plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
philippboehmsturm/antx-master
flip_lr.m
.m
antx-master/mritools/others/nii/flip_lr.m
3,568
utf_8
d95b62698d44a65a3c2f02fbabc632ac
% When you load any ANALYZE or NIfTI file with 'load_nii.m', and view % it with 'view_nii.m', you may find that the image is L-R flipped. % This is because of the confusion of radiological and neurological % convention in the medical image before NIfTI format is adopted. You % can find more details from: % % http://www.rotman-baycrest.on.ca/~jimmy/UseANALYZE.htm % % Sometime, people even want to convert RAS (standard orientation) back % to LAS orientation to satisfy the legend programs or processes. This % program is only written for those purpose. So PLEASE BE VERY CAUTIOUS % WHEN USING THIS 'FLIP_LR.M' PROGRAM. % % With 'flip_lr.m', you can convert any ANALYZE or NIfTI (no matter % 3D or 4D) file to a flipped NIfTI file. This is implemented simply % by flipping the affine matrix in the NIfTI header. Since the L-R % orientation is determined there, so the image will be flipped. % % Usage: flip_lr(original_fn, flipped_fn, [old_RGB],[tolerance],[preferredForm]) % % original_fn - filename of the original ANALYZE or NIfTI (3D or 4D) file % % flipped_fn - filename of the L-R flipped NIfTI file % % old_RGB (optional) - a scale number to tell difference of new RGB24 % from old RGB24. New RGB24 uses RGB triple sequentially for each % voxel, like [R1 G1 B1 R2 G2 B2 ...]. Analyze 6.0 from AnalyzeDirect % uses old RGB24, in a way like [R1 R2 ... G1 G2 ... B1 B2 ...] for % each slices. If the image that you view is garbled, try to set % old_RGB variable to 1 and try again, because it could be in % old RGB24. It will be set to 0, if it is default or empty. % % tolerance (optional) - distortion allowed for non-orthogonal rotation % or shearing in NIfTI affine matrix. It will be set to 0.1 (10%), % if it is default or empty. % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % Example: flip_lr('avg152T1_LR_nifti.nii', 'flipped_lr.nii'); % flip_lr('avg152T1_RL_nifti.nii', 'flipped_rl.nii'); % % You will find that 'avg152T1_LR_nifti.nii' and 'avg152T1_RL_nifti.nii' % are the same, and 'flipped_lr.nii' and 'flipped_rl.nii' are also the % the same, but they are L-R flipped from 'avg152T1_*'. % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function flip_lr(original_fn, flipped_fn, old_RGB, tolerance, preferredForm) if ~exist('original_fn','var') | ~exist('flipped_fn','var') error('Usage: flip_lr(original_fn, flipped_fn, [old_RGB],[tolerance])'); end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end if ~exist('tolerance','var') | isempty(tolerance) tolerance = 0.1; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end nii = load_nii(original_fn, [], [], [], [], old_RGB, tolerance, preferredForm); M = diag(nii.hdr.dime.pixdim(2:5)); M(1:3,4) = -M(1:3,1:3)*(nii.hdr.hist.originator(1:3)-1)'; M(1,:) = -1*M(1,:); nii.hdr.hist.sform_code = 1; nii.hdr.hist.srow_x = M(1,:); nii.hdr.hist.srow_y = M(2,:); nii.hdr.hist.srow_z = M(3,:); save_nii(nii, flipped_fn); return; % flip_lr
github
philippboehmsturm/antx-master
save_nii.m
.m
antx-master/mritools/others/nii/save_nii.m
9,690
utf_8
ed292054cab74afaf953455bfbc200aa
% Save NIFTI dataset. Support both *.nii and *.hdr/*.img file extension. % If file extension is not provided, *.hdr/*.img will be used as default. % % Usage: save_nii(nii, filename, [old_RGB]) % % nii.hdr - struct with NIFTI header fields (from load_nii.m or make_nii.m) % % nii.img - 3D (or 4D) matrix of NIFTI data. % % filename - NIFTI file name. % % old_RGB - an optional boolean variable to handle special RGB data % sequence [R1 R2 ... G1 G2 ... B1 B2 ...] that is used only by % AnalyzeDirect (Analyze Software). Since both NIfTI and Analyze % file format use RGB triple [R1 G1 B1 R2 G2 B2 ...] sequentially % for each voxel, this variable is set to FALSE by default. If you % would like the saved image only to be opened by AnalyzeDirect % Software, set old_RGB to TRUE (or 1). It will be set to 0, if it % is default or empty. % % Tip: to change the data type, set nii.hdr.dime.datatype, % and nii.hdr.dime.bitpix to: % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % - "old_RGB" related codes in "save_nii.m" are added by Mike Harms (2006.06.28) % function save_nii(nii, fileprefix, old_RGB) if ~exist('nii','var') | isempty(nii) | ~isfield(nii,'hdr') | ... ~isfield(nii,'img') | ~exist('fileprefix','var') | isempty(fileprefix) error('Usage: save_nii(nii, filename, [old_RGB])'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''save_untouch_nii.m'' for the untouched structure.'); end if ~exist('old_RGB','var') | isempty(old_RGB) old_RGB = 0; end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(fileprefix) > 2 & strcmp(fileprefix(end-2:end), '.gz') if ~strcmp(fileprefix(end-6:end), '.img.gz') & ... ~strcmp(fileprefix(end-6:end), '.hdr.gz') & ... ~strcmp(fileprefix(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; fileprefix = fileprefix(1:end-3); end end filetype = 1; % Note: fileprefix is actually the filename you want to save % if findstr('.nii',fileprefix) & strcmp(fileprefix(end-3:end), '.nii') filetype = 2; fileprefix(end-3:end)=''; end if findstr('.hdr',fileprefix) & strcmp(fileprefix(end-3:end), '.hdr') fileprefix(end-3:end)=''; end if findstr('.img',fileprefix) & strcmp(fileprefix(end-3:end), '.img') fileprefix(end-3:end)=''; end write_nii(nii, filetype, fileprefix, old_RGB); % gzip output file if requested % if exist('gzFile', 'var') if filetype == 1 gzip([fileprefix, '.img']); delete([fileprefix, '.img']); gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); elseif filetype == 2 gzip([fileprefix, '.nii']); delete([fileprefix, '.nii']); end; end; if filetype == 1 % So earlier versions of SPM can also open it with correct originator % M=[[diag(nii.hdr.dime.pixdim(2:4)) -[nii.hdr.hist.originator(1:3).*nii.hdr.dime.pixdim(2:4)]'];[0 0 0 1]]; save([fileprefix '.mat'], 'M'); end return % save_nii %----------------------------------------------------------------------------------- function write_nii(nii, filetype, fileprefix, old_RGB) hdr = nii.hdr; if isfield(nii,'ext') & ~isempty(nii.ext) ext = nii.ext; [ext, esize_total] = verify_nii_ext(ext); else ext = []; end switch double(hdr.dime.datatype), case 1, hdr.dime.bitpix = int16(1 ); precision = 'ubit1'; case 2, hdr.dime.bitpix = int16(8 ); precision = 'uint8'; case 4, hdr.dime.bitpix = int16(16); precision = 'int16'; case 8, hdr.dime.bitpix = int16(32); precision = 'int32'; case 16, hdr.dime.bitpix = int16(32); precision = 'float32'; case 32, hdr.dime.bitpix = int16(64); precision = 'float32'; case 64, hdr.dime.bitpix = int16(64); precision = 'float64'; case 128, hdr.dime.bitpix = int16(24); precision = 'uint8'; case 256 hdr.dime.bitpix = int16(8 ); precision = 'int8'; case 511, hdr.dime.bitpix = int16(96); precision = 'float32'; case 512 hdr.dime.bitpix = int16(16); precision = 'uint16'; case 768 hdr.dime.bitpix = int16(32); precision = 'uint32'; case 1024 hdr.dime.bitpix = int16(64); precision = 'int64'; case 1280 hdr.dime.bitpix = int16(64); precision = 'uint64'; case 1792, hdr.dime.bitpix = int16(128); precision = 'float64'; otherwise error('This datatype is not supported'); end hdr.dime.glmax = round(double(max(nii.img(:)))); hdr.dime.glmin = round(double(min(nii.img(:)))); if filetype == 2 fid = fopen(sprintf('%s.nii',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.nii.',fileprefix); error(msg); end hdr.dime.vox_offset = 352; if ~isempty(ext) hdr.dime.vox_offset = hdr.dime.vox_offset + esize_total; end hdr.hist.magic = 'n+1'; save_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end else fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end hdr.dime.vox_offset = 0; hdr.hist.magic = 'ni1'; save_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); end ScanDim = double(hdr.dime.dim(5)); % t SliceDim = double(hdr.dime.dim(4)); % z RowDim = double(hdr.dime.dim(3)); % y PixelDim = double(hdr.dime.dim(2)); % x SliceSz = double(hdr.dime.pixdim(4)); RowSz = double(hdr.dime.pixdim(3)); PixelSz = double(hdr.dime.pixdim(2)); x = 1:PixelDim; if filetype == 2 & isempty(ext) skip_bytes = double(hdr.dime.vox_offset) - 348; else skip_bytes = 0; end if double(hdr.dime.datatype) == 128 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end if old_RGB nii.img = permute(nii.img, [1 2 4 3 5 6 7 8]); else nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end end if double(hdr.dime.datatype) == 511 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end if old_RGB nii.img = permute(nii.img, [1 2 4 3 5 6 7 8]); else nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 real_img = real(nii.img(:))'; nii.img = imag(nii.img(:))'; nii.img = [real_img; nii.img]; end if skip_bytes fwrite(fid, zeros(1,skip_bytes), 'uint8'); end fwrite(fid, nii.img, precision); % fwrite(fid, nii.img, precision, skip_bytes); % error using skip fclose(fid); return; % write_nii
github
philippboehmsturm/antx-master
rri_file_menu.m
.m
antx-master/mritools/others/nii/rri_file_menu.m
4,153
utf_8
c9faa3905c642854eeed98ab8b02998e
% Imbed a file menu to any figure. If file menu exist, it will append % to the existing file menu. This file menu includes: Copy to clipboard, % print, save, close etc. % % Usage: rri_file_menu(fig); % % rri_file_menu(fig,0) means no 'Close' menu. % % - Jimmy Shen ([email protected]) % %-------------------------------------------------------------------- function rri_file_menu(action, varargin) if isnumeric(action) fig = action; action = 'init'; end % clear the message line, % h = findobj(gcf,'Tag','MessageLine'); set(h,'String',''); if ~strcmp(action, 'init') set(gcbf, 'InvertHardcopy','off'); % set(gcbf, 'PaperPositionMode','auto'); end switch action case {'init'} if nargin > 1 init(fig, 1); % no 'close' menu else init(fig, 0); end case {'print_fig'} printdlg(gcbf); case {'copy_fig'} copy_fig; case {'export_fig'} export_fig; end return % rri_file_menu %------------------------------------------------ % % Create (or append) File menu % function init(fig, no_close) % search for file menu % h_file = []; menuitems = findobj(fig, 'type', 'uimenu'); for i=1:length(menuitems) filelabel = get(menuitems(i),'label'); if strcmpi(strrep(filelabel, '&', ''), 'file') h_file = menuitems(i); break; end end set(fig, 'menubar', 'none'); if isempty(h_file) if isempty(menuitems) h_file = uimenu('parent', fig, 'label', 'File'); else h_file = uimenu('parent', fig, 'label', 'Copy Figure'); end h1 = uimenu('parent', h_file, ... 'callback','rri_file_menu(''copy_fig'');', ... 'label','Copy to Clipboard'); else h1 = uimenu('parent', h_file, ... 'callback','rri_file_menu(''copy_fig'');', ... 'separator','on', ... 'label','Copy to Clipboard'); end h2 = uimenu(h_file, ... 'callback','pagesetupdlg(gcbf);', ... 'label','Page Setup...'); h2 = uimenu(h_file, ... 'callback','printpreview(gcbf);', ... 'label','Print Preview...'); h2 = uimenu('parent', h_file, ... 'callback','printdlg(gcbf);', ... 'label','Print Figure ...'); h2 = uimenu('parent', h_file, ... 'callback','rri_file_menu(''export_fig'');', ... 'label','Save Figure ...'); arch = computer; if ~strcmpi(arch(1:2),'PC') set(h1, 'enable', 'off'); end if ~no_close h1 = uimenu('parent', h_file, ... 'callback','close(gcbf);', ... 'separator','on', ... 'label','Close'); end return; % init %------------------------------------------------ % % Copy to clipboard % function copy_fig arch = computer; if(~strcmpi(arch(1:2),'PC')) error('copy to clipboard can only be used under MS Windows'); return; end print -noui -dbitmap; return % copy_fig %------------------------------------------------ % % Save as an image file % function export_fig curr = pwd; if isempty(curr) curr = filesep; end [selected_file, selected_path] = rri_select_file(curr,'Save As'); if isempty(selected_file) | isempty(selected_path) return; end filename = [selected_path selected_file]; if(exist(filename,'file')==2) % file exist dlg_title = 'Confirm File Overwrite'; msg = ['File ',filename,' exist. Are you sure you want to overwrite it?']; response = questdlg(msg,dlg_title,'Yes','No','Yes'); if(strcmp(response,'No')) return; end end old_pointer = get(gcbf,'pointer'); set(gcbf,'pointer','watch'); try saveas(gcbf,filename); catch msg = 'ERROR: Cannot save file'; set(findobj(gcf,'Tag','MessageLine'),'String',msg); end set(gcbf,'pointer',old_pointer); return; % export_fig
github
philippboehmsturm/antx-master
reslice_nii.m
.m
antx-master/mritools/others/nii/reslice_nii.m
10,138
utf_8
ea18d2f994fd5d9989449feaced1e4dd
% The basic application of the 'reslice_nii.m' program is to perform % any 3D affine transform defined by a NIfTI format image. % % In addition, the 'reslice_nii.m' program can also be applied to % generate an isotropic image from either a NIfTI format image or % an ANALYZE format image. % % The resliced NIfTI file will always be in RAS orientation. % % This program only supports real integer or floating-point data type. % For other data type, the program will exit with an error message % "Transform of this NIFTI data is not supported by the program". % % Usage: reslice_nii(old_fn, new_fn, [voxel_size], [verbose], [bg], ... % [method], [img_idx], [preferredForm]); % % old_fn - filename for original NIfTI file % % new_fn - filename for resliced NIfTI file % % voxel_size (optional) - size of a voxel in millimeter along x y z % direction for resliced NIfTI file. 'voxel_size' will use % the minimum voxel_size in original NIfTI header, % if it is default or empty. % % verbose (optional) - 1, 0 % 1: show transforming progress in percentage % 2: progress will not be displayed % 'verbose' is 1 if it is default or empty. % % bg (optional) - background voxel intensity in any extra corner that % is caused by 3D interpolation. 0 in most cases. 'bg' % will be the average of two corner voxel intensities % in original image volume, if it is default or empty. % % method (optional) - 1, 2, or 3 % 1: for Trilinear interpolation % 2: for Nearest Neighbor interpolation % 3: for Fischer's Bresenham interpolation % 'method' is 1 if it is default or empty. % % img_idx (optional) - a numerical array of image volume indices. Only % the specified volumes will be loaded. All available image % volumes will be loaded, if it is default or empty. % % The number of images scans can be obtained from get_nii_frame.m, % or simply: hdr.dime.dim(5). % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function reslice_nii(old_fn, new_fn, voxel_size, verbose, bg, method, img_idx, preferredForm) if ~exist('old_fn','var') | ~exist('new_fn','var') error('Usage: reslice_nii(old_fn, new_fn, [voxel_size], [verbose], [bg], [method], [img_idx])'); end if ~exist('method','var') | isempty(method) method = 1; end if ~exist('img_idx','var') | isempty(img_idx) img_idx = []; end if ~exist('verbose','var') | isempty(verbose) verbose = 1; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end nii = load_nii_no_xform(old_fn, img_idx, 0, preferredForm); if ~ismember(nii.hdr.dime.datatype, [2,4,8,16,64,256,512,768]) error('Transform of this NIFTI data is not supported by the program.'); end if ~exist('voxel_size','var') | isempty(voxel_size) voxel_size = abs(min(nii.hdr.dime.pixdim(2:4)))*ones(1,3); elseif length(voxel_size) < 3 voxel_size = abs(voxel_size(1))*ones(1,3); end if ~exist('bg','var') | isempty(bg) bg = mean([nii.img(1) nii.img(end)]); end old_M = nii.hdr.hist.old_affine; if nii.hdr.dime.dim(5) > 1 for i = 1:nii.hdr.dime.dim(5) if verbose fprintf('Reslicing %d of %d volumes.\n', i, nii.hdr.dime.dim(5)); end [img(:,:,:,i) M] = ... affine(nii.img(:,:,:,i), old_M, voxel_size, verbose, bg, method); end else [img M] = affine(nii.img, old_M, voxel_size, verbose, bg, method); end new_dim = size(img); nii.img = img; nii.hdr.dime.dim(2:4) = new_dim(1:3); nii.hdr.dime.datatype = 16; nii.hdr.dime.bitpix = 32; nii.hdr.dime.pixdim(2:4) = voxel_size(:)'; nii.hdr.dime.glmax = max(img(:)); nii.hdr.dime.glmin = min(img(:)); nii.hdr.hist.qform_code = 0; nii.hdr.hist.sform_code = 1; nii.hdr.hist.srow_x = M(1,:); nii.hdr.hist.srow_y = M(2,:); nii.hdr.hist.srow_z = M(3,:); nii.hdr.hist.new_affine = M; save_nii(nii, new_fn); return; % reslice_nii %-------------------------------------------------------------------- function [nii] = load_nii_no_xform(filename, img_idx, old_RGB, preferredForm) if ~exist('filename','var'), error('Usage: [nii] = load_nii(filename, [img_idx], [old_RGB])'); end if ~exist('img_idx','var'), img_idx = []; end if ~exist('old_RGB','var'), old_RGB = 0; end if ~exist('preferredForm','var'), preferredForm= 's'; end % Jeff v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [nii.hdr,nii.filetype,nii.fileprefix,nii.machine] = load_nii_hdr(filename); % Read the header extension % % nii.ext = load_nii_ext(filename); % Read the dataset body % [nii.img,nii.hdr] = ... load_nii_img(nii.hdr,nii.filetype,nii.fileprefix,nii.machine,img_idx,'','','',old_RGB); % Perform some of sform/qform transform % % nii = xform_nii(nii, preferredForm); % Clean up after gunzip % if exist('gzFileName', 'var') % fix fileprefix so it doesn't point to temp location % nii.fileprefix = gzFileName(1:end-7); rmdir(tmpDir,'s'); end hdr = nii.hdr; % NIFTI can have both sform and qform transform. This program % will check sform_code prior to qform_code by default. % % If user specifys "preferredForm", user can then choose the % priority. - Jeff % useForm=[]; % Jeff if isequal(preferredForm,'S') if isequal(hdr.hist.sform_code,0) error('User requires sform, sform not set in header'); else useForm='s'; end end % Jeff if isequal(preferredForm,'Q') if isequal(hdr.hist.qform_code,0) error('User requires sform, sform not set in header'); else useForm='q'; end end % Jeff if isequal(preferredForm,'s') if hdr.hist.sform_code > 0 useForm='s'; elseif hdr.hist.qform_code > 0 useForm='q'; end end % Jeff if isequal(preferredForm,'q') if hdr.hist.qform_code > 0 useForm='q'; elseif hdr.hist.sform_code > 0 useForm='s'; end end % Jeff if isequal(useForm,'s') R = [hdr.hist.srow_x(1:3) hdr.hist.srow_y(1:3) hdr.hist.srow_z(1:3)]; T = [hdr.hist.srow_x(4) hdr.hist.srow_y(4) hdr.hist.srow_z(4)]; nii.hdr.hist.old_affine = [ [R;[0 0 0]] [T;1] ]; elseif isequal(useForm,'q') b = hdr.hist.quatern_b; c = hdr.hist.quatern_c; d = hdr.hist.quatern_d; if 1.0-(b*b+c*c+d*d) < 0 if abs(1.0-(b*b+c*c+d*d)) < 1e-5 a = 0; else error('Incorrect quaternion values in this NIFTI data.'); end else a = sqrt(1.0-(b*b+c*c+d*d)); end qfac = hdr.dime.pixdim(1); i = hdr.dime.pixdim(2); j = hdr.dime.pixdim(3); k = qfac * hdr.dime.pixdim(4); R = [a*a+b*b-c*c-d*d 2*b*c-2*a*d 2*b*d+2*a*c 2*b*c+2*a*d a*a+c*c-b*b-d*d 2*c*d-2*a*b 2*b*d-2*a*c 2*c*d+2*a*b a*a+d*d-c*c-b*b]; T = [hdr.hist.qoffset_x hdr.hist.qoffset_y hdr.hist.qoffset_z]; nii.hdr.hist.old_affine = [ [R * diag([i j k]);[0 0 0]] [T;1] ]; elseif nii.filetype == 0 & exist([nii.fileprefix '.mat'],'file') load([nii.fileprefix '.mat']); % old SPM affine matrix R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; nii.hdr.hist.old_affine = M; else M = diag(hdr.dime.pixdim(2:5)); M(1:3,4) = -M(1:3,1:3)*(hdr.hist.originator(1:3)-1)'; M(4,4) = 1; nii.hdr.hist.old_affine = M; end return % load_nii_no_xform
