp/beapp-master
|
normtrand.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/normtrand.m
| 1,912 |
utf_8
|
8420418c944aa575ac4f7577538f089d
|
function result = normtrand(mu,sigma2,left,right)
%NORMTRAND random draws from a normal truncated to (left,right) interval
% ------------------------------------------------------
% USAGE: y = normtrand(mu,sigma2,left,right)
% where: mu = mean (nobs x 1)
% sigma2 = variance (nobs x 1)
% left = left truncation points (nobs x 1)
% right = right truncation points (nobs x 1)
% ------------------------------------------------------
% RETURNS: y = (nobs x 1) vector
% ------------------------------------------------------
% NOTES: use y = normtrand(mu,sigma2,left,mu+5*sigma2)
% to produce a left-truncated draw
% use y = normtrand(mu,sigma2,mu-5*sigma2,right)
% to produce a right-truncated draw
% ------------------------------------------------------
% SEE ALSO: normltrand (left truncated draws), normrtrand (right truncated)
%
% adopted from Bayes Toolbox by
% James P. LeSage, Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% [email protected]
% Anyone is free to use these routines, no attribution (or blame)
% need be placed on the author/authors.
% For information on the Bayes Toolbox see:
% Ordinal Data Modeling by Valen Johnson and James Albert
% Springer-Verlag, New York, 1999.
% 2009-01-08 Aki Vehtari - Fixed Naming
if nargin ~= 4
error('normtrand: wrong # of input arguments');
end;
std = sqrt(sigma2);
% Calculate bounds on probabilities
lowerProb = Phi((left-mu)./std);
upperProb = Phi((right-mu)./std);
% Draw uniform from within (lowerProb,upperProb)
u = lowerProb+(upperProb-lowerProb).*rand(size(mu));
% Find needed quantiles
result = mu + Phiinv(u).*std;
function val=Phiinv(x)
% Computes the standard normal quantile function of the vector x, 0<x<1.
val=sqrt(2)*erfinv(2*x-1);
function y = Phi(x)
% Phi computes the standard normal distribution function value at x
y = .5*(1+erf(x/sqrt(2)));
|
github
|
lcnbeapp/beapp-master
|
prior_sqinvunif.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_sqinvunif.m
| 1,662 |
utf_8
|
91f8f43d06a07b161cdd806273eed21f
|
function p = prior_sqinvunif(varargin)
%PRIOR_SQINVUNIF Uniform prior structure for the square inverse of the parameter
%
% Description
% P = PRIOR_SQINVUNIF creates uniform prior structure for the
% square inverse of the parameter.
%
% See also
% PRIOR_*
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010,2012 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_SQINVUNIFORM';
ip.addOptional('p', [], @isstruct);
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'SqInv-Uniform';
else
if ~isfield(p,'type') && ~isequal(p.type,'SqInv-Uniform')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
if init
% set functions
p.fh.pak = @prior_sqinvunif_pak;
p.fh.unpak = @prior_sqinvunif_unpak;
p.fh.lp = @prior_sqinvunif_lp;
p.fh.lpg = @prior_sqinvunif_lpg;
p.fh.recappend = @prior_sqinvunif_recappend;
end
end
function [w, s] = prior_sqinvunif_pak(p, w)
w=[];
s={};
end
function [p, w] = prior_sqinvunif_unpak(p, w)
w = w;
p = p;
end
function lp = prior_sqinvunif_lp(x, p)
lJ = -log(x)*3 + log(2); % log(-2/x^3) log(|J|) of transformation
lp = sum(lJ);
end
function lpg = prior_sqinvunif_lpg(x, p)
lJg = -3./x; % gradient of log(|J|) of transformation
lpg = lJg;
end
function rec = prior_sqinvunif_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
end
|
github
|
lcnbeapp/beapp-master
|
prior_sqinvsinvchi2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_sqinvsinvchi2.m
| 4,247 |
UNKNOWN
|
199059cd0dc523cf6b8df74a02823f7a
|
function p = prior_sqinvsinvchi2(varargin)
%PRIOR_SQINVSINVCHI2 Scaled-Inv-Chi^2 prior structure
%
% Description
% P = PRIOR_SQINVSINVCHI2('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Scaled-Inv-Chi^2 prior structure for square inverse of
% the parameter in which the named parameters have the specified
% values. Any unspecified parameters are set to default values.
%
% P = PRIOR_SQINVSINVCHI2(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameterisation is done by Bayesian Data Analysis,
% second edition, Gelman et.al 2004.
%
% Parameters for Scaled-Inv-Chi^2 [default]
% s2 - scale squared (variance) [1]
% nu - degrees of freedom [4]
% s2_prior - prior for s2 [prior_fixed]
% nu_prior - prior for nu [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010,2012 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_SQINVSINVCHI2';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);
ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'SqInv-S-Inv-Chi2';
else
if ~isfield(p,'type') && ~isequal(p.type,'SqInv-S-Inv-Chi2')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
if init || ~ismember('nu',ip.UsingDefaults)
p.nu = ip.Results.nu;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init || ~ismember('nu_prior',ip.UsingDefaults)
p.p.nu=ip.Results.nu_prior;
end
if init
% set functions
p.fh.pak = @prior_sqinvsinvchi2_pak;
p.fh.unpak = @prior_sqinvsinvchi2_unpak;
p.fh.lp = @prior_sqinvsinvchi2_lp;
p.fh.lpg = @prior_sqinvsinvchi2_lpg;
p.fh.recappend = @prior_sqinvsinvchi2_recappend;
end
end
function [w, s] = prior_sqinvsinvchi2_pak(p)
w=[];
s={};
if ~isempty(p.p.s2)
w = log(p.s2);
s=[s; 'log(SqInv-Sinvchi2.s2)'];
end
if ~isempty(p.p.nu)
w = [w log(p.nu)];
s=[s; 'log(SqInv-Sinvchi2.nu)'];
end
end
function [p, w] = prior_sqinvsinvchi2_unpak(p, w)
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.nu)
i1=1;
p.nu = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_sqinvsinvchi2_lp(x, p)
lJ = -log(x)*3 + log(2); % log(-2/x^3) log(|J|) of transformation
xt = x.^-2; % transformation
lp = -sum((p.nu./2+1) .* log(xt) + (p.s2.*p.nu./2./xt) + (p.nu/2) .* log(2./(p.s2.*p.nu)) + gammaln(p.nu/2)) + sum(lJ);
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);
end
if ~isempty(p.p.nu)
lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) + log(p.nu);
end
end
function lpg = prior_sqinvsinvchi2_lpg(x, p)
lJg = -3./x; % gradient of log(|J|) of transformation
xt = x.^-2; % transformation
xtg = -2/x.^3; % derivative of transformation
lpg = xtg.*(-(p.nu/2+1)./xt +p.nu.*p.s2./(2*xt.^2)) + lJg;
if ~isempty(p.p.s2)
lpgs2 = (-sum(p.nu/2.*(1./xt-1./p.s2)) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
if ~isempty(p.p.nu)
lpgnu = (-sum(0.5*(log(xt) + p.s2./xt + log(2./p.s2./p.nu) - 1 + digamma1(p.nu/2))) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;
lpg = [lpg lpgnu];
end
end
function rec = prior_sqinvsinvchi2_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
if ~isempty(p.p.nu)
rec.nu(ri,:) = p.nu;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_loggaussian.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_loggaussian.m
| 3,863 |
UNKNOWN
|
2d891ad38e859e59dfe99eab9a5a56a7
|
function p = prior_loggaussian(varargin)
%PRIOR_LOGGAUSSIAN Log-Gaussian prior structure
%
% Description
% P = PRIOR_LOGGAUSSIAN('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Log-Gaussian prior structure in which the named
% parameters have the specified values. Any unspecified
% parameters are set to default values.
%
% P = PRIOR_LOGGAUSSIAN(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameters for Log-Gaussian prior [default]
% mu - location [0]
% s2 - scale squared (variance) [1]
% mu_prior - prior for mu [prior_fixed]
% s2_prior - prior for s2 [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_LOGGAUSSIAN';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x));
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Log-Gaussian';
else
if ~isfield(p,'type') && ~isequal(p.type,'Log-Gaussian')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init
% set functions
p.fh.pak = @prior_loggaussian_pak;
p.fh.unpak = @prior_loggaussian_unpak;
p.fh.lp = @prior_loggaussian_lp;
p.fh.lpg = @prior_loggaussian_lpg;
p.fh.recappend = @prior_loggaussian_recappend;
end
end
function [w, s] = prior_loggaussian_pak(p)
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 'Log-Gaussian.mu'];
end
if ~isempty(p.p.s2)
w = [w log(p.s2)];
s=[s; 'log(Log-Gaussian.s2)'];
end
end
function [p, w] = prior_loggaussian_unpak(p, w)
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_loggaussian_lp(x, p)
lJ = -log(x); % =log(1/x)=log(|J|) of transformation
xt = log(x); % transformed x
lp = 0.5*sum(-log(2*pi) -log(p.s2)- 1./p.s2 .* sum((xt-p.mu).^2,1)) +lJ;
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);
end
end
function lpg = prior_loggaussian_lpg(x, p)
lJg = -1./x; % gradient of log(|J|) of transformation
xt = log(x); % transformed x
xtg = 1./x; % derivative of transformation
lpg = xtg.*(1./p.s2).*(p.mu-xt) + lJg;
if ~isempty(p.p.mu)
lpgmu = sum((1./p.s2).*(xt-p.mu)) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s2)
lpgs2 = (sum(-0.5*(1./p.s2-1./p.s2.^2.*(xt-p.mu).^2 )) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
end
function rec = prior_loggaussian_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_invgamma.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_invgamma.m
| 3,626 |
UNKNOWN
|
462df219d9ed058f9b45af8042c3da3d
|
function p = prior_invgamma(varargin)
%PRIOR_INVGAMMA Inverse-gamma prior structure
%
% Description
% P = PRIOR_INVGAMMA('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Gamma prior structure in which the named parameters
% have the specified values. Any unspecified parameters are set
% to default values.
%
% P = PRIOR_INVGAMMA(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameterisation is done by Bayesian Data Analysis,
% second edition, Gelman et.al 2004.
%
% Parameters for Gamma prior [default]
% sh - shape [4]
% s - scale [1]
% sh_prior - prior for sh [prior_fixed]
% s_prior - prior for s [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_INVGAMMA';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('sh',4, @(x) isscalar(x) && x>0);
ip.addParamValue('sh_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Inv-Gamma';
else
if ~isfield(p,'type') && ~isequal(p.type,'Inv-Gamma')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('sh',ip.UsingDefaults)
p.sh = ip.Results.sh;
end
if init || ~ismember('s',ip.UsingDefaults)
p.s = ip.Results.s;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('sh_prior',ip.UsingDefaults)
p.p.sh=ip.Results.sh_prior;
end
if init || ~ismember('s_prior',ip.UsingDefaults)
p.p.s=ip.Results.s_prior;
end
if init
% set functions
p.fh.pak = @prior_invgamma_pak;
p.fh.unpak = @prior_invgamma_unpak;
p.fh.lp = @prior_invgamma_lp;
p.fh.lpg = @prior_invgamma_lpg;
p.fh.recappend = @prior_invgamma_recappend;
end
end
function [w, s] = prior_invgamma_pak(p)
w=[];
s={};
if ~isempty(p.p.sh)
w = log(p.sh);
s=[s; 'log(Invgamma.sh)'];
end
if ~isempty(p.p.s)
w = [w log(p.s)];
s=[s; 'log(Invgamma.s)'];
end
end
function [p, w] = prior_invgamma_unpak(p, w)
if ~isempty(p.p.sh)
i1=1;
p.sh = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.s)
i1=1;
p.s = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_invgamma_lp(x, p)
lp = sum(-p.s./x - (p.sh+1).*log(x) +p.sh.*log(p.s) - gammaln(p.sh));
if ~isempty(p.p.sh)
lp = lp + p.p.sh.fh.lp(p.sh, p.p.sh) + log(p.sh);
end
if ~isempty(p.p.s)
lp = lp + p.p.s.fh.lp(p.s, p.p.s) + log(p.s);
end
end
function lpg = prior_invgamma_lpg(x, p)
lpg = -(p.sh+1)./x + p.s./x.^2;
if ~isempty(p.p.sh)
lpgsh = (-sum(digamma1(p.sh) + log(p.s) - log(x) ) + p.p.sh.fh.lpg(p.sh, p.p.sh)).*p.sh + 1;
lpg = [lpg lpgsh];
end
if ~isempty(p.p.s)
lpgs = (sum(p.sh./p.s+1./x) + p.p.s.fh.lpg(p.s, p.p.s)).*p.s + 1;
lpg = [lpg lpgs];
end
end
function rec = prior_invgamma_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.sh)
rec.sh(ri,:) = p.sh;
end
if ~isempty(p.p.s)
rec.s(ri,:) = p.s;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_t.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_t.m
| 5,110 |
UNKNOWN
|
ebeba7f5ea490b60a90e128905d025e4
|
function p = prior_t(varargin)
%PRIOR_T Student-t prior structure
%
% Description
% P = PRIOR_T('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Student's t-distribution prior structure in which the
% named parameters have the specified values. Any unspecified
% parameters are set to default values.
%
% P = PRIOR_T(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameterisation is done as in Bayesian Data Analysis,
% second edition, Gelman et.al 2004.
%
% Parameters for Student-t prior [default]
% mu - location [0]
% s2 - scale [1]
% nu - degrees of freedom [4]
% mu_prior - prior for mu [prior_fixed]
% s2_prior - prior for s2 [prior_fixed]
% nu_prior - prior for nu [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_T';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x));
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);
ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 't';
else
if ~isfield(p,'type') && ~isequal(p.type,'t')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
if init || ~ismember('nu',ip.UsingDefaults)
p.nu = ip.Results.nu;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init || ~ismember('nu_prior',ip.UsingDefaults)
p.p.nu=ip.Results.nu_prior;
end
if init
% set functions
p.fh.pak = @prior_t_pak;
p.fh.unpak = @prior_t_unpak;
p.fh.lp = @prior_t_lp;
p.fh.lpg = @prior_t_lpg;
p.fh.recappend = @prior_t_recappend;
end
end
function [w, s] = prior_t_pak(p)
% This is a mandatory subfunction used for example
% in energy and gradient computations.
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 't.mu'];
end
if ~isempty(p.p.s2)
w = [w log(p.s2)];
s=[s; 'log(t.s2)'];
end
if ~isempty(p.p.nu)
w = [w log(p.nu)];
s=[s; 'log(t.nu)'];
end
end
function [p, w] = prior_t_unpak(p, w)
% This is a mandatory subfunction used for example
% in energy and gradient computations.
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.nu)
i1=1;
p.nu = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_t_lp(x, p)
% This is a mandatory subfunction used for example
% in energy computations.
lp=sum(gammaln((p.nu+1)./2) -gammaln(p.nu./2) -0.5*log(p.nu.*pi.*p.s2) -(p.nu+1)./2.*log(1+(x-p.mu).^2./p.nu./p.s2));
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) +log(p.s2);
end
if ~isempty(p.p.nu)
lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) +log(p.nu);
end
end
function lpg = prior_t_lpg(x, p)
% This is a mandatory subfunction used for example
% in gradient computations.
%lpg=(p.nu+1)./p.nu .* (x-p.mu)./p.s2 ./ (1 + (x-p.mu).^2./p.nu./p.s2);
lpg=-(p.nu+1).* (x-p.mu) ./ (p.nu.*p.s2 + (x-p.mu).^2);
if ~isempty(p.p.mu)
lpgmu = sum( (p.nu+1).* (x-p.mu) ./ (p.nu.*p.s2 + (x-p.mu).^2) ) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s2)
lpgs2 = (sum( -1./(2.*p.s2) +((p.nu + 1).*(p.mu - x).^2)./(2.*p.s2.*((p.mu-x).^2 + p.nu.*p.s2))) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
if ~isempty(p.p.nu)
lpgnu = (0.5*sum( digamma1((p.nu+1)./2)-digamma1(p.nu./2)-1./p.nu-log(1+(x-p.mu).^2./p.nu./p.s2)+(p.nu+1)./(1+(x-p.mu).^2./p.nu./p.s2).*(x-p.mu).^2./p.s2./p.nu.^2) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;
lpg = [lpg lpgnu];
end
end
function rec = prior_t_recappend(rec, ri, p)
% This subfunction is needed when using MCMC sampling (gp_mc).
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
if ~isempty(p.p.nu)
rec.nu(ri,:) = p.nu;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_logt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_logt.m
| 4,935 |
UNKNOWN
|
3155c4ca02354ee7d652c9e8a1006a43
|
function p = prior_logt(varargin)
%PRIOR_LOGT Student-t prior structure for the log of the parameter
%
% Description
% P = PRIOR_LOGT('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates for the log of the parameter Student's t-distribution
% prior structure in which the named parameters have the
% specified values. Any unspecified parameters are set to
% default values.
%
% P = PRIOR_LOGT(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameters for Student-t prior [default]
% mu - location [0]
% s2 - scale [1]
% nu - degrees of freedom [4]
% mu_prior - prior for mu [prior_fixed]
% s2_prior - prior for s2 [prior_fixed]
% nu_prior - prior for nu [prior_fixed]
%
% See also
% PRIOR_t, PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_LOGT';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x));
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);
ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Log-t';
else
if ~isfield(p,'type') && ~isequal(p.type,'Log-t')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
if init || ~ismember('nu',ip.UsingDefaults)
p.nu = ip.Results.nu;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init || ~ismember('nu_prior',ip.UsingDefaults)
p.p.nu=ip.Results.nu_prior;
end
if init
% set functions
p.fh.pak = @prior_logt_pak;
p.fh.unpak = @prior_logt_unpak;
p.fh.lp = @prior_logt_lp;
p.fh.lpg = @prior_logt_lpg;
p.fh.recappend = @prior_logt_recappend;
end
end
function [w, s] = prior_logt_pak(p)
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 'Log-Student-t.mu'];
end
if ~isempty(p.p.s2)
w = [w log(p.s2)];
s=[s; 'log(Log-Student-t.s2)'];
end
if ~isempty(p.p.nu)
w = [w log(p.nu)];
s=[s; 'log(Log-Student-t.nu)'];
end
end
function [p, w] = prior_logt_unpak(p, w)
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.nu)
i1=1;
p.nu = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_logt_lp(x, p)
lJ = -log(x); % =log(1/x)=log(|J|) of transformation
xt = log(x); % transformed x
lp = sum(gammaln((p.nu+1)./2) - gammaln(p.nu./2) - 0.5*log(p.nu.*pi.*p.s2) - (p.nu+1)./2.*log(1+(xt-p.mu).^2./p.nu./p.s2) + lJ);
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);
end
if ~isempty(p.p.nu)
lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) + log(p.nu);
end
end
function lpg = prior_logt_lpg(x, p)
lJg = -1./x; % gradient of log(|J|) of transformation
xt = log(x); % transformed x
xtg = 1./x; % derivative of transformation
lpg = xtg.*(-(p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + lJg;
if ~isempty(p.p.mu)
lpgmu = sum((p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s2)
lpgs2 = (sum(-1./(2.*p.s2)+((p.nu + 1)*(p.mu - xt)^2)./(2*p.s2*((p.mu-xt)^2 + p.nu*p.s2))) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
if ~isempty(p.p.nu)
lpgnu = (0.5*sum(digamma1((p.nu+1)./2)-digamma1(p.nu./2)-1./p.nu-log(1+(xt-p.mu).^2./p.nu./p.s2)+(p.nu+1)./(1+(xt-p.mu).^2./p.nu./p.s2).*(xt-p.mu).^2./p.s2./p.nu.^2) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;
lpg = [lpg lpgnu];
end
end
function rec = prior_logt_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
if ~isempty(p.p.nu)
rec.nu(ri,:) = p.nu;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_invt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_invt.m
| 5,044 |
UNKNOWN
|
4d2a44a16c36b25eda045042b14610c0
|
function p = prior_invt(varargin)
%PRIOR_INVT Student-t prior structure for the inverse of the parameter
%
% Description
% P = PRIOR_INVT('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates for the inverse of the parameter Student's
% t-distribution prior structure in which the named parameters
% have the specified values. Any unspecified parameters are set
% to default values.
%
% P = PRIOR_INVT(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameterisation is done as in Bayesian Data Analysis,
% second edition, Gelman et.al 2004.
%
% Parameters for Student-t prior [default]
% mu - location [0]
% s2 - scale [1]
% nu - degrees of freedom [4]
% mu_prior - prior for mu [prior_fixed]
% s2_prior - prior for s2 [prior_fixed]
% nu_prior - prior for nu [prior_fixed]
%
% See also
% PRIOR_T, PRIOR_*
% Copyright (c) 2000-2001,2010,2012 Aki Vehtari
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_INVT';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x));
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);
ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Inv-t';
else
if ~isfield(p,'type') && ~isequal(p.type,'Inv-t')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
if init || ~ismember('nu',ip.UsingDefaults)
p.nu = ip.Results.nu;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init || ~ismember('nu_prior',ip.UsingDefaults)
p.p.nu=ip.Results.nu_prior;
end
if init
% set functions
p.fh.pak = @prior_invt_pak;
p.fh.unpak = @prior_invt_unpak;
p.fh.lp = @prior_invt_lp;
p.fh.lpg = @prior_invt_lpg;
p.fh.recappend = @prior_invt_recappend;
end
end
function [w, s] = prior_invt_pak(p)
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 'Inv-t.mu'];
end
if ~isempty(p.p.s2)
w = [w log(p.s2)];
s=[s; 'log(Inv-t.s2)'];
end
if ~isempty(p.p.nu)
w = [w log(p.nu)];
s=[s; 'log(Inv-t.nu)'];
end
end
function [p, w] = prior_invt_unpak(p, w)
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.nu)
i1=1;
p.nu = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_invt_lp(x, p)
lJ = -log(x)*2; % log(1/x^2) log(|J|) of transformation
xt = 1./x; % transformation
lp = sum(gammaln((p.nu+1)./2) -gammaln(p.nu./2) -0.5*log(p.nu.*pi.*p.s2) -(p.nu+1)./2.*log(1+(xt-p.mu).^2./p.nu./p.s2) + lJ);
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) +log(p.s2);
end
if ~isempty(p.p.nu)
lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) +log(p.nu);
end
end
function lpg = prior_invt_lpg(x, p)
lJg = -2./x; % gradient of log(|J|) of transformation
xt = 1./x; % transformation
xtg = -1./x.^2; % derivative of transformation
lpg = xtg.*(-(p.nu+1).* (xt-p.mu) ./ (p.nu.*p.s2 + (xt-p.mu).^2)) + lJg;
if ~isempty(p.p.mu)
lpgmu = sum( (p.nu+1).* (xt-p.mu) ./ (p.nu.*p.s2 + (xt-p.mu).^2) ) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s2)
lpgs2 = (sum( -1./(2.*p.s2) +((p.nu + 1)*(p.mu - xt)^2)./(2*p.s2*((p.mu-xt)^2 + p.nu*p.s2))) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
if ~isempty(p.p.nu)
lpgnu = (0.5*sum( digamma1((p.nu+1)./2)-digamma1(p.nu./2)-1./p.nu-log(1+(xt-p.mu).^2./p.nu./p.s2)+(p.nu+1)./(1+(xt-p.mu).^2./p.nu./p.s2).*(xt-p.mu).^2./p.s2./p.nu.^2) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;
lpg = [lpg lpgnu];
end
end
function rec = prior_invt_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
if ~isempty(p.p.nu)
rec.nu(ri,:) = p.nu;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_unif.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_unif.m
| 1,362 |
utf_8
|
ee7f2a78b02bbd0395bb5893178d1109
|
function p = prior_unif(varargin)
%PRIOR_UNIF Uniform prior structure
%
% Description
% P = PRIOR_UNIF creates uniform prior structure.
%
% See also
% PRIOR_*
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_UNIFORM';
ip.addOptional('p', [], @isstruct);
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Uniform';
else
if ~isfield(p,'type') && ~isequal(p.type,'Uniform')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
if init
% set functions
p.fh.pak = @prior_unif_pak;
p.fh.unpak = @prior_unif_unpak;
p.fh.lp = @prior_unif_lp;
p.fh.lpg = @prior_unif_lpg;
p.fh.recappend = @prior_unif_recappend;
end
end
function [w, s] = prior_unif_pak(p, w)
w=[];
s={};
end
function [p, w] = prior_unif_unpak(p, w)
w = w;
p = p;
end
function lp = prior_unif_lp(x, p)
lp = 0;
end
function lpg = prior_unif_lpg(x, p)
lpg = zeros(size(x));
end
function rec = prior_unif_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
end
|
github
|
lcnbeapp/beapp-master
|
prior_gamma.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_gamma.m
| 3,585 |
UNKNOWN
|
652a3a22f8107cf4544a0a14fe522194
|
function p = prior_gamma(varargin)
%PRIOR_GAMMA Gamma prior structure
%
% Description
% P = PRIOR_GAMMA('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Gamma prior structure in which the named parameters
% have the specified values. Any unspecified parameters are set
% to default values.
%
% P = PRIOR_GAMMA(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parametrisation is done by Bayesian Data Analysis,
% second edition, Gelman et.al. 2004.
%
% Parameters for Gamma prior [default]
% sh - shape [4]
% is - inverse scale [1]
% sh_prior - prior for sh [prior_fixed]
% is_prior - prior for is [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_GAMMA';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('sh',4, @(x) isscalar(x) && x>0);
ip.addParamValue('sh_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('is',1, @(x) isscalar(x) && x>0);
ip.addParamValue('is_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Gamma';
else
if ~isfield(p,'type') && ~isequal(p.type,'Gamma')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('sh',ip.UsingDefaults)
p.sh = ip.Results.sh;
end
if init || ~ismember('is',ip.UsingDefaults)
p.is = ip.Results.is;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('sh_prior',ip.UsingDefaults)
p.p.sh=ip.Results.sh_prior;
end
if init || ~ismember('is_prior',ip.UsingDefaults)
p.p.is=ip.Results.is_prior;
end
if init
% set functions
p.fh.pak = @prior_gamma_pak;
p.fh.unpak = @prior_gamma_unpak;
p.fh.lp = @prior_gamma_lp;
p.fh.lpg = @prior_gamma_lpg;
p.fh.recappend = @prior_gamma_recappend;
end
end
function [w, s] = prior_gamma_pak(p)
w=[];
s={};
if ~isempty(p.p.sh)
w = log(p.sh);
s=[s; 'log(Gamma.sh)'];
end
if ~isempty(p.p.is)
w = [w log(p.is)];
s=[s; 'log(Gamma.is)'];
end
end
function [p, w] = prior_gamma_unpak(p, w)
if ~isempty(p.p.sh)
i1=1;
p.sh = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.is)
i1=1;
p.is = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_gamma_lp(x, p)
lp = sum(-p.is.*x + (p.sh-1).*log(x) +p.sh.*log(p.is) -gammaln(p.sh));
if ~isempty(p.p.sh)
lp = lp + p.p.sh.fh.lp(p.sh, p.p.sh) + log(p.sh);
end
if ~isempty(p.p.is)
lp = lp + p.p.is.fh.lp(p.is, p.p.is) + log(p.is);
end
end
function lpg = prior_gamma_lpg(x, p)
lpg = (p.sh-1)./x - p.is;
if ~isempty(p.p.sh)
lpgsh = (sum(-digamma1(p.sh) + log(p.is) + log(x)) + p.p.sh.fh.lpg(p.sh, p.p.sh)).*p.sh + 1;
lpg = [lpg lpgsh];
end
if ~isempty(p.p.is)
lpgis = (sum(p.sh./p.is+x) + p.p.is.fh.lpg(p.is, p.p.is)).*p.is + 1;
lpg = [lpg lpgis];
end
end
function rec = prior_gamma_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.sh)
rec.sh(ri,:) = p.sh;
end
if ~isempty(p.p.is)
rec.is(ri,:) = p.is;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_loglogunif.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_loglogunif.m
| 1,586 |
utf_8
|
9e47770e4cbf89b1f959bac5ca3e8630
|
function p = prior_loglogunif(varargin)
%PRIOR_LOGLOGUNIF Uniform prior structure for the log-log of the parameter
%
% Description
% P = PRIOR_LOGLOGUNIF creates uniform prior structure for the
% log-log of the parameters.
%
% See also
% PRIOR_*
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_LOGLOGUNIFORM';
ip.addOptional('p', [], @isstruct);
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Loglog-Uniform';
else
if ~isfield(p,'type') && ~isequal(p.type,'Loglog-Uniform')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
if init
% set functions
p.fh.pak = @prior_loglogunif_pak;
p.fh.unpak = @prior_loglogunif_unpak;
p.fh.lp = @prior_loglogunif_lp;
p.fh.lpg = @prior_loglogunif_lpg;
p.fh.recappend = @prior_loglogunif_recappend;
end
end
function [w, s] = prior_loglogunif_pak(p, w)
w=[];
s={};
end
function [p, w] = prior_loglogunif_unpak(p, w)
w = w;
p = p;
end
function lp = prior_loglogunif_lp(x, p)
lp = -sum(log(log(x)) + log(x)); % = log( 1./log(x) * 1./x)
end
function lpg = prior_loglogunif_lpg(x, p)
lpg = -1./log(x)./x - 1./x;
end
function rec = prior_loglogunif_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
end
|
github
|
lcnbeapp/beapp-master
|
prior_sqrtinvt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_sqrtinvt.m
| 5,086 |
UNKNOWN
|
359760ce484043dc8cbe8620784307a0
|
function p = prior_sqrtinvt(varargin)
%PRIOR_SQRTINVT Student-t prior structure for the square root of inverse of the parameter
%
% Description
% P = PRIOR_SQRTINVT('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates for square root of inverse of the parameter Student's
% t-distribution prior structure in which the named parameters
% have the specified values. Any unspecified parameters are set
% to default values.
%
% P = PRIOR_SQRTINVT(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameters for Student-t prior [default]
% mu - location [0]
% s2 - scale [1]
% nu - degrees of freedom [4]
% mu_prior - prior for mu [prior_fixed]
% s2_prior - prior for s2 [prior_fixed]
% nu_prior - prior for nu [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_SQRTINVT';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x));
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);
ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'SqrtInv-t';
else
if ~isfield(p,'type') && ~isequal(p.type,'SqrtInv-t')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
if init || ~ismember('nu',ip.UsingDefaults)
p.nu = ip.Results.nu;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init || ~ismember('nu_prior',ip.UsingDefaults)
p.p.nu=ip.Results.nu_prior;
end
if init
% set functions
p.fh.pak = @prior_sqrtinvt_pak;
p.fh.unpak = @prior_sqrtinvt_unpak;
p.fh.lp = @prior_sqrtinvt_lp;
p.fh.lpg = @prior_sqrtinvt_lpg;
p.fh.recappend = @prior_sqrtinvt_recappend;
end
end
function [w, s] = prior_sqrtinvt_pak(p)
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 'SqrtInv-Student-t.mu'];
end
if ~isempty(p.p.s2)
w = [w log(p.s2)];
s=[s; 'log(SqrtInv-Student-t.s2)'];
end
if ~isempty(p.p.nu)
w = [w log(p.nu)];
s=[s; 'log(SqrtInv-Student-t.nu)'];
end
end
function [p, w] = prior_sqrtinvt_unpak(p, w)
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.nu)
i1=1;
p.nu = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_sqrtinvt_lp(x, p)
lJ = -log(2*x.^(3/2)); % log(1/(2*x^(3/2))) log(|J|) of transformation
xt = 1./sqrt(x); % transformation
lp = sum(gammaln((p.nu+1)./2) - gammaln(p.nu./2) - 0.5*log(p.nu.*pi.*p.s2) - (p.nu+1)./2.*log(1+(xt-p.mu).^2./p.nu./p.s2) + lJ);
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);
end
if ~isempty(p.p.nu)
lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) + log(p.nu);
end
end
function lpg = prior_sqrtinvt_lpg(x, p)
lJg = -3./(2*x); % gradient of log(|J|) of transformation
xt = 1./sqrt(x); % transformation
xtg = -1./(2*x.^(3/2)); % derivative of transformation
lpg = xtg.*(-(p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + lJg;
if ~isempty(p.p.mu)
lpgmu = sum((p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s2)
lpgs2 = (sum(-1./(2.*p.s2)+((p.nu + 1)*(p.mu - xt)^2)./(2*p.s2*((p.mu-xt)^2 + p.nu*p.s2))) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
if ~isempty(p.p.nu)
lpgnu = (0.5*sum(digamma1((p.nu+1)./2)-digamma1(p.nu./2)-1./p.nu-log(1+(xt-p.mu).^2./p.nu./p.s2)+(p.nu+1)./(1+(xt-p.mu).^2./p.nu./p.s2).*(xt-p.mu).^2./p.s2./p.nu.^2) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;
lpg = [lpg lpgnu];
end
end
function rec = prior_sqrtinvt_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
if ~isempty(p.p.nu)
rec.nu(ri,:) = p.nu;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_sqinvgamma.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_sqinvgamma.m
| 4,063 |
UNKNOWN
|
e40fd6ee9ae4d88aaff26182c69a17e9
|
function p = prior_sqinvgamma(varargin)
%PRIOR_SQINVGAMMA Gamma prior structure for square inverse of the parameter
%
% Description
% P = PRIOR_SQINVGAMMA('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Gamma prior structure for square inverse of the
% parameter in which the named parameters have the specified
% values. Any unspecified parameters are set to default values.
%
% P = PRIOR_SQINVGAMMA(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parametrisation is done by Bayesian Data Analysis,
% second edition, Gelman et.al. 2004.
%
% Parameters for Gamma prior [default]
% sh - shape [4]
% is - inverse scale [1]
% sh_prior - prior for sh [prior_fixed]
% is_prior - prior for is [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010,2012 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_SQINVGAMMA';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('sh',4, @(x) isscalar(x) && x>0);
ip.addParamValue('sh_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('is',1, @(x) isscalar(x) && x>0);
ip.addParamValue('is_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'SqInv-Gamma';
else
if ~isfield(p,'type') && ~isequal(p.type,'SqInv-Gamma')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('sh',ip.UsingDefaults)
p.sh = ip.Results.sh;
end
if init || ~ismember('is',ip.UsingDefaults)
p.is = ip.Results.is;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('sh_prior',ip.UsingDefaults)
p.p.sh=ip.Results.sh_prior;
end
if init || ~ismember('is_prior',ip.UsingDefaults)
p.p.is=ip.Results.is_prior;
end
if init
% set functions
p.fh.pak = @prior_sqinvgamma_pak;
p.fh.unpak = @prior_sqinvgamma_unpak;
p.fh.lp = @prior_sqinvgamma_lp;
p.fh.lpg = @prior_sqinvgamma_lpg;
p.fh.recappend = @prior_sqinvgamma_recappend;
end
end
function [w, s] = prior_sqinvgamma_pak(p)
w=[];
s={};
if ~isempty(p.p.sh)
w = log(p.sh);
s=[s; 'log(SqInv-Gamma.sh)'];
end
if ~isempty(p.p.is)
w = [w log(p.is)];
s=[s; 'log(SqInv-Gamma.is)'];
end
end
function [p, w] = prior_sqinvgamma_unpak(p, w)
if ~isempty(p.p.sh)
i1=1;
p.sh = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.is)
i1=1;
p.is = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_sqinvgamma_lp(x, p)
lJ = -log(x)*3 + log(2); % log(-2/x^3) log(|J|) of transformation
xt = x.^-2; % transformation
lp = sum(-p.is.*xt + (p.sh-1).*log(xt) +p.sh.*log(p.is) -gammaln(p.sh) +lJ);
if ~isempty(p.p.sh)
lp = lp + p.p.sh.fh.lp(p.sh, p.p.sh) + log(p.sh);
end
if ~isempty(p.p.is)
lp = lp + p.p.is.fh.lp(p.is, p.p.is) + log(p.is);
end
end
function lpg = prior_sqinvgamma_lpg(x, p)
lJg = -3./x; % gradient of log(|J|) of transformation
xt = x.^-2; % transformation
xtg = -2/x.^3; % derivative of transformation
lpg = xtg.*((p.sh-1)./xt - p.is) + lJg;
if ~isempty(p.p.sh)
lpgsh = (sum(-digamma1(p.sh) + log(p.is) + log(x)) + p.p.sh.fh.lpg(p.sh, p.p.sh)).*p.sh + 1;
lpg = [lpg lpgsh];
end
if ~isempty(p.p.is)
lpgis = (sum(p.sh./p.is+x) + p.p.is.fh.lpg(p.is, p.p.is)).*p.is + 1;
lpg = [lpg lpgis];
end
end
function rec = prior_sqinvgamma_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.sh)
rec.sh(ri,:) = p.sh;
end
if ~isempty(p.p.is)
rec.is(ri,:) = p.is;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_laplace.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_laplace.m
| 3,459 |
UNKNOWN
|
47b15af8fb5fcf7caa1bbad31be2af42
|
function p = prior_laplace(varargin)
%PRIOR_LAPLACE Laplace (double exponential) prior structure
%
% Description
% P = PRIOR_LAPLACE('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Laplace prior structure in which the named parameters
% have the specified values. Any unspecified parameters are set
% to default values.
%
% P = PRIOR_LAPLACE(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameters for Laplace prior [default]
% mu - location [0]
% s - scale [1]
% mu_prior - prior for mu [prior_fixed]
% s_prior - prior for s [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_LAPLACE';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x) && x>0);
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Laplace';
else
if ~isfield(p,'type') && ~isequal(p.type,'Laplace')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s',ip.UsingDefaults)
p.s = ip.Results.s;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s_prior',ip.UsingDefaults)
p.p.s=ip.Results.s_prior;
end
if init
% set functions
p.fh.pak = @prior_laplace_pak;
p.fh.unpak = @prior_laplace_unpak;
p.fh.lp = @prior_laplace_lp;
p.fh.lpg = @prior_laplace_lpg;
p.fh.recappend = @prior_laplace_recappend;
end
end
function [w, s] = prior_laplace_pak(p)
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 'Laplace.mu'];
end
if ~isempty(p.p.s)
w = [w log(p.s)];
s=[s; 'log(Laplace.s)'];
end
end
function [p, w] = prior_laplace_unpak(p, w)
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s)
i1=1;
p.s = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_laplace_lp(x, p)
lp = sum(-log(2*p.s) - 1./p.s.* abs(x-p.mu));
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s)
lp = lp + p.p.s.fh.lp(p.s, p.p.s) + log(p.s);
end
end
function lpg = prior_laplace_lpg(x, p)
lpg = -sign(x-p.mu)./p.s;
if ~isempty(p.p.mu)
lpgmu = sum(sign(x-p.mu)./p.s) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s)
lpgs = (sum(-1./p.s +1./p.s.^2.*abs(x-p.mu)) + p.p.s.fh.lpg(p.s, p.p.s)).*p.s + 1;
lpg = [lpg lpgs];
end
end
function rec = prior_laplace_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s)
rec.s(ri,:) = p.s;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_invunif.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_invunif.m
| 1,615 |
utf_8
|
e974f05998d83ecfb5e7bd348f6d8a8d
|
function p = prior_invunif(varargin)
%PRIOR_INVUNIF Uniform prior structure for the inverse of the parameter
%
% Description
% P = PRIOR_INVUNIF creates uniform prior structure for the
% inverse of the parameter.
%
% See also
% PRIOR_*
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010,2012 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_INVUNIFORM';
ip.addOptional('p', [], @isstruct);
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Inv-Uniform';
else
if ~isfield(p,'type') && ~isequal(p.type,'Inv-Uniform')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
if init
% set functions
p.fh.pak = @prior_invunif_pak;
p.fh.unpak = @prior_invunif_unpak;
p.fh.lp = @prior_invunif_lp;
p.fh.lpg = @prior_invunif_lpg;
p.fh.recappend = @prior_invunif_recappend;
end
end
function [w, s] = prior_invunif_pak(p, w)
w=[];
s={};
end
function [p, w] = prior_invunif_unpak(p, w)
w = w;
p = p;
end
function lp = prior_invunif_lp(x, p)
lJ=-log(x)*2; % log(1/x^2) log(|J|) of transformation
lp = sum(0 +lJ);
end
function lpg = prior_invunif_lpg(x, p)
lJg=-2./x; % gradient of log(|J|) of transformation
lpg = zeros(size(x)) + lJg;
end
function rec = prior_invunif_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
end
|
github
|
lcnbeapp/beapp-master
|
prior_sinvchi2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_sinvchi2.m
| 3,787 |
UNKNOWN
|
bb36cbc475243c31f51e061847442b18
|
function p = prior_sinvchi2(varargin)
%PRIOR_SINVCHI2 Scaled-Inv-Chi^2 prior structure
%
% Description
% P = PRIOR_SINVCHI2('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates Scaled-Inv-Chi^2 prior structure in which the named
% parameters have the specified values. Any unspecified
% parameters are set to default values.
%
% P = PRIOR_SINVCHI2(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameterisation is done by Bayesian Data Analysis,
% second edition, Gelman et.al 2004.
%
% Parameters for Scaled-Inv-Chi^2 [default]
% s2 - scale squared (variance) [1]
% nu - degrees of freedom [4]
% s2_prior - prior for s2 [prior_fixed]
% nu_prior - prior for nu [prior_fixed]
%
% See also
% PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_SINVCHI2';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);
ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'S-Inv-Chi2';
else
if ~isfield(p,'type') && ~isequal(p.type,'S-Inv-Chi2')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
if init || ~ismember('nu',ip.UsingDefaults)
p.nu = ip.Results.nu;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init || ~ismember('nu_prior',ip.UsingDefaults)
p.p.nu=ip.Results.nu_prior;
end
if init
% set functions
p.fh.pak = @prior_sinvchi2_pak;
p.fh.unpak = @prior_sinvchi2_unpak;
p.fh.lp = @prior_sinvchi2_lp;
p.fh.lpg = @prior_sinvchi2_lpg;
p.fh.recappend = @prior_sinvchi2_recappend;
end
end
function [w, s] = prior_sinvchi2_pak(p)
w=[];
s={};
if ~isempty(p.p.s2)
w = log(p.s2);
s=[s; 'log(Sinvchi2.s2)'];
end
if ~isempty(p.p.nu)
w = [w log(p.nu)];
s=[s; 'log(Sinvchi2.nu)'];
end
end
function [p, w] = prior_sinvchi2_unpak(p, w)
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.nu)
i1=1;
p.nu = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_sinvchi2_lp(x, p)
lp = -sum((p.nu./2+1) .* log(x) + (p.s2.*p.nu./2./x) + (p.nu/2) .* log(2./(p.s2.*p.nu)) + gammaln(p.nu/2)) ;
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);
end
if ~isempty(p.p.nu)
lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) + log(p.nu);
end
end
function lpg = prior_sinvchi2_lpg(x, p)
lpg = -(p.nu/2+1)./x +p.nu.*p.s2./(2*x.^2);
if ~isempty(p.p.s2)
lpgs2 = (-sum(p.nu/2.*(1./x-1./p.s2)) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
if ~isempty(p.p.nu)
lpgnu = (-sum(0.5*(log(x) + p.s2./x + log(2./p.s2./p.nu) - 1 + digamma1(p.nu/2))) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;
lpg = [lpg lpgnu];
end
end
function rec = prior_sinvchi2_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
if ~isempty(p.p.nu)
rec.nu(ri,:) = p.nu;
end
end
|
github
|
lcnbeapp/beapp-master
|
prior_sqrtt.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/dist/prior_sqrtt.m
| 5,015 |
UNKNOWN
|
face07c0efdd74ed6d833079c1bfac18
|
function p = prior_sqrtt(varargin)
%PRIOR_SQRTT Student-t prior structure for the square root of the parameter
%
% Description
% P = PRIOR_SQRTT('PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% creates for the square root of the parameter Student's
% t-distribution prior structure in which the named parameters
% have the specified values. Any unspecified parameters are set
% to default values.
%
% P = PRIOR_SQRTT(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)
% modify a prior structure with the named parameters altered
% with the specified values.
%
% Parameters for Student-t prior [default]
% mu - location [0]
% s2 - scale [1]
% nu - degrees of freedom [4]
% mu_prior - prior for mu [prior_fixed]
% s2_prior - prior for s2 [prior_fixed]
% nu_prior - prior for nu [prior_fixed]
%
% See also
% PRIOR_t, PRIOR_*
% Copyright (c) 2000-2001,2010 Aki Vehtari
% Copyright (c) 2009 Jarno Vanhatalo
% Copyright (c) 2010 Jaakko Riihim�ki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'PRIOR_SQRTT';
ip.addOptional('p', [], @isstruct);
ip.addParamValue('mu',0, @(x) isscalar(x));
ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);
ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);
ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
p=ip.Results.p;
if isempty(p)
init=true;
p.type = 'Sqrt-t';
else
if ~isfield(p,'type') && ~isequal(p.type,'Sqrt-t')
error('First argument does not seem to be a valid prior structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('mu',ip.UsingDefaults)
p.mu = ip.Results.mu;
end
if init || ~ismember('s2',ip.UsingDefaults)
p.s2 = ip.Results.s2;
end
if init || ~ismember('nu',ip.UsingDefaults)
p.nu = ip.Results.nu;
end
% Initialize prior structure
if init
p.p=[];
end
if init || ~ismember('mu_prior',ip.UsingDefaults)
p.p.mu=ip.Results.mu_prior;
end
if init || ~ismember('s2_prior',ip.UsingDefaults)
p.p.s2=ip.Results.s2_prior;
end
if init || ~ismember('nu_prior',ip.UsingDefaults)
p.p.nu=ip.Results.nu_prior;
end
if init
% set functions
p.fh.pak = @prior_sqrtt_pak;
p.fh.unpak = @prior_sqrtt_unpak;
p.fh.lp = @prior_sqrtt_lp;
p.fh.lpg = @prior_sqrtt_lpg;
p.fh.recappend = @prior_sqrtt_recappend;
end
end
function [w, s] = prior_sqrtt_pak(p)
w=[];
s={};
if ~isempty(p.p.mu)
w = p.mu;
s=[s; 'Sqrt-Student-t.mu'];
end
if ~isempty(p.p.s2)
w = [w log(p.s2)];
s=[s; 'log(Sqrt-Student-t.s2)'];
end
if ~isempty(p.p.nu)
w = [w log(p.nu)];
s=[s; 'log(Sqrt-Student-t.nu)'];
end
end
function [p, w] = prior_sqrtt_unpak(p, w)
if ~isempty(p.p.mu)
i1=1;
p.mu = w(i1);
w = w(i1+1:end);
end
if ~isempty(p.p.s2)
i1=1;
p.s2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(p.p.nu)
i1=1;
p.nu = exp(w(i1));
w = w(i1+1:end);
end
end
function lp = prior_sqrtt_lp(x, p)
lJ = -log(2*sqrt(x)); % log(1/(2*x^(1/2))) log(|J|) of transformation
xt = sqrt(x); % transformation
lp = sum(gammaln((p.nu+1)./2) - gammaln(p.nu./2) - 0.5*log(p.nu.*pi.*p.s2) - (p.nu+1)./2.*log(1+(xt-p.mu).^2./p.nu./p.s2) + lJ);
if ~isempty(p.p.mu)
lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);
end
if ~isempty(p.p.s2)
lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);
end
if ~isempty(p.p.nu)
lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) + log(p.nu);
end
end
function lpg = prior_sqrtt_lpg(x, p)
lJg = -1./(2*x); % gradient of log(|J|) of transformation
xt = sqrt(x); % transformation
xtg = 1./(2*sqrt(x)); % derivative of transformation
lpg = xtg.*(-(p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + lJg;
if ~isempty(p.p.mu)
lpgmu = sum((p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + p.p.mu.fh.lpg(p.mu, p.p.mu);
lpg = [lpg lpgmu];
end
if ~isempty(p.p.s2)
lpgs2 = (sum(-1./(2.*p.s2)+((p.nu + 1)*(p.mu - xt)^2)./(2*p.s2*((p.mu-xt)^2 + p.nu*p.s2))) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;
lpg = [lpg lpgs2];
end
if ~isempty(p.p.nu)
lpgnu = (0.5*sum(digamma1((p.nu+1)./2)-digamma1(p.nu./2)-1./p.nu-log(1+(xt-p.mu).^2./p.nu./p.s2)+(p.nu+1)./(1+(xt-p.mu).^2./p.nu./p.s2).*(xt-p.mu).^2./p.s2./p.nu.^2) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;
lpg = [lpg lpgnu];
end
end
function rec = prior_sqrtt_recappend(rec, ri, p)
% The parameters are not sampled in any case.
rec = rec;
if ~isempty(p.p.mu)
rec.mu(ri,:) = p.mu;
end
if ~isempty(p.p.s2)
rec.s2(ri,:) = p.s2;
end
if ~isempty(p.p.nu)
rec.nu(ri,:) = p.nu;
end
end
|
github
|
lcnbeapp/beapp-master
|
gradcheck.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/diag/gradcheck.m
| 2,489 |
utf_8
|
1e4a8a8b0e776eb3b76a4be1c60b649e
|
function delta = gradcheck(w, func, grad, varargin)
%GRADCHECK Checks a user-defined gradient function using finite differences.
%
% Description
% This function is intended as a utility to check whether a gradient
% calculation has been correctly implemented for a given function.
% GRADCHECK(W, FUNC, GRAD) checks how accurate the gradient GRAD of
% a function FUNC is at a parameter vector X. A central difference
% formula with step size 1.0e-6 is used, and the results for both
% gradient function and finite difference approximation are printed.
%
% GRADCHECK(X, FUNC, GRAD, P1, P2, ...) allows additional arguments to
% be passed to FUNC and GRAD.
%
% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
% Reasonable value for step size
epsilon = 1.0e-6;
func = fcnchk(func, length(varargin));
grad = fcnchk(grad, length(varargin));
% Treat
nparams = length(w);
deltaf = zeros(1, nparams);
step = zeros(1, nparams);
for i = 1:nparams
% Move a small way in the ith coordinate of w
step(i) = 1.0;
fplus = feval('linef', epsilon, func, w, step, varargin{:});
fminus = feval('linef', -epsilon, func, w, step, varargin{:});
% Use central difference formula for approximation
deltaf(i) = 0.5*(fplus - fminus)/epsilon;
step(i) = 0.0;
end
gradient = feval(grad, w, varargin{:});
fprintf(1, 'Checking gradient ...\n\n');
fprintf(1, ' analytic diffs delta\n\n');
disp([gradient', deltaf', gradient' - deltaf'])
delta = gradient' - deltaf';
function y = linef(lambda, fn, x, d, varargin)
%LINEF Calculate function value along a line.
%
% Description
% LINEF(LAMBDA, FN, X, D) calculates the value of the function FN at
% the point X+LAMBDA*D. Here X is a row vector and LAMBDA is a scalar.
%
% LINEF(LAMBDA, FN, X, D, P1, P2, ...) allows additional arguments to
% be passed to FN(). This function is used for convenience in some of
% the optimization routines.
%
% See also
% GRADCHEK, LINEMIN
%
% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
% Check function string
fn = fcnchk(fn, length(varargin));
y = feval(fn, x+lambda.*d, varargin{:});
|
github
|
lcnbeapp/beapp-master
|
geyer_icse.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/diag/geyer_icse.m
| 1,895 |
utf_8
|
d1069007aefb5a41440b9e5e98d12a94
|
function [t,t1] = geyer_icse(x,maxlag)
% GEYER_ICSE - Compute autocorrelation time tau using Geyer's
% initial convex sequence estimator
%
% C = GEYER_ICSE(X) returns autocorrelation time tau.
% C = GEYER_ICSE(X,MAXLAG) returns autocorrelation time tau with
% MAXLAG . Default MAXLAG = M-1.
%
% References:
% [1] C. J. Geyer, (1992). "Practical Markov Chain Monte Carlo",
% Statistical Science, 7(4):473-511
% Copyright (C) 2002 Aki Vehtari
%
% This software is distributed under the GNU General Public
% Licence (version 3 or later); please refer to the file
% Licence.txt, included with the software, for details.
% compute autocorrelation
if nargin > 1
cc=acorr(x,maxlag);
else
cc=acorr(x);
end
[n,m]=size(cc);
% acorr returns values starting from lag 1, so add lag 0 here
cc=[ones(1,m);cc];
n=n+1;
% now make n even
if mod(n,2)
n=n-1;
cc(end,:)=[];
end
% loop through variables
t=zeros(1,m);
t1=zeros(1,m);
opt=optimset('LargeScale','off','display','off');
for i1=1:m
c=cc(:,i1);
c=sum(reshape(c,2,n/2),1);
ci=find(c<0);
if isempty(ci)
warning(sprintf('Inital positive could not be found for variable %d, using maxlag value',i1));
ci=n/2;
else
ci=ci(1)-1; % initial positive
end
c=[c(1:ci) 0]; % initial positive sequence
t1(i1)=-1+2*sum(c); % initial positive sequence estimator
if ci>2
ca=fmincon(@se,c,[],[],[],[],0*c,c,@sc,opt,c); % monotone convex sequence
else
ca=c;
end
t(i1)=-1+2*sum(ca); % monotone convex sequence estimator
end
function e = se(x,xx)
% SE - Error in monotone convex sequene estimator
e=sum((xx-x).^2);
function [c,ceq] = sc(x,xx)
% SE - Constraint in monotone convex sequene estimator
ceq=0*x;
c=ceq;
d=diff(x);
dd=-diff(d);
d(d<0)=0;d=d.^2;
dd(dd<0)=0;dd=dd.^2;
c(1:end-1)=d;c(2:end)=c(2:end)+d;
c(1:end-2)=dd;c(2:end-1)=c(2:end-1)+dd;c(3:end)=c(3:end)+dd;
|
github
|
lcnbeapp/beapp-master
|
ksstat.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/diag/ksstat.m
| 3,201 |
utf_8
|
cb6899b300a0a54054487e9374ea9e89
|
function [snks, snkss] = ksstat(varargin)
%KSSTAT Kolmogorov-Smirnov statistics
%
% ks = KSSTAT(X) or
% ks = KSSTAT(X1,X2,...,XJ)
% returns Kolmogorov-Smirnov statistics in form sqrt(N)*K
% where M is number of samples. X is a NxMxJ matrix which
% contains J MCMC simulations of length N, each with
% dimension M. MCMC-simulations can be given as separate
% arguments X1,X2,... which should have the same length.
%
% When comparing more than two simulations, maximum of all the
% comparisons for each dimension is returned (Brooks et al,
% 2003).
%
% Function returns ks-values in vector KS of length M.
% An approximation of the 95% quantile for the limiting
% distribution of sqrt(N)*K with M>=100 is 1.36. ks-values
% can be compared against this value (Robert & Casella, 2004).
% In case of comparing several chains, maximum of all the
% comparisons can be compared to simulated distribution of
% the maximum of all comparisons obtained using independent
% random random numbers (e.g. using randn(size(X))).
%
% If only one simulation is given, the factor is calculated
% between first and last third of the chain.
%
% Note that for this test samples have to be approximately
% independent. Use thinning or batching for Markov chains.
%
% Example:
% How to estimate the limiting value when comparing several
% chains stored in (thinned) variable R. Simulate 100 times
% independent samples. kss contains then 100 simulations of the
% maximum of all the comparisons for independent samples.
% Compare actual value for R to 95%-percentile of kss.
%
% kss=zeros(1,100);
% for i1=1:100
% kss(i1)=ksstat(randn(size(R)));
% end
% ks95=prctile(kss,95);
%
% References:
% Robert, C. P, and Casella, G. (2004) Monte Carlo Statistical
% Methods. Springer. p. 468-470.
% Brooks, S. P., Giudici, P., and Philippe, A. (2003)
% "Nonparametric Convergence Assessment for MCMC Model
% Selection". Journal of Computational & Graphical Statistics,
% 12(1):1-22.
%
% See also
% PSRF, GEYER_IMSE, THIN
% Copyright (C) 2001-2005 Aki Vehtari
%
% This software is distributed under the GNU General Public
% Licence (version 3 or later); please refer to the file
% Licence.txt, included with the software, for details.
% In case of one argument split to two halves (first and last thirds)
if nargin==1
X = varargin{1};
if size(X,3)==1
n = floor(size(X,1)/3);
x = zeros([n size(X,2) 2]);
x(:,:,1) = X(1:n,:);
x(:,:,2) = X((end-n+1):end,:);
X = x;
end
else
X = zeros([size(varargin{1}) nargin]);
for i1=1:nargin
X(:,:,i1) = varargin{i1};
end
end
if (size(X,1)<1)
error('X has zero rows');
end
[n1,n2,n3]=size(X);
%if n1<=100
% warning('Too few samples for reliable analysis');
%end
P = zeros(1,n2);
snkss=zeros(sum(1:(n3-1)),1);
for j1=1:size(X,2)
ii=0;
for i1=1:n3-1
for i2=i1+1:n3
ii=ii+1;
snkss(ii,j1)=ksc(X(:,j1,i1),X(:,j1,i2));
end
end
snks(j1)=max(snkss(:,j1));
end
function snks = ksc(x1,x2)
n=numel(x1);
edg=sort([x1; x2]);
c1=histc(x1,edg);
c2=histc(x2,edg);
K=max(abs(cumsum(c1)-cumsum(c2))/n);
snks=sqrt(n)*K;
|
github
|
lcnbeapp/beapp-master
|
hmc2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/mc/hmc2.m
| 9,845 |
utf_8
|
4a06c9a759a73a727cd280c3d43cf40f
|
function [samples, energies, diagn] = hmc2(f, x, opt, gradf, varargin)
%HMC2 Hybrid Monte Carlo sampling.
%
% Description
% SAMPLES = HMC2(F, X, OPTIONS, GRADF) uses a hybrid Monte Carlo
% algorithm to sample from the distribution P ~ EXP(-F), where F is the
% first argument to HMC2. The Markov chain starts at the point X, and
% the function GRADF is the gradient of the `energy' function F.
%
% HMC2(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional arguments to
% be passed to F() and GRADF().
%
% [SAMPLES, ENERGIES, DIAGN] = HMC2(F, X, OPTIONS, GRADF) also returns a
% log of the energy values (i.e. negative log probabilities) for the
% samples in ENERGIES and DIAGN, a structure containing diagnostic
% information (position, momentum and acceptance threshold) for each
% step of the chain in DIAGN.POS, DIAGN.MOM and DIAGN.ACC respectively.
