plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
lcnhappe/happe-master
std_rejectoutliers.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_rejectoutliers.m
5,458
utf_8
5295d178e50afb94a6b71303a3d9aaa9
% std_rejectoutliers() - Commandline function, to reject outlier component(s) from clusters. % Reassign the outlier component(s) to an outlier cluster specific to each cluster. % Usage: % >> [STUDY] = std_rejectoutliers(STUDY, ALLEEG, clusters, th); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in the STUDY. % ALLEEG for a STUDY set is typically created using load_ALLEEG(). % Optional inputs: % clusters - [numeric vector| 'all' ] specific cluster numbers (or 'all' clusters), which outliers % will be rejected from. {default:'all'}. % th - [number] a threshold factor to select outliers. How far a component can be from the % cluster centroid (in the cluster std multiples) befor it will be considered as an outlier. % Components that their distance from the cluster centroid are more than this factor % times the cluster std (th *std) will be rejected. {default: 3}. % % Outputs: % STUDY - the input STUDY set structure modified with the components reassignment, % from the cluster to its outlier cluster. % % Example: % >> clusters = [10 15]; th = 2; % >> [STUDY] = std_rejectoutliers(STUDY, ALLEEG, clusters, th); % Reject outlier components (that are more than 2 std from the cluster centroid) from cluster 10 and 15. % % See also pop_clustedit % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, July, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, July 11, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_rejectoutliers(STUDY, ALLEEG, varargin) cls = 2:length(STUDY.cluster); % all clusters in STUDY th = 3; % The threshold factor - default: 3 if length(varargin) > 1 if isnumeric(varargin{1}) cls = varargin{1}; if isempty(cls) cls = 2:length(STUDY.cluster); end else if isstr(varargin{1}) & strcmpi(varargin{1}, 'all') cls = 2:length(STUDY.cluster); else error('std_prejectoutliers: clusters input takes either specific clusters (numeric vector) or keyword ''all''.'); end end end tmp =[]; for k = 1: length(cls) % don't include 'Notclust' clusters if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) & ~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13) tmp = [tmp cls(k)]; end end cls = tmp; clear tmp if length(varargin) == 2 if isnumeric(varargin{2}) th = varargin{2}; else error('std_prejectoutliers: std input must be a numeric value.'); end end % Perform validity checks for k = 1:length(cls) % Cannot reject outlier components if cluster is a 'Notclust' or 'Outlier' cluster if strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) | strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) | ... strncmpi('ParentCluster', STUDY.cluster(cls(k)).name,13) warndlg2('Cannot reject outlier components from a Notclust or Outliers cluster'); return; end % Cannot reject outlier components if cluster has children clusters if ~isempty(STUDY.cluster(cls(k)).child) warndlg2('Cannot reject outlier components if cluster has children clusters.'); return; end % If the PCA data matrix of the cluster components is empty (case of merged cluster) if isempty(STUDY.cluster(cls(k)).preclust.preclustdata) % No preclustering information warndlg2('Cannot reject outlier components if cluster was not a part of pre-clustering.'); return; end end % For each of the clusters reject outlier components for k = 1:length(cls) % The PCA data matrix of the cluster components clsPCA = STUDY.cluster(cls(k)).preclust.preclustdata; % The cluster centroid clsCentr = mean(clsPCA,1); % The std of the cluster (based on the distances between all cluster components to the cluster centroid). std_std = std(sum((clsPCA-ones(size(clsPCA,1),1)*clsCentr).^2,2),1); outliers = []; for l = 1:length(STUDY.cluster(cls(k)).comps) compdist = sum((clsPCA(l,:) - clsCentr).^2); % Component distance from cluster centroid if compdist > std_std * th % check if an outlier outliers = [ outliers l]; end end % Move outlier to the outlier cluster if ~isempty(outliers) % reject outliers if exist STUDY = std_moveoutlier(STUDY, ALLEEG,cls(k) , outliers); end end
github
lcnhappe/happe-master
std_makedesign.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_makedesign.m
21,788
utf_8
cdedb0dc0d7f5f2628779978f9309b6d
% std_makedesign() - create a new or edit an existing STUDY.design by % selecting specific factors to include in subsequent % 1x2 or 2x2 STUDY measures and statistical computations % for this design. A STUDY may have many factors % (task or stimulus conditions, subject groups, session % numbers, trial types, etc.), but current EEGLAB % STUDY statistics functions apply only to at most two % (paired or unpaired) factors. A STUDY.design may % also be (further) restricted to include only specific % subjects, datasets, or trial types. % Usage: % >> [STUDY] = std_makedesign(STUDY, ALLEEG); % create a default design % >> [STUDY] = std_makedesign(STUDY, ALLEEG, designind, 'key', 'val' ...); % % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % designind - [integer > 0] index (number) of the new STUDY design {default: 1} % % Optional inputs: % 'name' - ['string'] mnemonic design name (ex: 'Targets only') % {default: 'Design d', where d = designind} % 'variable1' - ['string'] - first independent variable or contrast. Must % be a field name in STUDY.datasetinfo or in % STUDY.datasetinfo.trialinfo. Typical choices include (task % or other) 'condition', (subject) 'group', (subject) 'session', % or other condition/group/session factors in STUDY.datasetinfo % -- for example (subject factor) 'gender' or (condition factor) % 'timeofday', etc. If trial type variables are defined in % STUDY.datasetinfo.trialinfo, they may also be used here % -- for example, 'stimcolor'. However, in this case datasets % consist of heterogeneous sets of trials of different types, % so many dataset Plot and Tools menu items may not give % interpretable results and will thus be made unavailable for % selection {default: 'condition'} % 'pairing1' - ['on'|'off'] the nature of the 'variable1' contrast. % For example, to compare two conditions recorded from the % same group of 10 subjects, the 'variable1','condition' design % elements are paired ('on') since each dataset for one % condition has a corresponding dataset from the same subject % in the second condition. If the two conditions were recorded % from different groups of subjects, the variable1 'condition' % would be unpaired ('off') {default: 'on'} % 'values1' - {cell array of 'strings'} - 'variable1' instances to include % in the design. For example, if 'variable1' is 'condition'and % three values for 'condition' (e.g., 'a' , 'b', and 'c') % are listed in STUDY.datasetinfo, then 'indval1', { 'a' 'b' } % will contrast conditions 'a' and 'b', and datasets for % condition 'c' will be ignored. To combine conditions, use % nested '{}'s. For example, to combine conditions 'a' and % 'b' into one condition and contrast it to condition 'c', % specify 'indval1', { { 'a' 'b' } 'c' } {default: all values % of 'variable1' in STUDY.datasetinfo} % 'variable2' - ['string'] - second independent variable name, if any. Typically, % this might refer to ('unpaired') subject group or (typically % 'paired') session number, etc. % 'pairing2' - ['on'|'off'] type of statistics for variable2 % (default: 'on'} % 'values2' - {cell array of 'strings'} - variable2 values to include in the % design {default: all}. Here, 'var[12]' must be field names % in STUDY.datasetinfo or STUDY.datasetinfo.trialinfo. % 'datselect' - {cell array} select specific datasets and/or trials: 'datselect', % {'var1' {'vals'} 'var2' {'vas'}}. Selected datasets must % meet all the specified conditions. For example, 'datselect', % { 'condition' { 'a' 'b' } 'group' { 'g1' 'g2' } } will % select only datasets from conditions 'a' OR 'b' AND only % subjects in groups 'g1' OR 'g2'. If 'subjselect' is also % specified, only datasets meeting both criteria are included. % 'variable1' and 'variable2' will only consider % the values after they have passed through 'datselect' and % 'subjselect'. For instance, if conditions { 'a' 'b' 'c' } % exist and conditions 'a' is removed by 'datselect', the only % two conditions that will be considered are 'b' and 'c' % (which is then equivalent to using 'variable1vals' to specify % values for the 'condition' factor. Calls function % std_selectdataset() {default: select all datasets} % 'subjselect' - {cell array} subject codes of specific subjects to include % in the STUDY design {default: all subjects in the specified % conditions, groups, etc.} If 'datselect' is also specified, % only datasets meeting both criteria are included. % 'rmfiles' - ['on'|'off'] remove from the STUDY all data measure files % NOT included in this design. Selecting this option will % remove all the old measure files associated with the previous % definition of this design. {default: 'off'} % 'filepath' - [string] file path for saving precomputed files. Default is % empty meaning it is in the same folder as the data. % 'delfiles' - ['on'|'off'|'limited'] delete data files % associated with the design specified as parameter. 'on' % delete all data files related to the design. 'limited' % deletes all data files contained in the design. 'limited' % will not delete data files from other STUDY using the same % files. Default is 'off'. % % Output: % STUDY - The input STUDY with a new design added and designated % as the current design. % % Examples: % STUDY = std_makedesign(STUDY, ALLEEG); % make default design % % % create design with 1 independent variable equal to 'condition' % STUDY = std_makedesign(STUDY, ALLEEG, 2, 'variable1', 'condition'); % % % create design with 1 independent variable equal to 'condition' % % but only consider the sub-condition 'stim1' and 'stim2' - of course % % such conditions must be present in the STUDY % STUDY = std_makedesign(STUDY, ALLEEG, 2, 'variable1', 'condition', ... % 'values1', { 'stim1' 'stim2' }); % % % create design and only include subject 's1' and 's2' % STUDY = std_makedesign(STUDY, ALLEEG, 2, 'variable1', 'condition', ... % 'subjselect', { 's1' 's2' }); % % Author: Arnaud Delorme, Institute for Neural Computation UCSD, 2010- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY com] = std_makedesign(STUDY, ALLEEG, designind, varargin) if nargin < 2 help std_makedesign; return; end; if nargin < 3 designind = 1; end; defdes.name = sprintf('STUDY.design %d', designind); defdes.cases.label = 'subject'; defdes.cases.value = {}; defdes.variable(1).label = 'condition'; defdes.variable(2).label = 'group'; defdes.variable(1).value = {}; defdes.variable(2).value = {}; defdes.variable(1).pairing = 'on'; defdes.variable(2).pairing = 'on'; defdes.filepath = ''; defdes.include = {}; orivarargin = varargin; if ~isempty(varargin) && isstruct(varargin{1}) defdes = varargin{1}; varargin(1) = []; end; if isempty(defdes.variable(1).pairing), defdes.variable(1).pairing = 'on'; end; if isempty(defdes.variable(2).pairing), defdes.variable(2).pairing = 'on'; end; if isempty(defdes.filepath), defdes.filepath = ''; end; opt = finputcheck(varargin, {'variable1' 'string' [] defdes.variable(1).label; 'variable2' 'string' [] defdes.variable(2).label; 'values1' {'real','cell' } [] defdes.variable(1).value; 'values2' {'real','cell' } [] defdes.variable(2).value; 'pairing1' 'string' [] defdes.variable(1).pairing; 'pairing2' 'string' [] defdes.variable(2).pairing; 'name' 'string' {} defdes.name; 'filepath' 'string' {} defdes.filepath; 'datselect' 'cell' {} defdes.include; 'dataselect' 'cell' {} {}; 'subjselect' 'cell' {} defdes.cases.value; 'delfiles' 'string' { 'on','off', 'limited' } 'off'; 'verbose' 'string' { 'on','off' } 'on'; 'defaultdesign' 'string' { 'on','off','forceoff'} fastif(nargin < 3, 'on', 'off') }, ... 'std_makedesign'); if isstr(opt), error(opt); end; if ~isempty(opt.dataselect), opt.datselect = opt.dataselect; end; if strcmpi(opt.variable1, 'none'), opt.variable1 = ''; end; if strcmpi(opt.variable2, 'none'), opt.variable2 = ''; end; if ~isempty(opt.subjselect) && iscell(opt.subjselect{1}), opt.subjselect = opt.subjselect{1}; end; %if iscell(opt.values1), for i = 1:length(opt.values1), if iscell(opt.values1{i}), opt.values1{i} = cell2str(opt.values1{i}); end; end; end; %if iscell(opt.values2), for i = 1:length(opt.values2), if iscell(opt.values2{i}), opt.values2{i} = cell2str(opt.values2{i}); end; end; end; % build command list for history % ------------------------------ listcom = { 'variable1' opt.variable1 'variable2' opt.variable2 'name' opt.name 'pairing1' opt.pairing1 'pairing2' opt.pairing2 'delfiles' opt.delfiles 'defaultdesign' opt.defaultdesign }; if ~isempty(opt.values1), listcom = { listcom{:} 'values1' opt.values1 }; end; if ~isempty(opt.values2), listcom = { listcom{:} 'values2' opt.values2 }; end; if ~isempty(opt.subjselect), listcom = { listcom{:} 'subjselect' opt.subjselect }; end; if ~isempty(opt.datselect), listcom = { listcom{:} 'datselect' opt.datselect }; end; if ~isempty(opt.filepath), listcom = { listcom{:} 'filepath' opt.filepath }; end; if ~isempty(opt.datselect), listcom = { listcom{:} 'datselect' opt.datselect }; end; % select specific subjects % ------------------------ datsubjects = { STUDY.datasetinfo.subject }; if ~isempty(opt.subjselect) allsubjects = opt.subjselect; else allsubjects = unique_bc( datsubjects ); end; % delete design files % --------------------- if strcmpi(opt.delfiles, 'on') myfprintf(opt.verbose, 'Deleting all files pertaining to design %d\n', designind); for index = 1:length(ALLEEG) files = fullfile(ALLEEG(index).filepath, sprintf(opt.verbose, 'design%d*.*', designind)); files = dir(files); for indf = 1:length(files) delete(fullfile(ALLEEG(index).filepath, files(indf).name)); end; end; elseif strcmpi(opt.delfiles, 'limited') myfprintf(opt.verbose, 'Deleting all files for STUDY design %d\n', designind); for index = 1:length(STUDY.design(designind).cell) filedir = [ STUDY.design(designind).cell(index).filebase '.dat*' ]; filepath = fileparts(filedir); files = dir(filedir); for indf = 1:length(files) %disp(fullfile(filepath, files(indf).name)); delete(fullfile(filepath, files(indf).name)); end; end; for index = 1:length(STUDY.design(designind).cell) filedir = [ STUDY.design(designind).cell(index).filebase '.ica*' ]; filepath = fileparts(filedir); files = dir(filedir); for indf = 1:length(files) %disp(fullfile(filepath, files(indf).name)); delete(fullfile(filepath, files(indf).name)); end; end; end; % check inputs % ------------ [indvars indvarvals ] = std_getindvar(STUDY); if isfield(STUDY.datasetinfo, 'trialinfo') alltrialinfo = { STUDY.datasetinfo.trialinfo }; dattrialselect = cellfun(@(x)([1:length(x)]), alltrialinfo, 'uniformoutput', false); else alltrialinfo = cell(length(STUDY.datasetinfo)); for i=1:length(ALLEEG), dattrialselect{i} = [1:ALLEEG(i).trials]; end; end; % get values for each independent variable % ---------------------------------------- m1 = strmatch(opt.variable1, indvars, 'exact'); if isempty(m1), opt.variable1 = ''; end; m2 = strmatch(opt.variable2, indvars, 'exact'); if isempty(m2), opt.variable2 = ''; end; if isempty(opt.values1) && ~isempty(opt.variable1), opt.values1 = indvarvals{m1}; end; if isempty(opt.values2) && ~isempty(opt.variable2), opt.values2 = indvarvals{m2}; end; if isempty(opt.variable1), opt.values1 = { '' }; end; if isempty(opt.variable2), opt.values2 = { '' }; end; % preselect data % -------------- datselect = [1:length(STUDY.datasetinfo)]; if ~isempty(opt.datselect) myfprintf(opt.verbose, 'Data preselection for STUDY design\n'); for ind = 1:2:length(opt.datselect) [ dattmp dattrialstmp ] = std_selectdataset( STUDY, ALLEEG, opt.datselect{ind}, opt.datselect{ind+1}); datselect = intersect_bc(datselect, dattmp); dattrialselect = intersectcell(dattrialselect, dattrialstmp); end; end; datselect = intersect_bc(datselect, strmatchmult(allsubjects, datsubjects)); % get the dataset and trials for each of the ind. variable % -------------------------------------------------------- ns = length(allsubjects); nf1 = max(1,length(opt.values1)); nf2 = max(1,length(opt.values2)); myfprintf(opt.verbose, 'Building STUDY design\n'); for n1 = 1:nf1, [ dats1{n1} dattrials1{n1} ] = std_selectdataset( STUDY, ALLEEG, opt.variable1, opt.values1{n1}, fastif(strcmpi(opt.verbose, 'on'), 'verbose', 'silent')); end; for n2 = 1:nf2, [ dats2{n2} dattrials2{n2} ] = std_selectdataset( STUDY, ALLEEG, opt.variable2, opt.values2{n2}, fastif(strcmpi(opt.verbose, 'on'), 'verbose', 'silent')); end; % detect files from old format % ---------------------------- if ~strcmpi(opt.defaultdesign, 'forceoff') && isempty(opt.filepath) if designind == 1 if strcmpi(opt.defaultdesign, 'off') if isfield(STUDY, 'design') && ( ~isfield(STUDY.design, 'cell') || ~isfield(STUDY.design(1).cell, 'filebase') ) opt.defaultdesign = 'on'; end; end; if isempty(dir(fullfile(ALLEEG(1).filepath, [ ALLEEG(1).filename(1:end-4) '.dat*' ]))) && ... isempty(dir(fullfile(ALLEEG(1).filepath, [ ALLEEG(1).filename(1:end-4) '.ica*' ]))) opt.defaultdesign = 'off'; end; else opt.defaultdesign = 'off'; end; else opt.defaultdesign = 'off'; end; % scan subjects and conditions % ---------------------------- count = 1; for n1 = 1:nf1 for n2 = 1:nf2 % create design for this set of conditions and subject % ---------------------------------------------------- datasets = intersect_bc(intersect(dats1{n1}, dats2{n2}), datselect); if ~isempty(datasets) subjects = unique_bc(datsubjects(datasets)); for s = 1:length(subjects) datsubj = datasets(strmatch(subjects{s}, datsubjects(datasets), 'exact')); des.cell(count).dataset = datsubj; des.cell(count).trials = intersectcell(dattrialselect(datsubj), dattrials1{n1}(datsubj), dattrials2{n2}(datsubj)); des.cell(count).value = { opt.values1{n1} opt.values2{n2} }; des.cell(count).case = subjects{s}; defaultFile = fullfile(ALLEEG(datsubj(1)).filepath, ALLEEG(datsubj(1)).filename(1:end-4)); dirres1 = dir( [ defaultFile '.dat*' ] ); dirres2 = dir( [ defaultFile '.ica*' ] ); if strcmpi(opt.defaultdesign, 'on') && (~isempty(dirres1) || ~isempty(dirres2)) && isempty(opt.filepath) des.cell(count).filebase = defaultFile; else if isempty(rmblk(opt.values1{n1})), txtval = rmblk(opt.values2{n2}); elseif isempty(rmblk(opt.values2{n2})) txtval = rmblk(opt.values1{n1}); else txtval = [ rmblk(opt.values1{n1}) '_' rmblk(opt.values2{n2}) ]; end; if ~isempty(txtval), txtval = [ '_' txtval ]; end; if ~isempty(subjects{s}), txtval = [ '_' rmblk(subjects{s}) txtval ]; end; if isempty(opt.filepath), tmpfilepath = ALLEEG(datsubj(1)).filepath; else tmpfilepath = opt.filepath; end; des.cell(count).filebase = fullfile(tmpfilepath, [ 'design' int2str(designind) txtval ] ); %des.cell(count).filebase = checkfilelength(des.cell(count).filebase); end; count = count+1; end; end; end; end; % create other fields for the design % ---------------------------------- if exist('des') ~= 1 error( [ 'One of your design is empty. This could be because the datasets/subjects/trials' 10 ... 'you have selected do not contain any of the selected independent variables values.' 10 ... 'Check your data and datasets carefully for any missing information.' ]); else % check for duplicate entries in filebase % --------------------------------------- if length( { des.cell.filebase } ) > length(unique({ des.cell.filebase })) if ~isempty(findstr('design_', des.cell(1).filebase)) error('There is a problem with your STUDY, contact EEGLAB support'); else disp('Duplicate entry detected in new design, reinitializing design with new file names'); if length(dbstack) > 10 error('There is probably an issue with the folder names - move the files and try again'); end; [STUDY com] = std_makedesign(STUDY, ALLEEG, designind, orivarargin{:}, 'defaultdesign', 'forceoff'); return; end end; %allval1 = unique_bc(cellfun(@(x)x{1}, { des.cell.value }, 'uniformoutput', false)); %allval2 = unique_bc(cellfun(@(x)x{2}, { des.cell.value }, 'uniformoutput', false)); des.name = opt.name; des.filepath = opt.filepath; des.variable(1).label = opt.variable1; des.variable(2).label = opt.variable2; des.variable(1).pairing = opt.pairing1; des.variable(2).pairing = opt.pairing2; des.variable(1).value = opt.values1; des.variable(2).value = opt.values2; des.include = opt.datselect; des.cases.label = 'subject'; des.cases.value = unique_bc( { des.cell.case }); end; fieldorder = { 'name' 'filepath' 'variable' 'cases' 'include' 'cell' }; des = orderfields(des, fieldorder); try, STUDY.design = orderfields(STUDY.design, fieldorder); catch, STUDY.design = []; end; if ~isfield(STUDY, 'design') || isempty(STUDY.design) STUDY.design = des; else STUDY.design(designind) = des; % fill STUDY.design end; % select the new design in the STUDY output % ----------------------------------------- STUDY.currentdesign = designind; STUDY = std_selectdesign(STUDY, ALLEEG, designind); % build output command % -------------------- com = sprintf('STUDY = std_makedesign(STUDY, ALLEEG, %d, %s);', designind, vararg2str( listcom ) ); % --------------------------------------------------- % return intersection of cell arrays % ---------------------------------- function res = intersectcell(a, b, c); if nargin > 2 res = intersectcell(a, intersectcell(b, c)); else for index = 1:length(a) res{index} = intersect_bc(a{index}, b{index}); end; end; % perform multi strmatch % ---------------------- function res = strmatchmult(a, b); res = []; for index = 1:length(a) res = [ res strmatch(a{index}, b, 'exact')' ]; end; % remove blanks % ------------- function res = rmblk(a); if iscell(a), a = cell2str(a); end; if ~isstr(a), a = num2str(a); end; res = a; res(find(res == ' ')) = '_'; res(find(res == '\')) = '_'; res(find(res == '/')) = '_'; res(find(res == ':')) = '_'; res(find(res == ';')) = '_'; res(find(res == '"')) = '_'; function strval = cell2str(vals); strval = vals{1}; for ind = 2:length(vals) strval = [ strval ' - ' vals{ind} ]; end; function tmpfile = checkfilelength(tmpfile); if length(tmpfile) > 120, tmpfile = tmpfile(1:120); end; function myfprintf(verbose, varargin); if strcmpi(verbose, 'on'), fprintf(varargin{:}); end;
github
lcnhappe/happe-master
std_readspec.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readspec.m
3,551
utf_8
0315bf04416f115f6af90007ab60704e
% std_readspec() - load spectrum measures for data channels or % for all components of a specified cluster. % Called by plotting functions % std_envtopo(), std_erpplot(), std_erspplot(), ... % Usage: % >> [STUDY, specdata, allfreqs, setinds, cinds] = ... % std_readspec(STUDY, ALLEEG, varargin); % Inputs: % STUDY - studyset structure containing some or all files in ALLEEG % ALLEEG - vector of loaded EEG datasets % % Optional inputs: % 'design' - [integer] read files from a specific STUDY design. Default % is empty (use current design in STUDY.currentdesign). % 'channels' - [cell] list of channels to import {default: none} % 'clusters' - [integer] list of clusters to import {[]|default: all but % the parent cluster (1) and any 'NotClust' clusters} % 'singletrials' - ['on'|'off'] load single trials spectral data (if % available). Default is 'off'. % 'subject' - [string] select a specific subject {default:all} % 'component' - [integer] select a specific component in a cluster % {default:all} % % Spectrum specific inputs: % 'freqrange' - [min max] frequency range {default: whole measure range} % 'rmsubjmean' - ['on'|'off'] remove mean subject spectrum from every % channel spectrum, making them easier to compare % { default: 'off' } % Output: % STUDY - updated studyset structure % specdata - [cell array] spectral data (the cell array size is % condition x groups) % freqs - [float array] array of frequencies % setinds - [cell array] datasets indices % cinds - [cell array] channel or component indices % % Example: % std_precomp(STUDY, ALLEEG, { ALLEEG(1).chanlocs.labels }, 'spec', 'on'); % [spec freqs] = std_readspec(STUDY, ALLEEG, 'channels', { ALLEEG(1).chanlocs(1).labels }); % % Author: Arnaud Delorme, CERCO, 2006- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, specdata, allfreqs] = std_readspec(STUDY, ALLEEG, varargin) if nargin < 2 help std_readspec; return; end if ~isstruct(ALLEEG) % old calling format % old calling format % ------------------ EEG = STUDY(ALLEEG); filename = fullfile(EEG.filepath, EEG.filename(1:end-4)); comporchan = varargin{1}; options = {'measure', 'spec'}; if length(varargin) > 1, options = { options{:} 'freqlimits', varargin{2} }; end; if comporchan(1) > 0 [datavals tmp xvals] = std_readfile(filename, 'components',comporchan, options{:}); else [datavals tmp xvals] = std_readfile(filename, 'channels', comporchan, options{:}); end; STUDY = datavals'; specdata = xvals; end; [STUDY, specdata, allfreqs] = std_readerp(STUDY, ALLEEG, 'datatype', 'spec', varargin{:});
github
lcnhappe/happe-master
pop_erpparams.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_erpparams.m
10,477
utf_8
68e8b342681fb13cd747c25aa1e5582f
% pop_erpparams() - Set plotting and statistics parameters for cluster ERP % plotting % Usage: % >> STUDY = pop_erpparams(STUDY, 'key', 'val'); % % Inputs: % STUDY - EEGLAB STUDY set % % Input: % 'topotime' - [real] Plot ERP scalp maps at one specific latency (ms). % A latency range [min max] may also be defined (the % ERP is then averaged over the interval) {default: []} % 'filter' - [real] low pass filter the ERP curves at a given % frequency threshold. Default is no filtering. % 'timerange' - [min max] ERP plotting latency range in ms. % {default: the whole epoch} % 'ylim' - [min max] ERP limits in microvolts {default: from data} % 'plotgroups' - ['together'|'apart'] 'together' -> plot subject groups % on the same axis in different colors, else ('apart') % on different axes. {default: 'apart'} % 'plotconditions' - ['together'|'apart'] 'together' -> plot conditions % on the same axis in different colors, else ('apart') % on different axes. Note: Keywords 'plotgroups' and % 'plotconditions' may not both be set to 'together'. % {default: 'together'} % 'averagechan' - ['on'|'off'] average data channels when several are % selected. % % See also: std_erpplot() % % Authors: Arnaud Delorme, CERCO, CNRS, 2006- % Copyright (C) Arnaud Delorme, 2006 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY, com ] = pop_erpparams(STUDY, varargin); STUDY = default_params(STUDY); TMPSTUDY = STUDY; com = ''; if isempty(varargin) enablecond = fastif(length(STUDY.design(STUDY.currentdesign).variable(1).value)>1, 'on', 'off'); enablegroup = fastif(length(STUDY.design(STUDY.currentdesign).variable(2).value)>1, 'on', 'off'); detachplots = fastif(strcmpi(STUDY.etc.erpparams.detachplots,'on'), 1, 0); plotconditions = fastif(strcmpi(STUDY.etc.erpparams.plotconditions, 'together'), 1, 0); plotgroups = fastif(strcmpi(STUDY.etc.erpparams.plotgroups,'together'), 1, 0); radio_averagechan = fastif(strcmpi(STUDY.etc.erpparams.averagechan,'on'), 1, 0); radio_scalptopo = fastif(isempty(STUDY.etc.erpparams.topotime), 0, 1); if radio_scalptopo, radio_averagechan = 0; end; if radio_scalptopo+radio_averagechan == 0, radio_scalparray = 1; else radio_scalparray = 0; end; cb_radio = [ 'set(findobj(gcbf, ''userdata'', ''radio''), ''value'', 0);' ... 'set(gcbo, ''value'', 1);' ... 'set(findobj(gcbf, ''tag'', ''topotime''), ''string'', '''');' ]; cb_edit = [ 'set(findobj(gcbf, ''userdata'', ''radio''), ''value'', 0);' ... 'set(findobj(gcbf, ''tag'', ''scalptopotext''), ''value'', 1);' ]; uilist = { ... {'style' 'text' 'string' 'ERP plotting options' 'fontweight' 'bold' 'fontsize', 12} ... {} {'style' 'text' 'string' 'Time limits (ms) [low high]' } ... {'style' 'edit' 'string' num2str(STUDY.etc.erpparams.timerange) 'tag' 'timerange' } ... {} {'style' 'text' 'string' 'Plot limits [low high]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erpparams.ylim) 'tag' 'ylim' } ... {} {'style' 'text' 'string' 'Lowpass plotted data [Hz]' } ... {'style' 'edit' 'string' num2str(STUDY.etc.erpparams.filter) 'tag' 'filter' } ... {} ... {'style' 'text' 'string' 'ERP plotting format' 'fontweight' 'bold' 'fontsize', 12} ... {} {'style' 'checkbox' 'string' 'Plot first variable on the same panel' 'value' plotconditions 'enable' enablecond 'tag' 'plotconditions' } ... {} {'style' 'checkbox' 'string' 'Plot second variable on the same panel' 'value' plotgroups 'enable' enablegroup 'tag' 'plotgroups' } ... {} {'style' 'checkbox' 'string' 'Detach plots' 'value' detachplots 'enable' 'on' 'tag' 'detachtag' } ... {} ... {'style' 'text' 'string' 'Multiple channels selection' 'fontweight' 'bold' 'tag', 'spec' 'fontsize', 12} ... {} {'style' 'radio' 'string' 'Plot channels in scalp array' 'value' radio_scalparray 'tag' 'scalparray' 'userdata' 'radio' 'callback' cb_radio} { } ... {} {'style' 'radio' 'string' 'Plot topography at time (ms)' 'value' radio_scalptopo 'tag' 'scalptopotext' 'userdata' 'radio' 'callback' cb_radio} ... {'style' 'edit' 'string' num2str(STUDY.etc.erpparams.topotime) 'tag' 'topotime' 'callback' cb_edit } ... {} {'style' 'radio' 'string' 'Average selected channels' 'value' radio_averagechan 'tag' 'averagechan' 'userdata' 'radio' 'callback' cb_radio} { } }; cbline = [0.07 1.1]; otherline = [ 0.07 0.6 .3]; chanline = [ 0.07 0.8 0.3]; geometry = { 1 otherline otherline otherline 1 1 cbline cbline cbline 1 1 chanline chanline chanline }; geomvert = [1.2 1 1 1 0.5 1.2 1 1 1 0.5 1.2 1 1 1 ]; % component plotting % ------------------ if isnan(STUDY.etc.erpparams.topotime) geometry(end-4:end) = []; geomvert(end-4:end) = []; uilist(end-10:end) = []; end; [out_param userdat tmp res] = inputgui( 'geometry' , geometry, 'uilist', uilist, 'geomvert', geomvert, ... 'title', 'ERP plotting options -- pop_erpparams()'); if isempty(res), return; end; % decode inputs % ------------- %if res.plotgroups & res.plotconditions, warndlg2('Both conditions and group cannot be plotted on the same panel'); return; end; if res.plotgroups, res.plotgroups = 'together'; else res.plotgroups = 'apart'; end; if res.plotconditions , res.plotconditions = 'together'; else res.plotconditions = 'apart'; end; if res.detachtag, res.detachtag = 'on'; else res.detachtag = 'off'; end; if ~isfield(res, 'topotime'), res.topotime = STUDY.etc.erpparams.topotime; else res.topotime = str2num( res.topotime ); end; res.timerange = str2num( res.timerange ); res.ylim = str2num( res.ylim ); res.filter = str2num( res.filter ); if ~isfield(res, 'averagechan'), res.averagechan = STUDY.etc.erpparams.averagechan; elseif res.averagechan, res.averagechan = 'on'; else res.averagechan = 'off'; end; % build command call % ------------------ options = {}; if ~strcmpi( char(res.filter), char(STUDY.etc.erpparams.filter)), options = { options{:} 'filter' res.filter }; end; if ~strcmpi( res.plotgroups, STUDY.etc.erpparams.plotgroups), options = { options{:} 'plotgroups' res.plotgroups }; end; if ~strcmpi( res.plotconditions , STUDY.etc.erpparams.plotconditions ), options = { options{:} 'plotconditions' res.plotconditions }; end; if ~strcmpi( res.detachtag, STUDY.etc.erpparams.detachplots), options = { options{:} 'detachplots' res.detachtag}; end; if ~isequal(res.ylim , STUDY.etc.erpparams.ylim), options = { options{:} 'ylim' res.ylim }; end; if ~isequal(res.timerange , STUDY.etc.erpparams.timerange) , options = { options{:} 'timerange' res.timerange }; end; if ~isequal(res.averagechan, STUDY.etc.erpparams.averagechan), options = { options{:} 'averagechan' res.averagechan }; end; if (all(isnan(res.topotime)) & all(~isnan(STUDY.etc.erpparams.topotime))) | ... (all(~isnan(res.topotime)) & all(isnan(STUDY.etc.erpparams.topotime))) | ... (all(~isnan(res.topotime)) & ~isequal(res.topotime, STUDY.etc.erpparams.topotime)) options = { options{:} 'topotime' res.topotime }; end; if ~isempty(options) STUDY = pop_erpparams(STUDY, options{:}); com = sprintf('STUDY = pop_erpparams(STUDY, %s);', vararg2str( options )); end; else if strcmpi(varargin{1}, 'default') STUDY = default_params(STUDY); else for index = 1:2:length(varargin) if ~isempty(strmatch(varargin{index}, fieldnames(STUDY.etc.erpparams), 'exact')) STUDY.etc.erpparams = setfield(STUDY.etc.erpparams, varargin{index}, varargin{index+1}); end; end; end; end; % scan clusters and channels to remove erpdata info if timerange has changed % ---------------------------------------------------------- if ~isequal(STUDY.etc.erpparams.timerange, TMPSTUDY.etc.erpparams.timerange) rmfields = { 'erpdata' 'erptimes' }; for iField = 1:length(rmfields) if isfield(STUDY.cluster, rmfields{iField}) STUDY.cluster = rmfield(STUDY.cluster, rmfields{iField}); end; if isfield(STUDY.changrp, rmfields{iField}) STUDY.changrp = rmfield(STUDY.changrp, rmfields{iField}); end; end; end; function STUDY = default_params(STUDY) if ~isfield(STUDY.etc, 'erpparams'), STUDY.etc.erpparams = []; end; if ~isfield(STUDY.etc.erpparams, 'topotime'), STUDY.etc.erpparams.topotime = []; end; if ~isfield(STUDY.etc.erpparams, 'filter'), STUDY.etc.erpparams.filter = []; end; if ~isfield(STUDY.etc.erpparams, 'timerange'), STUDY.etc.erpparams.timerange = []; end; if ~isfield(STUDY.etc.erpparams, 'ylim' ), STUDY.etc.erpparams.ylim = []; end; if ~isfield(STUDY.etc.erpparams, 'plotgroups') , STUDY.etc.erpparams.plotgroups = 'apart'; end; if ~isfield(STUDY.etc.erpparams, 'plotconditions') , STUDY.etc.erpparams.plotconditions = 'apart'; end; if ~isfield(STUDY.etc.erpparams, 'averagechan') , STUDY.etc.erpparams.averagechan = 'off'; end; if ~isfield(STUDY.etc.erpparams, 'detachplots') , STUDY.etc.erpparams.detachplots = 'on'; end;
github
lcnhappe/happe-master
eeglabciplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/eeglabciplot.m
1,171
utf_8
a54755e9a50c126bf4fd48d251eff99e
% eeglabciplot(lower,upper) % eeglabciplot(lower,upper,x) % eeglabciplot(lower,upper,x,colour) % % Plots a shaded region on a graph between specified lower and upper confidence intervals (L and U). % l and u must be vectors of the same length. % Uses the 'fill' function, not 'area'. Therefore multiple shaded plots % can be overlayed without a problem. Make them transparent for total visibility. % x data can be specified, otherwise plots against index values. % colour can be specified (eg 'k'). Defaults to blue. % Author: Raymond Reynolds 24/11/06 % Modified by Ramon Martinez Cancino function eeglabciplot(lower,upper,x,colour, alphaval) if length(lower)~=length(upper) error('lower and upper vectors must be same length') end if nargin<5 alphaval = 1; end if nargin<4 colour= 'r'; end if nargin<3 x=1:length(lower); end % convert to row vectors so fliplr can work if find(size(x)==(max(size(x))))<2 x=x'; end if find(size(lower)==(max(size(lower))))<2 lower=lower'; end if find(size(upper)==(max(size(upper))))<2 upper=upper'; end hdl_tmp = fill([x fliplr(x)],[upper fliplr(lower)],colour,'FaceAlpha', alphaval, 'EdgeColor', 'none');
github
lcnhappe/happe-master
std_selectdesign.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_selectdesign.m
1,989
utf_8
b3048a1a88ea00503584ee7c9c6d418b
% std_selectdesign() - select an existing STUDY design. % Use std_makedesign() to add a new STUDY.design. % % Usage: % >> [STUDY] = std_selectdesign(STUDY, ALLEEG, designind); % % Inputs: % STUDY - EEGLAB STUDY structure % STUDY - EEGLAB ALLEEG structure % designind - desired (existing) design index % % Outputs: % STUDY - EEGLAB STUDY structure with currentdesign set to the input design index. % % Author: Arnaud Delorme, Institute for Neural Computation, UCSD, 2010- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_selectdesign(STUDY, ALLEEG, designind); if nargin < 3 help std_selectdesign; return; end; if designind < 1 || designind > length(STUDY.design) || isempty(STUDY.design(designind).name) disp('Cannot select an empty STUDY.design'); return; end; STUDY.currentdesign = designind; STUDY = std_rmalldatafields( STUDY ); % remake setinds and allinds % -------------------------- STUDY = std_changroup(STUDY, ALLEEG, [], 'on'); % with interpolation HAVE TO FIX THAT % update the component indices % ---------------------------- STUDY.cluster(1).setinds = {}; STUDY.cluster(1).allinds = {}; for index = 1:length(STUDY.cluster) STUDY.cluster(index) = std_setcomps2cell(STUDY, index); end;
github
lcnhappe/happe-master
std_getdataset.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_getdataset.m
7,391
utf_8
30fe56beb0eae5a9d470402fc8ae35a2
% std_getdataset() - Constructs and returns EEG dataset from STUDY design. % % Usage: % >> EEG = std_getdataset(STUDY, ALLEEG, 'key', 'val', ...); % % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % % Optional inputs: % 'design' - [numeric vector] STUDY design index. Default is to use % the current design. % 'rmcomps' - [integer array] remove artifactual components (this entry % is ignored when plotting components). This entry contains % the indices of the components to be removed. Default is none. % 'rmclust' - [integer array] which cluster(s) to remove from the data % Default is none. % 'interp' - [struct] channel location structure containing electrode % to interpolate ((this entry is ignored when plotting % components). Default is no interpolation. % 'cell' - [integer] index of the STUDY design cell to convert to % an EEG dataset. Default is the first cell. % 'onecomppercluster' - ['on'|'off'] when 'on' enforces one component per % cluster. Default is 'off'. % 'interpcomponent' - ['on'|'off'] when 'on' interpolating component % scalp maps. Default is 'off'. % 'cluster' - [integer] which cluster(s). When this option is being % used, only the component contained in the selected % clusters are being loaded in the dataset. % 'checkonly' - ['on'|'off'] use in conjunction with the option above. % When 'on', no dataset is returned. Default is 'off'. % % Outputs: % EEG - EEG dataset structure corresponding to the selected % STUDY design cell (element) % complist - list of components selected % % Example to build the dataset corresponding to the first cell of the first % design: % EEG = std_getdataset(STUDY, ALLEEG, 'design', 1, 'cell', 1); % % Example to check that all datasets in the design have exactly one % component per cluster for cluster 2, 3, 4 and 5. % std_getdataset(STUDY, ALLEEG, 'design', 1, 'cell', % [1:length(STUDY.design(1).cell)], 'cluster', [2 3 4 5], 'checkonly', 'on'); % % Authors: Arnaud Delorme, SCCN, INC, UCSD, January, 2012 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 12, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [EEGOUT listcomp rmlistcomp] = std_getdataset(STUDY, ALLEEG, varargin); if nargin < 2 help std_getdataset; return; end; opt = finputcheck( varargin, { 'design' 'integer' [] STUDY.currentdesign; 'interp' 'struct' { } struct([]); 'rmcomps' 'integer' [] []; 'cluster' 'integer' [] []; 'rmclust' 'integer' [] []; 'onecomppercluster' 'string' {'on' 'off'} 'off'; 'interpcomponent' 'string' {'on' 'off'} 'off'; 'checkonly' 'string' {'on' 'off'} 'off'; 'cell' 'integer' [] 1 }, 'std_getdataset'); % 'mode' 'string' { 'channels' 'components' } 'channels'; if isstr(opt), error(opt); end; if length(opt.cell) > 1 % recursive call if more than one dataset % --------------------------------------- indcell = strmatch('cell', varargin(1:2:end)); for index = 1:length(opt.cell) varargin{2*indcell} = index; EEGOUT(index) = std_getdataset(STUDY, ALLEEG, varargin{:}); end; else mycell = STUDY.design(opt.design).cell(opt.cell); % find components in non-artifactual cluster if ~isempty(opt.cluster) listcomp = []; for index = 1:length(opt.cluster) clsset = STUDY.cluster(opt.cluster(index)).sets; clscomp = STUDY.cluster(opt.cluster(index)).comps; [indrow indcomp] = find(clsset == mycell.dataset(1)); if length(indcomp) ~= 1 && strcmpi(opt.onecomppercluster, 'on') error(sprintf('Dataset %d must have exactly 1 components in cluster %d', mycell.dataset(1), opt.cluster(index))); end; listcomp = [listcomp clscomp(indcomp')]; end; end; % find components in artifactual clusters if ~isempty(opt.rmclust) rmlistcomp = []; for index = 1:length(opt.rmclust) clsset = STUDY.cluster(opt.rmclust(index)).sets; clscomp = STUDY.cluster(opt.rmclust(index)).comps; [indrow indcomp] = find(clsset == mycell.dataset(1)); rmlistcomp = [rmlistcomp clscomp(indcomp')]; end; if ~isempty(opt.rmcomps) disp('Both ''rmclust'' and ''rmcomps'' are being set. Artifact components will be merged'); end; opt.rmcomps = [ opt.rmcomps rmlistcomp ]; end; rmlistcomp = opt.rmcomps; if strcmpi(opt.checkonly, 'on'), EEGOUT = 0; return; end; % get data EEG = ALLEEG(mycell.dataset); EEGOUT = EEG(1); EEGOUT.data = eeg_getdatact(EEG, 'channel', [], 'trialindices', mycell.trials, 'rmcomps', opt.rmcomps, 'interp', opt.interp); EEGOUT.trials = size(EEGOUT.data,3); EEGOUT.nbchan = size(EEGOUT.data,1); if ~isempty(opt.interp) EEGOUT.chanlocs = opt.interp; end; EEGOUT.event = []; EEGOUT.epoch = []; EEGOUT.filename = mycell.filebase; EEGOUT.condition = mycell.value{1}; EEGOUT.group = mycell.value{2}; EEGOUT.subject = mycell.case; if ~isempty(opt.cluster) if ~isempty(opt.interp) && strcmpi(opt.interpcomponent, 'on') TMPEEG = EEGOUT; TMPEEG.chanlocs = EEG(1).chanlocs; TMPEEG.data = EEG(1).icawinv; TMPEEG.nbchan = size(TMPEEG.data,1); TMPEEG.pnts = size(TMPEEG.data,2); TMPEEG.trials = 1; TMPEEG = eeg_interp(TMPEEG, opt.interp, 'spherical'); EEGOUT.icawinv = TMPEEG.data(:, listcomp); else EEGOUT.icawinv = EEGOUT.icawinv(:, listcomp); end; EEGOUT.icaact = eeg_getdatact(EEG, 'component', listcomp, 'trialindices', mycell.trials ); EEGOUT.icaweights = EEGOUT.icaweights(listcomp,:); EEGOUT.etc.clustid = { STUDY.cluster(opt.cluster).name }; % name of each cluster EEGOUT.etc.clustcmpid = listcomp; % index of each component in original ICA matrix else EEGOUT = eeg_checkset(EEGOUT); end; end;
github
lcnhappe/happe-master
std_readpac.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readpac.m
9,664
utf_8
969615c6dc80b8442761d8a892ebdef1
% std_readpac() - read phase-amplitude correlation % % Usage: % >> [STUDY, clustinfo] = std_readpac(STUDY, ALLEEG); % >> [STUDY, clustinfo] = std_readpac(STUDY, ALLEEG, ... % 'key', 'val'); % Inputs: % STUDY - studyset structure containing some or all files in ALLEEG % ALLEEG - vector of loaded EEG datasets % % Optional inputs: % 'channels' - [cell] list of channels to import {default: all} % 'clusters' - [integer] list of clusters to import {[]|default: all but % the parent cluster (1) and any 'NotClust' clusters} % 'freqrange' - [min max] frequency range {default: whole measure range} % 'timerange' - [min max] time range {default: whole measure epoch} % % Output: % STUDY - (possibly) updated STUDY structure % clustinfo - structure of specified cluster information. % % Author: Arnaud Delorme, CERCO, 2009- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, clustinfo] = std_readpac(STUDY, ALLEEG, varargin); if nargin < 2 help std_readpac; return; end [opt moreopts] = finputcheck( varargin, { ... 'condition' 'cell' [] {}; 'channels1' 'cell' [] {}; 'clusters1' 'integer' [] []; 'channels2' 'cell' [] {}; 'clusters2' 'integer' [] []; 'onepersubj' 'string' { 'on','off' } 'off'; 'forceread' 'string' { 'on','off' } 'off'; 'recompute' 'string' { 'on','off' } 'off'; 'freqrange' 'real' [] []; 'timerange' 'real' [] [] }, ... 'std_readpac', 'ignore'); if isstr(opt), error(opt); end; %STUDY = pop_pacparams(STUDY, 'default'); %if isempty(opt.timerange), opt.timerange = STUDY.etc.pacparams.timerange; end; %if isempty(opt.freqrange), opt.freqrange = STUDY.etc.pacparams.freqrange; end; nc = max(length(STUDY.condition),1); ng = max(length(STUDY.group),1); % find channel indices % -------------------- if ~isempty(opt.channels1) len1 = length(opt.channels1); len2 = length(opt.channels2); opt.indices1 = std_chaninds(STUDY, opt.channels1); opt.indices2 = std_chaninds(STUDY, opt.channels2); else len1 = length(opt.clusters1); len2 = length(opt.clusters2); opt.indices1 = opt.clusters1; opt.indices2 = opt.clusters2; end; STUDY = std_convertoldsetformat(STUDY); %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX REMOVE WHEN READY TO GET RID OF OLD FORMAT for ind1 = 1:len1 % usually only one channel/component for ind2 = 1:len2 % usually one channel/component % find indices % ------------ if ~isempty(opt.channels1) tmpstruct1 = STUDY.changrp(opt.indices1(ind1)); tmpstruct2 = STUDY.changrp(opt.indices2(ind2)); else tmpstruct1 = STUDY.cluster(opt.indices1(ind1)); tmpstruct2 = STUDY.cluster(opt.indices2(ind2)); end; allinds1 = tmpstruct1.allinds; setinds1 = tmpstruct1.setinds; allinds2 = tmpstruct2.allinds; setinds2 = tmpstruct2.setinds; % check if data is already here % ----------------------------- dataread = 0; if isfield(tmpstruct1, 'pacdata') & strcmpi(opt.forceread, 'off') & strcmpi(opt.recompute, 'off') if ~isempty(tmpstruct1.pacdata) & iscell(tmpstruct1.pacdata) & length(tmpstruct1.pacdata) >= opt.indices2(ind2) if ~isempty(tmpstruct1.pacdata{opt.indices2(ind2)}) %if isequal( STUDY.etc.pacparams.timerange, opt.timerange) & ... % isequal( STUDY.etc.pacparams.freqrange, opt.freqrange) & ~isempty(tmpstruct.pacdata) dataread = 1; end; end; end; if ~dataread % reserve arrays % -------------- % pacarray = cell( max(length(STUDY.condition),1), max(length(STUDY.group),1) ); % tmpind1 = 1; while(isempty(setinds{tmpind1})), tmpind1 = tmpind1+1; end; % tmpind2 = 1; while(isempty(setinds{tmpind2})), tmpind2 = tmpind2+1; end; % if ~isempty(opt.channels1) % [ tmp allfreqs alltimes ] = std_readpac( ALLEEG, 'channels1' , setinds1{tmpind}(1), 'channels2' , setinds2{tmpind}(1), 'timerange', opt.timerange, 'freqrange', opt.freqrange); % else [ tmp allfreqs alltimes ] = std_readpac( ALLEEG, 'components1', setinds1{tmpind}(1), 'components2', setinds2{tmpind}(1), 'timerange', opt.timerange, 'freqrange', opt.freqrange); % end; % for c = 1:nc % for g = 1:ng % pacarray{c, g} = repmat(zero, [length(alltimes), length(allfreqs), length(allinds1{c,g}) ]); % end; % end; % read the data and select channels % --------------------------------- fprintf('Reading all PAC data...\n'); for c = 1:nc for g = 1:ng % scan all subjects count = 1; for subj = 1:length(STUDY.subject) % get dataset indices for this subject [inds1 inds2] = getsubjcomps(STUDY, subj, setinds1{c,g}, setinds2{c,g}); if setinds1{c,g}(inds1) ~= setinds2{c,g}(inds2), error('Wrong subject index'); end; if ~strcmpi(ALLEEG(setinds1{c,g}(inds1)).subject, STUDY.subject(subj)), error('Wrong subject index'); end; if ~isempty(inds1) & ~isempty(inds2) if ~isempty(opt.channels1) [pacarraytmp allfreqs alltimes] = std_pac( ALLEEG(setinds1{c,g}(subj)), 'channels1' , allinds1{c,g}(inds1), 'channels2', allinds2{c,g}(inds2), 'timerange', opt.timerange, 'freqrange', opt.freqrange, 'recompute', opt.recompute, moreopts{:}); else [pacarraytmp allfreqs alltimes] = std_pac( ALLEEG(setinds1{c,g}(subj)), 'components1', allinds1{c,g}(inds1), 'components2', allinds2{c,g}(inds2), 'timerange', opt.timerange, 'freqrange', opt.freqrange, 'recompute', opt.recompute, moreopts{:}); end; % collapse first 2 dimentions (comps x comps) if ndims(pacarraytmp) == 4 pacarraytmp = reshape(pacarraytmp, size(pacarraytmp,1)*size(pacarraytmp,2), size(pacarraytmp,3), size(pacarraytmp,4)); else pacarraytmp = reshape(pacarraytmp, 1, size(pacarraytmp,1),size(pacarraytmp,2)); end; if strcmpi(opt.onepersubj, 'on') pacarray{c, g}(:,:,count) = squeeze(mean(pacarraytmp,1)); count = count+1; else for tmpi = 1:size(pacarraytmp,1) pacarray{c, g}(:,:,count) = pacarraytmp(tmpi,:,:); count = count+1; end; end; end; end; end; end; % copy data to structure % ---------------------- if ~isempty(opt.channels1) STUDY.changrp(opt.indices1(ind1)).pacfreqs = allfreqs; STUDY.changrp(opt.indices1(ind1)).pactimes = alltimes; STUDY.changrp(opt.indices1(ind1)).pacdata{opt.indices2(ind2)} = pacarray; else STUDY.cluster(opt.indices1(ind1)).pacfreqs = allfreqs; STUDY.cluster(opt.indices1(ind1)).pactimes = alltimes; STUDY.cluster(opt.indices1(ind1)).pacdata{opt.indices2(ind2)} = pacarray; end; end; end; end; % return structure % ---------------- if ~isempty(opt.channels1) clustinfo = STUDY.changrp(opt.indices1); else clustinfo = STUDY.cluster(opt.indices1); end; % get components common to a given subject % ---------------------------------------- function [inds1 inds2] = getsubjcomps(STUDY, subj, setlist1, setlist2, complist1, complist2) inds1 = []; inds2 = []; datasets = strmatch(STUDY.subject{subj}, { STUDY.datasetinfo.subject } ); % all datasets of subject [tmp1] = intersect_bc(setlist1, datasets); [tmp2] = intersect_bc(setlist2, datasets); if length(tmp1) > 1, error('This function does not support sessions for subjects'); end; if length(tmp2) > 1, error('This function does not support sessions for subjects'); end; if tmp1 ~= tmp2, error('Different datasets while it should be the same'); end; if ~isempty(tmp1), inds1 = find(setlist1 == tmp1); end; if ~isempty(tmp2), inds2 = find(setlist2 == tmp2); end;
github
lcnhappe/happe-master
std_pvaf.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_pvaf.m
3,535
utf_8
3244c50b0ea6577e8f51f7107250c283
% std_pvaf() - Compute 'percent variance accounted for' (pvaf) by specified % ICA component clusters. This function computes eeg_pvaf on each % of the component of the cluster and then average them. See % eeg_pvaf for more information. This function uses the % Usage: % >> [pvaf pvafs] = std_pvaf(STUDY, ALLEEG, cluster, 'key', 'val'); % Inputs: % EEG - EEGLAB dataset. Must have icaweights, icasphere, icawinv, icaact. % comps - vector of component indices to sum {default|[] -> progressive mode} % In progressive mode, comps is first [1], then [1 2], etc. up to % [1:size(EEG.icaweights,2)] (all components); here, the plot shows pvaf. % % Optional inputs: % 'design' - [integer] selected design. Default is the current design. % 'rmcomps' - [integer array] remove artifactual components (this entry % is ignored when plotting components). This entry contains % the indices of the components to be removed. Default is none. % 'interp' - [struct] channel location structure containing electrode % to interpolate ((this entry is ignored when plotting % components). Default is no interpolation. % Other optional inputs are the same as eeg_pvaf() % % Outputs: % pvaf - (real) percent total variance accounted for by the summed % back-projection of the requested clusters. % pvafs - [vector] pvaf for each of the cell of the selected design. % % Author: Arnaud Delorme, SCCN, INC, UCSD, 2012- % Copyright (C) 2012 Arnaud Delorme, SCCN, INC, UCSD % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [pvafAve pvafs] = std_pvaf(STUDY, ALLEEG, cluster, varargin); if nargin < 3 help std_pvaf; return; end; [opt addOptions] = finputcheck(varargin, { 'design' 'integer' [] STUDY.currentdesign; 'rmclust' 'integer' [] []; 'interp' 'struct' { } struct([]); 'rmcomps' 'cell' [] cell(1,length(ALLEEG)) }, 'std_pvaf', 'ignore'); if isstr(opt), error(opt); end; DES = STUDY.design(opt.design); for iCell = 1:length(DES.cell) [EEG complist rmlistcomp] = std_getdataset(STUDY, ALLEEG, 'cell', iCell, 'cluster', cluster, 'interp', opt.interp, ... 'rmcomps', opt.rmcomps{iCell}, 'rmclust', opt.rmclust, 'interpcomponent', 'on' ); %EEG = std_getdataset(STUDY, ALLEEG, 'cell', iCell); if ~isempty(EEG.icaweights) pvafs(iCell) = eeg_pvaf(EEG, [1:size(EEG.icaweights,1)], addOptions{:}); %pvafs(iCell) = eeg_pvaf(EEG, complist, 'artcomps', rmlistcomp, addOptions{:}); else pvafs(iCell) = NaN; end; end; pvafAve = nan_mean(pvafs);
github
lcnhappe/happe-master
std_mergeclust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_mergeclust.m
3,678
utf_8
8a328c6df1c40cfc3d89f72eb8af8a11
% std_mergeclust() - Commandline function, to merge several clusters. % Usage: % >> [STUDY] = std_mergeclust(STUDY, ALLEEG, mrg_cls, name); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in the STUDY. % ALLEEG for a STUDY set is typically created using load_ALLEEG(). % mrg_cls - clusters indexes to merge. % Optional inputs: % name - [string] a mnemonic cluster name for the merged cluster. % {default: 'Cls #', where '#' is the next available cluster number}. % % Outputs: % STUDY - the input STUDY set structure modified with the merged cluster. % % Example: % >> mrg_cls = [3 7 9]; name = 'eyes'; % >> [STUDY] = std_mergecluster(STUDY,ALLEEG, mrg_cls, name); % Merge clusters 3, 7 and 9 to a new cluster named 'eyes'. % % See also pop_clustedit % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, July, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, July 11, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_mergeclust(STUDY, ALLEEG, mrg_cls, varargin) if isempty(varargin) | strcmpi(varargin,'') name = 'Cls'; else name = varargin{1}; end % Cannot merge clusters if any of the clusters is a 'Notclust' or 'Outlier' % cluster, or if has children comps = []; sets = []; for k = 1:length(mrg_cls) if strncmpi('Notclust',STUDY.cluster(mrg_cls(k)).name,8) | strncmpi('Outliers',STUDY.cluster(mrg_cls(k)).name,8) | ... ~isempty(STUDY.cluster(mrg_cls(k)).child) warndlg2([ 'std_mergeclust: cannot merge clusters if one of the clusters '... 'is a ''Notclust'' or ''Outliers'' cluster, or if it has children clusters.']); end parent{k} = STUDY.cluster(mrg_cls(k)).name; comps = [comps STUDY.cluster(mrg_cls(k)).comps]; sets = [sets STUDY.cluster(mrg_cls(k)).sets]; end %sort by sets [tmp,sind] = sort(sets(1,:)); sets = sets(:,sind); comps = comps(sind); % sort component indexes within a set diffsets = unique_bc(sets(1,:)); for k = 1:length(diffsets) ci = find(sets(1,:) == diffsets(k)); % find the compnents belonging to each set [tmp,cind] = sort(comps(ci)); comps(ci) = comps(ci(cind)); end % Create a new empty cluster [STUDY] = std_createclust(STUDY, ALLEEG, name); % Update merge cluster with parent clusters STUDY.cluster(end).parent = parent; STUDY.cluster(end).sets = sets; % Update merge cluster with merged component sets STUDY.cluster(end).comps = comps; % Update merge cluster with the merged components for k = 1:length(mrg_cls) % update the merge cluster as a child for the parent clusters STUDY.cluster(mrg_cls(k)).child{end + 1} = STUDY.cluster(end).name; end STUDY = std_selectdesign(STUDY, ALLEEG, STUDY.currentdesign);
github
lcnhappe/happe-master
std_findoutlierclust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_findoutlierclust.m
599
utf_8
5cf670b56c3d2178f15c05b6c8482328
% std_findoutlierclust() - determine whether an outlier cluster already exists % for a specified cluster. If so, return the outlier cluster index. % If not, return zero. This helper function is called by % pop_clustedit(), std_moveoutlier(), std_renameclust(). function outlier_clust = std_findoutlierclust(STUDY,clust) outlier_clust = 0; outlier_name = [ 'Outliers ' STUDY.cluster(clust).name ' ' ]; for k = 1:length(STUDY.cluster) if strncmpi(outlier_name,STUDY.cluster(k).name,length(outlier_name)) outlier_clust = k; end end
github
lcnhappe/happe-master
std_indvarmatch.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_indvarmatch.m
2,411
utf_8
5902a4b72dc6351b4f1b4c26c2975ab8
% std_indvarmatch - match independent variable value in a list of values % % Usage: % indices = std_indvarmatch(value, valuelist); % % Input: % value - [string|real|cell] value to be matched % valuelist - [cell array] cell array of string, numerical values or % cell array % % Output: % indices - [integer] numerical indices % % Example: % std_indvarmatch( 3, { 3 4 [2 3] }); % std_indvarmatch( [2 3], { 3 4 [2 3] }); % std_indvarmatch( [2 3], { 3 4 2 4 3 }); % std_indvarmatch( 'test1', { 'test1' 'test2' { 'test1' 'test2' } }); % std_indvarmatch( { 'test1' 'test2' }, { 'test1' 'test2' { 'test1' 'test2' } }); % std_indvarmatch( { 'test1' 'test2' }, { 'test1' 'test2' 'test3' 'test1' }); % % Author: Arnaud Delorme, CERCO/CNRS, UCSD, 2009- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function indices = std_indvarmatch(val, allvals); indices = []; if nargin < 1 help std_indvarmatch; return; end; % match values % ------------ if all(cellfun(@isstr, allvals)) % string if ~iscell(val) indices = strmatch( val, allvals, 'exact')'; else for indcell = 1:length(val) indices = [ indices std_indvarmatch(val{indcell}, allvals) ]; end; end; elseif all(cellfun(@length, allvals) == 1) % numerical if length(val) == 1 indices = find( val == [allvals{:}]); else for ind = 1:length(val) indices = [ indices std_indvarmatch(val(ind), allvals) ]; end; end; else % mixed with cell array indices = []; for index = 1:length(allvals) if isequal(val, allvals{index}) indices = [indices index]; end; end; end; return;
github
lcnhappe/happe-master
std_renamestudyfiles.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_renamestudyfiles.m
3,659
utf_8
4f9bcafcb1c0e952fab0e36174fc66b2
% std_renamestudyfiles() - rename files for design 1 if necessary. In design % 1, for backward compatibility, files could have % legacy names. For consistency these files now % need to be renamed. Note that the STUDY is % automatically resave on disk to avoid any potential % inconsistency. % % Usage: % >> STUDY = std_renamestudyfiles(STUDY, ALLEEG) % % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % % Output: % STUDY - The input STUDY with new design files. % % Author: Arnaud Delorme, Institute for Neural Computation UCSD, 2013- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_renamestudyfiles(STUDY, ALLEEG) if nargin < 2 help std_renamestudyfiles; return; end; STUDY2 = std_makedesign(STUDY, ALLEEG, 1, STUDY.design(1), 'defaultdesign', 'forceoff', 'verbose', 'off'); allCell1 = { STUDY.design(1).cell.filebase }; allCell2 = { STUDY2.design(1).cell.filebase }; fileExtensions = { 'daterp' 'datspec' 'datersp' 'daterpim' 'dattimef' 'datitc' 'daterpim' ... 'icaerp' 'icaspec' 'icaersp' 'icaerpim' 'icatimef' 'icaitc' 'icaerpim' }; if ~isequal(allCell1, allCell2) thereIsAFileNotDesign = false; for index = 1:length(allCell1), if length(allCell1{index}) < 6 || all(allCell1{index}(1:6) == 'design'), thereIsAFileNotDesign = true; end; end; for index = 1:length(allCell1), if length(allCell1{index}) < 6 || all(allCell1{index}(1:6) == 'design'), thereIsAFileNotDesign = true; end; end; if thereIsAFileNotDesign res = questdlg2(['Old STUDY design data files have been detected.' 10 ... 'EEGLAB wants to rename these files to improve consistency' 10 ... 'and stability. No dataset will be renamed, only preprocessed' 10 ... 'STUDY data files.' ], 'Rename STUDY data files', 'Cancel', ... 'Rename', 'Rename'); if strcmpi(res, 'rename') STUDY = pop_savestudy(STUDY, ALLEEG, 'savemode', 'resave'); for iCell = 1:length(allCell1) % scan file extensions for iExt = 1:length(fileExtensions) files = dir( [ allCell1{iCell} '.' fileExtensions{iExt} ]); if ~isempty(files) && ~strcmpi(allCell1{iCell}, allCell2{iCell}) movefile( [ allCell1{iCell} '.' fileExtensions{iExt} ], ... [ allCell2{iCell} '.' fileExtensions{iExt} ]); disp([ 'Moving ' [ allCell1{iCell} '.' fileExtensions{iExt} ] ' to ' [ allCell2{iCell} '.' fileExtensions{iExt} ] ]); end; end; end; STUDY = STUDY2; STUDY = pop_savestudy(STUDY, ALLEEG, 'savemode', 'resave'); end; end; end;
github
lcnhappe/happe-master
pop_specparams.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_specparams.m
10,715
utf_8
027537cb2c61d5a0c4c36d1e4010028c
% pop_specparams() - Set plotting and statistics parameters for computing % STUDY component spectra. % Usage: % >> STUDY = pop_specparams(STUDY, 'key', 'val'); % % Inputs: % STUDY - EEGLAB STUDY set % % Plot options: % 'topofreq' - [real] Plot Spectrum scalp maps at one specific freq. (Hz). % A frequency range [min max] may also be defined (the % spectrum is then averaged over the interval) {default: []} % 'freqrange' - [min max] spectral frequency range (in Hz) to plot. % {default: whole frequency range} . % 'ylim' - [mindB maxdB] spectral plotting limits in dB % {default: from data} % 'plotgroups' - ['together'|'apart'] 'together' -> plot subject groups % on the same figure in different colors, else ('apart') on % different figures {default: 'apart'} % 'plotconditions' - ['together'|'apart'] 'together' -> plot conditions % on the same figure in different colors, else ('apart') % on different figures. Note: keywords 'plotgroups' and % 'plotconditions' cannot both be set to 'together'. % {default: 'apart'} % 'subtractsubjectmean' - ['on'|'off'] subtract individual subject mean % from each spectrum before plotting and computing % statistics. Default is 'off'. % 'averagechan' - ['on'|'off'] average data channels when several are % selected. % % See also: std_specplot() % % Authors: Arnaud Delorme, CERCO, CNRS, 2006- % Copyright (C) Arnaud Delorme, CERCO % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY, com ] = pop_specparams(STUDY, varargin); STUDY = default_params(STUDY); TMPSTUDY = STUDY; com = ''; if isempty(varargin) enablecond = fastif(length(STUDY.design(STUDY.currentdesign).variable(1).value)>1, 'on', 'off'); enablegroup = fastif(length(STUDY.design(STUDY.currentdesign).variable(2).value)>1, 'on', 'off'); detachplots = fastif(strcmpi(STUDY.etc.specparams.detachplots,'on'), 1, 0); plotconditions = fastif(strcmpi(STUDY.etc.specparams.plotconditions, 'together'), 1, 0); plotgroups = fastif(strcmpi(STUDY.etc.specparams.plotgroups,'together'), 1, 0); submean = fastif(strcmpi(STUDY.etc.specparams.subtractsubjectmean,'on'), 1, 0); radio_averagechan = fastif(strcmpi(STUDY.etc.specparams.averagechan,'on'), 1, 0); radio_scalptopo = fastif(isempty(STUDY.etc.specparams.topofreq), 0, 1); if radio_scalptopo, radio_averagechan = 0; end; if radio_scalptopo+radio_averagechan == 0, radio_scalparray = 1; else radio_scalparray = 0; end; cb_radio = [ 'set(findobj(gcbf, ''userdata'', ''radio''), ''value'', 0);' ... 'set(gcbo, ''value'', 1);' ... 'set(findobj(gcbf, ''tag'', ''topofreq''), ''string'', '''');' ]; cb_edit = [ 'set(findobj(gcbf, ''userdata'', ''radio''), ''value'', 0);' ... 'set(findobj(gcbf, ''tag'', ''scalptopotext''), ''value'', 1);' ]; uilist = { ... {'style' 'text' 'string' 'Spectrum plotting options' 'fontweight' 'bold' 'fontsize', 12} ... {} {'style' 'text' 'string' 'Frequency [low_Hz high_Hz]' } ... {'style' 'edit' 'string' num2str(STUDY.etc.specparams.freqrange) 'tag' 'freqrange' } ... {} {'style' 'text' 'string' 'Plot limits [low high]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.specparams.ylim) 'tag' 'ylim' } ... {} {'style' 'checkbox' 'string' 'Subtract individual subject mean spectrum' 'value' submean 'tag' 'submean' } ... {} ... {'style' 'text' 'string' 'Spectrum plotting format' 'fontweight' 'bold' 'fontsize', 12} ... {} {'style' 'checkbox' 'string' 'Plot first variable on the same panel' 'value' plotconditions 'enable' enablecond 'tag' 'plotconditions' } ... {} {'style' 'checkbox' 'string' 'Plot second variable on the same panel' 'value' plotgroups 'enable' enablegroup 'tag' 'plotgroups' } ... {} {'style' 'checkbox' 'string' 'Detach plots' 'value' detachplots 'enable' 'on' 'tag' 'detachtag' } ... {} ... {'style' 'text' 'string' 'Multiple channels selection' 'fontweight' 'bold' 'fontsize', 12} ... {} {'style' 'radio' 'string' 'Plot channels in scalp array' 'value' radio_scalparray 'tag' 'scalparray' 'userdata' 'radio' 'callback' cb_radio} { } ... {} {'style' 'radio' 'string' 'Plot topography at freq. (Hz)' 'value' radio_scalptopo 'tag' 'scalptopotext' 'userdata' 'radio' 'callback' cb_radio} ... {'style' 'edit' 'string' num2str(STUDY.etc.specparams.topofreq) 'tag' 'topofreq' 'callback' cb_edit } ... {} {'style' 'radio' 'string' 'Average selected channels' 'value' radio_averagechan 'tag' 'averagechan' 'userdata' 'radio' 'callback' cb_radio} { } }; cbline = [0.07 1.1]; otherline = [ 0.07 0.6 .3]; chanline = [ 0.07 0.8 0.3]; geometry = { 1 otherline otherline cbline 1 1 cbline cbline cbline 1 1 chanline chanline chanline }; geomvert = [1.2 1 1 1 0.5 1.2 1 1 1 0.5 1.2 1 1 1 ]; % component plotting % ------------------ if isnan(STUDY.etc.specparams.topofreq) geometry(end-4:end) = []; geomvert(end-4:end) = []; uilist(end-10:end) = []; end; [out_param userdat tmp res] = inputgui( 'geometry' , geometry, 'uilist', uilist, 'geomvert', geomvert, ... 'title', 'Spectrum plotting options -- pop_specparams()'); if isempty(res), return; end; % decode inputs % ------------- %if res.plotgroups & res.plotconditions, warndlg2('Both conditions and group cannot be plotted on the same panel'); return; end; if res.submean , res.submean = 'on'; else res.submean = 'off'; end; if res.plotgroups, res.plotgroups = 'together'; else res.plotgroups = 'apart'; end; if res.plotconditions , res.plotconditions = 'together'; else res.plotconditions = 'apart'; end; if res.detachtag, res.detachtag = 'on'; else res.detachtag = 'off'; end; if ~isfield(res, 'topofreq'), res.topofreq = STUDY.etc.specparams.topofreq; else res.topofreq = str2num( res.topofreq ); end; if ~isfield(res, 'averagechan'), res.averagechan = STUDY.etc.specparams.averagechan; elseif res.averagechan, res.averagechan = 'on'; else res.averagechan = 'off'; end; res.freqrange = str2num( res.freqrange ); res.ylim = str2num( res.ylim ); % build command call % ------------------ options = {}; if ~strcmpi( res.plotgroups, STUDY.etc.specparams.plotgroups), options = { options{:} 'plotgroups' res.plotgroups }; end; if ~strcmpi( res.plotconditions , STUDY.etc.specparams.plotconditions ), options = { options{:} 'plotconditions' res.plotconditions }; end; if ~strcmpi( res.detachtag, STUDY.etc.specparams.detachplots), options = { options{:} 'detachplots' res.detachtag}; end; if ~strcmpi( res.submean , STUDY.etc.specparams.subtractsubjectmean ), options = { options{:} 'subtractsubjectmean' res.submean }; end; if ~isequal(res.topofreq, STUDY.etc.specparams.topofreq), options = { options{:} 'topofreq' res.topofreq }; end; if ~isequal(res.ylim, STUDY.etc.specparams.ylim), options = { options{:} 'ylim' res.ylim }; end; if ~isequal(res.freqrange, STUDY.etc.specparams.freqrange), options = { options{:} 'freqrange' res.freqrange }; end; if ~isequal(res.averagechan, STUDY.etc.specparams.averagechan), options = { options{:} 'averagechan' res.averagechan }; end; if ~isempty(options) STUDY = pop_specparams(STUDY, options{:}); com = sprintf('STUDY = pop_specparams(STUDY, %s);', vararg2str( options )); end; else if strcmpi(varargin{1}, 'default') STUDY = default_params(STUDY); else for index = 1:2:length(varargin) if ~isempty(strmatch(varargin{index}, fieldnames(STUDY.etc.specparams), 'exact')) STUDY.etc.specparams = setfield(STUDY.etc.specparams, varargin{index}, varargin{index+1}); end; end; end; end; % scan clusters and channels to remove specdata info if freqrange has changed % ---------------------------------------------------------- if ~isequal(STUDY.etc.specparams.freqrange, TMPSTUDY.etc.specparams.freqrange) | ... ~isequal(STUDY.etc.specparams.subtractsubjectmean, TMPSTUDY.etc.specparams.subtractsubjectmean) rmfields = { 'specdata' 'specfreqs' }; for iField = 1:length(rmfields) if isfield(STUDY.cluster, rmfields{iField}) STUDY.cluster = rmfield(STUDY.cluster, rmfields{iField}); end; if isfield(STUDY.changrp, rmfields{iField}) STUDY.changrp = rmfield(STUDY.changrp, rmfields{iField}); end; end; end; function STUDY = default_params(STUDY) if ~isfield(STUDY.etc, 'specparams'), STUDY.etc.specparams = []; end; if ~isfield(STUDY.etc.specparams, 'topofreq'), STUDY.etc.specparams.topofreq = []; end; if ~isfield(STUDY.etc.specparams, 'freqrange'), STUDY.etc.specparams.freqrange = []; end; if ~isfield(STUDY.etc.specparams, 'ylim' ), STUDY.etc.specparams.ylim = []; end; if ~isfield(STUDY.etc.specparams, 'subtractsubjectmean' ), STUDY.etc.specparams.subtractsubjectmean = 'off'; end; if ~isfield(STUDY.etc.specparams, 'plotgroups'), STUDY.etc.specparams.plotgroups = 'apart'; end; if ~isfield(STUDY.etc.specparams, 'plotconditions'), STUDY.etc.specparams.plotconditions = 'apart'; end; if ~isfield(STUDY.etc.specparams, 'averagechan') , STUDY.etc.specparams.averagechan = 'off'; end; if ~isfield(STUDY.etc.specparams, 'detachplots') , STUDY.etc.specparams.detachplots = 'on'; end;
github
lcnhappe/happe-master
std_erp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_erp.m
10,470
utf_8
f3a709fb521ddae8ca35a36c72b67d97
% std_erp() - Constructs and returns channel or ICA activation ERPs for a dataset. % Saves the ERPs into a Matlab file, [dataset_name].icaerp, for % data channels or [dataset_name].icaerp for ICA components, % in the same directory as the dataset file. If such a file % already exists, loads its information. % Usage: % >> [erp, times] = std_erp(EEG, 'key', 'val', ...); % Inputs: % EEG - a loaded epoched EEG dataset structure. May be an array % of such structure containing several datasets. % % Optional inputs: % 'components' - [numeric vector] components of the EEG structure for which % activation ERPs will be computed. Note that because % computation of ERP is so fast, all components ERP are % computed and saved. Only selected component % are returned by the function to Matlab % {default|[] -> all} % 'channels' - [cell array] channels of the EEG structure for which % activation ERPs will be computed. Note that because % computation of ERP is so fast, all channels ERP are % computed and saved. Only selected channels % are returned by the function to Matlab % {default|[] -> none} % 'recompute' - ['on'|'off'] force recomputing ERP file even if it is % already on disk. % 'trialindices' - [cell array] indices of trials for each dataset. % Default is all trials. % 'recompute' - ['on'|'off'] force recomputing data file even if it is % already on disk. % 'rmcomps' - [integer array] remove artifactual components (this entry % is ignored when plotting components). This entry contains % the indices of the components to be removed. Default is none. % 'interp' - [struct] channel location structure containing electrode % to interpolate (this entry is ignored when plotting % components). Default is no interpolation. % 'fileout' - [string] name of the file to save on disk. The default % is the same name (with a different extension) as the % dataset given as input. % 'savetrials' - ['on'|'off'] save single-trials ERSP. Requires a lot of disk % space (dataset space on disk times 10) but allow for refined % single-trial statistics. % % ERP specific options: % 'rmbase' - [min max] remove baseline. This option does not affect % the original datasets. % % Outputs: % erp - ERP for the requested ICA components in the selected % latency window. ERPs are scaled by the RMS over of the % component scalp map projection over all data channels. % times - vector of times (epoch latencies in ms) for the ERP % % File output: % [dataset_file].icaerp % component erp file % OR % [dataset_file].daterp % channel erp file % % See also: std_spec(), std_ersp(), std_topo(), std_preclust() % % Authors: Arnaud Delorme, SCCN, INC, UCSD, January, 2005 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [X, t] = std_erp(EEG, varargin); %comps, timerange) if nargin < 1 help std_erp; return; end; % decode inputs % ------------- if ~isempty(varargin) if ~isstr(varargin{1}) varargin = { varargin{:} [] [] }; if all(varargin{1} > 0) options = { 'components' varargin{1} 'timerange' varargin{2} }; else options = { 'channels' -varargin{1} 'timerange' varargin{2} }; end; else options = varargin; end; else options = varargin; end; g = finputcheck(options, { 'components' 'integer' [] []; 'channels' 'cell' {} {}; 'rmbase' 'real' [] []; 'trialindices' { 'integer','cell' } [] []; 'rmcomps' 'cell' [] cell(1,length(EEG)); 'fileout' 'string' [] ''; 'savetrials' 'string' { 'on','off' } 'off'; 'interp' 'struct' { } struct([]); 'timerange' 'real' [] []; % the timerange option is deprecated and has no effect 'recompute' 'string' { 'on','off' } 'off' }, 'std_erp'); if isstr(g), error(g); end; if isempty(g.trialindices), g.trialindices = cell(length(EEG)); end; if ~iscell(g.trialindices), g.trialindices = { g.trialindices }; end; if isfield(EEG,'icaweights') numc = size(EEG(1).icaweights,1); else error('EEG.icaweights not found'); end if isempty(g.components) g.components = 1:numc; end % % THIS SECTION WOULD NEED TO TEST THAT THE PARAMETERS ON DISK ARE CONSISTENT % % % filename % % -------- if isempty(g.fileout), g.fileout = fullfile(EEG(1).filepath, EEG(1).filename(1:end-4)); end; if ~isempty(g.channels) filenameshort = [ g.fileout '.daterp']; prefix = 'chan'; else filenameshort = [ g.fileout '.icaerp']; prefix = 'comp'; end; %filename = fullfile( EEG(1).filepath, filenameshort); filename = filenameshort; % ERP information found in datasets % --------------------------------- if exist(filename) & strcmpi(g.recompute, 'off') fprintf('File "%s" found on disk, no need to recompute\n', filenameshort); setinfo.filebase = g.fileout; if strcmpi(prefix, 'comp') [X tmp t] = std_readfile(setinfo, 'components', g.components, 'timelimits', g.timerange, 'measure', 'erp'); else [X tmp t] = std_readfile(setinfo, 'channels', g.channels, 'timelimits', g.timerange, 'measure', 'erp'); end; if ~isempty(X), return; end; end % No ERP information found % ------------------------ % if isstr(EEG.data) % TMP = eeg_checkset( EEG, 'loaddata' ); % load EEG.data and EEG.icaact % else % TMP = EEG; % end % & isempty(TMP.icaact) % TMP.icaact = (TMP.icaweights*TMP.icasphere)* ... % reshape(TMP.data(TMP.icachansind,:,:), [ length(TMP.icachansind) size(TMP.data,2)*size(TMP.data,3) ]); % TMP.icaact = reshape(TMP.icaact, [ size(TMP.icaact,1) size(TMP.data,2) size(TMP.data,3) ]); %end; %if strcmpi(prefix, 'comp'), X = TMP.icaact; %else X = TMP.data; %end; options = {}; if ~isempty(g.rmcomps), options = { options{:} 'rmcomps' g.rmcomps }; end; if ~isempty(g.interp), options = { options{:} 'interp' g.interp }; end; if isempty(g.channels) X = eeg_getdatact(EEG, 'component', [1:size(EEG(1).icaweights,1)], 'trialindices', g.trialindices ); else X = eeg_getdatact(EEG, 'trialindices', g.trialindices, 'rmcomps', g.rmcomps, 'interp', g.interp); end; % Remove baseline mean % -------------------- pnts = EEG(1).pnts; trials = size(X,3); timevals = EEG(1).times; if ~isempty(g.timerange) disp('Warning: the ''timerange'' option is deprecated and has no effect'); end; if ~isempty(X) if ~isempty(g.rmbase) disp('Removing baseline...'); options = { options{:} 'rmbase' g.rmbase }; [tmp timebeg] = min(abs(timevals - g.rmbase(1))); [tmp timeend] = min(abs(timevals - g.rmbase(2))); if ~isempty(timebeg) X = rmbase(X,pnts, [timebeg:timeend]); else X = rmbase(X,pnts); end end X = reshape(X, [ size(X,1) pnts trials ]); if strcmpi(prefix, 'comp') if strcmpi(g.savetrials, 'on') X = repmat(sqrt(mean(EEG(1).icawinv.^2))', [1 EEG(1).pnts size(X,3)]) .* X; else X = repmat(sqrt(mean(EEG(1).icawinv.^2))', [1 EEG(1).pnts]) .* mean(X,3); % calculate ERP end; elseif strcmpi(g.savetrials, 'off') X = mean(X, 3); end; end; % Save ERPs in file (all components or channels) % ---------------------------------------------- if isempty(timevals), timevals = linspace(EEG(1).xmin, EEG(1).xmax, EEG(1).pnts)*1000; end; % continuous data fileNames = computeFullFileName( { EEG.filepath }, { EEG.filename }); if strcmpi(prefix, 'comp') savetofile( filename, timevals, X, 'comp', 1:size(X,1), options, {}, fileNames, g.trialindices); %[X,t] = std_readerp( EEG, 1, g.components, g.timerange); else if ~isempty(g.interp) savetofile( filename, timevals, X, 'chan', 1:size(X,1), options, { g.interp.labels }, fileNames, g.trialindices); else tmpchanlocs = EEG(1).chanlocs; savetofile( filename, timevals, X, 'chan', 1:size(X,1), options, { tmpchanlocs.labels }, fileNames, g.trialindices); end; %[X,t] = std_readerp( EEG, 1, g.channels, g.timerange); end; % compute full file names % ----------------------- function res = computeFullFileName(filePaths, fileNames); for index = 1:length(fileNames) res{index} = fullfile(filePaths{index}, fileNames{index}); end; % ------------------------------------- % saving ERP information to Matlab file % ------------------------------------- function savetofile(filename, t, X, prefix, comps, params, labels, dataFiles, dataTrials); disp([ 'Saving ERP file ''' filename '''' ]); allerp = []; for k = 1:length(comps) allerp = setfield( allerp, [ prefix int2str(comps(k)) ], squeeze(X(k,:,:))); end; if nargin > 6 && ~isempty(labels) allerp.labels = labels; end; allerp.times = t; allerp.datatype = 'ERP'; allerp.parameters = params; allerp.datafiles = dataFiles; allerp.datatrials = dataTrials; std_savedat(filename, allerp);
github
lcnhappe/happe-master
pop_erpimparams.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_erpimparams.m
8,436
utf_8
239b2e9f4a563e64fe4a3d7d631a5b62
% pop_erpimparams() - Set plotting and statistics parameters for % computing and plotting STUDY mean ERPimages and measure % statistics. Settings are stored within the STUDY % structure (STUDY.etc.erpimparams) which is used % whenever plotting is performed by the function % std_erpimage(). % Usage: % >> STUDY = pop_erpimparams(STUDY, 'key', 'val', ...); % % Inputs: % STUDY - EEGLAB STUDY set % % Erpimage plotting options: % 'timerange' - [min max] erpim/ITC plotting latency range in ms. % {default: the whole output latency range}. % 'trialrange' - [min max] erpim/ITC plotting frequency range in ms. % {default: the whole output frequency range} % 'topotime' - [float] plot scalp map at specific time. A time range may % also be provide and the erpim will be averaged over the % given time range. Requires 'topofreq' below to be set. % 'topotrial' - [float] plot scalp map at specific trial in ERPimage. As % above a trial range may also be provided. % % Authors: Arnaud Delorme, CERCO, CNRS, 2006- % Copyright (C) Arnaud Delorme, 2006 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY, com ] = pop_erpimparams(STUDY, varargin); STUDY = default_params(STUDY); TMPSTUDY = STUDY; com = ''; if isempty(varargin) vis = fastif(isnan(STUDY.etc.erpimparams.topotime), 'off', 'on'); uilist = { ... {'style' 'text' 'string' 'ERPimage plotting options' 'fontweight' 'bold' 'tag', 'erpim' } ... {'style' 'text' 'string' 'Time range in ms [Low High]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erpimparams.timerange) 'tag' 'timerange' } ... {'style' 'text' 'string' 'Plot scalp map at time [ms]' 'visible' vis} ... {'style' 'edit' 'string' num2str(STUDY.etc.erpimparams.topotime) 'tag' 'topotime' 'visible' vis } ... {'style' 'text' 'string' 'Trial range [Low High]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erpimparams.trialrange) 'tag' 'trialrange' } ... {'style' 'text' 'string' 'Plot scalp map at trial(s)' 'visible' vis} ... {'style' 'edit' 'string' num2str(STUDY.etc.erpimparams.topotrial) 'tag' 'topotrial' 'visible' vis } ... {'style' 'text' 'string' 'Color limits [Low High]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erpimparams.colorlimits) 'tag' 'colorlimits' } ... {'style' 'text' 'string' '' } ... {'style' 'text' 'string' '' } }; evalstr = 'set(findobj(gcf, ''tag'', ''erpim''), ''fontsize'', 12);'; cbline = [0.07 1.1]; otherline = [ 0.6 .4 0.6 .4]; geometry = { 1 otherline otherline otherline }; enablecond = fastif(length(STUDY.design(STUDY.currentdesign).variable(1).value)>1, 'on', 'off'); enablegroup = fastif(length(STUDY.design(STUDY.currentdesign).variable(2).value)>1, 'on', 'off'); [out_param userdat tmp res] = inputgui( 'geometry' , geometry, 'uilist', uilist, ... 'title', 'Set Erpimage plotting parameters -- pop_erpimparams()', 'eval', evalstr); if isempty(res), return; end; % decode input % ------------ res.topotime = str2num( res.topotime ); res.topotrial = str2num( res.topotrial ); res.timerange = str2num( res.timerange ); res.trialrange = str2num( res.trialrange ); res.colorlimits = str2num( res.colorlimits ); % build command call % ------------------ options = {}; if ~isequal(res.topotime , STUDY.etc.erpimparams.topotime), options = { options{:} 'topotime' res.topotime }; end; if ~isequal(res.topotrial, STUDY.etc.erpimparams.topotrial), options = { options{:} 'topotrial' res.topotrial }; end; if ~isequal(res.timerange , STUDY.etc.erpimparams.timerange), options = { options{:} 'timerange' res.timerange }; end; if ~isequal(res.trialrange, STUDY.etc.erpimparams.trialrange), options = { options{:} 'trialrange' res.trialrange }; end; if ~isequal(res.colorlimits, STUDY.etc.erpimparams.colorlimits), options = { options{:} 'colorlimits' res.colorlimits }; end; if ~isempty(options) STUDY = pop_erpimparams(STUDY, options{:}); com = sprintf('STUDY = pop_erpimparams(STUDY, %s);', vararg2str( options )); end; else if strcmpi(varargin{1}, 'default') STUDY = default_params(STUDY); else allfields = fieldnames(STUDY.etc.erpimparams); for index = 1:2:length(varargin) if ~isempty(strmatch(varargin{index}, allfields, 'exact')) STUDY.etc.erpimparams = setfield(STUDY.etc.erpimparams, varargin{index}, varargin{index+1}); else if ~isequal(varargin{index}, 'datatype') && ~isequal(varargin{index}, 'channels') inderpimopt = strmatch(varargin{index}, STUDY.etc.erpimparams.erpimageopt(1:2:end), 'exact'); if ~isempty(inderpimopt) STUDY.etc.erpimparams.erpimageopt{2*inderpimopt} = varargin{index+1}; else STUDY.etc.erpimparams.erpimageopt = { STUDY.etc.erpimparams.erpimageopt{:} varargin{index}, varargin{index+1} }; end; end; end; end; end; end; % scan clusters and channels to remove erpimdata info if timerange etc. have changed % --------------------------------------------------------------------------------- if ~isequal(STUDY.etc.erpimparams.timerange, TMPSTUDY.etc.erpimparams.timerange) | ... ~isequal(STUDY.etc.erpimparams.trialrange, TMPSTUDY.etc.erpimparams.trialrange) rmfields = { 'erpimdata' 'erpimtimes' 'erpimtrials' 'erpimevents' }; for iField = 1:length(rmfields) if isfield(STUDY.cluster, rmfields{iField}) STUDY.cluster = rmfield(STUDY.cluster, rmfields{iField}); end; if isfield(STUDY.changrp, rmfields{iField}) STUDY.changrp = rmfield(STUDY.changrp, rmfields{iField}); end; end; end; function STUDY = default_params(STUDY) if ~isfield(STUDY.etc, 'erpimparams'), STUDY.etc.erpimparams = []; end; if ~isfield(STUDY.etc.erpimparams, 'erpimageopt'), STUDY.etc.erpimparams.erpimageopt = {}; end; if ~isfield(STUDY.etc.erpimparams, 'sorttype' ), STUDY.etc.erpimparams.sorttype = ''; end; if ~isfield(STUDY.etc.erpimparams, 'sortwin' ), STUDY.etc.erpimparams.sortwin = []; end; if ~isfield(STUDY.etc.erpimparams, 'sortfield' ), STUDY.etc.erpimparams.sortfield = 'latency'; end; if ~isfield(STUDY.etc.erpimparams, 'rmcomps' ), STUDY.etc.erpimparams.rmcomps = []; end; if ~isfield(STUDY.etc.erpimparams, 'interp' ), STUDY.etc.erpimparams.interp = []; end; if ~isfield(STUDY.etc.erpimparams, 'timerange' ), STUDY.etc.erpimparams.timerange = []; end; if ~isfield(STUDY.etc.erpimparams, 'trialrange' ), STUDY.etc.erpimparams.trialrange = []; end; if ~isfield(STUDY.etc.erpimparams, 'topotime' ), STUDY.etc.erpimparams.topotime = []; end; if ~isfield(STUDY.etc.erpimparams, 'topotrial' ), STUDY.etc.erpimparams.topotrial = []; end; if ~isfield(STUDY.etc.erpimparams, 'colorlimits'), STUDY.etc.erpimparams.colorlimits = []; end; if ~isfield(STUDY.etc.erpimparams, 'concatenate'), STUDY.etc.erpimparams.concatenate = 'off'; end; if ~isfield(STUDY.etc.erpimparams, 'nlines'), STUDY.etc.erpimparams.nlines = 20; end; if ~isfield(STUDY.etc.erpimparams, 'smoothing'), STUDY.etc.erpimparams.smoothing = 10; end;
github
lcnhappe/happe-master
std_dipoleclusters.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_dipoleclusters.m
13,236
utf_8
6bbd84189c57ef6ab08de937ebf62583
% std_dipoleclusters - Plots clusters of ICs as colored dipoles in MRI % images (side, rear, top and oblique angles possible) % % std_dipoleclusters(STUDY,ALLEEG,'key1',value1, 'key2',value2, ... ); % % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % % Optional inputs: % 'clusters' - [vector of numbers] list of clusters to plot in same head space % 'title' - [string] figure title % 'viewnum' - [vector] list of views to plot: 1=top, 2=side, 3=rear, 4 is an oblique view; % length(viewnum) gives the number of subplots that will be produced and the % values within the vector tell the orientation and order of views % 'rowcolplace' - [rows cols subplot] If plotting into an existing figure, specify the number of rows, % columns and the subplot number to start plotting dipole panels. % 'colors' - [vector or matrix] if 1 x 3 vector of RGB values, this will plot all dipoles as the % same color. ex. [1 0 0] is red, [0 0 1] is blue, [0 1 0] is green. % If a matrix, should be n x 3, with the number of rows equal to the number % of clusters to be plotted and the columns should be RGB values for each. % If [], will plot clusters as 'jet' colorscale from the first to the last cluster % requested (therefore an alternate way to control dipole color is to input a specific % order of clusters). % [] will assign colors from hsv color scale. % 'centroid' - ['only', 'add', 'off'] 'only' will plot only cluster centroids, 'add' will superimpose % centroids over cluster dipoles, 'off' will skip centroid plotting and only plot % cluster-member dipoles. % % Authors: Julie Onton, SCCN/INC UCSD, June 2009 % Copyright (C) Julie Onton, SCCN/INC/UCSD, October 11, 2009 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function std_dipoleclusters(STUDY,ALLEEG, varargin); if nargin < 2 help std_dipoleclusters; return; end; % Set default values------------------------------------------------------------------------ if strcmp(STUDY.cluster(2),'outlier 2') % don't plot outlier cluster #2 clustvec = [3:length(STUDY.cluster)]; % plot all clusters in STUDY else clustvec = [2:length(STUDY.cluster)]; % plot all clusters in STUDY end; onecolor = []; colvec = []; centroid = 'off'; viewnum = [1:4]; % plot all views and oblique rowcolplace = [2 2 1]; % 2 X 2 figure starting in subplot 1 figureon = 1; % plot on a new figure ttl = ''; % no title %--------------------------------------------------------------------------------- for k = 3:2:nargin switch varargin{k-2} case 'clusters' clusters = varargin{k-1}; % redefine from all to specified clusters case 'title' ttl = varargin{k-1}; case 'viewnum', viewnum = varargin{k-1}; case 'rowcolplace' %, mode = varargin{k-1}; % what is mode? JO rowcolplace = varargin{k-1}; if length(rowcolplace) < 3 fprintf('\nThe variable ''rowcolplace'' must contain 3 values.\n'); return; end; row = rowcolplace(1); col = rowcolplace(2); place = rowcolplace(3); figureon = 0; % don't pop a new figure if plotting into existing fig case 'colors' colvec = varargin{k-1}; case 'centroid' centroid = varargin{k-1}; end end % adjust color matrix for dipoles:--------------- if isempty(colvec) cols = jet(length(clusters));% default colors else cols = colvec; % input RGB colors end; % extract IC cluster and data path info from STUDY structure clear clustcps fullpaths gdcomps x = cell(1,length(unique({STUDY.datasetinfo.subject}))); subjs = unique_bc({STUDY.datasetinfo.subject}); origlist = cell(1,length(unique({STUDY.datasetinfo.subject}))); sets = cell(1,length(unique({STUDY.datasetinfo.subject}))); for clust = 1:length(STUDY.cluster) clustcps{clust} = x; for st = 1:size(STUDY.cluster(clust).sets,2) currset = STUDY.cluster(clust).sets(1,st); currcomp = STUDY.cluster(clust).comps(1,st); subjidx = strmatch(STUDY.datasetinfo(currset).subject,subjs); clustcps{clust}{subjidx}(end+1) = currcomp; origlist{subjidx} = [origlist{subjidx} currcomp]; [origlist{subjidx} idx] = unique_bc(origlist{subjidx}); sets{subjidx} = currset; end; end; %----------------------------------------------------------- % extract dipole info for ALL ICs to be plotted subj by subj for nx = 1:length(origlist) dipsources = []; if ~isempty(origlist{nx}) EEG = ALLEEG(sets{nx}); % call in a dataset from subj if isfield(EEG.dipfit.model,'diffmap') EEG.dipfit.model = rmfield(EEG.dipfit.model,'diffmap'); end; if isfield(EEG.dipfit.model,'active') EEG.dipfit.model = rmfield(EEG.dipfit.model,'active'); end; if isfield(EEG.dipfit.model,'select') EEG.dipfit.model = rmfield(EEG.dipfit.model,'select'); end; dipsources.posxyz = EEG.dipfit.model(origlist{nx}(1)).posxyz; dipsources.momxyz = EEG.dipfit.model(origlist{nx}(1)).momxyz; dipsources.rv = EEG.dipfit.model(origlist{nx}(1)).rv;p=1; for w = 1:length(origlist{nx}) dipsources(1,p).posxyz = EEG.dipfit.model(origlist{nx}(w)).posxyz; dipsources(1,p).momxyz = EEG.dipfit.model(origlist{nx}(w)).momxyz; dipsources(1,p).rv = EEG.dipfit.model(origlist{nx}(w)).rv; p=p+1; end; allbesa1{nx} = dipsources; new = 0; end; end; %----------------------------------------------------------- % collect cluster dipole info from extracted dipole infos (above) %%%%%%%%%%%%%%%%%%%%%%%%% new = 1; pp=1; bic = 1; centrstr = struct('posxyz',[0 0 0],'momxyz',[0 0 0],'rv',0); for clst =1:length(clusters) clust = clusters(clst); centr = []; centr2 = []; for nx = 1:length(clustcps{clust}) if ~isempty(clustcps{clust}{nx}) for k = 1:length(clustcps{clust}{nx}) if new == 1 allbesa = allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))); centr = [centr; allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(1,:)]; if size(allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz,1) > 1& allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,1) ~= 0 % actual values, not zero if allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,2) > 0 % on the wrong side, switch with centr1 centr2 = [centr2;allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)]; centr2(end,2) = centr2(end,2)*-1; centr1(end,2) = centr1(end,2)*-1; else centr2 = [centr2;allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)]; end; end; new = 0; else allbesa(1,end+1) = allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))); centr = [centr; allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(1,:)]; if size(allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz,1) > 1 & allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,1) ~= 0 % actual values, not zero if allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,2) > 0 % on the wrong side, switch with centr1 centr2 = [centr2; allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)]; centr2(end,2) = centr2(end,2)*-1; centr1(end,2) = centr1(end,2)*-1; else centr2 = [centr2;allbesa1{nx}(find(origlist{nx} == clustcps{clust}{nx}(k))).posxyz(2,:)]; end; end; end; colset{pp} = cols(clst,:); pp = pp+1; end; end; end; if length(allbesa) > 1 centr = mean(centr,1); centr2 = mean(centr2,1); centrstr(clst).posxyz = centr; centrstr(clst).momxyz = allbesa(end).momxyz(1,:); centrstr(clst).rv = 2; centcols{clst} = cols(clst,:); centcols2{clst} = cols(clst,:)/5; if ~isempty(find(centr2)) centrstr2(bic).posxyz = centr2; centrstr2(bic).momxyz = allbesa(end).momxyz(1,:); centrstr2(bic).rv = 2; bic = bic + 1; % separate count for bilaterals end; end; end; if figureon == 1 figure; row = 2; col = 2; place= 1; end; %------------------------------------------- % PLOT the clusster dipoles: if length(allbesa) > 1 for sbpt = 1:length(viewnum) if sbpt < 4 prjimg = 'off'; else prjimg = 'on'; end; sbplot(row,col,place) if strcmp(centroid,'only') dipplot(centrstr,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); if ~isempty(find(centrstr2(1).posxyz)) % only if there were bilaterals dipplot(centrstr2,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); camzoom(.8) else camzoom(1) end; elseif strcmp(centroid,'add') dipplot(allbesa,'image','mri','gui','off','dipolelength',0,'dipolesize',25,'normlen','on','spheres','on','color',colset,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); dipplot(centrstr,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols2,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); camzoom(.8) if ~isempty(find(centrstr2(1).posxyz)) % only if there were bilaterals dipplot(centrstr2,'image','mri','gui','off','dipolelength',0,'dipolesize',40,'normlen','on','spheres','on','color',centcols2,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0);camzoom(.8) else camzoom(1) end; else dipplot(allbesa,'image','mri','gui','off','dipolelength',0,'dipolesize',25,'normlen','on','spheres','on','color',colset,'projlines','off','projimg',prjimg,'coordformat',EEG.dipfit.coordformat);hold on; view(90,0); camzoom(1.1) end; if viewnum(sbpt) == 3 view(0,0) elseif viewnum(sbpt) == 1 view(0,90) elseif viewnum(sbpt) == 4 view(63,22); end; place = place+1; end; if ~isempty(ttl) if sbpt == 4 % if oblique ph = text(-75,-75,125,ttl); set(ph,'color','r'); elseif sbpt == 1 % 2d image: ph = text(-50,110,125,ttl); set(ph,'color','r'); elseif sbpt == 2 % 2d image: ph = text(-75,-75,125,ttl); set(ph,'color','r'); elseif sbpt == 3 % 2d image: ph = text(-100,-50,130,ttl); set(ph,'color','r'); end; end; end;
github
lcnhappe/happe-master
std_readtopo.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readtopo.m
5,758
utf_8
200d8ea0bad1829dc48821eb15ac629b
% std_readtopo() - returns the scalp map of a specified ICA component, assumed % to have been saved in a Matlab file, [dataset_name].icatopo, % in the same directory as the dataset file. If this file does % not exist, use std_topo() to create it, else a pre-clustering % function that calls it: pop_preclust() or eeg_preclust(). % Usage: % >> [grid, y, x ] = std_readtopo(ALLEEG, setindx, component); % >> [grid, y, x ] = std_readtopo(ALLEEG, setindx, component, transform, mode); % % Inputs: % ALLEEG - vector of EEG datasets (can also be one EEG set). % must contain the dataset of interest (see 'setindx' below). % setindx - [integer] an index of an EEG dataset in the ALLEEG % structure, for which to get the component ERP. % component - [integer] index of the component for which the scalp map % grid should be returned. % transform - ['none'!'laplacian'|'gradient'] transform scalp map to % laplacian or gradient map. Default is 'none'. % mode - ['2dmap'|'preclust'] return either a 2-D array for direct % plotting ('2dmap') or an array formated for preclustering % with all the NaN values removed (ncomps x points). Default % is '2dmap' for 1 component and 'preclust' for several. % % Outputs: % grid - square scalp-map color-value grid for the requested ICA component % in the specified dataset, an interpolated Cartesian grid as output % by topoplot(). % y - y-axis values for the interpolated grid % x - x-axis values of the interpolated grid % % See also std_topo(), std_preclust() % % Authors: Arnaud Delorme, Hilit Serby, SCCN, INC, UCSD, February, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [X, yi, xi ] = std_readtopo(ALLEEG, abset, comps, option, mode) X = []; yi = []; xi = []; if nargin < 4 option = 'none'; end; if nargin < 5 mode = '2Dmap'; end; filename = correctfile(fullfile( ALLEEG(abset).filepath,[ ALLEEG(abset).filename(1:end-3) 'icatopo'])); tmpfile = which(filename); if ~isempty(tmpfile), filename = tmpfile; end; % 061411, 2:51pm % Modified by Joaquin % while getfield(dir(filename), 'bytes') < 1000 i = 1; while getfield(dir(filename), 'bytes') < 5000 topo = load( '-mat', filename); filename = correctfile(topo.file, ALLEEG(abset).filepath); tmpfile = which(filename); if ~isempty(tmpfile), filename = tmpfile; end; if(i>100) error('too many attempts to find valid icatopo'); end i = i+1; end; for k = 1:length(comps) if length(comps) < 3 try topo = load( '-mat', filename, ... [ 'comp' int2str(comps(k)) '_grid'], ... [ 'comp' int2str(comps(k)) '_x'], ... [ 'comp' int2str(comps(k)) '_y'] ); catch error( [ 'Cannot read file ''' filename '''' ]); end; elseif k == 1 try topo = load( '-mat', filename); catch error([ 'Missing scalp topography file - also necessary for ERP polarity' 10 'Try recomputing scalp topographies for components' ]); end; end; try, tmp = getfield(topo, [ 'comp' int2str(comps(k)) '_grid' ]); catch, error([ 'Empty scalp topography file - also necessary for ERP polarity' 10 'Try recomputing scalp topographies for components' ]); end; if strcmpi(option, 'gradient') [tmpx, tmpy] = gradient(tmp); % Gradient tmp = tmpx; tmp(:,:,2) = tmpy; elseif strcmpi(option, 'laplacian') tmp = del2(tmp); % Laplacian end; if length(comps) > 1 | strcmpi(mode, 'preclust') tmp = tmp(find(~isnan(tmp))); % remove NaN for more than 1 component end; if k == 1 X = zeros([ length(comps) size(tmp) ]) ; end X(k,:,:,:) = tmp; if k == 1 yi = getfield(topo, [ 'comp' int2str(comps(k)) '_y']); xi = getfield(topo, [ 'comp' int2str(comps(k)) '_x']); end; end X = squeeze(X); return; function filename = correctfile(filename, datasetpath) comp = computer; if filename(2) == ':' & ~strcmpi(comp(1:2), 'PC') filename = [filesep filename(4:end) ]; filename(find(filename == '\')) = filesep; end; if ~exist(filename) [tmpp tmpf ext] = fileparts(filename); if exist([tmpf ext]) filename = [tmpf ext]; else [tmpp2 tmpp1] = fileparts(tmpp); if exist(fullfile(tmpp1, [ tmpf ext ])) filename = fullfile(tmpp1, [ tmpf ext ]); else filename = fullfile(datasetpath, [ tmpf ext ]); if ~exist(filename) error([ 'Cannot load file ''' [ tmpf ext ] '''' ]); end; end; end; end;
github
lcnhappe/happe-master
std_erspplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_erspplot.m
19,648
utf_8
cb3030aac38bf825bfc6510c39e5d9cc
% std_erspplot() - plot STUDY cluster ERSPs. Displays either mean cluster ERSPs, % or else all cluster component ERSPs plus the mean cluster % ERSP in one figure per condition. The ERSPs can be plotted % only if component ERSPs were computed and saved in the % EEG datasets in the STUDY. These may either be computed % during pre-clustering using the gui-based function % pop_preclust(), or via the equivalent commandline functions % eeg_createdata() and eeg_preclust(). Called by pop_clustedit(). % Usage: % >> [STUDY] = std_erspplot(STUDY, ALLEEG, key1, val1, key2, val2); % >> [STUDY erspdata ersptimes erspfreqs pgroup pcond pinter] = ... % std_erspplot(STUDY, ALLEEG ...); % % Inputs: % STUDY - STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global vector of EEG structures for the datasets included % in the STUDY. ALLEEG for a STUDY set is typically created % using load_ALLEEG(). % either 'channels' or 'cluster' inputs are also mandatory. % % Optional inputs for channel plotting: % 'channels' - [numeric vector] specific channel group to plot. By % default, the grand mean channel ERSP is plotted (using the % same format as for the cluster component means described above) % 'subject' - [numeric vector] In 'changrp' mode (above), index of % the subject(s) to plot. Else by default, plot all components % in the cluster. % 'plotsubjects' - ['on'|'off'] When 'on', plot ERSP of all subjects. % 'noplot' - ['on'|'off'] When 'on', only return output values. Default % is 'off'. % % Optional inputs: % 'clusters' - [numeric vector|'all'] indices of clusters to plot. % If no component indices ('comps' below) are given, the average % ERSPs of the requested clusters are plotted in the same figure, % with ERSPs for different conditions (and groups if any) plotted % in different colors. In 'comps' (below) mode, ERSP for each % specified cluster are plotted in separate figures (one per % condition), each overplotting cluster component ERSP plus the % average cluster ERSP in bold. Note this parameter has no effect % if the 'comps' option (below) is used. {default: 'all'} % 'comps' - [numeric vector|'all'] indices of the cluster components to plot. % Note that 'comps', 'all' is equivalent to 'plotsubjects', 'on'. % % Other optional inputs: % 'plotmode' - ['normal'|'condensed'|'none'] 'normal' -> plot in a new figure; % 'condensed' -> plot all curves in the current figure in a % condensed fashion. 'none' toggles off plotting {default: 'normal'} % 'key','val' - All optional inputs to pop_specparams() are also accepted here % to plot subset of time, statistics etc. The values used by default % are the ones set using pop_specparams() and stored in the % STUDY structure. % Output: % STUDY - the input STUDY set structure with the plotted cluster % mean ERSPs added to allow quick replotting % erspdata - [cell] ERSP data for each condition, group and subjects. % size of cell array is [nconds x ngroups]. Size of each element % is [freqs x times x subjects] for data channels or % [freqs x times x components] for component clusters. This % array may be gicen as input directly to the statcond() f % unction or std_stats() function to compute statistics. % ersptimes - [array] ERSP time point latencies. % erspfreqs - [array] ERSP point frequency values. % pgroup - [array or cell] p-values group statistics. Output of the % statcond() function. % pcond - [array or cell] condition statistics. Output of the statcond() % function. % pinter - [array or cell] groups x conditions statistics. Output of % statcond() function. % % Example: % >> [STUDY] = std_erspplot(STUDY,ALLEEG, 'clusters', 'all', ... % 'mode', 'together'); % % Plot the mean ERSPs of all clusters in STUDY together % % on the same figure. % % Known limitations: when plotting multiple clusters, the output % contains the last plotted cluster. % % See also: pop_clustedit(), pop_preclust(), eeg_createdata(), eeg_preclust(), pop_clustedit() % % Authors: Arnaud Delorme, CERCO, August, 2006 % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, allersp, alltimes, allfreqs, pgroup, pcond, pinter events] = std_erspplot(STUDY, ALLEEG, varargin) if nargin < 2 help std_erspstatplot; return; end; % find datatype and default options % --------------------------------- dtype = 'ersp'; for ind = 1:2:length(varargin) if strcmpi(varargin{ind}, 'datatype') dtype = varargin{ind+1}; end; end; if strcmpi(dtype, 'erpim') STUDY = pop_erpimparams(STUDY, varargin{:}); params = STUDY.etc.erpimparams; else STUDY = pop_erspparams( STUDY, varargin{:}); params = STUDY.etc.erspparams; end; % get parameters % -------------- statstruct.etc = STUDY.etc; statstruct.design = STUDY.design; %added by behnam statstruct.currentdesign = STUDY.currentdesign; %added by behnam statstruct = pop_statparams(statstruct, varargin{:}); stats = statstruct.etc.statistics; stats.fieldtrip.channelneighbor = struct([]); % asumes one channel or 1 component % potentially missing fields % -------------------------- fields = { 'freqrange' []; 'topofreq' []; 'topotrial' []; 'singletrials' 'off' 'trialrange' [] 'concatenate' 'off'; 'colorlimits' []; 'ersplim' []; 'itclim' []; 'maskdata' 'off'; 'subbaseline' 'off' }; for ind=1:size(fields,1) if ~isfield(params, fields{ind,1}), params = setfield(params, fields{ind,1}, fields{ind,2}); end; end; % decode input parameters % ----------------------- options = mystruct(varargin); options = myrmfield( options, myfieldnames(params)); options = myrmfield( options, myfieldnames(stats)); options = myrmfield( options, { 'threshold' 'statistics' } ); % for backward compatibility [ opt moreparams ] = finputcheck( options, { ... 'design' 'integer' [] STUDY.currentdesign; 'caxis' 'real' [] []; 'statmode' 'string' [] ''; % deprecated 'channels' 'cell' [] {}; 'clusters' 'integer' [] []; 'datatype' 'string' { 'itc','ersp','pac' 'erpim' } 'ersp'; 'plottf' 'real' [] []; 'mode' 'string' [] ''; % for backward compatibility (now used for statistics) 'comps' {'integer','string'} [] []; % for backward compatibility 'plotsubjects' 'string' { 'on','off' } 'off'; 'noplot' 'string' { 'on','off' } 'off'; 'plotmode' 'string' { 'normal','condensed','none' } 'normal'; 'subject' 'string' [] '' }, ... 'std_erspstatplot', 'ignore'); if isstr(opt), error(opt); end; if strcmpi(opt.noplot, 'on'), opt.plotmode = 'none'; end; if isempty(opt.caxis), if strcmpi(opt.datatype, 'ersp') opt.caxis = params.ersplim; elseif strcmpi(opt.datatype, 'itc') && ~isempty(params.itclim) opt.caxis = [-params.itclim(end) params.itclim(end)]; end; end; allconditions = STUDY.design(opt.design).variable(1).value; allgroups = STUDY.design(opt.design).variable(2).value; paired = { STUDY.design(opt.design).variable(1).pairing ... STUDY.design(opt.design).variable(2).pairing }; stats.paired = paired; % for backward compatibility % -------------------------- if strcmpi(opt.datatype, 'erpim'), params.topofreq = params.topotrial; opt.caxis = params.colorlimits; valunit = 'trials'; else valunit = 'Hz'; end; if isempty(opt.plottf) && ~isempty(params.topofreq) && ~isempty(params.topotime) && ~isnan(params.topofreq(1)) && ~isnan(params.topotime(1)) params.plottf = [ params.topofreq(1) params.topofreq(end) params.topotime(1) params.topotime(end) ]; else params.plottf = opt.plottf; end; %if strcmpi(opt.mode, 'comps'), opt.plotsubjects = 'on'; end; %deprecated if strcmpi(stats.singletrials, 'off') && ((~isempty(opt.subject) || ~isempty(opt.comps))) if strcmpi(stats.condstats, 'on') || strcmpi(stats.groupstats, 'on') stats.groupstats = 'off'; stats.condstats = 'off'; disp('No statistics for single subject/component'); end; end; if length(opt.comps) == 1 stats.condstats = 'off'; stats.groupstats = 'off'; disp('Statistics cannot be computed for single component'); end; alpha = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.alpha, stats.fieldtrip.alpha); mcorrect = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.mcorrect, stats.fieldtrip.mcorrect); method = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.method, ['Fieldtrip ' stats.fieldtrip.method ]); plottfopt = { ... 'ersplim', opt.caxis, ... 'threshold', alpha, ... 'maskdata', params.maskdata }; if ~isempty(params.plottf) && length(opt.channels) < 5 warndlg2(strvcat('ERSP/ITC parameters indicate that you wish to plot scalp maps', 'Select at least 5 channels to plot topography')); return; end; % plot single scalp map % --------------------- if ~isempty(opt.channels) [STUDY allersp alltimes allfreqs tmp events unitPower] = std_readersp(STUDY, ALLEEG, 'channels', opt.channels, 'infotype', opt.datatype, 'subject', opt.subject, ... 'singletrials', stats.singletrials, 'subbaseline', params.subbaseline, 'timerange', params.timerange, 'freqrange', params.freqrange, 'design', opt.design, 'concatenate', params.concatenate); % select specific time and freq % ----------------------------- if ~isempty(params.plottf) if length(params.plottf) < 3, params.plottf(3:4) = params.plottf(2); params.plottf(2) = params.plottf(1); end; [tmp fi1] = min(abs(allfreqs-params.plottf(1))); [tmp fi2] = min(abs(allfreqs-params.plottf(2))); [tmp ti1] = min(abs(alltimes-params.plottf(3))); [tmp ti2] = min(abs(alltimes-params.plottf(4))); for index = 1:length(allersp(:)) allersp{index} = mean(mean(allersp{index}(fi1:fi2,ti1:ti2,:,:),1),2); allersp{index} = reshape(allersp{index}, [1 size(allersp{index},3) size(allersp{index},4) ]); end; % prepare channel neighbor matrix for Fieldtrip statstruct = std_prepare_neighbors(statstruct, ALLEEG, 'channels', opt.channels); stats.fieldtrip.channelneighbor = statstruct.etc.statistics.fieldtrip.channelneighbor; params.plottf = { params.plottf(1:2) params.plottf(3:4) }; [pcond pgroup pinter] = std_stat(allersp, stats); if (~isempty(pcond) && length(pcond{1}) == 1) || (~isempty(pgroup) && length(pgroup{1}) == 1), pcond = {}; pgroup = {}; pinter = {}; end; % single subject STUDY else [pcond pgroup pinter] = std_stat(allersp, stats); if (~isempty(pcond ) && (size( pcond{1},1) == 1 || size( pcond{1},2) == 1)) || ... (~isempty(pgroup) && (size(pgroup{1},1) == 1 || size(pgroup{1},2) == 1)), pcond = {}; pgroup = {}; pinter = {}; disp('No statistics possible for single subject STUDY'); end; % single subject STUDY end % plot specific channel(s) % ------------------------ if ~strcmpi(opt.plotmode, 'none') locs = eeg_mergelocs(ALLEEG.chanlocs); locs = locs(std_chaninds(STUDY, opt.channels)); if ~isempty(params.plottf) alltitles = std_figtitle('threshold', alpha, 'mcorrect', mcorrect, 'condstat', stats.condstats, 'cond2stat', stats.groupstats, ... 'statistics', method, 'condnames', allconditions, 'cond2names', allgroups, 'chanlabels', { locs.labels }, ... 'subject', opt.subject, 'valsunit', { valunit 'ms' }, 'vals', params.plottf, 'datatype', upper(opt.datatype)); std_chantopo(allersp, 'groupstats', pgroup, 'condstats', pcond, 'interstats', pinter, 'caxis', opt.caxis, ... 'chanlocs', locs, 'threshold', alpha, 'titles', alltitles); else if length(opt.channels) > 1 & ~strcmpi(opt.plotmode, 'none'), figure; opt.plotmode = 'condensed'; end; nc = ceil(sqrt(length(opt.channels))); nr = ceil(length(opt.channels)/nc); for index = 1:max(cellfun(@(x)(size(x,3)), allersp(:))) if length(opt.channels) > 1, try, subplot(nr,nc,index, 'align'); catch, subplot(nr,nc,index); end; end; tmpersp = cell(size(allersp)); for ind = 1:length(allersp(:)) if ~isempty(allersp{ind}) tmpersp{ind} = squeeze(allersp{ind}(:,:,index,:)); end; end; alltitles = std_figtitle('threshold', alpha, 'mcorrect', mcorrect, 'condstat', stats.condstats, 'cond2stat', stats.groupstats, ... 'statistics', method, 'condnames', allconditions, 'cond2names', allgroups, 'chanlabels', { locs(index).labels }, ... 'subject', opt.subject, 'datatype', upper(opt.datatype), 'plotmode', opt.plotmode); std_plottf(alltimes, allfreqs, tmpersp, 'datatype', opt.datatype, 'titles', alltitles, ... 'groupstats', pgroup, 'condstats', pcond, 'interstats', pinter, 'plotmode', ... opt.plotmode, 'unitcolor', unitPower, 'chanlocs', ALLEEG(1).chanlocs, 'events', events, plottfopt{:}); end; end; end; else if length(opt.clusters) > 1 & ~strcmpi(opt.plotmode, 'none'), figure; opt.plotmode = 'condensed'; end; nc = ceil(sqrt(length(opt.clusters))); nr = ceil(length(opt.clusters)/nc); comp_names = {}; if length(opt.clusters) > 1 && ( strcmpi(stats.condstats, 'on') || strcmpi(stats.groupstats, 'on')) stats.condstats = 'off'; stats.groupstats = 'off'; end; for index = 1:length(opt.clusters) [STUDY allersp alltimes allfreqs tmp events unitPower] = std_readersp(STUDY, ALLEEG, 'clusters', opt.clusters(index), 'infotype', opt.datatype, ... 'component', opt.comps, 'singletrials', stats.singletrials, 'subbaseline', params.subbaseline, 'timerange', params.timerange, 'freqrange', params.freqrange, 'design', opt.design, 'concatenate', params.concatenate); if length(opt.clusters) > 1, try, subplot(nr,nc,index, 'align'); catch, subplot(nr,nc,index); end; end; % plot specific component % ----------------------- if ~isempty(opt.comps) comp_names = { STUDY.cluster(opt.clusters(index)).comps(opt.comps) }; opt.subject = STUDY.datasetinfo(STUDY.cluster(opt.clusters(index)).sets(1,opt.comps)).subject; end; % select specific time and freq % ----------------------------- if ~isempty(params.plottf) if length(params.plottf) < 3, params.plottf(3:4) = params.plottf(2); params.plottf(2) = params.plottf(1); end; [tmp fi1] = min(abs(allfreqs-params.plottf(1))); [tmp fi2] = min(abs(allfreqs-params.plottf(2))); [tmp ti1] = min(abs(alltimes-params.plottf(3))); [tmp ti2] = min(abs(alltimes-params.plottf(4))); for index = 1:length(allersp(:)) allersp{index} = mean(mean(allersp{index}(fi1:fi2,ti1:ti2,:,:),1),2); allersp{index} = reshape(allersp{index}, [1 size(allersp{index},3) size(allersp{index},4) ]); end; end [pcond pgroup pinter] = std_stat(allersp, stats); % plot specific component % ----------------------- if index == length(opt.clusters), opt.legend = 'on'; end; if ~strcmpi(opt.plotmode, 'none') alltitles = std_figtitle('threshold', alpha, 'mcorrect', mcorrect, 'condstat', stats.condstats, 'cond2stat', stats.groupstats, ... 'statistics', method, 'condnames', allconditions, 'cond2names', allgroups, 'clustname', STUDY.cluster(opt.clusters(index)).name, 'compnames', comp_names, ... 'subject', opt.subject, 'datatype', upper(opt.datatype), 'plotmode', opt.plotmode); std_plottf(alltimes, allfreqs, allersp, 'datatype', opt.datatype, ... 'groupstats', pgroup, 'condstats', pcond, 'interstats', pinter, 'plotmode', ... opt.plotmode, 'titles', alltitles, ... 'events', events, 'unitcolor', unitPower, 'chanlocs', ALLEEG(1).chanlocs, plottfopt{:}); end; end; end; % remove fields and ignore fields who are absent % ---------------------------------------------- function s = myrmfield(s, f); for index = 1:length(f) if isfield(s, f{index}) s = rmfield(s, f{index}); end; end; % convert to structure (but take into account cells) % -------------------------------------------------- function s = mystruct(v); for index=1:length(v) if iscell(v{index}) v{index} = { v{index} }; end; end; try s = struct(v{:}); catch, error('Parameter error'); end; % convert to structure (but take into account cells) % -------------------------------------------------- function s = myfieldnames(v); s = fieldnames(v); if isfield(v, 'eeglab') s2 = fieldnames(v.eeglab); s = { s{:} s2{:} }; end; if isfield(v, 'fieldtrip') s3 = fieldnames(v.fieldtrip); for index=1:length(s3) s3{index} = [ 'fieldtrip' s3{index} ]; end; s = { s{:} s3{:} }; end;