github
philippboehmsturm/antx-master
save_untouch_nii.m
.m
antx-master/mritools/others/nii/save_untouch_nii.m
6,726
utf_8
cb98e2799abc112dca5b10078bde09bf
% Save NIFTI or ANALYZE dataset that is loaded by "load_untouch_nii.m". % The output image format and file extension will be the same as the % input one (NIFTI.nii, NIFTI.img or ANALYZE.img). Therefore, any file % extension that you specified will be ignored. % % Usage: save_untouch_nii(nii, filename) % % nii - nii structure that is loaded by "load_untouch_nii.m" % % filename - NIFTI or ANALYZE file name. % % - Jimmy Shen ([email protected]) % function save_untouch_nii(nii, filename) if ~exist('nii','var') | isempty(nii) | ~isfield(nii,'hdr') | ... ~isfield(nii,'img') | ~exist('filename','var') | isempty(filename) error('Usage: save_untouch_nii(nii, filename)'); end if ~isfield(nii,'untouch') | nii.untouch == 0 error('Usage: please use ''save_nii.m'' for the modified structure.'); end if isfield(nii.hdr.hist,'magic') & strcmp(nii.hdr.hist.magic(1:3),'ni1') filetype = 1; elseif isfield(nii.hdr.hist,'magic') & strcmp(nii.hdr.hist.magic(1:3),'n+1') filetype = 2; else filetype = 0; end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; filename = filename(1:end-3); end end [p,f] = fileparts(filename); fileprefix = fullfile(p, f); write_nii(nii, filetype, fileprefix); % gzip output file if requested % if exist('gzFile', 'var') if filetype == 1 gzip([fileprefix, '.img']); delete([fileprefix, '.img']); gzip([fileprefix, '.hdr']); delete([fileprefix, '.hdr']); elseif filetype == 2 gzip([fileprefix, '.nii']); delete([fileprefix, '.nii']); end; end; % % So earlier versions of SPM can also open it with correct originator % % % if filetype == 0 % M=[[diag(nii.hdr.dime.pixdim(2:4)) -[nii.hdr.hist.originator(1:3).*nii.hdr.dime.pixdim(2:4)]'];[0 0 0 1]]; % save(fileprefix, 'M'); % elseif filetype == 1 % M=[]; % save(fileprefix, 'M'); %end return % save_untouch_nii %----------------------------------------------------------------------------------- function write_nii(nii, filetype, fileprefix) hdr = nii.hdr; if isfield(nii,'ext') & ~isempty(nii.ext) ext = nii.ext; [ext, esize_total] = verify_nii_ext(ext); else ext = []; end switch double(hdr.dime.datatype), case 1, hdr.dime.bitpix = int16(1 ); precision = 'ubit1'; case 2, hdr.dime.bitpix = int16(8 ); precision = 'uint8'; case 4, hdr.dime.bitpix = int16(16); precision = 'int16'; case 8, hdr.dime.bitpix = int16(32); precision = 'int32'; case 16, hdr.dime.bitpix = int16(32); precision = 'float32'; case 32, hdr.dime.bitpix = int16(64); precision = 'float32'; case 64, hdr.dime.bitpix = int16(64); precision = 'float64'; case 128, hdr.dime.bitpix = int16(24); precision = 'uint8'; case 256 hdr.dime.bitpix = int16(8 ); precision = 'int8'; case 512 hdr.dime.bitpix = int16(16); precision = 'uint16'; case 768 hdr.dime.bitpix = int16(32); precision = 'uint32'; case 1024 hdr.dime.bitpix = int16(64); precision = 'int64'; case 1280 hdr.dime.bitpix = int16(64); precision = 'uint64'; case 1792, hdr.dime.bitpix = int16(128); precision = 'float64'; otherwise error('This datatype is not supported'); end % hdr.dime.glmax = round(double(max(nii.img(:)))); % hdr.dime.glmin = round(double(min(nii.img(:)))); if filetype == 2 fid = fopen(sprintf('%s.nii',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.nii.',fileprefix); error(msg); end hdr.dime.vox_offset = 352; if ~isempty(ext) hdr.dime.vox_offset = hdr.dime.vox_offset + esize_total; end hdr.hist.magic = 'n+1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end elseif filetype == 1 fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end hdr.dime.vox_offset = 0; hdr.hist.magic = 'ni1'; save_untouch_nii_hdr(hdr, fid); if ~isempty(ext) save_nii_ext(ext, fid); end fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); else fid = fopen(sprintf('%s.hdr',fileprefix),'w'); if fid < 0, msg = sprintf('Cannot open file %s.hdr.',fileprefix); error(msg); end save_untouch0_nii_hdr(hdr, fid); fclose(fid); fid = fopen(sprintf('%s.img',fileprefix),'w'); end ScanDim = double(hdr.dime.dim(5)); % t SliceDim = double(hdr.dime.dim(4)); % z RowDim = double(hdr.dime.dim(3)); % y PixelDim = double(hdr.dime.dim(2)); % x SliceSz = double(hdr.dime.pixdim(4)); RowSz = double(hdr.dime.pixdim(3)); PixelSz = double(hdr.dime.pixdim(2)); x = 1:PixelDim; if filetype == 2 & isempty(ext) skip_bytes = double(hdr.dime.vox_offset) - 348; else skip_bytes = 0; end if double(hdr.dime.datatype) == 128 % RGB planes are expected to be in the 4th dimension of nii.img % if(size(nii.img,4)~=3) error(['The NII structure does not appear to have 3 RGB color planes in the 4th dimension']); end nii.img = permute(nii.img, [4 1 2 3 5 6 7 8]); end % For complex float32 or complex float64, voxel values % include [real, imag] % if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 real_img = real(nii.img(:))'; nii.img = imag(nii.img(:))'; nii.img = [real_img; nii.img]; end if skip_bytes fwrite(fid, zeros(1,skip_bytes), 'uint8'); end fwrite(fid, nii.img, precision); % fwrite(fid, nii.img, precision, skip_bytes); % error using skip fclose(fid); return; % write_nii
github
philippboehmsturm/antx-master
view_nii.m
.m
antx-master/mritools/others/nii/view_nii.m
144,481
utf_8
8ea68ec34d3a6bec721497afb56cfb54
% VIEW_NII: Create or update a 3-View (Front, Top, Side) of the % brain data that is specified by nii structure % % Usage: status = view_nii([h], nii, [option]) or % status = view_nii(h, [option]) % % Where, h is the figure on which the 3-View will be plotted; % nii is the brain data in NIFTI format; % option is a struct that configures the view plotted, can be: % % option.command = 'init' % option.command = 'update' % option.command = 'clearnii' % option.command = 'updatenii' % option.command = 'updateimg' (nii is nii.img here) % % option.usecolorbar = 0 | [1] % option.usepanel = 0 | [1] % option.usecrosshair = 0 | [1] % option.usestretch = 0 | [1] % option.useimagesc = 0 | [1] % option.useinterp = [0] | 1 % % option.setarea = [x y w h] | [0.05 0.05 0.9 0.9] % option.setunit = ['vox'] | 'mm' % option.setviewpoint = [x y z] | [origin] % option.setscanid = [t] | [1] % option.setcrosshaircolor = [r g b] | [1 0 0] % option.setcolorindex = From 1 to 9 (default is 2 or 3) % option.setcolormap = (Mx3 matrix, 0 <= val <= 1) % option.setcolorlevel = No more than 256 (default 256) % option.sethighcolor = [] % option.setcbarminmax = [] % option.setvalue = [] % option.glblocminmax = [] % option.setbuttondown = '' % option.setcomplex = [0] | 1 | 2 % % Options description in detail: % ============================== % % 1. command: A char string that can control program. % % init: If option.command='init', the program will display % a 3-View plot on the figure specified by figure h % or on a new figure. If there is already a 3-View % plot on the figure, please use option.command = % 'updatenii' (see detail below); otherwise, the % new 3-View plot will superimpose on the old one. % If there is no option provided, the program will % assume that this is an initial plot. If the figure % handle is omitted, the program knows that it is % an initial plot. % % update: If there is no command specified, and a figure % handle of the existing 3-View plot is provided, % the program will choose option.command='update' % to update the 3-View plot with some new option % items. % % clearnii: Clear 3-View plot on specific figure % % updatenii: If a new nii is going to be loaded on a fig % that has already 3-View plot on it, use this % command to clear existing 3-View plot, and then % display with new nii. So, the new nii will not % superimpose on the existing one. All options % for 'init' can be used for 'updatenii'. % % updateimg: If a new 3D matrix with the same dimension % is going to be loaded, option.command='updateimg' % can be used as a light-weighted 'updatenii, since % it only updates the 3 slices with new values. % inputing argument nii should be a 3D matrix % (nii.img) instead of nii struct. No other option % should be used together with 'updateimg' to keep % this command as simple as possible. % % % 2. usecolorbar: If specified and usecolorbar=0, the program % will not include the colorbar in plot area; otherwise, % a colorbar will be included in plot area. % % 3. usepanel: If specified and usepanel=0, the control panel % at lower right cornor will be invisible; otherwise, % it will be visible. % % 4. usecrosshair: If specified and usecrosshair=0, the crosshair % will be invisible; otherwise, it will be visible. % % 5. usestretch: If specified and usestretch=0, the 3 slices will % not be stretched, and will be displayed according to % the actual voxel size; otherwise, the 3 slices will be % stretched to the edge. % % 6. useimagesc: If specified and useimagesc=0, images data will % be used directly to match the colormap (like 'image' % command); otherwise, image data will be scaled to full % colormap with 'imagesc' command in Matlab. % % 7. useinterp: If specified and useinterp=1, the image will be % displayed using interpolation. Otherwise, it will be % displayed like mosaic, and each tile stands for a % pixel. This option does not apply to 'setvalue' option % is set. % % % 8. setarea: 3-View plot will be displayed on this specific % region. If it is not specified, program will set the % plot area to [0.05 0.05 0.9 0.9]. % % 9. setunit: It can be specified to setunit='voxel' or 'mm' % and the view will change the axes unit of [X Y Z] % accordingly. % % 10. setviewpoint: If specified, [X Y Z] values will be used % to set the viewpoint of 3-View plot. % % 11. setscanid: If specified, [t] value will be used to display % the specified image scan in NIFTI data. % % 12. setcrosshaircolor: If specified, [r g b] value will be used % for Crosshair Color. Otherwise, red will be the default. % % 13. setcolorindex: If specified, the 3-View will choose the % following colormap: 2 - Bipolar; 3 - Gray; 4 - Jet; % 5 - Cool; 6 - Bone; 7 - Hot; 8 - Copper; 9 - Pink; % If not specified, it will choose 3 - Gray if all data % values are not less than 0; otherwise, it will choose % 2 - Bipolar if there is value less than 0. (Contrast % control can only apply to 3 - Gray colormap. % % 14. setcolormap: 3-View plot will use it as a customized colormap. % It is a 3-column matrix with value between 0 and 1. If % using MS-Windows version of Matlab, the number of rows % can not be more than 256, because of Matlab limitation. % When colormap is used, setcolorlevel option will be % disabled automatically. % % 15. setcolorlevel: If specified (must be no more than 256, and % cannot be used for customized colormap), row number of % colormap will be squeezed down to this level; otherwise, % it will assume that setcolorlevel=256. % % 16. sethighcolor: If specified, program will squeeze down the % colormap, and allocate sethighcolor (an Mx3 matrix) % to high-end portion of the colormap. The sum of M and % setcolorlevel should be less than 256. If setcolormap % option is used, sethighcolor will be inserted on top % of the setcolormap, and the setcolorlevel option will % be disabled automatically. % % 17. setcbarminmax: if specified, the [min max] will be used to % set the min and max of the colorbar, which does not % include any data for highcolor. % % 18. setvalue: If specified, setvalue.val (with the same size as % the source data on solution points) in the source area % setvalue.idx will be superimposed on the current nii % image. So, the size of setvalue.val should be equal to % the size of setvalue.idx. To use this feature, it needs % single or double nii structure for background image. % % 19. glblocminmax: If specified, pgm will use glblocminmax to % calculate the colormap, instead of minmax of image. % % 20. setbuttondown: If specified, pgm will evaluate the command % after a click or slide action is invoked to the new % view point. % % 21. setcomplex: This option will decide how complex data to be % displayed: 0 - Real part of complex data; 1 - Imaginary % part of complex data; 2 - Modulus (magnitude) of complex % data; If not specified, it will be set to 0 (Real part % of complex data as default option. This option only apply % when option.command is set to 'init or 'updatenii'. % % % Additional Options for 'update' command: % ======================================= % % option.enablecursormove = [1] | 0 % option.enableviewpoint = 0 | [1] % option.enableorigin = 0 | [1] % option.enableunit = 0 | [1] % option.enablecrosshair = 0 | [1] % option.enablehistogram = 0 | [1] % option.enablecolormap = 0 | [1] % option.enablecontrast = 0 | [1] % option.enablebrightness = 0 | [1] % option.enableslider = 0 | [1] % option.enabledirlabel = 0 | [1] % % % e.g.: % nii = load_nii('T1'); % T1.img/hdr % view_nii(nii); % % or % % h = figure('unit','normal','pos', [0.18 0.08 0.64 0.85]); % opt.setarea = [0.05 0.05 0.9 0.9]; % view_nii(h, nii, opt); % % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function status = view_nii(varargin) if nargin < 1 error('Please check inputs using ''help view_nii'''); end; nii = ''; opt = ''; command = ''; usecolorbar = []; usepanel = []; usecrosshair = ''; usestretch = []; useimagesc = []; useinterp = []; setarea = []; setunit = ''; setviewpoint = []; setscanid = []; setcrosshaircolor = []; setcolorindex = ''; setcolormap = 'NA'; setcolorlevel = []; sethighcolor = 'NA'; setcbarminmax = []; setvalue = []; glblocminmax = []; setbuttondown = ''; setcomplex = 0; status = []; if ishandle(varargin{1}) % plot on top of this figure fig = varargin{1}; if nargin < 2 command = 'update'; % just to get 3-View status end if nargin == 2 if ~isstruct(varargin{2}) error('2nd parameter should be either nii struct or option struct'); end opt = varargin{2}; if isfield(opt,'hdr') & isfield(opt,'img') nii = opt; elseif isfield(opt, 'command') & (strcmpi(opt.command,'init') ... | strcmpi(opt.command,'updatenii') ... | strcmpi(opt.command,'updateimg') ) error('Option here cannot contain "init", "updatenii", or "updateimg" comand'); end end if nargin == 3 nii = varargin{2}; opt = varargin{3}; if ~isstruct(opt) error('3rd parameter should be option struct'); end if ~isfield(opt,'command') | ~strcmpi(opt.command,'updateimg') if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('2nd parameter should be nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end end end set(fig, 'menubar', 'none'); elseif ischar(varargin{1}) % call back by event command = lower(varargin{1}); fig = gcbf; else % start nii with a new figure nii = varargin{1}; if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('1st parameter should be either a figure handle or nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end if nargin > 1 opt = varargin{2}; if isfield(opt, 'command') & ~strcmpi(opt.command,'init') error('Option here must use "init" comand'); end end command = 'init'; fig = figure('unit','normal','position',[0.15 0.08 0.70 0.85]); view_nii_menu(fig); rri_file_menu(fig); end if ~isempty(opt) if isfield(opt,'command') command = lower(opt.command); end if isempty(command) command = 'update'; end if isfield(opt,'usecolorbar') usecolorbar = opt.usecolorbar; end if isfield(opt,'usepanel') usepanel = opt.usepanel; end if isfield(opt,'usecrosshair') usecrosshair = opt.usecrosshair; end if isfield(opt,'usestretch') usestretch = opt.usestretch; end if isfield(opt,'useimagesc') useimagesc = opt.useimagesc; end if isfield(opt,'useinterp') useinterp = opt.useinterp; end if isfield(opt,'setarea') setarea = opt.setarea; end if isfield(opt,'setunit') setunit = opt.setunit; end if isfield(opt,'setviewpoint') setviewpoint = opt.setviewpoint; end if isfield(opt,'setscanid') setscanid = opt.setscanid; end if isfield(opt,'setcrosshaircolor') setcrosshaircolor = opt.setcrosshaircolor; if ~isempty(setcrosshaircolor) & (~isnumeric(setcrosshaircolor) | ~isequal(size(setcrosshaircolor),[1 3]) | min(setcrosshaircolor(:))<0 | max(setcrosshaircolor(:))>1) error('Crosshair Color should be a 1x3 matrix with value between 0 and 1'); end end if isfield(opt,'setcolorindex') setcolorindex = round(opt.setcolorindex); if ~isnumeric(setcolorindex) | setcolorindex < 1 | setcolorindex > 9 error('Colorindex should be a number between 1 and 9'); end end if isfield(opt,'setcolormap') setcolormap = opt.setcolormap; if ~isempty(setcolormap) & (~isnumeric(setcolormap) | size(setcolormap,2) ~= 3 | min(setcolormap(:))<0 | max(setcolormap(:))>1) error('Colormap should be a Mx3 matrix with value between 0 and 1'); end end if isfield(opt,'setcolorlevel') setcolorlevel = round(opt.setcolorlevel); if ~isnumeric(setcolorlevel) | setcolorlevel > 256 | setcolorlevel < 1 error('Colorlevel should be a number between 1 and 256'); end end if isfield(opt,'sethighcolor') sethighcolor = opt.sethighcolor; if ~isempty(sethighcolor) & (~isnumeric(sethighcolor) | size(sethighcolor,2) ~= 3 | min(sethighcolor(:))<0 | max(sethighcolor(:))>1) error('Highcolor should be a Mx3 matrix with value between 0 and 1'); end end if isfield(opt,'setcbarminmax') setcbarminmax = opt.setcbarminmax; if isempty(setcbarminmax) | ~isnumeric(setcbarminmax) | length(setcbarminmax) ~= 2 error('Colorbar MinMax should contain 2 values: [min max]'); end end if isfield(opt,'setvalue') setvalue = opt.setvalue; if isempty(setvalue) | ~isstruct(setvalue) | ... ~isfield(opt.setvalue,'idx') | ~isfield(opt.setvalue,'val') error('setvalue should be a struct contains idx and val'); end if length(opt.setvalue.idx(:)) ~= length(opt.setvalue.val(:)) error('length of idx and val fields should be the same'); end if ~strcmpi(class(opt.setvalue.idx),'single') opt.setvalue.idx = single(opt.setvalue.idx); end if ~strcmpi(class(opt.setvalue.val),'single') opt.setvalue.val = single(opt.setvalue.val); end end if isfield(opt,'glblocminmax') glblocminmax = opt.glblocminmax; end if isfield(opt,'setbuttondown') setbuttondown = opt.setbuttondown; end if isfield(opt,'setcomplex') setcomplex = opt.setcomplex; end end switch command case {'init'} set(fig, 'InvertHardcopy','off'); set(fig, 'PaperPositionMode','auto'); fig = init(nii, fig, setarea, setunit, setviewpoint, setscanid, setbuttondown, ... setcolorindex, setcolormap, setcolorlevel, sethighcolor, setcbarminmax, ... usecolorbar, usepanel, usecrosshair, usestretch, useimagesc, useinterp, ... setvalue, glblocminmax, setcrosshaircolor, setcomplex); % get status % status = get_status(fig); case {'update'} nii_view = getappdata(fig,'nii_view'); h = fig; if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end if ~isempty(opt) % Order of the following update matters. % update_shape(h, setarea, usecolorbar, usestretch, useimagesc); update_useinterp(h, useinterp); update_useimagesc(h, useimagesc); update_usepanel(h, usepanel); update_colorindex(h, setcolorindex); update_colormap(h, setcolormap); update_highcolor(h, sethighcolor, setcolorlevel); update_cbarminmax(h, setcbarminmax); update_unit(h, setunit); update_viewpoint(h, setviewpoint); update_scanid(h, setscanid); update_buttondown(h, setbuttondown); update_crosshaircolor(h, setcrosshaircolor); update_usecrosshair(h, usecrosshair); % Enable/Disable object % update_enable(h, opt); end % get status % status = get_status(h); case {'updateimg'} if ~exist('nii','var') msg = sprintf('Please input a 3D matrix brain data'); error(msg); end % Note: nii is not nii, nii should be a 3D matrix here % if ~isnumeric(nii) msg = sprintf('2nd parameter should be a 3D matrix, not nii struct'); error(msg); end nii_view = getappdata(fig,'nii_view'); if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end img = nii; update_img(img, fig, opt); % get status % status = get_status(fig); case {'updatenii'} nii_view = getappdata(fig,'nii_view'); if isempty(nii_view) error('The figure should already contain a 3-View plot.'); end if ~isstruct(nii) | ~isfield(nii,'hdr') | ~isfield(nii,'img') error('2nd parameter should be nii struct'); end if isfield(nii,'untouch') & nii.untouch == 1 error('Usage: please use ''load_nii.m'' to load the structure.'); end opt.command = 'clearnii'; view_nii(fig, opt); opt.command = 'init'; view_nii(fig, nii, opt); % get status % status = get_status(fig); case {'clearnii'} nii_view = getappdata(fig,'nii_view'); handles = struct2cell(nii_view.handles); for i=1:length(handles) if ishandle(handles{i}) % in case already del by parent delete(handles{i}); end end rmappdata(fig,'nii_view'); buttonmotion = get(fig,'windowbuttonmotion'); mymotion = '; view_nii(''move_cursor'');'; buttonmotion = strrep(buttonmotion, mymotion, ''); set(fig, 'windowbuttonmotion', buttonmotion); case {'axial_image','coronal_image','sagittal_image'} switch command case 'axial_image', view = 'axi'; axi = 0; cor = 1; sag = 1; case 'coronal_image', view = 'cor'; axi = 1; cor = 0; sag = 1; case 'sagittal_image', view = 'sag'; axi = 1; cor = 1; sag = 0; end nii_view = getappdata(fig,'nii_view'); nii_view = get_slice_position(nii_view,view); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end % CData must be double() for Matlab 6.5 for Windows % if axi, if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end; end if cor, if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end; end; if sag, if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end; end; update_nii_view(nii_view); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case {'axial_slider','coronal_slider','sagittal_slider'}, switch command case 'axial_slider', view = 'axi'; axi = 1; cor = 0; sag = 0; case 'coronal_slider', view = 'cor'; axi = 0; cor = 1; sag = 0; case 'sagittal_slider', view = 'sag'; axi = 0; cor = 0; sag = 1; end nii_view = getappdata(fig,'nii_view'); nii_view = get_slider_position(nii_view); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if axi, if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end end if cor, if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end end if sag, if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end end update_nii_view(nii_view); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case {'impos_edit'} nii_view = getappdata(fig,'nii_view'); impos = str2num(get(nii_view.handles.impos,'string')); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if isempty(impos) | ~all(size(impos) == [1 3]) msg = 'Please use 3 numbers to represent X,Y and Z'; msgbox(msg,'Error'); return; end slices.sag = round(impos(1)); slices.cor = round(impos(2)); slices.axi = round(impos(3)); nii_view = convert2voxel(nii_view,slices); nii_view = check_slices(nii_view); impos(1) = nii_view.slices.sag; impos(2) = nii_view.dims(2) - nii_view.slices.cor + 1; impos(3) = nii_view.slices.axi; if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',impos(1)); end if isfield(nii_view.handles,'coronal_slider'), set(nii_view.handles.coronal_slider,'Value',impos(2)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',impos(3)); end nii_view = get_slider_position(nii_view); update_nii_view(nii_view); if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) & nii_view.useinterp Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); set(nii_view.handles.axial_bg,'CData',double(Saxi)'); end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(img(:,:,nii_view.slices.axi,:,nii_view.scanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(img(:,:,nii_view.slices.axi,nii_view.scanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end if isfield(nii_view.handles,'axial_slider'), set(nii_view.handles.axial_slider,'Value',nii_view.slices.axi); end if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) & nii_view.useinterp Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); set(nii_view.handles.coronal_bg,'CData',double(Scor)'); end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(img(:,nii_view.slices.cor,:,:,nii_view.scanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(img(:,nii_view.slices.cor,:,nii_view.scanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end if isfield(nii_view.handles,'coronal_slider'), slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; set(nii_view.handles.coronal_slider,'Value',slider_val); end if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) & nii_view.useinterp Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(img(nii_view.slices.sag,:,:,:,nii_view.scanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(img(nii_view.slices.sag,:,:,nii_view.scanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end if isfield(nii_view.handles,'sagittal_slider'), set(nii_view.handles.sagittal_slider,'Value',nii_view.slices.sag); end axes(nii_view.handles.axial_axes); axes(nii_view.handles.coronal_axes); axes(nii_view.handles.sagittal_axes); if ~isempty(nii_view.buttondown) eval(nii_view.buttondown); end case 'coordinates', nii_view = getappdata(fig,'nii_view'); set_image_value(nii_view); case 'crosshair', nii_view = getappdata(fig,'nii_view'); if get(nii_view.handles.xhair,'value') == 2 % off set(nii_view.axi_xhair.lx,'visible','off'); set(nii_view.axi_xhair.ly,'visible','off'); set(nii_view.cor_xhair.lx,'visible','off'); set(nii_view.cor_xhair.ly,'visible','off'); set(nii_view.sag_xhair.lx,'visible','off'); set(nii_view.sag_xhair.ly,'visible','off'); else set(nii_view.axi_xhair.lx,'visible','on'); set(nii_view.axi_xhair.ly,'visible','on'); set(nii_view.cor_xhair.lx,'visible','on'); set(nii_view.cor_xhair.ly,'visible','on'); set(nii_view.sag_xhair.lx,'visible','on'); set(nii_view.sag_xhair.ly,'visible','on'); set(nii_view.handles.axial_axes,'selected','on'); set(nii_view.handles.axial_axes,'selected','off'); set(nii_view.handles.coronal_axes,'selected','on'); set(nii_view.handles.coronal_axes,'selected','off'); set(nii_view.handles.sagittal_axes,'selected','on'); set(nii_view.handles.sagittal_axes,'selected','off'); end case 'xhair_color', old_color = get(gcbo,'user'); new_color = uisetcolor(old_color); update_crosshaircolor(fig, new_color); case {'color','contrast_def'} nii_view = getappdata(fig,'nii_view'); if nii_view.numscan == 1 if get(nii_view.handles.colorindex,'value') == 2 set(nii_view.handles.contrast,'value',128); elseif get(nii_view.handles.colorindex,'value') == 3 set(nii_view.handles.contrast,'value',1); end end [custom_color_map, custom_colorindex] = change_colormap(fig); if strcmpi(command, 'color') setcolorlevel = nii_view.colorlevel; if ~isempty(custom_color_map) % isfield(nii_view, 'color_map') setcolormap = custom_color_map; % nii_view.color_map; else setcolormap = []; end if isfield(nii_view, 'highcolor') sethighcolor = nii_view.highcolor; else sethighcolor = []; end redraw_cbar(fig, setcolorlevel, setcolormap, sethighcolor); if nii_view.numscan == 1 & ... (custom_colorindex < 2 | custom_colorindex > 3) contrastopt.enablecontrast = 0; else contrastopt.enablecontrast = 1; end update_enable(fig, contrastopt); end case {'neg_color','brightness','contrast'} change_colormap(fig); case {'brightness_def'} nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.brightness,'value',0); change_colormap(fig); case 'hist_plot' hist_plot(fig); case 'hist_eq' hist_eq(fig); case 'move_cursor' move_cursor(fig); case 'edit_change_scan' change_scan('edit_change_scan'); case 'slider_change_scan' change_scan('slider_change_scan'); end return; % view_nii %---------------------------------------------------------------- function fig = init(nii, fig, area, setunit, setviewpoint, setscanid, buttondown, ... colorindex, color_map, colorlevel, highcolor, cbarminmax, ... usecolorbar, usepanel, usecrosshair, usestretch, useimagesc, ... useinterp, setvalue, glblocminmax, setcrosshaircolor, ... setcomplex) % Support data type COMPLEX64 & COMPLEX128 % if nii.hdr.dime.datatype == 32 | nii.hdr.dime.datatype == 1792 switch setcomplex, case 0, nii.img = real(nii.img); case 1, nii.img = imag(nii.img); case 2, if isa(nii.img, 'double') nii.img = abs(double(nii.img)); else nii.img = single(abs(double(nii.img))); end end end if isempty(area) area = [0.05 0.05 0.9 0.9]; end if isempty(setscanid) setscanid = 1; else setscanid = round(setscanid); if setscanid < 1 setscanid = 1; end if setscanid > nii.hdr.dime.dim(5) setscanid = nii.hdr.dime.dim(5); end end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 usecolorbar = 0; elseif isempty(usecolorbar) usecolorbar = 1; end if isempty(usepanel) usepanel = 1; end if isempty(usestretch) usestretch = 1; end if isempty(useimagesc) useimagesc = 1; end if isempty(useinterp) useinterp = 0; end if isempty(colorindex) tmp = min(nii.img(:,:,:,setscanid)); if min(tmp(:)) < 0 colorindex = 2; setcrosshaircolor = [1 1 0]; else colorindex = 3; end end if isempty(color_map) | ischar(color_map) color_map = []; else colorindex = 1; end bgimg = []; if ~isempty(glblocminmax) minvalue = glblocminmax(1); maxvalue = glblocminmax(2); else minvalue = nii.img(:,:,:,setscanid); minvalue = double(minvalue(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = nii.img(:,:,:,setscanid); maxvalue = double(maxvalue(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); end if ~isempty(setvalue) if ~isempty(glblocminmax) minvalue = glblocminmax(1); maxvalue = glblocminmax(2); else minvalue = double(min(setvalue.val)); maxvalue = double(max(setvalue.val)); end bgimg = double(nii.img); minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg = scale_in(bgimg, minbg, maxbg, 55) + 200; % scale to 201~256 % 56 level for brain structure % % highcolor = [zeros(1,3);gray(55)]; highcolor = gray(56); cbarminmax = [minvalue maxvalue]; if useinterp % scale signal data to 1~200 % nii.img = repmat(nan, size(nii.img)); nii.img(setvalue.idx) = setvalue.val; % 200 level for source image % bgimg = single(scale_out(bgimg, cbarminmax(1), cbarminmax(2), 199)); else bgimg(setvalue.idx) = NaN; minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg(setvalue.idx) = minbg; % bgimg must be normalized to [201 256] % bgimg = 55 * (bgimg-min(bgimg(:))) / (max(bgimg(:))-min(bgimg(:))) + 201; bgimg(setvalue.idx) = 0; % scale signal data to 1~200 % nii.img = zeros(size(nii.img)); nii.img(setvalue.idx) = scale_in(setvalue.val, minvalue, maxvalue, 199); nii.img = nii.img + bgimg; bgimg = []; nii.img = scale_out(nii.img, cbarminmax(1), cbarminmax(2), 199); minvalue = double(nii.img(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = double(nii.img(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); if ~isempty(glblocminmax) % maxvalue is gray minvalue = glblocminmax(1); end end colorindex = 2; setcrosshaircolor = [1 1 0]; end if isempty(highcolor) | ischar(highcolor) highcolor = []; num_highcolor = 0; else num_highcolor = size(highcolor,1); end if isempty(colorlevel) colorlevel = 256 - num_highcolor; end if usecolorbar cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes else cbar_area = []; end % init color (gray) scaling to make sure the slice clim take the % global clim [min(nii.img(:)) max(nii.img(:))] % if isempty(bgimg) clim = [minvalue maxvalue]; else clim = [minvalue double(max(bgimg(:)))]; end if clim(1) == clim(2) clim(2) = clim(1) + 0.000001; end if isempty(cbarminmax) cbarminmax = [minvalue maxvalue]; end xdim = size(nii.img, 1); ydim = size(nii.img, 2); zdim = size(nii.img, 3); dims = [xdim ydim zdim]; voxel_size = abs(nii.hdr.dime.pixdim(2:4)); % vol in mm if any(voxel_size <= 0) voxel_size(find(voxel_size <= 0)) = 1; end origin = abs(nii.hdr.hist.originator(1:3)); if isempty(origin) | all(origin == 0) % according to SPM origin = (dims+1)/2; end; origin = round(origin); if any(origin > dims) % simulate fMRI origin(find(origin > dims)) = dims(find(origin > dims)); end if any(origin <= 0) origin(find(origin <= 0)) = 1; end nii_view.dims = dims; nii_view.voxel_size = voxel_size; nii_view.origin = origin; nii_view.slices.sag = 1; nii_view.slices.cor = 1; nii_view.slices.axi = 1; if xdim > 1, nii_view.slices.sag = origin(1); end if ydim > 1, nii_view.slices.cor = origin(2); end if zdim > 1, nii_view.slices.axi = origin(3); end nii_view.area = area; nii_view.fig = fig; nii_view.nii = nii; % image data nii_view.bgimg = bgimg; % background nii_view.setvalue = setvalue; nii_view.minvalue = minvalue; nii_view.maxvalue = maxvalue; nii_view.numscan = nii.hdr.dime.dim(5); nii_view.scanid = setscanid; Font.FontUnits = 'point'; Font.FontSize = 12; % create axes for colorbar % [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); if isempty(cbar_area) nii_view.cbar_area = []; else nii_view.cbar_area = cbar_area; end % create axes for top/front/side view % vol_size = voxel_size .* dims; [top_ax, front_ax, side_ax] ... = create_ax(fig, area, vol_size, usestretch); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); % Sagittal Slider % x = side_pos(1); y = top_pos(2) + top_pos(4); w = side_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if xdim > 1, slider_step(1) = 1/(xdim); slider_step(2) = 1.00001/(xdim); handles.sagittal_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Sagittal slice navigation',... 'Min',1,'Max',xdim,'SliderStep',slider_step, ... 'Value',nii_view.slices.sag,... 'Callback','view_nii(''sagittal_slider'');'); set(handles.sagittal_slider,'position',pos); % linux66 end % Coronal Slider % x = top_pos(1); y = top_pos(2) + top_pos(4); w = top_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if ydim > 1, slider_step(1) = 1/(ydim); slider_step(2) = 1.00001/(ydim); slider_val = nii_view.dims(2) - nii_view.slices.cor + 1; handles.coronal_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Coronal slice navigation',... 'Min',1,'Max',ydim,'SliderStep',slider_step, ... 'Value',slider_val,... 'Callback','view_nii(''coronal_slider'');'); set(handles.coronal_slider,'position',pos); % linux66 end % Axial Slider % % x = front_pos(1) + front_pos(3); % y = front_pos(2); % w = side_pos(1) - x; % h = front_pos(4); x = top_pos(1); y = area(2); w = top_pos(3); h = top_pos(2) - y; pos = [x y w h]; if zdim > 1, slider_step(1) = 1/(zdim); slider_step(2) = 1.00001/(zdim); handles.axial_slider = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment','center',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Axial slice navigation',... 'Min',1,'Max',zdim,'SliderStep',slider_step, ... 'Value',nii_view.slices.axi,... 'Callback','view_nii(''axial_slider'');'); set(handles.axial_slider,'position',pos); % linux66 end % plot info view % % info_pos = [side_pos([1,3]); top_pos([2,4])]; % info_pos = info_pos(:); gap = side_pos(1)-(top_pos(1)+top_pos(3)); info_pos(1) = side_pos(1) + gap; info_pos(2) = area(2); info_pos(3) = side_pos(3) - gap; info_pos(4) = top_pos(2) + top_pos(4) - area(2) - gap; num_inputline = 10; inputline_space =info_pos(4) / num_inputline; % for any info_area change, update_usestretch should also be changed % Image Intensity Value at Cursor % x = info_pos(1); y = info_pos(2); w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; handles.Timvalcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Value at cursor:'); if usepanel set(handles.Timvalcur, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imvalcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' '); if usepanel set(handles.imvalcur, 'visible', 'on'); end % Position at Cursor % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timposcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at cursor:'); if usepanel set(handles.Timposcur, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imposcur = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.imposcur, 'visible', 'on'); end % Image Intensity Value at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timval = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Value at crosshair:'); if usepanel set(handles.Timval, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.imval = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' '); if usepanel set(handles.imval, 'visible', 'on'); end % Viewpoint Position at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Timpos = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at crosshair:'); if usepanel set(handles.Timpos, 'visible', 'on'); end x = x + w + 0.005; y = y - 0.008; w = info_pos(3)*0.5; h = inputline_space*0.9; pos = [x y w h]; handles.impos = uicontrol('Parent',fig,'Style','edit', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'Callback','view_nii(''impos_edit'');', ... 'TooltipString','Viewpoint Location in Axes Unit', ... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.impos, 'visible', 'on'); end % Origin Position % x = info_pos(1); y = y + inputline_space*1.2; w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; handles.Torigin = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','[X Y Z] at origin:'); if usepanel set(handles.Torigin, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; handles.origin = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'right',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String',' ','Value',[0 0 0]); if usepanel set(handles.origin, 'visible', 'on'); end if 0 % Voxel Unit % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; handles.Tcoord = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Axes Unit:'); if usepanel set(handles.Tcoord, 'visible', 'on'); end x = x + w + 0.005; w = info_pos(3)*0.5 - 0.005; pos = [x y w h]; Font.FontSize = 8; handles.coord = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Choose Voxel or Millimeter',... 