% All candidate states (including rejected ones) are stored in
% DIAGN.POS. The DIAGN structure contains fields:
%
% pos
% the position vectors of the dynamic process
% mom
% the momentum vectors of the dynamic process
% acc
% the acceptance thresholds
% rej
% the number of rejections
% stp
% the step size vectors
%
% S = HMC2('STATE') returns a state structure that contains
% the used random stream and its state and the momentum of
% the dynamic process. These are contained in fields stream,
% streamstate and mom respectively. The momentum state is
% only used for a persistent momentum update.
%
% HMC2('STATE', S) resets the state to S. If S is an integer,
% then it is used as a seed for the random stream and the
% momentum variable is randomised. If S is a structure
% returned by HMC2('STATE') then it resets the random stream
% to exactly the same state.
%
% See HMC2_OPT for the optional parameters in the OPTIONS structure.
%
% See also
% HMC2_OPT, METROP
%
% Copyright (c) 1996-1998 Christopher M Bishop, Ian T Nabney
% Copyright (c) 1998-2000,2010 Aki Vehtari
% The portion of the HMC algorithm involving "windows" is derived
% from the C code for this function included in the Software for
% Flexible Bayesian Modeling written by Radford Neal
% <http://www.cs.toronto.edu/~radford/fbm.software.html>.
% Global variable to store state of momentum variables: set by set_state
% Used to initialize variable if set
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
global HMC_MOM
%Return state or set state to given state.
if nargin <= 2
if ~strcmp(f, 'state')
error('Unknown argument to hmc2');
end
switch nargin
case 1
samples = get_state(f);
return;
case 2
set_state(f, x);
return;
end
end
% Set empty options to default values
opt=hmc2_opt(opt);
% Reference to structures is much slower, so...
opt_nsamples=opt.nsamples;
opt_window=opt.window;
opt_steps=opt.steps;
opt_display = opt.display;
opt_persistence = opt.persistence;
if opt_persistence
alpha = opt.decay;
salpha = sqrt(1-alpha*alpha);
end
% Stepsizes, varargin gives the opt.stepsf arguments (net, x ,y)
% where x is input data and y is a target data.
if ~isempty(opt.stepsf)
epsilon = feval(opt.stepsf,varargin{:}).*opt.stepadj;
else
epsilon = opt.stepadj;
end
% Force x to be a row vector
x = x(:)';
nparams = length(x);
%Set up strings for evaluating potential function and its gradient.
f = fcnchk(f, length(varargin));
gradf = fcnchk(gradf, length(varargin));
% Check the gradient evaluation.
if (opt.checkgrad)
% Check gradients
feval('gradcheck', x, f, gradf, varargin{:});
end
% Matrix of returned samples.
samples = zeros(opt_nsamples, nparams);
% Return energies?
if nargout >= 2
en_save = 1;
energies = zeros(opt_nsamples, 1);
else
en_save = 0;
end
% Return diagnostics?
if nargout >= 3
diagnostics = 1;
diagn_pos = zeros(opt_nsamples, nparams);
diagn_mom = zeros(opt_nsamples, nparams);
diagn_acc = zeros(opt_nsamples, 1);
else
diagnostics = 0;
end
if (~opt_persistence | isempty(HMC_MOM) | nparams ~= length(HMC_MOM))
% Initialise momenta at random
p = randn(1, nparams);
else
% Initialise momenta from stored state
p = HMC_MOM;
end
% Evaluate starting energy.
E = feval(f, x, varargin{:});
% Main loop.
nreject = 0; %number of rejected samples
window_offset=0; %window offset initialised to zero
k = - opt.nomit + 1; %nomit samples are omitted, so we store
while k <= opt_nsamples %samples from k>0
% Store starting position and momenta
xold = x;
pold = p;
% Recalculate Hamiltonian as momenta have changed
Eold = E;
Hold = E + 0.5*(p*p');
% Decide on window offset, if windowed HMC is used
if opt_window>1
window_offset=fix(opt_window*rand(1));
end
have_rej = 0;
have_acc = 0;
n = window_offset;
dir = -1; %the default value for dir (=direction)
%assumes that windowing is used
while (dir==-1 | n~=opt_steps)
%if windowing is not used or we have allready taken
%window_offset steps backwards...
if (dir==-1 & n==0)
% Restore, next state should be original start state.
if window_offset > 0
x = xold;
p = pold;
n = window_offset;
end
%set dir for forward steps
E = Eold;
H = Hold;
dir = 1;
stps = dir;
else
if (n*dir+1<opt_window | n>(opt_steps-opt_window))
% State in the accept and/or reject window.
stps = dir;
else
% State not in the accept and/or reject window.
stps = opt_steps-2*(opt_window-1);
end
% First half-step of leapfrog.
p = p - dir*0.5*epsilon.*feval(gradf, x, varargin{:});
x = x + dir*epsilon.*p;
% Full leapfrog steps.
for m = 1:(abs(stps)-1)
p = p - dir*epsilon.*feval(gradf, x, varargin{:});
x = x + dir*epsilon.*p;
end
% Final half-step of leapfrog.
p = p - dir*0.5*epsilon.*feval(gradf, x, varargin{:});
E = feval(f, x, varargin{:});
H = E + 0.5*(p*p');
n=n+stps;
end
if (opt_window~=opt_steps+1 & n<opt_window)
% Account for state in reject window. Reject window can be
% ignored if windows consist of the entire trajectory.
if ~have_rej
rej_free_energy = H;
else
rej_free_energy = -addlogs(-rej_free_energy, -H);
end
if (~have_rej | rand(1) < exp(rej_free_energy-H));
E_rej=E;
x_rej=x;
p_rej=p;
have_rej = 1;
end
end
if (n>(opt_steps-opt_window))
% Account for state in the accept window.
if ~have_acc
acc_free_energy = H;
else
acc_free_energy = -addlogs(-acc_free_energy, -H);
end
if (~have_acc | rand(1) < exp(acc_free_energy-H))
E_acc=E;
x_acc=x;
p_acc=p;
have_acc = 1;
end
end
end
% Acceptance threshold.
a = exp(rej_free_energy - acc_free_energy);
if (diagnostics & k > 0)
diagn_pos(k,:) = x_acc;
diagn_mom(k,:) = p_acc;
diagn_acc(k,:) = a;
end
if (opt_display > 1)
fprintf(1, 'New position is\n');
disp(x);
end
% Take new state from the appropriate window.
if a > rand(1)
% Accept
E=E_acc;
x=x_acc;
p=-p_acc; % Reverse momenta
if (opt_display > 0)
fprintf(1, 'Finished step %4d Threshold: %g\n', k, a);
end
else
% Reject
if k > 0
nreject = nreject + 1;
end
E=E_rej;
x=x_rej;
p=p_rej;
if (opt_display > 0)
fprintf(1, ' Sample rejected %4d. Threshold: %g\n', k, a);
end
end
if k > 0
% Store sample
samples(k,:) = x;
if en_save
% Store energy
energies(k) = E;
end
end
% Set momenta for next iteration
if opt_persistence
% Reverse momenta
p = -p;
% Adjust momenta by a small random amount
p = alpha.*p + salpha.*randn(1, nparams);
else
% Replace all momenta
p = randn(1, nparams);
end
k = k + 1;
end
if (opt_display > 0)
fprintf(1, '\nFraction of samples rejected: %g\n', ...
nreject/(opt_nsamples));
end
% Store diagnostics
if diagnostics
diagn.pos = diagn_pos; %positions matrix
diagn.mom = diagn_mom; %momentum matrix
diagn.acc = diagn_acc; %acceptance treshold matrix
diagn.rej = nreject/(opt_nsamples); %rejection rate
diagn.stps = epsilon; %stepsize vector
end
% Store final momentum value in global so that it can be retrieved later
if opt_persistence
HMC_MOM = p;
else
HMC_MOM = [];
end
return
function state = get_state(f)
%GET_STATE Return complete state of sampler
% (including momentum)
global HMC_MOM
state.stream=setrandstream();
state.streamstate = state.stream.State;
state.mom = HMC_MOM;
return
function set_state(f, x)
%SET_STATE Set complete state of sample
%
% Description
% Set complete state of sampler (including momentum)
% or just set randn and rand with integer argument.
global HMC_MOM
if isnumeric(x)
setrandstream(x);
else
if ~isstruct(x)
error('Second argument to hmc must be number or state structure');
end
if (~isfield(x, 'stream') | ~isfield(x, 'streamstate') ...
| ~isfield(x, 'mom'))
error('Second argument to hmc must contain correct fields')
end
setrandstream(x.stream);
x.State=x.streamstate;
HMC_MOM = x.mom;
end
return
function c=addlogs(a,b)
%ADDLOGS(A,B) Add numbers represented by their logarithms.
%
% Description
% Add numbers represented by their logarithms.
% Computes log(exp(a)+exp(b)) in such a fashion that it
% works even when a and b have large magnitude.
if a>b
c = a + log(1+exp(b-a));
else
c = b + log(1+exp(a-b));
end
|
github
|
lcnbeapp/beapp-master
|
hmc_nuts.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/mc/hmc_nuts.m
| 10,716 |
utf_8
|
01197102ae8e357143d8a5cc213d39b4
|
function [samples, logp, diagn] = hmc_nuts(f, theta0, opt)
%HMC_NUTS No-U-Turn Sampler (NUTS)
%
% Description
% [SAMPLES, LOGP, DIAGN] = HMC_NUTS(f, theta0, opt)
% Implements the No-U-Turn Sampler (NUTS), specifically,
% algorithm 6 from the NUTS paper (Hoffman & Gelman, 2011). Runs
% opt.Madapt steps of burn-in, during which it adapts the step
% size parameter epsilon, then starts generating samples to
% return.
%
% f(theta) should be a function that returns the log probability its
% gradient evaluated at theta. I.e., you should be able to call
% [logp grad] = f(theta).
%
% opt.epsilon is a step size parameter.
% opt.M is the number of samples to generate.
% opt.Madapt is the number of steps of burn-in/how long to run
% the dual averaging algorithm to fit the step size
% epsilon. Note that there is no need to provide
% opt.epsilon if doing adaptation.
% opt.theta0 is a 1-by-D vector with the desired initial setting
% of the parameters.
% opt.delta should be between 0 and 1, and is a target HMC
% acceptance probability. Defaults to 0.8 if
% unspecified.
%
%
% The returned variable "samples" is an (M+Madapt)-by-D matrix
% of samples generated by NUTS, including burn-in samples.
%
% Note that when used from gp_mc, opt.M and opt.Madapt are both 0 or
% 1 (hmc_nuts returns only one sample to gp_mc). Number of epsilon
% adaptations should be set in hmc options structure hmc_opt.nadapt, in
% gp_mc(... ,'hmc_opt', hmc_opt).
%
% The returned structure diagn includes step-size vector
% epsilon, number of rejected samples and dual averaging
% parameters so its possible to continue adapting step-size
% parameter.
% Copyright (c) 2011, Matthew D. Hoffman
% Copyright (c) 2012, Ville Tolvanen
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or
% without modification, are permitted provided that the following
% conditions are met:
%
% Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
%
% Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the
% distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
% CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
% INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
% LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
% USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
% AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
% LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
% ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
global nfevals;
nfevals = 0;
if ~isfield(opt, 'delta')
delta = 0.8;
else
delta = opt.delta;
end
if ~isfield(opt, 'M')
M = 1;
else
M = opt.M;
end
if ~isfield(opt, 'Madapt')
Madapt = 0;
else
Madapt = opt.Madapt;
end
diagn.rej = 0;
assert(size(theta0, 1) == 1);
D = length(theta0);
samples = zeros(M+Madapt, D);
[logp grad] = f(theta0);
samples(1, :) = theta0;
% Parameters to the dual averaging algorithm.
gamma = 0.05;
t0 = 10;
kappa = 0.75;
% Initialize dual averaging algorithm.
epsilonbar = 1;
Hbar = 0;
if isfield(opt, 'epsilon') && ~isempty(opt.epsilon)
epsilon = opt.epsilon(end);
% Hbar & epsilonbar are needed when doing adaptation of step-length
if isfield(opt, 'Hbar') && ~isempty(opt.Hbar)
Hbar = opt.Hbar;
end
if isfield(opt, 'epsilonbar') && ~isempty(opt.epsilonbar)
epsilonbar=opt.epsilonbar;
else
epsilonbar=opt.epsilon;
end
mu = log(10*opt.epsilon(1));
else
% Choose a reasonable first epsilon by a simple heuristic.
epsilon = find_reasonable_epsilon(theta0, grad, logp, f);
mu = log(10*epsilon);
opt.epsilon = epsilon;
opt.epsilonbar = epsilonbar;
opt.Hbar = Hbar;
end
for m = 2:M+Madapt+1,
% m
% Resample momenta.
r0 = randn(1, D);
% Joint log-probability of theta and momenta r.
joint = logp - 0.5 * (r0 * r0');
% Resample u ~ uniform([0, exp(joint)]).
% Equivalent to (log(u) - joint) ~ exponential(1).
logu = joint - exprnd(1);
% Initialize tree.
thetaminus = samples(m-1, :);
thetaplus = samples(m-1, :);
rminus = r0;
rplus = r0;
gradminus = grad;
gradplus = grad;
% Initial height j = 0.
j = 0;
% If all else fails, the next sample is the previous sample.
samples(m, :) = samples(m-1, :);
% Initially the only valid point is the initial point.
n = 1;
rej = 0;
% Main loop---keep going until the criterion s == 0.
s = 1;
while (s == 1)
% Choose a direction. -1=backwards, 1=forwards.
v = 2*(rand() < 0.5)-1;
% Double the size of the tree.
if (v == -1)
[thetaminus, rminus, gradminus, tmp, tmp, tmp, thetaprime, gradprime, logpprime, nprime, sprime, alpha, nalpha] = ...
build_tree(thetaminus, rminus, gradminus, logu, v, j, epsilon, f, joint);
else
[tmp, tmp, tmp, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, sprime, alpha, nalpha] = ...
build_tree(thetaplus, rplus, gradplus, logu, v, j, epsilon, f, joint);
end
% Use Metropolis-Hastings to decide whether or not to move to a
% point from the half-tree we just generated.
if ((sprime == 1) && (rand() < nprime/n))
samples(m, :) = thetaprime;
logp = logpprime;
grad = gradprime;
else
rej = rej + 1;
end
% Update number of valid points we've seen.
n = n + nprime;
% Decide if it's time to stop.
s = sprime && stop_criterion(thetaminus, thetaplus, rminus, rplus);
% Increment depth.
j = j + 1;
end
% Do adaptation of epsilon if we're still doing burn-in.
eta = 1 / (length(opt.epsilon) + t0);
Hbar = (1 - eta) * Hbar + eta * (delta - alpha / nalpha);
if (m <= Madapt+1)
epsilon = exp(mu - sqrt(m-1)/gamma * Hbar);
eta = (length(opt.epsilon))^-kappa;
epsilonbar = exp((1 - eta) * log(epsilonbar) + eta * log(epsilon));
else
epsilon = epsilonbar;
end
opt.epsilon(end+1) = epsilon;
opt.epsilonbar = epsilonbar;
opt.Hbar = Hbar;
diagn.rej = diagn.rej + rej;
end
diagn.opt = opt;
end
function [thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, epsilon, f)
rprime = r + 0.5 * epsilon * grad;
thetaprime = theta + epsilon * rprime;
[logpprime, gradprime] = f(thetaprime);
rprime = rprime + 0.5 * epsilon * gradprime;
global nfevals;
nfevals = nfevals + 1;
end
function criterion = stop_criterion(thetaminus, thetaplus, rminus, rplus)
thetavec = thetaplus - thetaminus;
criterion = (thetavec * rminus' >= 0) && (thetavec * rplus' >= 0);
end
% The main recursion.
function [thetaminus, rminus, gradminus, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, sprime, alphaprime, nalphaprime] = ...
build_tree(theta, r, grad, logu, v, j, epsilon, f, joint0)
if (j == 0)
% Base case: Take a single leapfrog step in the direction v.
[thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, v*epsilon, f);
joint = logpprime - 0.5 * (rprime * rprime');
% Is the new point in the slice?
nprime = logu < joint;
% Is the simulation wildly inaccurate?
sprime = logu - 1000 < joint;
% Set the return values---minus=plus for all things here, since the
% "tree" is of depth 0.
thetaminus = thetaprime;
thetaplus = thetaprime;
rminus = rprime;
rplus = rprime;
gradminus = gradprime;
gradplus = gradprime;
% Compute the acceptance probability.
alphaprime = min(1, exp(logpprime - 0.5 * (rprime * rprime') - joint0));
nalphaprime = 1;
else
% Recursion: Implicitly build the height j-1 left and right subtrees.
[thetaminus, rminus, gradminus, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, sprime, alphaprime, nalphaprime] = ...
build_tree(theta, r, grad, logu, v, j-1, epsilon, f, joint0);
% No need to keep going if the stopping criteria were met in the first
% subtree.
if (sprime == 1)
if (v == -1)
[thetaminus, rminus, gradminus, tmp, tmp, tmp, thetaprime2, gradprime2, logpprime2, nprime2, sprime2, alphaprime2, nalphaprime2] = ...
build_tree(thetaminus, rminus, gradminus, logu, v, j-1, epsilon, f, joint0);
else
[tmp, tmp, tmp, thetaplus, rplus, gradplus, thetaprime2, gradprime2, logpprime2, nprime2, sprime2, alphaprime2, nalphaprime2] = ...
build_tree(thetaplus, rplus, gradplus, logu, v, j-1, epsilon, f, joint0);
end
% Choose which subtree to propagate a sample up from.
if (rand() < nprime2 / (nprime + nprime2))
thetaprime = thetaprime2;
gradprime = gradprime2;
logpprime = logpprime2;
end
% Update the number of valid points.
nprime = nprime + nprime2;
% Update the stopping criterion.
sprime = sprime && sprime2 && stop_criterion(thetaminus, thetaplus, rminus, rplus);
% Update the acceptance probability statistics.
alphaprime = alphaprime + alphaprime2;
nalphaprime = nalphaprime + nalphaprime2;
end
end
end
function epsilon = find_reasonable_epsilon(theta0, grad0, logp0, f)
epsilon = 0.1;
r0 = randn(1, length(theta0));
% Figure out what direction we should be moving epsilon.
[tmp, rprime, tmp, logpprime] = leapfrog(theta0, r0, grad0, epsilon, f);
acceptprob = exp(logpprime - logp0 - 0.5 * (rprime * rprime' - r0 * r0'));
% Here we presume that energy function returns NaN, if energy cannot be
% evaluated at the suggested hyperparameters so that we need smalled epsilon
if isnan(acceptprob)
acceptprob=0;
end
a = 2 * (acceptprob > 0.5) - 1;
% Keep moving epsilon in that direction until acceptprob crosses 0.5.
while (acceptprob^a > 2^(-a))
epsilon = epsilon * 2^a;
[tmp, rprime, tmp, logpprime] = leapfrog(theta0, r0, grad0, epsilon, f);
acceptprob = exp(logpprime - logp0 - 0.5 * (rprime * rprime' - r0 * r0'));
end
end
|
github
|
lcnbeapp/beapp-master
|
sls.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/mc/sls.m
| 18,996 |
utf_8
|
909e1e12015c1cde6f731f39015ae059
|
function [samples,energies,diagn] = sls(f, x, opt, gradf, varargin)
%SLS Markov Chain Monte Carlo sampling using Slice Sampling
%
% Description
% SAMPLES = SLS(F, X, OPTIONS) uses slice sampling to sample
% from the distribution P ~ EXP(-F), where F is the first
% argument to SLS. Markov chain starts from point X and the
% sampling from multivariate distribution is implemented by
% sampling each variable at a time either using overrelaxation
% or not. See SLS_OPT for details. A simple multivariate scheme
% using hyperrectangles is utilized when method is defined 'multi'.
%
% SAMPLES = SLS(F, X, OPTIONS, [], P1, P2, ...) allows additional
% arguments to be passed to F(). The fourth argument is ignored,
% but included for compatibility with HMC and the optimisers.
%
% [SAMPLES, ENERGIES, DIAGN] = SLS(F, X, OPTIONS) Returns some additional
% diagnostics for the values in SAMPLES and ENERGIES.
%
% See SLS_OPT for the optional parameters in the OPTIONS structure.
%
% See also
% METROP2, HMC2, SLS_OPT
% Based on "Slice Sampling" by Radford M. Neal in "The Annals of Statistics"
% 2003, Vol. 31, No. 3, 705-767, (c) Institute of Mathematical Statistics, 2003
% Thompson & Neal (2010) Covariance-Adaptive Slice Sampling. Technical
% Report No. 1002, Department of Statistic, University of Toronto
%
% Copyright (c) Toni Auranen, 2003-2006
% Copyright (c) Ville Tolvanen, 2012
% This software is distributed under the GNU General Public
% Licence (version 3 or later); please refer to the file
% Licence.txt, included with the software, for details.
% Version 1.01, 21/1/2004, TA
% Version 1.02, 28/1/2004, TA
% - fixed the limit-checks for stepping_out and doubling
% Version 1.02b, 26/2/2004, TA
% - changed some display-settings
% Version 1.03, 9/3/2004, TA
% - changed some display-settings
% - changed the variable initialization
% - optimized the number of fevals
% Version 1.04, 24/3/2004, TA
% - overrelaxation separately for each variable in multivariate case
% - added maxiter parameter for shrinkage
% - added some argument checks
% Version 1.04b, 29/3/2004, TA
% - minor fixes
% Version 1.05, 7/4/2004, TA
% - minor bug fixes
% - added nomit-option
% Version 1.06, 22/4/2004, TA
% - added unimodality shortcut for stepping-out and doubling
% - optimized the number of fevals in doubling
% Version 1.06b, 27/4/2004, TA
% - fixed some bugs
% Version 1.7, 15/3/2005, TA
% - added the hyperrectangle multivariate sampling
% Start timing and construct a function handle from the function name string
% (Timing is off, and function handles are left for the user)
%t = cputime;
%f = str2func(f);
% Set empty options to default values
opt = sls_opt(opt);
%if opt.display, disp(opt); end
if opt.display == 1
opt.display = 2; % verbose
elseif opt.display == 2
opt.display = 1; % all
end
% Forces x to be a row vector
x = x(:)';
% Set up some variables
nparams = length(x);
samples = zeros(opt.nsamples,nparams);
if nargout >= 2
save_energies = 1;
energies = zeros(opt.nsamples,1);
else
save_energies = 0;
end
if nargout >= 3
save_diagnostics = 1;
else
save_diagnostics = 0;
end
if nparams == 1
multivariate = 0;
if strcmp(opt.method,'multi')
opt.method = 'stepping';
end
end
if nparams > 1
multivariate = 1;
end
rej = 0;
rej_step = 0;
rej_old = 0;
x_0 = x;
umodal = opt.unimodal;
nomit = opt.nomit;
nsamples = opt.nsamples;
display_info = opt.display;
method = opt.method;
overrelaxation = opt.overrelaxation;
overrelaxation_info = ~isempty(find(overrelaxation));
w = opt.wsize;
maxiter = opt.maxiter;
m = opt.mlimit;
p = opt.plimit;
a = opt.alimit;
mmin = opt.mmlimits(1,:);
mmax = opt.mmlimits(2,:);
if multivariate
if length(w) == 1
w = w.*ones(1,nparams);
end
if length(m) == 1
m = m.*ones(1,nparams);
end
if length(p) == 1
p = p.*ones(1,nparams);
end
if length(overrelaxation) == 1
overrelaxation = overrelaxation.*ones(1,nparams);
end
if length(a) == 1
a = a.*ones(1,nparams);
end
if length(mmin) == 1
mmin = mmin.*ones(1,nparams);
end
if length(mmax) == 1
mmax = mmax.*ones(1,nparams);
end
end
if overrelaxation_info
nparams_or = length(find(overrelaxation));
end
if ~isempty(find(w<=0))
error('Parameter ''wsize'' must be positive.');
end
if (strcmp(method,'stepping') || strcmp(method,'doubling')) && isempty(find(mmax-mmin>2*w))
error('Check parameter ''mmlimits''. The interval is too small in comparison to parameter ''wsize''.');
end
if strcmp(method,'stepping') && ~isempty(find(m<1))
error('Parameter ''mlimit'' must be >0.');
end
if overrelaxation_info && ~isempty(find(a<1))
error('Parameter ''alimit'' must be >0.');
end
if strcmp(method,'doubling') && ~isempty(find(p<1))
error('Parameter ''plimit'' must be >0.');
end
ind_umodal = 0;
j = 0;
y_new = -f(x_0,varargin{:});
% The main loop of slice sampling
for i = 1-nomit:1:nsamples
switch method
% Slice covariance matching from Thompson & Neal (2010)
case 'covmatch'
theta = 1;
np = length(x_0);
M = y_new;
ee = exprnd(1);
ytilde0 = M-ee;
x_0 = x_0';
sigma = opt.sigma;
R = 1./sigma*eye(np);
F = R;
cbarstar = 0;
while 1
z = mvnrnd(zeros(1,np), eye(np))';
c = x_0 + F\z;
cbarstar = cbarstar + F'*(F*c);
cbar = R\(R'\cbarstar);
z = mvnrnd(zeros(1,np), eye(np))';
x_prop = cbar + R\z;
y_new = -f(x_prop',varargin{:});
if y_new > ytilde0
% Accept proposal
break;
end
G = -gradf(x_prop', varargin{:})';
gr = G/norm(G);
delta = norm(x_prop - c);
u = x_prop + delta*gr;
lu = -f(u', varargin{:});
kappa = -2/delta^2*(lu-y_new-delta*norm(G));
lxu = 0.5*norm(G)^2/kappa + y_new;
M = max(M, lxu);
sigma2 = 2/3*(M-ytilde0)/kappa;
alpha = max(0, 1/sigma2 - (1+theta)*gr'*(R'*(R*gr)));
F = chol(theta*(R'*R) + alpha*(gr*gr'));
R = chol((1+theta)*(R'*R) + alpha*(gr*gr'));
end
% Save sampling step and set up the new 'old' sample
x_0 = x_prop;
if i > 0
samples(i,:) = x_prop;
end
% Save energies
if save_energies && i > 0
energies(i) = -y_new;
end
% Shrinking-Rank method from Thompson & Neal (2010)
case 'shrnk'
ytr = -log(rand) - y_new;
k = 0;
sigma(1) = opt.sigma;
J = [];
np = length(x_0);
while 1
k = k+1;
c(k,:) = P(J, mvnrnd(x_0, sigma(k).^2*eye(np)));
sigma2 = 1./(sum(1./sigma.^2));
mu = sigma2*(sum(bsxfun(@times, 1./sigma'.^2, bsxfun(@minus, c,x_0)),1));
x_prop = x_0 + P(J, mvnrnd(mu, sqrt(sigma2)*eye(np)));
y_new = f(x_prop, varargin{:});
if y_new < ytr
% Accept proposal
break;
end
gradient = gradf(x_prop, varargin{:});
gstar = P(J, gradient);
if size(J,2) < size(x,2)-1 && gstar*gradient'/(norm(gstar)*norm(gradient)) > cos(pi/3)
J = [J gstar'/norm(gstar)];
sigma(k+1) = sigma(k);
else
sigma(k+1) = 0.95*sigma(k);
end
end
% Save sampling step and set up the new 'old' sample
x_0 = x_prop;
if i > 0
samples(i,:) = x_prop;
end
% Save energies
if save_energies && i > 0
energies(i) = y_new;
end
% Multivariate rectangle sampling step
case 'multi'
x_new = x_0;
y = y_new + log(rand(1));
if isinf(y)
x_new = mmin + (mmax-mmin).*rand(1,length(x_new));
y_new = -f(x_new,varargin{:});
else
L = max(x_0 - w.*rand(1,length(x_0)),mmin);
R = min(L + w,mmax);
x_new = L + rand(1,length(x_new)).*(R-L);
y_new = -f(x_new,varargin{:});
while y >= y_new
L(x_new < x_0) = x_new(x_new < x_0);
R(x_new >= x_0) = x_new(x_new >= x_0);
x_new = L + rand(1,length(x_new)).*(R-L);
y_new = -f(x_new,varargin{:});
end % while
end % isinf(y)
% Save sampling step and set up the new 'old' sample
x_0 = x_new;
if i > 0
samples(i,:) = x_new;
end
% Save energies
if save_energies && i > 0
energies(i) = -y_new;
end
% Display energy information
if display_info == 1
fprintf('Finished multi-step %4d Energy: %g\n',i,-y_new);
end
case 'multimm'
x_new = x_0;
y = y_new + log(rand(1));
if isinf(y)
x_new = mmin + (mmax-mmin).*rand(1,length(x_new));
y_new = -f(x_new,varargin{:});
else
L = mmin;
R = mmax;
x_new = L + rand(1,length(x_new)).*(R-L);
y_new = -f(x_new,varargin{:});
while y >= y_new
L(x_new < x_0) = x_new(x_new < x_0);
R(x_new >= x_0) = x_new(x_new >= x_0);
x_new = L + rand(1,length(x_new)).*(R-L);
y_new = -f(x_new,varargin{:});
end % while
end % isinf(y)
% Save sampling step and set up the new 'old' sample
x_0 = x_new;
if i > 0
samples(i,:) = x_new;
end
% Save energies
if save_energies && i > 0
energies(i) = -y_new;
end
% Display energy information
if display_info == 1
fprintf('Finished multimm-step %4d Energy: %g\n',i,-y_new);
end
% Other sampling steps
otherwise
ind_umodal = ind_umodal + 1;
x_new = x_0;
for j = 1:nparams
y = y_new + log(rand(1));
if isinf(y)
x_new(j) = mmin(j) + (mmax(j)-mmin(j)).*rand;
y_new = -f(x_new,varargin{:});
else
L = x_new;
R = x_new;
switch method
case 'stepping'
[L, R] = stepping_out(f,y,x_new,L,R,w,m,j,mmin,mmax,display_info,umodal,varargin{:});
case 'doubling'
[L, R] = doubling(f,y,x_new,L,R,w,p,j,mmin,mmax,display_info,umodal,varargin{:});
case 'minmax'
L(j) = mmin(j);
R(j) = mmax(j);
end % switch
if overrelaxation(j)
[x_new, y_new, rej_step, rej_old] = bisection(f,y,x_new,L,R,w,a,rej_step,j,umodal,varargin{:});
else
[x_new, y_new] = shrinkage(f,y,x_new,w,L,R,method,j,maxiter,umodal,varargin{:});
end % if overrelaxation
if umodal % adjust the slice if the distribution is known to be unimodal
w(j) = (w(j)*ind_umodal + abs(x_0(j)-x_new(j)))/(ind_umodal+1);
end % if umodal
end % if isinf(y)
end % j:nparams
if overrelaxation_info & multivariate
rej = rej + rej_step/nparams_or;
elseif overrelaxation_info & ~multivariate
rej = rej + rej_step;
end
% Save sampling step and set up the new 'old' sample
x_0 = x_new;
if i > 0
samples(i,:) = x_new;
end
% Save energies
if save_energies && i > 0
energies(i) = -y_new;
end
% Display information and keep track of rejections (overrelaxation)
if display_info == 1
if ~multivariate && overrelaxation_info && rej_old
fprintf(' Sample %4d rejected (overrelaxation).\n',i);
rej_old = 0;
rej_step = 0;
elseif multivariate && overrelaxation_info
fprintf('Finished step %4d (RR: %1.1f, %d/%d) Energy: %g\n',i,100*rej_step/nparams_or,nparams_or,nparams,-y_new);
rej_step = 0;
rej_old = 0;
else
fprintf('Finished step %4d Energy: %g\n',i,-y_new);
end
else
rej_old = 0;
rej_step = 0;
end
end % switch
end % i:nsamples
% Save diagnostics
if save_diagnostics
diagn.opt = opt;
end
% Display rejection information after slice sampling is complete (overrelaxation)
if overrelaxation_info && nparams == 1 && display_info == 1
fprintf('\nRejected samples due to overrelaxation (percentage): %1.1f\n',100*rej/nsamples);
elseif overrelaxation_info && nparams > 1 && display_info == 1
fprintf('\nAverage rejections per step due to overrelaxation (percentage): %1.1f\n',100*rej/nsamples);
end
% Display the elapsed time
%if display_info == 1
% if (cputime-t)/60 < 4
% fprintf('\nElapsed cputime (seconds): %1.1f\n\n',cputime-t);
% else
% fprintf('\nElapsed cputime (minutes): %1.1f\n\n',(cputime-t)/60);
% end
%end
%disp(w);
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
function [x_new, y_new, rej, rej_old] = bisection(f,y,x_0,L,R,w,a,rej,j,um,varargin);
%function [x_new, y_new, rej, rej_old] = bisection(f,y,x_0,L,R,w,a,rej,j,um,varargin);
%
% Bisection for overrelaxation (stepping-out needs to be used)
x_new = x_0;
M = (L + R) / 2;
l = L;
r = R;
q = w(j);
s = a(j);
if (R(j) - L(j)) < 1.1*w(j)
while 1
M(j) = (l(j) + r(j))/2;
if s == 0 || y < -f(M,varargin{:})
break;
end
if x_0(j) > M(j)
l(j) = M(j);
else
r(j) = M(j);
end
s = s - 1;
q = q / 2;
end % while
end % if
ll = l;
rr = r;
while s > 0
s = s - 1;
q = q / 2;
tmp_ll = ll;
tmp_ll(j) = tmp_ll(j) + q;
tmp_rr = rr;
tmp_rr(j) = tmp_rr(j) - q;
if y >= -f((tmp_ll),varargin{:})
ll(j) = ll(j) + q;
end
if y >= -f((tmp_rr),varargin{:})
rr(j) = rr(j) - q;
end
end % while
x_new(j) = ll(j) + rr(j) - x_0(j);
y_new = -f(x_new,varargin{:});
if x_new(j) < l(j) || x_new(j) > r(j) || y >= y_new
x_new(j) = x_0(j);
rej = rej + 1;
rej_old = 1;
y_new = y;
else
rej_old = 0;
end
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
function [x_new, y_new] = shrinkage(f,y,x_0,w,L,R,method,j,maxiter,um,varargin);
%function [x_new, y_new] = shrinkage(f,y,x_0,w,L,R,method,j,maxiter,um,varargin);
%
% Shrinkage with acceptance-check for doubling scheme
% - acceptance-check is skipped if the distribution is defined
% to be unimodal by the user
iter = 0;
x_new = x_0;
l = L(j);
r = R(j);
while 1
x_new(j) = l + (r-l).*rand;
if strcmp(method,'doubling')
y_new = -f(x_new,varargin{:});
if y < y_new && (um || accept(f,y,x_0,x_new,w,L,R,j,varargin{:}))
break;
end
else
y_new = -f(x_new,varargin{:});
if y < y_new
break;
break;
end
end % if strcmp
if x_new(j) < x_0(j)
l = x_new(j);
else
r = x_new(j);
end % if
iter = iter + 1;
if iter > maxiter
fprintf('Maximum number (%d) of iterations reached for parameter %d during shrinkage.\n',maxiter,j);
if strcmp(method,'minmax')
error('Check function F, decrease the interval ''mmlimits'' or increase the value of ''maxiter''.');
else
error('Check function F or increase the value of ''maxiter''.');
end
end
end % while
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
function [L,R] = stepping_out(f,y,x_0,L,R,w,m,j,mmin,mmax,di,um,varargin);
%function [L,R] = stepping_out(f,y,x_0,L,R,w,m,j,mmin,mmax,di,um,varargin);
%
% Stepping-out procedure
if um % if the user defines the distribution to be unimodal
L(j) = x_0(j) - w(j).*rand;
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
end
R(j) = L(j) + w(j);
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
end
while y < -f(L,varargin{:})
L(j) = L(j) - w(j);
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
break;
end
end
while y < -f(R,varargin{:})
R(j) = R(j) + w(j);
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
break;
end
end
else % if the distribution is not defined to be unimodal
L(j) = x_0(j) - w(j).*rand;
J = floor(m(j).*rand);
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
J = 0;
end
R(j) = L(j) + w(j);
K = (m(j)-1) - J;
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
K = 0;
end
while J > 0 && y < -f(L,varargin{:})
L(j) = L(j) - w(j);
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
break;
end
J = J - 1;
end
while K > 0 && y < -f(R,varargin{:})
R(j) = R(j) + w(j);
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
break;
end
K = K - 1;
end
end
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
function [L,R] = doubling(f,y,x_0,L,R,w,p,j,mmin,mmax,di,um,varargin);
%function [L,R] = doubling(f,y,x_0,L,R,w,p,j,mmin,mmax,di,um,varargin);
%
% Doubling scheme for slice sampling
if um % if the user defines the distribution to be unimodal
L(j) = x_0(j) - w(j).*rand;
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
Ao = 1;
else
Ao = 0;
end
R(j) = L(j) + w(j);
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
Bo = 1;
else
Bo = 0;
end
AL = -f(L,varargin{:});
AR = -f(R,varargin{:});
while (Ao == 0 && y < AL) || (Bo == 0 && y < AR)
if rand < 1/2
L(j) = L(j) - (R(j)-L(j));
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
Ao = 1;
else
Ao = 0;
end
AL = -f(L,varargin{:});
else
R(j) = R(j) + (R(j)-L(j));
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
Bo = 1;
else
Bo = 0;
end
AR = -f(R,varargin{:});
end
end % while
else % if the distribution is not defined to be unimodal
L(j) = x_0(j) - w(j).*rand;
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
end
R(j) = L(j) + w(j);
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
end
K = p(j);
AL = -f(L,varargin{:});
AR = -f(R,varargin{:});
while K > 0 && (y < AL || y < AR)
if rand < 1/2
L(j) = L(j) - (R(j)-L(j));
if L(j) < mmin(j)
L(j) = mmin(j);
if di
fprintf('Underflow! (L:%d)\n',j);
end
end
AL = -f(L,varargin{:});
else
R(j) = R(j) + (R(j)-L(j));
if R(j) > mmax(j)
R(j) = mmax(j);
if di
fprintf('Overflow! (R:%d)\n',j);
end
end
AR = -f(R,varargin{:});
end
K = K - 1;
end % while
end
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%
function out = accept(f,y,x_0,x_new,w,L,R,j,varargin)
%function out = accept(f,y,x_0,x_new,w,L,R,j,varargin)
%
% Acceptance check for doubling scheme
out = [];
l = L;
r = R;
d = 0;
while r(j)-l(j) > 1.1*w(j)
m = (l(j)+r(j))/2;
if (x_0(j) < m && x_new(j) >= m) || (x_0(j) >= m && x_new(j) < m)
d = 1;
end
if x_new(j) < m
r(j) = m;
else
l(j) = m;
end
if d && y >= -f(l,varargin{:}) && y >= -f(r,varargin{:})
out = 0;
break;
end
end % while
if isempty(out)
out = 1;
end;
function p = P(J,v)
if size(J,2) ~= 0
p = v' - J*(J'*v');
p = p';
else
p = v;
end
|
github
|
lcnbeapp/beapp-master
|
metrop2.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/mc/metrop2.m
| 4,703 |
utf_8
|
08184b230c18c07d461096023d9c021a
|
function [samples, energies, diagn] = metrop2(f, x, opt, gradf, varargin)
%METROP2 Markov Chain Monte Carlo sampling with Metropolis algorithm.
%
% Description
% SAMPLES = METROP(F, X, OPT) uses the Metropolis algorithm to
% sample from the distribution P ~ EXP(-F), where F is the first
% argument to METROP. The Markov chain starts at the point X and each
% candidate state is picked from a Gaussian proposal distribution and
% accepted or rejected according to the Metropolis criterion.
%
% SAMPLES = METROP(F, X, OPT, [], P1, P2, ...) allows additional
% arguments to be passed to F(). The fourth argument is ignored, but
% is included for compatibility with HMC and the optimizers.
%
% [SAMPLES, ENERGIES, DIAGN] = METROP(F, X, OPT) also returns a log
% of the energy values (i.e. negative log probabilities) for the
% samples in ENERGIES and DIAGN, a structure containing diagnostic
% information (position and acceptance threshold) for each step of the
% chain in DIAGN.POS and DIAGN.ACC respectively. All candidate states
% (including rejected ones) are stored in DIAGN.POS.
%
% S = METROP('STATE') returns a state structure that contains the state
% of the two random number generators RAND and RANDN. These are
% contained in fields randstate, randnstate.
%
% METROP('STATE', S) resets the state to S. If S is an integer, then
% it is passed to RAND and RANDN. If S is a structure returned by
% METROP('STATE') then it resets the generator to exactly the same
% state.
%
% See METROP2_OPT for the optional parameters in the OPTIONS
% structure.
%
% See also
% HMC, METROP2_OPT
%
% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
% Copyright (c) 1998-2000 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
% Global variable to store state of momentum variables: set by set_state
% Used to initialize variable if set
global HMC_MOM
if nargin <= 2
if ~strcmp(f, 'state')
error('Unknown argument to metrop2');
end
switch nargin
case 1
samples = get_state(f);
return;
case 2
set_state(f, x);
return;
end
end
% Set empty omptions to default values
opt=metrop2_opt(opt);
% Refrence to structures is much slower, so...
opt_nsamples=opt.nsamples;
opt_display =opt.display;
stddev = opt.stddev;
% Set up string for evaluating potential function.
%f = fcnchk(f, length(varargin));
nparams = length(x);
samples = zeros(opt_nsamples, nparams); % Matrix of returned samples.
if nargout >= 2
en_save = 1;
energies = zeros(opt_nsamples, 1);
else
en_save = 0;
end
if nargout >= 3
diagnostics = 1;
diagn_pos = zeros(opt_nsamples, nparams);
diagn_acc = zeros(opt_nsamples, 1);
else
diagnostics = 0;
end
% Main loop.
k = - opt.nomit + 1;
Eold = f(x, varargin{:}); % Evaluate starting energy.
nreject = 0; % Initialise count of rejected states.
while k <= opt_nsamples
xold = x;
% Sample a new point from the proposal distribution
x = xold + randn(1, nparams)*stddev;
% Now apply Metropolis algorithm.
Enew = f(x, varargin{:}); % Evaluate new energy.
a = exp(Eold - Enew); % Acceptance threshold.
if (diagnostics & k > 0)
diagn_pos(k,:) = x;
diagn_acc(k,:) = a;
end
if (opt_display > 1)
fprintf(1, 'New position is\n');
disp(x);
end
if a > rand(1) % Accept the new state.
Eold = Enew;
if (opt_display > 0)
fprintf(1, 'Finished step %4d Threshold: %g\n', k, a);
end
else % Reject the new state
if k > 0
nreject = nreject + 1;
end
x = xold; % Reset position
if (opt_display > 0)
fprintf(1, ' Sample rejected %4d. Threshold: %g\n', k, a);
end
end
if k > 0
samples(k,:) = x; % Store sample.
if en_save
energies(k) = Eold; % Store energy.
end
end
k = k + 1;
end
if (opt_display > 0)
fprintf(1, '\nFraction of samples rejected: %g\n', ...
nreject/(opt_nsamples));
end
if diagnostics
diagn.pos = diagn_pos;
diagn.acc = diagn_acc;
end
% Return complete state of the sampler.
function state = get_state(f)
state.randstate = rand('state');
state.randnstate = randn('state');
return
% Set state of sampler, either from full state, or with an integer
function set_state(f, x)
if isnumeric(x)
rand('state', x);
randn('state', x);
else
if ~isstruct(x)
error('Second argument to metrop must be number or state structure');
end
if (~isfield(x, 'randstate') | ~isfield(x, 'randnstate'))
error('Second argument to metrop must contain correct fields')
end
rand('state', x.randstate);
randn('state', x.randnstate);
end
return
|
github
|
lcnbeapp/beapp-master
|
gp_optim.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gp_optim.m
| 5,760 |
utf_8
|
853821530091611d1616a58b4951a2c7
|
function [gp, varargout] = gp_optim(gp, x, y, varargin)
%GP_OPTIM Optimize paramaters of a Gaussian process
%
% Description
% GP = GP_OPTIM(GP, X, Y, OPTIONS) optimises the parameters of a
% GP structure given matrix X of training inputs and vector
% Y of training targets.
%
% [GP, OUTPUT1, OUTPUT2, ...] = GP_OPTIM(GP, X, Y, OPTIONS)
% optionally returns outputs of the optimization function.
%
% OPTIONS is optional parameter-value pair
% z - optional observed quantity in triplet (x_i,y_i,z_i)
% Some likelihoods may use this. For example, in case of
% Poisson likelihood we have z_i=E_i, that is, expected
% value for ith case.
% optimf - function handle for an optimization function, which is
% assumed to have similar input and output arguments
% as usual fmin*-functions. Default is @fminscg.
% opt - options structure for the minimization function.
% Use optimset to set these options. By default options
% 'GradObj' is 'on', 'LargeScale' is 'off'.
% loss - 'e' to minimize the marginal posterior energy (default) or
% 'loo' to minimize the negative leave-one-out lpd
% 'kfcv' to minimize the negative k-fold-cv lpd
% 'waic' to minimize the WAIC loss
% only 'e' and 'loo' with Gaussian likelihood have gradients
% k - number of folds in kfcv
%
% See also
% GP_SET, GP_E, GP_G, GP_EG, FMINSCG, FMINLBFGS, OPTIMSET, DEMO_REGRESSION*
%
% Copyright (c) 2010-2012 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'GP_OPTIM';
ip.addRequired('gp',@isstruct);
ip.addRequired('x', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))
ip.addRequired('y', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))
ip.addParamValue('z', [], @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('optimf', @fminscg, @(x) isa(x,'function_handle'))
ip.addParamValue('opt', [], @isstruct)
ip.addParamValue('loss', 'e', @(x) ismember(lower(x),{'e', 'loo', 'kfcv', 'waic' 'waic' 'waicv' 'waicg'}))
ip.addParamValue('k', 10, @(x) isreal(x) && isscalar(x) && isfinite(x) && x>0)
ip.parse(gp, x, y, varargin{:});
z=ip.Results.z;
optimf=ip.Results.optimf;
opt=ip.Results.opt;
loss=ip.Results.loss;
k=ip.Results.k;
if isempty(gp_pak(gp))
% nothing to optimize
return
end
switch lower(loss)
case 'e'
fh_eg=@(ww) gp_eg(ww, gp, x, y, 'z', z);
optdefault=struct('GradObj','on','LargeScale','off');
case 'loo'
fh_eg=@(ww) gp_looeg(ww, gp, x, y, 'z', z);
if isfield(gp.lik.fh,'trcov') || isequal(gp.latent_method, 'EP')
optdefault=struct('GradObj','on','LargeScale','off');
else
% Laplace-LOO does not have yet gradients
optdefault=struct('Algorithm','interior-point');
if ismember('optimf',ip.UsingDefaults)
optimf=@fmincon;
end
end
case 'kfcv'
% kfcv does not have yet gradients
fh_eg=@(ww) gp_kfcve(ww, gp, x, y, 'z', z, 'k', k);
optdefault=struct('Algorithm','interior-point');
if ismember('optimf',ip.UsingDefaults)
optimf=@fmincon;
end
case {'waic' 'waicv'}
% waic does not have yet gradients
fh_eg=@(ww) -gp_waic(gp_unpak(gp,ww), x, y, 'z', z);
optdefault=struct('Algorithm','interior-point');
if ismember('optimf',ip.UsingDefaults)
optimf=@fmincon;
end
case 'waicg'
% waic does not have yet gradients
fh_eg=@(ww) -gp_waic(gp_unpak(gp,ww), x, y, 'z', z, 'method', 'G');
optdefault=struct('Algorithm','interior-point');
if ismember('optimf',ip.UsingDefaults)
optimf=@fmincon;
end
end
opt=setOpt(optdefault,opt);
w=gp_pak(gp);
if isequal(lower(loss),'e') || (isequal(lower(loss),'loo')) && (isfield(gp.lik.fh,'trcov') || isequal(gp.latent_method, 'EP'))
switch nargout
case 6
[w,fval,exitflag,output,grad,hessian] = optimf(fh_eg, w, opt);
varargout={fval,exitflag,output,grad,hessian};
case 5
[w,fval,exitflag,output,grad] = optimf(fh_eg, w, opt);
varargout={fval,exitflag,output,grad};
case 4
[w,fval,exitflag,output] = optimf(fh_eg, w, opt);
varargout={fval,exitflag,output};
case 3
[w,fval,exitflag] = optimf(fh_eg, w, opt);
varargout={fval,exitflag};
case 2
[w,fval] = optimf(fh_eg, w, opt);
varargout={fval};
case 1
w = optimf(fh_eg, w, opt);
varargout={};
end
else
lb=repmat(-8,size(w));
ub=repmat(10,size(w));
switch nargout
case 6
[w,fval,exitflag,output,grad,hessian] = optimf(fh_eg, w, [], [], [], [], lb, ub, [], opt);
varargout={fval,exitflag,output,grad,hessian};
case 5
[w,fval,exitflag,output,grad] = optimf(fh_eg, w, [], [], [], [], lb, ub, [], opt);
varargout={fval,exitflag,output,grad};
case 4
[w,fval,exitflag,output] = optimf(fh_eg, w, [], [], [], [], lb, ub, [], opt);
varargout={fval,exitflag,output};
case 3
[w,fval,exitflag] = optimf(fh_eg, w, [], [], [], [], lb, ub, [], opt);
varargout={fval,exitflag};
case 2
[w,fval] = optimf(fh_eg, w, [], [], [], [], lb, ub, [], opt);
varargout={fval};
case 1
w = optimf(fh_eg, w, [], [], [], [], lb, ub, [], opt);
varargout={};
end
end
gp=gp_unpak(gp,w);
end
function opt=setOpt(optdefault, opt)
% Set default options
opttmp=optimset(optdefault,opt);
% Set some additional options for @fminscg
if isfield(opt,'lambda')
opttmp.lambda=opt.lambda;
end
if isfield(opt,'lambdalim')
opttmp.lambdalim=opt.lambdalim;
end
opt=opttmp;
end
|
github
|
lcnbeapp/beapp-master
|
gp_mc.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gp_mc.m
| 22,688 |
utf_8
|
42a2a7d17e9adb7a658a7b89b4390d19
|
function [record, gp, opt] = gp_mc(gp, x, y, varargin)
%GP_MC Markov chain Monte Carlo sampling for Gaussian process models
%
% Description
% [RECORD, GP, OPT] = GP_MC(GP, X, Y, OPTIONS) Takes the Gaussian
% process structure GP, inputs X and outputs Y. Returns record
% structure RECORD with parameter samples, the Gaussian process GP
% at current state of the sampler and an options structure OPT
% containing all the options in OPTIONS and information of the
% current state of the sampler (e.g. the random number seed)
%
% OPTIONS is optional parameter-value pair
% z - Optional observed quantity in triplet (x_i,y_i,z_i).
% Some likelihoods may use this. For example, in
% case of Poisson likelihood we have z_i=E_i,
% that is, expected value for ith case.
% repeat - Number of iterations between successive sample saves
% (that is every repeat'th sample is stored). Default 1.
% nsamples - Number of samples to be returned
% display - Defines if sampling information is printed, 1=yes, 0=no.
% Default 1. If >1, only every nth iteration is displayed.
% hmc_opt - Options structure for HMC sampler (see hmc2_opt).
% When this is given the covariance function and
% likelihood parameters are sampled with hmc2
% (respecting infer_params option). If optional
% argument hmc_opt.nuts = 1, No-U-Turn HMC is used
% instead. With NUTS, only mandatory parameter is
% number of adaptation steps hmc_opt.nadapt of step-size
% parameter. For additional info, see hmc_nuts.
% sls_opt - Options structure for slice sampler (see sls_opt).
% When this is given the covariance function and
% likelihood parameters are sampled with sls
% (respecting infer_params option).
% latent_opt - Options structure for latent variable sampler. When this
% is given the latent variables are sampled with
% function stored in the gp.fh.mc field in the
% GP structure. See gp_set.
% lik_hmc_opt - Options structure for HMC sampler (see hmc2_opt).
% When this is given the parameters of the
% likelihood are sampled with hmc2. This can be
% used to have different hmc options for
% covariance and likelihood parameters.
% lik_sls_opt - Options structure for slice sampler (see sls_opt).
% When this is given the parameters of the
% likelihood are sampled with hmc2. This can be
% used to have different hmc options for
% covariance and likelihood parameters.
% lik_gibbs_opt
% - Options structure for Gibbs sampler. Some likelihood
% function parameters need to be sampled with
% Gibbs sampling (such as lik_smt). The Gibbs
% sampler is implemented in the respective lik_*
% file.
% persistence_reset
% - Reset the momentum parameter in HMC sampler after
% every repeat'th iteration, default 0.
% record - An old record structure from where the sampling is
% continued
%
% The GP_MC function makes nsamples*repeat iterations and stores
% every repeat'th sample. At each iteration it samples first the
% latent variables (if 'latent_opt' option is given), then the
% covariance and likelihood parameters (if 'hmc_opt', 'sls_opt'
% or 'gibbs_opt' option is given and respecting infer_params
% option), and for last the the likelihood parameters (if
% 'lik_hmc_opt' or 'lik_sls_opt' option is given).
%
% See also:
% DEMO_CLASSIFIC1, DEMO_ROBUSTREGRESSION
% Copyright (c) 1998-2000,2010 Aki Vehtari
% Copyright (c) 2007-2010 Jarno Vanhatalo
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
%#function gp_e gp_g
ip=inputParser;
ip.FunctionName = 'GP_MC';
ip.addRequired('gp',@isstruct);
ip.addRequired('x', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))
ip.addRequired('y', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))
ip.addParamValue('z', [], @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('nsamples', 1, @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('repeat', 1, @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('display', 1, @(x) isreal(x) && all(isfinite(x(:))))
ip.addParamValue('record',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('hmc_opt', [], @(x) isstruct(x) || isempty(x));
ip.addParamValue('sls_opt', [], @(x) isstruct(x) || isempty(x));
ip.addParamValue('ssls_opt', [], @(x) isstruct(x) || isempty(x));
ip.addParamValue('latent_opt', [], @(x) isstruct(x) || isempty(x));
ip.addParamValue('lik_hmc_opt', [], @(x) isstruct(x) || isempty(x));
ip.addParamValue('lik_sls_opt', [], @(x) isstruct(x) || isempty(x));
ip.addParamValue('lik_gibbs_opt', [], @(x) isstruct(x) || isempty(x));
ip.addParamValue('persistence_reset', 0, @(x) ~isempty(x) && isreal(x));
ip.parse(gp, x, y, varargin{:});
z=ip.Results.z;
opt.nsamples=ip.Results.nsamples;
opt.repeat=ip.Results.repeat;
opt.display=ip.Results.display;
record=ip.Results.record;
opt.hmc_opt = ip.Results.hmc_opt;
opt.ssls_opt = ip.Results.ssls_opt;
opt.sls_opt = ip.Results.sls_opt;
opt.latent_opt = ip.Results.latent_opt;
opt.lik_hmc_opt = ip.Results.lik_hmc_opt;
opt.lik_sls_opt = ip.Results.lik_sls_opt;
opt.lik_gibbs_opt = ip.Results.lik_gibbs_opt;
opt.persistence_reset = ip.Results.persistence_reset;
% if isfield(gp.lik, 'nondiagW');
% switch gp.lik.type
% case {'LGP', 'LGPC'}
% error('gp2_mc not implemented for this type of likelihood');
% case {'Softmax', 'Multinom'}
% [n,nout] = size(y);
% otherwise
% n = size(y,1);
% nout=length(gp.comp_cf);
% end
% end
% Default samplers and some checking
if isfield(gp,'latent_method') && isequal(gp.latent_method,'MCMC')
% If no options structures, use SSLS as a default sampler for hyperparameters
% and ESLS for latent values
if isempty(opt.hmc_opt) && isempty(opt.ssls_opt) && isempty(opt.sls_opt) && ...
isempty(opt.latent_opt) && isempty(opt.lik_hmc_opt) && isempty(opt.lik_sls_opt) && ...
isempty(opt.lik_gibbs_opt)
opt.ssls_opt.latent_opt.repeat = 20;
if opt.display>0
fprintf(' Using SSLS sampler for hyperparameters and ESLS for latent values\n')
end
end
% Set latent values
if (~isfield(gp,'latentValues') || isempty(gp.latentValues)) ...
&& ~isfield(gp.lik.fh,'trcov')
if (~isfield(gp.lik, 'nondiagW') || ismember(gp.lik.type, {'Softmax', 'Multinom', ...