github
lcnhappe/happe-master
std_readtopoclust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readtopoclust.m
4,978
utf_8
d3ea827af1511d8ae06298bd66565857
% std_readtopoclust() - Compute and return cluster component scalp maps. % Automatically inverts the polarity of component scalp maps % to best match the polarity of the cluster mean scalp map. % Usage: % >> [STUDY clsstruct] = std_readtopoclust(STUDY, ALLEEG, clusters); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in % the STUDY. % clusters - cluster numbers to read. % % Outputs: % STUDY - the input STUDY set structure with the computed mean cluster scalp % map added (unless cluster scalp map means already exist in the STUDY) % to allow quick replotting. % clsstruct - STUDY.cluster structure array for the modified clusters. % % See also std_topoplot(), pop_clustedit() % % Authors: Arnaud Delorme, SCCN, INC, UCSD, 2007 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, June 07, 2007, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, centroid] = std_readtopoclust(STUDY,ALLEEG, clsind); if nargin < 3 help readtopoclust; return; end; if isempty(clsind) for k = 2: length(STUDY.cluster) % don't include the ParentCluster if ~strncmpi('Notclust',STUDY.cluster(k).name,8) % don't include 'Notclust' clusters clsind = [clsind k]; end end end Ncond = length(STUDY.condition); if Ncond == 0 Ncond = 1; end centroid = cell(length(clsind),1); fprintf('Computing the requested mean cluster scalp maps (only done once)\n'); if ~isfield( STUDY.cluster, 'topo' ), STUDY.cluster(1).topo = []; end; cond = 1; for clust = 1:length(clsind) %go over all requested clusters if isempty( STUDY.cluster(clsind(clust)).topo ) numitems = length(STUDY.cluster(clsind(clust)).comps); for k = 1:numitems % go through all components comp = STUDY.cluster(clsind(clust)).comps(k); abset = STUDY.cluster(clsind(clust)).sets(cond,k); if ~isnan(comp) & ~isnan(abset) [grid yi xi] = std_readtopo(ALLEEG, abset, comp); if ~isfield(centroid{clust}, 'topotmp') || isempty(centroid{clust}.topotmp) centroid{clust}.topotmp = zeros([ size(grid(1:4:end),2) numitems ]); end; centroid{clust}.topotmp(:,k) = grid(1:4:end); % for inversion centroid{clust}.topo{k} = grid; centroid{clust}.topox = xi; centroid{clust}.topoy = yi; end end fprintf('\n'); %update STUDY tmpinds = find(isnan(centroid{clust}.topotmp(:,1))); %centroid{clust}.topotmp(tmpinds,:) = []; %for clust = 1:length(clsind) %go over all requested clusters for cond = 1 if clsind(1) > 0 ncomp = length(STUDY.cluster(clsind(clust)).comps); end; [ tmp pol ] = std_comppol(centroid{clust}.topotmp); fprintf('%d/%d polarities inverted while reading component scalp maps\n', ... length(find(pol == -1)), length(pol)); nitems = length(centroid{clust}.topo); for k = 1:nitems centroid{clust}.topo{k} = pol(k)*centroid{clust}.topo{k}; if k == 1, allscalp = centroid{clust}.topo{k}/nitems; else allscalp = centroid{clust}.topo{k}/nitems + allscalp; end; end; STUDY.cluster(clsind(clust)).topox = centroid{clust}.topox; STUDY.cluster(clsind(clust)).topoy = centroid{clust}.topoy; STUDY.cluster(clsind(clust)).topoall = centroid{clust}.topo; STUDY.cluster(clsind(clust)).topo = allscalp; STUDY.cluster(clsind(clust)).topopol = pol; end %end else centroid{clust}.topox = STUDY.cluster(clsind(clust)).topox; centroid{clust}.topoy = STUDY.cluster(clsind(clust)).topoy; centroid{clust}.topo = STUDY.cluster(clsind(clust)).topoall; end; end fprintf('\n');
github
lcnhappe/happe-master
std_readcustom.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readcustom.m
5,376
utf_8
ab9dee0bfcae0ccce1ff1c97d5d14089
% std_readcustom() - Read custom data structure for file save on disk. % % Usage: % >> data = std_readcustom(STUDY, ALLEEG, fileext, 'key', 'val', ...); % % Required inputs: % STUDY - an EEGLAB STUDY set of loaded EEG structures % ALLEEG - ALLEEG vector of one or more loaded EEG dataset structures % fileext - [string] file extension (without '.') % % Optional inputs: % 'design' - [integer] use specific study index design to compute measure. % Default is to use the default design. % 'datafield' - [string or cell] extract only specific variables from the data % files. By default, all fields are loaded. Use '*' to match % patterns. If more than 1 variable is selected, data is % placed in a structure named data. % 'eegfield' - [string] copy data to a field of an EEG structure and return % EEG structure. Default is to return the data itself. % 'eegrmdata' - ['on'|'off'] when option above is used, remove data from % EEG structures before returning them. Default is 'on'. % % Outputs: % data - cell array containing data organized according to the selected % design. % % Example: % % assuming ERP have been computed for the currently selected design % data = std_readcustom(STUDY, ALLEEG, 'daterp', 'datafield', 'chan1'); % data = cellfun(@(x)x', siftdata, 'uniformoutput', false); % transpose data % std_plotcurve([1:size(data{1})], data); % plot data % % Authors: Arnaud Delorme, SCCN, INC, UCSD, 2013- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, 2013, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ returndata ] = std_readcustom(STUDY, ALLEEG, fileext, varargin) if nargin < 2 help std_sift; return; end; [g arguments] = finputcheck(varargin, { 'design' 'integer' [] STUDY.currentdesign; 'datafield' { 'string' 'cell' } [] {}; 'eegfield' 'string' [] ''; 'eegrmdata' 'string' { 'on' 'off' } 'on' }, 'std_sift', 'mode', 'ignore'); if isstr(g), error(g); end; if ~iscell(g.datafield), g.datafield = { g.datafield }; end; % Scan design and save data % ------------------------- nc = max(length(STUDY.design(g.design).variable(1).value),1); ng = max(length(STUDY.design(g.design).variable(2).value),1); for cInd = 1:nc for gInd = 1:ng % find the right cell in the design cellInds = []; for index = 1:length(STUDY.design(g.design).cell) condind = std_indvarmatch( STUDY.design(g.design).cell(index).value{1}, STUDY.design(g.design).variable(1).value); grpind = std_indvarmatch( STUDY.design(g.design).cell(index).value{2}, STUDY.design(g.design).variable(2).value); if isempty(STUDY.design(g.design).variable(1).value), condind = 1; end; if isempty(STUDY.design(g.design).variable(2).value), grpind = 1; end; if cInd == condind && gInd == grpind cellInds = [ cellInds index ]; end; end; desset = STUDY.design(g.design).cell(cellInds); clear EEGTMP data; for iDes = 1:length(desset) % load data on disk tmpData = load('-mat', [ STUDY.design(g.design).cell(cellInds(iDes)).filebase '.' fileext ], g.datafield{:}); % put data in EEG structure if necessary if ~isempty(g.eegfield) EEGTMPTMP = std_getdataset(STUDY, ALLEEG, 'design', g.design, 'cell', cellInds(iDes)); if strcmpi(g.eegrmdata, 'on'), EEGTMPTMP.data = []; EEGTMPTMP.icaact = []; end; EEGTMPTMP.(g.eegfield) = tmpData; EEGTMP(iDes) = EEGTMPTMP; elseif length(g.datafield) == 1 if ~isstr(tmpData.(g.datafield{1})), error('Field content cannot be a string'); end; data(iDes,:,:,:) = tmpData.(g.datafield{1}); elseif isfield(tmpData, 'data') && isempty(g.datafield) data(iDes,:,:,:) = tmpData.data; else data(iDes) = tmpData; end; end; data = shiftdim(data,1); if ~isempty(g.eegfield) returndata{cInd,gInd} = EEGTMP; else returndata{cInd,gInd} = data; end; end; end;
github
lcnhappe/happe-master
std_ersp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_ersp.m
20,553
utf_8
41dd4eed5c09acca4f4c7b9a30289ea8
% std_ersp() - Compute ERSP and/or ITC transforms for ICA components % or data channels of a dataset. Save results into Matlab % float files. % % Function description: % The function computes the mean ERSP or ITC for the selected % dataset ICA components or data channels in the requested % frequency range and time window (the two are dependent). % Frequencies are equally log spaced. Options specify component % numbers, desired frequency range, time window length, % frequency resolution, significance level, and wavelet % cycles. See >> help newtimef and >> timef details % % Two Matlab files are saved (for ERSP and ITC). These contain % the ERSP|ITC image, plus the transform parameters % used to compute them. Saves the computed dataset mean images % in dataset-name files with extensions '.icaersp' and '.icaitc' % for ICA components or '.datersp', '.datitc' for data channels. % Usage: % >> [X times logfreqs ] = std_ersp(EEG, 'key', 'val', ...); % Inputs: % EEG - a loaded epoched EEG dataset structure. May be an array % of such structure containing several datasets. % % Other inputs: % 'trialindices' - [cell array] indices of trials for each dataset. % Default is EMPTY (no trials). NEEDS TO BE SET. % 'components' - [numeric vector] components of the EEG structure for which % activation spectrum will be computed. Note that because % computation of ERP is so fast, all components spectrum are % computed and saved. Only selected component % are returned by the function to Matlab % {default|[] -> all} % 'channels' - [cell array] channels of the EEG structure for which % activation spectrum will be computed. Note that because % computation of ERP is so fast, all channels spectrum are % computed and saved. Only selected channels % are returned by the function to Matlab % {default|[] -> none} % 'recompute' - ['on'|'off'] force recomputing ERP file even if it is % already on disk. % 'recompute' - ['on'|'off'] force recomputing data file even if it is % already on disk. % 'rmcomps' - [integer array] remove artifactual components (this entry % is ignored when plotting components). This entry contains % the indices of the components to be removed. Default is none. % 'interp' - [struct] channel location structure containing electrode % to interpolate ((this entry is ignored when plotting % components). Default is no interpolation. % 'fileout' - [string] name of the file to save on disk. The default % is the same name (with a different extension) as the % dataset given as input. % 'savetrials' - ['on'|'off'] save single-trials ERSP. Requires a lot of disk % space (dataset space on disk times 10) but allow for refined % single-trial statistics. % 'savefile' - ['on'|'off'] save file or simply return measures. % Default is to save files ('on'). % 'getparams' - ['on'|'off'] return optional parameters for the newtimef % function (and do not compute anything). This argument is % obsolete (default is 'off'). % % ERSP optional inputs: % 'type' - ['ersp'|'itc'|'ersp&itc'] save ERSP, ITC, or both data % types to disk {default: 'ersp'} % 'freqs' - [minHz maxHz] the ERSP/ITC frequency range to compute % and return. {default: 3 to EEG sampling rate divided by 3} % 'timelimits' - [minms maxms] time window (in ms) to compute. % {default: whole input epoch}. % 'cycles' - [wavecycles (factor)]. If 0 -> DFT (constant window length % across frequencies). % If >0 -> the number of cycles in each analysis wavelet. % If [wavecycles factor], wavelet cycles increase with % frequency, beginning at wavecyles. (0 < factor < 1) % factor = 0 -> fixed epoch length (DFT, as in FFT). % factor = 1 -> no increase (standard wavelets) % {default: [0]} % 'padratio' - (power of 2). Multiply the number of output frequencies % by dividing their frequency spacing through 0-padding. % Output frequency spacing is (low_freq/padratio). % 'alpha' - If in (0, 1), compute two-tailed permutation-based % probability thresholds and use these to mask the output % ERSP/ITC images {default: NaN} % 'powbase' - [ncomps,nfreqs] optional input matrix giving baseline power % spectra (not dB power, see >> help timef). % For use in repeated calls to timef() using the same baseine % {default|[] -> none; data windows centered before 0 latency} % % Other optional inputs: % This function will take any of the newtimef() optional inputs (for instance % to compute log-space frequencies)... % % Outputs: % X - the masked log ERSP/ITC of the requested ICA components/channels % in the selected frequency and time range. Note that for % optimization reasons, this parameter is now empty or 0. X % thus must be read from the datafile saved on disk. % times - vector of time points for which the ERSPs/ITCs were computed. % logfreqs - vector of (equally log spaced) frequencies (in Hz) at which the % log ERSP/ITC was evaluated. % parameters - parameters given as input to the newtimef function. % % Files written or modified: % [dataset_filename].icaersp <-- saved component ERSPs % [dataset_filename].icaitc <-- saved component ITCs % [dataset_filename].icatimef <-- saved component single % trial decompositions. % OR for channels % [dataset_filename].datersp <-- saved channel ERSPs % [dataset_filename].datitc <-- saved channel ITCs % [dataset_filename].dattimef <-- saved channel single % trial decompositions. % Example: % % Create mean ERSP and ITC images on disk for all comps from % % dataset EEG use three-cycle wavelets (at 3 Hz) to more than % % three-cycle wavelets at 50 Hz. See >> help newtimef % % Return the (equally log-freq spaced, probability-masked) ERSP. % >> [Xersp, times, logfreqs] = std_ersp(EEG, ... % 'type', 'ersp', 'freqs', [3 50], 'cycles', [3 0.5]); % % See also: timef(), std_itc(), std_erp(), std_spec(), std_topo(), std_preclust() % % Authors: Arnaud Delorme, Hilit Serby, SCCN, INC, UCSD, January, 2005- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [X, times, logfreqs, parameters] = std_ersp(EEG, varargin) if nargin < 1 help std_ersp; return; end; X = []; options = {}; if length(varargin) > 1 if ~isstr(varargin{1}) if length(varargin) > 0, options = { options{:} 'components' varargin{1} }; end; if length(varargin) > 1, options = { options{:} 'freqs' varargin{2} }; end; if length(varargin) > 2, options = { options{:} 'timewindow' varargin{3} }; end; if length(varargin) > 3, options = { options{:} 'cycles' varargin{4} }; end; if length(varargin) > 4, options = { options{:} 'padratio' varargin{5} }; end; if length(varargin) > 5, options = { options{:} 'alpha' varargin{6} }; end; if length(varargin) > 6, options = { options{:} 'type' varargin{7} }; end; if length(varargin) > 7, options = { options{:} 'powbase' varargin{8} }; end; else options = varargin; end; end; [g timefargs] = finputcheck(options, { ... 'components' 'integer' [] []; 'channels' { 'cell','integer' } { [] [] } {}; 'powbase' 'real' [] []; 'trialindices' { 'integer','cell' } [] []; 'savetrials' 'string' { 'on','off' } 'off'; 'plot' 'string' { 'on','off' } 'off'; % not documented for debugging purpose 'recompute' 'string' { 'on','off' } 'off'; 'getparams' 'string' { 'on','off' } 'off'; 'savefile' 'string' { 'on','off' } 'on'; 'timewindow' 'real' [] []; % ignored, deprecated 'fileout' 'string' [] ''; 'timelimits' 'real' [] [EEG(1).xmin EEG(1).xmax]*1000; 'cycles' 'real' [] [3 .5]; 'padratio' 'real' [] 1; 'freqs' 'real' [] [0 EEG(1).srate/2]; 'rmcomps' 'cell' [] cell(1,length(EEG)); 'interp' 'struct' { } struct([]); 'freqscale' 'string' [] 'log'; 'alpha' 'real' [] NaN; 'type' 'string' { 'ersp','itc','both','ersp&itc' } 'both'}, 'std_ersp', 'ignore'); if isstr(g), error(g); end; if isempty(g.trialindices), g.trialindices = cell(length(EEG)); end; if ~iscell(g.trialindices), g.trialindices = { g.trialindices }; end; % checking input parameters % ------------------------- if isempty(g.components) & isempty(g.channels) if isempty(EEG(1).icaweights) error('EEG.icaweights not found'); end g.components = 1:size(EEG(1).icaweights,1); disp('Computing ERSP with default values for all components of the dataset'); end % select ICA components or data channels % -------------------------------------- if isempty(g.fileout), g.fileout = fullfile(EEG(1).filepath, EEG(1).filename(1:end-4)); end; if ~isempty(g.components) g.indices = g.components; prefix = 'comp'; filenameersp = [ g.fileout '.icaersp' ]; filenameitc = [ g.fileout '.icaitc' ]; filenametrials = [ g.fileout '.icatimef' ]; if ~isempty(g.channels) error('Cannot compute ERSP/ITC for components and channels at the same time'); end; elseif ~isempty(g.channels) if iscell(g.channels) if ~isempty(g.interp) g.indices = eeg_chaninds(g.interp, g.channels, 0); else g.indices = eeg_chaninds(EEG(1), g.channels, 0); for ind = 2:length(EEG) if ~isequal(eeg_chaninds(EEG(ind), g.channels, 0), g.indices) error([ 'Channel information must be consistant when ' 10 'several datasets are merged for a specific design' ]); end; end; end; else g.indices = g.channels; end; prefix = 'chan'; filenameersp = [ g.fileout '.datersp' ]; filenameitc = [ g.fileout '.datitc' ]; filenametrials = [ g.fileout '.dattimef' ]; end; powbaseexist = 1; % used also later if isempty(g.powbase) | isnan(g.powbase) powbaseexist = 0; g.powbase = NaN*ones(length(g.indices),1); % default for timef() end; if size(g.powbase,1) ~= length(g.indices) error('powbase should be of size (ncomps,nfreqs)'); end % Check if ERSP/ITC information found in datasets and if fits requested parameters % ---------------------------------------------------------------------------- if exist( filenameersp ) & strcmpi(g.recompute, 'off') fprintf('Use existing file for ERSP: %s\n', filenameersp); return; end; % tmpersp = load( '-mat', filenameersp, 'parameters'); % AND IT SHOULD BE USED HERE TOO - ARNO % params = struct(tmpersp.parameters{:}); % if ~isequal(params.cycles, g.cycles) ... % | (g.padratio ~= params.padratio) ... % | ( (g.alpha~= params.alpha) & ~( isnan(g.alpha) & isnan(params.alpha)) ) % % if not computed with the requested parameters, recompute ERSP/ITC % % i.e., continue % else % disp('File ERSP/ITC data already present, computed with the same parameters: no need to recompute...'); % return; % no need to compute ERSP/ITC % end %end; % Compute ERSP parameters % ----------------------- parameters = { 'cycles', g.cycles, 'padratio', g.padratio, ... 'alpha', g.alpha, 'freqscale', g.freqscale, timefargs{:} }; defaultlowfreq = 3; [time_range] = compute_ersp_times(g.cycles, EEG(1).srate, ... [EEG(1).xmin EEG(1).xmax]*1000 , defaultlowfreq, g.padratio); if time_range(1) < time_range(2) && g.freqs(1) == 0 g.freqs(1) = defaultlowfreq; % for backward compatibility end parameters = { parameters{:} 'freqs' g.freqs }; if strcmpi(g.plot, 'off') parameters = { parameters{:} 'plotersp', 'off', 'plotitc', 'off', 'plotphase', 'off' }; end; if powbaseexist & time_range(1) >= 0 parameters{end+1} = 'baseboot'; parameters{end+1} = 0; fprintf('No pre-0 baseline spectral estimates: Using whole epoch for timef() "baseboot"\n'); end % return parameters % ----------------- if strcmpi(g.getparams, 'on') X = []; times = []; logfreqs = []; if strcmpi(g.savetrials, 'on') parameters = { parameters{:} 'savetrials', g.savetrials }; end; return; end; % No usable ERSP/ITC information available % --------------------------------- % tmpdata = []; % for index = 1:length(EEG) % if isstr(EEG(index).data) % TMP = eeg_checkset( EEG(index), 'loaddata' ); % load EEG.data and EEG.icaact % else % TMP = EEG; % end % if ~isempty(g.components) % if isempty(TMP.icaact) % make icaact if necessary % TMP.icaact = (TMP.icaweights*TMP.icasphere)* ... % reshape(TMP.data(TMP.icachansind,:,:), [ length(TMP.icachansind) size(TMP.data,2)*size(TMP.data,3) ]); % end; % tmpdata = reshape(TMP.icaact, [ size(TMP.icaact,1) size(TMP.data,2) size(TMP.data,3) ]); % tmpdata = tmpdata(g.indices, :,:); % else % if isempty(tmpdata) % tmpdata = TMP.data(g.indices,:,:); % else % tmpdata(:,:,end+1:end+size(TMP.data,3)) = TMP.data(g.indices,:,:); % end; % end; % end; options = {}; if ~isempty(g.rmcomps), options = { options{:} 'rmcomps' g.rmcomps }; end; if ~isempty(g.interp), options = { options{:} 'interp' g.interp }; end; if isempty(g.channels) X = eeg_getdatact(EEG, 'component', g.indices, 'trialindices', g.trialindices ); else X = eeg_getdatact(EEG, 'channel' , g.indices, 'trialindices', g.trialindices, 'rmcomps', g.rmcomps, 'interp', g.interp); end; % frame range % ----------- pointrange1 = round(max((g.timelimits(1)/1000-EEG(1).xmin)*EEG(1).srate, 1)); pointrange2 = round(min(((g.timelimits(2)+1000/EEG(1).srate)/1000-EEG(1).xmin)*EEG(1).srate, EEG(1).pnts)); pointrange = [pointrange1:pointrange2]; % Compute ERSP & ITC % ------------------ all_ersp = []; all_trials = []; all_itc = []; for k = 1:length(g.indices) % for each (specified) component if k>size(X,1), break; end; % happens for components if powbaseexist tmpparams = parameters; tmpparams{end+1} = 'powbase'; tmpparams{end+1} = g.powbase(k,:); else tmpparams = parameters; end; % Run timef() to get ERSP % ------------------------ timefdata = reshape(X(k,pointrange,:), 1, length(pointrange)*size(X,3)); if strcmpi(g.plot, 'on'), figure; end; flagEmpty = 0; if isempty(timefdata) flagEmpty = 1; timefdata = rand(1,length(pointrange)); end; [logersp,logitc,logbase,times,logfreqs,logeboot,logiboot,alltfX] ... = newtimef( timefdata, length(pointrange), g.timelimits, EEG(1).srate, tmpparams{2:end}); %figure; newtimef( TMP.data(32,:), EEG.pnts, [EEG.xmin EEG.xmax]*1000, EEG.srate, cycles, 'freqs', freqs); %figure; newtimef( timefdata, length(pointrange), g.timelimits, EEG.srate, cycles, 'freqs', freqs); if flagEmpty logersp = []; logitc = []; logbase = []; logeboot = []; logiboot = []; alltfX = []; end; if strcmpi(g.plot, 'on'), return; end; all_ersp = setfield( all_ersp, [ prefix int2str(g.indices(k)) '_ersp' ], single(logersp )); all_ersp = setfield( all_ersp, [ prefix int2str(g.indices(k)) '_erspbase' ], single(logbase )); all_ersp = setfield( all_ersp, [ prefix int2str(g.indices(k)) '_erspboot' ], single(logeboot)); all_itc = setfield( all_itc , [ prefix int2str(g.indices(k)) '_itc' ], single(logitc )); all_itc = setfield( all_itc , [ prefix int2str(g.indices(k)) '_itcboot' ], single(logiboot)); if strcmpi(g.savetrials, 'on') all_trials = setfield( all_trials, [ prefix int2str(g.indices(k)) '_timef' ], single( alltfX )); end; end X = logersp; % Save ERSP into file % ------------------- all_ersp.freqs = logfreqs; all_ersp.times = times; all_ersp.datatype = 'ERSP'; all_ersp.datafiles = computeFullFileName( { EEG.filepath }, { EEG.filename }); all_ersp.datatrials = g.trialindices; all_itc.freqs = logfreqs; all_itc.times = times; all_itc.parameters = parameters; all_itc.datatype = 'ITC'; all_itc.datafiles = computeFullFileName( { EEG.filepath }, { EEG.filename }); all_itc.datatrials = g.trialindices; all_trials.freqs = logfreqs; all_trials.times = times; all_trials.parameters = { options{:} parameters{:} }; all_trials.datatype = 'TIMEF'; all_trials.datafiles = computeFullFileName( { EEG.filepath }, { EEG.filename }); all_trials.datatrials = g.trialindices; if powbaseexist all_ersp.parameters = { parameters{:}, 'baseline', g.powbase }; else all_ersp.parameters = parameters; end; if ~isempty(g.channels) if ~isempty(g.interp) all_ersp.chanlabels = { g.interp(g.indices).labels }; all_itc.chanlabels = { g.interp(g.indices).labels }; all_trials.chanlabels = { g.interp(g.indices).labels }; elseif ~isempty(EEG(1).chanlocs) tmpchanlocs = EEG(1).chanlocs; all_ersp.chanlabels = { tmpchanlocs(g.indices).labels }; all_itc.chanlabels = { tmpchanlocs(g.indices).labels }; all_trials.chanlabels = { tmpchanlocs(g.indices).labels }; end; end; if strcmpi(g.savefile, 'on') if strcmpi(g.type, 'both') | strcmpi(g.type, 'ersp') | strcmpi(g.type, 'ersp&itc') std_savedat( filenameersp, all_ersp); end; if strcmpi(g.type, 'both') | strcmpi(g.type, 'itc') | strcmpi(g.type, 'ersp&itc') std_savedat( filenameitc , all_itc ); end; if strcmpi(g.savetrials, 'on') std_savedat( filenametrials , all_trials ); end; end; % compute full file names % ----------------------- function res = computeFullFileName(filePaths, fileNames); for index = 1:length(fileNames) res{index} = fullfile(filePaths{index}, fileNames{index}); end;
github
lcnhappe/happe-master
std_setcomps2cell.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_setcomps2cell.m
3,998
utf_8
6f637e1842fe051b8c6772049b76f035
% std_setcomps2cell - convert .sets and .comps to cell array. The .sets and % .comps format is useful for GUI but the cell array % format is used for plotting and statistics. % % Usage: % [ struct setinds allinds ] = std_setcomps2cell(STUDY, clustind); % [ struct setinds allinds ] = std_setcomps2cell(STUDY, sets, comps); % [ struct setinds allinds measurecell] = std_setcomps2cell(STUDY, sets, comps, measure); % % Author: Arnaud Delorme, CERCO/CNRS, UCSD, 2009- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ tmpstruct setinds allinds measurecell] = std_setcomps2cell(STUDY, sets, comps, measure, generateerror) if nargin < 5 generateerror = 0; end; if nargin == 4 && length(measure) == 1 generateerror = measure; measure = []; end; if nargin < 3 tmpstruct = STUDY.cluster(sets); sets = tmpstruct.sets; comps = tmpstruct.comps; % old format else tmpstruct = []; end; if nargin < 4 || isempty(measure) measure = comps; end; measure = repmat(measure, [size(sets,1) 1]); comps = repmat(comps , [size(sets,1) 1]); oldsets = sets; sets = reshape(sets , 1, size(sets ,1)*size(sets ,2)); measure = reshape(measure, 1, size(measure,1)*size(measure,2)); comps = reshape(comps , 1, size(comps ,1)*size(comps ,2)); % get indices for all groups and conditions % ----------------------------------------- setinfo = STUDY.design(STUDY.currentdesign).cell; allconditions = STUDY.design(STUDY.currentdesign).variable(1).value; allgroups = STUDY.design(STUDY.currentdesign).variable(2).value; nc = max(length(allconditions),1); ng = max(length(allgroups), 1); allinds = cell( nc, ng ); setinds = cell( nc, ng ); measurecell = cell( nc, ng ); for index = 1:length(setinfo) % get index of independent variables % ---------------------------------- condind = std_indvarmatch( setinfo(index).value{1}, allconditions); grpind = std_indvarmatch( setinfo(index).value{2}, allgroups ); if isempty(allconditions), condind = 1; end; if isempty(allgroups), grpind = 1; end; % get the position in sets where the dataset is % if several datasets check that they all have the same % ICA and component index % ----------------------- datind = setinfo(index).dataset; ind = find(datind(1) == sets); if ~isempty(ind) && length(datind) > 1 [ind1 ind2] = find(datind(1) == oldsets); columnica = oldsets(:,ind2(1)); if ~all(ismember(datind, columnica)); disp('Warning: STUDY design combines datasets with different ICA - use ICA only for artifact rejection'); end; end; measurecell{ condind, grpind } = [ measurecell{ condind, grpind } measure(ind) ]; allinds{ condind, grpind } = [ allinds{ condind, grpind } comps( ind) ]; setinds{ condind, grpind } = [ setinds{ condind, grpind } repmat(index, [1 length(ind)]) ]; end; tmpstruct.allinds = allinds; tmpstruct.setinds = setinds; if generateerror && isempty(setinds{1}) error( [ 'Some datasets not included in preclustering' 10 ... 'because of partial STUDY design. You need to' 10 ... 'use a STUDY design that includes all datasets.' ]); end;
github
lcnhappe/happe-master
pop_study.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_study.m
32,837
utf_8
7f2812b93e1ee6f7b6b9cca9dacc7844
% pop_study() - create a new STUDY set structure defining a group of related EEG datasets. % The STUDY set also contains information about each of the datasets: the % subject code, subject group, experimental condition, and session. This can % be provided interactively in a pop-up window or be automatically filled % in by the function. Defaults: Assume a different subject for each % dataset and only one condition; leave subject group and session fields % empty. Additional STUDY information about the STUDY name, task and % miscellaneous notes can also be saved in the STUDY structure. % Usage: % >> [ STUDY ALLEEG ] = pop_study([],[], 'gui', 'on'); % create new study interactively % >> [ STUDY ALLEEG ] = pop_study(STUDY, ALLEEG, 'gui', 'on'); % edit study interactively % >> [ STUDY ALLEEG ] = pop_study(STUDY, ALLEEG, 'key', 'val', ...); % edit study % % Optional Inputs: % STUDY - existing study structure. % ALLEEG - vector of EEG dataset structures to be included in the STUDY. % % Optional Inputs: % All "'key', 'val'" inputs of std_editset() may be used. % % Outputs: % STUDY - new STUDY set comprising some or all of the datasets in % ALLEEG, plus other information about the experiments. % ALLEEG - an updated ALLEEG structure including the STUDY datasets. % % Graphic interface buttons: % "STUDY set name" - [edit box] name for the STUDY structure {default: ''} % "STUDY set task name" - [edit box] name for the task performed by the subject {default: ''} % "STUDY set notes" - [edit box] notes about the experiment, the datasets, the STUDY, % or anything else to store with the rest of the STUDY information % {default: ''} % "subject" - [edit box] subject code associated with the dataset. If no % subject code is provided, each dataset will assumed to be from % a different subject {default: 'S1', 'S2', ..., 'Sn'} % "session" - [edit box] dataset session. If no session information is % provided, all datasets that belong to one subject are assumed to % have been recorded within one session {default: []} % "condition" - [edit box] dataset condition. If no condition code is provided, % all datasets are assumed to be from the same condition {default:[]} % "group" - [edit box] the subject group the dataset belongs to. If no group % is provided, all subjects and datasets are assumed to belong to % the same group. {default: []} % "Save this STUDY set to disk file" - [check box] If checked, save the new STUDY set % structure to disk. If no filename is provided, a window will % pop up to ask for it. % % See also: std_editset, pop_loadstudy(), pop_preclust(), pop_clust() % % Authors: Arnaud Delorme, Hilit Serby, Scott Makeig, SCCN, INC, UCSD, July 22, 2005 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, July 22, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Coding notes: Useful information on functions and global variables used. function [STUDY, ALLEEG, com] = pop_study(STUDY, ALLEEG, varargin) com = ''; if nargin < 1 help pop_study; return; end % type of call (gui, script or internal) % -------------------------------------- mode = 'internal_command'; if ~isstr(STUDY) %initial settings mode = 'script'; if nargin > 2 for index = 1:length(varargin) if isstr(varargin{index}) if strcmpi(varargin{index}, 'gui') mode = 'gui'; end; end; end; end; end; if isempty(STUDY) newstudy = 1; STUDY.name = ''; STUDY.task = ''; STUDY.notes = ''; STUDY.filename = ''; STUDY.cluster = []; STUDY.history = 'STUDY = [];'; else newstudy = 0; end; if strcmpi(mode, 'script') % script mode [STUDY ALLEEG] = std_editset(STUDY, ALLEEG, varargin{:}); return; elseif strcmpi(mode, 'gui') % GUI mode % show warning if necessary % ------------------------- if isreal(ALLEEG) if ALLEEG == 0 res = questdlg2( strvcat('Datasets currently loaded will be removed from EEGLAB memory.', ... 'Are you sure you want to continue?'), ... 'Discard loaded EEGLAB datasets?', 'Cancel', 'Yes', 'Yes'); if strcmpi(res, 'cancel'), return; end; end; ALLEEG = []; end; % set initial datasetinfo % ----------------------- if isfield(STUDY, 'datasetinfo') datasetinfo = STUDY.datasetinfo; different = 0; for k = 1:length(ALLEEG) if ~strcmpi(datasetinfo(k).filename, ALLEEG(k).filename), different = 1; break; end; if ~strcmpi(datasetinfo(k).subject, ALLEEG(k).subject), different = 1; break; end; if ~strcmpi(datasetinfo(k).condition, ALLEEG(k).condition), different = 1; break; end; if ~strcmpi(char(datasetinfo(k).group), char(ALLEEG(k).group)), different = 1; break; end; if datasetinfo(k).session ~= ALLEEG(k).session, different = 1; break; end; end if different info = 'from_STUDY_different_from_ALLEEG'; else info = 'from_STUDY'; end; if ~isfield(datasetinfo, 'comps'); datasetinfo(1).comps = []; end; else info = 'from_ALLEEG'; if length(ALLEEG) > 0 datasetinfo(length(ALLEEG)).filename = []; datasetinfo(length(ALLEEG)).filepath = []; datasetinfo(length(ALLEEG)).subject = []; datasetinfo(length(ALLEEG)).session = []; datasetinfo(length(ALLEEG)).condition = []; datasetinfo(length(ALLEEG)).group = []; for k = 1:length(ALLEEG) datasetinfo(k).filename = ALLEEG(k).filename; datasetinfo(k).filepath = ALLEEG(k).filepath; datasetinfo(k).subject = ALLEEG(k).subject; datasetinfo(k).session = ALLEEG(k).session; datasetinfo(k).condition = ALLEEG(k).condition; datasetinfo(k).group = ALLEEG(k).group; end if ~isfield(datasetinfo, 'comps'); datasetinfo(1).comps = []; end; else datasetinfo = []; end; end; nextpage = 'pop_study(''nextpage'', gcbf);'; prevpage = 'pop_study(''prevpage'', gcbf);'; delset = 'pop_study(''clear'', gcbf, get(gcbo, ''userdata''));'; loadset = 'pop_study(''load'', gcbf, get(guiind, ''userdata''), get(guiind, ''string'')); clear guiind;'; loadsetedit = [ 'guiind = gcbo;' loadset ]; subcom = 'pop_study(''subject'' , gcbf, get(gcbo, ''userdata''), get(gcbo, ''string''));'; sescom = 'pop_study(''session'' , gcbf, get(gcbo, ''userdata''), get(gcbo, ''string''));'; condcom = 'pop_study(''condition'', gcbf, get(gcbo, ''userdata''), get(gcbo, ''string''));'; grpcom = 'pop_study(''group'' , gcbf, get(gcbo, ''userdata''), get(gcbo, ''string''));'; compcom = 'pop_study(''component'', gcbf, get(gcbo, ''userdata''), get(gcbo, ''string''));'; cb_del = 'pop_study(''delclust'' , gcbf, ''showwarning'');'; cb_dipole = 'pop_study(''dipselect'', gcbf, ''showwarning'');'; browsestudy = [ '[filename, filepath] = uiputfile2(''*.study'', ''Use exsiting STUDY set to import dataset information -- pop_study()''); ' ... 'set(findobj(''parent'', gcbf, ''tag'', ''usestudy_file''), ''string'', [filepath filename]);' ]; saveSTUDY = [ 'set(findobj(''parent'', gcbf, ''userdata'', ''save''), ''enable'', fastif(get(gcbo, ''value'')==1, ''on'', ''off''));' ]; browsesave = [ '[filename, filepath] = uiputfile2(''*.study'', ''Save STUDY with .study extension -- pop_clust()''); ' ... 'if filename ~= 0,' ... ' set(findobj(''parent'', gcbf, ''tag'', ''studyfile''), ''string'', [filepath filename]);' ... 'end;' ... 'clear filename filepath;' ]; texthead = fastif(newstudy, 'Create a new STUDY set', 'Edit STUDY set information - remember to save changes'); guispec = { ... {'style' 'text' 'string' texthead 'FontWeight' 'Bold' 'HorizontalAlignment' 'center'} ... {} {'style' 'text' 'string' 'STUDY set name:' } { 'style' 'edit' 'string' STUDY.name 'tag' 'study_name' } ... {} {'style' 'text' 'string' 'STUDY set task name:' } { 'style' 'edit' 'string' STUDY.task 'tag' 'study_task' } ... {} {'style' 'text' 'string' 'STUDY set notes:' } { 'style' 'edit' 'string' STUDY.notes 'tag' 'study_notes' } {}... {} ... {'style' 'text' 'string' 'dataset filename' 'userdata' 'addt'} {'style' 'text' 'string' 'browse' 'userdata' 'addt'} ... {'style' 'text' 'string' 'subject' 'userdata' 'addt'} ... {'style' 'text' 'string' 'session' 'userdata' 'addt'} ... {'style' 'text' 'string' 'condition' 'userdata' 'addt'} ... {'style' 'text' 'string' 'group' 'userdata' 'addt'} ... {'style' 'pushbutton' 'string' 'Select by r.v.' 'userdata' 'addt' 'callback' cb_dipole } ... {} }; guigeom = { [1] [0.2 1 3.5] [0.2 1 3.5] [0.2 1 3.5] [1] [0.2 1.05 0.35 0.4 0.35 0.6 0.4 0.6 0.3]}; % create edit boxes % ----------------- for index = 1:10 guigeom = { guigeom{:} [0.2 1 0.2 0.5 0.2 0.5 0.5 0.5 0.3] }; select_com = ['[inputname, inputpath] = uigetfile2(''*.set;*.SET'', ''Choose dataset to add to STUDY -- pop_study()'');'... 'if inputname ~= 0,' ... ' guiind = findobj(''parent'', gcbf, ''tag'', ''set' int2str(index) ''');' ... ' set( guiind,''string'', [inputpath inputname]);' ... loadset ... 'end; clear inputname inputpath;']; numstr = int2str(index); guispec = { guispec{:}, ... {'style' 'text' 'string' numstr 'tag' [ 'num' int2str(index) ] 'userdata' index }, ... {'style' 'edit' 'string' '' 'tag' [ 'set' int2str(index) ] 'userdata' index 'callback' loadsetedit}, ... {'style' 'pushbutton' 'string' '...' 'tag' [ 'brw' int2str(index) ] 'userdata' index 'Callback' select_com}, ... {'style' 'edit' 'string' '' 'tag' [ 'sub' int2str(index) ] 'userdata' index 'Callback' subcom}, ... {'style' 'edit' 'string' '' 'tag' [ 'sess' int2str(index) ] 'userdata' index 'Callback' sescom}, ... {'style' 'edit' 'string' '' 'tag' [ 'cond' int2str(index) ] 'userdata' index 'Callback' condcom}, ... {'style' 'edit' 'string' '' 'tag' [ 'group' int2str(index) ] 'userdata' index 'Callback' grpcom}, ... {'style' 'pushbutton' 'string' 'All comp.' 'tag' [ 'comps' int2str(index) ] 'userdata' index 'Callback' compcom}, ... {'style' 'pushbutton' 'string' 'CLear' 'tag' [ 'clear' int2str(index) ] 'userdata' index 'callback' delset} }; end; if strcmpi(info, 'from_STUDY_different_from_ALLEEG') text1 = 'Dataset info (condition, group, ...) differs from study info. [set] = Overwrite dataset info for each dataset on disk.'; value_cb = 0; else text1 = 'Update dataset info - datasets stored on disk will be overwritten (unset = Keep study info separate).'; value_cb = 1; end; guispec = { guispec{:}, ... {'style' 'text' 'string' 'Important note: Removed datasets will not be saved before being deleted from EEGLAB memory' }, ... {}, ... {'style' 'pushbutton' 'string' '<' 'Callback' prevpage 'userdata' 'addt'}, ... {'style' 'text' 'string' 'Page 1' 'tag' 'page' 'horizontalalignment' 'center' }, ... {'style' 'pushbutton' 'string' '>' 'Callback' nextpage 'userdata' 'addt'}, {}, ... {}, ... {'style' 'checkbox' 'value' value_cb 'tag' 'copy_to_dataset' }, ... {'style' 'text' 'string' text1 }, ... {'style' 'checkbox' 'value' 0 'tag' 'delclust' 'callback' cb_del }, ... {'style' 'text' 'string' 'Delete cluster information (to allow loading new datasets, set new components for clustering, etc.)' } }; guigeom = { guigeom{:} [1] [1 0.2 0.3 0.2 1] [1] [0.14 3] [0.14 3] }; % if ~isempty(STUDY.filename) % guispec{end-3} = {'style' 'checkbox' 'string' '' 'value' 0 'tag' 'studyfile' }; % guispec{end-2} = {'style' 'text' 'string' 'Re-save STUDY. Uncheck and use menu File > Save study as to save under a new filename'}; % guispec(end-1) = []; % guigeom{end-1} = [0.14 3]; % end; fig_arg{1} = ALLEEG; % datasets fig_arg{2} = datasetinfo; % datasetinfo fig_arg{3} = 1; % page fig_arg{4} = {}; % all commands fig_arg{5} = (length(STUDY.cluster) > 1); % are cluster present fig_arg{6} = STUDY; % are cluster present % generate GUI % ------------ optiongui = { 'geometry', guigeom, ... 'uilist' , guispec, ... 'helpcom' , 'pophelp(''pop_study'')', ... 'title' , 'Create a new STUDY set -- pop_study()', ... 'userdata', fig_arg, ... 'eval' , 'pop_study(''delclust'', gcf); pop_study(''redraw'', gcf);' }; [result, userdat2, strhalt, outstruct, instruct] = inputgui( 'mode', 'noclose', optiongui{:}); if isempty(result), return; end; if ~isempty(get(0, 'currentfigure')) currentfig = gcf; end; while test_wrong_parameters(currentfig) [result, userdat2, strhalt, outstruct] = inputgui( 'mode', currentfig, optiongui{:}); if isempty(result), return; end; end; close(currentfig); % convert GUI selection to options % -------------------------------- allcom = simplifycom(userdat2{4}); options = {}; if ~strcmpi(result{1}, STUDY.name ), options = { options{:} 'name' result{1} }; end; if ~strcmpi(result{2}, STUDY.task ), options = { options{:} 'task' result{2} }; end; if ~strcmpi(result{3}, STUDY.notes), options = { options{:} 'notes' result{3} }; end; if ~isempty(allcom), options = { options{:} 'commands' allcom }; end; % if isnumeric(outstruct(1).studyfile) % if outstruct(1).studyfile == 1, options = { options{:} 'resave' 'on' }; end; % else % if ~isempty(outstruct(1).studyfile), options = { options{:} 'filename' outstruct(1).studyfile }; end; % end; if outstruct(1).copy_to_dataset == 1 options = { options{:} 'updatedat' 'on' }; eeglab_options; if option_storedisk options = { options{:} 'savedat' 'on' }; end; else options = { options{:} 'updatedat' 'off' }; end; if outstruct(1).delclust == 1 options = { options{:} 'rmclust' 'on' }; else options = { options{:} 'rmclust' 'off' }; end; % --- if ~isequal(outstruct, instruct) && (outstruct(1).delclust ~= 1) % notice that isequal is sensitive to fields order. isequaln isn't backward compatible strfields = fieldnames(outstruct); for i = 1:length(strfields) strdiff(i) = strcmp(outstruct.(strfields{i}),instruct.(strfields{i})); end % If the information of the STUDY differ, then remove information from clusters % Ignoring ('STUDY set name','STUDY set task','STUDY set notes') if any(~strdiff(3:end-2)) options{find(strcmp(options,'rmclust'))+1} = 'on'; end end % --- % check channel labels % -------------------- ALLEEG = userdat2{1}; if isfield(ALLEEG, 'chanlocs') allchans = { ALLEEG.chanlocs }; if any(cellfun('isempty', allchans)) txt = strvcat('Some datasets do not have channel labels. Do you wish to generate', ... 'channel labels automatically for all datasets ("1" for channel 1,', ... '"2" for channel 2, ...). Datasets will be overwritten on disk.', ... 'If you abort, the STUDY will not be created.'); res = questdlg2(txt, 'Dataset format problem', 'Yes', 'No, abort', 'Yes'); if strcmpi(res, 'yes'), options = { options{:} 'addchannellabels' 'on' 'savedat' 'on'}; else return; end; end; end; % run command and create history % ------------------------------ com = sprintf( '[STUDY ALLEEG] = std_editset( STUDY, ALLEEG, %s );\n[STUDY ALLEEG] = std_checkset(STUDY, ALLEEG);', vararg2str(options) ); [STUDY ALLEEG] = std_editset(STUDY, ALLEEG, options{:}); else % internal command com = STUDY; hdl = ALLEEG; %figure handle % userdata info % ------------- userdat = get(hdl, 'userdata'); ALLEEG = userdat{1}; datasetinfo = userdat{2}; page = userdat{3}; allcom = userdat{4}; clusterpresent = userdat{5}; STUDY = userdat{6}; switch com case 'subject' guiindex = varargin{1}; realindex = guiindex+(page-1)*10; datasetinfo(realindex).subject = varargin{2}; if get(findobj(hdl, 'tag', 'copy_to_dataset'), 'value') ALLEEG(realindex).subject = varargin{2}; end; allcom = { allcom{:}, { 'index' realindex 'subject' varargin{2} } }; userdat{1} = ALLEEG; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); case 'session' guiindex = varargin{1}; realindex = guiindex+(page-1)*10; datasetinfo(realindex).session = str2num(varargin{2}); if get(findobj(hdl, 'tag', 'copy_to_dataset'), 'value') ALLEEG(realindex).session = str2num(varargin{2}); end; allcom = { allcom{:}, { 'index' realindex 'session' str2num(varargin{2}) } }; userdat{1} = ALLEEG; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); case 'group' guiindex = varargin{1}; realindex = guiindex+(page-1)*10; datasetinfo(realindex).group = varargin{2}; if get(findobj(hdl, 'tag', 'copy_to_dataset'), 'value') ALLEEG(realindex).group = varargin{2}; end; allcom = { allcom{:}, { 'index' realindex 'group' varargin{2} } }; userdat{1} = ALLEEG; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); case 'condition' guiindex = varargin{1}; realindex = guiindex+(page-1)*10; datasetinfo(realindex).condition = varargin{2}; if get(findobj(hdl, 'tag', 'copy_to_dataset'), 'value') ALLEEG(realindex).conditon = varargin{2}; end; allcom = { allcom{:}, { 'index' realindex 'condition' varargin{2} } }; userdat{1} = ALLEEG; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); case 'dipselect' STUDY.datasetinfo = datasetinfo; res = inputdlg2_with_checkbox( { strvcat('Enter maximum residual (topo map - dipole proj.) var. (in %)', ... 'NOTE: This will delete any existing component clusters!') }, ... 'pop_study(): Pre-select components', 1, { '15' },'pop_study' ); if isempty(res), return; end; if res{2} == 1 STUDY = std_editset(STUDY, ALLEEG, 'commands', { 'inbrain', 'on', 'dipselect' str2num(res{1})/100 'return' }); allcom = { allcom{:}, { 'inbrain', 'on', 'dipselect' str2num(res{1})/100 } }; else STUDY = std_editset(STUDY, ALLEEG, 'commands', { 'inbrain', 'off','dipselect' str2num(res{1})/100 'return' }); allcom = { allcom{:}, { 'inbrain', 'off', 'dipselect' str2num(res{1})/100 } }; end; datasetinfo = STUDY.datasetinfo; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); set(findobj(hdl, 'tag', 'delclust'), 'value', 1); pop_study('delclust', hdl); pop_study('redraw', hdl); case 'component' guiindex = varargin{1}; realindex = guiindex+(page-1)*10; for index = 1:size(ALLEEG(realindex).icaweights,1) complist{index} = [ 'IC ' int2str(index) ]; end; [tmps,tmpv] = listdlg2('PromptString', 'Select components', 'SelectionMode', ... 'multiple', 'ListString', strvcat(complist), 'initialvalue', datasetinfo(realindex).comps); if tmpv ~= 0 % no cancel % find other subjects with the same session % ----------------------------------------- for index = 1:length(datasetinfo) if realindex == index | (strcmpi(datasetinfo(index).subject, datasetinfo(realindex).subject) & ... ~isempty(datasetinfo(index).subject) & ... isequal( datasetinfo(index).session, datasetinfo(realindex).session ) ) datasetinfo(index).comps = tmps; allcom = { allcom{:}, { 'index' index 'comps' tmps } }; set(findobj('tag', [ 'comps' int2str(index) ]), ... 'string', formatbut(tmps), 'horizontalalignment', 'left'); end; end; end; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); pop_study('redraw', hdl); case 'clear' guiindex = varargin{1}; realindex = guiindex+(page-1)*10; datasetinfo(realindex).filename = ''; datasetinfo(realindex).filepath = ''; datasetinfo(realindex).subject = ''; datasetinfo(realindex).session = []; datasetinfo(realindex).condition = ''; datasetinfo(realindex).group = ''; datasetinfo(realindex).comps = []; allcom = { allcom{:}, { 'remove' realindex } }; userdat{1} = ALLEEG; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); pop_study('redraw', hdl); case 'nextpage' userdat{3} = page+1; set(hdl, 'userdata', userdat); pop_study('redraw', hdl); case 'prevpage' userdat{3} = max(1,page-1); set(hdl, 'userdata', userdat); pop_study('redraw', hdl); case 'load' guiindex = varargin{1}; filename = varargin{2}; realindex = guiindex+(page-1)*10; % load dataset % ------------ TMPEEG = pop_loadset('filename', filename, 'loadmode', 'info'); ALLEEG = eeg_store(ALLEEG, eeg_checkset(TMPEEG), realindex); % update datasetinfo structure % ---------------------------- datasetinfo(realindex).filename = ALLEEG(realindex).filename; datasetinfo(realindex).filepath = ALLEEG(realindex).filepath; datasetinfo(realindex).subject = ALLEEG(realindex).subject; datasetinfo(realindex).session = ALLEEG(realindex).session; datasetinfo(realindex).condition = ALLEEG(realindex).condition; datasetinfo(realindex).group = ALLEEG(realindex).group; datasetinfo(realindex).comps = []; allcom = { allcom{:}, { 'index' realindex 'load' filename } }; userdat{1} = ALLEEG; userdat{2} = datasetinfo; userdat{4} = allcom; set(hdl, 'userdata', userdat); pop_study('redraw', hdl); case 'delclust' if clusterpresent if ~get(findobj(hdl, 'tag', 'delclust'), 'value') for k = 1:10 set(findobj('parent', hdl, 'tag',['set' num2str(k)]), 'style', 'text'); set(findobj('parent', hdl, 'tag',['comps' num2str(k)]), 'enable', 'off'); set(findobj('parent', hdl, 'tag',['sess' num2str(k)]), 'enable', 'off'); set(findobj('parent', hdl, 'tag',['brw' num2str(k)]), 'enable', 'off'); end; else for k = 1:10 set(findobj('parent', hdl, 'tag',['set' num2str(k)]), 'style', 'edit'); set(findobj('parent', hdl, 'tag',['comps' num2str(k)]), 'enable', 'on'); set(findobj('parent', hdl, 'tag',['sess' num2str(k)]), 'enable', 'on'); set(findobj('parent', hdl, 'tag',['brw' num2str(k)]), 'enable', 'on'); end; end; else set(findobj(hdl, 'tag', 'delclust'), 'value', 0) if nargin > 2 warndlg2('No cluster present'); end; end; case 'redraw' for k = 1:10 kk = k+(page-1)*10; % real index if kk > length(datasetinfo) set(findobj('parent', hdl, 'tag',['num' num2str(k)]), 'string', int2str(kk)); set(findobj('parent', hdl, 'tag',['set' num2str(k)]), 'string', ''); set(findobj('parent', hdl, 'tag',['sub' num2str(k)]), 'string',''); set(findobj('parent', hdl, 'tag',['sess' num2str(k)]), 'string',''); set(findobj('parent', hdl, 'tag',['cond' num2str(k)]), 'string',''); set(findobj('parent', hdl, 'tag',['comps' num2str(k)]), 'string',''); set(findobj('parent', hdl, 'tag',['group' num2str(k)]), 'string',''); else set(findobj('parent', hdl, 'tag',['num' num2str(k)]), 'string', int2str(kk)); set(findobj('parent', hdl, 'tag',['set' num2str(k)]), 'string', fullfile(char(datasetinfo(kk).filepath), char(datasetinfo(kk).filename))); set(findobj('parent', hdl, 'tag',['sub' num2str(k)]), 'string', datasetinfo(kk).subject); set(findobj('parent', hdl, 'tag',['sess' num2str(k)]), 'string', int2str(datasetinfo(kk).session)); set(findobj('parent', hdl, 'tag',['cond' num2str(k)]), 'string', datasetinfo(kk).condition); set(findobj('parent', hdl, 'tag',['comps' num2str(k)]), 'string', formatbut(datasetinfo(kk).comps)); set(findobj('parent', hdl, 'tag',['group' num2str(k)]), 'string', datasetinfo(kk).group); end; end if page<10 pagestr = [ ' Page ' int2str(page) ]; else pagestr = [ 'Page ' int2str(page) ]; end; set(findobj('parent', hdl, 'tag','page'), 'string', pagestr ); end end; % remove empty elements in allcom % ------------------------------- function allcom = simplifycom(allcom); for index = length(allcom)-1:-1:1 if strcmpi(allcom{index}{1}, 'index') & strcmpi(allcom{index+1}{1}, 'index') if allcom{index}{2} == allcom{index+1}{2} % same dataset index allcom{index}(end+1:end+length(allcom{index+1})-2) = allcom{index+1}(3:end); allcom(index+1) = []; end; end; end; % test for wrong parameters % ------------------------- function bool = test_wrong_parameters(hdl) userdat = get(hdl, 'userdata'); datasetinfo = userdat{2}; datastrinfo = userdat{1}; bool = 0; for index = 1:length(datasetinfo) if ~isempty(datasetinfo(index).filename) if isempty(datasetinfo(index).subject) & bool == 0 bool = 1; warndlg2('All datasets must have a subject name or code', 'Error'); end; end; end; nonempty = cellfun('isempty', { datasetinfo.filename }); anysession = any(~cellfun('isempty', { datasetinfo(nonempty).session })); allsession = all(~cellfun('isempty', { datasetinfo(nonempty).session })); anycondition = any(~cellfun('isempty', { datasetinfo(nonempty).condition })); allcondition = all(~cellfun('isempty', { datasetinfo(nonempty).condition })); anygroup = any(~cellfun('isempty', { datasetinfo(nonempty).group })); allgroup = all(~cellfun('isempty', { datasetinfo(nonempty).group })); anydipfit = any(~cellfun('isempty', { datastrinfo(nonempty).dipfit})); alldipfit = all(~cellfun('isempty', { datastrinfo(nonempty).dipfit})); if anygroup & ~allgroup bool = 1; warndlg2('If one dataset has a group label, they must all have one', 'Error'); end; if anycondition & ~allcondition bool = 1; warndlg2('If one dataset has a condition label, they must all have one', 'Error'); end; if anysession & ~allsession bool = 1; warndlg2('If one dataset has a session index, they must all have one', 'Error'); end; if anydipfit & ~alldipfit bool = 1; warndlg2('Dipole''s data across datasets is not uniform'); end; function strbut = formatbut(complist) if isempty(complist) strbut = 'All comp.'; else if length(complist) > 3, strbut = [ 'Comp.: ' int2str(complist(1:2)) ' ...' ]; else strbut = [ 'Comp.: ' int2str(complist) ]; end; end; %---------------------- helper functions ------------------------------------- function [result] = inputdlg2_with_checkbox(Prompt,Title,LineNo,DefAns,funcname); if nargin < 4 help inputdlg2; return; end; if nargin < 5 funcname = ''; end; if length(Prompt) ~= length(DefAns) error('inputdlg2: prompt and default answer cell array must have the smae size'); end; geometry = {}; listgui = {}; % determine if vertical or horizontal % ----------------------------------- geomvert = []; for index = 1:length(Prompt) geomvert = [geomvert size(Prompt{index},1) 1]; % default is vertical geometry end; if all(geomvert == 1) & length(Prompt) > 1 geomvert = []; % horizontal end; for index = 1:length(Prompt) if ~isempty(geomvert) % vertical geometry = { geometry{:} [ 1] [1 ]}; else geometry = { geometry{:} [ 1 0.6 ]}; end; listgui = { listgui{:} { 'Style', 'text', 'string', Prompt{index}} ... { 'Style', 'edit', 'string', DefAns{index} } { 'Style', 'checkbox', 'string','Keep only in-brain dipoles (requires Fieldtrip extension).','value',1 } }; end; geometry = [1 1 1];geomvert = [2 1 1]; result = inputgui(geometry, listgui, ['pophelp(''' funcname ''');'], Title, [], 'normal', geomvert);
github
lcnhappe/happe-master
std_convertdesign.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_convertdesign.m
1,356
utf_8
186f56b44af9306eb22e85b0ccd8896b
% std_convertdesign - temporary function converting STUDY design legacy % format to new format. function STUDY = std_convertdesign(STUDY,ALLEEG); for index = 1:length(STUDY.design) design(index).name = STUDY.design(index).name; design(index).variable(1).label = STUDY.design(index).indvar1; design(index).variable(2).label = STUDY.design(index).indvar2; design(index).variable(1).value = STUDY.design(index).condition; design(index).variable(2).value = STUDY.design(index).group; design(index).variable(1).pairing = STUDY.design(index).statvar1; design(index).variable(2).pairing = STUDY.design(index).statvar2; design(index).cases.label = 'subject'; design(index).cases.value = STUDY.design(index).subject; design(index).include = STUDY.design(index).includevarlist; setinfo = STUDY.design(index).setinfo; for c = 1:length(setinfo) design(index).cell(c).dataset = setinfo(c).setindex; design(index).cell(c).trials = setinfo(c).trialindices; design(index).cell(c).value = { setinfo(c).condition setinfo(c).group }; design(index).cell(c).case = setinfo(c).subject; design(index).cell(c).filebase = setinfo(c).filebase; end; end; STUDY.design = design; STUDY = std_selectdesign(STUDY, ALLEEG, STUDY.currentdesign);
github
lcnhappe/happe-master
std_renameclust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_renameclust.m
4,375
utf_8
0daee3bdeeb5edb5b7c913f30868434b
% std_renameclust() - Commandline function, to rename clusters using specified (mnemonic) names. % Usage: % >> [STUDY] = std_renameclust(STUDY, ALLEEG, cluster, new_name); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in the STUDY. % ALLEEG for a STUDY set is typically created using load_ALLEEG(). % cluster - single cluster number. % new_name - [string] mnemonic cluster name. % % Outputs: % STUDY - the input STUDY set structure modified according to specified new cluster name. % % Example: % >> cluster = 7; new_name = 'artifacts'; % >> [STUDY] = std_renameclust(STUDY,ALLEEG, cluster, new_name); % Cluster 7 name (i.e.: STUDY.cluster(7).name) will change to 'artifacts 7'. % % See also pop_clustedit % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 07, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_renameclust(STUDY, ALLEEG, cls, new_name) if ~exist('cls') error('std_renameclust: you must provide a cluster number to rename.'); end if isempty(cls) error('std_renameclust: you must provide a cluster number to rename.'); end if ~exist('new_name') error('std_renameclust: you must provide a new cluster name.'); end if strncmpi('Notclust',STUDY.cluster(cls).name,8) % Don't rename Notclust 'clusters' warndlg2('std_renameclust: Notclust cannot be renamed'); return; end ti = strfind(STUDY.cluster(cls).name, ' '); clus_id = STUDY.cluster(cls).name(ti(end) + 1:end); new_name = sprintf('%s %s', new_name, clus_id); % If the cluster have children cluster update their parent cluster name to the % new cluster. if ~isempty(STUDY.cluster(cls).child) for k = 1:length(STUDY.cluster(cls).child) child_cls = STUDY.cluster(cls).child{k}; child_id = find(strcmp({STUDY.cluster.name},child_cls)); parent_id = find(strcmp(STUDY.cluster(child_id).parent,STUDY.cluster(cls).name)); STUDY.cluster(child_id).parent{parent_id} = new_name; end end % If the cluster has parent clusters, update the parent clusters with the % new cluster name of child cluster. if ~isempty(STUDY.cluster(cls).parent) for k = 1:length(STUDY.cluster(cls).parent) parent_cls = STUDY.cluster(cls).parent{k}; parent_id = find(strcmp({STUDY.cluster.name},parent_cls)); STUDY.cluster(parent_id).child{find(strcmp(STUDY.cluster(parent_id).child,STUDY.cluster(cls).name))} = new_name; end end % If the cluster have an Outlier cluster, update the Outlier cluster name. outlier_clust = std_findoutlierclust(STUDY,cls); %find the outlier cluster for this cluster if outlier_clust ~= 0 ti = strfind(STUDY.cluster(outlier_clust).name, ' '); clus_id = STUDY.cluster(outlier_clust).name(ti(end) + 1:end); % If the outlier has parent clusters, update the parent clusters with the % new cluster name of child cluster. for k = 1:length(STUDY.cluster(outlier_clust).parent) parent_cls = STUDY.cluster(outlier_clust).parent{k}; parent_id = find(strcmp({STUDY.cluster.name},parent_cls)); STUDY.cluster(parent_id).child{find(strcmp(STUDY.cluster(parent_id).child,STUDY.cluster(outlier_clust).name))} = sprintf('Outliers %s %s', new_name, clus_id); end STUDY.cluster(outlier_clust).name = sprintf('Outliers %s %s', new_name, clus_id); end % Rename cluster STUDY.cluster(cls).name = new_name;
github
lcnhappe/happe-master
toporeplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/toporeplot.m
32,771
utf_8
a2d2fb39ae360df3cbefbd0d42f15e4a
% toporeplot() - re-plot a saved topoplot() output image (a square matrix) % in a 2-D circular scalp map view (as looking down at the top % of the head). May also be used to re-plot a mean topoplot() % map for a number of subjects and/or components without all % the constitutent maps having the same channel montage. % Nose is at top of plot. Left = left. See topoplot(). % Usage: % >> toporeplot(topoimage,'plotrad',val1, 'intrad',val2); % % Use an existing (or mean) topoplot output image. Give the % % original 'intrad' and 'plotrad' values used to in topoimage. % >> toporeplot(topoimage,'plotrad',val1,'xsurface', Xi, 'ysurface',Yi ); % % Use an existing (or mean) topoplot output image. Give the same % % 'plotrad' value used to create it. Since 'intrad' was not input % % to topoplot(), give the grid axes Xi and Yi as inputs. % >> [hfig val ]= toporeplot(topoimage,'plotrad',val1, 'Param1','Value1', ...); % % Give one of the two options above plus other optional parameters. % Required inputs: % topoimage - output image matrix (as) from topoplot(). For maximum flexibility, % create topoimage using topoplot() options: 'plotrad',1, 'intrad',1 % 'plotrad' - [0.15<=float<=1.0] plotting radius = max channel arc_length to plot. % If plotrad > 0.5, chans with arc_length > 0.5 (i.e. below ears,eyes) % are plotted in a circular 'skirt' outside the cartoon head. % The topoimage depends on 'plotrad', so 'plotrad' is required to % reproduce the 'topoplot' image. % Optional inputs: % 'chanlocs' - name of an EEG electrode position file (see >> topoplot example). % Else, an EEG.chanlocs structure (see >> help pop_editset). % 'maplimits' - 'absmax' -> scale map colors to +/- the absolute-max (makes green 0); % 'maxmin' -> scale colors to the data range (makes green mid-range); % [lo,hi] -> use user-definined lo/hi limits {default: 'absmax'} % 'style' - 'map' -> plot colored map only % 'contour' -> plot contour lines only % 'both' -> plot both colored map and contour lines {default: 'both'} % 'fill' -> plot constant color between contour lines % 'blank' -> plot electrode locations only, requires electrode info. % 'electrodes' - 'on','off','labels','numbers','ptslabels','ptsnumbers' See Plot detail % options below. {default: 'on' -> mark electrode locations with points % unless more than 64 channels, then 'off'}. Requires electrode info. % 'intrad' - [0.15<=float<=1.0] radius of the interpolation area used in topoplot() % to get the grid. % 'headrad' - [0.15<=float<=1.0] drawing radius (arc_length) for the cartoon head. % NB: Only headrad = 0.5 is anatomically correct! 0 -> don't draw head; % 'rim' -> show cartoon head at outer edge of the plot {default: 0.5}. % Requires electrode information. % 'noplot' - [rad theta] are coordinates of a (possibly missing) channel. % Do not plot but return interpolated value for channel location. % Do not plot but return interpolated value for this location. % 'xsurface' - [Xi- matrix] the Xi grid points for the surface of the plotting % an output of topoplot(). % 'ysurface' - [Yi- matrix] the Yi grid points for the surface of the plotting, % an output of topoplot(). % Dipole plotting: % 'dipole' - [xi yi xe ye ze] plot dipole on the top of the scalp map % from coordinate (xi,yi) to coordinates (xe,ye,ze) (dipole head % model has radius 1). If several rows, plot one dipole per row. % Coordinates returned by dipplot() may be used. Can accept % an EEG.dipfit.model structure (See >> help dipplot). % Ex: ,'dipole',EEG.dipfit.model(17) % Plot dipole(s) for comp. 17. % 'dipnorm' - ['on'|'off'] normalize dipole length {default: 'on'}. % 'diporient' - [-1|1] invert dipole orientation {default: 1}. % 'diplen' - [real] scale dipole length {default: 1}. % 'dipscale' - [real] scale dipole size {default: 1}. % 'dipsphere' - [real] size of the dipole sphere. {default: 85 mm}. % 'dipcolor' - [color] dipole color as Matlab code code or [r g b] vector % {default: 'k' = black}. % Plot detail options: % 'electcolor' {'k'}|'emarker' {'.'}|'emarkersize' {14} ... % |'emarkersize1chan' {40}|'efontsize' {var} - electrode marking details and {defaults}. % 'shading' - 'flat','interp' {default: 'flat'} % 'colormap' - (n,3) any size colormap {default: existing colormap} % 'numcontour' - number of contour lines {default: 6} % 'ccolor' - color of the contours {default: dark grey} % 'hcolor'|'ecolor' - colors of the cartoon head and electrodes {default: black} % 'circgrid' - [int > 100] number of elements (angles) in head and border circles {201} % 'verbose' - ['on'|'off'] comment on operations on command line {default: 'on'}. % % Outputs: % hfig - plot axes handle % val - single interpolated value at the specified 'noplot' arg channel % location ([rad theta]). % % Notes: - To change the plot map masking ring to a new figure background color, % >> set(findobj(gca,'type','patch'),'facecolor',get(gcf,'color')) % - Topoplots may be rotated from the commandline >> view([deg 90]) {default:[0 90]) % % Authors: Hilit Serby, Andy Spydell, Colin Humphries, Arnaud Delorme & Scott Makeig % CNL / Salk Institute, 8/1996-/10/2001; SCCN/INC/UCSD, Nov. 2001- Nov. 2004 % % See also: topoplot(), timtopo(), envtopo() % Deprecated but still usable; % 'interplimits' - ['electrodes'|'head'] 'electrodes'-> interpolate the electrode grid; % 'head'-> interpolate the whole disk {default: 'head'}. % toporeplot() - From topoplot.m, Revision 1.216 2004/12/05 12:00:00 hilit %[hfig grid] = topoplot( EEG.icawinv(:, 5), EEG.chanlocs, 'verbose', 'off','electrodes', 'off' ,'style','both'); %figure; toporeplot(grid, 'style', 'both', 'plotrad',0.5,'intrad',0.5, 'verbose', 'off'); function [handle,chanval] = toporeplot(grid,p1,v1,p2,v2,p3,v3,p4,v4,p5,v5,p6,v6,p7,v7,p8,v8,p9,v9,p10,v10) % %%%%%%%%%%%%%%%%%%%%%%%% Set defaults %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % icadefs % read defaults MAXTOPOPLOTCHANS and DEFAULT_ELOC and BACKCOLOR if ~exist('BACKCOLOR') % if icadefs.m does not define BACKCOLOR BACKCOLOR = [.93 .96 1]; % EEGLAB standard end GRID_SCALE = length(grid); noplot = 'off'; handle = []; chanval = NaN; rmax = 0.5; % head radius - don't change this! INTERPLIMITS = 'head'; % head, electrodes MAPLIMITS = 'absmax'; % absmax, maxmin, [values] CIRCGRID = 201; % number of angles to use in drawing circles AXHEADFAC = 1.3; % head to axes scaling factor CONTOURNUM = 6; % number of contour levels to plot STYLE = 'both'; % default 'style': both,straight,fill,contour,blank HEADCOLOR = [0 0 0]; % default head color (black) CCOLOR = [0.2 0.2 0.2]; % default contour color ECOLOR = [0 0 0]; % default electrode color ELECTRODES = []; % default 'electrodes': on|off|label - set below MAXDEFAULTSHOWLOCS = 64;% if more channels than this, don't show electrode locations by default EMARKER = '.'; % mark electrode locations with small disks EMARKERSIZE = []; % default depends on number of electrodes, set in code EMARKERSIZE1CHAN = 40; % default selected channel location marker size EMARKERCOLOR1CHAN = 'red'; % selected channel location marker color EFSIZE = get(0,'DefaultAxesFontSize'); % use current default fontsize for electrode labels HLINEWIDTH = 3; % default linewidth for head, nose, ears BLANKINGRINGWIDTH = .035;% width of the blanking ring HEADRINGWIDTH = .007;% width of the cartoon head ring SHADING = 'flat'; % default 'shading': flat|interp plotrad = []; % plotting radius ([] = auto, based on outermost channel location) intrad = []; % default interpolation square is to outermost electrode (<=1.0) headrad = []; % default plotting radius for cartoon head is 0.5 MINPLOTRAD = 0.15; % can't make a topoplot with smaller plotrad (contours fail) VERBOSE = 'off'; MASKSURF = 'off'; %%%%%% Dipole defaults %%%%%%%%%%%% DIPOLE = []; DIPNORM = 'on'; DIPSPHERE = 85; DIPLEN = 1; DIPSCALE = 1; DIPORIENT = 1; DIPCOLOR = [0 0 0]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%%%% Handle arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if nargin< 1 help topoplot; return end nargs = nargin; if ~mod(nargs,2) error('Optional inputs must come in Key - Val pairs') end if ~isnumeric(grid) | size(grid,1) ~= size(grid,2) error('topoimage must be a square matrix'); end for i = 2:2:nargs Param = eval(['p',int2str((i-2)/2 +1)]); Value = eval(['v',int2str((i-2)/2 +1)]); if ~isstr(Param) error('Flag arguments must be strings') end Param = lower(Param); switch lower(Param) case 'chanlocs' loc_file = Value; case 'colormap' if size(Value,2)~=3 error('Colormap must be a n x 3 matrix') end colormap(Value) case {'interplimits','headlimits'} if ~isstr(Value) error('''interplimits'' value must be a string') end Value = lower(Value); if ~strcmp(Value,'electrodes') & ~strcmp(Value,'head') error('Incorrect value for interplimits') end INTERPLIMITS = Value; case 'verbose' VERBOSE = Value; case 'maplimits' MAPLIMITS = Value; case 'masksurf' MASKSURF = Value; case 'circgrid' CIRCGRID = Value; if isstr(CIRCGRID) | CIRCGRID<100 error('''circgrid'' value must be an int > 100'); end case 'style' STYLE = lower(Value); case 'numcontour' CONTOURNUM = Value; case 'electrodes' ELECTRODES = lower(Value); if strcmpi(ELECTRODES,'pointlabels') | strcmpi(ELECTRODES,'ptslabels') ... | strcmpi(ELECTRODES,'labelspts') | strcmpi(ELECTRODES,'ptlabels') ... | strcmpi(ELECTRODES,'labelpts') ELECTRODES = 'labelpoint'; % backwards compatability end if strcmpi(ELECTRODES,'pointnumbers') | strcmpi(ELECTRODES,'ptsnumbers') ... | strcmpi(ELECTRODES,'numberspts') | strcmpi(ELECTRODES,'ptnumbers') ... | strcmpi(ELECTRODES,'numberpts') | strcmpi(ELECTRODES,'ptsnums') ... | strcmpi(ELECTRODES,'numspts') ELECTRODES = 'numpoint'; % backwards compatability end if strcmpi(ELECTRODES,'nums') ELECTRODES = 'numbers'; % backwards compatability end if strcmpi(ELECTRODES,'pts') ELECTRODES = 'on'; % backwards compatability end if ~strcmpi(ELECTRODES,'labelpoint') ... & ~strcmpi(ELECTRODES,'numpoint') ... & ~strcmp(ELECTRODES,'on') ... & ~strcmp(ELECTRODES,'off') ... & ~strcmp(ELECTRODES,'labels') ... & ~strcmpi(ELECTRODES,'numbers') error('Unknown value for keyword ''electrodes'''); end case 'dipole' DIPOLE = Value; case 'dipsphere' DIPSPHERE = Value; case 'dipnorm' DIPNORM = Value; case 'diplen' DIPLEN = Value; case 'dipscale' DIPSCALE = Value; case 'diporient' DIPORIENT = Value; case 'dipcolor' DIPCOLOR = Value; case 'emarker' EMARKER = Value; case 'plotrad' plotrad = Value; if isstr(plotrad) | (plotrad < MINPLOTRAD | plotrad > 1) error('plotrad argument should be a number between 0.15 and 1.0'); end case 'intrad' intrad = Value; if isstr(intrad) | (intrad < MINPLOTRAD | intrad > 1) error('intrad argument should be a number between 0.15 and 1.0'); end case 'headrad' headrad = Value; if isstr(headrad) & ( strcmpi(headrad,'off') | strcmpi(headrad,'none') ) headrad = 0; % undocumented 'no head' alternatives end if isempty(headrad) % [] -> none also headrad = 0; end if ~isstr(headrad) if ~(headrad==0) & (headrad < MINPLOTRAD | headrad>1) error('bad value for headrad'); end elseif ~strcmpi(headrad,'rim') error('bad value for headrad'); end case 'xsurface' Xi = Value; if ~isnumeric(Xi) | size(Xi,1) ~= size(Xi,2) | size(Xi,1) ~= size(grid,1) error('xsurface must be a square matrix the size of grid'); end case 'ysurface' Yi = Value; if ~isnumeric(Yi) | size(Yi,1) ~= size(Yi,2) | size(Yi,1) ~= size(grid,1) error('ysurface must be a square matrix the size of grid'); end case {'headcolor','hcolor'} HEADCOLOR = Value; case {'contourcolor','ccolor'} CCOLOR = Value; case {'electcolor','ecolor'} ECOLOR = Value; case {'emarkersize','emsize'} EMARKERSIZE = Value; case 'emarkersize1chan' EMARKERSIZE1CHAN= Value; case {'efontsize','efsize'} EFSIZE = Value; case 'shading' SHADING = lower(Value); if ~any(strcmp(SHADING,{'flat','interp'})) error('Invalid shading parameter') end case 'noplot' noplot = Value; if ~isstr(noplot) if length(noplot) ~= 2 error('''noplot'' location should be [radius, angle]') else chanrad = noplot(1); chantheta = noplot(2); noplot = 'on'; end end otherwise error(['Unknown input parameter ''' Param ''' ???']) end end if isempty(plotrad) error(' ''plotrad'' must be given') end if isempty(intrad) if ~exist('Yi') | ~exist('Xi') error('either ''intrad'' or the grid axes (Xi and Yi) must be given'); end end % %%%%%%%%%%%%%%%%%%%% Read the channel location information %%%%%%%%%%%%%%%%%%%%%%%% % if exist('loc_file') if isstr(loc_file) [tmpeloc labels Th Rd indices] = readlocs(loc_file,'filetype','loc'); else % a locs struct [tmpeloc labels Th Rd indices] = readlocs(loc_file); % Note: Th and Rd correspond to indices channels-with-coordinates only end labels = strvcat(labels); Th = pi/180*Th; % convert degrees to radians % %%%%%%%%%%%%%%%%%% Read plotting radius from chanlocs %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if isempty(plotrad) & isfield(tmpeloc, 'plotrad'), plotrad = tmpeloc(1).plotrad; if isstr(plotrad) % plotrad shouldn't be a string plotrad = str2num(plotrad) % just checking end if plotrad < MINPLOTRAD | plotrad > 1.0 fprintf('Bad value (%g) for plotrad.\n',plotrad); error(' '); end if strcmpi(VERBOSE,'on') & ~isempty(plotrad) fprintf('Plotting radius plotrad (%g) set from EEG.chanlocs.\n',plotrad); end end; if isempty(plotrad) plotrad = min(1.0,max(Rd)*1.02); % default: just outside the outermost electrode location plotrad = max(plotrad,0.5); % default: plot out to the 0.5 head boundary end % don't plot channels with Rd > 1 (below head) if isstr(plotrad) | plotrad < MINPLOTRAD | plotrad > 1.0 error('plotrad must be between 0.15 and 1.0'); end end if isempty(plotrad) & ~ exist('loc_file') plotrad = 1; % default: plot out to the 0.5 head bounda end % plotrad now set % %%%%%%%%%%%%%%%%%%%%%%% Set radius of head cartoon %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if isempty(headrad) % never set -> defaults if plotrad >= rmax headrad = rmax; % (anatomically correct) else % if plotrad < rmax headrad = 0; % don't plot head if strcmpi(VERBOSE, 'on') fprintf('topoplot(): not plotting cartoon head since plotrad (%5.4g) < 0.5\n',... plotrad); end end elseif strcmpi(headrad,'rim') % force plotting at rim of map headrad = plotrad; end % headrad now set % %%%%%%%%%%%%%%%%% Issue warning if headrad ~= rmax %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if headrad ~= 0.5 & strcmpi(VERBOSE, 'on') fprintf(' NB: Plotting map using ''plotrad'' %-4.3g,',plotrad); fprintf( ' ''headrad'' %-4.3g\n',headrad); fprintf('Warning: The plotting radius of the cartoon head is NOT anatomically correct (0.5).\n') end squeezefac = rmax/plotrad; % %%%%%%%%%%%%%%%%%%%%% Find plotting channels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if exist('tmpeloc') pltchans = find(Rd <= plotrad); % plot channels inside plotting circle [x,y] = pol2cart(Th,Rd); % transform electrode locations from polar to cartesian coordinates % %%%%%%%%%%%%%%%%%%%%% Eliminate channels not plotted %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % allx = x; ally = y; Th = Th(pltchans); % eliminate channels outside the plotting area Rd = Rd(pltchans); x = x(pltchans); y = y(pltchans); labels= labels(pltchans,:); % %%%%%%%%%%%%%%% Squeeze channel locations to <= rmax %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Rd = Rd*squeezefac; % squeeze electrode arc_lengths towards the vertex % to plot all inside the head cartoon x = x*squeezefac; y = y*squeezefac; allx = allx*squeezefac; ally = ally*squeezefac; end % Note: Now outermost channel will be plotted just inside rmax % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Make the plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if ~strcmpi(STYLE,'blank') % if draw interpolated scalp map % %%%%%%%%%%%%%%%%%%%%%%% Interpolate scalp map data %%%%%%%%%%%%%%%%%%%%%%%% % if ~isempty(intrad) % intrad specified xi = linspace(-intrad*squeezefac,intrad*squeezefac,GRID_SCALE); % use the specified intrad value yi = linspace(-intrad*squeezefac,intrad*squeezefac,GRID_SCALE); [Xi,Yi] = meshgrid(yi',xi); elseif ~exist('Xi') | ~exist('Yi') error('toporeplot require either intrad input or both xsurface and ysurface') end Zi = grid; mask = (sqrt(Xi.^2 + Yi.^2) <= rmax); % mask outside the plotting circle ii = find(mask == 0); Zi(ii) = NaN; % %%%%%%%%%% Return interpolated value at designated scalp location %%%%%%%%%% % if exist('chanrad') % optional first argument to 'noplot' chantheta = (chantheta/360)*2*pi; chancoords = round(ceil(GRID_SCALE/2)+GRID_SCALE/2*2*chanrad*[cos(-chantheta),... -sin(-chantheta)]); if chancoords(1)<1 ... | chancoords(1) > GRID_SCALE ... | chancoords(2)<1 ... | chancoords(2)>GRID_SCALE error('designated ''noplot'' channel out of bounds') else chanval = Zi(chancoords(1),chancoords(2)); end end % %%%%%%%%%%%%%%%%%%%%%%%%%% Return interpolated image only %%%%%%%%%%%%%%%%% % if strcmpi(noplot, 'on') if strcmpi(VERBOSE,'on') fprintf('topoplot(): no plot requested.\n') end return; end % %%%%%%%%%%%%%%%%%%%%%%% Calculate colormap limits %%%%%%%%%%%%%%%%%%%%%%%%%% % m = size(colormap,1); if isstr(MAPLIMITS) if strcmp(MAPLIMITS,'absmax') amin = -max(max(abs(Zi))); amax = max(max(abs(Zi))); elseif strcmp(MAPLIMITS,'maxmin') | strcmp(MAPLIMITS,'minmax') amin = min(min(Zi)); amax = max(max(Zi)); else error('unknown ''maplimits'' value.'); end else amin = MAPLIMITS(1); amax = MAPLIMITS(2); end delta = Xi(1,2)-Xi(1,1); % length of grid entry % %%%%%%%%%%%%%%%%%%%%%%%%%% Scale the axes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % cla % clear current axis hold on h = gca; % uses current axes % instead of default larger AXHEADFAC if squeezefac<0.92 & plotrad-headrad > 0.05 % (size of head in axes) AXHEADFAC = 1.05; % do not leave room for external ears if head cartoon % shrunk enough by the 'skirt' option end set(gca,'Xlim',[-rmax rmax]*AXHEADFAC,'Ylim',[-rmax rmax]*AXHEADFAC); % specify size of head axes in gca unsh = (GRID_SCALE+1)/GRID_SCALE; % un-shrink the effects of 'interp' SHADING switch STYLE % %%%%%%%%%%%%%%%%%%%%%%%% Plot map contours only %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % case 'contour' % plot surface contours only [cls chs] = contour(Xi,Yi,Zi,CONTOURNUM,'k'); % %%%%%%%%%%%%%%%%%%%%%%%% Else plot map and contours %%%%%%%%%%%%%%%%%%%%%%%%% % case 'both' % plot interpolated surface and surface contours if strcmp(SHADING,'interp') tmph = surface(Xi*unsh,Yi*unsh,zeros(size(Zi)),Zi,... 'EdgeColor','none','FaceColor',SHADING); else % SHADING == 'flat' tmph = surface(Xi-delta/2,Yi-delta/2,zeros(size(Zi)),Zi,... 'EdgeColor','none','FaceColor',SHADING); end if strcmpi(MASKSURF, 'on') set(tmph, 'visible', 'off'); handle = tmph; end; [cls chs] = contour(Xi,Yi,Zi,CONTOURNUM,'k'); for h=chs, set(h,'color',CCOLOR); end % %%%%%%%%%%%%%%%%%%%%%%%% Else plot map only %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % case {'straight', 'map'} % 'straight' was former arg if strcmp(SHADING,'interp') % 'interp' mode is shifted somehow... but how? tmph = surface(Xi*unsh,Yi*unsh,zeros(size(Zi)),Zi,'EdgeColor','none',... 'FaceColor',SHADING); else tmph = surface(Xi-delta/2,Yi-delta/2,zeros(size(Zi)),Zi,'EdgeColor','none',... 'FaceColor',SHADING); end if strcmpi(MASKSURF, 'on') set(tmph, 'visible', 'off'); handle = tmph; end; % %%%%%%%%%%%%%%%%%% Else fill contours with uniform colors %%%%%%%%%%%%%%%%%% % case 'fill' [cls chs] = contourf(Xi,Yi,Zi,CONTOURNUM,'k'); otherwise error('Invalid style') end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Set color axis %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % caxis([amin amax]) % set coloraxis % %%%%%%%%%%%%%%%%%%%%%%% Draw blank head %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % else % if STYLE 'blank' if strcmpi(noplot, 'on') if strcmpi(VERBOSE,'on') fprintf('topoplot(): no plot requested.\n') end return; end cla hold on set(gca,'Xlim',[-rmax rmax]*AXHEADFAC,'Ylim',[-rmax rmax]*AXHEADFAC) if ~exist('tmpeloc') error('No electrode location information found'); end if strcmp(ELECTRODES,'labelpoint') | strcmp(ELECTRODES,'numpoint') text(-0.6,-0.6, [ int2str(length(Rd)) ' of ' int2str(length(tmpeloc)) ' electrode locations shown']); text(-0.6,-0.7, [ 'Click on electrodes to toggle name/number']); tl = title('Channel locations'); set(tl, 'fontweight', 'bold'); end end if exist('handle') ~= 1 handle = gca; end; % %%%%%%%%%%%%%%%%%%% Plot filled ring to mask jagged grid boundary %%%%%%%%%%%%%%%%%%%%%%%%%%% % hwidth = HEADRINGWIDTH; % width of head ring hin = squeezefac*headrad*(1- hwidth/2); % inner head ring radius if strcmp(SHADING,'interp') rwidth = BLANKINGRINGWIDTH*1.3; % width of blanking outer ring else rwidth = BLANKINGRINGWIDTH; % width of blanking outer ring end rin = rmax*(1-rwidth/2); % inner ring radius if hin>rin rin = hin; % dont blank inside the head ring end circ = linspace(0,2*pi,CIRCGRID); rx = sin(circ); ry = cos(circ); ringx = [[rx(:)' rx(1) ]*(rin+rwidth) [rx(:)' rx(1)]*rin]; ringy = [[ry(:)' ry(1) ]*(rin+rwidth) [ry(:)' ry(1)]*rin]; if ~strcmpi(STYLE,'blank') ringh= patch(ringx,ringy,0.01*ones(size(ringx)),BACKCOLOR,'edgecolor','none'); hold on end % %%%%%%%%%%%%%%%%%%%%%%%%% Plot cartoon head, ears, nose %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if headrad > 0 % if cartoon head to be plotted % %%%%%%%%%%%%%%%%%%% Plot head outline %%%%%%%%%%%%%%%%%%%%%%%%%%% % headx = [[rx(:)' rx(1) ]*(hin+hwidth) [rx(:)' rx(1)]*hin]; heady = [[ry(:)' ry(1) ]*(hin+hwidth) [ry(:)' ry(1)]*hin]; ringh= patch(headx,heady,ones(size(headx)),HEADCOLOR,'edgecolor',HEADCOLOR); hold on % %%%%%%%%%%%%%%%%%%% Plot ears and nose %%%%%%%%%%%%%%%%%%%%%%%%%%% % base = rmax-.0046; basex = 0.18*rmax; % nose width tip = 1.15*rmax; tiphw = .04*rmax; % nose tip half width tipr = .01*rmax; % nose tip rounding q = .04; % ear lengthening EarX = [.497-.005 .510 .518 .5299 .5419 .54 .547 .532 .510 .489-.005]; % rmax = 0.5 EarY = [q+.0555 q+.0775 q+.0783 q+.0746 q+.0555 -.0055 -.0932 -.1313 -.1384 -.1199]; sf = headrad/plotrad; % squeeze the model ears and nose % by this factor plot3([basex;tiphw;0;-tiphw;-basex]*sf,[base;tip-tipr;tip;tip-tipr;base]*sf,... 2*ones(size([basex;tiphw;0;-tiphw;-basex])),... 'Color',HEADCOLOR,'LineWidth',HLINEWIDTH); % plot nose plot3(EarX*sf,EarY*sf,2*ones(size(EarX)),'color',HEADCOLOR,'LineWidth',HLINEWIDTH) % plot left ear plot3(-EarX*sf,EarY*sf,2*ones(size(EarY)),'color',HEADCOLOR,'LineWidth',HLINEWIDTH) % plot right ear end % % %%%%%%%%%%%%%%%%%%% Show electrode information %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plotax = gca; axis square % make plotax square axis off pos = get(gca,'position'); xlm = get(gca,'xlim'); ylm = get(gca,'ylim'); axis square % make textax square pos = get(gca,'position'); set(plotax,'position',pos); xlm = get(gca,'xlim'); set(plotax,'xlim',xlm); ylm = get(gca,'ylim'); set(plotax,'ylim',ylm); % copy position and axis limits again %%%%%%%%%%%%%%%%%%%%%%%%%only if electrode info is available %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if exist('tmpeloc') if isempty(EMARKERSIZE) EMARKERSIZE = 10; if length(y)>=32 EMARKERSIZE = 8; elseif length(y)>=48 EMARKERSIZE = 6; elseif length(y)>=64 EMARKERSIZE = 5; elseif length(y)>=80 EMARKERSIZE = 4; elseif length(y)>=100 EMARKERSIZE = 3; elseif length(y)>=128 EMARKERSIZE = 2; elseif length(y)>=160 EMARKERSIZE = 1; end end % %%%%%%%%%%%%%%%%%%%%%%%% Mark electrode locations only %%%%%%%%%%%%%%%%%%%%%%%%%% % ELECTRODE_HEIGHT = 2.1; % z value for plotting electrode information (above the surf) if strcmp(ELECTRODES,'on') % plot electrodes as spots hp2 = plot3(y,x,ones(size(x))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE); % %%%%%%%%%%%%%%%%%%%%%%%% Print electrode labels only %%%%%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'labels') % print electrode names (labels) for i = 1:size(labels,1) text(double(y(i)),double(x(i)),... ELECTRODE_HEIGHT,labels(i,:),'HorizontalAlignment','center',... 'VerticalAlignment','middle','Color',ECOLOR,... 'FontSize',EFSIZE) end % %%%%%%%%%%%%%%%%%%%%%%%% Mark electrode locations plus labels %%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'labelpoint') hp2 = plot3(y,x,ones(size(x))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE); for i = 1:size(labels,1) hh(i) = text(double(y(i)+0.01),double(x(i)),... ELECTRODE_HEIGHT,labels(i,:),'HorizontalAlignment','left',... 'VerticalAlignment','middle','Color', ECOLOR,'userdata', num2str(pltchans(i)), ... 'FontSize',EFSIZE, 'buttondownfcn', ... ['tmpstr = get(gco, ''userdata'');'... 'set(gco, ''userdata'', get(gco, ''string''));' ... 'set(gco, ''string'', tmpstr); clear tmpstr;'] ); end % %%%%%%%%%%%%%%%%%%%%%%% Mark electrode locations plus numbers %%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'numpoint') hp2 = plot3(y,x,ones(size(x))*ELECTRODE_HEIGHT,EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE); for i = 1:size(labels,1) hh(i) = text(double(y(i)+0.01),double(x(i)),... ELECTRODE_HEIGHT,num2str(pltchans(i)),'HorizontalAlignment','left',... 'VerticalAlignment','middle','Color', ECOLOR,'userdata', labels(i,:) , ... 'FontSize',EFSIZE, 'buttondownfcn', ... ['tmpstr = get(gco, ''userdata'');'... 'set(gco, ''userdata'', get(gco, ''string''));' ... 'set(gco, ''string'', tmpstr); clear tmpstr;'] ); end % %%%%%%%%%%%%%%%%%%%%%% Print electrode numbers only %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'numbers') for i = 1:size(labels,1) text(double(y(i)),double(x(i)),... ELECTRODE_HEIGHT,int2str(pltchans(i)),'HorizontalAlignment','center',... 'VerticalAlignment','middle','Color',ECOLOR,... 'FontSize',EFSIZE) end end end % %%%%%%%%%%%%%%%%%%%%%%%%%%% Plot dipole(s) on the scalp map %%%%%%%%%%%%%%%%%%%%%%%%%%%% % if ~isempty(DIPOLE) hold on; tmp = DIPOLE; if isstruct(DIPOLE) if ~isfield(tmp,'posxyz') error('dipole structure is not an EEG.dipfit.model') end DIPOLE = []; % Note: invert x and y from dipplot usage DIPOLE(:,1) = -tmp.posxyz(:,2)/DIPSPHERE; % -y -> x DIPOLE(:,2) = tmp.posxyz(:,1)/DIPSPHERE; % x -> y DIPOLE(:,3) = -tmp.momxyz(:,2); DIPOLE(:,4) = tmp.momxyz(:,1); else DIPOLE(:,1) = -tmp(:,2); % same for vector input DIPOLE(:,2) = tmp(:,1); DIPOLE(:,3) = -tmp(:,4); DIPOLE(:,4) = tmp(:,3); end; for index = 1:size(DIPOLE,1) if ~any(DIPOLE(index,:)) DIPOLE(index,:) = []; end end; DIPOLE(:,1:4) = DIPOLE(:,1:4)*rmax*(rmax/plotrad); % scale radius from 1 -> rmax (0.5) DIPOLE(:,3:end) = (DIPOLE(:,3:end))*rmax/100000*(rmax/plotrad); if strcmpi(DIPNORM, 'on') for index = 1:size(DIPOLE,1) DIPOLE(index,3:4) = DIPOLE(index,3:4)/norm(DIPOLE(index,3:end))*0.2; end; end; DIPOLE(:, 3:4) = DIPORIENT*DIPOLE(:, 3:4)*DIPLEN; PLOT_DIPOLE=1; if sum(DIPOLE(1,3:4).^2) <= 0.00001 if strcmpi(VERBOSE,'on') fprintf('Note: dipole is length 0 - not plotted\n') end PLOT_DIPOLE = 0; end if 0 % sum(DIPOLE(1,1:2).^2) > plotrad if strcmpi(VERBOSE,'on') fprintf('Note: dipole is outside plotting area - not plotted\n') end PLOT_DIPOLE = 0; end if PLOT_DIPOLE for index = 1:size(DIPOLE,1) hh = plot( DIPOLE(index, 1), DIPOLE(index, 2), '.'); set(hh, 'color', DIPCOLOR, 'markersize', DIPSCALE*30); hh = line( [DIPOLE(index, 1) DIPOLE(index, 1)+DIPOLE(index, 3)]', ... [DIPOLE(index, 2) DIPOLE(index, 2)+DIPOLE(index, 4)]'); set(hh, 'color', DIPCOLOR, 'linewidth', DIPSCALE*30/7); end; end; end; % %%%%%%%%%%%%% Set EEGLAB background color to match head border %%%%%%%%%%%%%%%%%%%%%%%% % try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end; hold off axis off return
github
lcnhappe/happe-master
std_selectdataset.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_selectdataset.m
3,936
utf_8
6c9ce8182feee7b5ddbbe5eb2f9d979b
% std_selectdataset() - select datasets and trials for a given independent % variable with a given set of values. % % Usage: % >> [STUDY] = std_selectdataset(STUDY, ALLEEG, indvar, indvarvals); % % Inputs: % STUDY - EELAB STUDY structure % ALLEEG - EELAB dataset structure % indvar - [string] independent variable name % indvarvals - [cell] cell array of string for selected values for the % verboseflag - ['verbose'|'silent'] print info flag % % choosen independent variable % Output: % datind - [integer array] indices of selected dataset % dattrialsind - [cell] trial indices for each dataset (not only the % datasets selected above). % % Author: Arnaud Delorme, CERCO, 2010- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [datind, dattrialselect] = std_selectdataset(STUDY, ALLEEG, indvar, indvarvals, verboseFlag); if nargin < 3 help std_selectdataset; return; end; if nargin < 5 verboseFlag = 'verbose'; end; % check for multiple condition selection if ~iscell(indvarvals), pos = strfind(' - ', indvarvals); if ~isempty(pos) tmpindvar = indvarvals; indvarvals = { indvarvals(1:pos(1)-1) }; pos(end+1) = length(tmpindvar)+1; for ind = 1:length(pos)-1 indvarvals{end+1} = tmpindvar(pos(ind)+3:pos(ind+1)-1); end; else indvarvals = { indvarvals }; end; end; % default dattrialselect = all trials % ----------------------------------- if isfield(STUDY.datasetinfo, 'trialinfo') dattrialselect = cellfun(@(x)([1:length(x)]), { STUDY.datasetinfo.trialinfo }, 'uniformoutput', false); else for i=1:length(ALLEEG), dattrialselect{i} = [1:ALLEEG(i).trials]; end; end; if isempty(indvar) datind = [1:length(STUDY.datasetinfo)]; elseif isfield(STUDY.datasetinfo, indvar) && ~isempty(getfield(STUDY.datasetinfo(1), indvar)) % regular selection of dataset in datasetinfo % ------------------------------------------- if strcmpi(verboseFlag, 'verbose'), fprintf(' Selecting datasets with field ''%s'' equal to %s\n', indvar, vararg2str(indvarvals)); end; eval( [ 'myfieldvals = { STUDY.datasetinfo.' indvar '};' ] ); datind = []; for dat = 1:length(indvarvals) datind = union_bc(datind, std_indvarmatch(indvarvals{dat}, myfieldvals)); end; else % selection of trials within datasets % ----------------------------------- if strcmpi(verboseFlag, 'verbose'), fprintf(' Selecting trials with field ''%s'' equal to %s\n', indvar, vararg2str(indvarvals)); end; dattrials = cellfun(@(x)(eval(['{ x.' indvar '}'])), { STUDY.datasetinfo.trialinfo }, 'uniformoutput', false); dattrials = cellfun(@(x)(eval(['{ x.' indvar '}'])), { STUDY.datasetinfo.trialinfo }, 'uniformoutput', false); % do not remove duplicate line (or Matlab crashes) dattrialselect = cell(1,length(STUDY.datasetinfo)); for dat = 1:length(indvarvals) for tmpi = 1:length(dattrials) dattrialselect{tmpi} = union_bc(dattrialselect{tmpi}, std_indvarmatch(indvarvals{dat}, dattrials{tmpi})); end; end; datind = find(~cellfun(@isempty, dattrialselect)); end;
github
lcnhappe/happe-master
pop_clust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_clust.m
17,403
utf_8
0c86a64fc1bc38103e1e67f0c4b204a9
% pop_clust() - select and run a clustering algorithm on components from an EEGLAB STUDY % structure of EEG datasets. Clustering data should be prepared beforehand using % pop_preclust() and/or std_preclust(). The number of clusters must be % specified in advance. If called in gui mode, the pop_clustedit() window % appears when the clustering is complete to display clustering results % and allow the user to review and edit them. % Usage: % >> STUDY = pop_clust( STUDY, ALLEEG); % pop up a graphic interface % >> STUDY = pop_clust( STUDY, ALLEEG, 'key1', 'val1', ...); % no pop-up % Inputs: % STUDY - an EEGLAB STUDY set containing some or all of the EEG sets in ALLEEG. % ALLEEG - a vector of loaded EEG dataset structures of all sets in the STUDY set. % % Optional Inputs: % 'algorithm' - ['kmeans'|'kmeanscluster'|'Neural Network'] algorithm to be used for % clustering. The 'kmeans' options requires the statistical toolbox. The % 'kmeanscluster' option is included in EEGLAB. The 'Neural Network' % option requires the Matlab Neural Net toolbox {default: 'kmeans'} % 'clus_num' - [integer] the number of desired clusters (must be > 1) {default: 20} % 'outliers' - [integer] identify outliers further than the given number of standard % deviations from any cluster centroid. Inf --> identify no such outliers. % {default: Inf from the command line; 3 for 'kmeans' from the pop window} % 'save' - ['on' | 'off'] save the updated STUDY to disk {default: 'off'} % 'filename' - [string] if save option is 'on', save the STUDY under this file name % {default: current STUDY filename} % 'filepath' - [string] if save option is 'on', will save the STUDY in this directory % {default: current STUDY filepath} % Outputs: % STUDY - as input, but modified adding the clustering results. % % Graphic interface buttons: % "Clustering algorithm" - [list box] display/choose among the available clustering % algorithms. % "Number of clusters to compute" - [edit box] the number of desired clusters (>2) % "Identify outliers" - [check box] check to detect outliers. % "Save STUDY" - [check box] check to save the updated STUDY after clustering % is performed. If no file entered, overwrites the current STUDY. % % See also pop_clustedit(), pop_preclust(), std_preclust(), pop_clust() % % Authors: Hilit Serby & Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Coding notes: Useful information on functions and global variables used. function [STUDY, ALLEEG, command] = pop_clust(STUDY, ALLEEG, varargin) command = ''; if nargin < 2 help pop_clust; return; end; if isempty(STUDY.etc) error('No pre-clustering information, pre-cluster first!'); end; if ~isfield(STUDY.etc, 'preclust') error('No pre-clustering information, pre-cluster first!'); end; if isempty(STUDY.etc.preclust) error('No pre-clustering information, pre-cluster first!'); end; % check that the path to the stat toolbox comes first (conflict % with Fieldtrip) kmeansPath = fileparts(which('kmeans')); if ~isempty(kmeansPath) rmpath(kmeansPath); addpath(kmeansPath); end; if isempty(varargin) %GUI call % remove clusters below clustering level (done also after GUI) % -------------------------------------- rmindex = []; clustlevel = STUDY.etc.preclust.clustlevel; nameclustbase = STUDY.cluster(clustlevel).name; if clustlevel == 1 rmindex = [2:length(STUDY.cluster)]; else for index = 2:length(STUDY.cluster) if strcmpi(STUDY.cluster(index).parent{1}, nameclustbase) & ~strncmpi('Notclust',STUDY.cluster(index).name,8) rmindex = [ rmindex index ]; end; end; end; if length(STUDY.cluster) > 2 & ~isempty(rmindex) resp = questdlg2('Clustering again will delete the last clustering results', 'Warning', 'Cancel', 'Ok', 'Ok'); if strcmpi(resp, 'cancel'), return; end; end; alg_options = {'Kmeans (stat. toolbox)' 'Neural Network (stat. toolbox)' 'Kmeanscluster (no toolbox)' }; %'Hierarchical tree' set_outliers = ['set(findobj(''parent'', gcbf, ''tag'', ''outliers_std''), ''enable'', fastif(get(gcbo, ''value''), ''on'', ''off''));'... 'set(findobj(''parent'', gcbf, ''tag'', ''std_txt''), ''enable'', fastif(get(gcbo, ''value''), ''on'', ''off''));']; algoptions = [ 'set(findobj(''parent'', gcbf, ''userdata'', ''kmeans''), ''enable'', fastif(get(gcbo, ''value'')==1, ''on'', ''off''));' ]; saveSTUDY = [ 'set(findobj(''parent'', gcbf, ''userdata'', ''save''), ''enable'', fastif(get(gcbo, ''value'')==1, ''on'', ''off''));' ]; browsesave = [ '[filename, filepath] = uiputfile2(''*.study'', ''Save STUDY with .study extension -- pop_clust()''); ' ... 'set(findobj(''parent'', gcbf, ''tag'', ''studyfile''), ''string'', [filepath filename]);' ]; if ~exist('kmeans'), valalg = 3; else valalg = 1; end; strclust = ''; if STUDY.etc.preclust.clustlevel > length(STUDY.cluster) STUDY.etc.preclust.clustlevel = 1; end; if STUDY.etc.preclust.clustlevel == 1 strclust = [ 'Performing clustering on cluster ''' STUDY.cluster(STUDY.etc.preclust.clustlevel).name '''' ]; else strclust = [ 'Performing sub-clustering on cluster ''' STUDY.cluster(STUDY.etc.preclust.clustlevel).name '''' ]; end; numClust = ceil(mean(cellfun(@length, { STUDY.datasetinfo.comps }))); if numClust > 2, numClustStr = num2str(numClust); else numClustStr = '10'; end; clust_param = inputgui( { [1] [1] [1 1] [1 0.5 0.5 ] [ 1 0.5 0.5 ] }, ... { {'style' 'text' 'string' strclust 'fontweight' 'bold' } {} ... {'style' 'text' 'string' 'Clustering algorithm:' } ... {'style' 'popupmenu' 'string' alg_options 'value' valalg 'tag' 'clust_algorithm' 'Callback' algoptions } ... {'style' 'text' 'string' 'Number of clusters to compute:' } ... {'style' 'edit' 'string' numClustStr 'tag' 'clust_num' } {} ... {'style' 'checkbox' 'string' 'Separate outliers (enter std.)' 'tag' 'outliers_on' 'value' 0 'Callback' set_outliers 'userdata' 'kmeans' 'enable' 'on' } ... {'style' 'edit' 'string' '3' 'tag' 'outliers_std' 'enable' 'off' } {} },... 'pophelp(''pop_clust'')', 'Set clustering algorithm -- pop_clust()' , [] , 'normal', [ 1 .5 1 1 1]); if ~isempty(clust_param) % removing previous cluster information % ------------------------------------- if ~isempty(rmindex) fprintf('Removing child clusters of ''%s''...\n', nameclustbase); STUDY.cluster(rmindex) = []; STUDY.cluster(clustlevel).child = []; if clustlevel == 1 & length(STUDY.cluster) > 1 STUDY.cluster(1).child = { STUDY.cluster(2).name }; % "Notclust" cluster end; end; clus_alg = alg_options{clust_param{1}}; clus_num = str2num(clust_param{2}); outliers_on = clust_param{3}; stdval = clust_param{4}; outliers = []; try clustdata = STUDY.etc.preclust.preclustdata; catch error('Error accesing preclustering data. Perform pre-clustering.'); end; command = '[STUDY] = pop_clust(STUDY, ALLEEG,'; if ~isempty(findstr(clus_alg, 'Kmeanscluster')), clus_alg = 'kmeanscluster'; end; if ~isempty(findstr(clus_alg, 'Kmeans ')), clus_alg = 'kmeans'; end; if ~isempty(findstr(clus_alg, 'Neural ')), clus_alg = 'neural network'; end; disp('Clustering ...'); switch clus_alg case { 'kmeans' 'kmeanscluster' } command = sprintf('%s %s%s%s %d %s', command, '''algorithm'',''', clus_alg, ''',''clus_num'', ', clus_num, ','); if outliers_on command = sprintf('%s %s %s %s', command, '''outliers'', ', stdval, ','); [IDX,C,sumd,D,outliers] = robust_kmeans(clustdata,clus_num,str2num(stdval),5,lower(clus_alg)); [STUDY] = std_createclust(STUDY, ALLEEG, 'clusterind', IDX, 'algorithm', {'robust_kmeans', clus_num}); else if strcmpi(clus_alg, 'kmeans') [IDX,C,sumd,D] = kmeans(clustdata,clus_num,'replicates',10,'emptyaction','drop'); else %[IDX,C,sumd,D] = kmeanscluster(clustdata,clus_num); [C,IDX,sumd] =kmeans_st(real(clustdata),clus_num,150); end; [STUDY] = std_createclust(STUDY, ALLEEG, 'clusterind', IDX, 'algorithm', {'Kmeans', clus_num}); end case 'Hierarchical tree' %[IDX,C] = hierarchical_tree(clustdata,clus_num); %[STUDY] = std_createclust(STUDY,IDX,C, {'Neural Network', clus_num}); case 'neural network' [IDX,C] = neural_net(clustdata,clus_num); [STUDY] = std_createclust(STUDY, ALLEEG, 'clusterind', IDX, 'algorithm', {'Neural Network', clus_num}); command = sprintf('%s %s %d %s', command, '''algorithm'', ''Neural Network'',''clus_num'', ', clus_num, ','); end disp('Done.'); % If save updated STUDY to disk save_on = 0; % old option to save STUDY if save_on command = sprintf('%s %s', command, '''save'', ''on'','); if ~isempty(clust_param{6}) [filepath filename ext] = fileparts(clust_param{6}); command = sprintf('%s%s%s%s%s%s', command, '''filename'', ''', [filename ext], ', ''filepath'', ''', filepath, ''');' ); STUDY = pop_savestudy(STUDY, ALLEEG, 'filename', [filename ext], 'filepath', filepath); else command(end:end+1) = ');'; if (~isempty(STUDY.filename)) & (~isempty(STUDY.filepath)) STUDY = pop_savestudy(STUDY, ALLEEG, 'filename', STUDY.filename, 'filepath', STUDY.filepath); else STUDY = pop_savestudy(STUDY, ALLEEG); end end else command(end:end+1) = ');'; end % Call menu to plot clusters (use EEGLAB menu which include % std_envtopo) - this crashed the hisotry %eval( [ get(findobj(findobj('tag', 'EEGLAB'), 'Label', 'Edit/plot clusters'), 'callback') ] ); [STUDY LASTCOM] = pop_clustedit(STUDY, ALLEEG); command = [ command LASTCOM ]; end else %command line call % remove clusters below clustering level (done also after GUI) % -------------------------------------- rmindex = []; clustlevel = STUDY.etc.preclust.clustlevel; nameclustbase = STUDY.cluster(clustlevel).name; if clustlevel == 1 rmindex = [2:length(STUDY.cluster)]; else for index = 2:length(STUDY.cluster) if strcmpi(STUDY.cluster(index).parent{1}, nameclustbase) & ~strncmpi('Notclust',STUDY.cluster(index).name,8) rmindex = [ rmindex index ]; end; end; end; if ~isempty(rmindex) fprintf('Removing child clusters of ''%s''...\n', nameclustbase); STUDY.cluster(rmindex) = []; STUDY.cluster(clustlevel).child = []; if clustlevel == 1 & length(STUDY.cluster) > 1 STUDY.cluster(1).child = { STUDY.cluster(2).name }; % "Notclust" cluster end; end; %default values algorithm = 'kmeans'; clus_num = 20; save = 'off'; filename = STUDY.filename; filepath = STUDY.filepath; outliers = Inf; % default std is Inf - no outliers if mod(length(varargin),2) ~= 0 error('pop_clust(): input variables must be specified in pairs: keywords, values'); end for k = 1:2:length(varargin) switch(varargin{k}) case 'algorithm' algorithm = varargin{k+1}; case 'clus_num' clus_num = varargin{k+1}; case 'outliers' outliers = varargin{k+1}; case 'save' save = varargin{k+1}; case 'filename' filename = varargin{k+1}; case 'filepath' filepath = varargin{k+1}; end end if clus_num < 2 clus_num = 2; end clustdata = STUDY.etc.preclust.preclustdata; switch lower(algorithm) case { 'kmeans' 'kmeanscluster' } if outliers == Inf if strcmpi(algorithm, 'kmeans') [IDX,C,sumd,D] = kmeans(clustdata,clus_num,'replicates',10,'emptyaction','drop'); else [IDX,C,sumd,D] = kmeanscluster(clustdata,clus_num); end; [STUDY] = std_createclust(STUDY, ALLEEG, 'clusterind', IDX, 'algorithm', {'Kmeans', clus_num}); else [IDX,C,sumd,D,outliers] = robust_kmeans(clustdata,clus_num,outliers,5, algorithm); [STUDY] = std_createclust(STUDY, ALLEEG, 'clusterind', IDX, 'algorithm', {'robust_kmeans', clus_num}); end case 'neural network' [IDX,C] = neural_net(clustdata,clus_num); [STUDY] = std_createclust(STUDY, ALLEEG, 'clusterind', IDX, 'algorithm', {'Neural Network', clus_num}); otherwise disp('pop_clust: unknown algorithm return'); return end % If save updated STUDY to disk if strcmpi(save,'on') if (~isempty(STUDY.filename)) & (~isempty(STUDY.filepath)) STUDY = pop_savestudy(STUDY, 'filename', STUDY.filename, 'filepath', STUDY.filepath); else STUDY = pop_savestudy(STUDY); end end end STUDY.saved = 'no'; % IDX - index of cluster for each component. Ex: 63 components and 2 % clusters: IDX will be a 61x1 vector of 1 and 2 (and 0=outlisers) % C - centroid for clusters. If 2 clusters, size will be 2 x % width of the preclustering matrix function [STUDY] = std_createclust2_old(STUDY,IDX,C, algorithm) % Find the next available cluster index % ------------------------------------- clusters = []; cls = size(C,1); % number of cluster = number of row of centroid matrix nc = 0; % index of last cluster for k = 1:length(STUDY.cluster) ti = strfind(STUDY.cluster(k).name, ' '); tmp = STUDY.cluster(k).name(ti(end) + 1:end); nc = max(nc,str2num(tmp)); % check if there is a cluster of Notclust components if strcmp(STUDY.cluster(k).parent,STUDY.cluster(STUDY.etc.preclust.clustlevel).name) STUDY.cluster(k).preclust.preclustparams = STUDY.etc.preclust.preclustparams; clusters = [clusters k]; end end len = length(STUDY.cluster); if ~isempty(find(IDX==0)) %outliers exist firstind = 0; nc = nc + 1; len = len + 1; else firstind = 1; end % create all clusters % ------------------- for k = firstind:cls % cluster name % ------------ if k == 0 STUDY.cluster(len).name = [ 'outlier ' num2str(k+nc)]; else STUDY.cluster(k+len).name = [ 'Cls ' num2str(k+nc)]; end % find indices % ------------ tmp = find(IDX==k); % IDX contains the cluster index for each component STUDY.cluster(k+len).sets = STUDY.cluster(STUDY.etc.preclust.clustlevel).sets(:,tmp); STUDY.cluster(k+len).comps = STUDY.cluster(STUDY.etc.preclust.clustlevel).comps(tmp); STUDY.cluster(k+len).algorithm = algorithm; STUDY.cluster(k+len).parent{end+1} = STUDY.cluster(STUDY.etc.preclust.clustlevel).name; STUDY.cluster(k+len).child = []; STUDY.cluster(k+len).preclust.preclustdata = STUDY.etc.preclust.preclustdata(tmp,:); STUDY.cluster(k+len).preclust.preclustparams = STUDY.etc.preclust.preclustparams; STUDY.cluster(k+len).preclust.preclustcomps = STUDY.etc.preclust.preclustcomps; %update parents clusters with cluster child indices % ------------------------------------------------- STUDY.cluster(STUDY.etc.preclust.clustlevel).child{end+1} = STUDY.cluster(k+nc).name; end clusters = [ clusters firstind+len:cls+len];%the new created clusters indices.