'String',{'Voxel','Millimeter'},... 'visible','off', ... 'Callback','view_nii(''coordinates'');'); % 'TooltipString','Choose Voxel, MNI or Talairach Coordinates',... % 'String',{'Voxel','MNI (mm)','Talairach (mm)'},... Font.FontSize = 12; if usepanel set(handles.coord, 'visible', 'on'); end end % Crosshair % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.4; pos = [x y w h]; handles.Txhair = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Crosshair:'); if usepanel set(handles.Txhair, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; Font.FontSize = 8; handles.xhair_color = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Crosshair Color',... 'User',[1 0 0],... 'String','Color',... 'visible','off', ... 'Callback','view_nii(''xhair_color'');'); if usepanel set(handles.xhair_color, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.3; pos = [x y w h]; handles.xhair = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Display or Hide Crosshair',... 'String',{'On','Off'},... 'visible','off', ... 'Callback','view_nii(''crosshair'');'); if usepanel set(handles.xhair, 'visible', 'on'); end % Histogram & Color % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; handles.hist_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel % set(handles.hist_frame, 'visible', 'on'); end handles.coord_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.coord_frame, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; handles.color_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.color_frame, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space*1.2; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; Font.FontSize = 8; handles.hist_eq = uicontrol('Parent',fig,'Style','toggle', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Histogram Equalization',... 'String','Hist EQ',... 'visible','off', ... 'Callback','view_nii(''hist_eq'');'); if usepanel % set(handles.hist_eq, 'visible', 'on'); end x = x + w; w = info_pos(3)*0.2; pos = [x y w h]; handles.hist_plot = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Histogram Plot',... 'String','Hist Plot',... 'visible','off', ... 'Callback','view_nii(''hist_plot'');'); if usepanel % set(handles.hist_plot, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.025; w = info_pos(3)*0.4; pos = [x y w h]; handles.coord = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Choose Voxel or Millimeter',... 'String',{'Voxel','Millimeter'},... 'visible','off', ... 'Callback','view_nii(''coordinates'');'); % 'TooltipString','Choose Voxel, MNI or Talairach Coordinates',... % 'String',{'Voxel','MNI (mm)','Talairach (mm)'},... if usepanel set(handles.coord, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; pos = [x y w h]; handles.neg_color = uicontrol('Parent',fig,'Style','toggle', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Negative Colormap',... 'String','Negative',... 'visible','off', ... 'Callback','view_nii(''neg_color'');'); if usepanel set(handles.neg_color, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.neg_color, 'enable', 'off'); end x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.275; pos = [x y w h]; handles.colorindex = uicontrol('Parent',fig,'Style','popupmenu', ... 'Units','Normalized', Font, ... 'Position',pos, ... 'BackgroundColor', [1 1 1], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'TooltipString','Change Colormap',... 'String',{'Custom','Bipolar','Gray','Jet','Cool','Bone','Hot','Copper','Pink'},... 'value', colorindex, ... 'visible','off', ... 'Callback','view_nii(''color'');'); if usepanel set(handles.colorindex, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.colorindex, 'enable', 'off'); end x = info_pos(1) + info_pos(3)*0.1; y = y + inputline_space; w = info_pos(3)*0.28; h = inputline_space*0.6; pos = [x y w h]; Font.FontSize = 8; handles.Thist = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Histogram'); handles.Tcoord = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Axes Unit'); if usepanel % set(handles.Thist, 'visible', 'on'); set(handles.Tcoord, 'visible', 'on'); end x = info_pos(1) + info_pos(3)*0.60; w = info_pos(3)*0.28; pos = [x y w h]; handles.Tcolor = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Colormap'); if usepanel set(handles.Tcolor, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.Tcolor, 'enable', 'off'); end % Contrast Frame % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 2; pos = [x, y+inputline_space*0.8, w, h]; handles.contrast_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.contrast_frame, 'visible', 'on'); end if colorindex < 2 | colorindex > 3 set(handles.contrast_frame, 'visible', 'off'); end % Brightness Frame % x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; pos = [x, y+inputline_space*0.8, w, h]; handles.brightness_frame = uicontrol('Parent',fig, ... 'Units','normal', ... 'BackgroundColor',[0.8 0.8 0.8], ... 'Position',pos, ... 'visible','off', ... 'Style','frame'); if usepanel set(handles.brightness_frame, 'visible', 'on'); end % Contrast % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.4; h = inputline_space*0.6; pos = [x y w h]; Font.FontSize = 12; slider_step(1) = 5/255; slider_step(2) = 5.00001/255; handles.contrast = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Change contrast',... 'Min',1,'Max',256,'SliderStep',slider_step, ... 'Value',1, ... 'visible','off', ... 'Callback','view_nii(''contrast'');'); if usepanel set(handles.contrast, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.contrast, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.contrast, 'min', 1, 'max', nii_view.numscan, ... 'sliderstep',[1/(nii_view.numscan-1) 1.00001/(nii_view.numscan-1)], ... 'Callback', 'view_nii(''slider_change_scan'');'); elseif colorindex < 2 | colorindex > 3 set(handles.contrast, 'visible', 'off'); elseif colorindex == 2 set(handles.contrast,'value',128); end set(handles.contrast,'position',pos); % linux66 % Brightness % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.475; pos = [x y w h]; Font.FontSize = 12; slider_step(1) = 1/50; slider_step(2) = 1.00001/50; handles.brightness = uicontrol('Parent',fig, ... 'Style','slider','Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor',[0.5 0.5 0.5],'ForegroundColor',[0 0 0],... 'BusyAction','queue',... 'TooltipString','Change brightness',... 'Min',-1,'Max',1,'SliderStep',slider_step, ... 'Value',0, ... 'visible','off', ... 'Callback','view_nii(''brightness'');'); if usepanel set(handles.brightness, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.brightness, 'enable', 'off'); end set(handles.brightness,'position',pos); % linux66 % Contrast text/def % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.22; pos = [x y w h]; handles.Tcontrast = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Contrast:'); if usepanel set(handles.Tcontrast, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.Tcontrast, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.Tcontrast, 'string', 'Scan ID:'); set(handles.contrast, 'TooltipString', 'Change Scan ID'); elseif colorindex < 2 | colorindex > 3 set(handles.Tcontrast, 'visible', 'off'); end x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; Font.FontSize = 8; handles.contrast_def = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Restore initial contrast',... 'String','Reset',... 'visible','off', ... 'Callback','view_nii(''contrast_def'');'); if usepanel set(handles.contrast_def, 'visible', 'on'); end if (nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511) & nii_view.numscan <= 1 set(handles.contrast_def, 'enable', 'off'); end if nii_view.numscan > 1 set(handles.contrast_def, 'style', 'edit', 'background', 'w', ... 'TooltipString','Scan (or volume) index in the time series',... 'string', '1', 'Callback', 'view_nii(''edit_change_scan'');'); elseif colorindex < 2 | colorindex > 3 set(handles.contrast_def, 'visible', 'off'); end % Brightness text/def % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.295; pos = [x y w h]; Font.FontSize = 12; handles.Tbrightness = uicontrol('Parent',fig,'Style','text', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'left',... 'BackgroundColor', [0.8 0.8 0.8], 'ForegroundColor', [0 0 0],... 'BusyAction','queue',... 'visible','off', ... 'String','Brightness:'); if usepanel set(handles.Tbrightness, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.Tbrightness, 'enable', 'off'); end x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; Font.FontSize = 8; handles.brightness_def = uicontrol('Parent',fig,'Style','push', ... 'Units','Normalized', Font, ... 'Position',pos, 'HorizontalAlignment', 'center',... 'TooltipString','Restore initial brightness',... 'String','Reset',... 'visible','off', ... 'Callback','view_nii(''brightness_def'');'); if usepanel set(handles.brightness_def, 'visible', 'on'); end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(handles.brightness_def, 'enable', 'off'); end % init image handles % handles.axial_image = []; handles.coronal_image = []; handles.sagittal_image = []; % plot axial view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(:,:,nii_view.slices.axi)); h1 = plot_view(fig, xdim, ydim, top_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.axial_bg = h1; else handles.axial_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(:,:,nii_view.slices.axi,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(:,:,nii_view.slices.axi,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, xdim, ydim, top_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''axial_image'');'); handles.axial_image = h1; handles.axial_axes = top_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(top_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end % plot coronal view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(:,nii_view.slices.cor,:)); h1 = plot_view(fig, xdim, zdim, front_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.coronal_bg = h1; else handles.coronal_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(:,nii_view.slices.cor,:,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(:,nii_view.slices.cor,:,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, xdim, zdim, front_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''coronal_image'');'); handles.coronal_image = h1; handles.coronal_axes = front_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(front_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end % plot sagittal view % if ~isempty(nii_view.bgimg) bg_slice = squeeze(bgimg(nii_view.slices.sag,:,:)); h1 = plot_view(fig, ydim, zdim, side_ax, bg_slice', clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); handles.sagittal_bg = h1; else handles.sagittal_bg = []; end if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 img_slice = squeeze(nii.img(nii_view.slices.sag,:,:,:,setscanid)); img_slice = permute(img_slice, [2 1 3]); else img_slice = squeeze(nii.img(nii_view.slices.sag,:,:,setscanid)); img_slice = img_slice'; end h1 = plot_view(fig, ydim, zdim, side_ax, img_slice, clim, cbarminmax, ... handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, nii_view.numscan); set(h1,'buttondown','view_nii(''sagittal_image'');'); set(side_ax,'Xdir', 'reverse'); handles.sagittal_image = h1; handles.sagittal_axes = side_ax; if size(img_slice,1) == 1 | size(img_slice,2) == 1 set(side_ax,'visible','off'); if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', 'off'); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', 'off'); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', 'off'); end end [top1_label, top2_label, side1_label, side2_label] = ... dir_label(fig, top_ax, front_ax, side_ax); % store label handles % handles.top1_label = top1_label; handles.top2_label = top2_label; handles.side1_label = side1_label; handles.side2_label = side2_label; % plot colorbar % if ~isempty(cbar_axes) & ~isempty(cbarminmax_axes) if 0 if isempty(color_map) level = colorlevel + num_highcolor; else level = size([color_map; highcolor], 1); end end if isempty(color_map) level = colorlevel; else level = size([color_map], 1); end niiclass = class(nii.img); h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, cbarminmax, ... level, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, niiclass, nii_view.numscan); handles.cbar_image = h1; handles.cbar_axes = cbar_axes; handles.cbarminmax_axes = cbarminmax_axes; end nii_view.handles = handles; % store handles nii_view.usepanel = usepanel; % whole panel at low right cornor nii_view.usestretch = usestretch; % stretch display of voxel_size nii_view.useinterp = useinterp; % use interpolation nii_view.colorindex = colorindex; % store colorindex variable nii_view.buttondown = buttondown; % command after button down click nii_view.cbarminmax = cbarminmax; % store min max value for colorbar set_coordinates(nii_view,useinterp); % coord unit if ~isfield(nii_view, 'axi_xhair') | ... ~isfield(nii_view, 'cor_xhair') | ... ~isfield(nii_view, 'sag_xhair') nii_view.axi_xhair = []; % top cross hair nii_view.cor_xhair = []; % front cross hair nii_view.sag_xhair = []; % side cross hair end if ~isempty(color_map) nii_view.color_map = color_map; end if ~isempty(colorlevel) nii_view.colorlevel = colorlevel; end if ~isempty(highcolor) nii_view.highcolor = highcolor; end update_nii_view(nii_view); if ~isempty(setunit) update_unit(fig, setunit); end if ~isempty(setviewpoint) update_viewpoint(fig, setviewpoint); end if ~isempty(setcrosshaircolor) update_crosshaircolor(fig, setcrosshaircolor); end if ~isempty(usecrosshair) update_usecrosshair(fig, usecrosshair); end nii_menu = getappdata(fig, 'nii_menu'); if ~isempty(nii_menu) if nii.hdr.dime.datatype == 128 | nii.hdr.dime.datatype == 511 set(nii_menu.Minterp,'Userdata',1,'Label','Interp on','enable','off'); elseif useinterp set(nii_menu.Minterp,'Userdata',0,'Label','Interp off'); else set(nii_menu.Minterp,'Userdata',1,'Label','Interp on'); end end windowbuttonmotion = get(fig, 'windowbuttonmotion'); windowbuttonmotion = [windowbuttonmotion '; view_nii(''move_cursor'');']; set(fig, 'windowbuttonmotion', windowbuttonmotion); return; % init %---------------------------------------------------------------- function fig = update_img(img, fig, opt) nii_menu = getappdata(fig,'nii_menu'); if ~isempty(nii_menu) set(nii_menu.Mzoom,'Userdata',1,'Label','Zoom on'); set(fig,'pointer','arrow'); zoom off; end nii_view = getappdata(fig,'nii_view'); change_interp = 0; if isfield(opt, 'useinterp') & opt.useinterp ~= nii_view.useinterp nii_view.useinterp = opt.useinterp; change_interp = 1; end setscanid = 1; if isfield(opt, 'setscanid') setscanid = round(opt.setscanid); if setscanid < 1 setscanid = 1; end if setscanid > nii_view.numscan setscanid = nii_view.numscan; end end if isfield(opt, 'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); maxvalue = opt.glblocminmax(2); else minvalue = img(:,:,:,setscanid); minvalue = double(minvalue(:)); minvalue = min(minvalue(~isnan(minvalue))); maxvalue = img(:,:,:,setscanid); maxvalue = double(maxvalue(:)); maxvalue = max(maxvalue(~isnan(maxvalue))); end if isfield(opt, 'setvalue') setvalue = opt.setvalue; if isfield(opt, 'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); maxvalue = opt.glblocminmax(2); else minvalue = double(min(setvalue.val)); maxvalue = double(max(setvalue.val)); end bgimg = double(img); minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg = scale_in(bgimg, minbg, maxbg, 55) + 200; % scale to 201~256 cbarminmax = [minvalue maxvalue]; if nii_view.useinterp % scale signal data to 1~200 % img = repmat(nan, size(img)); img(setvalue.idx) = setvalue.val; % 200 level for source image % bgimg = single(scale_out(bgimg, cbarminmax(1), cbarminmax(2), 199)); else bgimg(setvalue.idx) = NaN; minbg = double(min(bgimg(:))); maxbg = double(max(bgimg(:))); bgimg(setvalue.idx) = minbg; % bgimg must be normalized to [201 256] % bgimg = 55 * (bgimg-min(bgimg(:))) / (max(bgimg(:))-min(bgimg(:))) + 201; bgimg(setvalue.idx) = 0; % scale signal data to 1~200 % img = zeros(size(img)); img(setvalue.idx) = scale_in(setvalue.val, minvalue, maxvalue, 199); img = img + bgimg; bgimg = []; img = scale_out(img, cbarminmax(1), cbarminmax(2), 199); minvalue = double(min(img(:))); maxvalue = double(max(img(:))); if isfield(opt,'glblocminmax') & ~isempty(opt.glblocminmax) minvalue = opt.glblocminmax(1); end end nii_view.bgimg = bgimg; nii_view.setvalue = setvalue; else cbarminmax = [minvalue maxvalue]; end update_cbarminmax(fig, cbarminmax); nii_view.cbarminmax = cbarminmax; nii_view.nii.img = img; nii_view.minvalue = minvalue; nii_view.maxvalue = maxvalue; nii_view.scanid = setscanid; change_colormap(fig); % init color (gray) scaling to make sure the slice clim take the % global clim [min(nii.img(:)) max(nii.img(:))] % if isempty(nii_view.bgimg) clim = [minvalue maxvalue]; else clim = [minvalue double(max(nii_view.bgimg(:)))]; end if clim(1) == clim(2) clim(2) = clim(1) + 0.000001; end if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end if ~isempty(nii_view.bgimg) % with interpolation Saxi = squeeze(nii_view.bgimg(:,:,nii_view.slices.axi)); if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) set(nii_view.handles.axial_bg,'CData',double(Saxi)'); else axes(nii_view.handles.axial_axes); if useimagesc nii_view.handles.axial_bg = surface(zeros(size(Saxi')),double(Saxi'),'edgecolor','none','facecolor','interp'); else nii_view.handles.axial_bg = surface(zeros(size(Saxi')),double(Saxi'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.axial_bg)) = []; order = [order; nii_view.handles.axial_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'axial_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Saxi = squeeze(nii_view.nii.img(:,:,nii_view.slices.axi,:,setscanid)); Saxi = permute(Saxi, [2 1 3]); else Saxi = squeeze(nii_view.nii.img(:,:,nii_view.slices.axi,setscanid)); Saxi = Saxi'; end set(nii_view.handles.axial_image,'CData',double(Saxi)); end set(nii_view.handles.axial_axes,'CLim',clim); if ~isempty(nii_view.bgimg) Scor = squeeze(nii_view.bgimg(:,nii_view.slices.cor,:)); if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) set(nii_view.handles.coronal_bg,'CData',double(Scor)'); else axes(nii_view.handles.coronal_axes); if useimagesc nii_view.handles.coronal_bg = surface(zeros(size(Scor')),double(Scor'),'edgecolor','none','facecolor','interp'); else nii_view.handles.coronal_bg = surface(zeros(size(Scor')),double(Scor'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.coronal_bg)) = []; order = [order; nii_view.handles.coronal_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'coronal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Scor = squeeze(nii_view.nii.img(:,nii_view.slices.cor,:,:,setscanid)); Scor = permute(Scor, [2 1 3]); else Scor = squeeze(nii_view.nii.img(:,nii_view.slices.cor,:,setscanid)); Scor = Scor'; end set(nii_view.handles.coronal_image,'CData',double(Scor)); end set(nii_view.handles.coronal_axes,'CLim',clim); if ~isempty(nii_view.bgimg) Ssag = squeeze(nii_view.bgimg(nii_view.slices.sag,:,:)); if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) set(nii_view.handles.sagittal_bg,'CData',double(Ssag)'); else axes(nii_view.handles.sagittal_axes); if useimagesc nii_view.handles.sagittal_bg = surface(zeros(size(Ssag')),double(Ssag'),'edgecolor','none','facecolor','interp'); else nii_view.handles.sagittal_bg = surface(zeros(size(Ssag')),double(Ssag'),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end order = get(gca,'child'); order(find(order == nii_view.handles.sagittal_bg)) = []; order = [order; nii_view.handles.sagittal_bg]; set(gca, 'child', order); end end if isfield(nii_view.handles,'sagittal_image'), if nii_view.nii.hdr.dime.datatype == 128 | nii_view.nii.hdr.dime.datatype == 511 Ssag = squeeze(nii_view.nii.img(nii_view.slices.sag,:,:,:,setscanid)); Ssag = permute(Ssag, [2 1 3]); else Ssag = squeeze(nii_view.nii.img(nii_view.slices.sag,:,:,setscanid)); Ssag = Ssag'; end set(nii_view.handles.sagittal_image,'CData',double(Ssag)); end set(nii_view.handles.sagittal_axes,'CLim',clim); update_nii_view(nii_view); if isfield(opt, 'setvalue') if ~isfield(nii_view,'highcolor') | ~isequal(size(nii_view.highcolor),[56 3]) % 55 level for brain structure (paded 0 for highcolor level 1, i.e. normal level 201, to make 56 highcolor) % update_highcolor(fig, [zeros(1,3);gray(55)], []); end if nii_view.colorindex ~= 2 update_colorindex(fig, 2); end old_color = get(nii_view.handles.xhair_color,'user'); if isequal(old_color, [1 0 0]) update_crosshaircolor(fig, [1 1 0]); end % if change_interp % update_useinterp(fig, nii_view.useinterp); % end end if change_interp update_useinterp(fig, nii_view.useinterp); end return; % update_img %---------------------------------------------------------------- function [top_pos, front_pos, side_pos] = ... axes_pos(fig,area,vol_size,usestretch) set(fig,'unit','pixel'); fig_pos = get(fig,'position'); gap_x = 15/fig_pos(3); % width of vertical scrollbar gap_y = 15/fig_pos(4); % width of horizontal scrollbar a = (area(3) - gap_x * 1.3) * fig_pos(3) / (vol_size(1) + vol_size(2)); % no crosshair lost in zoom b = (area(4) - gap_y * 3) * fig_pos(4) / (vol_size(2) + vol_size(3)); c = min([a b]); % make sure 'ax' is inside 'area' top_w = vol_size(1) * c / fig_pos(3); side_w = vol_size(2) * c / fig_pos(3); top_h = vol_size(2) * c / fig_pos(4); side_h = vol_size(3) * c / fig_pos(4); side_x = area(1) + top_w + gap_x * 1.3; % no crosshair lost in zoom side_y = area(2) + top_h + gap_y * 3; if usestretch if a > b % top touched ceiling, use b d = (area(3) - gap_x * 1.3) / (top_w + side_w); % no crosshair lost in zoom top_w = top_w * d; side_w = side_w * d; side_x = area(1) + top_w + gap_x * 1.3; % no crosshair lost in zoom else d = (area(4) - gap_y * 3) / (top_h + side_h); top_h = top_h * d; side_h = side_h * d; side_y = area(2) + top_h + gap_y * 3; end end top_pos = [area(1) area(2)+gap_y top_w top_h]; front_pos = [area(1) side_y top_w side_h]; side_pos = [side_x side_y side_w side_h]; set(fig,'unit','normal'); return; % axes_pos %---------------------------------------------------------------- function [top_ax, front_ax, side_ax] ... = create_ax(fig, area, vol_size, usestretch) cur_fig = gcf; % save h_wait fig figure(fig); [top_pos, front_pos, side_pos] = ... axes_pos(fig,area,vol_size,usestretch); nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) top_ax = axes('position', top_pos); front_ax = axes('position', front_pos); side_ax = axes('position', side_pos); else top_ax = nii_view.handles.axial_axes; front_ax = nii_view.handles.coronal_axes; side_ax = nii_view.handles.sagittal_axes; set(top_ax, 'position', top_pos); set(front_ax, 'position', front_pos); set(side_ax, 'position', side_pos); end figure(cur_fig); return; % create_ax %---------------------------------------------------------------- function [cbar_axes, cbarminmax_axes] = create_cbar_axes(fig, cbar_area, nii_view) if isempty(cbar_area) % without_cbar cbar_axes = []; cbarminmax_axes = []; return; end cur_fig = gcf; % save h_wait fig figure(fig); if ~exist('nii_view', 'var') nii_view = getappdata(fig, 'nii_view'); end if isempty(nii_view) | ~isfield(nii_view.handles,'cbar_axes') | isempty(nii_view.handles.cbar_axes) cbarminmax_axes = axes('position', cbar_area); cbar_axes = axes('position', cbar_area); else cbarminmax_axes = nii_view.handles.cbarminmax_axes; cbar_axes = nii_view.handles.cbar_axes; set(cbarminmax_axes, 'position', cbar_area); set(cbar_axes, 'position', cbar_area); end figure(cur_fig); return; % create_cbar_axes %---------------------------------------------------------------- function h1 = plot_view(fig, x, y, img_ax, img_slice, clim, ... cbarminmax, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, useinterp, numscan) h1 = []; if x > 1 & y > 1, axes(img_ax); nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) % set colormap first % nii.handles = handles; nii.handles.axial_axes = img_ax; nii.colorindex = colorindex; nii.color_map = color_map; nii.colorlevel = colorlevel; nii.highcolor = highcolor; nii.numscan = numscan; change_colormap(fig, nii, colorindex, cbarminmax); if useinterp if useimagesc h1 = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else h1 = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end set(gca,'clim',clim); else if useimagesc h1 = imagesc(img_slice,clim); else h1 = image(img_slice); end set(gca,'clim',clim); end else h1 = nii_view.handles.axial_image; if ~isequal(get(h1,'parent'), img_ax) h1 = nii_view.handles.coronal_image; end if ~isequal(get(h1,'parent'), img_ax) h1 = nii_view.handles.sagittal_image; end set(h1, 'cdata', double(img_slice)); set(h1, 'xdata', 1:size(img_slice,2)); set(h1, 'ydata', 1:size(img_slice,1)); end set(img_ax,'YDir','normal','XLimMode','manual','YLimMode','manual',... 'ClimMode','manual','visible','off', ... 'xtick',[],'ytick',[], 'clim', clim); end return; % plot_view %---------------------------------------------------------------- function h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, cbarminmax, ... level, handles, useimagesc, colorindex, color_map, ... colorlevel, highcolor, niiclass, numscan, nii_view) cbar_image = [1:level]'; % In a uint8 or uint16 indexed image, 0 points to the first row % in the colormap % if 0 % strcmpi(niiclass,'uint8') | strcmpi(niiclass,'uint16') % we use single for display anyway ylim = [0, level-1]; else ylim = [1, level]; end axes(cbarminmax_axes); plot([0 0], cbarminmax, 'w'); axis tight; set(cbarminmax_axes,'YDir','normal', ... 'XLimMode','manual','YLimMode','manual','YColor',[0 0 0], ... 'XColor',[0 0 0],'xtick',[],'YAxisLocation','right'); ylimb = get(cbarminmax_axes,'ylim'); ytickb = get(cbarminmax_axes,'ytick'); ytick=(ylim(2)-ylim(1))*(ytickb-ylimb(1))/(ylimb(2)-ylimb(1))+ylim(1); axes(cbar_axes); if ~exist('nii_view', 'var') nii_view = getappdata(fig, 'nii_view'); end if isempty(nii_view) | ~isfield(nii_view.handles,'cbar_image') | isempty(nii_view.handles.cbar_image) % set colormap first % nii.handles = handles; nii.colorindex = colorindex; nii.color_map = color_map; nii.colorlevel = colorlevel; nii.highcolor = highcolor; nii.numscan = numscan; change_colormap(fig, nii, colorindex, cbarminmax); h1 = image([0,1], [ylim(1),ylim(2)], cbar_image); else h1 = nii_view.handles.cbar_image; set(h1, 'cdata', double(cbar_image)); end set(cbar_axes,'YDir','normal','XLimMode','manual', ... 'YLimMode','manual','YColor',[0 0 0],'XColor',[0 0 0],'xtick',[], ... 'YAxisLocation','right','ylim',ylim,'ytick',ytick,'yticklabel',''); return; % plot_cbar %---------------------------------------------------------------- function set_coordinates(nii_view,useinterp) imgPlim.vox = nii_view.dims; imgNlim.vox = [1 1 1]; if useinterp xdata_ax = [imgNlim.vox(1) imgPlim.vox(1)]; ydata_ax = [imgNlim.vox(2) imgPlim.vox(2)]; zdata_ax = [imgNlim.vox(3) imgPlim.vox(3)]; else xdata_ax = [imgNlim.vox(1)-0.5 imgPlim.vox(1)+0.5]; ydata_ax = [imgNlim.vox(2)-0.5 imgPlim.vox(2)+0.5]; zdata_ax = [imgNlim.vox(3)-0.5 imgPlim.vox(3)+0.5]; end if isfield(nii_view.handles,'axial_image') & ~isempty(nii_view.handles.axial_image) set(nii_view.handles.axial_axes,'Xlim',xdata_ax); set(nii_view.handles.axial_axes,'Ylim',ydata_ax); end; if isfield(nii_view.handles,'coronal_image') & ~isempty(nii_view.handles.coronal_image) set(nii_view.handles.coronal_axes,'Xlim',xdata_ax); set(nii_view.handles.coronal_axes,'Ylim',zdata_ax); end; if isfield(nii_view.handles,'sagittal_image') & ~isempty(nii_view.handles.sagittal_image) set(nii_view.handles.sagittal_axes,'Xlim',ydata_ax); set(nii_view.handles.sagittal_axes,'Ylim',zdata_ax); end; return % set_coordinates %---------------------------------------------------------------- function set_image_value(nii_view), % get coordinates of selected voxel and the image intensity there % sag = round(nii_view.slices.sag); cor = round(nii_view.slices.cor); axi = round(nii_view.slices.axi); if 0 % isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if nii_view.nii.hdr.dime.datatype == 128 imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imval,'Value',imgvalue); set(nii_view.handles.imval,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); elseif nii_view.nii.hdr.dime.datatype == 511 R = double(img(sag,cor,axi,1,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; G = double(img(sag,cor,axi,2,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; B = double(img(sag,cor,axi,3,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imval,'Value',imgvalue); imgvalue = [R G B]; set(nii_view.handles.imval,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); else imgvalue = double(img(sag,cor,axi,nii_view.scanid)); set(nii_view.handles.imval,'Value',imgvalue); if isnan(imgvalue) | imgvalue > nii_view.cbarminmax(2) imgvalue = 0; end set(nii_view.handles.imval,'String',sprintf('%.6g',imgvalue)); end % Now update the coordinates of the selected voxel nii_view = update_imgXYZ(nii_view); if get(nii_view.handles.coord,'value') == 1, sag = nii_view.imgXYZ.vox(1); cor = nii_view.imgXYZ.vox(2); axi = nii_view.imgXYZ.vox(3); org = nii_view.origin; elseif get(nii_view.handles.coord,'value') == 2, sag = nii_view.imgXYZ.mm(1); cor = nii_view.imgXYZ.mm(2); axi = nii_view.imgXYZ.mm(3); org = [0 0 0]; elseif get(nii_view.handles.coord,'value') == 3, sag = nii_view.imgXYZ.tal(1); cor = nii_view.imgXYZ.tal(2); axi = nii_view.imgXYZ.tal(3); org = [0 0 0]; end set(nii_view.handles.impos,'Value',[sag,cor,axi]); if get(nii_view.handles.coord,'value') == 1, string = sprintf('%7.0f %7.0f %7.0f',sag,cor,axi); org_str = sprintf('%7.0f %7.0f %7.0f', org(1), org(2), org(3)); else string = sprintf('%7.1f %7.1f %7.1f',sag,cor,axi); org_str = sprintf('%7.1f %7.1f %7.1f', org(1), org(2), org(3)); end; set(nii_view.handles.impos,'String',string); set(nii_view.handles.origin, 'string', org_str); return % set_image_value %---------------------------------------------------------------- function nii_view = get_slice_position(nii_view,view), % obtain slices that is in correct unit, then update slices % slices = nii_view.slices; switch view, case 'sag', currentpoint = get(nii_view.handles.sagittal_axes,'CurrentPoint'); slices.cor = currentpoint(1,1); slices.axi = currentpoint(1,2); case 'cor', currentpoint = get(nii_view.handles.coronal_axes,'CurrentPoint'); slices.sag = currentpoint(1,1); slices.axi = currentpoint(1,2); case 'axi', currentpoint = get(nii_view.handles.axial_axes,'CurrentPoint'); slices.sag = currentpoint(1,1); slices.cor = currentpoint(1,2); end % update nii_view.slices with the updated slices % nii_view.slices.axi = round(slices.axi); nii_view.slices.cor = round(slices.cor); nii_view.slices.sag = round(slices.sag); return % get_slice_position %---------------------------------------------------------------- function nii_view = get_slider_position(nii_view), [nii_view.slices.sag,nii_view.slices.cor,nii_view.slices.axi] = deal(0); if isfield(nii_view.handles,'sagittal_slider'), if ishandle(nii_view.handles.sagittal_slider), nii_view.slices.sag = ... round(get(nii_view.handles.sagittal_slider,'Value')); end end if isfield(nii_view.handles,'coronal_slider'), if ishandle(nii_view.handles.coronal_slider), nii_view.slices.cor = ... round(nii_view.dims(2) - ... get(nii_view.handles.coronal_slider,'Value') + 1); end end if isfield(nii_view.handles,'axial_slider'), if ishandle(nii_view.handles.axial_slider), nii_view.slices.axi = ... round(get(nii_view.handles.axial_slider,'Value')); end end nii_view = check_slices(nii_view); return % get_slider_position %---------------------------------------------------------------- function nii_view = update_imgXYZ(nii_view), nii_view.imgXYZ.vox = ... [nii_view.slices.sag,nii_view.slices.cor,nii_view.slices.axi]; nii_view.imgXYZ.mm = ... (nii_view.imgXYZ.vox - nii_view.origin) .* nii_view.voxel_size; % nii_view.imgXYZ.tal = mni2tal(nii_view.imgXYZ.mni); return % update_imgXYZ %---------------------------------------------------------------- function nii_view = convert2voxel(nii_view,slices), if get(nii_view.handles.coord,'value') == 1, % [slices.axi, slices.cor, slices.sag] are in vox % nii_view.slices.axi = round(slices.axi); nii_view.slices.cor = round(slices.cor); nii_view.slices.sag = round(slices.sag); elseif get(nii_view.handles.coord,'value') == 2, % [slices.axi, slices.cor, slices.sag] are in mm % xpix = nii_view.voxel_size(1); ypix = nii_view.voxel_size(2); zpix = nii_view.voxel_size(3); nii_view.slices.axi = round(slices.axi / zpix + nii_view.origin(3)); nii_view.slices.cor = round(slices.cor / ypix + nii_view.origin(2)); nii_view.slices.sag = round(slices.sag / xpix + nii_view.origin(1)); elseif get(nii_view.handles.coord,'value') == 3, % [slices.axi, slices.cor, slices.sag] are in talairach % xpix = nii_view.voxel_size(1); ypix = nii_view.voxel_size(2); zpix = nii_view.voxel_size(3); xyz_tal = [slices.sag, slices.cor, slices.axi]; xyz_mni = tal2mni(xyz_tal); nii_view.slices.axi = round(xyz_mni(3) / zpix + nii_view.origin(3)); nii_view.slices.cor = round(xyz_mni(2) / ypix + nii_view.origin(2)); nii_view.slices.sag = round(xyz_mni(1) / xpix + nii_view.origin(1)); end return % convert2voxel %---------------------------------------------------------------- function nii_view = check_slices(nii_view), img = nii_view.nii.img; [ SagSize, CorSize, AxiSize, TimeSize ] = size(img); if nii_view.slices.sag > SagSize, nii_view.slices.sag = SagSize; end; if nii_view.slices.sag < 1, nii_view.slices.sag = 1; end; if nii_view.slices.cor > CorSize, nii_view.slices.cor = CorSize; end; if nii_view.slices.cor < 1, nii_view.slices.cor = 1; end; if nii_view.slices.axi > AxiSize, nii_view.slices.axi = AxiSize; end; if nii_view.slices.axi < 1, nii_view.slices.axi = 1; end; if nii_view.scanid > TimeSize, nii_view.scanid = TimeSize; end; if nii_view.scanid < 1, nii_view.scanid = 1; end; return % check_slices %---------------------------------------------------------------- % % keep this function small, since it will be called for every click % function nii_view = update_nii_view(nii_view) % add imgXYZ into nii_view struct % nii_view = check_slices(nii_view); nii_view = update_imgXYZ(nii_view); % update xhair % p_axi = nii_view.imgXYZ.vox([1 2]); p_cor = nii_view.imgXYZ.vox([1 3]); p_sag = nii_view.imgXYZ.vox([2 3]); nii_view.axi_xhair = ... rri_xhair(p_axi, nii_view.axi_xhair, nii_view.handles.axial_axes); nii_view.cor_xhair = ... rri_xhair(p_cor, nii_view.cor_xhair, nii_view.handles.coronal_axes); nii_view.sag_xhair = ... rri_xhair(p_sag, nii_view.sag_xhair, nii_view.handles.sagittal_axes); setappdata(nii_view.fig, 'nii_view', nii_view); set_image_value(nii_view); return; % update_nii_view %---------------------------------------------------------------- function hist_plot(fig) nii_view = getappdata(fig,'nii_view'); if isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end img = double(img(:)); if length(unique(round(img))) == length(unique(img)) is_integer = 1; range = max(img) - min(img) + 1; figure; hist(img, range); set(gca, 'xlim', [-range/5, max(img)]); else is_integer = 0; figure; hist(img); end xlabel('Voxel Intensity'); ylabel('Voxel Numbers for Each Intensity'); set(gcf, 'NumberTitle','off','Name','Histogram Plot'); return; % hist_plot %---------------------------------------------------------------- function hist_eq(fig) nii_view = getappdata(fig,'nii_view'); old_pointer = get(fig,'Pointer'); set(fig,'Pointer','watch'); if get(nii_view.handles.hist_eq,'value') max_img = double(max(nii_view.nii.img(:))); tmp = double(nii_view.nii.img) / max_img; % normalize for histeq tmp = histeq(tmp(:)); nii_view.disp = reshape(tmp, size(nii_view.nii.img)); min_disp = min(nii_view.disp(:)); nii_view.disp = (nii_view.disp - min_disp); % range having eq hist nii_view.disp = nii_view.disp * max_img / max(nii_view.disp(:)); nii_view.disp = single(nii_view.disp); else if isfield(nii_view, 'disp') nii_view.disp = nii_view.nii.img; else set(fig,'Pointer',old_pointer); return; end end % update axial view % img_slice = squeeze(double(nii_view.disp(:,:,nii_view.slices.axi))); h1 = nii_view.handles.axial_image; set(h1, 'cdata', double(img_slice)'); % update coronal view % img_slice = squeeze(double(nii_view.disp(:,nii_view.slices.cor,:))); h1 = nii_view.handles.coronal_image; set(h1, 'cdata', double(img_slice)'); % update sagittal view % img_slice = squeeze(double(nii_view.disp(nii_view.slices.sag,:,:))); h1 = nii_view.handles.sagittal_image; set(h1, 'cdata', double(img_slice)'); % remove disp field if un-check 'histeq' button % if ~get(nii_view.handles.hist_eq,'value') & isfield(nii_view, 'disp') nii_view = rmfield(nii_view, 'disp'); end update_nii_view(nii_view); set(fig,'Pointer',old_pointer); return; % hist_eq %---------------------------------------------------------------- function [top1_label, top2_label, side1_label, side2_label] = ... dir_label(fig, top_ax, front_ax, side_ax) nii_view = getappdata(fig,'nii_view'); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); top_gap_x = (side_pos(1)-top_pos(1)-top_pos(3)) / (2*top_pos(3)); top_gap_y = (front_pos(2)-top_pos(2)-top_pos(4)) / (2*top_pos(4)); side_gap_x = (side_pos(1)-top_pos(1)-top_pos(3)) / (2*side_pos(3)); side_gap_y = (front_pos(2)-top_pos(2)-top_pos(4)) / (2*side_pos(4)); top1_label_pos = [0, 1]; % rot0 top2_label_pos = [1, 0]; % rot90 side1_label_pos = [1, - side_gap_y]; % rot0 side2_label_pos = [0, 0]; % rot90 if isempty(nii_view) axes(top_ax); top1_label = text(double(top1_label_pos(1)),double(top1_label_pos(2)), ... '== X =>', ... 