'LGP', 'LGPC'}))
gp.latentValues=zeros(size(y));
else
if ~isfield(gp, 'comp_cf') || isempty(gp.comp_cf)
error('Define multiple covariance functions for latent processes using gp.comp_cf (see gp_set)');
end
if isfield(gp.lik,'xtime')
ntime = size(gp.lik.xtime,1);
gp.latentValues=zeros(size(y,1)+ntime,1);
else
gp.latentValues=zeros(size(y,1)*length(gp.comp_cf),1);
end
end
end
else
% latent method is not MCMC
% If no options structures, use SLS as a default sampler for parameters
if ~isempty(opt.ssls_opt)
warning('Latent method is not MCMC. ssls_opt ignored')
opt.ssls_opt=[];
end
if ~isempty(opt.latent_opt)
warning('Latent method is not MCMC. latent_opt ignored')
opt.latent_opt=[];
end
if isempty(opt.hmc_opt) && isempty(opt.sls_opt) && ...
isempty(opt.lik_hmc_opt) && isempty(opt.lik_sls_opt) && ...
isempty(opt.lik_gibbs_opt)
opt.sls_opt.nomit = 0;
opt.sls_opt.display = 0;
opt.sls_opt.method = 'minmax';
opt.sls_opt.wsize = 10;
opt.sls_opt.plimit = 5;
opt.sls_opt.unimodal = 0;
opt.sls_opt.mmlimits = [-10; 10];
if opt.display>0
if isfield(gp,'latent_method')
fprintf(' Using SLS sampler for hyperparameters and %s for latent values\n',gp.latent_method)
else
fprintf(' Using SLS sampler for hyperparameters\n')
end
end
end
end
% Initialize record
if isempty(record)
% No old record
record=recappend();
else
ri=size(record.etr,1);
end
% Set the states of samplers
if ~isempty(opt.latent_opt)
f=gp.latentValues;
if isfield(opt.latent_opt, 'rstate')
if ~isempty(opt.latent_opt.rstate)
latent_rstate = opt.latent_opt.rstate;
else
hmc2('state', sum(100*clock))
latent_rstate=hmc2('state');
end
else
hmc2('state', sum(100*clock))
latent_rstate=hmc2('state');
end
else
f=y;
end
if ~isempty(opt.hmc_opt)
if isfield(opt.hmc_opt, 'nuts') && opt.hmc_opt.nuts
% Number of step-size adapting stept in hmc_nuts
if ~isfield(opt.hmc_opt, 'nadapt')
opt.hmc_opt.nadapt = 20;
end
end
if isfield(opt.hmc_opt, 'rstate')
if ~isempty(opt.hmc_opt.rstate)
hmc_rstate = opt.hmc_opt.rstate;
else
hmc2('state', sum(100*clock))
hmc_rstate=hmc2('state');
end
else
hmc2('state', sum(100*clock))
hmc_rstate=hmc2('state');
end
end
if ~isempty(opt.ssls_opt)
f=gp.latentValues;
end
if ~isempty(opt.lik_hmc_opt)
if isfield(opt.lik_hmc_opt, 'rstate')
if ~isempty(opt.lik_hmc_opt.rstate)
lik_hmc_rstate = opt.lik_hmc_opt.rstate;
else
hmc2('state', sum(100*clock))
lik_hmc_rstate=hmc2('state');
end
else
hmc2('state', sum(100*clock))
lik_hmc_rstate=hmc2('state');
end
end
% Print labels for sampling information
if opt.display
fprintf(' cycle etr ');
if ~isempty(opt.hmc_opt)
fprintf('hrej ') % rejection rate of latent value sampling
end
if ~isempty(opt.sls_opt)
fprintf('slsrej ');
end
if ~isempty(opt.lik_hmc_opt)
fprintf('likel.rej ');
end
if ~isempty(opt.latent_opt)
if isequal(gp.fh.mc, @esls)
fprintf('lslsn') % No rejection rate for esls, print first accepted value
else
fprintf('lrej ') % rejection rate of latent value sampling
end
if isfield(opt.latent_opt, 'sample_latent_scale')
fprintf(' lvScale ')
end
end
fprintf('\n');
end
% --- Start sampling ------------
for k=1:opt.nsamples
if opt.persistence_reset
if ~isempty(opt.hmc_opt)
hmc_rstate.mom = [];
end
if ~isempty(opt.latent_opt)
if isfield(opt.latent_opt, 'rstate')
opt.latent_opt.rstate.mom = [];
end
end
if ~isempty(opt.lik_hmc_opt)
lik_hmc_rstate.mom = [];
end
end
hmcrej = 0;
lik_hmcrej = 0;
lrej=0;
indrej=0;
for l=1:opt.repeat
% --- Sample latent Values -------------
if ~isempty(opt.latent_opt)
[f, energ, diagnl] = gp.fh.mc(f, opt.latent_opt, gp, x, y, z);
gp.latentValues = f(:);
f = f(:);
if ~isequal(gp.fh.mc, @esls)
lrej=lrej+diagnl.rej/opt.repeat;
else
lrej = diagnl.rej;
end
if isfield(diagnl, 'opt')
opt.latent_opt = diagnl.opt;
end
end
% --- Sample parameters with HMC -------------
if ~isempty(opt.hmc_opt)
if isfield(opt.hmc_opt, 'nuts') && opt.hmc_opt.nuts
% Use NUTS hmc
w = gp_pak(gp);
lp = @(w) deal(-gpmc_e(w,gp,x,y,f,z), -gpmc_g(w,gp,x,y,f,z));
if k<opt.hmc_opt.nadapt
% Take one sample while adjusting step length
opt.hmc_opt.Madapt = 1;
opt.hmc_opt.M = 0;
else
% Take one sample without adjusting step length
opt.hmc_opt.Madapt = 0;
opt.hmc_opt.M = 1;
end
[w, energies, diagnh] = hmc_nuts(lp, w, opt.hmc_opt);
opt.hmc_opt = diagnh.opt;
hmcrej=hmcrej+diagnh.rej/opt.repeat;
w=w(end,:);
gp = gp_unpak(gp, w);
else
if isfield(opt.hmc_opt,'infer_params')
infer_params = gp.infer_params;
gp.infer_params = opt.hmc_opt.infer_params;
end
w = gp_pak(gp);
% Set the state
hmc2('state',hmc_rstate);
% sample (y is passed as z, to allow sampling of likelihood parameters)
[w, energies, diagnh] = hmc2(@gpmc_e, w, opt.hmc_opt, @gpmc_g, gp, x, y, f, z);
% Save the current state
hmc_rstate=hmc2('state');
hmcrej=hmcrej+diagnh.rej/opt.repeat;
if isfield(diagnh, 'opt')
opt.hmc_opt = diagnh.opt;
end
opt.hmc_opt.rstate = hmc_rstate;
w=w(end,:);
gp = gp_unpak(gp, w);
if isfield(opt.hmc_opt,'infer_params')
gp.infer_params = infer_params;
end
end
end
% --- Sample parameters with SLS -------------
if ~isempty(opt.sls_opt)
if isfield(opt.sls_opt,'infer_params')
infer_params = gp.infer_params;
gp.infer_params = opt.sls_opt.infer_params;
end
w = gp_pak(gp);
[w, energies, diagns] = sls(@gpmc_e, w, opt.sls_opt, @gpmc_g, gp, x, y, f, z);
if isfield(diagns, 'opt')
opt.sls_opt = diagns.opt;
end
w=w(end,:);
gp = gp_unpak(gp, w);
if isfield(opt.sls_opt,'infer_params')
gp.infer_params = infer_params;
end
end
% Sample parameters & latent values with SSLS
if ~isempty(opt.ssls_opt)
if isfield(opt.ssls_opt,'infer_params')
infer_params = gp.infer_params;
gp.infer_params = opt.sls_opt.infer_params;
end
w = gp_pak(gp);
[w, f, diagns] = surrogate_sls(f, w, opt.ssls_opt, gp, x, y, z);
gp.latentValues = f;
if isfield(diagns, 'opt')
opt.ssls_opt = diagns.opt;
end
w=w(end,:);
gp = gp_unpak(gp, w);
if isfield(opt.sls_opt,'infer_params')
gp.infer_params = infer_params;
end
end
% --- Sample the likelihood parameters with Gibbs -------------
if ~isempty(strfind(gp.infer_params, 'likelihood')) && ...
isfield(gp.lik,'gibbs') && isequal(gp.lik.gibbs,'on')
[gp.lik, f] = gp.lik.fh.gibbs(gp, gp.lik, x, f);
end
% --- Sample the likelihood parameters with HMC -------------
if ~isempty(strfind(gp.infer_params, 'likelihood')) && ...
~isempty(opt.lik_hmc_opt)
infer_params = gp.infer_params;
gp.infer_params = 'likelihood';
w = gp_pak(gp);
fe = @(w, lik) (-lik.fh.ll(feval(lik.fh.unpak,lik,w),y,f,z)-lik.fh.lp(feval(lik.fh.unpak,lik,w)));
fg = @(w, lik) (-lik.fh.llg(feval(lik.fh.unpak,lik,w),y,f,'param',z)-lik.fh.lpg(feval(lik.fh.unpak,lik,w)));
% Set the state
hmc2('state',lik_hmc_rstate);
[w, energies, diagnh] = hmc2(fe, w, opt.lik_hmc_opt, fg, gp.lik);
% Save the current state
lik_hmc_rstate=hmc2('state');
lik_hmcrej=lik_hmcrej+diagnh.rej/opt.repeat;
if isfield(diagnh, 'opt')
opt.lik_hmc_opt = diagnh.opt;
end
opt.lik_hmc_opt.rstate = lik_hmc_rstate;
w=w(end,:);
gp = gp_unpak(gp, w);
gp.infer_params = infer_params;
end
% --- Sample the likelihood parameters with SLS -------------
if ~isempty(strfind(gp.infer_params, 'likelihood')) && ...
~isempty(opt.lik_sls_opt)
w = gp_pak(gp, 'likelihood');
fe = @(w, lik) (-lik.fh.ll(feval(lik.fh.unpak,lik,w),y,f,z) -lik.fh.lp(feval(lik.fh.unpak,lik,w)));
[w, energies, diagns] = sls(fe, w, opt.lik_sls_opt, [], gp.lik);
if isfield(diagns, 'opt')
opt.lik_sls_opt = diagns.opt;
end
w=w(end,:);
gp = gp_unpak(gp, w, 'likelihood');
end
end % ----- for l=1:opt.repeat ---------
% --- Set record -------
ri=ri+1;
record=recappend(record);
% Display some statistics THIS COULD BE DONE NICER ALSO...
if opt.display && rem(ri,opt.display)==0
fprintf(' %4d %.3f ',ri, record.etr(ri,1));
if ~isempty(opt.hmc_opt)
fprintf(' %.1e ',record.hmcrejects(ri));
end
if ~isempty(opt.sls_opt)
fprintf('sls ');
end
if ~isempty(opt.lik_hmc_opt)
fprintf(' %.1e ',record.lik_hmcrejects(ri));
end
if ~isempty(opt.latent_opt)
fprintf('%.1e',record.lrejects(ri));
fprintf(' ');
if isfield(diagnl, 'lvs')
fprintf('%.6f', diagnl.lvs);
end
end
fprintf('\n');
end
end
%------------------------
function record = recappend(record)
% RECAPPEND - Record append
% Description
% RECORD = RECAPPEND(RECORD, RI, GP, P, T, PP, TT, REJS, U) takes
% old record RECORD, record index RI, training data P, target
% data T, test data PP, test target TT and rejections
% REJS. RECAPPEND returns a structure RECORD containing following
% record fields of:
ncf = length(gp.cf);
if nargin == 0 % Initialize record structure
record.type = gp.type;
record.lik = gp.lik;
if isfield(gp,'latent_method')
record.latent_method = gp.latent_method;
end
if isfield(gp, 'comp_cf')
record.comp_cf = gp.comp_cf;
end
% If sparse model is used save the information about which
switch gp.type
case 'FIC'
record.X_u = [];
case {'PIC' 'PIC_BLOCK'}
record.X_u = [];
record.tr_index = gp.tr_index;
case 'CS+FIC'
record.X_u = [];
otherwise
% Do nothing
end
if isfield(gp,'latentValues')
record.latentValues = [];
record.lrejects = 0;
end
record.jitterSigma2 = [];
if isfield(gp, 'site_tau')
record.site_tau = [];
record.site_nu = [];
record.Ef = [];
record.Varf = [];
record.p1 = [];
end
% Initialize the records of covariance functions
for i=1:ncf
cf = gp.cf{i};
record.cf{i} = cf.fh.recappend([], gp.cf{i});
% Initialize metric structure
if isfield(cf,'metric')
record.cf{i}.metric = cf.metric.fh.recappend(cf.metric, 1);
end
end
% Initialize the record for likelihood
lik = gp.lik;
record.lik = lik.fh.recappend([], gp.lik);
% Set the meanfunctions into record if they exist
if isfield(gp, 'meanf')
record.meanf = gp.meanf;
end
if isfield(gp, 'comp_cf')
record.comp_cf = gp.comp_cf;
end
if isfield(gp,'p')
record.p = gp.p;
end
if isfield(gp,'latent_method')
record.latent_method = gp.latent_method;
end
if isfield(gp,'latent_opt')
record.latent_opt = gp.latent_opt;
end
if isfield(gp,'fh')
record.fh=gp.fh;
end
record.infer_params = gp.infer_params;
record.e = [];
record.edata = [];
record.eprior = [];
record.etr = [];
record.hmcrejects = 0;
ri = 1;
lrej = 0;
indrej = 0;
hmcrej=0;
lik_hmcrej=0;
end
% Set the record for every covariance function
for i=1:ncf
gpcf = gp.cf{i};
record.cf{i} = gpcf.fh.recappend(record.cf{i}, ri, gpcf);
% Record metric structure
if isfield(gpcf,'metric')
record.cf{i}.metric = record.cf{i}.metric.fh.recappend(record.cf{i}.metric, ri, gpcf.metric);
end
end
% Set the record for likelihood
lik = gp.lik;
record.lik = lik.fh.recappend(record.lik, ri, lik);
% Set jitterSigma2 to record
if ~isempty(gp.jitterSigma2)
record.jitterSigma2(ri,:) = gp.jitterSigma2;
end
% Set the latent values to record structure
if isfield(gp, 'latentValues')
record.latentValues(ri,:)=gp.latentValues(:)';
end
% Set the inducing inputs in the record structure
switch gp.type
case {'FIC', 'PIC', 'PIC_BLOCK', 'CS+FIC'}
record.X_u(ri,:) = gp.X_u(:)';
end
% Record training error and rejects
if isfield(gp,'latentValues')
elik = gp.lik.fh.ll(gp.lik, y, gp.latentValues, z);
[record.e(ri,:),record.edata(ri,:),record.eprior(ri,:)] = gp_e(gp_pak(gp), gp, x, gp.latentValues);
record.etr(ri,:) = record.e(ri,:) - elik;
% Set rejects
record.lrejects(ri,1)=lrej;
else
[record.e(ri,:),record.edata(ri,:),record.eprior(ri,:)] = gp_e(gp_pak(gp), gp, x, y, 'z', z);
record.etr(ri,:) = record.e(ri,:);
end
if ~isempty(opt.hmc_opt)
record.hmcrejects(ri,1)=hmcrej;
end
if ~isempty(opt.lik_hmc_opt)
record.lik_hmcrejects(ri,1)=lik_hmcrej;
end
% If inputs are sampled set the record which are on at this moment
if isfield(gp,'inputii')
record.inputii(ri,:)=gp.inputii;
end
if isfield(gp, 'meanf')
nmf = numel(gp.meanf);
for i=1:nmf
gpmf = gp.meanf{i};
record.meanf{i} = gpmf.fh.recappend(record.meanf{i}, ri, gpmf);
end
end
end
function e = gpmc_e(w, gp, x, y, f, z)
e=0;
if ~isempty(strfind(gp.infer_params, 'covariance'))
e=e+gp_e(w, gp, x, f, 'z', z);
end
if ~isempty(strfind(gp.infer_params, 'likelihood')) ...
&& ~isfield(gp.lik.fh,'trcov') ...
&& isfield(gp.lik.fh,'lp') && ~isequal(y,f)
% Evaluate the contribution to the error from non-Gaussian likelihood
% if latent method is MCMC
gp=gp_unpak(gp,w);
lik=gp.lik;
e=e-lik.fh.ll(lik,y,f,z)-lik.fh.lp(lik);
end
end
function g = gpmc_g(w, gp, x, y, f, z)
g=[];
if ~isempty(strfind(gp.infer_params, 'covariance'))
g=[g gp_g(w, gp, x, f, 'z', z)];
end
if ~isempty(strfind(gp.infer_params, 'likelihood')) ...
&& ~isfield(gp.lik.fh,'trcov') ...
&& isfield(gp.lik.fh,'lp') && ~isequal(y,f)
% Evaluate the contribution to the gradient from non-Gaussian likelihood
% if latent method is not MCMC
gp=gp_unpak(gp,w);
lik=gp.lik;
g=[g -lik.fh.llg(lik,y,f,'param',z)-lik.fh.lpg(lik)];
end
end
end
|
github
|
lcnbeapp/beapp-master
|
gpla_e.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gpla_e.m
| 90,674 |
UNKNOWN
|
7f5dc0edae06d00e07815ed9c70bd1e7
|
function [e, edata, eprior, f, L, a, La2, p] = gpla_e(w, gp, varargin)
%GPLA_E Do Laplace approximation and return marginal log posterior estimate
%
% Description
% E = GPLA_E(W, GP, X, Y, OPTIONS) takes a GP structure GP
% together with a matrix X of input vectors and a matrix Y of
% target vectors, and finds the Laplace approximation for the
% conditional posterior p(Y | X, th), where th is the
% parameters. Returns the energy at th (see below). Each
% row of X corresponds to one input vector and each row of Y
% corresponds to one target vector.
%
% [E, EDATA, EPRIOR] = GPLA_E(W, GP, X, Y, OPTIONS) returns also
% the data and prior components of the total energy.
%
% The energy is minus log posterior cost function for th:
% E = EDATA + EPRIOR
% = - log p(Y|X, th) - log p(th),
% where th represents the parameters (lengthScale,
% magnSigma2...), X is inputs and Y is observations.
%
% OPTIONS is optional parameter-value pair
% z - optional observed quantity in triplet (x_i,y_i,z_i)
% Some likelihoods may use this. For example, in case of
% Poisson likelihood we have z_i=E_i, that is, expected
% value for ith case.
%
% See also
% GP_SET, GP_E, GPLA_G, GPLA_PRED
%
% Description 2
% Additional properties meant only for internal use.
%
% GP = GPLA_E('init', GP) takes a GP structure GP and
% initializes required fields for the Laplace approximation.
%
% GP = GPLA_E('clearcache', GP) takes a GP structure GP and clears the
% internal cache stored in the nested function workspace.
%
% [e, edata, eprior, f, L, a, La2, p] = GPLA_E(w, gp, x, y, varargin)
% returns many useful quantities produced by EP algorithm.
%
% The Newton's method is implemented as described in Rasmussen
% and Williams (2006).
%
% The stabilized Newton's method is implemented as suggested by
% Hannes Nickisch (personal communication).
% Copyright (c) 2007-2010 Jarno Vanhatalo
% Copyright (c) 2010 Aki Vehtari
% Copyright (c) 2010 Pasi Jyl�nki
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
% parse inputs
ip=inputParser;
ip.FunctionName = 'GPLA_E';
ip.addRequired('w', @(x) ...
isempty(x) || ...
(ischar(x) && strcmp(w, 'init')) || ...
isvector(x) && isreal(x) && all(isfinite(x)) ...
|| all(isnan(x)));
ip.addRequired('gp',@isstruct);
ip.addOptional('x', @(x) isnumeric(x) && isreal(x) && all(isfinite(x(:))))
ip.addOptional('y', @(x) isnumeric(x) && isreal(x) && all(isfinite(x(:))))
ip.addParamValue('z', [], @(x) isnumeric(x) && isreal(x) && all(isfinite(x(:))))
ip.parse(w, gp, varargin{:});
x=ip.Results.x;
y=ip.Results.y;
z=ip.Results.z;
if strcmp(w, 'init')
% Initialize cache
ch = [];
% set function handle to the nested function laplace_algorithm
% this way each gp has its own peristent memory for EP
gp.fh.ne = @laplace_algorithm;
% set other function handles
gp.fh.e=@gpla_e;
gp.fh.g=@gpla_g;
gp.fh.pred=@gpla_pred;
gp.fh.jpred=@gpla_jpred;
gp.fh.looe=@gpla_looe;
gp.fh.loog=@gpla_loog;
gp.fh.loopred=@gpla_loopred;
e = gp;
% remove clutter from the nested workspace
clear w gp varargin ip x y z
elseif strcmp(w, 'clearcache')
% clear the cache
gp.fh.ne('clearcache');
else
% call laplace_algorithm using the function handle to the nested function
% this way each gp has its own peristent memory for Laplace
[e, edata, eprior, f, L, a, La2, p] = gp.fh.ne(w, gp, x, y, z);
end
function [e, edata, eprior, f, L, a, La2, p] = laplace_algorithm(w, gp, x, y, z)
if strcmp(w, 'clearcache')
ch=[];
return
end
% code for the Laplace algorithm
% check whether saved values can be used
if isempty(z)
datahash=hash_sha512([x y]);
else
datahash=hash_sha512([x y z]);
end
if ~isempty(ch) && all(size(w)==size(ch.w)) && all(abs(w-ch.w)<1e-8) && ...
isequal(datahash,ch.datahash)
% The covariance function parameters or data haven't changed so we
% can return the energy and the site parameters that are
% saved in the cache
e = ch.e;
edata = ch.edata;
eprior = ch.eprior;
f = ch.f;
L = ch.L;
La2 = ch.La2;
a = ch.a;
p = ch.p;
else
% The parameters or data have changed since
% the last call for gpla_e. In this case we need to
% re-evaluate the Laplace approximation
gp=gp_unpak(gp, w);
ncf = length(gp.cf);
n = size(x,1);
p = [];
maxiter = gp.latent_opt.maxiter;
tol = gp.latent_opt.tol;
% Initialize latent values
% zero seems to be a robust choice (Jarno)
% with mean functions, initialize to mean function values
if ~isfield(gp,'meanf')
f = zeros(size(y));
else
[H,b_m,B_m]=mean_prep(gp,x,[]);
f = H'*b_m;
end
% =================================================
% First Evaluate the data contribution to the error
switch gp.type
% ============================================================
% FULL
% ============================================================
case 'FULL'
if ~isfield(gp.lik, 'nondiagW')
K = gp_trcov(gp, x);
if isfield(gp,'meanf')
K=K+H'*B_m*H;
end
% If K is sparse, permute all the inputs so that evaluations are more efficient
if issparse(K) % Check if compact support covariance is used
p = analyze(K);
y = y(p);
K = K(p,p);
if ~isempty(z)
z = z(p,:);
end
end
switch gp.latent_opt.optim_method
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by Newton method
case 'newton'
a = f;
if isfield(gp,'meanf')
a = a-H'*b_m;
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp_new = gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
if issparse(K)
speyen=speye(n);
end
iter=0;
while abs(lp_new - lp_old) > tol && iter < maxiter
iter = iter + 1;
lp_old = lp_new; a_old = a;
sW = sqrt(W);
if issparse(K)
sW = sparse(1:n, 1:n, sW, n, n);
[L,notpositivedefinite] = ldlchol(speyen+sW*K*sW );
else
%L = chol(eye(n)+sW*sW'.*K); % L'*L=B=eye(n)+sW*K*sW
L=bsxfun(@times,bsxfun(@times,sW,K),sW');
L(1:n+1:end)=L(1:n+1:end)+1;
[L, notpositivedefinite] = chol(L);
end
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
if ~isfield(gp,'meanf')
b = W.*f+dlp;
else
b = W.*f+K\(H'*b_m)+dlp;
end
if issparse(K)
a = b - sW*ldlsolve(L,sW*(K*b));
else
a = b - sW.*(L\(L'\(sW.*(K*b))));
end
if any(isnan(a))
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
f = K*a;
lp = gp.lik.fh.ll(gp.lik, y, f, z);
if ~isfield(gp,'meanf')
lp_new = -a'*f/2 + lp;
else
lp_new = -(f-H'*b_m)'*(a-K\(H'*b_m))/2 + lp; %f^=f-H'*b_m,
end
i = 0;
while i < 10 && (lp_new < lp_old || isnan(sum(f)))
% reduce step size by half
a = (a_old+a)/2;
f = K*a;
lp = gp.lik.fh.ll(gp.lik, y, f, z);
if ~isfield(gp,'meanf')
lp_new = -a'*f/2 + lp;
else
lp_new = -(f-H'*b_m)'*(a-K\(H'*b_m))/2 + lp;
end
i = i+1;
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
end
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by stabilized Newton method.
% This is implemented as suggested by Hannes Nickisch (personal communication)
case 'stabilized-newton'
% Gaussian initialization
% sigma=gp.lik.sigma;
% W = ones(n,1)./sigma.^2;
% sW = sqrt(W);
% %B = eye(n) + siV*siV'.*K;
% L=bsxfun(@times,bsxfun(@times,sW,K),sW');
% L(1:n+1:end)=L(1:n+1:end)+1;
% L = chol(L,'lower');
% a=sW.*(L'\(L\(sW.*y)));
% f = K*a;
% initialize to observations
%f=y;
switch gp.lik.type
% should be handled inside lik_*
case 'Student-t'
nu=gp.lik.nu;
sigma2=gp.lik.sigma2;
Wmax=(nu+1)/nu/sigma2;
case 'Negbinztr'
r=gp.lik.disper;
Wmax=1./((1+r)./(1*r));
otherwise
Wmax=100;
end
Wlim=0;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp = -(f'*(K\f))/2 +gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
f_old = f+1;
ge = Inf; %max(abs(a-dlp));
if issparse(K)
speyen=speye(n);
end
iter=0;
% begin Newton's iterations
while (lp - lp_old > tol || max(abs(f-f_old)) > tol) && iter < maxiter
iter=iter+1;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
W(W<Wlim)=Wlim;
sW = sqrt(W);
if issparse(K)
sW = sparse(1:n, 1:n, sW, n, n);
[L, notpositivedefinite] = ldlchol(speyen+sW*K*sW );
else
%L = chol(eye(n)+sW*sW'.*K); % L'*L=B=eye(n)+sW*K*sW
L=bsxfun(@times,bsxfun(@times,sW,K),sW');
L(1:n+1:end)=L(1:n+1:end)+1;
[L, notpositivedefinite] = chol(L);
end
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
b = W.*f+dlp;
if issparse(K)
a = b - sW*ldlsolve(L,sW*(K*b));
else
a = b - sW.*(L\(L'\(sW.*(K*b))));
end
f_new = K*a;
lp_new = -(a'*f_new)/2 + gp.lik.fh.ll(gp.lik, y, f_new, z);
ge_new=max(abs(a-dlp));
d=lp_new-lp;
if (d<-1e-6 || (abs(d)<1e-6 && ge_new>ge) ) && Wlim<Wmax*0.5
%fprintf('%3d, p(f)=%.12f, max|a-g|=%.12f, %.3f \n',i1,lp,ge,Wlim)
Wlim=Wlim+Wmax*0.05; %Wmax*0.01
else
Wlim=0;
ge=ge_new;
lp_old = lp;
lp = lp_new;
f_old = f;
f = f_new;
%fprintf('%3d, p(f)=%.12f, max|a-g|=%.12f, %.3f \n',i1,lp,ge,Wlim)
end
if Wlim>Wmax
%fprintf('\n%3d, p(f)=%.12f, max|a-g|=%.12f, %.3f \n',i1,lp,ge,Wlim)
break
end
end
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by fminunc
case 'fminunc_large'
if issparse(K)
[LD,notpositivedefinite] = ldlchol(K);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
fhm = @(W, f, varargin) (ldlsolve(LD,f) + repmat(W,1,size(f,2)).*f); % W*f; %
else
[LD,notpositivedefinite] = chol(K);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
fhm = @(W, f, varargin) (LD\(LD'\f) + repmat(W,1,size(f,2)).*f); % W*f; %
end
defopts=struct('GradObj','on','Hessian','on','HessMult', fhm,'TolX', tol,'TolFun', tol,'LargeScale', 'on','Display', 'off');
if ~isfield(gp.latent_opt, 'fminunc_opt')
opt = optimset(defopts);
else
opt = optimset(defopts,gp.latent_opt.fminunc_opt);
end
if issparse(K)
fe = @(f, varargin) (0.5*f*(ldlsolve(LD,f')) - gp.lik.fh.ll(gp.lik, y, f', z));
fg = @(f, varargin) (ldlsolve(LD,f') - gp.lik.fh.llg(gp.lik, y, f', 'latent', z))';
fh = @(f, varargin) (-gp.lik.fh.llg2(gp.lik, y, f', 'latent', z)); %inv(K) + diag(g2(f', gp.lik)) ; %
else
fe = @(f, varargin) (0.5*f*(LD\(LD'\f')) - gp.lik.fh.ll(gp.lik, y, f', z));
fg = @(f, varargin) (LD\(LD'\f') - gp.lik.fh.llg(gp.lik, y, f', 'latent', z))';
fh = @(f, varargin) (-gp.lik.fh.llg2(gp.lik, y, f', 'latent', z)); %inv(K) + diag(g2(f', gp.lik)) ; %
end
mydeal = @(varargin)varargin{1:nargout};
[f,fval,exitflag,output] = fminunc(@(ww) mydeal(fe(ww), fg(ww), fh(ww)), f', opt);
f = f';
if issparse(K)
a = ldlsolve(LD,f);
else
a = LD\(LD'\f);
end
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables with likelihood specific algorithm
% For example, with Student-t likelihood this mean EM-algorithm which is coded in the
% lik_t file.
case 'lik_specific'
[f, a] = gp.lik.fh.optimizef(gp, y, K);
if isnan(f)
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
otherwise
error('gpla_e: Unknown optimization method ! ')
end
% evaluate the approximate log marginal likelihood
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
if ~isfield(gp,'meanf')
logZ = 0.5 *f'*a - gp.lik.fh.ll(gp.lik, y, f, z);
else
logZ = 0.5 *((f-H'*b_m)'*(a-K\(H'*b_m))) - gp.lik.fh.ll(gp.lik, y, f, z);
end
if min(W) >= 0
% This is the usual case where likelihood is log concave
% for example, Poisson and probit
if issparse(K)
W = sparse(1:n,1:n, -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z), n,n);
sqrtW = sqrt(W);
B = sparse(1:n,1:n,1,n,n) + sqrtW*K*sqrtW;
[L, notpositivedefinite] = ldlchol(B);
% Note that here we use LDL cholesky
edata = logZ + 0.5.*sum(log(diag(L))); % 0.5*log(det(eye(size(K)) + K*W)) ; %
else
sW = sqrt(W);
L=bsxfun(@times,bsxfun(@times,sW,K),sW');
L(1:n+1:end)=L(1:n+1:end)+1;
[L, notpositivedefinite] = chol(L, 'lower');
edata = logZ + sum(log(diag(L))); % 0.5*log(det(eye(size(K)) + K*W)) ; %
end
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
else
% We may end up here if the likelihood is not log concave
% For example Student-t likelihood.
[W2,I] = sort(W, 1, 'descend');
if issparse(K)
error(['gpla_e: Unfortunately the compact support covariance (CS) functions do not work if'...
'the second gradient of negative likelihood is negative. This happens for example '...
'with Student-t likelihood. Please use non-CS functions instead (e.g. gpcf_sexp) ']);
end
[L, notpositivedefinite] = chol(K);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L1 = L;
for jj=1:size(K,1)
i = I(jj);
ll = sum(L(:,i).^2);
l = L'*L(:,i);
upfact = W(i)./(1 + W(i).*ll);
% Check that Cholesky factorization will remain positive definite
if 1./ll + W(i) < 0 %1 + W(i).*ll <= 0 | abs(upfact) > abs(1./ll) %upfact > 1./ll
warning('gpla_e: 1./Sigma(i,i) + W(i) < 0')
if ~isfield(gp.lik.fh,'upfact')
% log-concave likelihood, this should not happen
% let's just return NaN
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
% non-log-concave likelihood, this may happen
% let's try to do something about it
ind = 1:i-1;
if isempty(z)
mu = K(i,ind)*gp.lik.fh.llg(gp.lik, y(I(ind)), f(I(ind)), 'latent', z);
upfact = gp.lik.fh.upfact(gp, y(I(i)), mu, ll);
else
mu = K(i,ind)*gp.lik.fh.llg(gp.lik, y(I(ind)), f(I(ind)), 'latent', z(I(ind)));
upfact = gp.lik.fh.upfact(gp, y(I(i)), mu, ll, z(I(i)));
end
end
if upfact > 0
[L,notpositivedefinite] = cholupdate(L, l.*sqrt(upfact), '-');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
else
L = cholupdate(L, l.*sqrt(-upfact));
end
end
edata = logZ + sum(log(diag(L1))) - sum(log(diag(L)));
end
La2 = W;
else
% Likelihoods with non-diagonal Hessian
[n,nout] = size(y);
if isfield(gp, 'comp_cf') % own covariance for each ouput component
multicf = true;
if length(gp.comp_cf) ~= nout && nout > 1
error('GPLA_ND_E: the number of component vectors in gp.comp_cf must be the same as number of outputs.')
end
else
multicf = false;
end
p=[];
switch gp.lik.type
case {'LGP', 'LGPC'}
nl=n;
% Initialize latent values
% zero seems to be a robust choice (Jarno)
% with mean functions, initialize to mean function values
if ~isfield(gp,'meanf')
f = zeros(sum(nl),1);
else
[H,b_m,B_m]=mean_prep(gp,x,[]);
Hb_m=H'*b_m;
f = Hb_m;
end
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
gptmp=gp; gptmp.jitterSigma2=0;
% Use Kronecker product kron(Ka,Kb) instead of K
Ka = gp_trcov(gptmp, unique(x(:,1)));
% fix the magnitude sigma to 1 for Kb matrix
wtmp=gp_pak(gptmp); wtmp(1)=0; gptmp=gp_unpak(gptmp,wtmp);
Kb = gp_trcov(gptmp, unique(x(:,2)));
clear gptmp
n1=size(Ka,1);
n2=size(Kb,1);
[Va,Da]=eig(Ka); [Vb,Db]=eig(Kb);
% eigenvalues of K matrix
Dtmp=kron(diag(Da),diag(Db));
[sDtmp,istmp]=sort(Dtmp,'descend');
% Form the low-rank approximation. Exclude eigenvalues
% smaller than gp.latent_opt.eig_tol or take
% gp.latent_opt.eig_prct*n eigenvalues at most.
nlr=min([sum(sDtmp>gp.latent_opt.eig_tol) round(gp.latent_opt.eig_prct*n)]);
sDtmp=sDtmp+gp.jitterSigma2;
itmp1=meshgrid(1:n1,1:n2);
itmp2=meshgrid(1:n2,1:n1)';
ind=[itmp1(:) itmp2(:)];
% included eigenvalues
Dlr=sDtmp(1:nlr);
% included eigenvectors
Vlr=zeros(n,nlr);
for i1=1:nlr
Vlr(:,i1)=kron(Va(:,ind(istmp(i1),1)),Vb(:,ind(istmp(i1),2)));
end
%L=[];
% diag(K)-diag(Vlr*diag(Dlr)*Vlr')
Lb=gp_trvar(gp,x)-sum(bsxfun(@times,Vlr.*Vlr,Dlr'),2);
if isfield(gp,'meanf')
Dt=[Dlr; diag(B_m)];
Vt=[Vlr H'];
else
Dt=Dlr;
Vt=Vlr;
end
Dtsq=sqrt(Dt);
elseif isfield(gp.latent_opt, 'fft') && gp.latent_opt.fft==1
% unique values from covariance matrix
K1 = gp_cov(gp, x(1,:), x);
K1(1)=K1(1)+gp.jitterSigma2;
if size(x,2)==1
% form circulant matrix to avoid border effects
Kcirc=[K1 0 K1(end:-1:2)];
fftKcirc = fft(Kcirc);
elseif size(x,2)==2
n1=gp.latent_opt.gridn(1);
n2=gp.latent_opt.gridn(2);
Ktmp=reshape(K1,n2,n1);
% form circulant matrix to avoid border effects
Ktmp=[Ktmp; zeros(1,n1); flipud(Ktmp(2:end,:))];
fftKcirc=fft2([Ktmp zeros(2*n2,1) fliplr(Ktmp(:,2:end))]);
else
error('FFT speed-up implemented only for 1D and 2D cases.')
end
else
K = gp_trcov(gp, x);
end
% Mean function contribution to K
if isfield(gp,'meanf')
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
% only zero mean function implemented for Kronecker
% approximation
iKHb_m=zeros(n,1);
elseif isfield(gp.latent_opt, 'fft') && gp.latent_opt.fft==1
% only zero mean function implemented for FFT speed-up
iKHb_m=zeros(n,1);
else
K=K+H'*B_m*H;
ws=warning('off','MATLAB:singularMatrix');
iKHb_m=K\Hb_m;
warning(ws);
end
end
% Main Newton algorithm
tol = 1e-12;
a = f;
if isfield(gp,'meanf')
a = a-Hb_m;
end
% a vector to form the second gradient
g2 = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
g2sq=sqrt(g2);
ny=sum(y); % total number of observations
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp_new = gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
iter=0;
while abs(lp_new - lp_old) > tol && iter < maxiter
iter = iter + 1;
lp_old = lp_new; a_old = a;
if ~isfield(gp,'meanf')
if strcmpi(gp.lik.type,'LGPC')
n1=gp.lik.gridn(1); n2=gp.lik.gridn(2);
b=zeros(n,1);
ny2=sum(reshape(y,fliplr(gp.lik.gridn)));
for k1=1:n1
b((1:n2)+(k1-1)*n2) = ny2(k1)*(g2((1:n2)+(k1-1)*n2).*f((1:n2)+(k1-1)*n2)-g2((1:n2)+(k1-1)*n2)*(g2((1:n2)+(k1-1)*n2)'*f((1:n2)+(k1-1)*n2)))+dlp((1:n2)+(k1-1)*n2);
end
else
b = ny*(g2.*f-g2*(g2'*f))+dlp;
%b = W.*f+dlp;
end
else
if strcmpi(gp.lik.type,'LGPC')
n1=gp.lik.gridn(1); n2=gp.lik.gridn(2);
b=zeros(n,1);
ny2=sum(reshape(y,fliplr(gp.lik.gridn)));
for k1=1:n1
b((1:n2)+(k1-1)*n2) = ny2(k1)*(g2((1:n2)+(k1-1)*n2).*f((1:n2)+(k1-1)*n2)-g2((1:n2)+(k1-1)*n2)*(g2((1:n2)+(k1-1)*n2)'*f((1:n2)+(k1-1)*n2)))+iKHb_m((1:n2)+(k1-1)*n2)+dlp((1:n2)+(k1-1)*n2);
end
else
b = ny*(g2.*f-g2*(g2'*f))+iKHb_m+dlp;
%b = W.*f+K\(H'*b_m)+dlp;
end
end
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
% Use Kronecker product structure in matrix vector
% multiplications
%-
% q=Kb*reshape(b,n2,n1)*Ka;
% Kg=q(:);
% Kg=Kg+gp.jitterSigma2*b;
%-
% OR use reduced-rank approximation for K
%-
Kg=Lb.*b+Vlr*(Dlr.*(Vlr'*b));
%-
if isfield(gp,'meanf')
Kg=Kg+H'*(B_m*(H*b));
end
% % Use Kronecker product structure
%-
% v=sqrt(ny)*(g2sq.*Kg-(g2*(g2'*Kg))./g2sq);
% % fast matrix vector multiplication with
% % Kronecker product for matrix inversion
% if isfield(gp,'meanf')
% [iSg,~]=pcg(@(z) mvm_kron(g2,ny,Ka,Kb,H,B_m,gp.jitterSigma2,z), v, gp.latent_opt.pcg_tol);
% else
% [iSg,~]=pcg(@(z) mvm_kron(g2,ny,Ka,Kb,[],[],gp.jitterSigma2,z), v, gp.latent_opt.pcg_tol);
% end
% a=b-sqrt(ny)*(g2sq.*iSg - g2*(g2'*(iSg./g2sq)));
%-
% use reduced-rank approximation for K
%-
Zt=1./(1+ny*g2.*Lb);
Ztsq=sqrt(Zt);
Ltmp=bsxfun(@times,Ztsq.*sqrt(ny).*g2sq,bsxfun(@times,Vt,sqrt(Dt)'));
Ltmp=Ltmp'*Ltmp;
Ltmp(1:(size(Dt,1)+1):end)=Ltmp(1:(size(Dt,1)+1):end)+1;
[L,notpositivedefinite] = chol(Ltmp,'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
EKg=ny*g2.*(Zt.*Kg)-sqrt(ny)*g2sq.*(Zt.*(sqrt(ny)*g2sq.*(Vt*(Dtsq.*(L'\(L\(Dtsq.*(Vt'*(sqrt(ny)*g2sq.*(Zt.*(sqrt(ny)*g2sq.*Kg)))))))))));
E1=ny*g2.*(Zt.*ones(n,1))-sqrt(ny)*g2sq.*(Zt.*(sqrt(ny)*g2sq.*(Vt*(Dtsq.*(L'\(L\(Dtsq.*(Vt'*(sqrt(ny)*g2sq.*(Zt.*(sqrt(ny)*g2sq.*ones(n,1))))))))))));
a=b-(EKg-E1*((E1'*Kg)./(ones(1,n)*E1)));
%-
elseif isfield(gp.latent_opt, 'fft') && gp.latent_opt.fft==1
% use FFT speed-up in matrix vector multiplications
if size(x,2)==1
gge=zeros(2*n,1);
gge(1:n)=b;
q=ifft(fftKcirc.*fft(gge'));
Kg=q(1:n)';
elseif size(x,2)==2
gge=zeros(2*n2,2*n1);
gge(1:n2,1:n1)=reshape(b,n2,n1);
q=ifft2(fftKcirc.*fft2(gge));
q=q(1:n2,1:n1);
Kg=q(:);
else
error('FFT speed-up implemented only for 1D and 2D cases.')
end
if isfield(gp,'meanf')
Kg=Kg+H'*(B_m*(H*b));
end
v=sqrt(ny)*(g2sq.*Kg-(g2*(g2'*Kg))./g2sq);
if isfield(gp,'meanf')
% fast matrix vector multiplication with fft for matrix inversion
[iSg,~]=pcg(@(z) mvm_fft(g2,ny,fftKcirc,H,B_m,z), v, gp.latent_opt.pcg_tol);
else
[iSg,~]=pcg(@(z) mvm_fft(g2,ny,fftKcirc,[],[],z), v, gp.latent_opt.pcg_tol);
end
a=b-sqrt(ny)*(g2sq.*iSg - g2*(g2'*(iSg./g2sq)));
else
if strcmpi(gp.lik.type,'LGPC')
R=zeros(n);
RKR=K;
for k1=1:n1
R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)=sqrt(ny2(k1))*(diag(g2sq((1:n2)+(k1-1)*n2))-g2((1:n2)+(k1-1)*n2)*g2sq((1:n2)+(k1-1)*n2)');
RKR(:,(1:n2)+(k1-1)*n2)=RKR(:,(1:n2)+(k1-1)*n2)*R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2);
end
for k1=1:n1
RKR((1:n2)+(k1-1)*n2,:)=R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)'*RKR((1:n2)+(k1-1)*n2,:);
end
%RKR=R'*K*R;
RKR(1:(n+1):end)=RKR(1:(n+1):end)+1;
[L,notpositivedefinite] = chol(RKR,'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
Kb=K*b;
RCb=R'*Kb;
iRCb=L'\(L\RCb);
a=b-R*iRCb;
else
%R=-g2*g2sq'; R(1:(n+1):end)=R(1:(n+1):end)+g2sq';
KR=bsxfun(@times,K,g2sq')-(K*g2)*g2sq';
RKR=ny*(bsxfun(@times,g2sq,KR)-g2sq*(g2'*KR));
RKR(1:(n+1):end)=RKR(1:(n+1):end)+1;
[L,notpositivedefinite] = chol(RKR,'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
Kb=K*b;
RCb=g2sq.*Kb-g2sq*(g2'*Kb);
iRCb=L'\(L\RCb);
a=b-ny*(g2sq.*iRCb-g2*(g2sq'*iRCb));
end
end
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
% % Use Kronecker product structure
%-
% f2=Kb*reshape(a,n2,n1)*Ka;
% f=f2(:);
% f=f+gp.jitterSigma2*a;
%-
% use reduced-rank approximation for K
%-
f=Lb.*a+Vlr*(Dlr.*(Vlr'*a));
%-
if isfield(gp,'meanf')
f=f+H'*(B_m*(H*a));
end
elseif isfield(gp.latent_opt, 'fft') && gp.latent_opt.fft==1
if size(x,2)==1
a2=zeros(2*n,1);
a2(1:n)=a;
f2=ifft(fftKcirc.*fft(a2'));
f=f2(1:n)';
if isfield(gp,'meanf')
f=f+H'*(B_m*(H*a));
end
elseif size(x,2)==2
a2=zeros(2*n2,2*n1);
a2(1:n2,1:n1)=reshape(a,n2,n1);
f2=ifft2(fftKcirc.*fft2(a2));
f2=f2(1:n2,1:n1);
f=f2(:);
if isfield(gp,'meanf')
f=f+H'*(B_m*(H*a));
end
else
error('FFT speed-up implemented only for 1D and 2D cases.')
end
else
f = K*a;
end
lp = gp.lik.fh.ll(gp.lik, y, f, z);
if ~isfield(gp,'meanf')
lp_new = -a'*f/2 + lp;
else
%lp_new = -(f-H'*b_m)'*(a-K\(H'*b_m))/2 + lp; %f^=f-H'*b_m,
lp_new = -(f-Hb_m)'*(a-iKHb_m)/2 + lp; %f^=f-Hb_m,
end
i = 0;
while i < 10 && lp_new < lp_old && ~isnan(sum(f))
% reduce step size by half
a = (a_old+a)/2;
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
% % Use Kronecker product structure
%-
% f2=Kb*reshape(a,n2,n1)*Ka;
% f=f2(:);
% f=f+gp.jitterSigma2*a;
%-
% use reduced-rank approximation for K
%-
f=Lb.*a+Vlr*(Dlr.*(Vlr'*a));
%-
if isfield(gp,'meanf')
f=f+H'*(B_m*(H*a));
end
elseif isfield(gp.latent_opt, 'fft') && gp.latent_opt.fft==1
if size(x,2)==1
a2=zeros(2*n,1);
a2(1:n)=a;
f2=ifft(fftKcirc.*fft(a2'));
f=f2(1:n)';
if isfield(gp,'meanf')
f=f+H'*(B_m*(H*a));
end
elseif size(x,2)==2
a2=zeros(2*n2,2*n1);
a2(1:n2,1:n1)=reshape(a,n2,n1);
f2=ifft2(fftKcirc.*fft2(a2));
f2=f2(1:n2,1:n1);
f=f2(:);
if isfield(gp,'meanf')
f=f+H'*(B_m*(H*a));
end
else
error('FFT speed-up implemented only for 1D and 2D cases.')
end
else
f = K*a;
end
lp = gp.lik.fh.ll(gp.lik, y, f, z);
if ~isfield(gp,'meanf')
lp_new = -a'*f/2 + lp;
else
%lp_new = -(f-H'*b_m)'*(a-K\(H'*b_m))/2 + lp;
lp_new = -(f-Hb_m)'*(a-iKHb_m)/2 + lp;
end
i = i+1;
end
g2 = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
g2sq=sqrt(g2);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
end
% evaluate the approximate log marginal likelihood
g2 = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
g2sq=sqrt(g2);
if ~isfield(gp,'meanf')
logZ = 0.5 *f'*a - gp.lik.fh.ll(gp.lik, y, f, z);
else
% logZ = 0.5 *((f-H'*b_m)'*(a-K\(H'*b_m))) - gp.lik.fh.ll(gp.lik, y, f, z);
logZ = 0.5 *((f-Hb_m)'*(a-iKHb_m)) - gp.lik.fh.ll(gp.lik, y, f, z);
end
if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1
% % Use Kronecker product structure
%-
% tmp=bsxfun(@times,Lb.^(-1/2),bsxfun(@times,Vt,sqrt(Dt)'));
% tmp=tmp'*tmp;
% tmp(1:size(tmp,1)+1:end)=tmp(1:size(tmp,1)+1:end)+1;
% logZa=sum(log(diag(chol(tmp,'lower'))));
%
% Lbt=ny*(g2)+1./Lb;
%
% St=[diag(1./Dt)+Vt'*bsxfun(@times,1./Lb,Vt) zeros(size(Dt,1),1); ...
% zeros(1,size(Dt,1)) 1];
% Pt=[bsxfun(@times,1./Lb,Vt) sqrt(ny)*g2];
%
% logZb=sum(log(diag(chol(St,'lower'))));
%
% Ptt=bsxfun(@times,1./sqrt(Lbt),Pt);
% logZc=sum(log(diag(chol(St-Ptt'*Ptt,'lower'))));
%
% edata = logZ + logZa - logZb + logZc + 0.5*sum(log(Lb)) + 0.5*sum(log(Lbt));
%-
% use reduced-rank approximation for K
%-
Zt=1./(1+ny*g2.*Lb);
Ztsq=sqrt(Zt);
Ltmp=bsxfun(@times,Ztsq.*sqrt(ny).*g2sq,bsxfun(@times,Vt,sqrt(Dt)'));
Ltmp=Ltmp'*Ltmp;
Ltmp(1:(size(Dt,1)+1):end)=Ltmp(1:(size(Dt,1)+1):end)+1;
L=chol(Ltmp,'lower');
LTtmp=L\( Dtsq.*(Vt'*( (g2sq.*sqrt(ny)).*((1./(1+ny*g2.*Lb)).* (sqrt(ny)*g2sq) ) )) );
edata = logZ + sum(log(diag(L)))+0.5*sum(log(1+ny*g2.*Lb)) ...
-0.5*log(ny) + 0.5*log(sum(((g2*ny)./(ny*g2.*Lb+1)))-LTtmp'*LTtmp);
%-
elseif isfield(gp.latent_opt, 'fft') && gp.latent_opt.fft==1
K = gp_trcov(gp, x);
if isfield(gp,'meanf')
K=K+H'*B_m*H;
end
% exact determinant
KR=bsxfun(@times,K,g2sq')-(K*g2)*g2sq';
RKR=ny*(bsxfun(@times,g2sq,KR)-g2sq*(g2'*KR));
RKR(1:(n+1):end)=RKR(1:(n+1):end)+1;
[L,notpositivedefinite] = chol(RKR,'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
edata = logZ + sum(log(diag(L)));
% % determinant approximated using only the largest eigenvalues
% opts.issym = 1;
% Deig=eigs(@(z) mvm_fft(g2, ny, fftKcirc, H, B_m, z),n,round(n*0.05),'lm',opts);
% edata = logZ + 0.5*sum(log(Deig));
% L=[];
else
if strcmpi(gp.lik.type,'LGPC')
R=zeros(n);
RKR=K;
for k1=1:n1
R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)=sqrt(ny2(k1))*(diag(g2sq((1:n2)+(k1-1)*n2))-g2((1:n2)+(k1-1)*n2)*g2sq((1:n2)+(k1-1)*n2)');
RKR(:,(1:n2)+(k1-1)*n2)=RKR(:,(1:n2)+(k1-1)*n2)*R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2);
end
for k1=1:n1
RKR((1:n2)+(k1-1)*n2,:)=R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)'*RKR((1:n2)+(k1-1)*n2,:);
end
%RKR=R'*K*R;
else
KR=bsxfun(@times,K,g2sq')-(K*g2)*g2sq';
RKR=ny*(bsxfun(@times,g2sq,KR)-g2sq*(g2'*KR));
end
RKR(1:(n+1):end)=RKR(1:(n+1):end)+1;
[L,notpositivedefinite] = chol(RKR,'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
edata = logZ + sum(log(diag(L)));
end
M=[];
E=[];
case {'Softmax', 'Multinom'}
% Initialize latent values
% zero seems to be a robust choice (Jarno)
f = zeros(size(y(:)));
K = zeros(n,n,nout);
if multicf
for i1=1:nout
K(:,:,i1) = gp_trcov(gp, x, gp.comp_cf{i1});
end
else
Ktmp=gp_trcov(gp, x);
for i1=1:nout
K(:,:,i1) = Ktmp;
end
end
% Main newton algorithm, see Rasmussen & Williams (2006),
% p. 50
tol = 1e-12;
a = f;
f2=reshape(f,n,nout);
% lp_new = log(p(y|f))
lp_new = gp.lik.fh.ll(gp.lik, y, f2, z);
lp_old = -Inf;
c=zeros(n*nout,1);
ERMMRc=zeros(n*nout,1);
E=zeros(n,n,nout);
L=zeros(n,n,nout);
RER = zeros(n,n,nout);
while lp_new - lp_old > tol
lp_old = lp_new; a_old = a;
% llg = d(log(p(y|f)))/df
llg = gp.lik.fh.llg(gp.lik, y, f2, 'latent', z);
% Second derivatives
[pi2_vec, pi2_mat] = gp.lik.fh.llg2(gp.lik, y, f2, 'latent', z);
% W = -diag(pi2_vec) + pi2_mat*pi2_mat'
pi2 = reshape(pi2_vec,size(y));
R = repmat(1./pi2_vec,1,n).*pi2_mat;
for i1=1:nout
Dc=sqrt(pi2(:,i1));
Lc=(Dc*Dc').*K(:,:,i1);
Lc(1:n+1:end)=Lc(1:n+1:end)+1;
[Lc,notpositivedefinite]=chol(Lc);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L(:,:,i1)=Lc;
Ec=Lc'\diag(Dc);
Ec=Ec'*Ec;
E(:,:,i1)=Ec;
RER(:,:,i1) = R((1:n)+(i1-1)*n,:)'*Ec*R((1:n)+(i1-1)*n,:);
end
[M, notpositivedefinite]=chol(sum(RER,3));
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
b = pi2_vec.*f - pi2_mat*(pi2_mat'*f) + llg;
for i1=1:nout
c((1:n)+(i1-1)*n)=E(:,:,i1)*(K(:,:,i1)*b((1:n)+(i1-1)*n));
end
RMMRc=R*(M\(M'\(R'*c)));
for i1=1:nout
ERMMRc((1:n)+(i1-1)*n) = E(:,:,i1)*RMMRc((1:n)+(i1-1)*n,:);
end
a=b-c+ERMMRc;
for i1=1:nout
f((1:n)+(i1-1)*n)=K(:,:,i1)*a((1:n)+(i1-1)*n);
end
f2=reshape(f,n,nout);
lp_new = -a'*f/2 + gp.lik.fh.ll(gp.lik, y, f2, z);
i = 0;
while i < 10 && lp_new < lp_old || isnan(sum(f))
% reduce step size by half
a = (a_old+a)/2;
for i1=1:nout
f((1:n)+(i1-1)*n)=K(:,:,i1)*a((1:n)+(i1-1)*n);
end
f2=reshape(f,n,nout);
lp_new = -a'*f/2 + gp.lik.fh.ll(gp.lik, y, f2, z);
i = i+1;
end
end
[pi2_vec, pi2_mat] = gp.lik.fh.llg2(gp.lik, y, f2, 'latent', z);
pi2 = reshape(pi2_vec,size(y));
zc=0;
Detn=0;
R = repmat(1./pi2_vec,1,n).*pi2_mat;
for i1=1:nout
Dc=sqrt( pi2(:,i1) );
Lc=(Dc*Dc').*K(:,:,i1);
Lc(1:n+1:end)=Lc(1:n+1:end)+1;
[Lc, notpositivedefinite]=chol(Lc);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L(:,:,i1)=Lc;
pi2i = pi2_mat((1:n)+(i1-1)*n,:);
pipi = pi2i'/diag(Dc);
Detn = Detn + pipi*(Lc\(Lc'\diag(Dc)))*K(:,:,i1)*pi2i;
zc = zc + sum(log(diag(Lc)));
Ec=Lc'\diag(Dc);
Ec=Ec'*Ec;
E(:,:,i1)=Ec;
RER(:,:,i1) = R((1:n)+(i1-1)*n,:)'*Ec*R((1:n)+(i1-1)*n,:);
end
[M, notpositivedefinite]=chol(sum(RER,3));
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
zc = zc + sum(log(diag(chol( eye(size(K(:,:,i1))) - Detn))));
logZ = a'*f/2 - gp.lik.fh.ll(gp.lik, y, f2, z) + zc;
edata = logZ;
otherwise
if ~isfield(gp, 'comp_cf') || isempty(gp.comp_cf)
error('Define multiple covariance functions for latent processes using gp.comp_cf (see gp_set)');
end
if isfield(gp.lik,'xtime')
xtime=gp.lik.xtime;
if isfield(gp.lik, 'stratificationVariables')
ebc_ind=gp.lik.stratificationVariables;
ux = unique(x(:,ebc_ind), 'rows');
gp.lik.n_u = size(ux,1);
for i1=1:size(ux,1)
gp.lik.stratind{i1}=(x(:,ebc_ind)==ux(i1));
end
[xtime1, xtime2] = meshgrid(ux, xtime);
xtime = [xtime2(:) xtime1(:)];
if isfield(gp.lik, 'removeStratificationVariables') && gp.lik.removeStratificationVariables
x(:,ebc_ind)=[];
end
end
ntime = size(xtime,1);
nl=[ntime n];
else
nl=repmat(n,1,length(gp.comp_cf));
end
nlp=length(nl); % number of latent processes
% Initialize latent values
% zero seems to be a robust choice (Jarno)
% with mean functions, initialize to mean function values
if ~isfield(gp,'meanf')
f = zeros(sum(nl),1);
if isequal(gp.lik.type, 'Inputdependentnoise')
% Inputdependent-noise needs initialization to mean
Kf = gp_trcov(gp,x,gp.comp_cf{1});
f(1:n) = Kf*((Kf+gp.lik.sigma2.*eye(n))\y);
end
else
[H,b_m,B_m]=mean_prep(gp,x,[]);
Hb_m=H'*b_m;
f = Hb_m;
end
% K is block-diagonal covariance matrix where blocks
% correspond to latent processes
K = zeros(sum(nl));
if isfield(gp.lik,'xtime')
K(1:ntime,1:ntime)=gp_trcov(gp, xtime, gp.comp_cf{1});
K((1:n)+ntime,(1:n)+ntime) = gp_trcov(gp, x, gp.comp_cf{2});
else
for i1=1:nlp
K((1:n)+(i1-1)*n,(1:n)+(i1-1)*n) = gp_trcov(gp, x, gp.comp_cf{i1});
end
end
% Mean function contribution to K
if isfield(gp,'meanf')
K=K+H'*B_m*H;
iKHb_m=K\Hb_m;
end
% Main Newton algorithm, see Rasmussen & Williams (2006),
% p. 46
tol = 1e-12;
a = f;
if isfield(gp,'meanf')
a = a-Hb_m;
end
% Second derivatives of log-likelihood
if isfield(gp.lik,'xtime')
[llg2diag, llg2mat] = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
% W = [diag(Wdiag(1:ntime)) Wmat; Wmat' diag(Wdiag(ntime+1:end)]
Wdiag=-llg2diag; Wmat=-llg2mat;
W=[];
else
Wvec = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
% W = [diag(Wvec(1:n,1)) diag(Wvec(1:n,2)) diag(Wvec(n+1:end,1)) diag(Wvec(n+1:end,2))]
Wdiag=[Wvec(1:nl(1),1); Wvec(nl(1)+(1:nl(2)),2)];
end
% dlp = d(log(p(y|f)))/df
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
% lp_new = log(p(y|f))
lp_new = gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
WK=zeros(sum(nl));
iter=0;
while (abs(lp_new - lp_old) > tol && iter < maxiter)
iter = iter + 1;
lp_old = lp_new; a_old = a;
% b = W*f - d(log(p(y|f)))/df
if isfield(gp.lik,'xtime')
b=Wdiag.*f+[Wmat*f((ntime+1):end); Wmat'*f(1:ntime)]+dlp;
else
b = sum(Wvec.*repmat(reshape(f,n,nlp),nlp,1),2)+dlp;
end
WK(1:nl(1),1:nl(1))=bsxfun(@times, Wdiag(1:nl(1)),K(1:nl(1),1:nl(1)));
WK(nl(1)+(1:nl(2)),nl(1)+(1:nl(2)))=bsxfun(@times, Wdiag(nl(1)+(1:nl(2))),K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))));
if isfield(gp.lik,'xtime')
WK(1:nl(1),nl(1)+(1:nl(2)))=Wmat*K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2)));
WK(nl(1)+(1:nl(2)),1:nl(1))=Wmat'*K(1:nl(1),1:nl(1));
else
WK(1:nl(1),nl(1)+(1:nl(2)))=bsxfun(@times, Wvec(1:nl(1),2),K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))));
WK(nl(1)+(1:nl(2)),1:nl(1))=bsxfun(@times, Wvec(nl(1)+(1:nl(2)),1),K(1:nl(1),1:nl(1)));
end
% B = I + WK
B=WK;
B(1:sum(nl)+1:end) = B(1:sum(nl)+1:end) + 1;
[ll,uu]=lu(B);
% a = inv(I+WK)*(W*f - d(log(p(y|f)))/df)
a=uu\(ll\b);
% a=B\b;
f = K*a;
lp = gp.lik.fh.ll(gp.lik, y, f, z);
if ~isfield(gp,'meanf')
lp_new = -a'*f/2 + lp;
else
%lp_new = -(f-H'*b_m)'*(a-K\(H'*b_m))/2 + lp; %f^=f-H'*b_m,
lp_new = -(f-Hb_m)'*(a-iKHb_m)/2 + lp; %f^=f-Hb_m,
end
i = 0;
while i < 10 && lp_new < lp_old && ~isnan(sum(f))
% reduce step size by half
a = (a_old+a)/2;
f = K*a;
lp = gp.lik.fh.ll(gp.lik, y, f, z);
if ~isfield(gp,'meanf')
lp_new = -a'*f/2 + lp;
else
%lp_new = -(f-H'*b_m)'*(a-K\(H'*b_m))/2 + lp;
lp_new = -(f-Hb_m)'*(a-iKHb_m)/2 + lp;
end
i = i+1;
end
if isfield(gp.lik,'xtime')
[llg2diag, llg2mat] = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
Wdiag=-llg2diag; Wmat=-llg2mat;
else
Wvec = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
Wdiag=[Wvec(1:nl(1),1); Wvec(nl(1)+(1:nl(2)),2)];
end
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
end
% evaluate the approximate log marginal likelihood
if isfield(gp.lik,'xtime')
[llg2diag, llg2mat] = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
Wdiag=-llg2diag; Wmat=-llg2mat;
else
Wvec = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
Wdiag=[Wvec(1:nl(1),1); Wvec(nl(1)+(1:nl(2)),2)];
end
if ~isfield(gp,'meanf')
logZ = 0.5 *f'*a - gp.lik.fh.ll(gp.lik, y, f, z);
else
% logZ = 0.5 *((f-H'*b_m)'*(a-K\(H'*b_m))) - gp.lik.fh.ll(gp.lik, y, f, z);
logZ = 0.5 *((f-Hb_m)'*(a-iKHb_m)) - gp.lik.fh.ll(gp.lik, y, f, z);
end
WK(1:nl(1),1:nl(1))=bsxfun(@times, Wdiag(1:nl(1)),K(1:nl(1),1:nl(1)));
WK(nl(1)+(1:nl(2)),nl(1)+(1:nl(2)))=bsxfun(@times, Wdiag(nl(1)+(1:nl(2))),K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))));
if isfield(gp.lik,'xtime')
WK(1:ntime,ntime+(1:n))=Wmat*K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2)));
WK(nl(1)+(1:nl(2)),1:nl(1))=Wmat'*K(1:nl(1),1:nl(1));
else
WK(1:nl(1),nl(1)+(1:nl(2)))=bsxfun(@times, Wvec(1:nl(1),2),K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))));
WK(nl(1)+(1:nl(2)),1:nl(1))=bsxfun(@times, Wvec(nl(1)+(1:nl(2)),1),K(1:nl(2),1:nl(2)));
end
% B = I + WK
B=WK;
B(1:sum(nl)+1:end) = B(1:sum(nl)+1:end) + 1;
[Ll,Lu]=lu(B);
edata = logZ + 0.5*det(Ll)*prod(sign(diag(Lu))).*sum(log(abs(diag(Lu))));
% Return help parameters for gradient and prediction
% calculations
L=B;
E=Ll;
M=Lu;
end
La2=E;
p=M;
end
% ============================================================
% FIC
% ============================================================
case 'FIC'
u = gp.X_u;
m = length(u);
% First evaluate needed covariance matrices
% v defines that parameter is a vector
[Kv_ff, Cv_ff] = gp_trvar(gp, x); % f x 1 vector
K_fu = gp_cov(gp, x, u); % f x u
K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu
[Luu, notpositivedefinite] = chol(K_uu, 'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
% Evaluate the Lambda (La)
% Q_ff = K_fu*inv(K_uu)*K_fu'
% Here we need only the diag(Q_ff), which is evaluated below
B=Luu\(K_fu'); % u x f
Qv_ff=sum(B.^2)';
Lav = Cv_ff-Qv_ff; % f x 1, Vector of diagonal elements
iLaKfu = repmat(Lav,1,m).\K_fu; % f x u
A = K_uu+K_fu'*iLaKfu; A = (A+A')./2; % Ensure symmetry
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L = iLaKfu/A;
switch gp.latent_opt.optim_method
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by fminunc large scale method
case 'fminunc_large'
fhm = @(W, f, varargin) (f./repmat(Lav,1,size(f,2)) - L*(L'*f) + repmat(W,1,size(f,2)).*f); % hessian*f; %
defopts=struct('GradObj','on','Hessian','on','HessMult', fhm,'TolX', 1e-8,'TolFun', 1e-8,'LargeScale', 'on','Display', 'off');
if ~isfield(gp.latent_opt, 'fminunc_opt')
opt = optimset(defopts);
else
opt = optimset(defopts,gp.latent_opt.fminunc_opt);
end
fe = @(f, varargin) (0.5*f*(f'./repmat(Lav,1,size(f',2)) - L*(L'*f')) - gp.lik.fh.ll(gp.lik, y, f', z));
fg = @(f, varargin) (f'./repmat(Lav,1,size(f',2)) - L*(L'*f') - gp.lik.fh.llg(gp.lik, y, f', 'latent', z))';
fh = @(f, varargin) (-gp.lik.fh.llg2(gp.lik, y, f', 'latent', z));
mydeal = @(varargin)varargin{1:nargout};
[f,fval,exitflag,output] = fminunc(@(ww) mydeal(fe(ww), fg(ww), fh(ww)), f', opt);
f = f';
a = f./Lav - L*L'*f;
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by Newton method
case 'newton'
tol = 1e-12;
a = f;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp_new = gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
iter = 0;
while lp_new - lp_old > tol && iter < maxiter
iter = iter + 1;
lp_old = lp_new; a_old = a;
sW = sqrt(W);
Lah = 1 + sW.*Lav.*sW;
sWKfu = repmat(sW,1,m).*K_fu;
A = K_uu + sWKfu'*(repmat(Lah,1,m).\sWKfu); A = (A+A')./2;
Lb = (repmat(Lah,1,m).\sWKfu)/chol(A);
b = W.*f+dlp;
b2 = sW.*(Lav.*b + B'*(B*b));
a = b - sW.*(b2./Lah - Lb*(Lb'*b2));
f = Lav.*a + B'*(B*a);
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = 0;
while i < 10 && lp_new < lp_old && ~isnan(sum(f))
% reduce step size by half
a = (a_old+a)/2;
f = Lav.*a + B'*(B*a);
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = i+1;
end
end
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables with likelihood specific algorithm
% For example, with Student-t likelihood this mean EM-algorithm which is coded in the
% lik_t file.
case 'lik_specific'
[f, a] = gp.lik.fh.optimizef(gp, y, K_uu, Lav, K_fu);
if isnan(f)
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
otherwise
error('gpla_e: Unknown optimization method ! ')
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
logZ = 0.5*f'*a - gp.lik.fh.ll(gp.lik, y, f, z);
if W >= 0
sqrtW = sqrt(W);
Lah = 1 + sqrtW.*Lav.*sqrtW;
sWKfu = repmat(sqrtW,1,m).*K_fu;
A = K_uu + sWKfu'*(repmat(Lah,1,m).\sWKfu); A = (A+A')./2;
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
edata = sum(log(Lah)) - 2*sum(log(diag(Luu))) + 2*sum(log(diag(A)));
edata = logZ + 0.5*edata;
else
% This is with full matrices. Needs to be rewritten.