github
lcnhappe/happe-master
pop_erspparams.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_erspparams.m
8,995
utf_8
670aed78afeb3667c344e153cf8879fc
% pop_erspparams() - Set plotting and statistics parameters for % computing and plotting STUDY mean (and optionally % single-trial) ERSP and ITC measures and measure % statistics. Settings are stored within the STUDY % structure (STUDY.etc.erspparams) which is used % whenever plotting is performed by the function % std_erspplot(). % Usage: % >> STUDY = pop_erspparams(STUDY, 'key', 'val', ...); % % Inputs: % STUDY - EEGLAB STUDY set % % ERSP/ITC image plotting options: % 'timerange' - [min max] ERSP/ITC plotting latency range in ms. % {default: the whole output latency range}. % 'freqrange' - [min max] ERSP/ITC plotting frequency range in ms. % {default: the whole output frequency range} % 'ersplim' - [mindB maxdB] ERSP plotting limits in dB % {default: from [ERSPmin,ERSPmax]} % 'itclim' - [minitc maxitc] ITC plotting limits (range: [0,1]) % {default: from [0,ITC data max]} % 'topotime' - [float] plot scalp map at specific time. A time range may % also be provide and the ERSP will be averaged over the % given time range. Requires 'topofreq' below to be set. % 'topofreq' - [float] plot scalp map at specific frequencies. As above % a frequency range may also be provided. % 'subbaseline' - ['on'|'off'] subtract the same baseline across conditions % for ERSP (not ITC). When datasets with different conditions % are recorded simultaneously, a common baseline spectrum % should be used. Note that this also affects the % results of statistics {default: 'on'} % 'maskdata' - ['on'|'off'] when threshold is not NaN, and 'groupstats' % or 'condstats' (above) are 'off', masks the data % for significance. % % See also: std_erspplot(), std_itcplot() % % Authors: Arnaud Delorme, CERCO, CNRS, 2006- % Copyright (C) Arnaud Delorme, 2006 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY, com ] = pop_erspparams(STUDY, varargin); STUDY = default_params(STUDY); TMPSTUDY = STUDY; com = ''; if isempty(varargin) subbaseline = fastif(strcmpi(STUDY.etc.erspparams.subbaseline,'on'), 1, 0); vis = fastif(isnan(STUDY.etc.erspparams.topotime), 'off', 'on'); uilist = { ... {'style' 'text' 'string' 'ERSP/ITC plotting options' 'fontweight' 'bold' 'tag', 'ersp' } ... {'style' 'text' 'string' 'Time range in ms [Low High]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erspparams.timerange) 'tag' 'timerange' } ... {'style' 'text' 'string' 'Plot scalp map at time [ms]' 'visible' vis} ... {'style' 'edit' 'string' num2str(STUDY.etc.erspparams.topotime) 'tag' 'topotime' 'visible' vis } ... {'style' 'text' 'string' 'Freq. range in Hz [Low High]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erspparams.freqrange) 'tag' 'freqrange' } ... {'style' 'text' 'string' 'Plot scalp map at freq. [Hz]' 'visible' vis} ... {'style' 'edit' 'string' num2str(STUDY.etc.erspparams.topofreq) 'tag' 'topofreq' 'visible' vis } ... {'style' 'text' 'string' 'Power limits in dB [Low High]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erspparams.ersplim) 'tag' 'ersplim' } ... {'style' 'text' 'string' 'ITC limit (0-1) [High]'} ... {'style' 'edit' 'string' num2str(STUDY.etc.erspparams.itclim) 'tag' 'itclim' } ... {} {'style' 'checkbox' 'string' 'Compute common ERSP baseline (assumes additive baseline)' 'value' subbaseline 'tag' 'subbaseline' } }; evalstr = 'set(findobj(gcf, ''tag'', ''ersp''), ''fontsize'', 12);'; cbline = [0.07 1.1]; otherline = [ 0.6 .4 0.6 .4]; geometry = { 1 otherline otherline otherline cbline }; enablecond = fastif(length(STUDY.design(STUDY.currentdesign).variable(1).value)>1, 'on', 'off'); enablegroup = fastif(length(STUDY.design(STUDY.currentdesign).variable(2).value)>1, 'on', 'off'); [out_param userdat tmp res] = inputgui( 'geometry' , geometry, 'uilist', uilist, 'skipline', 'off', ... 'title', 'Set ERSP/ITC plotting parameters -- pop_erspparams()', 'eval', evalstr); if isempty(res), return; end; % decode input % ------------ if res.subbaseline, res.subbaseline = 'on'; else res.subbaseline = 'off'; end; res.topotime = str2num( res.topotime ); res.topofreq = str2num( res.topofreq ); res.timerange = str2num( res.timerange ); res.freqrange = str2num( res.freqrange ); res.ersplim = str2num( res.ersplim ); res.itclim = str2num( res.itclim ); % build command call % ------------------ options = {}; if ~strcmpi( res.subbaseline , STUDY.etc.erspparams.subbaseline ), options = { options{:} 'subbaseline' res.subbaseline }; end; if ~isequal(res.topotime , STUDY.etc.erspparams.topotime), options = { options{:} 'topotime' res.topotime }; end; if ~isequal(res.topofreq , STUDY.etc.erspparams.topofreq), options = { options{:} 'topofreq' res.topofreq }; end; if ~isequal(res.ersplim , STUDY.etc.erspparams.ersplim), options = { options{:} 'ersplim' res.ersplim }; end; if ~isequal(res.itclim , STUDY.etc.erspparams.itclim), options = { options{:} 'itclim' res.itclim }; end; if ~isequal(res.timerange, STUDY.etc.erspparams.timerange), options = { options{:} 'timerange' res.timerange }; end; if ~isequal(res.freqrange, STUDY.etc.erspparams.freqrange), options = { options{:} 'freqrange' res.freqrange }; end; if ~isempty(options) STUDY = pop_erspparams(STUDY, options{:}); com = sprintf('STUDY = pop_erspparams(STUDY, %s);', vararg2str( options )); end; else if strcmpi(varargin{1}, 'default') STUDY = default_params(STUDY); else for index = 1:2:length(varargin) if ~isempty(strmatch(varargin{index}, fieldnames(STUDY.etc.erspparams), 'exact')) STUDY.etc.erspparams = setfield(STUDY.etc.erspparams, varargin{index}, varargin{index+1}); end; end; end; end; % scan clusters and channels to remove erspdata info if timerange etc. have changed % --------------------------------------------------------------------------------- if ~isequal(STUDY.etc.erspparams.timerange, TMPSTUDY.etc.erspparams.timerange) | ... ~isequal(STUDY.etc.erspparams.freqrange, TMPSTUDY.etc.erspparams.freqrange) | ... ~isequal(STUDY.etc.erspparams.subbaseline, TMPSTUDY.etc.erspparams.subbaseline) rmfields = { 'erspdata' 'ersptimes' 'erspfreqs' 'erspbase' 'erspdatatrials' 'ersptimes' 'erspfreqs' 'erspsubjinds' 'ersptrialinfo' ... 'itcdata' 'itctimes' 'itcfreqs' 'itcdatatrials' 'itctimes' 'itcfreqs' 'itcsubjinds' 'itctrialinfo' }; for iField = 1:length(rmfields) if isfield(STUDY.cluster, rmfields{iField}) STUDY.cluster = rmfield(STUDY.cluster, rmfields{iField}); end; if isfield(STUDY.changrp, rmfields{iField}) STUDY.changrp = rmfield(STUDY.changrp, rmfields{iField}); end; end; end; function STUDY = default_params(STUDY) if ~isfield(STUDY.etc, 'erspparams'), STUDY.etc.erspparams = []; end; if ~isfield(STUDY.etc.erspparams, 'topotime'), STUDY.etc.erspparams.topotime = []; end; if ~isfield(STUDY.etc.erspparams, 'topofreq'), STUDY.etc.erspparams.topofreq = []; end; if ~isfield(STUDY.etc.erspparams, 'timerange'), STUDY.etc.erspparams.timerange = []; end; if ~isfield(STUDY.etc.erspparams, 'freqrange'), STUDY.etc.erspparams.freqrange = []; end; if ~isfield(STUDY.etc.erspparams, 'ersplim' ), STUDY.etc.erspparams.ersplim = []; end; if ~isfield(STUDY.etc.erspparams, 'itclim' ), STUDY.etc.erspparams.itclim = []; end; if ~isfield(STUDY.etc.erspparams, 'maskdata' ), STUDY.etc.erspparams.maskdata = 'off'; end; %deprecated if ~isfield(STUDY.etc.erspparams, 'subbaseline' ), STUDY.etc.erspparams.subbaseline = 'off'; end;
github
lcnhappe/happe-master
std_detachplots.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_detachplots.m
9,167
utf_8
27fdb5491e2d54fe4e5fb76418c35ef2
% std_detachplots() - Given a figure with subplots and several lines per axis, will add a callback to % each axis specified in the 'figtitles' input. The callback consist in a figure with all the detached % individuals lines. % % Usage: % >> std_detachplots('','','data',data 'figtitles', alltitlestmp,'sbtitles',sbtitles,'handles', handles); % % Inputs: % data - Cell array containing the data matrices for each plot in the same order showed in the figure % figtitles - Cell array of the titles of each individual axes in % the figure. The titles must correspond. The function % use this value to find the right hanlde of the axis % sbtitles - Cell array of cell arrays with the titles for each % detached line per axis. i.e. {{'Axis1 line1' 'Axis1 line2'} {'Axis2 line1' 'Axis2 line2'}} % handles - Handles of the main figure who contain all the % subplots % flagstd - Flag to plot the Standar Deviation {default: 1} means 'on' % % See also: % % Author: Ramon Martinez-Cancino, SCCN, 2014 % % Copyright (C) 2014 Ramon Martinez-Cancino,INC, SCCN % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function std_detachplots(hObject,eventdata,varargin) % display help if not enough arguments if nargin < 2 help std_detachplots; return; end icadefs; try options = varargin; if ~isempty( varargin ), for i = 1:2:numel(options) g.(options{i}) = options{i+1}; end else g= []; end; catch disp('std_detachplots() error: calling convention {''key'', value, ... } error'); return; end; try g.data; catch, g.data = []; end; % Name of plots try g.figtitles; catch, g.figtitles = []; end; % Name of plots try g.sbtitles; catch, g.sbtitles = []; end; % Name of plots try g.handles; catch, g.handles = []; end; % Handles of figure try g.flagstd; catch, g.flagstd = 1; end; % Plot std band around mean try g.xlabel; catch, g.xlabel = ''; end; % xlabel try g.ylabel; catch, g.ylabel = ''; end; % ylabel try g.timevec; catch, g.timevec = ''; end; % Time or freq vector try g.filter; catch, g.filter = ''; end; % Low pass filter freq % Checking data if isempty(g.handles) && any([isempty(g.data) isempty(g.figtitles)]) error('std_detachplots : Check entries. Options ''handles'', ''data'' and ''figtitles'' must be provided'); end if iscell(g.data) nplots = numel(g.data(:)); else nplots = 1 ; g.data = {g.data}; end % Checking sbtitles if isempty(g.sbtitles) for i = 1:numel(g.data) c = 1; if ~isempty(g.data{i}) for j = 1:size(g.data{i},2) g.sbtitles{i}{j} = {['Line ' num2str(c)]}; c = c+1; end end end end % Plot goes here %-------------------------------------------------------------------------- if isempty(g.handles) for i_nplots = 1 : nplots idata = g.data{i_nplots}; % Filtering data to be plotted if ~isempty(g.filter), idata = myfilt(idata, 1000/(g.timevec(2)-g.timevec(1)), 0, g.filter); end; len = size(idata,2); if len > 0 % A non-empty cluster % Getting the mean meandata = mean(idata,2); stddata = std(idata,0,2); if license('checkout', 'statistics_toolbox') SEM = std(idata,0,2)/sqrt(size(idata,2)); % Standard Error ts = tinv([0.025 0.975],size(idata,2)-1); % T-Score lower = meandata + ts(1)*SEM; % CI upper = meandata + ts(2)*SEM; % CI else lower = meandata-2*stddata; upper = meandata+2*stddata; end hplot = figure('name', g.figtitles, 'NumberTitle','off'); rowcols(2) = ceil(sqrt(len + 4)); rowcols(1) = ceil((len+4)/rowcols(2)); for k = 1:len %--- first sbplot row ---- if k <= rowcols(2) - 2 figure(hplot); sbplot(rowcols(1),rowcols(2),k+2); hold on; plotlines(k,idata,meandata,lower, upper,g.sbtitles{k},g); else figure(hplot) sbplot(rowcols(1),rowcols(2),k+4); hold on; plotlines(k,idata,meandata,lower, upper,g.sbtitles{k},g); end end % Plot all figure figure(hplot) sbplot(rowcols(1),rowcols(2),[1 rowcols(2)+2 ]); hold on; plotlines(1:len,idata,meandata,lower,upper,g.figtitles,g); set(gcf,'Color', BACKCOLOR); orient tall; end end else xlabelval = ''; ylabelval = ''; % Match Children handles based on titles provided c = 0; for i = 1: nplots htemp = findall(g.handles,'String', g.figtitles{i}); if all([~isempty(htemp) ~isempty(g.data(i))]) handlestemp{i} = htemp(1); % Getting x label from handles if isempty(xlabelval) xlabelval = get(get(get(handlestemp{i},'Parent'),'Xlabel'),'String'); % xlabelval = handlestemp{i}.Parent.XLabel.String; end % Getting y label from handles if isempty(ylabelval) ylabelval = get(get(get(handlestemp{i},'Parent'),'Ylabel'),'String'); % ylabelval = handlestemp{i}.Parent.YLabel.String; end % Getting timevec from handles if isempty(g.timevec) tmp = get(get(get(handlestemp{i},'Parent'),'Children')); g.timevec = tmp(i).XData; % g.timevec = handlestemp{i}.Parent.Children(i).XData; end else handlestemp{i} = []; end % Callback setting if ~isempty(handlestemp{i}) c = c + 1; % For Axis set( get( handlestemp{i}, 'Parent'), 'ButtonDownFcn',{@std_detachplots,... 'data' ,g.data{i},... 'timevec' ,g.timevec,... 'handles' ,'',... 'figtitles',g.figtitles{i},... 'sbtitles' ,g.sbtitles{c},... 'xlabel' ,xlabelval,... 'ylabel' ,ylabelval,... 'filter' , g.filter,... }); % For lines set( get(get( handlestemp{i}, 'Parent'), 'Children'), 'ButtonDownFcn',{@std_detachplots,... 'data' ,g.data{i},... 'timevec' ,g.timevec,... 'handles' ,'',... 'figtitles',g.figtitles{i},... 'sbtitles' ,g.sbtitles{c},... 'xlabel' ,xlabelval,... 'ylabel' ,ylabelval,... 'filter' , g.filter,... }); end end end function plotlines(kindx,idata,meandata,lower,upper,sbtitle,g) for i = 1:length(kindx) plot(g.timevec,idata(:,kindx(i)),'b','LineWidth', 0.1); % plot g.data end plot(g.timevec,meandata,'r','LineWidth', 0.1); % plot mean if g.flagstd % plot std band eeglabciplot(lower,upper,g.timevec, 'r', 0.2); axis tight; end if length(kindx)>1 xlabel(g.xlabel); ylabel(g.ylabel); end box on; grid on; axis tight; title(sbtitle, 'interpreter', 'none'); % rapid filtering for ERP (from std_plotcurve) % ----------------------- function tmpdata2 = myfilt(tmpdata, srate, lowpass, highpass); bscorrect = 1; if bscorrect % Getting initial baseline bs_val1 = mean(tmpdata,1); bs1 = repmat(bs_val1, size(tmpdata,1), 1); end % Filtering tmpdata2 = reshape(tmpdata, size(tmpdata,1), size(tmpdata,2)*size(tmpdata,3)*size(tmpdata,4)); tmpdata2 = eegfiltfft(tmpdata2',srate, lowpass, highpass)'; tmpdata2 = reshape(tmpdata2, size(tmpdata,1), size(tmpdata,2), size(tmpdata,3), size(tmpdata,4)); if bscorrect % Getting after-filter baseline bs_val2 = mean(tmpdata2,1); bs2 = repmat(bs_val2, size(tmpdata2,1), 1); % Correcting the baseline realbs = bs1-bs2; tmpdata2 = tmpdata2 + realbs; end
github
lcnhappe/happe-master
std_specplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_specplot.m
5,582
utf_8
a9230bd77bad7d1ec5ac55b5c61beed8
% std_specplot() - plot STUDY component cluster spectra, either mean spectra % for all requested clusters in the same figure, with spectra % for different conditions (if any) plotted in different colors, % or spectra for each specified cluster in a separate figure % for each condition, showing the cluster component spectra plus % the mean cluster spectrum (in bold). The spectra can be % plotted only if component spectra have been computed and % saved with the EEG datasets in Matlab files "[datasetname].icaspec" % using pop_preclust() or std_preclust(). Called by pop_clustedit(). % Calls std_readspec() and internal function std_plotcompspec() % Usage: % >> [STUDY] = std_specplot(STUDY, ALLEEG, key1, val1, key2, val2, ...); % >> [STUDY specdata specfreqs pgroup pcond pinter] = std_specplot(STUDY, ALLEEG, ...); % % Inputs: % STUDY - STUDY structure comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - vector of EEG dataset structures for the dataset(s) in the STUDY, % typically created using load_ALLEEG(). % Optional inputs for component plotting: % 'clusters' - [numeric vector|'all'] indices of clusters to plot. % If no component indices ('comps' below) are given, the average % spectrums of the requested clusters are plotted in the same figure, % with spectrums for different conditions (and groups if any) plotted % in different colors. In 'comps' (below) mode, spectrum for each % specified cluster are plotted in separate figures (one per % condition), each overplotting cluster component spectrum plus the % average cluster spectrum in bold. Note this parameter has no effect % if the 'comps' option (below) is used. {default: 'all'} % 'comps' - [numeric vector|'all'] indices of the cluster components to plot. % Note that 'comps', 'all' is equivalent to 'plotsubjects', 'on'. % % Optional inputs for channel plotting: % 'channels' - [numeric vector] specific channel group to plot. By % default, the grand mean channel spectrum is plotted (using the % same format as for the cluster component means described above) % 'subject' - [numeric vector] In 'changrp' mode (above), index of % the subject(s) to plot. Else by default, plot all components % in the cluster. % 'plotsubjects' - ['on'|'off'] When 'on', plot spectrum of all subjects. % % Other optional inputs: % 'plotmode' - ['normal'|'condensed'] 'normal' -> plot in a new figure; % 'condensed' -> plot all curves in the current figure in a % condensed fashion {default: 'normal'} % 'key','val' - All optional inputs to pop_specparams() are also accepted here % to plot subset of time, statistics etc. The values used by default % are the ones set using pop_specparams() and stored in the % STUDY structure. % Outputs: % STUDY - the input STUDY set structure with the plotted cluster mean spectra % added?? to allow quick replotting. % specdata - [cell] spectral data for each condition, group and subjects. % size of cell array is [nconds x ngroups]. Size of each element % is [freqs x subjects] for data channels or [freqs x components] % for component clusters. This array may be gicen as input % directly to the statcond() function or std_stats() function % to compute statistics. % specfreqs - [array] Sprectum point frequency values. % pgroup - [array or cell] p-values group statistics. Output of the % statcond() function. % pcond - [array or cell] condition statistics. Output of the statcond() % function. % pinter - [array or cell] groups x conditions statistics. Output of % statcond() function. % Example: % >> [STUDY] = std_specplot(STUDY,ALLEEG, 'clusters', 2, 'mode', 'apart'); % % Plot component spectra for STUDY cluster 2, plus the mean cluster % % spectrum (in bold). % % See also pop_clustedit(), pop_preclust() std_preclust(), pop_clustedit(), std_readspec() % % Authors: Arnaud Delorme, CERCO, August, 2006 % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, specdata, allfreqs, pgroup, pcond, pinter] = std_specplot(STUDY, ALLEEG, varargin) if nargin < 2 help std_specplot; return; end; [STUDY, specdata, allfreqs, pgroup, pcond, pinter] = std_erpplot(STUDY, ALLEEG, 'datatype', 'spec', 'unitx', 'Hz', varargin{:});
github
lcnhappe/happe-master
std_movecomp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_movecomp.m
6,804
utf_8
a592dff7e0ffc5b384d4dcc8b41d55b6
% std_movecomp() - Move ICA component(s) from one cluster to another. % % Usage: % >> [STUDY] = std_movecomp(STUDY, ALLEEG, from_cluster, to_cluster, comps); % Inputs: % STUDY - STUDY structure comprising all or some of the EEG datasets in ALLEEG. % ALLEEG - vector of EEG structures in the STUDY, typically created using % load_ALLEEG(). % from_cluster - index of the cluster components are to be moved from. % to_cluster - index of the cluster components are to be moved to. % comps - [int vector] indices of from_cluster components to move. % % Outputs: % STUDY - input STUDY structure with modified component reassignments. % % Example: % >> [STUDY] = std_movecomp(STUDY, ALLEEG, 10, 7, [2 7]); % % Move components 2 and 7 of Cluster 10 to Cluster 7. % % See also: pop_clustedit % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 07, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_movecomp(STUDY, ALLEEG, old_clus, new_clus, comps) icadefs; % Cannot move components if clusters have children clusters if ~isempty(STUDY.cluster(old_clus).child) | ~isempty(STUDY.cluster(new_clus).child) warndlg2('Cannot move components if clusters have children clusters!' , 'Aborting move components'); return; end if isempty(STUDY.cluster(old_clus).parent) | isempty(STUDY.cluster(new_clus).parent) % The Parent cluster warndlg2('Cannot move components to or from the Parent cluster - off all components in STUDY!' , 'Aborting move components'); return; end % Cannot move components if clusters have different parent % clusters (didn'y come from the same level of clustering), % unless the cluster, components are moved to, is an empty new cluster. if (length(STUDY.cluster(old_clus).parent) ~= length(STUDY.cluster(new_clus).parent)) & ~strcmp(STUDY.cluster(new_clus).parent, 'manual') warndlg2(strvcat('Cannot move components if clusters have different parent clusters!', ... 'This limitation will be fixed in the future'), 'Aborting move components'); return; end % Check if all parents are the same if (~strcmp(STUDY.cluster(new_clus).parent, 'manual')) if ~(sum(strcmp(STUDY.cluster(old_clus).parent, STUDY.cluster(new_clus).parent)) == length(STUDY.cluster(new_clus).parent))% different parent warndlg2(strvcat('Cannot move components if clusters have different parent clusters!', ... 'This limitation will be fixed in the future') , 'Aborting move components'); return; end end for ci = 1:length(comps) comp = STUDY.cluster(old_clus).comps(comps(ci)); sets = STUDY.cluster(old_clus).sets(:,comps(ci)); fprintf('Moving component %d from cluster %d to cluster %d, centroids will be recomputed\n',comp, old_clus, new_clus); %update new cluster indcomp = length(STUDY.cluster(new_clus).comps)+1; STUDY.cluster(new_clus).comps(indcomp) = comp;%with comp index STUDY.cluster(new_clus).sets(:,indcomp) = sets; %with set indices if strcmpi(STUDY.cluster(new_clus).parent, 'manual') STUDY.cluster(new_clus).preclust.preclustparams = STUDY.cluster(old_clus).preclust.preclustparams; STUDY.cluster(new_clus).parent = STUDY.cluster(old_clus).parent; STUDY.cluster(find(strcmp({STUDY.cluster.name},STUDY.cluster(new_clus).parent))).child{end+1} = STUDY.cluster(new_clus).name; end % update preclustering array % -------------------------- if strncmpi('Notclust',STUDY.cluster(old_clus).name,8) STUDY.cluster(new_clus).preclust.preclustparams = []; STUDY.cluster(new_clus).preclust.preclustdata = []; STUDY.cluster(new_clus).preclust.preclustcomp = []; disp('Important warning: pre-clustering information removed for target cluster'); disp('(this is because the component moved had no pre-clustering data associated to it)'); elseif ~strncmpi('Notclust',STUDY.cluster(new_clus).name,8) STUDY.cluster(new_clus).preclust.preclustdata(indcomp,:) = STUDY.cluster(old_clus).preclust.preclustdata(comps(ci),:); %with preclustdata end; % sort by sets % ------------ [tmp,sind] = sort(STUDY.cluster(new_clus).sets(1,:)); STUDY.cluster(new_clus).sets = STUDY.cluster(new_clus).sets(:,sind); STUDY.cluster(new_clus).comps = STUDY.cluster(new_clus).comps(sind); if ~isempty(STUDY.cluster(new_clus).preclust.preclustdata) STUDY.cluster(new_clus).preclust.preclustdata(sind,:) = STUDY.cluster(new_clus).preclust.preclustdata(:,:); end end %STUDY.cluster(new_clus).centroid = []; % remove centroid STUDY = rm_centroid(STUDY, new_clus); STUDY = rm_centroid(STUDY, old_clus); % Remove data from old cluster % left_comps - are all the components of the cluster after the % components that were moved to the new cluster were removed. left_comps = find(~ismember([1:length(STUDY.cluster(old_clus).comps)],comps)); STUDY.cluster(old_clus).comps = STUDY.cluster(old_clus).comps(left_comps); STUDY.cluster(old_clus).sets = STUDY.cluster(old_clus).sets(:,left_comps); if ~isempty(STUDY.cluster(old_clus).preclust.preclustdata) try, STUDY.cluster(old_clus).preclust.preclustdata = STUDY.cluster(old_clus).preclust.preclustdata(left_comps,:); catch, % this generates an unknown error but I was not able to reproduce it - AD Sept. 26, 2009 end; end; % update the component indices % ---------------------------- STUDY = std_selectdesign(STUDY, ALLEEG, STUDY.currentdesign); disp('Done.'); % remove cluster information % -------------------------- function STUDY = rm_centroid(STUDY, clsindex) keepfields = { 'name' 'parent' 'child' 'comps' 'sets' 'algorithm' 'preclust' }; allfields = fieldnames(STUDY.cluster); for index = 1:length(allfields) if isempty(strmatch(allfields{index}, keepfields)) STUDY.cluster = setfield( STUDY.cluster, { clsindex }, allfields{index}, []); end; end;
github
lcnhappe/happe-master
std_plottf.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_plottf.m
14,853
utf_8
309b1ebe75a277c0130cf64bc514b243
% std_plottf() - plot ERSP/ITC images a component % or channel cluster in a STUDY. Also allows plotting scalp % maps. % Usage: % >> std_plottf( times, freqs, data, 'key', 'val', ...) % Inputs: % times - [vector] latencies in ms of the data points. % freqs - [vector] frequencies in Hz of the data points. % data - [cell array] mean data for each subject group and/or data % condition. For example, to plot mean ERPs from a STUDY % for epochs of 800 frames in two conditions from three groups % of 12 subjects: % % >> data = { [800x12] [800x12] [800x12];... % 3 groups, cond 1 % [800x12] [800x12] [800x12] }; % 3 groups, cond 2 % >> std_plottf(erp_ms,data); % % By default, parametric statistics are computed across subjects % in the three groups. (group,condition) ERP averages are plotted. % See below and >> help statcond % for more information about the statistical computations. % % Optional display parameters: % 'datatype' - ['ersp'|'itc'] data type {default: 'ersp'} % 'titles' - [cell array of string] titles for each of the subplots. % { default: none} % % Statistics options: % 'groupstats' - ['on'|'off'] Compute (or not) statistics across groups. % {default: 'off'} % 'condstats' - ['on'|'off'] Compute (or not) statistics across groups. % {default: 'off'} % 'threshold' - [NaN|real<<1] Significance threshold. NaN -> plot the % p-values themselves on a different figure. When possible, % significance regions are indicated below the data. % {default: NaN} % 'maskdata' - ['on'|'off'] when threshold is non-NaN and not both % condition and group statistics are computed, the user % has the option to mask the data for significance. % {defualt: 'off'} % % Other plotting options: % 'plotmode' - ['normal'|'condensed'] statistics plotting mode: % 'condensed' -> plot statistics under the curves % (when possible); 'normal' -> plot them in separate % axes {default: 'normal'} % 'freqscale' - ['log'|'linear'|'auto'] frequency plotting scale. This % will only change the ordinate not interpolate the data. % If you change this option blindly, your frequency scale % might be innacurate {default: 'auto'} % 'ylim' - [min max] ordinate limits for ERP and spectrum plots % {default: all available data} % % ITC/ERSP image plotting options: % 'tftopoopt' - [cell array] tftopo() plotting options (ERSP and ITC) % 'caxis' - [min max] color axis (ERSP, ITC, scalp maps) % % Scalp map plotting options: % 'chanlocs' - [struct] channel location structure % % Author: Arnaud Delorme, CERCO, CNRS, 2006- % % See also: pop_erspparams(), pop_erpparams(), pop_specparams(), statcond() % Copyright (C) 2006 Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [pgroup, pcond, pinter] = std_plottf(timevals, freqs, data, varargin) pgroup = []; pcond = []; pinter = []; if nargin < 2 help std_plottf; return; end; opt = finputcheck( varargin, { 'titles' 'cell' [] cellfun(@num2str, cell(20,20), 'uniformoutput', false); 'caxis' 'real' [] []; 'ersplim' 'real' [] []; % same as above 'itclim' 'real' [] []; % same as above 'ylim' 'real' [] []; 'tftopoopt' 'cell' [] {}; 'threshold' 'real' [] NaN; 'unitx' 'string' [] 'ms'; % just for titles 'unitcolor' 'string' {} 'dB'; 'chanlocs' 'struct' [] struct('labels', {}); 'freqscale' 'string' { 'log','linear','auto' } 'auto'; 'events' 'cell' [] {}; 'groupstats' 'cell' [] {}; 'condstats' 'cell' [] {}; 'interstats' 'cell' [] {}; 'maskdata' 'string' { 'on','off' } 'off'; 'datatype' 'string' { 'ersp','itc' 'erpim' } 'ersp'; 'plotmode' 'string' { 'normal','condensed' } 'normal' }, 'std_plottf'); if isstr(opt), error(opt); end; if all(all(cellfun('size', data, 3)==1)) opt.singlesubject = 'on'; end; % remove empty entries datapresent = ~cellfun(@isempty, data); for c = size(data,1):-1:1, if sum(datapresent(c,:)) == 0, data(c,:) = []; opt.titles(c,:) = []; if ~isempty(opt.groupstats), opt.groupstats(c) = []; end; end; end; for g = size(data,2):-1:1, if sum(datapresent(:,g)) == 0, data(:,g) = []; opt.titles(:,g) = []; if ~isempty(opt.condstats ), opt.condstats( g) = []; end; end; end; if ~isempty(opt.groupstats) & ~isempty(opt.condstats) & strcmpi(opt.maskdata, 'on') disp('Cannot use ''maskdata'' option with both condition stat. and group stat. on'); disp('Disabling statistics'); opt.groupstats = {}; opt.condstats = {}; opt.maskdata = 'off'; end; if ~isempty(opt.ersplim), opt.caxis = opt.ersplim; end; if ~isempty(opt.itclim), opt.caxis = opt.itclim; end; onecol = { 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' }; manycol = { 'b' 'r' 'g' 'k' 'c' 'y' }; nc = size(data,1); ng = size(data,2); if nc >= ng, opt.transpose = 'on'; else opt.transpose = 'off'; end; % test log frequencies % -------------------- if length(freqs) > 2 & strcmpi(opt.freqscale, 'auto') midfreq = (freqs(3)+freqs(1))/2; if midfreq*.9999 < freqs(2) & midfreq*1.0001 > freqs(2), opt.freqscale = 'linear'; else opt.freqscale = 'log'; end; end; % condensed plot % -------------- if strcmpi(opt.plotmode, 'condensed') meanplot = zeros(size(data{1},1), size(data{1},2)); count = 0; for c = 1:nc for g = 1:ng if ~isempty(data{c,g}) meanplot = meanplot + mean(data{c,g},3); count = count+1; end; end; end; meanplot = meanplot/count; options = { 'chanlocs', opt.chanlocs, 'electrodes', 'off', 'cbar', 'on', ... 'cmode', 'separate', opt.tftopoopt{:} }; if strcmpi(opt.datatype, 'erpim'), options = { options{:} 'ylabel' 'Trials' }; end; if strcmpi(opt.freqscale, 'log'), options = { options{:} 'logfreq', 'native' }; end; tftopo( meanplot', timevals, freqs, 'title', opt.titles{1}, options{:}); currentHangle = gca; if ~isempty( opt.caxis ) caxis( currentHangle, opt.caxis ) end colorbarHandle = cbar; title(colorbarHandle,opt.unitcolor); axes(currentHangle); return; end; % plotting paramters % ------------------ if ng > 1 && ~isempty(opt.groupstats), addc = 1; else addc = 0; end; if nc > 1 && ~isempty(opt.condstats ), addr = 1; else addr = 0; end; % compute significance mask % -------------------------- if ~isempty(opt.interstats), pinter = opt.interstats{3}; end; if ~isnan(opt.threshold) && ( ~isempty(opt.groupstats) || ~isempty(opt.condstats) ) pcondplot = opt.condstats; pgroupplot = opt.groupstats; pinterplot = pinter; maxplot = 1; else for ind = 1:length(opt.condstats), pcondplot{ind} = -log10(opt.condstats{ind}); end; for ind = 1:length(opt.groupstats), pgroupplot{ind} = -log10(opt.groupstats{ind}); end; if ~isempty(pinter), pinterplot = -log10(pinter); end; maxplot = 3; end; % ------------------------------- % masking for significance of not % ------------------------------- statmask = 0; if strcmpi(opt.maskdata, 'on') && ~isnan(opt.threshold) && ... (~isempty(opt.condstats) || ~isempty(opt.condstats)) addc = 0; addr = 0; statmask = 1; end; % ------------------------- % plot time/frequency image % ------------------------- options = { 'chanlocs', opt.chanlocs, 'electrodes', 'off', 'cbar', 'off', ... 'cmode', 'separate', opt.tftopoopt{:} }; if strcmpi(opt.freqscale, 'log'), options = { options{:} 'logfreq', 'native' }; end; if strcmpi(opt.datatype, 'erpim'), options = { options{:} 'ylabel' 'Trials' }; end; % adjust figure size % ------------------ fig = figure('color', 'w'); pos = get(fig, 'position'); set(fig, 'position', [ pos(1)+15 pos(2)+15 pos(3)/2.5*(nc+addr), pos(4)/2*(ng+addc) ]); pos = get(fig, 'position'); if strcmpi(opt.transpose, 'off'), set(gcf, 'position', [ pos(1) pos(2) pos(4) pos(3)]); else set(gcf, 'position', pos); end; tmpc = [inf -inf]; for c = 1:nc for g = 1:ng hdl(c,g) = mysubplot(nc+addr, ng+addc, g + (c-1)*(ng+addc), opt.transpose); if ~isempty(data{c,g}) tmpplot = mean(data{c,g},3); if ~isreal(tmpplot(1)), tmpplot = abs(tmpplot); end; if statmask, if ~isempty(opt.condstats), tmpplot(find(pcondplot{g}(:) == 0)) = 0; else tmpplot(find(pgroupplot{c}(:) == 0)) = 0; end; end; if ~isempty(opt.events) tmpevents = mean(opt.events{c,g},2); else tmpevents = []; end; tftopo( tmpplot, timevals, freqs, 'events', tmpevents, 'title', opt.titles{c,g}, options{:}); if isempty(opt.caxis) && ~isempty(tmpc) warning off; tmpc = [ min(min(tmpplot(:)), tmpc(1)) max(max(tmpplot(:)), tmpc(2)) ]; warning on; else if ~isempty(opt.caxis) caxis(opt.caxis); end; end; if c > 1 ylabel(''); end; end; % statistics accross groups % ------------------------- if g == ng && ng > 1 && ~isempty(opt.groupstats) && ~isinf(pgroupplot{c}(1)) && ~statmask hdl(c,g+1) = mysubplot(nc+addr, ng+addc, g + 1 + (c-1)*(ng+addc), opt.transpose); tftopo( pgroupplot{c}, timevals, freqs, 'title', opt.titles{c,g+1}, options{:}); caxis([-maxplot maxplot]); end; end; end; for g = 1:ng % statistics accross conditions % ----------------------------- if ~isempty(opt.condstats) && ~isinf(pcondplot{g}(1)) && ~statmask && nc > 1 hdl(nc+1,g) = mysubplot(nc+addr, ng+addc, g + c*(ng+addc), opt.transpose); tftopo( pcondplot{g}, timevals, freqs, 'title', opt.titles{nc+1,g}, options{:}); caxis([-maxplot maxplot]); end; end; % color scale % ----------- if isempty(opt.caxis) tmpc = [-max(abs(tmpc)) max(abs(tmpc))]; for c = 1:nc for g = 1:ng axes(hdl(c,g)); if ~isempty(tmpc) caxis(tmpc); end; end; end; end; % statistics accross group and conditions % --------------------------------------- if ~isempty(opt.groupstats) && ~isempty(opt.condstats) && ng > 1 && nc > 1 hdl(nc+1,ng+1) = mysubplot(nc+addr, ng+addc, g + 1 + c*(ng+addr), opt.transpose); tftopo( pinterplot, timevals, freqs, 'title', opt.titles{nc+1,ng+1}, options{:}); caxis([-maxplot maxplot]); ylabel(''); end; % color bars % ---------- axes(hdl(nc,ng)); cbar_standard(opt.datatype, ng, opt.unitcolor); if isnan(opt.threshold) && (nc ~= size(hdl,1) || ng ~= size(hdl,2)) ind = find(ishandle(hdl(end:-1:1))); axes(hdl(end-ind(1)+1)); cbar_signif(ng, maxplot); end; % mysubplot (allow to transpose if necessary) % ------------------------------------------- function hdl = mysubplot(nr,nc,ind,transp); r = ceil(ind/nc); c = ind -(r-1)*nc; if strcmpi(transp, 'on'), hdl = subplot(nc,nr,(c-1)*nr+r); else hdl = subplot(nr,nc,(r-1)*nc+c); end; % colorbar for ERSP and scalp plot % -------------------------------- function cbar_standard(datatype, ng, unitcolor); pos = get(gca, 'position'); tmpc = caxis; fact = fastif(ng == 1, 40, 20); tmp = axes('position', [ pos(1)+pos(3)+max(pos(3)/fact,0.006) pos(2) max(pos(3)/fact,0.01) pos(4) ]); set(gca, 'unit', 'normalized'); if strcmpi(datatype, 'itc') cbar(tmp, 0, tmpc, 10); ylim([0.5 1]); title('ITC','fontsize',10,'fontweight','normal'); elseif strcmpi(datatype, 'erpim') cbar(tmp, 0, tmpc, 5); else cbar(tmp, 0, tmpc, 5); title(unitcolor); end; % colorbar for significance % ------------------------- function cbar_signif(ng, maxplot); % Retrieving Defaults icadefs; pos = get(gca, 'position'); tmpc = caxis; fact = fastif(ng == 1, 40, 20); tmp = axes('position', [ pos(1)+pos(3)+max(pos(3)/fact,0.006) pos(2) max(pos(3)/fact,0.01) pos(4) ]); map = colormap(DEFAULT_COLORMAP); n = size(map,1); cols = [ceil(n/2):n]'; image([0 1],linspace(0,maxplot,length(cols)),[cols cols]); %cbar(tmp, 0, tmpc, 5); tick = linspace(0, maxplot, maxplot+1); set(gca, 'ytickmode', 'manual', 'YAxisLocation', 'right', 'xtick', [], ... 'ytick', tick, 'yticklabel', round(10.^-tick*1000)/1000); xlabel(''); colormap(DEFAULT_COLORMAP); % rapid filtering for ERP % ----------------------- function tmpdata2 = myfilt(tmpdata, lowpass, highpass, factor, filtertype) tmpdata2 = reshape(tmpdata, size(tmpdata,1), size(tmpdata,2)*size(tmpdata,3)*size(tmpdata,4)); tmpdata2 = eegfiltfft(tmpdata2',lowpass, highpass, factor, filtertype)'; tmpdata2 = reshape(tmpdata2, size(tmpdata,1), size(tmpdata,2), size(tmpdata,3), size(tmpdata,4));
github
lcnhappe/happe-master
std_getindvar.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_getindvar.m
7,332
utf_8
6ae9d669af217a88f9cf15ea2478d5c6
% std_getindvar - get independent variables of a STUDY % % Usage: % [indvar indvarvals] = std_getindvar(STUDY); % [indvar indvarvals] = std_getindvar(STUDY, mode, scandesign); % % Input: % STUDY - EEGLAB STUDY structure % mode - ['datinfo'|'trialinfo'|'both'] get independent variables % linked to STUDY.datasetinfo, STUDY.datasetinfo.trialinfo or % both. Default is 'both'. % scandesign - [0|1] scan STUDY design for additional combinations of % independent variable values. Default is 0. % % Output: % indvar - [cell array] cell array of independent variable names % indvarvals - [cell array] cell array of independent variable values % % Authors: A. Delorme, CERCO/CNRS and SCCN/UCSD, 2010- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ factor factorvals subjects ] = std_getindvar(STUDY, mode, scandesign) if nargin < 1 help std_getindvar; return; end; factor = {}; factorvals = {}; subjects = {}; if nargin < 2, mode = 'both'; end; if nargin < 3, scandesign = 0; end; countfact = 1; setinfo = STUDY.datasetinfo; if strcmpi(mode, 'datinfo') || strcmpi(mode, 'both') % get trial info ff = fieldnames(setinfo); ff = setdiff_bc(ff, { 'filepath' 'filename' 'subject' 'index' 'ncomps' 'comps' 'trialinfo' }); for index = 1:length(ff) if isstr(getfield(setinfo(1), ff{index})) eval( [ 'tmpvals = unique_bc({ setinfo.' ff{index} '});' ] ); if length(tmpvals) > 1 factor{ countfact} = ff{index}; factorvals{countfact} = tmpvals; % get subject for each factor value for c = 1:length(tmpvals) eval( [ 'datind = strmatch(tmpvals{c}, { setinfo.' ff{index} '}, ''exact'');' ] ); subjects{ countfact}{c} = unique_bc( { setinfo(datind).subject } ); end; countfact = countfact + 1; end; else eval( [ 'tmpvals = unique_bc([ setinfo.' ff{index} ']);' ] ); if length(tmpvals) > 1 factor{ countfact} = ff{index}; factorvals{countfact} = mattocell(tmpvals); % get subject for each factor value for c = 1:length(tmpvals) eval( [ 'datind = find(tmpvals(c) == [ setinfo.' ff{index} ']);' ] ); subjects{ countfact}{c} = unique_bc( { setinfo(datind).subject } ); end; countfact = countfact + 1; end; end; end; end; % add ind. variables for trials % ----------------------------- if strcmpi(mode, 'trialinfo') || strcmpi(mode, 'both') % add trial info if isfield(setinfo, 'trialinfo') ff = fieldnames(setinfo(1).trialinfo); for index = 1:length(ff) % check if any of the datasets are using string for event type allFieldsPresent = cellfun(@(x)(isfield(x, ff{index})), { setinfo.trialinfo }); allFirstVal = cellfun(@(x)(getfield(x, ff{index})), { setinfo(allFieldsPresent).trialinfo }, 'uniformoutput', false); if any(cellfun(@isstr, allFirstVal)) alltmpvals = {}; for ind = 1:length(setinfo) if isfield(setinfo(ind).trialinfo, ff{index}) eval( [ 'tmpTrialVals = { setinfo(ind).trialinfo.' ff{index} ' };' ] ); if isnumeric(tmpTrialVals{1}) % convert to string if necessary tmpTrialVals = cellfun(@num2str, tmpTrialVals, 'uniformoutput', false); end; tmpvals = unique_bc(tmpTrialVals); else tmpvals = {}; end; if isempty(alltmpvals) alltmpvals = tmpvals; else alltmpvals = { alltmpvals{:} tmpvals{:} }; end; end; alltmpvals = unique_bc(alltmpvals); if length(alltmpvals) > 1 factor{ countfact} = ff{index}; factorvals{countfact} = alltmpvals; subjects{ countfact} = {}; countfact = countfact + 1; end; else alltmpvals = []; for ind = 1:length(setinfo) if isfield(setinfo(ind).trialinfo, ff{index}) eval( [ 'tmpvals = unique_bc([ setinfo(ind).trialinfo.' ff{index} ' ]);' ] ); else tmpvals = []; end; alltmpvals = [ alltmpvals tmpvals ]; end; alltmpvals = unique_bc(alltmpvals); if length(alltmpvals) > 1 factor{ countfact} = ff{index}; factorvals{countfact} = mattocell(alltmpvals); subjects{ countfact} = {}; countfact = countfact + 1; end; end; end; end; end; % scan existing design for additional combinations % ------------------------------------------------ if scandesign for desind = 1:length(STUDY.design) pos1 = strmatch(STUDY.design(desind).variable(1).label, factor, 'exact'); pos2 = strmatch(STUDY.design(desind).variable(2).label, factor, 'exact'); if ~isempty(pos1), add1 = mysetdiff(STUDY.design(desind).variable(1).value, factorvals{pos1}); else add1 = []; end; if ~isempty(pos2), add2 = mysetdiff(STUDY.design(desind).variable(2).value, factorvals{pos2}); else add2 = []; end; if ~isempty(add1), factorvals{pos1} = { factorvals{pos1}{:} add1{:} }; end; if ~isempty(add2), factorvals{pos2} = { factorvals{pos2}{:} add2{:} }; end; end; end; function cellout = mysetdiff(cell1, cell2); if isstr(cell2{1}) indcell = cellfun(@iscell, cell1); else indcell = cellfun(@(x)(length(x)>1), cell1); end; cellout = cell1(indcell); % if isstr(cell1{1}) && isstr(cell2{1}) % cellout = setdiff_bc(cell1, cell2); % elseif ~isstr(cell1{1}) && ~isstr(cell2{1}) % cellout = mattocell(setdiff( [ cell1{:} ], [ cell2{:} ])); % elseif isstr(cell1{1}) && ~isstr(cell2{1}) % cellout = setdiff_bc(cell1, cellfun(@(x)(num2str(x)),cell2, 'uniformoutput', false)); % elseif ~isstr(cell1{1}) && isstr(cell2{1}) % cellout = setdiff_bc(cellfun(@(x)(num2str(x)),cell1, 'uniformoutput', false), cell2); % end;
github
lcnhappe/happe-master
std_uniformsetinds.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_uniformsetinds.m
1,311
utf_8
8c693e38166509a1a4f3be6994c4eb1e
% std_uniformsetinds() - Check uniform channel distribution accross datasets % % Usage: % >> boolval = std_uniformsetinds(STUDY); % Inputs: % STUDY - EEGLAB STUDY % % Outputs: % boolval - [0|1] 1 if uniform % % Authors: Arnaud Delorme, SCCN/UCSD, CERCO/CNRS, 2010- % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function uniformchannels = std_uniformsetinds( STUDY ); uniformchannels = 1; for c = 1:length(STUDY.changrp(1).setinds(:)) tmpind = cellfun(@(x)(length(x{c})), { STUDY.changrp(:).setinds }); if length(unique(tmpind)) ~= 1 uniformchannels = 0; end; end;
github
lcnhappe/happe-master
std_topoplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_topoplot.m
14,420
utf_8
a3141fe7504cf37ab41fb362f25aedd8
% std_topoplot() - Command line function to plot cluster component and mean scalp maps. % Displays either mean cluster/s scalp map/s, or all cluster/s components % scalp maps with the mean cluster/s scsalp map in one figure. % The scalp maps can be visualized only if component scalp maps % were calculated and saved in the EEG datasets in the STUDY. % These can be computed during pre-clustering using the GUI-based function % pop_preclust() or the equivalent commandline functions eeg_createdata() % and eeg_preclust(). A pop-function that calls this function is % pop_clustedit(). % Usage: % >> [STUDY] = std_topoplot(STUDY, ALLEEG, key1, val1, key2, val2); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in % the STUDY. ALLEEG for a STUDY set is typically created using load_ALLEEG(). % Optional inputs: % 'clusters' - [numeric vector| 'all'] -> specific cluster numbers to plot. % 'all' -> plot all clusters in STUDY. % {default: 'all'}. % 'comps' - [numeric vector | 'all'] -> indices of the cluster components to plot. % 'all' -> plot all the components in the cluster % {default: 'all'}. % 'mode' - ['together'|'apart'] a plotting mode. In 'together' mode, the average % scalp maps of the requested clusters are plotted in the same figure, % one per condition. In 'apart' mode, component scalp maps for each % cluster are plotted in a separate figure for each condition, plus the % cluster mean map. Note that this option is irrelevant if component % indices ('comps' above) are provided.{default: 'apart'}. % 'figure' - ['on'|'off'] for the 'together' mode option, plots on % a new figure ('on'), or on the current figure ('off'). % {default: 'on'}. % Outputs: % STUDY - the input STUDY set structure modified with plotted cluster scalp % map means, to allow quick replotting (unless clusters meands % already exists in th STUDY). % % Example: % % Plot the mean scalp maps for clusters 1 through 20 on the same figure. % >> [STUDY] = std_topoplot(STUDY,ALLEEG, 'clusters', [1:20], 'mode', 'together'); % % See also pop_clustedit(), pop_preclust() % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 07, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_topoplot(STUDY, ALLEEG, varargin) icadefs; % Set default values cls = []; mode = 'together'; % plot all cluster mean scalp maps on one figure figureon = 1; % plot on a new figure for k = 3:2:nargin switch varargin{k-2} case 'clusters' if isnumeric(varargin{k-1}) cls = varargin{k-1}; if isempty(cls) cls = 2:length(STUDY.cluster); end else if isstr(varargin{k-1}) & strcmpi(varargin{k-1}, 'all') cls = 2:length(STUDY.cluster); else error('std_topoplot: ''clusters'' input takes either specific clusters (numeric vector) or keyword ''all''.'); end end case 'plotsubjects' % legacy mode = 'apart'; case 'comps' if isstr( varargin{k-1} ), mode = 'apart'; else STUDY = std_plotcompmap(STUDY, ALLEEG, cls, varargin{k-1}); return; end; case 'mode' % Plotting mode 'together' / 'apart' mode = varargin{k-1}; case 'figure' if strcmpi(varargin{k-1},'off') figureon = 0; end case 'plotrad' inputPlotrad = varargin{k-1}; end end % select clusters to plot % ----------------------- if isempty(cls) tmp =[]; cls = 2:length(STUDY.cluster); % plot all clusters in STUDY for k = 1: length(cls) % don't include 'Notclust' clusters if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) & ~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13) tmp = [tmp cls(k)]; end end cls = tmp; end; % Plot all the components in the cluster disp('Drawing components of cluster (all at once)...'); if ~isfield(STUDY.cluster,'topo'), STUDY.cluster(1).topo = []; end; for clus = 1: length(cls) % For each cluster requested if isempty(STUDY.cluster(cls(clus)).topo) STUDY = std_readtopoclust(STUDY,ALLEEG, cls(clus)); end; end if strcmpi(mode, 'apart') for clus = 1: length(cls) % For each cluster requested len = length(STUDY.cluster(cls(clus)).comps); if len > 0 % A non-empty cluster h_topo = figure; rowcols(2) = ceil(sqrt(len + 4)); rowcols(1) = ceil((len+4)/rowcols(2)); clusscalp = STUDY.cluster(cls(clus)); ave_grid = clusscalp.topo; tmp_ave = ave_grid; tmp_ave(find(isnan(tmp_ave))) = 0; % remove NaN values from grid for later correlation calculation. for k = 1:len abset = STUDY.datasetinfo(STUDY.cluster(cls(clus)).sets(1,k)).index; subject = STUDY.datasetinfo(STUDY.cluster(cls(clus)).sets(1,k)).subject; comp = STUDY.cluster(cls(clus)).comps(k); [Xi,Yi] = meshgrid(clusscalp.topoy,clusscalp.topox); scalpmap = squeeze(clusscalp.topoall{k}); % already correct polarity if k <= rowcols(2) - 2 %first sbplot row figure(h_topo); sbplot(rowcols(1),rowcols(2),k+2) , toporeplot(scalpmap, 'style', 'both', 'plotrad',0.5,'intrad',0.5, 'verbose', 'off','xsurface', Xi, 'ysurface', Yi ); title([subject '/' 'ic' num2str(comp) ], 'interpreter', 'none'); colormap(DEFAULT_COLORMAP); %waitbar(k/(len+1),h_wait) else %other sbplot rows figure(h_topo) sbplot(rowcols(1),rowcols(2),k+4) , toporeplot(scalpmap, 'style', 'both', 'plotrad',0.5,'intrad',0.5, 'verbose', 'off','xsurface', Xi, 'ysurface', Yi ); title([subject '/' 'ic' num2str(comp)], 'interpreter', 'none'); colormap(DEFAULT_COLORMAP); %waitbar(k/(len+1),h_wait) end end figure(h_topo) sbplot(rowcols(1),rowcols(2),[1 rowcols(2)+2 ]) , toporeplot(ave_grid, 'style', 'both', 'plotrad',0.5,'intrad',0.5, 'verbose', 'off'); title([ STUDY.cluster(cls(clus)).name ' (' num2str(length(unique(STUDY.cluster(cls(clus)).sets(1,:)))) ' Ss, ' num2str(length(STUDY.cluster(cls(clus)).comps)),' ICs)']); %title([ STUDY.cluster(cls(clus)).name ' average scalp map, ' num2str(length(unique(STUDY.cluster(cls(clus)).sets(1,:)))) 'Ss']); set(gcf,'Color', BACKCOLOR); colormap(DEFAULT_COLORMAP); %waitbar(1,h_wait) %delete(h_wait) orient tall % fill the figure page for printing axcopy end % Finished one cluster plot end % Finished plotting all clusters end % Finished 'apart' plotting mode % Plot clusters centroid maps if strcmpi(mode, 'together') len = length(cls); rowcols(2) = ceil(sqrt(len)); rowcols(1) = ceil((len)/rowcols(2)); if figureon try % optional 'CreateCancelBtn', 'delete(gcbf); error(''USER ABORT'');', h_wait = waitbar(0,'Computing topoplot ...', 'Color', BACKEEGLABCOLOR,'position', [300, 200, 300, 48]); catch % for Matlab 5.3 h_wait = waitbar(0,'Computing topoplot ...','position', [300, 200, 300, 48]); end figure end for k = 1:len if len ~= 1 sbplot(rowcols(1),rowcols(2),k) end tmpcmap = colormap(DEFAULT_COLORMAP); toporeplot(STUDY.cluster(cls(k)).topo, 'style', 'both', 'plotrad',0.5,'intrad',0.5, 'verbose', 'off','colormap', tmpcmap); title([ STUDY.cluster(cls(k)).name ' (' num2str(length(unique(STUDY.cluster(cls(k)).sets(1,:)))) ' Ss, ' num2str(length(STUDY.cluster(cls(k)).comps)),' ICs)']); colormap(DEFAULT_COLORMAP); %title([ STUDY.cluster(cls(k)).name ', ' num2str(length(unique(STUDY.cluster(cls(k)).sets(1,:)))) 'Ss' ]); if figureon waitbar(k/len,h_wait) end end if figureon delete(h_wait) end if len ~= 1 maintitle = 'Average scalp map for all clusters'; a = textsc(maintitle, 'title'); set(a, 'fontweight', 'bold'); set(gcf,'name', maintitle); else title([ STUDY.cluster(cls(k)).name ' (' num2str(length(unique(STUDY.cluster(cls(k)).sets(1,:)))) ' Ss, ' num2str(length(STUDY.cluster(cls(k)).comps)),' ICs)']); set(gcf,'name',['Scalp map of ' STUDY.cluster(cls(k)).name ' (' num2str(length(unique(STUDY.cluster(cls(k)).sets(1,:)))) ' Ss, ' num2str(length(STUDY.cluster(cls(k)).comps)),' ICs)']); %title([ STUDY.cluster(cls(k)).name ' scalp map, ' num2str(length(unique(STUDY.cluster(cls(k)).sets(1,:)))) 'Ss' ]); end set(gcf,'Color', BACKCOLOR); orient tall axcopy end % std_plotcompmap() - Commandline function, to visualizing cluster components scalp maps. % Displays the scalp maps of specified cluster components on separate figures. % The scalp maps can be visualized only if component scalp maps % were calculated and saved in the EEG datasets in the STUDY. % These can be computed during pre-clustering using the GUI-based function % pop_preclust() or the equivalent commandline functions eeg_createdata() % and eeg_preclust(). A pop-function that calls this function is pop_clustedit(). % Usage: % >> [STUDY] = std_plotcompmap(STUDY, ALLEEG, cluster, comps); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in the STUDY. % ALLEEG for a STUDY set is typically created using load_ALLEEG(). % cluster - single cluster number. % % Optional inputs: % comps - [numeric vector] -> indices of the cluster components to plot. % 'all' -> plot all the components in the cluster % (as in std_topoplot). {default: 'all'}. % % Outputs: % STUDY - the input STUDY set structure modified with plotted cluster scalp % map mean, to allow quick replotting (unless cluster mean % already existed in the STUDY). % % Example: % >> cluster = 4; comps= [1 7 10]; % >> [STUDY] = std_plotcompmap(STUDY,ALLEEG, cluster, comps); % Plots components 1, 7 & 10 scalp maps of cluster 4 on separate figures. % % See also pop_clustedit, pop_preclust, eeg_createdata, std_topoplot % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 07, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_plotcompmap(STUDY, ALLEEG, cls, varargin) icadefs; if ~exist('cls') error('std_plotcompmap: you must provide a cluster numberas an input.'); end if isempty(cls) error('std_plotcompmap: you must provide a cluster numberas an input.'); end if nargin == 3 % no component indices were given % Default: plot all components of the cluster [STUDY] = std_topoplot(STUDY, ALLEEG, 'clusters', cls, 'mode', 'apart'); return else comp_ind = varargin{1}; end STUDY = std_readtopoclust(STUDY,ALLEEG, cls); for ci = 1:length(comp_ind) abset = STUDY.datasetinfo(STUDY.cluster(cls).sets(1,comp_ind(ci))).index; subject = STUDY.datasetinfo(STUDY.cluster(cls).sets(1,comp_ind(ci))).subject; comp = STUDY.cluster(cls).comps(comp_ind(ci)); grid = STUDY.cluster(cls).topoall{comp_ind(ci)}; xi = STUDY.cluster(cls).topox; yi = STUDY.cluster(cls).topoy; [Xi,Yi] = meshgrid(yi,xi); figure; toporeplot(grid, 'style', 'both', 'plotrad',0.5,'intrad',0.5,'xsurface', Xi, 'ysurface', Yi, 'verbose', 'off'); title([subject ' / ' 'IC' num2str(comp) ', ' STUDY.cluster(cls).name ]); set(gcf,'Color', BACKCOLOR); colormap(DEFAULT_COLORMAP); axcopy; end
github
lcnhappe/happe-master
std_centroid.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_centroid.m
14,174
utf_8
f1be77fa82ecbcda91a416c38ccf6fb1
% std_centroid() - compute cluster centroid in EEGLAB dataset STUDY. % Compute and store the centroid(s) (i.e., mean(s)) % for some combination of six measures on specified % clusters in a STUDY. Possible measures include: scalp % maps, ERPs, spectra, ERSPs, ITCs, dipole_locations % Usage: % >> [STUDY, centroid] = std_centroid(STUDY, ALLEEG, ... % clusters, measure1, measure2, ...); % % Inputs: % STUDY - STUDY set % ALLEEG - ALLEEG dataset vector (else an EEG dataset) containing the STUDY % datasets, typically created using load_ALLEEG(). % clusters - [vector] of cluster indices. Computes measure means for the % specified clusters. {deffault|[]: compute means for all % STUDY clusters} % measure(s) - ['erp'|'spec'|'scalp'|'dipole'|'itc'|'ersp']. % The measures(s) for which to calculate the cluster centroid(s): % 'erp' -> mean ERP of each cluster. % 'dipole' -> mean dipole of each cluster. % 'spec' -> mean spectrum of each cluster (baseline removed). % 'scalp' -> mean topoplot scalp map of each cluster. % 'ersp' -> mean ERSP of each cluster. % 'itc' -> mean ITC of each cluster. % If [], re-compute the centroid for whichever centroids % have previously been computed. % Outputs: % STUDY - input STUDY structure with computed centroids added. % If the requested centroids already exist, overwites them. % centroid - cell array of centroid structures, each cell corrasponding % to a different cluster requested in 'clusters' (above). % fields of 'centroid' may include centroid.erp, centroid.dipole, % etc. (as above). The structure is similar as the output % of the std_readdata() function (with some fields % about the cluster name and index missing). % Examples: % % >> [STUDY, centroid] = std_centroid(STUDY, ALLEEG,[], 'scalp'); % % For each of the clusters in STUDY, compute a mean scalp map. % % The centroids are saved in the STUDY structure as entries in array % % STUDY.cluster(k).centroid.scalp. The centroids are also returned in % % a cell array the size of the clusters (i.e., in: centroid(k).scalp). % % >> [STUDY, centroid] = std_centroid(STUDY, ALLEEG,5,'spec','scalp'); % % Same as above, but now compute only two centroids for Cluster 5. % % The returned 'centroid' has two fields: centroid.scalp and centroid.spec % % Authors: Hilit Serby & Arnaud Delorme, SCCN, INC, UCSD, Feb 03, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, Feb 03, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Coding notes: Useful information on functions and global variables used. function [STUDY, centroid] = std_centroid(STUDY,ALLEEG, clsind, varargin); if nargin < 3 help std_centroid; return end if isempty(clsind) for k = 2: length(STUDY.cluster) %don't include the ParentCluster if ~strncmpi('Notclust',STUDY.cluster(k).name,8) % don't include 'Notclust' clusters clsind = [clsind k]; end end end %defult values erpC =0; specC =0 ; scalpC = 0; dipoleC = 0; itcC = 0; erspC = 0; commands = {}; if isempty(varargin) if isfield(STUDY.cluster(clsind(1)).centroid,'scalp') commands{end+1} = 'scalp'; end if isfield(STUDY.cluster(clsind(1)).centroid,'spec') commands{end+1} = 'spec'; end if isfield(STUDY.cluster(clsind(1)).centroid,'erp') commands{end+1} = 'erp'; end if isfield(STUDY.cluster(clsind(1)).centroid,'ersp') commands{end+1} = 'ersp'; end if isfield(STUDY.cluster(clsind(1)).centroid,'itc') commands{end+1} = 'itc'; end if isfield(STUDY.cluster(clsind(1)).centroid,'dipole') commands{end+1} = 'dipole'; end else commands = varargin; end Ncond = length(STUDY.condition); if Ncond == 0 Ncond = 1; end centroid = cell(length(clsind),1); fprintf('Computing '); for k = 1:length(clsind) for l = 1:Ncond for ind = 1:length(commands) ctr = commands{ind}; switch ctr case 'scalp' centroid{k}.scalp = 0; scalpC = 1; if (l ==1) & (k ==1) fprintf('scalp '); end case 'erp' centroid{k}.erp{l} = 0; erpC = 1; if (l ==1) & (k ==1) fprintf('erp '); end case 'spec' centroid{k}.spec{l} = 0; specC = 1; if (l ==1) & (k ==1) fprintf('spectrum '); end case 'ersp' centroid{k}.ersp{l} = 0; centroid{k}.ersp_limits{l} = 0; erspC =1; if (l ==1) & (k ==1) fprintf('ersp '); end case 'itc' centroid{k}.itc{l} = 0; centroid{k}.itc_limits{l} = 0; itcC = 1; if (l ==1) & (k ==1) fprintf('itc '); end case 'dipole' dipoleC =1; if (l ==1) & (k ==1) fprintf('dipole '); end end end end end fprintf('centroid (only done once)\n'); if itcC | erspC | specC | erpC | scalpC for clust = 1:length(clsind) %go over all requested clusters for cond = 1:Ncond %compute for all conditions for k = 1:length(STUDY.cluster(clsind(clust)).comps) % go through all components comp = STUDY.cluster(clsind(clust)).comps(k); abset = STUDY.cluster(clsind(clust)).sets(cond,k); if scalpC & cond == 1 %scalp centroid, does not depend on condition grid = std_readtopo(ALLEEG, abset, comp); if isempty(grid) return; end centroid{clust}.scalp = centroid{clust}.scalp + grid; end if erpC %erp centroid [erp, t] = std_readerp(ALLEEG, abset, comp, STUDY.preclust.erpclusttimes); fprintf('.'); if isempty(erp) return; end if (cond==1) & (k==1) all_erp = zeros(length(erp),length(STUDY.cluster(clsind(clust)).comps)); end all_erp(:,k) = erp'; if k == length(STUDY.cluster(clsind(clust)).comps) [all_erp pol] = std_comppol(all_erp); centroid{clust}.erp{cond} = mean(all_erp,2); centroid{clust}.erp_times = t; end end if specC %spec centroid [spec, f] = std_readspec(ALLEEG, abset, comp, STUDY.preclust.specclustfreqs); fprintf('.'); if isempty(spec) return; end centroid{clust}.spec{cond} = centroid{clust}.spec{cond} + spec; centroid{clust}.spec_freqs = f; end if erspC %ersp centroid fprintf('.'); if cond == 1 tmpabset = STUDY.cluster(clsind(clust)).sets(:,k); [ersp, logfreqs, timevals] = std_readersp(ALLEEG, tmpabset, comp, STUDY.preclust.erspclusttimes, ... STUDY.preclust.erspclustfreqs ); if isempty(ersp) return; end for m = 1:Ncond centroid{clust}.ersp{m} = centroid{clust}.ersp{m} + ersp(:,:,m); centroid{clust}.ersp_limits{m} = max(floor(max(max(abs(ersp(:,:,m))))), centroid{clust}.ersp_limits{m}); end centroid{clust}.ersp_freqs = logfreqs; centroid{clust}.ersp_times = timevals; end end if itcC %itc centroid fprintf('.'); [itc, logfreqs, timevals] = std_readitc(ALLEEG, abset, comp, STUDY.preclust.erspclusttimes, ... STUDY.preclust.erspclustfreqs ); if isempty(itc) return; end centroid{clust}.itc{cond} = centroid{clust}.itc{cond} + itc; centroid{clust}.itc_limits{cond} = max(floor(max(max(abs(itc)))), centroid{clust}.itc_limits{cond}); %ersp image limits centroid{clust}.itc_freqs = logfreqs; centroid{clust}.itc_times = timevals; end end end if ~scalpC fprintf('\n'); end; end end if dipoleC %dipole centroid for clust = 1:length(clsind) max_r = 0; len = length(STUDY.cluster(clsind(clust)).comps); tmppos = 0; tmpmom = 0; tmprv = 0; ndip = 0; for k = 1:len fprintf('.'); comp = STUDY.cluster(clsind(clust)).comps(k); abset = STUDY.cluster(clsind(clust)).sets(1,k); if ~isfield(ALLEEG(abset), 'dipfit') warndlg2(['No dipole information available in dataset ' num2str(abset) ], 'Aborting compute centroid dipole'); return; end if ~isempty(ALLEEG(abset).dipfit.model(comp).posxyz) ndip = ndip +1; tmppos = tmppos + ALLEEG(abset).dipfit.model(comp).posxyz; tmpmom = tmpmom + ALLEEG(abset).dipfit.model(comp).momxyz; tmprv = tmprv + ALLEEG(abset).dipfit.model(comp).rv; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') if isfield(ALLEEG(abset).dipfit, 'hdmfile') %dipfit 2 spherical model load('-mat', ALLEEG(abset).dipfit.hdmfile); max_r = max(max_r, max(vol.r)); else % old version of dipfit max_r = max(max_r,max(ALLEEG(abset).dipfit.vol.r)); end end end end centroid{clust}.dipole.posxyz = tmppos/ndip; centroid{clust}.dipole.momxyz = tmpmom/ndip; centroid{clust}.dipole.rv = tmprv/ndip; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') & (~isfield(ALLEEG(abset).dipfit, 'hdmfile')) %old dipfit centroid{clust}.dipole.maxr = max_r; end STUDY.cluster(clsind(clust)).centroid.dipole = centroid{clust}.dipole; end end %updat STUDY for clust = 1:length(clsind) %go over all requested clusters for cond = 1:Ncond ncomp = length(STUDY.cluster(clsind(clust)).comps); if scalpC & cond == 1%scalp centroid centroid{clust}.scalp = centroid{clust}.scalp/ncomp; STUDY.cluster(clsind(clust)).centroid.scalp = centroid{clust}.scalp ; end if erpC STUDY.cluster(clsind(clust)).centroid.erp{cond} = centroid{clust}.erp{cond}; STUDY.cluster(clsind(clust)).centroid.erp_times = centroid{clust}.erp_times; end if specC centroid{clust}.spec{cond} = centroid{clust}.spec{cond}/ncomp; STUDY.cluster(clsind(clust)).centroid.spec{cond} = centroid{clust}.spec{cond}; STUDY.cluster(clsind(clust)).centroid.spec_freqs = centroid{clust}.spec_freqs; end if erspC %ersp centroid centroid{clust}.ersp{cond} = centroid{clust}.ersp{cond}/ncomp; STUDY.cluster(clsind(clust)).centroid.ersp{cond} = centroid{clust}.ersp{cond}; STUDY.cluster(clsind(clust)).centroid.ersp_limits{cond} = floor(0.75*centroid{clust}.ersp_limits{cond}); %[round(0.9*min(cell2mat({centroid{clust}.ersp_limits{cond,:}}))) round(0.9*max(cell2mat({centroid{clust}.ersp_limits{cond,:}})))]; STUDY.cluster(clsind(clust)).centroid.ersp_freqs = centroid{clust}.ersp_freqs; STUDY.cluster(clsind(clust)).centroid.ersp_times = centroid{clust}.ersp_times; end if itcC centroid{clust}.itc{cond} = centroid{clust}.itc{cond}/ncomp; STUDY.cluster(clsind(clust)).centroid.itc{cond} = centroid{clust}.itc{cond} ; STUDY.cluster(clsind(clust)).centroid.itc_limits{cond} = floor(0.75*centroid{clust}.itc_limits{cond});%round(0.9*max(cell2mat({centroid{clust}.itc_limits{cond,:}}))); STUDY.cluster(clsind(clust)).centroid.itc_freqs = centroid{clust}.itc_freqs; STUDY.cluster(clsind(clust)).centroid.itc_times = centroid{clust}.itc_times; end end end fprintf('\n');
github
lcnhappe/happe-master
std_loadalleeg.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_loadalleeg.m
7,104
utf_8
377b0d5ee639622ea35859ef5af323cf
% std_loadalleeg() - constructs an ALLEEG structure, given the paths and file names % of all the EEG datasets that will be loaded into the ALLEEG % structure. The EEG datasets may be loaded without their EEG.data % (see the pop_editoptions() function), so many datasets can be % loaded simultaneously. The loaded EEG datasets have dataset % information and a (filename) pointer to the data. % Usage: % % Load sseveral EEG datasets into an ALLEEG structure. % >> ALLEEG = std_loadalleeg(paths,datasets) ; % >> ALLEEG = std_loadalleeg(STUDY) ; % Inputs: % paths - [cell array of strings] cell array with all the datasets paths. % datasets - [cell array of strings] cell array with all the datasets file names. % % Output: % ALLEEG - an EEGLAB data structure, which holds the loaded EEG sets % (can also be one EEG set). % Example: % >> paths = {'/home/eeglab/data/sub1/','/home/eeglab/data/sub2/', ... % >> '/home/eeglab/data/sub3/', '/home/eeglab/data/sub6/'}; % >> datasets = { 'visattS1', 'visattS2', 'visattS3', 'visattS4'}; % >> ALLEEG = std_loadalleeg(paths,datasets) ; % % See also: pop_loadstudy(), pop_study() % % Authors: Hilit Serby, Arnaud Delorme, SCCN, INC, UCSD, October , 2004 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function ALLEEG = std_loadalleeg(varargin) if nargin < 1 help std_loadalleeg; return; end; genpath = ''; oldgenpath = ''; if isstruct(varargin{1}) datasets = {varargin{1}.datasetinfo.filename}; try, paths = {varargin{1}.datasetinfo.filepath}; catch, paths = cell(1,length(datasets)); paths(:) = { '' }; end; genpath = varargin{1}.filepath; if isfield(varargin{1}.etc, 'oldfilepath') oldgenpath = varargin{1}.etc.oldfilepath; end; else paths = varargin{1}; if nargin > 1 datasets = varargin{2}; else datasets = paths; paths = cell(size(datasets)); end; end set = 1; ALLEEG = []; eeglab_options; % read datasets % ------------- warnfold = 'off'; for dset = 1:length(paths) if ~isempty(paths{dset}) comp = computer; if paths{dset}(2) == ':' & ~strcmpi(comp(1:2), 'PC') paths{dset} = [ filesep paths{dset}(4:end) ]; paths{dset}(find(paths{dset} == '\')) = filesep; end; end; [sub2 sub1] = fileparts(char(paths{dset})); [sub3 sub2] = fileparts(sub2); % priority is given to relative path of the STUDY if STUDY has moved if ~isequal(genpath, oldgenpath) && ~isempty(oldgenpath) disp('Warning: STUDY moved since last saved, trying to load data files using relative path'); if ~isempty(strfind(char(paths{dset}), oldgenpath)) relativePath = char(paths{dset}(length(oldgenpath)+1:end)); relativePath = fullfile(genpath, relativePath); else disp('Important warning: relative path cannot calculated, make sure the correct data files are loaded'); relativePath = char(paths{dset}); end; else relativePath = char(paths{dset}); end; % load data files if exist(fullfile(relativePath, datasets{dset})) == 2 EEG = pop_loadset('filename', datasets{dset}, 'filepath', relativePath, 'loadmode', 'info', 'check', 'off'); elseif exist(fullfile(char(paths{dset}), datasets{dset})) == 2 EEG = pop_loadset('filename', datasets{dset}, 'filepath', char(paths{dset}), 'loadmode', 'info', 'check', 'off'); elseif exist( fullfile(genpath, datasets{dset})) == 2 [tmpp tmpf ext] = fileparts(fullfile(genpath, datasets{dset})); EEG = pop_loadset('filename', [tmpf ext], 'filepath',tmpp, 'loadmode', 'info', 'check', 'off'); warnfold = 'on'; elseif exist( fullfile(genpath, sub1, datasets{dset})) == 2 [tmpp tmpf ext] = fileparts(fullfile(genpath, sub1, datasets{dset})); EEG = pop_loadset('filename', [tmpf ext], 'filepath',tmpp, 'loadmode', 'info', 'check', 'off'); warnfold = 'on'; elseif exist( fullfile(genpath, sub2, datasets{dset})) == 2 [tmpp tmpf ext] = fileparts(fullfile(genpath, sub2, datasets{dset})); EEG = pop_loadset('filename', [tmpf ext], 'filepath',tmpp, 'loadmode', 'info', 'check', 'off'); warnfold = 'on'; elseif exist( fullfile(genpath, sub2, sub1, datasets{dset})) == 2 [tmpp tmpf ext] = fileparts(fullfile(genpath, sub2, sub1, datasets{dset})); EEG = pop_loadset('filename', [tmpf ext], 'filepath',tmpp, 'loadmode', 'info', 'check', 'off'); warnfold = 'on'; elseif exist(lower(fullfile(char(paths{dset}), datasets{dset}))) == 2 EEG = pop_loadset('filename', lower(datasets{dset}), 'filepath',lower(char(paths{dset})), 'loadmode', 'info', 'check', 'off'); else txt = [ sprintf('The dataset %s is missing\n', datasets{dset}) 10 ... 'Is it possible that it might have been deleted?' 10 ... 'If this is the case, re-create the STUDY using the remaining datasets' ]; error(txt); end; EEG = eeg_checkset(EEG); if ~option_storedisk EEG = eeg_checkset(EEG, 'loaddata'); elseif ~isstr(EEG.data) EEG.data = 'in set file'; EEG.icaact = []; end; [ALLEEG EEG] = eeg_store(ALLEEG, EEG, 0, 'notext'); end ALLEEG = eeg_checkset(ALLEEG); if strcmpi(warnfold, 'on') & ~strcmpi(pwd, genpath) disp('Changing current path to STUDY path...'); cd(genpath); end; if strcmpi(warnfold, 'on') disp('This STUDY has a relative path set for the datasets'); disp('so the current path MUST remain the STUDY path'); end;
github
lcnhappe/happe-master
std_propplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_propplot.m
8,354
utf_8
e7b216945a5dab56aa4be65b1672f850
% std_propplot() - Command line function to plot component cluster % properties for a STUDY set. % Displays mean cluster scalp map, ERP, ERSP; % dipole model, spectrum, and ITC in one figure % per cluster. Only meaasures computed during % pre-clustering (by pop_preclust() or std_preclust()) % are plotted. Called by pop_clustedit(). % Leaves the plotted grand mean cluster measures % in STUDY.cluster for quick replotting. % Usage: % >> [STUDY] = std_propplot(STUDY, ALLEEG, clusters); % Inputs: % STUDY - STUDY set including some or all EEG datasets in ALLEEG. % ALLEEG - vector of EEG dataset structures including the datasets % in the STUDY. Yypically created using load_ALLEEG(). % % Optional inputs: % clusters - [numeric vector | 'all'] -> cluster numbers to plot. % Else 'all' -> make plots for all clusters in the STUDY % {default: 'all'}. % Outputs: % STUDY - the input STUDY set structure modified with the plotted % cluster mean properties to allow quick replotting (unless % cluster means already existed in the STUDY). % Example: % % Plot mean properties of Cluster 5 in one figure. % >> [STUDY] = std_propplot(STUDY,ALLEEG, 5); % % See also: pop_clustedit() % % Authors: Arnaud Delorme, Hilit Serby, Scott Makeig, SCCN/INC/UCSD, 2005 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_propplot(STUDY, ALLEEG, varargin) icadefs; % read EEGLAB defaults warningon = 0; if iscell(varargin{1}) % channel plotting chans = varargin{1}; for k = 1: length(chans); figure orient tall set(gcf,'Color', BACKCOLOR); subplot(2,2,1), try, STUDY = std_erpplot(STUDY,ALLEEG, 'channels', chans(k), 'mode', 'together', 'plotmode', 'condensed' ); erpAxisHangle = gca; catch axis off; text(0.5, 0.5, 'No ERP information', 'horizontalalignment', 'center'); warningon = 1; end subplot(2,2,2), try, [STUDY] = std_erspplot(STUDY,ALLEEG, 'channels', chans(k), 'mode', 'together', 'plotmode', 'condensed' ); catch, axis off; text(0.5, 0.5, 'No ERSP information', 'horizontalalignment', 'center'); warningon = 1; end subplot(2,2,3), try, STUDY = std_specplot(STUDY,ALLEEG, 'channels', chans(k), 'mode', 'together', 'plotmode', 'condensed'); catch axis off; text(0.5, 0.5, 'No spectral information', 'horizontalalignment', 'center'); warningon = 1; end subplot(2,2,4), try, [STUDY] = std_itcplot(STUDY,ALLEEG, 'channels', chans(k), 'mode', 'together', 'plotmode', 'condensed' ); catch, axis off; text(0.5, 0.5, 'No ITC information', 'horizontalalignment', 'center'); warningon = 1; end %subplot('position', [0.77 0.16 0.15 0.28]), maintitle = ['Channel ''' chans{k} ''' average properties' ]; a = textsc(maintitle, 'title'); set(a, 'fontweight', 'bold'); if warningon disp('Some properties could not be plotted. To plot these properties, first'); disp('include them in pre-clustering. There, specify 0 dimensions if you do'); disp('now want a property (scalp map, ERSP, etc...) to be included'); disp('in the clustering procedure. See the clustering tutorial.'); end; end % Finished all conditions return; end; % Set default values cls = 1:length(STUDY.cluster); % plot all clusters in STUDY if length(varargin) > 0 if length(varargin) == 1, varargin{2} = varargin{1}; end; % backward compatibility if isnumeric(varargin{2}) cls = varargin{2}; elseif isstr(varargin{2}) & strcmpi(varargin{2}, 'all') cls = 1:length(STUDY.cluster); else error('cluster input should be either a vector of cluster indices or the keyword ''all''.'); end end len = length(cls); % Plot clusters mean properties for k = 1: len if k == 1 try % optional 'CreateCancelBtn', 'delete(gcbf); error(''USER ABORT'');', h_wait = waitbar(0,['Computing cluster properties ...'], 'Color', BACKEEGLABCOLOR,'position', [300, 200, 300, 48]); catch % for Matlab 5.3 h_wait = waitbar(0,['Computing cluster properties ...'],'position', [300, 200, 300, 48]); end end warningon = 0; figure orient tall set(gcf,'Color', BACKCOLOR); subplot(2,3,1), try, STUDY = std_topoplot(STUDY,ALLEEG, 'clusters', cls(k), 'mode', 'together', 'figure', 'off'); catch axis off; text(0.5, 0.5, 'No scalp map information', 'horizontalalignment', 'center'); warningon = 1; end waitbar(k/(len*6),h_wait) subplot(2,3,2), try, STUDY = std_erpplot(STUDY,ALLEEG, 'clusters', cls(k), 'mode', 'together', 'plotmode', 'condensed' ); erpAxisHangle = gca; catch axis off; text(0.5, 0.5, 'No ERP information', 'horizontalalignment', 'center'); warningon = 1; end waitbar((k*2)/(len*6),h_wait) subplot(2,3,3), try, [STUDY] = std_erspplot(STUDY,ALLEEG, 'clusters', cls(k), 'mode', 'together', 'plotmode', 'condensed' ); catch, axis off; text(0.5, 0.5, 'No ERSP information', 'horizontalalignment', 'center'); warningon = 1; end waitbar((k*3)/(len*6),h_wait) axes('unit', 'normalized', 'position', [0.1 0.16 0.2 0.28]); %subplot(2,3,4), try, STUDY = std_dipplot(STUDY,ALLEEG, 'clusters', cls(k), 'mode', 'apart', 'figure', 'off'); set(gcf,'Color', BACKCOLOR); catch axis off; text(0.5, 0.5, 'No dipole information', 'horizontalalignment', 'center'); warningon = 1; end waitbar((k*4)/(len*6),h_wait) subplot(2,3,5), try, STUDY = std_specplot(STUDY,ALLEEG, 'clusters', cls(k), 'mode', 'together', 'plotmode', 'condensed'); catch axis off; text(0.5, 0.5, 'No spectral information', 'horizontalalignment', 'center'); warningon = 1; end waitbar((k*5)/(len*6),h_wait) subplot(2,3,6), try, [STUDY] = std_itcplot(STUDY,ALLEEG, 'clusters', cls(k), 'mode', 'together', 'plotmode', 'condensed' ); catch, axis off; text(0.5, 0.5, 'No ITC information', 'horizontalalignment', 'center'); warningon = 1; end waitbar((k*6)/(len*6),h_wait); %subplot('position', [0.77 0.16 0.15 0.28]), maintitle = ['Cluster ''' STUDY.cluster(cls(k)).name ''' mean properties (' num2str(length(STUDY.cluster(cls(k)).comps)) ' comps).' ]; a = textsc(maintitle, 'title'); set(a, 'fontweight', 'bold'); set(gcf,'name',maintitle); if warningon disp('Some properties could not be plotted. To plot these properties, first'); disp('include them in pre-clustering. There, specify 0 dimensions if you do'); disp('not want a property (scalp map, ERSP, etc...) to be included'); disp('in the clustering procedure. See the clustering tutorial.'); end; end % Finished all conditions if ishandle(erpAxisHangle) % make sure it is a valid graphics handle legend(erpAxisHangle,'off'); set(erpAxisHangle,'YTickLabelMode','auto'); set(erpAxisHangle,'YTickMode','auto'); end; delete(h_wait)
github
lcnhappe/happe-master
robust_kmeans.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/robust_kmeans.m
2,982
utf_8
b864201b216bd48106be885d09d04273
% robust_kmeans() - an extension of Matlab kmeans() that removes outlier % components from all clusters. % This is a helper function called from pop_clust(). function [IDX,C,sumd,D,outliers] = robust_kmeans(data,N,STD,MAXiter,method) % data - pre-clustering data matrix. % N - number of wanted clusters. if nargin < 5 method = 'kmeans'; end; flag = 1; not_outliers = 1:size(data,1); old_outliers = []; if strcmpi(method, 'kmeans') [IDX,C,sumd,D] = kmeans(data,N,'replicates',30,'emptyaction','drop'); % Cluster using K-means algorithm else [IDX,C,sumd,D] = kmeanscluster(data,N); % Cluster using K-means algorithm end; if STD >= 2 % STD for returned outlier rSTD = STD -1; else rSTD = STD; end loop = 0; while flag loop = loop + 1; std_all = []; ref_D = 0; for k = 1:N tmp = ['cls' num2str(k) ' = find(IDX==' num2str(k) ')''; ' ]; %find the component indices belonging to each cluster (cls1 = ...). eval(tmp); tmp = ['std' num2str(k) ' = std(D(cls' num2str(k) ' ,' num2str(k) ')); ' ]; %compute the std of each cluster eval(tmp); std_all = [std_all ['std' num2str(k) ' ']]; tmp = [ 'ref_D = ' num2str(ref_D) ' + mean(D(cls' num2str(k) ' ,' num2str(k) '));' ]; eval(tmp); end std_all = [ '[ ' std_all ' ]' ]; std_all = eval(std_all); % Find the outliers % Outlier definition - its distance from its cluster center is bigger % than STD times the std of the cluster, as long as the distance is bigger % than the mean distance times STD (avoid problems where all points turn to be outliers). outliers = []; ref_D = ref_D/N; for k = 1:N tmp = ['cls' num2str(k) '(find(D(find(IDX==' num2str(k) ')'' , ' num2str(k) ') > ' num2str(STD) '*std' num2str(k) ')); ' ]; optionalO = eval(tmp); Oind = find(D(optionalO,k) > ref_D*STD); outliers = [outliers optionalO(Oind)]; end if isempty(outliers) | (loop == MAXiter) flag = 0; end l = length(old_outliers); returned_outliers = []; for k = 1:l tmp = sum((C-ones(N,1)*data(old_outliers(k),:)).^2,2)'; % Find the distance of each former outlier to the current cluster if isempty(find(tmp <= std_all*rSTD)) %Check if the outlier is still an outlier (far from each cluster center more than STD-1 times its std). returned_outliers = [returned_outliers old_outliers(k)]; end; end outliers = not_outliers(outliers); outliers = [outliers returned_outliers ]; tmp = ones(1,size(data,1)); tmp(outliers) = 0; not_outliers = (find(tmp==1)); if strcmpi(method, 'kmeans') [IDX,C,sumd,D] = kmeans(data(not_outliers,:),N,'replicates',30,'emptyaction','drop'); else [IDX,C,sumd,D] = kmeanscluster(data(not_outliers,:),N); end; old_outliers = outliers; old_IDX = zeros(size(data,1),1); old_IDX(sort(not_outliers)) = IDX; end IDX = old_IDX;
github
lcnhappe/happe-master
std_interp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_interp.m
6,657
utf_8
7117e3e4255231bb8538847cbb3531b2
% std_interp() - interpolate, if needed, a list of named data channels % for all datasets included in a STUDY. Currently assumes % that all channels have uniform locations across datasets. % % Usage: >> [STUDY ALLEEG] = std_interp(STUDY, ALLEEG, chans, method); % % Inputs: % STUDY - EEGLAB STUDY structure % ALLEEG - EEGLAB vector containing all EEG dataset structures in the STUDY. % chans - [Cell array] cell array of channel names (labels) to interpolate % into the data if they are missing from one of the datasets. % method - [string] griddata() method to use for interpolation. % See >> help eeg_interp() {default:'spherical'} % % Important limitation: % This function currently presuposes that all datasets have the same channel % locations (with various channels from a standard set possibly missing). % If this is not the case, the interpolation will not be performed. % % Output: % STUDY - study structure. % ALLEEG - updated datasets. % % Author: Arnaud Delorme, CERCO, CNRS, August 2006- % % See also: eeg_interp() % Copyright (C) Arnaud Delorme, CERCO, 2006, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Deprecated: % - [chanlocs structure] channel location structure containing % a full channel structure (missing channels in the current % dataset are interpolated). function [STUDY, ALLEEG] = std_interp(STUDY, ALLEEG, chans, method); if nargin < 2 help std_interp; return; end; if nargin < 3 chans = []; end; if nargin < 4 method = 'spherical'; end; % union of all channel structures % ------------------------------- alllocs = eeg_mergelocs(ALLEEG.chanlocs); % check electrode names to interpolate % ------------------------------------ if iscell(chans) alllabs = lower({ alllocs.labels }); for index = 1:length(chans) tmpind = strmatch(lower(chans{index}), alllabs, 'exact'); if isempty(tmpind) error( sprintf('Channel named ''%s'' not found in any dataset', chans{index})); end; end; end; % read all STUDY datasets and interpolate electrodes % --------------------------------------------------- for index = 1:length(STUDY.datasetinfo) tmpind = STUDY.datasetinfo(index).index; tmplocs = ALLEEG(tmpind).chanlocs; % build electrode location structure for interpolation % ---------------------------------------------------- [tmp tmp2 id1] = intersect_bc({tmplocs.labels}, {alllocs.labels}); if isempty(chans) interplocs = alllocs; elseif iscell(chans) [tmp tmp2 id2] = intersect_bc( chans, {alllocs.labels}); interplocs = alllocs(union(id1, id2)); else interplocs = chans; end; if length(interplocs) ~= length(tmplocs) % search for position of electrode in backup structure % ---------------------------------------------- extrachans = []; if isfield(ALLEEG(tmpind).chaninfo, 'nodatchans') if isfield(ALLEEG(tmpind).chaninfo.nodatchans, 'labels') extrachans = ALLEEG(tmpind).chaninfo.nodatchans; end; end; tmplabels = { tmplocs.labels }; for i=1:length(interplocs) ind = strmatch( interplocs(i).labels, tmplabels, 'exact'); if ~isempty(ind) interplocs(i) = tmplocs(ind); % this is necessary for polhemus elseif ~isempty(extrachans) ind = strmatch( interplocs(i).labels, { extrachans.labels }, 'exact'); if ~isempty(ind) fprintf('Found position of %s in chaninfo structure\n', interplocs(i).labels); interplocs(i) = extrachans(ind); end; end; end; % perform interpolation % --------------------- EEG = eeg_retrieve(ALLEEG, index); EEG = eeg_checkset(EEG); EEG = eeg_interp(EEG, interplocs, method); EEG.saved = 'no'; EEG = pop_saveset(EEG, 'savemode', 'resave'); % update dataset in EEGLAB % ------------------------ if isstr(ALLEEG(tmpind).data) tmpdata = ALLEEG(tmpind).data; [ ALLEEG EEG ] = eeg_store(ALLEEG, EEG, tmpind); ALLEEG(tmpind).data = tmpdata; ALLEEG(tmpind).saved = 'yes'; clear EEG; else [ ALLEEG EEG ] = eeg_store(ALLEEG, EEG, tmpind); ALLEEG(tmpind).saved = 'yes'; end; else fprintf('No need for interpolation for dataset %d\n', tmpind); end; end; function checkchans(STUDY, ALLEEG) % Check to see if all the channels have the same coordinates % (check only the theta field) % ---------------------------------------------------------- for index = 1:length(STUDY.datasetinfo) tmpind = STUDY.datasetinfo(index).index; tmplocs = ALLEEG(tmpind).chanlocs; [tmp id1 id2] = intersect_bc({tmplocs.labels}, {alllocs.labels}); for ind = 1:length(id1) if tmplocs(id1(ind)).theta ~= alllocs(id2(ind)).theta % find datasets with different coordinates % ---------------------------------------- for ind2 = 1:length(STUDY.datasetinfo) tmplocs2 = ALLEEG(ind2).chanlocs; tmpmatch = strmatch(alllocs(id2(ind)).labels, { tmplocs2.labels }, 'exact'); if ~isempty(tmpmatch) if alllocs(id2(ind)).theta == tmplocs2(tmpmatch).theta datind = ind2; break; end; end; end; error(sprintf( [ 'Dataset %d and %d do not have the same channel location\n' ... 'for electrode ''%s''' ], datind, tmpind, tmplocs(id1(ind)).labels)); end; end; end;
github
lcnhappe/happe-master
std_chaninds.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_chaninds.m
2,244
utf_8
f67a5b8ff7e1719881c3267bb7140eba
% std_chaninds() - look up channel indices in a STUDY % % Usage: % >> inds = std_chaninds(STUDY, channames); % >> inds = std_chaninds(EEG, channames); % >> inds = std_chaninds(chanlocs, channames); % Inputs: % STUDY - studyset structure containing a changrp substructure. % EEG - EEG structure containing channel location structure % chanlocs - channel location structure % channames - [cell] channel names % % Outputs: % inds - [integer array] channel indices % % Author: Arnaud Delorme, CERCO, 2006- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function finalinds = std_chaninds(instruct, channames); finalinds = []; if isfield(instruct, 'chanlocs') EEG = instruct; tmpchanlocs = EEG.chanlocs; tmpallchans = lower({ tmpchanlocs.labels }); elseif isfield(instruct, 'filename') tmpallchans = lower({ instruct.changrp.name }); else tmpallchans = instruct; end; if ~iscell(channames), channames = { channames }; end; if isempty(channames), finalinds = [1:length(tmpallchans)]; return; end; for c = 1:length(channames) if isnumeric(channames) chanind = channames(c); else chanind = strmatch( lower(channames{c}), tmpallchans, 'exact'); if isempty(chanind), warning(sprintf([ 'Channel "%s" and maybe others was not' 10 'found in pre-computed data file' ], channames{c})); end; end; finalinds = [ finalinds chanind ]; end;
github
lcnhappe/happe-master
pop_statparams.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_statparams.m
24,437
utf_8
8a9b2a040c4a54b5cca5cf657871b47b
% pop_statparams() - helper function for pop_erspparams, pop_erpparams, and % pop_specparams. % % Usage: % >> struct = pop_statparams(struct, 'default'); % >> struct = pop_statparams(struct, 'key', 'val', ...); % % Inputs: % struct - parameter structure. When called with the 'default' % option only, the function creates all the fields in % the structure and populate these fields with default % values. % % Statistics options: % 'groupstats' - ['on'|'off'] Compute statistics across subject % groups {default: 'off'} % 'condstats' - ['on'|'off'] Compute statistics across data % conditions {default: 'off'} % 'statistics' - ['param'|'perm'|'bootstrap'] Type of statistics to compute % 'param' for parametric (t-test/anova); 'perm' for % permutation-based and 'bootstrap' for bootstrap % {default: 'param'} % 'singletrials' - ['on'|'off'] use single trials to compute statistics. % This requires the measure to be computed with the % 'savetrials', 'on' option. % 'mode' - ['eeglab'|'fieldtrip'] use either EEGLAB or Fieldtrip % statistics. % % EEGLAB statistics: % 'method' - ['param'|'perm'|'bootstrap'] statistical % method. See help statcond for more information. % 'naccu' - [integer] Number of surrogate data averages to use in % surrogate statistics. For instance, if p<0.01, % use naccu>200. For p<0.001, naccu>2000. If a 'threshold' % (not NaN) is set below and 'naccu' is too low, it will % be automatically increased. (This keyword is currently % only modifiable from the command line, not from the gui). % 'alpha' - [NaN|alpha] Significance threshold (0<alpha<<1). Value % NaN will plot p-values for each time and/or frequency % on a different axis. If alpha is used, significant time % and/or frequency regions will be indicated either on % a separate axis or (whenever possible) along with the % data {default: NaN} % 'mcorrect' - ['fdr'|'holms'|'bonferoni'|'none'] correction for multiple % comparisons. 'fdr' uses false discovery rate. See the fdr % function for more information. Defaut is % none'. % % Fieldtrip statistics: % 'fieldtripmethod' - ['analytic'|'montecarlo'] statistical % method. See help statcond for more information. % 'fieldtripnaccu' - [integer] Number of surrogate data averages to use in % surrogate statistics. % 'fieldtripalpha' - [alpha] Significance threshold (0<alpha<<1). This % parameter is mandatory. Default is 0.05. % 'fieldtripmcorrect' - ['cluster'|'max'|'fdr'|'holms'|'bonferoni'|'none'] % correction for multiple comparisons. See help % ft_statistics_montecarlo for more information. % 'fieldtripclusterparam - [string] parameters for clustering. See help % ft_statistics_montecarlo for more information. % 'fieldtripchannelneighbor - [struct] channel neighbor structure. % 'fieldtripchannelneighborparam' - [string] parameters for channel % neighbor. See help ft_statistics_montecarlo for more % information. % % Legacy parameters: % 'threshold' - now 'alpha' % 'statistics' - now 'method' % % Authors: Arnaud Delorme, CERCO, CNRS, 2010- % Copyright (C) Arnaud Delorme, 2010 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, com] = pop_statparams(STUDY, varargin); com = ''; if isfield(STUDY, 'etc') if ~isfield(STUDY.etc, 'statistics') STUDY.etc.statistics = default_stats([]); else STUDY.etc.statistics = default_stats(STUDY.etc.statistics); end; if length(varargin) == 1 && strcmpi(varargin{1}, 'default') return; end; end; if isempty(varargin) && ~isempty(STUDY) if ~exist('ft_freqstatistics'), fieldtripInstalled = false; else fieldtripInstalled = true; end; opt.enablecond = fastif(length(STUDY.design(STUDY.currentdesign).variable(1).value)>1, 'on', 'off'); opt.enablegroup = fastif(length(STUDY.design(STUDY.currentdesign).variable(2).value)>1, 'on', 'off'); opt.enablesingletrials = 'on'; % encode parameters % ----------------- paramstruct = STUDY.etc.statistics; eeglabStatvalues = { 'param' 'perm' 'bootstrap' }; fieldtripStatvalues = { 'analytic' 'montecarlo' }; mCorrectList = { 'none' 'bonferoni' 'holms' 'fdr' 'max' 'cluster' }; condstats = fastif(strcmpi(paramstruct.condstats, 'on'), 1, 0); groupstats = fastif(strcmpi(paramstruct.groupstats,'on'), 1, 0); statmode = fastif(strcmpi(paramstruct.singletrials,'on'), 1, 0); eeglabThresh = fastif(isnan(paramstruct.eeglab.alpha),'exact', num2str(paramstruct.eeglab.alpha)); fieldtripThresh = fastif(isnan(paramstruct.fieldtrip.alpha),'exact', num2str(paramstruct.fieldtrip.alpha)); eeglabStat = strmatch(paramstruct.eeglab.method, eeglabStatvalues); fieldtripStat = strmatch(paramstruct.fieldtrip.method, fieldtripStatvalues); if isempty(eeglabStat) , error('Unknown statistical method for EEGLAB'); end; if isempty(fieldtripStat), error('Unknown statistical method for Fieldtrip'); end; eeglabRand = fastif(isempty(paramstruct.eeglab.naccu), 'auto', num2str(paramstruct.eeglab.naccu)); fieldtripRand = fastif(isempty(paramstruct.fieldtrip.naccu), 'auto', num2str(paramstruct.fieldtrip.naccu)); eeglabMcorrect = strmatch(paramstruct.eeglab.mcorrect, mCorrectList); fieldtripMcorrect = strmatch(paramstruct.fieldtrip.mcorrect, mCorrectList); fieldtripClust = paramstruct.fieldtrip.clusterparam; fieldtripChan = paramstruct.fieldtrip.channelneighborparam; combootstrap = [ 'warndlg2( strvcat(''Warning: bootstrap is selected. Bootstrap currently'',' ... '''overestimates significance by a factor of 2 for paired data '',' ... '''(unpaired data is working properly). You should use'',' ... '''permutation instead of bootstrap if you have paired data.'') );' ]; cb_bootstrap = [ 'if get(gcbo, ''value'') == 3,' combootstrap ' end;' ]; cb_help_neighbor = 'pophelp(''ft_prepare_neighbours'');'; cb_help_cluster = 'pophelp(''ft_statistics_montecarlo'');'; cb_textSyntax = 'try, eval( [ ''{'' get(gcbo, ''string'') ''};'' ]); catch, warndlg2(''Syntax error''); end;'; if strcmpi(opt.enablecond , 'off') && condstats == 1, condstats = 0; end; if strcmpi(opt.enablegroup, 'off') && groupstats == 1, groupstats = 0; end; % callback for randomization selection % ------------------------------------ cbSelectRandEeglab = [ 'set(findobj(gcbf, ''tag'', ''eeglabnaccu''), ''enable'', ''on'');' ... 'set(findobj(gcbf, ''tag'', ''eeglabnaccutext''),''enable'', ''on'');' ]; cbUnselectRandEeglab = [ 'set(findobj(gcbf, ''tag'', ''eeglabnaccu''), ''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''eeglabnaccutext''),''enable'', ''off'');' ]; cbSelectRandFieldtrip = [ 'set(findobj(gcbf, ''tag'', ''fieldtripnaccu''), ''enable'', ''on'');' ... 'set(findobj(gcbf, ''tag'', ''fieldtripnaccutext''),''enable'', ''on'');' ]; cbUnselectRandFieldtrip = [ 'set(findobj(gcbf, ''tag'', ''fieldtripnaccu''), ''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''fieldtripnaccutext''),''enable'', ''off'');' ]; cbSetFullMcorrectFieldtrip = 'set(findobj(gcbf, ''tag'', ''fieldtripmcorrect''), ''string'', ''Do not correct for multiple comparisons|Use Bonferoni correction|Use Holms correction|Use FDR correction|Use max correction|Use cluster correction (CC)'');'; cbUnsetFullMcorrectFieldtrip = 'set(findobj(gcbf, ''tag'', ''fieldtripmcorrect''), ''value'', min(4, get(findobj(gcbf, ''tag'', ''fieldtripmcorrect''), ''value'')), ''string'', ''Do not correct for multiple comparisons|Use Bonferoni correction|Use Holms correction|Use FDR correction'');'; cb_eeglab_statlist = [ 'if get(findobj(gcbf, ''tag'', ''stateeglab'' ),''value'') > 1,' cbSelectRandEeglab ',else,' cbUnselectRandEeglab ',end;' ]; cb_fieldtrip_statlist = [ 'if get(findobj(gcbf, ''tag'', ''statfieldtrip'' ),''value'') > 1,' cbSelectRandFieldtrip cbSetFullMcorrectFieldtrip ',else,' cbUnselectRandFieldtrip cbUnsetFullMcorrectFieldtrip ',end;' ]; % callback for activating clusters inputs % --------------------------------------- cb_select_cluster = [ 'set(findobj(gcbf, ''tag'', ''clustertext1''),''enable'', ''on'');' ... 'set(findobj(gcbf, ''tag'', ''clustertext2''),''enable'', ''on'');' ... 'set(findobj(gcbf, ''tag'', ''clusterhelp1''),''enable'', ''on'');' ... 'set(findobj(gcbf, ''tag'', ''clusterhelp2''),''enable'', ''on'');' ... 'set(findobj(gcbf, ''tag'', ''clusterchan'' ),''enable'', ''on'');' ... 'set(findobj(gcbf, ''tag'', ''clusterstat'' ),''enable'', ''on'');' ]; cb_unselect_cluster = [ 'set(findobj(gcbf, ''tag'', ''clustertext1''),''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''clustertext2''),''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''clusterhelp1''),''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''clusterhelp2''),''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''clusterchan'' ),''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''clusterstat'' ),''enable'', ''off'');' ]; cb_fieldtrip_mcorrect = [ cb_fieldtrip_statlist 'if get(findobj(gcbf, ''tag'', ''fieldtripmcorrect'' ),''value'') == 6,' cb_select_cluster ',else,' cb_unselect_cluster ',end;' cb_fieldtrip_statlist]; % cb_fieldtrip_statlist repeated on purpose % callback for activating eeglab/fieldtrip % ---------------------------------------- enable_eeglab = [ 'set(findobj(gcbf, ''userdata'', ''eeglab'') ,''enable'', ''on'');' ... 'set(findobj(gcbf, ''userdata'', ''fieldtrip''),''enable'', ''off'');' ... 'set(findobj(gcbf, ''tag'', ''but_eeglab'') ,''value'', 1);' ... 'set(findobj(gcbf, ''tag'', ''but_fieldtrip''),''value'', 0);' cb_eeglab_statlist ]; enable_fieldtrip=[ 'if get(findobj(gcbf, ''tag'', ''condstats''), ''value'') && get(findobj(gcbf, ''tag'', ''groupstats''), ''value''),' ... enable_eeglab ... 'warndlg2(strvcat(''Switching to EEGLAB statistics since'',''Fieldtrip cannot perform 2-way statistics''));' ... 'else,' ... ' set(findobj(gcbf, ''userdata'', ''eeglab'') ,''enable'', ''off'');' ... ' set(findobj(gcbf, ''userdata'', ''fieldtrip''),''enable'', ''on'');' ... ' set(findobj(gcbf, ''tag'', ''but_fieldtrip''),''value'', 1);' ... ' set(findobj(gcbf, ''tag'', ''but_eeglab'') ,''value'', 0);' cb_fieldtrip_mcorrect ... 'end;']; cb_select_fieldtrip = [ 'if get(findobj(gcbf, ''tag'', ''but_fieldtrip''),''value''),' enable_fieldtrip ',else,' enable_eeglab ',end;' ]; cb_select_eeglab = [ 'if get(findobj(gcbf, ''tag'', ''but_eeglab''),''value''),,' enable_eeglab ',else,' enable_fieldtrip ',end;' ]; if strcmpi(paramstruct.mode, 'eeglab'), evalstr = enable_eeglab; else evalstr = enable_fieldtrip; end; inds = findstr('gcbf', evalstr); evalstr(inds+2) = []; % special case if Fieldtrip is not installed if ~fieldtripInstalled strFieldtrip = 'Use Fieldtrip statistics (to use install "Fieldtrip-lite" using File > Manage EEGLAB extensions)'; fieldtripEnable = 'off'; cb_select_eeglab = 'set(findobj(gcbf, ''tag'', ''but_eeglab''),''value'', 1)'; else strFieldtrip = 'Use Fieldtrip statistics'; fieldtripEnable = 'on'; end; opt.uilist = { ... {'style' 'text' 'string' 'General statistical parameters' 'fontweight' 'bold' } ... {} {'style' 'checkbox' 'string' 'Compute 1st independent variable statistics' 'value' condstats 'enable' opt.enablecond 'callback' cb_select_fieldtrip 'tag' 'condstats' } ... {} {'style' 'checkbox' 'string' 'Compute 2nd independent variable statistics' 'value' groupstats 'enable' opt.enablegroup 'callback' cb_select_fieldtrip 'tag' 'groupstats' } ... {} {'style' 'checkbox' 'string' 'Use single trials (when available)' 'value' statmode 'tag' 'singletrials' 'enable' opt.enablesingletrials } ... {} ... {'style' 'checkbox' 'string' 'Use EEGLAB statistics' 'fontweight' 'bold' 'tag' 'but_eeglab' 'callback' cb_select_eeglab } ... {} {'style' 'popupmenu' 'string' 'Use parametric statistics|Use permutation statistics|Use bootstrap statistics' 'tag' 'stateeglab' 'value' eeglabStat 'listboxtop' eeglabStat 'callback' [ cb_eeglab_statlist cb_bootstrap ] 'userdata' 'eeglab' } ... {'style' 'text' 'string' 'Statistical threshold (p-value)' 'userdata' 'eeglab'} ... {'style' 'edit' 'string' eeglabThresh 'tag' 'eeglabalpha' 'userdata' 'eeglab' } ... {} {'style' 'popupmenu' 'string' 'Do not correct for multiple comparisons|Use Bonferoni correction|Use Holms correction|Use FDR correction' 'value' eeglabMcorrect 'listboxtop' eeglabMcorrect 'tag' 'eeglabmcorrect' 'userdata' 'eeglab' } ... {'style' 'text' 'string' ' Randomization (n)' 'userdata' 'eeglab' 'tag' 'eeglabnaccutext' } ... {'style' 'edit' 'string' eeglabRand 'userdata' 'eeglab' 'tag' 'eeglabnaccu' } ... {} ... {'style' 'checkbox' 'string' strFieldtrip 'enable' fieldtripEnable 'fontweight' 'bold' 'tag' 'but_fieldtrip' 'callback' cb_select_fieldtrip } ... {} {'style' 'popupmenu' 'string' 'Use analytic/parametric statistics|Use montecarlo/permutation statistics' 'tag' 'statfieldtrip' 'value' fieldtripStat 'listboxtop' fieldtripStat 'callback' cb_fieldtrip_mcorrect 'userdata' 'fieldtrip' } ... {'style' 'text' 'string' 'Statistical threshold (p-value)' 'userdata' 'fieldtrip' } ... {'style' 'edit' 'string' fieldtripThresh 'tag' 'fieldtripalpha' 'userdata' 'fieldtrip' } ... {} {'style' 'popupmenu' 'string' 'Do not correct for multiple comparisons|Use Bonferoni correction|Use Holms correction|Use FDR correction|Use max correction|Use cluster correction (CC)' 'tag' 'fieldtripmcorrect' 'value' fieldtripMcorrect 'listboxtop' fieldtripMcorrect 'callback' cb_fieldtrip_mcorrect 'userdata' 'fieldtrip' } ... {'style' 'text' 'string' ' Randomization (n)' 'userdata' 'fieldtrip' 'tag' 'fieldtripnaccutext' } ... {'style' 'edit' 'string' fieldtripRand 'userdata' 'fieldtrip' 'tag' 'fieldtripnaccu' } ... {} {'style' 'text' 'string' 'CC channel neighbor parameters' 'userdata' 'fieldtrip' 'tag' 'clustertext1' } ... { 'style' 'edit' 'string' fieldtripChan 'userdata' 'fieldtrip' 'tag' 'clusterchan' 'callback' cb_textSyntax } ... { 'style' 'pushbutton' 'string' 'help' 'callback' cb_help_neighbor 'userdata' 'fieldtrip' 'tag' 'clusterhelp1' } ... {} {'style' 'text' 'string' 'CC clustering parameters' 'userdata' 'fieldtrip' 'tag' 'clustertext2' } ... { 'style' 'edit' 'string' fieldtripClust 'userdata' 'fieldtrip' 'tag' 'clusterstat' 'callback' cb_textSyntax } ... { 'style' 'pushbutton' 'string' 'help' 'callback' cb_help_cluster 'userdata' 'fieldtrip' 'tag' 'clusterhelp2' } ... }; if eeglabStat == 3, eval(combootstrap); end; cbline = [0.07 1.1]; otherline = [ 0.7 0.6 .5]; eeglabline = [ 0.7 0.6 .5]; opt.geometry = { [1] cbline cbline cbline [1] [1] [0.07 0.51 0.34 0.13] [0.07 0.6 0.25 0.13] ... [1] [1] [0.07 0.51 0.34 0.13] [0.07 0.6 0.25 0.13] [0.13 0.4 0.4 0.1] [0.13 0.4 0.4 0.1] }; [out_param userdat tmp res] = inputgui( 'geometry' , opt.geometry, 'uilist', opt.uilist, ... 'title', 'Set statistical parameters -- pop_statparams()','eval', evalstr); if isempty(res), return; end; % decode paramters % ---------------- if res.groupstats, res.groupstats = 'on'; else res.groupstats = 'off'; end; if res.condstats , res.condstats = 'on'; else res.condstats = 'off'; end; if res.singletrials, res.singletrials = 'on'; else res.singletrials = 'off'; end; res.eeglabalpha = str2num(res.eeglabalpha); res.fieldtripalpha = str2num(res.fieldtripalpha); if isempty(res.eeglabalpha) ,res.eeglabalpha = NaN; end; if isempty(res.fieldtripalpha),res.fieldtripalpha = NaN; end; res.stateeglab = eeglabStatvalues{res.stateeglab}; res.statfieldtrip = fieldtripStatvalues{res.statfieldtrip}; res.eeglabmcorrect = mCorrectList{res.eeglabmcorrect}; res.fieldtripmcorrect = mCorrectList{res.fieldtripmcorrect}; res.mode = fastif(res.but_eeglab, 'eeglab', 'fieldtrip'); res.eeglabnaccu = str2num(res.eeglabnaccu); if ~isstr(res.fieldtripnaccu) || ~strcmpi(res.fieldtripnaccu, 'all') res.fieldtripnaccu = str2num(res.fieldtripnaccu); end; % build command call % ------------------ options = {}; if strcmp(res.stateeglab, 'param' ) && exist('fcdf') ~= 2 fprintf(['statcond(): EEGLAB parametric testing requires fcdf() \n' ... ' from the Matlab Statstical Toolbox. Running\n' ... ' nonparametric permutation tests instead.\n']); res.stateeglab = 'perm'; end if ~strcmpi( res.groupstats, paramstruct.groupstats), options = { options{:} 'groupstats' res.groupstats }; end; if ~strcmpi( res.condstats , paramstruct.condstats ), options = { options{:} 'condstats' res.condstats }; end; if ~strcmpi( res.singletrials, paramstruct.singletrials ), options = { options{:} 'singletrials' res.singletrials }; end; if ~strcmpi( res.mode , paramstruct.mode), options = { options{:} 'mode' res.mode }; end; % statistics if ~isequal( res.eeglabnaccu , paramstruct.eeglab.naccu), options = { options{:} 'naccu' res.eeglabnaccu }; end; if ~strcmpi( res.stateeglab , paramstruct.eeglab.method), options = { options{:} 'method' res.stateeglab }; end; % statistics if ~strcmpi( res.eeglabmcorrect , paramstruct.eeglab.mcorrect), options = { options{:} 'mcorrect' res.eeglabmcorrect }; end; if ~isequal( res.fieldtripnaccu , paramstruct.fieldtrip.naccu), options = { options{:} 'fieldtripnaccu' res.fieldtripnaccu }; end; if ~strcmpi( res.statfieldtrip , paramstruct.fieldtrip.method), options = { options{:} 'fieldtripmethod' res.statfieldtrip }; end; if ~strcmpi( res.fieldtripmcorrect , paramstruct.fieldtrip.mcorrect), options = { options{:} 'fieldtripmcorrect' res.fieldtripmcorrect }; end; if ~strcmpi( res.clusterstat , paramstruct.fieldtrip.clusterparam), options = { options{:} 'fieldtripclusterparam' res.clusterstat }; end; if ~strcmpi( res.clusterchan , paramstruct.fieldtrip.channelneighborparam), options = { options{:} 'fieldtripchannelneighborparam' res.clusterchan }; end; if ~(isnan(res.eeglabalpha(1)) && isnan(paramstruct.eeglab.alpha(1))) && ~isequal(res.eeglabalpha, paramstruct.eeglab.alpha) % threshold options = { options{:} 'alpha' res.eeglabalpha }; end; if ~(isnan(res.fieldtripalpha(1)) && isnan(paramstruct.fieldtrip.alpha(1))) && ~isequal(res.fieldtripalpha, paramstruct.fieldtrip.alpha) % threshold options = { options{:} 'fieldtripalpha' res.fieldtripalpha }; end; if ~isempty(options) STUDY = pop_statparams(STUDY, options{:}); com = sprintf('STUDY = pop_statparams(STUDY, %s);', vararg2str( options )); end; else % interpret parameters % -------------------- if isfield(STUDY, 'etc') paramstruct = STUDY.etc.statistics; isstudy = true; else paramstruct = STUDY; if isempty(paramstruct), paramstruct = default_stats([]); end; isstudy = false; end; if isempty(varargin) || strcmpi(varargin{1}, 'default') paramstruct = default_stats(paramstruct); else for index = 1:2:length(varargin) v = varargin{index}; if strcmpi(v, 'statistics'), v = 'method'; end; % backward compatibility if strcmpi(v, 'threshold' ), v = 'alpha'; end; % backward compatibility if strcmpi(v, 'alpha') || strcmpi(v, 'method') || strcmpi(v, 'naccu') || strcmpi(v, 'mcorrect') paramstruct = setfield(paramstruct, 'eeglab', v, varargin{index+1}); elseif ~isempty(findstr('fieldtrip', v)) v2 = v(10:end); paramstruct = setfield(paramstruct, 'fieldtrip', v2, varargin{index+1}); if strcmpi(v2, 'channelneighborparam') paramstruct.fieldtrip.channelneighbor = []; % reset neighbor matrix if parameter change end; else if (~isempty(paramstruct) && ~isempty(strmatch(v, fieldnames(paramstruct), 'exact'))) || ~isstudy paramstruct = setfield(paramstruct, v, varargin{index+1}); end; end; end; end; if isfield(STUDY, 'etc') STUDY.etc.statistics = paramstruct; else STUDY = paramstruct; end; end; % default parameters % ------------------ function paramstruct = default_stats(paramstruct) if ~isfield(paramstruct, 'groupstats'), paramstruct.groupstats = 'off'; end; if ~isfield(paramstruct, 'condstats' ), paramstruct.condstats = 'off'; end; if ~isfield(paramstruct, 'singletrials' ), paramstruct.singletrials = 'off'; end; if ~isfield(paramstruct, 'mode' ), paramstruct.mode = 'eeglab'; end; if ~isfield(paramstruct, 'eeglab'), paramstruct.eeglab = []; end; if ~isfield(paramstruct, 'fieldtrip'), paramstruct.fieldtrip = []; end; if ~isfield(paramstruct.eeglab, 'naccu'), paramstruct.eeglab.naccu = []; end; if ~isfield(paramstruct.eeglab, 'alpha' ), paramstruct.eeglab.alpha = NaN; end; if ~isfield(paramstruct.eeglab, 'method'), paramstruct.eeglab.method = 'param'; end; if ~isfield(paramstruct.eeglab, 'mcorrect'), paramstruct.eeglab.mcorrect = 'none'; end; if ~isfield(paramstruct.fieldtrip, 'naccu'), paramstruct.fieldtrip.naccu = []; end; if ~isfield(paramstruct.fieldtrip, 'method'), paramstruct.fieldtrip.method = 'analytic'; end; if ~isfield(paramstruct.fieldtrip, 'alpha'), paramstruct.fieldtrip.alpha = NaN; end; if ~isfield(paramstruct.fieldtrip, 'mcorrect'), paramstruct.fieldtrip.mcorrect = 'none'; end; if ~isfield(paramstruct.fieldtrip, 'clusterparam'), paramstruct.fieldtrip.clusterparam = '''clusterstatistic'',''maxsum'''; end; if ~isfield(paramstruct.fieldtrip, 'channelneighbor'), paramstruct.fieldtrip.channelneighbor = []; end; if ~isfield(paramstruct.fieldtrip, 'channelneighborparam'), paramstruct.fieldtrip.channelneighborparam = '''method'',''triangulation'''; end; if strcmpi(paramstruct.eeglab.mcorrect, 'benferoni'), paramstruct.eeglab.mcorrect = 'bonferoni'; end; if strcmpi(paramstruct.eeglab.mcorrect, 'no'), paramstruct.eeglab.mcorrect = 'none'; end; if strcmpi(paramstruct.fieldtrip.mcorrect, 'no'), paramstruct.fieldtrip.mcorrect = 'none'; end;