'vertical', 'bottom', ... 'unit', 'normal', 'fontsize', 8); axes(top_ax); top2_label = text(double(top2_label_pos(1)),double(top2_label_pos(2)), ... '== Y =>', ... 'rotation', 90, 'vertical', 'top', ... 'unit', 'normal', 'fontsize', 8); axes(side_ax); side1_label = text(double(side1_label_pos(1)),double(side1_label_pos(2)), ... '<= Y ==', ... 'horizontal', 'right', 'vertical', 'top', ... 'unit', 'normal', 'fontsize', 8); axes(side_ax); side2_label = text(double(side2_label_pos(1)),double(side2_label_pos(2)), ... '== Z =>', ... 'rotation', 90, 'vertical', 'bottom', ... 'unit', 'normal', 'fontsize', 8); else top1_label = nii_view.handles.top1_label; top2_label = nii_view.handles.top2_label; side1_label = nii_view.handles.side1_label; side2_label = nii_view.handles.side2_label; set(top1_label, 'position', [top1_label_pos 0]); set(top2_label, 'position', [top2_label_pos 0]); set(side1_label, 'position', [side1_label_pos 0]); set(side2_label, 'position', [side2_label_pos 0]); end return; % dir_label %---------------------------------------------------------------- function update_enable(h, opt); nii_view = getappdata(h,'nii_view'); handles = nii_view.handles; if isfield(opt,'enablecursormove') if opt.enablecursormove v = 'on'; else v = 'off'; end set(handles.Timposcur, 'visible', v); set(handles.imposcur, 'visible', v); set(handles.Timvalcur, 'visible', v); set(handles.imvalcur, 'visible', v); end if isfield(opt,'enableviewpoint') if opt.enableviewpoint v = 'on'; else v = 'off'; end set(handles.Timpos, 'visible', v); set(handles.impos, 'visible', v); set(handles.Timval, 'visible', v); set(handles.imval, 'visible', v); end if isfield(opt,'enableorigin') if opt.enableorigin v = 'on'; else v = 'off'; end set(handles.Torigin, 'visible', v); set(handles.origin, 'visible', v); end if isfield(opt,'enableunit') if opt.enableunit v = 'on'; else v = 'off'; end set(handles.Tcoord, 'visible', v); set(handles.coord_frame, 'visible', v); set(handles.coord, 'visible', v); end if isfield(opt,'enablecrosshair') if opt.enablecrosshair v = 'on'; else v = 'off'; end set(handles.Txhair, 'visible', v); set(handles.xhair_color, 'visible', v); set(handles.xhair, 'visible', v); end if isfield(opt,'enablehistogram') if opt.enablehistogram v = 'on'; vv = 'off'; else v = 'off'; vv = 'on'; end set(handles.Tcoord, 'visible', vv); set(handles.coord_frame, 'visible', vv); set(handles.coord, 'visible', vv); set(handles.Thist, 'visible', v); set(handles.hist_frame, 'visible', v); set(handles.hist_eq, 'visible', v); set(handles.hist_plot, 'visible', v); end if isfield(opt,'enablecolormap') if opt.enablecolormap v = 'on'; else v = 'off'; end set(handles.Tcolor, 'visible', v); set(handles.color_frame, 'visible', v); set(handles.neg_color, 'visible', v); set(handles.colorindex, 'visible', v); end if isfield(opt,'enablecontrast') if opt.enablecontrast v = 'on'; else v = 'off'; end set(handles.Tcontrast, 'visible', v); set(handles.contrast_frame, 'visible', v); set(handles.contrast_def, 'visible', v); set(handles.contrast, 'visible', v); end if isfield(opt,'enablebrightness') if opt.enablebrightness v = 'on'; else v = 'off'; end set(handles.Tbrightness, 'visible', v); set(handles.brightness_frame, 'visible', v); set(handles.brightness_def, 'visible', v); set(handles.brightness, 'visible', v); end if isfield(opt,'enabledirlabel') if opt.enabledirlabel v = 'on'; else v = 'off'; end set(handles.top1_label, 'visible', v); set(handles.top2_label, 'visible', v); set(handles.side1_label, 'visible', v); set(handles.side2_label, 'visible', v); end if isfield(opt,'enableslider') if opt.enableslider v = 'on'; else v = 'off'; end if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider, 'visible', v); end if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider, 'visible', v); end if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider, 'visible', v); end end return; % update_enable %---------------------------------------------------------------- function update_usepanel(fig, usepanel) if isempty(usepanel) return; end if usepanel opt.enablecursormove = 1; opt.enableviewpoint = 1; opt.enableorigin = 1; opt.enableunit = 1; opt.enablecrosshair = 1; % opt.enablehistogram = 1; opt.enablecolormap = 1; opt.enablecontrast = 1; opt.enablebrightness = 1; else opt.enablecursormove = 0; opt.enableviewpoint = 0; opt.enableorigin = 0; opt.enableunit = 0; opt.enablecrosshair = 0; % opt.enablehistogram = 0; opt.enablecolormap = 0; opt.enablecontrast = 0; opt.enablebrightness = 0; end update_enable(fig, opt); nii_view = getappdata(fig,'nii_view'); nii_view.usepanel = usepanel; setappdata(fig,'nii_view',nii_view); return; % update_usepanel %---------------------------------------------------------------- function update_usecrosshair(fig, usecrosshair) if isempty(usecrosshair) return; end if usecrosshair v=1; else v=2; end nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.xhair,'value',v); opt.command = 'crosshair'; view_nii(fig, opt); return; % update_usecrosshair %---------------------------------------------------------------- function update_usestretch(fig, usestretch) nii_view = getappdata(fig,'nii_view'); handles = nii_view.handles; fig = nii_view.fig; area = nii_view.area; vol_size = nii_view.voxel_size .* nii_view.dims; % Three Axes & label % [top_ax, front_ax, side_ax] = ... create_ax(fig, area, vol_size, usestretch); dir_label(fig, top_ax, front_ax, side_ax); top_pos = get(top_ax,'position'); front_pos = get(front_ax,'position'); side_pos = get(side_ax,'position'); % Sagittal Slider % x = side_pos(1); y = top_pos(2) + top_pos(4); w = side_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if isfield(handles,'sagittal_slider') & ishandle(handles.sagittal_slider) set(handles.sagittal_slider,'position',pos); end % Coronal Slider % x = top_pos(1); y = top_pos(2) + top_pos(4); w = top_pos(3); h = (front_pos(2) - y) / 2; y = y + h; pos = [x y w h]; if isfield(handles,'coronal_slider') & ishandle(handles.coronal_slider) set(handles.coronal_slider,'position',pos); end % Axial Slider % x = top_pos(1); y = area(2); w = top_pos(3); h = top_pos(2) - y; pos = [x y w h]; if isfield(handles,'axial_slider') & ishandle(handles.axial_slider) set(handles.axial_slider,'position',pos); end % plot info view % % info_pos = [side_pos([1,3]); top_pos([2,4])]; % info_pos = info_pos(:); gap = side_pos(1)-(top_pos(1)+top_pos(3)); info_pos(1) = side_pos(1) + gap; info_pos(2) = area(2); info_pos(3) = side_pos(3) - gap; info_pos(4) = top_pos(2) + top_pos(4) - area(2) - gap; num_inputline = 10; inputline_space =info_pos(4) / num_inputline; % Image Intensity Value at Cursor % x = info_pos(1); y = info_pos(2); w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; set(handles.Timvalcur,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imvalcur,'position',pos); % Position at Cursor % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timposcur,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imposcur,'position',pos); % Image Intensity Value at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timval,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.imval,'position',pos); % Viewpoint Position at Mouse Click % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Timpos,'position',pos); x = x + w + 0.005; y = y - 0.008; w = info_pos(3)*0.5; h = inputline_space*0.9; pos = [x y w h]; set(handles.impos,'position',pos); % Origin Position % x = info_pos(1); y = y + inputline_space*1.2; w = info_pos(3)*0.5; h = inputline_space*0.6; pos = [x y w h]; set(handles.Torigin,'position',pos); x = x + w; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.origin,'position',pos); if 0 % Axes Unit % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.5; pos = [x y w h]; set(handles.Tcoord,'position',pos); x = x + w + 0.005; w = info_pos(3)*0.5 - 0.005; pos = [x y w h]; set(handles.coord,'position',pos); end % Crosshair % x = info_pos(1); y = y + inputline_space; w = info_pos(3)*0.4; pos = [x y w h]; set(handles.Txhair,'position',pos); x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; set(handles.xhair_color,'position',pos); x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.3; pos = [x y w h]; set(handles.xhair,'position',pos); % Histogram & Color % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; set(handles.hist_frame,'position',pos); set(handles.coord_frame,'position',pos); x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; h = inputline_space * 1.5; pos = [x, y+inputline_space*0.9, w, h]; set(handles.color_frame,'position',pos); x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space*1.2; w = info_pos(3)*0.2; h = inputline_space*0.7; pos = [x y w h]; set(handles.hist_eq,'position',pos); x = x + w; w = info_pos(3)*0.2; pos = [x y w h]; set(handles.hist_plot,'position',pos); x = info_pos(1) + info_pos(3)*0.025; w = info_pos(3)*0.4; pos = [x y w h]; set(handles.coord,'position',pos); x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.2; pos = [x y w h]; set(handles.neg_color,'position',pos); x = info_pos(1) + info_pos(3)*0.7; w = info_pos(3)*0.275; pos = [x y w h]; set(handles.colorindex,'position',pos); x = info_pos(1) + info_pos(3)*0.1; y = y + inputline_space; w = info_pos(3)*0.28; h = inputline_space*0.6; pos = [x y w h]; set(handles.Thist,'position',pos); set(handles.Tcoord,'position',pos); x = info_pos(1) + info_pos(3)*0.60; w = info_pos(3)*0.28; pos = [x y w h]; set(handles.Tcolor,'position',pos); % Contrast Frame % x = info_pos(1); w = info_pos(3)*0.45; h = inputline_space * 2; pos = [x, y+inputline_space*0.8, w, h]; set(handles.contrast_frame,'position',pos); % Brightness Frame % x = info_pos(1) + info_pos(3)*0.475; w = info_pos(3)*0.525; pos = [x, y+inputline_space*0.8, w, h]; set(handles.brightness_frame,'position',pos); % Contrast % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.4; h = inputline_space*0.6; pos = [x y w h]; set(handles.contrast,'position',pos); % Brightness % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.475; pos = [x y w h]; set(handles.brightness,'position',pos); % Contrast text/def % x = info_pos(1) + info_pos(3)*0.025; y = y + inputline_space; w = info_pos(3)*0.22; pos = [x y w h]; set(handles.Tcontrast,'position',pos); x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; set(handles.contrast_def,'position',pos); % Brightness text/def % x = info_pos(1) + info_pos(3)*0.5; w = info_pos(3)*0.295; pos = [x y w h]; set(handles.Tbrightness,'position',pos); x = x + w; w = info_pos(3)*0.18; pos = [x y w h]; set(handles.brightness_def,'position',pos); return; % update_usestretch %---------------------------------------------------------------- function update_useinterp(fig, useinterp) if isempty(useinterp) return; end nii_menu = getappdata(fig, 'nii_menu'); if ~isempty(nii_menu) if get(nii_menu.Minterp,'user') set(nii_menu.Minterp,'Userdata',0,'Label','Interp off'); else set(nii_menu.Minterp,'Userdata',1,'Label','Interp on'); end end nii_view = getappdata(fig, 'nii_view'); nii_view.useinterp = useinterp; if ~isempty(nii_view.handles.axial_image) if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end elseif ~isempty(nii_view.handles.coronal_image) if strcmpi(get(nii_view.handles.coronal_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end else if strcmpi(get(nii_view.handles.sagittal_image,'cdatamapping'), 'direct') useimagesc = 0; else useimagesc = 1; end end if ~isempty(nii_view.handles.axial_image) img_slice = get(nii_view.handles.axial_image, 'cdata'); delete(nii_view.handles.axial_image); axes(nii_view.handles.axial_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.axial_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.axial_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.axial_image = imagesc('cdata',img_slice); else nii_view.handles.axial_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.axial_image)) = []; order = [order; nii_view.handles.axial_image]; if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) order(find(order == nii_view.handles.axial_bg)) = []; order = [order; nii_view.handles.axial_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'axial_bg') & ~isempty(nii_view.handles.axial_bg) delete(nii_view.handles.axial_bg); nii_view.handles.axial_bg = []; end end set(nii_view.handles.axial_image,'buttondown','view_nii(''axial_image'');'); end if ~isempty(nii_view.handles.coronal_image) img_slice = get(nii_view.handles.coronal_image, 'cdata'); delete(nii_view.handles.coronal_image); axes(nii_view.handles.coronal_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.coronal_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.coronal_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.coronal_image = imagesc('cdata',img_slice); else nii_view.handles.coronal_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.coronal_image)) = []; order = [order; nii_view.handles.coronal_image]; if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) order(find(order == nii_view.handles.coronal_bg)) = []; order = [order; nii_view.handles.coronal_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'coronal_bg') & ~isempty(nii_view.handles.coronal_bg) delete(nii_view.handles.coronal_bg); nii_view.handles.coronal_bg = []; end end set(nii_view.handles.coronal_image,'buttondown','view_nii(''coronal_image'');'); end if ~isempty(nii_view.handles.sagittal_image) img_slice = get(nii_view.handles.sagittal_image, 'cdata'); delete(nii_view.handles.sagittal_image); axes(nii_view.handles.sagittal_axes); clim = get(gca,'clim'); if useinterp if useimagesc nii_view.handles.sagittal_image = surface(zeros(size(img_slice)),double(img_slice),'edgecolor','none','facecolor','interp'); else nii_view.handles.sagittal_image = surface(zeros(size(img_slice)),double(img_slice),'cdatamapping','direct','edgecolor','none','facecolor','interp'); end else if useimagesc nii_view.handles.sagittal_image = imagesc('cdata',img_slice); else nii_view.handles.sagittal_image = image('cdata',img_slice); end end set(gca,'clim',clim); order = get(gca,'child'); order(find(order == nii_view.handles.sagittal_image)) = []; order = [order; nii_view.handles.sagittal_image]; if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) order(find(order == nii_view.handles.sagittal_bg)) = []; order = [order; nii_view.handles.sagittal_bg]; end set(gca, 'child', order); if ~useinterp if isfield(nii_view.handles,'sagittal_bg') & ~isempty(nii_view.handles.sagittal_bg) delete(nii_view.handles.sagittal_bg); nii_view.handles.sagittal_bg = []; end end set(nii_view.handles.sagittal_image,'buttondown','view_nii(''sagittal_image'');'); end if ~useinterp nii_view.bgimg = []; end set_coordinates(nii_view,useinterp); setappdata(fig, 'nii_view', nii_view); return; % update_useinterp %---------------------------------------------------------------- function update_useimagesc(fig, useimagesc) if isempty(useimagesc) return; end if useimagesc v='scaled'; else v='direct'; end nii_view = getappdata(fig,'nii_view'); handles = nii_view.handles; if isfield(handles,'cbar_image') & ishandle(handles.cbar_image) % set(handles.cbar_image,'cdatamapping',v); end set(handles.axial_image,'cdatamapping',v); set(handles.coronal_image,'cdatamapping',v); set(handles.sagittal_image,'cdatamapping',v); return; % update_useimagesc %---------------------------------------------------------------- function update_shape(fig, area, usecolorbar, usestretch, useimagesc) nii_view = getappdata(fig,'nii_view'); if isempty(usestretch) % no change, get usestretch stretchchange = 0; usestretch = nii_view.usestretch; else % change, set usestretch stretchchange = 1; nii_view.usestretch = usestretch; end if isempty(area) % no change, get area areachange = 0; area = nii_view.area; elseif ~isempty(nii_view.cbar_area) % change, set area & cbar_area areachange = 1; cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); nii_view.area = area; nii_view.cbar_area = cbar_area; else % change, set area only areachange = 1; nii_view.area = area; end % Add colorbar % if ~isempty(usecolorbar) & usecolorbar & isempty(nii_view.cbar_area) colorbarchange = 1; cbar_area = area; cbar_area(1) = area(1) + area(3)*0.93; cbar_area(3) = area(3)*0.04; area(3) = area(3)*0.9; % 90% used for main axes % create axes for colorbar % [cbar_axes cbarminmax_axes] = create_cbar_axes(fig, cbar_area); nii_view.area = area; nii_view.cbar_area = cbar_area; % useimagesc follows axial image % if isempty(useimagesc) if strcmpi(get(nii_view.handles.axial_image,'cdatamap'),'scaled') useimagesc = 1; else useimagesc = 0; end end if isfield(nii_view, 'highcolor') & ~isempty(highcolor) num_highcolor = size(nii_view.highcolor,1); else num_highcolor = 0; end if isfield(nii_view, 'colorlevel') & ~isempty(nii_view.colorlevel) colorlevel = nii_view.colorlevel; else colorlevel = 256 - num_highcolor; end if isfield(nii_view, 'color_map') color_map = nii_view.color_map; else color_map = []; end if isfield(nii_view, 'highcolor') highcolor = nii_view.highcolor; else highcolor = []; end % plot colorbar % if 0 if isempty(color_map) level = colorlevel + num_highcolor; else level = size([color_map; highcolor], 1); end end if isempty(color_map) level = colorlevel; else level = size([color_map], 1); end cbar_image = [1:level]'; niiclass = class(nii_view.nii.img); h1 = plot_cbar(fig, cbar_axes, cbarminmax_axes, nii_view.cbarminmax, ... level, nii_view.handles, useimagesc, nii_view.colorindex, ... color_map, colorlevel, highcolor, niiclass, nii_view.numscan); nii_view.handles.cbar_image = h1; nii_view.handles.cbar_axes = cbar_axes; nii_view.handles.cbarminmax_axes = cbar_axes; % remove colorbar % elseif ~isempty(usecolorbar) & ~usecolorbar & ~isempty(nii_view.cbar_area) colorbarchange = 1; area(3) = area(3) / 0.9; nii_view.area = area; nii_view.cbar_area = []; nii_view.handles = rmfield(nii_view.handles,'cbar_image'); delete(nii_view.handles.cbarminmax_axes); nii_view.handles = rmfield(nii_view.handles,'cbarminmax_axes'); delete(nii_view.handles.cbar_axes); nii_view.handles = rmfield(nii_view.handles,'cbar_axes'); else colorbarchange = 0; end if colorbarchange | stretchchange | areachange setappdata(fig,'nii_view',nii_view); update_usestretch(fig, usestretch); end return; % update_shape %---------------------------------------------------------------- function update_unit(fig, setunit) if isempty(setunit) return; end if strcmpi(setunit,'mm') | strcmpi(setunit,'millimeter') | strcmpi(setunit,'mni') v = 2; % elseif