K = diag(Lav) + B'*B;
% $$$ [W,I] = sort(W, 1, 'descend');
% $$$ K = K(I,I);
[W2,I] = sort(W, 1, 'descend');
[L, notpositivedefinite] = chol(K);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L1 = L;
for jj=1:size(K,1)
i = I(jj);
ll = sum(L(:,i).^2);
l = L'*L(:,i);
upfact = W(i)./(1 + W(i).*ll);
% Check that Cholesky factorization will remain positive definite
if 1 + W(i).*ll <= 0 | upfact > 1./ll
warning('gpla_e: 1 + W(i).*ll < 0')
ind = 1:i-1;
if isempty(z)
mu = K(i,ind)*gp.lik.fh.llg(gp.lik, y(I(ind)), f(I(ind)), 'latent', z);
else
mu = K(i,ind)*gp.lik.fh.llg(gp.lik, y(I(ind)), f(I(ind)), 'latent', z(I(ind)));
end
upfact = gp.lik.fh.upfact(gp, y(I(i)), mu, ll);
% $$$ W2 = -1./(ll+1e-3);
% $$$ upfact = W2./(1 + W2.*ll);
end
if upfact > 0
L = cholupdate(L, l.*sqrt(upfact), '-');
else
L = cholupdate(L, l.*sqrt(-upfact));
end
end
edata = logZ + sum(log(diag(L1))) - sum(log(diag(L))); % sum(log(diag(chol(K)))) + sum(log(diag(chol((inv(K) + W)))));
end
La2 = Lav;
% ============================================================
% PIC
% ============================================================
case {'PIC' 'PIC_BLOCK'}
ind = gp.tr_index;
u = gp.X_u;
m = length(u);
% First evaluate needed covariance matrices
% v defines that parameter is a vector
K_fu = gp_cov(gp, x, u); % f x u
K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu
K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu
[Luu, notpositivedefinite] = chol(K_uu, 'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
% Evaluate the Lambda (La)
% Q_ff = K_fu*inv(K_uu)*K_fu'
% Here we need only the diag(Q_ff), which is evaluated below
B=Luu\(K_fu'); % u x f
% First some helper parameters
iLaKfu = zeros(size(K_fu)); % f x u
for i=1:length(ind)
Qbl_ff = B(:,ind{i})'*B(:,ind{i});
[Kbl_ff, Cbl_ff] = gp_trcov(gp, x(ind{i},:));
Labl{i} = Cbl_ff - Qbl_ff;
[LLabl{i}, notpositivedefinite] = chol(Labl{i});
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
iLaKfu(ind{i},:) = LLabl{i}\(LLabl{i}'\K_fu(ind{i},:));
end
A = K_uu+K_fu'*iLaKfu;
A = (A+A')./2; % Ensure symmetry
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L = iLaKfu/A;
% Begin optimization
switch gp.latent_opt.optim_method
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by fminunc large scale method
case 'fminunc_large'
fhm = @(W, f, varargin) (iKf(f) + repmat(W,1,size(f,2)).*f);
defopts=struct('GradObj','on','Hessian','on','HessMult', fhm,'TolX', 1e-8,'TolFun', 1e-8,'LargeScale', 'on','Display', 'off');
if ~isfield(gp.latent_opt, 'fminunc_opt')
opt = optimset(defopts);
else
opt = optimset(defopts,gp.latent_opt.fminunc_opt);
end
[f,fval,exitflag,output] = fminunc(@(ww) egh(ww), f', opt);
f = f';
a = iKf(f);
% find the mode by Newton's method
% --------------------------------------------------------------------------------
case 'newton'
tol = 1e-12;
a = f;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp_new = gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
iter = 0;
while lp_new - lp_old > tol && iter < maxiter
iter = iter + 1;
lp_old = lp_new; a_old = a;
sW = sqrt(W);
V = repmat(sW,1,m).*K_fu;
for i=1:length(ind)
Lah{i} = eye(size(Labl{i})) + diag(sW(ind{i}))*Labl{i}*diag(sW(ind{i}));
[LLah{i}, notpositivedefinite] = chol(Lah{i});
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
V2(ind{i},:) = LLah{i}\(LLah{i}'\V(ind{i},:));
end
A = K_uu + V'*V2; A = (A+A')./2;
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
Lb = V2/A;
b = W.*f+dlp;
b2 = B'*(B*b);
bt = zeros(size(b2));
for i=1:length(ind)
b2(ind{i}) = sW(ind{i}).*(Labl{i}*b(ind{i}) + b2(ind{i}));
bt(ind{i}) = LLah{i}\(LLah{i}'\b2(ind{i}));
end
a = b - sW.*(bt - Lb*(Lb'*b2));
f = B'*(B*a);
for i=1:length(ind)
f(ind{i}) = Labl{i}*a(ind{i}) + f(ind{i}) ;
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = 0;
while i < 10 && lp_new < lp_old || isnan(sum(f))
% reduce step size by half
a = (a_old+a)/2;
f = B'*(B*a);
for i=1:length(ind)
f(ind{i}) = Labl{i}*a(ind{i}) + f(ind{i}) ;
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = i+1;
end
end
otherwise
error('gpla_e: Unknown optimization method ! ')
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
sqrtW = sqrt(W);
logZ = 0.5*f'*a - gp.lik.fh.ll(gp.lik, y, f, z);
WKfu = repmat(sqrtW,1,m).*K_fu;
edata = 0;
for i=1:length(ind)
Lahat = eye(size(Labl{i})) + diag(sqrtW(ind{i}))*Labl{i}*diag(sqrtW(ind{i}));
[LLahat, notpositivedefinite] = chol(Lahat);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
iLahatWKfu(ind{i},:) = LLahat\(LLahat'\WKfu(ind{i},:));
edata = edata + 2.*sum(log(diag(LLahat)));
end
A = K_uu + WKfu'*iLahatWKfu; A = (A+A')./2;
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
edata = edata - 2*sum(log(diag(Luu))) + 2*sum(log(diag(A)));
edata = logZ + 0.5*edata;
La2 = Labl;
% ============================================================
% CS+FIC
% ============================================================
case 'CS+FIC'
u = gp.X_u;
m = length(u);
cf_orig = gp.cf;
cf1 = {};
cf2 = {};
j = 1;
k = 1;
for i = 1:ncf
if ~isfield(gp.cf{i},'cs')
cf1{j} = gp.cf{i};
j = j + 1;
else
cf2{k} = gp.cf{i};
k = k + 1;
end
end
gp.cf = cf1;
% First evaluate needed covariance matrices
% v defines that parameter is a vector
[Kv_ff, Cv_ff] = gp_trvar(gp, x); % f x 1 vector
K_fu = gp_cov(gp, x, u); % f x u
K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu
K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu
[Luu, notpositivedefinite] = chol(K_uu, 'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
% Evaluate the Lambda (La)
% Q_ff = K_fu*inv(K_uu)*K_fu'
B=Luu\(K_fu'); % u x f
Qv_ff=sum(B.^2)';
Lav = Cv_ff-Qv_ff; % f x 1, Vector of diagonal elements
gp.cf = cf2;
K_cs = gp_trcov(gp,x);
La = sparse(1:n,1:n,Lav,n,n) + K_cs;
gp.cf = cf_orig;
% Find fill reducing permutation and permute all the
% matrices
p = analyze(La);
r(p) = 1:n;
if ~isempty(z)
z = z(p,:);
end
f = f(p);
y = y(p);
La = La(p,p);
K_fu = K_fu(p,:);
B = B(:,p);
[VD, notpositivedefinite] = ldlchol(La);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
iLaKfu = ldlsolve(VD,K_fu);
%iLaKfu = La\K_fu;
A = K_uu+K_fu'*iLaKfu; A = (A+A')./2; % Ensure symmetry
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L = iLaKfu/A;
% Begin optimization
switch gp.latent_opt.optim_method
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by fminunc large scale method
case 'fminunc_large'
fhm = @(W, f, varargin) (ldlsolve(VD,f) - L*(L'*f) + repmat(W,1,size(f,2)).*f); % Hessian*f; % La\f
defopts=struct('GradObj','on','Hessian','on','HessMult', fhm,'TolX', 1e-8,'TolFun', 1e-8,'LargeScale', 'on','Display', 'off');
if ~isfield(gp.latent_opt, 'fminunc_opt')
opt = optimset(defopts);
else
opt = optimset(defopts,gp.latent_opt.fminunc_opt);
end
[f,fval,exitflag,output] = fminunc(@(ww) egh(ww), f', opt);
f = f';
a = ldlsolve(VD,f) - L*L'*f;
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by Newton method
case 'newton'
tol = 1e-8;
a = f;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp_new = gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
I = sparse(1:n,1:n,1,n,n);
iter = 0;
while lp_new - lp_old > tol && iter < maxiter
iter = iter + 1;
lp_old = lp_new; a_old = a;
sW = sqrt(W);
sqrtW = sparse(1:n,1:n,sW,n,n);
Lah = I + sqrtW*La*sqrtW;
[VDh, notpositivedefinite] = ldlchol(Lah);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
V = repmat(sW,1,m).*K_fu;
Vt = ldlsolve(VDh,V);
A = K_uu + V'*Vt; A = (A+A')./2;
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
Lb = Vt/A;
b = W.*f+dlp;
b2 = sW.*(La*b + B'*(B*b));
a = b - sW.*(ldlsolve(VDh,b2) - Lb*(Lb'*b2) );
f = La*a + B'*(B*a);
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = 0;
while i < 10 && lp_new < lp_old
a = (a_old+a)/2;
f = La*a + B'*(B*a);
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = i+1;
end
end
otherwise
error('gpla_e: Unknown optimization method ! ')
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
sqrtW = sqrt(W);
logZ = 0.5*f'*a - gp.lik.fh.ll(gp.lik, y, f, z);
WKfu = repmat(sqrtW,1,m).*K_fu;
sqrtW = sparse(1:n,1:n,sqrtW,n,n);
Lahat = sparse(1:n,1:n,1,n,n) + sqrtW*La*sqrtW;
[LDh, notpositivedefinite] = ldlchol(Lahat);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
A = K_uu + WKfu'*ldlsolve(LDh,WKfu); A = (A+A')./2;
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
edata = sum(log(diag(LDh))) - 2*sum(log(diag(Luu))) + 2*sum(log(diag(A)));
edata = logZ + 0.5*edata;
La2 = La;
% Reorder all the returned and stored values
a = a(r);
L = L(r,:);
La2 = La2(r,r);
y = y(r);
f = f(r);
W = W(r);
if ~isempty(z)
z = z(r,:);
end
% ============================================================
% DTC, SOR
% ============================================================
case {'DTC' 'VAR' 'SOR'}
u = gp.X_u;
m = length(u);
% First evaluate needed covariance matrices
% v defines that parameter is a vector
K_fu = gp_cov(gp, x, u); % f x u
K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu
[Luu, notpositivedefinite] = chol(K_uu, 'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
% Evaluate the Lambda (La)
% Q_ff = K_fu*inv(K_uu)*K_fu'
B=Luu\(K_fu'); % u x f
% Qv_ff=sum(B.^2)';
% Lav = zeros(size(Qv_ff));
% Lav = Cv_ff-Qv_ff; % f x 1, Vector of diagonal elements
La2 = [];
switch gp.latent_opt.optim_method
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by fminunc large scale method
case 'fminunc_large'
% fhm = @(W, f, varargin) (f./repmat(Lav,1,size(f,2)) - L*(L'*f) + repmat(W,1,size(f,2)).*f); % hessian*f; %
% defopts=struct('GradObj','on','Hessian','on','HessMult', fhm,'TolX', 1e-8,'TolFun', 1e-8,'LargeScale', 'on','Display', 'off');
% if ~isfield(gp.latent_opt, 'fminunc_opt')
% opt = optimset(defopts);
% else
% opt = optimset(defopts,gp.latent_opt.fminunc_opt);
% end
%
% fe = @(f, varargin) (0.5*f*(f'./repmat(Lav,1,size(f',2)) - L*(L'*f')) - gp.lik.fh.ll(gp.lik, y, f', z));
% fg = @(f, varargin) (f'./repmat(Lav,1,size(f',2)) - L*(L'*f') - gp.lik.fh.llg(gp.lik, y, f', 'latent', z))';
% fh = @(f, varargin) (-gp.lik.fh.llg2(gp.lik, y, f', 'latent', z));
% mydeal = @(varargin)varargin{1:nargout};
% [f,fval,exitflag,output] = fminunc(@(ww) mydeal(fe(ww), fg(ww), fh(ww)), f', opt);
% f = f';
%
% a = f./Lav - L*L'*f;
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables by Newton method
case 'newton'
tol = 1e-12;
a = f;
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp_new = gp.lik.fh.ll(gp.lik, y, f, z);
lp_old = -Inf;
iter = 0;
while lp_new - lp_old > tol && iter < maxiter
iter = iter + 1;
lp_old = lp_new; a_old = a;
sW = sqrt(W);
sWKfu = repmat(sW,1,m).*K_fu;
A = K_uu + sWKfu'*sWKfu; A = (A+A')./2;
[A, notpositivedefinite]=chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
Lb = sWKfu/A;
b = W.*f+dlp;
b2 = sW.*(B'*(B*b));
a = b - sW.*(b2 - Lb*(Lb'*b2));
f = B'*(B*a);
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
dlp = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = 0;
while i < 10 && lp_new < lp_old && ~isnan(sum(f))
% reduce step size by half
a = (a_old+a)/2;
f = B'*(B*a);
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
lp = gp.lik.fh.ll(gp.lik, y, f, z);
lp_new = -a'*f/2 + lp;
i = i+1;
end
end
% --------------------------------------------------------------------------------
% find the posterior mode of latent variables with likelihood specific algorithm
% For example, with Student-t likelihood this mean EM-algorithm which is coded in the
% lik_t file.
case 'lik_specific'
[f, a] = gp.lik.fh.optimizef(gp, y, K_uu, zeros(n,1), K_fu);
otherwise
error('gpla_e: Unknown optimization method ! ')
end
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
logZ = 0.5*f'*a - gp.lik.fh.ll(gp.lik, y, f, z);
if W >= 0
sqrtW = sqrt(W);
% L = chol(eye(n) + diag(sqrtW)*(B'*B)*diag(sqrtW), 'lower');
% edata = logZ + sum(log(diag(L)));
sWKfu = bsxfun(@times, sqrtW, K_fu);
A = K_uu + sWKfu'*sWKfu; A = (A+A')./2;
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
edata = -sum(log(diag(Luu))) + sum(log(diag(A)));
edata = logZ + edata;
if strcmp(gp.type,'VAR')
Kv_ff = gp_trvar(gp, x);
Qv_ff = sum(B.^2)';
edata = edata + 0.5*sum((Kv_ff-Qv_ff).*W);
La2=Kv_ff-Qv_ff;
end
else
% This is with full matrices. Needs to be rewritten.
% K = diag(Lav) + B'*B;
% % $$$ [W,I] = sort(W, 1, 'descend');
% % $$$ K = K(I,I);
% [W2,I] = sort(W, 1, 'descend');
%
% [L, notpositivedefinite] = chol(K);
% if notpositivedefinite
% [edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
% return
% end
% L1 = L;
% for jj=1:size(K,1)
% i = I(jj);
% ll = sum(L(:,i).^2);
% l = L'*L(:,i);
% upfact = W(i)./(1 + W(i).*ll);
%
% % Check that Cholesky factorization will remain positive definite
% if 1 + W(i).*ll <= 0 | upfact > 1./ll
% warning('gpla_e: 1 + W(i).*ll < 0')
%
% ind = 1:i-1;
% if isempty(z)
% mu = K(i,ind)*gp.lik.fh.llg(gp.lik, y(I(ind)), f(I(ind)), 'latent', z);
% else
% mu = K(i,ind)*gp.lik.fh.llg(gp.lik, y(I(ind)), f(I(ind)), 'latent', z(I(ind)));
% end
% upfact = gp.lik.fh.upfact(gp, y(I(i)), mu, ll);
%
% % $$$ W2 = -1./(ll+1e-3);
% % $$$ upfact = W2./(1 + W2.*ll);
% end
% if upfact > 0
% L = cholupdate(L, l.*sqrt(upfact), '-');
% else
% L = cholupdate(L, l.*sqrt(-upfact));
% end
% end
% edata = logZ + sum(log(diag(L1))) - sum(log(diag(L))); % sum(log(diag(chol(K)))) + sum(log(diag(chol((inv(K) + W)))));
end
L=A;
% ============================================================
% SSGP
% ============================================================
case 'SSGP' % Predictions with sparse spectral sampling approximation for GP
% The approximation is proposed by M. Lazaro-Gredilla, J. Quinonero-Candela and A. Figueiras-Vidal
% in Microsoft Research technical report MSR-TR-2007-152 (November 2007)
% NOTE! This does not work at the moment.
% First evaluate needed covariance matrices
% v defines that parameter is a vector
[Phi, S] = gp_trcov(gp, x); % n x m matrix and nxn sparse matrix
Sv = diag(S);
m = size(Phi,2);
A = eye(m,m) + Phi'*(S\Phi);
[A, notpositivedefinite] = chol(A, 'lower');
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
L = (S\Phi)/A';
switch gp.latent_opt.optim_method
% find the mode by fminunc large scale method
case 'fminunc_large'
fhm = @(W, f, varargin) (f./repmat(Sv,1,size(f,2)) - L*(L'*f) + repmat(W,1,size(f,2)).*f); % Hessian*f; %
defopts=struct('GradObj','on','Hessian','on','HessMult', fhm,'TolX', 1e-8,'TolFun', 1e-8,'LargeScale', 'on','Display', 'off');
if ~isfield(gp.latent_opt, 'fminunc_opt')
opt=optimset(defopts);
else
opt = optimset(defopts,gp.latent_opt.fminunc_opt);
end
fe = @(f, varargin) (0.5*f*(f'./repmat(Sv,1,size(f',2)) - L*(L'*f')) - gp.lik.fh.ll(gp.lik, y, f', z));
fg = @(f, varargin) (f'./repmat(Sv,1,size(f',2)) - L*(L'*f') - gp.lik.fh.llg(gp.lik, y, f', 'latent', z))';
fh = @(f, varargin) (-gp.lik.fh.llg2(gp.lik, y, f', 'latent', z));
mydeal = @(varargin)varargin{1:nargout};
[f,fval,exitflag,output] = fminunc(@(ww) mydeal(fe(ww), fg(ww), fh(ww)), f', opt);
f = f';
W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);
sqrtW = sqrt(W);
b = L'*f;
logZ = 0.5*(f'*(f./Sv) - b'*b) - gp.lik.fh.ll(gp.lik, y, f, z);
case 'Newton'
error('The Newton''s method is not implemented for FIC!\n')
end
WPhi = repmat(sqrtW,1,m).*Phi;
A = eye(m,m) + WPhi'./repmat((1+Sv.*W)',m,1)*WPhi; A = (A+A')./2;
[A, notpositivedefinite] = chol(A);
if notpositivedefinite
[edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite();
return
end
edata = sum(log(1+Sv.*W)) + 2*sum(log(diag(A)));
edata = logZ + 0.5*edata;
La2 = Sv;
otherwise
error('Unknown type of Gaussian process!')
end
% ======================================================================
% Evaluate the prior contribution to the error from covariance functions
% ======================================================================
eprior = 0;
for i1=1:ncf
gpcf = gp.cf{i1};
eprior = eprior - gpcf.fh.lp(gpcf);
end
% ======================================================================
% Evaluate the prior contribution to the error from likelihood function
% ======================================================================
if isfield(gp, 'lik') && isfield(gp.lik, 'p')
lik = gp.lik;
eprior = eprior - lik.fh.lp(lik);
end
e = edata + eprior;
% store values to the cache
ch.w = w;
ch.e = e;
ch.edata = edata;
ch.eprior = eprior;
ch.f = f;
ch.L = L;
% ch.W = W;
ch.n = size(x,1);
ch.La2 = La2;
ch.a = a;
ch.p=p;
ch.datahash=datahash;
end
% assert(isreal(edata))
% assert(isreal(eprior))
%
% ==============================================================
% Begin of the nested functions
% ==============================================================
%
function [e, g, h] = egh(f, varargin)
ikf = iKf(f');
e = 0.5*f*ikf - gp.lik.fh.ll(gp.lik, y, f', z);
g = (ikf - gp.lik.fh.llg(gp.lik, y, f', 'latent', z))';
h = -gp.lik.fh.llg2(gp.lik, y, f', 'latent', z);
end
function ikf = iKf(f, varargin)
switch gp.type
case {'PIC' 'PIC_BLOCK'}
iLaf = zeros(size(f));
for i=1:length(ind)
iLaf(ind2depo{i},:) = LLabl{i}\(LLabl{i}'\f(ind{i},:));
end
ikf = iLaf - L*(L'*f);
case 'CS+FIC'
ikf = ldlsolve(VD,f) - L*(L'*f);
end
end
end
function [edata,e,eprior,f,L,a,La2,p,ch] = set_output_for_notpositivedefinite()
% Instead of stopping to chol error, return NaN
edata=NaN;
e=NaN;
eprior=NaN;
f=NaN;
L=NaN;
a=NaN;
La2=NaN;
p=NaN;
datahash = NaN;
w = NaN;
ch.e = e;
ch.edata = edata;
ch.eprior = eprior;
ch.f = f;
ch.L = L;
ch.La2 = La2;
ch.a = a;
ch.p=p;
ch.datahash=datahash;
ch.w = NaN;
end
end
|
github
|
lcnbeapp/beapp-master
|
lik_qgp.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/lik_qgp.m
| 19,707 |
utf_8
|
85ad9907ffd15fdea5cb48eef340f8c1
|
function lik = lik_qgp(varargin)
%LIK_QGP Create a Quantile Gaussian Process likelihood (utility) structure
%
% Description
% LIK = LIK_QGP('PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates a quantile gp likelihood structure in which the named
% parameters have the specified values. Any unspecified
% parameters are set to default values.
%
% LIK = LIK_QGP(LIK,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a likelihood function structure with the named
% parameters altered with the specified values.
%
% Parameters for QGP likelihood function [default]
% sigma2 - variance [0.1]
% sigma2_prior - prior for sigma2 [prior_logunif]
% quantile - Quantile of interest [0.5]
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% The likelihood is defined as follows:
% __ n
% p(y|f, sigma2, tau) = || i=1 tau*(1-tau)/sigma*exp(-(y-f)/sigma*
% (tau - I(t <= f)))
%
% where tau is the quantile of interest, sigma is the standard deviation
% of the distribution and I(t <= f) = 1 if t <= f, 0 otherwise.
%
% Note that because the form of the likelihood, second order derivatives
% with respect to latent values are 0. Because this, EP should be used
% instead of Laplace approximation.
%
% See also
% GP_SET, PRIOR_*, LIK_*
%
% References
% Boukouvalas et al. (2012). Direct Gaussian Process Quantile Regression
% Using Expectation Propagation. Appearing in Proceedings of the 29th
% International Conference on Machine Learning, Edinburg, Scotland, UK,
% 2012.
%
% Copyright (c) 2012 Ville Tolvanen
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'LIK_QGP';
ip.addOptional('lik', [], @isstruct);
ip.addParamValue('sigma2',0.1, @(x) isscalar(x) && x>0);
ip.addParamValue('sigma2_prior',prior_logunif(), @(x) isstruct(x) || isempty(x));
ip.addParamValue('quantile',0.5, @(x) isscalar(x) && x>0 && x<1);
ip.parse(varargin{:});
lik=ip.Results.lik;
if isempty(lik)
init=true;
lik.type = 'QGP';
else
if ~isfield(lik,'type') || ~isequal(lik.type,'QGP')
error('First argument does not seem to be a valid likelihood function structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('sigma2',ip.UsingDefaults)
lik.sigma2 = ip.Results.sigma2;
end
if init || ~ismember('quantile',ip.UsingDefaults)
lik.quantile = ip.Results.quantile;
end
% Initialize prior structure
if init
lik.p=[];
end
if init || ~ismember('sigma2_prior',ip.UsingDefaults)
lik.p.sigma2=ip.Results.sigma2_prior;
end
if init
% Set the function handles to the subfunctions
lik.fh.pak = @lik_qgp_pak;
lik.fh.unpak = @lik_qgp_unpak;
lik.fh.lp = @lik_qgp_lp;
lik.fh.lpg = @lik_qgp_lpg;
lik.fh.ll = @lik_qgp_ll;
lik.fh.llg = @lik_qgp_llg;
lik.fh.llg2 = @lik_qgp_llg2;
lik.fh.llg3 = @lik_qgp_llg3;
lik.fh.tiltedMoments = @lik_qgp_tiltedMoments;
lik.fh.siteDeriv = @lik_qgp_siteDeriv;
lik.fh.predy = @lik_qgp_predy;
lik.fh.invlink = @lik_qgp_invlink;
lik.fh.recappend = @lik_qgp_recappend;
end
end
function [w s] = lik_qgp_pak(lik)
%LIK_QGP_PAK Combine likelihood parameters into one vector.
%
% Description
% W = LIK_QGP_PAK(LIK) takes a likelihood structure LIK
% and combines the parameters into a single row vector W.
% This is a mandatory subfunction used for example in
% energy and gradient computations.
%
% w = [ log(lik.sigma2)
% (hyperparameters of lik.magnSigma2)]'
%
% See also
% LIK_QGP_UNPAK
w = []; s = {};
if ~isempty(lik.p.sigma2)
w = [w log(lik.sigma2)];
s = [s; 'log(qgp.sigma2)'];
% Hyperparameters of sigma2
[wh sh] = lik.p.sigma2.fh.pak(lik.p.sigma2);
w = [w wh];
s = [s; sh];
end
end
function [lik, w] = lik_qgp_unpak(lik, w)
%LIK_QGP_UNPAK Extract likelihood parameters from the vector.
%
% Description
% W = LIK_QGP_UNPAK(W, LIK) takes a likelihood structure
% LIK and extracts the parameters from the vector W to the LIK
% structure. This is a mandatory subfunction used for example
% in energy and gradient computations.
%
% Assignment is inverse of
% w = [ log(lik.sigma2)
% (hyperparameters of lik.magnSigma2)]'
%
% See also
% LIK_QGP_PAK
if ~isempty(lik.p.sigma2)
lik.sigma2 = exp(w(1));
w = w(2:end);
% Hyperparameters of sigma2
[p, w] = lik.p.sigma2.fh.unpak(lik.p.sigma2, w);
lik.p.sigma2 = p;
end
end
function lp = lik_qgp_lp(lik)
%LIK_QGP_LP Evaluate the log prior of likelihood parameters
%
% Description
% LP = LIK_QGP_LP(LIK) takes a likelihood structure LIK and
% returns log(p(th)), where th collects the parameters. This
% subfunction is needed when there are likelihood parameters.
%
% See also
% LIK_QGP_PAK, LIK_QGP_UNPAK, LIK_QGP_G, GP_E
lp = 0;
if ~isempty(lik.p.sigma2)
likp=lik.p;
lp = likp.sigma2.fh.lp(lik.sigma2, likp.sigma2) + log(lik.sigma2);
end
end
function lpg = lik_qgp_lpg(lik)
%LIK_QGP_LPG Evaluate gradient of the log prior with respect
% to the parameters.
%
% Description
% LPG = LIK_QGP_LPG(LIK) takes a QGP likelihood
% function structure LIK and returns LPG = d log (p(th))/dth,
% where th is the vector of parameters. This subfunction is
% needed when there are likelihood parameters.
%
% See also
% LIK_QGP_PAK, LIK_QGP_UNPAK, LIK_QGP_E, GP_G
lpg = [];
if ~isempty(lik.p.sigma2)
likp=lik.p;
lpgs = likp.sigma2.fh.lpg(lik.sigma2, likp.sigma2);
lpg = lpgs(1).*lik.sigma2 + 1;
if length(lpgs) > 1
lpg = [lpg lpgs(2:end)];
end
end
end
function ll = lik_qgp_ll(lik, y, f, z)
%LIK_QGP_LL Log likelihood
%
% Description
% LL = LIK_QGP_LL(LIK, Y, F, Z) takes a likelihood
% structure LIK, observations Y and latent values F.
% Returns the log likelihood, log p(y|f,z). This subfunction
% is needed when using Laplace approximation or MCMC for
% inference with non-Gaussian likelihoods. This subfunction
% is also used in information criteria (DIC, WAIC) computations.
%
% See also
% LIK_QGP_LLG, LIK_QGP_LLG3, LIK_QGP_LLG2, GPLA_E
tau=lik.quantile;
sigma=sqrt(lik.sigma2);
ll = sum(log(tau*(1-tau)/sigma) - (y-f)./sigma.*(tau-(y<=f)));
end
function llg = lik_qgp_llg(lik, y, f, param, z)
%LIK_QGP_LLG Gradient of the log likelihood
%
% Description
% LLG = LIK_QGP_LLG(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, observations Y and latent values F. Returns
% the gradient of the log likelihood with respect to PARAM.
% At the moment PARAM can be 'param' or 'latent'. This subfunction
% is needed when using Laplace approximation or MCMC for inference
% with non-Gaussian likelihoods.
%
% See also
% LIK_QGP_LL, LIK_QGP_LLG2, LIK_QGP_LLG3, GPLA_E
tau=lik.quantile;
sigma2=sqrt(lik.sigma2);
switch param
case 'param'
llg = sum(-1/(2.*sigma2) + (y-f)./(2.*sigma2^(3/2)).*(tau-(y<=f)));
% correction for the log transformation
llg = llg.*lik.sigma2;
case 'latent'
llg = (tau-(y<=f))/sqrt(sigma2);
end
end
function llg2 = lik_qgp_llg2(lik, y, f, param, z)
%LIK_QGP_LLG2 Second gradients of the log likelihood
%
% Description
% LLG2 = LIK_QGP_LLG2(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, observations Y and latent values F. Returns
% the Hessian of the log likelihood with respect to PARAM.
% At the moment PARAM can be 'param' or 'latent'. LLG2 is
% a vector with diagonal elements of the Hessian matrix
% (off diagonals are zero). This subfunction is needed
% when using Laplace approximation or EP for inference
% with non-Gaussian likelihoods.
%
% See also
% LIK_QGP_LL, LIK_QGP_LLG, LIK_QGP_LLG3, GPLA_E
tau=lik.quantile;
sigma2=lik.sigma2;
switch param
case 'param'
llg2 = sum(1/(2*sigma2^2) - 3.*(tau-(y<=f)).*(y-f)./(4.*sigma2^(5/2)));
% correction due to the log transformation
llg2 = llg2.*lik.sigma2;
case 'latent'
llg2 = zeros(size(f));
case 'latent+param'
llg2 = -(tau-(y<=f))./(2*sigma2^(3/2));
% correction due to the log transformation
llg2 = llg2.*lik.disper;
end
end
function llg3 = lik_qgp_llg3(lik, y, f, param, z)
%LIK_QGP_LLG3 Third gradients of the log likelihood
%
% Description
% LLG3 = LIK_QGP_LLG3(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, observations Y and latent values F and
% returns the third gradients of the log likelihood with
% respect to PARAM. At the moment PARAM can be 'param' or
% 'latent'. LLG3 is a vector with third gradients. This
% subfunction is needed when using Laplace approximation for
% inference with non-Gaussian likelihoods.
%
% See also
% LIK_QGP_LL, LIK_QGP_LLG, LIK_QGP_LLG2, GPLA_E, GPLA_G
tau=lik.quantile;
sigma2=lik.sigma2;
switch param
case 'param'
llg3 = sum(-1/sigma2^3 + 15.*(tau-(y<=f)).*(y-f)./(8.*sigma2^(7/2)));
case 'latent'
llg3 = 0;
case 'latent2+param'
llg3 = 0;
% correction due to the log transformation
llg3 = llg3.*lik.sigma2;
end
end
function [logM_0, m_1, sigm2hati1] = lik_qgp_tiltedMoments(lik, y, i1, sigm2_i, myy_i, z)
%LIK_QGP_TILTEDMOMENTS Returns the marginal moments for EP algorithm
%
% Description
% [M_0, M_1, M2] = LIK_QGP_TILTEDMOMENTS(LIK, Y, I, S2,
% MYY, Z) takes a likelihood structure LIK, observations
% Y, index I and cavity variance S2 and mean MYY. Returns
% the zeroth moment M_0, mean M_1 and variance M_2 of the
% posterior marginal (see Rasmussen and Williams (2006):
% Gaussian processes for Machine Learning, page 55). This
% subfunction is needed when using EP for inference with
% non-Gaussian likelihoods.
%
% See also
% GPEP_E
yy = y(i1);
sigma2 = lik.sigma2;
tau=lik.quantile;
logM_0=zeros(size(yy));
m_1=zeros(size(yy));
sigm2hati1=zeros(size(yy));
for i=1:length(i1)
% get a function handle of an unnormalized tilted distribution
% (likelihood * cavity = Quantile-GP * Gaussian)
% and useful integration limits
[tf,minf,maxf]=init_qgp_norm(yy(i),myy_i(i),sigm2_i(i),sigma2,tau);
% Integrate with quadrature
RTOL = 1.e-6;
ATOL = 1.e-10;
[m_0, m_1(i), m_2] = quad_moments(tf, minf, maxf, RTOL, ATOL);
sigm2hati1(i) = m_2 - m_1(i).^2;
% If the second central moment is less than cavity variance
% integrate more precisely. Theoretically for log-concave
% likelihood should be sigm2hati1 < sigm2_i.
if sigm2hati1(i) >= sigm2_i(i)
ATOL = ATOL.^2;
RTOL = RTOL.^2;
[m_0, m_1(i), m_2] = quad_moments(tf, minf, maxf, RTOL, ATOL);
sigm2hati1(i) = m_2 - m_1(i).^2;
if sigm2hati1(i) >= sigm2_i(i)
error('lik_qgp_tilted_moments: sigm2hati1 >= sigm2_i');
end
end
logM_0(i) = log(m_0);
end
end
function [g_i] = lik_qgp_siteDeriv(lik, y, i1, sigm2_i, myy_i, z)
%LIK_QGP_SITEDERIV Evaluate the expectation of the gradient
% of the log likelihood term with respect
% to the likelihood parameters for EP
%
% Description [M_0, M_1, M2] =
% LIK_QGP_SITEDERIV(LIK, Y, I, S2, MYY, Z) takes a
% likelihood structure LIK, observations Y, index I
% and cavity variance S2 and mean MYY. Returns E_f
% [d log p(y_i|f_i) /d a], where a is the likelihood
% parameter and the expectation is over the marginal posterior.
% This term is needed when evaluating the gradients of
% the marginal likelihood estimate Z_EP with respect to
% the likelihood parameters (see Seeger (2008):
% Expectation propagation for exponential families).This
% subfunction is needed when using EP for inference with
% non-Gaussian likelihoods and there are likelihood parameters.
%
% See also
% GPEP_G
yy = y(i1);
sigma2=lik.sigma2;
tau=lik.quantile;
% get a function handle of an unnormalized tilted distribution
% (likelihood * cavity = Quantile-GP * Gaussian)
% and useful integration limits
[tf,minf,maxf]=init_qgp_norm(yy,myy_i,sigm2_i,sigma2,tau);
% additionally get function handle for the derivative
td = @deriv;
% Integrate with quadgk
[m_0, fhncnt] = quadgk(tf, minf, maxf);
[g_i, fhncnt] = quadgk(@(f) td(f).*tf(f)./m_0, minf, maxf);
g_i = g_i.*sigma2;
function g = deriv(f)
g = -1/(2.*sigma2) + (yy-f)./(2.*sigma2^(3/2)).*(tau-(yy<=f));
end
end
function [lpy, Ey, Vary] = lik_qgp_predy(lik, Ef, Varf, yt, zt)
%LIK_QGP_PREDY Returns the predictive mean, variance and density of y
%
% Description
% LPY = LIK_QGP_PREDY(LIK, EF, VARF YT, ZT)
% Returns logarithm of the predictive density PY of YT, that is
% p(yt | zt) = \int p(yt | f, zt) p(f|y) df.
% This subfunction is needed when computing posterior predictive
% distributions for future observations.
%
% [LPY, EY, VARY] = LIK_QGP_PREDY(LIK, EF, VARF) takes a
% likelihood structure LIK, posterior mean EF and posterior
% Variance VARF of the latent variable and returns the
% posterior predictive mean EY and variance VARY of the
% observations related to the latent variables. This
% subfunction is needed when computing posterior predictive
% distributions for future observations.
%
%
% See also
% GPLA_PRED, GPEP_PRED, GPMC_PRED
sigma2=lik.sigma2;
tau=lik.quantile;
Ey=[];
Vary=[];
% Evaluate the posterior predictive densities of the given observations
lpy = zeros(length(yt),1);
for i1=1:length(yt)
% get a function handle of the likelihood times posterior
% (likelihood * posterior = Quantile-GP * Gaussian)
% and useful integration limits
[pdf,minf,maxf]=init_qgp_norm(...
yt(i1),Ef(i1),Varf(i1),sigma2, tau);
% integrate over the f to get posterior predictive distribution
lpy(i1) = log(quadgk(pdf, minf, maxf));
end
end
function [df,minf,maxf] = init_qgp_norm(yy,myy_i,sigm2_i,sigma2,tau)
%INIT_QGP_NORM
%
% Description
% Return function handle to a function evaluating
% Quantile-GP * Gaussian which is used for evaluating
% (likelihood * cavity) or (likelihood * posterior) Return
% also useful limits for integration. This is private function
% for lik_qgp. This subfunction is needed by subfunctions
% tiltedMoments, siteDeriv and predy.
%
% See also
% LIK_QGP_TILTEDMOMENTS, LIK_QGP_SITEDERIV,
% LIK_QGP_PREDY
sigma=sqrt(sigma2);
% avoid repetitive evaluation of constant part
ldconst = log(tau*(1-tau)/sigma) ...
- log(sigm2_i)/2 - log(2*pi)/2;
% Create function handle for the function to be integrated
df = @qgp_norm;
% use log to avoid underflow, and derivates for faster search
ld = @log_qgp_norm;
ldg = @log_qgp_norm_g;
% ldg2 = @log_qgp_norm_g2;
% Set the limits for integration
% Quantile-GP likelihood is log-concave so the qgp_norm
% function is unimodal, which makes things easier
if yy==0
% with yy==0, the mode of the likelihood is not defined
% use the mode of the Gaussian (cavity or posterior) as a first guess
modef = myy_i;
else
% use precision weighted mean of the Gaussian approximation
% of the Quantile-GP likelihood and Gaussian
modef = (myy_i/sigm2_i + yy/sigma2)/(1/sigm2_i + 1/sigma2);
end
% find the mode of the integrand using Newton iterations
% few iterations is enough, since the first guess in the right direction
niter=8; % number of Newton iterations
minf=modef-6*sigm2_i;
while ldg(minf) < 0
minf=minf-2*sigm2_i;
end
maxf=modef+6*sigm2_i;
while ldg(maxf) > 0
maxf=maxf+2*sigm2_i;
end
for ni=1:niter
% h=ldg2(modef);
modef=0.5*(minf+maxf);
if ldg(modef) < 0
maxf=modef;
else
minf=modef;
end
end
% integrand limits based on Gaussian approximation at mode
minf=modef-6*sqrt(sigm2_i);
maxf=modef+6*sqrt(sigm2_i);
modeld=ld(modef);
iter=0;
% check that density at end points is low enough
lddiff=20; % min difference in log-density between mode and end-points
minld=ld(minf);
step=1;
while minld>(modeld-lddiff)
minf=minf-step*sqrt(sigm2_i);
minld=ld(minf);
iter=iter+1;
step=step*2;
if iter>100
error(['lik_qgp -> init_qgp_norm: ' ...
'integration interval minimun not found ' ...
'even after looking hard!'])
end
end
maxld=ld(maxf);
step=1;
while maxld>(modeld-lddiff)
maxf=maxf+step*sqrt(sigm2_i);
maxld=ld(maxf);
iter=iter+1;
step=step*2;
if iter>100
error(['lik_qgp -> init_qgp_norm: ' ...
'integration interval maximun not found ' ...
'even after looking hard!'])
end
end
function integrand = qgp_norm(f)
% Quantile-GP * Gaussian
integrand = exp(ldconst ...
-(yy-f)./sqrt(sigma2).*(tau-(yy<=f)) ...
-0.5*(f-myy_i).^2./sigm2_i);
end
function log_int = log_qgp_norm(f)
% log(Quantile-GP * Gaussian)
% log_qgp_norm is used to avoid underflow when searching
% integration interval
log_int = ldconst...
-(yy-f)./sqrt(sigma2).*(tau-(yy<=f)) ...
-0.5*(f-myy_i).^2./sigm2_i;
end
function g = log_qgp_norm_g(f)
% d/df log(Quantile-GP * Gaussian)
% derivative of log_qgp_norm
g = (tau-(yy<=f))/sqrt(sigma2) ...
+ (myy_i - f)./sigm2_i;
end
end
function mu = lik_qgp_invlink(lik, f, z)
%LIK_QGP_INVLINK Returns values of inverse link function
%
% Description
% MU = LIK_QGP_INVLINK(LIK, F) takes a likelihood structure LIK and
% latent values F and returns the values MU of inverse link function.
% This subfunction is needed when using function gp_predprctmu.
%
% See also
% LIK_QGP_LL, LIK_QGP_PREDY
mu = f;
end
function reclik = lik_qgp_recappend(reclik, ri, lik)
%RECAPPEND Append the parameters to the record
%
% Description
% RECLIK = LIK_QGP_RECAPPEND(RECLIK, RI, LIK) takes a
% likelihood record structure RECLIK, record index RI and
% likelihood structure LIK with the current MCMC samples of
% the parameters. Returns RECLIK which contains all the old
% samples and the current samples from LIK. This subfunction
% is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC
if nargin == 2
% Initialize the record
reclik.type = 'Quantile-GP';
% Initialize parameter
reclik.sigma2 = [];
% Set the function handles
reclik.fh.pak = @lik_qgp_pak;
reclik.fh.unpak = @lik_qgp_unpak;
reclik.fh.lp = @lik_qgp_lp;
reclik.fh.lpg = @lik_qgp_lpg;
reclik.fh.ll = @lik_qgp_ll;
reclik.fh.llg = @lik_qgp_llg;
reclik.fh.llg2 = @lik_qgp_llg2;
reclik.fh.llg3 = @lik_qgp_llg3;
reclik.fh.tiltedMoments = @lik_qgp_tiltedMoments;
reclik.fh.predy = @lik_qgp_predy;
reclik.fh.invlink = @lik_qgp_invlink;
reclik.fh.recappend = @lik_qgp_recappend;
reclik.p=[];
reclik.p.sigma2=[];
if ~isempty(ri.p.sigma2)
reclik.p.sigma2 = ri.p.sigma2;
end
else
% Append to the record
reclik.sigma2(ri,:)=lik.sigma2;
if ~isempty(lik.p)
reclik.p.sigma2 = lik.p.sigma2.fh.recappend(reclik.p.sigma2, ri, lik.p.sigma2);
end
end
end
|
github
|
lcnbeapp/beapp-master
|
gpcf_periodic.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gpcf_periodic.m
| 34,635 |
utf_8
|
a5da1d3e5513f698a47e34234bbd27e4
|
function gpcf = gpcf_periodic(varargin)
%GPCF_PERIODIC Create a periodic covariance function for Gaussian Process
%
% Description
% GPCF = GPCF_PERIODIC('PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates periodic covariance function structure in which the
% named parameters have the specified values. Any unspecified
% parameters are set to default values.
%
% GPCF = GPCF_PERIODIC(GPCF,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a covariance function structure with the named
% parameters altered with the specified values.
%
% Periodic covariance function with squared exponential decay
% part as in Rasmussen & Williams (2006) Gaussian processes for
% Machine Learning.
%
% Parameters for periodic covariance function [default]
% magnSigma2 - magnitude (squared) [0.1]
% lengthScale - length scale for each input [10]
% This can be either scalar
% corresponding isotropic or vector
% corresponding ARD
% period - length of the periodic component(s) [1]
% lengthScale_sexp - length scale for the squared exponential
% component [10] This can be either scalar
% corresponding isotropic or vector
% corresponding ARD.
% decay - determines whether the squared exponential
% decay term is used (1) or not (0).
% Not a hyperparameter for the function.
% magnSigma2_prior - prior structure for magnSigma2 [prior_logunif]
% lengthScale_prior - prior structure for lengthScale [prior_t]
% lengthScale_sexp_prior - prior structure for lengthScale_sexp
% [prior_fixed]
% period_prior - prior structure for period [prior_fixed]
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% See also
% GP_SET, GPCF_*, PRIOR_*
% Copyright (c) 2009-2010 Heikki Peura
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'GPCF_PERIODIC';
ip.addOptional('gpcf', [], @isstruct);
ip.addParamValue('magnSigma2',0.1, @(x) isscalar(x) && x>0);
ip.addParamValue('lengthScale',10, @(x) isvector(x) && all(x>0));
ip.addParamValue('period',1, @(x) isscalar(x) && x>0);
ip.addParamValue('lengthScale_sexp',10, @(x) isvector(x) && all(x>0));
ip.addParamValue('decay',0, @(x) isscalar(x) && (x==0||x==1));
ip.addParamValue('magnSigma2_prior',prior_logunif, @(x) isstruct(x) || isempty(x));
ip.addParamValue('lengthScale_prior',prior_t, @(x) isstruct(x) || isempty(x));
ip.addParamValue('lengthScale_sexp_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('period_prior',[], @(x) isstruct(x) || isempty(x));
ip.addParamValue('selectedVariables',[], @(x) isempty(x) || ...
(isvector(x) && all(x>0)));
ip.parse(varargin{:});
gpcf=ip.Results.gpcf;
if isempty(gpcf)
init=true;
gpcf.type = 'gpcf_periodic';
else
if ~isfield(gpcf,'type') && ~isequal(gpcf.type,'gpcf_periodic')
error('First argument does not seem to be a valid covariance function structure')
end
init=false;
end
if init || ~ismember('magnSigma2',ip.UsingDefaults)
gpcf.magnSigma2 = ip.Results.magnSigma2;
end
if init || ~ismember('lengthScale',ip.UsingDefaults)
gpcf.lengthScale = ip.Results.lengthScale;
end
if init || ~ismember('period',ip.UsingDefaults)
gpcf.period = ip.Results.period;
end
if init || ~ismember('lengthScale_sexp',ip.UsingDefaults)
gpcf.lengthScale_sexp=ip . Results.lengthScale_sexp;
end
if init || ~ismember('decay',ip.UsingDefaults)
gpcf.decay = ip.Results.decay;
end
if init || ~ismember('magnSigma2_prior',ip.UsingDefaults)
gpcf.p.magnSigma2 = ip.Results.magnSigma2_prior;
end
if init || ~ismember('lengthScale_prior',ip.UsingDefaults)
gpcf.p.lengthScale = ip.Results.lengthScale_prior;
end
if init || ~ismember('lengthScale_sexp_prior',ip.UsingDefaults)
gpcf.p.lengthScale_sexp = ip.Results.lengthScale_sexp_prior;
end
if init || ~ismember('period_prior',ip.UsingDefaults)
gpcf.p.period = ip.Results.period_prior;
end
if ~ismember('selectedVariables',ip.UsingDefaults)
gpcf.selectedVariables = ip.Results.selectedVariables;
end
if init
% Set the function handles to the subfunctions
gpcf.fh.pak = @gpcf_periodic_pak;
gpcf.fh.unpak = @gpcf_periodic_unpak;
gpcf.fh.lp = @gpcf_periodic_lp;
gpcf.fh.lpg = @gpcf_periodic_lpg;
gpcf.fh.cfg = @gpcf_periodic_cfg;
gpcf.fh.ginput = @gpcf_periodic_ginput;
gpcf.fh.cov = @gpcf_periodic_cov;
gpcf.fh.covvec = @gpcf_periodic_covvec;
gpcf.fh.trcov = @gpcf_periodic_trcov;
gpcf.fh.trvar = @gpcf_periodic_trvar;
gpcf.fh.recappend = @gpcf_periodic_recappend;
end
end
function [w, s] = gpcf_periodic_pak(gpcf)
%GPCF_PERIODIC_PAK Combine GP covariance function parameters into
% one vector
%
% Description
% W = GPCF_PERIODIC_PAK(GPCF) takes a covariance function
% structure GPCF and combines the covariance function
% parameters and their hyperparameters into a single row
% vector W. This is a mandatory subfunction used for example
% in energy and gradient computations.
%
% w = [ log(gpcf.magnSigma2)
% (hyperparameters of gpcf.magnSigma2)
% log(gpcf.lengthScale(:))
% (hyperparameters of gpcf.lengthScale)
% log(gpcf.lengthScale_sexp)
% (hyperparameters of gpcf.lengthScale_sexp)
% log(gpcf.period)
% (hyperparameters of gpcf.period)]'
%
% See also
% GPCF_PERIODIC_UNPAK
if isfield(gpcf,'metric')
error('Periodic covariance function not compatible with metrics.');
else
i1=0;i2=1;
w = []; s = {};
if ~isempty(gpcf.p.magnSigma2)
w = [w log(gpcf.magnSigma2)];
s = [s; 'log(periodic.magnSigma2)'];
% Hyperparameters of magnSigma2
[wh sh] = gpcf.p.magnSigma2.fh.pak(gpcf.p.magnSigma2);
w = [w wh];
s = [s; sh];
end
if ~isempty(gpcf.p.lengthScale)
w = [w log(gpcf.lengthScale)];
s = [s; 'log(periodic.lengthScale)'];
% Hyperparameters of lengthScale
[wh sh] = gpcf.p.lengthScale.fh.pak(gpcf.p.lengthScale);
w = [w wh];
s = [s; sh];
end
if ~isempty(gpcf.p.lengthScale_sexp) && gpcf.decay == 1
w = [w log(gpcf.lengthScale_sexp)];
s = [s; 'log(periodic.lengthScale_sexp)'];
% Hyperparameters of lengthScale_sexp
[wh sh] = gpcf.p.lengthScale_sexp.fh.pak(gpcf.p.lengthScale_sexp);
w = [w wh];
s = [s; sh];
end
if ~isempty(gpcf.p.period)
w = [w log(gpcf.period)];
s = [s; 'log(periodic.period)'];
% Hyperparameters of period
[wh sh] = gpcf.p.period.fh.pak(gpcf.p.period);
w = [w wh];
s = [s; sh];
end
end
end
function [gpcf, w] = gpcf_periodic_unpak(gpcf, w)
%GPCF_PERIODIC_UNPAK Sets the covariance function parameters into
% the structure
%
% Description
% [GPCF, W] = GPCF_PERIODIC_UNPAK(GPCF, W) takes a covariance
% function structure GPCF and a hyper-parameter vector W, and
% returns a covariance function structure identical to the
% input, except that the covariance hyper-parameters have been
% set to the values in W. Deletes the values set to GPCF from
% W and returns the modified W. This is a mandatory subfunction
% used for example in energy and gradient computations.