github
lcnhappe/happe-master
std_maketrialinfo.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_maketrialinfo.m
5,118
utf_8
4ca496b66ab94b2ec129cd988851b1d7
% std_maketrialinfo() - create trial information structure using the % .epoch structure of EEGLAB datasets % % Usage: % >> STUDY = std_maketrialinfo(STUDY, ALLEEG); % % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % % Inputs: % STUDY - EEGLAB STUDY set updated. The fields which is created or % updated is STUDY.datasetinfo.trialinfo % % Authors: Arnaud Delorme, SCCN/INC/UCSD, April 2010 % Copyright (C) Arnaud Delorme [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_maketrialinfo(STUDY, ALLEEG); %% test if .epoch field exist in ALLEEG structure epochfield = cellfun(@isempty, { ALLEEG.epoch }); if any(epochfield) fprintf('Warning: some datasets are continuous and trial information cannot be created\n'); return; end; %% check if conversion of event is necessary ff = {}; flagConvert = true; for index = 1:length(ALLEEG), ff = union(ff, fieldnames(ALLEEG(index).event)); end; for iField = 1:length(ff) fieldChar = zeros(1,length(ALLEEG))*NaN; for index = 1:length(ALLEEG) if isfield(ALLEEG(index).event, ff{iField}) if ischar(ALLEEG(index).event(1).(ff{iField})) fieldChar(index) = 1; else fieldChar(index) = 0; end; end; end; if ~all(fieldChar(~isnan(fieldChar)) == 1) && ~all(fieldChar(~isnan(fieldChar)) == 0) % need conversion to char for index = 1:length(ALLEEG) if fieldChar(index) == 0 if flagConvert, disp('Warning: converting some event fields to strings - this may be slow'); flagConvert = false; end; for iEvent = 1:length(ALLEEG(index).event) ALLEEG(index).event(iEvent).(ff{iField}) = num2str(ALLEEG(index).event(iEvent).(ff{iField})); end; end; end; end end; %% Make trial info for index = 1:length(ALLEEG) tmpevent = ALLEEG(index).event; eventlat = abs(eeg_point2lat( [ tmpevent.latency ], [ tmpevent.epoch ], ALLEEG(index).srate, [ALLEEG(index).xmin ALLEEG(index).xmax])); events = ALLEEG(index).event; ff = fieldnames(events); ff = setdiff_bc(ff, { 'latency' 'urevent' 'epoch' }); trialinfo = []; % process time locking event fields % --------------------------------- indtle = find(eventlat == 0); epochs = [ events(indtle).epoch ]; extractepoch = true; % Double checking and changing threshold if length(epochs) < ALLEEG(index).trials indtle = find(eventlat < 0.02); epochs = [ events(indtle).epoch ]; end if length(epochs) ~= ALLEEG(index).trials % special case where there are not the same number of time-locking % event as there are data epochs if length(unique(epochs)) ~= ALLEEG(index).trials extractepoch = false; disp('std_maketrialinfo: not the same number of time-locking events as trials, trial info ignored'); else % pick one event per epoch [tmp tmpind] = unique_bc(epochs(end:-1:1)); % reversing the array ensures the first event gets picked tmpind = length(epochs)+1-tmpind; indtle = indtle(tmpind); if length(indtle) ~= ALLEEG(index).trials extractepoch = false; disp('std_maketrialinfo: not the same number of time-locking events as trials, trial info ignored'); end; end; end; if extractepoch commands = {}; for f = 1:length(ff) eval( [ 'eventvals = {events(indtle).' ff{f} '};' ]); %if isnumeric(eventvals{1}) % eventvals = cellfun(@num2str, eventvals, 'uniformoutput', false); %end; commands = { commands{:} ff{f} eventvals }; end; trialinfo = struct(commands{:}); STUDY.datasetinfo(index).trialinfo = trialinfo; end; % % same as above but 10 times slower % for e = 1:length(ALLEEG(index).event) % if eventlat(e) < 0.0005 % time locking event only % epoch = events(e).epoch; % for f = 1:length(ff) % fieldval = getfield(events, {e}, ff{f}); % trialinfo = setfield(trialinfo, {epoch}, ff{f}, fieldval); % end; % end; % end; end;
github
lcnhappe/happe-master
std_topo.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_topo.m
5,582
utf_8
1b9b523a881bf168a2748a5049883851
% std_topo() - uses topoplot() to get the interpolated Cartesian grid of the % specified component topo maps. The topo map grids are saved % into a (.icatopo) file and a pointer to the file is stored % in the EEG structure. If such a file already exists, % loads the information from it. % % Returns the topo map grids of all the requested components. Also % returns the EEG sub-structure etc (i.e EEG.etc), which is modified % with a pointer to the float file and some information about the file. % Usage: % >> X = std_topo(EEG, components, option); % % % Returns the ICA topo map grid for a dataset. % % Updates the EEG structure in the Matlab environment and re-saves % Inputs: % EEG - an EEG dataset structure. % components - [numeric vector] components in the EEG structure to compute topo maps % {default|[] -> all} % option - ['gradient'|'laplacian'|'none'] compute gradient or laplacian of % the scale topography. This does not acffect the saved file which is % always 'none' {default is 'none' = the interpolated topo map} % Optional inputs % 'recompute' - ['on'|'off'] force recomputing topo file even if it is % already on disk. % 'fileout' - [string] Path of the folder to save output. The default % is EEG.filepath % Outputs: % X - the topo map grid of the requested ICA components, each grid is % one ROW of X. % % File output: [dataset_name].icatopo % % Authors: Hilit Serby, Arnaud Delorme, SCCN, INC, UCSD, January, 2005 % % See also topoplot(), std_erp(), std_ersp(), std_spec(), std_preclust() % Copyright (C) Hilit Serby, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [X] = std_topo(EEG, comps, option, varargin) if nargin < 1 help std_topo; return; end; if isfield(EEG,'icaweights') numc = size(EEG.icaweights,1); else error('EEG.icaweights not found'); end if nargin < 2 comps = 1:numc; elseif isempty(comps) comps = 1:numc; end if nargin < 3 option = 'none'; end; g = finputcheck( varargin, { 'recompute' 'string' { 'on','off' } 'off' ;... 'fileout' 'string' [] EEG.filepath},... 'std_topo'); % if isstr(g), error(g); end; % figure; toporeplot(grid,'style', 'both','plotrad', 0.5, 'intrad', 0.5, 'xsurface' ,Xi, 'ysurface',Yi ); % Topo information found in dataset % --------------------------------- if exist(fullfile(g.fileout, [ EEG.filename(1:end-3) 'icatopo' ])) && strcmpi(g.recompute, 'off') for k = 1:length(comps) tmp = std_readtopo( EEG, 1, comps(k)); if strcmpi(option, 'gradient') [tmpx, tmpy] = gradient(tmp); %Gradient tmp = [tmpx(:); tmpy(:)]'; elseif strcmpi(option, 'laplacian') tmp = del2(tmp); %Laplacian tmp = tmp(:)'; else tmp = tmp(:)'; end; tmp = tmp(find(~isnan(tmp))); if k == 1 X = zeros(length(comps),length(tmp)) ; end X(k,:) = tmp; end return end all_topos = []; for k = 1:numc % compute topo map grid (topoimage) % --------------------------------- chanlocs = EEG.chanlocs(EEG.icachansind); if isempty( [ chanlocs.theta ] ) error('Channel locations are required for computing scalp topographies'); end; [hfig grid plotrad Xi Yi] = topoplot( EEG.icawinv(:,k), chanlocs, ... 'verbose', 'off',... 'electrodes', 'on' ,'style','both',... 'plotrad',0.55,'intrad',0.55,... 'noplot', 'on', 'chaninfo', EEG.chaninfo); all_topos = setfield(all_topos, [ 'comp' int2str(k) '_grid' ], grid); all_topos = setfield(all_topos, [ 'comp' int2str(k) '_x' ] , Xi(:,1)); all_topos = setfield(all_topos, [ 'comp' int2str(k) '_y' ] , Yi(:,1)); end % Save topos in file % ------------------ all_topos.datatype = 'TOPO'; tmpfile = fullfile( g.fileout, [ EEG.filename(1:end-3) 'icatopo' ]); std_savedat(tmpfile, all_topos); for k = 1:length(comps) tmp = getfield(all_topos, [ 'comp' int2str(comps(k)) '_grid' ]); if strcmpi(option, 'gradient') [tmpx, tmpy] = gradient(tmp); % Gradient tmp = [tmpx(:); tmpy(:)]'; elseif strcmpi(option, 'laplacian') tmp = del2(tmp); % Laplacian tmp = tmp(:)'; else tmp = tmp(:)'; end; tmp = tmp(find(~isnan(tmp))); if k == 1 X = zeros(length(comps),length(tmp)) ; end X(k,:) = tmp; end
github
lcnhappe/happe-master
std_stat.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_stat.m
11,198
utf_8
5f23c07e5c7ae572b7612768a93018be
% std_stat() - compute statistics for ERP/spectral traces or ERSP/ITC images % of a component or channel cluster in a STUDY. % Usage: % >> [pcond, pgroup, pinter, statscond, statsgroup, statsinter] = std_stat( data, 'key', 'val', ...) % Inputs: % data - [cell array] mean data for each subject group and/or data % condition. For example, to compute mean ERPs statistics from a % STUDY for epochs of 800 frames in two conditions from three % groups of 12 subjects: % % >> data = { [800x12] [800x12] [800x12];... % 3 groups, cond 1 % [800x12] [800x12] [800x12] }; % 3 groups, cond 2 % >> pcond = std_stat(data, 'condstats', 'on'); % % By default, parametric statistics are computed across subjects % in the three groups. See below and >> help statcond % for more information about the statistical computations. % % Statistics options (EEGLAB): % 'groupstats' - ['on'|'off'] Compute (or not) statistics across groups. % {default: 'off'} % 'condstats' - ['on'|'off'] Compute (or not) statistics across groups. % {default: 'off'} % 'method' - ['parametric'|'permutation'] Type of statistics to use % default is 'parametric'. 'perm' and 'param' legacy % abreviations are still functional. % 'naccu' - [integer] Number of surrogate averages fo accumulate when % computing permutation-based statistics. For example, to % test p<0.01 use naccu>=200; for p<0.001, use naccu>=2000. % If a non-NaN 'threshold' is set (see below) and 'naccu' % is too low, it will be automatically increased. This % keyword available only from the command line {default:500} % 'alpha' - [NaN|p-value] threshold for computing p-value. In this % function, it is only used to compute naccu above. NaN % means that no threshold has been set. % 'mcorrect' - ['none'|'fdr'] apply correcting for multiple comparisons. % 'mode' - ['eeglab'|'fieldtrip'] statistical framework to use. % 'eeglab' uses EEGLAB statistical functions and 'fieldtrip' % uses Fieldtrip statistical funcitons. Default is 'eeglab'. % % Fieldtrip statistics options: % 'fieldtripnaccu' - 'numrandomization' Fieldtrip parameter % 'fieldtripalpha' - 'alpha' Fieldtrip parameter. Default is 0.05. % 'fieldtripmethod' - 'method' Fieldtrip parameter. Default is 'analytic' % 'fieldtripmcorrect' - 'mcorrect' Fieldtrip parameter. Default is 'none'. % 'fieldtripclusterparam' - string or cell array for optional parameters % for cluster correction method, see function % ft_statistics_montecarlo for more information. % 'fieldtripchannelneighbor' - Fieldtrip channel neighbour structure for % cluster correction method, see function % std_prepare_neighbors for more information. % Legacy parameters: % 'threshold' - now 'alpha' % 'statistics' - now 'method' % % Outputs: % pcond - [cell] condition pvalues or mask (0 or 1) if an alpha value % is selected. One element per group. % pgroup - [cell] group pvalues or mask (0 or 1). One element per % condition. % pinter - [cell] three elements, condition pvalues (group pooled), % group pvalues (condition pooled) and interaction pvalues. % statcond - [cell] condition statistic values (F or T). % statgroup - [cell] group pvalues or mask (0 or 1). One element per % condition. % statinter - [cell] three elements, condition statistics (group pooled), % group statistics (condition pooled) and interaction F statistics. % % Author: Arnaud Delorme, CERCO, CNRS, 2006- % % See also: statcond() % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [pcond, pgroup, pinter, statscond, statsgroup, statsinter] = std_stat(data, varargin) pgroup = {}; pcond = {}; pinter = {}; if nargin < 1 help std_stat; return; end; % decode inputs % ------------- if ~isempty(varargin) && isstruct(varargin{1}) opt = varargin{1}; varargin(1) = []; else opt = []; end; if ~isempty(varargin) ||isempty(opt); opt = pop_statparams(opt, varargin{:}); end; if ~isfield(opt, 'paired'), opt.paired = { 'off' 'off' }; end; if ~isnan(opt.eeglab.alpha(1)) && isempty(opt.eeglab.naccu), opt.eeglab.naccu = 1/opt.eeglab.alpha(end)*2; end; if any(any(cellfun('size', data, 2)==1)), opt.groupstats = 'off'; opt.condstats = 'off'; end; if strcmpi(opt.eeglab.mcorrect, 'fdr'), opt.eeglab.naccu = opt.eeglab.naccu*20; end; if isempty(opt.eeglab.naccu), opt.eeglab.naccu = 2000; end; if ~isreal(data{1}) fprintf('*** ITC significance - converting complex values to absolute amplitude ***\n'); for ind = 1:length(data(:)) data{ind} = abs(data{ind}); end; end; nc = size(data,1); ng = size(data,2); % compute significance mask % ------------------------- pcond = {}; pgroup = {}; pinter = {}; statscond = {}; statsgroup = {}; statsinter = {}; if strcmpi(opt.mode, 'eeglab') % EEGLAB statistics % ----------------- if strcmpi(opt.condstats, 'on') && nc > 1 for g = 1:ng [F df pval] = statcond(data(:,g), 'method', opt.eeglab.method, 'naccu', opt.eeglab.naccu, 'paired', opt.paired{1}); pcond{g} = squeeze(pval); statscond{g} = squeeze(F); end; end; if strcmpi(opt.groupstats, 'on') && ng > 1 for c = 1:nc [F df pval] = statcond(data(c,:), 'method', opt.eeglab.method, 'naccu', opt.eeglab.naccu, 'paired', opt.paired{2}); pgroup{c} = squeeze(pval); statsgroup{c} = squeeze(F); end; else end; if ( strcmpi(opt.groupstats, 'on') && strcmpi(opt.condstats, 'on') ) & ng > 1 & nc > 1 opt.paired = sort(opt.paired); % put 'off' first if present [F df pval] = statcond(data, 'method', opt.eeglab.method, 'naccu', opt.eeglab.naccu, 'paired', opt.paired{1}); for index = 1:length(pval) pinter{index} = squeeze(pval{index}); statsinter{index} = squeeze(F{index}); end; end; if ~isempty(opt.groupstats) || ~isempty(opt.condstats) if ~strcmpi(opt.eeglab.mcorrect, 'none'), disp([ 'Applying ' upper(opt.eeglab.mcorrect) ' correction for multiple comparisons' ]); for ind = 1:length(pcond), pcond{ind} = mcorrect( pcond{ind} , opt.eeglab.mcorrect ); end; for ind = 1:length(pgroup), pgroup{ind} = mcorrect( pgroup{ind}, opt.eeglab.mcorrect ); end; if ~isempty(pinter), pinter{1} = mcorrect(pinter{1}, opt.eeglab.mcorrect); pinter{2} = mcorrect(pinter{2}, opt.eeglab.mcorrect); pinter{3} = mcorrect(pinter{3}, opt.eeglab.mcorrect); end; end; if ~isnan(opt.eeglab.alpha) for ind = 1:length(pcond), pcond{ind} = applythreshold(pcond{ind}, opt.eeglab.alpha); end; for ind = 1:length(pgroup), pgroup{ind} = applythreshold(pgroup{ind}, opt.eeglab.alpha); end; for ind = 1:length(pinter), pinter{ind} = applythreshold(pinter{ind}, opt.eeglab.alpha); end; end; end; else if ~exist('ft_freqstatistics'), error('Install Fieldtrip-lite to use Fieldtrip statistics'); end; % Fieldtrip statistics % -------------------- params = {}; if strcmpi(opt.fieldtrip.mcorrect, 'cluster') params = eval( [ '{' opt.fieldtrip.clusterparam '}' ]); if isempty(opt.fieldtrip.channelneighbor), opt.fieldtrip.channelneighbor = struct([]); end; params = { params{:} 'neighbours' opt.fieldtrip.channelneighbor }; % channelneighbor is empty if only one channel selected end; params = { params{:} 'method', opt.fieldtrip.method, 'naccu', opt.fieldtrip.naccu 'mcorrect' opt.fieldtrip.mcorrect 'alpha' opt.fieldtrip.alpha 'numrandomization' opt.fieldtrip.naccu }; params = { params{:} 'structoutput' 'on' }; % before if ~isnan(opt.fieldtrip.alpha), end; if strcmpi(opt.condstats, 'on') && nc > 1 for g = 1:ng [F df pval] = statcondfieldtrip(data(:,g), 'paired', opt.paired{1}, params{:}); pcond{g} = applymask( F, opt.fieldtrip); statscond{g} = squeeze(F.stat); end; else pcond = {}; end; if strcmpi(opt.groupstats, 'on') && ng > 1 for c = 1:nc [F df pval] = statcondfieldtrip(data(c,:), 'paired', opt.paired{2}, params{:}); pgroup{c} = applymask( F, opt.fieldtrip); statsgroup{c} = squeeze(F.stat); end; else pgroup = {}; end; if ( strcmpi(opt.groupstats, 'on') && strcmpi(opt.condstats, 'on') ) & ng > 1 & nc > 1 opt.paired = sort(opt.paired); % put 'off' first if present [F df pval] = statcondfieldtrip(data, 'paired', opt.paired{1}, params{:}); for index = 1:length(pval) pinter{index} = applymask(F{inter}, opt.fieldtrip); statsinter{index} = squeeze(F.stat{index}); end; else pinter = {}; end; end; % apply mask for fieldtrip data % ----------------------------- function p = applymask(F, fieldtrip) if ~isnan(fieldtrip.alpha), p = squeeze(F.mask); else p = squeeze(F.pval); if ~strcmpi(fieldtrip.mcorrect, 'none') p(~F.mask) = 1; end; end; % apply stat threshold to data for EEGLAB stats % --------------------------------------------- function newdata = applythreshold(data, threshold) threshold = sort(threshold); newdata = zeros(size(data)); for index = 1:length(threshold) inds = data < threshold(index); data(inds) = 1; newdata(inds) = length(threshold)-index+1; end; % compute correction for multiple comparisons % ------------------------------------------- function pvals = mcorrect(pvals, method); switch method case {'no' 'none'}, return; case 'bonferoni', pvals = pvals*prod(size(pvals)); case 'holms', [tmp ind] = sort(pvals(:)); [tmp ind2] = sort(ind); pvals(:) = pvals(:).*(prod(size(pvals))-ind2+1); case 'fdr', pvals = fdr(pvals); otherwise error(['Unknown method ''' method ''' for correction for multiple comparisons' ]); end;
github
lcnhappe/happe-master
std_selcomp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_selcomp.m
3,156
utf_8
00aa637c4e0c27267077e0bd01c2d8c6
% std_selcomp() - Helper function for std_erpplot(), std_specplot() % and std_erspplot() to select specific % components prior to plotting. % Usage: % >> std_selcomp( STUDY, data, cluster, setinds, compinds, comps) % % Inputs: % STUDY - EEGLAB STUDY structure. % data - [cell array] mean data for each subject group and/or data % condition. For example, to compute mean ERPs statistics from a % STUDY for epochs of 800 frames in two conditions from three % groups of 12 subjects, % >> data = { [800x12] [800x12] [800x12];... % 3 groups, cond 1 % [800x12] [800x12] [800x12] }; % 3 groups, cond 2 % cluster - [integer] cluster index % setinds - [cell array] set indices for each of the last dimension of the % data cell array. % >> setinds = { [12] [12] [12];... % 3 groups, cond 1 % [12] [12] [12] }; % 3 groups, cond 2 % compinds - [cell array] component indices for each of the last dimension % of the data cell array. % >> compinds = { [12] [12] [12];... % 3 groups, cond 1 % [12] [12] [12] }; % 3 groups, cond 2 % comps - [integer] find and select specific component index in array % % Output: % data - [cell array] data array with the subject or component selected % subject - [string] subject name (for component selection) % comp_names - [cell array] component names (for component selection) % % Author: Arnaud Delorme, CERCO, CNRS, 2006- % % See also: std_erpplot(), std_specplot() and std_erspplot() function [data, subject, comp_names] = std_selcomp(STUDY, data, clust, setinds, compinds, compsel) if nargin < 2 help std_selcomp; return; end; optndims = ndims(data{1}); comp_names = {}; subject = ''; % find and select group % --------------------- if isempty(compsel), return; end; sets = STUDY.cluster(clust).sets(:,compsel); comps = STUDY.cluster(clust).comps(compsel); %grp = STUDY.datasetinfo(sets(1)).group; %grpind = strmatch( grp, STUDY.group ); %if isempty(grpind), grpind = 1; end; %data = data(:,grpind); % find component % -------------- for c = 1:length(data(:)) rminds = 1:size(data{c},optndims); for ind = length(compinds{c}):-1:1 setindex = STUDY.design(STUDY.currentdesign).cell(setinds{c}(ind)).dataset; if compinds{c}(ind) == comps && any(setindex == sets) rminds(ind) = []; end; end; if optndims == 2 data{c}(:,rminds) = []; %2-D elseif optndims == 3 data{c}(:,:,rminds) = []; %3-D else data{c}(:,:,:,rminds) = []; %3-D end; comp_names{c,1} = comps; end; % for c = 1:size(data,1) % for ind = 1:length(compinds{1,grpind}) % if compinds{1,grpind}(ind) == comps & any(setinds{1,grpind}(ind) == sets) % if optndims == 2 % data{c} = data{c}(:,ind); % else data{c} = data{c}(:,:,ind); % end; % comp_names{c,1} = comps; % end; % end; % end; subject = STUDY.datasetinfo(sets(1)).subject;
github
lcnhappe/happe-master
neural_net.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/neural_net.m
507
utf_8
0511a54c57462633b86130c890cfbb4d
% neural_net() - computes clusters using Matlab Neural Net toolbox. % Alternative clustering algorithm to kmeans(). % This is a helper function called from pop_clust(). function [IDX,C] = neural_net(clustdata,clus_num) nmin = min(clustdata); nmax = max(clustdata); net = newc([nmin ;nmax].',clus_num); net = train(net,(clustdata).'); Y = sim(net,(clustdata).'); IDX = vec2ind(Y); C = zeros(clus_num,size(clustdata,2)); for k = 1:clus_num C(k,:) = sum(clustdata(find(IDX == k),:)); end
github
lcnhappe/happe-master
std_spec.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_spec.m
17,403
utf_8
0785a60da38cc843ec475bdac86f8574
% std_spec() - Returns the ICA component spectra for a dataset. Updates the EEG structure % in the Matlab environment and in the .set file as well. Saves the spectra % in a file. % Usage: % >> [spec freqs] = std_spec(EEG, 'key', 'val', ...); % % Computes the mean spectra of the activites of specified components of the % supplied dataset. The spectra are saved in a Matlab file. If such a file % already exists, loads the spectral information from this file. % Options (below) specify which components to use, and the desired frequency % range. There is also an option to specify other spectopo() input variables % (see >> help spectopo for details). % % Returns the removed mean spectra of the selected ICA components in the % requested frequency range. If the spectra were computed previously but a % different frequency range is selected, there is an overwrite option. % so. The function will load previously computed log spectra, if any, and % will remove the mean from the requested frequency range. The frequencies % vector is also returned. % Inputs: % EEG - a loaded epoched EEG dataset structure. % % Optional inputs: % 'components' - [numeric vector] components of the EEG structure for which % activation spectrum will be computed. Note that because % computation of ERP is so fast, all components spectrum are % computed and saved. Only selected component % are returned by the function to Matlab % {default|[] -> all} % 'channels' - [cell array] channels of the EEG structure for which % activation spectrum will be computed. Note that because % computation of ERP is so fast, all channels spectrum are % computed and saved. Only selected channels % are returned by the function to Matlab % {default|[] -> none} % 'recompute' - ['on'|'off'] force recomputing ERP file even if it is % already on disk. % 'trialindices' - [cell array] indices of trials for each dataset. % Default is all trials. % 'recompute' - ['on'|'off'] force recomputing data file even if it is % already on disk. % 'rmcomps' - [integer array] remove artifactual components (this entry % is ignored when plotting components). This entry contains % the indices of the components to be removed. Default is none. % 'interp' - [struct] channel location structure containing electrode % to interpolate ((this entry is ignored when plotting % components). Default is no interpolation. % 'fileout' - [string] name of the file to save on disk. The default % is the same name (with a different extension) as the % dataset given as input. % 'savetrials' - ['on'|'off'] save single-trials ERSP. Requires a lot of disk % space (dataset space on disk times 10) but allow for refined % single-trial statistics. % % spectrum specific optional inputs: % 'specmode' - ['psd'|'fft'|'pburg'|'pmtm'] method to compute spectral % decomposition. 'psd' uses the spectopo function (optional % parameters to this function may be given as input). 'fft' % uses a simple fft on each trial. For continuous data % data trials are extracted automatically (see 'epochlim' % and 'epochrecur' below). Two experimental modes are % 'pmtm' and 'pbug' which use multitaper and the Burg % method to compute spectrum respectively. NOTE THAT SOME % OF THESE OPTIONS REQUIRE THE SIGNAL PROCESSING TOOLBOX. % 'epochlim' - [min max] for FFT on continuous data, extract data % epochs with specific epoch limits in seconds (see also % 'epochrecur' below). Default is [0 1]. % 'epochrecur' - [float] for FFT on continuous data, set the automatic % epoch extraction recurence interval (default is 0.5 second). % 'timerange' - [min max] use data within a specific time range before % computing the data spectrum. For instance, for evoked % data trials, it is recommended to use the baseline time % period. % 'logtrials' - ['on'|'off'] compute single-trial log transform before % averaging them. Default is 'off' for 'psd' specmode and % 'on' for 'fft' specmode. % 'continuous' - ['on'|'off'] force epoch data to be treated as % continuous so small data epochs can be extracted for the % 'fft' specmode option. Default is 'off'. % 'freqrange' - [minhz maxhz] frequency range (in Hz) within which to % return the spectrum {default|[]: [0 sample rate/2]}. % Note that this does not affect the spectrum computed on % disk, only the data returned by this function as output. % 'nw' - [integer] number of tapers for the 'pmtm' spectral % method. Default is 4. % 'burgorder' - [integet] order for the Burg spectral method. % % Other optional spectral parameters: % All optional parameters to the spectopo function may be provided to this % function as well (requires the 'specmode' option above to be set to % 'psd'). % % Outputs: % spec - the mean spectra (in dB) of the requested ICA components in the selected % frequency range (with the mean of each spectrum removed). % freqs - a vector of frequencies at which the spectra have been computed. % % Files output or overwritten for ICA: % [dataset_filename].icaspec, % raw spectrum of ICA components % Files output or overwritten for data: % [dataset_filename].datspec, % % See also spectopo(), std_erp(), std_ersp(), std_map(), std_preclust() % % Authors: Arnaud Delorme, SCCN, INC, UCSD, January, 2005 % Defunct: 0 -> if frequency range is different from saved spectra, ask via a % pop-up window whether to keep existing spectra or to overwrite them. % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [X, f, overwrt] = std_spec(EEG, varargin) overwrt = 1; % deprecated if nargin < 1 help std_spec; return; end; % decode inputs % ------------- if ~isempty(varargin) if ~isstr(varargin{1}) varargin = { varargin{:} [] [] }; if all(varargin{1} > 0) options = { 'components' varargin{1} 'freqrange' varargin{2} }; else options = { 'channels' -varargin{1} 'freqrange' varargin{2} }; end; else options = varargin; end; else options = varargin; end; [g spec_opt] = finputcheck(options, { 'components' 'integer' [] []; 'channels' 'cell' {} {}; 'timerange' 'float' [] []; 'specmode' 'string' {'fft','psd','pmtm','pburg'} 'psd'; 'recompute' 'string' { 'on','off' } 'off'; 'savetrials' 'string' { 'on','off' } 'off'; 'continuous' 'string' { 'on','off' } 'off'; 'logtrials' 'string' { 'on','off' 'notset' } 'notset'; 'savefile' 'string' { 'on','off' } 'on'; 'epochlim' 'real' [] [0 1]; 'trialindices' { 'integer','cell' } [] []; 'epochrecur' 'real' [] 0.5; 'rmcomps' 'cell' [] cell(1,length(EEG)); 'nw' 'float' [] 4; 'fileout' 'string' [] ''; 'burgorder' 'integer' [] 20; 'interp' 'struct' { } struct([]); 'nfft' 'integer' [] []; 'freqrange' 'real' [] [] }, 'std_spec', 'ignore'); if isstr(g), error(g); end; if isfield(EEG,'icaweights') numc = size(EEG(1).icaweights,1); else error('EEG.icaweights not found'); end if isempty(g.components) g.components = 1:numc; end EEG_etc = []; % filename % -------- if isempty(g.fileout), g.fileout = fullfile(EEG(1).filepath, EEG(1).filename(1:end-4)); end; if ~isempty(g.channels) filename = [ g.fileout '.datspec']; prefix = 'chan'; else filename = [ g.fileout '.icaspec']; prefix = 'comp'; end; % SPEC information found in datasets % --------------------------------- if exist(filename) & strcmpi(g.recompute, 'off') fprintf('File "%s" found on disk, no need to recompute\n', filename); setinfo.filebase = g.fileout; if strcmpi(prefix, 'comp') [X tmp f] = std_readfile(setinfo, 'components', g.components, 'freqlimits', g.freqrange, 'measure', 'spec'); else [X tmp f] = std_readfile(setinfo, 'channels', g.channels, 'freqlimits', g.freqrange, 'measure', 'spec'); end; if ~isempty(X), return; end; end % No SPEC information found % ------------------------- options = {}; if ~isempty(g.rmcomps), options = { options{:} 'rmcomps' g.rmcomps }; end; if ~isempty(g.interp), options = { options{:} 'interp' g.interp }; end; if isempty(g.channels) [X boundaries] = eeg_getdatact(EEG, 'component', [1:size(EEG(1).icaweights,1)], 'trialindices', g.trialindices ); else [X boundaries] = eeg_getdatact(EEG, 'trialindices', g.trialindices, 'rmcomps', g.rmcomps, 'interp', g.interp); end; if ~isempty(boundaries) && boundaries(end) ~= size(X,2), boundaries = [boundaries size(X,2)]; end; % get specific time range for epoched and continuous data % ------------------------------------------------------- oritrials = EEG.trials; if ~isempty(g.timerange) if oritrials > 1 timebef = find(EEG(1).times >= g.timerange(1) & EEG(1).times < g.timerange(2) ); X = X(:,timebef,:); EEG(1).pnts = length(timebef); else disp('warning: ''timerange'' option cannot be used with continuous data'); end; end; % extract epochs if necessary % --------------------------- if ~strcmpi(g.specmode, 'psd') if EEG(1).trials == 1 || strcmpi(g.continuous, 'on') TMP = EEG(1); TMP.data = X; TMP.icaweights = []; TMP.icasphere = []; TMP.icawinv = []; TMP.icaact = []; TMP.icachansind = []; TMP.trials = size(TMP.data,3); TMP.pnts = size(TMP.data,2); TMP.event = []; TMP.epoch = []; for index = 1:length(boundaries) TMP.event(index).type = 'boundary'; TMP.event(index).latency = boundaries(index); end; TMP = eeg_checkset(TMP); if TMP.trials > 1 TMP = eeg_epoch2continuous(TMP); end; TMP = eeg_regepochs(TMP, g.epochrecur, g.epochlim); disp('Warning: continuous data, extracting 1-second epochs'); X = TMP.data; end; end; % compute spectral decomposition % ------------------------------ if strcmpi(g.logtrials, 'notset'), if strcmpi(g.specmode, 'fft') g.logtrials = 'on'; else g.logtrials = 'off'; end; end; if strcmpi(g.logtrials, 'on'), datatype = 'SPECTRUMLOG'; else datatype = 'SPECTRUMABS'; end; if strcmpi(g.specmode, 'psd') if strcmpi(g.savetrials, 'on') || strcmpi(g.logtrials, 'on') for iTrial = 1:size(X,3) [XX(:,:,iTrial), f] = spectopo(X(:,:,iTrial), size(X,2), EEG(1).srate, 'plot', 'off', 'boundaries', boundaries, 'nfft', g.nfft, spec_opt{:}); if iTrial == 1, XX(:,:,size(X,3)) = 0; end; end; if strcmpi(g.logtrials, 'off') X = 10.^(XX/10); else X = XX; end; if strcmpi(g.savetrials, 'off') X = mean(X,3); end; else [X, f] = spectopo(X, size(X,2), EEG(1).srate, 'plot', 'off', 'boundaries', boundaries, 'nfft', g.nfft, spec_opt{:}); X = 10.^(X/10); end; elseif strcmpi(g.specmode, 'pmtm') if strcmpi(g.logtrials, 'on') error('Log trials option cannot be used in conjunction with the PMTM option'); end; if all([ EEG.trials ] == 1) && ~isempty(boundaries), disp('Warning: multitaper does not take into account boundaries in continuous data'); end; fprintf('Computing spectrum using multitaper method:'); for cind = 1:size(X,1) fprintf('.'); for tind = 1:size(X,3) [tmpdat f] = pmtm(X(cind,:,tind), g.nw, g.nfft, EEG.srate); if cind == 1 && tind == 1 X2 = zeros(size(X,1), length(tmpdat), size(X,3)); end; X2(cind,:,tind) = tmpdat; end; end; fprintf('\n'); X = X2; if strcmpi(g.savetrials, 'off'), X = mean(X,3); end; elseif strcmpi(g.specmode, 'pburg') if strcmpi(g.logtrials, 'on') error('Log trials option cannot be used in conjunction with the PBURB option'); end; fprintf('Computing spectrum using Burg method:'); if all([ EEG.trials ] == 1) && ~isempty(boundaries), disp('Warning: pburg does not take into account boundaries in continuous data'); end; for cind = 1:size(X,1) fprintf('.'); for tind = 1:size(X,3) [tmpdat f] = pburg(X(cind,:,tind), g.burgorder, g.nfft, EEG.srate); if cind == 1 && tind == 1 X2 = zeros(size(X,1), length(tmpdat), size(X,3)); end; X2(cind,:,tind) = tmpdat; end; end; fprintf('\n'); X = X2; if strcmpi(g.savetrials, 'off'), X = mean(X,3); end; else % fft mode if oritrials == 1 || strcmpi(g.continuous, 'on') X = bsxfun(@times, X, hamming(size(X,2))'); end; if all([ EEG.trials ] == 1) && ~isempty(boundaries), disp('Warning: fft does not take into account boundaries in continuous data'); end; tmp = fft(X, g.nfft, 2); f = linspace(0, EEG(1).srate/2, floor(size(tmp,2)/2)); f = f(2:end); % remove DC (match the output of PSD) tmp = tmp(:,2:floor(size(tmp,2)/2),:); X = tmp.*conj(tmp); if strcmpi(g.logtrials, 'on'), X = 10*log10(X); end; if strcmpi(g.savetrials, 'off'), X = mean(X,3); end; if strcmpi(g.logtrials, 'off'), X = 10*log10(X); end; end; % Save SPECs in file (all components or channels) % ----------------------------------------------- fileNames = computeFullFileName( { EEG.filepath }, { EEG.filename }); if strcmpi(g.savefile, 'on') options = { options{:} spec_opt{:} 'timerange' g.timerange 'nfft' g.nfft 'specmode' g.specmode }; if strcmpi(prefix, 'comp') savetofile( filename, f, X, 'comp', 1:size(X,1), options, {}, fileNames, g.trialindices, datatype); else if ~isempty(g.interp) savetofile( filename, f, X, 'chan', 1:size(X,1), options, { g.interp.labels }, fileNames, g.trialindices, datatype); else tmpchanlocs = EEG(1).chanlocs; savetofile( filename, f, X, 'chan', 1:size(X,1), options, { tmpchanlocs.labels }, fileNames, g.trialindices, datatype); end; end; end; return; % compute full file names % ----------------------- function res = computeFullFileName(filePaths, fileNames); for index = 1:length(fileNames) res{index} = fullfile(filePaths{index}, fileNames{index}); end; % ------------------------------------- % saving SPEC information to Matlab file % ------------------------------------- function savetofile(filename, f, X, prefix, comps, params, labels, dataFiles, dataTrials, datatype); disp([ 'Saving SPECTRAL file ''' filename '''' ]); allspec = []; for k = 1:length(comps) allspec = setfield( allspec, [ prefix int2str(comps(k)) ], squeeze(X(k,:,:))); end; if nargin > 6 && ~isempty(labels) allspec.labels = labels; end; allspec.freqs = f; allspec.parameters = params; allspec.datatype = datatype; allspec.datafiles = dataFiles; allspec.datatrials = dataTrials; allspec.average_spec = mean(X,1); std_savedat(filename, allspec);
github
lcnhappe/happe-master
std_precomp_worker.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_precomp_worker.m
2,834
utf_8
35f7db94f3bde2742d8ec681fae164f1
% std_precomp_worker() - allow dispatching ERSP to be computed in parallel % on a given cluster. % Usage: % >> feature = std_precomp_worker(filename, varargin); % % Inputs: % filename - STUDY file name % % Optional inputs: % Optional inputs are the same as for the std_precomp function. Note that % this function can currently only compute ERSP and ITC. The argument % 'cell' must be defined so a given node will only compute the measure on % one cell (one cell per node). % output trials {default: whole measure range} % Output: % feature - data structure containing ERSP and/or ITC % % Author: Arnaud Delorme, SCCN, UCSD, 2012- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function feature = std_precomp_worker(filename, varargin) if nargin < 2 help std_precomp_worker; return; end; g = struct(varargin{2:end}); % load dataset % ------------ [STUDY ALLEEG] = pop_loadstudy('filename', filename); if ~isfield(g, 'design'), g.design = STUDY.currentdesign; end; if isfield(g, 'erp') || isfield(g, 'spec') || isfield(g, 'erpim') || isfield(g, 'scalp') error('This function is currently designed to compute time-frequency decompositions only'); end; if ~isfield(g, 'ersp') && ~isfield(g, 'itc') error('You must compute either ERSP or ITC when using the EC2 cluster'); end; % run std_precomp (THIS IS THE PART WE WANT TO PARALELIZE) % --------------- % for index = 1:length(STUDY.design(g.design).cell) % [STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, varargin{:}, 'cell', index); % end; std_precomp(STUDY, ALLEEG, varargin{:}); filebase = STUDY.design(g.design).cell(g.cell).filebase; if isfield(g, 'channel') fileERSP = [ filebase '.datersp' ]; fileITC = [ filebase '.datitc' ]; if exist(fileERSP), feature.ersp = load('-mat', fileERSP); end; if exist(fileITC ), feature.itc = load('-mat', fileITC ); end; else fileERSP = [ filebase '.icaersp' ]; fileITC = [ filebase '.icaitc' ]; if exist(fileERSP), feature.ersp = load('-mat', fileERSP); end; if exist(fileITC ), feature.itc = load('-mat', fileITC ); end; end;
github
lcnhappe/happe-master
pop_studyerp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_studyerp.m
8,206
utf_8
b0813e4eb5cf7b6f15ee9f45028b7261
% pop_studyerp() - create a simple design for ERP analysis % % Usage: % >> [STUDY ALLEEG] = pop_studyerp; % pop up interface % % Outputs: % STUDY - an EEGLAB STUDY set of loaded EEG structures % ALLEEG - ALLEEG vector of one or more loaded EEG dataset structures % % Author: Arnaud Delorme, SCCN, UCSD, 2011- % % See also: eeg_checkset() % Copyright (C) 15 Feb 2002 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY ALLEEG com ] = pop_studyerp; % first GUI, get the number of conditions and subjects % ---------------------------------------------------- textinfo = [ 'This interface creates a simple STUDY and ' 10 ... 'computes its condition grand average ERPs.' 10 ... 'For each subject, trials for each condition' 10 ... 'must first be stored in a separate dataset.' 10 ... 'Create other STUDY using the standard editor.' ]; guispec = { ... {'style' 'text' 'string' 'Create simple ERP STUDY' ... 'FontWeight' 'Bold' 'fontsize', 12} ... { 'style' 'text' 'string' textinfo } ... {'style' 'text' 'string' 'Number of conditions:' } ... {'style' 'edit' 'string' '1' 'tag' 'cond' } { } ... {'style' 'text' 'string' 'Number of subjects:' } ... {'style' 'edit' 'string' '15' 'tag' 'subjects' } { } }; guigeom = { [1] [1] [1 0.3 0.4] [1 0.3 0.4] }; optiongui = { 'geometry', guigeom, 'uilist' , guispec, ... 'geomvert', [ 1 4 1 1], ... 'helpcom' , 'pophelp(''pop_studyerp'')', ... 'title' , 'Create a new STUDY set -- pop_studyerp()' }; [result, userdat2, strhalt, outstruct] = inputgui(optiongui{:}); STUDY = []; ALLEEG = []; com = ''; if isempty(result), return; end; nSubjects = str2num(outstruct.subjects); nConds = str2num(outstruct.cond); % second GUI, enter the datasets % ------------------------------ guispec = { ... {'style' 'text' 'string' 'Create simple ERP STUDY' 'FontWeight' 'Bold' 'fontsize', 12} ... {} ... {} {'style' 'text' 'string' 'STUDY set name:' } { 'style' 'edit' 'string' '' 'tag' 'study_name' } ... {} }; guigeom = { [1] [1] [0.2 1 3.5] [1] }; % define conditions % ----------------- guigeom{end+1} = []; for icond = 1:nConds if icond == 1, guigeom{end} = [ guigeom{end} 1 0.2]; else guigeom{end} = [ guigeom{end} 0.1 1 0.2]; end; if icond > 1, guispec{end+1} = {}; end; guispec = { guispec{:}, {'style' 'text' 'string' [ 'Condition ' num2str(icond) ' name'] } {} }; end; % edit boxes for conditions % ------------------------- guigeom{end+1} = []; for icond = 1:nConds if icond == 1, guigeom{end} = [ guigeom{end} 1 0.2]; else guigeom{end} = [ guigeom{end} 0.1 1 0.2]; end; if icond > 1, guispec{end+1} = {}; end; guispec = { guispec{:}, {'style' 'edit' 'string' '' 'tag' [ 'cond' num2str(icond) ] } {} }; end; guispec{end+1} = {}; guigeom{end+1} = [1]; % define dataset headers % ---------------------- guigeom{end+1} = []; for icond = 1:nConds if icond == 1, guigeom{end} = [ guigeom{end} 1 0.2]; else guigeom{end} = [ guigeom{end} 0.1 1 0.2]; end; if icond > 1, guispec{end+1} = {}; end; guispec = { guispec{:}, {'style' 'text' 'string' ['Condition ' num2str(icond) ' datasets' ] } {} }; end; % create edit boxes % ----------------- for index = 1:nSubjects guigeom{end+1} = []; for icond = 1:nConds if icond == 1, guigeom{end} = [ guigeom{end} 1 0.2]; else guigeom{end} = [ guigeom{end} 0.1 1 0.2]; end; select_com = ['[inputname, inputpath] = uigetfile2(''*.set;*.SET'', ''Choose dataset to add to STUDY -- pop_study()'');'... 'if inputname ~= 0,' ... ' guiind = findobj(''parent'', gcbf, ''tag'', ''set' int2str(icond) '_' int2str(index) ''');' ... ' set( guiind,''string'', fullfile(inputpath, inputname));' ... 'end; clear inputname inputpath;']; if icond > 1, guispec{end+1} = {}; end; guispec = { guispec{:}, ... {'style' 'edit' 'string' '' 'tag' [ 'set' int2str(icond) '_' int2str(index) ] }, ... {'style' 'pushbutton' 'string' '...' 'Callback' select_com } }; end; end; % last text % --------- textinfo = [ 'When using more than 1 condition, datasets on each line must correspond to the same subject.' ]; guispec = { guispec{:}, {}, {'style' 'text' 'string' textinfo } }; guigeom = { guigeom{:} [1] [1] }; optiongui = { 'geometry', guigeom, ... 'uilist' , guispec, ... 'helpcom' , 'pophelp(''pop_studyerp'')', ... 'title' , 'Create a new STUDY set -- pop_studyerp()' }; [result, userdat2, strhalt, outstruct] = inputgui(optiongui{:}); if isempty(result), return; end; % decode outstruct and build call to std_editset % ---------------------------------------------- options = { 'name' outstruct.study_name 'updatedat' 'off' }; commands = {}; for icond = 1:nConds % check that condition name is defined tagCond = ['cond' int2str(icond) ]; if isempty(outstruct.(tagCond)) outstruct.(tagCond) = [ 'condition ' int2str(icond) ]; end; for index = 1:nSubjects tagSet = [ 'set' int2str(icond) '_' int2str(index) ]; subject = sprintf('S%2.2d', index); if ~isempty(outstruct.(tagSet)) commands = { commands{:}, {'index' nConds*index+icond-1 'load' outstruct.(tagSet) 'subject' subject 'condition' outstruct.(tagCond) } }; end; end; end; options = { options{:}, 'commands', commands }; % call std_editset to create the STUDY % ------------------------------------ com1 = sprintf( '[STUDY ALLEEG] = std_editset( STUDY, ALLEEG, %s );', vararg2str(options) ); [STUDY ALLEEG] = std_editset(STUDY, ALLEEG, options{:}); if exist([ STUDY.design(STUDY.currentdesign).cell(1).filebase '.daterp' ]) textmsg = [ 'WARNING: SOME ERP DATAFILES ALREADY EXIST, OVERWRITE THEM?' 10 ... '(if you have another STUDY using the same datasets, it might overwrite its' 10 ... 'precomputed data files. Instead, use a single STUDY and create multiple designs).' ]; res = questdlg2(textmsg, 'Precomputed datafiles already present on disk', 'No', 'Yes', 'Yes'); if strcmpi(res, 'No') error('User aborded precomputing ERPs'); end; end; % call std_precomp for ERP (channels) % ----------------------------------- com2 = '[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, ''channels'', ''interpolate'', ''on'', ''recompute'',''on'',''erp'',''on'');'; [STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, 'channels','interp', 'on', 'recompute','on','erp','on'); % call std_erpplot to plot ERPs (channels) % ---------------------------------------- com3 = 'tmpchanlocs = ALLEEG(1).chanlocs; STUDY = std_erpplot(STUDY, ALLEEG, ''channels'', { tmpchanlocs.labels }, ''plotconditions'', ''together'');'; tmpchanlocs = ALLEEG(1).chanlocs; STUDY = std_erpplot(STUDY, ALLEEG, 'channels', { tmpchanlocs.labels }, 'plotconditions', 'together'); pos = get(gcf, 'position'); set(gcf, 'position', [10 pos(2) pos(3)*2 pos(4)*2]); % call the STUDY plotting interface % --------------------------------- disp('Press OK to close plotting interface and save the STUDY'); disp('If you press CANCEL, the whole STUDY will be lost.'); [STUDY com4] = pop_chanplot(STUDY, ALLEEG); com = sprintf('%s\n%s\n%s\n%s', com1, com2, com3, com4);
github
lcnhappe/happe-master
std_itcplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_itcplot.m
2,459
utf_8
5d31d5576a555fc6e0ea524887479c2c
% std_itcplot() - Commandline function to plot cluster ITCs. Either displays mean cluster % ITCs, or else all cluster component ITCs, plus the mean cluster ITC, in % one figure per cluster and condition. ITCs can be visualized only if % component ITCs were calculated and saved in the STUDY EEG datasets. % These can be computed during pre-clustering using the gui-based function % pop_preclust(), or via the equivalent commandline functions % eeg_createdata() and eeg_preclust(). Called by pop_clustedit(). % Usage: % >> [STUDY] = std_itcplot(STUDY, ALLEEG, key1, val1, key2, val2); % >> [STUDY itcdata itctimes itcfreqs pgroup pcond pinter] = ... % std_itcplot(STUDY, ALLEEG ...); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the datasets in the STUDY. % Note: ALLEEG for a STUDY set is typically created using load_ALLEEG(). % % Additional help: % Inputs and output of this function are strictly identical to the std_erspplot(). % See the help message of this function for more information. std_itcplot() % plots the ITC while std_erspplot() plots the ERSP. % % See also: std_erspplot(), pop_clustedit(), pop_preclust() % % Authors: Arnaud Delorme, CERCO, August, 2006- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, allitc, alltimes, allfreqs, pgroup, pcond, pinter] = std_itcplot(STUDY, ALLEEG, varargin) if nargin < 2 help std_itcplot; return; end; [STUDY allitc alltimes allfreqs pgroup pcond pinter ] = std_erspplot(STUDY, ALLEEG, 'datatype', 'itc', varargin{:});
github
lcnhappe/happe-master
std_readerpimage.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readerpimage.m
1,501
utf_8
0c21798407bdacd79f5ef9bfe0c4110d
% std_readerpimage() - load ERPimage measures for data channels or % for all components of a specified cluster. % Usage: % >> [STUDY, erpimagedata, times, trials, events] = std_readerpimage(STUDY, ALLEEG, varargin); % % Note: this function is a helper function that contains a call to the % std_readersp function that reads all 2-D data matrices for EEGLAB STUDY. % See the std_readersp help message for more information. % % Author: Arnaud Delorme, CERCO, 2006- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, erspdata, alltimes, allfreqs, events] = std_readerpimage(STUDY, ALLEEG, varargin); [STUDY, erspdata, alltimes, allfreqs, erspbase, events] = std_readersp(STUDY, ALLEEG, 'infotype','erpim', varargin{:});
github
lcnhappe/happe-master
std_fileinfo.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_fileinfo.m
3,535
utf_8
e6de7fbc6e0b582bd20aabb2d0afafbf
% std_fileinfo() - Check uniform channel distribution accross datasets % % Usage: % >> [struct filepresent] = std_fileinfo(ALLEEG); % Inputs: % ALLEEG - EEGLAB ALLEEG structure % % Outputs: % struct - structure of the same length as the ALLEEG variable % containing all the fields in the datafiles % filepresent - array of 0 and 1 indicating if the file is present for % each dataset % % Authors: Arnaud Delorme, SCCN/UCSD, CERCO/CNRS, 2010- % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [tmpstructout compinds filepresent] = std_fileinfo( ALLEEG, filetype ); firstpass = 1; notequal = 0; compinds = {}; tmpstructout = []; filepresent = zeros(1,length(ALLEEG)); for dat = 1:length(ALLEEG) filename = fullfile(ALLEEG(dat).filepath, [ ALLEEG(dat).filename(1:end-3) filetype ]); thisfilepresent = exist(filename); if thisfilepresent && firstpass == 1 %fprintf('Files of type "%s" detected, checking...', filetype); elseif firstpass == 1 notequal = 1; end; firstpass = 0; filepresent(dat) = thisfilepresent; if filepresent(dat) try warning('off', 'MATLAB:load:variableNotFound'); tmptmpstruct = load( '-mat', filename, 'times', 'freqs', 'parameters', 'labels', 'chanlabels' ); warning('on', 'MATLAB:load:variableNotFound'); catch passall = 0; fprintf(' Error\n'); break; end; % rename chanlabels and store structure if isfield(tmptmpstruct, 'chanlabels') tmptmpstruct.labels = tmptmpstruct.chanlabels; tmptmpstruct = rmfield(tmptmpstruct, 'chanlabels'); end; if filetype(1) ~= 'd' % ICA components allvars = whos('-file', filename); tmpinds = []; for cind = 1:length(allvars) str = allvars(cind).name(5:end); ind_ = find(str == '_'); if ~isempty(ind_), str(ind_:end) = []; end; tmpinds = [ tmpinds str2num(str) ]; end; compinds(dat) = { unique(tmpinds) }; elseif ~isfield(tmptmpstruct, 'labels') allvars = whos('-file', filename); allvarnames = { allvars.name }; tmptmpstruct.labels = allvarnames(strmatch('chan', allvarnames)); end; try, tmpstruct(dat) = tmptmpstruct; catch, passall = 0; break; end; end; end; if exist('tmpstruct') == 1 tmpstructout = tmpstruct; end;
github
lcnhappe/happe-master
std_clustread.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_clustread.m
12,094
utf_8
fc68f0aa97d01ad111040de7a802cc1e
% std_clustread() - this function has been replaced by std_readdata() for % consistency. Please use std_readdata() instead. % load one or more requested measures % ['erp'|'spec'|'ersp'|'itc'|'dipole'|'map'] % for all components of a specified cluster. % Calls std_readerp(), std_readersp(), etc. % Usage: % >> clustinfo = std_clustread(STUDY,ALLEEG, cluster, infotype, condition); % Inputs: % STUDY - studyset structure containing some or all files in ALLEEG % ALLEEG - vector of loaded EEG datasets % cluster - cluster number in STUDY % infotype - ['erp'|'spec'|'ersp'|'itc'|'dipole'|'map'] type of stored % cluster information to read. May also be a cell array of % these types, for example: { 'erp' 'map' 'dipole' } % condition - STUDY condition number to read {default: all} % % Output: % clustinfo - structure of specified cluster information: % clustinfo.name % cluster name % clustinfo.clusternum % cluster index % clustinfo.condition % index of the condition asked for % % clustinfo.comp[] % array of component indices % clustinfo.subject{} % cell array of component subject codes % clustinfo.group{} % cell array of component group codes % % clustinfo.erp[] % (ncomps, ntimes) array of component ERPs % clustinfo.erp_times[] % vector of ERP epoch latencies % % clustinfo.spec[] % (ncomps, nfreqs) array of component spectra % clustinfo.spec_freqs[]% vector of spectral frequencies % % clustinfo.ersp[] % (ncomps,ntimes,nfreqs) array of component ERSPs % clustinfo.ersp_times[]% vector of ERSP latencies % clustinfo.ersp_freqs[]% vector of ERSP frequencies % % clustinfo.itc[] % (ncomps,ntimes,nfreqs) array of component ITCs % clustinfo.itc_times[] % vector of ITC latencies % clustinfo.itc_freqs[] % vector of ITC frequencies % % clustinfo.scalp[] % (ncomps,65,65) array of component scalp map grids % clustinfo.xi[] % abscissa values for columns of the scalp maps % clustinfo.yi[] % ordinate values for rows of the scalp maps % % clustinfo.dipole % array of component dipole information structs % % with same format as EEG.dipfit.model % Example: % % To plot the ERPs for all components in cluster 3 of a loaded STUDY % >> clustinfo = std_clustread(STUDY, ALLEEG, 3, 'erp'); % figure; plot(clustinfo.erp_times, clustinfo.erp); % % See also: std_readerp(), std_readspec(), std_readersp(), std_readitc(), std_readtopo() % % Authors: Hilit Serby, Scott Makeig & Arnaud Delorme, SCCN/INC/UCSD, 2005- % % RCS-recorded version number, date, editor and comments function clustinfo = std_clustread(STUDY,ALLEEG, cluster, infotype, condition); help std_clustread; return; if nargin < 4 help std_clustread; return; end if nargin < 5 condition = [1:length(STUDY.condition)]; % default end if ~iscell(infotype), infotype = { infotype }; end; clustinfo = []; clustinfo.name = STUDY.cluster(cluster).name; clustinfo.clusternum = cluster; clustinfo.comps = STUDY.cluster(cluster).comps; clustinfo.condition = condition; ncomps = length(STUDY.cluster(cluster).comps); for k = 1:ncomps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for each channel | component %%%%%%%%%%%%%% for n = 1:length(condition) %%%%%%%%%%%%%%%%%%%%%%%% for each STUDY condition %%%%%%%%%%%%%% abset = [STUDY.datasetinfo(STUDY.cluster(cluster).sets(condition(n),k)).index]; comp = STUDY.cluster(cluster).comps(k); clustinfo.subject{k} = STUDY.datasetinfo(STUDY.cluster(cluster).sets(condition(n),k)).subject; clustinfo.group{k} = STUDY.datasetinfo(STUDY.cluster(cluster).sets(condition(n),k)).group; for index = 1:length(infotype) %%%%%%%%%%%%%% for each information type %%%%%%%%%%%%%%%% switch infotype{index} case 'erp' [erp, t] = std_readerp(ALLEEG, abset, comp, STUDY.preclust.erpclusttimes); clustinfo.erp_times = t; clustinfo.erp{n,k} = erp; case 'spec' [spec, f] = std_readspec(ALLEEG, abset, comp, STUDY.preclust.specclustfreqs); clustinfo.spec_freqs = f; clustinfo.spec{n,k} = spec; case 'ersp' if n == 1 abset = [STUDY.datasetinfo(STUDY.cluster(cluster).sets(condition,k)).index]; [ersp, logfreqs, timevals] = std_readersp(ALLEEG, abset, comp, ... STUDY.preclust.erspclusttimes, STUDY.preclust.erspclustfreqs); for cc = 1:length(condition) clustinfo.ersp{condition(cc), k} = ersp(:,:,cc); end; clustinfo.ersp_freqs = logfreqs; clustinfo.ersp_times = timevals; end; case 'itc' [itc, logfreqs, timevals] = std_readitc(ALLEEG, abset, comp, ... STUDY.preclust.erspclusttimes, STUDY.preclust.erspclustfreqs ); clustinfo.itc_freqs = logfreqs; clustinfo.itc_times = timevals; clustinfo.itc{n,k} = itc; case 'dipole' if n == 1, clustinfo.dipole(k) = ALLEEG(abset).dipfit.model(comp); end; case { 'map' 'scalp' 'topo' } if n == 1 [grid, yi, xi] = std_readtopo(ALLEEG, abset, comp); if k == 1 clustinfo.xi = xi; clustinfo.yi = yi; end clustinfo.scalp{k} = grid; end; otherwise, error('Unrecognized ''infotype'' entry'); end; % switch end; end; % infotype end % comp % FUTURE HEADER % std_clustread() - return detailed information and (any) requested component % measures for all components of a specified cluster. Restrict % component info to components from specified subjects, groups, % sessions, and/or conditions. Use in scripts handling results % of component clustering. Called by cluster plotting % functions: std_envtopo(), std_erpplot(), std_erspplot(), ... % Usage: % >> clsinfo = std_clustread(STUDY, ALLEEG, cluster); % use defaults % >> clsinfo = std_clustread(STUDY, ALLEEG, cluster, ... % 'keyword1', keyval1, ... % 'keyword2', keyval2, ...); % Inputs: % STUDY - studyset structure containing some or all files in ALLEEG % ALLEEG - vector of loaded EEG datasets including those in STUDY % cluster - cluster number in STUDY to return information for % % Optional keywords - and values: IMPLEMENT !! % 'measure' - ['erp'|'spec'|'ersp'|'itc'|'dipole'|'topo'] stored % cluster measure(s) to read. May also be a cell array of % these, for example: { 'erp' 'map' 'dipole' }. % Else 'all', meaning all measures available. % Else 'cls', meaning all measures clustered on. % Else [], for none {default: 'cls'} % 'condition' - STUDY condition 'name' or {'names'} to read, % Else 'all' {default: 'all'} % 'condnum'' - STUDY condition [number(s)] to read, % Else 0 -> all {default: 0} % 'subject' - STUDY subjects 'name' or {'names'} to read, % Else 'all' {default: 'all'} % 'subjnum' - STUDY subjects [number(s)] to read, % Else 0 -> all {default: 0} % 'group' - STUDY subject group 'name' or {'names'} to read, % Else 'all' {default: 'all'} % 'groupnum' - STUDY subject group [number(s)] to read, % Else 0 -> all {default: 0} % 'session' - STUDY session [number(s)] to read, % Else 0 -> all {default: 0} % % Output: % clsinfo - structure containing information about cluster components in fields: % % .clustername % cluster name % .clusternum % cluster index % % .dataset % {(conditions,components) cell array} component dataset indices % in the input ALLEEG array % .component % [(1,components) int array] component decomposition indices % .subject % {(1,components) cell array} component subject codes % .subjectnum % [(1,components) int array] component subject indices % .group % {(1,components) cell array} component group codes % .groupnum % [(1,components) int array] component group indices % % .condition % {(1,components) cell array} component condition codes % .conditionnum % [(1,components) int array] component condition indices % .session % [(1,components) int array] component session indices % % .erp % {(conditions, components) cell array} % (1, latencies) component ERPs CHECK DIM % .erp_times % [num vector] ERP epoch latencies (s) % % .spec % {(conditions, components) cell array} % (1,frequencies) component spectra CHECK DIM % .spec_freqs % [num vector] spectral frequencies (Hz) % % .ersp % {(conditions, components) cell array} % (freqs,latencies) component ERSPs CHECK DIM % .ersp_times % [num vector] ERSP epoch latencies (s) % .ersp_freqs % [num vector] ERSP frequencies (Hz) % % .itc % {(conditions, components) cell array} % (freqs,latencies) component ITCs CHECK DIM % .itc_times % [num vector] ITC epoch latencies (s) % .itc_freqs % [num vector] ITC frequencies (Hz) % % .topo % {(1,components) cell array} % (65,65) component topo map grids CHECK DIM % .xi % [vector] topo grid abscissa values % .yi % [vector] topo grid ordinate values % % .dipole % [struct array] component dipole information % % structures with same format as "EEG.dipfit.model" % % See >> help dipfit CHECK HELP % Example: % % To plot the ERPs for all Cluster-3 components in a one-condition STUDY % % % clsinfo3 = std_clustread(STUDY, ALLEEG, 3, 'measure', 'erp'); % assume 1 condition % times = clsinfo3.erp_times; figure; plot(times, clsinfo3.erp'); % % % % To plot ERPs for only those Cluster-3 components from subjects in group 'female' % % % feminfo3 = std_clustread(STUDY, ALLEEG, 3, 'measure', 'erp', 'group', 'female'); % figure; plot(times, feminfo3.erp'); % % % % Alternatively, to extract 'female' subject components from clsinfo3 above % % % femidx = find(strcmp({clsinfo3.group},'female')); % figure; plot(times, clustinfo.erp(femidx,:)'); CHECK EXAMPLE % % Authors: Hilit Serby, Scott Makeig, Toby Fernsler & Arnaud Delorme, SCCN/INC/UCSD, 2005-
github
lcnhappe/happe-master
std_erpimageplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_erpimageplot.m
7,319
utf_8
5073f5d9c0bdd1e64fab8c87596d6553
% std_erpimageplot() - Commandline function to plot cluster ERPimage or channel erpimage. % % Usage: % >> [STUDY] = std_erpimageplot(STUDY, ALLEEG, key1, val1, key2, val2); % >> [STUDY data times freqs pgroup pcond pinter] = ... % std_erpimageplot(STUDY, ALLEEG ...); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the datasets in the STUDY. % Note: ALLEEG for a STUDY set is typically created using load_ALLEEG(). % % Additional help: % Inputs and output of this function are strictly identical to the std_erspplot(). % See the help message of this function for more information. % % See also: std_erspplot() % % Authors: Arnaud Delorme, UCSD/CERCO, August, 2011- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, allitc, alltimes, allfreqs, pgroup, pcond, pinter, events] = std_erpimageplot(STUDY, ALLEEG, varargin) if nargin < 2 help std_erpimageplot; return; end; events = []; STUDY = pop_erpimparams(STUDY, 'default'); if strcmpi(STUDY.etc.erpimparams.concatenate, 'off') % use std_erspplot for stats when concatenate is off [STUDY allitc alltimes allfreqs pgroup pcond pinter events] = std_erspplot(STUDY, ALLEEG, 'datatype', 'erpim', varargin{:}); else params = STUDY.etc.erpimparams; [ opt moreparams ] = finputcheck( varargin, { ... 'design' 'integer' [] STUDY.currentdesign; 'topotime' 'real' [] params.topotime; 'topotrial' 'real' [] params.topotrial; 'timerange' 'real' [] params.timerange; 'trialrange' 'real' [] params.trialrange; 'colorlimits' 'real' [] params.colorlimits; % ERPimage 'statistics' 'string' [] params.statistics; 'groupstats' 'string' [] params.groupstats; 'condstats' 'string' [] params.condstats; 'threshold' 'real' [] params.threshold; 'naccu' 'integer' [] params.naccu; 'mcorrect' 'string' [] params.mcorrect; 'erpimageopt' 'cell' [] params.erpimageopt; 'concatenate' 'string' { 'on','off' } params.concatenate; 'channels' 'cell' [] {}; 'clusters' 'integer' [] []; 'comps' {'integer','string'} [] []; % for backward compatibility 'plotsubjects' 'string' { 'on','off' } 'off'; 'plotmode' 'string' { 'normal','condensed','none' } 'normal'; 'subject' 'string' [] '' }, 'std_erpimageplot', 'ignore'); if ~isempty(opt.topotime) && ~isempty(opt.topotrial) error('Cannot plot topography when ERP-image is in trial concatenation mode'); end; if ~isempty(opt.trialrange) error('Cannot select trial range when ERP-image is in trial concatenation mode'); end; if strcmpi(opt.groupstats, 'on') || strcmpi(opt.condstats, 'on') disp('Warning: cannot perform statistics when ERP-image is in trial concatenation mode'); end; % options if ~isempty(opt.colorlimits), options = { 'caxis' opt.colorlimits opt.erpimageopt{:} }; else options = { 'cbar' 'on' opt.erpimageopt{:} }; end; if ~isempty(opt.channels) [STUDY allerpimage alltimes alltrials tmp events] = std_readersp(STUDY, ALLEEG, 'channels', opt.channels, 'infotype', 'erpim', 'subject', opt.subject, ... 'concatenate', 'on', 'timerange', opt.timerange, 'design', opt.design); % get figure title % ---------------- locs = eeg_mergelocs(ALLEEG.chanlocs); locs = locs(std_chaninds(STUDY, opt.channels)); allconditions = STUDY.design(opt.design).variable(1).value; allgroups = STUDY.design(opt.design).variable(2).value; alltitles = std_figtitle('condnames', allconditions, 'cond2names', allgroups, 'chanlabels', { locs.labels }, ... 'subject', opt.subject, 'valsunit', 'ms', 'datatype', 'ERPIM'); figure; for iCond = 1:length(allconditions) for iGroup = 1:length(allgroups) tmpevents = events{iCond, iGroup}; if isempty(tmpevents), tmpevents = zeros(1, size(allerpimage{iCond, iGroup},2)); end; subplot(length(allconditions), length(allgroups), (iCond-1)*length(allgroups) + iGroup); % use color scale for last plot if ~isempty(opt.colorlimits) && iCond == length(allconditions) && iGroup == length(allgroups) options = { options{:} 'cbar' 'on' }; end; erpimage(allerpimage{iCond, iGroup}, tmpevents, alltimes, alltitles{iCond, iGroup}, params.smoothing, params.nlines, options{:}); end; end; else for cInd = 1:length(opt.clusters) [STUDY allerpimage alltimes alltrials tmp events] = std_readersp(STUDY, ALLEEG, 'clusters', opt.clusters(cInd), 'infotype', 'erpim', 'subject', opt.subject, ... 'concatenate', 'on', 'timerange', opt.timerange, 'design', opt.design); % get figure title % ---------------- locs = eeg_mergelocs(ALLEEG.chanlocs); locs = locs(std_chaninds(STUDY, opt.channels)); allconditions = STUDY.design(opt.design).variable(1).value; allgroups = STUDY.design(opt.design).variable(2).value; alltitles = std_figtitle('condnames', allconditions, 'cond2names', allgroups, 'clustname', STUDY.cluster(opt.clusters(cInd)).name, ... 'subject', opt.subject, 'valsunit', 'ms', 'datatype', 'ERPIM'); figure; for iCond = 1:length(allconditions) for iGroup = 1:length(allgroups) tmpevents = events{iCond, iGroup}; if isempty(tmpevents), tmpevents = zeros(1, size(allerpimage{iCond, iGroup},2)); end; subplot(length(allconditions), length(allgroups), (iCond-1)*length(allgroups) + iGroup); % use color scale for last plot if ~isempty(opt.colorlimits) && iCond == length(allconditions) && iGroup == length(allgroups) options = { options{:} 'cbar' 'on' }; end; erpimage(allerpimage{iCond, iGroup}, tmpevents, alltimes, alltitles{iCond, iGroup}, params.smoothing, params.nlines, options{:}); end; end; end; end; end;
github
lcnhappe/happe-master
std_checkset.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_checkset.m
15,270
utf_8
198e4cb3540ff8db426b902da6f4f092
% std_checkset() - check STUDY set consistency % % Usage: >> [STUDY, ALLEEG] = std_checkset(STUDY, ALLEEG); % % Input: % STUDY - EEGLAB STUDY set % ALLEEG - vector of EEG datasets included in the STUDY structure % % Output: % STUDY - a new STUDY set containing some or all of the datasets in ALLEEG, % plus additional information from the optional inputs above. % ALLEEG - an EEGLAB vector of EEG sets included in the STUDY structure % % Authors: Arnaud Delorme & Hilit Serby, SCCN, INC, UCSD, November 2005 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, ALLEEG, command] = std_checkset(STUDY, ALLEEG, option); if nargin < 2 help std_checkset; return; end; command = ''; if isempty(STUDY), return; end; studywasempty = 0; modif = 0; if ~isfield(STUDY, 'name'), STUDY.name = ''; modif = 1; end; if ~isfield(STUDY, 'task'), STUDY.task = ''; modif = 1; end; if ~isfield(STUDY, 'notes'), STUDY.notes = ''; modif = 1; end; if ~isfield(STUDY, 'filename'), STUDY.filename = ''; modif = 1; end; if ~isfield(STUDY, 'filepath'), STUDY.filepath = ''; modif = 1; end; if ~isfield(STUDY, 'history'), STUDY.history = ''; modif = 1; end; if ~isfield(STUDY, 'subject'), STUDY.subject = {}; modif = 1; end; if ~isfield(STUDY, 'group'), STUDY.group = {}; modif = 1; end; if ~isfield(STUDY, 'session'), STUDY.session = {}; modif = 1; end; if ~isfield(STUDY, 'condition'), STUDY.condition = {}; modif = 1; end; if ~isfield(STUDY, 'setind'), STUDY.setind = {}; modif = 1; end; if ~isfield(STUDY, 'etc'), STUDY.etc = []; modif = 1; end; if ~isfield(STUDY, 'etc.warnmemory'), STUDY.etc.warnmemory = 1; modif = 1; end; if ~isfield(STUDY, 'preclust'), STUDY.preclust = []; modif = 1; end; if ~isfield(STUDY, 'datasetinfo'), STUDY.datasetinfo = []; modif = 1; end; if ~isfield(STUDY.etc, 'version'), STUDY.etc.version = []; modif = 1; end; if ~isfield(STUDY.preclust, 'erpclusttimes' ), STUDY.preclust.erpclusttimes = []; modif = 1; end; if ~isfield(STUDY.preclust, 'specclustfreqs' ), STUDY.preclust.specclustfreqs = []; modif = 1; end; if ~isfield(STUDY.preclust, 'erspclustfreqs' ), STUDY.preclust.erspclustfreqs = []; modif = 1; end; if ~isfield(STUDY.preclust, 'erspclusttimes' ), STUDY.preclust.erspclusttimes = []; modif = 1; end; if ~isfield(STUDY.datasetinfo, 'comps') & ~isempty(STUDY.datasetinfo), STUDY.datasetinfo(1).comps = []; modif = 1; end; if ~isfield(STUDY.datasetinfo, 'index') & ~isempty(STUDY.datasetinfo), STUDY.datasetinfo(1).index = []; modif = 1; end; % all summary fields % ------------------ try, subject = unique_bc({ STUDY.datasetinfo.subject }); catch, subject = ''; disp('Important warning: some datasets do not have subject codes; some functions may crash!'); end; try, group = unique_bc({ STUDY.datasetinfo.group }); catch, group = {}; % disp('Important warning: some datasets do not have group codes; some functions may crash!'); end; try, condition = unique_bc({ STUDY.datasetinfo.condition }); catch, condition = {}; disp('Important warning: some datasets do not have condition codes; some functions may crash!'); end; try, session = unique_bc([STUDY.datasetinfo.session]); catch, session = ''; % disp('Important warning: some datasets do not have session numbers; some functions may crash!'); end; if ~isequal(STUDY.subject, subject ), STUDY.subject = subject; modif = 1; end; if ~isequal(STUDY.group, group ), STUDY.group = group; modif = 1; end; if ~isequal(STUDY.condition, condition), STUDY.condition = condition; modif = 1; end; if ~isequal(STUDY.session, session ), STUDY.session = session; modif = 1; end; % check dataset info consistency % ------------------------------ for k = 1:length(STUDY.datasetinfo) if ~strcmpi(STUDY.datasetinfo(k).filename, ALLEEG(k).filename) STUDY.datasetinfo(k).filename = ALLEEG(k).filename; modif = 1; fprintf('Warning: file name has changed for dataset %d and the study has been updated\n', k); fprintf(' to discard this change in the study, reload it from disk\n'); end; end; % recompute setind array (setind is deprecated but we keep it anyway) % ------------------------------------------------------------------- setind = []; sameica = std_findsameica(ALLEEG); for index = 1:length(sameica) setind(length(sameica{index}):-1:1,index) = sameica{index}'; end; setind(find(setind == 0)) = NaN; if any(isnan(setind)) warndlg('Warning: non-uniform set of dataset, some function might not work'); end if ~isequal(setind, STUDY.setind), STUDY.setind = setind; modif = 1; end; % check that dipfit is present in all datasets % -------------------------------------------- for cc = 1:length(sameica) idat = []; for tmpi = 1:length(sameica{cc}) if isfield(ALLEEG(sameica{cc}(tmpi)).dipfit, 'model') idat = sameica{cc}(tmpi); end; end; if ~isempty(idat) for tmpi = 1:length(sameica{cc}) if ~isfield(ALLEEG(sameica{cc}(tmpi)).dipfit, 'model') ALLEEG(sameica{cc}(tmpi)).dipfit = ALLEEG(idat).dipfit; ALLEEG(sameica{cc}(tmpi)).saved = 'no'; fprintf('Warning: no ICA dipoles for dataset %d, using dipoles from dataset %d (same ICA)\n', sameica{cc}(tmpi), idat); end; end; end; end; % put in fake channels if channel labels are missing % -------------------------------------------------- chanlabels = { ALLEEG.chanlocs }; if any(cellfun(@isempty, chanlabels)) if any(~cellfun(@isempty, chanlabels)) disp('********************************************************************'); disp(' IMPORTANT WARNING: SOME DATASETS DO NOT HAVE CHANNEL LABELS AND '); disp(' SOME OTHERs HAVE CHANNEL LABELS. GENERATING CHANNEL LABELS FOR '); disp(' THE FORMER DATASETS (THIS SHOULD PROBABLY BE FIXED BY THE USER).'); disp('********************************************************************'); end; disp('Generating channel labels for all datasets...'); for currentind = 1:length(ALLEEG) for ind = 1:ALLEEG(currentind).nbchan ALLEEG(currentind).chanlocs(ind).labels = int2str(ind); end; end; ALLEEG(currentind).saved = 'no'; end; if length( unique( [ ALLEEG.srate ] )) > 1 disp('********************************************************************'); disp(' IMPORTANT WARNING: SOME DATASETS DO NOT HAVE THE SAME SAMPLING '); disp(' RATE AND THIS WILL MAKE MOST OF THE STUDY FUNCTIONS CRASH. THIS'); disp(' SHOULD PROBABLY BE FIXED BY THE USER.'); disp('********************************************************************'); end; % check cluster array % ------------------- rebuild_design = 0; if ~isfield(STUDY, 'cluster'), STUDY.cluster = []; modif = 1; end; if ~isfield(STUDY, 'changrp'), STUDY.changrp = []; modif = 1; end; if isempty(STUDY.changrp) && isempty(STUDY.cluster) rebuild_design = 1; end; if isfield(STUDY.cluster, 'sets'), if max(STUDY.cluster(1).sets(:)) > length(STUDY.datasetinfo) disp('Warning: Some datasets had been removed from the STUDY, clusters have been reinitialized'); STUDY.cluster = []; end; end; if ~studywasempty if isempty(STUDY.cluster) modif = 1; [STUDY] = std_createclust(STUDY, ALLEEG, 'parentcluster', 'on'); end; if length(STUDY.cluster(1).child) == length(STUDY.cluster)-1 && length(STUDY.cluster) > 1 newchild = { STUDY.cluster(2:end).name }; if ~isequal(STUDY.cluster(1).child, newchild) STUDY.cluster(1).child = newchild; end; end; end; % create STUDY design if it is not present % ---------------------------------------- if ~studywasempty if isfield(STUDY.datasetinfo, 'trialinfo') alltrialinfo = { STUDY.datasetinfo.trialinfo }; if any(cellfun(@isempty, alltrialinfo)) && any(~cellfun(@isempty, alltrialinfo)) disp('Rebuilding trial information structure for STUDY'); STUDY = std_maketrialinfo(STUDY, ALLEEG); % some dataset do not have trialinfo and % some other have it, remake it for everybody end; end; if ~isfield(STUDY, 'design') || isempty(STUDY.design) || ~isfield(STUDY.design, 'name') STUDY = std_maketrialinfo(STUDY, ALLEEG); STUDY = std_makedesign(STUDY, ALLEEG); STUDY = std_selectdesign(STUDY, ALLEEG,1); rebuild_design = 0; else if isfield(STUDY.design, 'indvar1') STUDY = std_convertdesign(STUDY, ALLEEG); end; % convert combined independent variable values % between dash to cell array of strings % ------------------------------------- for inddes = 1:length(STUDY.design) if length(STUDY.design(inddes).variable) == 0 STUDY.design(inddes).variable(1).label = ''; STUDY.design(inddes).variable(1).value = []; end; if length(STUDY.design(inddes).variable) == 1 STUDY.design(inddes).variable(2).label = ''; STUDY.design(inddes).variable(2).value = []; end; if ~isfield(STUDY.design(inddes).variable, 'pairing') STUDY.design(inddes).variable(1).pairing = 'on'; STUDY.design(inddes).variable(2).pairing = 'on'; end; for indvar = 1:length(STUDY.design(inddes).variable) for indval = 1:length(STUDY.design(inddes).variable(indvar).value) STUDY.design(inddes).variable(indvar).value{indval} = convertindvarval(STUDY.design(inddes).variable(indvar).value{indval}); end; end; end; if ~isfield(STUDY.design(1), 'cell') || isempty(STUDY.design(1).cell) fprintf('Warning: Importing STUDY from a newer version of EEGLAB - some information will be lost\n'); STUDY = std_makedesign(STUDY, ALLEEG, 1, STUDY.design(1), 'defaultdesign', 'forceoff'); end; for inddes = 1:length(STUDY.design) for indcell = 1:length(STUDY.design(inddes).cell) for indval = 1:length(STUDY.design(inddes).cell(indcell).value) STUDY.design(inddes).cell(indcell).value{indval} = convertindvarval(STUDY.design(inddes).cell(indcell).value{indval}); end; end; for indinclude = 1:length(STUDY.design(inddes).include) if iscell(STUDY.design(inddes).include{indinclude}) for indval = 1:length(STUDY.design(inddes).include{indinclude}) STUDY.design(inddes).include{indinclude}{indval} = convertindvarval(STUDY.design(inddes).include{indinclude}{indval}); end; end; end; % check for duplicate entries in filebase % --------------------------------------- if length( { STUDY.design(inddes).cell.filebase } ) > length(unique({ STUDY.design(inddes).cell.filebase })) if ~isempty(findstr('design_', STUDY.design(inddes).cell(1).filebase)) error('There is a problem with your STUDY, contact EEGLAB support'); else fprintf('Duplicate entry detected in Design %d, reinitializing design\n', inddes); [STUDY com] = std_makedesign(STUDY, ALLEEG, inddes, STUDY.design(inddes), 'defaultdesign', 'forceoff'); end end; end; end; if rebuild_design % in case datasets have been added or removed STUDY = std_rebuilddesign(STUDY, ALLEEG); end; % scan design to fix old paring format % ------------------------------------ for design = 1:length(STUDY.design) for var = 1:length(STUDY.design(design).variable) if isstr(STUDY.design(design).variable(1).pairing) if strcmpi(STUDY.design(design).variable(1).pairing, 'paired') STUDY.design(design).variable(1).pairing = 'on'; elseif strcmpi(STUDY.design(design).variable(1).pairing, 'unpaired') STUDY.design(design).variable(1).pairing = 'off'; end; end; if isstr(STUDY.design(design).variable(2).pairing) if strcmpi(STUDY.design(design).variable(2).pairing, 'paired') STUDY.design(design).variable(2).pairing = 'on'; elseif strcmpi(STUDY.design(design).variable(2).pairing, 'unpaired') STUDY.design(design).variable(2).pairing = 'off'; end; end; end; end; % add filepath field if absent for ind = 1:length(STUDY.design) if ~isfield(STUDY.design, 'filepath') || (isnumeric(STUDY.design(ind).filepath) && isempty(STUDY.design(ind).filepath)) STUDY.design(ind).filepath = ''; STUDY.saved = 'no'; modif = 1; end; end; % check that ICA is present and if it is update STUDY.datasetinfo allcompsSTUDY = { STUDY.datasetinfo.comps }; allcompsALLEEG = { ALLEEG.icaweights }; if all(cellfun(@isempty, allcompsSTUDY)) && ~all(cellfun(@isempty, allcompsALLEEG)) for index = 1:length(STUDY.datasetinfo) STUDY.datasetinfo(index).comps = [1:size(ALLEEG(index).icaweights,1)]; end; end; % make channel groups % ------------------- if ~isfield(STUDY, 'changrp') || isempty(STUDY.changrp) STUDY = std_changroup(STUDY, ALLEEG); modif = 1; end; end; % determine if there has been any change % -------------------------------------- if modif; STUDY.saved = 'no'; command = '[STUDY ALLEEG] = std_checkset(STUDY, ALLEEG);'; addToHistory = true; % check duplicate if length(STUDY.history) >= length(command) && strcmpi(STUDY.history(end-length(command)+1:end), command) addToHistory = false; end; if addToHistory STUDY.history = sprintf('%s\n%s', STUDY.history, command); end; end; % convert combined independent variables % -------------------------------------- function val = convertindvarval(val); if isstr(val) inddash = findstr(' - ', val); if isempty(inddash), return; end; inddash = [ -2 inddash length(val)+1]; for ind = 1:length(inddash)-1 newval{ind} = val(inddash(ind)+3:inddash(ind+1)-1); end; val = newval; end;
github
lcnhappe/happe-master
std_checkfiles.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_checkfiles.m
7,593
utf_8
6ac22d4c5d62c3eaf4f9a4888c9fa0a9
% std_checkfiles() - Check all STUDY files consistency % % Usage: % >> boolval = std_checkfiles(STUDY, ALLEEG); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - All EEGLAB datasets % % Outputs: % boolval - [0|1] 1 if uniform % % Authors: Arnaud Delorme, CERCO, 2010- % Copyright (C) Arnaud Delorme, CERCO % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [boolval npersubj] = std_checkfiles(STUDY, ALLEEG); if nargin < 2 help std_checkfiles; return; end; return; filetypes = { 'daterp' 'datspec' 'datersp' 'datitc' 'dattimef' ... 'icaerp' 'icaspec' 'icaersp' 'icaitc' 'icatopo' }; % set channel interpolation mode % ------------------------------ uniformchannels = std_uniformsetinds( STUDY ); disp('---------------------------------------------'); disp('Checking data files integrity and consistency'); passall = 1; for index = 1:length(filetypes) % scan datasets % ------------- [ tmpstruct compinds filepresent ] = std_fileinfo(ALLEEG, filetypes{index}); if ~isempty(tmpstruct) fprintf('Files of type "%s" detected, checking...', filetypes{index}); end; % check if the structures are equal % --------------------------------- notequal = any(~filepresent); if ~isempty(tmpstruct) if any(filepresent == 0) fprintf(' Error, some files inconsistent or missing\n'); notequal = 1; passall = 0; else firstpass = 1; fields = fieldnames(tmpstruct); for f_ind = 1:length(fields) firstval = getfield(tmpstruct, {1}, fields{f_ind}); for dat = 2:length(tmpstruct) tmpval = getfield(tmpstruct, {dat}, fields{f_ind}); if ~isequal(firstval, tmpval) % check for NaNs if iscell(firstval) && iscell(tmpval) for cind = 1:length(firstval) if isreal(firstval{cind}) && ~isempty(firstval{cind}) && isnan(firstval{cind}(1)) firstval{cind} = 'NaN'; end; end; for cind = 1:length(tmpval) if isreal(tmpval{cind}) && ~isempty(tmpval{cind}) && isnan(tmpval{cind}(1)) tmpval{cind} = 'NaN'; end; end; end; if ~isequal(firstval, tmpval) if ~strcmpi(fields{f_ind}, 'labels') || strcmpi(uniformchannels, 'on') if firstpass == 1, fprintf('\n'); firstpass = 0; end; fprintf(' Error, difference accross data files for field "%s"\n', fields{f_ind}); notequal = 1; passall = 0; break; end; end; end; end; end; end; end; % check the consistency of changrp and cluster with saved information % ------------------------------------------------------------------- if isempty(tmpstruct), notequal = 1; end; if filetypes{index}(1) == 'd' && notequal == 0 % scan all channel labels % ----------------------- if isfield(tmpstruct(1), 'labels') for cind = 1:length(STUDY.changrp) if notequal == 0 for inddat = 1:length(ALLEEG) tmpind = cellfun(@(x)(find(x == inddat)), STUDY.changrp(cind).setinds(:), 'uniformoutput', false); indnonempty = find(~cellfun(@isempty, tmpind(:))); if ~isempty(indnonempty) tmpchan = STUDY.changrp(cind).allinds{indnonempty}(tmpind{indnonempty}); % channel index for dataset inddat tmpchan2 = strmatch(STUDY.changrp(cind).name, tmpstruct(inddat).labels, 'exact'); % channel index in file if ~isempty(tmpchan2) || ~strcmpi(filetypes{index}, 'datspec') % the last statement is because channel labels did not use to be saved in spec files if ~isequal(tmpchan2, tmpchan) fprintf('\nError: channel index in STUDY.changrp(%d) for dataset %d is "%d" but "%d" in data files\n', cind, inddat, tmpchan, tmpchan2); notequal = 1; break; end; end; end; end; end; end; end; elseif notequal == 0 && ~isempty(STUDY.cluster) % components % check that the cell structures are present % ------------------------------------------ if ~isfield(STUDY.cluster, 'setinds') STUDY.cluster(1).setinds = []; STUDY.cluster(1).allinds = []; end; for cind = 1:length(STUDY.cluster) if isempty(STUDY.cluster(cind).setinds) STUDY.cluster(cind) = std_setcomps2cell(STUDY, cind); end; end; for cind = 1:length(STUDY.cluster) if notequal == 0 for inddat = 1:length(ALLEEG) tmpind = cellfun(@(x)(find(x == inddat)), STUDY.cluster(cind).setinds(:), 'uniformoutput', false); indnonempty = find(~cellfun(@isempty, tmpind(:))); tmpcomp = []; for jind = 1:length(indnonempty) tmpcomp = [ tmpcomp STUDY.cluster(cind).allinds{indnonempty(jind)}(tmpind{indnonempty(jind)}) ]; end; if ~isempty(setdiff(tmpcomp, compinds{inddat})) if ~(isempty(compinds{inddat}) && strcmpi(filetypes{index}, 'icatopo')) fprintf('\nError: some components in clusters %d are absent from .%s files\n', cind, filetypes{index}); notequal = 1; passall = 0; break; end; end; end; end; end; end; if notequal == 0, fprintf(' Pass\n'); end; end; if ~passall disp('**** Recompute any measure above not receiving a "Pass" by') disp('**** calling menu items "STUDY > Precompute Channel/Component measures" '); disp('**** and by selecting the "Recompute even if present on disk" checkbox'); end; disp('Checking completed.');
github
lcnhappe/happe-master
std_specgram.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_specgram.m
14,400
utf_8
c47a0f3d1446e9f4aa6ccb9446dc533a
% std_specgram() - Returns the ICA component or channel spectrogram for a dataset. % Saves the spectra in a file. % Usage: % >> [spec freqs] = std_specgram(EEG, 'key', 'val', ...); % % Inputs: % EEG - a loaded epoched EEG dataset structure. % % Optional inputs: % 'components' - [numeric vector] components of the EEG structure for which % activation spectogram will be computed. Note that because % computation of component spectra is relatively fast, all % components spectra are computed and saved. Only selected % component are returned by the function to Matlab % {default|[] -> all} % 'channels' - [cell array] channels of the EEG structure for which % activation spectogram will be computed. Note that because % computation of spectrum is relatively fast, all channels % spectrum are computed and saved. Only selected channels % are returned by the function to Matlab % {default|[] -> none} % 'recompute' - ['on'|'off'] force recomputing ERP file even if it is % already on disk. % % Other optional spectral parameters: % All optional parameters to the newtimef function may be provided to this function % as well. % % Outputs: % spec - the mean spectra (in dB) of the requested ICA components in the selected % frequency range (with the mean of each spectrum removed). % freqs - a vector of frequencies at which the spectra have been computed. % % Files output or overwritten for ICA: % [dataset_filename].icaspecgram, % Files output or overwritten for data: % [dataset_filename].datspecgram, % % See also spectopo(), std_erp(), std_ersp(), std_map(), std_preclust() % % Authors: Arnaud Delorme, SCCN, INC, UCSD, January, 2005 % Defunct: 0 -> if frequency range is different from saved spectra, ask via a % pop-up window whether to keep existing spectra or to overwrite them. % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % eeg_specgram() - Compute spectrogramme taking into account boundaries in % the data. % Usage: % >> EEGOUT = eeg_specgram( EEG, typeplot, num, 'key', 'val'); % % Inputs: % EEG - EEG dataset structure % typeplot - type of processinopt. 1 process the raw % data and 0 the ICA components % num - component or channel number % % Optional inputs: % 'winsize' - [integer] window size in points % 'overlap' - [integer] window overlap in points (default: 0) % 'movav' - [real] moving average % % Author: Arnaud Delorme, CERCO, CNRS, 2008- % Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [erspinterp t f ] = eeg_specgram(EEG, varargin); if nargin < 1 help std_specgram; return; end; [opt moreopts] = finputcheck(varargin, { 'components' 'integer' [] []; 'channels' { 'cell','integer' } { [] [] } {} 'recompute' 'string' { 'on','off' } 'off'; 'winsize' 'integer' [] 3; % 3 seconds 'rmcomps' 'integer' [] []; 'interp' 'struct' { } struct([]); 'overlap' 'integer' [] 0; 'plot' 'string' { 'off','on' } 'off'; 'freqrange' 'real' [] []; 'timerange' 'real' [] []; 'filter' 'real' [] []}, ... % 11 points 'eeg_specgram', 'ignore'); if isstr(opt), error(opt); end; if isfield(EEG,'icaweights') numc = size(EEG.icaweights,1); else error('EEG.icaweights not found'); end if isempty(opt.components) opt.components = 1:numc; end %opt.winsize = 2^ceil(log2(opt.winsize*EEG.srate)); opt.winsize = opt.winsize*EEG.srate; % filename % -------- if ~isempty(opt.channels) filename = fullfile( EEG.filepath,[ EEG.filename(1:end-3) 'datspecgram']); prefix = 'chan'; opt.indices = opt.channels; if iscell(opt.channels) tmpchanlocs = EEG(1).chanlocs; for index = 1:length(opt.channels) chanind = strmatch( lower(opt.channels{index}), lower({ tmpchanlocs.labels }), 'exact'); if isempty(chanind), error('Channel group not found'); end; chaninds(index) = chanind; end; opt.indices = chaninds; opt.channels = chaninds; end; else filename = fullfile( EEG.filepath,[ EEG.filename(1:end-3) 'icaspecgram']); prefix = 'comp'; opt.indices = opt.components; end; % SPEC information found in datasets % ---------------------------------- if exist(filename) & strcmpi(opt.recompute, 'off') if strcmpi(prefix, 'comp') [erspinterp, t, f] = std_readspecgram(EEG, 1, opt.components, opt.freqrange); else [erspinterp, t, f] = std_readspecgram(EEG, 1, -opt.channels, opt.freqrange); end; return; end % No SPEC information found % ------------------------ options = {}; if strcmpi(prefix, 'comp') X = eeg_getdatact(EEG, 'component', [1:size(EEG.icaweights,1)]); else EEG.data = eeg_getdatact(EEG, 'channel', [1:EEG.nbchan], 'rmcomps', opt.rmcomps); if ~isempty(opt.rmcomps), options = { options{:} 'rmcomps' opt.rmcomps }; end; if ~isempty(opt.interp), EEG = eeg_interp(EEG, opt.interp, 'spherical'); end; X = EEG.data; end; % get the array of original point latency % --------------------------------------- urpnts = eeg_urpnts(EEG); urarray = eeg_makeurarray(EEG, urpnts); % contain the indices of the urpoint in the EEG data % urarray(1000) = 1000, urarray(2300) = 1600 if part removed in the data urwincenter = opt.winsize/2+1:opt.winsize-opt.overlap:urpnts-opt.winsize/2; wintag = ones(1, length(urwincenter)); if EEG.trials == 1 for i = 1:length(urwincenter) win = urwincenter(i)+[-opt.winsize/2+1:opt.winsize/2]; if ~all(urarray(win)) wintag(i) = 0; %fprintf('Missing data window: %3.1f-%3.1f s\n', (win(1)-1)/EEG.srate, (win(end)-1)/EEG.srate); end; end; else error('eeg_specgram can only be run on continuous data'); end; % compute spectrum 2 solutions % 1- use newtimef, have to set the exact times and window % 2- redo the FFT myself % ---------------------- wincenter = urwincenter(find(wintag)); % remove bad windows wincenter = urarray(wincenter); % latency in current dataset wincenter = 1000*(wincenter-1)/EEG.srate; % convert to ms freqs = linspace(0.1, 50, 100); options = { 0 'winsize', opt.winsize, 'baseline', [0 Inf], 'timesout', wincenter, ... 'plotersp', 'off', 'plotitc', 'off', 'freqs', freqs }; %freqs = exp(linspace(log(EEG.srate/opt.winsize*4), log(50), 100)); %cycles = linspace(3,8,100); %options = { [3 0.8] 'winsize', opt.winsize, 'baseline', [0 Inf], 'timesout', wincenter, ... % 'freqs' freqs 'cycles' cycles 'plotersp', 'off', 'plotitc', 'off' }; for ic = 1:length(opt.indices) [ersp(:,:,ic) itc powebase t f] = newtimef(X(opt.indices(ic), :), EEG.pnts, [EEG.xmin EEG.xmax]*1000, EEG.srate, options{:}, moreopts{:}); end; % interpolate and smooth in time % ------------------------------ disp('Now interpolating...'); wininterp = find(wintag == 0); erspinterp = zeros(size(ersp,1), length(urwincenter), size(ersp,3)); erspinterp(:,find(wintag),:) = ersp; for s = 1:size(ersp,3) for i=1:length(wininterp) first1right = find(wintag(wininterp(i):end)); first1left = find(wintag(wininterp(i):-1:1)); if isempty(first1right) erspinterp(:,wininterp(i),s) = erspinterp(:,wininterp(i)+1-first1left(1),s); elseif isempty(first1left) erspinterp(:,wininterp(i),s) = erspinterp(:,wininterp(i)-1+first1right(1),s); else erspinterp(:,wininterp(i),s) =(erspinterp(:,wininterp(i)-1+first1right(1),s) + erspinterp(:,wininterp(i)+1-first1left(1),s))/2; end; end; end; %erspinterp = vectdata(ersp, urwincenter(find(wintag))/EEG.srate, 'timesout', urwincenter/EEG.srate); % smooth in time with a simple convolution % ---------------------------------------- if ~isempty(opt.filter) filterlen = opt.filter(1); filterstd = opt.filter(2); incr = 2*filterstd/(filterlen-1); %gaussian filter filter = exp(-(-filterstd:incr:filterstd).^2); erspinterp = convn(erspinterp, filter/sum(filter), 'same'); %erspinterp = conv2(erspinterp, filter/sum(filter)); %erspinterp(:, [1:(filterlen-1)/2 end-(filterlen-1)/2+1:end]) = []; end; % plot result % ----------- t = (urwincenter-1)/EEG.srate; if strcmpi(opt.plot, 'on') figure; imagesc(t, log(f), erspinterp); ft = str2num(get(gca,'yticklabel')); ft = exp(1).^ft; ft = unique_bc(round(ft)); ftick = get(gca,'ytick'); ftick = exp(1).^ftick; ftick = unique_bc(round(ftick)); ftick = log(ftick); set(gca,'ytick',ftick); set(gca,'yticklabel', num2str(ft)); xlabel('Time (h)'); ylabel('Frequency (Hz)'); set(gca, 'ydir', 'normal'); end; % Save SPECs in file (all components or channels) % ---------------------------------- options = { 'winsize' opt.winsize 'overlap' opt.overlap moreopts{:} }; if strcmpi(prefix, 'comp') savetofile( filename, t, f, erspinterp, 'comp', opt.indices, options, [], opt.interp); [erspinterp, t, f] = std_readspecgram(EEG, 1, opt.components, opt.timerange, opt.freqrange); else tmpchanlocs = EEG(1).chanlocs; savetofile( filename, t, f, erspinterp, 'chan', opt.indices, options, { tmpchanlocs.labels }, opt.interp); [erspinterp, t, f] = std_readspecgram(EEG, 1, -opt.channels, opt.timerange, opt.freqrange); end; return; % recompute the original data length in points % -------------------------------------------- function urlat = eeg_makeurarray(EEG, urpnts); if isempty(EEG.event) | ~isfield(EEG.event, 'duration') urlat = 1:EEG.pnts; return; end; % get boundary events latency and duration % ---------------------------------------- tmpevent = EEG.event; bounds = strmatch('boundary', { tmpevent.type }); alldurs = [ tmpevent(bounds).duration ]; alllats = [ tmpevent(bounds).latency ]; if length(alldurs) >= 1 if alldurs(1) <= 1 alllats(1) = []; alldurs(1) = []; end; end; if isempty(alllats) urlat = 1:EEG.pnts; return; end; % build the ur boolean array % -------------------------- urlat = ones(1, urpnts); for i=1:length(alllats) urlat(round(alllats(i)+0.5):round(alllats(i)+0.5+alldurs(i)-1)) = 0; alllats(i+1:end) = alllats(i+1:end)+alldurs(i); end; urlat(find(urlat)) = 1:EEG.pnts; % ------------------------------------- % saving SPEC information to Matlab file % ------------------------------------- function savetofile(filename, t, f, X, prefix, comps, params, labels, interp); disp([ 'Saving SPECTRAL file ''' filename '''' ]); allspec = []; for k = 1:length(comps) allspec = setfield( allspec, [ prefix int2str(comps(k)) ], X(:,:,k)); end; if ~isempty(labels) allspec.labels = labels; end; allspec.freqs = f; allspec.times = t; allspec.parameters = params; allspec.datatype = 'SPECTROGRAM'; allerp.interpolation = fastif(isempty(interp), 'no', interp); allspec.average_spec = mean(X,1); std_savedat(filename, allspec); % recompute the original data length in points % -------------------------------------------- function pntslat = eeg_urpnts(EEG); if isempty(EEG.event) | ~isfield(EEG.event, 'duration') pntslat = EEG.pnts; return; end; tmpevent = EEG.event; bounds = strmatch('boundary', { tmpevent.type }); alldurs = [ tmpevent(bounds).duration ]; if length(alldurs) > 0 if alldurs(1) <= 1, alldurs(1) = []; end; end; pntslat = EEG.pnts + sum(alldurs); % recompute the original latency % ------------------------------ function pntslat = eeg_urlatency(EEG, pntslat); if isempty(EEG.event), return; end; if ~isstr(EEG.event(1).type), return; end; tmpevent = EEG.event; bounds = strmatch('boundary', { tmpevent.type }) for i=1:length(bounds) if EEG.event(bounds(i)).duration > 1 pntslat = pntslat + EEG.event(bounds(i)).duration; end; end;