strcmpi(setunit,'tal') | strcmpi(setunit,'talairach') % v = 3; elseif strcmpi(setunit,'vox') | strcmpi(setunit,'voxel') v = 1; else v = 1; end nii_view = getappdata(fig,'nii_view'); set(nii_view.handles.coord, 'value', v); set_image_value(nii_view); return; % update_unit %---------------------------------------------------------------- function update_viewpoint(fig, setviewpoint) if isempty(setviewpoint) return; end nii_view = getappdata(fig,'nii_view'); if length(setviewpoint) ~= 3 error('Viewpoint position should contain [x y z]'); end set(nii_view.handles.impos,'string',num2str(setviewpoint)); opt.command = 'impos_edit'; view_nii(fig, opt); set(nii_view.handles.axial_axes,'selected','on'); set(nii_view.handles.axial_axes,'selected','off'); set(nii_view.handles.coronal_axes,'selected','on'); set(nii_view.handles.coronal_axes,'selected','off'); set(nii_view.handles.sagittal_axes,'selected','on'); set(nii_view.handles.sagittal_axes,'selected','off'); return; % update_viewpoint %---------------------------------------------------------------- function update_scanid(fig, setscanid) if isempty(setscanid) return; end nii_view = getappdata(fig,'nii_view'); if setscanid < 1 setscanid = 1; end if setscanid > nii_view.numscan setscanid = nii_view.numscan; end set(nii_view.handles.contrast_def,'string',num2str(setscanid)); set(nii_view.handles.contrast,'value',setscanid); opt.command = 'updateimg'; opt.setscanid = setscanid; view_nii(fig, nii_view.nii.img, opt); return; % update_scanid %---------------------------------------------------------------- function update_crosshaircolor(fig, new_color) if isempty(new_color) return; end nii_view = getappdata(fig,'nii_view'); xhair_color = nii_view.handles.xhair_color; set(xhair_color,'user',new_color); set(nii_view.axi_xhair.lx,'color',new_color); set(nii_view.axi_xhair.ly,'color',new_color); set(nii_view.cor_xhair.lx,'color',new_color); set(nii_view.cor_xhair.ly,'color',new_color); set(nii_view.sag_xhair.lx,'color',new_color); set(nii_view.sag_xhair.ly,'color',new_color); return; % update_crosshaircolor %---------------------------------------------------------------- function update_colorindex(fig, colorindex) if isempty(colorindex) return; end nii_view = getappdata(fig,'nii_view'); nii_view.colorindex = colorindex; setappdata(fig, 'nii_view', nii_view); set(nii_view.handles.colorindex,'value',colorindex); opt.command = 'color'; view_nii(fig, opt); return; % update_colorindex %---------------------------------------------------------------- function redraw_cbar(fig, colorlevel, color_map, highcolor) nii_view = getappdata(fig,'nii_view'); if isempty(nii_view.cbar_area) return; end colorindex = nii_view.colorindex; if isempty(highcolor) num_highcolor = 0; else num_highcolor = size(highcolor,1); end if isempty(colorlevel) colorlevel=256; end if colorindex == 1 colorlevel = size(color_map, 1); end % level = colorlevel + num_highcolor; level = colorlevel; cbar_image = [1:level]'; cbar_area = nii_view.cbar_area; % useimagesc follows axial image % if strcmpi(get(nii_view.handles.axial_image,'cdatamap'),'scaled') useimagesc = 1; else useimagesc = 0; end niiclass = class(nii_view.nii.img); delete(nii_view.handles.cbar_image); delete(nii_view.handles.cbar_axes); delete(nii_view.handles.cbarminmax_axes); [nii_view.handles.cbar_axes nii_view.handles.cbarminmax_axes] = ... create_cbar_axes(fig, cbar_area, []); nii_view.handles.cbar_image = plot_cbar(fig, ... nii_view.handles.cbar_axes, nii_view.handles.cbarminmax_axes, ... nii_view.cbarminmax, level, nii_view.handles, useimagesc, ... colorindex, color_map, colorlevel, highcolor, niiclass, ... nii_view.numscan, []); setappdata(fig, 'nii_view', nii_view); return; % redraw_cbar %---------------------------------------------------------------- function update_buttondown(fig, setbuttondown) if isempty(setbuttondown) return; end nii_view = getappdata(fig,'nii_view'); nii_view.buttondown = setbuttondown; setappdata(fig, 'nii_view', nii_view); return; % update_buttondown %---------------------------------------------------------------- function update_cbarminmax(fig, cbarminmax) if isempty(cbarminmax) return; end nii_view = getappdata(fig, 'nii_view'); if ~isfield(nii_view.handles, 'cbarminmax_axes') return; end nii_view.cbarminmax = cbarminmax; setappdata(fig, 'nii_view', nii_view); axes(nii_view.handles.cbarminmax_axes); plot([0 0], cbarminmax, 'w'); axis tight; set(nii_view.handles.cbarminmax_axes,'YDir','normal', ... 'XLimMode','manual','YLimMode','manual','YColor',[0 0 0], ... 'XColor',[0 0 0],'xtick',[],'YAxisLocation','right'); ylim = get(nii_view.handles.cbar_axes,'ylim'); ylimb = get(nii_view.handles.cbarminmax_axes,'ylim'); ytickb = get(nii_view.handles.cbarminmax_axes,'ytick'); ytick=(ylim(2)-ylim(1))*(ytickb-ylimb(1))/(ylimb(2)-ylimb(1))+ylim(1); axes(nii_view.handles.cbar_axes); set(nii_view.handles.cbar_axes,'YDir','normal','XLimMode','manual', ... 'YLimMode','manual','YColor',[0 0 0],'XColor',[0 0 0],'xtick',[], ... 'YAxisLocation','right','ylim',ylim,'ytick',ytick,'yticklabel',''); return; % update_cbarminmax %---------------------------------------------------------------- function update_highcolor(fig, highcolor, colorlevel) nii_view = getappdata(fig,'nii_view'); if ischar(highcolor) & (isempty(colorlevel) | nii_view.colorindex == 1) return; end if ~ischar(highcolor) nii_view.highcolor = highcolor; if isempty(highcolor) nii_view = rmfield(nii_view, 'highcolor'); end else highcolor = []; end if isempty(colorlevel) | nii_view.colorindex == 1 nii_view.colorlevel = nii_view.colorlevel - size(highcolor,1); else nii_view.colorlevel = colorlevel; end setappdata(fig, 'nii_view', nii_view); if isfield(nii_view,'color_map') color_map = nii_view.color_map; else color_map = []; end redraw_cbar(fig, nii_view.colorlevel, color_map, highcolor); change_colormap(fig); return; % update_highcolor %---------------------------------------------------------------- function update_colormap(fig, color_map) if ischar(color_map) return; end nii_view = getappdata(fig,'nii_view'); nii = nii_view.nii; minvalue = nii_view.minvalue; if isempty(color_map) if minvalue < 0 colorindex = 2; else colorindex = 3; end nii_view = rmfield(nii_view, 'color_map'); setappdata(fig,'nii_view',nii_view); update_colorindex(fig, colorindex); return; else colorindex = 1; nii_view.color_map = color_map; nii_view.colorindex = colorindex; setappdata(fig,'nii_view',nii_view); set(nii_view.handles.colorindex,'value',colorindex); end colorlevel = nii_view.colorlevel; if isfield(nii_view, 'highcolor') highcolor = nii_view.highcolor; else highcolor = []; end redraw_cbar(fig, colorlevel, color_map, highcolor); change_colormap(fig); opt.enablecontrast = 0; update_enable(fig, opt); return; % update_colormap %---------------------------------------------------------------- function status = get_status(h); nii_view = getappdata(h,'nii_view'); status.fig = h; status.area = nii_view.area; if isempty(nii_view.cbar_area) status.usecolorbar = 0; else status.usecolorbar = 1; width = status.area(3) / 0.9; status.area(3) = width; end if strcmpi(get(nii_view.handles.imval,'visible'), 'on') status.usepanel = 1; else status.usepanel = 0; end if get(nii_view.handles.xhair,'value') == 1 status.usecrosshair = 1; else status.usecrosshair = 0; end status.usestretch = nii_view.usestretch; if strcmpi(get(nii_view.handles.axial_image,'cdatamapping'), 'direct') status.useimagesc = 0; else status.useimagesc = 1; end status.useinterp = nii_view.useinterp; if get(nii_view.handles.coord,'value') == 1 status.unit = 'vox'; elseif get(nii_view.handles.coord,'value') == 2 status.unit = 'mm'; elseif get(nii_view.handles.coord,'value') == 3 status.unit = 'tal'; end status.viewpoint = get(nii_view.handles.impos,'value'); status.scanid = nii_view.scanid; status.intensity = get(nii_view.handles.imval,'value'); status.colorindex = get(nii_view.handles.colorindex,'value'); if isfield(nii_view,'color_map') status.colormap = nii_view.color_map; else status.colormap = []; end status.colorlevel = nii_view.colorlevel; if isfield(nii_view,'highcolor') status.highcolor = nii_view.highcolor; else status.highcolor = []; end status.cbarminmax = nii_view.cbarminmax; status.buttondown = nii_view.buttondown; return; % get_status %---------------------------------------------------------------- function [custom_color_map, colorindex] ... = change_colormap(fig, nii, colorindex, cbarminmax) custom_color_map = []; if ~exist('nii', 'var') nii_view = getappdata(fig,'nii_view'); else nii_view = nii; end if ~exist('colorindex', 'var') colorindex = get(nii_view.handles.colorindex,'value'); end if ~exist('cbarminmax', 'var') cbarminmax = nii_view.cbarminmax; end if isfield(nii_view, 'highcolor') & ~isempty(nii_view.highcolor) highcolor = nii_view.highcolor; num_highcolor = size(highcolor,1); else highcolor = []; num_highcolor = 0; end % if isfield(nii_view, 'colorlevel') & ~isempty(nii_view.colorlevel) if nii_view.colorlevel < 256 num_color = nii_view.colorlevel; else num_color = 256 - num_highcolor; end contrast = []; if colorindex == 3 % for gray if nii_view.numscan > 1 contrast = 1; else contrast = (num_color-1)*(get(nii_view.handles.contrast,'value')-1)/255+1; contrast = floor(contrast); end elseif colorindex == 2 % for bipolar if nii_view.numscan > 1 contrast = 128; else contrast = get(nii_view.handles.contrast,'value'); end end if isfield(nii_view,'color_map') & ~isempty(nii_view.color_map) color_map = nii_view.color_map; custom_color_map = color_map; elseif colorindex == 1 [f p] = uigetfile('*.txt', 'Input colormap text file'); if p==0 colorindex = nii_view.colorindex; set(nii_view.handles.colorindex,'value',colorindex); return; end; try custom_color_map = load(fullfile(p,f)); loadfail = 0; catch loadfail = 1; end if loadfail | isempty(custom_color_map) | size(custom_color_map,2)~=3 ... | min(custom_color_map(:)) < 0 | max(custom_color_map(:)) > 1 msg = 'Colormap should be a Mx3 matrix with value between 0 and 1'; msgbox(msg,'Error in colormap file'); colorindex = nii_view.colorindex; set(nii_view.handles.colorindex,'value',colorindex); return; end color_map = custom_color_map; nii_view.color_map = color_map; end switch colorindex case {2} color_map = bipolar(num_color, cbarminmax(1), cbarminmax(2), contrast); case {3} color_map = gray(num_color - contrast + 1); case {4} color_map = jet(num_color); case {5} color_map = cool(num_color); case {6} color_map = bone(num_color); case {7} color_map = hot(num_color); case {8} color_map = copper(num_color); case {9} color_map = pink(num_color); end nii_view.colorindex = colorindex; if ~exist('nii', 'var') setappdata(fig,'nii_view',nii_view); end if colorindex == 3 color_map = [zeros(contrast,3); color_map(2:end,:)]; end if get(nii_view.handles.neg_color,'value') & isempty(highcolor) color_map = flipud(color_map); elseif get(nii_view.handles.neg_color,'value') & ~isempty(highcolor) highcolor = flipud(highcolor); end brightness = get(nii_view.handles.brightness,'value'); color_map = brighten(color_map, brightness); color_map = [color_map; highcolor]; set(fig, 'colormap', color_map); return; % change_colormap %---------------------------------------------------------------- function move_cursor(fig) nii_view = getappdata(fig, 'nii_view'); if isempty(nii_view) return; end axi = get(nii_view.handles.axial_axes, 'pos'); cor = get(nii_view.handles.coronal_axes, 'pos'); sag = get(nii_view.handles.sagittal_axes, 'pos'); curr = get(fig, 'currentpoint'); if curr(1) >= axi(1) & curr(1) <= axi(1)+axi(3) & ... curr(2) >= axi(2) & curr(2) <= axi(2)+axi(4) curr = get(nii_view.handles.axial_axes, 'current'); sag = curr(1,1); cor = curr(1,2); axi = nii_view.slices.axi; elseif curr(1) >= cor(1) & curr(1) <= cor(1)+cor(3) & ... curr(2) >= cor(2) & curr(2) <= cor(2)+cor(4) curr = get(nii_view.handles.coronal_axes, 'current'); sag = curr(1,1); cor = nii_view.slices.cor; axi = curr(1,2); elseif curr(1) >= sag(1) & curr(1) <= sag(1)+sag(3) & ... curr(2) >= sag(2) & curr(2) <= sag(2)+sag(4) curr = get(nii_view.handles.sagittal_axes, 'current'); sag = nii_view.slices.sag; cor = curr(1,1); axi = curr(1,2); else set(nii_view.handles.imvalcur,'String',' '); set(nii_view.handles.imposcur,'String',' '); return; end sag = round(sag); cor = round(cor); axi = round(axi); if sag < 1 sag = 1; elseif sag > nii_view.dims(1) sag = nii_view.dims(1); end if cor < 1 cor = 1; elseif cor > nii_view.dims(2) cor = nii_view.dims(2); end if axi < 1 axi = 1; elseif axi > nii_view.dims(3) axi = nii_view.dims(3); end if 0 % isfield(nii_view, 'disp') img = nii_view.disp; else img = nii_view.nii.img; end if nii_view.nii.hdr.dime.datatype == 128 imgvalue = [double(img(sag,cor,axi,1,nii_view.scanid)) double(img(sag,cor,axi,2,nii_view.scanid)) double(img(sag,cor,axi,3,nii_view.scanid))]; set(nii_view.handles.imvalcur,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); elseif nii_view.nii.hdr.dime.datatype == 511 R = double(img(sag,cor,axi,1,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; G = double(img(sag,cor,axi,2,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; B = double(img(sag,cor,axi,3,nii_view.scanid)) * (nii_view.nii.hdr.dime.glmax - ... nii_view.nii.hdr.dime.glmin) + nii_view.nii.hdr.dime.glmin; imgvalue = [R G B]; set(nii_view.handles.imvalcur,'String',sprintf('%7.4g %7.4g %7.4g',imgvalue)); else imgvalue = double(img(sag,cor,axi,nii_view.scanid)); if isnan(imgvalue) | imgvalue > nii_view.cbarminmax(2) imgvalue = 0; end set(nii_view.handles.imvalcur,'String',sprintf('%.6g',imgvalue)); end nii_view.slices.sag = sag; nii_view.slices.cor = cor; nii_view.slices.axi = axi; nii_view = update_imgXYZ(nii_view); if get(nii_view.handles.coord,'value') == 1, sag = nii_view.imgXYZ.vox(1); cor = nii_view.imgXYZ.vox(2); axi = nii_view.imgXYZ.vox(3); elseif get(nii_view.handles.coord,'value') == 2, sag = nii_view.imgXYZ.mm(1); cor = nii_view.imgXYZ.mm(2); axi = nii_view.imgXYZ.mm(3); elseif get(nii_view.handles.coord,'value') == 3, sag = nii_view.imgXYZ.tal(1); cor = nii_view.imgXYZ.tal(2); axi = nii_view.imgXYZ.tal(3); end if get(nii_view.handles.coord,'value') == 1, string = sprintf('%7.0f %7.0f %7.0f',sag,cor,axi); else string = sprintf('%7.1f %7.1f %7.1f',sag,cor,axi); end; set(nii_view.handles.imposcur,'String',string); return; % move_cursor %---------------------------------------------------------------- function change_scan(hdl_str) fig = gcbf; nii_view = getappdata(fig,'nii_view'); if strcmpi(hdl_str, 'edit_change_scan') % edit hdl = nii_view.handles.contrast_def; setscanid = round(str2num(get(hdl, 'string'))); else % slider hdl = nii_view.handles.contrast; setscanid = round(get(hdl, 'value')); end update_scanid(fig, setscanid); return; % change_scan %---------------------------------------------------------------- function val = scale_in(val, minval, maxval, range) % scale value into range % val = range*(double(val)-double(minval))/(double(maxval)-double(minval))+1; return; % scale_in %---------------------------------------------------------------- function val = scale_out(val, minval, maxval, range) % according to [minval maxval] and range of color levels (e.g. 199) % scale val back from any thing between 1~256 to a small number that % is corresonding to [minval maxval]. % val = (double(val)-1)*(double(maxval)-double(minval))/range+double(minval); return; % scale_out
github
philippboehmsturm/antx-master
mat_into_hdr.m
.m
antx-master/mritools/others/nii/mat_into_hdr.m
2,691
utf_8
847d96698f45f7c5e7decbb3a0c3187f
%MAT_INTO_HDR The old versions of SPM (any version before SPM5) store % an affine matrix of the SPM Reoriented image into a matlab file % (.mat extension). The file name of this SPM matlab file is the % same as the SPM Reoriented image file (.img/.hdr extension). % % This program will convert the ANALYZE 7.5 SPM Reoriented image % file into NIfTI format, and integrate the affine matrix in the % SPM matlab file into its header file (.hdr extension). % % WARNING: Before you run this program, please save the header % file (.hdr extension) into another file name or into another % folder location, because all header files (.hdr extension) % will be overwritten after they are converted into NIfTI % format. % % Usage: mat_into_hdr(filename); % % filename: file name(s) with .hdr or .mat file extension, like: % '*.hdr', or '*.mat', or a single .hdr or .mat file. % e.g. mat_into_hdr('T1.hdr') % mat_into_hdr('*.mat') % % - Jimmy Shen ([email protected]) % %------------------------------------------------------------------------- function mat_into_hdr(files) pn = fileparts(files); file_lst = dir(files); file_lst = {file_lst.name}; file1 = file_lst{1}; [p n e]= fileparts(file1); for i=1:length(file_lst) [p n e]= fileparts(file_lst{i}); disp(['working on file ', num2str(i) ,' of ', num2str(length(file_lst)), ': ', n,e]); process=1; if isequal(e,'.hdr') mat=fullfile(pn, [n,'.mat']); hdr=fullfile(pn, file_lst{i}); if ~exist(mat,'file') warning(['Cannot find file "',mat , '". File "', n, e, '" will not be processed.']); process=0; end elseif isequal(e,'.mat') hdr=fullfile(pn, [n,'.hdr']); mat=fullfile(pn, file_lst{i}); if ~exist(hdr,'file') warning(['Can not find file "',hdr , '". File "', n, e, '" will not be processed.']); process=0; end else warning(['Input file must have .mat or .hdr extension. File "', n, e, '" will not be processed.']); process=0; end if process load(mat); R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; [h filetype fileprefix machine]=load_nii_hdr(hdr); h.hist.qform_code=0; h.hist.sform_code=1; h.hist.srow_x=M(1,:); h.hist.srow_y=M(2,:); h.hist.srow_z=M(3,:); h.hist.magic='ni1'; fid = fopen(hdr,'w',machine); save_nii_hdr(h,fid); fclose(fid); end end return; % mat_into_hdr
github
philippboehmsturm/antx-master
xform_nii.m
.m
antx-master/mritools/others/nii/xform_nii.m
18,628
utf_8
e39c421e7f117cbc81c56e9d023774a3