%
% Assignment is inverse of
% w = [ log(gpcf.magnSigma2)
% (hyperparameters of gpcf.magnSigma2)
% log(gpcf.lengthScale(:))
% (hyperparameters of gpcf.lengthScale)
% log(gpcf.lengthScale_sexp)
% (hyperparameters of gpcf.lengthScale_sexp)
% log(gpcf.period)
% (hyperparameters of gpcf.period)]'
%
% See also
% GPCF_PERIODIC_PAK
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
gpp=gpcf.p;
if ~isempty(gpp.magnSigma2)
i1=1;
gpcf.magnSigma2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(gpp.lengthScale)
i2=length(gpcf.lengthScale);
i1=1;
gpcf.lengthScale = exp(w(i1:i2));
w = w(i2+1:end);
end
if ~isempty(gpp.lengthScale_sexp) && gpcf.decay == 1
i2=length(gpcf.lengthScale_sexp);
i1=1;
gpcf.lengthScale_sexp = exp(w(i1:i2));
w = w(i2+1:end);
end
if ~isempty(gpp.period)
i2=length(gpcf.period);
i1=1;
gpcf.period = exp(w(i1:i2));
w = w(i2+1:end);
end
% hyperparameters
if ~isempty(gpp.magnSigma2)
[p, w] = gpcf.p.magnSigma2.fh.unpak(gpcf.p.magnSigma2, w);
gpcf.p.magnSigma2 = p;
end
if ~isempty(gpp.lengthScale)
[p, w] = gpcf.p.lengthScale.fh.unpak(gpcf.p.lengthScale, w);
gpcf.p.lengthScale = p;
end
if ~isempty(gpp.lengthScale_sexp)
[p, w] = gpcf.p.lengthScale_sexp.fh.unpak(gpcf.p.lengthScale_sexp, w);
gpcf.p.lengthScale_sexp = p;
end
if ~isempty(gpp.period)
[p, w] = gpcf.p.period.fh.unpak(gpcf.p.period, w);
gpcf.p.period = p;
end
end
end
function lp = gpcf_periodic_lp(gpcf)
%GPCF_PERIODIC_LP Evaluate the log prior of covariance function parameters
%
% Description
% LP = GPCF_PERIODIC_LP(GPCF) takes a covariance function
% structure GPCF and returns log(p(th)), where th collects the
% parameters. This is a mandatory subfunction used for example
% in energy computations.
%
% Also the log prior of the hyperparameters of the covariance
% function parameters is added to E if hyperprior is
% defined.
%
% See also
% GPCF_PERIODIC_PAK, GPCF_PERIODIC_UNPAK, GPCF_PERIODIC_LPG, GP_E
lp = 0;
gpp=gpcf.p;
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
% Evaluate the prior contribution to the error. The parameters that
% are sampled are from space W = log(w) where w is all the "real" samples.
% On the other hand errors are evaluated in the W-space so we need take
% into account also the Jacobian of transformation W -> w = exp(W).
% See Gelman et.al., 2004, Bayesian data Analysis, second edition, p24.
if ~isempty(gpcf.p.magnSigma2)
lp = gpp.magnSigma2.fh.lp(gpcf.magnSigma2, gpp.magnSigma2) +log(gpcf.magnSigma2);
end
if ~isempty(gpp.lengthScale)
lp = lp +gpp.lengthScale.fh.lp(gpcf.lengthScale, gpp.lengthScale) +sum(log(gpcf.lengthScale));
end
if ~isempty(gpp.lengthScale_sexp) && gpcf.decay == 1
lp = lp +gpp.lengthScale_sexp.fh.lp(gpcf.lengthScale_sexp, gpp.lengthScale_sexp) +sum(log(gpcf.lengthScale_sexp));
end
if ~isempty(gpcf.p.period)
lp = gpp.period.fh.lp(gpcf.period, gpp.period) +sum(log(gpcf.period));
end
end
end
function lpg = gpcf_periodic_lpg(gpcf)
%GPCF_PERIODIC_LPG Evaluate gradient of the log prior with respect
% to the parameters.
%
% Description
% LPG = GPCF_PERIODIC_LPG(GPCF) takes a covariance function
% structure GPCF and returns LPG = d log (p(th))/dth, where th
% is the vector of parameters. This is a mandatory subfunction
% used for example in gradient computations.
%
% See also
% GPCF_PERIODIC_PAK, GPCF_PERIODIC_UNPAK, GPCF_PERIODIC_LP, GP_G
lpg = [];
gpp=gpcf.p;
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
end
if ~isempty(gpcf.p.magnSigma2)
lpgs = gpp.magnSigma2.fh.lpg(gpcf.magnSigma2, gpp.magnSigma2);
lpg = [lpg lpgs(1).*gpcf.magnSigma2+1 lpgs(2:end)];
end
if ~isempty(gpcf.p.lengthScale)
lll = length(gpcf.lengthScale);
lpgs = gpp.lengthScale.fh.lpg(gpcf.lengthScale, gpp.lengthScale);
lpg = [lpg lpgs(1:lll).*gpcf.lengthScale+1 lpgs(lll+1:end)];
end
if gpcf.decay == 1 && ~isempty(gpcf.p.lengthScale_sexp)
lll = length(gpcf.lengthScale_sexp);
lpgs = gpp.lengthScale_sexp.fh.lpg(gpcf.lengthScale_sexp, gpp.lengthScale_sexp);
lpg = [lpg lpgs(1:lll).*gpcf.lengthScale_sexp+1 lpgs(lll+1:end)];
end
if ~isempty(gpcf.p.period)
lpgs = gpp.period.fh.lpg(gpcf.period, gpp.period);
lpg = [lpg lpgs(1).*gpcf.period+1 lpgs(2:end)];
end
end
function DKff = gpcf_periodic_cfg(gpcf, x, x2, mask, i1)
%GPCF_PERIODIC_CFG Evaluate gradient of covariance function
% with respect to the parameters
%
% Description
% DKff = GPCF_PERIODIC_CFG(GPCF, X) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X) with respect to th (cell array with matrix elements).
% This is a mandatory subfunction used in gradient computations.
%
% DKff = GPCF_PERIODIC_CFG(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_PERIODIC_CFG(GPCF, X, [], MASK) takes a
% covariance function structure GPCF, a matrix X of input
% vectors and returns DKff, the diagonal of gradients of
% covariance matrix Kff = k(X,X2) with respect to th (cell
% array with matrix elements). This subfunction is needed
% when using sparse approximations (e.g. FIC).
%
% DKff = GPCF_PERIODIC_CFG(GPCF, X, X2, [], i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2), or k(X,X) if X2 is empty, with respect to ith
% hyperparameter. This subfunction is needed when using memory
% save option in gp_set.
%
% See also
% GPCF_PERIODIC_PAK, GPCF_PERIODIC_UNPAK, GPCF_PERIODIC_LP, GP_G
gpp=gpcf.p;
i2=1;
gp_period=gpcf.period;
DKff={};
gprior=[];
if nargin==5
% Use memory save option
savememory=1;
if i1==0
% Return number of hyperparameters
i=0;
if ~isempty(gpcf.p.magnSigma2)
i=1;
end
if ~isempty(gpcf.p.lengthScale)
i=i+length(gpcf.lengthScale);
end
if gpcf.decay==1 && ~isempty(gpcf.p.lengthScale_sexp)
i=i+length(gpcf.lengthScale_sexp);
end
if ~isempty(gpcf.p.period)
i=i+length(gpcf.lengthScale);
end
DKff=i;
return
end
else
savememory=0;
end
% Evaluate: DKff{1} = d Kff / d magnSigma2
% DKff{2} = d Kff / d lengthScale
% NOTE! Here we have already taken into account that the parameters are transformed
% through log() and thus dK/dlog(p) = p * dK/dp
% evaluate the gradient for training covariance
if nargin == 2 || (isempty(x2) && isempty(mask))
Cdm = gpcf_periodic_trcov(gpcf, x);
ii1=0;
if ~isempty(gpcf.p.magnSigma2) && (~savememory || all(i1==1));
ii1=1;
DKff{ii1} = Cdm;
end
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
if isfield(gpcf,'selectedVariables')
x = x(:,gpcf.selectedVariables);
end
[n, m] =size(x);
if ~savememory
i1=1:m;
else
if i1==1
DKff=DKff{1};
return
else
i1=i1-1;
end
end
if ~isempty(gpcf.p.lengthScale) && (~savememory || all(i1 <= length(gpcf.lengthScale)))
% loop over all the lengthScales
if length(gpcf.lengthScale) == 1
% In the case of isotropic PERIODIC
s = 2./gpcf.lengthScale.^2;
dist = 0;
for i=1:m
D = sin(pi.*bsxfun(@minus,x(:,i),x(:,i)')./gp_period);
dist = dist + 2.*D.^2;
end
D = Cdm.*s.*dist;
ii1 = ii1+1;
DKff{ii1} = D;
else
% In the case ARD is used
for i=i1
s = 2./gpcf.lengthScale(i).^2;
dist = sin(pi.*bsxfun(@minus,x(:,i),x(:,i)')./gp_period);
D = Cdm.*s.*2.*dist.^2;
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
if savememory
if length(DKff) == 1
DKff=DKff{1};
return
end
i1=i1-length(gpcf.lengthScale);
end
if gpcf.decay == 1
if ~isempty(gpcf.p.lengthScale_sexp) && (~savememory || all(i1 <= length(gpcf.lengthScale_sexp)))
if length(gpcf.lengthScale_sexp) == 1
% In the case of isotropic PERIODIC
s = 1./gpcf.lengthScale_sexp.^2;
dist = 0;
for i=1:m
D = bsxfun(@minus,x(:,i),x(:,i)');
dist = dist + D.^2;
end
D = Cdm.*s.*dist;
ii1 = ii1+1;
DKff{ii1} = D;
else
% In the case ARD is used
for i=i1
s = 1./gpcf.lengthScale_sexp(i).^2;
dist = bsxfun(@minus,x(:,i),x(:,i)');
D = Cdm.*s.*dist.^2;
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
end
if savememory
if length(DKff) == 1
DKff=DKff{1};
return
end
i1=i1-length(gpcf.lengthScale_sexp);
end
if ~isempty(gpcf.p.period)
% Evaluate help matrix for calculations of derivatives
% with respect to the period
if length(gpcf.lengthScale) == 1
% In the case of an isotropic PERIODIC
s = repmat(1./gpcf.lengthScale.^2, 1, m);
dist = 0;
for i=1:m
dist = dist + 2.*pi./gp_period.*sin(2.*pi.*bsxfun(@minus,x(:,i),x(:,i)')./gp_period).*bsxfun(@minus,x(:,i),x(:,i)').*s(i);
end
D = Cdm.*dist;
ii1=ii1+1;
DKff{ii1} = D;
else
% In the case ARD is used
for i=i1
s = 1./gpcf.lengthScale(i).^2; % set the length
dist = 2.*pi./gp_period.*sin(2.*pi.*bsxfun(@minus,x(:,i),x(:,i)')./gp_period).*bsxfun(@minus,x(:,i),x(:,i)');
D = Cdm.*s.*dist;
ii1=ii1+1;
DKff{ii1} = D;
end
end
end
end
% Evaluate the gradient of non-symmetric covariance (e.g. K_fu)
elseif nargin == 3 || isempty(mask)
if size(x,2) ~= size(x2,2)
error('gpcf_periodic -> _ghyper: The number of columns in x and x2 has to be the same. ')
end
K = gpcf.fh.cov(gpcf, x, x2);
ii1=0;
if ~isempty(gpcf.p.magnSigma2) && (~savememory || all(i1==1))
ii1=1;
DKff{ii1} = K;
end
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
if isfield(gpcf,'selectedVariables')
x = x(:,gpcf.selectedVariables);
x2 = x2(:,gpcf.selectedVariables);
end
[n, m] =size(x);
if ~savememory
i1=1:m;
else
if i1==1
DKff=DKff{1};
return
end
i1=i1-1;
end
% Evaluate help matrix for calculations of derivatives with respect to the lengthScale
if ~isempty(gpcf.p.lengthScale) && (~savememory || all(i1 <= length(gpcf.lengthScale)))
if length(gpcf.lengthScale) == 1
% In the case of an isotropic PERIODIC
s = 1./gpcf.lengthScale.^2;
dist = 0; dist2 = 0;
for i=1:m
dist = dist + 2.*sin(pi.*bsxfun(@minus,x(:,i),x2(:,i)')./gp_period).^2;
end
DK_l = 2.*s.*K.*dist;
ii1=ii1+1;
DKff{ii1} = DK_l;
else
% In the case ARD is used
for i=i1
s = 1./gpcf.lengthScale(i).^2; % set the length
dist = 2.*sin(pi.*bsxfun(@minus,x(:,i),x2(:,i)')./gp_period);
DK_l = 2.*s.*K.*dist.^2;
ii1=ii1+1;
DKff{ii1} = DK_l;
end
end
end
if savememory
if length(DKff) == 1
DKff=DKff{1};
return
end
i1=i1-length(gpcf.lengthScale);
end
if gpcf.decay == 1 && (~savememory || all(i1 <= length(gpcf.lengthScale_sexp)))
% Evaluate help matrix for calculations of derivatives with
% respect to the lengthScale_sexp
if length(gpcf.lengthScale_sexp) == 1
% In the case of an isotropic PERIODIC
s = 1./gpcf.lengthScale_sexp.^2;
dist = 0; dist2 = 0;
for i=1:m
dist = dist + bsxfun(@minus,x(:,i),x2(:,i)').^2;
end
DK_l = s.*K.*dist;
ii1=ii1+1;
DKff{ii1} = DK_l;
else
% In the case ARD is used
for i=i1
s = 1./gpcf.lengthScale_sexp(i).^2; % set the length
dist = bsxfun(@minus,x(:,i),x2(:,i)');
DK_l = s.*K.*dist.^2;
ii1=ii1+1;
DKff{ii1} = DK_l;
end
end
end
if savememory
if length(DKff) == 1
DKff=DKff{1};
return
end
i1=i1-length(gpcf.lengthScale_sexp);
end
if ~isempty(gpcf.p.period)
% Evaluate help matrix for calculations of derivatives
% with respect to the period
if length(gpcf.lengthScale) == 1
% In the case of an isotropic PERIODIC
s = repmat(1./gpcf.lengthScale.^2, 1, m);
dist = 0; dist2 = 0;
for i=1:m
dist = dist + 2.*pi./gp_period.*sin(2.*pi.*bsxfun(@minus,x(:,i),x2(:,i)')./gp_period).*bsxfun(@minus,x(:,i),x2(:,i)').*s(i);
end
DK_l = K.*dist;
ii1=ii1+1;
DKff{ii1} = DK_l;
else
% In the case ARD is used
for i=i1
s = 1./gpcf.lengthScale(i).^2; % set the length
dist = 2.*pi./gp_period.*sin(2.*pi.*bsxfun(@minus,x(:,i),x2(:,i)')./gp_period).*bsxfun(@minus,x(:,i),x2(:,i)');
DK_l = s.*K.*dist;
ii1=ii1+1;
DKff{ii1} = DK_l;
end
end
end
end
% Evaluate: DKff{1} = d mask(Kff,I) / d magnSigma2
% DKff{2...} = d mask(Kff,I) / d lengthScale etc.
elseif nargin == 4 || nargin == 5
[n, m] =size(x);
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
ii1=0;
if ~isempty(gpcf.p.magnSigma2) && (~savememory || all(i1==1))
ii1=1;
DKff{ii1} = gpcf.fh.trvar(gpcf, x); % d mask(Kff,I) / d magnSigma2
end
for i2=1:length(gpcf.lengthScale)
ii1 = ii1+1;
DKff{ii1} = 0; % d mask(Kff,I) / d lengthScale
end
if gpcf.decay == 1
for i2=1:length(gpcf.lengthScale_sexp)
ii1 = ii1+1;
DKff{ii1} = 0; % d mask(Kff,I) / d lengthScale_sexp
end
end
if ~isempty(gpcf.p.period)
ii1 = ii1+1; % d mask(Kff,I) / d period
DKff{ii1} = 0;
end
end
end
if savememory
DKff=DKff{1};
end
end
function DKff = gpcf_periodic_ginput(gpcf, x, x2, i1)
%GPCF_PERIODIC_GINPUT Evaluate gradient of covariance function with
% respect to x
%
% Description
% DKff = GPCF_PERIODIC_GINPUT(GPCF, X) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_PERIODIC_GINPUT(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_PERIODIC_GINPUT(GPCF, X, X2, i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2), or k(X,X) if X2 is empty, with respect to ith
% covariate in X. This subfunction is needed when using memory
% save option in gp_set.
%
% See also
% GPCF_PERIODIC_PAK, GPCF_PERIODIC_UNPAK, GPCF_PERIODIC_LP, GP_G
[n, m] =size(x);
gp_period=gpcf.period;
ii1 = 0;
if length(gpcf.lengthScale) == 1
% In the case of an isotropic PERIODIC
s = repmat(1./gpcf.lengthScale.^2, 1, m);
%gp_period = repmat(1./gp_period, 1, m);
else
s = 1./gpcf.lengthScale.^2;
end
if gpcf.decay == 1
if length(gpcf.lengthScale_sexp) == 1
% In the case of an isotropic PERIODIC
s_sexp = repmat(1./gpcf.lengthScale_sexp.^2, 1, m);
else
s_sexp = 1./gpcf.lengthScale_sexp.^2;
end
end
if nargin<4
i1=1:m;
else
% Use memory save option
if i1==0
% Return number of covariates
if isfield(gpcf,'selectedVariables')
DKff=length(gpcf.selectedVariables);
else
DKff=m;
end
return
end
end
if nargin == 2 || isempty(x2)
K = gpcf.fh.trcov(gpcf, x);
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
for i=i1
for j = 1:n
DK = zeros(size(K));
DK(j,:) = -s(i).*2.*pi./gp_period.*sin(2.*pi.*bsxfun(@minus,x(j,i),x(:,i)')./gp_period);
if gpcf.decay == 1
DK(j,:) = DK(j,:)-s_sexp(i).*bsxfun(@minus,x(j,i),x(:,i)');
end
DK = DK + DK';
DK = DK.*K; % dist2 = dist2 + dist2' - diag(diag(dist2));
ii1 = ii1 + 1;
DKff{ii1} = DK;
end
end
end
elseif nargin == 3
K = gpcf.fh.cov(gpcf, x, x2);
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
ii1 = 0;
for i=i1
for j = 1:n
DK= zeros(size(K));
if gpcf.decay == 1
DK(j,:) = -s(i).*2.*pi./gp_period.*sin(2.*pi.*bsxfun(@minus,x(j,i),x2(:,i)')./gp_period)-s_sexp(i).*bsxfun(@minus,x(j,i),x2(:,i)');
else
DK(j,:) = -s(i).*2.*pi./gp_period.*sin(2.*pi.*bsxfun(@minus,x(j,i),x2(:,i)')./gp_period);
end
DK = DK.*K;
ii1 = ii1 + 1;
DKff{ii1} = DK;
end
end
end
end
end
function C = gpcf_periodic_cov(gpcf, x1, x2)
%GP_PERIODIC_COV Evaluate covariance matrix between two input vectors
%
% Description
% C = GP_PERIODIC_COV(GP, TX, X) takes in covariance function
% of a Gaussian process GP and two matrixes TX and X that
% contain input vectors to GP. Returns covariance matrix C.
% Every element ij of C contains covariance between inputs i
% in TX and j in X. This is a mandatory subfunction used for
% example in prediction and energy computations.
%
% See also
% GPCF_PERIODIC_TRCOV, GPCF_PERIODIC_TRVAR, GP_COV, GP_TRCOV
if isempty(x2)
x2=x1;
end
% [n1,m1]=size(x1);
% [n2,m2]=size(x2);
gp_period=gpcf.period;
if size(x1,2)~=size(x2,2)
error('the number of columns of X1 and X2 has to be same')
end
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
if isfield(gpcf,'selectedVariables')
x1 = x1(:,gpcf.selectedVariables);
x2 = x2(:,gpcf.selectedVariables);
end
[n1,m1]=size(x1);
[n2,m2]=size(x2);
C=zeros(n1,n2);
ma2 = gpcf.magnSigma2;
% Evaluate the covariance
if ~isempty(gpcf.lengthScale)
s = 1./gpcf.lengthScale.^2;
if gpcf.decay == 1
s_sexp = 1./gpcf.lengthScale_sexp.^2;
end
if m1==1 && m2==1
dd = bsxfun(@minus,x1,x2');
dist=2.*sin(pi.*dd./gp_period).^2.*s;
if gpcf.decay == 1
dist = dist + dd.^2.*s_sexp./2;
end
else
% If ARD is not used make s a vector of
% equal elements
if size(s)==1
s = repmat(s,1,m1);
end
if gpcf.decay == 1
if size(s_sexp)==1
s_sexp = repmat(s_sexp,1,m1);
end
end
dist=zeros(n1,n2);
for j=1:m1
dd = bsxfun(@minus,x1(:,j),x2(:,j)');
dist = dist + 2.*sin(pi.*dd./gp_period).^2.*s(:,j);
if gpcf.decay == 1
dist = dist +dd.^2.*s_sexp(:,j)./2;
end
end
end
dist(dist<eps) = 0;
C = ma2.*exp(-dist);
end
end
end
function C = gpcf_periodic_trcov(gpcf, x)
%GP_PERIODIC_TRCOV Evaluate training covariance matrix of inputs
%
% Description
% C = GP_PERIODIC_TRCOV(GP, TX) takes in covariance function
% of a Gaussian process GP and matrix TX that contains
% training input vectors. Returns covariance matrix C. Every
% element ij of C contains covariance between inputs i and j
% in TX. This is a mandatory subfunction used for example in
% prediction and energy computations.
%
% See also
% GPCF_PERIODIC_COV, GPCF_PERIODIC_TRVAR, GP_COV, GP_TRCOV
if isfield(gpcf,'metric')
error('Covariance function not compatible with metrics');
else
% Try to use the C-implementation
C=trcov(gpcf, x);
% C = NaN;
if isnan(C)
% If there wasn't C-implementation do here
if isfield(gpcf,'selectedVariables')
x = x(:,gpcf.selectedVariables);
end
[n, m] =size(x);
gp_period=gpcf.period;
s = 1./(gpcf.lengthScale);
s2 = s.^2;
if size(s)==1
s2 = repmat(s2,1,m);
gp_period = repmat(gp_period,1,m);
end
if gpcf.decay == 1
s_sexp = 1./(gpcf.lengthScale_sexp);
s_sexp2 = s_sexp.^2;
if size(s_sexp)==1
s_sexp2 = repmat(s_sexp2,1,m);
end
end
ma = gpcf.magnSigma2;
C = zeros(n,n);
for ii1=1:n-1
d = zeros(n-ii1,1);
col_ind = ii1+1:n;
for ii2=1:m
d = d+2.*s2(ii2).*sin(pi.*(x(col_ind,ii2)-x(ii1,ii2))./gp_period(ii2)).^2;
if gpcf.decay == 1
d=d+s_sexp2(ii2)./2.*(x(col_ind,ii2)-x(ii1,ii2)).^2;
end
end
C(col_ind,ii1) = d;
end
C(C<eps) = 0;
C = C+C';
C = ma.*exp(-C);
end
end
end
function C = gpcf_periodic_trvar(gpcf, x)
%GP_PERIODIC_TRVAR Evaluate training variance vector
%
% Description
% C = GP_PERIODIC_TRVAR(GPCF, TX) takes in covariance function
% of a Gaussian process GPCF and matrix TX that contains
% training inputs. Returns variance vector C. Every
% element i of C contains variance of input i in TX. This is a
% mandatory subfunction used for example in prediction and
% energy computations.
%
% See also
% GPCF_PERIODIC_COV, GP_COV, GP_TRCOV
[n, m] =size(x);
C = ones(n,1)*gpcf.magnSigma2;
C(C<eps)=0;
end
function reccf = gpcf_periodic_recappend(reccf, ri, gpcf)
%RECAPPEND Record append
%
% Description
% RECCF = GPCF_PERIODIC_RECAPPEND(RECCF, RI, GPCF) takes a
% covariance function record structure RECCF, record index RI
% and covariance function structure GPCF with the current MCMC
% samples of the parameters. Returns RECCF which contains all
% the old samples and the current samples from GPCF. This
% subfunction is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC and GP_MC -> RECAPPEND
if nargin == 2
% Initialize the record
reccf.type = 'gpcf_periodic';
% Initialize parameters
reccf.lengthScale= [];
reccf.magnSigma2 = [];
reccf.lengthScale_sexp = [];
reccf.period = [];
% Set the function handles
reccf.fh.pak = @gpcf_periodic_pak;
reccf.fh.unpak = @gpcf_periodic_unpak;
reccf.fh.e = @gpcf_periodic_lp;
reccf.fh.lpg = @gpcf_periodic_lpg;
reccf.fh.cfg = @gpcf_periodic_cfg;
reccf.fh.cov = @gpcf_periodic_cov;
reccf.fh.trcov = @gpcf_periodic_trcov;
reccf.fh.trvar = @gpcf_periodic_trvar;
reccf.fh.recappend = @gpcf_periodic_recappend;
reccf.p=[];
reccf.p.lengthScale=[];
reccf.p.magnSigma2=[];
if ri.decay == 1
reccf.p.lengthScale_sexp=[];
if ~isempty(ri.p.lengthScale_sexp)
reccf.p.lengthScale_sexp = ri.p.lengthScale_sexp;
end
end
reccf.p.period=[];
if ~isempty(ri.p.period)
reccf.p.period= ri.p.period;
end
if isfield(ri.p,'lengthScale') && ~isempty(ri.p.lengthScale)
reccf.p.lengthScale = ri.p.lengthScale;
end
if ~isempty(ri.p.magnSigma2)
reccf.p.magnSigma2 = ri.p.magnSigma2;
end
else
% Append to the record
gpp = gpcf.p;
% record lengthScale
reccf.lengthScale(ri,:)=gpcf.lengthScale;
if isfield(gpp,'lengthScale') && ~isempty(gpp.lengthScale)
reccf.p.lengthScale = gpp.lengthScale.fh.recappend(reccf.p.lengthScale, ri, gpcf.p.lengthScale);
end
% record magnSigma2
reccf.magnSigma2(ri,:)=gpcf.magnSigma2;
if isfield(gpp,'magnSigma2') && ~isempty(gpp.magnSigma2)
reccf.p.magnSigma2 = gpp.magnSigma2.fh.recappend(reccf.p.magnSigma2, ri, gpcf.p.magnSigma2);
end
% record lengthScale_sexp
if ~isempty(gpcf.lengthScale_sexp) && gpcf.decay == 1
reccf.lengthScale_sexp(ri,:)=gpcf.lengthScale_sexp;
if isfield(gpp,'lengthScale_sexp') && ~isempty(gpp.lengthScale_sexp)
reccf.p.lengthScale_sexp = gpp.lengthScale_sexp.fh.recappend(reccf.p.lengthScale_sexp, ri, gpcf.p.lengthScale_sexp);
end
end
% record period
reccf.period(ri,:)=gpcf.period;
if isfield(gpp,'period') && ~isempty(gpp.period)
reccf.p.period = gpp.period.fh.recappend(reccf.p.period, ri, gpcf.p.period);
end
% record decay
if ~isempty(gpcf.decay)
reccf.decay(ri,:)=gpcf.decay;
end
end
end
|
github
|
lcnbeapp/beapp-master
|
metric_euclidean.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/metric_euclidean.m
| 15,487 |
utf_8
|
77201668d68ae283b913304f9a6bc846
|
function metric = metric_euclidean(varargin)
%METRIC_EUCLIDEAN An euclidean metric function
%
% Description
% METRIC = METRIC_EUCLIDEAN('PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates a an euclidean metric function structure in which the
% named parameters have the specified values. Either
% 'components' or 'deltadist' has to be specified. Any
% unspecified parameters are set to default values.
%
% METRIC = METRIC_EUCLIDEAN(METRIC,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a metric function structure with the named parameters
% altered with the specified values.
%
% Parameters for Euclidean metric function [default]
% components - cell array of vectors specifying which
% inputs are grouped together with a same
% scaling parameter. For example, the
% component specification {[1 2] [3]}
% means that distance between 3
% dimensional vectors computed as
% r = (r_1^2 + r_2^2 )/l_1 + r_3^2/l_2,
% where r_i are distance along component
% i, and l_1 and l_2 are lengthscales for
% corresponding component sets. If
% 'components' is not specified, but
% 'deltadist' is specified, then default
% is {1 ... length(deltadist)}
% deltadist - indicator vector telling which component sets
% are handled using the delta distance
% (0 if x=x', and 1 otherwise). Default is
% false for all component sets.
% lengthScale - lengthscales for each input component set
% Default is 1 for each set
% lengthScale_prior - prior for lengthScales [prior_unif]
%
% See also
% GP_SET, GPCF_SEXP
% Copyright (c) 2008 Jouni Hartikainen
% Copyright (c) 2008 Jarno Vanhatalo
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'METRIC_EUCLIDEAN';
ip.addOptional('metric', [], @isstruct);
ip.addParamValue('components',[], @(x) isempty(x) || iscell(x));
ip.addParamValue('deltadist',[], @(x) isvector(x));
ip.addParamValue('lengthScale',[], @(x) isvector(x) && all(x>0));
ip.addParamValue('lengthScale_prior',prior_unif, ...
@(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
metric=ip.Results.metric;
if isempty(metric)
% Initialize a Gaussian process
init=true;
else
% Modify a Gaussian process
if ~isfield(metric,'type') && isequal(metric.type,'metric_euclidean')
error('First argument does not seem to be a metric structure')
end
init=false;
end
if init
% Type
metric.type = 'metric_euclidean';
end
% Components
if init || ~ismember('components',ip.UsingDefaults)
metric.components = ip.Results.components;
end
% Deltadist
if init || ~ismember('deltadist',ip.UsingDefaults)
metric.deltadist = ip.Results.deltadist;
end
% Components+Deltadist check and defaults
if isempty(metric.components) && isempty(metric.deltadist)
error('Either ''components'' or ''deltadist'' has to be specified')
elseif isempty(metric.components)
metric.components=num2cell(1:length(metric.components));
elseif isempty(metric.deltadist)
metric.deltadist = false(1,length(metric.components));
end
% Lengthscale
if init || ~ismember('lengthScale',ip.UsingDefaults)
metric.lengthScale = ip.Results.lengthScale;
if isempty(metric.lengthScale)
metric.lengthScale = repmat(1,1,length(metric.components));
end
end
% Prior for lengthscale
if init || ~ismember('lengthScale_prior',ip.UsingDefaults)
metric.p=[];
metric.p.lengthScale = ip.Results.lengthScale_prior;
end
if init
% Set the function handles to the subfunctions
metric.fh.pak = @metric_euclidean_pak;
metric.fh.unpak = @metric_euclidean_unpak;
metric.fh.lp = @metric_euclidean_lp;
metric.fh.lpg = @metric_euclidean_lpg;
metric.fh.dist = @metric_euclidean_dist;
metric.fh.distg = @metric_euclidean_distg;
metric.fh.ginput = @metric_euclidean_ginput;
metric.fh.recappend = @metric_euclidean_recappend;
end
end
function [w s] = metric_euclidean_pak(metric)
%METRIC_EUCLIDEAN_PAK Combine GP covariance function
% parameters into one vector.
%
% Description
% W = METRIC_EUCLIDEAN_PAK(GPCF) takes a covariance function
% structure GPCF and combines the covariance function
% parameters and their hyperparameters into a single row
% vector W and takes a logarithm of the covariance function
% parameters.
%
% w = [ log(metric.lengthScale(:))
% (hyperparameters of metric.lengthScale)]'
%
% See also
% METRIC_EUCLIDEAN_UNPAK
w = []; s = {};
if ~isempty(metric.p.lengthScale)
w = log(metric.lengthScale);
if numel(metric.lengthScale)>1
s = [s; sprintf('log(metric.lengthScale x %d)',numel(metric.lengthScale))];
else
s = [s; 'log(metric.lengthScale)'];
end
% Hyperparameters of lengthScale
[wh sh] = metric.p.lengthScale.fh.pak(metric.p.lengthScale);
w = [w wh];
s = [s; sh];
end
end
function [metric, w] = metric_euclidean_unpak(metric, w)
%METRIC_EUCLIDEAN_UNPAK Separate metric parameter vector into components
%
% Description
% METRIC, W] = METRIC_EUCLIDEAN_UNPAK(METRIC, W) takes a
% metric structure GPCF and a parameter vector W, and returns
% a covariance function structure identical to the input,
% except that the covariance parameters have been set to the
% values in W. Deletes the values set to GPCF from W and
% returns the modified W.
%
% The covariance function parameters are transformed via exp
% before setting them into the structure.
%
% See also
% METRIC_EUCLIDEAN_PAK
%
if ~isempty(metric.p.lengthScale)
i2=length(metric.lengthScale);
i1=1;
metric.lengthScale = exp(w(i1:i2));
w = w(i2+1:end);
% Hyperparameters of lengthScale
[p, w] = metric.p.lengthScale.fh.unpak(metric.p.lengthScale, w);
metric.p.lengthScale = p;
end
end
function lp = metric_euclidean_lp(metric)
%METRIC_EUCLIDEAN_LP Evaluate the log prior of metric parameters
%
% Description
% LP = METRIC_EUCLIDEAN_LP(METRIC) takes a metric structure
% METRIC and returns log(p(th)), where th collects the
% parameters.
%
% See also
% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN_G, GP_E
%
% Evaluate the prior contribution to the error. The parameters that
% are sampled are from space W = log(w) where w is all the "real" samples.
% On the other hand errors are evaluated in the W-space so we need take
% into account also the Jakobian of transformation W -> w = exp(W).
% See Gelman et.all., 2004, Bayesian data Analysis, second edition, p24.
if ~isempty(metric.p.lengthScale)
lp = metric.p.lengthScale.fh.lp(metric.lengthScale, metric.p.lengthScale) + sum(log(metric.lengthScale));
else
lp=0;
end
end
function lpg = metric_euclidean_lpg(metric)
%METRIC_EUCLIDEAN_LPG d log(prior)/dth of the metric parameters th
%
% Description
% LPG = METRIC_EUCLIDEAN_LPG(METRIC) takes a likelihood
% structure METRIC and returns d log(p(th))/dth, where th
% collects the parameters.
%
% See also
% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN, GP_E
%
% Evaluate the prior contribution of gradient with respect to lengthScale
if ~isempty(metric.p.lengthScale)
i1=1;
lll = length(metric.lengthScale);
lpgs = metric.p.lengthScale.fh.lpg(metric.lengthScale, metric.p.lengthScale);
lpg(i1:i1-1+lll) = lpgs(1:lll).*metric.lengthScale + 1;
lpg = [lpg lpgs(lll+1:end)];
end
end
function gdist = metric_euclidean_distg(metric, x, x2, mask)
%METRIC_EUCLIDEAN_DISTG Evaluate the gradient of the metric function
%
% Description
% DISTG = METRIC_EUCLIDEAN_DISTG(METRIC, X) takes a metric
% structure METRIC together with a matrix X of input
% vectors and return the gradient matrices GDIST and
% GPRIOR_DIST for each parameter.
%
% DISTG = METRIC_EUCLIDEAN_DISTG(METRIC, X, X2) forms the
% gradient matrices between two input vectors X and X2.
%
% DISTG = METRIC_EUCLIDEAN_DISTG(METRIC, X, X2, MASK) forms
% the gradients for masked covariances matrices used in sparse
% approximations.
%
% See also
% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN, GP_E
%
gdist=[];
components = metric.components;
n = size(x,1);
m = length(components);
i1=0;i2=1;
% NOTE! Here we have already taken into account that the parameters
% are transformed through log() and thus dK/dlog(p) = p * dK/dp
if ~isempty(metric.p.lengthScale)
if nargin <= 3
if nargin == 2
x2 = x;
end
ii1=0;
dist = 0;
distc = cell(1,m);
% Compute the distances for each component set
for i=1:m
if length(metric.lengthScale)==1
s=1./metric.lengthScale.^2;
else
s=1./metric.lengthScale(i).^2;
end
distc{i} = 0;
for j = 1:length(components{i})
if metric.deltadist(i)
distc{i} = distc{i} + double(bsxfun(@ne,x(:,components{i}(j)),x2(:,components{i}(j))'));
else
distc{i} = distc{i} + bsxfun(@minus,x(:,components{i}(j)),x2(:,components{i}(j))').^2;
end
end
distc{i} = distc{i}.*s;
% Accumulate to the total distance
dist = dist + distc{i};
end
dist = sqrt(dist);
% Loop through component sets
if length(metric.lengthScale)==1
D = -distc{1};
D(dist~=0) = D(dist~=0)./dist(dist~=0);
ii1 = ii1+1;
gdist{ii1} = D;
else
for i=1:m
D = -distc{i};
ind = dist~=0;
D(ind) = D(ind)./dist(ind);
ii1 = ii1+1;
gdist{ii1} = D;
end
end
% $$$ elseif nargin == 3
% $$$ if size(x,2) ~= size(x2,2)
% $$$ error('metric_euclidean -> _ghyper: The number of columns in x and x2 has to be the same. ')
% $$$ end
elseif nargin == 4
gdist = cell(1,length(metric.lengthScale));
end
% Evaluate the prior contribution of gradient with respect to lengthScale
if ~isempty(metric.p.lengthScale)
i1=1;
lll = length(metric.lengthScale);
gg = -metric.p.lengthScale.fh.lpg(metric.lengthScale, metric.p.lengthScale);
gprior(i1:i1-1+lll) = gg(1:lll).*metric.lengthScale - 1;
gprior = [gprior gg(lll+1:end)];
end
end
end
function dist = metric_euclidean_dist(metric, x1, x2)
%METRIC_EUCLIDEAN_DIST Compute the euclidean distence between
% one or two matrices.
%
% Description
% DIST = METRIC_EUCLIDEAN_DIST(METRIC, X) takes a metric
% structure METRIC together with a matrix X of input
% vectors and calculates the euclidean distance matrix DIST.
%
% DIST = METRIC_EUCLIDEAN_DIST(METRIC, X1, X2) takes a
% metric structure METRIC together with a matrices X1 and
% X2 of input vectors and calculates the euclidean distance
% matrix DIST.
%
% See also
% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN, GP_E
%
if (nargin == 2 || isempty(x2))
% use fast c-code for self-distance
x2=x1;
% force deltadist to be logical for simplified c-code
metric.deltadist=logical(metric.deltadist);
dist = dist_euclidean(metric,x1);
if ~any(isnan(dist))
% if c-code was available, result is not NaN
return
end
end
[n1,m1]=size(x1);
[n2,m2]=size(x2);
if m1~=m2
error('the number of columns of X1 and X2 has to be same')
end
components = metric.components;
m = length(components);
dist = 0;
s=1./metric.lengthScale.^2;
if m>numel(s)
s=repmat(s,1,m);
end
for i=1:m
for j = 1:length(components{i})
if metric.deltadist(i)
dist = dist + s(i).*double(bsxfun(@ne,x1(:,components{i}(j)),x2(:,components{i}(j))'));
else
dist = dist + s(i).*bsxfun(@minus,x1(:,components{i}(j)),x2(:,components{i}(j))').^2;
end
end
end
dist=sqrt(dist); % euclidean distance
end
function [ginput, gprior_input] = metric_euclidean_ginput(metric, x1, x2)
%METRIC_EUCLIDEAN_GINPUT Compute the gradient of the
% euclidean distance function with
% respect to input. [n, m]=size(x);
ii1 = 0;
components = metric.components;
if nargin == 2 || isempty(x2)
x2=x1;
end
[n1,m1]=size(x1);
[n2,m2]=size(x2);
if m1~=m2
error('the number of columns of X1 and X2 has to be same')
end
s = 1./metric.lengthScale.^2;
dist = 0;
for i=1:length(components)
for j = 1:length(components{i})
if metric.deltadist(i)
dist = dist + s(i).*double(bsxfun(@ne,x1(:,components{i}(j)),x2(:,components{i}(j))'));
else
dist = dist + s(i).*bsxfun(@minus,x1(:,components{i}(j)),x2(:,components{i}(j))').^2;
end
end
end
dist = sqrt(dist);
for i=1:m1
for j = 1:n1
DK = zeros(n1,n2);
for k = 1:length(components)
if ismember(i,components{k})
if metric.deltadist(i)
DK(j,:) = DK(j,:)+s(k).*double(bsxfun(@ne,x1(j,i),x2(:,i)'));
else
DK(j,:) = DK(j,:)+s(k).*bsxfun(@minus,x1(j,i),x2(:,i)');
end
end
end
if nargin == 2
DK = DK + DK';
end
DK(dist~=0) = DK(dist~=0)./dist(dist~=0);
ii1 = ii1 + 1;
ginput{ii1} = DK;
gprior_input(ii1) = 0;
end
end
%size(ginput)
%ginput
end
function recmetric = metric_euclidean_recappend(recmetric, ri, metric)
%RECAPPEND Record append
%
% Description
% RECMETRIC = METRIC_EUCLIDEAN_RECAPPEND(RECMETRIC, RI,
% METRIC) takes old metric function record RECMETRIC, record
% index RI and metric function structure. Appends the
% parameters of METRIC to the RECMETRIC in the ri'th place.
%
% See also
% GP_MC and GP_MC -> RECAPPEND
% Initialize record
if nargin == 2
recmetric.type = 'metric_euclidean';
metric.components = recmetric.components;
% Initialize parameters
recmetric.lengthScale = [];
% Set the function handles
recmetric.fh.pak = @metric_euclidean_pak;
recmetric.fh.unpak = @metric_euclidean_unpak;
recmetric.fh.lp = @metric_euclidean_lp;
recmetric.fh.lpg = @metric_euclidean_lpg;
recmetric.fh.dist = @metric_euclidean_dist;
recmetric.fh.distg = @metric_euclidean_distg;
recmetric.fh.ginput = @metric_euclidean_ginput;
recmetric.fh.recappend = @metric_euclidean_recappend;
return
end
mp = metric.p;
% record parameters
if ~isempty(metric.lengthScale)
recmetric.lengthScale(ri,:)=metric.lengthScale;
recmetric.p.lengthScale = metric.p.lengthScale.fh.recappend(recmetric.p.lengthScale, ri, metric.p.lengthScale);
elseif ri==1
recmetric.lengthScale=[];
end
end
|
github
|
lcnbeapp/beapp-master
|
lik_negbinztr.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/lik_negbinztr.m
| 30,673 |
utf_8
|
5795ceaf5a6a09a0df89fbf0b48d3023
|
function lik = lik_negbinztr(varargin)
%LIK_NEGBINZTR Create a zero-truncated Negative-binomial likelihood structure
%
% Description
% LIK = LIK_NEGBINZTR('PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates zero-truncated Negative-binomial likelihood structure
% in which the named parameters have the specified values. Any
% unspecified parameters are set to default values.
%
% Zero-truncated Negative-binomial can be used as a part of Hurdle model.
%
% LIK = LIK_NEGBINZTR(LIK,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a likelihood structure with the named parameters
% altered with the specified values.
%
% Parameters for zero-truncated Negative-binomial likelihood [default]
% disper - dispersion parameter r [10]
% disper_prior - prior for disper [prior_logunif]
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% The likelihood is defined as follows:
% __ n
% p(y|f, z) = || i=1 [ (r/(r+mu_i))^r * gamma(r+y_i)
% / ( gamma(r)*gamma(y_i+1) )
% * (mu/(r+mu_i))^y_i / (1-(r/(r+mu_i))^r)]
%
% where mu_i = z_i*exp(f_i) and r is the dispersion parameter. z
% is a vector of expected mean and f the latent value vector
% whose components are transformed to relative risk exp(f_i).
% The last term (1-(r/(r+mu_i))^r) normalizes the truncated
% distribution.
%
% When using the zero-truncated Negbin likelihood you need to
% give the vector z as an extra parameter to each function that
% requires also y. For example, you should call gpla_e as
% follows: gpla_e(w, gp, x, y, 'z', z)
%
% See also
% GP_SET, LIK_*, PRIOR_*
%
% Copyright (c) 2007-2010 Jarno Vanhatalo & Jouni Hartikainen
% Copyright (c) 2010-2011 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'LIK_NEGBINZTR';
ip.addOptional('lik', [], @isstruct);
ip.addParamValue('disper',10, @(x) isscalar(x) && x>0);
ip.addParamValue('disper_prior',prior_logunif(), @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
lik=ip.Results.lik;
if isempty(lik)
init=true;
lik.type = 'Negbinztr';
else
if ~isfield(lik,'type') || ~isequal(lik.type,'Negbinztr')
error('First argument does not seem to be a valid likelihood function structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('disper',ip.UsingDefaults)
lik.disper = ip.Results.disper;
end
% Initialize prior structure
if init
lik.p=[];
end
if init || ~ismember('disper_prior',ip.UsingDefaults)
lik.p.disper=ip.Results.disper_prior;
end
if init
% Set the function handles to the subfunctions
lik.fh.pak = @lik_negbinztr_pak;
lik.fh.unpak = @lik_negbinztr_unpak;
lik.fh.lp = @lik_negbinztr_lp;
lik.fh.lpg = @lik_negbinztr_lpg;
lik.fh.ll = @lik_negbinztr_ll;
lik.fh.llg = @lik_negbinztr_llg;
lik.fh.llg2 = @lik_negbinztr_llg2;
lik.fh.llg3 = @lik_negbinztr_llg3;
lik.fh.tiltedMoments = @lik_negbinztr_tiltedMoments;
lik.fh.siteDeriv = @lik_negbinztr_siteDeriv;
lik.fh.upfact = @lik_negbinztr_upfact;
lik.fh.predy = @lik_negbinztr_predy;
lik.fh.predprcty = @lik_negbinztr_predprcty;
lik.fh.invlink = @lik_negbinztr_invlink;
lik.fh.recappend = @lik_negbinztr_recappend;
end
end
function [w,s] = lik_negbinztr_pak(lik)
%LIK_NEGBINZTR_PAK Combine likelihood parameters into one vector.
%
% Description
% W = LIK_NEGBINZTR_PAK(LIK) takes a likelihood structure LIK and
% combines the parameters into a single row vector W. This is a
% mandatory subfunction used for example in energy and gradient
% computations.
%
% w = log(lik.disper)
%
% See also
% LIK_NEGBINZTR_UNPAK, GP_PAK
w=[];s={};
if ~isempty(lik.p.disper)
w = log(lik.disper);
s = [s; 'log(negbinztr.disper)'];
[wh sh] = lik.p.disper.fh.pak(lik.p.disper);
w = [w wh];
s = [s; sh];
end
end
function [lik, w] = lik_negbinztr_unpak(lik, w)
%LIK_NEGBINZTR_UNPAK Extract likelihood parameters from the vector.
%
% Description
% [LIK, W] = LIK_NEGBINZTR_UNPAK(W, LIK) takes a likelihood
% structure LIK and extracts the parameters from the vector W
% to the LIK structure. This is a mandatory subfunction used
% for example in energy and gradient computations.
%
% Assignment is inverse of
% w = log(lik.disper)
%
% See also
% LIK_NEGBINZTR_PAK, GP_UNPAK
if ~isempty(lik.p.disper)
lik.disper = exp(w(1));
w = w(2:end);
[p, w] = lik.p.disper.fh.unpak(lik.p.disper, w);
lik.p.disper = p;
end
end
function lp = lik_negbinztr_lp(lik, varargin)
%LIK_NEGBINZTR_LP log(prior) of the likelihood parameters
%
% Description
% LP = LIK_NEGBINZTR_LP(LIK) takes a likelihood structure LIK and
% returns log(p(th)), where th collects the parameters. This subfunction
% is needed when there are likelihood parameters.
%
% See also
% LIK_NEGBINZTR_LLG, LIK_NEGBINZTR_LLG3, LIK_NEGBINZTR_LLG2, GPLA_E
% If prior for dispersion parameter, add its contribution
lp=0;
if ~isempty(lik.p.disper)
lp = lik.p.disper.fh.lp(lik.disper, lik.p.disper) +log(lik.disper);
end
end
function lpg = lik_negbinztr_lpg(lik)
%LIK_NEGBINZTR_LPG d log(prior)/dth of the likelihood
% parameters th
%
% Description
% E = LIK_NEGBINZTR_LPG(LIK) takes a likelihood structure LIK and
% returns d log(p(th))/dth, where th collects the parameters. This
% subfunction is needed when there are likelihood parameters.
%
% See also
% LIK_NEGBINZTR_LLG, LIK_NEGBINZTR_LLG3, LIK_NEGBINZTR_LLG2, GPLA_G
lpg=[];
if ~isempty(lik.p.disper)
% Evaluate the gprior with respect to disper
ggs = lik.p.disper.fh.lpg(lik.disper, lik.p.disper);
lpg = ggs(1).*lik.disper + 1;
if length(ggs) > 1
lpg = [lpg ggs(2:end)];
end
end
end
function ll = lik_negbinztr_ll(lik, y, f, z)
%LIK_NEGBINZTR_LL Log likelihood
%
% Description
% LL = LIK_NEGBINZTR_LL(LIK, Y, F, Z) takes a likelihood
% structure LIK, incedence counts Y, expected counts Z, and
% latent values F. Returns the log likelihood, log p(y|f,z).
% This subfunction is needed when using Laplace approximation
% or MCMC for inference with non-Gaussian likelihoods. This
% subfunction is also used in information criteria (DIC, WAIC)
% computations.
%
% See also
% LIK_NEGBINZTR_LLG, LIK_NEGBINZTR_LLG3, LIK_NEGBINZTR_LLG2, GPLA_E
if isempty(z)
error(['lik_negbinztr -> lik_negbinztr_ll: missing z! '...
'Negbinztr likelihood needs the expected number of '...
'occurrences as an extra input z. See, for '...
'example, lik_negbinztr and gpla_e. ']);
end
r = lik.disper;
mu = exp(f).*z;
lp0=r.*(log(r) - log(r+mu));
ll = sum(r.*(log(r) - log(r+mu)) + gammaln(r+y) - gammaln(r) - gammaln(y+1) + y.*(log(mu) - log(r+mu)) -log(1-exp(lp0)));
end
function llg = lik_negbinztr_llg(lik, y, f, param, z)
%LIK_NEGBINZTR_LLG Gradient of the log likelihood
%
% Description
% LLG = LIK_NEGBINZTR_LLG(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, incedence counts Y, expected counts Z and
% latent values F. Returns the gradient of the log likelihood
% with respect to PARAM. At the moment PARAM can be 'param' or
% 'latent'. This subfunction is needed when using Laplace
% approximation or MCMC for inference with non-Gaussian likelihoods.
%
% See also
% LIK_NEGBINZTR_LL, LIK_NEGBINZTR_LLG2, LIK_NEGBINZTR_LLG3, GPLA_E
if isempty(z)
error(['lik_negbinztr -> lik_negbinztr_llg: missing z! '...
'Negbinztr likelihood needs the expected number of '...
'occurrences as an extra input z. See, for '...
'example, lik_negbinztr and gpla_e. ']);
end
mu = exp(f).*z;
r = lik.disper;
switch param
case 'param'
% Derivative using the psi function
llg = sum(1 + log(r./(r+mu)) - (r+y)./(r+mu) + psi(r + y) - psi(r));
% add gradient of the normalization due to the truncation
lp0=r.*(log(r) - log(r+mu));
llg=llg-sum(1./(1 - exp(-lp0)).*(log(r./(mu + r)) - r./(mu + r) + 1));
% correction for the log transformation
llg = llg.*lik.disper;
% $$$ % Derivative using sum formulation
% $$$ llg = 0;
% $$$ for i1 = 1:length(y)
% $$$ llg = llg + log(r/(r+mu(i1))) + 1 - (r+y(i1))/(r+mu(i1));
% $$$ for i2 = 0:y(i1)-1
% $$$ llg = llg + 1 / (i2 + r);
% $$$ end
% $$$ end
% $$$ % correction for the log transformation
% $$$ llg = llg.*lik.disper;
case 'latent'
llg = y - (r+y).*mu./(r+mu);
% add gradient of the normalization due to the truncation
lp0=r.*(log(r) - log(r+mu));
llg = llg -(1./(1-exp(-lp0)).*-r./(mu + r).*mu);
end
end
function llg2 = lik_negbinztr_llg2(lik, y, f, param, z)
%LIK_NEGBINZTR_LLG2 Second gradients of the log likelihood
%
% Description
% LLG2 = LIK_NEGBINZTR_LLG2(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, incedence counts Y, expected counts Z, and
% latent values F. Returns the Hessian of the log likelihood
% with respect to PARAM. At the moment PARAM can be only
% 'latent'. LLG2 is a vector with diagonal elements of the
% Hessian matrix (off diagonals are zero). This subfunction
% is needed when using Laplace approximation or EP for
% inference with non-Gaussian likelihoods.
%
% See also
% LIK_NEGBINZTR_LL, LIK_NEGBINZTR_LLG, LIK_NEGBINZTR_LLG3, GPLA_E
if isempty(z)
error(['lik_negbinztr -> lik_negbinztr_llg2: missing z! '...
'Negbinztr likelihood needs the expected number of '...
'occurrences as an extra input z. See, for '...
'example, lik_negbinztr and gpla_e. ']);
end
mu = exp(f).*z;
r = lik.disper;
switch param
case 'param'
case 'latent'
llg2 = - mu.*(r.^2 + y.*r)./(r+mu).^2;
% add gradient of the normalization due to the truncation
lp0=r.*(log(r) - log(r+mu));
llg2=llg2+...
(r.^2 + r.^2.*exp(-lp0).*(mu-1))./((mu + r).^2.*(exp(-lp0)-1).^2).*mu;
case 'latent+param'
llg2 = (y.*mu - mu.^2)./(r+mu).^2;
% add gradient of the normalization due to the truncation
lp0=r.*(log(r) - log(r+mu));
llg2=llg2+(exp(lp0)./(exp(lp0) - 1).^2 .* (log(r) - log(mu + r) - r.*(1./(mu + r) - 1./r)) .* (-r./(mu + r)) -1./(1 - exp(-lp0)).*-mu./(mu + r).^2).*mu;
% correction due to the log transformation
llg2 = llg2.*lik.disper;
end
end
function llg3 = lik_negbinztr_llg3(lik, y, f, param, z)
%LIK_NEGBINZTR_LLG3 Third gradients of the log likelihood
%
% Description
% LLG3 = LIK_NEGBINZTR_LLG3(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, incedence counts Y, expected counts Z and
% latent values F and returns the third gradients of the log
% likelihood with respect to PARAM. At the moment PARAM can be
% only 'latent'. LLG3 is a vector with third gradients. This
% subfunction is needed when using Laplace approximation for
% inference with non-Gaussian likelihoods.
%
% See also
% LIK_NEGBINZTR_LL, LIK_NEGBINZTR_LLG, LIK_NEGBINZTR_LLG2, GPLA_E, GPLA_G
if isempty(z)
error(['lik_negbinztr -> lik_negbinztr_llg3: missing z! '...
'Negbinztr likelihood needs the expected number of '...
'occurrences as an extra input z. See, for '...
'example, lik_negbinztr and gpla_e. ']);
end
mu = exp(f).*z;
r = lik.disper;
switch param
case 'param'
case 'latent'
llg3 = - mu.*(r.^2 + y.*r)./(r + mu).^2 + 2.*mu.^2.*(r.^2 + y.*r)./(r + mu).^3;
% add gradient of the normalization due to the truncation
lp0=r.*(log(r) - log(r+mu));
llg3=llg3+ ...
(exp(lp0).*(r.^2.*(r + r.*exp(2.*lp0)) + mu.^2.*r.^3 - mu.*r.^2.*(3.*r + exp(2.*lp0) + 1)) + exp(2.*lp0).*(mu.^2.*r.^3 - 2.*r.^3 + mu.*r.^2.*(3.*r + 2)))./((exp(lp0) - 1).^3.*(mu + r).^3).*mu;
case 'latent2+param'
llg3 = mu.*(y.*r - 2.*r.*mu - mu.*y)./(r+mu).^3;
% add gradient of the normalization due to the truncation
lp0=r.*(log(r) - log(r+mu));
ip0=exp(-lp0);
llg3=llg3+ ...
(mu.*(2.*r + 2.*r.*ip0.*(mu - 1) + r.^2.*ip0.*(mu - 1).*(log(mu + r) - log(r) + r./(mu + r) - 1)))./((mu + r).^2.*(ip0 - 1).^2) - (2.*mu.*(r.^2 + r.^2.*ip0.*(mu - 1)))./((mu + r).^3.*(ip0 - 1).^2) - (2.*mu.*ip0.*(r.^2 + r.^2.*ip0.*(mu - 1)).*(log(mu + r) - log(r) + r./(mu + r) - 1))./((mu + r).^2.*(ip0 - 1).^3);
% correction due to the log transformation
llg3 = llg3.*lik.disper;
end
end
function [logM_0, m_1, sigm2hati1] = lik_negbinztr_tiltedMoments(lik, y, i1, sigm2_i, myy_i, z)
%LIK_NEGBINZTR_TILTEDMOMENTS Returns the marginal moments for EP algorithm
%
% Description
% [M_0, M_1, M2] = LIK_NEGBINZTR_TILTEDMOMENTS(LIK, Y, I, S2,
% MYY, Z) takes a likelihood structure LIK, incedence counts
% Y, expected counts Z, index I and cavity variance S2 and
% mean MYY. Returns the zeroth moment M_0, mean M_1 and
% variance M_2 of the posterior marginal (see Rasmussen and
% Williams (2006): Gaussian processes for Machine Learning,
% page 55). This subfunction is needed when using EP for
% inference with non-Gaussian likelihoods.
%
% See also
% GPEP_E
% if isempty(z)
% error(['lik_negbinztr -> lik_negbinztr_tiltedMoments: missing z!'...
% 'Negbinztr likelihood needs the expected number of '...
% 'occurrences as an extra input z. See, for '...