github
lcnhappe/happe-master
pop_preclust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_preclust.m
35,559
utf_8
18c27f006ac8293d4a4fdf78bb6cc55b
% pop_preclust() - prepare STUDY components' location and activity measures for later clustering. % Collect information in an interactive pop-up query window. To pre-cluster % from the commandline, use std_preclust(). After data entry into the pop window, % selected measures (one or more from options: ERP, dipole locations, spectra, % scalp maps, ERSP, and ITC) are computed for each dataset in the STUDY % set, unless they already present. After all requested measures are computed % and saved in the STUDY datasets, a PCA matrix (by runica() with 'pca' option) % is constructed (this is the feature reduction step). This matrix will be used % as input to the clustering algorithm in pop_clust(). pop_preclust() allows % selection of a subset of components to cluster. This subset may either be % user-specified, all components with dipole model residual variance lower than % a defined threshold (see dipfit()), or components from an already existing cluster % (for hierarchical clustering). The EEG datasets in the ALLEEG structure are % updated; then the updated EEG sets are saved to disk. Calls std_preclust(). % Usage: % >> [STUDY, ALLEEG] = pop_preclust(STUDY, ALLEEG); % pop up interactive window % >> [STUDY, ALLEEG] = pop_preclust(STUDY, ALLEEG, clustind); % sub-cluster % % Inputs: % STUDY - STUDY set structure containing (loaded) EEG dataset structures % ALLEEG - ALLEEG vector of EEG structures, else a single EEG dataset. % clustind - (single) cluster index to sub-cluster, Hhierarchical clustering may be % useful, for example, to separate a bilteral cluster into left and right % hemisphere sub-clusters. Should be empty for whole STUDY (top level) clustering % {default: []} % Outputs: % STUDY - the input STUDY set with added pre-clustering data for use by pop_clust() % ALLEEG - the input ALLEEG vector of EEG dataset structures modified by adding % pre-clustering data (pointers to .mat files that hold cluster measure information). % % Authors: Arnaud Delorme, Hilit Serby & Scott Makeig, SCCN, INC, UCSD, May 13, 2004- % % See also: std_preclust() % Copyright (C) Hilit Serby, SCCN, INC, UCSD, May 13,2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, ALLEEG, com] = pop_preclust(varargin) com = ''; if ~isstr(varargin{1}) %intial settings if length(varargin) < 2 error('pop_preclust(): needs both ALLEEG and STUDY structures'); end STUDY = varargin{1}; ALLEEG = varargin{2}; if length(varargin) >= 3 if length(varargin{3}) > 1 error('pop_preclust(): To cluster components from several clusters, merge them first!'); end cluster_ind = varargin{3}; else cluster_ind = []; end scalp_options = {'Use channel values' 'Use Laplacian values' 'Use Gradient values'} ; if isempty(ALLEEG) error('STUDY contains no datasets'); end if any(isnan(STUDY.cluster(1).sets(:))) warndlg2( [ 'FOR CLUSTERING, YOU MAY ONLY USE DIPOLE OR SCALP MAP CLUSTERING.' 10 ... 'This is because some datasets do not have ICA pairs. Look for NaN values in ' 10 ... 'STUDY.cluster(1).sets which indicate missing datasets. Each column in this ' 10 ... 'array indicate datasets with common ICA decompositions' ]); end; if length(STUDY.design(STUDY.currentdesign).cases.value) ~= length(STUDY.subject) warndlg2( [ 'GO BACK TO THE DESIGN INTERFACE AND SELECT A DESIGN THAT ' 10 ... 'INCLUDES ALL DATASETS. Some subjects or datasets have been excluded' 10 ... 'in the current design. ICA clusters are common to all designs, so all' 10 ... 'all datasets must be included for clustering. After clustering, you' 10 ... 'will then be able to select a different design (and keep the clustered' 10 ... 'components) if you wish to exclude a subject or group of dataset.' ]); return; end % cluster text % ------------ % load leaf clusters num_cls = 0; cls = 1:length(STUDY.cluster); N = length(cls); %number of clusters show_options{1} = [STUDY.cluster(1).name ' (' num2str(length(STUDY.cluster(1).comps)) ' ICs)']; cls(1) = 1; count = 2; for index1 = 1:length(STUDY.cluster(1).child) indclust1 = strmatch( STUDY.cluster(1).child(index1), { STUDY.cluster.name }, 'exact'); show_options{count} = [' ' STUDY.cluster(indclust1).name ' (' num2str(length(STUDY.cluster(indclust1).comps)) ' ICs)']; cls(count) = indclust1; count = count+1; for index2 = 1:length( STUDY.cluster(indclust1).child ) indclust2 = strmatch( STUDY.cluster(indclust1).child(index2), { STUDY.cluster.name }, 'exact'); show_options{count} = [' ' STUDY.cluster(indclust2).name ' (' num2str(length(STUDY.cluster(indclust2).comps)) ' ICs)']; cls(count) = indclust2; count = count+1; for index3 = 1:length( STUDY.cluster(indclust2).child ) indclust3 = strmatch( STUDY.cluster(indclust2).child(index3), { STUDY.cluster.name }, 'exact'); show_options{count} = [' ' STUDY.cluster(indclust3).name ' (' num2str(length(STUDY.cluster(indclust3).comps)) ' ICs)']; cls(count) = indclust3; count = count+1; end; end; end; % callbacks % --------- erspparams_str = [ '''cycles'', [3 0.5], ''padratio'', 1' ]; specparams_str = ''; show_clust = [ 'pop_preclust(''showclust'',gcf);']; show_comps = [ 'pop_preclust(''showcomplist'',gcf);']; help_spectopo = ['pophelp(''spectopo'')']; set_spectra = ['pop_preclust(''setspec'',gcf);']; set_erp = ['pop_preclust(''seterp'',gcf);']; set_scalp = ['pop_preclust(''setscalp'',gcf);']; set_dipole = ['pop_preclust(''setdipole'',gcf);']; set_ersp = ['pop_preclust(''setersp'',gcf);']; set_itc = ['pop_preclust(''setitc'',gcf);']; set_secpca = ['pop_preclust(''setsec'',gcf);']; set_mpcluster = ['tmp_preclust(''mpcluster'',gcf);']; % nima help_clusteron = ['pophelp(''std_helpselecton'');']; help_ersp = ['pophelp(''pop_timef'')']; preclust_PCA = ['pop_preclust(''preclustOK'',gcf);']; ersp_params = ['pop_preclust(''erspparams'',gcf);']; ersp_edit = ['pop_preclust(''erspedit'',gcf);']; test_ersp = ['pop_precomp(''testersp'',gcf);']; itc_edit = 'set(findobj(gcbf, ''tag'', ''ersp_params''), ''string'', get(gcbo, ''string''));'; ersp_edit = 'set(findobj(gcbf, ''tag'', ''itc_params'' ), ''string'', get(gcbo, ''string''));'; saveSTUDY = [ 'set(findobj(''parent'', gcbf, ''userdata'', ''save''), ''enable'', fastif(get(gcbo, ''value'')==1, ''on'', ''off''));' ]; browsesave = [ '[filename, filepath] = uiputfile2(''*.study'', ''Save STUDY with .study extension -- pop_preclust()''); ' ... 'set(findobj(''parent'', gcbf, ''tag'', ''studyfile''), ''string'', [filepath filename]);' ]; str_name = ['Build pre-clustering matrix for STUDY set: ' STUDY.name '' ]; str_time = ''; help_secpca = [ 'warndlg2(strvcat(''This is the final number of dimensions (otherwise use the sum'',' ... '''of dimensions for all the selected options). See tutorial for more info''), ''Final number of dimensions'');' ]; gui_spec = { ... {'style' 'text' 'string' str_name 'FontWeight' 'Bold' 'horizontalalignment' 'left'} ... {'style' 'text' 'string' 'Select the cluster to refine by sub-clustering (any existing sub-hierarchy will be overwritten)' } {} ... {'style' 'listbox' 'string' show_options 'value' 1 'tag' 'clus_list' 'Callback' show_clust 'max' 1 } {} {} ... {'style' 'text' 'string' 'Note: Only measures that have been precomputed may be used for clustering.'} ... {'style' 'text' 'string' 'Measures Dims. Norm. Rel. Wt.' 'FontWeight' 'Bold'} ... {'style' 'checkbox' 'string' '' 'tag' 'spectra_on' 'value' 0 'Callback' set_spectra 'userdata' '1'} ... {'style' 'text' 'string' 'spectra' 'horizontalalignment' 'center' } ... {'style' 'edit' 'string' '10' 'tag' 'spectra_PCA' 'enable' 'off' 'userdata' 'specP'} ... {'style' 'checkbox' 'string' '' 'tag' 'spectra_norm' 'value' 1 'enable' 'off' 'userdata' 'specP' } ... {'style' 'edit' 'string' '1' 'tag' 'spectra_weight' 'enable' 'off' 'userdata' 'specP'} ... {'style' 'text' 'string' 'Freq.range [Hz]' 'tag' 'spectra_freq_txt' 'userdata' 'spec' 'enable' 'off' } ... {'style' 'edit' 'string' '3 25' 'tag' 'spectra_freq_edit' 'userdata' 'spec' 'enable' 'off' } { } { } ... {'style' 'checkbox' 'string' '' 'tag' 'erp_on' 'value' 0 'Callback' set_erp 'userdata' '1'} ... {'style' 'text' 'string' 'ERPs' 'horizontalalignment' 'center' } ... {'style' 'edit' 'string' '10' 'tag' 'erp_PCA' 'enable' 'off' 'userdata' 'erpP'} ... {'style' 'checkbox' 'string' '' 'tag' 'erp_norm' 'value' 1 'enable' 'off' 'userdata' 'erpP' } ... {'style' 'edit' 'string' '1' 'tag' 'erp_weight' 'enable' 'off' 'userdata' 'erpP'} ... {'style' 'text' 'string' 'Time range [ms]' 'tag' 'erp_time_txt' 'userdata' 'erp' 'enable' 'off' } ... {'style' 'edit' 'string' str_time 'tag' 'erp_time_edit' 'userdata' 'erp' 'enable' 'off' } { } { }... {'style' 'checkbox' 'string' '' 'tag' 'dipole_on' 'value' 0 'Callback' set_dipole 'userdata' '1'} ... {'style' 'text' 'string' 'dipoles' 'HorizontalAlignment' 'center' } ... {'style' 'text' 'string' '3' 'enable' 'off' 'userdata' 'dipoleP' } ... {'style' 'checkbox' 'string' '' 'tag' 'locations_norm' 'value' 1 'enable' 'off' 'userdata' 'dipoleP'} ... {'style' 'edit' 'string' '10' 'tag' 'locations_weight' 'enable' 'off' 'userdata' 'dipoleP'} {} {} {} {} ... {'style' 'checkbox' 'string' '' 'tag' 'scalp_on' 'value' 0 'Callback' set_scalp 'userdata' '1'} ... {'style' 'text' 'string' 'scalp maps' 'HorizontalAlignment' 'center' } ... {'style' 'edit' 'string' '10' 'tag' 'scalp_PCA' 'enable' 'off' 'userdata' 'scalpP'} ... {'style' 'checkbox' 'string' '' 'tag' 'scalp_norm' 'value' 1 'enable' 'off' 'userdata' 'scalpP'} ... {'style' 'edit' 'string' '1' 'tag' 'scalp_weight' 'enable' 'off' 'userdata' 'scalpP'} ... {'style' 'popupmenu' 'string' scalp_options 'value' 1 'tag' 'scalp_choice' 'enable' 'off' 'userdata' 'scalp' } {} ... {'style' 'checkbox' 'string' 'Absolute values' 'value' 1 'tag' 'scalp_absolute' 'enable' 'off' 'userdata' 'scalp' } {} ... {'style' 'checkbox' 'string' '' 'tag' 'ersp_on' 'value' 0 'Callback' set_ersp 'userdata' '1'} ... {'style' 'text' 'string' 'ERSPs' 'horizontalalignment' 'center' } ... {'style' 'edit' 'string' '10' 'tag' 'ersp_PCA' 'enable' 'off' 'userdata' 'erspP'} ... {'style' 'checkbox' 'string' '' 'tag' 'ersp_norm' 'value' 1 'enable' 'off' 'userdata' 'erspP'} ... {'style' 'edit' 'string' '1' 'tag' 'ersp_weight' 'enable' 'off' 'userdata' 'erspP'} ... {'style' 'text' 'string' 'Time range [ms]' 'tag' 'ersp_time_txt' 'userdata' 'ersp' 'enable' 'off' } ... {'style' 'edit' 'string' str_time 'tag' 'ersp_time_edit' 'userdata' 'ersp' 'enable' 'off' } ... {'style' 'text' 'string' 'Freq. range [Hz]' 'tag' 'ersp_time_txt' 'userdata' 'ersp' 'enable' 'off' } ... {'style' 'edit' 'string' str_time 'tag' 'ersp_freq_edit' 'userdata' 'ersp' 'enable' 'off' } ... {'style' 'checkbox' 'string' '' 'tag' 'itc_on' 'value' 0 'Callback' set_itc 'userdata' '1'} ... {'style' 'text' 'string' 'ITCs' 'horizontalalignment' 'center' } ... {'style' 'edit' 'string' '10' 'tag' 'itc_PCA' 'enable' 'off' 'userdata' 'itcP'} ... {'style' 'checkbox' 'string' '' 'tag' 'itc_norm' 'value' 1 'enable' 'off' 'userdata' 'itcP'} ... {'style' 'edit' 'string' '1' 'tag' 'itc_weight' 'enable' 'off' 'userdata' 'itcP'} ... {'style' 'text' 'string' 'Time range [ms]' 'tag' 'itc_time_txt' 'userdata' 'itcP' 'enable' 'off' } ... {'style' 'edit' 'string' str_time 'tag' 'itc_time_edit' 'userdata' 'itcP' 'enable' 'off' } ... {'style' 'text' 'string' 'Freq. range [Hz]' 'tag' 'itc_time_txt' 'userdata' 'itcP' 'enable' 'off' } ... {'style' 'edit' 'string' str_time 'tag' 'itc_freq_edit' 'userdata' 'itcP' 'enable' 'off' } ... {} ... {'style' 'checkbox' 'string' '' 'tag' 'sec_on' 'Callback' set_secpca 'value' 0} ... {'style' 'text' 'string' 'Final dimensions' } ... {'style' 'edit' 'string' '10' 'enable' 'off' 'tag' 'sec_PCA' 'userdata' 'sec' } ... {} {'style' 'pushbutton' 'string' 'Help' 'tag' 'finalDimHelp' 'callback' help_secpca } {} {} {} {} }; % {'link2lines' 'style' 'text' 'string' '' } {} {} {} ... % {'style' 'text' 'string' 'Time/freq. parameters' 'tag' 'ersp_push' 'value' 1 'enable' 'off' 'userdata' 'ersp' 'Callback' ersp_params} ... % {'style' 'edit' 'string' erspparams_str 'tag' 'ersp_params' 'enable' 'off' 'userdata' 'ersp' 'Callback' ersp_edit}... % {'style' 'text' 'string' 'Time/freq. parameters' 'tag' 'itc_push' 'value' 1 'enable' 'off' 'userdata' 'itc' 'Callback' ersp_params} ... % {'style' 'edit' 'string' erspparams_str 'tag' 'itc_params' 'enable' 'off' 'userdata' 'itc' 'Callback' itc_edit}% {'style' 'checkbox' 'string' '' 'tag' 'preclust_PCA' 'Callback' preclust_PCA 'value' 0} ... % {'style' 'text' 'string' 'Do not prepare dataset for clustering at this time.' 'FontWeight' 'Bold' } {} ... fig_arg{1} = { ALLEEG STUDY cls }; geomline = [0.5 2 1 0.5 1 2 1 2 1 ]; geometry = { [1] [1] [1 1 1] [1] [1] ... [3] geomline geomline geomline [0.5 2 1 0.5 1 2.9 .1 2.9 .1 ] geomline geomline [1] geomline }; geomvert = [ 1 1 3 1 1 1 1 1 1 1 1 1 0.5 1 ]; %if length(show_options) < 3 % gui_spec(2:6) = { {} ... % { 'style' 'text' 'string' [ 'Among the pre-selected components (Edit study),' ... % 'remove those which dipole res. var, exceed' ] 'tag' 'dipole_select_on' } ... % {'style' 'edit' 'string' '0.15' 'horizontalalignment' 'center' 'tag' 'dipole_rv'} ... % {'style' 'text' 'string' '(empty=all)'} {} }; % geometry{3} = [2.5 0.25 0.4]; % geomvert(3) = 1; %end; [preclust_param, userdat2, strhalt, os] = inputgui( 'geometry', geometry, 'uilist', gui_spec, 'geomvert', geomvert, ... 'helpcom', ' pophelp(''std_preclust'')', ... 'title', 'Select and compute component measures for later clustering -- pop_preclust()', ... 'userdata', fig_arg); if isempty(preclust_param), return; end; options = { STUDY, ALLEEG }; % precluster on what? % ------------------- options{3} = cls(os.clus_list); % hierarchical clustering %if ~(os.preclust_PCA) %create PCA data for clustering %preclust_command = '[STUDY ALLEEG] = eeg_createdata(STUDY, ALLEEG, '; %end % Spectrum option is on % -------------------- if os.spectra_on== 1 options{end+1} = { 'spec' 'npca' str2num(os.spectra_PCA) 'norm' os.spectra_norm ... 'weight' str2num(os.spectra_weight) 'freqrange' str2num(os.spectra_freq_edit) }; end % ERP option is on % ---------------- if os.erp_on == 1 options{end+1} = { 'erp' 'npca' str2num(os.erp_PCA) 'norm' os.erp_norm ... 'weight' str2num(os.erp_weight) 'timewindow' str2num(os.erp_time_edit) }; end % Scalp maps option is on % ---------------------- if os.scalp_on == 1 if os.scalp_absolute %absolute maps abso = 1; else abso = 0; end if (os.scalp_choice == 2) %Laplacian scalp maps options{end+1} = { 'scalpLaplac' 'npca' str2num(os.scalp_PCA) 'norm' os.scalp_norm ... 'weight' str2num(os.scalp_weight) 'abso' abso }; elseif (os.scalp_choice == 3) %Gradient scalp maps options{end+1} = { 'scalpGrad' 'npca' str2num(os.scalp_PCA) 'norm' os.scalp_norm, ... 'weight' str2num(os.scalp_weight) 'abso' abso }; elseif (os.scalp_choice == 1) %scalp map case options{end+1} = { 'scalp' 'npca' str2num(os.scalp_PCA) 'norm' os.scalp_norm, ... 'weight' str2num(os.scalp_weight) 'abso' abso }; end end % Dipole option is on % ------------------- if os.dipole_on == 1 options{end+1} = { 'dipoles' 'norm' os.locations_norm 'weight' str2num(os.locations_weight) }; end % ERSP option is on % ----------------- if os.ersp_on == 1 options{end+1} = { 'ersp' 'npca' str2num(os.ersp_PCA) 'freqrange' str2num(os.ersp_freq_edit) ... 'timewindow' str2num(os.ersp_time_edit) 'norm' os.ersp_norm 'weight' str2num(os.ersp_weight) }; end % ITC option is on % ---------------- if os.itc_on == 1 options{end+1} = { 'itc' 'npca' str2num(os.itc_PCA) 'freqrange' str2num(os.itc_freq_edit) 'timewindow' ... str2num(os.itc_time_edit) 'norm' os.itc_norm 'weight' str2num(os.itc_weight) }; end % ERSP option is on % ----------------- if os.sec_on == 1 options{end+1} = { 'finaldim' 'npca' str2num(os.sec_PCA) }; end % evaluate command % ---------------- if length(options) == 3 warndlg2('No measure selected: aborting.'); return; end; [STUDY ALLEEG] = std_preclust(options{:}); com = sprintf('[STUDY ALLEEG] = std_preclust(STUDY, ALLEEG, %s);', vararg2str(options(3:end))); % save updated STUDY to the disk % ------------------------------ % if os.saveSTUDY == 1 % if ~isempty(os.studyfile) % [filepath filename ext] = fileparts(os.studyfile); % STUDY.filename = [ filename ext ]; % STUDY.filepath = filepath; % end; % STUDY = pop_savestudy(STUDY, ALLEEG, 'filename', STUDY.filename, 'filepath', STUDY.filepath); % com = sprintf('%s\nSTUDY = pop_savestudy(STUDY, ALLEEG, %s);', com, ... % vararg2str( { 'filename', STUDY.filename, 'filepath', STUDY.filepath })); % end else hdl = varargin{2}; %figure handle userdat = get(varargin{2}, 'userdat'); ALLEEG = userdat{1}{1}; STUDY = userdat{1}{2}; cls = userdat{1}{3}; N = length(cls); switch varargin{1} case 'setspec' set_spec = get(findobj('parent', hdl, 'tag', 'spectra_on'), 'value'); set(findobj('parent', hdl, 'userdata', 'spec'), 'enable', fastif(set_spec,'on','off')); PCA_on = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); if PCA_on set(findobj('parent', hdl, 'userdata', 'specP'), 'enable', 'off'); else set(findobj('parent', hdl, 'userdata', 'specP'), 'enable', fastif(set_spec,'on','off')); end case 'mpcluster' % nima mpclust = get(findobj('parent', hdl, 'tag', 'mpclust'), 'value'); if mpclust set(findobj('parent', hdl, 'tag', 'spectra_PCA'), 'visible','off'); set(findobj('parent', hdl, 'tag', 'spectra_norm'), 'visible','off'); set(findobj('parent', hdl, 'tag', 'spectra_weight'), 'visible','off'); set(findobj('parent', hdl, 'tag', 'erp_PCA' ), 'visible','off'); set(findobj('parent', hdl, 'tag','erp_norm' ), 'visible','off'); set(findobj('parent', hdl, 'tag','erp_weight' ), 'visible','off'); set(findobj('parent', hdl, 'tag', 'locations_norm' ), 'visible','off'); set(findobj('parent', hdl, 'tag','locations_weight'), 'visible','off'); set(findobj('parent', hdl, 'tag', 'scalp_PCA'), 'visible','off'); set(findobj('parent', hdl, 'tag','scalp_norm' ), 'visible','off'); set(findobj('parent', hdl, 'tag','scalp_weight'), 'visible','off'); set(findobj('parent', hdl, 'tag','ersp_PCA'), 'visible','off'); set(findobj('parent', hdl, 'tag', 'ersp_norm'), 'visible','off'); set(findobj('parent', hdl, 'tag','ersp_weight' ), 'visible','off'); set(findobj('parent', hdl, 'tag', 'itc_PCA'), 'visible','off'); set(findobj('parent', hdl, 'tag','itc_norm'), 'visible','off'); set(findobj('parent', hdl, 'tag','itc_weight'), 'visible','off'); set(findobj('parent', hdl, 'tag','sec_PCA'), 'visible','off'); set(findobj('parent', hdl, 'tag','sec_on'), 'visible','off'); set(findobj('parent', hdl, 'userdata' ,'dipoleP'), 'visible','off'); set(findobj('parent', hdl, 'string','Final dimensions'), 'visible','off'); set(findobj('parent', hdl, 'tag','finalDimHelp' ), 'visible','off'); set(findobj('parent', hdl, 'tag','spectra_freq_txt'), 'visible','off'); set(findobj('parent', hdl, 'tag','spectra_freq_edit'), 'visible','off'); %% these are made invisible for now, but in future we might use them in the new method set(findobj('parent', hdl, 'tag','erp_time_txt'), 'visible','off'); set(findobj('parent', hdl, 'tag','erp_time_edit'), 'visible','off'); set(findobj('parent', hdl, 'tag','scalp_choice'), 'visible','off'); set(findobj('parent', hdl, 'tag', 'scalp_absolute'), 'visible','off'); set(findobj('parent', hdl, 'tag','ersp_time_txt'), 'visible','off'); set(findobj('parent', hdl, 'tag','ersp_time_edit'), 'visible','off'); set(findobj('parent', hdl, 'tag','ersp_freq_edit'), 'visible','off'); set(findobj('parent', hdl, 'tag','itc_time_txt'), 'visible','off'); set(findobj('parent', hdl, 'tag','itc_time_edit'), 'visible','off'); set(findobj('parent', hdl, 'tag','itc_freq_edit'), 'visible','off'); set(findobj('parent', hdl, 'string','Measures Dims. Norm. Rel. Wt.'), 'string','Measures'); else set(findobj('parent', hdl, 'tag', 'spectra_PCA'), 'visible','on'); set(findobj('parent', hdl, 'tag', 'spectra_norm'), 'visible','on'); set(findobj('parent', hdl, 'tag', 'spectra_weight'), 'visible','on'); set(findobj('parent', hdl, 'tag', 'erp_PCA' ), 'visible','on'); set(findobj('parent', hdl, 'tag','erp_norm' ), 'visible','on'); set(findobj('parent', hdl, 'tag','erp_weight' ), 'visible','on'); set(findobj('parent', hdl, 'tag', 'locations_norm' ), 'visible','on'); set(findobj('parent', hdl, 'tag','locations_weight'), 'visible','on'); set(findobj('parent', hdl, 'tag', 'scalp_PCA'), 'visible','on'); set(findobj('parent', hdl, 'tag','scalp_norm' ), 'visible','on'); set(findobj('parent', hdl, 'tag','scalp_weight'), 'visible','on'); set(findobj('parent', hdl, 'tag','ersp_PCA'), 'visible','on'); set(findobj('parent', hdl, 'tag', 'ersp_norm'), 'visible','on'); set(findobj('parent', hdl, 'tag','ersp_weight' ), 'visible','on'); set(findobj('parent', hdl, 'tag', 'itc_PCA'), 'visible','on'); set(findobj('parent', hdl, 'tag','itc_norm'), 'visible','on'); set(findobj('parent', hdl, 'tag','itc_weight'), 'visible','on'); set(findobj('parent', hdl, 'tag','sec_PCA'), 'visible','on'); set(findobj('parent', hdl, 'tag','sec_on'), 'visible','on'); set(findobj('parent', hdl, 'userdata' ,'dipoleP'), 'visible','on'); set(findobj('parent', hdl, 'string','Final dimensions'), 'visible','on'); set(findobj('parent', hdl, 'tag','finalDimHelp' ), 'visible','on'); set(findobj('parent', hdl, 'tag','spectra_freq_txt'), 'visible','on'); set(findobj('parent', hdl, 'tag','spectra_freq_edit'), 'visible','on'); %% these are made invisible for now, but in future we might use them in the new method set(findobj('parent', hdl, 'tag','erp_time_txt'), 'visible','on'); set(findobj('parent', hdl, 'tag','erp_time_edit'), 'visible','on'); set(findobj('parent', hdl, 'tag','scalp_choice'), 'visible','on'); set(findobj('parent', hdl, 'tag', 'scalp_absolute'), 'visible','on'); set(findobj('parent', hdl, 'tag','ersp_time_txt'), 'visible','on'); set(findobj('parent', hdl, 'tag','ersp_time_edit'), 'visible','on'); set(findobj('parent', hdl, 'tag','ersp_freq_edit'), 'visible','on'); set(findobj('parent', hdl, 'tag','itc_time_txt'), 'visible','on'); set(findobj('parent', hdl, 'tag','itc_time_edit'), 'visible','on'); set(findobj('parent', hdl, 'tag','itc_freq_edit'), 'visible','on'); set(findobj('parent', hdl, 'string','Measures to Cluster on:'), 'string','Load Dims. Norm. Rel. Wt.'); set(findobj('parent', hdl, 'string','Measures'), 'string', 'Measures Dims. Norm. Rel. Wt.'); end; % set_mpcluster = get(findobj('parent', hdl, 'tag', 'spectra_on'), 'value'); % set(findobj('parent', hdl, 'userdata', 'spec'), 'enable', fastif(set_spec,'on','off')); % PCA_on = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); % if PCA_on % set(findobj('parent', hdl, 'userdata', 'specP'), 'enable', 'off'); % else % set(findobj('parent', hdl, 'userdata', 'specP'), 'enable', fastif(set_spec,'on','off')); % end case 'seterp' set_erp = get(findobj('parent', hdl, 'tag', 'erp_on'), 'value'); set(findobj('parent', hdl, 'userdata', 'erp'), 'enable', fastif(set_erp,'on','off')); PCA_on = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); if PCA_on set(findobj('parent', hdl, 'userdata', 'erpP'), 'enable', 'off'); else set(findobj('parent', hdl, 'userdata', 'erpP'), 'enable', fastif(set_erp,'on','off')); end case 'setscalp' set_scalp = get(findobj('parent', hdl, 'tag', 'scalp_on'), 'value'); set(findobj('parent', hdl, 'userdata', 'scalp'), 'enable', fastif(set_scalp,'on','off')); PCA_on = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); if PCA_on set(findobj('parent', hdl, 'userdata', 'scalpP'), 'enable', 'off'); else set(findobj('parent', hdl, 'userdata', 'scalpP'), 'enable', fastif(set_scalp,'on','off')); end case 'setdipole' set_dipole = get(findobj('parent', hdl, 'tag', 'dipole_on'), 'value'); set(findobj('parent', hdl, 'userdata', 'dipole'), 'enable', fastif(set_dipole,'on','off')); PCA_on = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); if PCA_on set(findobj('parent', hdl, 'userdata', 'dipoleP'), 'enable','off'); else set(findobj('parent', hdl, 'userdata', 'dipoleP'), 'enable', fastif(set_dipole,'on','off')); end case 'setersp' set_ersp = get(findobj('parent', hdl, 'tag', 'ersp_on'), 'value'); set(findobj('parent', hdl,'userdata', 'ersp'), 'enable', fastif(set_ersp,'on','off')); PCA_on = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); if PCA_on set(findobj('parent', hdl,'userdata', 'erspP'), 'enable', 'off'); else set(findobj('parent', hdl,'userdata', 'erspP'), 'enable', fastif(set_ersp,'on','off')); end set_itc = get(findobj('parent', hdl, 'tag', 'itc_on'), 'value'); set(findobj('parent', hdl,'tag', 'ersp_push'), 'enable', fastif(set_itc,'off','on')); set(findobj('parent', hdl,'tag', 'ersp_params'), 'enable', fastif(set_itc,'off','on')); if (set_itc & (~set_ersp) ) set(findobj('parent', hdl,'tag', 'itc_push'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'itc_params'), 'enable', 'on'); end case 'setitc' set_itc = get(findobj('parent', hdl, 'tag', 'itc_on'), 'value'); set(findobj('parent', hdl,'userdata', 'itc'), 'enable', fastif(set_itc,'on','off')); PCA_on = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); if PCA_on set(findobj('parent', hdl,'userdata', 'itcP'), 'enable','off'); else set(findobj('parent', hdl,'userdata', 'itcP'), 'enable', fastif(set_itc,'on','off')); end set_ersp = get(findobj('parent', hdl, 'tag', 'ersp_on'), 'value'); set(findobj('parent', hdl,'tag', 'itc_push'), 'enable', fastif(set_ersp,'off','on')); set(findobj('parent', hdl,'tag', 'itc_params'), 'enable', fastif(set_ersp,'off','on')); if (set_ersp & (~set_itc) ) set(findobj('parent', hdl,'tag', 'ersp_push'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'ersp_params'), 'enable', 'on'); end case 'setsec' set_sec = get(findobj('parent', hdl, 'tag', 'sec_on'), 'value'); set(findobj('parent', hdl,'userdata', 'sec'), 'enable', fastif(set_sec,'on','off')); case 'erspparams' ersp = userdat{2}; [ersp_paramsout, erspuserdat, strhalt, erspstruct] = inputgui( { [1] [3 1] [3 1] [3 1] [3 1] [3 1] [1]}, ... { {'style' 'text' 'string' 'ERSP and ITC time/freq. parameters' 'FontWeight' 'Bold'} ... {'style' 'text' 'string' 'Frequency range [Hz]' 'tag' 'ersp_freq' } ... {'style' 'edit' 'string' ersp.f 'tag' 'ersp_f' 'Callback' ERSP_timewindow } ... {'style' 'text' 'string' 'Wavelet cycles (see >> help timef())' 'tag' 'ersp_cycle' } ... {'style' 'edit' 'string' ersp.c 'tag' 'ersp_c' 'Callback' ERSP_timewindow} ... {'style' 'text' 'string' 'Significance level (< 0.1)' 'tag' 'ersp_alpha' } ... {'style' 'edit' 'string' ersp.a 'tag' 'ersp_a'} ... {'style' 'text' 'string' 'timef() padratio' 'tag' 'ersp_pad' } ... {'style' 'edit' 'string' ersp.p 'tag' 'ersp_p' 'Callback' ERSP_timewindow} ... {'style' 'text' 'string' 'Desired time window within the indicated latency range [ms]' 'tag' 'ersp_trtxt' } ... {'style' 'edit' 'string' ersp.t 'tag' 'ersp_timewindow' 'Callback' ERSP_timewindow} {} }, ... 'pophelp(''pop_timef'')', 'Select clustering ERSP and ITC time/freq. parameters -- pop_preclust()'); if ~isempty(ersp_paramsout) ersp.f = erspstruct(1).ersp_f; ersp.c = erspstruct(1).ersp_c; ersp.p = erspstruct(1).ersp_p; ersp.a = erspstruct(1).ersp_a; ersp.t = erspstruct(1).ersp_timewindow; userdat{2} = ersp; set(findobj('parent', hdl, 'tag', 'ersp_params'), 'string', ... [' ''frange'', [' ersp.f '], ''cycles'', [' ... ersp.c '], ''alpha'', ' ersp.a ', ''padratio'', ' ersp.p ', ''tlimits'', [' ersp.t ']']); set(findobj('parent', hdl, 'tag', 'itc_params'), 'string', ... [' ''frange'', [' ersp.f '], ''cycles'', [' ... ersp.c '], ''alpha'', ' ersp.a ', ''padratio'', ' ersp.p ', ''tlimits'', [' ersp.t ']']); set(hdl, 'userdat',userdat); end case 'preclustOK' set_PCA = get(findobj('parent', hdl, 'tag', 'preclust_PCA'), 'value'); set_ersp = get(findobj('parent', hdl, 'tag', 'ersp_on'), 'value'); set(findobj('parent', hdl,'userdata', 'erspP'), 'enable', fastif(~set_PCA & set_ersp,'on','off')); set_itc = get(findobj('parent', hdl, 'tag', 'itc_on'), 'value'); set(findobj('parent', hdl,'userdata', 'itcP'), 'enable', fastif(~set_PCA & set_itc,'on','off')); set_erp = get(findobj('parent', hdl, 'tag', 'erp_on'), 'value'); set(findobj('parent', hdl,'userdata', 'erpP'), 'enable', fastif(~set_PCA & set_erp,'on','off')); set_spec = get(findobj('parent', hdl, 'tag', 'spectra_on'), 'value'); set(findobj('parent', hdl,'userdata', 'specP'), 'enable', fastif(~set_PCA & set_spec,'on','off')); set_scalp = get(findobj('parent', hdl, 'tag', 'scalp_on'), 'value'); set(findobj('parent', hdl,'userdata', 'scalpP'), 'enable', fastif(~set_PCA & set_scalp,'on','off')); set_dipole = get(findobj('parent', hdl, 'tag', 'dipole_on'), 'value'); set(findobj('parent', hdl,'userdata', 'dipoleP'), 'enable', fastif(~set_PCA & set_dipole,'on','off')); set(findobj('parent', hdl,'tag', 'chosen_component'), 'enable', fastif(~set_PCA,'on','off')); set(findobj('parent', hdl,'tag', 'dipole_rv'), 'enable', fastif(~set_PCA,'on','off')); set(findobj('parent', hdl,'tag', 'compstd_str'), 'enable', fastif(~set_PCA,'on','off')); end end STUDY.saved = 'no';
github
lcnhappe/happe-master
std_selsubject.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_selsubject.m
2,842
utf_8
6466ff23a5fb9b15112c7274c77f6ea5
% std_selsubject() - Helper function for std_erpplot(), std_specplot() % and std_erspplot() to select specific subject when % plotting channel data. % Usage: % >> data = std_selsubject( data, subject, setinds, allsubjects); % % Inputs: % data - [cell array] mean data for each subject group and/or data % condition. For example, to compute mean ERPs statistics from a % STUDY for epochs of 800 frames in two conditions from three % groups of 12 subjects, % >> data = { [800x12] [800x12] [800x12];... % 3 groups, cond 1 % [800x12] [800x12] [800x12] }; % 3 groups, cond 2 % subject - [string] subject name % setinds - [cell array] set indices for each of the last dimension of the % data cell array. % >> setinds = { [12] [12] [12];... % 3 groups, cond 1 % [12] [12] [12] }; % 3 groups, cond 2 % allsubject - [cell array] all subjects (same order as in % STUDY.datasetinfo) % % Output: % data - [cell array] data array with the subject or component selected % % Author: Arnaud Delorme, CERCO, CNRS, 2006- % % See also: std_erpplot(), std_specplot() and std_erspplot() function [data] = std_selsubject(data, subject, setinds, allsubjects, optndims); if nargin < 2 help std_selsubject; return; end; optndims = max(optndims, ndims(data{1})); if isempty(strmatch(lower(subject), lower(allsubjects))) error(sprintf('Cannot select subject %s in list %s', subject, vararg2str({ allsubjects }))); end; % plot specific subject % --------------------- if size(setinds{1},1) > 1 && size(setinds{1},2) > 1 % single trials % possible subject indices selectInds = strmatch(lower(subject), lower(allsubjects)); for c = 1:size(data,1) for g = 1:size(data,2) selectCol = []; for ind = 1:length(selectInds) selectCol = [ selectCol find(setinds{c,g} == selectInds') ]; end; if optndims == 2 data{c,g} = data{c,g}(:,selectCol); %2-D elseif optndims == 3 data{c,g} = data{c,g}(:,:,selectCol); %3-D else data{c,g} = data{c,g}(:,:,:,selectCol); %4-D end; end; end; else for c = 1:size(data,1) for g = 1:size(data,2) subjectind = strmatch(lower(subject), lower(allsubjects)); l = zeros(size(setinds{c,g})); for iSubj = 1:length(subjectind), l = l | setinds{c,g} == subjectind(iSubj); end; if optndims == 2 data{c,g}(:,~l) = []; %2-D elseif optndims == 3 data{c,g}(:,:,~l) = []; %3-D else data{c,g}(:,:,:,~l) = []; %4-D end; end; end; end;
github
lcnhappe/happe-master
std_pac.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_pac.m
12,743
utf_8
9fc01e1de80025c52deebe220a9c0b20
% std_pac() - Compute or read PAC data (Phase Amplitude Coupling). % % Usage: % >> [X times logfreqs ] = std_pac(EEG, 'key', 'val', ...); % Inputs: % EEG - an EEG dataset structure. % % Optional inputs: % 'components1'- [numeric vector] components in the EEG structure used % for spectral amplitude in PAC {default|[]: all } % 'components2'- [numeric vector] components in the EEG structure used % for phase in PAC {default|[]: all } % 'channels1' - [numeric vector or cell array of channel labels] channels % in the EEG structure for spectral amplitude in PAC % {default|[]: no channels} % 'channels2' - [numeric vector or cell array of channel labels] channels % in the EEG structure for phase in PAC % {default|[]: no channels} % 'freqs' - [minHz maxHz] the PAC frequency range to compute power. % {default: 12 to EEG sampling rate divided by 2} % 'cycles' - [wavecycles (factor)]. If 0 -> DFT (constant window length % across frequencies). % If >0 -> the number of cycles in each analysis wavelet. % If [wavecycles factor], wavelet cycles increase with % frequency, beginning at wavecyles. (0 < factor < 1) % factor = 0 -> fixed epoch length (DFT, as in FFT). % factor = 1 -> no increase (standard wavelets) % {default: [0]} % 'freqphase' - [valHz] single number for computing the phase at a given % frequency. % 'cyclephase' - [valcycle] single cycle number. % 'timewindow' - [minms maxms] time window (in ms) to plot. % {default: all output latencies} % 'padratio' - (power of 2). Multiply the number of output frequencies % by dividing their frequency spacing through 0-padding. % Output frequency spacing is (low_freq/padratio). % 'recompute' - ['on'|'off'] 'on' forces recomputation of PAC. % {default: 'off'} % % Other optional inputs: % This function will take any of the newtimef() optional inputs (for instance % to compute log-space frequencies)... % % Outputs: % X - the PAC of the requested ICA components/channels % in the selected frequency and time range. % times - vector of time points for which the PAC were computed. % freqs - vector of frequencies (in Hz) at which the % PAC was evaluated. % % Files written or modified: % [dataset_filename].icapac <-- saved component PAC % OR for channels % [dataset_filename].datpac <-- saved channel PAC % % See also: timef(), std_itc(), std_erp(), std_spec(), std_topo(), std_preclust() % % Authors: Arnaud Delorme, SCCN, INC, UCSD, July, 2009- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [X, times, freqs, parameters] = std_pac(EEG, varargin) if nargin < 1 help std_pac; return; end; options = {}; [g timefargs] = finputcheck(varargin, { ... 'components1' 'integer' [] []; 'channels1' { 'cell','integer' } { [],[] } {}; 'components2' 'integer' [] []; 'channels2' { 'cell','integer' } { [],[] } {}; 'outputfile' 'string' [] ''; 'powbase' 'real' [] []; 'plot' 'string' { 'on','off' } 'off'; 'recompute' 'string' { 'on','off' } 'off'; 'getparams' 'string' { 'on','off' } 'off'; 'timerange' 'real' [] []; 'freqrange' 'real' [] []; 'padratio' 'real' [] 1; 'freqs' 'real' [] [12 EEG.srate/2]; 'cycles' 'real' [] [8]; 'freqphase' 'real' [] [5]; 'cyclephase' 'real' [] [3]; 'interp' 'struct' { } struct([]); 'rmcomps' 'integer' [] []; 'freqscale' 'string' [] 'log' }, 'std_pac', 'ignore'); if isstr(g), error(g); end; % checking input parameters % ------------------------- if isempty(g.components1) & isempty(g.channels1) if isempty(EEG(1).icaweights) error('EEG.icaweights not found'); end g.components1 = 1:size(EEG(1).icaweights,1); g.components2 = 1:size(EEG(1).icaweights,1); disp('Computing PAC with default values for all components of the dataset'); end % select ICA components or data channels % -------------------------------------- if ~isempty(g.outputfile) filenamepac = fullfile('', [ g.outputfile '.datpac' ]); g.indices1 = std_chaninds(EEG, g.channels1); g.indices2 = std_chaninds(EEG, g.channels2); prefix = 'chan'; elseif ~isempty(g.components1) g.indices1 = g.components1; g.indices2 = g.components2; prefix = 'comp'; filenamepac = fullfile(EEG.filepath, [ EEG.filename(1:end-3) 'icapac' ]); if ~isempty(g.channels1) error('Cannot compute PAC for components and channels at the same time'); end; elseif ~isempty(g.channels1) g.indices1 = std_chaninds(EEG, g.channels1); g.indices2 = std_chaninds(EEG, g.channels2); prefix = 'chan'; filenamepac = fullfile(EEG.filepath, [ EEG.filename(1:end-3) 'datpac' ]); end; % Compute PAC parameters % ----------------------- parameters = { 'wavelet', g.cycles, 'padratio', g.padratio, ... 'freqs2', g.freqphase, 'wavelet2', g.cyclephase, 'freqscale', g.freqscale, timefargs{:} }; if length(g.freqs)>0, parameters = { parameters{:} 'freqs' g.freqs }; end; % Check if PAC information found in datasets and if fits requested parameters % ---------------------------------------------------------------------------- if exist( filenamepac ) & strcmpi(g.recompute, 'off') fprintf('Use existing file for PAC: %s\n', filenamepac); if ~isempty(g.components1) [X, times, freqs, parameters] = std_readpac(EEG, 1, g.indices1, g.indices2, g.timerange, g.freqrange); else [X, times, freqs, parameters] = std_readpac(EEG, 1, -g.indices1, -g.indices2, g.timerange, g.freqrange); end; return; end; % return parameters % ----------------- if strcmpi(g.getparams, 'on') X = []; times = []; freqs = []; return; end; options = {}; if ~isempty(g.components1) tmpdata = eeg_getdatact(EEG, 'component', [1:size(EEG(1).icaweights,1)]); else EEG.data = eeg_getdatact(EEG, 'channel', [1:EEG.nbchan], 'rmcomps', g.rmcomps); if ~isempty(g.rmcomps), options = { options{:} 'rmcomps' g.rmcomps }; end; if ~isempty(g.interp), EEG = eeg_interp(EEG, g.interp, 'spherical'); options = { options{:} 'interp' g.interp }; end; tmpdata = EEG.data; end; % Compute PAC % ----------- all_pac = []; for k = 1:length(g.indices1) % for each (specified) component for l = 1:length(g.indices2) % for each (specified) component tmpparams = parameters; % Run pac() to get PAC % -------------------- timefdata1 = tmpdata(g.indices1(k),:,:); timefdata2 = tmpdata(g.indices2(l),:,:); if strcmpi(g.plot, 'on'), figure; end; %[logersp,logitc,logbase,times,logfreqs,logeboot,logiboot,alltfX] ... [pacvals, times, freqs1, freqs2] = pac( timefdata1, timefdata2, EEG(1).srate, 'tlimits', [EEG.xmin EEG.xmax]*1000, tmpparams{1:end}); all_pac = setfield( all_pac, [ prefix int2str(g.indices1(k)) '_' int2str(g.indices2(l)) '_pac' ], squeeze(single(pacvals ))); end; end % Save PAC into file % ------------------ all_pac.freqs = freqs1; all_pac.times = times; all_pac.datatype = 'PAC'; all_pac.parameters = tmpparams; if ~isempty(g.channels1) if ~isempty(EEG(1).chanlocs) tmpchanlocs = EEG(1).chanlocs; all_pac.chanlabels1 = { tmpchanlocs(g.indices1).labels }; all_pac.chanlabels2 = { tmpchanlocs(g.indices2).labels }; end; end; std_savedat( filenamepac , all_pac ); if ~isempty(g.components1) [X, times, freqs, parameters] = std_readpac(EEG, 1, g.indices1, g.indices2, g.timerange, g.freqrange); else [X, times, freqs, parameters] = std_readpac(EEG, 1, -g.indices1, -g.indices2, g.timerange, g.freqrange); end; % -------------------------------------------------------- % -------------------- READ PAC DATA --------------------- % -------------------------------------------------------- function [pacvals, freqs, timevals, params] = std_readpac(ALLEEG, abset, comp1, comp2, timewindow, freqrange); if nargin < 5 timewindow = []; end; if nargin < 6 freqrange = []; end; % multiple entry % -------------- if length(comp1) > 1 | length(comp2) > 1 for index1 = 1:length(comp1) for index2 = 1:length(comp2) [tmppac, freqs, timevals, params] = std_readpac(ALLEEG, abset, comp1(index1), comp2(index2), timewindow, freqrange); pacvals(index1,index2,:,:,:) = tmppac; end; end; return; end; for k = 1: length(abset) if comp1 < 0 filename = fullfile( ALLEEG(abset(k)).filepath,[ ALLEEG(abset(k)).filename(1:end-3) 'datpac']); comp1 = -comp1; comp2 = -comp2; prefix = 'chan'; else filename = fullfile( ALLEEG(abset(k)).filepath,[ ALLEEG(abset(k)).filename(1:end-3) 'icapac']); prefix = 'comp'; end; try tmppac = load( '-mat', filename, 'parameters', 'times', 'freqs'); catch error( [ 'Cannot read file ''' filename '''' ]); end; tmppac.parameters = removedup(tmppac.parameters); params = struct(tmppac.parameters{:}); params.times = tmppac.times; params.freqs = tmppac.freqs; if isempty(comp1) pacvals = []; freqs = []; timevals = []; return; end; tmppac = load( '-mat', filename, 'parameters', 'times', 'freqs', ... [ prefix int2str(comp1) '_' int2str(comp2) '_pac']); pacall{k} = double(getfield(tmppac, [ prefix int2str(comp1) '_' int2str(comp2) '_pac'])); tlen = length(tmppac.times); flen = length(tmppac.freqs); end % select plotting or clustering time/freq range % --------------------------------------------- if ~isempty(timewindow) if timewindow(1) > tmppac.times(1) | timewindow(end) < tmppac.times(end) maxind = max(find(tmppac.times <= timewindow(end))); minind = min(find(tmppac.times >= timewindow(1))); else minind = 1; maxind = tlen; end else minind = 1; maxind = tlen; end if ~isempty(freqrange) if freqrange(1) > exp(1)^tmppac.freqs(1) | freqrange(end) < exp(1)^tmppac.freqs(end) fmaxind = max(find(tmppac.freqs <= freqrange(end))); fminind = min(find(tmppac.freqs >= freqrange(1))); else fminind = 1; fmaxind = flen; end else fminind = 1; fmaxind = flen; end % return parameters % ---------------- for cond = 1:length(abset) try pac = pacall{cond}(fminind:fmaxind,minind:maxind); catch pac = pacall{cond}; % for 'method', 'latphase' end; pacvals(:,:,cond) = pac; end; freqs = tmppac.freqs(fminind:fmaxind); timevals = tmppac.times(minind:maxind); % remove duplicates in the list of parameters % ------------------------------------------- function cella = removedup(cella) [tmp indices] = unique_bc(cella(1:2:end)); if length(tmp) ~= length(cella)/2 %fprintf('Warning: duplicate ''key'', ''val'' parameter(s), keeping the last one(s)\n'); end; cella = cella(sort(union(indices*2-1, indices*2)));
github
lcnhappe/happe-master
compute_ersp_times.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/compute_ersp_times.m
2,069
utf_8
444923a87f00e754398384b467789b6d
% compute_ERSP_times() - computes the widest possible ERSP/ITC time window, % which depends on requested ERSP/ITC parameters such as epoch limits, % frequency range, wavelet parameters, sampling rate and frequency % resolution that are used by timef(). % This helper function is called by pop_preclust() & std_ersp(). % Example: % [time_range, winsize] = compute_ersp_times(cycles, ALLEEG(seti).srate, ... % [ALLEEG(seti).xmin ALLEEG(seti).xmax]*1000, freq(1),padratio); % % Authors: Hilit Serby & Arnaud Delorme, SCCN, INC, UCSD, Feb 03, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, Feb 03, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [time_range, winsize] = compute_ERSP_times(cycles, srate, epoch_lim, lowfreq, padratio) if cycles == 0 %FFT option if ~exist('padratio') error('You must enter padratio value for FFT ERSP'); end lowfreq = lowfreq*padratio; t = 1/lowfreq;%time window in sec winsize = t*srate;%time window in points %time window in points (must be power of 2) for FFT winsize =pow2(nextpow2(winsize)); %winsize =2^round(log2(winsize)); else %wavelet t = cycles(1)/lowfreq; %time window in sec winsize = round(t*srate); %time window in points end time_range(1) = epoch_lim(1) + .5*t*1000; time_range(2) = epoch_lim(2) - .5*t*1000;
github
lcnhappe/happe-master
std_dipplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_dipplot.m
27,155
utf_8
7aa203b7ca134c606fdce5feeeca46e8
% std_dipplot() - Commandline function to plot cluster component dipoles. Dipoles for each % named cluster is displayed in a separate figure. To view all the clustered % components in the STUDY on the same figure (in a separate subplot), all % STUDY clusters must be requested. % To visualize dipoles, they first must be stored in the EEG dataset structures % using dipfit(). Only components that have dipole locations will be displayed, % along with the cluster mean dipole (in red). % Usage: % >> [STUDY] = std_dipplot(STUDY, ALLEEG, clusters); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in % the STUDY. ALLEEG for a STUDY set is typically created using load_ALLEEG(). % % Optional inputs: % 'clusters' - [numeric vector | 'all'] -> specific cluster numbers to plot. % 'all' -> plot all clusters in STUDY. % {default: 'all'}. % 'comps' - [numeric vector] -> indices of the cluster components to plot. % 'all' -> plot all the components in the cluster % {default: 'all'}. % 'mode' - ['together'|'apart'] Display all requested cluster on one % figure ('together') or separate figures ('apart'). % 'together'-> plot all 'clusters' in one figure (without the gui). % 'apart' -> plot each cluster in a separate figure. Note that % this parameter has no effect if the 'comps' option (above) is used. % {default: 'together'} % 'figure' - ['on'|'off'] plots on a new figure ('on') or plots on current % figure ('off'). If 'figure','off' does not display gui controls, % Useful for incomporating a cluster dipplot into a complex figure. % {default: 'on'}. % 'groups' - ['on'|'off'] use different colors for different groups. % {default: 'off'}. % Outputs: % STUDY - the input STUDY set structure modified with plotted cluster % mean dipole, to allow quick replotting (unless cluster means % already exists in the STUDY). % Example: % >> [STUDY] = std_dipplot(STUDY,ALLEEG, 'clusters', 5, 'mode', 'apart', 'figure', 'off'); % % Plot cluster-5 component dipoles (in blue), plus ther mean dipole (in red), % % on an exisiting (gui-less) figure. % % See also pop_clustedit(), dipplot() % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % 'groups' added by Makoto Miyakoshi on June 2012. % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 08, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_dipplot(STUDY, ALLEEG, varargin) % Set default values cls = []; % plot all clusters in STUDY figureon = 1; % plot on a new figure mode = 'apart'; STUDY = pop_dipparams(STUDY, 'default'); opt_dipplot = {'projlines',STUDY.etc.dipparams.projlines, 'axistight', STUDY.etc.dipparams.axistight, 'projimg', STUDY.etc.dipparams.projimg, 'normlen', 'on', 'pointout', 'on', 'verbose', 'off', 'dipolelength', 0,'spheres','on'}; %, 'spheres', 'on' groupval = 'off'; for k = 3:2:nargin switch varargin{k-2} case 'clusters' if isnumeric(varargin{k-1}) cls = varargin{k-1}; if isempty(cls) cls = 2:length(STUDY.cluster); end else if isstr(varargin{k-1}) & strcmpi(varargin{k-1}, 'all') cls = 2:length(STUDY.cluster); else error('std_dipplot: ''clusters'' input takes either specific clusters (numeric vector) or keyword ''all''.'); end end if length(cls) == 1, mode = 'apart'; else mode = 'together'; end; case 'comps' STUDY = std_plotcompdip(STUDY, ALLEEG, cls, varargin{k-1}, opt_dipplot{:}); return; case 'plotsubjects', % do nothing case 'mode', mode = varargin{k-1}; case 'groups', groupval = varargin{k-1}; case 'figure' if strcmpi(varargin{k-1},'off') opt_dipplot{end + 1} = 'gui'; opt_dipplot{end + 1} = 'off'; figureon = 0; end end end % select clusters to plot % ----------------------- if isempty(cls) tmp =[]; cls = 2:length(STUDY.cluster); % plot all clusters in STUDY for k = 1: length(cls) % don't include 'Notclust' clusters if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) & ~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13) tmp = [tmp cls(k)]; end end cls = tmp; end; if strcmpi(mode, 'apart') % case each cluster on a separate figure for clus = 1: length(cls) % For each cluster requested if length(STUDY.cluster(cls(clus)).comps) > 0 % check there are comps in cluster max_r = 0; clear cluster_dip_models; len = length(STUDY.cluster(cls(clus)).comps); ndip = 0; dip_ind = []; if ~isfield(STUDY.cluster(cls(clus)),'dipole') STUDY = std_centroid(STUDY,ALLEEG, cls(clus) , 'dipole'); elseif isempty(STUDY.cluster(cls(clus)).dipole) STUDY = std_centroid(STUDY,ALLEEG, cls(clus) , 'dipole'); end for k = 1:len abset = STUDY.datasetinfo(STUDY.cluster(cls(clus)).sets(1,k)).index; subject = STUDY.datasetinfo(STUDY.cluster(cls(clus)).sets(1,k)).subject; if ~isfield(ALLEEG(abset), 'dipfit') warndlg2(['No dipole information available in dataset ' ALLEEG(abset).filename ' , abort plotting'], 'Aborting plot dipoles'); return; end comp = STUDY.cluster(cls(clus)).comps(k); cluster_dip_models(k).posxyz = ALLEEG(abset).dipfit.model(comp).posxyz; cluster_dip_models(k).momxyz = ALLEEG(abset).dipfit.model(comp).momxyz; cluster_dip_models(k).rv = ALLEEG(abset).dipfit.model(comp).rv; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') if isfield(ALLEEG(abset).dipfit, 'hdmfile') %dipfit 2 spherical model load('-mat', ALLEEG(abset).dipfit.hdmfile); max_r = max(max_r, max(vol.r)); else % old version of dipfit max_r = max(max_r,max(ALLEEG(abset).dipfit.vol.r)); end end comp_to_disp{k} = [subject ', ' 'IC' num2str(comp) ]; if ~isempty(cluster_dip_models(k).posxyz) ndip = ndip +1; dip_ind = [dip_ind k]; end end % finished going over cluster comps STUDY.cluster(cls(clus)).dipole = computecentroid(cluster_dip_models); cluster_dip_models(end + 1) = STUDY.cluster(cls(clus)).dipole; % additional options % ------------------ dip_color = cell(1,ndip+1); dip_color(1:ndip) = {'b'}; dip_color(end) = {'r'}; options = opt_dipplot; options{end+1} = 'mri'; options{end+1} = ALLEEG(abset).dipfit.mrifile; options{end+1} = 'coordformat'; options{end+1} = ALLEEG(abset).dipfit.coordformat; options{end+1} = 'dipnames'; options{end+1} = {comp_to_disp{dip_ind } [STUDY.cluster(cls(clus)).name ' mean']}; options{end+1} = 'color'; options{end+1} = dip_color; % if 'groups'==1, overwrite cluster_dip_models, dip_color and dipnames in option -makoto if strcmpi(groupval, 'on') [cluster_dip_models, options] = dipgroups(ALLEEG, STUDY, cls, comp_to_disp, cluster_dip_models, options); break end if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') options{end+1} = 'sphere'; options{end+1} = max_r; else options{end+1} = 'meshdata'; options{end+1} = ALLEEG(abset).dipfit.hdmfile; end if ndip < 6 && strcmpi(options{1}, 'projlines') && length(cls) == 1 % less than 6 dipoles, project lines options{2} = 'on'; end if figureon dipplot(cluster_dip_models, options{:}); fig_h = gcf; set(fig_h,'Name', [STUDY.cluster(cls(clus)).name ' - ' num2str(length(unique(STUDY.cluster(cls(clus)).sets(1,:)))) ... ' sets - ' num2str(length(STUDY.cluster(cls(clus)).comps)) ' components (' num2str(ndip) ' dipoles)' ],'NumberTitle','off'); else dipplot(cluster_dip_models, options{:},'view', [0.5 -0.5 0.5]); for gind = 1:length(options) % remove the 'gui' 'off' option if isstr(options{gind}) if strfind(options{gind}, 'gui') break; end end end options(gind:gind+1) = []; dipinfo.dipmod = cluster_dip_models; dipinfo.op = options; diptitle = [STUDY.cluster(cls(clus)).name ', ' num2str(length(unique(STUDY.cluster(cls(clus)).sets(1,:)))) ' sets -' ... num2str(length(STUDY.cluster(cls(clus)).comps)) ' components (' num2str(ndip) ' dipoles)' ]; dipinfo.title = diptitle; set(gcf, 'UserData', dipinfo); set(gca,'UserData', dipinfo); rotate3d off; axcopy(gca, ['dipinfo = get(gca, ''''UserData''''); dipplot(dipinfo.dipmod, dipinfo.op{:}); set(gcf, ''''Name'''', dipinfo.title,''''NumberTitle'''',''''off''''); ']); end end % finished the if condition that cluster isn't empty end % finished going over requested clusters end if strcmpi(mode, 'together') % case all clusters are plotted in the same figure (must be a new figure) N = length(cls); rowcols(2) = ceil(sqrt(N)); % Number of rows in the subplot figure. rowcols(1) = ceil(N/rowcols(2)); fig_h = figure; orient tall set(fig_h,'Color', 'black'); set(fig_h,'Name', 'All clusters dipoles','NumberTitle','off'); set(fig_h, 'resize','off'); for l = 1:N len = length(STUDY.cluster(cls(l)).comps); max_r = 0; clear cluster_dip_models; if ~isfield(STUDY.cluster(cls(l)),'dipole') STUDY = std_centroid(STUDY,ALLEEG, cls(l), 'dipole'); elseif isempty(STUDY.cluster(cls(l)).dipole) STUDY = std_centroid(STUDY,ALLEEG, cls(l), 'dipole'); end for k = 1: len abset = STUDY.datasetinfo(STUDY.cluster(cls(l)).sets(1,k)).index; if ~isfield(ALLEEG(abset), 'dipfit') warndlg2(['No dipole information available in dataset ' num2str(abset) ' , abort plotting'], 'Aborting plot dipoles'); return; end comp = STUDY.cluster(cls(l)).comps(k); cluster_dip_models(k).posxyz = ALLEEG(abset).dipfit.model(comp).posxyz; cluster_dip_models(k).momxyz = ALLEEG(abset).dipfit.model(comp).momxyz; cluster_dip_models(k).rv = ALLEEG(abset).dipfit.model(comp).rv; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') if isfield(ALLEEG(abset).dipfit, 'hdmfile') %dipfit 2 spherical model load('-mat', ALLEEG(abset).dipfit.hdmfile); max_r = max(max_r, max(vol.r)); else % old version of dipfit max_r = max(max_r,max(ALLEEG(abset).dipfit.vol.r)); end end end % finished going over cluster comps STUDY.cluster(cls(l)).dipole = computecentroid(cluster_dip_models); cluster_dip_models(end + 1) = STUDY.cluster(cls(l)).dipole; dip_color = cell(1,length(cluster_dip_models)); dip_color(1:end-1) = {'b'}; dip_color(end) = {'r'}; options = opt_dipplot; options{end + 1} = 'gui'; options{end + 1} = 'off'; options{end+1} = 'mri'; options{end+1} = ALLEEG(abset).dipfit.mrifile; options{end+1} = 'coordformat'; options{end+1} = ALLEEG(abset).dipfit.coordformat; options{end+1} = 'color'; options{end+1} = dip_color; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') options{end+1} = 'sphere'; options{end+1} = max_r; else options{end+1} = 'meshdata'; options{end+1} = ALLEEG(abset).dipfit.hdmfile; end subplot(rowcols(1),rowcols(2),l) , dipplot(cluster_dip_models, options{:}); title([ STUDY.cluster(cls(l)).name ' (' num2str(length(unique(STUDY.cluster(cls(l)).sets(1,:)))) ' Ss, ' num2str(length(STUDY.cluster(cls(l)).comps)),' ICs)'],'color','white'); %diptitle = [STUDY.cluster(cls(l)).name ', ' num2str(length(unique(STUDY.cluster(cls(l)).sets(1,:)))) 'Ss']; %title(diptitle, 'Color', 'white'); % Complex axcopy %if l == 1 % for gind = 1:length(options) % remove the 'gui' 'off' option % if isstr(options{gind}) % if strfind(options{gind}, 'gui') % break; % end % end % end % options(gind:gind+1) = []; %end %dipinfo.dipmod = cluster_dip_models; %dipinfo.op = options; %dipinfo.title = diptitle; %set(gcf, 'UserData', dipinfo); %set(gca,'UserData', dipinfo); %axcopy(gcf, ['dipinfo = get(gca, ''''UserData''''); dipplot(dipinfo.dipmod, dipinfo.op{:}); set(gcf, ''''Name'''', dipinfo.title,''''NumberTitle'''',''''off'''');']); end %finished going over all clusters set(fig_h, 'resize','on'); end % finished case of 'all' clusters % std_plotcompdip() - Commandline function, to visualizing cluster components dipoles. % Displays the dipoles of specified cluster components with the cluster mean % dipole on separate figures. % To visualize dipoles they first must be stored in the EEG dataset structures % using dipfit(). Only components that have a dipole locations will be displayed, % along with the cluster mean dipole in red. % Usage: % >> [STUDY] = std_plotcompdip(STUDY, ALLEEG, cluster, comps); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in the STUDY. % ALLEEG for a STUDY set is typically created using load_ALLEEG(). % cluster - single cluster number. % % Optional inputs: % comps - [numeric vector] -> indices of the cluster components to plot. % 'all' -> plot all the components in the cluster {default: 'all'}. % % Outputs: % STUDY - the input STUDY set structure modified with plotted cluster % dipole mean, to allow quick replotting (unless cluster mean % already existed in the STUDY). % % Example: % >> cluster = 4; comps= 1; % >> [STUDY] = std_plotcompdip(STUDY,ALLEEG, cluster, comps); % Plots component 1 dipole in blue with the cluster 4 mean dipole in red. % % See also pop_clustedit, dipfit, std_dipplot % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 08, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_plotcompdip(STUDY, ALLEEG, cls, comp_ind, varargin) if ~exist('cls') error('std_plotcompdip: you must provide a cluster number as an input.'); end if isempty(cls) error('std_plotcompdip: you must provide a cluster number as an input.'); end if nargin == 3 % no components indices were given % Default plot all components of the cluster [STUDY] = std_dipplot(STUDY, ALLEEG, 'clusters', cls); return end for ci = 1:length(comp_ind) abset = STUDY.datasetinfo(STUDY.cluster(cls).sets(1,comp_ind(ci))).index; comp = STUDY.cluster(cls).comps(comp_ind(ci)); subject = STUDY.datasetinfo(STUDY.cluster(cls).sets(1,comp_ind(ci))).subject; if ~isfield(ALLEEG(abset), 'dipfit') warndlg2(['No dipole information available in dataset ' num2str(abset) ' , abort plotting'], 'Aborting plot dipoles'); return; end if length(comp_ind) == 1 & isempty(ALLEEG(abset).dipfit.model(comp).posxyz) warndlg2(strvcat('There is no dipole information available in', ... [ 'dataset ' num2str(abset) ' for this component, abort plotting']), 'Aborting plot dipoles'); return; end; if ~isfield(STUDY.cluster(cls),'dipole') STUDY = std_centroid(STUDY,ALLEEG, cls , 'dipole'); elseif isempty(STUDY.cluster(cls).dipole) STUDY = std_centroid(STUDY,ALLEEG, cls , 'dipole'); end comp_to_disp = [subject ' / ' 'IC' num2str(comp) ]; cluster_dip_models.posxyz = ALLEEG(abset).dipfit.model(comp).posxyz; cluster_dip_models.momxyz = ALLEEG(abset).dipfit.model(comp).momxyz; cluster_dip_models.rv = ALLEEG(abset).dipfit.model(comp).rv; cluster_dip_models(2) = STUDY.cluster(cls).dipole; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') if isfield(ALLEEG(abset).dipfit, 'hdmfile') %dipfit 2 spherical model load('-mat', ALLEEG(abset).dipfit.hdmfile); max_r = max(vol.r); else max_r = max(ALLEEG(abset).dipfit.vol.r); end dipplot(cluster_dip_models, 'sphere', max_r, 'mri', ALLEEG(abset).dipfit.mrifile,'coordformat', ALLEEG(abset).dipfit.coordformat , ... 'normlen' ,'on', 'pointout' ,'on','color', {'b', 'r'}, 'dipnames', {comp_to_disp [ STUDY.cluster(cls).name ' mean' ] },... 'spheres', 'on', 'verbose', 'off', varargin{:}); else dipplot(cluster_dip_models, 'meshdata', ALLEEG(abset).dipfit.hdmfile, 'mri', ALLEEG(abset).dipfit.mrifile,'coordformat', ALLEEG(abset).dipfit.coordformat , ... 'normlen' ,'on', 'pointout' ,'on','color', {'b', 'r'}, 'dipnames', {comp_to_disp [STUDY.cluster(cls).name ' mean']}, ... 'spheres', 'on', 'verbose', 'off', varargin{:}); end fig_h = gcf; set(fig_h,'Name', [subject ' / ' 'IC' num2str(comp) ', ' STUDY.cluster(cls).name],'NumberTitle','off'); end % ----------------------- % load all dipoles and % compute dipole centroid % DEVELOPMENT: this function % should be the only one to % access dipole information % ----------------------- function STUDY = std_centroid(STUDY,ALLEEG, clsind, tmp); for clust = 1:length(clsind) max_r = 0; len = length(STUDY.cluster(clsind(clust)).comps); tmppos = [ 0 0 0 ]; tmpmom = [ 0 0 0 ]; tmprv = 0; ndip = 0; for k = 1:len fprintf('.'); comp = STUDY.cluster(clsind(clust)).comps(k); abset = STUDY.cluster(clsind(clust)).sets(1,k); if ~isfield(ALLEEG(abset), 'dipfit') warndlg2(['No dipole information available in dataset ' num2str(abset) ], 'Aborting compute centroid dipole'); return; end if ~isempty(ALLEEG(abset).dipfit.model(comp).posxyz) ndip = ndip +1; posxyz = ALLEEG(abset).dipfit.model(comp).posxyz; momxyz = ALLEEG(abset).dipfit.model(comp).momxyz; if size(posxyz,1) == 2 if all(posxyz(2,:) == [ 0 0 0 ]) posxyz(2,:) = []; momxyz(2,:) = []; end; end; tmppos = tmppos + mean(posxyz,1); tmpmom = tmpmom + mean(momxyz,1); tmprv = tmprv + ALLEEG(abset).dipfit.model(comp).rv; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') if isfield(ALLEEG(abset).dipfit, 'hdmfile') %dipfit 2 spherical model load('-mat', ALLEEG(abset).dipfit.hdmfile); max_r = max(max_r, max(vol.r)); else % old version of dipfit max_r = max(max_r,max(ALLEEG(abset).dipfit.vol.r)); end end end end centroid{clust}.dipole.posxyz = tmppos/ndip; centroid{clust}.dipole.momxyz = tmpmom/ndip; centroid{clust}.dipole.rv = tmprv/ndip; if strcmpi(ALLEEG(abset).dipfit.coordformat, 'spherical') & (~isfield(ALLEEG(abset).dipfit, 'hdmfile')) %old dipfit centroid{clust}.dipole.maxr = max_r; end STUDY.cluster(clsind(clust)).dipole = centroid{clust}.dipole; end fprintf('\n'); % -------------------------------- % new function to compute centroid % was programmed to debug the function % above but is now used in the code % -------------------------------- function dipole = computecentroid(alldipoles) max_r = 0; len = length(alldipoles); dipole.posxyz = [ 0 0 0 ]; dipole.momxyz = [ 0 0 0 ]; dipole.rv = 0; ndip = 0; count = 0; warningon = 1; for k = 1:len if size(alldipoles(k).posxyz,1) == 2 if all(alldipoles(k).posxyz(2,:) == [ 0 0 0 ]) alldipoles(k).posxyz(2,:) = []; alldipoles(k).momxyz(2,:) = []; end; end; if ~isempty(alldipoles(k).posxyz) dipole.posxyz = dipole.posxyz + mean(alldipoles(k).posxyz,1); dipole.momxyz = dipole.momxyz + mean(alldipoles(k).momxyz,1); dipole.rv = dipole.rv + alldipoles(k).rv; count = count+1; elseif warningon disp('Some components do not have dipole information'); warningon = 0; end; end dipole.posxyz = dipole.posxyz/count; dipole.momxyz = dipole.momxyz/count; dipole.rv = dipole.rv/count; if isfield(alldipoles, 'maxr') dipole.maxr = alldipoles(1).max_r; end; function [cluster_dip_models, options] = dipgroups(ALLEEG, STUDY, cls, comp_to_disp, cluster_dip_models, options); % first, extract the subject number for n = 1:length(comp_to_disp) subjectnum(n,1) = str2num(comp_to_disp{n}(1:3)); end % second, extract group info for n = 1:length(subjectnum) subj_group{n,1} = ALLEEG(1,subjectnum(n)).group; end % third, replace the group names with numbers for n = 1:length(subj_group) for m = 1:length(STUDY.group) if strcmp(subj_group{n,1}, STUDY.group{1,m}) subj_groupnum(n,1) = m; break end end end % fourth, compute centroid for each group for n = 1:length(STUDY.group) samegroupIC = find(subj_groupnum==n); cluster_dip_models(1,length(subj_groupnum)+n) = computecentroid(cluster_dip_models(1, samegroupIC)); end % fifth, use subj_groupnum as a type of dipole color %%%%%%%%%%%%%%%%%%%%% color list %%%%%%%%%%%%%%%%%%%%% % This color list was developped for std_envtopo % 16 colors names officially supported by W3C specification for HTML colors{1,1} = [1 1 1]; % White colors{2,1} = [1 1 0]; % Yellow colors{3,1} = [1 0 1]; % Fuchsia colors{4,1} = [1 0 0]; % Red colors{5,1} = [0.75 0.75 0.75]; % Silver colors{6,1} = [0.5 0.5 0.5]; % Gray colors{7,1} = [0.5 0.5 0]; % Olive colors{8,1} = [0.5 0 0.5]; % Purple colors{9,1} = [0.5 0 0]; % Maroon colors{10,1} = [0 1 1]; % Aqua colors{11,1} = [0 1 0]; % Lime colors{12,1} = [0 0.5 0.5]; % Teal colors{13,1} = [0 0.5 0]; % Green colors{14,1} = [0 0 1]; % Blue colors{15,1} = [0 0 0.5]; % Navy colors{16,1} = [0 0 0]; % Black % Silver is twice brighter because silver is used for a background color colors{5,1} = [0.875 0.875 0.875]; % Choosing and sorting 12 colors for line plot, namely Red, Blue, Green, Fuchsia, Lime, Aqua, Maroon, Olive, Purple, Teal, Navy, and Gray selectedcolors = colors([4 13 14 3 11 10 9 7 8 12 15 6]); % determine the new dip colors for n = 1:length(subj_groupnum) dip_color{1,n}=selectedcolors{subj_groupnum(n,1)+1}; end for n = 1:length(STUDY.group) dip_color{1,end+1}= selectedcolors{n+1}; end for n = 1:length(options) if strcmp(options{1,n}, 'color') options{1,n+1} = dip_color; elseif strcmp(options{1,n}, 'dipnames') dipnames = options{1,n+1}; for m = 1:length(STUDY.group) dipnames{1,length(subj_groupnum)+m}= [STUDY.group{1,m} ' mean']; end options{1,n+1} = dipnames; end end
github
lcnhappe/happe-master
std_erpplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_erpplot.m
20,955
utf_8
e91aa1b81b5b2cecf07ce04d70e28dac
% std_erpplot() - Command line function to plot STUDY cluster component ERPs. Either % displays grand mean ERPs for all requested clusters in the same figure, % with ERPs for different conditions (if any) plotted in different colors. % Else, displays ERP for each specified cluster in separate figures % (per condition), each containing the cluster component ERPs plus % the grand mean cluster ERP (in bold). ERPs can be plotted only if % component ERPs were computed and saved in the STUDY EEG % datasets. % These can be computed during pre-clustering using the gui-based % function pop_preclust() or the equivalent command line functions % eeg_createdata() and eeg_preclust(). Called by pop_clustedit(). % and std_propplot(). % Usage: % >> [STUDY] = std_erpplot(STUDY, ALLEEG, key1, val1, key2, val2); % >> [STUDY erpdata erptimes pgroup pcond pinter] = std_erpplot(STUDY, ALLEEG, ...); % % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the datasets included % in the STUDY. A STUDY set ALLEEG is typically created by load_ALLEEG(). % Optional inputs for channel plotting: % 'channels' - [numeric vector] specific channel group to plot. By % default, the grand mean channel ERP is plotted (using the % same format as for the cluster component means described % above). Default is to plot all channels. % 'subject' - [numeric vector] In 'changrp' mode (above), index of % the subject(s) to plot. Else by default, plot all components % in the cluster. % 'plotsubjects' - ['on'|'off'] When 'on', plot ERP of all subjects. % 'noplot' - ['on'|'off'] When 'on', only return output values. Default % is 'off'. % 'topoplotopt' - [cell array] options for topoplot plotting. % % Optional inputs for component plotting: % 'clusters' - [numeric vector|'all'] indices of clusters to plot. % If no component indices ('comps' below) are given, the average % ERPs of the requested clusters are plotted in the same figure, % with ERPs for different conditions (and groups if any) plotted % in different colors. In 'comps' (below) mode, ERPS for each % specified cluster are plotted in separate figures (one per % condition), each overplotting cluster component ERPs plus the % average cluster ERP in bold. Note this parameter has no effect % if the 'comps' option (below) is used. {default: 'all'} % 'comps' - [numeric vector|'all'] indices of the cluster components to plot. % Note that 'comps', 'all' is equivalent to 'plotsubjects', 'on'. % % Other optional inputs: % 'key','val' - All optional inputs to pop_erpparams() are also accepted here % to plot subset of time, statistics etc. The values used by default % are the ones set using pop_erpparams() and stored in the % STUDY structure. % % Outputs: % STUDY - the input STUDY set structure with plotted cluster mean % ERPs data to allow quick replotting % erpdata - [cell] ERP data for each condition, group and subjects. % size of cell array is [nconds x ngroups]. Size of each element % is [times x subjects] for data channels or [times x components] % for component clusters. This array may be gicen as input % directly to the statcond() function or std_stats function % to compute statistics. % erptimes - [array] ERP time point latencies. % pgroup - [array or cell] p-values group statistics. Output of the % statcond() function. % pcond - [array or cell] condition statistics. Output of the statcond() % function. % pinter - [array or cell] groups x conditions statistics. Output of % statcond() function. % % Example: % >> [STUDY] = std_erpplot(STUDY,ALLEEG, 'clusters', 2, 'comps', 'all'); % % Plot cluster-2 component ERPs plus the mean ERP in bold. % % See also pop_clustedit(), pop_preclust(), eeg_createdata(), eeg_preclust(). std_propplot() % % Authors: Arnaud Delorme, CERCO, August, 2006- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, erpdata, alltimes, pgroup, pcond, pinter] = std_erpplot(STUDY, ALLEEG, varargin) if nargin < 2 help std_erpplot; return; end; erpdata = []; alltimes = []; pgroup = []; pcond = []; pinter = []; % find datatype and default options % --------------------------------- dtype = 'erp'; for ind = 1:2:length(varargin) if strcmpi(varargin{ind}, 'datatype') dtype = varargin{ind+1}; end; end; % get parameters % -------------- eval( [ 'tmp = pop_' dtype 'params(STUDY, varargin{:});' ... 'params = tmp.etc.' dtype 'params; clear tmp;' ] ); statstruct.etc = STUDY.etc; statstruct.design = STUDY.design; %added by behnam statstruct.currentdesign = STUDY.currentdesign; %added by behnam statstruct = pop_statparams(statstruct, varargin{:}); stats = statstruct.etc.statistics; stats.fieldtrip.channelneighbor = struct([]); % asumes one channel or 1 component % potentially missing fields % -------------------------- fields = { 'filter' 'subtractsubjectmean' 'timerange' 'freqrange' 'topotime' 'topofreq' 'averagechan'}; defaultval = { [] 'off' [] [] [] [] }; for ind=1:length(fields) if ~isfield(params, fields{ind}), params = setfield(params, fields{ind}, defaultval{ind}); end; end; % decode parameters % ----------------- if isempty(varargin) tmplocs = eeg_mergelocs(ALLEEG.chanlocs); options.channels = { tmplocs.labels }; else options = mystruct(varargin); end; options = myrmfield( options, myfieldnames(params)); options = myrmfield( options, myfieldnames(stats)); options = myrmfield( options, { 'threshold' 'statistics' } ); % for backward compatibility opt = finputcheck( options, ... { 'design' 'integer' [] STUDY.currentdesign; 'plotstderr' 'string' [] 'off'; 'channels' 'cell' [] {}; 'clusters' 'integer' [] []; 'datatype' 'string' { 'erp','spec' } 'erp'; 'mode' 'string' [] ''; % for backward compatibility (now used for statistics) 'comps' { 'string','integer' } [] []; % for backward compatibility 'statmode' 'string' { 'subjects','common','trials' } 'subjects'; % ignored 'plotmode' 'string' { 'normal','condensed' } 'normal'; 'unitx' 'string' { 'ms','Hz' } 'ms'; 'plotsubjects' 'string' { 'on','off' } 'off'; 'detachplots' 'string' { 'on','off' } params.detachplots; 'noplot' 'string' { 'on','off' } 'off'; 'topoplotopt' 'cell' {} { 'style' 'both' }; 'subject' 'string' [] '' }, 'std_erpplot'); if isstr(opt), error(opt); end; if isstr(opt.comps), opt.comps = []; opt.plotsubjects = 'on'; end; if ~isempty(params.topofreq) && strcmpi(opt.datatype, 'spec'), params.topotime = params.topofreq; end; if ~isempty(params.freqrange), params.timerange = params.freqrange; end; datatypestr = upper(opt.datatype); if strcmpi(datatypestr, 'spec'), datatypestr = 'Spectrum'; end; % ======================================================================= % below this line, all the code should be non-specific to ERP or spectrum % ======================================================================= allconditions = STUDY.design(opt.design).variable(1).value; allgroups = STUDY.design(opt.design).variable(2).value; paired = { STUDY.design(opt.design).variable(1).pairing ... STUDY.design(opt.design).variable(2).pairing }; stats.paired = paired; % for backward compatibility % -------------------------- if strcmpi(opt.mode, 'comps'), opt.plotsubjects = 'on'; end; if strcmpi(stats.singletrials, 'off') && ((~isempty(opt.subject) || ~isempty(opt.comps))) if strcmpi(stats.condstats, 'on') || strcmpi(stats.groupstats, 'on') stats.groupstats = 'off'; stats.condstats = 'off'; disp('No statistics for single subject/component, to get statistics compute single-trial measures'); end; end; if ~isnan(params.topotime) & length(opt.channels) < 5 warndlg2(strvcat('ERP parameters indicate that you wish to plot scalp maps', 'Select at least 5 channels to plot topography')); return; end; plotcurveopt = {}; if length(opt.clusters) > 1 plotcurveopt = { 'figure' 'off' }; params.plotconditions = 'together'; params.plotgroups = 'together'; stats.condstats = 'off'; stats.groupstats = 'off'; end; % if length(opt.channels) > 1 && strcmpi(opt.plotconditions, 'together') && strcmpi(opt.plotgroups, 'together') % plotcurveopt = { 'figure' 'off' }; % opt.plotconditions = 'together'; % opt.plotgroups = 'together'; % opt.condstats = 'off'; % opt.groupstats = 'off'; % end; alpha = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.alpha, stats.fieldtrip.alpha); mcorrect = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.mcorrect, stats.fieldtrip.mcorrect); method = fastif(strcmpi(stats.mode, 'eeglab'), stats.eeglab.method, ['Fieldtrip ' stats.fieldtrip.method ]); plotcurveopt = { plotcurveopt{:} ... 'ylim', params.ylim, ... 'threshold', alpha ... 'unitx' opt.unitx, ... 'filter', params.filter, ... 'plotgroups', params.plotgroups, ... 'plotconditions', params.plotconditions }; % channel plotting % ---------------- axcopyflag = 1; if ~isempty(opt.channels) chaninds = 1:length(opt.channels); if strcmpi(opt.datatype, 'erp') [STUDY erpdata alltimes] = std_readerp(STUDY, ALLEEG, 'channels', opt.channels(chaninds), 'timerange', params.timerange, ... 'subject', opt.subject, 'singletrials', stats.singletrials, 'design', opt.design); else [STUDY erpdata alltimes] = std_readspec(STUDY, ALLEEG, 'channels', opt.channels(chaninds), 'freqrange', params.freqrange, ... 'rmsubjmean', params.subtractsubjectmean, 'subject', opt.subject, 'singletrials', stats.singletrials, 'design', opt.design); end; if strcmpi(params.averagechan, 'on') && length(chaninds) > 1 for index = 1:length(erpdata(:)) erpdata{index} = squeeze(mean(erpdata{index},2)); end; end; if isempty(erpdata), return; end; % select specific time % -------------------- if ~isempty(params.topotime) & ~isnan(params.topotime) [tmp ti1] = min(abs(alltimes-params.topotime(1))); [tmp ti2] = min(abs(alltimes-params.topotime(end))); for condind = 1:length(erpdata(:)) if ~isempty(erpdata{condind}) erpdata{condind} = mean(erpdata{condind}(ti1:ti2,:,:),1); end; end; end; % compute statistics % ------------------ if (isempty(params.topotime) || any(isnan(params.topotime))) && length(alpha) > 1 alpha = alpha(1); end; if ~isempty(params.topotime) && all(~isnan(params.topotime)) statstruct = std_prepare_neighbors(statstruct, ALLEEG, 'channels', opt.channels); stats.fieldtrip.channelneighbor = statstruct.etc.statistics.fieldtrip.channelneighbor; end; [pcond pgroup pinter] = std_stat(erpdata, stats); if (~isempty(pcond) && length(pcond{1}) == 1) || (~isempty(pgroup) && length(pgroup{1}) == 1), pcond = {}; pgroup = {}; pinter = {}; end; % single subject STUDY if length(opt.channels) > 5 && ndims(erpdata{1}) < 3, pcond = {}; pgroup = {}; pinter = {}; end; % topo plotting for single subject if strcmpi(opt.noplot, 'on') return; end; % get titles (not included in std_erspplot because it is not possible % to merge channels for that function % ----------------------------------- locs = eeg_mergelocs(ALLEEG.chanlocs); locs = locs(std_chaninds(STUDY, opt.channels(chaninds))); if strcmpi(params.averagechan, 'on') && length(chaninds) > 1 chanlabels = { locs.labels }; chanlabels(2,:) = {','}; chanlabels(2,end) = {''}; locs(1).labels = [ chanlabels{:} ]; locs(2:end) = []; end; [alltitles alllegends ] = std_figtitle('threshold', alpha, 'mcorrect', mcorrect, 'condstat', stats.condstats, 'cond2stat', stats.groupstats, ... 'statistics', method, 'condnames', allconditions, 'plotsubjects', opt.plotsubjects, 'cond2names', allgroups, 'chanlabels', { locs.labels }, ... 'subject', opt.subject, 'valsunit', opt.unitx, 'vals', params.topotime, 'datatype', datatypestr, 'cond2group', params.plotgroups, 'condgroup', params.plotconditions); % plot % ---- if ~isempty(params.topotime) && all(~isnan(params.topotime)) std_chantopo(erpdata, 'groupstats', pgroup, 'condstats', pcond, 'interstats', pinter, 'caxis', params.ylim, ... 'chanlocs', locs, 'threshold', alpha, 'titles', alltitles, 'topoplotopt', opt.topoplotopt); else std_plotcurve(alltimes, erpdata, 'groupstats', pgroup, 'legend', alllegends, 'condstats', pcond, 'interstats', pinter, ... 'chanlocs', locs, 'titles', alltitles, 'plotsubjects', opt.plotsubjects, 'plotstderr', opt.plotstderr, ... 'condnames', allconditions, 'groupnames', allgroups, plotcurveopt{:}); end; set(gcf,'name',['Channel ' datatypestr ]); axcopy(gca); else % plot component % -------------- if length(opt.clusters) > 1, figure('color', 'w'); end; nc = ceil(sqrt(length(opt.clusters))); nr = ceil(length(opt.clusters)/nc); comp_names = {}; for index = 1:length(opt.clusters) if length(opt.clusters) > 1, subplot(nr,nc,index); end; if strcmpi(opt.datatype, 'erp') [STUDY erpdata alltimes] = std_readerp(STUDY, ALLEEG, 'clusters', opt.clusters(index), 'timerange', params.timerange, ... 'component', opt.comps, 'singletrials', stats.singletrials, 'design', opt.design); else [STUDY erpdata alltimes] = std_readspec(STUDY, ALLEEG, 'clusters', opt.clusters(index), 'freqrange', params.freqrange, ... 'rmsubjmean', params.subtractsubjectmean, 'component', opt.comps, 'singletrials', stats.singletrials, 'design', opt.design); end; if isempty(erpdata), return; end; % plot specific component % ----------------------- if ~isempty(opt.comps) comp_names = { STUDY.cluster(opt.clusters(index)).comps(opt.comps) }; opt.subject = STUDY.datasetinfo(STUDY.cluster(opt.clusters(index)).sets(1,opt.comps)).subject; end; stats.paired = paired; [pcond pgroup pinter] = std_stat(erpdata, stats); if strcmpi(opt.noplot, 'on'), return; end; [alltitles alllegends ] = std_figtitle('threshold', alpha, 'plotsubjects', opt.plotsubjects, 'mcorrect', mcorrect, 'condstat', stats.condstats, 'cond2stat', stats.groupstats, ... 'statistics', method, 'condnames', allconditions, 'cond2names', allgroups, 'clustname', STUDY.cluster(opt.clusters(index)).name, 'compnames', comp_names, ... 'subject', opt.subject, 'valsunit', opt.unitx, 'vals', params.topotime, 'datatype', datatypestr, 'cond2group', params.plotgroups, 'condgroup', params.plotconditions); if length(opt.clusters) > 1 && index < length(opt.clusters), alllegends = {}; end; std_plotcurve(alltimes, erpdata, 'condnames', allconditions, 'legend', alllegends, 'groupnames', allgroups, 'plotstderr', opt.plotstderr, ... 'titles', alltitles, 'groupstats', pgroup, 'condstats', pcond, 'interstats', pinter, ... 'plotsubjects', opt.plotsubjects, plotcurveopt{:}); %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- if all([strcmp(opt.plotsubjects,'on') strcmp(opt.detachplots,'on')]) % Getting IC and subj %-------------------------------------------------------------- % WARNING: design.cell used here (this should be replaced) %-------------------------------------------------------------- c = 0; for i = 1 : numel(STUDY.cluster(opt.clusters(index)).allinds) if numel(STUDY.cluster(opt.clusters(index)).allinds{i}) ~= 0 c = c+1; for j = 1 : numel(STUDY.cluster(opt.clusters(index)).allinds{i}) comp = STUDY.cluster(opt.clusters(index)).allinds{i}(j); dsgcell_indx = STUDY.cluster(opt.clusters(index)).setinds{i}(j); subject = STUDY.design(opt.design).cell(dsgcell_indx).case; sbtitles{c}{j} = ([subject '/' 'IC' num2str(comp)]); end end end %-------------------------------------------------------------- [alltitlestmp tmp] = std_figtitle('threshold', alpha, 'plotsubjects', opt.plotsubjects, 'mcorrect', mcorrect, 'condstat', 'off', 'cond2stat', 'off', ... 'statistics', method, 'condnames', allconditions, 'cond2names', allgroups, 'clustname', STUDY.cluster(opt.clusters(index)).name, 'compnames', comp_names, ... 'subject', opt.subject, 'valsunit', opt.unitx, 'vals', params.topotime, 'datatype', datatypestr, 'cond2group', params.plotgroups, 'condgroup', params.plotconditions); handles = findall(0,'Type','Figure', 'Tag','tmp_curvetag'); std_detachplots('','','data',erpdata,'figtitles', {alltitlestmp{:}}','sbtitles',sbtitles,'handles', handles, 'filter',params.filter); axcopyflag = 0; end %-------------------------------------------------------------------------- %-------------------------------------------------------------------------- end; tmpgcf = gcf; set(tmpgcf,'name', ['Component ' datatypestr ] ); if axcopyflag haxis = findall(tmpgcf,'type','axes'); for i= 1: length(haxis) axcopy(haxis(i)); end end end; % remove fields and ignore fields who are absent % ---------------------------------------------- function s = myrmfield(s, f); for index = 1:length(f) if isfield(s, f{index}) s = rmfield(s, f{index}); end; end; % convert to structure (but take into account cells) % -------------------------------------------------- function s = mystruct(v); for index=1:length(v) if iscell(v{index}) v{index} = { v{index} }; end; end; try s = struct(v{:}); catch, error('Parameter error'); end; % convert to structure (but take into account cells) % -------------------------------------------------- function s = myfieldnames(v); s = fieldnames(v); if isfield(v, 'eeglab') s2 = fieldnames(v.eeglab); s = { s{:} s2{:} }; end; if isfield(v, 'fieldtrip') s3 = fieldnames(v.fieldtrip); for index=1:length(s3) s3{index} = [ 'fieldtrip' s3{index} ]; end; s = { s{:} s3{:} }; end;
github
lcnhappe/happe-master
std_preclust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_preclust.m
27,008
utf_8
90006ebed95a949b1fd306df6e5d0454
% std_preclust() - select measures to be included in computation of a preclustering array. % This array is used by pop_clust() to find component clusters from a % specified parent cluster. % Selected measures (dipole location, ERPs, spectra, scalp maps, ERSPs, % and/or ITCs) should already be precomputed using pop-precomp(). Each % feature dimension is reduced by PCA decomposition. These PCA matrices % (one per measure) are concatenated and used as input to the clustering % algorithm in pop_clust(). Follow with pop_clust(). % See Example below: % % >> [STUDY,ALLEEG] = std_preclust(STUDY,ALLEEG); % prepare to cluster all comps % % in all sets on all measures % % >> [STUDY,ALLEEG] = std_preclust(STUDY,ALLEEG, clustind, preproc1, preproc2...); % % prepare to cluster specifed % % cluster on specified measures % Required inputs: % STUDY - an EEGLAB STUDY set of loaded EEG structures % ALLEEG - ALLEEG vector of one or more loaded EEG dataset structures % % Optional inputs: % clustind - a cluster index for further (hierarchical) clustering - % for example to cluster a spectrum-based mu-rhythm cluster into % dipole location-based left mu and right mu sub-clusters. % Should be empty for first stage (whole-STUDY) clustering {default: []} % % preproc - {'command' 'key1' val1 'key2' val2 ...} component clustering measures to prepare % % * 'command' = component measure to compute: % 'erp' = cluster on the component ERPs, % 'dipoles' = cluster on the component [X Y Z] dipole locations % 'spec' = cluster on the component log activity spectra (in dB) % (with the baseline mean dB spectrum subtracted). % 'scalp' = cluster on component (topoplot()) scalp maps % (or on their absolute values), % 'scalpLaplac' = cluster on component (topoplot()) laplacian scalp maps % (or on their absolute values), % 'scalpGrad' = cluster on the (topoplot()) scalp map gradients % (or on their absolute values), % 'ersp' = cluster on components ERSP. (requires: 'cycles', % 'freqrange', 'padratio', 'timewindow', 'alpha'). % 'itc' = cluster on components ITC.(requires: 'cycles', % 'freqrange', 'padratio', 'timewindow', 'alpha'). % 'finaldim' = final number of dimensions. Enables second-level PCA. % By default this command is not used (see Example below). % % * 'key' optional keywords and [valuess] used to compute the above 'commands': % 'npca' = [integer] number of principal components (PCA dimension) of % the selected measures to retain for clustering. {default: 5} % 'norm' = [0|1] 1 -> normalize the PCA components so the variance of % first principal component is 1 (useful when using several % clustering measures - 'ersp','scalp',...). {default: 1} % 'weight' = [integer] weight with respect to other clustering measures. % 'freqrange' = [min max] frequency range (in Hz) to include in activity % spectrum, 'ersp', and 'itc' measures. % 'timewindow' = [min max] time window (in sec) to include in 'erp', % 'ersp', and 'itc' measures. % 'abso' = [0|1] 1 = use absolute values of topoplot(), gradient, or % Laplacian maps {default: 1} % 'funarg' = [cell array] optional function arguments for mean spectrum % calculation (>> help spectopo) {default: none} % Outputs: % STUDY - the input STUDY set with pre-clustering data added, for use by pop_clust() % ALLEEG - the input ALLEEG vector of EEG dataset structures, modified by adding preprocessing % data as pointers to Matlab files that hold the pre-clustering component measures. % % Example: % >> [STUDY ALLEEG] = std_preclust(STUDY, ALLEEG, [],... % { 'spec' 'npca' 10 'norm' 1 'weight' 1 'freqrange' [ 3 25 ] } , ... % { 'erp' 'npca' 10 'norm' 1 'weight' 2 'timewindow' [ 350 500 ] } ,... % { 'scalp' 'npca' 10 'norm' 1 'weight' 2 'abso' 1 } , ... % { 'dipoles' 'norm' 1 'weight' 15 } , ... % { 'ersp' 'npca' 10 'freqrange' [ 3 25 ] 'cycles' [ 3 0.5 ] 'alpha' 0.01 .... % 'padratio' 4 'timewindow' [ -1600 1495 ] 'norm' 1 'weight' 1 } ,... % { 'itc' 'npca' 10 'freqrange' [ 3 25 ] 'cycles' [ 3 0.5 ] 'alpha' 0.01 ... % 'padratio' 4 'timewindow' [ -1600 1495 ] 'norm' 1 'weight' 1 }, ... % { 'finaldim' 'npca' 10 }); % % % This prepares, for initial clustering, all components in the STUDY datasets % % except components with dipole model residual variance (see function % % std_editset() for how to select such components). % % Clustering will be based on the components' mean spectra in the [3 25] Hz % % frequency range, on the components' ERPs in the [350 500] ms time window, % % on the (absolute-value) component scalp maps, on the equivalent dipole % % locations, and on the component mean ERSP and ITC images. % % The final keyword specifies final PCA dimension reduction to 10 % % principal dimensions. See the clustering tutorial for more details. % % Authors: Arnaud Delorme, Hilit Serby & Scott Makeig, SCCN, INC, UCSD, May 13, 2004 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, May 13,2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY, ALLEEG ] = std_preclust(STUDY, ALLEEG, cluster_ind, varargin) if nargin < 2 help std_preclust; return; end; if nargin == 2 cluster_ind = 1; % default to clustering the whole STUDY end % check dataset length consistency before computing % ------------------------------------------------- pnts = ALLEEG(STUDY.datasetinfo(1).index).pnts; srate = ALLEEG(STUDY.datasetinfo(1).index).srate; xmin = ALLEEG(STUDY.datasetinfo(1).index).xmin; xmax = ALLEEG(STUDY.datasetinfo(1).index).xmax; for index = 1:length(STUDY.datasetinfo) ind = STUDY.datasetinfo(index).index; if srate ~= ALLEEG(ind).srate, error(sprintf('Dataset %d does not have the same sampling rate as dataset 1', ind)); end; if ~all([ ALLEEG.trials ] == 1) if abs(xmin-ALLEEG(ind).xmin) > 1e-7, warning(sprintf('Dataset %d does not have the same time limit as dataset 1', ind)); end; if abs(xmax-ALLEEG(ind).xmax) > 1e-7, warning(sprintf('Dataset %d does not have the same time limit as dataset 1', ind)); end; if pnts ~= ALLEEG(ind).pnts, error(sprintf('Dataset %d does not have the same number of point as dataset 1', ind)); end; end; end; % Get component indices that are part of the cluster % -------------------------------------------------- if isempty(cluster_ind) cluster_ind = 1; end; if length(cluster_ind) ~= 1 error('Only one cluster can be sub-clustered. To sub-cluster multiple clusters, first merge them.'); end % % the goal of this code below is to find the components in the cluster % % of interest for each set of condition % for k = 1:size(STUDY.setind,2) % % Find the first entry in STUDY.setind(:,k) that is non-NaN. We only need one since % % components are the same across conditions. % for ri = 1:size(STUDY.setind,1) % if ~isnan(STUDY.setind(ri,k)), break; end % end % sind = find(STUDY.cluster(cluster_ind).sets(ri,:) == STUDY.setind(ri,k)); % succompind{k} = STUDY.cluster(cluster_ind).comps(sind); % end; % for ind = 1:size(STUDY.setind,2) % succompind{ind} = succompind{ind}(find(succompind{ind})); % remove zeros % % (though there should not be any? -Arno) % succompind{ind} = sort(succompind{ind}); % sort the components % end; % scan all commands to see if file exist % -------------------------------------- % for index = 1:length(varargin) % scan commands % strcom = varargin{index}{1}; % if strcmpi(strcom, 'scalp') || strcmpi(strcom, 'scalplaplac') || strcmpi(strcom, 'scalpgrad') % strcom = 'topo'; % end; % if ~strcmpi(strcom, 'dipoles') && ~strcmpi(strcom, 'finaldim') % tmpfile = fullfile( ALLEEG(1).filepath, [ ALLEEG(1).filename(1:end-3) 'ica' strcom ]); % if exist(tmpfile) ~= 2 % %error([ 'Could not find "' upper(strcom) '" file, they must be precomputed' ]); % end; % end; % end; % Decode input arguments % ---------------------- update_flag = 0; rv = 1; secondlevpca = Inf; indrm = []; for index = 1:length(varargin) % scan commands strcom = varargin{index}{1}; if strcmpi(strcom,'dipselect') update_flag = 1; rv = varargin{index}{3}; indrm = [indrm index]; %remove this command elseif strcmpi(strcom,'finaldim') % second level pca secondlevpca = varargin{index}{3}; indrm = [indrm index]; %remove this command end end varargin(indrm) = []; %remove commands % Scan which component to remove (no dipole info) % ----------------------------------------------- if update_flag % dipole information is used to select components error('Update flag is obsolete'); end; % scan all commands % ----------------- clustdata = []; erspquery = 0; for index = 1:length(varargin) % decode inputs % ------------- strcom = varargin{index}{1}; if any(strcom == 'X'), disp('character ''X'' found in command'); end; %defult values npca = NaN; norm = 1; weight = 1; freqrange = []; timewindow = []; abso = 1; fun_arg = []; savetrials = 'off'; recompute = 'on'; for subind = 2:2:length(varargin{index}) switch varargin{index}{subind} case 'npca' npca = varargin{index}{subind+1}; case 'norm' norm = varargin{index}{subind+1}; case 'weight' weight = varargin{index}{subind+1}; case 'freqrange' freqrange = varargin{index}{subind+1}; case 'timewindow' timewindow = varargin{index}{subind+1}; case 'abso' abso = varargin{index}{subind+1}; case 'savetrials' error('You may now use the function std_precomp to precompute measures'); case 'cycles' error('You may now use the function std_precomp to precompute measures'); case 'alpha' error('You may now use the function std_precomp to precompute measures'); case 'padratio' error('You may now use the function std_precomp to precompute measures'); otherwise fun_arg{length(fun_arg)+1} = varargin{index}{subind+1}; end end % scan datasets % ------------- if strcmpi(strcom, 'scalp'), scalpmodif = 'none'; elseif strcmpi(strcom, 'scalpLaplac'), scalpmodif = 'laplacian'; else scalpmodif = 'gradient'; end; % check that all datasets are in preclustering for current design % --------------------------------------------------------------- tmpstruct = std_setcomps2cell(STUDY, STUDY.cluster(cluster_ind).sets, STUDY.cluster(cluster_ind).comps); alldatasets = unique_bc(STUDY.cluster(cluster_ind).sets(:)); if length(alldatasets) < length(STUDY.datasetinfo) && cluster_ind == 1 error( [ 'Some datasets not included in preclustering' 10 ... 'because of partial STUDY design. You need to' 10 ... 'use a STUDY design that includes all datasets.' ]); end; for si = 1:size(STUDY.cluster(cluster_ind).sets,2) % test consistency of the .set structure % -------------------------------------- if strcmpi(strcom, 'erp') || strcmpi(strcom, 'spec') || strcmpi(strcom, 'ersp') || strcmpi(strcom, 'itc') if any(isnan(STUDY.cluster(cluster_ind).sets(:))) error( [ 'std_preclust error: some datasets do not have ICA pairs.' 10 ... 'Look for NaN values in STUDY.cluster(1).sets which' 10 ... 'indicate missing datasets. FOR CLUSTERING, YOU MAY ONLY' 10 ... 'USE DIPOLE OR SCALP MAP CLUSTERING.' ]); end; end; switch strcom % select ica component ERPs % ------------------------- case 'erp', % read and concatenate all cells for this specific set % of identical ICA decompositions STUDY.cluster = checkcentroidfield(STUDY.cluster, 'erp', 'erp_times'); tmpstruct = std_setcomps2cell(STUDY, STUDY.cluster(cluster_ind).sets(:,si), STUDY.cluster(cluster_ind).comps(si)); cellinds = [ tmpstruct.setinds{:} ]; compinds = [ tmpstruct.allinds{:} ]; cells = STUDY.design(STUDY.currentdesign).cell(cellinds); fprintf('Pre-clustering array row %d, adding ERP for design %d cell(s) [%s] component %d ...\n', si, STUDY.currentdesign, int2str(cellinds), compinds(1)); X = std_readfile( cells, 'components', compinds, 'timelimits', timewindow, 'measure', 'erp'); X = abs(X(:)'); % take the absolute value of the ERP to avoid polarities issues % select ica scalp maps % -------------------------- case { 'scalp' 'scalpLaplac' 'scalpGrad' } idat = STUDY.datasetinfo(STUDY.cluster(cluster_ind).sets(:,si)).index; icomp = STUDY.cluster(cluster_ind).comps(si); fprintf('Pre-clustering array row %d, adding interpolated scalp maps for dataset %d component %d...\n', si, idat, icomp); X = std_readtopo(ALLEEG, idat, icomp, scalpmodif, 'preclust'); % select ica comp spectra % ----------------------- case 'spec', % read and concatenate all cells for this specific set % of identical ICA decompositions STUDY.cluster = checkcentroidfield(STUDY.cluster, 'spec', 'spec_freqs'); tmpstruct = std_setcomps2cell(STUDY, STUDY.cluster(cluster_ind).sets(:,si), STUDY.cluster(cluster_ind).comps(si)); cellinds = [ tmpstruct.setinds{:} ]; compinds = [ tmpstruct.allinds{:} ]; cells = STUDY.design(STUDY.currentdesign).cell(cellinds); fprintf('Pre-clustering array row %d, adding spectrum for design %d cell(s) [%s] component %d ...\n', si, STUDY.currentdesign, int2str(cellinds), compinds(1)); X = std_readfile( cells, 'components', compinds, 'freqlimits', freqrange, 'measure', 'spec'); if size(X,2) > 1, X = X - repmat(mean(X,2), [1 size(X,2)]); end; X = X - repmat(mean(X,1), [size(X,1) 1]); X = X(:)'; % select dipole information % ------------------------- case 'dipoles' idat = STUDY.datasetinfo(STUDY.cluster(cluster_ind).sets(1,si)).index; icomp = STUDY.cluster(cluster_ind).comps(si); fprintf('Pre-clustering array row %d, adding dipole for dataset %d component %d...\n', si, idat, icomp); try % select among 3 sub-options % -------------------------- ldip = 1; if size(ALLEEG(idat).dipfit.model(icomp).posxyz,1) == 2 % two dipoles model if any(ALLEEG(idat).dipfit.model(icomp).posxyz(1,:)) ... && any(ALLEEG(idat).dipfit.model(icomp).posxyz(2,:)) %both dipoles exist % find the leftmost dipole [garb ldip] = max(ALLEEG(idat).dipfit.model(icomp).posxyz(:,2)); elseif any(ALLEEG(idat).dipfit.model(icomp).posxyz(2,:)) ldip = 2; % the leftmost dipole is the only one that exists end end X = ALLEEG(idat).dipfit.model(icomp).posxyz(ldip,:); catch error([ sprintf('Some dipole information is missing (e.g. component %d of dataset %d)', icomp, idat) 10 ... 'Components are not assigned a dipole if residual variance is too high so' 10 ... 'in the STUDY info editor, remember to select component by residual' 10 ... 'variance (column "select by r.v.") prior to preclustering them.' ]); end % cluster on ica ersp / itc values % -------------------------------- case {'ersp', 'itc' } % read and concatenate all cells for this specific set % of identical ICA decompositions STUDY.cluster = checkcentroidfield(STUDY.cluster, 'ersp', 'ersp_times', 'ersp_freqs', 'itc', 'itc_times', 'itc_freqs'); tmpstruct = std_setcomps2cell(STUDY, STUDY.cluster(cluster_ind).sets(:,si), STUDY.cluster(cluster_ind).comps(si)); cellinds = [ tmpstruct.setinds{:} ]; compinds = [ tmpstruct.allinds{:} ]; cells = STUDY.design(STUDY.currentdesign).cell(cellinds); fprintf('Pre-clustering array row %d, adding %s for design %d cell(s) [%s] component %d ...\n', si, upper(strcom), STUDY.currentdesign, int2str(cellinds), compinds(1)); X = std_readfile( cells, 'components', compinds, 'timelimits', timewindow, 'measure', strcom); end; % copy data in the array % ---------------------- if ~isreal(X) X = abs(X); end; % for ITC data X = reshape(X, 1, numel(X)); if si == 1, data = zeros(size(STUDY.cluster(cluster_ind).sets,2),length(X)); end; data(si,:) = X; try data(si,:) = X; catch, error([ 'This type of pre-clustering requires that all subjects' 10 ... 'be represented for all combination of selected independent' 10 ... 'variables in the current STUDY design. In addition, for each' 10 ... 'different ICA decomposition included in the STUDY (some' 10 ... 'datasets may have the same decomposition), at least one' 10 ... 'dataset must be represented.' ]); end; end; % end scan datasets % adjust number of PCA values % --------------------------- if isnan(npca), npca = 5; end; % default number of components if npca >= size(data,2) % no need to run PCA, just copy the data. % But still run it to "normalize" coordinates % -------------------------------------- npca = size(data,2); end; if npca >= size(data,1) % cannot be more than the number of components npca = size(data,1); end; if ~strcmp(strcom, 'dipoles') fprintf('PCA dimension reduction to %d for command ''%s'' (normalize:%s; weight:%d)\n', ... npca, strcom, fastif(norm, 'on', 'off'), weight); else fprintf('Retaining the three-dimensional dipole locations (normalize:%s; weight:%d)\n', ... fastif(norm, 'on', 'off'), weight); end % run PCA to reduce data dimension % -------------------------------- switch strcom case {'ersp','itc'} dsflag = 1; while dsflag try, clustdatatmp = runpca( double(data.'), npca, 1); dsflag = 0; catch, % downsample frequency by 2 and times by 2 % ---------------------------------------- data = data(:,1:2:end); %idat = STUDY.datasetinfo(STUDY.setind(1)).index; %[ tmp freqs times ] = std_readersp( ALLEEG, idat, succompind{1}(1)); %[data freqs times ] = erspdownsample(data,4, freqs,times,Ncond); if strcmp(varargin{index}(end-1) , 'downsample') varargin{index}(end) = {celltomat(varargin{index}(end)) + 4}; else varargin{index}(end+1) = {'downsample'}; varargin{index}(end+1) = {4}; end end end clustdatatmp = clustdatatmp.'; case 'dipoles' % normalize each cordinate by the std dev of the radii normval = std(sqrt(data(:,1).^2 + data(:,2).^2 + data(:,3).^2)); clustdatatmp = data./normval; norm = 0; case 'erp' clustdatatmp = runpca( double(data.'), npca, 1); clustdatatmp = abs(clustdatatmp.'); otherwise clustdatatmp = runpca( double(data.'), npca, 1); clustdatatmp = clustdatatmp.'; end if norm %normalize the first pc std to 1 normval = std(clustdatatmp(:,1)); for icol = 1:size(clustdatatmp,2) clustdatatmp(:,icol) = clustdatatmp(:,icol) /normval; end; end; if weight ~= 1 clustdata(:,end+1:end+size(clustdatatmp,2)) = clustdatatmp * weight; else clustdata(:,end+1:end+size(clustdatatmp,2)) = clustdatatmp; end if strcmpi(strcom, 'itc') | strcmpi(strcom, 'ersp') erspmode = 'already_computed'; end; end % Compute a second PCA of the already PCA'd data if there are too many PCA dimensions. % ------------------------------------------------------------------------------------ if size(clustdata,2) > secondlevpca fprintf('Performing second-level PCA: reducing dimension from %d to %d \n', ... size(clustdata,2), secondlevpca); clustdata = runpca( double(clustdata.'), secondlevpca, 1); clustdata = clustdata.'; end STUDY.etc.preclust.preclustdata = clustdata; STUDY.etc.preclust.preclustparams = varargin; if isfield(STUDY.etc.preclust, 'preclustcomps') STUDY.etc.preclust = rmfield(STUDY.etc.preclust, 'preclustcomps'); end; % The preclustering level is equal to the parent cluster that the components belong to. if ~isempty(cluster_ind) STUDY.etc.preclust.clustlevel = cluster_ind; else STUDY.etc.preclust.clustlevel = 1; % No parent cluster (cluster on all components in STUDY). end return % erspdownsample() - down samples component ERSP/ITC images if the % PCA operation in the clustering feature reduction step fails. % This is a helper function called by eeg_preclust(). function [dsdata, freqs, times] = erspdownsample(data, n, freqs,times,cond) len = length(freqs)*length(times); %size of ERSP nlen = ceil(length(freqs)/2)*ceil(length(times)/2); %new size of ERSP dsdata = zeros(size(data,1),cond*nlen); for k = 1:cond tmpdata = data(:,1+(k-1)*len:k*len); for l = 1:size(data,1) % go over components tmpersp = reshape(tmpdata(l,:)',length(freqs),length(times)); tmpersp = downsample(tmpersp.', n/2).'; %downsample times tmpersp = downsample(tmpersp, n/2); %downsample freqs dsdata(l,1+(k-1)*nlen:k*nlen) = tmpersp(:)'; end end % the function below checks the precense of the centroid field function cluster = checkcentroidfield(cluster, varargin); for kk = 1:length(cluster) if ~isfield('centroid', cluster(kk)), cluster(kk).centroid = []; end; for vi = 1:length(varargin) if isfield(cluster(kk).centroid, varargin{vi}) cluster(kk).centroid = rmfield(cluster(kk).centroid, varargin{vi}); end; end; end;
github
lcnhappe/happe-master
std_filecheck.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_filecheck.m
8,785
utf_8
ed6e134b227c42300f92308c99c82ecc
% std_filecheck() - Check if ERSP or SPEC file contain specific parameters. % This file must contain a Matlab structure with a field % named 'parameter'. The content of this field will be % compared to the 'params' input. If they are identical % the output flag will indicate that recomputing this % file is not necessary. If they are different, the user % is queried ('guion' option) to see if he wishes to use % the new parameters and recompute the file (not done in % this function) or if he wishes to use the parameters % of the file on disk. % % Usage: % >> [ recompflag params ] = std_filecheck(filename, params, mode, ignorefields); % % Inputs: % filename - [string] file containing a given measure (ERSP data for % instance). % params - [cell array or structure] cell array of parameters or % structure. This is compared to the 'parameters' field % in the data file. % mode - ['guion'|'usedisk'|'recompute'] 'guion' query the user % if the disk and input parameters are different. The % outcome may be either 'usedisk' or 'recompute'. See % recompflag output for more information. % ignorefields - [cell array] list fields to ignore % % Outputs: % recompflag - ['same'|'different'|'recompute'|'usedisk'|'cancel'] 'same' % (resp. 'different') indicates that the parameters in the % data file are identical (resp. different). 'recompute' % indicate that the measure should be recomputed and the % file has been erased. 'usedisk' indicate that the user % wishes (from the GUI) to use the version on disk. % params - [structure] final parameter. This is usually identical % to the 'params' input unless the user choose to use % parameters from the file on disk. These are then % copied to this output structure. % % Authors: Arnaud Delorme, 2006- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, 2006, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ res, params2 ] = std_filecheck(filename, params2, guiflag, ignorefields); if nargin < 2 help std_filecheck; return; end; if nargin < 3 guiflag = 'guion'; end; if nargin < 4 ignorefields = {}; end; if ~exist( filename ), res = guiflag; return; end; params1 = load('-mat', filename, 'parameters'); params1 = finputcheck( params1.parameters, { 'tmp' 'real' [] NaN}, '', 'ignore'); % allow to tackle duplicate fields params1 = rmfield(params1, 'tmp'); if iscell(params2), params2 = struct(params2{:}); end; % test if the fields are different % -------------------------------- params1 = orderfields(params1); params2 = orderfields(params2); fields1 = fieldnames( params1 ); fields1 = setdiff_bc( fields1, ignorefields); fields2 = fieldnames( params2 ); fields2 = setdiff_bc( fields2, ignorefields); allfields = union_bc(fields1, fields2); % make fields the same % -------------------- res = 'same'; if ~isequal( fields1, fields2 ), for ind = 1:length(allfields) if strcmpi(allfields{ind}, 'plotitc'), adsfads; end; if ~isfield( params1, allfields{ind}) if isstr(getfield(params2, allfields{ind})) params1 = setfield(params1, allfields{ind}, ''); else params1 = setfield(params1, allfields{ind}, []); end; res = 'different'; end; if ~isfield( params2, allfields{ind}) if isstr(getfield(params1, allfields{ind})) params2 = setfield(params2, allfields{ind}, ''); else params2 = setfield(params2, allfields{ind}, []); end; res = 'different'; end; end; end; % data type % --------- if ~isempty(strmatch('cycles', allfields)), strcom = 'ERSP'; else strcom = 'SPECTRAL'; end; % compare fields % -------------- txt = {}; for ind = 1:length(allfields) if ~strcmp(allfields{ind},'baseline') val1 = getfield(params1, allfields{ind}); val2 = getfield(params2, allfields{ind}); val1str = fastif(isempty(val1), 'not set', vararg2str({val1(1:min(3, length(val1)))})); val2str = fastif(isempty(val2), 'not set', vararg2str({val2(1:min(3, length(val2)))})); tmptxt = sprintf(' ''%s'' is %s in the file (vs. %s)', allfields{ind}, val1str, val2str); if length(val1) ~= length(val2) res = 'different'; txt{end+1} = tmptxt; elseif ~isequal(val1, val2) if ~isnan(val1) & ~isnan(val2) res = 'different'; txt{end+1} = tmptxt; end end end end % build gui or return % ------------------- if strcmpi(guiflag, 'usedisk'), if isempty(txt) params2 = params1; res = 'usedisk'; disp(['Using file on disk: ' filename ]); return; else strvcat(txt{:}) error([ 'Two ' strcom ' files had different parameters and the ' strcom ' function' 10 ... 'cannot handle that. We suggest that you delete all files. See command line details' ]); end; elseif strcmpi(guiflag, 'recompute'), res = 'recompute'; disp(['Deleting and recomputing file: ' filename ]); return; elseif strcmpi(res, 'same') & ( strcmpi(guiflag, 'guion') | strcmpi(guiflag, 'same') ) disp(['Using file on disk: ' filename ]); return; end; set_yes = [ 'set(findobj(''parent'', gcbf, ''tag'', ''ersp_no''), ''value'', 0);']; set_no = [ 'set(findobj(''parent'', gcbf, ''tag'', ''ersp_yes''), ''value'', 0);' ]; textgui1 = strvcat( [ upper(strcom) ' info exists in file: ' filename ], ... 'However, as detailed below, it does not fit with the requested values:'); textgui2 = strvcat(txt{:}); %textgui2 = ['wavelet cycles - [' num2str(params1.cycles(1)) ' ' num2str(params2.cycles(2)) ... % '] instead of [' num2str(params1.cycles(1)) ' ' num2str(params2.cycles(2)) ... % '], padratio - ' num2str(params1.padratio) ' instead of ' num2str(param2.padratio) ... % ', and bootstrap significance - ' num2str(params1.alpha) ' instead of ' num2str(params2.alpha) ]; uilist = { {'style' 'text' 'string' textgui1 } ... {'style' 'text' 'string' textgui2 } {} ... {'style' 'text' 'string' ['Would you like to recompute ' upper(strcom) ' and overwrite those values?' ]} ... {'style' 'checkbox' 'tag' 'ersp_yes' 'string' 'Yes, recompute' 'value' 1 'Callback' set_yes } ... {'style' 'checkbox' 'tag' 'ersp_no' 'string' 'No, use data file parameters (and existing ERSP info)' 'value' 0 'Callback' set_no } }; ersp_ans = inputgui('geometry', {[1] [1] [1] [1] [0.5 1] }, 'geomvert', [2 max(length(txt),1)*0.7 1 1 1 1], 'uilist', uilist, ... 'helpcom', '', 'title', ['Recalculate ' upper(strcom) ' parameters -- part of std_ersp()']); if isempty(ersp_ans), res = 'cancel'; return; end; if find(celltomat(ersp_ans)) == 2 % use existing ERSP info from this dataset disp(['Using file on disk: ' filename ]); params2 = params1; res = 'usedisk'; else % Over write data in dataset disp(['Deleting and recomputing file: ' filename ]); res = 'recompute'; %delete(filename); end
github
lcnhappe/happe-master
std_changroup.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_changroup.m
5,933
utf_8
3ec8fa1b075f3697d4a1c1970be1031b
% std_changroup() - Create channel groups for plotting. % % Usage: % >> STUDY = std_changroup(STUDY, ALLEEG); % >> STUDY = std_changroup(STUDY, ALLEEG, chanlocs, 'interp'); % Inputs: % ALLEEG - Top-level EEGLAB vector of loaded EEG structures for the dataset(s) % in the STUDY. ALLEEG for a STUDY set is typically loaded using % pop_loadstudy(), or in creating a new STUDY, using pop_createstudy(). % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % chanlocs - EEGLAB channel structure. Only construct the STUDY.changrp % structure for a subset of channels. % 'interp' - optional input in case channel locations are interpolated % % Outputs: % STUDY - The input STUDY set structure modified according to specified user % edits, if any. The STUDY.changrp structure is created. It contains as % many elements as there are channels. For example, STUDY.changrp(1) % is the first channel. Fields of the changrp structure created at this % point are % STUDY.changrp.name : name of the channel group % STUDY.changrp.channels : cell array containing channel labels % for the group. % STUDY.changrp.setinds : indices of datasets containing the % selected channels. % STUDY.changrp.allinds : indices of channels within the datasets % above. % % Authors: Arnaud Delorme, CERCO, 2006 % Copyright (C) Arnaud Delorme, CERCO, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_changroup(STUDY, ALLEEG, alllocs, interp); if nargin < 4 interp = 'off'; end; % union of all channel structures % ------------------------------- inputloc = 0; if nargin >= 3 if ~isempty(alllocs) inputloc = 1; end; end; if ~inputloc alllocs = eeg_mergelocs(ALLEEG.chanlocs); end; % create group for each electrode % ------------------------------- if isstruct(alllocs) alllocs = { alllocs.labels }; end; STUDY.changrp = []; for indc = 1:length(alllocs) STUDY.changrp(indc).name = alllocs{indc}; STUDY.changrp(indc).channels = { alllocs{indc} }; tmp = std_chanlookupnew( STUDY, ALLEEG, STUDY.changrp(indc), interp); STUDY.changrp(indc).setinds = tmp.setinds; STUDY.changrp(indc).allinds = tmp.allinds; STUDY.changrp(indc).centroid = []; end; % if strcmpi(interp, 'off') % if length(unique( cellfun(@length, { ALLEEG.chanlocs }))) ~= 1 % STUDY.changrpstatus = 'some channels missing in some datasets'; % else STUDY.changrpstatus = 'all channels present in all datasets'; % end; % else STUDY.changrpstatus = 'all channels present in all datasets - interpolated'; % end; %STUDY.changrp(indc).name = [ 'full montage' ]; %STUDY.changrp(indc).channels = { alllocs.labels }; %tmp = std_chanlookup( STUDY, ALLEEG, STUDY.changrp(indc)); %STUDY.changrp(indc).chaninds = tmp.chaninds; return; % find datasets and channel indices % --------------------------------- function changrp = std_chanlookupnew( STUDY, ALLEEG, changrp, interp); setinfo = STUDY.design(STUDY.currentdesign).cell; allconditions = STUDY.design(STUDY.currentdesign).variable(1).value; allgroups = STUDY.design(STUDY.currentdesign).variable(2).value; nc = max(length(allconditions),1); ng = max(length(allgroups), 1); changrp.allinds = cell( nc, ng ); changrp.setinds = cell( nc, ng ); for index = 1:length(setinfo) % get index of independent variables % ---------------------------------- condind = std_indvarmatch( setinfo(index).value{1}, allconditions); grpind = std_indvarmatch( setinfo(index).value{2}, allgroups ); if isempty(allconditions), condind = 1; end; if isempty(allgroups), grpind = 1; end; % scan all channel labels % ----------------------- if strcmpi(interp, 'off') datind = setinfo(index).dataset; tmpchanlocs = ALLEEG(datind(1)).chanlocs; tmplocs = { tmpchanlocs.labels }; for indc = 1:length(changrp.channels) % usually just one channel ind = strmatch( changrp.channels{indc}, tmplocs, 'exact'); if length(ind) > 1, error([ 'Duplicate channel label ''' tmplocs{ind(1)} ''' for dataset ' int2str(datind) ]); end; if ~isempty(ind) changrp.allinds{ condind, grpind } = [ changrp.allinds{ condind, grpind } ind ]; changrp.setinds{ condind, grpind } = [ changrp.setinds{ condind, grpind } index ]; end; end; else % interpolation is "on", all channels for all datasets alllocs = { STUDY.changrp.name }; ind = strmatch( changrp.name, alllocs, 'exact'); changrp.allinds{ condind, grpind } = [ changrp.allinds{ condind, grpind } ind ]; changrp.setinds{ condind, grpind } = [ changrp.setinds{ condind, grpind } index ]; end; end;
github
lcnhappe/happe-master
std_reset.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_reset.m
1,619
utf_8
72ffdfcbfcf2b3d338ff1b59bcf6d6d5
% std_reset() - Remove all preloaded measures from STUDY % % Usage: % >> STUDY = std_reset(STUDY); % % Inputs: % STUDY - EEGLAB STUDY structure % % Outputs: % STUDY - EEGLAB STUDY structure % % Author: Arnaud Delorme, CERCO/CNRS & SCCN, INC, UCSD, 2009- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_reset(STUDY) if nargin < 1 help std_reset; return; end; fields = { 'erpdata' 'erptimes' 'specdata' 'specfreqs' 'erspdata' ... 'ersptimes' 'erspfreqs' 'itcdata' 'itctimes' 'itcfreqs' ... 'topo' 'topox' 'topoy' 'topoall' 'topopol' 'dipole' }; for ind = 1:length(fields) if isfield(STUDY.cluster, fields{ind}) STUDY.cluster = rmfield(STUDY.cluster, fields{ind}); end; if isfield(STUDY, 'changrp') if isfield(STUDY.changrp, fields{ind}) STUDY.changrp = rmfield(STUDY.changrp, fields{ind}); end; end; end;
github
lcnhappe/happe-master
std_substudy.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_substudy.m
5,138
utf_8
d57013b3c25ff4a8d8588e247f07bd61
% std_substudy() - create a sub-STUDY set by removing datasets, conditions, groups, or % subjects. % Usage: % >> [ STUDY ALLEEG ] = std_substudy(STUDY, ALLEEG, 'key', 'val', ...); % % Optional Inputs: % STUDY - existing study structure. % ALLEEG - vector of EEG dataset structures to be included in the STUDY. % % Optional Inputs: % 'dataset' - [integer array] indices of dataset to include in sub-STUDY % Default is all datasets. % 'subject' - [cell array] name of subjects to include in sub-STUDY. % Default is all subjects.% % 'condition' - [cell array] name of conditions to include in sub-STUDY % Default is all conditions. % 'group' - [cell array] name of gourps to include in sub-STUDY % Default is all groups. % 'rmdat' - ['on'|'off'] actually remove datasets 'on', or simply % remove all references to these datasets for channels and % clusters ('off'). % % Example: % % create a sub-STUDY using only the first 3 subjects % % WARNING: make sure your STUDY is saved before creating a sub-STUDY % [STUDY ALLEEG] = std_substudy(STUDY, ALLEEG, 'subject', STUDY.subjects(1:3)); % % Authors: Arnaud Delorme, CERCO/CNSR & SCCN, INC, UCSD, 2009- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY ALLEEG ] = std_substudy(STUDY, ALLEEG, varargin); if nargin < 3 help std_substudy; return; end opt = finputcheck(varargin, { 'condition' 'cell' {} {}; 'dataset' 'integer' {} []; 'group' 'cell' {} {}; 'rmdat' 'string' { 'on','off' } 'on'; 'subject' 'cell' {} {} }, 'std_substudy'); if isstr(opt), return; end; % find datasets to remove % ----------------------- tagdel = []; if ~isempty(opt.subject) for index = 1:length(STUDY.datasetinfo) if ~strmatch(STUDY.datasetinfo.subject, opt.subject, 'exact') tagdel = [ tagdel index ]; end; end; end; if ~isempty(opt.condition) for index = 1:length(STUDY.datasetinfo) if ~strmatch(STUDY.datasetinfo.condition, opt.condition, 'exact') tagdel = [ tagdel index ]; end; end; end; if ~isempty(opt.group) for index = 1:length(STUDY.datasetinfo) if ~strmatch(STUDY.datasetinfo.group, opt.group, 'exact') tagdel = [ tagdel index ]; end; end; end; if ~isempty(opt.dataset) tagdel = [ tagdel setdiff([1:length(ALLEEG)], opt.dataset) ]; end; tagdel = unique_bc(tagdel); % find new dataset indices % ------------------------ alldats = [1:length(ALLEEG)]; if strcmpi(opt.rmdat, 'on') alldats(tagdel) = []; for index = 1:length(ALLEEG) tmp = find(alldats == index); if isempty(tmp), tmp = NaN; end; datcoresp(index) = tmp; end; ALLEEG(tagdel) = []; STUDY.datasetinfo(tagdel) = []; for index = 1:length(STUDY.datasetinfo) STUDY.datasetinfo(index).index = index; end; else alldats(tagdel) = []; for index = 1:length(ALLEEG) tmp = find(alldats == index); if isempty(tmp), tmp = NaN; else tmp = index; end; datcoresp(index) = tmp; end; end; % check channel consistency % ------------------------- for i = 1:length(STUDY.changrp) for c = 1:size(STUDY.changrp(i).setinds,1) for g = 1:size(STUDY.changrp(i).setinds,2) newinds = datcoresp(STUDY.changrp(i).setinds{c,g}); nonnans = find(~isnan(newinds)); STUDY.changrp(i).setinds{c,g} = newinds(nonnans); STUDY.changrp(i).allinds{c,g} = STUDY.changrp(i).allinds{c,g}(nonnans); end; end; end; % check cluster consistency % ------------------------- for index = 1:length(STUDY.cluster) STUDY.cluster(index).sets(:) = datcoresp(STUDY.cluster(index).sets(:)); for i = size(STUDY.cluster(index).sets,2):-1:1 if all(isnan(STUDY.cluster(index).sets(:,i))) STUDY.cluster(index).sets(:,i) = []; STUDY.cluster(index).comps(:,i) = []; end; end; [tmp STUDY.cluster(index).setinds STUDY.cluster(index).allinds] = std_setcomps2cell(STUDY, STUDY.cluster(index).sets, STUDY.cluster(index).comps); end; STUDY = std_reset(STUDY); STUDY = std_checkset(STUDY, ALLEEG);
github
lcnhappe/happe-master
std_plot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_plot.m
1,013
utf_8
c20379b5799cb761b42ccc8e155eb139
% std_plot() - This function is outdated. Use std_plottf() to plot time/ % frequency decompositions and function std_plotcurve() to % plot erp and spectrum. % Copyright (C) 2006 Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [pgroup, pcond, pinter] = std_plot(allx, data, varargin) help std_plot; return;
github
lcnhappe/happe-master
pop_precomp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_precomp.m
21,303
utf_8
3635c5fd488f6a3f81aadbc21962c9c5
% pop_precomp() - precompute measures (spectrum, ERP, ERSP) for a collection of data % channels. Calls std_precomp(). % Usage: % >> [STUDY, ALLEEG] = pop_precomp(STUDY, ALLEEG); % pop up interactive window % Inputs: % STUDY - STUDY set structure containing (loaded) EEG dataset structures % ALLEEG - ALLEEG vector of EEG structures, else a single EEG dataset. % % Outputs: % STUDY - the input STUDY set with added pre-clustering data for use by pop_clust() % ALLEEG - the input ALLEEG vector of EEG dataset structures modified by adding % pre-clustering data (pointers to .mat files that hold cluster measure information). % % Authors: Arnaud Delorme, CERCO, CNRS, 2006- % % See also: std_precomp() % Copyright (C) Arnaud Delorme, CERCO, CNRS, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, ALLEEG, com] = pop_precomp(varargin) com = ''; if ~isstr(varargin{1}) %intial settings if length(varargin) < 2 error('pop_precomp(): needs both ALLEEG and STUDY structures'); end STUDY = varargin{1}; ALLEEG = varargin{2}; comps = false; if nargin > 2 if strcmpi(varargin{3}, 'components') comps = true; end; end; if isempty(ALLEEG) error('STUDY contains no datasets'); end % callbacks % --------- erspparams_str = [ '''cycles'', [3 0.8], ''nfreqs'', 100, ''ntimesout'', 200' ]; specparams_str = '''specmode'', ''fft'', ''logtrials'', ''off'''; erpimageparams_str = '''nlines'', 10,''smoothing'', 10'; set_ersp = ['pop_precomp(''setersp'',gcf);']; test_ersp = ['pop_precomp(''testersp'',gcf);']; set_itc = ['pop_precomp(''setitc'',gcf);']; set_spec = ['pop_precomp(''setspec'',gcf);']; set_erp = ['pop_precomp(''seterp'',gcf);']; set_erpimage = ['pop_precomp(''seterpimage'',gcf);']; test_spec = ['pop_precomp(''testspec'',gcf);']; test_erpimage = ['pop_precomp(''testerpimage'',gcf);']; chanlist = ['pop_precomp(''chanlist'',gcf);']; chanlist = 'warndlg2([ ''You need to compute measures on all data channels.'' 10 ''This functionality is under construction.'']);'; chaneditbox = ['pop_precomp(''chaneditbox'',gcf);']; warninterp = ''; %['warndlg2(''EEGLAB will crash when plotting a given channel if it is missing in one dataset'');' ]; cb_ica1 = ''; %[ 'if get(gcbo, ''value''), set(findobj(gcbf, ''tag'', ''rmica2_on''), ''value'', 0); end;' ]; cb_ica2 = ''; %[ 'if get(gcbo, ''value''), set(findobj(gcbf, ''tag'', ''rmica1_on''), ''value'', 0); end;' ]; geomline = [0.35 6]; if comps == true str_name = sprintf('Pre-compute component measures for STUDY ''%s'' - ''%s''', ... STUDY.name, STUDY.design(STUDY.currentdesign).name); if length(str_name) > 80, str_name = [ str_name(1:80) '...' ]; end; guiadd1 = { {'style' 'checkbox' 'string' '' 'tag' 'compallersp' 'value' 1 } ... {'style' 'text' 'string' 'Compute ERP/spectrum/ERSP only for components selected by RV (set) or for all components (unset)' } }; guiadd2 = { {'style' 'checkbox' 'string' '' 'tag' 'scalp_on' 'value' 0 } ... {'style' 'text' 'string' 'Scalp maps' } }; geomadd1 = { geomline }; geomvertadd1 = [ 1 ]; geomadd2 = { geomline }; else str_name = sprintf('Pre-compute channel measures for STUDY ''%s'' - ''%s''', ... STUDY.name, STUDY.design(STUDY.currentdesign).name); if length(str_name) > 80, str_name = [ str_name(1:80) '...''' ]; end; guiadd1 = { {'style' 'text' 'string' 'Channel list (default:all)' 'FontWeight' 'Bold'} ... {'Style' 'edit' 'string' '' 'tag' 'chans' 'callback' chaneditbox 'enable' 'off' }, ... {'style' 'pushbutton' 'string' '...', 'enable' fastif(isempty(ALLEEG(1).chanlocs), 'off', 'on') ... 'callback' chanlist }, ... {'style' 'checkbox' 'string' '' 'tag' 'interpolate_on' 'value' 1 'callback' warninterp } ... {'style' 'text' 'string' 'Spherical interpolation of missing channels (performed after optional ICA removal below)' } ... {'style' 'checkbox' 'string' ' ' 'tag' 'rmica1_on' 'value' 0 'callback' cb_ica1 } ... {'style' 'text' 'string' 'Remove ICA artifactual components pre-tagged in each dataset' } ... {'style' 'checkbox' 'string' [ ' ' 10 ' ' ] 'tag' 'rmica2_on' 'value' 0 'callback' cb_ica2 } ... {'style' 'text' 'string' [ 'Remove artifactual ICA cluster or clusters (hold shift key)' 10 ' ' ] } ... {'style' 'listbox' 'string' { STUDY.cluster.name } 'value' 1 'max' 2 'tag' 'rmica2_val'} }; guiadd2 = {}; geomadd1 = { [2 3 0.5] geomline geomline [0.35 4 2] }; geomvertadd1 = [ 1 1 1 2 ]; geomadd2 = { }; end; gui_spec = { ... {'style' 'text' 'string' str_name 'FontWeight' 'Bold' 'horizontalalignment' 'left'}, ... {'style' 'text' 'string' '(warning: define your STUDY designs first as precomputation is specific to a given STUDY design)' } {}, ... guiadd1{:}, ... {} {'style' 'text' 'string' 'List of measures to precompute' 'FontWeight' 'Bold' 'horizontalalignment' 'left'}, ... {'style' 'checkbox' 'string' '' 'tag' 'erp_on' 'value' 0 'Callback' set_erp } , ... {'style' 'text' 'string' 'ERPs' }, {}, ... {'style' 'text' 'string' 'Baseline ([min max] in ms)' 'tag' 'erp_text' 'enable' 'off'}... {'style' 'edit' 'string' '' 'tag' 'erp_base' 'enable' 'off' }, { }, ... {'style' 'checkbox' 'string' '' 'tag' 'spectra_on' 'value' 0 'Callback' set_spec }, ... {'style' 'text' 'string' 'Power spectrum' }, {}, ... {'style' 'text' 'string' 'Spectopo parameters' 'tag' 'spec_push' 'enable' 'off'}... {'style' 'edit' 'string' specparams_str 'tag' 'spec_params' 'enable' 'off' }, ... {'style' 'pushbutton' 'string' 'Test' 'tag' 'spec_test' 'enable' 'off' 'callback' test_spec}... {'style' 'checkbox' 'string' '' 'tag' 'erpimage_on' 'value' 0 'Callback' set_erpimage }, ... {'style' 'text' 'string' 'ERP-image' }, {}, ... {'style' 'text' 'string' 'ERP-image parameters' 'tag' 'erpimage_push' 'enable' 'off'}... {'style' 'edit' 'string' erpimageparams_str 'tag' 'erpimage_params' 'enable' 'off' }, ... {'style' 'pushbutton' 'string' 'Test' 'tag' 'erpimage_test' 'enable' 'off' 'callback' test_erpimage}... {'style' 'checkbox' 'string' '' 'tag' 'ersp_on' 'value' 0 'Callback' set_ersp } , ... {'style' 'text' 'string' 'ERSPs' 'horizontalalignment' 'center' }, {}, ... {'vertshift' 'style' 'text' 'string' 'Time/freq. parameters' 'tag' 'ersp_push' 'value' 1 'enable' 'off'}, ... {'vertshift' 'style' 'edit' 'string' erspparams_str 'tag' 'ersp_params' 'enable' 'off'}... {'vertshift' 'style' 'pushbutton' 'string' 'Test' 'tag' 'ersp_test' 'enable' 'off' 'callback' test_ersp }... {'style' 'checkbox' 'string' '' 'tag' 'itc_on' 'value' 0 'Callback' set_itc }, ... {'style' 'text' 'string' 'ITCs' 'horizontalalignment' 'center' }, {'link2lines' 'style' 'text' 'string' '' } {} {} {}, ... guiadd2{:}, ... {}, ... {'style' 'checkbox' 'string' 'Save single-trial measures for single-trial statistics (beta) - requires disk space' 'tag' 'savetrials_on' 'value' 0 } {}, ... {'style' 'checkbox' 'string' 'Overwrite files on disk' 'tag' 'recomp_on' 'value' 1 } {}, ... }; %{'style' 'checkbox' 'string' '' 'tag' 'precomp_PCA' 'Callback' precomp_PCA 'value' 0} ... %{'style' 'text' 'string' 'Do not prepare dataset for clustering at this time.' 'FontWeight' 'Bold' } {} ... % find the list of all channels % ----------------------------- allchans = { }; keepindex = 0; for index = 1:length(ALLEEG) tmpchanlocs = ALLEEG(index).chanlocs; tmpchans = { tmpchanlocs.labels }; allchans = unique_bc({ allchans{:} tmpchanlocs.labels }); if length(allchans) == length(tmpchans), keepindex = index; end; end; if keepindex, tmpchanlocs = ALLEEG(keepindex).chanlocs; allchans = { tmpchanlocs.labels }; end; chanlist = {}; firsttimeersp = 1; fig_arg = { ALLEEG STUDY allchans chanlist firsttimeersp }; geomline1 = [0.40 1.3 0.1 2 2.4 0.65 ]; geomline2 = [0.40 0.9 0.5 2 2.4 0.65 ]; geometry = { [1] [1] [1] geomadd1{:} [1] [1] geomline1 geomline1 geomline1 geomline2 geomline2 geomadd2{:} 1 [1 0.1] [1 0.1] }; geomvert = [ 1 1 0.5 geomvertadd1 0.5 1 1 1 1 1 1 1 fastif(length(geomadd2) == 1,1,[]) 1 1]; [precomp_param, userdat2, strhalt, os] = inputgui( 'geometry', geometry, 'uilist', gui_spec, 'geomvert', geomvert, ... 'helpcom', ' pophelp(''std_precomp'')', ... 'title', 'Select and compute component measures for later clustering -- pop_precomp()', ... 'userdata', fig_arg); if isempty(precomp_param), return; end; if comps == 1 options = { STUDY ALLEEG 'components' }; else options = { STUDY ALLEEG userdat2{4} }; end if ~isfield(os, 'interpolate_on'), os.interpolate_on = 0; end; if ~isfield(os, 'scalp_on'), os.scalp_on = 0; end; if ~isfield(os, 'compallersp'), os.compallersp = 1; end; warnflag = 0; % rm_ica option is on % ------------------- if isfield(os, 'rmica1_on') if os.rmica1_on == 1 options = { options{:} 'rmicacomps' 'on' }; end end; % remove ICA cluster % ------------------ if isfield(os, 'rmica2_on') if os.rmica2_on == 1 options = { options{:} 'rmclust' os.rmica2_val }; end end; % interpolate option is on % ------------------------ if os.savetrials_on == 1 options = { options{:} 'savetrials' 'on' }; end % interpolate option is on % ------------------------ if os.interpolate_on == 1 options = { options{:} 'interp' 'on' }; end % compallersp option is on % ------------------------ if os.compallersp == 0 options = { options{:} 'allcomps' 'on' }; end % recompute option is on % ---------------------- if os.recomp_on == 1 options = { options{:} 'recompute' 'on' }; end % ERP option is on % ---------------- if os.erp_on == 1 options = { options{:} 'erp' 'on' }; if ~isempty(os.erp_base) options = { options{:} 'erpparams' { 'rmbase' str2num(os.erp_base) } }; end warnflag = checkFilePresent(STUDY, 'erp', comps, warnflag, os.recomp_on); end % SCALP option is on % ---------------- if os.scalp_on == 1 options = { options{:} 'scalp' 'on' }; end % Spectrum option is on % -------------------- if os.spectra_on== 1 tmpparams = eval( [ '{' os.spec_params '}' ] ); options = { options{:} 'spec' 'on' 'specparams' tmpparams }; warnflag = checkFilePresent(STUDY, 'spec', comps, warnflag, os.recomp_on); end % ERPimage option is on % -------------------- if os.erpimage_on== 1 tmpparams = eval( [ '{' os.erpimage_params '}' ] ); options = { options{:} 'erpim' 'on' 'erpimparams' tmpparams }; warnflag = checkFilePresent(STUDY, 'erpim', comps, warnflag, os.recomp_on); end % ERSP option is on % ----------------- if os.ersp_on == 1 tmpparams = eval( [ '{' os.ersp_params '}' ] ); options = { options{:} 'ersp' 'on' 'erspparams' tmpparams }; warnflag = checkFilePresent(STUDY, 'ersp', comps, warnflag, os.recomp_on); end % ITC option is on % ---------------- if os.itc_on == 1 tmpparams = eval( [ '{' os.ersp_params '}' ] ); options = { options{:} 'itc' 'on' }; if os.ersp_on == 0, options = { options{:} 'erspparams' tmpparams }; end; warnflag = checkFilePresent(STUDY, 'itc', comps, warnflag, os.recomp_on); end % evaluate command % ---------------- if length(options) == 4 warndlg2('No measure selected: aborting.'); return; end; [STUDY ALLEEG] = std_precomp(options{:}); com = sprintf('[STUDY ALLEEG] = std_precomp(STUDY, ALLEEG, %s);', vararg2str(options(3:end))); else hdl = varargin{2}; %figure handle userdat = get(varargin{2}, 'userdata'); ALLEEG = userdat{1}; STUDY = userdat{2}; allchans = userdat{3}; chansel = userdat{4}; firsttimeersp = userdat{5}; switch varargin{1} case 'chanlist' [tmp tmp2 tmp3] = pop_chansel(allchans, 'select', chansel); if ~isempty(tmp) set(findobj('parent', hdl, 'tag', 'chans'), 'string', tmp2); userdat{4} = tmp3; end; set(hdl, 'userdata',userdat); case 'chaneditbox' userdat{4} = parsetxt(get(findobj('parent', hdl, 'tag', 'chans'), 'string')); set(hdl, 'userdata',userdat); case { 'setitc' 'setersp' } set_itc = get(findobj('parent', hdl, 'tag', 'itc_on'), 'value'); set_ersp = get(findobj('parent', hdl, 'tag', 'ersp_on'), 'value'); if (~set_ersp & ~set_itc ) set(findobj('parent', hdl,'tag', 'ersp_push'), 'enable', 'off'); set(findobj('parent', hdl,'tag', 'ersp_params'), 'enable', 'off'); set(findobj('parent', hdl,'tag', 'ersp_test'), 'enable', 'off'); else set(findobj('parent', hdl,'tag', 'ersp_push'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'ersp_params'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'ersp_test'), 'enable', 'on'); end userdat{5} = 0; set(hdl, 'userdata',userdat); if firsttimeersp warndlg2(strvcat('Checking both ''ERSP'' and ''ITC'' does not require further', ... 'computing time. However it requires disk space')); end; case 'setspec' set_spec = get(findobj('parent', hdl, 'tag', 'spectra_on'), 'value'); if set_spec set(findobj('parent', hdl,'tag', 'spec_push'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'spec_params'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'spec_test'), 'enable', 'on'); else set(findobj('parent', hdl,'tag', 'spec_push'), 'enable', 'off'); set(findobj('parent', hdl,'tag', 'spec_params'), 'enable', 'off'); set(findobj('parent', hdl,'tag', 'spec_test'), 'enable', 'off'); end case 'seterpimage' set_spec = get(findobj('parent', hdl, 'tag', 'erpimage_on'), 'value'); if set_spec set(findobj('parent', hdl,'tag', 'erpimage_push'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'erpimage_params'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'erpimage_test'), 'enable', 'on'); else set(findobj('parent', hdl,'tag', 'erpimage_push'), 'enable', 'off'); set(findobj('parent', hdl,'tag', 'erpimage_params'), 'enable', 'off'); set(findobj('parent', hdl,'tag', 'erpimage_test'), 'enable', 'off'); end case 'seterp' set_erp = get(findobj('parent', hdl, 'tag', 'erp_on'), 'value'); if set_erp set(findobj('parent', hdl,'tag', 'erp_text'), 'enable', 'on'); set(findobj('parent', hdl,'tag', 'erp_base'), 'enable', 'on'); else set(findobj('parent', hdl,'tag', 'erp_text'), 'enable', 'off'); set(findobj('parent', hdl,'tag', 'erp_base'), 'enable', 'off'); end case 'testspec' try, spec_params = eval([ '{' get(findobj('parent', hdl, 'tag', 'spec_params'), 'string') '}' ]); TMPEEG = eeg_checkset(ALLEEG(1), 'loaddata'); [ X f ] = std_spec(TMPEEG, 'channels', { TMPEEG.chanlocs(1).labels }, 'trialindices', { [1:min(20,TMPEEG.trials)] }, 'recompute', 'on', 'savefile', 'off', spec_params{:}); figure; plot(f, X); xlabel('Frequencies (Hz)'); ylabel('Power'); xlim([min(f) max(f)]); tmplim = ylim; text( TMPEEG.srate/4, mean(tmplim)+(max(tmplim)-min(tmplim))/3, ... strvcat('This is a test plot performed on', ... 'the first 20 trials of the first', ... 'dataset (1 line per channel).', ... 'Frequency range may be adjusted', ... 'after computation')); icadefs; set(gcf, 'color', BACKCOLOR); catch, warndlg2('Error while calling function, check parameters'); end; case 'testersp' try, ersp_params = eval([ '{' get(findobj('parent', hdl, 'tag', 'ersp_params'), 'string') '}' ]); tmpstruct = struct(ersp_params{:}); [ tmpX tmpt tmpf ersp_params ] = std_ersp(ALLEEG(1), 'channels', 1, 'trialindices', { [1:min(20,ALLEEG(1).trials)] }, 'type', 'ersp', 'recompute', 'on', 'savefile', 'off', ersp_params{:}); std_plottf(tmpt, tmpf, { tmpX }); catch, warndlg2('Error while calling function, check parameters'); end; case 'testerpimage' try, erpimage_params = eval([ '{' get(findobj('parent', hdl, 'tag', 'erpimage_params'), 'string') '}' ]); tmpstruct = struct(erpimage_params{:}); erpimstruct = std_erpimage(ALLEEG(1), 'channels', 1, 'recompute', 'on', 'savefile', 'off', erpimage_params{:}); figure; pos = get(gcf, 'position'); pos(3)=pos(3)*2; set(gcf, 'position', pos); subplot(1,2,1); tftopo(erpimstruct.chan1, erpimstruct.times, 1:size(erpimstruct.chan1,1), 'ylabel', 'Trials'); subplot(1,2,2); text( 0.2, 0.8, strvcat( 'This is a test plot performed on', ... 'the first channel of the first', ... 'dataset.', ... ' ', ... 'Time and trial range may be', ... 'adjusted after computation.'), 'fontsize', 18); axis off; icadefs; set(gcf, 'color', BACKCOLOR); catch, warndlg2('Error while calling function, check parameters'); end; end; end STUDY.saved = 'no'; % check if file is present % ------------------------ function warnflag = checkFilePresent(STUDY, datatype, comps, warnflag, recompute); if ~recompute, return; end; if warnflag, return; end; % warning has already been issued if comps dataFilename = [ STUDY.design(STUDY.currentdesign).cell(1).filebase '.ica' datatype ]; else dataFilename = [ STUDY.design(STUDY.currentdesign).cell(1).filebase '.dat' datatype ]; end; if exist(dataFilename) textmsg = [ 'WARNING: SOME DATAFILES ALREADY EXIST, OVERWRITE THEM?' 10 ... '(if you have another STUDY using the same datasets, it might overwrite its' 10 ... 'precomputed data files. Instead, use a single STUDY and create multiple designs).' ]; res = questdlg2(textmsg, 'Precomputed datafiles already present on disk', 'No', 'Yes', 'Yes'); if strcmpi(res, 'No') error('User aborded precomputing measures'); end; end; warnflag = 1;
github
lcnhappe/happe-master
std_prepare_neighbors.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_prepare_neighbors.m
4,382
utf_8
a4a473e9fb500e8887f25e81a5641d93
% std_prepare_neighbors() - prepare Fieldtrip channel neighbor structure. % Only prepare the structure if necessary based % on statistical options in STUDY.etc.statistics. % Use the 'force' option to force preparing the % matrix. % % Usage: % >> [STUDY neighbors] = std_prepare_neighbors( STUDY, ALLEEG, 'key', val) % % Inputs: % STUDY - an EEGLAB STUDY set of loaded EEG structures % ALLEEG - ALLEEG vector of one or more loaded EEG dataset structures % % Optional inputs: % 'force' - ['on'|'off'] force generating the structure irrespective % of the statistics options selected. Default is 'off'. % 'channels' - [cell] list of channels to include in the matrix % 'method' - [string] method for preparing. See ft_prepare_neighbors % 'neighbordist' - [float] max distance. See ft_prepare_neighbors % % Note: other ft_prepare_neighbors fields such as template, layout may % also be used as optional keywords. % % Outputs: % STUDY - an EEGLAB STUDY set of loaded EEG structures % neighbors - Fieldtrip channel neighbour structure % % Author: Arnaud Delorme, SCCN, UCSD, 2012- % % See also: statcondfieldtrip() % Copyright (C) Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY neighbors] = std_prepare_neighbors(STUDY, ALLEEG, varargin); neighbors = []; if nargin < 2 return; end; [opt addopts] = finputcheck( varargin, { 'force' 'string' { 'on','off' } 'off'; 'channels' 'cell' {} {} }, 'std_stat', 'ignore'); if strcmpi(opt.force, 'on') || (strcmpi(STUDY.etc.statistics.fieldtrip.mcorrect, 'cluster') && ... strcmpi(STUDY.etc.statistics.mode, 'fieldtrip') && (strcmpi(STUDY.etc.statistics.groupstats, 'on') || strcmpi(STUDY.etc.statistics.condstats, 'on'))) EEG = eeg_emptyset; EEG.chanlocs = eeg_mergelocs(ALLEEG.chanlocs); if isempty(EEG.chanlocs) disp('std_prepare_neighbors: cannot prepare channel neighbour structure because of empty channel structures'); return; end; if ~isempty(STUDY.etc.statistics.fieldtrip.channelneighbor) && isempty(addopts) && ... length(STUDY.etc.statistics.fieldtrip.channelneighbor) == length(EEG.chanlocs) disp('Using stored channel neighbour structure'); neighbors = STUDY.etc.statistics.fieldtrip.channelneighbor; else if ~isempty(opt.channels) indChans = eeg_chaninds(EEG, opt.channels); EEG.chanlocs = EEG.chanlocs(indChans); end; EEG.nbchan = length(EEG.chanlocs); EEG.data = zeros(EEG.nbchan,100,1); EEG.trials = 1; EEG.pnts = 100; EEG.xmin = 0; EEG.srate = 1; EEG.xmax = 99; EEG = eeg_checkset(EEG); tmpcfg = eeglab2fieldtrip(EEG, 'preprocessing', 'none'); % call the function that find channel neighbors % --------------------------------------------- addparams = eval( [ '{' STUDY.etc.statistics.fieldtrip.channelneighborparam '}' ]); for index = 1:2:length(addparams) tmpcfg = setfield(tmpcfg, addparams{index}, addparams{index+1}); end; for index = 1:2:length(addopts) tmpcfg = setfield(tmpcfg, addopts{index}, addopts{index+1}); end; warning off; cfg.neighbors = ft_prepare_neighbours(tmpcfg, tmpcfg); warning on; neighbors = cfg.neighbors; end; STUDY.etc.statistics.fieldtrip.channelneighbor = neighbors; end;
github
lcnhappe/happe-master
std_savedat.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_savedat.m
1,752
utf_8
32ee6d94f325818156111da795834c6d
% std_savedat() - save measure for computed data % % Usage: std_savedat( filename, structure); % % Authors: Arnaud Delorme, SCCN, INC, UCSD, 2006- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function std_savedat( tmpfile, structure) delims = find( tmpfile == '.'); if ~isfield(structure, 'datafile') && ~isfield(structure, 'datafiles') structure.datafile = [ tmpfile(1:delims(end)-1) '.set' ]; end; % fix reading problem (bug 764) tmpfile2 = which(tmpfile); if isempty(tmpfile2), tmpfile2 = tmpfile; end; tmpfile = tmpfile2; eeglab_options; if option_saveversion6 try save('-v6' , tmpfile, '-struct', 'structure'); catch fields = fieldnames(structure); for i=1:length(fields) eval([ fields{i} '=structure.' fields{i} ';']); end; save('-mat', tmpfile, fields{:}); end; else save('-v7.3' , tmpfile, '-struct', 'structure'); end;
github
lcnhappe/happe-master
std_clustmaxelec.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_clustmaxelec.m
2,424
utf_8
1a243dcf2ffd5e5be4cbaf58a69e3ac9
% std_clustmaxelec() - function to find the electrode with maximum absolute projection % for each component of a cluster % Usage: % >> [STUDY, ALLEEG] = std_clustmaxelec(STUDY, ALLEEG, clustind); % % Inputs: % STUDY - STUDY set structure containing (loaded) EEG dataset structures % ALLEEG - ALLEEG vector of EEG structures, else a single EEG dataset. % clustind - (single) cluster index % % Outputs: % eleclist - [cell] electrode list % setlist - [integer] set indices for the cluster % complist - [integer] component indices for the cluster % % Authors: Claire Braboszcz & Arnaud Delorme , CERCO, UPS/CRNS, 2011 % Copyright (C) Claire Braboszcz, CERCO, UPS/CRNS, 2011 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function std_clustmaxelec(STUDY, ALLEEG, clusterind); if nargin < 1 help findicmaxelec; return; end; fprintf('Finding electrodes with max weight for cluster %d\n', clusterind); fprintf('-------------------------------------------------\n'); for index = 1:length(STUDY.cluster(clusterind).comps) set = STUDY.cluster(clusterind).sets(1,index); comp = STUDY.cluster(clusterind).comps( index); [tmp maxelec] = max( abs(ALLEEG(set).icawinv(:, comp)) ); indelec = ALLEEG(set).icachansind(maxelec); maxallelec{index} = ALLEEG(set).chanlocs(indelec).labels; allelec = unique_bc(maxallelec); fprintf('The electrode with the max weight for component %d of dataset %d is "%s"\n', comp, set, maxallelec{index}); end; for indelec=1:length(allelec) nbelec{indelec} = length(find(strcmp(allelec{indelec}, maxallelec) == 1)); fprintf('Number of occurrence of electrode %s: %d\n', allelec{indelec}, nbelec{indelec}); end;
github
lcnhappe/happe-master
pop_studydesign.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_studydesign.m
28,501
utf_8
c75d88532140cf5c2dfed99d9a06843f
% pop_studydesign() - create a STUDY design structure. % % Usage: % >> [STUDY, ALLEEG] = pop_studydesign(STUDY, ALLEEG, key1, val1, ...); % % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % % Optional inputs: % % Authors: Arnaud Delorme, April 2010 % Copyright (C) Arnaud Delorme & Scott Makeig, SCCN/INC/UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY allcom] = pop_studydesign(STUDY, ALLEEG, designind, varargin); allcom = ''; if nargin < 2 help pop_studydesign; return; end; if nargin < 3 && ~isstr(STUDY) %% create GUI [ usrdat.factors usrdat.factorvals usrdat.factsubj] = std_getindvar(STUDY, 'both', 1); usrdat.factors = { 'None' usrdat.factors{:} }; usrdat.factorvals = { {} usrdat.factorvals{:} }; usrdat.factsubj = { {} usrdat.factsubj{:} }; usrdat.subjects = STUDY.subject; usrdat.datasetinfo = STUDY.datasetinfo; usrdat.design = STUDY.design; usrdat.filepath = STUDY.filepath; for ind = 1:length(usrdat.design) usrdat.design(ind).deletepreviousfiles = 0; end; % build menu popupselectsubj = { 'Select all subjects' }; for ind1 = 1:length(usrdat.factors) if ~isempty(usrdat.factsubj{ind1}) if any(cellfun(@length, usrdat.factsubj{ind1}) ~= length(usrdat.subjects)) for ind2 = 1:length(usrdat.factorvals{ind1}) if ~iscell(usrdat.factorvals{ind1}{ind2}) % not a combined value tmpval = encodevals(usrdat.factorvals{ind1}(ind2)); popupselectsubj{end+1} = [ num2str(usrdat.factors{ind1}) ' - ' tmpval{1} ]; end; end; end; end; end; cb_rename = 'pop_studydesign(''rename'', gcbf);'; cb_add = 'pop_studydesign(''add'', gcbf);'; cb_del = 'pop_studydesign(''del'', gcbf);'; cb_listboxfact1 = 'pop_studydesign(''selectfact'', gcf, 0);'; cb_listboxfact2 = 'pop_studydesign(''selectfact'', gcf, 1);'; cb_selectsubj = 'pop_studydesign(''selectsubj'', gcbf);'; cb_combinevals1 = 'pop_studydesign(''combinevals'', gcbf, 0);'; cb_combinevals2 = 'pop_studydesign(''combinevals'', gcbf, 1);'; cb_lbval = 'pop_studydesign(''updatedesign'', gcbf);'; cb_selectdesign = 'pop_studydesign(''selectdesign'', gcbf);'; cb_selectdata = 'pop_studydesign(''selectdatatrials'', gcbf);'; cb_selectfolder = 'pop_studydesign(''selectfolder'', gcbf);'; cb_setfolder = 'pop_studydesign(''updatedesign'', gcbf);'; uilist = { { 'style' 'text' 'string' 'Select STUDY design' 'fontweight' 'bold' } ... { 'style' 'listbox' 'string' { usrdat.design.name } 'tag' 'listboxdesign' 'callback' cb_selectdesign 'value' STUDY.currentdesign } ... { 'style' 'pushbutton' 'string' 'Add design' 'callback' cb_add } ... { 'style' 'pushbutton' 'string' 'Rename design' 'callback' cb_rename } ... { 'style' 'pushbutton' 'string' 'Delete design' 'callback' cb_del } ... { 'style' 'text' 'string' 'Subjects' 'fontweight' 'bold' } ... { 'style' 'text' 'string' 'Independent variable 1 ' 'fontweight' 'bold' } ... { 'style' 'text' 'string' 'Independent variable 2 ' 'fontweight' 'bold' } ... { 'style' 'listbox' 'string' usrdat.subjects 'tag' 'lbsubj' 'min' 0 'max' 2 'value' 1 'callback' cb_lbval } ... { 'style' 'listbox' 'string' usrdat.factors 'tag' 'lbfact0' 'callback' cb_listboxfact1 'value' 2 } ... { 'style' 'listbox' 'string' usrdat.factors 'tag' 'lbfact1' 'callback' cb_listboxfact2 'value' 1 } ... { 'style' 'text' 'string' 'Ind. var. 1 values ' } ... { 'style' 'text' 'string' 'Ind. var. 2 values' } ... { 'style' 'listbox' 'string' '' 'tag' 'lbval0' 'min' 0 'max' 2 'callback' cb_lbval } ... { 'style' 'listbox' 'string' '' 'tag' 'lbval1' 'min' 0 'max' 2 'callback' cb_lbval } ... { 'style' 'popupmenu' 'string' popupselectsubj 'tag' 'popupselect' 'callback' cb_selectsubj } ... { 'style' 'pushbutton' 'string' 'Combine selected values' 'tag' 'combine1' 'callback' cb_combinevals1 } ... { 'style' 'pushbutton' 'string' 'Combine selected values' 'tag' 'combine2' 'callback' cb_combinevals2 } ... { 'style' 'popupmenu' 'string' 'Paired statistics|Unpaired statistics' 'tag' 'lbpair0' 'callback' cb_lbval } ... { 'style' 'popupmenu' 'string' 'Paired statistics|Unpaired statistics' 'tag' 'lbpair1' 'callback' cb_lbval } ... { 'style' 'pushbutton' 'string' 'Use only specific datasets/trials' 'callback' cb_selectdata } ... { 'style' 'edit' 'string' '' 'tag' 'edit_selectdattrials' 'callback' cb_lbval } ... { 'style' 'text' 'string' 'Store pre-computed files in folder' } ... { 'style' 'edit' 'string' '' 'tag' 'edit_storedir' 'callback' cb_setfolder } ... { 'style' 'pushbutton' 'string' '...' 'callback' cb_selectfolder } ... { 'style' 'checkbox' 'string' 'Delete all pre-computed datafiles associated with this specific STUDY design' 'tag' 'chk_del' 'callback' cb_lbval } ... { 'style' 'checkbox' 'string' 'Save the STUDY' 'tag' 'chk_save' 'value' 1 } }; % { 'style' 'checkbox' 'string' 'Paired statistics' 'tag' 'lbpair0' 'callback' cb_lbval } ... % { 'style' 'checkbox' 'string' 'Paired statistics' 'tag' 'lbpair1' 'callback' cb_lbval } ... geometry = { {3 18 [1 1] [2 1] } ... {3 18 [1 2] [2 3] } ... {3 18 [3 2] [1 1] } ... {3 18 [3 3] [1 1] } ... {3 18 [3 4] [1 1] } ... {3 18 [1 5] [1 1] } ... {3 18 [2 5] [1 1] } ... {3 18 [3 5] [1 1] } ... {3 18 [1 6] [1 8] } ... {3 18 [2 6] [0.98 3] } ... {3 18 [3 6] [0.98 3] } ... {3 18 [2 9] [1 1] } ... {3 18 [3 9] [1 1] } ... {3 18 [2 10] [0.98 3] } ... {3 18 [3 10] [0.98 3] } ... {3 18 [1 14] [1 1] } ... {3 18 [2 13] [1 1] } ... {3 18 [3 13] [1 1] } ... {3 18 [2 14] [1 1] } ... {3 18 [3 14] [1 1] } ... {3 18 [1 15.5] [1.3 1] } ... {3 18 [2.25 15.5] [1.7 1] } ... {3 18 [1 16.5] [1.3 1] } ... {3 18 [2.25 16.5] [1.2 1] } ... {3 18 [3.45 16.5] [0.55 1] } ... {3 18 [1 17.5] [3 1] } ... {3 18 [1 19] [3 1] } ... }; for i = 1:length(geometry), geometry{i}{3} = geometry{i}{3}-1; end; streval = [ 'pop_studydesign(''selectdesign'', gcf);' ]; [tmp usrdat tmp2 result] = inputgui('uilist', uilist, 'title', 'Edit STUDY design -- pop_studydesign()', 'helpbut', 'Web help', 'helpcom', 'web(''http://sccn.ucsd.edu/wiki/Chapter_03:_Working_with_STUDY_designs'', ''-browser'')', 'geom', geometry, 'userdata', usrdat, 'eval', streval); if isempty(tmp), return; end; % call std_makedesign % ------------------- des = usrdat.design; allcom = ''; if length(des) < length(STUDY.design) for index = length(des)+1:length(STUDY.design) fprintf('Deleting STUDY design %d\n', index); com = 'STUDY.design(index).name = '';'; eval(com); allcom = [ allcom 10 com ]; end; end; for index = 1:length(des) tmpdes = rmfield(des(index), 'deletepreviousfiles'); rmfiles = fastif(des(index).deletepreviousfiles, 'limited', 'off'); if index > length(STUDY.design) || ~isequal(STUDY.design(index), tmpdes) || strcmpi(rmfiles, 'on') fprintf('Updating/creating STUDY design %d\n', index); % test if file exist and issue warning if length(STUDY.design) >= index && isfield('cell', STUDY.design) && ~isempty(STUDY.design(index).cell) && ... ~isempty(dir([ STUDY.design(index).cell(1).filebase '.*' ])) && strcmpi(rmfiles, 'off') if ~isequal(tmpdes.variable(1).label, STUDY.design(index).variable(1).label) || ... ~isequal(tmpdes.variable(2).label, STUDY.design(index).variable(2).label) || ... ~isequal(tmpdes.include, STUDY.design(index).include) || ... ~isequal(tmpdes.variable(1).value, STUDY.design(index).variable(1).value) || ... ~isequal(tmpdes.cases.value, STUDY.design(index).cases.value) || ... ~isequal(tmpdes.variable(2).value, STUDY.design(index).variable(2).value) res = questdlg2(strvcat([ 'Precomputed data files exist for design ' int2str(index) '.' ], ' ', ... 'Modifying this design without deleting the associated files', ... 'might mean that they will stay on disk and will be unusable'), ... 'STUDY design warning', 'Abort', 'Continue', 'Continue'); if strcmpi(res, 'Abort'), return; end; end; end; [STUDY com] = std_makedesign(STUDY, ALLEEG, index, tmpdes, 'delfiles', rmfiles); allcom = [ allcom 10 com ]; else fprintf('STUDY design %d not modified\n', index); end; end; if result.listboxdesign ~= STUDY.currentdesign fprintf('Selecting STUDY design %d\n', result.listboxdesign); com = sprintf('STUDY = std_selectdesign(STUDY, ALLEEG, %d);', result.listboxdesign); eval(com); allcom = [ allcom 10 com ]; end; if result.chk_save == 1 fprintf('Resaving STUDY\n'); [STUDY ALLEEG com] = pop_savestudy(STUDY, ALLEEG, 'savemode', 'resave'); allcom = [ allcom 10 com ]; end; if ~isempty(allcom), allcom(1) = []; end; elseif isstr(STUDY) com = STUDY; fig = ALLEEG; usrdat = get(fig, 'userdata'); datinfo = usrdat.datasetinfo; des = usrdat.design; filepath = usrdat.filepath; switch com % summary of callbacks % case 'add', Add new study design % case 'del', Delete study design % case 'rename', Rename study design % % case 'selectdesign', select a specific design % case 'updatedesign', update the study information (whenever the % user click on a button % % case 'selectfact', select a specific ind. var. (update value listboxes) % case 'combinevals', combine values in value listboxes % case 'selectsubj', select specific subjects % % case 'selectdatatrials', new GUI to select specific dataset and trials % case 'selectdatatrialssel', % select in the GUI above % case 'selectdatatrialsadd', % add new selection in the GUI above case 'add', % Add new study design inde = find( cellfun(@isempty,{ des.name })); if isempty(inde), inde = length(des)+1; end; des(inde(1)) = des(1); des(inde(1)).name = sprintf('Design %d', inde(1)); set(findobj(fig, 'tag', 'listboxdesign'), 'string', { des.name }, 'value', inde(1)); usrdat.design = des; set(fig, 'userdata', usrdat); pop_studydesign( 'selectstudy', fig); return; case 'del', % Delete study design val = get(findobj(fig, 'tag', 'listboxdesign'), 'value'); if val == 1 warndlg2('The first STUDY design cannot be removed, only modified'); return; end; des(val).name = ''; set(findobj(fig, 'tag', 'listboxdesign'), 'value', 1, 'string', { des.name } ); usrdat.design = des; set(fig, 'userdata', usrdat); pop_studydesign( 'selectstudy', fig); return; case 'rename', % Rename study design val = get(findobj(fig, 'tag', 'listboxdesign'), 'value'); strs = get(findobj(fig, 'tag', 'listboxdesign'), 'string'); result = inputdlg2( { 'Study design name: ' }, ... 'Rename Study Design', 1, { strs{val} }, 'pop_studydesign'); if isempty(result), return; end; des(val).name = result{1}; set(findobj(fig, 'tag', 'listboxdesign'), 'string', { des.name } ); case 'selectdesign', % select a specific design val = get(findobj(fig, 'tag', 'listboxdesign'), 'value'); if isempty(des(val).name) set(findobj(fig, 'tag', 'lbfact0'), 'string', '', 'value', 1); set(findobj(fig, 'tag', 'lbfact1'), 'string', '', 'value', 1); set(findobj(fig, 'tag', 'lbval0') , 'string', '', 'value', 1); set(findobj(fig, 'tag', 'lbval1') , 'string', '', 'value', 1); set(findobj(fig, 'tag', 'lbpair0'), 'value', 1); set(findobj(fig, 'tag', 'lbpair1'), 'value', 1); set(findobj(fig, 'tag', 'lbsubj') , 'value' , 1, 'string', ''); set(findobj(fig, 'tag', 'chk_del'), 'value', des(val).deletepreviousfiles ); set(findobj(fig, 'tag', 'edit_selectdattrials'), 'string', '' ); % do not change file path return; end; val1 = strmatch(des(val).variable(1).label, usrdat.factors, 'exact'); if isempty(val1), val1 = 1; end; val2 = strmatch(des(val).variable(2).label, usrdat.factors, 'exact'); if isempty(val2), val2 = 1; end; set(findobj(fig, 'tag', 'lbfact0'), 'string', usrdat.factors, 'value', val1); set(findobj(fig, 'tag', 'lbfact1'), 'string', usrdat.factors, 'value', val2); valfact1 = strmatchmult(des(val).variable(1).value, usrdat.factorvals{val1}); valfact2 = strmatchmult(des(val).variable(2).value, usrdat.factorvals{val2}); if isempty(valfact1), listboxtop1 = 1; else listboxtop1 = valfact1(1); end; if isempty(valfact2), listboxtop2 = 1; else listboxtop2 = valfact2(1); end; set(findobj(fig, 'tag', 'lbval0'), 'string', encodevals(usrdat.factorvals{val1}), 'value', valfact1, 'listboxtop', listboxtop1); set(findobj(fig, 'tag', 'lbval1'), 'string', encodevals(usrdat.factorvals{val2}), 'value', valfact2, 'listboxtop', listboxtop2); valsubj = strmatchmult(des(val).cases.value, usrdat.subjects); set(findobj(fig, 'tag', 'lbsubj'), 'string', usrdat.subjects, 'value', valsubj); if isempty(des(val).include), str = ''; else str = vararg2str(des(val).include); end; set(findobj(fig, 'tag', 'chk_del'), 'value', des(val).deletepreviousfiles ); set(findobj(fig, 'tag', 'edit_selectdattrials'), 'string', str ); set(findobj(fig, 'tag', 'popupselect'), 'value', 1 ); set(findobj(fig, 'tag', 'lbpair0'), 'value', fastif(isequal(des(val).variable(1).pairing,'on'),1,2)); set(findobj(fig, 'tag', 'lbpair1'), 'value', fastif(isequal(des(val).variable(2).pairing,'on'),1,2)); if ~isfield(des, 'filepath') || isempty(des(val).filepath), des(val).filepath = ''; end; set(findobj(fig, 'tag', 'edit_storedir'), 'string', des(val).filepath); case 'updatedesign', % update the study information (whenever the user click on a button) val = get(findobj(fig, 'tag', 'listboxdesign'), 'value'); val1 = get(findobj(fig, 'tag', 'lbfact0'), 'value'); val2 = get(findobj(fig, 'tag', 'lbfact1'), 'value'); valf1 = get(findobj(fig, 'tag', 'lbval0'), 'value'); valf2 = get(findobj(fig, 'tag', 'lbval1'), 'value'); valp1 = get(findobj(fig, 'tag', 'lbpair0'), 'value'); valp2 = get(findobj(fig, 'tag', 'lbpair1'), 'value'); vals = get(findobj(fig, 'tag', 'lbsubj'), 'value'); valchk = get(findobj(fig, 'tag', 'chk_del'), 'value'); filep = get(findobj(fig, 'tag', 'edit_storedir'), 'string'); strs = get(findobj(fig, 'tag', 'edit_selectdattrials'), 'string'); valpaired = { 'on' 'off' }; if ~strcmpi(des(val).variable(1).label, usrdat.factors{val1}) des(val).variable(1).label = usrdat.factors{val1}; des(val).variable(1).value = usrdat.factorvals{val1}(valf1); end; if ~strcmpi(des(val).variable(2).label, usrdat.factors{val2}) des(val).variable(2).label = usrdat.factors{val2}; des(val).variable(2).value = usrdat.factorvals{val2}(valf2); end; if ~isequal(mysort(des(val).variable(1).value), mysort(usrdat.factorvals{val1}(valf1))) des(val).variable(1).value = usrdat.factorvals{val1}(valf1); end; if ~isequal(mysort(des(val).variable(2).value), mysort(usrdat.factorvals{val2}(valf2))) des(val).variable(2).value = usrdat.factorvals{val2}(valf2); end; if ~isequal(mysort(des(val).cases.value), mysort(usrdat.subjects(vals))) des(val).cases.value = usrdat.subjects(vals); end; if ~isequal(des(val).variable(1).pairing, valpaired{valp1}) des(val).variable(1).pairing = valpaired{valp1}; end; if ~isequal(des(val).variable(2).pairing, valpaired{valp2}) des(val).variable(2).pairing = valpaired{valp2}; end; if ~isequal(des(val).deletepreviousfiles, valchk) des(val).deletepreviousfiles = 1; end; if ~isfield(des, 'filepath') || ~isequal(des(val).filepath, filep) des(val).filepath = filep; end; if ~isequal(des(val).include, strs) try, des(val).include = eval( [ '{' strs '}' ]); catch, disp('Error while decoding list of parameters'); des(val).include = {}; set(findobj(fig, 'tag', 'edit_selectdattrials'), 'string', ''); end; end; case 'selectfact', % select a specific ind. var. (update value listboxes) factval = designind; val = get(findobj(fig, 'tag', 'listboxdesign'), 'value'); val1 = get(findobj(fig, 'tag', [ 'lbfact' num2str(factval) ]), 'value'); val2 = get(findobj(fig, 'tag', [ 'lbfact' num2str(~factval) ]), 'value'); % if val1 == val2 && val1 ~= 1 % warndlg2('Cannot select twice the same independent variable'); % val1 = 1; % set(findobj(fig, 'tag', [ 'lbfact' num2str(factval) ]), 'value', val1); % end; valfact = [1:length(usrdat.factorvals{val1})]; set(findobj(fig, 'tag', ['lbval' num2str(factval) ]), 'string', encodevals(usrdat.factorvals{val1}), 'value', valfact, 'listboxtop', 1); pop_studydesign('updatedesign', fig); return; case 'combinevals', % combine values in value listboxes factval = designind; val1 = get(findobj(fig, 'tag', [ 'lbfact' num2str(factval) ]), 'value'); vals = get(findobj(fig, 'tag', [ 'lbval' num2str(factval) ]), 'value'); strs = get(findobj(fig, 'tag', [ 'lbval' num2str(factval) ]), 'string'); if length(vals) == 1 warndlg2('You need to select several values to combine them'); return; end; if ~iscell(usrdat.factorvals{val1}) warndlg2('Cannot combine values from numerical variables'); return; end; % combine values for string and integers if isstr(usrdat.factorvals{val1}{1}) || iscell(usrdat.factorvals{val1}{1}) tmpcell = {}; for indCell = vals(:)' if iscell(usrdat.factorvals{val1}{indCell}) tmpcell = { tmpcell{:} usrdat.factorvals{val1}{indCell}{:} }; else tmpcell = { tmpcell{:} usrdat.factorvals{val1}{indCell} }; end; end; usrdat.factorvals{val1}{end+1} = unique_bc(tmpcell); else usrdat.factorvals{val1}{end+1} = unique_bc([ usrdat.factorvals{val1}{vals} ]); end; set(findobj(fig, 'tag', ['lbval' num2str(factval) ]), 'string', encodevals(usrdat.factorvals{val1})); case 'selectsubj', % select specific subjects val = get(findobj(fig, 'tag', 'popupselect'), 'value'); str = get(findobj(fig, 'tag', 'popupselect'), 'string'); str = str{val}; if val == 1, subjbox = get(findobj(fig, 'tag', 'lbsubj'), 'string'); set(findobj(fig, 'tag', 'lbsubj'), 'value', [1:length(subjbox)]); return; end; indunders = findstr( ' - ', str); factor = str(1:indunders-1); factorval = str(indunders+3:end); % select subjects eval( [ 'allsetvals = { datinfo.' factor '};' ]); indset = strmatch(factorval, allsetvals, 'exact'); subjects = unique_bc( { datinfo(indset).subject } ); % change the subject listbox val = get(findobj(fig, 'tag', 'popupselect'), 'value'); subjbox = get(findobj(fig, 'tag', 'lbsubj'), 'string'); indsubj = []; for ind = 1:length(subjects); indsubj(ind) = strmatch(subjects{ind}, subjbox, 'exact'); end; set(findobj(fig, 'tag', 'lbsubj'), 'value', indsubj); set(findobj(fig, 'tag', 'popupselect'), 'value', 1); pop_studydesign('updatedesign', fig); return; %set(findobj(get(gcbf, ''userdata''), ''tag'', ''edit_selectdattrials'' case 'selectdatatrials', % select specific dataset and trials cb_sel = 'pop_studydesign(''selectdatatrialssel'',gcbf);'; cb_add = 'pop_studydesign(''selectdatatrialsadd'',gcbf);'; uilist = { { 'style' 'text' 'string' strvcat('Press ''Add'' to add data', 'selection. Multiple variables', 'are combined using AND.') } ... { 'style' 'text' 'string' 'Select data based on variable', 'fontweight' 'bold' } ... { 'style' 'listbox' 'string' usrdat.factors 'tag' 'lbfact2' 'callback' cb_sel 'value' 1 } ... { 'style' 'text' 'string' 'Select data based on value(s)' 'fontweight' 'bold' } ... { 'style' 'listbox' 'string' encodevals(usrdat.factorvals{1}) 'tag' 'lbval2' 'min' 0 'max' 2} }; cb_renamehelp = [ 'set(findobj(gcf, ''tag'', ''help''), ''string'', ''Add'');' ... 'set(findobj(gcf, ''tag'', ''cancel''), ''string'', ''Erase'', ''callback'', ''set(findobj(''''tag'''', ''''edit_selectdattrials''''), ''''string'''', '''''''');'');' ... 'set(findobj(gcf, ''tag'', ''ok''), ''string'', ''Close'');' ]; usrdat.fig = fig; inputgui('uilist', uilist, 'geometry', { [1] [1] [1] [1] [1] }, 'geomvert', [2 1 2.5 1 2.5], ... 'helpcom', cb_add, 'userdata', usrdat, 'eval', cb_renamehelp); pop_studydesign('updatedesign', fig); return; case 'selectdatatrialssel', % select in the GUI above val1 = get(findobj(fig, 'tag', 'lbfact2'), 'value'); valfact = [1:length(usrdat.factorvals{val1})]; tmpval = get(findobj(fig, 'tag', 'lbval2'), 'value'); if max(tmpval) > max(valfact) set(findobj(fig, 'tag', 'lbval2'), 'value', valfact, 'string', encodevals(usrdat.factorvals{val1})); else set(findobj(fig, 'tag', 'lbval2'), 'string', encodevals(usrdat.factorvals{val1}), 'value', valfact); end; return; case 'selectfolder', res = uigetdir; if ~isempty(findstr(filepath, res)) && findstr(filepath, res) == 1 && ~isequal(filepath, res) res = res(length(filepath)+2:end); end; if res(1) == 0, return; end; set(findobj(fig, 'tag', 'edit_storedir'), 'string', res); pop_studydesign('updatedesign', fig); return; case 'selectdatatrialsadd', % Add button in the GUI above val1 = get(findobj(fig, 'tag', 'lbfact2'), 'value'); val2 = get(findobj(fig, 'tag', 'lbval2') , 'value'); objedit = findobj(usrdat.fig, 'tag', 'edit_selectdattrials'); str = get(objedit, 'string'); if ~isempty(str), str = [ str ',' ]; end; set(objedit, 'string', [ str vararg2str( { usrdat.factors{val1} usrdat.factorvals{val1}(val2) }) ]); return; end; usrdat.design = des; set(fig, 'userdata', usrdat); end; function res = strmatchmult(a, b); if isempty(b), res = []; return; end; res = zeros(1,length(a)); for index = 1:length(a) tmpi = std_indvarmatch(a{index}, b); res(index) = tmpi(1); % in case there is a duplicate end; %[tmp ind] = mysetdiff(b, a); %res = setdiff_bc([1:length(b)], ind); function cellarray = mysort(cellarray) return; % was crashing for combinations of selection % also there is no reason the order should be different if ~isempty(cellarray) && isstr(cellarray{1}) cellarray = sort(cellarray); end; function [cellout inds ] = mysetdiff(cell1, cell2); if (~isempty(cell1) && isstr(cell1{1})) || (~isempty(cell2) && isstr(cell2{1})) [ cellout inds ] = setdiff_bc(cell1, cell2); else [ cellout inds ] = setdiff_bc([ cell1{:} ], [ cell2{:} ]); cellout = mattocell(cellout); end; % encode string an numerical values for list boxes function cellout = encodevals(cellin) if isempty(cellin) cellout = {}; elseif ~iscell(cellin) cellout = { num2str(cellin) }; elseif ischar(cellin{1}) || iscell(cellin{1}) for index = 1:length(cellin) if isstr(cellin{index}) cellout{index} = cellin{index}; else cellout{index} = cellin{index}{1}; for indcell = 2:length(cellin{index}) cellout{index} = [ cellout{index} ' & ' cellin{index}{indcell} ]; end; end; end; else for index = 1:length(cellin) if length(cellin{index}) == 1 cellout{index} = num2str(cellin{index}); else cellout{index} = num2str(cellin{index}(1)); for indcell = 2:length(cellin{index}) cellout{index} = [ cellout{index} ' & ' num2str(cellin{index}(indcell)) ]; end; end; end; end;
github
lcnhappe/happe-master
std_createclust.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_createclust.m
11,296
utf_8
324e2986c5494686e6ea9fa03913cb90
% std_createclust() - dreate a new empty cluster. After creation, components % may be (re)assigned to it using std_movecomp(). % Usage: % >> [STUDY] = std_createclust(STUDY, ALLEEG, 'key', val); % Inputs: % STUDY - STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - vector of EEG datasets included in the STUDY, typically created % using load_ALLEEG(). % % Optional inputs: % 'name' - ['string'] name of the new cluster {default: 'Cls #', where % '#' is the next available cluster number} % 'clusterind' - [integer] cluster for each of the component. Ex: 61 components % and 2 clusters: 'clusterind' will be a 61x1 vector of 1 and % 2 (and 0=outlisers) % 'centroid' - centroid for clusters. If 2 clusters, size will be 2 x % width of the preclustering matrix. This is a deprecated % functionality. % 'algorithm' - [cell] algorithm parameters used to obtain the clusters % 'parentcluster' - ['on'|'off'] use the parent cluster (cluster 1) to % perform clustering (this cluster contains all the selected % components by default). Otherwise, the cluster defined in % STUDY.etc.preclust.clustlevel is used as parent. % % Outputs: % STUDY - the input STUDY set structure modified with the new cluster. % % Example: % >> [STUDY] = std_createclust(STUDY, ALLEEG, 'name', 'eye_movements', ... % 'clusterind', [0 1 0 1 0 1], 'parentcluster', 'on'); % % Create a new cluster named 'eye_movements' with components 2, 4, and % % of 6 the default parent cluster defined in % % See also pop_clustedit(), std_movecomp() % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 07, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY] = std_createclust(STUDY, ALLEEG, varargin) if nargin< 2 help std_createclust; return; end; % decoding options for backward compatibility % ------------------------------------------- options = {}; if length(varargin) > 0 && ~isstr(varargin{1}) % STUDY, IDX, algorithm, parentClusterNumber if isnumeric(ALLEEG) options = { options{:} 'clusterind' ALLEEG }; if nargin > 3, options = { options{:} 'centroid' varargin{1} }; end; if nargin > 4, options = { options{:} 'algorithm' varargin{2} }; end; ALLEEG = []; end; elseif length(varargin) < 2 options = { options{:} 'name' varargin{1} }; else options = varargin; end; opt = finputcheck(options, { 'name' 'string' [] 'Cls'; 'clusterind' 'integer' [] length(STUDY.cluster)+1; 'parentcluster' 'string' { 'on','off' } 'off'; 'algorithm' 'cell' [] {}; 'ignore0' 'string' { 'on','off' } 'off'; 'centroid' 'real' [] [] }, 'std_createclust'); if isstr(opt), error(opt); end; % opt.clusterind - index of cluster for each component. Ex: 63 components and 2 % clusters: opt.clusterind will be a 61x1 vector of 1 and 2 (and 0=outlisers) % C - centroid for clusters. If 2 clusters, size will be 2 x % width of the preclustering matrix if strcmpi(opt.parentcluster, 'on') firstind = 1; cls = 1; sameica = std_findsameica(ALLEEG); sets = []; comps = []; STUDY.cluster = []; for index = 1:length(sameica) newcomps = STUDY.datasetinfo(sameica{index}(1)).comps; if isempty(newcomps), newcomps = [1:size(ALLEEG(sameica{index}(1)).icaweights,1)]; end; comps = [ comps newcomps ]; sets(length(sameica{index}):-1:1,end+1:end+length(newcomps)) = repmat( sameica{index}', [1 length(newcomps) ] ); end; sets(find(sets == 0)) = NaN; STUDY.cluster(1).name = 'Parentcluster 1'; STUDY.cluster(1).sets = sets; STUDY.cluster(1).comps = comps; STUDY.cluster(1).parent = {}; STUDY.cluster(1).child = {}; STUDY.cluster.preclust.preclustparams = []; STUDY.cluster.preclust.preclustdata = []; if isfield(STUDY, 'design') && ~isempty(STUDY.design) STUDY.cluster = std_setcomps2cell(STUDY, 1); end; else % Find the next available cluster index % ------------------------------------- cls = min(max(opt.clusterind), length(unique(opt.clusterind))); nc = 0; % index of last cluster for k = 1:length(STUDY.cluster) ti = strfind(STUDY.cluster(k).name, ' '); tmp = STUDY.cluster(k).name(ti(end) + 1:end); nc = max(nc,str2num(tmp)); % check if there is a cluster of Notclust components if isfield(STUDY.etc, 'preclust') && isfield(STUDY.etc.preclust, 'preclustparams') if ~isempty(STUDY.cluster(k).parent) %strcmp(STUDY.cluster(k).parent,STUDY.cluster(STUDY.etc.preclust.clustlevel).name) STUDY.cluster(k).preclust.preclustparams = STUDY.etc.preclust.preclustparams; end; end end len = length(STUDY.cluster); if ~isempty(find(opt.clusterind==0)) && strcmpi(opt.ignore0, 'off') %outliers exist firstind = 0; nc = nc + 1; len = len + 1; else firstind = 1; end % create clustlevel if it does not exist % -------------------------------------- if ~isfield(STUDY.etc, 'preclust') STUDY.etc.preclust.clustlevel = 1; STUDY.etc.preclust.preclustdata = []; elseif ~isfield(STUDY.etc.preclust, 'clustlevel') STUDY.etc.preclust.clustlevel = 1; STUDY.etc.preclust.preclustdata = []; end; % create all clusters % ------------------- for k = firstind:cls % cluster name % ------------ if k == 0 STUDY.cluster(len).name = [ 'outlier ' num2str(k+nc)]; else STUDY.cluster(k+len).name = [ opt.name ' ' num2str(k+nc)]; end % find indices % ------------ tmp = find(opt.clusterind==k); % opt.clust.erind contains the cluster index for each component STUDY.cluster(k+len).sets = STUDY.cluster(STUDY.etc.preclust.clustlevel).sets(:,tmp); STUDY.cluster(k+len).comps = STUDY.cluster(STUDY.etc.preclust.clustlevel).comps(tmp); STUDY.cluster(k+len).algorithm = opt.algorithm; STUDY.cluster(k+len).parent{end+1} = STUDY.cluster(STUDY.etc.preclust.clustlevel).name; STUDY.cluster(k+len).child = []; if ~isempty(STUDY.etc.preclust.preclustdata) && all(tmp <= size(STUDY.etc.preclust.preclustdata,1)) STUDY.cluster(k+len).preclust.preclustdata = STUDY.etc.preclust.preclustdata(tmp,:); STUDY.cluster(k+len).preclust.preclustparams = STUDY.etc.preclust.preclustparams; else STUDY.cluster(k+len).preclust.preclustdata = []; end; STUDY.cluster(k+len) = std_setcomps2cell(STUDY, k+len); %update parents clusters with cluster child indices % ------------------------------------------------- STUDY.cluster(STUDY.etc.preclust.clustlevel).child{end+1} = STUDY.cluster(k+nc).name; end end; % Find out the highst cluster id number (in cluster name), to find % next available cluster index % % find max cluster ID % % max_id = 0; % if ~isfield(STUDY, 'cluster'), STUDY.cluster = []; end; % for k = 1:length(STUDY.cluster) % ti = strfind(STUDY.cluster(k).name, ' '); % clus_id = STUDY.cluster(k).name(ti(end) + 1:end); % max_id = max(max_id, str2num(clus_id)); % end % max_id = max_id + 1; % opt.name = sprintf('%s %d', opt.name, max_id); % clustind = length(STUDY.cluster)+1; % % Initialize the new cluster fields. % if length(STUDY.cluster) > 0 % STUDY.cluster(clustind).parent{1} = STUDY.cluster(1).name; % if ~iscell(STUDY.cluster(1).child) % STUDY.cluster(1).child = { opt.name }; % else STUDY.cluster(1).child = { STUDY.cluster(1).child{:} opt.name }; % end; % else % STUDY.cluster(clustind).parent{1} = 'manual'; % update parent cluster if exists. % end; % STUDY.cluster(clustind).name = opt.name; % STUDY.cluster(clustind).child = []; % STUDY.cluster(clustind).comps = []; % STUDY.cluster(clustind).sets = []; % STUDY.cluster(clustind).algorithm = []; % STUDY.cluster(clustind).centroid = []; % STUDY.cluster(clustind).preclust.preclustparams = []; % STUDY.cluster(clustind).preclust.preclustdata = []; % % if (~isempty(opt.datasets) | ~isempty(opt.subjects)) & ~isempty(opt.components) % % % convert subjects to dataset indices % % ----------------------------------- % if ~isempty(opt.subjects) % if length(opt.subjects) ~= length(opt.components) % error('If subjects are specified, the length of the cell array must be the same as for the components'); % end; % alls = { ALLEEG.subject }; % for index = 1:length(opt.subjects) % tmpinds = strmatch(opt.subjects{index}, alls, 'exact'); % if isempty(tmpinds) % error('Cannot find subject'); % end; % opt.datasets(1:length(tmpinds),index) = tmpinds; % end; % opt.datasets(opt.datasets(:) == 0) = NaN; % end; % % % deal with cell array inputs % % --------------------------- % if iscell(opt.components) % newcomps = []; % newdats = []; % for ind1 = 1:length(opt.components) % for ind2 = 1:length(opt.components{ind1}) % if iscell(opt.datasets) % newdats = [ newdats opt.datasets{ind1}' ]; % else newdats = [ newdats opt.datasets(:,ind1) ]; % end; % newcomps = [ newcomps opt.components{ind1}(ind2) ]; % end; % end; % opt.datasets = newdats; % opt.components = newcomps; % end; % % % create .sets, .comps, .setinds, .allinds fields % % ----------------------------------------------- % [tmp setinds allinds] = std_setcomps2cell( STUDY, opt.datasets, opt.components); % STUDY.cluster(clustind).setinds = setinds; % STUDY.cluster(clustind).allinds = allinds; % STUDY.cluster(clustind) = std_cell2setcomps( STUDY, ALLEEG, clustind); % STUDY.cluster(clustind) = std_setcomps2cell( STUDY, clustind); % %[ STUDY.cluster(finalinds(ind)) setinds allinds ] = % %std_setcomps2cell(STUDY, finalinds(ind)); % end;
github
lcnhappe/happe-master
std_checkconsist.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_checkconsist.m
2,299
utf_8
e6cbe33ddc8c1fb52b95a02d9bfff1e3
% std_checkconsist() - Create channel groups for plotting. % % Usage: % >> boolval = std_checkconsist(STUDY, 'uniform', 'condition'); % >> boolval = std_checkconsist(STUDY, 'uniform', 'group'); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % 'uniform' - ['condition'|'group'] check if there is one group % condition per subject % Outputs: % boolval - [0|1] 1 if uniform % % Authors: Arnaud Delorme, CERCO, 2009 % Copyright (C) Arnaud Delorme, CERCO, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [boolval npersubj] = std_checkconsist(STUDY, varargin); if nargin < 3 help std_checkconsist; return; end; opt = struct(varargin{:}); if strcmpi(opt.uniform, 'condition') allvals = { STUDY.datasetinfo.condition }; vallist = STUDY.condition; elseif strcmpi(opt.uniform, 'group') allvals = { STUDY.datasetinfo.group }; vallist = STUDY.group; elseif strcmpi(opt.uniform, 'session') allvals = { STUDY.datasetinfo.session }; allvals = cellfun(@num2str, allvals, 'uniformoutput', false); vallist = STUDY.session; if isempty(vallist), boolval = 1; return; end; vallist = cellfun(@num2str, mattocell(vallist), 'uniformoutput', false); else error('unknown option'); end; if isempty(vallist), boolval = 1; return; end; for index = 1:length(vallist) tmplist = strmatch( vallist{index}, allvals, 'exact'); vallen(index) = length(unique( { STUDY.datasetinfo(tmplist).subject } )); end; if length(unique(vallen)) == 1 boolval = 1; else boolval = 0; end;
github
lcnhappe/happe-master
std_readersp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readersp.m
27,340
utf_8
08af4639c7feccd4cfa23d595573b331
% std_readersp() - load ERSP measures for data channels or for all % components of a specified cluster. This function is % also being used to read ITC and ERPimage data. % Usage: % >> [STUDY, erspdata, times, freqs, erspbase] = ... % std_readersp(STUDY, ALLEEG, varargin); % Inputs: % STUDY - studyset structure containing some or all files in ALLEEG % ALLEEG - vector of loaded EEG datasets % % Optional inputs: % 'design' - [integer] read files from a specific STUDY design. Default % is empty (use current design in STUDY.currentdesign). % 'channels' - [cell] list of channels to import {default: none} % 'clusters' - [integer] list of clusters to import {[]|default: all but % the parent cluster (1) and any 'NotClust' clusters} % 'singletrials' - ['on'|'off'] load single trials spectral data (if % available). Default is 'off'. % 'forceread' - ['on'|'off'] Force rereading data from disk. % Default is 'off'. % 'subject' - [string] select a specific subject {default:all} % 'component' - [integer] select a specific component in a cluster % {default:all} % 'datatype' - {'ersp'|'itc'|'erpim'} This function is used to read all % 2-D STUDY matrices stored on disk (not only ERSP). It may % read ERSP ('ersp' option), ITC ('itc' option) or ERPimage % data ('erpim' option). % % ERSP specific options: % 'timerange' - [min max] time range {default: whole measure range} % 'freqrange' - [min max] frequency range {default: whole measure range} % 'subbaseline' - ['on'|'off'] subtract the ERSP baseline for paired % conditions. The conditions for which baseline is removed % are indicated on the command line. See help % std_studydesign for more information about paired and % unpaired variables. % % ERPimage specific option: % This function is used to read all 2-D STUDY matrices stored on disk % (this includes ERPimages). It therefore takes as input specific % ERPimage options. Note that the 'singletrials' optional input is % irrelevant for ERPimages (which are always stored as single trials). % 'concatenate' - ['on'|'off'] read concatenated ERPimage data ('on') or % stacked ERPimage data. See help std_erpimage for more % information. % 'timerange' - [min max] time range {default: whole measure range} % 'trialrange' - [min max] read only a specific range of the ERPimage % output trials {default: whole measure range} % Output: % STUDY - updated studyset structure % erspdata - [cell array] ERSP data (the cell array size is % condition x groups). This may also be ITC data or ERPimage % data (see above). % times - [float array] array of time points % freqs - [float array] array of frequencies. For ERPimage this % contains trial indices. % erspbase - [cell array] baseline values % events - [cell array] events (ERPimage only). % % Author: Arnaud Delorme, CERCO, 2006- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, erspdata, alltimes, allfreqs, erspbase, events, unitPower] = std_readersp(STUDY, ALLEEG, varargin) if nargin < 2 help std_readersp; return; end events = {}; unitPower = 'dB'; if ~isstruct(ALLEEG) % old calling format dataset = ALLEEG; EEG = STUDY(dataset); comp = varargin{1}; if length(varargin) > 1, timelim = varargin{2}; else timelim = []; end; if length(varargin) > 2, freqlim = varargin{3}; else freqlim = []; end; filebase = fullfile(EEG.filepath, EEG.filename(1:end-4)); if comp < 0 error('Old format function call, channel reading not supported'); [ersp params alltimes allfreqs] = std_readfile(filebase, 'channels', -comp, 'timelimits', timelim, 'freqlimits', freqlim); else [ersp params alltimes allfreqs] = std_readfile(filebase, 'components', comp, 'timelimits', timelim, 'freqlimits', freqlim, 'measure', 'ersp'); [erspbase params alltimes allfreqs] = std_readfile(filebase, 'components', comp, 'timelimits', timelim, 'freqlimits', freqlim, 'measure', 'erspbase'); end; STUDY = ersp; erspdata = allfreqs; allfreqs = params; return; end; STUDY = pop_erspparams( STUDY, 'default'); STUDY = pop_erpimparams(STUDY, 'default'); [opt moreopts] = finputcheck( varargin, { ... 'design' 'integer' [] STUDY.currentdesign; 'channels' 'cell' [] {}; 'clusters' 'integer' [] []; 'trialrange' 'real' [] STUDY.etc.erpimparams.trialrange; 'freqrange' 'real' [] STUDY.etc.erspparams.freqrange; 'timerange' 'real' [] NaN; 'singletrials' 'string' { 'on','off' } 'off'; 'forceread' 'string' { 'on','off' } 'off'; 'concatenate' 'string' { 'on','off' } STUDY.etc.erpimparams.concatenate; 'subbaseline' 'string' { 'on','off' } STUDY.etc.erspparams.subbaseline; 'component' 'integer' [] []; 'infotype' 'string' { 'ersp','itc','erpim' } 'ersp'; ... % deprecated 'datatype' 'string' { 'ersp','itc','erpim' } 'ersp'; ... 'subject' 'string' [] '' }, ... 'std_readersp', 'ignore'); if isstr(opt), error(opt); end; if ~strcmpi(opt.infotype, 'ersp'), opt.datatype = opt.infotype; end; if strcmpi(opt.datatype, 'erpim'), if isnan(opt.timerange), opt.timerange = STUDY.etc.erpimparams.timerange; end; opt.freqrange = opt.trialrange; ordinate = 'trials'; else if isnan(opt.timerange) opt.timerange = STUDY.etc.erspparams.timerange; end; ordinate = 'freqs'; end; nc = max(length(STUDY.design(opt.design).variable(1).value),1); ng = max(length(STUDY.design(opt.design).variable(2).value),1); paired1 = STUDY.design(opt.design).variable(1).pairing; paired2 = STUDY.design(opt.design).variable(2).pairing; dtype = opt.datatype; % find channel indices % -------------------- if ~isempty(opt.channels) allChangrp = lower({ STUDY.changrp.name }); finalinds = std_chaninds(STUDY, opt.channels); else finalinds = opt.clusters; end; for ind = 1:length(finalinds) erspbase = cell( nc, ng ); % find indices % ------------ if ~isempty(opt.channels) tmpstruct = STUDY.changrp(finalinds(ind)); allinds = tmpstruct.allinds; setinds = tmpstruct.setinds; else tmpstruct = STUDY.cluster(finalinds(ind)); allinds = tmpstruct.allinds; setinds = tmpstruct.setinds; end; % check if data is already here % ----------------------------- if strcmpi(dtype, 'erpim') % ERP images dataread = 0; eqtf = isequal( STUDY.etc.erpimparams.timerange , opt.timerange) && ... isequal( STUDY.etc.erpimparams.trialrange, opt.trialrange); if isfield(tmpstruct, 'erpimdata') && eqtf && ~isempty(tmpstruct.erpimdata) dataread = 1; end; else dataread = 0; eqtf = isequal( STUDY.etc.erspparams.timerange, opt.timerange) && ... isequal( STUDY.etc.erspparams.freqrange, opt.freqrange); eqtfb = isequal( STUDY.etc.erspparams.subbaseline, opt.subbaseline) && eqtf; if strcmpi(opt.singletrials,'off') if isfield(tmpstruct, [ dtype 'data']) && eqtfb && ~isempty(getfield(tmpstruct, [ dtype 'data'])) dataread = 1; end; else if isfield(tmpstruct, [ dtype 'datatrials']) && eqtf && ~isempty(getfield(tmpstruct, [ dtype 'datatrials'])) if ~isempty(opt.channels) && strcmpi(getfield(tmpstruct, [ dtype 'trialinfo' ]), opt.subject) dataread = 1; elseif isempty(opt.channels) && isequal(getfield(tmpstruct, [ dtype 'trialinfo' ]), opt.component) dataread = 1; end; end; end; end; if dataread && strcmpi(opt.forceread, 'off') disp('Using pre-loaded data. To force rereading data from disk use the ''forceread'' flag'); else if strcmpi(dtype, 'erpim') % ERP images if strcmpi(opt.singletrials, 'on') error( [ 'Single trial loading option not supported with STUDY ERP-image' 10 '(there is no such thing as a single-trial ERPimage)' ]); end; % read the data and select channels % --------------------------------- setinfo = STUDY.design(opt.design).cell; erpim = cell( nc, ng ); events = cell( nc, ng ); for c = 1:nc for g = 1:ng if ~isempty(setinds{c,g}) if ~isempty(opt.channels), opts = { 'channels', allChangrp(allinds{c,g}(:)), 'timelimits', opt.timerange, 'triallimits', opt.trialrange, 'concatenate', opt.concatenate }; else opts = { 'components', allinds{c,g}(:), 'timelimits', opt.timerange, 'triallimits', opt.trialrange, 'concatenate', opt.concatenate }; end; [erpim{c, g} tmpparams alltimes alltrials events{c,g}] = std_readfile( setinfo(setinds{c,g}(:)), 'measure', 'erpim', opts{:}); fprintf('.'); end; end; end; if strcmpi(opt.concatenate, 'on'), alltrials = []; end; fprintf('\n'); ersp = erpim; allfreqs = alltrials; else % ERSP/ITC % reserve arrays % -------------- events = {}; ersp = cell( nc, ng ); erspinds = cell( nc, ng ); % find total nb of trials % THIS CODE IS NOT NECESSARY ANY MORE (SEE BUG 1170) % ----------------------- %setinfo = STUDY.design(opt.design).cell; %tottrials = cell( nc, ng ); %if strcmpi(opt.singletrials, 'on') % for indSet = 1:length(setinfo) % condind = std_indvarmatch( setinfo(indSet).value{1}, STUDY.design(opt.design).variable(1).value ); % grpind = std_indvarmatch( setinfo(indSet).value{2}, STUDY.design(opt.design).variable(2).value ); % if isempty(tottrials{condind, grpind}), tottrials{condind, grpind} = sum(cellfun(@length, setinfo(indSet).trials)); % else tottrials{condind, grpind} = tottrials{condind, grpind} + sum(cellfun(@length, setinfo(indSet).trials)); % end; % end; %end; % read the data and select channels % --------------------------------- fprintf('Reading all %s data:', upper(dtype)); setinfo = STUDY.design(opt.design).cell; if strcmpi(opt.singletrials, 'on') for c = 1:nc for g = 1:ng if ~isempty(opt.channels) allsubjects = { STUDY.design(opt.design).cell.case }; if ~isempty(opt.subject), inds = strmatch( opt.subject, allsubjects(setinds{c,g})); else inds = 1:length(allinds{c,g}); end; else if ~isempty(opt.component) inds = find( allinds{c,g} == STUDY.cluster(finalinds(ind)).comps(opt.component)); else inds = 1:length(allinds{c,g}); end; end; if ~isempty(inds) count{c, g} = 1; for indtmp = 1:length(inds) setindtmp = STUDY.design(opt.design).cell(setinds{c,g}(inds(indtmp))); tmpopts = { 'measure', 'timef' 'timelimits', opt.timerange, 'freqlimits', opt.freqrange }; if ~isempty(opt.channels), [ tmpersp tmpparams alltimes allfreqs] = std_readfile(setindtmp, 'channels', allChangrp(allinds{c,g}(inds(indtmp))), tmpopts{:}); else [ tmpersp tmpparams alltimes allfreqs] = std_readfile(setindtmp, 'components', allinds{c,g}(inds(indtmp)), tmpopts{:}); end; indices = [count{c, g}:count{c, g}+size(tmpersp,3)-1]; if indtmp == 1 ersp{c, g} = permute(tmpersp, [2 1 3]); else ersp{c, g}(:,:,indices) = permute(tmpersp, [2 1 3]); end; erspinds{c, g}(1:2,indtmp) = [ count{c, g} count{c, g}+size(tmpersp,3)-1 ]; count{c, g} = count{c, g}+size(tmpersp,3); if size(tmpersp,3) ~= sum(cellfun(@length, setindtmp.trials)) error( sprintf('Wrong number of trials in datafile for design index %d\n', setinds{c,g}(inds(indtmp)))); end; end; end; end; end; else for c = 1:nc for g = 1:ng if ~isempty(setinds{c,g}) if ~isempty(opt.channels), opts = { 'channels', allChangrp(allinds{c,g}(:)), 'timelimits', opt.timerange, 'freqlimits', opt.freqrange }; else opts = { 'components', allinds{c,g}(:) , 'timelimits', opt.timerange, 'freqlimits', opt.freqrange }; end; if strcmpi(dtype, 'ersp') erspbase{c, g} = std_readfile( setinfo(setinds{c,g}(:)), 'measure', 'erspbase', opts{:}); [ ersp{c, g} tmpparams alltimes allfreqs ] = std_readfile( setinfo(setinds{c,g}(:)), 'measure', 'ersp' , opts{:}); else [ ersp{c, g} tmpparams alltimes allfreqs ] = std_readfile( setinfo(setinds{c,g}(:)), 'measure', 'itc' , opts{:}); ersp{c, g} = ersp{c, g}; end; fprintf('.'); %ersp{c, g} = permute(ersp{c, g} , [3 2 1]); %erspbase{c, g} = 10*log(permute(erspbase{c, g}, [3 2 1])); end; end; end; end; fprintf('\n'); % compute ERSP or ITC if trial mode % (since only the timef have been loaded) % --------------------------------------- if strcmpi(opt.singletrials, 'on') tmpparams2 = fieldnames(tmpparams); tmpparams2 = tmpparams2'; tmpparams2(2,:) = struct2cell(tmpparams); precomp.times = alltimes; precomp.freqs = allfreqs; precomp.recompute = dtype; for c = 1:nc for g = 1:ng if ~isempty(ersp{c,g}) precomp.tfdata = permute(ersp{c,g}, [2 1 3]); if strcmpi(dtype, 'itc') [tmp ersp{c,g}] = newtimef(zeros(ALLEEG(1).pnts,2), ALLEEG(1).pnts, [ALLEEG(1).xmin ALLEEG(1).xmax]*1000, ... ALLEEG(1).srate, [], tmpparams2{:}, 'precomputed', precomp, 'verbose', 'off'); elseif strcmpi(dtype, 'ersp') [ersp{c,g} tmp] = newtimef(zeros(ALLEEG(1).pnts,2), ALLEEG(1).pnts, [ALLEEG(1).xmin ALLEEG(1).xmax]*1000, ... ALLEEG(1).srate, [], tmpparams2{:}, 'precomputed', precomp, 'verbose', 'off'); end; ersp{c,g} = permute(ersp{c,g}, [2 1 3]); end; end; end; end; % compute average baseline across groups and conditions % ----------------------------------------------------- if strcmpi(opt.subbaseline, 'on') && strcmpi(dtype, 'ersp') if strcmpi(opt.singletrials, 'on') disp('WARNING: no ERSP baseline may not be subtracted when using single trials'); else disp('Recomputing baseline...'); if strcmpi(paired1, 'on') && strcmpi(paired2, 'on') disp('Removing ERSP baseline for both indep. variables'); meanpowbase = computeerspbaseline(erspbase(:), opt.singletrials); ersp = removeerspbaseline(ersp, erspbase, meanpowbase); elseif strcmpi(paired1, 'on') disp('Removing ERSP baseline for first indep. variables (second indep. var. is unpaired)'); for g = 1:ng % ng = number of groups meanpowbase = computeerspbaseline(erspbase(:,g), opt.singletrials); ersp(:,g) = removeerspbaseline(ersp(:,g), erspbase(:,g), meanpowbase); end; elseif strcmpi(paired2, 'on') disp('Removing ERSP baseline for second indep. variables (first indep. var. is unpaired)'); for c = 1:nc % ng = number of groups meanpowbase = computeerspbaseline(erspbase(c,:), opt.singletrials); ersp(c,:) = removeerspbaseline(ersp(c,:), erspbase(c,:), meanpowbase); end; else disp('Not removing ERSP baseline (both indep. variables are unpaired'); end; end; end; end; % if strcmpi(opt.statmode, 'common') % % collapse the two last dimensions before computing significance % % i.e. 18 subject with 4 channels -> same as 4*18 subjects % % -------------------------------------------------------------- % disp('Using all channels for statistics...'); % for c = 1:nc % for g = 1:ng % ersp{c,g} = reshape( ersp{c,g}, size(ersp{c,g},1), size(ersp{c,g},2), size(ersp{c,g},3)*size(ersp{c,g},4)); % end; % end; % end; % copy data to structure % ---------------------- if ~isempty(events) tmpstruct = setfield(tmpstruct, [ dtype 'events' ], events); end; tmpstruct = setfield(tmpstruct, [ dtype ordinate ], allfreqs); tmpstruct = setfield(tmpstruct, [ dtype 'times' ], alltimes); if strcmpi(opt.singletrials, 'on') tmpstruct = setfield(tmpstruct, [ dtype 'datatrials' ], ersp); tmpstruct = setfield(tmpstruct, [ dtype 'subjinds' ], erspinds); tmpstruct = setfield(tmpstruct, [ dtype 'times' ], alltimes); if ~isempty(opt.channels) tmpstruct = setfield(tmpstruct, [ dtype 'trialinfo' ], opt.subject); else tmpstruct = setfield(tmpstruct, [ dtype 'trialinfo' ], opt.component); end; else tmpstruct = setfield(tmpstruct, [ dtype 'data' ], ersp); if strcmpi(dtype, 'ersp') tmpstruct = setfield(tmpstruct, [ dtype 'base' ], erspbase); end; end; % copy results to structure % ------------------------- fields = { [ dtype 'data' ] [ dtype 'events' ] [ dtype ordinate ] [ dtype 'datatrials' ] ... [ dtype 'subjinds' ] [ dtype 'base' ] [ dtype 'times' ] [ dtype 'trialinfo' ] 'allinds' 'setinds' }; for f = 1:length(fields) if isfield(tmpstruct, fields{f}), tmpdata = getfield(tmpstruct, fields{f}); if ~isempty(opt.channels) STUDY.changrp = setfield(STUDY.changrp, { finalinds(ind) }, fields{f}, tmpdata); else STUDY.cluster = setfield(STUDY.cluster, { finalinds(ind) }, fields{f}, tmpdata); end; end; end; end; end; % output units % ----------- if exist('tmpparams') ~= 1 tmpparams = []; ctmp = 1; while isempty(tmpparams) && ctmp <= length(STUDY.design(opt.design).cell) try if ~isempty(opt.channels), [tmpersp tmpparams] = std_readfile(STUDY.design(opt.design).cell(ctmp), 'channels', {STUDY.changrp(1).name}, 'measure', opt.datatype); else [tmpersp tmpparams] = std_readfile(STUDY.design(opt.design).cell(ctmp), 'components', STUDY.cluster(finalinds(end)).allinds{1,1}(1), 'measure', opt.datatype); end; catch end ctmp = ctmp + 1; end end; if ~isfield(tmpparams, 'baseline'), tmpparams.baseline = 0; end; if ~isfield(tmpparams, 'scale' ), tmpparams.scale = 'log'; end; if ~isfield(tmpparams, 'basenorm'), tmpparams.basenorm = 'off'; end; if strcmpi(tmpparams.scale, 'log') if strcmpi(tmpparams.basenorm, 'on') unitPower = '10*log(std.)'; % impossible elseif isnan(tmpparams.baseline) unitPower = '10*log10(\muV^{2}/Hz)'; else unitPower = 'dB'; end; else if strcmpi(tmpparams.basenorm, 'on') unitPower = 'std.'; elseif isnan(tmpparams.baseline) unitPower = '\muV^{2}/Hz'; else unitPower = '% of baseline'; end; end; % return structure % ---------------- if nargout <2 return end allinds = finalinds; if ~isempty(opt.channels) structdat = STUDY.changrp; erspdata = cell(nc, ng); events = {}; for ind = 1:length(erspdata(:)) if strcmpi(opt.singletrials, 'on') tmpdat = getfield(structdat(allinds(1)), [ dtype 'datatrials' ]); else tmpdat = getfield(structdat(allinds(1)), [ dtype 'data' ]); end; if ndims(tmpdat{ind}) == 2, erspdata{ind} = zeros([ size(tmpdat{ind}) 1 length(allinds)]); else erspdata{ind} = zeros([ size(tmpdat{ind}) length(allinds)]); end; for index = 1:length(allinds) if strcmpi(opt.singletrials, 'on') tmpdat = getfield(structdat(allinds(index)), [ dtype 'datatrials' ]); else tmpdat = getfield(structdat(allinds(index)), [ dtype 'data' ]); end; erspdata{ind}(:,:,:,index) = tmpdat{ind}; allfreqs = getfield(structdat(allinds(index)), [ dtype ordinate ]); alltimes = getfield(structdat(allinds(index)), [ dtype 'times' ]); if isfield(structdat, [ dtype 'events' ]) events = getfield(structdat(allinds(index)), [ dtype 'events' ]); end; compinds = structdat(allinds(index)).allinds; setinds = structdat(allinds(index)).setinds; end; erspdata{ind} = permute(erspdata{ind}, [1 2 4 3]); % time freqs elec subjects end; if ~isempty(opt.subject) && strcmpi(opt.singletrials,'off') erspdata = std_selsubject(erspdata, opt.subject, setinds, { STUDY.design(opt.design).cell.case }, 2); end; else if strcmpi(opt.singletrials, 'on') erspdata = getfield(STUDY.cluster(allinds(1)), [ dtype 'datatrials' ]); else erspdata = getfield(STUDY.cluster(allinds(1)), [ dtype 'data' ]); end; allfreqs = getfield(STUDY.cluster(allinds(1)), [ dtype ordinate ]); alltimes = getfield(STUDY.cluster(allinds(1)), [ dtype 'times' ]); if isfield(STUDY.cluster, [ dtype 'events' ]) events = getfield(STUDY.cluster(allinds(1)), [ dtype 'events' ]); end; compinds = STUDY.cluster(allinds(1)).allinds; setinds = STUDY.cluster(allinds(1)).setinds; if ~isempty(opt.component) && length(allinds) == 1 && strcmpi(opt.singletrials,'off') erspdata = std_selcomp(STUDY, erspdata, allinds, setinds, compinds, opt.component); end; end; % compute ERSP baseline % --------------------- function meanpowbase = computeerspbaseline(erspbase, singletrials) try len = length(erspbase(:)); count = 0; for index = 1:len if ~isempty(erspbase{index}) if strcmpi(singletrials, 'on') if count == 0, meanpowbase = mean(erspbase{index},3); else meanpowbase = meanpowbase + mean(erspbase{index},3); end; else if count == 0, meanpowbase = erspbase{index}; else meanpowbase = meanpowbase + erspbase{index}; end; end; count = count+1; end; end; meanpowbase = reshape(meanpowbase , [size(meanpowbase,1) 1 size(meanpowbase,2)])/count; catch, error([ 'Problem while subtracting common ERSP baseline.' 10 ... 'Common baseline subtraction is performed based on' 10 ... 'pairing settings in your design. Most likelly, one' 10 ... 'independent variable should not have its data paired.' ]); end; % remove ERSP baseline % --------------------- function ersp = removeerspbaseline(ersp, erspbase, meanpowbase) convert2log = 0; for g = 1:size(ersp,2) % ng = number of groups for c = 1:size(ersp,1) if ~isempty(erspbase{c,g}) && ~isempty(ersp{c,g}) erspbasetmp = reshape(erspbase{c,g}, [size(meanpowbase,1) 1 size(meanpowbase,3)]); if any(erspbasetmp(:) > 1000) convert2log = 1; end; tmpmeanpowbase = repmat(meanpowbase, [1 size(ersp{c,g},2) 1]); if convert2log ersp{c,g} = ersp{c,g} - repmat(10*log10(erspbasetmp), [1 size(ersp{c,g},2) 1 1]) + 10*log10(tmpmeanpowbase); else ersp{c,g} = ersp{c,g} - repmat(erspbasetmp, [1 size(ersp{c,g},2) 1 1]) + tmpmeanpowbase; end; end; end; end;