% 'example, lik_negbinztr and gpep_e. ']);
% end
yy = y(i1);
avgE = z(i1);
r = lik.disper;
logM_0=zeros(size(yy));
m_1=zeros(size(yy));
sigm2hati1=zeros(size(yy));
for i=1:length(i1)
% get a function handle of an unnormalized tilted distribution
% (likelihood * cavity = Negative-binomial * Gaussian)
% and useful integration limits
[tf,minf,maxf]=init_negbinztr_norm(yy(i),myy_i(i),sigm2_i(i),avgE(i),r);
% Integrate with quadrature
RTOL = 1.e-6;
ATOL = 1.e-10;
[m_0, m_1(i), m_2] = quad_moments(tf, minf, maxf, RTOL, ATOL);
sigm2hati1(i) = m_2 - m_1(i).^2;
% If the second central moment is less than cavity variance
% integrate more precisely. Theoretically for log-concave
% likelihood should be sigm2hati1 < sigm2_i.
if sigm2hati1(i) >= sigm2_i(i)
ATOL = ATOL.^2;
RTOL = RTOL.^2;
[m_0, m_1(i), m_2] = quad_moments(tf, minf, maxf, RTOL, ATOL);
sigm2hati1(i) = m_2 - m_1(i).^2;
if sigm2hati1(i) >= sigm2_i(i)
warning('lik_negbinztr_tilted_moments: sigm2hati1 >= sigm2_i');
%sigm2hati1=sigm2_i-1e-9;
end
end
logM_0(i) = log(m_0);
end
end
function [g_i] = lik_negbinztr_siteDeriv(lik, y, i1, sigm2_i, myy_i, z)
%LIK_NEGBINZTR_SITEDERIV Evaluate the expectation of the gradient
% of the log likelihood term with respect
% to the likelihood parameters for EP
%
% Description [M_0, M_1, M2] =
% LIK_NEGBINZTR_SITEDERIV(LIK, Y, I, S2, MYY, Z) takes a
% likelihood structure LIK, incedence counts Y, expected
% counts Z, index I and cavity variance S2 and mean MYY.
% Returns E_f [d log p(y_i|f_i) /d a], where a is the
% likelihood parameter and the expectation is over the
% marginal posterior. This term is needed when evaluating the
% gradients of the marginal likelihood estimate Z_EP with
% respect to the likelihood parameters (see Seeger (2008):
% Expectation propagation for exponential families). This
% subfunction is needed when using EP for inference with
% non-Gaussian likelihoods and there are likelihood parameters.
%
% See also
% GPEP_G
if isempty(z)
error(['lik_negbinztr -> lik_negbinztr_siteDeriv: missing z!'...
'Negbinztr likelihood needs the expected number of '...
'occurrences as an extra input z. See, for '...
'example, lik_negbinztr and gpla_e. ']);
end
yy = y(i1);
avgE = z(i1);
r = lik.disper;
% get a function handle of an unnormalized tilted distribution
% (likelihood * cavity = Negative-binomial * Gaussian)
% and useful integration limits
[tf,minf,maxf]=init_negbinztr_norm(yy,myy_i,sigm2_i,avgE,r);
% additionally get function handle for the derivative
td = @deriv;
% Integrate with quadgk
[m_0, fhncnt] = quadgk(tf, minf, maxf);
[g_i, fhncnt] = quadgk(@(f) td(f).*tf(f)./m_0, minf, maxf);
g_i = g_i.*r;
function g = deriv(f)
mu = avgE.*exp(f);
% Derivative using the psi function
g = 1 + log(r./(r+mu)) - (r+yy)./(r+mu) + psi(r + yy) - psi(r);
lp0=r.*(log(r) - log(r+mu));
g = g -(1./(1 - exp(-lp0)).*(log(r./(mu + r)) - r./(mu + r) + 1));
end
end
function upfact = lik_negbinztr_upfact(gp, y, mu, ll, z)
r = gp.lik.disper;
sll = sqrt(ll);
fh_e = @(f) negbinztr_pdf(y, exp(f).*z', r).*norm_pdf(f, mu, sll);
EE = quadgk(fh_e, max(mu-6*sll,-30), min(mu+6*sll,30));
fm = @(f) f.*negbinztr_pdf(y, exp(f).*z', r).*norm_pdf(f, mu, sll)./EE;
mm = quadgk(fm, max(mu-6*sll,-30), min(mu+6*sll,30));
fV = @(f) (f - mm).^2.*negbinztr_pdf(y, exp(f).*z', r).*norm_pdf(f, mu, sll)./EE;
Varp = quadgk(fV, max(mu-6*sll,-30), min(mu+6*sll,30));
upfact = -(Varp - ll)./ll^2;
end
function [lpy, Ey, Vary] = lik_negbinztr_predy(lik, Ef, Varf, yt, zt)
%LIK_NEGBINZTR_PREDY Returns the predictive mean, variance and density of y
%
% Description
% LPY = LIK_NEGBINZTR_PREDY(LIK, EF, VARF YT, ZT)
% Returns logarithm of the predictive density PY of YT, that is
% p(yt | zt) = \int p(yt | f, zt) p(f|y) df.
% This requires also the incedence counts YT, expected counts ZT.
% This subfunction is needed when computing posterior predictive
% distributions for future observations.
%
% [LPY, EY, VARY] = LIK_NEGBINZTR_PREDY(LIK, EF, VARF) takes a
% likelihood structure LIK, posterior mean EF and posterior
% Variance VARF of the latent variable and returns the
% posterior predictive mean EY and variance VARY of the
% observations related to the latent variables. This subfunction
% is needed when computing posterior predictive distributions for
% future observations.
%
%
% See also
% GPLA_PRED, GPEP_PRED, GPMC_PRED
if isempty(zt)
error(['lik_negbinztr -> lik_negbinztr_predy: missing zt!'...
'Negbinztr likelihood needs the expected number of '...
'occurrences as an extra input zt. See, for '...
'example, lik_negbinztr and gpla_e. ']);
end
avgE = zt;
r = lik.disper;
lpy = zeros(size(Ef));
Ey = zeros(size(Ef));
EVary = zeros(size(Ef));
VarEy = zeros(size(Ef));
if nargout > 1
% Evaluate Ey and Vary
for i1=1:length(Ef)
%%% With quadrature
myy_i = Ef(i1);
sigm_i = sqrt(Varf(i1));
minf=myy_i-6*sigm_i;
maxf=myy_i+6*sigm_i;
F = @(f) exp(log(avgE(i1))+f+norm_lpdf(f,myy_i,sigm_i));
Ey(i1) = quadgk(F,minf,maxf);
F2 = @(f) exp(log(avgE(i1).*exp(f)+((avgE(i1).*exp(f)).^2/r))+norm_lpdf(f,myy_i,sigm_i));
EVary(i1) = quadgk(F2,minf,maxf);
F3 = @(f) exp(2*log(avgE(i1))+2*f+norm_lpdf(f,myy_i,sigm_i));
VarEy(i1) = quadgk(F3,minf,maxf) - Ey(i1).^2;
end
Vary = EVary + VarEy;
end
% Evaluate the posterior predictive densities of the given observations
lpy = zeros(length(yt),1);
for i1=1:length(yt)
% get a function handle of the likelihood times posterior
% (likelihood * posterior = Negative-binomial * Gaussian)
% and useful integration limits
[pdf,minf,maxf]=init_negbinztr_norm(...
yt(i1),Ef(i1),Varf(i1),avgE(i1),r);
% integrate over the f to get posterior predictive distribution
lpy(i1) = log(quadgk(pdf, minf, maxf));
end
end
function [df,minf,maxf] = init_negbinztr_norm(yy,myy_i,sigm2_i,avgE,r)
%INIT_NEGBINZTR_NORM
%
% Description
% Return function handle to a function evaluating
% Negative-Binomial * Gaussian which is used for evaluating
% (likelihood * cavity) or (likelihood * posterior) Return
% also useful limits for integration. This is private function
% for lik_negbinztr. This subfunction is needed by subfunctions
% tiltedMoments, siteDeriv and predy.
%
% See also
% LIK_NEGBINZTR_TILTEDMOMENTS, LIK_NEGBINZTR_SITEDERIV,
% LIK_NEGBINZTR_PREDY
% avoid repetitive evaluation of constant part
ldconst = -gammaln(r)-gammaln(yy+1)+gammaln(r+yy)...
- log(sigm2_i)/2 - log(2*pi)/2;
% Create function handle for the function to be integrated
df = @negbinztr_norm;
% use log to avoid underflow, and derivates for faster search
ld = @log_negbinztr_norm;
ldg = @log_negbinztr_norm_g;
ldg2 = @log_negbinztr_norm_g2;
% Set the limits for integration
% Negative-binomial likelihood is log-concave so the negbinztr_norm
% function is unimodal, which makes things easier
if yy==0
% with yy==0, the mode of the likelihood is not defined
% use the mode of the Gaussian (cavity or posterior) as a first guess
modef = myy_i;
else
% use precision weighted mean of the Gaussian approximation
% of the Negative-Binomial likelihood and Gaussian
mu=log(yy/avgE);
s2=(yy+r)./(yy.*r);
modef = (myy_i/sigm2_i + mu/s2)/(1/sigm2_i + 1/s2);
end
% find the mode of the integrand using Newton iterations
% few iterations is enough, since the first guess in the right direction
niter=4; % number of Newton iterations
mindelta=1e-6; % tolerance in stopping Newton iterations
for ni=1:niter
g=ldg(modef);
h=ldg2(modef);
delta=-g/h;
modef=modef+delta;
if abs(delta)<mindelta
break
end
end
% integrand limits based on Gaussian approximation at mode
modes=sqrt(-1/h);
minf=modef-8*modes;
maxf=modef+8*modes;
modeld=ld(modef);
iter=0;
% check that density at end points is low enough
lddiff=20; % min difference in log-density between mode and end-points
minld=ld(minf);
step=1;
while minld<(modeld-lddiff) && minf<modef;
% sometimes minf is too small
minf=minf+step*modes;
minld=ld(minf);
end
while minld>(modeld-lddiff)
minf=minf-step*modes;
minld=ld(minf);
iter=iter+1;
step=step*2;
if iter>100
error(['lik_negbinztr -> init_negbinztr_norm: ' ...
'integration interval minimun not found ' ...
'even after looking hard!'])
end
end
maxld=ld(maxf);
step=1;
while maxld>(modeld-lddiff)
maxf=maxf+step*modes;
maxld=ld(maxf);
iter=iter+1;
step=step*2;
if iter>100
error(['lik_negbinztr -> init_negbinztr_norm: ' ...
'integration interval maximum not found ' ...
'even after looking hard!'])
end
end
function integrand = negbinztr_norm(f)
% Negative-binomial * Gaussian
mu = avgE.*exp(f);
lp0=r.*(log(r) - log(r+mu));
if lp0==0
% exp(lp0)->1, that is, almost all the mass is in the zero part
% approximate if yy=1, and give up if yy>1
if yy==1
integrand = exp(log(avgE)+f...
-0.5*(f-myy_i).^2./sigm2_i -log(sigm2_i)/2 -log(2*pi)/2);
else
integrand = 0;
end
else
integrand = exp(ldconst ...
+yy.*(log(mu)-log(r+mu))+r.*(log(r)-log(r+mu)) ...
-0.5*(f-myy_i).^2./sigm2_i ...
-log(1-exp(lp0)));
end
end
function log_int = log_negbinztr_norm(f)
% log(Negative-binomial * Gaussian)
% log_negbinztr_norm is used to avoid underflow when searching
% integration interval
mu = avgE.*exp(f);
lp0=r.*(log(r) - log(r+mu));
if lp0==0
% exp(lp0)->1, that is, almost all the mass is in the zero part
% approximate if yy=1, and give up if yy>1
if yy==1
log_int = log(avgE)+f ...
-0.5*(f-myy_i).^2./sigm2_i - log(sigm2_i)/2 - log(2*pi)/2;
else
log_int=-Inf;
end
else
log_int = ldconst...
+yy.*(log(mu)-log(r+mu))+r.*(log(r)-log(r+mu)) -gammaln(r)-gammaln(yy+1)+gammaln(r+yy) ...
-0.5*(f-myy_i).^2./sigm2_i ...
-log(1-exp(lp0));
end
end
function g = log_negbinztr_norm_g(f)
% d/df log(Negative-binomial * Gaussian)
% derivative of log_negbinztr_norm
mu = avgE.*exp(f);
lp0=r.*(log(r) - log(r+mu));
if lp0==0
% exp(lp0)->1, that is, almost all the mass is in the zero part
% approximate if yy=1, and give up if yy>1
g = 1+(myy_i - f)./sigm2_i;
else
g = -(r.*(mu - yy))./(mu.*(mu + r)).*mu ...
+ (myy_i - f)./sigm2_i ...
-1/(1 - exp(-lp0))*-r/(mu + r)*mu;
end
end
function g2 = log_negbinztr_norm_g2(f)
% d^2/df^2 log(Negative-binomial * Gaussian)
% second derivate of log_negbinztr_norm
mu = avgE.*exp(f);
lp0=r.*(log(r) - log(r+mu));
if lp0==0
% exp(lp0)->1, that is, almost all the mass is in the zero part
% approximate if yy=1, and give up if yy>1
g2 = -1/sigm2_i;
else
g2 = -(r*(r + yy))/(mu + r)^2.*mu ...
-1/sigm2_i ...
+ (r^2 + r^2*exp(-lp0)*(mu - 1))/((mu + r)^2*(exp(-lp0) - 1)^2)*mu;
end
end
end
function prctys = lik_negbinztr_predprcty(lik, Ef, Varf, zt, prcty)
%LIK_BINOMIAL_PREDPRCTY Returns the percentiled of predictive density of y
%
% Description
% PRCTY = LIK_BINOMIAL_PREDPRCTY(LIK, EF, VARF YT, ZT)
% Returns percentiles of the predictive density PY of YT, that is
% This requires also the succes counts YT, numbers of trials ZT.
% This subfunction is needed when using function gp_predprcty.
%
% See also
% GP_PREDPCTY
if isempty(zt)
error(['lik_negbin -> lik_negbinztr_predprcty: missing zt!'...
'Negbinztr likelihood needs the expected number of '...
'occurrences as an extra input zt. See, for '...
'example, lik_negbin and gpla_e. ']);
end
opt=optimset('TolX',1e-7,'Display','off');
nt=size(Ef,1);
prctys = zeros(nt,numel(prcty));
prcty=prcty/100;
r = lik.disper;
mu = zt.*exp(Ef);
for i1=1:nt
ci = sqrt(Varf(i1));
for i2=1:numel(prcty)
minf = floor(fminbnd(@(b) (quadgk(@(y) llvec(lik,y,Ef(i1)-1.96*ci,zt(i1)), 0, b)-prcty(i2)).^2,nbininv(prcty(i2), r, r./(r+zt(i1).*exp(Ef(i1))))-5,nbininv(prcty(i2), r, r./(r+zt(i1).*exp(Ef(i1))))+5,opt));
if minf<0
minf = 0;
end
maxf = floor(fminbnd(@(b) (quadgk(@(y) llvec(lik,y,Ef(i1)+1.96*ci,zt(i1)), 0, b)-prcty(i2)).^2,nbininv(prcty(i2), r, r./(r+zt(i1).*exp(Ef(i1))))-5,nbininv(prcty(i2), r, r./(r+zt(i1).*exp(Ef(i1))))+5,opt));
if maxf<0
maxf = 0;
end
% j=0;
% figure;
% for a=-2:0.1:50
% j=j+1;
% testi(j) = (quadgk(@(f) quadgk(@(y) llvec(lik,y,Ef(i1),zt(i1)), 0, a).*norm_pdf(f,Ef(i1),ci),Ef(i1)-6*ci,Ef(i1)+6*ci,'AbsTol',1e-4)-prcty(i2)).^2;
% end
% plot(-2:0.1:50,testi)
% if minf<maxf
% set(gca,'XTick',[minf maxf])
% else
% set(gca,'XTick',[minf minf+1])
% end
% hold on;
% a=floor(fminbnd(@(a) (quadgk(@(f) quadgk(@(y) llvec(lik,y,Ef(i1),zt(i1)), 0, a) ...
% .*norm_pdf(f,Ef(i1),ci),Ef(i1)-6*ci,Ef(i1)+6*ci,'AbsTol',1e-4)-prcty(i2)).^2, minf, maxf,opt));
a=floor(fminbnd(@(a) (quadgk(@(f) sum(llvec(lik,0:1:a,Ef(i1),zt(i1))) ...
.*norm_pdf(f,Ef(i1),ci),Ef(i1)-6*ci,Ef(i1)+6*ci,'AbsTol',1e-4)-prcty(i2)).^2, minf, maxf,opt));
if quadgk(@(f) sum(llvec(lik,0:1:a,Ef(i1),zt(i1))).*norm_pdf(f,Ef(i1),ci),Ef(i1)-6*ci,Ef(i1)+6*ci,'AbsTol',1e-4) < prcty(i2)
a=a+1;
end
prctys(i1,i2)=a;
end
end
function expll = llvec(lik,yt,f,z)
% Compute vector of likelihoods of single predictions
n = length(yt);
if n>0
for i=1:n
expll(i) = exp(lik.fh.ll(lik, yt(i), f, z));
end
else
expll = 0;
end
end
end
function mu = lik_negbinztr_invlink(lik, f, z)
%LIK_NEGBINZTR_INVLINK Returns values of inverse link function
%
% Description
% MU = LIK_NEGBINZTR_INVLINK(LIK, F) takes a likelihood structure LIK and
% latent values F and returns the values MU of inverse link function.
% This subfunction is needed when using function gp_predprctmu.
%
% See also
% LIK_NEGBINZTR_LL, LIK_NEGBINZTR_PREDY
mu = z.*exp(f);
end
function reclik = lik_negbinztr_recappend(reclik, ri, lik)
%RECAPPEND Append the parameters to the record
%
% Description
% RECLIK = GPCF_NEGBINZTR_RECAPPEND(RECLIK, RI, LIK) takes a
% likelihood record structure RECLIK, record index RI and
% likelihood structure LIK with the current MCMC samples of
% the parameters. Returns RECLIK which contains all the old
% samples and the current samples from LIK. This subfunction
% is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC
if nargin == 2
% Initialize the record
reclik.type = 'Negbinztr';
% Initialize parameter
reclik.disper = [];
% Set the function handles
reclik.fh.pak = @lik_negbinztr_pak;
reclik.fh.unpak = @lik_negbinztr_unpak;
reclik.fh.lp = @lik_negbinztr_lp;
reclik.fh.lpg = @lik_negbinztr_lpg;
reclik.fh.ll = @lik_negbinztr_ll;
reclik.fh.llg = @lik_negbinztr_llg;
reclik.fh.llg2 = @lik_negbinztr_llg2;
reclik.fh.llg3 = @lik_negbinztr_llg3;
reclik.fh.tiltedMoments = @lik_negbinztr_tiltedMoments;
reclik.fh.predy = @lik_negbinztr_predy;
reclik.fh.predprcty = @lik_negbinztr_predprcty;
reclik.fh.invlink = @lik_negbinztr_invlink;
reclik.fh.recappend = @lik_negbinztr_recappend;
reclik.p=[];
reclik.p.disper=[];
if ~isempty(ri.p.disper)
reclik.p.disper = ri.p.disper;
end
else
% Append to the record
reclik.disper(ri,:)=lik.disper;
if ~isempty(lik.p)
reclik.p.disper = lik.p.disper.fh.recappend(reclik.p.disper, ri, lik.p.disper);
end
end
end
|
github
|
lcnbeapp/beapp-master
|
gpcf_neuralnetwork.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gpcf_neuralnetwork.m
| 25,549 |
utf_8
|
33309be52b0b606ff6a3855b8ac7e8c9
|
function gpcf = gpcf_neuralnetwork(varargin)
%GPCF_NEURALNETWORK Create a neural network covariance function
%
% Description
% GPCF = GPCF_NEURALNETWORK('PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates neural network covariance function structure in which
% the named parameters have the specified values. Any
% unspecified parameters are set to default values.
%
% GPCF = GPCF_NEURALNETWORK(GPCF,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a covariance function structure with the named
% parameters altered with the specified values.
%
% Parameters for neural network covariance function [default]
% biasSigma2 - prior variance for bias in neural network [0.1]
% weightSigma2 - prior variance for weights in neural network [10]
% This can be either scalar corresponding
% to a common prior variance or vector
% defining own prior variance for each
% input.
% biasSigma2_prior - prior structure for magnSigma2 [prior_logunif]
% weightSigma2_prior - prior structure for weightSigma2 [prior_logunif]
% selectedVariables - vector defining which inputs are used
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% See also
% GP_SET, GPCF_*, PRIOR_*
% Copyright (c) 2007-2009 Jarno Vanhatalo
% Copyright (c) 2009 Jaakko Riihimaki
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'GPCF_NEURALNETWORK';
ip.addOptional('gpcf', [], @isstruct);
ip.addParamValue('biasSigma2',0.1, @(x) isscalar(x) && x>0);
ip.addParamValue('weightSigma2',10, @(x) isvector(x) && all(x>0));
ip.addParamValue('biasSigma2_prior',prior_logunif, @(x) isstruct(x) || isempty(x));
ip.addParamValue('weightSigma2_prior',prior_logunif, @(x) isstruct(x) || isempty(x));
ip.addParamValue('selectedVariables',[], @(x) isvector(x) && all(x>0));
ip.parse(varargin{:});
gpcf=ip.Results.gpcf;
if isempty(gpcf)
init=true;
gpcf.type = 'gpcf_neuralnetwork';
else
if ~isfield(gpcf,'type') && ~isequal(gpcf.type,'gpcf_neuralnetwork')
error('First argument does not seem to be a valid covariance function structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('biasSigma2',ip.UsingDefaults)
gpcf.biasSigma2=ip.Results.biasSigma2;
end
if init || ~ismember('weightSigma2',ip.UsingDefaults)
gpcf.weightSigma2=ip.Results.weightSigma2;
end
% Initialize prior structure
if init
gpcf.p=[];
end
if init || ~ismember('biasSigma2_prior',ip.UsingDefaults)
gpcf.p.biasSigma2=ip.Results.biasSigma2_prior;
end
if init || ~ismember('weightSigma2_prior',ip.UsingDefaults)
gpcf.p.weightSigma2=ip.Results.weightSigma2_prior;
end
if ~ismember('selectedVariables',ip.UsingDefaults)
selectedVariables=ip.Results.selectedVariables;
if ~isempty(selectedVariables)
gpcf.selectedVariables = selectedVariables;
end
end
if init
% Set the function handles to the subfunctions
gpcf.fh.pak = @gpcf_neuralnetwork_pak;
gpcf.fh.unpak = @gpcf_neuralnetwork_unpak;
gpcf.fh.lp = @gpcf_neuralnetwork_lp;
gpcf.fh.lpg = @gpcf_neuralnetwork_lpg;
gpcf.fh.cfg = @gpcf_neuralnetwork_cfg;
gpcf.fh.ginput = @gpcf_neuralnetwork_ginput;
gpcf.fh.cov = @gpcf_neuralnetwork_cov;
gpcf.fh.trcov = @gpcf_neuralnetwork_trcov;
gpcf.fh.trvar = @gpcf_neuralnetwork_trvar;
gpcf.fh.recappend = @gpcf_neuralnetwork_recappend;
end
end
function [w, s] = gpcf_neuralnetwork_pak(gpcf, w)
%GPCF_NEURALNETWORK_PAK Combine GP covariance function parameters
% into one vector
%
% Description
% W = GPCF_NEURALNETWORK_PAK(GPCF) takes a covariance function
% structure GPCF and combines the covariance function parameters
% and their hyperparameters into a single row vector W. This is a
% mandatory subfunction used for example in energy and gradient
% computations.
%
% w = [ log(gpcf.biasSigma2)
% (hyperparameters of gpcf.biasSigma2)
% log(gpcf.weightSigma2(:))
% (hyperparameters of gpcf.weightSigma2)]'
%
%
% See also
% GPCF_NEURALNETWORK_UNPAK
i1=0;i2=1;
w = []; s = {};
if ~isempty(gpcf.p.biasSigma2)
w = [w log(gpcf.biasSigma2)];
s = [s; 'log(neuralnetwork.biasSigma2)'];
% Hyperparameters of magnSigma2
[wh sh] = gpcf.p.biasSigma2.fh.pak(gpcf.p.biasSigma2);
w = [w wh];
s = [s; sh];
end
if ~isempty(gpcf.p.weightSigma2)
w = [w log(gpcf.weightSigma2)];
if numel(gpcf.weightSigma2)>1
s = [s; sprintf('log(neuralnetwork.weightSigma2 x %d)',numel(gpcf.weightSigma2))];
else
s = [s; 'log(neuralnetwork.weightSigma2)'];
end
% Hyperparameters of lengthScale
[wh sh] = gpcf.p.weightSigma2.fh.pak(gpcf.p.weightSigma2);
w = [w wh];
s = [s; sh];
end
end
function [gpcf, w] = gpcf_neuralnetwork_unpak(gpcf, w)
%GPCF_NEURALNETWORK_UNPAK Sets the covariance function parameters
% into the structure
%
% Description
% [GPCF, W] = GPCF_NEURALNETWORK_UNPAK(GPCF, W) takes a
% covariance function structure GPCF and a hyper-parameter
% vector W, and returns a covariance function structure
% identical to the input, except that the covariance
% hyper-parameters have been set to the values in W. Deletes
% the values set to GPCF from W and returns the modified W.
% This is a mandatory subfunction used for example in energy
% and gradient computations.
%
% Assignment is inverse of
% w = [ log(gpcf.coeffSigma2)
% (hyperparameters of gpcf.coeffSigma2)]'
%
% See also
% GPCF_NEURALNETWORK_PAK
gpp=gpcf.p;
if ~isempty(gpp.biasSigma2)
i1=1;
gpcf.biasSigma2 = exp(w(i1));
w = w(i1+1:end);
end
if ~isempty(gpp.weightSigma2)
i2=length(gpcf.weightSigma2);
i1=1;
gpcf.weightSigma2 = exp(w(i1:i2));
w = w(i2+1:end);
% Hyperparameters of lengthScale
[p, w] = gpcf.p.weightSigma2.fh.unpak(gpcf.p.weightSigma2, w);
gpcf.p.weightSigma2 = p;
end
if ~isempty(gpp.biasSigma2)
% Hyperparameters of magnSigma2
[p, w] = gpcf.p.biasSigma2.fh.unpak(gpcf.p.biasSigma2, w);
gpcf.p.biasSigma2 = p;
end
end
function lp = gpcf_neuralnetwork_lp(gpcf)
%GPCF_NEURALNETWORK_LP Evaluate the log prior of covariance
% function parameters
%
% Description
% LP = GPCF_NEURALNETWORK_LP(GPCF) takes a covariance function
% structure GPCF and returns log(p(th)), where th collects the
% parameters. This is a mandatory subfunction used for example
% in energy computations.
%
% See also
% GPCF_NEURALNETWORK_PAK, GPCF_NEURALNETWORK_UNPAK,
% GPCF_NEURALNETWORK_LPG, GP_E
lp = 0;
gpp=gpcf.p;
if ~isempty(gpp.biasSigma2)
lp = gpp.biasSigma2.fh.lp(gpcf.biasSigma2, gpp.biasSigma2) +log(gpcf.biasSigma2);
end
if ~isempty(gpp.weightSigma2)
lp = lp +gpp.weightSigma2.fh.lp(gpcf.weightSigma2, gpp.weightSigma2) +sum(log(gpcf.weightSigma2));
end
end
function lpg = gpcf_neuralnetwork_lpg(gpcf)
%GPCF_NEURALNETWORK_LPG Evaluate gradient of the log prior with respect
% to the parameters.
%
% Description
% LPG = GPCF_NEURALNETWORK_LPG(GPCF) takes a covariance function
% structure GPCF and returns LPG = d log (p(th))/dth, where th
% is the vector of parameters. This is a mandatory subfunction
% used for example in gradient computations.
%
% See also
% GPCF_NEURALNETWORK_PAK, GPCF_NEURALNETWORK_UNPAK,
% GPCF_NEURALNETWORK_LP, GP_G
lpg = [];
gpp=gpcf.p;
if ~isempty(gpcf.p.biasSigma2)
lpgs = gpp.biasSigma2.fh.lpg(gpcf.biasSigma2, gpp.biasSigma2);
lpg = [lpg lpgs(1).*gpcf.biasSigma2+1 lpgs(2:end)];
end
if ~isempty(gpcf.p.weightSigma2)
lll = length(gpcf.weightSigma2);
lpgs = gpp.weightSigma2.fh.lpg(gpcf.weightSigma2, gpp.weightSigma2);
lpg = [lpg lpgs(1:lll).*gpcf.weightSigma2+1 lpgs(lll+1:end)];
end
end
function DKff = gpcf_neuralnetwork_cfg(gpcf, x, x2, mask, i1)
%GPCF_NEURALNETWORK_CFG Evaluate gradient of covariance function
% with respect to the parameters
%
% Description
% DKff = GPCF_NEURALNETWORK_CFG(GPCF, X) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X) with respect to th (cell array with matrix elements).
% This is a mandatory subfunction used in gradient computations.
%
% DKff = GPCF_NEURALNETWORK_CFG(GPCF, X, X2) takes a
% covariance function structure GPCF, a matrix X of input
% vectors and returns DKff, the gradients of covariance matrix
% Kff = k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_NEURALNETWORK_CFG(GPCF, X, [], MASK) takes a
% covariance function structure GPCF, a matrix X of input
% vectors and returns DKff, the diagonal of gradients of
% covariance matrix Kff = k(X,X2) with respect to th (cell
% array with matrix elements). This subfunction is needed
% when using sparse approximations (e.g. FIC).
%
% DKff = GPCF_NEURALNETWORK_CFG(GPCF,X,X2,[],i) takes a
% covariance function structure GPCF, a matrix X of input
% vectors and returns DKff, the gradients of covariance matrix
% Kff = k(X,X2) with respect to ith hyperparameter(matrix).
% 5th input parameter can also be used without X2. If i = 0,
% number of hyperparameters is returned. This subfunction is
% needed when using memory save option in gp_set.
%
%
% See also
% GPCF_NEURALNETWORK_PAK, GPCF_NEURALNETWORK_UNPAK,
% GPCF_NEURALNETWORK_LP, GP_G
gpp=gpcf.p;
if isfield(gpcf, 'selectedVariables') && ~isempty(x)
x=x(:,gpcf.selectedVariables);
if nargin == 3
x2=x2(:,gpcf.selectedVariables);
end
end
[n, m] =size(x);
if nargin==5
% Use memory save option
if i1==0
% Return number of hyperparameters
if ~isempty(gpcf.p.biasSigma2)
i=1;
end
if ~isempty(gpcf.p.weightSigma2)
i=i+length(gpcf.weightSigma2);
end
DKff=i;
return
end
savememory=1;
else
savememory=0;
i1=1:m;
end
DKff = {};
gprior = [];
% Evaluate: DKff{1} = d Kff / d biasSigma2
% DKff{2} = d Kff / d weightSigma2
% NOTE! Here we have already taken into account that the parameters
% are transformed through log() and thus dK/dlog(p) = p * dK/dp
% evaluate the gradient for training covariance
if nargin == 2 || (isempty(x2) && isempty(mask))
x_aug=[ones(size(x,1),1) x];
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m);
else
s = gpcf.weightSigma2;
end
S_nom=2*x_aug*diag([gpcf.biasSigma2 s])*x_aug';
S_den_tmp=(2*sum(repmat([gpcf.biasSigma2 s], n, 1).*x_aug.^2,2)+1);
S_den2=S_den_tmp*S_den_tmp';
S_den=sqrt(S_den2);
C_tmp=2/pi./sqrt(1-(S_nom./S_den).^2);
% C(abs(C)<=eps) = 0;
C_tmp = (C_tmp+C_tmp')./2;
ii1 = 0;
if ~savememory || i1==1
bnom_g=2*ones(n);
bden_g=(0.5./S_den).*(bnom_g.*repmat(S_den_tmp',n,1)+repmat(S_den_tmp,1,n).*bnom_g);
bg=gpcf.biasSigma2*C_tmp.*(bnom_g.*S_den-bden_g.*S_nom)./S_den2;
if ~isempty(gpcf.p.biasSigma2)
ii1 = ii1+1;
DKff{ii1}=(bg+bg')/2;
end
if savememory
DKff=DKff{ii1};
return
end
elseif savememory
i1=i1-1;
end
if ~isempty(gpcf.p.weightSigma2)
if length(gpcf.weightSigma2) == 1
wnom_g=2*x*x';
tmp_g=sum(2*x.^2,2);
wden_g=0.5./S_den.*(tmp_g*S_den_tmp'+S_den_tmp*tmp_g');
wg=s(1)*C_tmp.*(wnom_g.*S_den-wden_g.*S_nom)./S_den2;
ii1 = ii1+1;
DKff{ii1}=(wg+wg')/2;
else
for d1=i1
wnom_g=2*x(:,d1)*x(:,d1)';
tmp_g=2*x(:,d1).^2;
tmp=tmp_g*S_den_tmp';
wden_g=0.5./S_den.*(tmp+tmp');
wg=s(d1)*C_tmp.*(wnom_g.*S_den-wden_g.*S_nom)./S_den2;
ii1 = ii1+1;
DKff{ii1}=(wg+wg')/2;
end
end
end
% Evaluate the gradient of non-symmetric covariance (e.g. K_fu)
elseif nargin == 3 || isempty(mask)
if size(x,2) ~= size(x2,2)
error('gpcf_neuralnetwork -> _ghyper: The number of columns in x and x2 has to be the same. ')
end
n2 =size(x2,1);
x_aug=[ones(size(x,1),1) x];
x_aug2=[ones(size(x2,1),1) x2];
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m);
else
s = gpcf.weightSigma2;
end
S_nom=2*x_aug*diag([gpcf.biasSigma2 s])*x_aug2';
S_den_tmp1=(2*sum(repmat([gpcf.biasSigma2 s], n, 1).*x_aug.^2,2)+1);
S_den_tmp2=(2*sum(repmat([gpcf.biasSigma2 s], n2, 1).*x_aug2.^2,2)+1);
S_den2=S_den_tmp1*S_den_tmp2';
S_den=sqrt(S_den2);
C_tmp=2/pi./sqrt(1-(S_nom./S_den).^2);
%C(abs(C)<=eps) = 0;
ii1 = 0;
if ~savememory || i1==1
bnom_g=2*ones(n, n2);
bden_g=(0.5./S_den).*(bnom_g.*repmat(S_den_tmp2',n,1)+repmat(S_den_tmp1,1,n2).*bnom_g);
if ~isempty(gpcf.p.biasSigma2)
ii1 = ii1 + 1;
DKff{ii1}=gpcf.biasSigma2*C_tmp.*(bnom_g.*S_den-bden_g.*S_nom)./S_den2;
end
if savememory
DKff=DKff{ii1};
return
end
elseif savememory
i1=i1-1;
end
if ~isempty(gpcf.p.weightSigma2)
if length(gpcf.weightSigma2) == 1
wnom_g=2*x*x2';
tmp_g1=sum(2*x.^2,2);
tmp_g2=sum(2*x2.^2,2);
wden_g=0.5./S_den.*(tmp_g1*S_den_tmp2'+S_den_tmp1*tmp_g2');
ii1 = ii1 + 1;
DKff{ii1}=s(1)*C_tmp.*(wnom_g.*S_den-wden_g.*S_nom)./S_den2;
else
for d1=i1
wnom_g=2*x(:,d1)*x2(:,d1)';
tmp_g1=2*x(:,d1).^2;
tmp_g2=2*x2(:,d1).^2;
wden_g=0.5./S_den.*(tmp_g1*S_den_tmp2'+S_den_tmp1*tmp_g2');
ii1 = ii1 + 1;
DKff{ii1}=s(d1)*C_tmp.*(wnom_g.*S_den-wden_g.*S_nom)./S_den2;
end
end
end
% Evaluate: DKff{1} = d mask(Kff,I) / d biasSigma2
% DKff{2...} = d mask(Kff,I) / d weightSigma2
elseif nargin == 4 || nargin == 5
x_aug=[ones(size(x,1),1) x];
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m);
else
s = gpcf.weightSigma2;
end
S_nom=2*sum(repmat([gpcf.biasSigma2 s],n,1).*x_aug.^2,2);
S_den=(S_nom+1);
S_den2=S_den.^2;
C_tmp=2/pi./sqrt(1-(S_nom./S_den).^2);
%C(abs(C)<=eps) = 0;
bnom_g=2*ones(n,1);
bden_g=(0.5./S_den).*(2*bnom_g.*S_den);
ii1 = 0;
if ~isempty(gpcf.p.biasSigma2) && (~savememory || all(i1==1))
ii1 = ii1 + 1;
DKff{ii1}=gpcf.biasSigma2*C_tmp.*(bnom_g.*S_den-bden_g.*S_nom)./S_den2;
end
if savememory
if i1==1
DKff=DKff{1};
return
end
i1=i1-1;
end
if ~isempty(gpcf.p.weightSigma2)
if length(gpcf.weightSigma2) == 1
wnom_g=sum(2*x.^2,2);
wden_g=0.5./S_den.*(2*wnom_g.*S_den);
ii1 = ii1+1;
DKff{ii1}=s(1)*C_tmp.*(wnom_g.*S_den-wden_g.*S_nom)./S_den2;
else
for d1=i1
wnom_g=2*x(:,d1).^2;
wden_g=0.5./S_den.*(2*wnom_g.*S_den);
ii1 = ii1+1;
DKff{ii1}=s(d1)*C_tmp.*(wnom_g.*S_den-wden_g.*S_nom)./S_den2;
end
end
end
end
if savememory
DKff=DKff{1};
end
end
function DKff = gpcf_neuralnetwork_ginput(gpcf, x, x2, i1)
%GPCF_NEURALNETWORK_GINPUT Evaluate gradient of covariance function with
% respect to x.
%
% Description
% DKff = GPCF_NEURALNETWORK_GINPUT(GPCF, X) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_NEURALNETWORK_GINPUT(GPCF, X, X2) takes a
% covariance function structure GPCF, a matrix X of input
% vectors and returns DKff, the gradients of covariance matrix
% Kff = k(X,X2) with respect to X (cell array with matrix
% elements). This subfunction is needed when computing gradients
% with respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_NEURALNETWORK_GINPUT(GPCF, X, X2, i) takes a
% covariance function structure GPCF, a matrix X of input
% vectors and returns DKff, the gradients of covariance matrix
% Kff = k(X,X2) with respect to ith covariate in X (matrix).
% This subfunction is needed when using memory save option in
% gp_set.
%
% See also
% GPCF_NEURALNETWORK_PAK, GPCF_NEURALNETWORK_UNPAK,
% GPCF_NEURALNETWORK_LP, GP_G
if isfield(gpcf, 'selectedVariables')
x=x(:,gpcf.selectedVariables);
if nargin == 3
x2=x2(:,gpcf.selectedVariables);
end
end
[n, m] =size(x);
if nargin==4
% Use memory save option
if i1==0
% Return number of covariates
DKff=m;
return
end
else
i1=1:m;
end
if nargin == 2 || isempty(x2)
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m);
else
s = gpcf.weightSigma2;
end
x_aug=[ones(size(x,1),1) x];
S_nom=2*x_aug*diag([gpcf.biasSigma2 s])*x_aug';
S_den_tmp=(2*sum(repmat([gpcf.biasSigma2 s], n, 1).*x_aug.^2,2)+1);
S_den2=S_den_tmp*S_den_tmp';
S_den=sqrt(S_den2);
C_tmp=2/pi./sqrt(1-(S_nom./S_den).^2);
%C(abs(C)<=eps) = 0;
C_tmp = (C_tmp+C_tmp')./2;
ii1=0;
for d1=i1
for j=1:n
DK = zeros(n);
DK(j,:)=s(d1)*x(:,d1)';
DK = DK + DK';
inom_g=2*DK;
tmp_g=zeros(n);
tmp_g(j,:)=2*s(d1)*2*x(j,d1)*S_den_tmp';
tmp_g=tmp_g+tmp_g';
iden_g=0.5./S_den.*(tmp_g);
ii1=ii1+1;
DKff{ii1}=C_tmp.*(inom_g.*S_den-iden_g.*S_nom)./S_den2;
end
end
elseif nargin == 3 || nargin == 4
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m);
else
s = gpcf.weightSigma2;
end
n2 =size(x2,1);
x_aug=[ones(size(x,1),1) x];
x_aug2=[ones(size(x2,1),1) x2];
S_nom=2*x_aug*diag([gpcf.biasSigma2 s])*x_aug2';
S_den_tmp1=(2*sum(repmat([gpcf.biasSigma2 s], n, 1).*x_aug.^2,2)+1);
S_den_tmp2=(2*sum(repmat([gpcf.biasSigma2 s], n2, 1).*x_aug2.^2,2)+1);
S_den2=S_den_tmp1*S_den_tmp2';
S_den=sqrt(S_den2);
C_tmp=2/pi./sqrt(1-(S_nom./S_den).^2);
% C(abs(C)<=eps) = 0;
ii1 = 0;
for d1=i1
for j = 1:n
DK = zeros(n, n2);
DK(j,:)=s(d1)*x2(:,d1)';
inom_g=2*DK;
tmp_g=zeros(n, n2);
tmp_g(j,:)=2*s(d1)*2*x(j,d1)*S_den_tmp2';
iden_g=0.5./S_den.*(tmp_g);
ii1=ii1+1;
DKff{ii1}=C_tmp.*(inom_g.*S_den-iden_g.*S_nom)./S_den2;
end
end
end
end
function C = gpcf_neuralnetwork_cov(gpcf, x1, x2, varargin)
%GP_NEURALNETWORK_COV Evaluate covariance matrix between two input vectors
%
% Description
% C = GP_NEURALNETWORK_COV(GP, TX, X) takes in covariance
% function of a Gaussian process GP and two matrixes TX and X
% that contain input vectors to GP. Returns covariance matrix
% C. Every element ij of C contains covariance between inputs
% i in TX and j in X. This is a mandatory subfunction used for
% example in prediction and energy computations.
%
%
% See also
% GPCF_NEURALNETWORK_TRCOV, GPCF_NEURALNETWORK_TRVAR, GP_COV,
% GP_TRCOV
if isfield(gpcf, 'selectedVariables')
x1=x1(:,gpcf.selectedVariables);
if nargin == 3
x2=x2(:,gpcf.selectedVariables);
end
end
if isempty(x2)
x2=x1;
end
[n1,m1]=size(x1);
[n2,m2]=size(x2);
if m1~=m2
error('the number of columns of X1 and X2 has to be same')
end
x_aug1=[ones(n1,1) x1];
x_aug2=[ones(n2,1) x2];
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m1);
else
s = gpcf.weightSigma2;
end
S_nom=2*x_aug1*diag([gpcf.biasSigma2 s])*x_aug2';
S_den_tmp1=(2*sum(repmat([gpcf.biasSigma2 s], n1, 1).*x_aug1.^2,2)+1);
S_den_tmp2=(2*sum(repmat([gpcf.biasSigma2 s], n2, 1).*x_aug2.^2,2)+1);
S_den2=S_den_tmp1*S_den_tmp2';
C=2/pi*asin(S_nom./sqrt(S_den2));
C(abs(C)<=eps) = 0;
end
function C = gpcf_neuralnetwork_trcov(gpcf, x)
%GP_NEURALNETWORK_TRCOV Evaluate training covariance matrix of inputs
%
% Description
% C = GP_NEURALNETWORK_TRCOV(GP, TX) takes in covariance
% function of a Gaussian process GP and matrix TX that
% contains training input vectors. Returns covariance matrix
% C. Every element ij of C contains covariance between inputs
% i and j in TX. This is a mandatory subfunction used for
% example in prediction and energy computations.
%
% See also
% GPCF_NEURALNETWORK_COV, GPCF_NEURALNETWORK_TRVAR, GP_COV,
% GP_TRCOV
if isfield(gpcf, 'selectedVariables')
x=x(:,gpcf.selectedVariables);
end
[n,m]=size(x);
x_aug=[ones(n,1) x];
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m);
else
s = gpcf.weightSigma2;
end
S_nom=2*x_aug*diag([gpcf.biasSigma2 s])*x_aug';
S_den_tmp=(2*sum(repmat([gpcf.biasSigma2 s], n, 1).*x_aug.^2,2)+1);
S_den2=S_den_tmp*S_den_tmp';
C=2/pi*asin(S_nom./sqrt(S_den2));
C(abs(C)<=eps) = 0;
C = (C+C')./2;
end
function C = gpcf_neuralnetwork_trvar(gpcf, x)
%GP_NEURALNETWORK_TRVAR Evaluate training variance vector
%
% Description
% C = GP_NEURALNETWORK_TRVAR(GPCF, TX) takes in covariance
% function of a Gaussian process GPCF and matrix TX that
% contains training inputs. Returns variance vector C. Every
% element i of C contains variance of input i in TX. This is
% a mandatory subfunction used for example in prediction and
% energy computations.
%
%
% See also
% GPCF_NEURALNETWORK_COV, GP_COV, GP_TRCOV
if isfield(gpcf, 'selectedVariables')
x=x(:,gpcf.selectedVariables);
end
[n,m]=size(x);
x_aug=[ones(n,1) x];
if length(gpcf.weightSigma2) == 1
% In the case of an isotropic NEURALNETWORK
s = gpcf.weightSigma2*ones(1,m);
else
s = gpcf.weightSigma2;
end
s_tmp=sum(repmat([gpcf.biasSigma2 s], n, 1).*x_aug.^2,2);
C=2/pi*asin(2*s_tmp./(1+2*s_tmp));
C(C<eps)=0;
end
function reccf = gpcf_neuralnetwork_recappend(reccf, ri, gpcf)
%RECAPPEND Record append
%
% Description
% RECCF = GPCF_NEURALNETWORK_RECAPPEND(RECCF, RI, GPCF) takes
% a covariance function record structure RECCF, record index
% RI and covariance function structure GPCF with the current
% MCMC samples of the parameters. Returns RECCF which contains
% all the old samples and the current samples from GPCF.
% This subfunction is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC and GP_MC -> RECAPPEND
if nargin == 2
% Initialize the record
reccf.type = 'gpcf_neuralnetwork';
reccf.nin = ri;
reccf.nout = 1;
% Initialize parameters
reccf.weightSigma2= [];
reccf.biasSigma2 = [];
% Set the function handles
reccf.fh.pak = @gpcf_neuralnetwork_pak;
reccf.fh.unpak = @gpcf_neuralnetwork_unpak;
reccf.fh.lp = @gpcf_neuralnetwork_lp;
reccf.fh.lpg = @gpcf_neuralnetwork_lpg;
reccf.fh.cfg = @gpcf_neuralnetwork_cfg;
reccf.fh.cov = @gpcf_neuralnetwork_cov;
reccf.fh.trcov = @gpcf_neuralnetwork_trcov;
reccf.fh.trvar = @gpcf_neuralnetwork_trvar;
reccf.fh.recappend = @gpcf_neuralnetwork_recappend;
reccf.p=[];
reccf.p.weightSigma2=[];
reccf.p.biasSigma2=[];
if ~isempty(ri.p.weightSigma2)
reccf.p.weightSigma2 = ri.p.weightSigma2;
end
if ~isempty(ri.p.biasSigma2)
reccf.p.biasSigma2 = ri.p.biasSigma2;
end
else
% Append to the record
gpp = gpcf.p;
% record weightSigma2
reccf.weightSigma2(ri,:)=gpcf.weightSigma2;
if isfield(gpp,'weightSigma2') && ~isempty(gpp.weightSigma2)
reccf.p.weightSigma2 = gpp.weightSigma2.fh.recappend(reccf.p.weightSigma2, ri, gpcf.p.weightSigma2);
end
% record biasSigma2
reccf.biasSigma2(ri,:)=gpcf.biasSigma2;
if isfield(gpp,'biasSigma2') && ~isempty(gpp.biasSigma2)
reccf.p.biasSigma2 = gpp.biasSigma2.fh.recappend(reccf.p.biasSigma2, ri, gpcf.p.biasSigma2);
end
if isfield(gpcf, 'selectedVariables')
reccf.selectedVariables = gpcf.selectedVariables;
end
end
end
|
github
|
lcnbeapp/beapp-master
|
gpcf_ppcs1.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gpcf_ppcs1.m
| 38,503 |
utf_8
|
c39681a25f1ff058f0e2986776407dfe
|
function gpcf = gpcf_ppcs1(varargin)
%GPCF_PPCS1 Create a piece wise polynomial (q=1) covariance function
%
% Description
% GPCF = GPCF_PPCS1('nin',nin,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates piece wise polynomial (q=1) covariance function
% structure in which the named parameters have the specified
% values. Any unspecified parameters are set to default values.
% Obligatory parameter is 'nin', which tells the dimension
% of input space.
%
% GPCF = GPCF_PPCS1(GPCF,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a covariance function structure with the named
% parameters altered with the specified values.
%
% Parameters for piece wise polynomial (q=1) covariance function [default]
% magnSigma2 - magnitude (squared) [0.1]
% lengthScale - length scale for each input. [1]
% This can be either scalar corresponding
% to an isotropic function or vector
% defining own length-scale for each input
% direction.
% l_nin - order of the polynomial [floor(nin/2) + 2]
% Has to be greater than or equal to default.
% magnSigma2_prior - prior for magnSigma2 [prior_logunif]
% lengthScale_prior - prior for lengthScale [prior_t]
% metric - metric structure used by the covariance function []
% selectedVariables - vector defining which inputs are used [all]
% selectedVariables is shorthand for using
% metric_euclidean with corresponding components
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% The piecewise polynomial function is the following:
%
% k_pp1(x_i, x_j) = ma2*cs^(l+1)*((l+1)*r + 1)
%
% where r = sum( (x_i,d - x_j,d)^2/l^2_d )
% l = floor(l_nin/2) + 2
% cs = max(0,1-r)
% and l_nin must be greater or equal to gpcf.nin
%
% NOTE! Use of gpcf_ppcs1 requires that you have installed
% GPstuff with SuiteSparse.
%
% See also
% GP_SET, GPCF_*, PRIOR_*, METRIC_*
% Copyright (c) 2009-2010 Jarno Vanhatalo
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
if nargin>0 && ischar(varargin{1}) && ismember(varargin{1},{'init' 'set'})
% remove init and set
varargin(1)=[];
end
ip=inputParser;
ip.FunctionName = 'GPCF_PPCS1';
ip.addOptional('gpcf', [], @isstruct);
ip.addParamValue('nin',[], @(x) isscalar(x) && x>0 && mod(x,1)==0);
ip.addParamValue('magnSigma2',0.1, @(x) isscalar(x) && x>0);
ip.addParamValue('lengthScale',1, @(x) isvector(x) && all(x>0));
ip.addParamValue('l_nin',[], @(x) isscalar(x) && x>0 && mod(x,1)==0);
ip.addParamValue('metric',[], @isstruct);
ip.addParamValue('magnSigma2_prior', prior_logunif(), ...
@(x) isstruct(x) || isempty(x));
ip.addParamValue('lengthScale_prior',prior_t(), ...
@(x) isstruct(x) || isempty(x));
ip.addParamValue('selectedVariables',[], @(x) isempty(x) || ...
(isvector(x) && all(x>0)));
ip.parse(varargin{:});
gpcf=ip.Results.gpcf;
if isempty(gpcf)
% Check that SuiteSparse is available
if ~exist('ldlchol')
error('SuiteSparse is not installed (or it is not in the path). gpcf_ppcs1 cannot be used!')
end
init=true;
gpcf.nin=ip.Results.nin;
if isempty(gpcf.nin)
error('nin has to be given for ppcs: gpcf_ppcs1(''nin'',NIN,...)')
end
gpcf.type = 'gpcf_ppcs1';
% cf is compactly supported
gpcf.cs = 1;
else
if ~isfield(gpcf,'type') && ~isequal(gpcf.type,'gpcf_ppcs1')
error('First argument does not seem to be a valid covariance function structure')
end
init=false;
end
if init
% Set the function handles to the subfunctions
gpcf.fh.pak = @gpcf_ppcs1_pak;
gpcf.fh.unpak = @gpcf_ppcs1_unpak;
gpcf.fh.lp = @gpcf_ppcs1_lp;
gpcf.fh.lpg = @gpcf_ppcs1_lpg;
gpcf.fh.cfg = @gpcf_ppcs1_cfg;
gpcf.fh.ginput = @gpcf_ppcs1_ginput;
gpcf.fh.cov = @gpcf_ppcs1_cov;
gpcf.fh.trcov = @gpcf_ppcs1_trcov;
gpcf.fh.trvar = @gpcf_ppcs1_trvar;
gpcf.fh.recappend = @gpcf_ppcs1_recappend;
end
% Initialize parameters
if init || ~ismember('l_nin',ip.UsingDefaults)
gpcf.l=ip.Results.l_nin;
if isempty(gpcf.l)
gpcf.l = floor(gpcf.nin/2) + 2;
end
if gpcf.l < gpcf.nin
error('The l_nin has to be greater than or equal to the number of inputs!')
end
end
if init || ~ismember('lengthScale',ip.UsingDefaults)
gpcf.lengthScale = ip.Results.lengthScale;
end
if init || ~ismember('magnSigma2',ip.UsingDefaults)
gpcf.magnSigma2 = ip.Results.magnSigma2;
end
% Initialize prior structure
if init
gpcf.p=[];
end
if init || ~ismember('lengthScale_prior',ip.UsingDefaults)
gpcf.p.lengthScale=ip.Results.lengthScale_prior;
end
if init || ~ismember('magnSigma2_prior',ip.UsingDefaults)
gpcf.p.magnSigma2=ip.Results.magnSigma2_prior;
end
%Initialize metric
if ~ismember('metric',ip.UsingDefaults)
if ~isempty(ip.Results.metric)
gpcf.metric = ip.Results.metric;
gpcf = rmfield(gpcf, 'lengthScale');
gpcf.p = rmfield(gpcf.p, 'lengthScale');
elseif isfield(gpcf,'metric')
if ~isfield(gpcf,'lengthScale')
gpcf.lengthScale = gpcf.metric.lengthScale;
end
if ~isfield(gpcf.p,'lengthScale')
gpcf.p.lengthScale = gpcf.metric.p.lengthScale;
end
gpcf = rmfield(gpcf, 'metric');
end
end
% selectedVariables options implemented using metric_euclidean
if ~ismember('selectedVariables',ip.UsingDefaults)
if ~isfield(gpcf,'metric')
if ~isempty(ip.Results.selectedVariables)
gpcf.selectedVariables = ip.Results.selectedVariables;
% gpcf.metric=metric_euclidean('components',...
% num2cell(ip.Results.selectedVariables),...
% 'lengthScale',gpcf.lengthScale,...
% 'lengthScale_prior',gpcf.p.lengthScale);
% gpcf = rmfield(gpcf, 'lengthScale');
% gpcf.p = rmfield(gpcf.p, 'lengthScale');
end
elseif isfield(gpcf,'metric')
if ~isempty(ip.Results.selectedVariables)
gpcf.metric=metric_euclidean(gpcf.metric,...
'components',...
num2cell(ip.Results.selectedVariables));
if ~ismember('lengthScale',ip.UsingDefaults)
gpcf.metric.lengthScale=ip.Results.lengthScale;
gpcf = rmfield(gpcf, 'lengthScale');
end
if ~ismember('lengthScale_prior',ip.UsingDefaults)
gpcf.metric.p.lengthScale=ip.Results.lengthScale_prior;
gpcf.p = rmfield(gpcf.p, 'lengthScale');
end
else
if ~isfield(gpcf,'lengthScale')
gpcf.lengthScale = gpcf.metric.lengthScale;
end
if ~isfield(gpcf.p,'lengthScale')
gpcf.p.lengthScale = gpcf.metric.p.lengthScale;
end
gpcf = rmfield(gpcf, 'metric');
end
end
end
end
function [w,s] = gpcf_ppcs1_pak(gpcf)
%GPCF_PPCS1_PAK Combine GP covariance function parameters into
% one vector
%
% Description
% W = GPCF_PPCS1_PAK(GPCF) takes a covariance function
% structure GPCF and combines the covariance function
% parameters and their hyperparameters into a single row
% vector W. This is a mandatory subfunction used for example
% in energy and gradient computations.
%
% w = [ log(gpcf.magnSigma2)
% (hyperparameters of gpcf.magnSigma2)
% log(gpcf.lengthScale(:))
% (hyperparameters of gpcf.lengthScale)]'
%
% See also
% GPCF_PPCS1_UNPAK
w = []; s = {};
if ~isempty(gpcf.p.magnSigma2)
w = [w log(gpcf.magnSigma2)];
s = [s; 'log(ppcs1.magnSigma2)'];
% Hyperparameters of magnSigma2
[wh sh] = gpcf.p.magnSigma2.fh.pak(gpcf.p.magnSigma2);
w = [w wh];
s = [s; sh];
end
if isfield(gpcf,'metric')
[wh sh]=gpcf.metric.fh.pak(gpcf.metric);
w = [w wh];
s = [s; sh];
else
if ~isempty(gpcf.p.lengthScale)
w = [w log(gpcf.lengthScale)];
if numel(gpcf.lengthScale)>1
s = [s; sprintf('log(ppcs1.lengthScale x %d)',numel(gpcf.lengthScale))];
else
s = [s; 'log(ppcs1.lengthScale)'];
end
% Hyperparameters of lengthScale
[wh sh] = gpcf.p.lengthScale.fh.pak(gpcf.p.lengthScale);
w = [w wh];
s = [s; sh];
end
end
end
function [gpcf, w] = gpcf_ppcs1_unpak(gpcf, w)
%GPCF_PPCS1_UNPAK Sets the covariance function parameters into
% the structure
%
% Description
% [GPCF, W] = GPCF_PPCS1_UNPAK(GPCF, W) takes a covariance
% function structure GPCF and a hyper-parameter vector W,
% and returns a covariance function structure identical
% to the input, except that the covariance hyper-parameters
% have been set to the values in W. Deletes the values set to
% GPCF from W and returns the modified W. This is a mandatory
% subfunction used for example in energy and gradient computations.