github
lcnhappe/happe-master
std_moveoutlier.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_moveoutlier.m
3,042
utf_8
d3911bba9d7caea1be8f3002aac0e6aa
% std_moveoutlier() - Commandline function, to reassign specified outlier component(s) % from a cluster to its outlier cluster. % Usage: % >> STUDY = std_moveoutlier(STUDY, ALLEEG, from_cluster, comps); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in the STUDY. % ALLEEG for a STUDY set is typically created using load_ALLEEG(). % from_cluster - cluster number, the cluster outlier components are moved from. % comps - [numeric vector] component indices in the from_cluster to move. % % Outputs: % STUDY - the input STUDY set structure modified with the components reassignment. % % Example: % >> from_cluster = 10; comps = [2 7]; % >> STUDY = std_movecomp(STUDY,ALLEEG, from_cluster, to_cluster, comps); % Components 2 and 7 of cluster 10 are moved to the its outlier cluster ('Outliers Cls 10'). % % See also pop_clustedit % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, June, 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, June 07, 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_moveoutlier(STUDY, ALLEEG, old_clus, comps) % Cannot move components if the cluster is either a 'Notclust' or % 'Outliers' cluster if strncmpi('Notclust',STUDY.cluster(old_clus).name,8) | strncmpi('Outliers',STUDY.cluster(old_clus).name,8) warndlg2('std_moveoutlier: cannot move components from Notclust or Outliers cluster'); return; end % Cannot move components if clusters have children clusters if ~isempty(STUDY.cluster(old_clus).child) warndlg2('Cannot move components if cluster has children clusters!' , 'Aborting remove outliers'); return; end outlier_clust = std_findoutlierclust(STUDY,old_clus); %find the outlier cluster for this cluster if outlier_clust == 0 %no such cluster exist STUDY = std_createclust(STUDY, ALLEEG, ['Outliers ' STUDY.cluster(old_clus).name]); %create an outlier cluster outlier_clust = length(STUDY.cluster); end %move the compnents to the outliers cluster STUDY = std_movecomp(STUDY, ALLEEG, old_clus, outlier_clust, comps);
github
lcnhappe/happe-master
pop_savestudy.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_savestudy.m
4,821
utf_8
fa0293fa03f7350151ab08e951c9bee4
% pop_savestudy() - save a STUDY structure to a disk file % % Usage: % >> STUDY = pop_savestudy( STUDY, EEG ); % pop up and interactive window % >> STUDY = pop_savestudy( STUDY, EEG, 'key', 'val', ...); % no pop-up % % Inputs: % STUDY - STUDY structure. % EEG - Array of datasets contained in the study. % % Optional inputs: % 'filename' - [string] name of the STUDY file {default: STUDY.filename} % 'filepath' - [string] path of the STUDY file {default: STUDY.filepath} % 'savemode' - ['resave'|'standard'] in resave mode, the file name in % the study is being used to resave it. % % Note: the parameter EEG is currenlty not being used. In the future, this function % will check if any of the datasets of the study have been modified and % have to be resaved. % % Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, September 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, Spetember 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, EEG, com] = pop_savestudy(STUDY, EEG, varargin); com = ''; if nargin < 1 help pop_savestudy; return; end; if isempty(STUDY) , error('pop_savestudy(): cannot save empty STUDY'); end; if length(STUDY) >1, error('pop_savestudy(): cannot save multiple STUDY sets'); end; % backward compatibility % ---------------------- if nargin > 1 if isstr(EEG) options = { EEG varargin{:} }; else options = varargin; end; end; if nargin < 3 % pop up window to ask for file type % ---------------------------------- [filename, filepath] = uiputfile2('*.study', ... 'Save STUDY with .study extension -- pop_savestudy()'); if isequal(filename,0), return; end; if ~strncmp(filename(end-5:end), '.study',6) if isempty(strfind(filename,'.')) filename = [filename '.study']; else filename = [filename(1:strfind(filename,'.')-1) '.study']; end end options = { 'filename' filename 'filepath' filepath }; end % decoding parameters % ------------------- g = finputcheck(options, { 'filename' 'string' [] STUDY.filename; 'filepath' 'string' [] STUDY.filepath; 'savemode' 'string' { 'standard','resave' } 'standard' }); if isstr(g), error(g); end; % fields to remove % ---------------- fields = { 'erptimes' 'erpdata' ... 'specfreqs' 'specdata' ... 'erspdata' 'ersptimes' 'erspfreqs' 'erspdatatrials' 'erspsubjinds' 'erspbase' 'ersptrialinfo' ... 'itcdata' 'itcfreqs' 'itctimes' ... 'erpimdata' 'erpimevents' 'erpimtrials' 'erpimtimes' }; for fInd = 1:length(fields) if isfield(STUDY.changrp, fields{fInd}) STUDY.changrp = rmfield(STUDY.changrp, fields{fInd}); end; if isfield(STUDY.changrp, fields{fInd}) STUDY.cluster = rmfield(STUDY.cluster, fields{fInd}); end; end; % resave mode % ----------- STUDY.saved = 'yes'; if strcmpi(g.savemode, 'resave') disp('Re-saving study file'); g.filename = STUDY.filename; g.filepath = STUDY.filepath; end; if isempty(g.filename) disp('pop_savestudy(): no STUDY filename: make sure the STUDY has a filename'); return; end if ~strncmp(g.filename(end-5:end), '.study',6) if isempty(strfind(g.filename,'.')) g.filename = [g.filename '.study']; else g.filename = [g.filename(1:strfind(g.filename,'.')-1) '.study']; end end % [filepath filenamenoext ext] = fileparts(varargin{1}); % filename = [filenamenoext '.study']; % make sure a .study extension STUDY.filepath = g.filepath; STUDY.filename = g.filename; STUDYfile = fullfile(STUDY.filepath,STUDY.filename); STUDYTMP = STUDY; STUDY = std_rmalldatafields(STUDY); eeglab_options; if option_saveversion6, save('-v6' , STUDYfile, 'STUDY'); else save('-v7.3' , STUDYfile, 'STUDY'); end; STUDY = STUDYTMP; % history % ------- com = sprintf('[STUDY EEG] = pop_savestudy( %s, %s, %s);', inputname(1), inputname(2), vararg2str(options));
github
lcnhappe/happe-master
pop_chanplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_chanplot.m
27,582
utf_8
dcfb38346565d3ab979d9dbbfb4adfc1
% pop_chanplot() - graphic user interface (GUI)-based function with plotting % options for visualizing. Only channel measures (e.g., spectra, % ERPs, ERSPs, ITCs) that have been computed and saved in the study EEG % datasets can be visualized. These can be computed using the GUI-based % pop_precomp(). % Usage: % >> STUDY = pop_chanplot(STUDY, ALLEEG); % Inputs: % ALLEEG - Top-level EEGLAB vector of loaded EEG structures for the dataset(s) % in the STUDY. ALLEEG for a STUDY set is typically loaded using % pop_loadstudy(), or in creating a new STUDY, using pop_createstudy(). % STUDY - EEGLAB STUDY set comprising some or all of the EEG % datasets in ALLEEG. % % Outputs: % STUDY - The input STUDY set structure modified according to specified user edits, % if any. Plotted channel measure means (maps, ERSPs, etc.) are added to % the STUDY structure after they are first plotted to allow quick replotting. % % Graphic interface buttons: % "Select channel to plot" - [list box] Displays available channels to plot (format is % 'channel name (number of channels)'). The presented channels depend s % on the optional input variable 'channels'. Selecting (clicking on) a % channel from the list will display the selected channel channels in the % "Select channel(s) to plot" list box. Use the plotting buttons below % to plot selected measures of the selected channel. % "Select channel(s) to plot" - [list box] Displays the ICA channels of the currently % selected channel (in the "Select channel to plot" list box). Each channel % has the format: 'subject name, channel index'. % "Plot channel properties" - [button] Displays in one figure all the mean channel measures % (e.g., dipole locations, scalp maps, spectra, etc.) that were calculated % and saved in the EEG datsets. If there is more than one condition, the ERP % and the spectrum will have different colors for each condition. The ERSP % and ITC plots will show only the first condition; clicking on the subplot % will open a new figure with the different conditions displayed together. % Uses the command line function std_propplot(). % "Plot ERSPs" - [button] Displays the channel channel ERSPs. % If applied to a channel, channel ERSPs are plotted in one figure % (per condition) with the channel mean ERSP. If "All # channel centroids" % option is selected, plots all average ERSPs of the channels in one figure % per condition. If applied to channels, display the ERSP images of specified % channel channels in separate figures, using one figure for all conditions. % Uses the command line functions std_erspplot(). % "Plot ITCs" - [button] Same as "Plot ERSPs" but with ITC. % Uses the command line functions std_itcplot(). % "Plot spectra" - [button] Displays the channel channel spectra. % If applied to a channel, displays channel spectra plus the average channel % spectrum in bold. For a specific channel, displays the channel channel % spectra plus the average channel spectrum (in bold) in one figure per condition. % If the "All # channel centroids" option is selected, displays the average % spectrum of all channels in the same figure, with spectrum for different % conditions (if any) plotted in different colors. % If applied to channels, displays the spectrum of specified channel % channels in separate figures using one figure for all conditions. % Uses the command line functions std_specplot(). % "Plot ERPs" - [button] Same as "Plot spectra" but for ERPs. % Uses the command line functions std_erpplot(). % "Plot ERPimage" - [button] Same as "Plot ERP" but for ERPimave. % Uses the command line functions std_erpimplot(). % % Authors: Arnaud Delorme, Scott Makeig, SCCN/INC/UCSD, October 11, 2004 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Coding notes: Useful information on functions and global variables used. function [STUDY, com] = pop_chanplot(varargin) icadefs; com = []; if ~isstr(varargin{1}) if nargin < 2 error('pop_chanplot(): You must provide ALLEEG and STUDY structures'); end STUDY = varargin{1}; STUDY.etc.erpparams.topotime = []; % [] for channels and NaN for components STUDY.etc.specparams.topofreq = []; % NaN -> GUI disabled STUDY.etc.erspparams.topotime = []; STUDY.etc.erspparams.topofreq = []; STUDY.etc.erpimparams.topotime = []; STUDY.etc.erpimparams.topotrial = []; % test path % --------- pathwarn = 'off'; if ~strcmpi(pwd, STUDY.filepath) && ~strcmpi(pwd, STUDY.filepath(1:end-1)) if length(STUDY.datasetinfo(1).filepath) < 1 pathwarn = 'on'; elseif STUDY.datasetinfo(1).filepath(1) == '.' pathwarn = 'on'; end; end; if strcmpi(pathwarn, 'on') warndlg2(strvcat('You have changed your working path and data files are', ... 'no longer available; Cancel, and go back to your STUDY folder'), 'warning'); end; STUDY.tmphist = ''; ALLEEG = varargin{2}; if ~isfield(STUDY, 'changrp') STUDY = std_changroup(STUDY, ALLEEG); disp('Warning: history not saved for group creation'); elseif isempty(STUDY.changrp) STUDY = std_changroup(STUDY, ALLEEG); disp('Warning: history not saved for group creation'); end; show_chan = ['pop_chanplot(''showchan'',gcf);']; show_onechan = ['pop_chanplot(''showchanlist'',gcf);']; plot_chan_maps = ['pop_chanplot(''topoplot'',gcf); ']; plot_onechan_maps = ['pop_chanplot(''plotchantopo'',gcf); ']; plot_chan_ersps = ['pop_chanplot(''erspplot'',gcf); ']; plot_onechan_ersps = ['pop_chanplot(''plotchanersp'',gcf); ']; plot_chan_itcs = ['pop_chanplot(''itcplot'',gcf); ']; plot_onechan_itcs = ['pop_chanplot(''plotchanitc'',gcf); ']; plot_chan_erpim = ['pop_chanplot(''erpimageplot'',gcf); ']; plot_onechan_erpim = ['pop_chanplot(''plotchanerpimage'',gcf); ']; plot_chan_spectra = ['pop_chanplot(''specplot'',gcf); ']; plot_onechan_spectra = ['pop_chanplot(''plotchanspec'',gcf); ']; plot_chan_erp = ['pop_chanplot(''erpplot'',gcf); ']; plot_onechan_erp = ['pop_chanplot(''plotchanerp'',gcf); ']; plot_chan_dip = ['pop_chanplot(''dipplot'',gcf); ']; plot_onechan_dip = ['pop_chanplot(''plotchandip'',gcf); ']; plot_chan_sum = ['pop_chanplot(''plotsum'',gcf); ']; plot_onechan_sum = ['pop_chanplot(''plotonechanum'',gcf); ']; rename_chan = ['pop_chanplot(''renamechan'',gcf);']; move_onechan = ['pop_chanplot(''movecomp'',gcf);']; move_outlier = ['pop_chanplot(''moveoutlier'',gcf);']; create_chan = ['pop_chanplot(''createchan'',gcf);']; reject_outliers = ['pop_chanplot(''rejectoutliers'',gcf);']; merge_channels = ['pop_chanplot(''mergechannels'',gcf);']; erp_opt = ['pop_chanplot(''erp_opt'',gcf);']; spec_opt = ['pop_chanplot(''spec_opt'',gcf);']; erpim_opt = ['pop_chanplot(''erpim_opt'',gcf);']; ersp_opt = ['pop_chanplot(''ersp_opt'',gcf);']; stat_opt = ['pop_chanplot(''stat_opt'',gcf);']; create_group = ['pop_chanplot(''create_group'',gcf);']; edit_group = ['pop_chanplot(''edit_group'',gcf);']; delete_group = ['pop_chanplot(''delete_group'',gcf);']; saveSTUDY = [ 'set(findobj(''parent'', gcbf, ''userdata'', ''save''), ''enable'', fastif(get(gcbo, ''value'')==1, ''on'', ''off''));' ]; browsesave = [ '[filename, filepath] = uiputfile2(''*.study'', ''Save STUDY with .study extension -- pop_chan()''); ' ... 'set(faindobj(''parent'', gcbf, ''tag'', ''studyfile''), ''string'', [filepath filename]);' ]; sel_all_chans = ['pop_chanplot(''sel_all_chans'',gcf);']; % list of channel groups % ---------------------- show_options = {}; for index = 1:length(STUDY.changrp) show_options{end+1} = [ 'All ' STUDY.changrp(index).name ]; end; % enable buttons % -------------- filename = STUDY.design(STUDY.currentdesign).cell(1).filebase; if exist([filename '.datspec']) , spec_enable = 'on'; else spec_enable = 'off'; end; if exist([filename '.daterp'] ) , erp_enable = 'on'; else erp_enable = 'off'; end; if exist([filename '.datersp']) , ersp_enable = 'on'; else ersp_enable = 'off'; end; if exist([filename '.datitc']) , itc_enable = 'on'; else itc_enable = 'off'; end; if exist([filename '.daterpim']),erpim_enable = 'on'; else erpim_enable = 'off'; end; if isfield(ALLEEG(1).dipfit, 'model'), dip_enable = 'on'; else dip_enable = 'off'; end; % userdata below % -------------- fig_arg{1}{1} = ALLEEG; fig_arg{1}{2} = STUDY; fig_arg{1}{3} = STUDY.changrp; fig_arg{1}{4} = { STUDY.changrp.name }; fig_arg{2} = length(STUDY.changrp); std_line = [0.9 0.35 0.9]; geometry = { [4] [1] [0.6 0.35 0.1 0.1 0.9] std_line std_line std_line std_line std_line std_line }; str_name = sprintf('STUDY name ''%s'' - ''%s''', STUDY.name, STUDY.design(STUDY.currentdesign).name); if length(str_name) > 80, str_name = [ str_name(1:80) '...''' ]; end; uilist = { ... {'style' 'text' 'string' str_name 'FontWeight' 'Bold' 'HorizontalAlignment' 'center'} {} ... {'style' 'text' 'string' 'Select channel to plot' 'FontWeight' 'Bold' } ... {'style' 'pushbutton' 'string' 'Sel. all' 'callback' sel_all_chans } {} {} ... {'style' 'text' 'string' 'Select subject(s) to plot' 'FontWeight' 'Bold'} ... {'style' 'listbox' 'string' show_options 'value' 1 'max' 2 'tag' 'chan_list' 'Callback' show_chan } ... {'style' 'pushbutton' 'enable' 'on' 'string' [ 'STATS' 10 'params' ] 'callback' stat_opt } ... {'style' 'listbox' 'string' '' 'tag' 'chan_onechan' 'max' 2 'min' 1 'callback' show_onechan } ... {'style' 'pushbutton' 'enable' erp_enable 'string' 'Plot ERPs' 'Callback' plot_chan_erp} ... {'style' 'pushbutton' 'enable' erp_enable 'string' 'Params' 'Callback' erp_opt } ... {'style' 'pushbutton' 'enable' erp_enable 'string' 'Plot ERP(s)' 'Callback' plot_onechan_erp} ... {'style' 'pushbutton' 'enable' spec_enable 'string' 'Plot spectra' 'Callback' plot_chan_spectra} ... {'style' 'pushbutton' 'enable' spec_enable 'string' 'Params' 'Callback' spec_opt } ... {'style' 'pushbutton' 'enable' spec_enable 'string' 'Plot spectra' 'Callback' plot_onechan_spectra} ... {'style' 'pushbutton' 'enable' erpim_enable 'string' 'Plot ERPimage' 'Callback' plot_chan_erpim } ... {'style' 'pushbutton' 'enable' erpim_enable 'string' 'Params' 'Callback' erpim_opt } ... {'style' 'pushbutton' 'enable' erpim_enable 'string' 'Plot ERPimage(s)' 'Callback' plot_onechan_erpim } ... {'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ERSPs' 'Callback' plot_chan_ersps} ... {'vertexpand' 2.15 'style' 'pushbutton' 'enable' ersp_enable 'string' 'Params' 'Callback' ersp_opt } ... {'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ERSP(s)' 'Callback' plot_onechan_ersps}... {'style' 'pushbutton' 'enable' itc_enable 'string' 'Plot ITCs' 'Callback' plot_chan_itcs} { } ... {'style' 'pushbutton' 'enable' itc_enable 'string' 'Plot ITC(s)' 'Callback' plot_onechan_itcs}... }; % {'style' 'pushbutton' 'string' 'Plot channel properties' 'Callback' plot_chan_sum} {} ... %{'style' 'pushbutton' 'string' 'Plot channel properties (soon)' 'Callback' plot_onechan_sum 'enable' 'off'} % additional UI given on the command line % --------------------------------------- geomvert = [ 1 0.5 1 5 1 1 1 1 1]; if nargin > 2 addui = varargin{3}; if ~isfield(addui, 'uilist') error('Additional GUI definition (argument 4) requires the field "uilist"'); end; if ~isfield(addui, 'geometry') addui.geometry = mat2cell(ones(1,length(addui.uilist))); end; uilist = { uilist{:}, addui.uilist{:} }; geometry = { geometry{:} addui.geometry{:} }; geomvert = [ geomvert ones(1,length(addui.geometry)) ]; end; [out_param userdat] = inputgui( 'geometry' , geometry, 'uilist', uilist, ... 'helpcom', 'pophelp(''pop_chanplot'')', ... 'title', 'View and edit current channels -- pop_chanplot()' , 'userdata', fig_arg, ... 'geomvert', geomvert, 'eval', show_chan ); if ~isempty(userdat) ALLEEG = userdat{1}{1}; STUDY = userdat{1}{2}; end % history % ------- com = STUDY.tmphist; STUDY = rmfield(STUDY, 'tmphist'); else hdl = varargin{2}; %figure handle userdat = get(varargin{2}, 'userdat'); ALLEEG = userdat{1}{1}; STUDY = userdat{1}{2}; cls = userdat{1}{3}; allchans = userdat{1}{4}; changrp = get(findobj('parent', hdl, 'tag', 'chan_list') , 'value'); onechan = get(findobj('parent', hdl, 'tag', 'chan_onechan'), 'value'); try switch varargin{1} case {'topoplot', 'erspplot','itcplot','specplot', 'erpplot', 'erpimageplot' } changrpstr = allchans(changrp); plotting_option = varargin{1}; plotting_option = [ plotting_option(1:end-4) 'plot' ]; a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''channels'',' vararg2str({changrpstr}) ');' ]; % update Study history eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); case {'plotchanersp','plotchanitc','plotchanspec', 'plotchanerp','plotchanerpimage' } changrpstr = allchans(changrp); %if length(changrp) > 1 % subject = STUDY.subject{onechan-1}; %else % changrpstruct = STUDY.changrp(changrp); % allsubjects = unique_bc({ STUDY.datasetinfo([ changrpstruct.setinds{:} ]).subject }); % subject = allsubjects{onechan-1}; %end; plotting_option = varargin{1}; plotting_option = [ plotting_option(9:end) 'plot' ]; if onechan(1) ~= 1 % check that not all onechan in channel are requested subject = STUDY.design(STUDY.currentdesign).cases.value{onechan-1}; a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''channels'',' vararg2str({changrpstr}) ', ''subject'', ''' subject ''' );' ]; eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); else a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''channels'',' vararg2str({changrpstr}) ', ''plotsubjects'', ''on'' );' ]; eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); case 'stat_opt' % save the list of selected channels [STUDY com] = pop_statparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'erp_opt' % save the list of selected channels [STUDY com] = pop_erpparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'spec_opt' % save the list of selected channels [STUDY com] = pop_specparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'ersp_opt' % save the list of selected channels [STUDY com] = pop_erspparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'erpim_opt' % save the list of selected channels [STUDY com] = pop_erpimparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'showchanlist' % save the list of selected channels if length(changrp) == 1 STUDY.changrp(changrp).selected = onechan; end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'showchan' cind = get(findobj('parent', hdl, 'tag', 'chan_list') , 'value'); changrp = STUDY.changrp(cind); % Find datasets availaible % ------------------------ %setind = STUDY.setind .* (changrp.chaninds > 0); % set to 0 the cell not %% % containing any electrode %allchansets = unique_bc( setind(find(setind(:))) ); % Generate channel list % --------------------- chanid{1} = 'All subjects'; if length(changrp) == 1 allsubjects = unique_bc({ STUDY.design(STUDY.currentdesign).cell([ changrp.setinds{:} ]).case }); for l = 1:length(allsubjects) chanid{end+1} = [ allsubjects{l} ' ' changrp.name ]; end; else for l = 1:length(STUDY.design(STUDY.currentdesign).cases.value) chanid{end+1} = [ STUDY.design(STUDY.currentdesign).cases.value{l} ]; end; end; selected = 1; if isfield(changrp, 'selected') & length(cind) == 1 if ~isempty(STUDY.changrp(cind).selected) selected = min(STUDY.changrp(cind).selected, 1+length(chanid)); STUDY.changrp(cind).selected = selected; end; end; set(findobj('parent', hdl, 'tag', 'chan_onechan'), 'value', selected, 'String', chanid); case 'sel_all_chans' set(findobj('parent', hdl, 'tag', 'chan_list'), 'value', [1:length(STUDY.changrp)]); % Generate channel list % --------------------- chanid{1} = 'All subjects'; for l = 1:length(STUDY.design(STUDY.currentdesign).cases.value) chanid{end+1} = [ STUDY.design(STUDY.currentdesign).cases.value{l} ' All' ]; end; selected = 1; set(findobj('parent', hdl, 'tag', 'chan_onechan'), 'value', selected, 'String', chanid); case 'plotsum' changrpstr = allchans(changrp); [STUDY] = std_propplot(STUDY, ALLEEG, allchans(changrp)); a = ['STUDY = std_propplot(STUDY, ALLEEG, ' vararg2str({ allchans(changrp) }) ' );' ]; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); case 'create_group' channames = { STUDY.changrp(changrp).name }; for i=1:length(channames), channames{i} = [ ' ' channames{i} ]; end; channamestr = strcat(channames{:}); res = inputdlg2({ 'Name of channel group', 'Channels to group' }, 'Create channel group', 1, { '' channamestr(2:end) }); if isempty(res), return; end; STUDY.changrp(end+1).name = res{1}; allchans(end+1) = { res{1} }; chanlabels = parsetxt(res{2}); if length(chanlabels) == 1 warndlg2('Cannot create a channel group with a single channel'); return; end; STUDY.changrp(end).channels = chanlabels; tmp = std_chanlookup( STUDY, ALLEEG, STUDY.changrp(end)); STUDY.changrp(end).chaninds = tmp.chaninds; userdat{1}{2} = STUDY; userdat{1}{4} = allchans; set(hdl, 'userdat',userdat); % list of channel groups % ---------------------- tmpobj = findobj('parent', hdl, 'tag', 'chan_list'); tmptext = get(tmpobj, 'string'); tmptext{end+1} = [ 'All ' STUDY.changrp(end).name ]; set(tmpobj, 'string', tmptext, 'value', length(tmptext)); case 'edit_group' if length(changrp) > 1, return; end; if length(STUDY.changrp(changrp).channels) < 2, return; end; channames = STUDY.changrp(changrp).channels; for i=1:length(channames), channames{i} = [ ' ' channames{i} ]; end; channamestr = strcat(channames{:}); res = inputdlg2({ 'Name of channel group', 'Channels to group' }, 'Create channel group', ... 1, { STUDY.changrp(changrp).name channamestr(2:end) }); if isempty(res), return; end; STUDY.changrp(end+1).name = ''; STUDY.changrp(changrp) = STUDY.changrp(end); STUDY.changrp(end) = []; STUDY.changrp(changrp).name = res{1}; allchans(changrp) = { res{1} }; chanlabels = parsetxt(res{2}); STUDY.changrp(changrp).channels = chanlabels; tmp = std_chanlookup( STUDY, ALLEEG, STUDY.changrp(end)); STUDY.changrp(changrp).chaninds = tmp.chaninds; userdat{1}{2} = STUDY; userdat{1}{4} = allchans; set(hdl, 'userdat',userdat); % list of channel groups % ---------------------- show_options = {}; for index = 1:length(STUDY.changrp) show_options{end+1} = [ 'All ' STUDY.changrp(index).name ]; end; tmpobj = findobj('parent', hdl, 'tag', 'chan_list'); set(tmpobj, 'string', show_options, 'value', changrp); case 'delete_group' if length(changrp) > 1, return; end; if length(STUDY.changrp(changrp).channels) < 2, return; end; STUDY.changrp(changrp) = []; % list of channel groups % ---------------------- show_options = {}; for index = 1:length(STUDY.changrp) show_options{end+1} = [ 'All ' STUDY.changrp(index).name ]; end; tmpobj = findobj('parent', hdl, 'tag', 'chan_list'); set(tmpobj, 'string', show_options, 'value', changrp-1); case 'renamechan' STUDY.saved = 'no'; chan_name_list = get(findobj('parent', hdl, 'tag', 'chan_list'), 'String'); chan_num = get(findobj('parent', hdl, 'tag', 'chan_list'), 'Value') -1; if chan_num == 0 % 'all subjects' option return; end % Don't rename 'Notchan' and 'Outliers' channels. if strncmpi('Notchan',STUDY.channel(cls(chan_num)).name,8) | strncmpi('Outliers',STUDY.channel(cls(chan_num)).name,8) | ... strncmpi('Parentchannel',STUDY.channel(cls(chan_num)).name,13) warndlg2('The Parentchannel, Outliers, and Notchan channels cannot be renamed'); return; end old_name = STUDY.channel(cls(chan_num)).name; rename_param = inputgui( { [1] [1] [1]}, ... { {'style' 'text' 'string' ['Rename ' old_name] 'FontWeight' 'Bold'} {'style' 'edit' 'string' '' 'tag' 'chan_rename' } {} }, ... '', 'Rename channel - from pop_chanplot()' ); if ~isempty(rename_param) %if not canceled new_name = rename_param{1}; STUDY = std_renamechan(STUDY, ALLEEG, cls(chan_num), new_name); % update Study history a = ['STUDY = std_renamechan(STUDY, ALLEEG, ' num2str(cls(chan_num)) ', ' STUDY.channel(cls(chan_num)).name ');']; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); new_name = [ STUDY.channel(cls(chan_num)).name ' (' num2str(length(STUDY.channel(cls(chan_num)).onechan)) ' ICs)']; chan_name_list{chan_num+1} = renamechan( chan_name_list{chan_num+1}, new_name); set(findobj('parent', hdl, 'tag', 'chan_list'), 'String', chan_name_list); set(findobj('parent', hdl, 'tag', 'chan_rename'), 'String', ''); userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update STUDY end end catch eeglab_error; end; end function newname = renamechan(oldname, newname); tmpname = deblank(oldname(end:-1:1)); strpos = strfind(oldname, tmpname(end:-1:1)); newname = [ oldname(1:strpos-1) newname ];
github
lcnhappe/happe-master
std_erpimage.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_erpimage.m
11,020
utf_8
e610e6ac79890f95ca1b2048f25013fa
% std_erpimage() - Compute ERP images and save them on disk. % % Usage: % >> std_erpimage( EEG, 'key', 'val', ...); % % Inputs: % EEG - a loaded epoched EEG dataset structure. May be an array % of such structure containing several datasets. % % Optional inputs: % 'components' - [numeric vector] components of the EEG structure for which % the measure will be computed {default|[] -> all} % 'channels' - [cell array] channels of the EEG structure for which % activation ERPs will be computed {default|[] -> none} % 'trialindices' - [cell array] indices of trials for each dataset. % Default is all trials. % 'recompute' - ['on'|'off'] force recomputing data file even if it is % already on disk. % 'rmcomps' - [integer array] remove artifactual components (this entry % is ignored when plotting components). This entry contains % the indices of the components to be removed. Default is none. % 'interp' - [struct] channel location structure containing electrode % to interpolate ((this entry is ignored when plotting % components). Default is no interpolation. % 'fileout' - [string] name of the file to save on disk. The default % is the same name (with a different extension) as the % dataset given as input. % % ERPimage options: % 'concatenate' - ['on'|'off'] concatenate single trial of different % subjects for plotting ERPimages ('on'). The default % ('off') computes an ERPimage for each subject and then % averages these ERPimages. This allows to perform % statistics (the 'on' options does not allow statistics). % 'smoothing' - Smoothing parameter (number of trials). {Default: 10} % erpimage() equivalent: 'avewidth' % 'nlines' - Number of lines for ERPimage. erpaimge() equivalent is % 'decimate'. Note that this parameter must be larger than % the minimum number of trials in each design cell % {Default: 10} % 'sorttype' - Sorting event type(s) ([int vector]; []=all). See Notes below. % Either a string or an integer. % 'sortwin' - Sorting event window [start, end] in milliseconds ([]=whole epoch) % 'sortfield' - Sorting field name. {default: latency}. % 'erpimageopt' - erpimage() options, separated by commas (Ex: 'erp', 'cbar'). % {Default: none}. For further details see >> erpimage help % Outputs: % erpimagestruct - structure containing ERPimage information that is % been saved on disk. % % Files are saved on disk. % [dataset_file].icaerpim % component ERPimage file % OR % [dataset_file].daterpim % channel ERPimage file % % Author: Arnaud Delorme, SCCN & CERCO, CNRS, 2011- % Copyright (C) 2011 Arnaud Delorme % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function allerpimage = std_erpimage( EEG, varargin); if nargin < 1 help std_erpimage; return; end allerpimage = []; [opt moreopts] = finputcheck( varargin, { ... 'components' 'integer' [] []; 'channels' { 'cell','integer' } { [] [] } {}; 'trialindices' { 'integer','cell' } [] []; 'recompute' 'string' { 'on','off' } 'off'; 'savefile' 'string' { 'on','off' } 'on'; 'fileout' 'string' [] ''; 'rmcomps' 'cell' [] cell(1,length(EEG)); 'interp' 'struct' { } struct([]); 'nlines' '' [] 10; 'smoothing' '' [] 10; 'sorttype' '' {} ''; 'sortwin' '' {} []; 'sortfield' '' {} 'latency'; 'concatenate' 'string' { 'on','off' } 'off'; 'erpimageopt' 'cell' {} {}}, ... 'std_erpimage', 'ignore'); if isstr(opt), error(opt); end; if length(EEG) == 1 && isempty(opt.trialindices), opt.trialindices = { [1:EEG.trials] }; end; if isempty(opt.trialindices), opt.trialindices = cell(length(EEG)); end; if ~iscell(opt.trialindices), opt.trialindices = { opt.trialindices }; end; if isfield(EEG,'icaweights') numc = size(EEG(1).icaweights,1); else error('EEG.icaweights not found'); end if isempty(opt.components) opt.components = 1:numc; end % filename % -------- if isempty(opt.fileout), opt.fileout = fullfile(EEG(1).filepath, EEG(1).filename(1:end-4)); end; if ~isempty(opt.channels) filenameshort = [ opt.fileout '.daterpim']; prefix = 'chan'; if iscell(opt.channels) if ~isempty(opt.interp) opt.indices = eeg_chaninds(opt.interp, opt.channels, 0); else opt.indices = eeg_chaninds(EEG(1), opt.channels, 0); for ind = 2:length(EEG) if ~isequal(eeg_chaninds(EEG(ind), opt.channels, 0), opt.indices) error([ 'Channel information must be consistant when ' 10 'several datasets are merged for a specific design' ]); end; end; end; else opt.indices = opt.channels; end; else opt.indices = opt.components; filenameshort = [ opt.fileout '.icaerpim']; prefix = 'comp'; end; filename = filenameshort; % ERP information found in datasets % --------------------------------- if exist(filename) && strcmpi(opt.recompute, 'off') fprintf('File "%s" found on disk, no need to recompute\n', filenameshort); return; end allerpimage = []; if strcmpi(opt.concatenate, 'off') % compute ERP images % ------------------ if isempty(opt.channels) X = eeg_getdatact(EEG, 'component', opt.indices, 'trialindices', opt.trialindices ); else X = eeg_getdatact(EEG, 'channel' , opt.indices, 'trialindices', opt.trialindices, 'rmcomps', opt.rmcomps, 'interp', opt.interp); end; if ~isempty(opt.sorttype) events = eeg_getepochevent(EEG, 'type', opt.sorttype, 'timewin', opt.sortwin, 'fieldname', opt.sortfield, 'trials', opt.trialindices); else events = []; end; % reverse engeeneering the number of lines for ERPimage finallines = opt.nlines; if ~isempty(events) if all(isnan(events)) error('Cannot sort trials for one of the dataset'); end; lastx = sum(~isnan(events)); else lastx = size(X,3); end; if lastx < finallines + floor((opt.smoothing-1)/2) + 3 error('The default number of ERPimage lines is too large for one of the dataset'); end; firstx = 1; xwidth = opt.smoothing; %xadv = lastx/finallines; nout = finallines; %floor(((lastx-firstx+xadv+1)-xwidth)/xadv); nlines = (lastx-xwidth)/(nout-0.5)*i; % make it imaginary %nlines = ceil(lastx/((lastx-firstx+1-xwidth)/(nout-1))); if 0 % testing conversion back and forth % --------------------------------- for lastx = 20:300 for xwidth = 1:19 for nlines = (xwidth+1):100 nout = floor(((lastx+nlines)-xwidth)/nlines); realnlines = (lastx-xwidth)/(nout-0.5); noutreal = floor(((lastx+realnlines)-xwidth)/realnlines); if nout ~= noutreal error('Wrong conversion 2'); end; end; end; end; end; clear tmperpimage eventvals; parfor index = 1:size(X,1) [tmpX tmpevents] = erpimage(squeeze(X(index,:,:)), events, EEG(1).times, '', opt.smoothing, nlines, 'noplot', 'on', opt.erpimageopt{:}, moreopts{:}); if isempty(events), tmpevents = []; end; eventvals{index} = tmpevents; tmperpimage{index} = tmpX'; end; allerpimage.events = eventvals{1}; for index = 1:size(X,1) allerpimage.([ prefix int2str(opt.indices(index)) ]) = tmperpimage{index}; end; else % generate dynamic loading commands % --------------------------------- for dat = 1:length(EEG) filenames{dat} = fullfile(EEG(1).filepath, EEG(1).filename); end; allerpimage.times = EEG(1).times; for index = 1:length(opt.indices) if ~isempty(opt.channels) com = sprintf('squeeze(eeg_getdatact(%s, ''interp'', chanlocsforinterp));', vararg2str( { filenames 'channel' , opt.indices(index), 'rmcomps', opt.rmcomps, 'trialindices', opt.trialindices } )); else com = sprintf('squeeze(eeg_getdatact(%s));', vararg2str( { filenames 'component', opt.indices(index), 'trialindices', opt.trialindices } )); end; allerpimage = setfield(allerpimage, [ prefix int2str(opt.indices(index)) ], com); end; allerpimage = setfield(allerpimage, 'chanlocsforinterp', opt.interp); if ~isempty(opt.sorttype) events = eeg_getepochevent(EEG, 'type', opt.sorttype, 'timewin', opt.sortwin, 'fieldname', opt.sortfield, 'trials', opt.trialindices); %geteventcom = sprintf('eeg_getepochevent(%s);', vararg2str( { filenames 'type', opt.sorttype, 'timewin', opt.sortwin, 'fieldname', opt.sortfield } )); else events = []; end; allerpimage = setfield(allerpimage, 'events', events); end; allerpimage.times = EEG(1).times; allerpimage.parameters = varargin; allerpimage.datatype = 'ERPIMAGE'; allerpimage.datafiles = computeFullFileName( { EEG.filepath }, { EEG.filename }); allerpimage.datatrials = opt.trialindices; % Save ERPimages in file (all components or channels) % ---------------------------------------------- if strcmpi(opt.savefile, 'on') if strcmpi(prefix, 'comp') std_savedat(filename, allerpimage); else tmpchanlocs = EEG(1).chanlocs; allerpimage.labels = opt.channels; std_savedat(filename, allerpimage); end; end; % compute full file names % ----------------------- function res = computeFullFileName(filePaths, fileNames); for index = 1:length(fileNames) res{index} = fullfile(filePaths{index}, fileNames{index}); end;
github
lcnhappe/happe-master
std_cell2setcomps.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_cell2setcomps.m
3,058
utf_8
199bb737c086d50fb622cb63d9511eeb
% std_cell2setcomps - convert .sets and .comps to cell array. The .sets and % .comps format is useful for GUI but the cell array % format is used for plotting and statistics. % % Usage: % [ struct sets comps ] = std_cell2setcomps(STUDY, clustind); % % Author: Arnaud Delorme, CERCO/CNRS, UCSD, 2009- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ tmpstruct setlist complist ] = std_cell2setcomps(STUDY, ALLEEG, setinds, allinds) if nargin < 4 tmpstruct = STUDY.cluster(setinds); sets = STUDY.cluster(setinds).setinds; inds = STUDY.cluster(setinds).allinds; else tmpstruct = []; sets = setinds; inds = allinds; end; % initialize flag array % --------------------- flag = cell(size(inds)); for i = 1:size(inds,1) for j = 1:size(inds,2) flag{i,j} = zeros(size(inds{i,j})); end; end; % find datasets with common ICA decompositions clusters = std_findsameica(ALLEEG); setlist = []; complist = []; count = 1; for i = 1:size(inds,1) for j = 1:size(inds,2) for ind = 1:length(inds{i,j}) if ~flag{i,j}(ind) % found one good component complist(count) = inds{i,j}(ind); %if complist(count) == 12, dfds; end; % search for the same component in other datasets for c = 1:length(clusters) if any(clusters{c} == sets{i,j}(ind)) setlist(:,count) = clusters{c}'; % flag all of these datasets for i2 = 1:size(inds,1) for j2 = 1:size(inds,2) for ind2 = 1:length(sets{i2,j2}) if any(sets{i2,j2}(ind2) == clusters{c}) && complist(count) == inds{i2, j2}(ind2) flag{i2,j2}(ind2) = 1; end; end; end; end; end; end; count = count+1; end; end; end; end; tmpstruct.sets = setlist; tmpstruct.comps = complist;
github
lcnhappe/happe-master
std_editset.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_editset.m
16,290
utf_8
f7eebc870fafd57a1465c80e576543d1
% std_editset() - modify a STUDY set structure. % % Usage: % >> [STUDY, ALLEEG] = std_editset(STUDY, ALLEEG, key1, val1, ...); % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % % Optional inputs: % 'commands' - {cell_array} change STUDY (see command description and % example below. % 'name' - [string] specify a (mnemonic) name for the STUDY structure. % {default: ''} % 'task' - [string] attach a description of the experimental task(s) % performed by the STUDY subjects {default: ''}. % 'filename' - [string] filename for the STUDY set. % 'filepath' - [string] file path (directory/folder) in which the STUDY file % will be saved. % 'addchannellabels' - ['on'|'off'] add channel labels ('1', '2', '3', ...) % to all datasets of a STUDY to ensure that all STUDY functions % will work {default: 'off' unless no dataset has channel % locations and then it is automatically set to on} % 'notes' - [string] notes about the experiment, the datasets, the STUDY, % or anything else to store with the STUDY itself {default: ''}. % 'updatedat' - ['on'|'off'] update 'subject' 'session' 'condition' and/or % 'group' fields of STUDY dataset(s). % 'savedat' - ['on'|'off'] re-save datasets % 'inbrain' - ['on'|'off'] select components for clustering from all STUDY % datasets with equivalent dipoles located inside the brain volume. % Dipoles are selected based on their residual variance and their % location {default: 'off'} % 'resave' - ['on'|'off'] save or resave STUDY {default: 'off'} % % Each of the 'commands' (above) is a cell array composed of any of the following: % 'index' - [integer] modify/add dataset index. Note that if a % dataset is added and that this leaves some indices not % populated, the dataset is automatically set to the last % empty index. For instance creating a STUDY with a single % dataset at index 10 will result with a STUDY with a % single dataset at index 1. % 'remove' - [integer] remove dataset index. % 'subject' - [string] subject code. % 'condition' - [string] dataset condition. % 'session ' - [integer] dataset session number. % 'group' - [string] dataset group. % 'load' - [filename] load dataset from specified filename % 'dipselect' - [float<1] select components for clustering from all STUDY % datasets with dipole model residual var. below this value. % 'inbrain' - ['on'|'off'] same as above. This option may also be % placed in the command list (preceeding the 'dipselect' % option). % % Outputs: % STUDY - a new STUDY set containing some or all of the datasets in ALLEEG, % plus additional information from the optional inputs above. % ALLEEG - a vector of EEG datasets included in the STUDY structure % % See also: pop_createstudy(), std_loadalleeg(), pop_clust(), pop_preclust(), % eeg_preclust(), eeg_createdata() % % Authors: Arnaud Delorme, Hilit Serby, SCCN/INC/UCSD, October , 2004- % Copyright (C) Arnaud Delorme & Scott Makeig, SCCN/INC/UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, ALLEEG] = std_editset(STUDY, ALLEEG, varargin) if (nargin < 3) help std_editset; return; end; % decode input parameters % ----------------------- g = finputcheck(varargin, { 'updatedat' 'string' { 'on','off' } 'off'; 'name' 'string' { } ''; 'task' 'string' { } ''; 'notes' 'string' { } ''; 'filename' 'string' { } ''; 'filepath' 'string' { } ''; 'resave' 'string' { 'on','off','info' } 'off'; 'savedat' 'string' { 'on','off' } 'off'; 'addchannellabels' 'string' { 'on','off' } 'off'; 'rmclust' 'string' { 'on','off' } 'on'; 'inbrain' 'string' { 'on','off' } 'off'; 'commands' 'cell' {} {} }, 'std_editset'); if isstr(g), error(g); end; if isempty(STUDY), STUDY.history = 'STUDY = [];'; end; if ~isempty(g.name), STUDY.name = g.name; end if ~isempty(g.task), STUDY.task = g.task; end if ~isempty(g.notes), STUDY.notes = g.notes; end % default addchannellabels % ------------------------ if ~isempty(ALLEEG) allchanlocs = { ALLEEG.chanlocs }; if all(cellfun( @isempty, allchanlocs)) g.addchannellabels = 'on'; else if any(cellfun( @isempty, allchanlocs)) error( [ 'Some datasets have channel locations and some other don''t' 10 ... 'the STUDY is not homogenous and cannot be created.' ]); end; end; end; % make one cell array with commands % --------------------------------- allcoms = {}; if ~isempty(g.commands) if iscell(g.commands{1}) for k = 1:length(g.commands) % put index field first indindex = strmatch('index', lower(g.commands{k}(1:2:end))); if ~isempty(indindex) tmpcom = { 'index' g.commands{k}{2*(indindex-1)+1+1} g.commands{k}{:} }; else tmpcom = g.commands{k}; end; allcoms = { allcoms{:} tmpcom{:} }; end; else allcoms = g.commands; end; end; g.commands = allcoms; % add 'dipselect' command if 'inbrain' option is selected % --------------------------------- dipselectExists = false; for k = 1:2:length(g.commands) if strcmp(g.commands{k},'dipselect') dipselectExists = true; end; end; if strcmp(g.inbrain,'on') && ~dipselectExists g.commands{length(g.commands)+1} = 'dipselect'; g.commands{length(g.commands)+1} = 0.15; end; % copy values % ----------- if ~isfield(STUDY, 'datasetinfo') for realindex = 1:length(ALLEEG) if ~isempty(ALLEEG(realindex).data) [tmppath tmpfile tmpext] = fileparts( fullfile(ALLEEG(realindex).filepath, ALLEEG(realindex).filename) ); STUDY.datasetinfo(realindex).filepath = tmppath; STUDY.datasetinfo(realindex).filename = [ tmpfile tmpext ]; STUDY.datasetinfo(realindex).subject = ALLEEG(realindex).subject; STUDY.datasetinfo(realindex).session = ALLEEG(realindex).session; STUDY.datasetinfo(realindex).condition = ALLEEG(realindex).condition; STUDY.datasetinfo(realindex).group = ALLEEG(realindex).group; end; end; end; % execute commands % ---------------- currentind = 1; rmlist = []; for k = 1:2:length(g.commands) switch g.commands{k} case 'index' currentind = g.commands{k+1}; case 'subject' STUDY.datasetinfo(currentind).subject = g.commands{k+1}; case 'comps' STUDY.datasetinfo(currentind).comps = g.commands{k+1}; case 'condition' STUDY.datasetinfo(currentind).condition = g.commands{k+1}; case 'group' STUDY.datasetinfo(currentind).group = g.commands{k+1}; case 'session' STUDY.datasetinfo(currentind).session = g.commands{k+1}; case 'session' STUDY.datasetinfo(currentind).session = g.commands{k+1}; case 'remove' % create empty structure allfields = fieldnames(ALLEEG); tmpfields = allfields; tmpfields(:,2) = cell(size(tmpfields)); tmpfields = tmpfields'; ALLEEG(g.commands{k+1}) = struct(tmpfields{:}); % create empty structure allfields = fieldnames(STUDY.datasetinfo); tmpfields = allfields; tmpfields(:,2) = cell(size(tmpfields)); tmpfields = tmpfields'; STUDY.datasetinfo(g.commands{k+1}) = struct(tmpfields{:}); if isfield(STUDY.datasetinfo, 'index') STUDY.datasetinfo = rmfield(STUDY.datasetinfo, 'index'); end; STUDY.datasetinfo(1).index = []; STUDY.changrp = []; case 'return', return; case 'inbrain' g.inbrain = g.commands{k+1}; case 'dipselect' STUDY = std_checkset(STUDY, ALLEEG); rv = g.commands{k+1}; clusters = std_findsameica(ALLEEG); for cc = 1:length(clusters) idat = 0; for tmpi = 1:length(clusters{cc}) if isfield(ALLEEG(clusters{cc}(tmpi)).dipfit, 'model') idat = clusters{cc}(tmpi); end; end; indleft = []; if rv ~= 1 if idat ~= 0 if strcmp(g.inbrain,'on') fprintf('Selecting dipoles with less than %%%2.1f residual variance and removing dipoles outside brain volume in dataset ''%s''\n', ... 100*rv, ALLEEG(idat).setname); indleft = eeg_dipselect(ALLEEG(idat), rv*100,'inbrain'); else fprintf('Selecting dipoles with less than %%%2.1f residual variance in dataset ''%s''\n', ... 100*rv, ALLEEG(idat).setname); indleft = eeg_dipselect(ALLEEG(idat), rv*100,'rv'); end; else fprintf('No dipole information found in ''%s'' dataset, using all components\n', ALLEEG.setname) end end; for tmpi = 1:length(clusters{cc}) STUDY.datasetinfo(clusters{cc}(tmpi)).comps = indleft; end; end; STUDY.cluster = []; STUDY = std_checkset(STUDY, ALLEEG); % recreate parent dataset case 'load' TMPEEG = std_loadalleeg( { g.commands{k+1} } ); ALLEEG = eeg_store(ALLEEG, eeg_checkset(TMPEEG), currentind); ALLEEG(currentind).saved = 'yes'; % update datasetinfo structure % ---------------------------- [tmppath tmpfile tmpext] = fileparts( fullfile(ALLEEG(currentind).filepath, ... ALLEEG(currentind).filename) ); STUDY.datasetinfo(currentind).filepath = tmppath; STUDY.datasetinfo(currentind).filename = [ tmpfile tmpext ]; STUDY.datasetinfo(currentind).subject = ALLEEG(currentind).subject; STUDY.datasetinfo(currentind).session = ALLEEG(currentind).session; STUDY.datasetinfo(currentind).condition = ALLEEG(currentind).condition; STUDY.datasetinfo(currentind).group = ALLEEG(currentind).group; STUDY.datasetinfo(currentind).index = currentind; otherwise, error(sprintf('Unknown command %s', g.commands{k})); end end % add channel labels automatically % ------------------------------- if strcmpi(g.addchannellabels, 'on') disp('Generating channel labels for all datasets...'); for currentind = 1:length(ALLEEG) for ind = 1:ALLEEG(currentind).nbchan ALLEEG(currentind).chanlocs(ind).labels = int2str(ind); end; end; ALLEEG(currentind).saved = 'no'; g.savedat = 'on'; end; % update ALLEEG structure? % ------------------------ if strcmpi(g.updatedat, 'on') for currentind = 1:length(ALLEEG) if ~strcmpi(ALLEEG(currentind).subject, STUDY.datasetinfo(currentind).subject) ALLEEG(currentind).subject = STUDY.datasetinfo(currentind).subject; ALLEEG(currentind).saved = 'no'; end; if ~strcmpi(ALLEEG(currentind).condition, STUDY.datasetinfo(currentind).condition) ALLEEG(currentind).condition = STUDY.datasetinfo(currentind).condition; ALLEEG(currentind).saved = 'no'; end; if ~isequal(ALLEEG(currentind).session, STUDY.datasetinfo(currentind).session) ALLEEG(currentind).session = STUDY.datasetinfo(currentind).session; ALLEEG(currentind).saved = 'no'; end; if ~strcmpi(char(ALLEEG(currentind).group), char(STUDY.datasetinfo(currentind).group)) ALLEEG(currentind).group = STUDY.datasetinfo(currentind).group; ALLEEG(currentind).saved = 'no'; end; end; end; % remove empty datasets (cannot be done above because some empty datasets % might not have been removed) % --------------------- rmindex = []; for index = 1:length(STUDY.datasetinfo) if isempty(STUDY.datasetinfo(index).subject) && isempty(ALLEEG(index).nbchan) rmindex = [ rmindex index ]; end; end; STUDY.datasetinfo(rmindex) = []; ALLEEG(rmindex) = []; for index = 1:length(STUDY.datasetinfo) STUDY.datasetinfo(index).index = index; end; % remove empty ALLEEG structures % ------------------------------ while length(ALLEEG) > length(STUDY.datasetinfo) ALLEEG(end) = []; end; %[ ALLEEG STUDY.datasetinfo ] = remove_empty(ALLEEG, STUDY.datasetinfo); % save datasets if necessary % -------------------------- if strcmpi(g.savedat, 'on') for index = 1:length(ALLEEG) if isempty(ALLEEG(index).filename) fprintf('Cannot resave ALLEEG(%d) because the dataset has no filename\n', index); else TMP = pop_saveset(ALLEEG(index), 'savemode', 'resave'); ALLEEG = eeg_store(ALLEEG, TMP, index); ALLEEG(index).saved = 'yes'; end; end; end; % remove cluster information if necessary % --------------------------------------- if strcmpi(g.rmclust, 'on') STUDY.cluster = []; end; % save study if necessary % ----------------------- if ~isempty(g.commands) STUDY.changrp = []; STUDY.cluster = []; % if ~isempty(STUDY.design) % [STUDY] = std_createclust(STUDY, ALLEEG, 'parentcluster', 'on'); % end; end; [STUDY ALLEEG] = std_checkset(STUDY, ALLEEG); if ~isempty(g.filename), [STUDY.filepath STUDY.filename ext] = fileparts(fullfile( g.filepath, g.filename )); STUDY.filename = [ STUDY.filename ext ]; g.resave = 'on'; end if strcmpi(g.resave, 'on') STUDY = pop_savestudy(STUDY, ALLEEG, 'savemode', 'resave'); end; % --------------------- % remove empty elements % --------------------- function [ALLEEG, datasetinfo] = remove_empty(ALLEEG, datasetinfo); rmindex = []; for index = 1:length(datasetinfo) if isempty(datasetinfo(index).subject) && isempty(ALLEEG(index).nbchan) rmindex = [ rmindex index ]; end; end; datasetinfo(rmindex) = []; ALLEEG(rmindex) = []; for index = 1:length(datasetinfo) datasetinfo(index).index = index; end; % remove empty ALLEEG structures % ------------------------------ while length(ALLEEG) > length(datasetinfo) ALLEEG(end) = []; end;
github
lcnhappe/happe-master
std_readitc.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readitc.m
1,475
utf_8
0c0874e2789900f1ae4de7b00a08107f
% std_readitc() - load ITC measures for data channels or % for all components of a specified cluster. % Usage: % >> [STUDY, itcdata, times, freqs] = ... % std_readitc(STUDY, ALLEEG, varargin); % % Note: this function is a helper function that contains a call to the % std_readersp function that reads all 2-D data matrices for EEGLAB STUDY. % See the std_readersp help message for more information. % % Author: Arnaud Delorme, CERCO, 2006- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, erspdata, alltimes, allfreqs, erspbase] = std_readersp(STUDY, ALLEEG, varargin); [STUDY, erspdata, alltimes, allfreqs] = std_readersp(STUDY, ALLEEG, 'infotype','itc', varargin{:});
github
lcnhappe/happe-master
pop_loadstudy.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_loadstudy.m
7,189
utf_8
8d440b01a822257a1e561422e3db090f
% pop_loadstudy() - load an existing EEGLAB STUDY set of EEG datasets plus % its corresponding ALLEEG structure. Calls std_loadalleeg(). % Usage: % >> [STUDY ALLEEG] = pop_loadstudy; % pop up a window to collect filename % >> [STUDY ALLEEG] = pop_loadstudy( 'key', 'val', ...); % no pop-up % % Optional inputs: % 'filename' - [string] filename of the STUDY set file to load. % 'filepath' - [string] filepath of the STUDY set file to load. % % Outputs: % STUDY - the requested STUDY set structure. % ALLEEG - the corresponding ALLEEG structure containing % the (loaded) STUDY EEG datasets. % % See also: std_loadalleeg(), pop_savestudy() % % Authors: Hilit Serby & Arnaud Delorme, SCCN, INC, UCSD, September 2005 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, Spetember 2005, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Coding notes: Useful information on functions and global variables used. function [STUDY, ALLEEG, com] = pop_loadstudy(varargin) STUDY = []; ALLEEG = []; com = ''; if isempty(varargin) [filename, filepath] = uigetfile2('*.study', 'Load a STUDY -- pop_loadstudy()'); if filename(1) == 0, return; end; if ~strncmp(filename(end-5:end), '.study',6) if isempty(strfind(filename,'.')) filename = [filename '.study']; else filename = [filename(1:strfind(filename,'.')-1) '.study']; end end else filepath = ''; if nargin == 1 varargin = { 'filename' varargin{:} }; end; for k = 1:2:length(varargin) switch varargin{k} case 'filename' filename = varargin{k+1}; case 'filepath' filepath = varargin{k+1}; end end end if ~isempty(filename) STUDYfile = fullfile(filepath,filename); try load('-mat', STUDYfile); catch error(['pop_loadstudy(): STUDY set file ''STUDYfile'' not loaded -- check filename and path']); end [filepath filename ext] = fileparts(STUDYfile); STUDY.filename = [filename ext]; STUDY.etc.oldfilepath = STUDY.filepath; STUDY.filepath = filepath; else error(['pop_loadstudy(): No STUDY set file provided.']); end ALLEEG = std_loadalleeg(STUDY); % Update the pointers from STUDY to the ALLEEG datasets for k = 1:length(STUDY.datasetinfo) STUDY.datasetinfo(k).index = k; STUDY.datasetinfo(k).filename = ALLEEG(k).filename; STUDY.datasetinfo(k).filepath = ALLEEG(k).filepath; end if ~isfield(STUDY, 'changrp'), STUDY.changrp = []; end; [STUDY ALLEEG] = std_checkset(STUDY, ALLEEG); if ~isfield(STUDY, 'changrp') || isempty(STUDY.changrp) if std_uniformfiles(STUDY, ALLEEG) == 0 STUDY = std_changroup(STUDY, ALLEEG); else STUDY = std_changroup(STUDY, ALLEEG, [], 'interp'); end; end; % Update the design path for inddes = 1:length(STUDY.design) for indcell = 1:length(STUDY.design(inddes).cell) if isempty(STUDY.design(inddes).filepath) pathname = STUDY.datasetinfo(STUDY.design(inddes).cell(indcell).dataset(1)).filepath; else pathname = STUDY.design(inddes).filepath; end filebase = STUDY.design(inddes).cell(indcell).filebase; tmpinds1 = find(filebase == '/'); tmpinds2 = find(filebase == '\'); if ~isempty(tmpinds1) STUDY.design(inddes).cell(indcell).filebase = fullfile(pathname, filebase(tmpinds1(end)+1:end)); elseif ~isempty(tmpinds2) STUDY.design(inddes).cell(indcell).filebase = fullfile(pathname, filebase(tmpinds2(end)+1:end)); else STUDY.design(inddes).cell(indcell).filebase = fullfile(pathname, filebase ); end; end; end; % check for corrupted ERSP ICA data files % A corrupted file is present if % - components have been selected % - .icaersp or .icaitc files are present % - the .trialindices field is missing from these files try %% check for corrupted ERSP ICA data files ncomps1 = cellfun(@length, { STUDY.datasetinfo.comps }); ncomps2 = cellfun(@(x)(size(x,1)), { ALLEEG.icaweights }); if any(~isempty(ncomps1)) if any(ncomps1 ~= ncomps2) warningshown = 0; for des = 1:length(STUDY.design) for iCell = 1:length(STUDY.design(des).cell) if ~warningshown if exist( [ STUDY.design(des).cell(iCell).filebase '.icaersp' ] ) warning('off', 'MATLAB:load:variableNotFound'); tmp = load('-mat', [ STUDY.design(des).cell(iCell).filebase '.icaersp' ], 'trialindices'); warning('on', 'MATLAB:load:variableNotFound'); if ~isfield(tmp, 'trialindices') warningshown = 1; warndlg( [ 'Warning: ICA ERSP or ITC data files computed with old version of EEGLAB for design ' int2str(des) 10 ... '(and maybe other designs). These files may be corrupted and must be recomputed.' ], 'Important EEGLAB warning', 'nonmodal'); end; end; if warningshown == 0 && exist( [ STUDY.design(des).cell(iCell).filebase '.icaitc' ] ) tmp = load('-mat', [ STUDY.design(des).cell(iCell).filebase '.icaersp' ], 'trialindices'); if ~isfield(tmp, 'trialindices') warningshown = 1; warndlg( [ 'Warning: ICA ERSP or ITC data files computed with old version of EEGLAB for design ' int2str(des) 10 ... '(and maybe other designs). These files may be corrupted and must be recomputed.' ], 'Important EEGLAB warning', 'modal'); end; end; end; end; end; end; end; catch, disp('Warning: failed to test STUDY file version'); end; TMP = STUDY.datasetinfo; STUDY = std_maketrialinfo(STUDY, ALLEEG); if ~isequal(STUDY.datasetinfo, TMP) disp('STUDY Warning: the trial information collected from datasets has changed'); end; std_checkfiles(STUDY, ALLEEG); STUDY.saved = 'yes'; STUDY = std_selectdesign(STUDY, ALLEEG, STUDY.currentdesign); com = sprintf('[STUDY ALLEEG] = pop_loadstudy(''filename'', ''%s'', ''filepath'', ''%s'');', STUDY.filename, STUDY.filepath);
github
lcnhappe/happe-master
std_readspecgram.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readspecgram.m
4,381
utf_8
96b0d97423e8bcaaf19884201bfb7a63
% std_readspecgram() - returns the stored mean power spectrogram for an ICA component % or a data channel in a specified dataset. The spectrogram is % assumed to have been saved in a Matlab file, % "[dataset_name].datspecgram", in the same % directory as the dataset file. If this file doesn't exist, % use std_specgram() to create it. % Usage: % >> [spec, times, freqs] = std_readspecgram(ALLEEG, setindx, component, timerange, freqrange); % % Inputs: % ALLEEG - a vector of dataset EEG structures (may also be one dataset). % Must contain the dataset of interest (the 'setindx' below). % setindx - [integer] an index of an EEG dataset in the ALLEEG % structure for which to read a component spectrum. % component - [integer] index of the component in the selected EEG dataset % for which to return the spectrum % freqrange - [min max in Hz] frequency range to return % % % Outputs: % spec - the log-power spectrum of the requested ICA component in the % specified dataset (in dB) % freqs - vector of spectral frequencies (in Hz) % % See also std_spec(), pop_preclust(), std_preclust() % % Authors: Arnaud Delorme, SCCN, INC, UCSD, February, 2008 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [X, t, f] = std_readspecgram(ALLEEG, abset, comp, timerange, freqrange, rmsubjmean); if nargin < 4 timerange = []; end; if nargin < 5 freqrange = []; end; X = []; if iscell(comp) % find channel indices list % ------------------------- chanind = []; tmpchanlocs = ALLEEG(abset).chanlocs; chanlabs = lower({ tmpchanlocs.labels }); for index = 1:length(comp) tmp = strmatch(lower(comp{index}), chanlabs, 'exact'); if isempty(tmp) error([ 'Channel ''' comp{index} ''' not found in dataset ' int2str(abset)]); else chanind = [ chanind tmp ]; end; end; filename = fullfile( ALLEEG(abset).filepath,[ ALLEEG(abset).filename(1:end-3) 'datspecgram']); prefix = 'chan'; inds = chanind; elseif comp(1) < 0 filename = fullfile( ALLEEG(abset).filepath,[ ALLEEG(abset).filename(1:end-3) 'datspecgram']); prefix = 'chan'; inds = -comp; else filename = fullfile( ALLEEG(abset).filepath,[ ALLEEG(abset).filename(1:end-3) 'icaspecgram']); prefix = 'comp'; inds = comp; end; for k=1:length(inds) try, warning backtrace off; erpstruct = load( '-mat', filename, [ prefix int2str(inds(k)) ], 'freqs', 'times'); warning backtrace on; catch error( [ 'Cannot read file ''' filename '''' ]); end; tmpdat = getfield(erpstruct, [ prefix int2str(inds(k)) ]); if k == 1 X = zeros([size(tmpdat) length(comp)]); end; X(:,:,k) = tmpdat; f = getfield(erpstruct, 'freqs'); t = getfield(erpstruct, 'times'); end; % select frequency range of interest % ---------------------------------- if ~isempty(freqrange) maxind = max(find(f <= freqrange(end))); minind = min(find(f >= freqrange(1))); else %if not, use whole spectrum maxind = length(f); minind = 1; end f = f(minind:maxind); X = X(minind:maxind,:,:); % select time range of interest % ----------------------------- if ~isempty(timerange) maxind = max(find(t <= timerange(end))); minind = min(find(t >= timerange(1))); else %if not, use whole spectrum maxind = length(t); minind = 1; end t = t(minind:maxind); X = X(:,minind:maxind,:); return;
github
lcnhappe/happe-master
std_pacplot.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_pacplot.m
1,889
utf_8
b3f29ed622b651d14f649518b13acd9f
% std_pacplot() - Commandline function to plot cluster PAC % (phase-amplitude coupling). % % Usage: % >> [STUDY] = std_pacplot(STUDY, ALLEEG, key1, val1, key2, val2); % >> [STUDY itcdata itctimes itcfreqs pgroup pcond pinter] = ... % std_pacplot(STUDY, ALLEEG ...); % Inputs: % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - global EEGLAB vector of EEG structures for the datasets in the STUDY. % Note: ALLEEG for a STUDY set is typically created using load_ALLEEG(). % % Additional help: % Inputs and output of this function are strictly identical to the std_erspplot(). % See the help message of this function for more information. % % See also: std_erspplot(), pop_clustedit(), pop_preclust() % % Authors: Arnaud Delorme, CERCO, July, 2009- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, allpac, alltimes, allfreqs, pgroup, pcond, pinter] = std_pacplot(STUDY, ALLEEG, varargin) if nargin < 2 help std_pacplot; return; end; [STUDY allpac alltimes allfreqs pgroup pcond pinter ] = std_erspplot(STUDY, ALLEEG, 'datatype', 'pac', varargin{:});
github
lcnhappe/happe-master
pop_dipparams.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_dipparams.m
3,898
utf_8
49636409e08a138da902e72246f3131a
% pop_dipparams() - Set plotting parameters for dipoles. % % Usage: % >> STUDY = pop_dipparams(STUDY, 'key', 'val'); % % Inputs: % STUDY - EEGLAB STUDY set % % Optional inputs: % 'axistight' - ['on'|'off'] Plot closest MRI slide. Default is 'off'. % 'projimg' - ['on'|'off'] lot dipoles projections on each axix. Default is 'off'. % 'projlines' - ['on'|'off'] Plot projection lines. Default is 'off'. % % See also: std_dipplot() % % Authors: Arnaud Delorme % Copyright (C) Arnaud Delorme, 20013 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY, com ] = pop_dipparams(STUDY, varargin); STUDY = default_params(STUDY); TMPSTUDY = STUDY; com = ''; if isempty(varargin) val_axistight = fastif(strcmpi(STUDY.etc.dipparams.axistight,'on'), 1, 0); val_projimg = fastif(strcmpi(STUDY.etc.dipparams.projimg,'on'), 1, 0); val_projlines = fastif(strcmpi(STUDY.etc.dipparams.projlines,'on'), 1, 0); uilist = { ... {'style' 'checkbox' 'tag' 'axistight' 'value' val_axistight } { 'style' 'text' 'string' 'Plot closest MRI slide' } ... {'style' 'checkbox' 'tag' 'projlines' 'value' val_projlines } { 'style' 'text' 'string' 'Plot projection lines' } ... {'style' 'checkbox' 'tag' 'projimg' 'value' val_projimg } { 'style' 'text' 'string' 'Plot dipoles projections' } }; [out_param userdat tmp res] = inputgui( 'geometry' , { [0.1 1] [0.1 1] [0.1 1] }, 'uilist', uilist, 'geomvert', [1 1 1], ... 'title', 'ERP plotting options -- pop_dipparams()'); if isempty(res), return; end; % decode inputs % ------------- res.axistight = fastif(res.axistight, 'on', 'off'); res.projimg = fastif(res.projimg , 'on', 'off'); res.projlines = fastif(res.projlines, 'on', 'off'); % build command call % ------------------ options = {}; if ~strcmpi( res.axistight, STUDY.etc.dipparams.axistight), options = { options{:} 'axistight' res.axistight }; end; if ~strcmpi( res.projimg, STUDY.etc.dipparams.projimg ), options = { options{:} 'projimg' res.projimg }; end; if ~strcmpi( res.projlines, STUDY.etc.dipparams.projlines), options = { options{:} 'projlines' res.projlines }; end; if ~isempty(options) STUDY = pop_dipparams(STUDY, options{:}); com = sprintf('STUDY = pop_dipparams(STUDY, %s);', vararg2str( options )); end; else if strcmpi(varargin{1}, 'default') STUDY = default_params(STUDY); else for index = 1:2:length(varargin) if ~isempty(strmatch(varargin{index}, fieldnames(STUDY.etc.dipparams), 'exact')) STUDY.etc.dipparams = setfield(STUDY.etc.dipparams, varargin{index}, varargin{index+1}); end; end; end; end; function STUDY = default_params(STUDY) if ~isfield(STUDY.etc, 'dipparams'), STUDY.etc.dipparams = []; end; if ~isfield(STUDY.etc.dipparams, 'axistight'), STUDY.etc.dipparams.axistight = 'off'; end; if ~isfield(STUDY.etc.dipparams, 'projimg'), STUDY.etc.dipparams.projimg = 'off'; end; if ~isfield(STUDY.etc.dipparams, 'projlines'), STUDY.etc.dipparams.projlines = 'off'; end;
github
lcnhappe/happe-master
std_precomp.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_precomp.m
29,881
utf_8
8762251e54d64dd26e02ab863ad5b239
% std_precomp() - Precompute measures (ERP, spectrum, ERSP, ITC) for channels in a % study. If channels are interpolated before computing the measures, % the updated EEG datasets are also saved to disk. Called by % pop_precomp(). Follow with pop_plotstudy(). See Example below. % Usage: % >> [STUDY ALLEEG customRes] = std_precomp(STUDY, ALLEEG, chanorcomp, 'key', 'val', ...); % % Required inputs: % STUDY - an EEGLAB STUDY set of loaded EEG structures % ALLEEG - ALLEEG vector of one or more loaded EEG dataset structures % chanorcomp - ['components'|'channels'| or channel cell array] The string % 'components' forces the program to precompute all selected % measures for components. The string 'channels' forces the % program to compute all measures for all channels. % A channel cell array containing channel labels will precompute % the selected measures. Note that the name of the channel is % not case-sensitive. % Optional inputs: % 'design' - [integer] use specific study index design to compute measure. % 'cell' - [integer] compute measure only for a give data file. % 'erp' - ['on'|'off'] pre-compute ERPs for each dataset. % 'spec' - ['on'|'off'] pre-compute spectrum for each dataset. % Use 'specparams' to set spectrum parameters. % 'ersp' - ['on'|'off'] pre-compute ERSP for each dataset. % Use 'erspparams' to set time/frequency parameters. % 'itc' - ['on'|'off'] pre-compute ITC for each dataset. % Use 'erspparams' to set time/frequency parameters. % 'scalp' - ['on'|'off'] pre-compute scalp maps for components. % 'allcomps' - ['on'|'off'] compute ERSP/ITC for all components ('off' % only use pre-selected components in the pop_study interface). % 'erpparams' - [cell array] Parameters for the std_erp function. See % std_erp for more information. % 'specparams' - [cell array] Parameters for the std_spec function. See % std_spec for more information. % 'erspparams' - [cell array] Optional arguments for the std_ersp function. % 'erpimparams' - [cell array] Optional argument for std_erpimage. See % std_erpimage for the list of arguments. % 'recompute' - ['on'|'off'] force recomputing ERP file even if it is % already on disk. % 'rmicacomps' - ['on'|'off'|'processica'] remove ICA components pre-selected in % each dataset (EEGLAB menu item, "Tools > Reject data using ICA % > Reject components by map). This option is ignored when % precomputing measures for ICA clusters. Default is 'off'. % 'processica' forces to process ICA components instead of % removing them. % 'rmclust' - [integer array] remove selected ICA component clusters. % For example, ICA component clusters containing % artifacts. This option is ignored when precomputing % measures for ICA clusters. % 'savetrials' - ['on'|'off'] save single-trials ERSP. Requires a lot of disk % space (dataset space on disk times 10) but allow for refined % single-trial statistics. % 'customfunc' - [function_handle] execute a specific function on each % EEGLAB dataset of the selected STUDY design. The fist % argument to the function is an EEGLAB dataset. Example is % @(EEG)mean(EEG.data,3) % This will compute the ERP for the STUDY design. EEG is the % EEGLAB dataset corresponding to each cell design. It % corresponds to a dataset computed dynamically based on % the design selection. If 'rmclust', 'rmicacomps' or 'interp' % are being used, the channel data is affected % accordingly. Anonymous and non-anonymous functions may be % used. The output is returned in CustomRes or saved on % disk. The output of the custom function may be an numerical % array or a structure. % 'customparams' - [cell array] Parameters for the custom function above. % 'customfileext' - [string] file extension for saving custom data. Use % function to read custom data. If left empty, the % result is returned in the customRes output. Note that % if the custom function does not return a structure, % the data is automatically saved in a variable named % 'data'. % 'customclusters' - [integer array] load only specific clusters. This is % used with SIFT. chanorcomp 3rd input must be 'components'. % % Outputs: % ALLEEG - the input ALLEEG vector of EEG dataset structures, modified % by adding preprocessing data as pointers to Matlab files that % hold the pre-clustering component measures. % STUDY - the input STUDY set with pre-clustering data added, % for use by pop_clust() % customRes - cell array of custom results (one cell for each pair of % independent variables as defined in the STUDY design). % If a custom file extension is specified, this variable % is empty as the function assumes that the result is too % large to hold in memory. % % Example: % >> [STUDY ALLEEG customRes] = std_precomp(STUDY, ALLEEG, { 'cz' 'oz' }, 'interp', ... % 'on', 'erp', 'on', 'spec', 'on', 'ersp', 'on', 'erspparams', ... % { 'cycles' [ 3 0.5 ], 'alpha', 0.01, 'padratio' 1 }); % % % This prepares, channels 'cz' and 'oz' in the STUDY datasets. % % If a data channel is missing in one dataset, it will be % % interpolated (see eeg_interp()). The ERP, spectrum, ERSP, and % % ITC for each dataset is then computed. % % Example of custom call: % The function below computes the ERP of the EEG data for each channel and plots it. % >> [STUDY ALLEEG customres] = std_precomp(STUDY, ALLEEG, 'channels', 'customfunc', @(EEG,varargin)(mean(EEG.data,3)')); % >> std_plotcurve([1:size(customres{1},1)], customres, 'chanlocs', eeg_mergelocs(ALLEEG.chanlocs)); % plot data % % The function below uses a data file to store the information then read % the data and eventyally plot it % >> [STUDY ALLEEG customres] = std_precomp(STUDY, ALLEEG, 'channels', 'customfunc', @(EEG,varargin)(mean(EEG.data,3)), 'customfileext', 'tmperp'); % >> erpdata = std_readcustom(STUDY, ALLEEG, 'tmperp'); % >> std_plotcurve([1:size(erpdata{1})], erpdata, 'chanlocs', eeg_mergelocs(ALLEEG.chanlocs)); % plot data % % Authors: Arnaud Delorme, SCCN, INC, UCSD, 2006- % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, 2006, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [ STUDY, ALLEEG customRes ] = std_precomp(STUDY, ALLEEG, chanlist, varargin) if nargin < 2 help std_precomp; return; end; if nargin == 2 chanlist = 'channels'; % default to clustering the whole STUDY end customRes = []; Ncond = length(STUDY.condition); if Ncond == 0 Ncond = 1; end g = finputcheck(varargin, { 'erp' 'string' { 'on','off' } 'off'; 'interp' 'string' { 'on','off' } 'off'; 'ersp' 'string' { 'on','off' } 'off'; 'recompute' 'string' { 'on','off' } 'off'; 'spec' 'string' { 'on','off' } 'off'; 'erpim' 'string' { 'on','off' } 'off'; 'scalp' 'string' { 'on','off' } 'off'; 'allcomps' 'string' { 'on','off' } 'off'; 'itc' 'string' { 'on','off' } 'off'; 'savetrials' 'string' { 'on','off' } 'off'; 'rmicacomps' 'string' { 'on','off','processica' } 'off'; 'cell' 'integer' [] []; 'design' 'integer' [] STUDY.currentdesign; 'rmclust' 'integer' [] []; 'rmbase' 'integer' [] []; % deprecated, for backward compatibility purposes, not documented 'specparams' 'cell' {} {}; 'erpparams' 'cell' {} {}; 'customfunc' {'function_handle' 'integer' } { { } {} } []; 'customparams' 'cell' {} {}; 'customfileext' 'string' [] ''; 'customclusters' 'integer' [] []; 'erpimparams' 'cell' {} {}; 'erspparams' 'cell' {} {}}, 'std_precomp'); if isstr(g), error(g); end; if ~isempty(g.rmbase), g.erpparams = { g.erpparams{:} 'rmbase' g.rmbase }; end; % union of all channel structures % ------------------------------- computewhat = 'channels'; if isstr(chanlist) if strcmpi(chanlist, 'channels') chanlist = []; else % components computewhat = 'components'; if strcmpi(g.allcomps, 'on') chanlist = {}; for index = 1:length(STUDY.datasetinfo) chanlist = { chanlist{:} [1:size(ALLEEG(STUDY.datasetinfo(index).index).icaweights,1)] }; end; else chanlist = { STUDY.datasetinfo.comps }; end; end; end; if isempty(chanlist) alllocs = eeg_mergelocs(ALLEEG.chanlocs); chanlist = { alllocs.labels }; elseif ~isnumeric(chanlist{1}) alllocs = eeg_mergelocs(ALLEEG.chanlocs); [tmp c1 c2] = intersect_bc( lower({ alllocs.labels }), lower(chanlist)); [tmp c2] = sort(c2); alllocs = alllocs(c1(c2)); end; % test if interp and reconstruct channel list % ------------------------------------------- if strcmpi(computewhat, 'channels') if strcmpi(g.interp, 'on') STUDY.changrp = []; STUDY = std_changroup(STUDY, ALLEEG, chanlist, 'interp'); g.interplocs = alllocs; else STUDY.changrp = []; STUDY = std_changroup(STUDY, ALLEEG, chanlist); g.interplocs = struct([]); end; end; % components or channels % ---------------------- if strcmpi(computewhat, 'channels') curstruct = STUDY.changrp; else curstruct = STUDY.cluster; end; % compute custom measure % ---------------------- if ~isempty(g.customfunc) nc = max(length(STUDY.design(g.design).variable(1).value),1); ng = max(length(STUDY.design(g.design).variable(2).value),1); allinds = curstruct(1).allinds; % same for all channels and components (see std_selectdesign) setinds = curstruct(1).setinds; % same for all channels and components (see std_selectdesign) if ~isempty(g.customclusters) allinds = curstruct(g.customclusters).allinds; % same for all channels and components (see std_selectdesign) setinds = curstruct(g.customclusters).setinds; % same for all channels and components (see std_selectdesign) end; for cInd = 1:nc for gInd = 1:ng if ~isempty(setinds{cInd,gInd}) desset = STUDY.design(g.design).cell(setinds{cInd,gInd}(:)); for iDes = 1:length(desset) if strcmpi(computewhat, 'channels') [tmpchanlist opts] = getchansandopts(STUDY, ALLEEG, chanlist, desset(iDes).dataset, g); TMPEEG = std_getdataset(STUDY, ALLEEG, 'design', g.design, 'cell', setinds{cInd,gInd}(iDes), opts{:}); % trial indices included in cell selection else TMPEEG = std_getdataset(STUDY, ALLEEG, 'design', g.design, 'cell', setinds{cInd,gInd}(iDes), 'cluster', g.customclusters); end; addopts = { 'savetrials', g.savetrials, 'recompute', g.recompute }; % not currently used tmpData = feval(g.customfunc, TMPEEG, g.customparams{:}); if isempty(g.customfileext) resTmp(:,:,iDes) = tmpData; else fileName = [ desset(iDes).filebase '.' g.customfileext ]; clear data; data.data = tmpData; data.datafile = computeFullFileName( { ALLEEG(desset(iDes).dataset).filepath }, { ALLEEG(desset(iDes).dataset).filename }); data.datatrials = desset(iDes).trials; data.datatype = upper(g.customfileext); if ~isempty(g.customparams) data.parameters = g.customparams; end; std_savedat(fileName, data); end; end; if isempty(g.customfileext) customRes{cInd,gInd} = resTmp; end; clear resTmp; end; end; end; end; % compute ERPs % ------------ if strcmpi(g.erp, 'on') % check dataset consistency % ------------------------- allPnts = [ALLEEG([STUDY.design(g.design).cell.dataset]).pnts]; if iscell(allPnts), allPnts = [ allPnts{:} ]; end; if length(unique(allPnts)) > 1 error([ 'Cannot compute ERPs because datasets' 10 'do not have the same number of data points' ]) end; for index = 1:length(STUDY.design(g.design).cell) if ~isempty(g.cell) desset = STUDY.design(g.design).cell(g.cell); else desset = STUDY.design(g.design).cell(index); end; addopts = { 'savetrials', g.savetrials, 'recompute', g.recompute, 'fileout', desset.filebase, 'trialindices', desset.trials }; if strcmpi(computewhat, 'channels') [tmpchanlist opts] = getchansandopts(STUDY, ALLEEG, chanlist, desset.dataset, g); std_erp(ALLEEG(desset.dataset), 'channels', tmpchanlist, opts{:}, addopts{:}, g.erpparams{:}); else if length(desset.dataset)>1 && ~isequal(chanlist{desset.dataset}) error(['ICA decompositions must be identical if' 10 'several datasets are concatenated to build' 10 'the design, abording' ]); end; std_erp(ALLEEG(desset.dataset), 'components', chanlist{desset.dataset(1)}, addopts{:}, g.erpparams{:}); end; if ~isempty(g.cell), break; end; end; if isfield(curstruct, 'erpdata') curstruct = rmfield(curstruct, 'erpdata'); curstruct = rmfield(curstruct, 'erptimes'); end; end; % compute spectrum % ---------------- if strcmpi(g.spec, 'on') % check dataset consistency % ------------------------- for index = 1:length(STUDY.design(g.design).cell) if ~isempty(g.cell) desset = STUDY.design(g.design).cell(g.cell); else desset = STUDY.design(g.design).cell(index); end; addopts = { 'savetrials', g.savetrials, 'recompute', g.recompute, 'fileout', desset.filebase, 'trialindices', desset.trials }; if strcmpi(computewhat, 'channels') [tmpchanlist opts] = getchansandopts(STUDY, ALLEEG, chanlist, desset.dataset, g); std_spec(ALLEEG(desset.dataset), 'channels', tmpchanlist, opts{:}, addopts{:}, g.specparams{:}); else if length(desset.dataset)>1 && ~isequal(chanlist{desset.dataset}) error(['ICA decompositions must be identical if' 10 'several datasets are concatenated to build' 10 'the design, abording' ]); end; std_spec(ALLEEG(desset.dataset), 'components', chanlist{desset.dataset(1)}, addopts{:}, g.specparams{:}); end; if ~isempty(g.cell), break; end; end; if isfield(curstruct, 'specdata') curstruct = rmfield(curstruct, 'specdata'); curstruct = rmfield(curstruct, 'specfreqs'); end; end; % compute spectrum % ---------------- if strcmpi(g.erpim, 'on') % check dataset consistency % ------------------------- allPnts = [ALLEEG([STUDY.design(g.design).cell.dataset]).pnts]; if iscell(allPnts), allPnts = [ allPnts{:} ]; end; if length(unique(allPnts)) > 1 error([ 'Cannot compute ERSPs/ITCs because datasets' 10 'do not have the same number of data points' ]) end; % check consistency with parameters on disk % ----------------------------------------- guimode = 'guion'; tmpparams = {}; tmpparams = g.erpimparams; if strcmpi(g.recompute, 'off') for index = 1:length(STUDY.design(g.design).cell) desset = STUDY.design(g.design).cell(index); if strcmpi(computewhat, 'channels') filename = [ desset.filebase '.daterpim']; else filename = [ desset.filebase '.icaerpim']; end; [guimode, g.erpimparams] = std_filecheck(filename, g.erpimparams, guimode, { 'fileout' 'recompute', 'channels', 'components', 'trialindices'}); if strcmpi(guimode, 'cancel'), return; end; end; if strcmpi(guimode, 'usedisk') || strcmpi(guimode, 'same'), g.recompute = 'off'; else g.recompute = 'on'; end; if ~isempty(g.erpimparams) && isstruct(g.erpimparams) tmpparams = fieldnames(g.erpimparams); tmpparams = tmpparams'; tmpparams(2,:) = struct2cell(g.erpimparams); end; end; % set parameters in ERPimage parameters % ------------------------------------- STUDY = pop_erpimparams(STUDY, tmpparams{:}); % a little trashy as the function pop_erpimparams does not check the fields % compute ERPimages % ----------------- for index = 1:length(STUDY.design(g.design).cell) if ~isempty(g.cell) desset = STUDY.design(g.design).cell(g.cell); else desset = STUDY.design(g.design).cell(index); end; addopts = { 'recompute', g.recompute, 'fileout', desset.filebase, 'trialindices', desset.trials }; if strcmpi(computewhat, 'channels') [tmpchanlist opts] = getchansandopts(STUDY, ALLEEG, chanlist, desset.dataset, g); std_erpimage(ALLEEG(desset.dataset), 'channels', tmpchanlist, opts{:}, addopts{:}, tmpparams{:}); else if length(desset.dataset)>1 && ~isequal(chanlist{desset.dataset}) error(['ICA decompositions must be identical if' 10 'several datasets are concatenated to build' 10 'the design, abording' ]); end; std_erpimage(ALLEEG(desset.dataset), 'components', chanlist{desset.dataset(1)}, addopts{:}, tmpparams{:}); end; if ~isempty(g.cell), break; end; end; if isfield(curstruct, 'erpimdata') curstruct = rmfield(curstruct, 'erpimdata'); curstruct = rmfield(curstruct, 'erpimtimes'); curstruct = rmfield(curstruct, 'erpimtrials'); curstruct = rmfield(curstruct, 'erpimevents'); end; end; % compute component scalp maps % ---------------------------- if strcmpi(g.scalp, 'on') && ~strcmpi(computewhat, 'channels') for index = 1:length(STUDY.datasetinfo) % find duplicate % -------------- found = []; ind1 = STUDY.datasetinfo(index).index; inds = strmatch(STUDY.datasetinfo(index).subject, { STUDY.datasetinfo(1:index-1).subject }); for index2 = 1:length(inds) ind2 = STUDY.datasetinfo(inds(index2)).index; if isequal(ALLEEG(ind1).icawinv, ALLEEG(ind2).icawinv) found = ind2; end; end; % make link if duplicate % ---------------------- if ~isempty(g.cell) desset = STUDY.design(g.design).cell(g.cell); [path,tmp] = fileparts(desset.filebase); else path = ALLEEG(index).filepath; end; fprintf('Computing/checking topo file for dataset %d\n', ind1); if ~isempty(found) clear tmp; tmpfile1 = fullfile( path, [ ALLEEG(index).filename(1:end-3) 'icatopo' ]); tmp.file = fullfile( ALLEEG(found).filepath, [ ALLEEG(found).filename(1:end-3) 'icatopo' ]); std_savedat(tmpfile1, tmp); else std_topo(ALLEEG(index), chanlist{index}, 'none', 'recompute', g.recompute,'fileout',path); end; end; if isfield(curstruct, 'topo') curstruct = rmfield(curstruct, 'topo'); curstruct = rmfield(curstruct, 'topox'); curstruct = rmfield(curstruct, 'topoy'); curstruct = rmfield(curstruct, 'topoall'); curstruct = rmfield(curstruct, 'topopol'); end; end; % compute ERSP and ITC % -------------------- if strcmpi(g.ersp, 'on') || strcmpi(g.itc, 'on') % check dataset consistency % ------------------------- allPnts = [ALLEEG([STUDY.design(g.design).cell.dataset]).pnts]; if iscell(allPnts), allPnts = [ allPnts{:} ]; end; if length(unique(allPnts)) > 1 error([ 'Cannot compute ERSPs/ITCs because datasets' 10 'do not have the same number of data points' ]) end; if strcmpi(g.ersp, 'on') & strcmpi(g.itc, 'on'), type = 'both'; elseif strcmpi(g.ersp, 'on') , type = 'ersp'; else type = 'itc'; end; % check for existing files % ------------------------ guimode = 'guion'; [ tmpX tmpt tmpf g.erspparams ] = std_ersp(ALLEEG(1), 'channels', 1, 'type', type, 'recompute', 'on', 'getparams', 'on', 'savetrials', g.savetrials, g.erspparams{:}); if strcmpi(g.recompute, 'off') for index = 1:length(STUDY.design(g.design).cell) desset = STUDY.design(g.design).cell(index); if strcmpi(computewhat, 'channels') filename = [ desset.filebase '.datersp']; else filename = [ desset.filebase '.icaersp']; end; [guimode, g.erspparams] = std_filecheck(filename, g.erspparams, guimode, { 'plotitc' 'plotersp' 'plotphase' }); if strcmpi(guimode, 'cancel'), return; end; end; if strcmpi(guimode, 'usedisk') || strcmpi(guimode, 'same'), g.recompute = 'off'; else g.recompute = 'on'; end; end; % check for existing files % ------------------------ if isempty(g.erspparams), tmpparams = {}; elseif iscell(g.erspparams), tmpparams = g.erspparams; else tmpparams = fieldnames(g.erspparams); tmpparams = tmpparams'; tmpparams(2,:) = struct2cell(g.erspparams); end; tmpparams = { tmpparams{:} 'recompute' g.recompute }; for index = 1:length(STUDY.design(g.design).cell) if ~isempty(g.cell) desset = STUDY.design(g.design).cell(g.cell); else desset = STUDY.design(g.design).cell(index); end; if strcmpi(computewhat, 'channels') [tmpchanlist opts] = getchansandopts(STUDY, ALLEEG, chanlist, desset.dataset, g); std_ersp(ALLEEG(desset.dataset), 'channels', tmpchanlist, 'type', type, 'fileout', desset.filebase, 'trialindices', desset.trials, opts{:}, tmpparams{:}); else if length(desset.dataset)>1 && ~isequal(chanlist{desset.dataset}) error(['ICA decompositions must be identical if' 10 'several datasets are concatenated to build' 10 'the design, abording' ]); end; std_ersp(ALLEEG(desset.dataset), 'components', chanlist{desset.dataset(1)}, 'type', type, 'fileout', desset.filebase, 'trialindices', desset.trials, tmpparams{:}); end; if ~isempty(g.cell), break; end; end; if isfield(curstruct, 'erspdata') curstruct = rmfield(curstruct, 'erspdata'); curstruct = rmfield(curstruct, 'ersptimes'); curstruct = rmfield(curstruct, 'erspfreqs'); end; if isfield(curstruct, 'itcdata') curstruct = rmfield(curstruct, 'itcdata'); curstruct = rmfield(curstruct, 'itctimes'); curstruct = rmfield(curstruct, 'itcfreqs'); end; end; % components or channels % ---------------------- if strcmpi(computewhat, 'channels') STUDY.changrp = curstruct; else STUDY.cluster = curstruct; end; return; % find components in cluster for specific dataset % ----------------------------------------------- function rmcomps = getclustcomps(STUDY, rmclust, settmpind); rmcomps = cell(1,length(settmpind)); for idat = 1:length(settmpind) % scan dataset for which to find component clusters for rmi = 1:length(rmclust) % scan clusters comps = STUDY.cluster(rmclust(rmi)).comps; sets = STUDY.cluster(rmclust(rmi)).sets; indmatch = find(sets(:) == settmpind(idat)); indmatch = ceil(indmatch/size(sets,1)); % get the column number rmcomps{idat} = [rmcomps{idat} comps(indmatch(:)') ]; end; rmcomps{idat} = sort(rmcomps{idat}); end; % make option array and channel list (which depend on interp) for any type of measure % ---------------------------------------------------------------------- function [tmpchanlist, opts] = getchansandopts(STUDY, ALLEEG, chanlist, idat, g); opts = { }; if ~isempty(g.rmclust) || strcmpi(g.rmicacomps, 'on') || strcmpi(g.rmicacomps, 'processica') rmcomps = cell(1,length(idat)); if ~isempty(g.rmclust) rmcomps = getclustcomps(STUDY, g.rmclust, idat); end; if strcmpi(g.rmicacomps, 'on') for ind = 1:length(idat) rmcomps{ind} = union_bc(rmcomps{ind}, find(ALLEEG(idat(ind)).reject.gcompreject)); end; elseif strcmpi(g.rmicacomps, 'processica') for ind = 1:length(idat) rmcomps{ind} = union_bc(rmcomps{ind}, find(~ALLEEG(idat(ind)).reject.gcompreject)); end; end; opts = { opts{:} 'rmcomps' rmcomps }; end; if strcmpi(g.interp, 'on') tmpchanlist = chanlist; allocs = eeg_mergelocs(ALLEEG.chanlocs); [tmp1 tmp2 neworder] = intersect_bc( {allocs.labels}, chanlist); [tmp1 ordertmp2] = sort(tmp2); neworder = neworder(ordertmp2); opts = { opts{:} 'interp' allocs(neworder) }; else newchanlist = []; tmpchanlocs = ALLEEG(idat(1)).chanlocs; chanlocs = { tmpchanlocs.labels }; for i=1:length(chanlist) newchanlist = [ newchanlist strmatch(chanlist{i}, chanlocs, 'exact') ]; end; tmpchanlocs = ALLEEG(idat(1)).chanlocs; tmpchanlist = { tmpchanlocs(newchanlist).labels }; end; % compute full file names % ----------------------- function res = computeFullFileName(filePaths, fileNames); for index = 1:length(fileNames) res{index} = fullfile(filePaths{index}, fileNames{index}); end;
github
lcnhappe/happe-master
std_rebuilddesign.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_rebuilddesign.m
2,984
utf_8
09dbb018032fb646a0680536ac8e28a2
% std_rebuilddesign - reduild design structure when datasets have been % removed or added. % Usage: % STUDY = std_rebuilddesign(STUDY, ALLEEG); % STUDY = std_rebuilddesign(STUDY, ALLEEG, designind); % % Inputs: % STUDY - EEGLAB STUDY set % ALLEEG - vector of the EEG datasets included in the STUDY structure % % Optional inputs: % designind - [integer>0] indices (number) of the design to rebuild. % Default is all. % Ouput: % STUDY - updated EEGLAB STUDY set % % Author: Arnaud Delorme, Institute for Neural Computation UCSD, 2010- % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function STUDY = std_rebuilddesign(STUDY, ALLEEG, designind); if nargin < 2 help std_rebuilddesign; return; end; if nargin < 3 designind = 1:length(STUDY.design); end; [indvars indvarvals] = std_getindvar(STUDY); for indDesign = designind % find out if some independent variables or independent % variable values have been removed tmpdesign = STUDY.design(indDesign); indVar1 = strmatch(tmpdesign.variable(1).label, indvars, 'exact'); indVar2 = strmatch(tmpdesign.variable(2).label, indvars, 'exact'); if isempty(indVar1) tmpdesign.variable(1).label = ''; tmpdesign.variable(1).value = {}; else tmpdesign.variable(1).value = myintersect( tmpdesign.variable(1).value, indvarvals{indVar1} ); end; if isempty(indVar2) tmpdesign.variable(2).label = ''; tmpdesign.variable(2).value = {}; else tmpdesign.variable(2).value = myintersect( tmpdesign.variable(2).value, indvarvals{indVar2} ); end; STUDY = std_makedesign(STUDY, ALLEEG, indDesign, tmpdesign); end; STUDY = std_selectdesign(STUDY, ALLEEG, STUDY.currentdesign); % take the intersection for independent variables % ----------------------------------------------- function a = myintersect(a,b); if isempty(b) || isempty(a), a = {}; return; end; for index = 1:length(a) if isstr(a{index}) a(index) = intersect_bc(a(index), b); elseif iscell(a{index}) a{index} = intersect_bc(a{index}, b); elseif isnumeric(a{index}) a{index} = intersect_bc(a{index}, [ b{:} ]); end; end;
github
lcnhappe/happe-master
pop_clustedit.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/pop_clustedit.m
59,499
utf_8
715c47c2679a7429d5bad3902ce3b72e