%
% Assignment is inverse of
% w = [ log(gpcf.magnSigma2)
% (hyperparameters of gpcf.magnSigma2)
% log(gpcf.lengthScale(:))
% (hyperparameters of gpcf.lengthScale)]'
%
% See also
% GPCF_PPCS1_PAK
gpp=gpcf.p;
if ~isempty(gpp.magnSigma2)
gpcf.magnSigma2 = exp(w(1));
w = w(2:end);
% Hyperparameters of magnSigma2
[p, w] = gpcf.p.magnSigma2.fh.unpak(gpcf.p.magnSigma2, w);
gpcf.p.magnSigma2 = p;
end
if isfield(gpcf,'metric')
[metric, w] = gpcf.metric.fh.unpak(gpcf.metric, w);
gpcf.metric = metric;
else
if ~isempty(gpp.lengthScale)
i1=1;
i2=length(gpcf.lengthScale);
gpcf.lengthScale = exp(w(i1:i2));
w = w(i2+1:end);
% Hyperparameters of lengthScale
[p, w] = gpcf.p.lengthScale.fh.unpak(gpcf.p.lengthScale, w);
gpcf.p.lengthScale = p;
end
end
end
function lp = gpcf_ppcs1_lp(gpcf)
%GPCF_PPCS1_LP Evaluate the log prior of covariance function parameters
%
% Description
% LP = GPCF_PPCS1_LP(GPCF, X, T) takes a covariance function
% structure GPCF and returns log(p(th)), where th collects the
% parameters. This is a mandatory subfunction used for example
% in energy computations.
%
% See also
% GPCF_PPCS1_PAK, GPCF_PPCS1_UNPAK, GPCF_PPCS1_LPG, GP_E
% Evaluate the prior contribution to the error. The parameters that
% are sampled are transformed, e.g., W = log(w) where w is all
% the "real" samples. On the other hand errors are evaluated in
% the W-space so we need take into account also the Jacobian of
% transformation, e.g., W -> w = exp(W). See Gelman et.al., 2004,
% Bayesian data Analysis, second edition, p24.
lp = 0;
gpp=gpcf.p;
if ~isempty(gpcf.p.magnSigma2)
lp = lp +gpp.magnSigma2.fh.lp(gpcf.magnSigma2, ...
gpp.magnSigma2) +log(gpcf.magnSigma2);
end
if isfield(gpcf,'metric')
lp = lp +gpcf.metric.fh.lp(gpcf.metric);
elseif ~isempty(gpp.lengthScale)
lp = lp +gpp.lengthScale.fh.lp(gpcf.lengthScale, ...
gpp.lengthScale) +sum(log(gpcf.lengthScale));
end
end
function lpg = gpcf_ppcs1_lpg(gpcf)
%GPCF_PPCS1_LPG Evaluate gradient of the log prior with respect
% to the parameters.
%
% Description
% LPG = GPCF_PPCS1_LPG(GPCF) takes a covariance function
% structure GPCF and returns LPG = d log (p(th))/dth, where th
% is the vector of parameters. This is a mandatory subfunction
% used for example in gradient computations.
%
% See also
% GPCF_PPCS1_PAK, GPCF_PPCS1_UNPAK, GPCF_PPCS1_LP, GP_G
lpg = [];
gpp=gpcf.p;
if ~isempty(gpcf.p.magnSigma2)
lpgs = gpp.magnSigma2.fh.lpg(gpcf.magnSigma2, gpp.magnSigma2);
lpg = [lpg lpgs(1).*gpcf.magnSigma2+1 lpgs(2:end)];
end
if isfield(gpcf,'metric')
lpg_dist = gpcf.metric.fh.lpg(gpcf.metric);
lpg=[lpg lpg_dist];
else
if ~isempty(gpcf.p.lengthScale)
lll = length(gpcf.lengthScale);
lpgs = gpp.lengthScale.fh.lpg(gpcf.lengthScale, gpp.lengthScale);
lpg = [lpg lpgs(1:lll).*gpcf.lengthScale+1 lpgs(lll+1:end)];
end
end
end
function DKff = gpcf_ppcs1_cfg(gpcf, x, x2, mask, i1)
%GPCF_PPCS1_CFG Evaluate gradient of covariance function
% with respect to the parameters
%
% Description
% DKff = GPCF_PPCS1_CFG(GPCF, X) takes a covariance function
% structure GPCF, a matrix X of input vectors and returns
% DKff, the gradients of covariance matrix Kff = k(X,X) with
% respect to th (cell array with matrix elements). This is a
% mandatory subfunction used in gradient computations.
%
% DKff = GPCF_PPCS1_CFG(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_PPCS1_CFG(GPCF, X, [], MASK) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the diagonal of gradients of covariance matrix
% Kff = k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_PPCS1_CFG(GPCF, X, X2, [], i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to ith hyperparameter. This subfunction
% is needed when using memory save option gp_set.
%
% See also
% GPCF_PPCS1_PAK, GPCF_PPCS1_UNPAK, GPCF_PPCS1_LP, GP_G
gpp=gpcf.p;
i2=1;
DKff = {};
gprior = [];
if nargin==5
% Use memory save option
savememory=1;
if i1==0
% Return number of hyperparameters
i=0;
if ~isempty(gpcf.p.magnSigma2)
i=i+1;
end
if ~isempty(gpcf.p.lengthScale)
i=i+length(gpcf.lengthScale);
end
DKff=i;
return
end
else
savememory=0;
end
% Evaluate: DKff{1} = d Kff / d magnSigma2
% DKff{2} = d Kff / d lengthScale
% NOTE! Here we have already taken into account that the parameters
% are transformed through log() and thus dK/dlog(p) = p * dK/dp
% evaluate the gradient for training covariance
if nargin == 2 || (isempty(x2) && isempty(mask))
Cdm = gpcf_ppcs1_trcov(gpcf, x);
ii1=0;
if ~isempty(gpcf.p.magnSigma2)
ii1 = ii1 +1;
DKff{ii1} = Cdm;
end
l = gpcf.l;
[I,J] = find(Cdm);
if isfield(gpcf,'metric')
% Compute the sparse distance matrix and its gradient.
[n, m] =size(x);
ntriplets = (nnz(Cdm)-n)./2;
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n-1
col_ind = ii + find(Cdm(ii+1:n,ii));
d = gpcf.metric.fh.dist(gpcf.metric, x(col_ind,:), x(ii,:));
gd = gpcf.metric.fh.distg(gpcf.metric, x(col_ind,:), x(ii,:));
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(d);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = col_ind;
J(ind_tr) = ii;
dist(ind_tr) = d;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj};
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l+1;
Dd = -(l+1).*cs.^l.*(const1.*d +1 );
Dd = Dd + cs.^(l+1).*const1;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n,n);
DKff{ii1} = D + D';
end
else
if isfield(gpcf, 'selectedVariables')
x = x(:,gpcf.selectedVariables);
end
[n, m] =size(x);
if ~savememory
i1=1:m;
else
if i1==1
DKff=DKff{1};
return
end
i1=i1-1;
ii1=ii1-1;
end
if ~isempty(gpcf.p.lengthScale)
% loop over all the lengthScales
if length(gpcf.lengthScale) == 1
% In the case of isotropic PPCS1
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
d2 = 0;
for i = 1:m
d2 = d2 + s2.*(x(I,i) - x(J,i)).^2;
end
d = sqrt(d2);
% Create the 'compact support' matrix, that is, (1-R)_+,
% where ()_+ truncates all non-positive inputs to zero.
cs = 1-d;
% Calculate the gradient matrix
const1 = l+1;
D = -(l+1).*cs.^l.*(const1.*d +1 );
D = D + cs.^(l+1).*const1;
D = -d.*ma2.*D;
D = sparse(I,J,D,n,n);
ii1 = ii1+1;
DKff{ii1} = D;
else
% In the case ARD is used
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
d2 = 0;
d_l2 = [];
for i = 1:m
d_l2(:,i) = s2(i).*(x(I,i) - x(J,i)).^2;
d2 = d2 + d_l2(:,i);
end
d = sqrt(d2);
d_l = d_l2;
% Create the 'compact support' matrix, that is, (1-R)_+,
% where ()_+ truncates all non-positive inputs to zero.
cs = 1-d;
const1 = l+1;
Dd = -(l+1).*cs.^l.*(const1.*d +1 );
Dd = Dd + cs.^(l+1).*const1;
Dd = -ma2.*Dd;
int = d ~= 0;
for i = i1
% Calculate the gradient matrix
D = d_l(:,i).*Dd;
% Divide by r in cases where r is non-zero
D(int) = D(int)./d(int);
D = sparse(I,J,D,n,n);
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
end
% Evaluate the gradient of non-symmetric covariance (e.g. K_fu)
elseif nargin == 3 || isempty(mask)
if size(x,2) ~= size(x2,2)
error('gpcf_ppcs -> _ghyper: The number of columns in x and x2 has to be the same. ')
end
ii1=0;
K = gpcf.fh.cov(gpcf, x, x2);
if ~isempty(gpcf.p.magnSigma2)
ii1 = ii1 +1;
DKff{ii1} = K;
end
l = gpcf.l;
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n1,m1]=size(x);
[n2,m2]=size(x2);
ma = gpcf.magnSigma2;
% Compute the sparse distance matrix.
ntriplets = nnz(K);
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n2
d = zeros(n1,1);
d = gpcf.metric.fh.dist(gpcf.metric, x, x2(ii,:));
gd = gpcf.metric.fh.distg(gpcf.metric, x, x2(ii,:));
gprior_dist = gpcf.metric.fh.lpg(gpcf.metric, x, x2(ii,:));
I0t = find(d==0);
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = I2;
J(ind_tr) = ii;
dist(ind_tr) = R2;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj}(I2);
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l+1;
Dd = -(l+1).*cs.^l.*(const1.*d +1 );
Dd = Dd + cs.^(l+1).*const1;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n1,n2);
DKff{ii1} = D;
end
else
if isfield(gpcf, 'selectedVariables')
x = x(:,gpcf.selectedVariables);
x2 = x2(:,gpcf.selectedVariables);
end
[n, m] =size(x);
if ~savememory
i1=1:m;
else
if i1==1
DKff=DKff{1};
return
end
i1=i1-1;
ii1=ii1-1;
end
if ~isempty(gpcf.p.lengthScale)
% loop over all the lengthScales
if length(gpcf.lengthScale) == 1
% In the case of isotropic PPCS1
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
dist1 = 0;
for i=1:m
dist1 = dist1 + s2.*(bsxfun(@minus,x(:,i),x2(:,i)')).^2;
end
d1 = sqrt(dist1);
cs1 = max(1-d1,0);
const1 = l+1;
DK_l = -(l+1).*cs1.^l.*(const1.*d1 +1 );
DK_l = DK_l + cs1.^(l+1).*const1;
DK_l = -d1.*ma2.*DK_l;
ii1=ii1+1;
DKff{ii1} = DK_l;
else
% In the case ARD is used
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
dist1 = 0;
d_l1 = [];
for i = 1:m
dist1 = dist1 + s2(i).*bsxfun(@minus,x(:,i),x2(:,i)').^2;
d_l1{i} = s2(i).*(bsxfun(@minus,x(:,i),x2(:,i)')).^2;
end
d1 = sqrt(dist1);
cs1 = max(1-d1,0);
const1 = l+1;
D = -(l+1).*cs1.^l.*(const1.*d1 +1 );
D = D + cs1.^(l+1).*const1;
D = ma2.*D;
for i = i1
% Calculate the gradient matrix
DK_l = -D.*d_l1{i};
% Divide by r in cases where r is non-zero
DK_l(d1 ~= 0) = DK_l(d1 ~= 0)./d1(d1 ~= 0);
ii1=ii1+1;
DKff{ii1} = DK_l;
end
end
end
end
% Evaluate: DKff{1} = d mask(Kff,I) / d magnSigma2
% DKff{2...} = d mask(Kff,I) / d lengthScale
elseif nargin == 4 || nargin == 5
ii1=0;
[n, m] =size(x);
if ~isempty(gpcf.p.magnSigma2) && (~savememory || all(i1==1))
ii1 = ii1+1;
DKff{ii1} = gpcf.fh.trvar(gpcf, x); % d mask(Kff,I) / d magnSigma2
end
if isfield(gpcf,'metric')
dist = 0;
distg = gpcf.metric.fh.distg(gpcf.metric, x, [], 1);
gprior_dist = gpcf.metric.fh.lpg(gpcf.metric);
for i=1:length(distg)
ii1 = ii1+1;
DKff{ii1} = 0;
end
else
if ~isempty(gpcf.p.lengthScale)
for i2=1:length(gpcf.lengthScale)
ii1 = ii1+1;
DKff{ii1} = 0; % d mask(Kff,I) / d lengthScale
end
end
end
end
if savememory
DKff=DKff{1};
end
end
function DKff = gpcf_ppcs1_ginput(gpcf, x, x2, i1)
%GPCF_PPCS1_GINPUT Evaluate gradient of covariance function with
% respect to x
%
% Description
% DKff = GPCF_PPCS1_GINPUT(GPCF, X) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_PPCS1_GINPUT(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_PPCS1_GINPUT(GPCF, X, X2, i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2), or k(X,X) if X2 is empty with respect to ith
% covariate in X. This subfunction is needed when using memory
% save option in gp_set.
%
% See also
% GPCF_PPCS1_PAK, GPCF_PPCS1_UNPAK, GPCF_PPCS1_LP, GP_G
i2=1;
DKff = {};
gprior = [];
[n,m]=size(x);
if nargin<4
i1=1:m;
else
% Use memory save option
if i1==0
% Return number of covariates
if isfield(gpcf,'selectedVariables')
DKff=length(gpcf.selectedVariables);
else
DKff=m;
end
return
end
end
% evaluate the gradient for training covariance
if nargin == 2 || isempty(x2)
K = gpcf_ppcs1_trcov(gpcf, x);
ii1=0;
l = gpcf.l;
[I,J] = find(K);
if isfield(gpcf,'metric')
% Compute the sparse distance matrix and its gradient.
ntriplets = (nnz(Cdm)-n)./2;
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n-1
col_ind = ii + find(Cdm(ii+1:n,ii));
d = zeros(length(col_ind),1);
d = gpcf.metric.fh.dist(gpcf.metric, x(col_ind,:), x(ii,:));
[gd, gprior_dist] = gpcf.metric.fh.ginput(gpcf.metric, x(col_ind,:), x(ii,:));
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(d);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = col_ind;
J(ind_tr) = ii;
dist(ind_tr) = d;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj};
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l+1;
Dd = -(l+1).*cs.^l.*(const1.*d +1 );
Dd = Dd + cs.^(l+1).*const1;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n,n);
DKff{ii1} = D + D';
end
else
if length(gpcf.lengthScale) == 1
% In the case of an isotropic PPCS1
s2 = repmat(1./gpcf.lengthScale.^2, 1, m);
else
s2 = 1./gpcf.lengthScale.^2;
end
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
d2 = 0;
for i = 1:m
d2 = d2 + s2(i).*(x(I,i) - x(J,i)).^2;
end
d = sqrt(d2);
% Create the 'compact support' matrix, that is, (1-R)_+,
% where ()_+ truncates all non-positive inputs to zero.
cs = 1-d;
Dd = -(l+1).*cs.^l.*( (l+1).*d +1 );
Dd = Dd + cs.^(l+1).*(l+1);
Dd = sparse(I,J,ma2.*Dd,n,n);
d = sparse(I,J,d,n,n);
row = ones(n,1);
cols = 1:n;
for i = i1
for j = 1:n
% Calculate the gradient matrix
ind = find(d(:,j));
apu = full(Dd(:,j)).*s2(i).*(x(j,i)-x(:,i));
apu(ind) = apu(ind)./d(ind,j);
D = sparse(row*j, cols, apu, n, n);
D = D+D';
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
% Evaluate the gradient of non-symmetric covariance (e.g. K_fu)
elseif nargin == 3
if size(x,2) ~= size(x2,2)
error('gpcf_ppcs -> _ghyper: The number of columns in x and x2 has to be the same. ')
end
ii1=0;
K = gpcf.fh.cov(gpcf, x, x2);
n2 = size(x2,1);
l = gpcf.l;
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n1,m1]=size(x);
[n2,m2]=size(x2);
ma = gpcf.magnSigma2;
% Compute the sparse distance matrix.
ntriplets = nnz(K);
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n2
d = zeros(n1,1);
d = gpcf.metric.fh.dist(gpcf.metric, x, x2(ii,:));
[gd, gprior_dist] = gpcf.metric.fh.ginput(gpcf.metric, x, x2(ii,:));
I0t = find(d==0);
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = I2;
J(ind_tr) = ii;
dist(ind_tr) = R2;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj}(I2);
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l+1;
Dd = -(l+1).*cs.^l.*(const1.*d +1 );
Dd = Dd + cs.^(l+1).*const1;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n1,n2);
DKff{ii1} = D;
end
else
if length(gpcf.lengthScale) == 1
% In the case of an isotropic PPCS1
s2 = repmat(1./gpcf.lengthScale.^2, 1, m);
else
s2 = 1./gpcf.lengthScale.^2;
end
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
dist1 = 0;
for i = 1:m
dist1 = dist1 + s2(i).*bsxfun(@minus,x(:,i),x2(:,i)').^2;
end
d = sqrt(dist1);
cs1 = max(1-d,0);
const1 = l+1;
Dd = -(l+1).*cs1.^l.*(const1.*d +1 );
Dd = Dd + cs1.^(l+1).*const1;
Dd = ma2.*Dd;
row = ones(n2,1);
cols = 1:n2;
for i = i1
for j = 1:n
% Calculate the gradient matrix
ind = find(d(j,:));
apu = Dd(j,:).*s2(i).*(x(j,i)-x2(:,i))';
apu(ind) = apu(ind)./d(j,ind);
D = sparse(row*j, cols, apu, n, n2);
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
end
end
function C = gpcf_ppcs1_cov(gpcf, x1, x2, varargin)
%GP_PPCS1_COV Evaluate covariance matrix between two input vectors
%
% Description
% C = GP_PPCS1_COV(GP, TX, X) takes in covariance function of
% a Gaussian process GP and two matrixes TX and X that contain
% input vectors to GP. Returns covariance matrix C. Every
% element ij of C contains covariance between inputs i in TX
% and j in X. This is a mandatory subfunction used for example in
% prediction and energy computations.
%
% See also
% GPCF_PPCS1_TRCOV, GPCF_PPCS1_TRVAR, GP_COV, GP_TRCOV
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n1,m1]=size(x1);
[n2,m2]=size(x2);
else
% If scaled euclidean metric
if isfield(gpcf, 'selectedVariables')
x1 = x1(:,gpcf.selectedVariables);
x2 = x2(:,gpcf.selectedVariables);
end
[n1,m1]=size(x1);
[n2,m2]=size(x2);
s = 1./(gpcf.lengthScale);
s2 = s.^2;
if size(s)==1
s2 = repmat(s2,1,m1);
end
end
ma2 = gpcf.magnSigma2;
l = gpcf.l;
% Compute the sparse distance matrix.
ntriplets = max(1,floor(0.03*n1*n2));
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
ntriplets = 0;
I0=zeros(ntriplets,1);
J0=zeros(ntriplets,1);
nn0=0;
for ii1=1:n2
d = zeros(n1,1);
if isfield(gpcf, 'metric')
d = gpcf.metric.fh.dist(gpcf.metric, x1, x2(ii1,:));
else
for j=1:m1
d = d + s2(j).*(x1(:,j)-x2(ii1,j)).^2;
end
end
%d = sqrt(d);
I0t = find(d==0);
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
R2=sqrt(R2);
%len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
I(ntrip_prev+1:ntriplets) = I2;
J(ntrip_prev+1:ntriplets) = ii1;
R(ntrip_prev+1:ntriplets) = R2;
I0(nn0+1:nn0+length(I0t)) = I0t;
J0(nn0+1:nn0+length(I0t)) = ii1;
nn0 = nn0+length(I0t);
end
r = sparse(I(1:ntriplets),J(1:ntriplets),R(1:ntriplets));
[I,J,r] = find(r);
cs = full(sparse(max(0, 1-r)));
const1 = l+1;
C = ma2.*cs.^(l+1).*(const1.*r + 1);
C = sparse(I,J,C,n1,n2) + sparse(I0,J0,ma2,n1,n2);
end
function C = gpcf_ppcs1_trcov(gpcf, x)
%GP_PPCS1_TRCOV Evaluate training covariance matrix of inputs
%
% Description
% C = GP_PPCS1_TRCOV(GP, TX) takes in covariance function of a
% Gaussian process GP and matrix TX that contains training
% input vectors. Returns covariance matrix C. Every element ij
% of C contains covariance between inputs i and j in TX. This
% is a mandatory subfunction used for example in prediction and
% energy computations.
%
% See also
% GPCF_PPCS1_COV, GPCF_PPCS1_TRVAR, GP_COV, GP_TRCOV
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n, m] =size(x);
else
% If a scaled euclidean metric try first mex-implementation
% and if there is not such...
C = trcov(gpcf,x);
% ... evaluate the covariance here.
if isnan(C)
if isfield(gpcf,'selectedVariables')
x = x(:,gpcf.selectedVariables);
end
[n, m] =size(x);
s = 1./(gpcf.lengthScale);
s2 = s.^2;
if size(s)==1
s2 = repmat(s2,1,m);
end
else
return
end
end
ma2 = gpcf.magnSigma2;
l = gpcf.l;
% Compute the sparse distance matrix.
ntriplets = max(1,floor(0.03*n*n));
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
ntriplets = 0;
ntripletsz = max(1,floor(0.03.^2*n*n));
Iz = zeros(ntripletsz,1);
Jz = zeros(ntripletsz,1);
ntripletsz = 0;
for ii1=1:n-1
d = zeros(n-ii1,1);
col_ind = ii1+1:n;
if isfield(gpcf, 'metric')
d = gpcf.metric.fh.dist(gpcf.metric, x(col_ind,:), x(ii1,:));
else
for ii2=1:m
d = d+s2(ii2).*(x(col_ind,ii2)-x(ii1,ii2)).^2;
end
end
%d = sqrt(d);
% store zero distance index
[I2z,J2z] = find(d==0);
% create triplets for distances 0<d<1
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
if (ntriplets > len)
I(2*len) = 0;
J(2*len) = 0;
R(2*len) = 0;
end
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = ii1+I2;
J(ind_tr) = ii1;
R(ind_tr) = sqrt(R2);
% create triplets for distances d==0 (i~=j)
lenz = length(Iz);
ntrip_prevz = ntripletsz;
ntripletsz = ntripletsz + length(I2z);
if (ntripletsz > lenz)
Iz(2*lenz) = 0;
Jz(2*lenz) = 0;
end
ind_trz = ntrip_prevz+1:ntripletsz;
Iz(ind_trz) = ii1+I2z;
Jz(ind_trz) = ii1;
end
% create a lower triangular sparse distance matrix from the triplets for distances 0<d<1
R = sparse(I(1:ntriplets),J(1:ntriplets),R(1:ntriplets),n,n);
% create a lower triangular sparse covariance matrix from the
% triplets for distances d==0 (i~=j)
Rz = sparse(Iz(1:ntripletsz),Jz(1:ntripletsz),repmat(ma2,1,ntripletsz),n,n);
% Find the non-zero elements of R.
[I,J,rn] = find(R);
% Compute covariances for distances 0<d<1
const1 = l+1;
cs = max(0,1-rn);
C = ma2.*cs.^(l+1).*(const1.*rn + 1);
% create a lower triangular sparse covariance matrix from the triplets for distances 0<d<1
C = sparse(I,J,C,n,n);
% add the lower triangular covariance matrix for distances d==0 (i~=j)
C = C + Rz;
% form a square covariance matrix and add the covariance matrix for i==j (d==0)
C = C + C' + sparse(1:n,1:n,ma2,n,n);
end
function C = gpcf_ppcs1_trvar(gpcf, x)
%GP_PPCS1_TRVAR Evaluate training variance vector
%
% Description
% C = GP_PPCS1_TRVAR(GPCF, TX) takes in covariance function of
% a Gaussian process GPCF and matrix TX that contains training
% inputs. Returns variance vector C. Every element i of C
% contains variance of input i in TX. This is a mandatory
% subfunction used for example in prediction and energy computations.
%
% See also
% GPCF_PPCS1_COV, GP_COV, GP_TRCOV
[n, m] =size(x);
C = ones(n,1).*gpcf.magnSigma2;
C(C<eps)=0;
end
function reccf = gpcf_ppcs1_recappend(reccf, ri, gpcf)
%RECAPPEND Record append
%
% Description
% RECCF = GPCF_PPCS1_RECAPPEND(RECCF, RI, GPCF) takes a
% covariance function record structure RECCF, record index RI
% and covariance function structure GPCF with the current MCMC
% samples of the parameters. Returns RECCF which contains all
% the old samples and the current samples from GPCF. This
% subfunction is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC and GP_MC -> RECAPPEND
if nargin == 2
% Initialize the record
reccf.type = 'gpcf_ppcs1';
reccf.nin = ri.nin;
reccf.l = floor(reccf.nin/2)+4;
% cf is compactly supported
reccf.cs = 1;
% Initialize parameters
reccf.lengthScale= [];
reccf.magnSigma2 = [];
% Set the function handles
reccf.fh.pak = @gpcf_ppcs1_pak;
reccf.fh.unpak = @gpcf_ppcs1_unpak;
reccf.fh.e = @gpcf_ppcs1_lp;
reccf.fh.lpg = @gpcf_ppcs1_lpg;
reccf.fh.cfg = @gpcf_ppcs1_cfg;
reccf.fh.cov = @gpcf_ppcs1_cov;
reccf.fh.trcov = @gpcf_ppcs1_trcov;
reccf.fh.trvar = @gpcf_ppcs1_trvar;
reccf.fh.recappend = @gpcf_ppcs1_recappend;
reccf.p=[];
reccf.p.lengthScale=[];
reccf.p.magnSigma2=[];
if isfield(ri.p,'lengthScale') && ~isempty(ri.p.lengthScale)
reccf.p.lengthScale = ri.p.lengthScale;
end
if ~isempty(ri.p.magnSigma2)
reccf.p.magnSigma2 = ri.p.magnSigma2;
end
if isfield(ri, 'selectedVariables')
reccf.selectedVariables = ri.selectedVariables;
end
else
% Append to the record
gpp = gpcf.p;
if ~isfield(gpcf,'metric')
% record lengthScale
reccf.lengthScale(ri,:)=gpcf.lengthScale;
if isfield(gpp,'lengthScale') && ~isempty(gpp.lengthScale)
reccf.p.lengthScale = gpp.lengthScale.fh.recappend(reccf.p.lengthScale, ri, gpcf.p.lengthScale);
end
end
% record magnSigma2
reccf.magnSigma2(ri,:)=gpcf.magnSigma2;
if isfield(gpp,'magnSigma2') && ~isempty(gpp.magnSigma2)
reccf.p.magnSigma2 = gpp.magnSigma2.fh.recappend(reccf.p.magnSigma2, ri, gpcf.p.magnSigma2);
end
end
end
|
github
|
lcnbeapp/beapp-master
|
gpcf_ppcs3.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gpcf_ppcs3.m
| 40,551 |
utf_8
|
ec0d6b23865d0e1dc82e7a575159c18d
|
function gpcf = gpcf_ppcs3(varargin)
%GPCF_PPCS3 Create a piece wise polynomial (q=3) covariance function
%
% Description
% GPCF = GPCF_PPCS3('nin',nin,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates piece wise polynomial (q=3) covariance function
% structure in which the named parameters have the specified
% values. Any unspecified parameters are set to default values.
% Obligatory parameter is 'nin', which tells the dimension
% of input space.
%
% GPCF = GPCF_PPCS3(GPCF,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a covariance function structure with the named
% parameters altered with the specified values.
%
% Parameters for piece wise polynomial (q=3) covariance function [default]
% magnSigma2 - magnitude (squared) [0.1]
% lengthScale - length scale for each input. [1]
% This can be either scalar corresponding
% to an isotropic function or vector
% defining own length-scale for each input
% direction.
% l_nin - order of the polynomial [floor(nin/2) + 4]
% Has to be greater than or equal to default.
% magnSigma2_prior - prior for magnSigma2 [prior_logunif]
% lengthScale_prior - prior for lengthScale [prior_t]
% metric - metric structure used by the covariance function []
% selectedVariables - vector defining which inputs are used [all]
% selectedVariables is shorthand for using
% metric_euclidean with corresponding components
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% The piecewise polynomial function is the following:
%
% k(x_i, x_j) = ma2*cs^(l+3)*((l^3 + 9*l^2 + 23*l + 15)*r^3 +
% (6*l^2 + 36*l + 45)*r^2 + (15*l + 45)*r + 15)/15
%
% where r = sum( (x_i,d - x_j,d)^2/l^2_d )
% l = floor(l_nin/2) + 4
% cs = max(0,1-r)
% and l_nin must be greater or equal to gpcf.nin
%
% NOTE! Use of gpcf_ppcs3 requires that you have installed
% GPstuff with SuiteSparse.
%
% See also
% GP_SET, GPCF_*, PRIOR_*, METRIC_*
% Copyright (c) 2009-2010 Jarno Vanhatalo
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
if nargin>0 && ischar(varargin{1}) && ismember(varargin{1},{'init' 'set'})
% remove init and set
varargin(1)=[];
end
ip=inputParser;
ip.FunctionName = 'GPCF_PPCS3';
ip.addOptional('gpcf', [], @isstruct);
ip.addParamValue('nin',[], @(x) isscalar(x) && x>0 && mod(x,1)==0);
ip.addParamValue('magnSigma2',0.1, @(x) isscalar(x) && x>0);
ip.addParamValue('lengthScale',1, @(x) isvector(x) && all(x>0));
ip.addParamValue('l_nin',[], @(x) isscalar(x) && x>0 && mod(x,1)==0);
ip.addParamValue('metric',[], @isstruct);
ip.addParamValue('magnSigma2_prior', prior_logunif(), ...
@(x) isstruct(x) || isempty(x));
ip.addParamValue('lengthScale_prior',prior_t(), ...
@(x) isstruct(x) || isempty(x));
ip.addParamValue('selectedVariables',[], @(x) isempty(x) || ...
(isvector(x) && all(x>0)));
ip.parse(varargin{:});
gpcf=ip.Results.gpcf;
if isempty(gpcf)
% Check that SuiteSparse is available
if ~exist('ldlchol')
error('SuiteSparse is not installed (or it is not in the path). gpcf_ppcs3 cannot be used!')
end
init=true;
gpcf.nin=ip.Results.nin;
if isempty(gpcf.nin)
error('nin has to be given for ppcs: gpcf_ppcs3(''nin'',NIN,...)')
end
gpcf.type = 'gpcf_ppcs3';
% cf is compactly supported
gpcf.cs = 1;
else
if ~isfield(gpcf,'type') && ~isequal(gpcf.type,'gpcf_ppcs3')
error('First argument does not seem to be a valid covariance function structure')
end
init=false;
end
if init
% Set the function handles to the subfunctions
gpcf.fh.pak = @gpcf_ppcs3_pak;
gpcf.fh.unpak = @gpcf_ppcs3_unpak;
gpcf.fh.lp = @gpcf_ppcs3_lp;
gpcf.fh.lpg = @gpcf_ppcs3_lpg;
gpcf.fh.cfg = @gpcf_ppcs3_cfg;
gpcf.fh.ginput = @gpcf_ppcs3_ginput;
gpcf.fh.cov = @gpcf_ppcs3_cov;
gpcf.fh.trcov = @gpcf_ppcs3_trcov;
gpcf.fh.trvar = @gpcf_ppcs3_trvar;
gpcf.fh.recappend = @gpcf_ppcs3_recappend;
end
% Initialize parameters
if init || ~ismember('l_nin',ip.UsingDefaults)
gpcf.l=ip.Results.l_nin;
if isempty(gpcf.l)
gpcf.l = floor(gpcf.nin/2) + 4;
end
if gpcf.l < gpcf.nin
error('The l_nin has to be greater than or equal to the number of inputs!')
end
end
if init || ~ismember('lengthScale',ip.UsingDefaults)
gpcf.lengthScale = ip.Results.lengthScale;
end
if init || ~ismember('magnSigma2',ip.UsingDefaults)
gpcf.magnSigma2 = ip.Results.magnSigma2;
end
% Initialize prior structure
if init
gpcf.p=[];
end
if init || ~ismember('lengthScale_prior',ip.UsingDefaults)
gpcf.p.lengthScale=ip.Results.lengthScale_prior;
end
if init || ~ismember('magnSigma2_prior',ip.UsingDefaults)
gpcf.p.magnSigma2=ip.Results.magnSigma2_prior;
end
%Initialize metric
if ~ismember('metric',ip.UsingDefaults)
if ~isempty(ip.Results.metric)
gpcf.metric = ip.Results.metric;
gpcf = rmfield(gpcf, 'lengthScale');
gpcf.p = rmfield(gpcf.p, 'lengthScale');
elseif isfield(gpcf,'metric')
if ~isfield(gpcf,'lengthScale')
gpcf.lengthScale = gpcf.metric.lengthScale;
end
if ~isfield(gpcf.p,'lengthScale')
gpcf.p.lengthScale = gpcf.metric.p.lengthScale;
end
gpcf = rmfield(gpcf, 'metric');
end
end
% selectedVariables options implemented using metric_euclidean
if ~ismember('selectedVariables',ip.UsingDefaults)
if ~isfield(gpcf,'metric')
if ~isempty(ip.Results.selectedVariables)
gpcf.selectedVariables = ip.Results.selectedVariables;
% gpcf.metric=metric_euclidean('components',...
% num2cell(ip.Results.selectedVariables),...
% 'lengthScale',gpcf.lengthScale,...
% 'lengthScale_prior',gpcf.p.lengthScale);
% gpcf = rmfield(gpcf, 'lengthScale');
% gpcf.p = rmfield(gpcf.p, 'lengthScale');
end
elseif isfield(gpcf,'metric')
if ~isempty(ip.Results.selectedVariables)
gpcf.metric=metric_euclidean(gpcf.metric,...
'components',...
num2cell(ip.Results.selectedVariables));
if ~ismember('lengthScale',ip.UsingDefaults)
gpcf.metric.lengthScale=ip.Results.lengthScale;
gpcf = rmfield(gpcf, 'lengthScale');
end
if ~ismember('lengthScale_prior',ip.UsingDefaults)
gpcf.metric.p.lengthScale=ip.Results.lengthScale_prior;
gpcf.p = rmfield(gpcf.p, 'lengthScale');
end
else
if ~isfield(gpcf,'lengthScale')
gpcf.lengthScale = gpcf.metric.lengthScale;
end
if ~isfield(gpcf.p,'lengthScale')
gpcf.p.lengthScale = gpcf.metric.p.lengthScale;
end
gpcf = rmfield(gpcf, 'metric');
end
end
end
end
function [w,s] = gpcf_ppcs3_pak(gpcf)
%GPCF_PPCS3_PAK Combine GP covariance function parameters into
% one vector
%
% Description
% W = GPCF_PPCS3_PAK(GPCF) takes a covariance function
% structure GPCF and combines the covariance function
% parameters and their hyperparameters into a single row
% vector W. This is a mandatory subfunction used for
% example in energy and gradient computations.
%
% w = [ log(gpcf.magnSigma2)
% (hyperparameters of gpcf.magnSigma2)
% log(gpcf.lengthScale(:))
% (hyperparameters of gpcf.lengthScale)]'
%
% See also
% GPCF_PPCS3_UNPAK
w = []; s = {};
if ~isempty(gpcf.p.magnSigma2)
w = [w log(gpcf.magnSigma2)];
s = [s; 'log(ppcs3.magnSigma2)'];
% Hyperparameters of magnSigma2
[wh sh] = gpcf.p.magnSigma2.fh.pak(gpcf.p.magnSigma2);
w = [w wh];
s = [s; sh];
end
if isfield(gpcf,'metric')
[wh sh]=gpcf.metric.fh.pak(gpcf.metric);
w = [w wh];
s = [s; sh];
else
if ~isempty(gpcf.p.lengthScale)
w = [w log(gpcf.lengthScale)];
if numel(gpcf.lengthScale)>1
s = [s; sprintf('log(ppcs3.lengthScale x %d)',numel(gpcf.lengthScale))];
else
s = [s; 'log(ppcs3.lengthScale)'];
end
% Hyperparameters of lengthScale
[wh sh] = gpcf.p.lengthScale.fh.pak(gpcf.p.lengthScale);
w = [w wh];
s = [s; sh];
end
end
end
function [gpcf, w] = gpcf_ppcs3_unpak(gpcf, w)
%GPCF_PPCS3_UNPAK Sets the covariance function parameters into
% the structure
%
% Description
% [GPCF, W] = GPCF_PPCS3_UNPAK(GPCF, W) takes a covariance
% function structure GPCF and a hyper-parameter vector W,
% and returns a covariance function structure identical
% to the input, except that the covariance hyper-parameters
% have been set to the values in W. Deletes the values set to
% GPCF from W and returns the modified W. This is a mandatory
% subfunction used for example in energy and gradient computations.
%
% Assignment is inverse of
% w = [ log(gpcf.magnSigma2)
% (hyperparameters of gpcf.magnSigma2)
% log(gpcf.lengthScale(:))
% (hyperparameters of gpcf.lengthScale)]'
%
% See also
% GPCF_PPCS3_PAK
gpp=gpcf.p;
if ~isempty(gpp.magnSigma2)
gpcf.magnSigma2 = exp(w(1));
w = w(2:end);
% Hyperparameters of magnSigma2
[p, w] = gpcf.p.magnSigma2.fh.unpak(gpcf.p.magnSigma2, w);
gpcf.p.magnSigma2 = p;
end
if isfield(gpcf,'metric')
[metric, w] = gpcf.metric.fh.unpak(gpcf.metric, w);
gpcf.metric = metric;
else
if ~isempty(gpp.lengthScale)
i1=1;
i2=length(gpcf.lengthScale);
gpcf.lengthScale = exp(w(i1:i2));
w = w(i2+1:end);
% Hyperparameters of lengthScale
[p, w] = gpcf.p.lengthScale.fh.unpak(gpcf.p.lengthScale, w);
gpcf.p.lengthScale = p;
end
end
end
function lp = gpcf_ppcs3_lp(gpcf)
%GPCF_PPCS3_LP Evaluate the log prior of covariance function parameters
%
% Description
% LP = GPCF_PPCS3_LP(GPCF, X, T) takes a covariance function
% structure GPCF and returns log(p(th)), where th collects the
% parameters. This is a mandatory subfunction used for example
% in energy computations.
%
% See also
% GPCF_PPCS3_PAK, GPCF_PPCS3_UNPAK, GPCF_PPCS3_LPG, GP_E
% Evaluate the prior contribution to the error. The parameters that
% are sampled are transformed, e.g., W = log(w) where w is all
% the "real" samples. On the other hand errors are evaluated in
% the W-space so we need take into account also the Jacobian of
% transformation, e.g., W -> w = exp(W). See Gelman et.al., 2004,
% Bayesian data Analysis, second edition, p24.
lp = 0;
gpp=gpcf.p;
if ~isempty(gpcf.p.magnSigma2)
lp = lp +gpp.magnSigma2.fh.lp(gpcf.magnSigma2, ...
gpp.magnSigma2) +log(gpcf.magnSigma2);
end
if isfield(gpcf,'metric')
lp = lp +gpcf.metric.fh.lp(gpcf.metric);
elseif ~isempty(gpp.lengthScale)
lp = lp +gpp.lengthScale.fh.lp(gpcf.lengthScale, ...
gpp.lengthScale) +sum(log(gpcf.lengthScale));
end
end
function lpg = gpcf_ppcs3_lpg(gpcf)
%GPCF_PPCS3_LPG Evaluate gradient of the log prior with respect
% to the parameters.
%
% Description
% LPG = GPCF_PPCS3_LPG(GPCF) takes a covariance function
% structure GPCF and returns LPG = d log (p(th))/dth, where th
% is the vector of parameters. This is a mandatory subfunction
% used for example in gradient computations.
%
% See also
% GPCF_PPCS3_PAK, GPCF_PPCS3_UNPAK, GPCF_PPCS3_LP, GP_G
lpg = [];
gpp=gpcf.p;
if ~isempty(gpcf.p.magnSigma2)
lpgs = gpp.magnSigma2.fh.lpg(gpcf.magnSigma2, gpp.magnSigma2);
lpg = [lpg lpgs(1).*gpcf.magnSigma2+1 lpgs(2:end)];
end
if isfield(gpcf,'metric')
lpg_dist = gpcf.metric.fh.lpg(gpcf.metric);
lpg=[lpg lpg_dist];
else
if ~isempty(gpcf.p.lengthScale)
lll = length(gpcf.lengthScale);
lpgs = gpp.lengthScale.fh.lpg(gpcf.lengthScale, gpp.lengthScale);
lpg = [lpg lpgs(1:lll).*gpcf.lengthScale+1 lpgs(lll+1:end)];
end
end
end
function DKff = gpcf_ppcs3_cfg(gpcf, x, x2, mask, i1)
%GPCF_PPCS3_CFG Evaluate gradient of covariance function
% with respect to the parameters
%
% Description
% DKff = GPCF_PPCS3_CFG(GPCF, X) takes a covariance function
% structure GPCF, a matrix X of input vectors and returns
% DKff, the gradients of covariance matrix Kff = k(X,X) with
% respect to th (cell array with matrix elements). This is a
% mandatory subfunction used in gradient computations.
%
% DKff = GPCF_PPCS3_CFG(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_PPCS3_CFG(GPCF, X, X2, [], i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2), or k(X,X) if X2 is empty, with respect to ith
% hyperparameter. This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_PPCS3_CFG(GPCF, X, [], MASK) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the diagonal of gradients of covariance matrix
% Kff = k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using memory
% save option in gp_set.
%
% See also
% GPCF_PPCS3_PAK, GPCF_PPCS3_UNPAK, GPCF_PPCS3_LP, GP_G
gpp=gpcf.p;
i2=1;
DKff = {};
gprior = [];
if nargin==5
% Use memory save option
savememory=1;
if i1==0
% Return number of hyperparameters
i=0;
if ~isempty(gpcf.p.magnSigma2)
i=i+1;
end
if ~isempty(gpcf.p.lengthScale)
i=i+length(gpcf.lengthScale);
end
DKff=i;
return
end
else
savememory=0;
end
% Evaluate: DKff{1} = d Kff / d magnSigma2
% DKff{2} = d Kff / d lengthScale
% NOTE! Here we have already taken into account that the parameters
% are transformed through log() and thus dK/dlog(p) = p * dK/dp
% evaluate the gradient for training covariance
if nargin == 2 || (isempty(x2) && isempty(mask))
Cdm = gpcf_ppcs3_trcov(gpcf, x);
ii1=0;
if ~isempty(gpcf.p.magnSigma2)
ii1 = ii1 +1;
DKff{ii1} = Cdm;
end
l = gpcf.l;
[I,J] = find(Cdm);
if isfield(gpcf,'metric')
% Compute the sparse distance matrix and its gradient.
[n, m] =size(x);
ntriplets = (nnz(Cdm)-n)./2;
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n-1
col_ind = ii + find(Cdm(ii+1:n,ii));
d = gpcf.metric.fh.dist(gpcf.metric, x(col_ind,:), x(ii,:));
gd = gpcf.metric.fh.distg(gpcf.metric, x(col_ind,:), x(ii,:));
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(d);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = col_ind;
J(ind_tr) = ii;
dist(ind_tr) = d;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj};
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
Dd = -(l+3).*cs.^(l+2).*(const1.*dist.^3 + const2.*dist.^2 + const3.*dist + 15)/15;
Dd = Dd + cs.^(l+3).*(3.*const1.*dist.^2 + 2.*const2.*dist + const3)./15;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n,n);
DKff{ii1} = D + D';
end
else
if isfield(gpcf, 'selectedVariables')
x = x(:,gpcf.selectedVariables);
end
[n, m] =size(x);
if ~savememory
i1=1:m;
else
if i1==1
DKff=DKff{1};
return
end
i1=i1-1;
ii1=ii1-1;
end
if ~isempty(gpcf.p.lengthScale)
% loop over all the lengthScales
if length(gpcf.lengthScale) == 1
% In the case of isotropic PPCS3
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
d2 = 0;
for i = 1:m
d2 = d2 + s2.*(x(I,i) - x(J,i)).^2;
end
d = sqrt(d2);
% Create the 'compact support' matrix, that is, (1-R)_+,
% where ()_+ truncates all non-positive inputs to zero.
cs = 1-d;
% Calculate the gradient matrix
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
D = -(l+3).*cs.^(l+2).*(const1.*d.^3 + const2.*d.^2 + const3.*d + 15)/15;
D = D + cs.^(l+3).*(3.*const1.*d.^2 + 2.*const2.*d + const3)./15;
D = -d.*ma2.*D;
D = sparse(I,J,D,n,n);
ii1 = ii1+1;
DKff{ii1} = D;
else
% In the case ARD is used
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
d2 = 0;
d_l2 = [];
for i = 1:m
d_l2(:,i) = s2(i).*(x(I,i) - x(J,i)).^2;
d2 = d2 + d_l2(:,i);
end
d = sqrt(d2);
d_l = d_l2;
% Create the 'compact support' matrix, that is, (1-R)_+,
% where ()_+ truncates all non-positive inputs to zero.
cs = 1-d;
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
Dd = -(l+3).*cs.^(l+2).*(const1.*d.^3 + const2.*d.^2 + const3.*d + 15)/15;
Dd = Dd + cs.^(l+3).*(3.*const1.*d.^2 + 2.*const2.*d + const3)./15;
Dd = -ma2.*Dd;
int = d ~= 0;
for i = i1
% Calculate the gradient matrix
D = d_l(:,i).*Dd;
% Divide by r in cases where r is non-zero
D(int) = D(int)./d(int);
D = sparse(I,J,D,n,n);
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
end
% Evaluate the gradient of non-symmetric covariance (e.g. K_fu)
elseif nargin == 3 || isempty(mask)
if size(x,2) ~= size(x2,2)
error('gpcf_ppcs -> _ghyper: The number of columns in x and x2 has to be the same. ')
end
ii1=0;
K = gpcf.fh.cov(gpcf, x, x2);
if ~isempty(gpcf.p.magnSigma2)
ii1 = ii1 +1;
DKff{ii1} = K;
end
l = gpcf.l;
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n1,m1]=size(x);
[n2,m2]=size(x2);
ma = gpcf.magnSigma2;
% Compute the sparse distance matrix.
ntriplets = nnz(K);
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n2
d = zeros(n1,1);
d = gpcf.metric.fh.dist(gpcf.metric, x, x2(ii,:));
gd = gpcf.metric.fh.distg(gpcf.metric, x, x2(ii,:));
gprior_dist = gpcf.metric.fh.lpg(gpcf.metric, x, x2(ii,:));
I0t = find(d==0);
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = I2;
J(ind_tr) = ii;
dist(ind_tr) = R2;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj}(I2);
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
Dd = -(l+3).*cs.^(l+2).*(const1.*d.^3 + const2.*d.^2 + const3.*d + 15)/15;
Dd = Dd + cs.^(l+3).*(3.*const1.*d.^2 + 2.*const2.*d + const3)./15;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n1,n2);
DKff{ii1} = D;
end
else
if isfield(gpcf, 'selectedVariables')
x = x(:,gpcf.selectedVariables);
x2 = x2(:,gpcf.selectedVariables);
end
[n, m] =size(x);
if ~savememory
i1=1:m;
else
if i1==1
DKff=DKff{1};
return
end
i1=i1-1;
ii1=ii1-1;
end
if ~isempty(gpcf.p.lengthScale)
% loop over all the lengthScales
if length(gpcf.lengthScale) == 1
% In the case of isotropic PPCS3
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
dist1 = 0;
for i=1:m
dist1 = dist1 + s2.*(bsxfun(@minus,x(:,i),x2(:,i)')).^2;
end
d1 = sqrt(dist1);
cs1 = max(1-d1,0);
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
D = -(l+3).*cs1.^(l+2).*(const1.*d1.^3 + const2.*d1.^2 + const3.*d1 + 15)/15;
D = D + cs1.^(l+3).*(3.*const1.*d1.^2 + 2.*const2.*d1 + const3)./15;
DK_l = -d1.*ma2.*D;
ii1=ii1+1;
DKff{ii1} = DK_l;
else
% In the case ARD is used
s2 = 1./gpcf.lengthScale.^2;
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
dist1 = 0;
d_l1 = [];
for i = 1:m
dist1 = dist1 + s2(i).*bsxfun(@minus,x(:,i),x2(:,i)').^2;
d_l1{i} = s2(i).*(bsxfun(@minus,x(:,i),x2(:,i)')).^2;
end
d1 = sqrt(dist1);
cs1 = max(1-d1,0);
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
D = -(l+3).*cs1.^(l+2).*(const1.*d1.^3 + const2.*d1.^2 + const3.*d1 + 15)/15;
D = D + cs1.^(l+3).*(3.*const1.*d1.^2 + 2.*const2.*d1 + const3)./15;
for i = i1
% Calculate the gradient matrix
DK_l = -D.*ma2.*d_l1{i};
% Divide by r in cases where r is non-zero
DK_l(d1 ~= 0) = DK_l(d1 ~= 0)./d1(d1 ~= 0);
ii1=ii1+1;
DKff{ii1} = DK_l;
end
end
end
end
% Evaluate: DKff{1} = d mask(Kff,I) / d magnSigma2
% DKff{2...} = d mask(Kff,I) / d lengthScale
elseif nargin == 4 || nargin == 5
ii1=0;
[n, m] =size(x);
if ~isempty(gpcf.p.magnSigma2) && (~savememory || all(i1==1))
ii1 = ii1+1;
DKff{ii1} = gpcf.fh.trvar(gpcf, x); % d mask(Kff,I) / d magnSigma2
end
if isfield(gpcf,'metric')
dist = 0;
distg = gpcf.metric.fh.distg(gpcf.metric, x, [], 1);
gprior_dist = gpcf.metric.fh.lpg(gpcf.metric);
for i=1:length(distg)
ii1 = ii1+1;
DKff{ii1} = 0;
end
else
if ~isempty(gpcf.p.lengthScale)
for i2=1:length(gpcf.lengthScale)
ii1 = ii1+1;
DKff{ii1} = 0; % d mask(Kff,I) / d lengthScale
end
end
end
end
if savememory
DKff=DKff{1};
end
end
function DKff = gpcf_ppcs3_ginput(gpcf, x, x2, i1)
%GPCF_PPCS3_GINPUT Evaluate gradient of covariance function with
% respect to x
%
% Description
% DKff = GPCF_PPCS3_GINPUT(GPCF, X) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_PPCS3_GINPUT(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_PPCS3_GINPUT(GPCF, X, X2, i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2), or k(X,X) if X2 is empty, with respect to ith
% covariate in X (cell array with matrix elements). This
% subfunction is needed when using memory save option in
% gp_set.
%
% See also
% GPCF_PPCS3_PAK, GPCF_PPCS3_UNPAK, GPCF_PPCS3_LP, GP_G
[n, m] =size(x);
ii1=0;
DKff = {};
if nargin<4
i1=1:m;
else
% Use memory save option
if i1==0
% Return number of covariates
if isfield(gpcf,'selectedVariables')
DKff=length(gpcf.selectedVariables);
else
DKff=m;
end
return
end
end
% evaluate the gradient for training covariance
if nargin == 2 || isempty(x2)
K = gpcf_ppcs3_trcov(gpcf, x);
l = gpcf.l;
[I,J] = find(K);
if isfield(gpcf,'metric')
% Compute the sparse distance matrix and its gradient.
ntriplets = (nnz(Cdm)-n)./2;
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n-1
col_ind = ii + find(Cdm(ii+1:n,ii));
d = zeros(length(col_ind),1);
d = gpcf.metric.fh.dist(gpcf.metric, x(col_ind,:), x(ii,:));
[gd, gprior_dist] = gpcf.metric.fh.ginput(gpcf.metric, x(col_ind,:), x(ii,:));
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(d);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = col_ind;
J(ind_tr) = ii;
dist(ind_tr) = d;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj};
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
Dd = -(l+3).*cs.^(l+2).*(const1.*d.^3 + const2.*d.^2 + const3.*d + 15)/15;
Dd = Dd + cs.^(l+3).*(3.*const1.*d.^2 + 2.*const2.*d + const3)./15;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n,n);
DKff{ii1} = D + D';
end
else
if length(gpcf.lengthScale) == 1
% In the case of an isotropic
s2 = repmat(1./gpcf.lengthScale.^2, 1, m);
else
s2 = 1./gpcf.lengthScale.^2;
end
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
d2 = 0;
for i = 1:m
d2 = d2 + s2(i).*(x(I,i) - x(J,i)).^2;
end
d = sqrt(d2);
% Create the 'compact support' matrix, that is, (1-R)_+,
% where ()_+ truncates all non-positive inputs to zero.
cs = 1-d;
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
Dd = -(l+3).*cs.^(l+2).*(const1.*d.^3 + const2.*d.^2 + const3.*d + 15)/15;
Dd = Dd + cs.^(l+3).*(3.*const1.*d.^2 + 2.*const2.*d + const3)./15;
Dd = ma2.*Dd;
Dd = sparse(I,J,Dd,n,n);
d = sparse(I,J,d,n,n);
row = ones(n,1);
cols = 1:n;
for i = i1
for j = 1:n
% Calculate the gradient matrix
ind = find(d(:,j));
apu = full(Dd(:,j)).*s2(i).*(x(j,i)-x(:,i));
apu(ind) = apu(ind)./d(ind,j);
D = sparse(row*j, cols, apu, n, n);
D = D+D';
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
% Evaluate the gradient of non-symmetric covariance (e.g. K_fu)
elseif nargin == 3 || nargin == 4
if size(x,2) ~= size(x2,2)
error('gpcf_ppcs -> _ghyper: The number of columns in x and x2 has to be the same. ')
end
ii1=0;
K = gpcf.fh.cov(gpcf, x, x2);
n2 = size(x2,1);
l = gpcf.l;
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n1,m1]=size(x);
[n2,m2]=size(x2);
ma = gpcf.magnSigma2;
% Compute the sparse distance matrix.
ntriplets = nnz(K);
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
dist = zeros(ntriplets,1);
for jj = 1:length(gpcf.metric.components)
gdist{jj} = zeros(ntriplets,1);
end
ntriplets = 0;
for ii=1:n2
d = zeros(n1,1);
d = gpcf.metric.fh.dist(gpcf.metric, x, x2(ii,:));
[gd, gprior_dist] = gpcf.metric.fh.ginput(gpcf.metric, x, x2(ii,:));
I0t = find(d==0);
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = I2;
J(ind_tr) = ii;
dist(ind_tr) = R2;
for jj = 1:length(gd)
gdist{jj}(ind_tr) = gd{jj}(I2);
end
end
ma2 = gpcf.magnSigma2;
cs = 1-dist;
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
Dd = -(l+3).*cs.^(l+2).*(const1.*d.^3 + const2.*d.^2 + const3.*d + 15)/15;
Dd = Dd + cs.^(l+3).*(3.*const1.*d.^2 + 2.*const2.*d + const3)./15;
Dd = ma2.*Dd;
for i=1:length(gdist)
ii1 = ii1+1;
D = Dd.*gdist{i};
D = sparse(I,J,D,n1,n2);
DKff{ii1} = D;
end
else
if length(gpcf.lengthScale) == 1
% In the case of an isotropic PPCS3
s2 = repmat(1./gpcf.lengthScale.^2, 1, m);
else
s2 = 1./gpcf.lengthScale.^2;
end
ma2 = gpcf.magnSigma2;
% Calculate the sparse distance (lower triangle) matrix
% and the distance matrix for each component
d2 = 0;
for i = 1:m
d2 = d2 + s2(i).*bsxfun(@minus,x(:,i),x2(:,i)').^2;
end
d = sqrt(d2);
cs = max(1-d,0);
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
Dd = -(l+3).*cs.^(l+2).*(const1.*d.^3 + const2.*d.^2 + const3.*d + 15)/15;
Dd = Dd + cs.^(l+3).*(3.*const1.*d.^2 + 2.*const2.*d + const3)./15;
Dd = ma2.*Dd;
row = ones(n2,1);
cols = 1:n2;
for i = i1
for j = 1:n
% Calculate the gradient matrix
ind = find(d(j,:));
apu = Dd(j,:).*s2(i).*(x(j,i)-x2(:,i))';
apu(ind) = apu(ind)./d(j,ind);
D = sparse(row*j, cols, apu, n, n2);
ii1 = ii1+1;
DKff{ii1} = D;
end
end
end
end
end
function C = gpcf_ppcs3_cov(gpcf, x1, x2, varargin)
%GP_PPCS3_COV Evaluate covariance matrix between two input vectors
%
% Description
% C = GP_PPCS3_COV(GP, TX, X) takes in covariance function of
% a Gaussian process GP and two matrixes TX and X that contain
% input vectors to GP. Returns covariance matrix C. Every
% element ij of C contains covariance between inputs i in TX
% and j in X. This is a mandatory subfunction used for example in
% prediction and energy computations.
%
% See also
% GPCF_PPCS3_TRCOV, GPCF_PPCS3_TRVAR, GP_COV, GP_TRCOV
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n1,m1]=size(x1);
[n2,m2]=size(x2);
else
% If scaled euclidean metric
if isfield(gpcf, 'selectedVariables')
x1 = x1(:,gpcf.selectedVariables);
x2 = x2(:,gpcf.selectedVariables);
end
[n1,m1]=size(x1);
[n2,m2]=size(x2);
s = 1./(gpcf.lengthScale);
s2 = s.^2;
if size(s)==1
s2 = repmat(s2,1,m1);
end
end
ma2 = gpcf.magnSigma2;
l = gpcf.l;
% Compute the sparse distance matrix.
ntriplets = max(1,floor(0.03*n1*n2));
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
ntriplets = 0;
I0=zeros(ntriplets,1);
J0=zeros(ntriplets,1);
nn0=0;
for ii1=1:n2
d = zeros(n1,1);
if isfield(gpcf, 'metric')
d = gpcf.metric.fh.dist(gpcf.metric, x1, x2(ii1,:));
else
for j=1:m1
d = d + s2(j).*(x1(:,j)-x2(ii1,j)).^2;
end
end
%d = sqrt(d);
I0t = find(d==0);
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
R2=sqrt(R2);
%len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
I(ntrip_prev+1:ntriplets) = I2;
J(ntrip_prev+1:ntriplets) = ii1;
R(ntrip_prev+1:ntriplets) = R2;
I0(nn0+1:nn0+length(I0t)) = I0t;
J0(nn0+1:nn0+length(I0t)) = ii1;
nn0 = nn0+length(I0t);
end
r = sparse(I(1:ntriplets),J(1:ntriplets),R(1:ntriplets));
[I,J,r] = find(r);
cs = full(sparse(max(0, 1-r)));
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
C = ma2.*cs.^(l+3).*(const1.*r.^3 + const2.*r.^2 + const3.*r + 15)/15;
C = sparse(I,J,C,n1,n2) + sparse(I0,J0,ma2,n1,n2);
end
function C = gpcf_ppcs3_trcov(gpcf, x)
%GP_PPCS3_TRCOV Evaluate training covariance matrix of inputs
%
% Description
% C = GP_PPCS3_TRCOV(GP, TX) takes in covariance function of a
% Gaussian process GP and matrix TX that contains training
% input vectors. Returns covariance matrix C. Every element ij
% of C contains covariance between inputs i and j in TX. This is
% a mandatory subfunction used for example in prediction and
% energy computations.