% pop_clustedit() - graphic user interface (GUI)-based function with editing and plotting % options for visualizing and manipulating an input STUDY structure. % Only component measures (e.g., dipole locations, scalp maps, spectra, % ERPs, ERSPs, ITCs) that have been computed and saved in the study EEG % datasets can be visualized. These can be computed during pre-clustering % using the GUI-based function pop_preclust() or the equivalent command % line functions std_preclust(). To use dipole locations for clustering, % they must first be stored in the EEG dataset structures using dipfit(). % Supported cluster editing functions include new cluster creation, cluster % merging, outlier rejection, and cluster renaming. Components can also be % moved from one cluster to another or to the outlier cluster. % Usage: % >> STUDY = pop_clustedit(STUDY, ALLEEG, clusters, addui, addgeom); % Inputs: % ALLEEG - Top-level EEGLAB vector of loaded EEG structures for the dataset(s) % in the STUDY. ALLEEG for a STUDY set is typically loaded using % pop_loadstudy(), or in creating a new STUDY, using pop_createstudy(). % STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG. % % Optional inputs: % clusters - [integer vector] of cluster numbers. These clusters will be visualized % and manipulated in the pop_clustedit() graphic interface. There are % restrictions on which clusters can be loaded together. The clusters must % either originate from the same clustering (same pre_clustering() and % subsequent pop_clust() execution), or they must all be leaf clusters % (i.e., clusters with no child clusters) {default: all leaf clusters}. % addui - [struct] additional uicontrols entries for the graphic % interface. Must contains the fiels "uilist", "geometry". % % Outputs: % STUDY - The input STUDY set structure modified according to specified user edits, % if any. Plotted cluster measure means (maps, ERSPs, etc.) are added to % the STUDY structure after they are first plotted to allow quick replotting. % % Graphic interface buttons: % "Select cluster to plot" - [list box] Displays available clusters to plot (format is % 'cluster name (number of components)'). The presented clusters depend % on the optional input variable 'clusters'. Selecting (clicking on) a % cluster from the list will display the selected cluster components in the % "Select component(s) to plot" list box. Use the plotting buttons below % to plot selected measures of the selected cluster. Additional editing % options (renaming the cluster, rejecting outliers, moving components to % another cluster) are also available. The option 'All N cluster centroids' % at the top of the list displays all the clusters in the list except the % 'Notcluster', 'Outlier' and 'ParentCluster' clusters. Selecting this option % will plot the cluster centroids (i.e. ERP, ERSP, ...) in a single figure. % "Select component(s) to plot" - [list box] Displays the ICA components of the currently % selected cluster (in the "Select cluster to plot" list box). Each component % has the format: 'subject name, component index'. Multiple components can be % selected from the list. Use the plotting buttons below to plot different % measures of the selected components on different figures. Selecting the % "All components" option is equivalent to using the cluster plotting buttons. % Additional editing options are reassigning the selected components to % another cluster or moving them to the outlier cluster. % "Plot Cluster properties" - [button] Displays in one figure all the mean cluster measures % (e.g., dipole locations, scalp maps, spectra, etc.) that were calculated % and saved in the EEG datsets. If there is more than one condition, the ERP % and the spectrum will have different colors for each condition. The ERSP % and ITC plots will show only the first condition; clicking on the subplot % will open a new figure with the different conditions displayed together. % Uses the command line function std_propplot(). % "Plot scalp maps" - [button] Displays the scalp maps of cluster components. % If applied to a cluster, scalp maps of the cluster components % are plotted along with the cluster mean scalp map in one figure. % If "All # cluster centroids" option is selected, all cluster scalp map % means are plotted in the same figure. If applied to components, displays % the scalp maps of the specified cluster components in separate figures. % Uses the command line functions std_topoplot(). % "Plot ERSPs" - [button] Displays the cluster component ERSPs. % If applied to a cluster, component ERSPs are plotted in one figure % (per condition) with the cluster mean ERSP. If "All # cluster centroids" % option is selected, plots all average ERSPs of the clusters in one figure % per condition. If applied to components, display the ERSP images of specified % cluster components in separate figures, using one figure for all conditions. % Uses the command line functions std_erspplot(). % "Plot ITCs" - [button] Same as "Plot ERSPs" but with ITC. % Uses the command line functions std_itcplot(). % "Plot dipoles" - [button] Displays the dipoles of the cluster components. % If applied to a cluster, plots the cluster component dipoles (in blue) % plus the average cluster dipole (in red). If "All # cluster centroids" option % is selected, all cluster plots are displayed in one figure each cluster in % a separate subplot. If applied to components, displays the ERSP images of the % specified cluster. For specific components displays components dipole (in blue) % plus the average cluster dipole (in Red) in separate figures. % Uses the command line functions std_dipplot(). % "Plot spectra" - [button] Displays the cluster component spectra. % If applied to a cluster, displays component spectra plus the average cluster % spectrum in bold. For a specific cluster, displays the cluster component % spectra plus the average cluster spectrum (in bold) in one figure per condition. % If the "All # cluster centroids" option is selected, displays the average % spectrum of all clusters in the same figure, with spectrum for different % conditions (if any) plotted in different colors. % If applied to components, displays the spectrum of specified cluster % components in separate figures using one figure for all conditions. % Uses the command line functions std_specplot(). % "Plot ERPs" - [button] Same as "Plot spectra" but for ERPs. % Uses the command line functions std_erpplot(). % "Plot ERPimage" - [button] Same as "Plot ERP" but for ERPimave. % Uses the command line functions std_erpimplot(). % "Create new cluster" - [button] Creates a new empty cluster. % Opens a popup window in which a name for the new cluster can be entered. % If no name is given the default name is 'Cls #', where '#' is the next % available cluster number. For changes to take place, press the popup % window 'OK' button, else press the 'Cancel' button. After the empty % cluster is created, components can be moved into it using, % 'Reassign selected component(s)' (see below). Uses the command line % function std_createclust(). % "Rename selected cluster" - [button] Renames a cluster using the selected (mnemonic) name. % Opens a popup window in which a new name for the selected cluster can be % entered. For changes to take place, press the popup window 'OK' button, % else press the 'Cancel' button. Uses the command line function std_renameclust(). % "Reject outlier components" - [button] rejects outlier components to an outlier cluster. % Opens a popup window to specify the outlier threshold. Move outlier % components that are more than x standard deviations devs from the % cluster centroid to an outlier cluster. For changes to take place, % press the popup window 'OK' button, else press the 'Cancel' button. % Uses the command line function std_rejectoutliers(). % "Merge clusters" - [button] Merges several clusters into one cluster. % Opens a popup window in which the clusters to merge may be specified % An optional name can be given to the merged cluster. If no name is given, % the default name is 'Cls #', where '#' is the next available cluster number. % For changes to take place, press the popup window 'OK' button, else press % the 'Cancel' button. Uses the command line function std_mergeclust(). % "Remove selected outlier component(s)" - [button] Moves selected component(s) to the % outlier cluster. The components that will be moved are the ones selected % in the "Select component(s) to plot" list box. Opens a popup window in which % a list of the selected component(s) is presented. For changes to take place, % press the popup window 'OK' button, else press the 'Cancel' button. % Uses the command line function std_moveoutlier(). % "Reassign selected component(s)" - [button] Moves selected component(s) from one cluster % to another. The components that will reassign are the ones selected in the % "Select component(s) to plot" list box. Opens a popup window in which % a list of possible clusters to which to move the selected component(s) is % presented. For changes to take place, press the popup window 'OK' button, % else press the 'Cancel' button. Uses the command line function std_movecomp(). % "Save STUDY set to disk" - [check box] Saves the STUDY set structure modified according % to specified user edits to the disk. If no file name is entered will % overwrite the current STUDY set file. % % See also: pop_preclust(), pop_clust(). % % Authors: Arnaud Delorme, Hilit Serby, Scott Makeig, SCCN/INC/UCSD, October 11, 2004 % Copyright (C) Hilit Serby, SCCN, INC, UCSD, October 11, 2004, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Coding notes: Useful information on functions and global variables used. function [STUDY, com] = pop_clustedit(varargin) icadefs; if nargin < 2 help pop_clustedit; return; end if ~isstr(varargin{1}) STUDY = varargin{1}; STUDY.etc.erpparams.topotime = NaN; % [] for channels and NaN for components STUDY.etc.specparams.topofreq = NaN; % NaN -> GUI disabled STUDY.etc.erspparams.topotime = NaN; STUDY.etc.erspparams.topofreq = NaN; STUDY.etc.erpimparams.topotime = NaN; STUDY.etc.erpimparams.topotrial = NaN; STUDY.tmphist = ''; ALLEEG = varargin{2}; clus_comps = 0; % the number of clustered components if nargin > 2 && ~isempty(varargin{3}) % load specific clusters cls = varargin{3}; %cluster numbers N = length(cls); %number of clusters % Check clusters are either from the same level (same parents) or are % all leaf clusters. % Check all input clusters have the same parent sameparent = 1; for k = 1: N % Assess the number of clustered components if (~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8)) & (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) clus_comps = clus_comps + length(STUDY.cluster(cls(k)).comps); end if k == 1 parent = STUDY.cluster(cls(k)).parent; else if isempty(parent) % if the first cluster was the parent cluster parent = STUDY.cluster(cls(k)).parent; end % For any other case verify that all clusters have the same parents if ~(sum(strcmp(STUDY.cluster(cls(k)).parent, parent)) == length(parent)) % different parent if ~strcmp(STUDY.cluster(cls(k)).parent,'manual') & ~strcmp(parent, 'manual') % if nither is an empty cluster (which was created manually) sameparent = 0; % then the clusters have different parents end end end end % If not same parent check if all leaf clusters % --------------------------------------------- if ~sameparent for k = 1: N %check if all leaves if ~isempty(STUDY.cluster(cls(k)).child) error([ 'pop_clustedit(): All clusters must be from the same level \n' ... ' (i.e., have the same parents or not be child clusters)' ]); end end end % ploting text etc ... % -------------------- num_cls = 0; for k = 1:N show_options{k+1} = [STUDY.cluster(cls(k)).name ' (' num2str(length(STUDY.cluster(cls(k)).comps)) ' ICs)']; if (~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8)) & (~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8)) & ... (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) num_cls = num_cls + 1; end end show_options{1} = ['All ' num2str(num_cls) ' cluster centroids']; else % load leaf clusters sameparent = 1; cls = []; for k = 2:length(STUDY.cluster) if isempty(STUDY.cluster(k).child) if isempty(cls) parent = STUDY.cluster(k).parent; elseif ~isempty(STUDY.cluster(k).parent) | ~isempty(parent) % if not both empty % Check if all parents are the same if ~(sum(strcmp(STUDY.cluster(k).parent, parent)) == length(parent)) % different parent if ~strcmp(STUDY.cluster(k).parent,'manual') & ~strcmp(parent, 'manual') sameparent = 0; end end end cls = [ cls k]; if ~strncmpi('Notclust',STUDY.cluster(k).name,8) clus_comps = clus_comps + length(STUDY.cluster(k).comps); end end end % Plot clusters hierarchically % ---------------------------- num_cls = 0; cls = 1:length(STUDY.cluster); N = length(cls); %number of clusters show_options{1} = [STUDY.cluster(1).name ' (' num2str(length(STUDY.cluster(1).comps)) ' ICs)']; cls(1) = 1; count = 2; for index1 = 1:length(STUDY.cluster(1).child) indclust1 = strmatch( STUDY.cluster(1).child(index1), { STUDY.cluster.name }, 'exact'); show_options{count} = [' ' STUDY.cluster(indclust1).name ' (' num2str(length(STUDY.cluster(indclust1).comps)) ' ICs)']; cls(count) = indclust1; count = count+1; for index2 = 1:length( STUDY.cluster(indclust1).child ) indclust2 = strmatch( STUDY.cluster(indclust1).child(index2), { STUDY.cluster.name }, 'exact'); show_options{count} = [' ' STUDY.cluster(indclust2).name ' (' num2str(length(STUDY.cluster(indclust2).comps)) ' ICs)']; cls(count) = indclust2; count = count+1; for index3 = 1:length( STUDY.cluster(indclust2).child ) indclust3 = strmatch( STUDY.cluster(indclust2).child(index3), { STUDY.cluster.name }, 'exact'); show_options{count} = [' ' STUDY.cluster(indclust3).name ' (' num2str(length(STUDY.cluster(indclust3).comps)) ' ICs)']; cls(count) = indclust3; count = count+1; end; end; end; show_options = { ['All cluster centroids'] show_options{:} }; end all_comps = length(STUDY.cluster(1).comps); show_clust = [ 'pop_clustedit(''showclust'',gcf);']; show_comps = [ 'pop_clustedit(''showcomplist'',gcf);']; plot_clus_maps = [ 'pop_clustedit(''topoplot'',gcf); ']; plot_comp_maps = [ 'pop_clustedit(''plotcomptopo'',gcf); ']; plot_clus_ersps = ['pop_clustedit(''erspplot'',gcf); ']; plot_comp_ersps = ['pop_clustedit(''plotcompersp'',gcf); ']; plot_clus_itcs = ['pop_clustedit(''itcplot'',gcf); ']; plot_comp_itcs = ['pop_clustedit(''plotcompitc'',gcf); ']; plot_clus_erpim = ['pop_clustedit(''erpimageplot'',gcf); ']; plot_comp_erpim = ['pop_clustedit(''plotcomperpimage'',gcf); ']; plot_clus_spectra = ['pop_clustedit(''specplot'',gcf); ']; plot_comp_spectra = ['pop_clustedit(''plotcompspec'',gcf); ']; plot_clus_erp = ['pop_clustedit(''erpplot'',gcf); ']; plot_comp_erp = ['pop_clustedit(''plotcomperp'',gcf); ']; plot_clus_dip = ['pop_clustedit(''dipplot'',gcf); ']; plot_comp_dip = ['pop_clustedit(''plotcompdip'',gcf); ']; plot_clus_sum = ['pop_clustedit(''plotsum'',gcf); ']; plot_comp_sum = ['pop_clustedit(''plotcompsum'',gcf); ']; rename_clust = ['pop_clustedit(''renameclust'',gcf);']; move_comp = ['pop_clustedit(''movecomp'',gcf);']; move_outlier = ['pop_clustedit(''moveoutlier'',gcf);']; create_clus = ['pop_clustedit(''createclust'',gcf);']; reject_outliers = ['pop_clustedit(''rejectoutliers'',gcf);']; merge_clusters = ['pop_clustedit(''mergeclusters'',gcf);']; dip_opt = ['pop_clustedit(''dip_opt'',gcf);']; erp_opt = ['pop_clustedit(''erp_opt'',gcf);']; spec_opt = ['pop_clustedit(''spec_opt'',gcf);']; ersp_opt = ['pop_clustedit(''ersp_opt'',gcf);']; erpim_opt = ['pop_clustedit(''erpim_opt'',gcf);']; stat_opt = ['pop_clustedit(''stat_opt'',gcf);']; saveSTUDY = [ 'set(findobj(''parent'', gcbf, ''userdata'', ''save''), ''enable'', fastif(get(gcbo, ''value'')==1, ''on'', ''off''));' ]; browsesave = [ '[filename, filepath] = uiputfile2(''*.study'', ''Save STUDY with .study extension -- pop_clust()''); ' ... 'set(findobj(''parent'', gcbf, ''tag'', ''studyfile''), ''string'', [filepath filename]);' ]; % Create default ERSP / ITC time/freq. paramters % ---------------------------------------------- if isempty(ALLEEG) error('STUDY contains no datasets'); end % enable buttons % -------------- filename = STUDY.design(STUDY.currentdesign).cell(1).filebase; if exist([filename '.icaspec']) , spec_enable = 'on'; else spec_enable = 'off'; end; if exist([filename '.icaerp'] ) , erp_enable = 'on'; else erp_enable = 'off'; end; if exist([filename '.icaerpim'] ), erpim_enable = 'on'; else erpim_enable = 'off'; end; if exist([filename '.icaersp']) , ersp_enable = 'on'; else ersp_enable = 'off'; end; filename = fullfile( ALLEEG(1).filepath, ALLEEG(1).filename(1:end-4)); if exist([filename '.icatopo']), scalp_enable = 'on'; else scalp_enable = 'off'; end; if isfield(ALLEEG(1).dipfit, 'model'), dip_enable = 'on'; else dip_enable = 'off'; end; % userdata below % -------------- fig_arg{1}{1} = ALLEEG; fig_arg{1}{2} = STUDY; fig_arg{1}{3} = cls; fig_arg{2} = N; str_name = sprintf('STUDY ''%s'' - ''%s'' component clusters', STUDY.name, STUDY.design(STUDY.currentdesign).name); if length(str_name) > 80, str_name = [ str_name(1:80) '...''' ]; end; if length(cls) > 1, vallist = 1; else vallist = 2; end; geomline = [1 0.35 1]; geometry = { [4 .1 .1 .1 .1] [1] geomline geomline geomline geomline geomline geomline geomline geomline ... geomline geomline [1] geomline geomline geomline }; geomvert = [ 1 .5 1 3 1 1 1 1 1 1 1 1 1 1 1 1]; uilist = { ... {'style' 'text' 'string' str_name ... 'FontWeight' 'Bold' 'HorizontalAlignment' 'center'} {} {} {} {} {} ... {'style' 'text' 'string' 'Select cluster to plot' 'FontWeight' 'Bold' } {} ... {'style' 'text' 'string' 'Select component to plot ' 'FontWeight' 'Bold'} ... {'style' 'listbox' 'string' show_options 'value' vallist 'tag' 'clus_list' 'Callback' show_clust } ... {'style' 'pushbutton' 'enable' 'on' 'string' 'STATS' 'Callback' stat_opt } ... {'style' 'listbox' 'string' '' 'tag' 'clust_comp' 'max' 2 'min' 1 'callback' show_comps } ... {'style' 'pushbutton' 'enable' scalp_enable 'string' 'Plot scalp maps' 'Callback' plot_clus_maps} {} ... {'style' 'pushbutton' 'enable' scalp_enable 'string' 'Plot scalp map(s)' 'Callback' plot_comp_maps}... {'style' 'pushbutton' 'enable' dip_enable 'string' 'Plot dipoles' 'Callback' plot_clus_dip} ... {'style' 'pushbutton' 'enable' erp_enable 'string' 'Params' 'Callback' dip_opt } ... {'style' 'pushbutton' 'enable' dip_enable 'string' 'Plot dipole(s)' 'Callback' plot_comp_dip}... {'style' 'pushbutton' 'enable' erp_enable 'string' 'Plot ERPs' 'Callback' plot_clus_erp} ... {'style' 'pushbutton' 'enable' erp_enable 'string' 'Params' 'Callback' erp_opt } ... {'style' 'pushbutton' 'enable' erp_enable 'string' 'Plot ERP(s)' 'Callback' plot_comp_erp} ... {'style' 'pushbutton' 'enable' spec_enable 'string' 'Plot spectra' 'Callback' plot_clus_spectra} ... {'style' 'pushbutton' 'enable' spec_enable 'string' 'Params' 'Callback' spec_opt } ... {'style' 'pushbutton' 'enable' spec_enable 'string' 'Plot spectra' 'Callback' plot_comp_spectra} ... {'style' 'pushbutton' 'enable' erpim_enable 'string' 'Plot ERPimage' 'Callback' plot_clus_erpim} ... {'style' 'pushbutton' 'enable' erpim_enable 'string' 'Params' 'Callback' erpim_opt } ... {'style' 'pushbutton' 'enable' erpim_enable 'string' 'Plot ERPimage(s)' 'Callback' plot_comp_erpim} ... {'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ERSPs' 'Callback' plot_clus_ersps} ... {'vertexpand' 2.1 'style' 'pushbutton' 'enable' ersp_enable 'string' 'Params' 'Callback' ersp_opt } ... {'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ERSP(s)' 'Callback' plot_comp_ersps} ... {'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ITCs' 'Callback' plot_clus_itcs} { } ... {'style' 'pushbutton' 'enable' ersp_enable 'string' 'Plot ITC(s)' 'Callback' plot_comp_itcs} ... {} {}... %{'style' 'pushbutton' 'string' 'Plot cluster properties' 'Callback' plot_clus_sum 'enable' 'off'} {} ... {'style' 'pushbutton' 'string' 'Plot component properties' 'Callback' plot_comp_sum 'enable' 'off'} ... % nima, was off {} ... {'style' 'pushbutton' 'string' 'Create new cluster' 'Callback' create_clus} {} ... {'style' 'pushbutton' 'string' 'Reassign selected component(s)' 'Callback' move_comp} ... {'style' 'pushbutton' 'string' 'Rename selected cluster' 'Callback' rename_clust } {} ... {'style' 'pushbutton' 'string' 'Remove selected outlier comps.' 'Callback' move_outlier} ... {'style' 'pushbutton' 'string' 'Merge clusters' 'Callback' merge_clusters 'enable' 'off' } {} ... {'style' 'pushbutton' 'string' 'Auto-reject outlier components' 'Callback' reject_outliers 'enable' 'off' } }; % additional UI given on the command line % --------------------------------------- if nargin > 3 addui = varargin{4}; if ~isfield(addui, 'uilist') error('Additional GUI definition (argument 4) requires the field "uilist"'); end; if ~isfield(addui, 'geometry') addui.geometry = mat2cell(ones(1,length(addui.uilist))); end; uilist = { uilist{:}, addui.uilist{:} }; geometry = { geometry{:} addui.geometry{:} }; geomvert = [ geomvert ones(1,length(addui.geometry)) ]; end; [out_param userdat] = inputgui( 'geometry' , geometry, 'uilist', uilist, ... 'helpcom', 'pophelp(''pop_clustoutput'')', ... 'title', 'View and edit current component clusters -- pop_clustedit()' , 'userdata', fig_arg, ... 'geomvert', geomvert, 'eval', show_clust ); if ~isempty(userdat) ALLEEG = userdat{1}{1}; STUDY = userdat{1}{2}; end % history % ------- com = STUDY.tmphist; STUDY = rmfield(STUDY, 'tmphist'); else hdl = varargin{2}; %figure handle userdat = get(varargin{2}, 'userdat'); ALLEEG = userdat{1}{1}; STUDY = userdat{1}{2}; cls = userdat{1}{3}; clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value'); comp_ind = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'Value'); if clus == 1 & length(cls) == 1 warndlg2('No cluster', 'No cluster'); return; end; try switch varargin{1} case {'plotcomptopo', 'plotcompersp','plotcompitc','plotcompspec', 'plotcomperp', 'plotcompdip', 'plotcomperpimage'} plotting_option = varargin{1}; plotting_option = [ plotting_option(9:end) 'plot' ]; if (clus ~= 1 ) %specific cluster if comp_ind(1) ~= 1 % check that not all comps in cluster are requested subject = STUDY.datasetinfo( STUDY.cluster(cls(clus-1)).sets(1,comp_ind-1)).subject; a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(clus-1)) ', ''comps'', ' num2str(comp_ind-1) ' );' ]; eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); else a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(clus-1)) ', ''plotsubjects'', ''on'' );' ]; eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); end else comp_list = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'String'); comp_name = comp_list(comp_ind); for ci = 1:length(comp_name) num_comps = 0; tmp = strfind(comp_name{ci},''''); clust_name = comp_name{ci}(tmp(1)+1:tmp(end)-1); for k = 1:length(cls) if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) & ~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) & ... (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) if strcmpi(STUDY.cluster(cls(k)).name, clust_name) cind = comp_ind(ci) - num_comps; % component index in the cluster subject = STUDY.datasetinfo( STUDY.cluster(cls(k)).sets(1,cind)).subject; a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(k)) ', ''comps'',' num2str(cind) ' );' ]; eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); break; else num_comps = num_comps + length(STUDY.cluster(cls(k)).comps); end end end end end userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); case {'topoplot', 'erspplot', 'itcplot', 'specplot', 'erpplot', 'dipplot', 'erpimageplot' } plotting_option = varargin{1}; plotting_option = [ plotting_option(1:end-4) 'plot' ]; if (clus ~= 1 ) % specific cluster option if ~isempty(STUDY.cluster(cls(clus-1)).comps) a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',' num2str(cls(clus-1)) ');' ]; eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); end else % all clusters % All clusters does not include 'Notclust' 'ParentCluster' and 'Outliers' clusters. tmpcls = []; for k = 1:length(cls) if ~strncmpi(STUDY.cluster(cls(k)).name,'Notclust',8) & ~strncmpi(STUDY.cluster(cls(k)).name,'Outliers',8) & ... (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) & ~isempty(STUDY.cluster(cls(k)).comps) tmpcls = [ tmpcls cls(k)]; end end a = ['STUDY = std_' plotting_option '(STUDY,ALLEEG,''clusters'',[' num2str(tmpcls) ']);' ]; %if strcmpi(plotting_option, 'dipplot'), a = [a(1:end-2) ',''mode'', ''together'');' ]; end; eval(a); STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); end userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); case 'dip_opt' % save the list of selected chaners [STUDY com] = pop_dipparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'erp_opt' % save the list of selected chaners [STUDY com] = pop_erpparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'stat_opt' % save the list of selected chaners [STUDY com] = pop_statparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'spec_opt' % save the list of selected channels [STUDY com] = pop_specparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'erpim_opt' % save the list of selected channels [STUDY com] = pop_erpimparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'ersp_opt' % save the list of selected channels [STUDY com] = pop_erspparams(STUDY); if ~isempty(com) STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, com); end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'showcomplist' % save the list of selected clusters clust = get(findobj('parent', hdl, 'tag', 'clus_list') , 'value'); comp = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'value'); N = userdat{2}; count = 1; if clust ~= 1 %specific cluster STUDY.cluster(cls(clust-1)).selected = comp; end; userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update information (STUDY) case 'showclust' cind = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value'); N = userdat{2}; count = 1; selected = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'value'); if cind ~= 1 %specific cluster len = length(STUDY.cluster(cls(cind-1)).comps); compid = cell(len+1,1); compid{1} = 'All components'; % Convert from components numbering to the indexing form 'setXcomY' for l = 1:len % go over the components of the cluster if ~isnan(STUDY.cluster(cls(cind-1)).sets(1,l)) subject = STUDY.datasetinfo(STUDY.cluster(cls(cind-1)).sets(1,l)).subject; compid{l+1} = [ subject ' IC' num2str(STUDY.cluster(cls(cind-1)).comps(1,l)) ]; end end if isfield(STUDY.cluster, 'selected') if ~isempty(STUDY.cluster(cls(cind-1)).selected) selected = min(STUDY.cluster(cls(cind-1)).selected, 1+length(STUDY.cluster(cls(cind-1)).comps(1,:))); STUDY.cluster(cls(cind-1)).selected = selected; end; end; else % All clusters accept 'Notclust' and 'Outliers' count = 1; for k = 1: length(cls) if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) & ~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) & ... (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) for l = 1: length(STUDY.cluster(cls(k)).comps) if ~isnan(STUDY.cluster(cls(k)).sets(1,l)) subject = STUDY.datasetinfo(STUDY.cluster(cls(k)).sets(1,l)).subject; % This line chokes on NaNs. TF 2007.05.31 compid{count} = [ '''' STUDY.cluster(cls(k)).name ''' comp. ' ... num2str(l) ' (' subject ' IC' num2str(STUDY.cluster(cls(k)).comps(l)) ')']; count = count +1; end end end end end if selected > length(compid), selected = 1; end; set(findobj('parent', hdl, 'tag', 'clust_comp'), 'value', selected, 'String', compid); case 'plotsum' if clus ~= 1 % specific cluster option [STUDY] = std_propplot(STUDY, ALLEEG, 'cluster', cls(clus-1)); % update Study history a = ['STUDY = std_propplot(STUDY, ALLEEG, ''cluster'', ' num2str(cls(clus-1)) ' );' ]; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); else % all clusters % All clusters does not include 'Notclust' and 'Outliers' clusters. tmpcls = []; for k = 1:length(cls) if ~strncmpi(STUDY.cluster(cls(k)).name,'Notclust',8) & ~strncmpi(STUDY.cluster(cls(k)).name,'Outliers',8) & ... (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) tmpcls = [tmpcls cls(k)]; end end [STUDY] = std_propplot(STUDY, ALLEEG, 'cluster', tmpcls); % update Study history a = ['STUDY = std_propplot(STUDY, ALLEEG, ''cluster'', [' num2str(tmpcls) '] );' ]; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); end userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); case 'plotcompsum' for ci = 1 : length(comp_ind) % place holder for component properties % nima end case 'renameclust' STUDY.saved = 'no'; clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String'); clus_num = get(findobj('parent', hdl, 'tag', 'clus_list'), 'Value') -1; if clus_num == 0 % 'all clusters' option return; end % Don't rename 'Notclust' and 'Outliers' clusters. if strncmpi('Notclust',STUDY.cluster(cls(clus_num)).name,8) | strncmpi('Outliers',STUDY.cluster(cls(clus_num)).name,8) | ... strncmpi('ParentCluster',STUDY.cluster(cls(clus_num)).name,13) warndlg2('The ParentCluster, Outliers, and Notclust clusters cannot be renamed'); return; end old_name = STUDY.cluster(cls(clus_num)).name; rename_param = inputgui( { [1] [1] [1]}, ... { {'style' 'text' 'string' ['Rename ' old_name] 'FontWeight' 'Bold'} {'style' 'edit' 'string' '' 'tag' 'clus_rename' } {} }, ... '', 'Rename cluster - from pop_clustedit()' ); if ~isempty(rename_param) %if not canceled new_name = rename_param{1}; STUDY = std_renameclust(STUDY, ALLEEG, cls(clus_num), new_name); % update Study history a = ['STUDY = std_renameclust(STUDY, ALLEEG, ' num2str(cls(clus_num)) ', ' STUDY.cluster(cls(clus_num)).name ');']; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); % Renaming cluster in list new_name = [ STUDY.cluster(cls(clus_num)).name ' (' num2str(length(STUDY.cluster(cls(clus_num)).comps)) ' ICs)']; clus_name_list{clus_num+1} = renameclust( clus_name_list{clus_num+1}, new_name); % Renaming Outlier cluster if exist outlier_clust = std_findoutlierclust(STUDY,cls(clus_num)); if outlier_clust ~= 0 new_outliername = [ STUDY.cluster(cls(outlier_clust)).name ' (' num2str(length(STUDY.cluster(cls(outlier_clust)).comps)) ' ICs)']; clus_name_list{outlier_clust+1} = renameclust( clus_name_list{outlier_clust+1}, new_outliername); end set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list); set(findobj('parent', hdl, 'tag', 'clus_rename'), 'String', ''); userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); %update STUDY end case 'movecomp' STUDY.saved = 'no'; old_clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value') -1; comp_ind = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'Value'); if old_clus == 0 % 'all clusters' option return; end % Don't reassign components of 'Notclust' or the 'ParentCluster'. if strncmpi('ParentCluster',STUDY.cluster(cls(old_clus)).name,13) warndlg2('Cannot reassign components of ''ParentCluster''.'); return; end old_name = STUDY.cluster(cls(old_clus)).name; ncomp = length(comp_ind); % number of selected components optionalcls =[]; for k = 1:length(cls) if (~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)) & (k~= old_clus) optionalcls = [optionalcls cls(k)]; end end reassign_param = inputgui( { [1] [1] [1]}, ... { {'style' 'text' 'string' strvcat(['Reassign ' fastif(ncomp >1, [num2str(length(comp_ind)) ' currently selected components'], ... 'currently selected component') ], ... [' from ' old_name ' to the cluster selected below']) 'FontWeight' 'Bold'} ... {'style' 'listbox' 'string' {STUDY.cluster(optionalcls).name} 'tag' 'new_clus'} {} }, ... '', 'Reassign cluster - from pop_clustedit()' ,[] , 'normal', [2 3 1] ); if ~isempty(reassign_param) %if not canceled new_clus = reassign_param{1}; comp_to_disp = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'String'); if strcmp(comp_to_disp{comp_ind(1)},'All components') warndlg2('Cannot move all the components of the cluster - abort move components', 'Aborting move components'); return; end STUDY = std_movecomp(STUDY, ALLEEG, cls(old_clus), optionalcls(new_clus), comp_ind - 1); % update Study history a = ['STUDY = std_movecomp(STUDY, ALLEEG, ' num2str(cls(old_clus)) ', ' num2str(optionalcls(new_clus)) ', [' num2str(comp_ind - 1) ']);']; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); newind = find(cls == optionalcls(new_clus)); % update GUI % ---------- clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String'); newname = [STUDY.cluster(optionalcls(new_clus)).name ' (' num2str(length(STUDY.cluster(optionalcls(new_clus)).comps)) ' ICs)']; clus_name_list{newind+1} = renameclust( clus_name_list{newind+1}, newname); newname = [STUDY.cluster(cls(old_clus)).name ' (' num2str(length(STUDY.cluster(cls(old_clus)).comps)) ' ICs)']; clus_name_list{old_clus+1} = renameclust( clus_name_list{old_clus+1}, newname); set( findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list); userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); pop_clustedit('showclust',hdl); end case 'moveoutlier' STUDY.saved = 'no'; old_clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'value') -1; comp_ind = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'Value'); if ~isempty(find(comp_ind ==1)) warndlg2('Cannot remove all the cluster components'); return; end if old_clus == 0 % 'all clusters' option return; end if strncmpi('Notclust',STUDY.cluster(cls(old_clus)).name,8) | strncmpi('ParentCluster',STUDY.cluster(cls(old_clus)).name,13) % There are no outliers to 'Notclust' warndlg2('Cannot reassign components of ''Notclust'' or ''ParentCluster''.'); return; end comp_list = get(findobj('parent', hdl, 'tag', 'clust_comp'), 'String'); ncomp = length(comp_ind); old_name = STUDY.cluster(cls(old_clus)).name; if strncmpi('Outliers',STUDY.cluster(cls(old_clus)).name,8) % There are no outliers of 'Outliers' warndlg2('Cannot use ''Outliers'' clusters for this option.'); return; end reassign_param = inputgui( { [1] [1] [1]}, ... { {'style' 'text' 'string' ['Remove ' fastif(ncomp >1, [num2str(length(comp_ind)) ' currently selected components below '], 'currently selected component below ') ... 'from ' old_name ' to its outlier cluster?'] 'FontWeight' 'Bold'} ... {'style' 'listbox' 'string' {comp_list{comp_ind}} 'tag' 'new_clus'} {} }, ... '', 'Remove outliers - from pop_clustedit()' ,[] , 'normal', [1 3 1] ); if ~isempty(reassign_param) %if not canceled STUDY = std_moveoutlier(STUDY, ALLEEG, cls(old_clus), comp_ind - 1); clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String'); outlier_clust = std_findoutlierclust(STUDY,cls(old_clus)); %find the outlier cluster for this cluster oind = find(cls == outlier_clust); % the outlier clust index (if already exist) in the cluster list GUI if ~isempty(oind) % the outlier clust is already presented in the cluster list GUI newname = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)']; clus_name_list{oind+1} = renameclust( clus_name_list{oind+1}, newname); elseif outlier_clust == length(STUDY.cluster) % update the list with the Outlier cluster (if didn't exist before) clus_name_list{end+1} = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)']; userdat{2} = userdat{2} + 1; % update N, number of clusters in edit window cls(end +1) = length(STUDY.cluster); % update the GUI clusters list with the outlier cluster userdat{1}{3} = cls; % update cls, the cluster indices in edit window end newname = [STUDY.cluster(cls(old_clus)).name ' (' num2str(length(STUDY.cluster(cls(old_clus)).comps)) ' ICs)']; clus_name_list{old_clus+1} = renameclust(clus_name_list{old_clus+1}, newname); set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list); % update Study history a = ['STUDY = std_moveoutlier(STUDY, ALLEEG, ' num2str(cls(old_clus)) ', [' num2str(comp_ind - 1) ']);']; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); pop_clustedit('showclust',hdl); end case 'rejectoutliers' STUDY.saved = 'no'; clus = get(findobj('parent', hdl, 'tag', 'clus_list'), 'Value') -1; if clus std_name = STUDY.cluster(cls(clus)).name; % Cannot reject outliers from 'Notclust', 'ParentCluster' and 'Outlier' clusters if strncmpi('Notclust',std_name,8) | strncmpi('ParentCluster', std_name,13) | ... strncmpi('Outliers',std_name,8) warndlg2('Cannot reject outliers of ''Notclust'' or ''Outliers'' or ''ParentCluster'' clusters.'); return; end clusters = cls(clus); else std_name = 'All clusters'; clusters = []; for k = 1:length(cls) if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) & ~strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) & ... ~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13) clusters = [ clusters cls(k)]; end end end reject_param = inputgui( { [1] [1] [4 1 2] [1]}, ... { {'style' 'text' 'string' ['Reject "' std_name '" outliers ' ] 'FontWeight' 'Bold'} {} ... {'style' 'text' 'string' 'Move outlier components that are more than'} {'style' 'edit' 'string' '3' 'tag' 'outliers_std' } ... {'style' 'text' 'string' 'standard deviations' } ... {'style' 'text' 'string' [ 'from the "' std_name '" centroid to an outlier cluster.']} }, ... '', 'Reject outliers - from pop_clustedit()' ); if ~isempty(reject_param) %if not canceled ostd = reject_param{1}; % the requested outlier std [STUDY] = std_rejectoutliers(STUDY, ALLEEG, clusters, str2num(ostd)); % update Study history a = ['STUDY = std_rejectoutliers(STUDY, ALLEEG, [ ' num2str(clusters) ' ], ' ostd ');']; STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String'); for k = 1:length(clusters) outlier_clust = std_findoutlierclust(STUDY,clusters(k)); %find the outlier cluster for this cluster oind = find(cls == outlier_clust); % the outlier clust index (if already exist) in the cluster list GUI if ~isempty(oind) % the outlier clust is already presented in the cluster list GUI newname = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)']; clus_name_list{oind+1} = renameclust( clus_name_list{oind+1}, newname); else % update the list with the outlier cluster clus_name_list{end+1} = [STUDY.cluster(outlier_clust).name ' (' num2str(length(STUDY.cluster(outlier_clust).comps)) ' ICs)']; userdat{2} = userdat{2} + 1; % update N, number of clusters in edit window cls(end +1) = outlier_clust; % update the GUI clusters list with the outlier cluster userdat{1}{3} = cls; % update cls, the cluster indices in edit window end clsind = find(cls == clusters(k)); newname = [STUDY.cluster(clusters(k)).name ' (' num2str(length(STUDY.cluster(clusters(k)).comps)) ' ICs)']; clus_name_list{clsind+1} = renameclust( clus_name_list{clsind+1}, newname); set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list); end % If outlier cluster doesn't exist in the GUI window add it userdat{1}{2} = STUDY; set(hdl, 'userdat',userdat); pop_clustedit('showclust',hdl); end case 'createclust' STUDY.saved = 'no'; create_param = inputgui( { [1] [1 1] [1]}, ... { {'style' 'text' 'string' 'Create new empty cluster' 'FontWeight' 'Bold'} ... {'style' 'text' 'string' 'Enter cluster name:'} {'style' 'edit' 'string' '' } {} }, ... '', 'Create new empty cluster - from pop_clustedit()' ); if ~isempty(create_param) %if not canceled clus_name = create_param{1}; % the name of the new cluster [STUDY] = std_createclust(STUDY, ALLEEG, 'name', clus_name); % Update cluster list clus_name_list = get(findobj('parent', hdl, 'tag', 'clus_list'), 'String'); clus_name_list{end+1} = [STUDY.cluster(end).name ' (0 ICs)']; %update the cluster list with the new cluster % update the first option on the GUI list : 'All 10 cluster centroids' % with the new number of cluster centroids ti = strfind(clus_name_list{1},'cluster'); %get the number of clusters centroid cent = num2str(str2num(clus_name_list{1}(5:ti-2))+1); % new number of centroids clus_name_list{1} = [clus_name_list{1}(1:4) cent clus_name_list{1}(ti-1:end)]; %update list set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_name_list); % update Study history if isempty(clus_name) a = ['STUDY = std_createclust(STUDY, ALLEEG);']; else a = ['STUDY = std_createclust(STUDY, ALLEEG, ''name'', ' clus_name ');']; end STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); userdat{1}{2} = STUDY; userdat{2} = userdat{2} + 1; % update N, the number of cluster options in edit window cls(end +1) = length(STUDY.cluster); % update the GUI clusters list with the new cluster userdat{1}{3} = cls; % update cls, the cluster indices in edit window set(hdl, 'userdat',userdat); %update STUDY, cls and N end case 'mergeclusters' STUDY.saved = 'no'; clus_names = get(findobj('parent', hdl, 'tag', 'clus_list'), 'string') ; optionalcls =[]; for k = 2:length(clus_names) if (~strncmpi('Notclust',clus_names{k},8)) & (~strncmpi('Outliers',clus_names{k},8)) & ... (~strncmpi('ParentCluster',clus_names{k},13)) optionalcls = [optionalcls k]; end end reassign_param = inputgui( { [1] [1] [1] [2 1] [1]}, ... { {'style' 'text' 'string' 'Select clusters to Merge' 'FontWeight' 'Bold'} ... {'style' 'listbox' 'string' clus_names(optionalcls) 'tag' 'new_clus' 'max' 3 'min' 1} {} ... {'style' 'text' 'string' 'Optional, enter a name for the merged cluster:' 'FontWeight' 'Bold'} ... {'style' 'edit' 'string' ''} {} }, ... '', 'Merge clusters - from pop_clustedit()' ,[] , 'normal', [1 3 1 1 1] ); if ~isempty(reassign_param) std_mrg = cls(optionalcls(reassign_param{1})-1); name = reassign_param{2}; allleaves = 1; N = userdat{2}; for k = 1: N %check if all leaves if ~isempty(STUDY.cluster(cls(k)).child) allleaves = 0; end end [STUDY] = std_mergeclust(STUDY, ALLEEG, std_mrg, name); % % update Study history % if isempty(name) a = ['STUDY = std_mergeclust(STUDY, ALLEEG, [' num2str(std_mrg) ']);']; else a = ['STUDY = std_mergeclust(STUDY, ALLEEG, [' num2str(std_mrg) '], ' name ');']; end STUDY.tmphist = sprintf('%s\n%s', STUDY.tmphist, a); userdat{1}{2} = STUDY; % % Replace the merged clusters with the one new merged cluster % in the GUI if all clusters are leaves % if allleaves % % Update cluster list % clus_names{end+1} = [STUDY.cluster(end).name ' (' num2str(length(STUDY.cluster(end).comps)) ' ICs)']; % % update the cluster list with the new cluster % clus_names([optionalcls(reassign_param{1})]) = []; cls = setdiff_bc(cls, std_mrg); % remove from the GUI clusters list the merged clusters cls(end+1) = length(STUDY.cluster); % update the GUI clusters list with the new cluster N = length(cls); % % update the first option on the GUI list : 'All 10 cluster centroids' % with the new number of cluster centroids % ti = strfind(clus_names{1},'cluster'); %get the number of clusters centroid cent = num2str(str2num(clus_names{1}(5:ti-2))+1- length(std_mrg)); % new number of centroids clus_names{1} = [clus_names{1}(1:4) cent clus_names{1}(ti-1:end)]; %update list set(findobj('parent', hdl, 'tag', 'clus_list'), 'String', clus_names); % % update Study history % userdat{2} = N; % update N, the number of cluster options in edit window userdat{1}{3} = cls; % update cls, the cluster indices in edit window end set(hdl, 'userdat',userdat); %update information (STUDY) pop_clustedit('showclust',hdl); end end catch eeglab_error; end; end function newname = renameclust(oldname, newname); tmpname = deblank(oldname(end:-1:1)); strpos = strfind(oldname, tmpname(end:-1:1)); newname = [ oldname(1:strpos-1) newname ];
github
lcnhappe/happe-master
std_findsameica.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_findsameica.m
2,400
utf_8
ee2f9d014b8e1c3c6c6844f0fb9e8193
% std_findsameica() - find groups of datasets with identical ICA decomposiotions % (search identical weight*sphere matrices) % % Usage: % >> clusters = std_findsameica(ALLEEG); % >> clusters = std_findsameica(ALLEEG,icathreshold); % Inputs: % ALLEEG - a vector of loaded EEG dataset structures of all sets % in the STUDY set. % icathreshold - Threshold to compare icaweights % % Outputs: % cluster - cell array of groups of datasets % % Authors: Arnaud Delorme, SCCN, INC, UCSD, July 2009- % 2016 change: as of May 2016, the function now compares the product of the % weight and the sphere matrices instead of just the weight % matrices. % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Coding notes: Useful information on functions and global variables used. function cluster = std_findsameica(ALLEEG, varargin); % 6/2/2014 Ramon : Allow ica threshold as input. if nargin == 1 icathreshold = 2e-5; elseif nargin == 2; icathreshold = varargin{1}; end cluster = { [1] }; for index = 2:length(ALLEEG) found = 0; for c = 1:length(cluster) w1 = ALLEEG(cluster{c}(1)).icaweights*ALLEEG(cluster{c}(1)).icasphere; w2 = ALLEEG(index).icaweights*ALLEEG(index).icasphere; if all(size(w1) == size(w2)) %if isequal(ALLEEG(cluster{c}(1)).icaweights, ALLEEG(index).icaweights) if sum(sum(abs(w1-w2))) < icathreshold cluster{c}(end+1) = index; found = 1; break; end; end; end; if ~found cluster{end+1} = index; end; end;
github
lcnhappe/happe-master
std_plotcurve.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_plotcurve.m
29,673
utf_8
b474f6ed97d0a5964d1b1a07a72ee958
% std_plotcurve() - plot ERP or spectral traces for a STUDY component % or channel cluster % Usage: % >> std_plotcurve( axvals, data, 'key', 'val', ...) % Inputs: % axvals - [vector or cell array] axis values for the data. % data - [cell array] mean data for each subject group and/or data % condition. For example, to plot mean ERPs from a STUDY % for epochs of 800 frames in two conditions from three groups % of 12 subjects: % % >> data = { [800x12] [800x12] [800x12];... % 3 groups, cond 1 % [800x12] [800x12] [800x12] }; % 3 groups, cond 2 % >> std_plotcurve(erp_ms,data); % % By default, parametric statistics are computed across subjects % in the three groups. (group,condition) ERP averages are plotted. % See below and >> help statcond % for more information about the statistical computations. For % plotting multiple channels, use the second dimension. For % example data = { [800x64x12] [800x64x12] } for 12 subjects, % 64 channels and 800 data points. The 'chanlocs' option must be % used as well to specify channel positions. % % Optional display parameters: % 'datatype' - ['erp'|'spec'] data type {default: 'erp'} % 'titles' - [cell array of string] titles for each of the subplots. % { default: none} % % Statistics options: % 'groupstats' - [cell] One p-value array per group {default: {}} % 'condstats' - [cell] One p-value array per condition {default: {}} % 'interstats' - [cell] Interaction p-value arrays {default: {}} % 'threshold' - [NaN|real<<1] Significance threshold. NaN -> plot the % p-values themselves on a different figure. When possible, % significance regions are indicated below the data. % {default: NaN} % % Curve plotting options (ERP and spectrum): % 'plotgroups' - ['together'|'apart'] 'together' -> plot mean results % for subject groups in the same figure panel in different % colors. 'apart' -> plot group results on different figure % panels {default: 'apart'} % 'plotconditions' - ['together'|'apart'] 'together' -> plot mean results % for data conditions on the same figure panel in % different % colors. 'apart' -> plot conditions on different figure % panel. Note: 'plotgroups' and 'plotconditions' arguments % cannot both be 'together' {default: 'apart'} % 'legend' - ['on'|'off'] turn plot legend on/off {default: 'off'} % 'colors' - [cell] cell array of colors % 'plotdiff' - ['on'|'off'] plot difference between two groups % or conditions plotted together. % 'plotstderr' - ['on'|'off'|'diff'|'nocurve'|'diffnocurve'] plots in % a surface indicating the standard error. 'diff' only % does it for the difference (requires 'plotdiff' 'on' % above). 'nocurve' does not plot the mean. This functionality % does not work for all data configuration {default: 'off'} % 'figure' - ['on'|'off'] creates a new figure ('on'). The 'off' mode % plots all of the groups and conditions on the same pannel. % 'plotsubjects' - ['on'|'off'] overplot traces for individual components % or channels {default: 'off'} % 'singlesubject' - ['on'|'off'] set to 'on' to plot single subject. % {default: 'off'} % 'ylim' - [min max] ordinate limits for ERP and spectrum plots % {default: all available data} % % Scalp map plotting options: % 'chanlocs' - [struct] channel locations structure % % Author: Arnaud Delorme, CERCO, CNRS, 2006- % % See also: pop_erspparams(), pop_erpparams(), pop_specparams(), statcond() function std_plotcurve(allx, data, varargin) pgroup = []; pcond = []; pinter = []; if nargin < 2 help std_plotcurve; return; end; opt = finputcheck( varargin, { 'ylim' 'real' [] []; 'filter' 'real' [] []; 'threshold' 'real' [] NaN; 'unitx' 'string' [] 'ms'; 'chanlocs' 'struct' [] struct('labels', {}); 'plotsubjects' 'string' { 'on','off' } 'off'; 'condnames' 'cell' [] {}; % just for legends 'groupnames' 'cell' [] {}; % just for legends 'figtag' 'string' [] 'tmp_curvetag'; 'groupstats' 'cell' [] {}; 'condstats' 'cell' [] {}; 'interstats' 'cell' [] {}; 'titles' 'cell' [] {}; 'colors' 'cell' [] {}; 'figure' 'string' { 'on','off' } 'on'; 'plottopo' 'string' { 'on','off' } 'off'; 'plotstderr' 'string' { 'on','off','diff','nocurve' } 'off'; 'plotdiff' 'string' { 'on','off' } 'off'; 'legend' { 'string','cell' } { { 'on','off' } {} } 'off'; 'datatype' 'string' { 'ersp','itc','erp','spec' } 'erp'; 'plotgroups' 'string' { 'together','apart' } 'apart'; 'plotmode' 'string' { 'test','condensed' } 'test'; % deprecated 'plotconditions' 'string' { 'together','apart' } 'apart' }, 'std_plotcurve'); % opt.figure = 'off'; % test by nima if isstr(opt), error(opt); end; opt.singlesubject = 'off'; if length(opt.chanlocs) > 1, opt.plottopo = 'on'; end; if strcmpi(opt.plottopo, 'on') && size(data{1},3) == 1, opt.singlesubject = 'on'; end; %if size(data{1},2) == 1, opt.singlesubject = 'on'; end; if all(all(cellfun('size', data, 2)==1)) opt.singlesubject = 'on'; end; if any(any(cellfun('size', data, 2)==1)), opt.groupstats = {}; opt.condstats = {}; end; if strcmpi(opt.datatype, 'spec'), opt.unit = 'Hz'; end; if strcmpi(opt.plotsubjects, 'on') opt.plotgroups = 'apart'; opt.plotconditions = 'apart'; end; if strcmpi(opt.plotconditions, 'together') && ~isempty(opt.groupstats), opt.plotconditions = 'apart'; end; if strcmpi(opt.plotgroups, 'together') && ~isempty(opt.condstats) , opt.plotgroups = 'apart'; end; if isstr(opt.legend), opt.legend = {}; end; if isempty(opt.titles), opt.titles = cell(10,10); opt.titles(:) = { '' }; end; if length(data(:)) == length(opt.legend(:)), opt.legend = reshape(opt.legend, size(data))'; opt.legend(cellfun(@isempty, data)) = []; opt.legend = (opt.legend)'; end; % color matrix % ----------------------- onecol = { 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' 'b' }; manycol = { 'b' 'g' 'm' 'c' 'r' 'k' 'y' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' ... 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' 'r' 'b' 'g' 'c' 'm' }; modifier = { '-' '--' '-.' ':' '-' '--' '-.' ':' '-' '--' '-.' ':' }; if strcmpi(opt.plotgroups, 'together') || strcmpi(opt.plotconditions, 'together') || strcmpi(opt.figure, 'off') col = manycol; else col = onecol; end; if ~isempty(opt.colors), col = opt.colors; end; nonemptycell = find(~cellfun(@isempty, data)); if strcmpi(opt.plotsubjects, 'off') % both group and conditions s if strcmpi(opt.plotconditions, 'together') && strcmpi(opt.plotgroups, 'together') dim1 = max(size(data)); dim2 = min(size(data)); coldata = col([1:dim1]); for iRow = 2:dim2 coldata(iRow,:) = coldata(1,:); for iCol = 1:dim1 coldata{iRow,iCol} = [ coldata{iRow,iCol} modifier{iRow} ]; end; end; if size(coldata,1) ~= size(data,1), coldata = coldata'; end; else coldata = manycol; end; coldata = reshape(coldata(1:length(data(:))), size(data)); else coldata = cell(size(data)); end; % Fill empty cells with NaNs (This allow to plot all conditions on the same panel even when there is some missing data) % -------------------------- if strcmpi(opt.plotconditions, 'together') || strcmpi(opt.plotgroups , 'together') emptyindx = find(cellfun(@isempty,data)); if ~isempty(emptyindx) for icell = 1:length(emptyindx) if max(size(data{emptyindx(icell)})) == 0 data{emptyindx(icell)} = nan; end end end end % remove empty entries % -------------------- datapresent = ~cellfun(@isempty, data); if size(data,1) > 1, for c = size(data,1):-1:1, if sum(datapresent(c,:)) == 0, data(c,:) = []; coldata(c,:) = []; if ~strcmpi(opt.plotconditions, 'together') opt.titles(c,:) = []; end; if ~isempty(opt.groupstats), opt.groupstats(c) = []; end; end; end; end; if size(data,2) > 1, for g = size(data,2):-1:1, if sum(datapresent(:,g)) == 0, data(:,g) = []; coldata(:,g) = []; if ~strcmpi(opt.plotgroups , 'together') opt.titles(:,g) = []; end; if ~isempty(opt.condstats ), opt.condstats( g) = []; end; end; end; end; if strcmpi(opt.plotsubjects, 'off'), tmpcol = coldata'; tmpcol = tmpcol(:)'; end; % number of columns and rows to plot % ---------------------------------- nc = size(data,1); ng = size(data,2); if strcmpi(opt.plotgroups, 'together'), ngplot = 1; else ngplot = ng; end; if strcmpi(opt.plotconditions, 'together'), ncplot = 1; else ncplot = nc; end; if nc >= ng, opt.subplot = 'transpose'; else opt.subplot = 'normal'; end; if isempty(opt.condnames) for c=1:nc, opt.condnames{c} = sprintf('Cond. %d', c); end; if nc == 1, opt.condnames = { '' }; end; end; if isempty(opt.groupnames) for g=1:ng, opt.groupnames{g} = sprintf('Group. %d', g); end; if ng == 1, opt.groupnames = { '' }; end; end; % plotting paramters % ------------------ if ng > 1 && ~isempty(opt.groupstats), addc = 1; else addc = 0; end; if nc > 1 && ~isempty(opt.condstats ), addr = 1; else addr = 0; end; if length(opt.threshold) > 1, opt.threshold = opt.threshold(1); end; if strcmpi(opt.singlesubject, 'off') ... && ( ~isempty(opt.condstats) || ~isempty(opt.groupstats) ) % only for curves plottag = 0; if strcmpi(opt.plotgroups, 'together') && isempty(opt.condstats) && ~isempty(opt.groupstats) && ~isnan(opt.threshold), addc = 0; plottag = 1; end; if strcmpi(opt.plotconditions , 'together') && ~isempty(opt.condstats) && isempty(opt.groupstats) && ~isnan(opt.threshold), addr = 0; plottag = 1; end; if ~isnan(opt.threshold) && plottag == 0 && strcmpi(opt.figure, 'on') disp('Warning: cannot plot condition/group on the same panel while using a fixed'); disp(' threshold, unless you only compute statistics for ether groups or conditions'); opt.plotgroups = 'apart'; opt.plotconditions = 'apart'; end; end; % resize data to match points x channels x subjects % or points x 1 x components % ------------------------------------------------- for index = 1:length(data(:)) if length(opt.chanlocs) ~= size(data{index},2) && (length(opt.chanlocs) == 1 || isempty(opt.chanlocs)) data{index} = reshape(data{index}, [ size(data{index},1) 1 size(data{index},2) ]); end; end; % compute significance mask % -------------------------- if ~isempty(opt.interstats), pinter = opt.interstats{3}; end; if ~isnan(opt.threshold) && ( ~isempty(opt.groupstats) || ~isempty(opt.condstats) ) pcondplot = opt.condstats; pgroupplot = opt.groupstats; pinterplot = pinter; maxplot = 1; else for ind = 1:length(opt.condstats), pcondplot{ind} = -log10(opt.condstats{ind}); end; for ind = 1:length(opt.groupstats), pgroupplot{ind} = -log10(opt.groupstats{ind}); end; if ~isempty(pinter), pinterplot = -log10(pinter); end; maxplot = 3; end; % labels % ------ if strcmpi(opt.unitx, 'ms'), xlab = 'Time (ms)'; ylab = 'Potential (\muV)'; else xlab = 'Frequency (Hz)'; ylab = 'Log Power Spectral Density 10*log_{10}(\muV^{2}/Hz)'; % ylab = 'Power (10*log_{10}(\muV^{2}))'; end; if ~isnan(opt.threshold), statopt = { 'xlabel' xlab }; else statopt = { 'logpval' 'on' 'xlabel' xlab 'ylabel' '-log10(p)' 'ylim' [0 maxplot] }; end; % adjust figure size % ------------------ if strcmpi(opt.figure, 'on') figure('color', 'w','Tag', opt.figtag); pos = get(gcf, 'position'); basewinsize = 200/max(nc,ng)*3; if strcmpi(opt.plotgroups, 'together') pos(3) = 200*(1+addc); else pos(3) = 200*(ng+addc); end; if strcmpi(opt.plotconditions , 'together') pos(4) = 200*(1+addr); else pos(4) = 200*(nc+addr); end; if strcmpi(opt.subplot, 'transpose'), set(gcf, 'position', [ pos(1) pos(2) pos(4) pos(3)]); else set(gcf, 'position', pos); end; else opt.subplot = 'noplot'; end; tmplim = [Inf -Inf]; colcount = 1; % only when plotting all conditions on the same figure tmpcol = col; for c = 1:ncplot for g = 1:ngplot if strcmpi(opt.figure, 'off'), tmpcol(1) = []; end; % knock off colors if strcmpi(opt.plotgroups, 'together'), hdl(c,g)=mysubplot(ncplot+addr, ngplot+addc, 1 + (c-1)*(ngplot+addc), opt.subplot); ci = g; elseif strcmpi(opt.plotconditions, 'together'), hdl(c,g)=mysubplot(ncplot+addr, ngplot+addc, g, opt.subplot); ci = c; else hdl(c,g)=mysubplot(ncplot+addr, ngplot+addc, g + (c-1)*(ngplot+addc), opt.subplot); ci = 1; end; if ~isempty(data{c,g}) % read all data from one condition or group % ----------------------------------------- dimreduced_sizediffers = 0; if ncplot ~= nc && ngplot ~= ng maxdim = max(max(cellfun(@(x)(size(x, ndims(x))), data))); for cc = 1:size(data,1) for gg = 1:size(data,2) tmptmpdata = real(data{cc,gg}); if cc == 1 && gg == 1, tmpdata = NaN*zeros([size(tmptmpdata,1) size(tmptmpdata,2) maxdim length(data(:))]); end; tmpdata(:,:,1:size(tmptmpdata,3),gg+((cc-1)*ng)) = tmptmpdata; end; end; elseif ncplot ~= nc % plot conditions together for ind = 2:size(data,1), if numel(size(data{ind,1})) ~= numel(size(data{1})) || any(size(data{ind,1}) ~= size(data{1})), dimreduced_sizediffers = 1; end; end; for cc = 1:nc [trash,order] = sort(cellfun(@length,data(:,g)),'descend'); clear trash; tmptmpdata = real(data{order(cc),g}); if dimreduced_sizediffers tmptmpdata = nan_mean(tmptmpdata,ndims(tmptmpdata)); % average across last dim end; if cc == 1 && ndims(tmptmpdata) == 3, tmpdata = zeros([size(tmptmpdata) nc]); end; if cc == 1 && ndims(tmptmpdata) == 2, tmpdata = zeros([size(tmptmpdata) 1 nc]); end; if ~any(isnan(tmptmpdata)) tmpdata(:,:,:,order(cc)) = tmptmpdata; else tmpdata(:,:,:,order(cc)) = nan; end end; elseif ngplot ~= ng % plot groups together for ind = 2:size(data,2), if numel(size(data{1,ind})) ~= numel(size(data{1})) || any((size(data{1,ind}) ~= size(data{1}))), dimreduced_sizediffers = 1; end; end; for gg = 1:ng [trash,order] = sort(cellfun(@length,data(c,:)),'descend'); clear trash; tmptmpdata = real(data{c,order(gg)}); if dimreduced_sizediffers tmptmpdata = nan_mean(tmptmpdata,ndims(tmptmpdata)); end; if gg == 1 && ndims(tmptmpdata) == 3, tmpdata = zeros([size(tmptmpdata) ng]); end; if gg == 1 && ndims(tmptmpdata) == 2, tmpdata = zeros([size(tmptmpdata) 1 ng]); end; if ~any(isnan(tmptmpdata)) tmpdata(:,:,:,order(gg)) = tmptmpdata; else tmpdata(:,:,:,order(gg)) = nan; end end; else tmpdata = real(data{c,g}); end; % plot difference % --------------- if ~strcmpi(opt.plotdiff, 'off') if ngplot ~= ng || ncplot ~= nc if size(tmpdata,3) == 2 tmpdata(:,:,end+1) = tmpdata(:,:,2)-tmpdata(:,:,1); opt.legend{end+1} = [ opt.legend{2} '-' opt.legend{1} ]; elseif size(tmpdata,4) == 2 tmpdata(:,:,:,end+1) = tmpdata(:,:,:,2)-tmpdata(:,:,:,1); opt.legend{end+1} = [ opt.legend{2} '-' opt.legend{1} ]; else disp('Cannot plot difference, more than 2 indep. variable values'); end; else disp('Cannot plot difference, indep. variable value must be plotted together'); end; end; if ~isempty(opt.filter), tmpdata = myfilt(tmpdata, 1000/(allx(2)-allx(1)), 0, opt.filter); end; % plotting options % ---------------- plotopt = { allx }; % ------------------------------------------------------------- % tmpdata is of size "points x channels x subject x conditions" % or "points x 1 x components x conditions" % ------------------------------------------------------------- if ~dimreduced_sizediffers && strcmpi(opt.plotsubjects, 'off') % average accross subjects tmpstd = squeeze(real(std(tmpdata,[],3)))/sqrt(size(tmpdata,3)); tmpstd = squeeze(permute(tmpstd, [2 1 3])); tmpdata = squeeze(real(nan_mean(tmpdata,3))); end; tmpdata = squeeze(permute(tmpdata, [2 1 3 4])); % ----------------------------------------------------------------- % tmpdata is now of size "channels x points x subject x conditions" % ----------------------------------------------------------------- if strcmpi(opt.plottopo, 'on'), highlight = 'background'; else highlight = 'bottom'; end; if strcmpi(opt.plotgroups, 'together') && isempty(opt.condstats) && ... ~isnan(opt.threshold) && ~isempty(opt.groupstats) plotopt = { plotopt{:} 'maskarray' }; tmpdata = { tmpdata pgroupplot{c}' }; elseif strcmpi(opt.plotconditions, 'together') && isempty(opt.groupstats) && ... ~isnan(opt.threshold) && ~isempty(opt.condstats) plotopt = { plotopt{:} 'maskarray' }; tmpdata = { tmpdata pcondplot{g}' }; end; plotopt = { plotopt{:} 'highlightmode', highlight }; if strcmpi(opt.plotsubjects, 'on') plotopt = { plotopt{:} 'plotmean' 'on' 'plotindiv' 'on' }; else plotopt = { plotopt{:} 'plotmean' 'off' }; end; plotopt = { plotopt{:} 'ylim' opt.ylim 'xlabel' xlab 'ylabel' ylab }; if ncplot ~= nc || ngplot ~= ng plotopt = { plotopt{:} 'legend' opt.legend }; end; if strcmpi(opt.plottopo, 'on') && length(opt.chanlocs) > 1 metaplottopo(tmpdata, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ... 'plotargs', { plotopt{:} }, 'datapos', [2 3], 'title', opt.titles{c,g}); elseif iscell(tmpdata) if ~all(isnan(tmpdata{1})) plotcurve( allx, tmpdata{1}, 'colors', tmpcol, 'maskarray', tmpdata{2}, plotopt{3:end}, 'title', opt.titles{c,g}); else plotcurve( allx, nan(size(tmpdata{1},2),length(allx)), 'colors', tmpcol, 'maskarray', tmpdata{2}, plotopt{3:end}, 'title', opt.titles{c,g}); end else if isempty(findstr(opt.plotstderr, 'nocurve')) if all(isnan(tmpdata)) plotcurve( allx, nan(size(tmpdata,2),length(allx)), 'colors', tmpcol, plotopt{2:end}, 'traceinfo', 'on', 'title', opt.titles{c,g}); else plotcurve( allx, tmpdata, 'colors', tmpcol, plotopt{2:end}, 'traceinfo', 'on', 'title', opt.titles{c,g}); end end; if ~strcmpi(opt.plotstderr, 'off') if ~dimreduced_sizediffers if ~isempty(findstr(opt.plotstderr, 'diff')), begind = 3; else begind = 1; end; set(gcf, 'renderer', 'OpenGL') for tmpi = begind:size(tmpdata,1) hold on; chandle = fillcurves( allx, tmpdata(tmpi,:)-tmpstd(tmpi,:), tmpdata(tmpi,:)+tmpstd(tmpi,:), tmpcol{tmpi}); hold on; numfaces = size(get(chandle(1), 'Vertices'),1); set(chandle(1), 'FaceVertexCData', repmat([1 1 1], [numfaces 1]), 'Cdatamapping', 'direct', 'facealpha', 0.3, 'edgecolor', 'none'); end; else disp('Some conditions have more subjects than others, cannot plot standard error'); end; end; end; end; if strcmpi(opt.plottopo, 'off'), % only non-topographic xlim([allx(1) allx(end)]); hold on; if isempty(opt.ylim) tmp = ylim; tmplim = [ min(tmplim(1), tmp(1)) max(tmplim(2), tmp(2)) ]; else ylim(opt.ylim); end; end; % statistics accross groups % ------------------------- if g == ngplot && ng > 1 && ~isempty(opt.groupstats) if ~strcmpi(opt.plotgroups, 'together') || ~isempty(opt.condstats) || isnan(opt.threshold) if strcmpi(opt.plotgroups, 'together'), mysubplot(ncplot+addr, ngplot+addc, 2 + (c-1)*(ngplot+addc), opt.subplot); ci = g; elseif strcmpi(opt.plotconditions, 'together'), mysubplot(ncplot+addr, ngplot+addc, ngplot + 1, opt.subplot); ci = c; else mysubplot(ncplot+addr, ngplot+addc, ngplot + 1 + (c-1)*(ngplot+addc), opt.subplot); ci = 1; end; if strcmpi(opt.plotconditions, 'together'), condnames = 'Conditions'; else condnames = opt.condnames{c}; end; if ~isnan(opt.threshold) if strcmpi(opt.plottopo, 'on'), metaplottopo({zeros(size(pgroupplot{c}')) pgroupplot{c}'}, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ... 'plotargs', { allx 'maskarray' statopt{:} }, 'datapos', [2 3], 'title', opt.titles{c, g+1}); else plotcurve(allx, zeros(size(allx)), 'maskarray', mean(pgroupplot{c},2), 'ylim', [0.1 1], 'title', opt.titles{c, g+1}, statopt{:}); end; else if strcmpi(opt.plottopo, 'on'), metaplottopo(pgroupplot{c}', 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ... 'plotargs', { allx statopt{:} }, 'datapos', [2 3], 'title', opt.titles{c, g+1}); else plotcurve(allx, mean(pgroupplot{c},2), 'title', opt.titles{c, g+1}, statopt{:}); end; end; end; end; end; end; for g = 1:ng % statistics accross conditions % ----------------------------- if ~isempty(opt.condstats) && nc > 1 if ~strcmpi(opt.plotconditions, 'together') || ~isempty(opt.groupstats) || isnan(opt.threshold) if strcmpi(opt.plotgroups, 'together'), mysubplot(ncplot+addr, ngplot+addc, 1 + c*(ngplot+addc), opt.subplot); ci = g; elseif strcmpi(opt.plotconditions, 'together'), mysubplot(ncplot+addr, ngplot+addc, g + ngplot+addc, opt.subplot); ci = c; else mysubplot(ncplot+addr, ngplot+addc, g + c*(ngplot+addc), opt.subplot); ci = 1; end; if strcmpi(opt.plotgroups, 'together'), groupnames = 'Groups'; else groupnames = opt.groupnames{g}; end; if ~isnan(opt.threshold) if strcmpi(opt.plottopo, 'on'), metaplottopo({zeros(size(pcondplot{g}')) pcondplot{g}'}, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ... 'plotargs', { allx 'maskarray' statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, g}); else plotcurve(allx, zeros(size(allx)), 'maskarray', mean(pcondplot{g},2), 'ylim', [0.1 1], 'title', opt.titles{end, g}, statopt{:}); end; else if strcmpi(opt.plottopo, 'on'), metaplottopo(pcondplot{g}', 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ... 'plotargs', { allx statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, g}); else plotcurve(allx, mean(pcondplot{g},2), 'title', opt.titles{end, g}, statopt{:}); end; end; end; end; end; % statistics accross group and conditions % --------------------------------------- if ~isempty(opt.groupstats) && ~isempty(opt.condstats) && ng > 1 && nc > 1 mysubplot(ncplot+addr, ngplot+addc, ngplot + 1 + ncplot*(ngplot+addr), opt.subplot); if ~isnan(opt.threshold) if strcmpi(opt.plottopo, 'on'), metaplottopo({zeros(size(pinterplot')) pinterplot'}, 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ... 'plotargs', { allx 'maskarray' statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, end}); else plotcurve(allx, zeros(size(allx)), 'maskarray', mean(pinterplot,2), 'ylim', [0.1 1], 'title', opt.titles{end, end}, statopt{:}); xlabel(xlab); ylabel('-log10(p)'); end; else if strcmpi(opt.plottopo, 'on'), metaplottopo(pinterplot', 'chanlocs', opt.chanlocs, 'plotfunc', 'plotcurve', ... 'plotargs', { allx statopt{:} }, 'datapos', [2 3], 'title', opt.titles{end, end}); else plotcurve(allx, mean(pinterplot,2), 'title', opt.titles{end, end}, statopt{:}); end; end; end; % axis limit % ---------- for c = 1:ncplot for g = 1:ngplot if isempty(opt.ylim) && strcmpi(opt.plottopo, 'off') set(hdl(c,g), 'ylim', tmplim); end; end; end; if strcmpi(opt.plottopo, 'off') && length(hdl(:)) > 1 axcopy; % remove axis labels (for most but not all) % ------------------ if strcmpi(opt.subplot, 'transpose') for c = 1:size(hdl,2) for g = 1:size(hdl,1) axes(hdl(g,c)); if c ~= 1 && size(hdl,2) ~=1, xlabel(''); legend off; end; if g ~= 1 && size(hdl,1) ~= 1, ylabel(''); legend off; end; end; end; else for c = 1:size(hdl,1) for g = 1:size(hdl,2) axes(hdl(c,g)); if g ~= 1 && size(hdl,2) ~=1, ylabel(''); legend off; end; if c ~= size(hdl,1) && size(hdl,1) ~= 1, xlabel(''); legend off; end; end; end; end; end; % mysubplot (allow to transpose if necessary) % ------------------------------------------- function hdl = mysubplot(nr,nc,ind,subplottype); r = ceil(ind/nc); c = ind -(r-1)*nc; if strcmpi(subplottype, 'transpose'), hdl = subplot(nc,nr,(c-1)*nr+r); elseif strcmpi(subplottype, 'normal'), hdl = subplot(nr,nc,(r-1)*nc+c); elseif strcmpi(subplottype, 'noplot'), hdl = gca; else error('Unknown subplot type'); end; % rapid filtering for ERP % ----------------------- function tmpdata2 = myfilt(tmpdata, srate, lowpass, highpass); bscorrect = 1; if bscorrect % Getting initial baseline bs_val1 = mean(tmpdata,1); bs1 = repmat(bs_val1, size(tmpdata,1), 1); end % Filtering tmpdata2 = reshape(tmpdata, size(tmpdata,1), size(tmpdata,2)*size(tmpdata,3)*size(tmpdata,4)); tmpdata2 = eegfiltfft(tmpdata2',srate, lowpass, highpass)'; tmpdata2 = reshape(tmpdata2, size(tmpdata,1), size(tmpdata,2), size(tmpdata,3), size(tmpdata,4)); if bscorrect % Getting after-filter baseline bs_val2 = mean(tmpdata2,1); bs2 = repmat(bs_val2, size(tmpdata2,1), 1); % Correcting the baseline realbs = bs1-bs2; tmpdata2 = tmpdata2 + realbs; end
github
lcnhappe/happe-master
std_movie.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_movie.m
5,749
utf_8
b76bc3cff273bfdc46ca097d380720fa
% std_topomovie - make movie in the frequency domain % % Usage: % >> [STUDY] = std_movie(STUDY, ALLEEG, key1, val1, key2, val2, ...); % % Inputs: % STUDY - STUDY structure comprising some or all of the EEG datasets in ALLEEG. % ALLEEG - vector of EEG dataset structures for the dataset(s) in the STUDY, % typically created using load_ALLEEG(). % 'channels' - [numeric vector] specific channel group to plot. By % default, the grand mean channel spectrum is plotted (using the % same format as for the cluster component means described above) % 'moviemode' - ['erp'|'spec'|'ersptime'] movie mode. Currently only % 'spec' is implemented. % 'erspfreq' - [min max] frequency range when making movie of ERSP. The % ERSP values are averaged over the selected frequency % range. Not implemented % 'limitbeg' - [min max] limits at the beginning of the movie % 'limitend' - [min max] limits at the end of the movie % 'freqslim' - [freqs] array of landmark frequencies to set color % limits. % 'movieparams' - [low inc high] lower limit, higher limit and increment. If % increment is omited, movie is generate at every possible % increment (max freq resolution or max time resolution) % % Authors: Arnaud Delorme, CERCO, August, 2006 % % See also: std_specplot(), std_erppplot(), std_erspplot() % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [STUDY, M] = std_movie(STUDY, ALLEEG, varargin); if nargin < 2 help std_specplot; return; end; [opt addparams ] = finputcheck( varargin, ... { 'erspfreq' 'real' [] []; 'movieparams' 'real' [] []; 'channels' 'cell' [] {}; 'freqslim' 'real' [] []; 'limitbeg' 'real' [] []; 'limitend' 'real' [] []; 'moviemode' 'string' { 'ersptime','erp','spec' } 'spec' }, 'std_movie', 'ignore'); if isstr(opt), error(opt); end; tmpchanlocs = ALLEEG(1).chanlocs; if isempty(opt.channels), opt.channels = { tmpchanlocs.labels }; end; if ~strcmpi(opt.moviemode, 'spec'), error('Only spec has been implemented so far'); end; % read data once % -------------- STUDY = std_specplot(STUDY, ALLEEG, 'channels', opt.channels, 'topofreq', [10 11]); close; % find first data channel with info % --------------------------------- for cind = 1:length(STUDY.changrp) if ~isempty(STUDY.changrp(cind).specdata), break; end; end; % generate movie % -------------- if isempty(opt.movieparams), opt.movieparams(1) = STUDY.changrp(cind).specfreqs(1); opt.movieparams(2) = STUDY.changrp(cind).specfreqs(end); end; if length(opt.movieparams) == 2 opt.movieparams(3) = opt.movieparams(2); opt.movieparams(2) = STUDY.changrp(cind).specfreqs(2)-STUDY.changrp(cind).specfreqs(1); end; if length(opt.movieparams) == 3 opt.movieparams = [opt.movieparams(1):opt.movieparams(2):opt.movieparams(3)]; end; % find limits % ----------- if isempty(opt.limitbeg) [STUDY specdata] = std_specplot(STUDY, ALLEEG, 'channels', opt.channels, 'topofreq', opt.movieparams(1)); close; opt.limitbeg = [ min(specdata{1}) max(specdata{1}) ]; [STUDY specdata] = std_specplot(STUDY, ALLEEG, 'channels', opt.channels, 'topofreq', opt.movieparams(end)); close; opt.limitend = [ min(specdata{1}) max(specdata{1}) ]; end; lowlims = linspace(opt.limitbeg(1), opt.limitend(1), length(opt.movieparams)); highlims = linspace(opt.limitbeg(2), opt.limitend(2), length(opt.movieparams)); % limits at specific frequencies % ------------------------------ if ~isempty(opt.freqslim) if opt.freqslim(1) ~= opt.movieparams(1) , opt.freqslim = [ opt.movieparams(1) opt.freqslim ]; end; if opt.freqslim(end) ~= opt.movieparams(end), opt.freqslim = [ opt.freqslim opt.movieparams(end) ]; end; for ind = 1:length(opt.freqslim) [tmp indf(ind)] = min(abs(opt.freqslim(ind) - opt.movieparams)); [STUDY specdata] = std_specplot(STUDY, ALLEEG, 'channels', opt.channels, 'topofreq', opt.movieparams(indf(ind))); close; minimum(ind) = min(specdata{1}); maximum(ind) = max(specdata{1}); end; indf(1) = 0; lowlims = [ ]; highlims = [ ]; for ind = 2:length(opt.freqslim) lowlims = [lowlims linspace(minimum(ind-1), minimum(ind), indf(ind)-indf(ind-1)) ]; highlims = [highlims linspace(maximum(ind-1), maximum(ind), indf(ind)-indf(ind-1)) ]; end; end; % make movie % ---------- for ind = 1:length(opt.movieparams) STUDY = std_specplot(STUDY, ALLEEG, 'channels', opt.channels, 'topofreq', opt.movieparams(ind), 'caxis', [lowlims(ind) highlims(ind)]); pos = get(gcf, 'position'); set(gcf, 'position', [pos(1) pos(2) pos(3)*2 pos(4)*2]); M(ind) = getframe(gcf); close; end; figure; axis off; movie(M);
github
lcnhappe/happe-master
std_readfile.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_readfile.m
15,609
utf_8
5f6b1005263321cdba24e80b92827d6c
% std_readfile() - Read data file containing STUDY measures. % % Usage: % >> [data param range1 range2] = std_readfile(filename, 'key', val); % % Inputs: % filename - [string] read specific file, for instance 's1.daterp' % containing ERP data for dataset "s1.set". It is also % possible to provide only the "base" file name "s1" and % function will load the appropriate file based on the % selected input measure (measure input). % % Optional inputs: % 'channels' - [cell or integer] channel labels - for instance % { 'cz' 'pz' } - or indices - for instance [1 2 3] % of channels to load from the data file. % 'components' - [integer] component index in the selected EEG dataset for which % to read the ERSP % 'timelimits' - [min max] ERSP time (latency in ms) range of interest % 'freqlimits' - [min max] ERSP frequency range (in Hz) of interest % 'measure' - ['erp'|'spec'|'ersp'|'itc'|'timef'|'erspbase'|'erspboot' % 'itcboot'|'erpim'] data measure to read. If a full file name % is provided, the data measure is selected automatically. % 'getparamsonly' - ['on'|'off'] only read file parameters not data. % % Outputs: % data - the multi-channel or multi-component data. The size of this % output depends on the number of dimension (for ERSP or ERP % for instance). The last dimension is channels or components. % params - structure containing parameters saved with the data file. % range1 - time points (ERP, ERSP) or frequency points (spectrum) % range2 - frequency points (ERSP, ITCs) % % Examples: % % the examples below read all data channels for the selected files % [ersp params times freqs] = std_readfiles('s1.datersp'); % [erp params times] = std_readfiles('s1.daterp'); % [erp params times] = std_readfiles('s1.daterp', timerange', [-100 500]); % % Authors: Arnaud Delorme, SCCN, INC, UCSD, May 2010 % Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % dimensions % time x freqs x channel_comps x subjects_trials function [measureData, parameters, measureRange1, measureRange2, events, setinfoTrialIndices] = std_readfile(fileBaseName, varargin); if nargin < 1 help std_readfile; return; end; opt = finputcheck(varargin, { 'components' 'integer' [] []; 'getparamonly' 'string' { 'on','off' } 'off'; 'singletrials' 'string' { 'on','off' } 'off'; 'concatenate' 'string' { 'on','off' } 'off'; % ERPimage only 'channels' 'cell' [] {}; 'setinfoinds' 'integer' [] []; 'measure' 'string' { 'erpim','ersp','erspboot','erspbase','itc','itcboot','spec','erp','timef' } 'erp'; 'timelimits' 'real' [] []; % ERPimage, ERP, ERSP, ITC 'triallimits' 'real' [] []; % ERPimage only 'freqlimits' 'real' [] []; % SPEC, ERSP, ITC 'dataindices' 'integer' [] [] }, 'std_readdatafile'); if isstr(opt), error(opt); end; if ~isempty(opt.triallimits), opt.freqlimits = opt.triallimits; end; if strcmpi(opt.concatenate, 'on'), opt.singletrials = 'on'; end; if isstruct(fileBaseName), fileBaseName = { fileBaseName.filebase }; else fileBaseName = { fileBaseName }; end; if ~isempty(opt.channels) && length(opt.channels) < length(fileBaseName) opt.channels(2:length(fileBaseName)) = opt.channels(1); end; % get file extension % ------------------ if ~isempty(opt.channels) || (~isempty(opt.dataindices) && opt.dataindices(1) < 0) , dataType = 'chan'; else dataType = 'comp'; end; [tmp1 tmp2 currentFileExt] = fileparts(fileBaseName{1}); if length(currentFileExt) > 3 && (strcmpi(currentFileExt(2:4), 'dat') || strcmpi(currentFileExt(2:4), 'ica')) opt.measure = currentFileExt(5:end); if strcmpi(currentFileExt(2:4), 'dat'), dataType = 'chan'; else dataType = 'comp'; end; fileExt = ''; else if strcmpi(dataType, 'chan'), fileExt = [ '.dat' opt.measure ]; else fileExt = [ '.ica' opt.measure ]; end; end; if nargin > 5 && strcmpi(opt.singletrials, 'on') indFlag = true; else indFlag = false; end; % get fields to read % ------------------ erspFreqOnly = 0; switch opt.measure case 'erpim' , fieldExt = ''; case 'erp' , fieldExt = ''; case 'spec' , fieldExt = ''; case 'ersp' , fieldExt = '_ersp'; case 'itc' , fieldExt = '_itc'; case 'timef' , fieldExt = '_timef'; case 'erspbase', fieldExt = '_erspbase'; fileExt = fileExt(1:end-4); erspFreqOnly = 1; case 'erspboot', fieldExt = '_erspboot'; fileExt = fileExt(1:end-4); erspFreqOnly = 1; case 'itcboot' , fieldExt = '_itcboot'; fileExt = fileExt(1:end-4); erspFreqOnly = 1; end; % get channel or component indices % -------------------------------- if ~isempty(opt.channels) && isnumeric(opt.channels) opt.dataindices = opt.channels; elseif ~isempty(opt.channels) %if length(fileBaseName) > 1, error('Cannot read channel labels when reading more than 1 input file'); end; for iFile = 1:length(fileBaseName) filename = [ fileBaseName{iFile} fileExt ]; try, warning('off', 'MATLAB:load:variableNotFound'); fileData = load( '-mat', filename, 'labels', 'chanlabels' ); warning('on', 'MATLAB:load:variableNotFound'); catch, fileData = []; end; if isfield(fileData, 'labels'), chan.chanlocs = struct('labels', fileData.labels); elseif isfield(fileData, 'chanlabels') chan.chanlocs = struct('labels', fileData.chanlabels); else error('Cannot use file to lookup channel names, the file needs to be recomputed'); end; opt.dataindices(iFile) = std_chaninds(chan, opt.channels{iFile}); end; elseif ~isempty(opt.components) opt.dataindices = opt.components; else opt.dataindices = abs(opt.dataindices); end; % file names and indices must have the same number of values % ---------------------------------------------------------- if strcmpi(opt.getparamonly, 'on'), opt.dataindices = 1; end; if length(fileBaseName ) == 1, fileBaseName( 1:length(opt.dataindices)) = fileBaseName; end; if length(opt.dataindices) == 1, opt.dataindices(1:length(fileBaseName )) = opt.dataindices; end; if length(opt.dataindices) ~= length(fileBaseName) && ~isempty(opt.dataindices), error('Number of files and number of indices must be the same'); end; % scan datasets % ------------- measureRange1 = []; measureRange2 = []; measureData = []; parameters = []; events = {}; setinfoTrialIndices = []; % read only specific fields % ------------------------- counttrial = 0; for fInd = 1:length(opt.dataindices) % usually only one value fieldsToRead = [ dataType int2str(opt.dataindices(fInd)) fieldExt ]; try, warning('off', 'MATLAB:load:variableNotFound'); fileData = load( '-mat', [ fileBaseName{fInd} fileExt ], 'parameters', 'freqs', 'times', 'events', 'chanlocsforinterp', fieldsToRead ); warning('on', 'MATLAB:load:variableNotFound'); catch error( [ 'Cannot read file ''' fileBaseName{fInd} fileExt '''' ]); end; % get output for parameters and measure ranges % -------------------------------------------- if isfield(fileData, 'chanlocsforinterp'), chanlocsforinterp = fileData.chanlocsforinterp; end; if isfield(fileData, 'parameters') parameters = removedup(fileData.parameters); for index = 1:length(parameters), if iscell(parameters{index}), parameters{index} = { parameters{index} }; end; end; parameters = struct(parameters{:}); end; if isfield(fileData, 'times'), measureRange1 = fileData.times; end; if isfield(fileData, 'freqs'), measureRange2 = fileData.freqs; end; if isfield(fileData, 'events'), events{fInd} = fileData.events; end; % if the function is only called to get parameters % ------------------------------------------------ if strcmpi(opt.getparamonly, 'on'), measureRange1 = indicesselect(measureRange1, opt.timelimits); measureRange2 = indicesselect(measureRange2, opt.freqlimits); if strcmpi(opt.measure, 'spec'), measureRange1 = measureRange2; end; parameters.singletrials = 'off'; if strcmpi(opt.measure, 'timef') parameters.singletrials = 'on'; elseif strcmpi(opt.measure, 'erp') || strcmpi(opt.measure, 'spec') if strcmpi(dataType, 'chan') if size(fileData.chan1,1) > 1 && size(fileData.chan1,2) > 1 parameters.singletrials = 'on'; end; else if size(fileData.comp1,1) > 1 && size(fileData.comp1,2) > 1 parameters.singletrials = 'on'; end; end; end; return; end; % copy fields to output variables % ------------------------------- if isfield(fileData, fieldsToRead) fieldData = getfield(fileData, fieldsToRead); if isempty(fieldData) tmpSize = size(fieldData); tmpSize(tmpSize == 0) = 1; fieldData = ones(tmpSize)*NaN; end; if isstr(fieldData), eval( [ 'fieldData = ' fieldData ] ); end; % average single trials if necessary % ---------------------------------- if strcmpi(opt.measure, 'erp') || strcmpi(opt.measure, 'spec') if strcmpi(opt.singletrials, 'off') && size(fieldData,1) > 1 && size(fieldData,2) > 1 fieldData = mean(fieldData,2); end; end; % array reservation % ----------------- if fInd == 1 sizeFD = size(fieldData); if length(sizeFD) == 2 && (sizeFD(1) == 1 || sizeFD(2) == 1), sizeFD = sizeFD(1)*sizeFD(2); end; if length(sizeFD) == 2 && (sizeFD(1) == 0 || sizeFD(2) == 0), sizeFD = max(sizeFD(1)); end; if strcmpi(opt.singletrials, 'off'), measureData = zeros([ sizeFD length(opt.dataindices) ], 'single'); else measureData = zeros([ sizeFD ], 'single'); end; if indFlag, setinfoTrialIndices = zeros(1, size(measureData,ndims(measureData)), 'int16'); if length(opt.setinfoinds) ~= length(opt.dataindices) error('For single trial output, the "setinfoinds" parameter must be set'); end; end; nDimData = length(sizeFD); end; % copy data to output variable % ---------------------------- if nDimData == 1, measureData(:,fInd) = fieldData; else if strcmpi(opt.singletrials, 'off') if nDimData == 2, measureData(:,:,fInd) = fieldData; else measureData(:,:,:,fInd) = fieldData; end; else if nDimData == 2, measureData(:,counttrial+1:counttrial+size(fieldData,2)) = fieldData; else measureData(:,:,counttrial+1:counttrial+size(fieldData,2)) = fieldData; end; setinfoTrialIndices(counttrial+1:counttrial+size(fieldData,2)) = opt.setinfoinds(fInd); counttrial = counttrial+size(fieldData,2); end; end; elseif ~isempty(findstr('comp', fieldsToRead)) error( sprintf([ 'Field "%s" not found in file %s' 10 'Try recomputing measure.' ], fieldsToRead, [ fileBaseName{fInd} fileExt ])); else error(['Problem loading data, most likely your design has' 10 ... 'conditions with no trials or missing channels' 10 ... 'If you think this is a bug, report it on Bugzilla for EEGLAB' ]); % the case below is for the rare case where all the channels are read and the end of the array needs to be trimmed % error('There is a problem with your data, please enter a bug report and upload your data at http://sccn.ucsd.edu/eeglab/bugzilla'); if nDimData == 1, measureData(:,1:(fInd-1)) = []; elseif nDimData == 2, measureData(:,:,1:(fInd-1)) = []; else measureData(:,:,:,1:(fInd-1)) = []; end; break; end; end; % special ERP image % ----------------- if ~isempty(events) len = length(events{1}); events = [ events{:} ]; if strcmpi(opt.singletrials, 'off') && ~isempty(events), events = reshape(events, len, length(events)/len); end; end; % select plotting or clustering time/freq range % --------------------------------------------- if ~isempty(measureRange1) && ~erspFreqOnly [measureRange1 indBegin indEnd] = indicesselect(measureRange1, opt.timelimits); if ~isempty(measureData) if strcmpi(opt.measure, 'erp') || ( strcmpi(opt.measure, 'erpim') && strcmpi(opt.singletrials, 'on') ) measureData = measureData(indBegin:indEnd,:,:); else measureData = measureData(:,indBegin:indEnd,:); end; end; end; if isempty(measureRange2) && size(measureData,1) > 1 && size(measureData,2) > 1 % for ERPimage measureRange2 = [1:size(measureData,1)]; end; if ~isempty(measureRange2) [measureRange2 indBegin indEnd] = indicesselect(measureRange2, opt.freqlimits); if ~isempty(measureData) measureData = measureData(indBegin:indEnd,:,:); end; if strcmpi(opt.measure, 'spec'), measureRange1 = measureRange2; end; end; % remove duplicates in the list of parameters % ------------------------------------------- function cella = removedup(cella) [tmp indices] = unique_bc(cella(1:2:end)); if length(tmp) ~= length(cella)/2 %fprintf('Warning: duplicate ''key'', ''val'' parameter(s), keeping the last one(s)\n'); end; cella = cella(sort(union(indices*2-1, indices*2))); % find indices for selection of measure % ------------------------------------- function [measureRange indBegin indEnd] = indicesselect(measureRange, measureLimits); indBegin = 1; indEnd = length(measureRange); if ~isempty(measureRange) && ~isempty(measureLimits) && (measureLimits(1) > measureRange(1) || measureLimits(end) < measureRange(end)) indBegin = min(find(measureRange >= measureLimits(1))); indEnd = max(find(measureRange <= measureLimits(end))); measureRange = measureRange(indBegin:indEnd); end;
github
lcnhappe/happe-master
std_figtitle.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_figtitle.m
11,976
utf_8
8d0cdf735518b04d1c27c37441ecc076
% std_figtitle() - Generate plotting figure titles in a cell array % % Usage: % >> celltxt = std_figtitle(key1, val1, key2, val2); % % Inputs: % 'subject' - [string] Subject name % 'datatype' - [string] data type (For example 'erp') % 'chanlabels' - [cell array or string] channel names % 'compnames' - [cell array or string] component names % 'condnames' - [cell array] names of conditions % 'cond2names' - [cell array] names of conditions % 'vals' - [cell array or real array] value for plot panel (for % example, 0 ms) % 'valsunit' - [cell array or string] unit value (i.e. ms) % % Optional statistical titles: % 'condstat' - ['on'|'off'] default is 'off' % 'cond2stat' - ['on'|'off'] default is 'off' % 'mcorrect' - [string] correction for multiple comparisons. Default is % empty. % 'statistics' - [string] type of statictics % 'threshold' - [real] treshold value % % Optional grouping: % 'condgroup' - ['on'|'off'] group conditions together default is 'off' % 'cond2group' - ['on'|'off'] default is 'off' % % Outputs: % celltxt - cell array of text string, one for each set of condition % % Example: % std_figtitle('subject', 'toto', 'condnames', { 'test1' 'test2' }, ... % 'vals' , { [100] [4] }, 'valsunit', { 'ms' 'Hz' }) % % Authors: Arnaud Delorme, SCCN/UCSD, Feb 2010 % Copyright (C) Arnaud Delorme, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [all_titles alllegends ] = std_figtitle(varargin) if nargin < 1 help std_figtitle; return; end; alllegends = {}; opt = finputcheck( varargin, { 'chanlabels' {'cell','string'} [] {}; 'condnames' {'cell','string'} [] ''; 'cond2names' {'cell','string'} [] ''; 'condstat' 'string' {'on','off'} 'off'; 'cond2stat' 'string' {'on','off'} 'off'; 'condgroup' 'string' {'on','off','together','apart'} 'off'; 'cond2group' 'string' {'on','off','together','apart'} 'off'; 'plotmode' 'string' {'normal','condensed'} 'normal'; 'plotsubjects' 'string' {'on','off'} 'off'; 'threshold' 'real' [] NaN; 'statistics' 'string' [] ''; 'mcorrect' 'string' [] ''; 'datatype' 'string' [] ''; 'clustname' 'string' [] ''; 'compnames' {'cell','string'} [] {}; 'vals' {'cell','real'} [] {}; % just for titles 'valsunit' {'cell','string'} [] {}; % just for titles 'subject' 'string' [] '' }, 'std_figtitle'); %, 'ignore'); if isstr(opt), error(opt); end; if ~iscell(opt.vals), opt.vals = { opt.vals }; end; ncori = length(opt.condnames); nc2ori = length(opt.cond2names); if ~isempty(opt.vals) && ~isempty(opt.vals{1}) && ~isnan(opt.vals{1}(1)), opt.condgroup = 'off'; opt.cond2group = 'off'; end; if strcmpi(opt.plotmode, 'condensed'), opt.condgroup = 'on'; opt.cond2group = 'on'; end; if strcmpi(opt.plotsubjects, 'on'), opt.condgroup = 'off'; opt.cond2group = 'off'; end; if strcmpi(opt.plotsubjects, 'on') opt.condgroup = 'apart'; opt.cond2group = 'apart'; end; if strcmpi(opt.condgroup, 'on'), opt.condgroup = 'together'; end; if strcmpi(opt.cond2group, 'on'), opt.cond2group = 'together'; end; if strcmpi(opt.condgroup, 'together') && strcmpi(opt.cond2stat, 'on'), opt.condgroup = 'apart'; end; if strcmpi(opt.cond2group, 'together') && strcmpi(opt.condstat , 'on') , opt.cond2group = 'apart'; end; if ~( strcmpi(opt.condgroup, 'together') && strcmpi(opt.cond2group, 'together') ) if strcmpi(opt.condgroup, 'together'), alllegends = opt.condnames ; opt.condnames = ''; end; if strcmpi(opt.cond2group, 'together'), alllegends = opt.cond2names; opt.cond2names = ''; end; end; if ~iscell(opt.valsunit), opt.valsunit = { opt.valsunit }; end; if ~iscell(opt.chanlabels), opt.chanlabels = { opt.chanlabels }; end; if ~iscell(opt.condnames), opt.condnames = { opt.condnames }; end; if ~iscell(opt.cond2names), opt.cond2names = { opt.cond2names }; end; if isempty(opt.condnames), opt.condnames{1} = ''; end; if isempty(opt.cond2names), opt.cond2names{1} = ''; end; for c1 = 1:length(opt.condnames) for c2 = 1:length(opt.cond2names) % value (ms or Hz) % ---------------- fig_title1 = ''; for i = 1:length(opt.vals) if ~isempty(opt.vals{i}) && ~isnan(opt.vals{i}(1)) if opt.vals{i}(1) == opt.vals{i}(end), fig_title1 = [ num2str(opt.vals{i}(1)) '' opt.valsunit{i} fig_title1]; else fig_title1 = [ num2str(opt.vals{i}(1)) '-' num2str(opt.vals{i}(2)) '' opt.valsunit{i} fig_title1 ]; end; if length(opt.vals) > i, fig_title1 = [ ' & ' fig_title1 ]; end; end; end; % conditions % ---------- if ~isempty(opt.condnames{c1}) fig_title1 = [ value2str(opt.condnames{c1}) ', ' fig_title1]; end; if ~isempty(opt.cond2names{c2}) fig_title1 = [ value2str(opt.cond2names{c2}) ', ' fig_title1]; end; % channel labels, component name, subject name and datatype % --------------------------------------------------------- fig_title2 = ''; if length( opt.chanlabels ) == 1 && ~isempty( opt.chanlabels{1} ) fig_title2 = [ opt.chanlabels{1} ', ' fig_title2 ]; end; % cluster and component name % -------------------------- if ~isempty( opt.clustname ) if ~isempty( opt.compnames ) if iscell( opt.compnames ) compstr = [ 'C' num2str(opt.compnames{min(c1,size(opt.compnames,1)),min(c2,size(opt.compnames,2))}) ]; else compstr = [ opt.compnames ]; end; else compstr = ''; end; if ~isempty( opt.subject ) if ~isempty( compstr ) fig_title2 = [ opt.subject '/' compstr ', ' fig_title2 ]; else fig_title2 = [ opt.subject ', ' fig_title2 ]; end; elseif ~isempty( compstr ) fig_title2 = [ compstr ', ' fig_title2 ]; end; if ~isempty( opt.datatype ) fig_title2 = [ opt.clustname ' ' opt.datatype ', ' fig_title2 ]; else fig_title2 = [ opt.clustname ', ' fig_title2 ]; end; else if ~isempty( opt.compnames ) if iscell( opt.compnames ) else fig_title2 = [ 'C' num2str(opt.compnames{c1,c2}) ', ' fig_title2 ]; fig_title2 = [ opt.compnames ', ' fig_title2 ]; end; end; % subject and data type % --------------------- if ~isempty( opt.subject ) if ~isempty( opt.datatype ) fig_title2 = [ opt.subject ' ' opt.datatype ', ' fig_title2 ]; else fig_title2 = [ opt.subject ', ' fig_title2 ]; end; elseif ~isempty( opt.datatype ) fig_title2 = [ opt.datatype ' - ' fig_title2 ]; end; end; if strcmpi(opt.cond2group, 'together') && strcmpi(opt.condgroup, 'together') fig_title = fig_title2; if ~isempty(fig_title1) && length(fig_title1) > 1 && strcmpi(fig_title1(end-1:end), ', '), fig_title1(end-1:end) = []; end; if ~isempty(fig_title1) && length(fig_title1) > 1 && strcmpi(fig_title1(end-1:end), '- '), fig_title1(end-1:end) = []; end; alllegends{c1, c2} = fig_title1; else fig_title = [ fig_title2 fig_title1 ]; end; if ~isempty(fig_title) && length(fig_title) > 1 && strcmpi(fig_title(end-1:end), ', '), fig_title(end-1:end) = []; end; if ~isempty(fig_title) && length(fig_title) > 1 && strcmpi(fig_title(end-1:end), '- '), fig_title(end-1:end) = []; end; all_titles{c1,c2} = fig_title; end; end; if ~isempty(alllegends) alllegends = alllegends'; alllegends = alllegends(:)'; % convert legends to string if necessary % -------------------------------------- for ileg = 1:length(alllegends), alllegends{ileg} = value2str(alllegends{ileg}); end; end; % statistic titles % ---------------- if isnan(opt.threshold), basicstat = '(p-value)'; else if length(opt.threshold) >= 1 basicstat = sprintf([ '(p<%.' thresh_pres(opt.threshold(1)) 'f)'], opt.threshold(1)); end; if length(opt.threshold) >= 2 basicstat = [ basicstat(1:end-1) sprintf([' red;p<%.' thresh_pres(opt.threshold(2)) 'f brown)'], opt.threshold(2)) ]; end; if length(opt.threshold) >= 3 basicstat = [ basicstat(1:end-1) sprintf([';\np<%.' thresh_pres(opt.threshold(3)) 'f black)' ], opt.threshold(3)) ]; end; end; if ~isempty(opt.statistics), basicstat = [ basicstat ' ' opt.statistics ]; end; if ~isempty(opt.mcorrect) && ~strcmpi(opt.mcorrect, 'none'), basicstat = [ basicstat ' with ' opt.mcorrect ]; end; if strcmpi(opt.condstat, 'on') rown = size(all_titles,1)+1; for c2 = 1:length(opt.cond2names) all_titles{rown, c2} = [ value2str(opt.cond2names{c2}) ' ' basicstat ]; end; end; if strcmpi(opt.cond2stat, 'on') coln = size(all_titles,2)+1; for c1 = 1:length(opt.condnames) all_titles{c1, coln} = [ value2str(opt.condnames{c1}) ' ' basicstat ]; end; end; if strcmpi(opt.condstat, 'on') && strcmpi(opt.cond2stat, 'on') all_titles{rown, coln} = [ 'Interaction ' basicstat ]; end; function pres = thresh_pres(thresh_pres); if (round(thresh_pres*100)-thresh_pres*100) == 0 pres = 2; elseif (round(thresh_pres*1000)-thresh_pres*1000) == 0 pres = 3; else pres = -round(log10(thresh_pres))+1; end; pres = num2str(pres); % convert % ------- function str = value2str(value) if isstr(value) str = value; elseif isnumeric(value) if length(value) == 1 str = num2str(value); else str = num2str(value(1)); if length(value) <= 5 for ind = 2:length(value) str = [ str ' & ' num2str(value(ind)) ]; end; else str = [ str ' & ' num2str(value(2)) ' & ...' ]; end; end; else % cell array str = value{1}; for ind = 2:length(value) str = [ str ' & ' value{ind} ]; end; end;
github
lcnhappe/happe-master
std_chantopo.m
.m
happe-master/Packages/eeglab14_0_0b/functions/studyfunc/std_chantopo.m
9,652
utf_8
28bf5cd485d8031d2b9e2dc3180c2738
% std_chantopo() - plot ERP/spectral/ERSP topoplot at a specific % latency/frequency. % Usage: % >> std_chantopo( data, 'key', 'val', ...) % Inputs: % data - [cell array] mean data for each subject group and/or data % condition. These arrays are usually returned by function % std_erspplot and std_erpplot. For example % % >> data = { [1x64x12] [1x64x12 }; % 2 groups of 12 subjects, 64 channels % >> std_chantopo(data, 'chanlocs', 'chanlocfile.txt'); % % Scalp map plotting option (mandatory): % 'chanlocs' - [struct] channel location structure % % Other scalp map plotting options: % 'chanlocs' - [struct] channel location structure % 'topoplotopt' - [cell] topoplot options. Default is { 'style', 'both', % 'shading', 'interp' }. See topoplot help for details. % 'ylim' - [min max] ordinate limits for ERP and spectrum plots % {default: all available data} % 'caxis' - [min max] same as above % % Optional display parameters: % 'datatype' - ['erp'|'spec'] data type {default: 'erp'} % 'titles' - [cell array of string] titles for each of the subplots. % { default: none} % 'subplotpos' - [addr addc posr posc] perform ploting in existing figure. % Add "addr" rows, "addc" columns and plot the scalp % topographies starting at position (posr,posc). % % Statistics options: % 'groupstats' - [cell] One p-value array per group {default: {}} % 'condstats' - [cell] One p-value array per condition {default: {}} % 'interstats' - [cell] Interaction p-value arrays {default: {}} % 'threshold' - [NaN|real<<1] Significance threshold. NaN -> plot the % p-values themselves on a different figure. When possible, % significance regions are indicated below the data. % {default: NaN} % 'binarypval' - ['on'|'off'] if a threshold is set, show only significant % channels as red dots. Default is 'off'. % % Author: Arnaud Delorme, CERCO, CNRS, 2006- % % See also: pop_erspparams(), pop_erpparams(), pop_specparams(), statcond() function std_chantopo(data, varargin) pgroup = []; pcond = []; pinter = []; if nargin < 2 help std_chantopo; return; end; opt = finputcheck( varargin, { 'ylim' 'real' [] []; 'titles' 'cell' [] cell(20,20); 'threshold' 'real' [] NaN; 'chanlocs' 'struct' [] struct('labels', {}); 'groupstats' 'cell' [] {}; 'condstats' 'cell' [] {}; 'interstats' 'cell' [] {}; 'subplotpos' 'integer' [] []; 'topoplotopt' 'cell' [] { 'style', 'both' }; 'binarypval' 'string' { 'on','off' } 'on'; 'datatype' 'string' { 'ersp','itc','erp','spec' } 'erp'; 'caxis' 'real' [] [] }, 'std_chantopo', 'ignore'); %, 'ignore'); if isstr(opt), error(opt); end; if ~isempty(opt.ylim), opt.caxis = opt.ylim; end; if isnan(opt.threshold), opt.binarypval = 'off'; end; if strcmpi(opt.binarypval, 'on'), opt.ptopoopt = { 'style' 'blank' }; else opt.ptopoopt = opt.topoplotopt; end; % remove empty entries datapresent = ~cellfun(@isempty, data); for c = size(data,1):-1:1, if sum(datapresent(c,:)) == 0, data(c,:) = []; opt.titles(c,:) = []; if ~isempty(opt.groupstats), opt.groupstats(c) = []; end; end; end; for g = size(data,2):-1:1, if sum(datapresent(:,g)) == 0, data(:,g) = []; opt.titles(:,g) = []; if ~isempty(opt.condstats ), opt.condstats( g) = []; end; end; end; nc = size(data,1); ng = size(data,2); if nc >= ng, opt.transpose = 'on'; else opt.transpose = 'off'; end; % plotting paramters % ------------------ if ng > 1 & ~isempty(opt.groupstats), addc = 1; else addc = 0; end; if nc > 1 & ~isempty(opt.condstats ), addr = 1; else addr = 0; end; if ~isempty(opt.subplotpos), if strcmpi(opt.transpose, 'on'), opt.subplotpos = opt.subplotpos([2 1 4 3]); end; addr = opt.subplotpos(1); addc = opt.subplotpos(2); posr = opt.subplotpos(4); posc = opt.subplotpos(3); else posr = 0; posc = 0; end; % compute significance mask % ------------------------- if ~isempty(opt.interstats), pinter = opt.interstats{3}; end; if ~isnan(opt.threshold(1)) && ( ~isempty(opt.groupstats) || ~isempty(opt.condstats) ) pcondplot = opt.condstats; pgroupplot = opt.groupstats; pinterplot = pinter; maxplot = 1; else for ind = 1:length(opt.condstats), pcondplot{ind} = -log10(opt.condstats{ind}); end; for ind = 1:length(opt.groupstats), pgroupplot{ind} = -log10(opt.groupstats{ind}); end; if ~isempty(pinter), pinterplot = -log10(pinter); end; maxplot = 3; end; % adjust figure size % ------------------ if isempty(opt.subplotpos) fig = figure('color', 'w'); pos = get(fig, 'position'); set(fig, 'position', [ pos(1)+15 pos(2)+15 pos(3)/2.5*(nc+addr), pos(4)/2*(ng+addc) ]); pos = get(fig, 'position'); if strcmpi(opt.transpose, 'off'), set(gcf, 'position', [ pos(1) pos(2) pos(4) pos(3)]); else set(gcf, 'position', pos); end; end % topoplot % -------- tmpc = [inf -inf]; for c = 1:nc for g = 1:ng hdl(c,g) = mysubplot(nc+addr, ng+addc, g + posr + (c-1+posc)*(ng+addc), opt.transpose); if ~isempty(data{c,g}) tmpplot = double(mean(data{c,g},3)); if ~all(isnan(tmpplot)) if ~isreal(tmpplot), error('This function cannot plot complex values'); end; topoplot( tmpplot, opt.chanlocs, opt.topoplotopt{:}); if isempty(opt.caxis) tmpc = [ min(min(tmpplot), tmpc(1)) max(max(tmpplot), tmpc(2)) ]; else caxis(opt.caxis); end; title(opt.titles{c,g}, 'interpreter', 'none'); else axis off; end; else axis off; end; % statistics accross groups % ------------------------- if g == ng & ng > 1 & ~isempty(opt.groupstats) hdl(c,g+1) = mysubplot(nc+addr, ng+addc, g + posr + 1 + (c-1+posc)*(ng+addc), opt.transpose); topoplot( pgroupplot{c}, opt.chanlocs, opt.ptopoopt{:}); title(opt.titles{c,g+1}); caxis([-maxplot maxplot]); end; end; end; % color scale % ----------- if isempty(opt.caxis) for c = 1:nc for g = 1:ng axes(hdl(c,g)); caxis(tmpc); end; end; end; for g = 1:ng % statistics accross conditions % ----------------------------- if ~isempty(opt.condstats) && nc > 1 hdl(nc+1,g) = mysubplot(nc+addr, ng+addc, g + posr + (c+posc)*(ng+addc), opt.transpose); topoplot( pcondplot{g}, opt.chanlocs, opt.ptopoopt{:}); title(opt.titles{nc+1,g}); caxis([-maxplot maxplot]); end; end; % statistics accross group and conditions % --------------------------------------- if ~isempty(opt.condstats) && ~isempty(opt.groupstats) && ng > 1 && nc > 1 hdl(nc+1,ng+1) = mysubplot(nc+addr, ng+addc, g + posr + 1 + (c+posc)*(ng+addc), opt.transpose); topoplot( pinterplot, opt.chanlocs, opt.ptopoopt{:}); title(opt.titles{nc+1,ng+1}); caxis([-maxplot maxplot]); end; % color bars % ---------- axes(hdl(nc,ng)); cbar_standard(opt.datatype, ng); if isnan(opt.threshold(1)) && (nc ~= size(hdl,1) || ng ~= size(hdl,2)) axes(hdl(end,end)); cbar_signif(ng, maxplot); end; % remove axis labels % ------------------ for c = 1:size(hdl,1) for g = 1:size(hdl,2) if g ~= 1 && size(hdl,2) ~=1, ylabel(''); end; if c ~= size(hdl,1) && size(hdl,1) ~= 1, xlabel(''); end; end; end; % colorbar for ERSP and scalp plot % -------------------------------- function cbar_standard(datatype, ng); pos = get(gca, 'position'); tmpc = caxis; fact = fastif(ng == 1, 40, 20); tmp = axes('position', [ pos(1)+pos(3)+pos(3)/fact pos(2) pos(3)/fact pos(4) ]); set(gca, 'unit', 'normalized'); if strcmpi(datatype, 'itc') cbar(tmp, 0, tmpc, 10); ylim([0.5 1]); else cbar(tmp, 0, tmpc, 5); end; % colorbar for significance % ------------------------- function cbar_signif(ng, maxplot); % Retrieving Defaults icadefs; pos = get(gca, 'position'); tmpc = caxis; fact = fastif(ng == 1, 40, 20); tmp = axes('position', [ pos(1)+pos(3)+pos(3)/fact pos(2) pos(3)/fact pos(4) ]); map = colormap(DEFAULT_COLORMAP); n = size(map,1); cols = [ceil(n/2):n]'; image([0 1],linspace(0,maxplot,length(cols)),[cols cols]); %cbar(tmp, 0, tmpc, 5); tick = linspace(0, maxplot, maxplot+1); set(gca, 'ytickmode', 'manual', 'YAxisLocation', 'right', 'xtick', [], ... 'ytick', tick, 'yticklabel', round(10.^-tick*1000)/1000); xlabel(''); colormap(DEFAULT_COLORMAP); % mysubplot (allow to transpose if necessary) % ------------------------------------------- function hdl = mysubplot(nr,nc,ind,transp); r = ceil(ind/nc); c = ind -(r-1)*nc; if strcmpi(transp, 'on'), hdl = subplot(nc,nr,(c-1)*nr+r); else hdl = subplot(nr,nc,(r-1)*nc+c); end;