%
% See also
% GPCF_PPCS3_COV, GPCF_PPCS3_TRVAR, GP_COV, GP_TRCOV
if isfield(gpcf,'metric')
% If other than scaled euclidean metric
[n, m] =size(x);
else
% If a scaled euclidean metric try first mex-implementation
% and if there is not such...
C = trcov(gpcf,x);
% ... evaluate the covariance here.
if isnan(C)
if isfield(gpcf, 'selectedVariables')
x = x(:,gpcf.selectedVariables);
end
[n, m] =size(x);
s = 1./(gpcf.lengthScale);
s2 = s.^2;
if size(s)==1
s2 = repmat(s2,1,m);
end
else
return
end
end
ma2 = gpcf.magnSigma2;
l = gpcf.l;
% Compute the sparse distance matrix.
ntriplets = max(1,floor(0.03*n*n));
I = zeros(ntriplets,1);
J = zeros(ntriplets,1);
R = zeros(ntriplets,1);
ntriplets = 0;
ntripletsz = max(1,floor(0.03.^2*n*n));
Iz = zeros(ntripletsz,1);
Jz = zeros(ntripletsz,1);
ntripletsz = 0;
for ii1=1:n-1
d = zeros(n-ii1,1);
col_ind = ii1+1:n;
if isfield(gpcf,'metric')
d = gpcf.metric.fh.dist(gpcf.metric, x(col_ind,:), x(ii1,:));
else
for ii2=1:m
d = d+s2(ii2).*(x(col_ind,ii2)-x(ii1,ii2)).^2;
end
end
%d = sqrt(d);
% store zero distance index
[I2z,J2z] = find(d==0);
% create triplets for distances 0<d<1
d(d >= 1) = 0;
[I2,J2,R2] = find(d);
len = length(R);
ntrip_prev = ntriplets;
ntriplets = ntriplets + length(R2);
if (ntriplets > len)
I(2*len) = 0;
J(2*len) = 0;
R(2*len) = 0;
end
ind_tr = ntrip_prev+1:ntriplets;
I(ind_tr) = ii1+I2;
J(ind_tr) = ii1;
R(ind_tr) = sqrt(R2);
% create triplets for distances d==0 (i~=j)
lenz = length(Iz);
ntrip_prevz = ntripletsz;
ntripletsz = ntripletsz + length(I2z);
if (ntripletsz > lenz)
Iz(2*lenz) = 0;
Jz(2*lenz) = 0;
end
ind_trz = ntrip_prevz+1:ntripletsz;
Iz(ind_trz) = ii1+I2z;
Jz(ind_trz) = ii1;
end
% create a lower triangular sparse distance matrix from the triplets for distances 0<d<1
R = sparse(I(1:ntriplets),J(1:ntriplets),R(1:ntriplets),n,n);
% create a lower triangular sparse covariance matrix from the
% triplets for distances d==0 (i~=j)
Rz = sparse(Iz(1:ntripletsz),Jz(1:ntripletsz),repmat(ma2,1,ntripletsz),n,n);
% Find the non-zero elements of R.
[I,J,rn] = find(R);
% Compute covariances for distances 0<d<1
const1 = l^3 + 9*l^2 + 23*l + 15;
const2 = 6*l^2 + 36*l + 45;
const3 = 15*l + 45;
cs = max(0,1-rn);
C = ma2.*cs.^(l+3).*(const1.*rn.^3 + const2.*rn.^2 + const3.*rn + 15)/15;
% create a lower triangular sparse covariance matrix from the triplets for distances 0<d<1
C = sparse(I,J,C,n,n);
% add the lower triangular covariance matrix for distances d==0 (i~=j)
C = C + Rz;
% form a square covariance matrix and add the covariance matrix for i==j (d==0)
C = C + C' + sparse(1:n,1:n,ma2,n,n);
end
function C = gpcf_ppcs3_trvar(gpcf, x)
%GP_PPCS3_TRVAR Evaluate training variance vector
%
% Description
% C = GP_PPCS3_TRVAR(GPCF, TX) takes in covariance function of
% a Gaussian process GPCF and matrix TX that contains training
% inputs. Returns variance vector C. Every element i of C
% contains variance of input i in TX. This is a mandatory
% subfunction used for example in prediction and energy computations.
%
% See also
% GPCF_PPCS3_COV, GP_COV, GP_TRCOV
[n, m] =size(x);
C = ones(n,1).*gpcf.magnSigma2;
C(C<eps)=0;
end
function reccf = gpcf_ppcs3_recappend(reccf, ri, gpcf)
%RECAPPEND Record append
%
% Description
% RECCF = GPCF_PPCS3_RECAPPEND(RECCF, RI, GPCF) takes a
% covariance function record structure RECCF, record index RI
% and covariance function structure GPCF with the current MCMC
% samples of the parameters. Returns RECCF which contains all
% the old samples and the current samples from GPCF. This
% subfunction is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC and GP_MC -> RECAPPEND
if nargin == 2
% Initialize the record
reccf.type = 'gpcf_ppcs3';
reccf.nin = ri.nin;
reccf.l = floor(reccf.nin/2)+4;
% cf is compactly supported
reccf.cs = 1;
% Initialize parameters
reccf.lengthScale= [];
reccf.magnSigma2 = [];
% Set the function handles
reccf.fh.pak = @gpcf_ppcs3_pak;
reccf.fh.unpak = @gpcf_ppcs3_unpak;
reccf.fh.e = @gpcf_ppcs3_lp;
reccf.fh.lpg = @gpcf_ppcs3_lpg;
reccf.fh.cfg = @gpcf_ppcs3_cfg;
reccf.fh.cov = @gpcf_ppcs3_cov;
reccf.fh.trcov = @gpcf_ppcs3_trcov;
reccf.fh.trvar = @gpcf_ppcs3_trvar;
reccf.fh.recappend = @gpcf_ppcs3_recappend;
reccf.p=[];
reccf.p.lengthScale=[];
reccf.p.magnSigma2=[];
if isfield(ri.p,'lengthScale') && ~isempty(ri.p.lengthScale)
reccf.p.lengthScale = ri.p.lengthScale;
end
if ~isempty(ri.p.magnSigma2)
reccf.p.magnSigma2 = ri.p.magnSigma2;
end
if isfield(ri, 'selectedVariables')
reccf.selectedVariables = ri.selectedVariables;
end
else
% Append to the record
gpp = gpcf.p;
if ~isfield(gpcf,'metric')
% record lengthScale
reccf.lengthScale(ri,:)=gpcf.lengthScale;
if isfield(gpp,'lengthScale') && ~isempty(gpp.lengthScale)
reccf.p.lengthScale = gpp.lengthScale.fh.recappend(reccf.p.lengthScale, ri, gpcf.p.lengthScale);
end
end
% record magnSigma2
reccf.magnSigma2(ri,:)=gpcf.magnSigma2;
if isfield(gpp,'magnSigma2') && ~isempty(gpp.magnSigma2)
reccf.p.magnSigma2 = gpp.magnSigma2.fh.recappend(reccf.p.magnSigma2, ri, gpcf.p.magnSigma2);
end
end
end
|
github
|
lcnbeapp/beapp-master
|
esls.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/esls.m
| 4,193 |
utf_8
|
ae75a9e42b7e6284ac4e8dd42766f9cf
|
function [f, energ, diagn] = esls(f, opt, gp, x, y, z, angle_range)
%ESLS Markov chain update for a distribution with a Gaussian "prior"
% factored out
%
% Description
% [F, ENERG, DIAG] = ESLS(F, OPT, GP, X, Y) takes the current
% latent values F, options structure OPT, Gaussian process
% structure GP, inputs X and outputs Y. Samples new latent
% values and returns also energies ENERG and diagnostics DIAG.
%
% A Markov chain update is applied to the D-element array f leaving a
% "posterior" distribution
% P(f) \propto N(f;0,Sigma) L(f)
% invariant. Where N(0,Sigma) is a zero-mean Gaussian
% distribution with covariance Sigma. Often L is a likelihood
% function in an inference problem.
%
% Reference:
% Elliptical slice sampling
% Iain Murray, Ryan Prescott Adams and David J.C. MacKay.
% The Proceedings of the 13th International Conference on Artificial
% Intelligence and Statistics (AISTATS), JMLR W&CP 9:541-548, 2010.
%
% See also
% GP_MC
% Copyright (c) Iain Murray, September 2009
% Tweak to interface and documentation, September 2010
% Ville Tolvanen, October 2011 - Changed inputs and outputs for the function to
% fit in with other GPstuf samplers. Documentation standardized with other
% GPstuff documentation and modified according to input/output changes.
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
if nargin<=1
% Return only default options
if nargin==0
f=elliptical_sls_opt();
else
f=elliptical_sls_opt(f);
end
return
end
D = numel(f);
if (nargin < 7) || isempty(angle_range)
angle_range = 0;
end
if ~isfield(gp.lik, 'nondiagW') || ismember(gp.lik.type, {'LGP' 'LGPC'});
[K, C] = gp_trcov(gp,x);
else
if ~isfield(gp.lik,'xtime')
nl=[0 repmat(size(y,1), 1, length(gp.comp_cf))];
else
xtime=gp.lik.xtime;
nl=[0 size(gp.lik.xtime,1) size(y,1)];
end
nl=cumsum(nl);
nlp=length(nl)-1;
C = zeros(nl(end));
for i1=1:nlp
if i1==1 && isfield(gp.lik, 'xtime')
C((1+nl(i1)):nl(i1+1),(1+nl(i1)):nl(i1+1)) = gp_trcov(gp, xtime, gp.comp_cf{i1});
else
C((1+nl(i1)):nl(i1+1),(1+nl(i1)):nl(i1+1)) = gp_trcov(gp, x, gp.comp_cf{i1});
end
end
end
if isfield(gp,'meanf')
[H_m,b_m,B_m]=mean_prep(gp,x,[]);
C = C + H_m'*B_m*H_m;
end
L=chol(C, 'lower');
cur_log_like = gp.lik.fh.ll(gp.lik, y, f, z);
for i1=1:opt.repeat
% Set up the ellipse and the slice threshold
nu = reshape(L*randn(D, 1), size(f));
hh = log(rand) + cur_log_like;
% Set up a bracket of angles and pick a first proposal.
% "phi = (theta'-theta)" is a change in angle.
if angle_range <= 0
% Bracket whole ellipse with both edges at first proposed point
phi = rand*2*pi;
phi_min = phi - 2*pi;
phi_max = phi;
else
% Randomly center bracket on current point
phi_min = -angle_range*rand;
phi_max = phi_min + angle_range;
phi = rand*(phi_max - phi_min) + phi_min;
end
% Slice sampling loop
slrej = 0;
while true
% Compute f for proposed angle difference and check if it's on the slice
f_prop = f*cos(phi) + nu*sin(phi);
cur_log_like = gp.lik.fh.ll(gp.lik, y, f_prop, z);
if (cur_log_like > hh)
% New point is on slice, ** EXIT LOOP **
break;
end
% Shrink slice to rejected point
if phi > 0
phi_max = phi;
elseif phi < 0
phi_min = phi;
else
error('BUG DETECTED: Shrunk to current position and still not acceptable.');
end
% Propose new angle difference
phi = rand*(phi_max - phi_min) + phi_min;
slrej = slrej + 1;
end
f = f_prop;
end
energ = [];
diagn.rej = slrej;
diagn.opt = opt;
end
function opt = elliptical_sls_opt(opt)
%ELLIPTICAL_SLS_OPT Default options for elliptical slice sampling
%
% Description
% OPT = ELLIPTICAL_SLS_OPT
% return default options
% OPT = ELLIPTICAL_SLS_OPT(OPT)
% fill empty options with default values
%
% The options and defaults are
% repeat - nth accepted value
if nargin < 1
opt=[];
end
if ~isfield(opt,'repeat')
opt.repeat=40;
end
end
|
github
|
lcnbeapp/beapp-master
|
gpcf_linear.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/gpcf_linear.m
| 20,157 |
UNKNOWN
|
88ffa237f9edab312bb8598ea4db4415
|
function gpcf = gpcf_linear(varargin)
%GPCF_LINEAR Create a linear (dot product) covariance function
%
% Description
% GPCF = GPCF_LINEAR('PARAM1',VALUE1,'PARAM2,VALUE2,...) creates
% a linear (dot product) covariance function structure in which
% the named parameters have the specified values. Any
% unspecified parameters are set to default values.
%
% GPCF = GPCF_LINEAR(GPCF,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a covariance function structure with the named
% parameters altered with the specified values.
%
% Parameters for linear (dot product) covariance function
% coeffSigma2 - prior variance for regressor coefficients [10]
% This can be either scalar corresponding
% to a common prior variance or vector
% defining own prior variance for each
% coefficient.
% coeffSigma2_prior - prior structure for coeffSigma2 [prior_logunif]
% selectedVariables - vector defining which inputs are used [all]
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% See also
% GP_SET, GPCF_*, PRIOR_*, MEAN_*
% Copyright (c) 2007-2010 Jarno Vanhatalo
% Copyright (c) 2008-2010 Jaakko Riihim�ki
% Copyright (c) 2010 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'GPCF_LINEAR';
ip.addOptional('gpcf', [], @isstruct);
ip.addParamValue('coeffSigma2',10, @(x) isvector(x) && all(x>0));
ip.addParamValue('coeffSigma2_prior',prior_logunif, @(x) isstruct(x) || isempty(x));
ip.addParamValue('selectedVariables',[], @(x) isvector(x) && all(x>0));
ip.parse(varargin{:});
gpcf=ip.Results.gpcf;
if isempty(gpcf)
init=true;
gpcf.type = 'gpcf_linear';
else
if ~isfield(gpcf,'type') && ~isequal(gpcf.type,'gpcf_linear')
error('First argument does not seem to be a valid covariance function structure')
end
init=false;
end
% Initialize parameter
if init || ~ismember('coeffSigma2',ip.UsingDefaults)
gpcf.coeffSigma2=ip.Results.coeffSigma2;
end
% Initialize prior structure
if init
gpcf.p=[];
end
if init || ~ismember('coeffSigma2_prior',ip.UsingDefaults)
gpcf.p.coeffSigma2=ip.Results.coeffSigma2_prior;
end
if ~ismember('selectedVariables',ip.UsingDefaults)
selectedVariables=ip.Results.selectedVariables;
if ~isempty(selectedVariables)
gpcf.selectedVariables = selectedVariables;
end
end
if init
% Set the function handles to the subfunctions
gpcf.fh.pak = @gpcf_linear_pak;
gpcf.fh.unpak = @gpcf_linear_unpak;
gpcf.fh.lp = @gpcf_linear_lp;
gpcf.fh.lpg = @gpcf_linear_lpg;
gpcf.fh.cfg = @gpcf_linear_cfg;
gpcf.fh.ginput = @gpcf_linear_ginput;
gpcf.fh.cov = @gpcf_linear_cov;
gpcf.fh.trcov = @gpcf_linear_trcov;
gpcf.fh.trvar = @gpcf_linear_trvar;
gpcf.fh.recappend = @gpcf_linear_recappend;
end
end
function [w, s] = gpcf_linear_pak(gpcf, w)
%GPCF_LINEAR_PAK Combine GP covariance function parameters into one vector
%
% Description
% W = GPCF_LINEAR_PAK(GPCF) takes a covariance function
% structure GPCF and combines the covariance function
% parameters and their hyperparameters into a single row
% vector W. This is a mandatory subfunction used for
% example in energy and gradient computations.
%
% w = [ log(gpcf.coeffSigma2)
% (hyperparameters of gpcf.coeffSigma2)]'
%
% See also
% GPCF_LINEAR_UNPAK
w = []; s = {};
if ~isempty(gpcf.p.coeffSigma2)
w = log(gpcf.coeffSigma2);
if numel(gpcf.coeffSigma2)>1
s = [s; sprintf('log(linear.coeffSigma2 x %d)',numel(gpcf.coeffSigma2))];
else
s = [s; 'log(linear.coeffSigma2)'];
end
% Hyperparameters of coeffSigma2
[wh sh] = gpcf.p.coeffSigma2.fh.pak(gpcf.p.coeffSigma2);
w = [w wh];
s = [s; sh];
end
end
function [gpcf, w] = gpcf_linear_unpak(gpcf, w)
%GPCF_LINEAR_UNPAK Sets the covariance function parameters
% into the structure
%
% Description
% [GPCF, W] = GPCF_LINEAR_UNPAK(GPCF, W) takes a covariance
% function structure GPCF and a hyper-parameter vector W, and
% returns a covariance function structure identical to the
% input, except that the covariance hyper-parameters have been
% set to the values in W. Deletes the values set to GPCF from
% W and returns the modified W. This is a mandatory subfunction
% used for example in energy and gradient computations.
%
% Assignment is inverse of
% w = [ log(gpcf.coeffSigma2)
% (hyperparameters of gpcf.coeffSigma2)]'
%
% See also
% GPCF_LINEAR_PAK
gpp=gpcf.p;
if ~isempty(gpp.coeffSigma2)
i2=length(gpcf.coeffSigma2);
i1=1;
gpcf.coeffSigma2 = exp(w(i1:i2));
w = w(i2+1:end);
% Hyperparameters of coeffSigma2
[p, w] = gpcf.p.coeffSigma2.fh.unpak(gpcf.p.coeffSigma2, w);
gpcf.p.coeffSigma2 = p;
end
end
function lp = gpcf_linear_lp(gpcf)
%GPCF_LINEAR_LP Evaluate the log prior of covariance function parameters
%
% Description
% LP = GPCF_LINEAR_LP(GPCF) takes a covariance function
% structure GPCF and returns log(p(th)), where th collects the
% parameters. This is a mandatory subfunction used for example
% in energy computations.
%
% See also
% GPCF_LINEAR_PAK, GPCF_LINEAR_UNPAK, GPCF_LINEAR_LPG, GP_E
% Evaluate the prior contribution to the error. The parameters that
% are sampled are from space W = log(w) where w is all the "real" samples.
% On the other hand errors are evaluated in the W-space so we need take
% into account also the Jacobian of transformation W -> w = exp(W).
% See Gelman et.al., 2004, Bayesian data Analysis, second edition, p24.
lp = 0;
gpp=gpcf.p;
if ~isempty(gpp.coeffSigma2)
lp = gpp.coeffSigma2.fh.lp(gpcf.coeffSigma2, gpp.coeffSigma2) + sum(log(gpcf.coeffSigma2));
end
end
function lpg = gpcf_linear_lpg(gpcf)
%GPCF_LINEAR_LPG Evaluate gradient of the log prior with respect
% to the parameters.
%
% Description
% LPG = GPCF_LINEAR_LPG(GPCF) takes a covariance function
% structure GPCF and returns LPG = d log (p(th))/dth, where th
% is the vector of parameters. This is a mandatory subfunction
% used for example in gradient computations.
%
% See also
% GPCF_LINEAR_PAK, GPCF_LINEAR_UNPAK, GPCF_LINEAR_LP, GP_G
lpg = [];
gpp=gpcf.p;
if ~isempty(gpcf.p.coeffSigma2)
lll=length(gpcf.coeffSigma2);
lpgs = gpp.coeffSigma2.fh.lpg(gpcf.coeffSigma2, gpp.coeffSigma2);
lpg = [lpg lpgs(1:lll).*gpcf.coeffSigma2+1 lpgs(lll+1:end)];
end
end
function DKff = gpcf_linear_cfg(gpcf, x, x2, mask, i1)
%GPCF_LINEAR_CFG Evaluate gradient of covariance function
% with respect to the parameters
%
% Description
% DKff = GPCF_LINEAR_CFG(GPCF, X) takes a covariance function
% structure GPCF, a matrix X of input vectors and returns
% DKff, the gradients of covariance matrix Kff = k(X,X) with
% respect to th (cell array with matrix elements). This is a
% mandatory subfunction used in gradient computations.
%
% DKff = GPCF_LINEAR_CFG(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_LINEAR_CFG(GPCF, X, [], MASK) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the diagonal of gradients of covariance matrix
% Kff = k(X,X2) with respect to th (cell array with matrix
% elements). This subfunction is needed when using sparse
% approximations (e.g. FIC).
%
% DKff = GPCF_LINEAR_CFG(GPCF,X,X2,MASK,i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradient of covariance matrix Kff =
% k(X,X2), or k(X,X) if X2 is empty, with respect to ith
% hyperparameter. This subfunction is needed when using
% memory save option in gp_set.
%
% See also
% GPCF_LINEAR_PAK, GPCF_LINEAR_UNPAK, GPCF_LINEAR_LP, GP_G
[n, m] =size(x);
DKff = {};
if nargin==5
% Use memory save option
savememory=1;
if i1==0
% Return number of hyperparameters
DKff=0;
if ~isempty(gpcf.p.coeffSigma2)
DKff=length(gpcf.coeffSigma2);
end
return
end
else
savememory=0;
end
% Evaluate: DKff{1} = d Kff / d coeffSigma2
% NOTE! Here we have already taken into account that the parameters are transformed
% through log() and thus dK/dlog(p) = p * dK/dp
% evaluate the gradient for training covariance
if nargin == 2 || (isempty(x2) && isempty(mask))
if isfield(gpcf, 'selectedVariables')
if ~isempty(gpcf.p.coeffSigma2)
if length(gpcf.coeffSigma2) == 1
DKff{1}=gpcf.coeffSigma2*x(:,gpcf.selectedVariables)*(x(:,gpcf.selectedVariables)');
else
if ~savememory
i1=1:length(gpcf.coeffSigma2);
end
for ii1=i1
DD = gpcf.coeffSigma2(ii1)*x(:,gpcf.selectedVariables(ii1))*(x(:,gpcf.selectedVariables(ii1))');
DD(abs(DD)<=eps) = 0;
DKff{ii1}= (DD+DD')./2;
end
end
end
else
if ~isempty(gpcf.p.coeffSigma2)
if length(gpcf.coeffSigma2) == 1
DKff{1}=gpcf.coeffSigma2*x*(x');
else
if isa(gpcf.coeffSigma2,'single')
epsi=eps('single');
else
epsi=eps;
end
if ~savememory
i1=1:length(gpcf.coeffSigma2);
end
DKff=cell(1,length(i1));
for ii1=i1
DD = gpcf.coeffSigma2(ii1)*x(:,ii1)*(x(:,ii1)');
DD(abs(DD)<=epsi) = 0;
DKff{ii1}= (DD+DD')./2;
end
end
end
end
% Evaluate the gradient of non-symmetric covariance (e.g. K_fu)
elseif nargin == 3 || isempty(mask)
if size(x,2) ~= size(x2,2)
error('gpcf_linear -> _ghyper: The number of columns in x and x2 has to be the same. ')
end
if isfield(gpcf, 'selectedVariables')
if ~isempty(gpcf.p.coeffSigma2)
if length(gpcf.coeffSigma2) == 1
DKff{1}=gpcf.coeffSigma2*x(:,gpcf.selectedVariables)*(x2(:,gpcf.selectedVariables)');
else
if ~savememory
i1=1:length(gpcf.coeffSigma2);
end
for ii1=i1
DKff{ii1}=gpcf.coeffSigma2(ii1)*x(:,gpcf.selectedVariables(ii1))*(x2(:,gpcf.selectedVariables(ii1))');
end
end
end
else
if ~isempty(gpcf.p.coeffSigma2)
if length(gpcf.coeffSigma2) == 1
DKff{1}=gpcf.coeffSigma2*x*(x2');
else
if ~savememory
i1=1:m;
end
for ii1=i1
DKff{ii1}=gpcf.coeffSigma2(ii1)*x(:,ii1)*(x2(:,ii1)');
end
end
end
end
% Evaluate: DKff{1} = d mask(Kff,I) / d coeffSigma2
% DKff{2...} = d mask(Kff,I) / d coeffSigma2
elseif nargin == 4 || nargin == 5
if isfield(gpcf, 'selectedVariables')
if ~isempty(gpcf.p.coeffSigma2)
if length(gpcf.coeffSigma2) == 1
DKff{1}=gpcf.coeffSigma2*sum(x(:,gpcf.selectedVariables).^2,2); % d mask(Kff,I) / d coeffSigma2
else
if ~savememory
i1=1:length(gpcf.coeffSigma2);
end
for ii1=i1
DKff{ii1}=gpcf.coeffSigma2(ii1)*(x(:,gpcf.selectedVariables(ii1)).^2); % d mask(Kff,I) / d coeffSigma2
end
end
end
else
if ~isempty(gpcf.p.coeffSigma2)
if length(gpcf.coeffSigma2) == 1
DKff{1}=gpcf.coeffSigma2*sum(x.^2,2); % d mask(Kff,I) / d coeffSigma2
else
if ~savememory
i1=1:m;
end
for ii1=i1
DKff{ii1}=gpcf.coeffSigma2(ii1)*(x(:,ii1).^2); % d mask(Kff,I) / d coeffSigma2
end
end
end
end
end
if savememory
DKff=DKff{i1};
end
end
function DKff = gpcf_linear_ginput(gpcf, x, x2, i1)
%GPCF_LINEAR_GINPUT Evaluate gradient of covariance function with
% respect to x.
%
% Description
% DKff = GPCF_LINEAR_GINPUT(GPCF, X) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_LINEAR_GINPUT(GPCF, X, X2) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to X (cell array with matrix elements).
% This subfunction is needed when computing gradients with
% respect to inducing inputs in sparse approximations.
%
% DKff = GPCF_LINEAR_GINPUT(GPCF, X, X2, i) takes a covariance
% function structure GPCF, a matrix X of input vectors and
% returns DKff, the gradients of covariance matrix Kff =
% k(X,X2) with respect to ith covariate in X (matrix).
% This subfunction is needed when using memory save option
% in gp_set.
%
% See also
% GPCF_LINEAR_PAK, GPCF_LINEAR_UNPAK, GPCF_LINEAR_LP, GP_G
[n, m] =size(x);
if nargin==4
% Use memory save option
savememory=1;
if i1==0
% Return number of covariates
if isfield(gpcf,'selectedVariables')
DKff=length(gpcf.selectedVariables);
else
DKff=m;
end
return
end
else
savememory=0;
end
if nargin == 2 || isempty(x2)
%K = feval(gpcf.fh.trcov, gpcf, x);
if length(gpcf.coeffSigma2) == 1
% In the case of an isotropic LINEAR
s = repmat(gpcf.coeffSigma2, 1, m);
else
s = gpcf.coeffSigma2;
end
ii1 = 0;
if isfield(gpcf, 'selectedVariables')
if ~savememory
i1=1:length(gpcf.selectedVariables);
end
for i=i1
for j = 1:n
DK = zeros(n);
DK(j,:)=s(i)*x(:,gpcf.selectedVariables(i))';
DK = DK + DK';
ii1 = ii1 + 1;
DKff{ii1} = DK;
end
end
else
if ~savememory
i1=1:m;
end
for i=i1
for j = 1:n
DK = zeros(n);
DK(j,:)=s(i)*x(:,i)';
DK = DK + DK';
ii1 = ii1 + 1;
DKff{ii1} = DK;
end
end
end
elseif nargin == 3 || nargin == 4
%K = feval(gpcf.fh.cov, gpcf, x, x2);
if length(gpcf.coeffSigma2) == 1
% In the case of an isotropic LINEAR
s = repmat(gpcf.coeffSigma2, 1, m);
else
s = gpcf.coeffSigma2;
end
ii1 = 0;
if isfield(gpcf, 'selectedVariables')
if ~savememory
i1=1:length(gpcf.selectedVariables);
end
for i=i1
for j = 1:n
DK = zeros(n, size(x2,1));
DK(j,:)=s(i)*x2(:,gpcf.selectedVariables(i))';
ii1 = ii1 + 1;
DKff{ii1} = DK;
end
end
else
if ~savememory
i1=1:m;
end
for i=i1
for j = 1:n
DK = zeros(n, size(x2,1));
DK(j,:)=s(i)*x2(:,i)';
ii1 = ii1 + 1;
DKff{ii1} = DK;
end
end
end
end
end
function C = gpcf_linear_cov(gpcf, x1, x2, varargin)
%GP_LINEAR_COV Evaluate covariance matrix between two input vectors
%
% Description
% C = GP_LINEAR_COV(GP, TX, X) takes in covariance function of
% a Gaussian process GP and two matrixes TX and X that contain
% input vectors to GP. Returns covariance matrix C. Every
% element ij of C contains covariance between inputs i in TX
% and j in X. This is a mandatory subfunction used for example in
% prediction and energy computations.
%
% See also
% GPCF_LINEAR_TRCOV, GPCF_LINEAR_TRVAR, GP_COV, GP_TRCOV
if isempty(x2)
x2=x1;
end
[n1,m1]=size(x1);
[n2,m2]=size(x2);
if m1~=m2
error('the number of columns of X1 and X2 has to be same')
end
if isfield(gpcf, 'selectedVariables')
C = x1(:,gpcf.selectedVariables)*diag(gpcf.coeffSigma2)*(x2(:,gpcf.selectedVariables)');
else
C = x1*diag(gpcf.coeffSigma2)*(x2');
end
C(abs(C)<=eps) = 0;
end
function C = gpcf_linear_trcov(gpcf, x)
%GP_LINEAR_TRCOV Evaluate training covariance matrix of inputs
%
% Description
% C = GP_LINEAR_TRCOV(GP, TX) takes in covariance function of
% a Gaussian process GP and matrix TX that contains training
% input vectors. Returns covariance matrix C. Every element ij
% of C contains covariance between inputs i and j in TX. This
% is a mandatory subfunction used for example in prediction and
% energy computations.
%
% See also
% GPCF_LINEAR_COV, GPCF_LINEAR_TRVAR, GP_COV, GP_TRCOV
if isfield(gpcf, 'selectedVariables')
C = x(:,gpcf.selectedVariables)*diag(gpcf.coeffSigma2)*(x(:,gpcf.selectedVariables)');
else
C = x*diag(gpcf.coeffSigma2)*(x');
end
C(abs(C)<=eps) = 0;
C = (C+C')./2;
end
function C = gpcf_linear_trvar(gpcf, x)
%GP_LINEAR_TRVAR Evaluate training variance vector
%
% Description
% C = GP_LINEAR_TRVAR(GPCF, TX) takes in covariance function
% of a Gaussian process GPCF and matrix TX that contains
% training inputs. Returns variance vector C. Every element i
% of C contains variance of input i in TX. This is a mandatory
% subfunction used for example in prediction and energy computations.
%
%
% See also
% GPCF_LINEAR_COV, GP_COV, GP_TRCOV
if length(gpcf.coeffSigma2) == 1
if isfield(gpcf, 'selectedVariables')
C=gpcf.coeffSigma2.*sum(x(:,gpcf.selectedVariables).^2,2);
else
C=gpcf.coeffSigma2.*sum(x.^2,2);
end
else
if isfield(gpcf, 'selectedVariables')
C=sum(repmat(gpcf.coeffSigma2, size(x,1), 1).*x(:,gpcf.selectedVariables).^2,2);
else
C=sum(repmat(gpcf.coeffSigma2, size(x,1), 1).*x.^2,2);
end
end
C(abs(C)<eps)=0;
end
function reccf = gpcf_linear_recappend(reccf, ri, gpcf)
%RECAPPEND Record append
%
% Description
% RECCF = GPCF_LINEAR_RECAPPEND(RECCF, RI, GPCF) takes a
% covariance function record structure RECCF, record index RI
% and covariance function structure GPCF with the current MCMC
% samples of the parameters. Returns RECCF which contains all
% the old samples and the current samples from GPCF. This
% subfunction is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC and GP_MC -> RECAPPEND
if nargin == 2
% Initialize the record
reccf.type = 'gpcf_linear';
% Initialize parameters
reccf.coeffSigma2= [];
% Set the function handles
reccf.fh.pak = @gpcf_linear_pak;
reccf.fh.unpak = @gpcf_linear_unpak;
reccf.fh.lp = @gpcf_linear_lp;
reccf.fh.lpg = @gpcf_linear_lpg;
reccf.fh.cfg = @gpcf_linear_cfg;
reccf.fh.cov = @gpcf_linear_cov;
reccf.fh.trcov = @gpcf_linear_trcov;
reccf.fh.trvar = @gpcf_linear_trvar;
reccf.fh.recappend = @gpcf_linear_recappend;
reccf.p=[];
reccf.p.coeffSigma2=[];
if ~isempty(ri.p.coeffSigma2)
reccf.p.coeffSigma2 = ri.p.coeffSigma2;
end
else
% Append to the record
gpp = gpcf.p;
% record coeffSigma2
reccf.coeffSigma2(ri,:)=gpcf.coeffSigma2;
if isfield(gpp,'coeffSigma2') && ~isempty(gpp.coeffSigma2)
reccf.p.coeffSigma2 = gpp.coeffSigma2.fh.recappend(reccf.p.coeffSigma2, ri, gpcf.p.coeffSigma2);
end
if isfield(gpcf, 'selectedVariables')
reccf.selectedVariables = gpcf.selectedVariables;
end
end
end
|
github
|
lcnbeapp/beapp-master
|
lik_weibull.m
|
.m
|
beapp-master/Packages/eeglab14_1_2b/plugins/fieldtrip-20160917/external/dmlt/external/gpstuff/gp/lik_weibull.m
| 23,168 |
windows_1250
|
75fa0c5df6db30dda34b9a8e3c552dcd
|
function lik = lik_weibull(varargin)
%LIK_WEIBULL Create a right censored Weibull likelihood structure
%
% Description
% LIK = LIK_WEIBULL('PARAM1',VALUE1,'PARAM2,VALUE2,...)
% creates a likelihood structure for right censored Weibull
% survival model in which the named parameters have the
% specified values. Any unspecified parameters are set to
% default values.
%
% LIK = LIK_WEIBULL(LIK,'PARAM1',VALUE1,'PARAM2,VALUE2,...)
% modify a likelihood structure with the named parameters
% altered with the specified values.
%
% Parameters for Weibull likelihood [default]
% shape - shape parameter r [1]
% shape_prior - prior for shape [prior_logunif]
%
% Note! If the prior is 'prior_fixed' then the parameter in
% question is considered fixed and it is not handled in
% optimization, grid integration, MCMC etc.
%
% The likelihood is defined as follows:
% __ n
% p(y|f, z) = || i=1 [ r^(1-z_i) exp( (1-z_i)*(-f_i)
% +(1-z_i)*(r-1)*log(y_i)
% -exp(-f_i)*y_i^r) ]
%
% where r is the shape parameter of Weibull distribution.
% z is a vector of censoring indicators with z = 0 for uncensored event
% and z = 1 for right censored event.
%
% When using the Weibull likelihood you need to give the vector z
% as an extra parameter to each function that requires also y.
% For example, you should call gpla_e as follows: gpla_e(w, gp,
% x, y, 'z', z)
%
% See also
% GP_SET, LIK_*, PRIOR_*
%
% Copyright (c) 2011 Jaakko Riihimäki
% Copyright (c) 2011 Aki Vehtari
% This software is distributed under the GNU General Public
% License (version 3 or later); please refer to the file
% License.txt, included with the software, for details.
ip=inputParser;
ip.FunctionName = 'LIK_WEIBULL';
ip.addOptional('lik', [], @isstruct);
ip.addParamValue('shape',1, @(x) isscalar(x) && x>0);
ip.addParamValue('shape_prior',prior_logunif(), @(x) isstruct(x) || isempty(x));
ip.parse(varargin{:});
lik=ip.Results.lik;
if isempty(lik)
init=true;
lik.type = 'Weibull';
else
if ~isfield(lik,'type') || ~isequal(lik.type,'Weibull')
error('First argument does not seem to be a valid likelihood function structure')
end
init=false;
end
% Initialize parameters
if init || ~ismember('shape',ip.UsingDefaults)
lik.shape = ip.Results.shape;
end
% Initialize prior structure
if init
lik.p=[];
end
if init || ~ismember('shape_prior',ip.UsingDefaults)
lik.p.shape=ip.Results.shape_prior;
end
if init
% Set the function handles to the subfunctions
lik.fh.pak = @lik_weibull_pak;
lik.fh.unpak = @lik_weibull_unpak;
lik.fh.lp = @lik_weibull_lp;
lik.fh.lpg = @lik_weibull_lpg;
lik.fh.ll = @lik_weibull_ll;
lik.fh.llg = @lik_weibull_llg;
lik.fh.llg2 = @lik_weibull_llg2;
lik.fh.llg3 = @lik_weibull_llg3;
lik.fh.tiltedMoments = @lik_weibull_tiltedMoments;
lik.fh.siteDeriv = @lik_weibull_siteDeriv;
lik.fh.invlink = @lik_weibull_invlink;
lik.fh.predy = @lik_weibull_predy;
lik.fh.predcdf = @lik_weibull_predcdf;
lik.fh.recappend = @lik_weibull_recappend;
end
end
function [w,s] = lik_weibull_pak(lik)
%LIK_WEIBULL_PAK Combine likelihood parameters into one vector.
%
% Description
% W = LIK_WEIBULL_PAK(LIK) takes a likelihood structure LIK and
% combines the parameters into a single row vector W. This is a
% mandatory subfunction used for example in energy and gradient
% computations.
%
% w = log(lik.shape)
%
% See also
% LIK_WEIBULL_UNPAK, GP_PAK
w=[];s={};
if ~isempty(lik.p.shape)
w = log(lik.shape);
s = [s; 'log(weibull.shape)'];
[wh sh] = lik.p.shape.fh.pak(lik.p.shape);
w = [w wh];
s = [s; sh];
end
end
function [lik, w] = lik_weibull_unpak(lik, w)
%LIK_WEIBULL_UNPAK Extract likelihood parameters from the vector.
%
% Description
% [LIK, W] = LIK_WEIBULL_UNPAK(W, LIK) takes a likelihood
% structure LIK and extracts the parameters from the vector W
% to the LIK structure. This is a mandatory subfunction used
% for example in energy and gradient computations.
%
% Assignment is inverse of
% w = log(lik.shape)
%
% See also
% LIK_WEIBULL_PAK, GP_UNPAK
if ~isempty(lik.p.shape)
lik.shape = exp(w(1));
w = w(2:end);
[p, w] = lik.p.shape.fh.unpak(lik.p.shape, w);
lik.p.shape = p;
end
end
function lp = lik_weibull_lp(lik, varargin)
%LIK_WEIBULL_LP log(prior) of the likelihood parameters
%
% Description
% LP = LIK_WEIBULL_LP(LIK) takes a likelihood structure LIK and
% returns log(p(th)), where th collects the parameters. This
% subfunction is needed when there are likelihood parameters.
%
% See also
% LIK_WEIBULL_LLG, LIK_WEIBULL_LLG3, LIK_WEIBULL_LLG2, GPLA_E
% If prior for shape parameter, add its contribution
lp=0;
if ~isempty(lik.p.shape)
lp = lik.p.shape.fh.lp(lik.shape, lik.p.shape) +log(lik.shape);
end
end
function lpg = lik_weibull_lpg(lik)
%LIK_WEIBULL_LPG d log(prior)/dth of the likelihood
% parameters th
%
% Description
% E = LIK_WEIBULL_LPG(LIK) takes a likelihood structure LIK and
% returns d log(p(th))/dth, where th collects the parameters.
% This subfunction is needed when there are likelihood parameters.
%
% See also
% LIK_WEIBULL_LLG, LIK_WEIBULL_LLG3, LIK_WEIBULL_LLG2, GPLA_G
lpg=[];
if ~isempty(lik.p.shape)
% Evaluate the gprior with respect to shape
ggs = lik.p.shape.fh.lpg(lik.shape, lik.p.shape);
lpg = ggs(1).*lik.shape + 1;
if length(ggs) > 1
lpg = [lpg ggs(2:end)];
end
end
end
function ll = lik_weibull_ll(lik, y, f, z)
%LIK_WEIBULL_LL Log likelihood
%
% Description
% LL = LIK_WEIBULL_LL(LIK, Y, F, Z) takes a likelihood
% structure LIK, survival times Y, censoring indicators Z, and
% latent values F. Returns the log likelihood, log p(y|f,z).
% This subfunction is needed when using Laplace approximation
% or MCMC for inference with non-Gaussian likelihoods. This
% subfunction is also used in information criteria (DIC, WAIC)
% computations.
%
% See also
% LIK_WEIBULL_LLG, LIK_WEIBULL_LLG3, LIK_WEIBULL_LLG2, GPLA_E
if isempty(z)
error(['lik_weibull -> lik_weibull_ll: missing z! '...
'Weibull likelihood needs the censoring '...
'indicators as an extra input z. See, for '...
'example, lik_weibull and gpla_e. ']);
end
a = lik.shape;
ll = sum((1-z).*(log(a) + (a-1).*log(y)-f) - exp(-f).*y.^a);
end
function llg = lik_weibull_llg(lik, y, f, param, z)
%LIK_WEIBULL_LLG Gradient of the log likelihood
%
% Description
% LLG = LIK_WEIBULL_LLG(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, survival times Y, censoring indicators Z and
% latent values F. Returns the gradient of the log likelihood
% with respect to PARAM. At the moment PARAM can be 'param' or
% 'latent'. This subfunction is needed when using Laplace
% approximation or MCMC for inference with non-Gaussian likelihoods.
%
% See also
% LIK_WEIBULL_LL, LIK_WEIBULL_LLG2, LIK_WEIBULL_LLG3, GPLA_E
if isempty(z)
error(['lik_weibull -> lik_weibull_llg: missing z! '...
'Weibull likelihood needs the censoring '...
'indicators as an extra input z. See, for '...
'example, lik_weibull and gpla_e. ']);
end
a = lik.shape;
switch param
case 'param'
llg = sum((1-z).*(1./a + log(y)) - exp(-f).*y.^a.*log(y));
% correction for the log transformation
llg = llg.*lik.shape;
case 'latent'
llg = -(1-z) + exp(-f).*y.^a;
end
end
function llg2 = lik_weibull_llg2(lik, y, f, param, z)
%LIK_WEIBULL_LLG2 Second gradients of the log likelihood
%
% Description
% LLG2 = LIK_WEIBULL_LLG2(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, survival times Y, censoring indicators Z, and
% latent values F. Returns the hessian of the log likelihood
% with respect to PARAM. At the moment PARAM can be only
% 'latent'. LLG2 is a vector with diagonal elements of the
% Hessian matrix (off diagonals are zero). This subfunction
% is needed when using Laplace approximation or EP for
% inference with non-Gaussian likelihoods.
%
% See also
% LIK_WEIBULL_LL, LIK_WEIBULL_LLG, LIK_WEIBULL_LLG3, GPLA_E
if isempty(z)
error(['lik_weibull -> lik_weibull_llg2: missing z! '...
'Weibull likelihood needs the censoring '...
'indicators as an extra input z. See, for '...
'example, lik_weibull and gpla_e. ']);
end
a = lik.shape;
switch param
case 'param'
case 'latent'
llg2 = -exp(-f).*y.^a;
case 'latent+param'
llg2 = exp(-f).*y.^a.*log(y);
% correction due to the log transformation
llg2 = llg2.*lik.shape;
end
end
function llg3 = lik_weibull_llg3(lik, y, f, param, z)
%LIK_WEIBULL_LLG3 Third gradients of the log likelihood
%
% Description
% LLG3 = LIK_WEIBULL_LLG3(LIK, Y, F, PARAM) takes a likelihood
% structure LIK, survival times Y, censoring indicators Z and
% latent values F and returns the third gradients of the log
% likelihood with respect to PARAM. At the moment PARAM can be
% only 'latent'. LLG3 is a vector with third gradients. This
% subfunction is needed when using Laplace approximation for
% inference with non-Gaussian likelihoods.
%
% See also
% LIK_WEIBULL_LL, LIK_WEIBULL_LLG, LIK_WEIBULL_LLG2, GPLA_E, GPLA_G
if isempty(z)
error(['lik_weibull -> lik_weibull_llg3: missing z! '...
'Weibull likelihood needs the censoring '...
'indicators as an extra input z. See, for '...
'example, lik_weibull and gpla_e. ']);
end
a = lik.shape;
switch param
case 'param'
case 'latent'
llg3 = exp(-f).*y.^a;
case 'latent2+param'
llg3 = -exp(-f).*y.^a.*log(y);
% correction due to the log transformation
llg3 = llg3.*lik.shape;
end
end
function [logM_0, m_1, sigm2hati1] = lik_weibull_tiltedMoments(lik, y, i1, sigm2_i, myy_i, z)
%LIK_WEIBULL_TILTEDMOMENTS Returns the marginal moments for EP algorithm
%
% Description
% [M_0, M_1, M2] = LIK_WEIBULL_TILTEDMOMENTS(LIK, Y, I, S2,
% MYY, Z) takes a likelihood structure LIK, survival times
% Y, censoring indicators Z, index I and cavity variance S2 and
% mean MYY. Returns the zeroth moment M_0, mean M_1 and
% variance M_2 of the posterior marginal (see Rasmussen and
% Williams (2006): Gaussian processes for Machine Learning,
% page 55). This subfunction is needed when using EP for
% inference with non-Gaussian likelihoods.
%
% See also
% GPEP_E
% if isempty(z)
% error(['lik_weibull -> lik_weibull_tiltedMoments: missing z!'...
% 'Weibull likelihood needs the censoring '...
% 'indicators as an extra input z. See, for '...
% 'example, lik_weibull and gpep_e. ']);
% end
yy = y(i1);
yc = 1-z(i1);
r = lik.shape;
logM_0=zeros(size(yy));
m_1=zeros(size(yy));
sigm2hati1=zeros(size(yy));
for i=1:length(i1)
% get a function handle of an unnormalized tilted distribution
% (likelihood * cavity = Weibull * Gaussian)
% and useful integration limits
[tf,minf,maxf]=init_weibull_norm(yy(i),myy_i(i),sigm2_i(i),yc(i),r);
% Integrate with quadrature
RTOL = 1.e-6;
ATOL = 1.e-10;
[m_0, m_1(i), m_2] = quad_moments(tf, minf, maxf, RTOL, ATOL);
sigm2hati1(i) = m_2 - m_1(i).^2;
% If the second central moment is less than cavity variance
% integrate more precisely. Theoretically for log-concave
% likelihood should be sigm2hati1 < sigm2_i.
if sigm2hati1(i) >= sigm2_i(i)
ATOL = ATOL.^2;
RTOL = RTOL.^2;
[m_0, m_1(i), m_2] = quad_moments(tf, minf, maxf, RTOL, ATOL);
sigm2hati1(i) = m_2 - m_1(i).^2;
if sigm2hati1(i) >= sigm2_i(i)
error('lik_weibull_tilted_moments: sigm2hati1 >= sigm2_i');
end
end
logM_0(i) = log(m_0);
end
end
function [g_i] = lik_weibull_siteDeriv(lik, y, i1, sigm2_i, myy_i, z)
%LIK_WEIBULL_SITEDERIV Evaluate the expectation of the gradient
% of the log likelihood term with respect
% to the likelihood parameters for EP
%
% Description [M_0, M_1, M2] =
% LIK_WEIBULL_SITEDERIV(LIK, Y, I, S2, MYY, Z) takes a
% likelihood structure LIK, survival times Y, expected
% counts Z, index I and cavity variance S2 and mean MYY.
% Returns E_f [d log p(y_i|f_i) /d a], where a is the
% likelihood parameter and the expectation is over the
% marginal posterior. This term is needed when evaluating the
% gradients of the marginal likelihood estimate Z_EP with
% respect to the likelihood parameters (see Seeger (2008):
% Expectation propagation for exponential families). This
% subfunction is needed when using EP for inference with
% non-Gaussian likelihoods and there are likelihood parameters.
%
% See also
% GPEP_G
if isempty(z)
error(['lik_weibull -> lik_weibull_siteDeriv: missing z!'...
'Weibull likelihood needs the censoring '...
'indicators as an extra input z. See, for '...
'example, lik_weibull and gpla_e. ']);
end
yy = y(i1);
yc = 1-z(i1);
r = lik.shape;
% get a function handle of an unnormalized tilted distribution
% (likelihood * cavity = Weibull * Gaussian)
% and useful integration limits
[tf,minf,maxf]=init_weibull_norm(yy,myy_i,sigm2_i,yc,r);
% additionally get function handle for the derivative
td = @deriv;
% Integrate with quadgk
[m_0, fhncnt] = quadgk(tf, minf, maxf);
[g_i, fhncnt] = quadgk(@(f) td(f).*tf(f)./m_0, minf, maxf);
g_i = g_i.*r;
function g = deriv(f)
g = yc.*(1./r + log(yy)) - exp(-f).*yy.^r.*log(yy);
end
end
function [lpy, Ey, Vary] = lik_weibull_predy(lik, Ef, Varf, yt, zt)
%LIK_WEIBULL_PREDY Returns the predictive mean, variance and density of y
%
% Description
% LPY = LIK_WEIBULL_PREDY(LIK, EF, VARF YT, ZT)
% Returns logarithm of the predictive density PY of YT, that is
% p(yt | zt) = \int p(yt | f, zt) p(f|y) df.
% This requires also the survival times YT, censoring indicators ZT.
% This subfunction is needed when computing posterior predictive
% distributions for future observations.
%
% [LPY, EY, VARY] = LIK_WEIBULL_PREDY(LIK, EF, VARF) takes a
% likelihood structure LIK, posterior mean EF and posterior
% Variance VARF of the latent variable and returns the
% posterior predictive mean EY and variance VARY of the
% observations related to the latent variables. This subfunction
% is needed when computing posterior predictive distributions for
% future observations.
%
%
% See also
% GPLA_PRED, GPEP_PRED, GPMC_PRED
if isempty(zt)
error(['lik_weibull -> lik_weibull_predy: missing zt!'...
'Weibull likelihood needs the censoring '...
'indicators as an extra input zt. See, for '...
'example, lik_weibull and gpla_e. ']);
end
yc = 1-zt;
r = lik.shape;
Ey=[];
Vary=[];
% lpy = zeros(size(Ef));
% Ey = zeros(size(Ef));
% EVary = zeros(size(Ef));
% VarEy = zeros(size(Ef));
%
% % Evaluate Ey and Vary
% for i1=1:length(Ef)
% %%% With quadrature
% myy_i = Ef(i1);
% sigm_i = sqrt(Varf(i1));
% minf=myy_i-6*sigm_i;
% maxf=myy_i+6*sigm_i;
%
% F = @(f) exp(log(yc(i1))+f+norm_lpdf(f,myy_i,sigm_i));
% Ey(i1) = quadgk(F,minf,maxf);
%
% F2 = @(f) exp(log(yc(i1).*exp(f)+((yc(i1).*exp(f)).^2/r))+norm_lpdf(f,myy_i,sigm_i));
% EVary(i1) = quadgk(F2,minf,maxf);
%
% F3 = @(f) exp(2*log(yc(i1))+2*f+norm_lpdf(f,myy_i,sigm_i));
% VarEy(i1) = quadgk(F3,minf,maxf) - Ey(i1).^2;
% end
% Vary = EVary + VarEy;
% Evaluate the posterior predictive densities of the given observations
lpy = zeros(length(yt),1);
for i1=1:length(yt)
% get a function handle of the likelihood times posterior
% (likelihood * posterior = Weibull * Gaussian)
% and useful integration limits
[pdf,minf,maxf]=init_weibull_norm(...
yt(i1),Ef(i1),Varf(i1),yc(i1),r);
% integrate over the f to get posterior predictive distribution
lpy(i1) = log(quadgk(pdf, minf, maxf));
end
end
function [df,minf,maxf] = init_weibull_norm(yy,myy_i,sigm2_i,yc,r)
%INIT_WEIBULL_NORM
%
% Description
% Return function handle to a function evaluating
% Weibull * Gaussian which is used for evaluating
% (likelihood * cavity) or (likelihood * posterior) Return
% also useful limits for integration. This is private function
% for lik_weibull. This subfunction is needed by subfunctions
% tiltedMoments, siteDeriv and predy.
%
% See also
% LIK_WEIBULL_TILTEDMOMENTS, LIK_WEIBULL_SITEDERIV,
% LIK_WEIBULL_PREDY
% avoid repetitive evaluation of constant part
ldconst = yc*log(r)+yc*(r-1)*log(yy)...
- log(sigm2_i)/2 - log(2*pi)/2;
% Create function handle for the function to be integrated
df = @weibull_norm;
% use log to avoid underflow, and derivates for faster search
ld = @log_weibull_norm;
ldg = @log_weibull_norm_g;
ldg2 = @log_weibull_norm_g2;
% Set the limits for integration
if yc==0
% with yy==0, the mode of the likelihood is not defined
% use the mode of the Gaussian (cavity or posterior) as a first guess
modef = myy_i;
else
% use precision weighted mean of the Gaussian approximation
% of the Weibull likelihood and Gaussian
mu=-log(yc./(yy.^r));
%s2=1./(yc+1./sigm2_i);
s2=1./yc;
modef = (myy_i/sigm2_i + mu/s2)/(1/sigm2_i + 1/s2);
end
% find the mode of the integrand using Newton iterations
% few iterations is enough, since first guess is in the right direction
niter=4; % number of Newton iterations
mindelta=1e-6; % tolerance in stopping Newton iterations
for ni=1:niter
g=ldg(modef);
h=ldg2(modef);
delta=-g/h;
modef=modef+delta;
if abs(delta)<mindelta
break
end
end
% integrand limits based on Gaussian approximation at mode
modes=sqrt(-1/h);
minf=modef-8*modes;
maxf=modef+8*modes;
modeld=ld(modef);
iter=0;
% check that density at end points is low enough
lddiff=20; % min difference in log-density between mode and end-points
minld=ld(minf);
step=1;
while minld>(modeld-lddiff)
minf=minf-step*modes;
minld=ld(minf);
iter=iter+1;
step=step*2;
if iter>100
error(['lik_weibull -> init_weibull_norm: ' ...
'integration interval minimun not found ' ...
'even after looking hard!'])
end
end
maxld=ld(maxf);
step=1;
while maxld>(modeld-lddiff)
maxf=maxf+step*modes;
maxld=ld(maxf);
iter=iter+1;
step=step*2;
if iter>100
error(['lik_weibull -> init_weibull_norm: ' ...
'integration interval maximun not found ' ...
'even after looking hard!'])
end
end
function integrand = weibull_norm(f)
% Weibull * Gaussian
integrand = exp(ldconst ...
-yc.*f -exp(-f).*yy.^r ...
-0.5*(f-myy_i).^2./sigm2_i);
end
function log_int = log_weibull_norm(f)
% log(Weibull * Gaussian)
% log_weibull_norm is used to avoid underflow when searching
% integration interval
log_int = ldconst ...
-yc.*f -exp(-f).*yy.^r ...
-0.5*(f-myy_i).^2./sigm2_i;
end
function g = log_weibull_norm_g(f)
% d/df log(Weibull * Gaussian)
% derivative of log_weibull_norm
g = -yc + exp(-f).*yy.^r ...
+ (myy_i - f)./sigm2_i;
end
function g2 = log_weibull_norm_g2(f)
% d^2/df^2 log(Weibull * Gaussian)
% second derivate of log_weibull_norm
g2 = - exp(-f).*yy.^r ...
-1/sigm2_i;
end
end
function cdf = lik_weibull_predcdf(lik, Ef, Varf, yt)
%LIK_WEIBULL_PREDCDF Returns the predictive cdf evaluated at yt
%
% Description
% CDF = LIK_WEIBULL_PREDCDF(LIK, EF, VARF, YT)
% Returns the predictive cdf evaluated at YT given likelihood
% structure LIK, posterior mean EF and posterior Variance VARF
% of the latent variable. This subfunction is needed when using
% functions gp_predcdf or gp_kfcv_cdf.
%
% See also
% GP_PREDCDF
r = lik.shape;
% Evaluate the posterior predictive cdf at given yt
cdf = zeros(length(yt),1);
for i1=1:length(yt)
% Get a function handle of the likelihood times posterior
% (likelihood * posterior = Weibull * Gaussian)
% and useful integration limits.
% yc=0 when evaluating predictive cdf
[sf,minf,maxf]=init_weibull_norm(...
yt(i1),Ef(i1),Varf(i1),0,r);
% integrate over the f to get posterior predictive distribution
cdf(i1) = 1-quadgk(sf, minf, maxf);
end
end
function p = lik_weibull_invlink(lik, f)
%LIK_WEIBULL Returns values of inverse link function
%
% Description
% P = LIK_WEIBULL_INVLINK(LIK, F) takes a likelihood structure LIK and
% latent values F and returns the values of inverse link function P.
% This subfunction is needed when using function gp_predprctmu.
%
% See also
% LIK_WEIBULL_LL, LIK_WEIBULL_PREDY
p = exp(f);
end
function reclik = lik_weibull_recappend(reclik, ri, lik)
%RECAPPEND Append the parameters to the record
%
% Description
% RECLIK = GPCF_WEIBULL_RECAPPEND(RECLIK, RI, LIK) takes a
% likelihood record structure RECLIK, record index RI and
% likelihood structure LIK with the current MCMC samples of
% the parameters. Returns RECLIK which contains all the old
% samples and the current samples from LIK. This subfunction
% is needed when using MCMC sampling (gp_mc).
%
% See also
% GP_MC
if nargin == 2
% Initialize the record
reclik.type = 'Weibull';
% Initialize parameter
reclik.shape = [];
% Set the function handles
reclik.fh.pak = @lik_weibull_pak;
reclik.fh.unpak = @lik_weibull_unpak;
reclik.fh.lp = @lik_t_lp;
reclik.fh.lpg = @lik_t_lpg;
reclik.fh.ll = @lik_weibull_ll;
reclik.fh.llg = @lik_weibull_llg;
reclik.fh.llg2 = @lik_weibull_llg2;
reclik.fh.llg3 = @lik_weibull_llg3;
reclik.fh.tiltedMoments = @lik_weibull_tiltedMoments;
reclik.fh.invlink = @lik_weibull_invlink;
reclik.fh.predy = @lik_weibull_predy;
reclik.fh.predcdf = @lik_weibull_predcdf;
reclik.fh.recappend = @lik_weibull_recappend;
reclik.p=[];
reclik.p.shape=[];
if ~isempty(ri.p.shape)
reclik.p.shape = ri.p.shape;
end
else
% Append to the record
reclik.shape(ri,:)=lik.shape;
if ~isempty(lik.p)
reclik.p.shape = lik.p.shape.fh.recappend(reclik.p.shape, ri, lik.p.shape);
end
end
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.