% internal function % 'xform_nii.m' is an internal function called by "load_nii.m", so % you do not need run this program by yourself. It does simplified % NIfTI sform/qform affine transform, and supports some of the % affine transforms, including translation, reflection, and % orthogonal rotation (N*90 degree). % % For other affine transforms, e.g. any degree rotation, shearing % etc. you will have to use the included 'reslice_nii.m' program % to reslice the image volume. 'reslice_nii.m' is not called by % any other program, and you have to run 'reslice_nii.m' explicitly % for those NIfTI files that you want to reslice them. % % Since 'xform_nii.m' does not involve any interpolation or any % slice change, the original image volume is supposed to be % untouched, although it is translated, reflected, or even % orthogonally rotated, based on the affine matrix in the % NIfTI header. % % However, the affine matrix in the header of a lot NIfTI files % contain slightly non-orthogonal rotation. Therefore, optional % input parameter 'tolerance' is used to allow some distortion % in the loaded image for any non-orthogonal rotation or shearing % of NIfTI affine matrix. If you set 'tolerance' to 0, it means % that you do not allow any distortion. If you set 'tolerance' to % 1, it means that you do not care any distortion. The image will % fail to be loaded if it can not be tolerated. The tolerance will % be set to 0.1 (10%), if it is default or empty. % % Because 'reslice_nii.m' has to perform 3D interpolation, it can % be slow depending on image size and affine matrix in the header. % % After you perform the affine transform, the 'nii' structure % generated from 'xform_nii.m' or new NIfTI file created from % 'reslice_nii.m' will be in RAS orientation, i.e. X axis from % Left to Right, Y axis from Posterior to Anterior, and Z axis % from Inferior to Superior. % % NOTE: This function should be called immediately after load_nii. % % Usage: [ nii ] = xform_nii(nii, [tolerance], [preferredForm]) % % nii - NIFTI structure (returned from load_nii) % % tolerance (optional) - distortion allowed for non-orthogonal rotation % or shearing in NIfTI affine matrix. It will be set to 0.1 (10%), % if it is default or empty. % % preferredForm (optional) - selects which transformation from voxels % to RAS coordinates; values are s,q,S,Q. Lower case s,q indicate % "prefer sform or qform, but use others if preferred not present". % Upper case indicate the program is forced to use the specificied % tranform or fail loading. 'preferredForm' will be 's', if it is % default or empty. - Jeff Gunter % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function nii = xform_nii(nii, tolerance, preferredForm) % save a copy of the header as it was loaded. This is the % header before any sform, qform manipulation is done. % nii.original.hdr = nii.hdr; if ~exist('tolerance','var') | isempty(tolerance) tolerance = 0.1; elseif(tolerance<=0) tolerance = eps; end if ~exist('preferredForm','var') | isempty(preferredForm) preferredForm= 's'; % Jeff end % if scl_slope field is nonzero, then each voxel value in the % dataset should be scaled as: y = scl_slope * x + scl_inter % I bring it here because hdr will be modified by change_hdr. % if nii.hdr.dime.scl_slope ~= 0 & ... ismember(nii.hdr.dime.datatype, [2,4,8,16,64,256,512,768]) & ... (nii.hdr.dime.scl_slope ~= 1 | nii.hdr.dime.scl_inter ~= 0) nii.img = ... nii.hdr.dime.scl_slope * double(nii.img) + nii.hdr.dime.scl_inter; if nii.hdr.dime.datatype == 64 nii.hdr.dime.datatype = 64; nii.hdr.dime.bitpix = 64; else nii.img = single(nii.img); nii.hdr.dime.datatype = 16; nii.hdr.dime.bitpix = 32; end nii.hdr.dime.glmax = max(double(nii.img(:))); nii.hdr.dime.glmin = min(double(nii.img(:))); % set scale to non-use, because it is applied in xform_nii % nii.hdr.dime.scl_slope = 0; end % However, the scaling is to be ignored if datatype is DT_RGB24. % If datatype is a complex type, then the scaling is to be applied % to both the real and imaginary parts. % if nii.hdr.dime.scl_slope ~= 0 & ... ismember(nii.hdr.dime.datatype, [32,1792]) nii.img = ... nii.hdr.dime.scl_slope * double(nii.img) + nii.hdr.dime.scl_inter; if nii.hdr.dime.datatype == 32 nii.img = single(nii.img); end nii.hdr.dime.glmax = max(double(nii.img(:))); nii.hdr.dime.glmin = min(double(nii.img(:))); % set scale to non-use, because it is applied in xform_nii % nii.hdr.dime.scl_slope = 0; end % There is no need for this program to transform Analyze data % if nii.filetype == 0 & exist([nii.fileprefix '.mat'],'file') load([nii.fileprefix '.mat']); % old SPM affine matrix R=M(1:3,1:3); T=M(1:3,4); T=R*ones(3,1)+T; M(1:3,4)=T; nii.hdr.hist.qform_code=0; nii.hdr.hist.sform_code=1; nii.hdr.hist.srow_x=M(1,:); nii.hdr.hist.srow_y=M(2,:); nii.hdr.hist.srow_z=M(3,:); elseif nii.filetype == 0 nii.hdr.hist.rot_orient = []; nii.hdr.hist.flip_orient = []; return; % no sform/qform for Analyze format end hdr = nii.hdr; [hdr,orient]=change_hdr(hdr,tolerance,preferredForm); % flip and/or rotate image data % if ~isequal(orient, [1 2 3]) old_dim = hdr.dime.dim([2:4]); % More than 1 time frame % if ndims(nii.img) > 3 pattern = 1:prod(old_dim); else pattern = []; end if ~isempty(pattern) pattern = reshape(pattern, old_dim); end % calculate for rotation after flip % rot_orient = mod(orient + 2, 3) + 1; % do flip: % flip_orient = orient - rot_orient; for i = 1:3 if flip_orient(i) if ~isempty(pattern) pattern = flipdim(pattern, i); else nii.img = flipdim(nii.img, i); end end end % get index of orient (rotate inversely) % [tmp rot_orient] = sort(rot_orient); new_dim = old_dim; new_dim = new_dim(rot_orient); hdr.dime.dim([2:4]) = new_dim; new_pixdim = hdr.dime.pixdim([2:4]); new_pixdim = new_pixdim(rot_orient); hdr.dime.pixdim([2:4]) = new_pixdim; % re-calculate originator % tmp = hdr.hist.originator([1:3]); tmp = tmp(rot_orient); flip_orient = flip_orient(rot_orient); for i = 1:3 if flip_orient(i) & ~isequal(tmp(i), 0) tmp(i) = new_dim(i) - tmp(i) + 1; end end hdr.hist.originator([1:3]) = tmp; hdr.hist.rot_orient = rot_orient; hdr.hist.flip_orient = flip_orient; % do rotation: % if ~isempty(pattern) pattern = permute(pattern, rot_orient); pattern = pattern(:); if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 | ... hdr.dime.datatype == 128 | hdr.dime.datatype == 511 tmp = reshape(nii.img(:,:,:,1), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,1) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); tmp = reshape(nii.img(:,:,:,2), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,2) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 tmp = reshape(nii.img(:,:,:,3), [prod(new_dim) hdr.dime.dim(5:8)]); tmp = tmp(pattern, :); nii.img(:,:,:,3) = reshape(tmp, [new_dim hdr.dime.dim(5:8)]); end else nii.img = reshape(nii.img, [prod(new_dim) hdr.dime.dim(5:8)]); nii.img = nii.img(pattern, :); nii.img = reshape(nii.img, [new_dim hdr.dime.dim(5:8)]); end else if hdr.dime.datatype == 32 | hdr.dime.datatype == 1792 | ... hdr.dime.datatype == 128 | hdr.dime.datatype == 511 nii.img(:,:,:,1) = permute(nii.img(:,:,:,1), rot_orient); nii.img(:,:,:,2) = permute(nii.img(:,:,:,2), rot_orient); if hdr.dime.datatype == 128 | hdr.dime.datatype == 511 nii.img(:,:,:,3) = permute(nii.img(:,:,:,3), rot_orient); end else nii.img = permute(nii.img, rot_orient); end end else hdr.hist.rot_orient = []; hdr.hist.flip_orient = []; end nii.hdr = hdr; return; % xform_nii %----------------------------------------------------------------------- function [hdr, orient] = change_hdr(hdr, tolerance, preferredForm) orient = [1 2 3]; affine_transform = 1; % NIFTI can have both sform and qform transform. This program % will check sform_code prior to qform_code by default. % % If user specifys "preferredForm", user can then choose the % priority. - Jeff % useForm=[]; % Jeff if isequal(preferredForm,'S') if isequal(hdr.hist.sform_code,0) error('User requires sform, sform not set in header'); else useForm='s'; end end % Jeff if isequal(preferredForm,'Q') if isequal(hdr.hist.qform_code,0) error('User requires qform, qform not set in header'); else useForm='q'; end end % Jeff if isequal(preferredForm,'s') if hdr.hist.sform_code > 0 useForm='s'; elseif hdr.hist.qform_code > 0 useForm='q'; end end % Jeff if isequal(preferredForm,'q') if hdr.hist.qform_code > 0 useForm='q'; elseif hdr.hist.sform_code > 0 useForm='s'; end end % Jeff if isequal(useForm,'s') R = [hdr.hist.srow_x(1:3) hdr.hist.srow_y(1:3) hdr.hist.srow_z(1:3)]; T = [hdr.hist.srow_x(4) hdr.hist.srow_y(4) hdr.hist.srow_z(4)]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') hdr.hist.old_affine = [ [R;[0 0 0]] [T;1] ]; R_sort = sort(abs(R(:))); R( find( abs(R) < tolerance*min(R_sort(end-2:end)) ) ) = 0; hdr.hist.new_affine = [ [R;[0 0 0]] [T;1] ]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') msg = [char(10) char(10) ' Non-orthogonal rotation or shearing ']; msg = [msg 'found inside the affine matrix' char(10)]; msg = [msg ' in this NIfTI file. You have 3 options:' char(10) char(10)]; msg = [msg ' 1. Using included ''reslice_nii.m'' program to reslice the NIfTI' char(10)]; msg = [msg ' file. I strongly recommand this, because it will not cause' char(10)]; msg = [msg ' negative effect, as long as you remember not to do slice' char(10)]; msg = [msg ' time correction after using ''reslice_nii.m''.' char(10) char(10)]; msg = [msg ' 2. Using included ''load_untouch_nii.m'' program to load image' char(10)]; msg = [msg ' without applying any affine geometric transformation or' char(10)]; msg = [msg ' voxel intensity scaling. This is only for people who want' char(10)]; msg = [msg ' to do some image processing regardless of image orientation' char(10)]; msg = [msg ' and to save data back with the same NIfTI header.' char(10) char(10)]; msg = [msg ' 3. Increasing the tolerance to allow more distortion in loaded' char(10)]; msg = [msg ' image, but I don''t suggest this.' char(10) char(10)]; msg = [msg ' To get help, please type:' char(10) char(10) ' help reslice_nii.m' char(10)]; msg = [msg ' help load_untouch_nii.m' char(10) ' help load_nii.m']; error(msg); end end elseif isequal(useForm,'q') b = hdr.hist.quatern_b; c = hdr.hist.quatern_c; d = hdr.hist.quatern_d; if 1.0-(b*b+c*c+d*d) < 0 if abs(1.0-(b*b+c*c+d*d)) < 1e-5 a = 0; else error('Incorrect quaternion values in this NIFTI data.'); end else a = sqrt(1.0-(b*b+c*c+d*d)); end qfac = hdr.dime.pixdim(1); if qfac==0, qfac = 1; end i = hdr.dime.pixdim(2); j = hdr.dime.pixdim(3); k = qfac * hdr.dime.pixdim(4); R = [a*a+b*b-c*c-d*d 2*b*c-2*a*d 2*b*d+2*a*c 2*b*c+2*a*d a*a+c*c-b*b-d*d 2*c*d-2*a*b 2*b*d-2*a*c 2*c*d+2*a*b a*a+d*d-c*c-b*b]; T = [hdr.hist.qoffset_x hdr.hist.qoffset_y hdr.hist.qoffset_z]; % qforms are expected to generate rotation matrices R which are % det(R) = 1; we'll make sure that happens. % % now we make the same checks as were done above for sform data % BUT we do it on a transform that is in terms of voxels not mm; % after we figure out the angles and squash them to closest % rectilinear direction. After that, the voxel sizes are then % added. % % This part is modified by Jeff Gunter. % if det(R) == 0 | ~isequal(R(find(R)), sum(R)') % det(R) == 0 is not a common trigger for this --- % R(find(R)) is a list of non-zero elements in R; if that % is straight (not oblique) then it should be the same as % columnwise summation. Could just as well have checked the % lengths of R(find(R)) and sum(R)' (which should be 3) % hdr.hist.old_affine = [ [R * diag([i j k]);[0 0 0]] [T;1] ]; R_sort = sort(abs(R(:))); R( find( abs(R) < tolerance*min(R_sort(end-2:end)) ) ) = 0; R = R * diag([i j k]); hdr.hist.new_affine = [ [R;[0 0 0]] [T;1] ]; if det(R) == 0 | ~isequal(R(find(R)), sum(R)') msg = [char(10) char(10) ' Non-orthogonal rotation or shearing ']; msg = [msg 'found inside the affine matrix' char(10)]; msg = [msg ' in this NIfTI file. You have 3 options:' char(10) char(10)]; msg = [msg ' 1. Using included ''reslice_nii.m'' program to reslice the NIfTI' char(10)]; msg = [msg ' file. I strongly recommand this, because it will not cause' char(10)]; msg = [msg ' negative effect, as long as you remember not to do slice' char(10)]; msg = [msg ' time correction after using ''reslice_nii.m''.' char(10) char(10)]; msg = [msg ' 2. Using included ''load_untouch_nii.m'' program to load image' char(10)]; msg = [msg ' without applying any affine geometric transformation or' char(10)]; msg = [msg ' voxel intensity scaling. This is only for people who want' char(10)]; msg = [msg ' to do some image processing regardless of image orientation' char(10)]; msg = [msg ' and to save data back with the same NIfTI header.' char(10) char(10)]; msg = [msg ' 3. Increasing the tolerance to allow more distortion in loaded' char(10)]; msg = [msg ' image, but I don''t suggest this.' char(10) char(10)]; msg = [msg ' To get help, please type:' char(10) char(10) ' help reslice_nii.m' char(10)]; msg = [msg ' help load_untouch_nii.m' char(10) ' help load_nii.m']; error(msg); end else R = R * diag([i j k]); end % 1st det(R) else affine_transform = 0; % no sform or qform transform end if affine_transform == 1 voxel_size = abs(sum(R,1)); inv_R = inv(R); originator = inv_R*(-T)+1; orient = get_orient(inv_R); % modify pixdim and originator % hdr.dime.pixdim(2:4) = voxel_size; hdr.hist.originator(1:3) = originator; % set sform or qform to non-use, because they have been % applied in xform_nii % hdr.hist.qform_code = 0; hdr.hist.sform_code = 0; end % apply space_unit to pixdim if not 1 (mm) % space_unit = get_units(hdr); if space_unit ~= 1 hdr.dime.pixdim(2:4) = hdr.dime.pixdim(2:4) * space_unit; % set space_unit of xyzt_units to millimeter, because % voxel_size has been re-scaled % hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,1,0)); hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,2,1)); hdr.dime.xyzt_units = char(bitset(hdr.dime.xyzt_units,3,0)); end hdr.dime.pixdim = abs(hdr.dime.pixdim); return; % change_hdr %----------------------------------------------------------------------- function orient = get_orient(R) orient = []; for i = 1:3 switch find(R(i,:)) * sign(sum(R(i,:))) case 1 orient = [orient 1]; % Left to Right case 2 orient = [orient 2]; % Posterior to Anterior case 3 orient = [orient 3]; % Inferior to Superior case -1 orient = [orient 4]; % Right to Left case -2 orient = [orient 5]; % Anterior to Posterior case -3 orient = [orient 6]; % Superior to Inferior end end return; % get_orient %----------------------------------------------------------------------- function [space_unit, time_unit] = get_units(hdr) switch bitand(hdr.dime.xyzt_units, 7) % mask with 0x07 case 1 space_unit = 1e+3; % meter, m case 3 space_unit = 1e-3; % micrometer, um otherwise space_unit = 1; % millimeter, mm end switch bitand(hdr.dime.xyzt_units, 56) % mask with 0x38 case 16 time_unit = 1e-3; % millisecond, ms case 24 time_unit = 1e-6; % microsecond, us otherwise time_unit = 1; % second, s end return; % get_units
github
philippboehmsturm/antx-master
make_ana.m
.m
antx-master/mritools/others/nii/make_ana.m
5,665
utf_8
37d574b277823f941138c9548127d720
% Make ANALYZE 7.5 data structure specified by a 3D or 4D matrix. % Optional parameters can also be included, such as: voxel_size, % origin, datatype, and description. % % Once the ANALYZE structure is made, it can be saved into ANALYZE 7.5 % format data file using "save_untouch_nii" command (for more detail, % type: help save_untouch_nii). % % Usage: ana = make_ana(img, [voxel_size], [origin], [datatype], [description]) % % Where: % % img: a 3D matrix [x y z], or a 4D matrix with time % series [x y z t]. When image is in RGB format, % make sure that the size of 4th dimension is % always 3 (i.e. [R G B]). In that case, make % sure that you must specify RGB datatype to 128. % % voxel_size (optional): Voxel size in millimeter for each % dimension. Default is [1 1 1]. % % origin (optional): The AC origin. Default is [0 0 0]. % % datatype (optional): Storage data type: % 2 - uint8, 4 - int16, 8 - int32, 16 - float32, % 64 - float64, 128 - RGB24 % Default will use the data type of 'img' matrix % For RGB image, you must specify it to 128. % % description (optional): Description of data. Default is ''. % % e.g.: % origin = [33 44 13]; datatype = 64; % ana = make_ana(img, [], origin, datatype); % default voxel_size % % ANALYZE 7.5 format: http://www.rotman-baycrest.on.ca/~jimmy/ANALYZE75.pdf % % - Jimmy Shen ([email protected]) % function ana = make_ana(varargin) ana.img = varargin{1}; dims = size(ana.img); dims = [4 dims ones(1,8)]; dims = dims(1:8); voxel_size = [0 ones(1,3) zeros(1,4)]; origin = zeros(1,5); descrip = ''; switch class(ana.img) case 'uint8' datatype = 2; case 'int16' datatype = 4; case 'int32' datatype = 8; case 'single' datatype = 16; case 'double' datatype = 64; otherwise error('Datatype is not supported by make_ana.'); end if nargin > 1 & ~isempty(varargin{2}) voxel_size(2:4) = double(varargin{2}); end if nargin > 2 & ~isempty(varargin{3}) origin(1:3) = double(varargin{3}); end if nargin > 3 & ~isempty(varargin{4}) datatype = double(varargin{4}); if datatype == 128 | datatype == 511 dims(5) = []; dims = [dims 1]; end end if nargin > 4 & ~isempty(varargin{5}) descrip = varargin{5}; end if ndims(ana.img) > 4 error('NIfTI only allows a maximum of 4 Dimension matrix.'); end maxval = round(double(max(ana.img(:)))); minval = round(double(min(ana.img(:)))); ana.hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval); ana.filetype = 0; ana.ext = []; ana.untouch = 1; switch ana.hdr.dime.datatype case 2 ana.img = uint8(ana.img); case 4 ana.img = int16(ana.img); case 8 ana.img = int32(ana.img); case 16 ana.img = single(ana.img); case 64 ana.img = double(ana.img); case 128 ana.img = uint8(ana.img); otherwise error('Datatype is not supported by make_ana.'); end return; % make_ana %--------------------------------------------------------------------- function hdr = make_header(dims, voxel_size, origin, datatype, ... descrip, maxval, minval) hdr.hk = header_key; hdr.dime = image_dimension(dims, voxel_size, datatype, maxval, minval); hdr.hist = data_history(origin, descrip); return; % make_header %--------------------------------------------------------------------- function hk = header_key hk.sizeof_hdr = 348; % must be 348! hk.data_type = ''; hk.db_name = ''; hk.extents = 0; hk.session_error = 0; hk.regular = 'r'; hk.hkey_un0 = '0'; return; % header_key %--------------------------------------------------------------------- function dime = image_dimension(dims, voxel_size, datatype, maxval, minval) dime.dim = dims; dime.vox_units = 'mm'; dime.cal_units = ''; dime.unused1 = 0; dime.datatype = datatype; switch dime.datatype case 2, dime.bitpix = 8; precision = 'uint8'; case 4, dime.bitpix = 16; precision = 'int16'; case 8, dime.bitpix = 32; precision = 'int32'; case 16, dime.bitpix = 32; precision = 'float32'; case 64, dime.bitpix = 64; precision = 'float64'; case 128 dime.bitpix = 24; precision = 'uint8'; otherwise error('Datatype is not supported by make_ana.'); end dime.dim_un0 = 0; dime.pixdim = voxel_size; dime.vox_offset = 0; dime.roi_scale = 1; dime.funused1 = 0; dime.funused2 = 0; dime.cal_max = 0; dime.cal_min = 0; dime.compressed = 0; dime.verified = 0; dime.glmax = maxval; dime.glmin = minval; return; % image_dimension %--------------------------------------------------------------------- function hist = data_history(origin, descrip) hist.descrip = descrip; hist.aux_file = 'none'; hist.orient = 0; hist.originator = origin; hist.generated = ''; hist.scannum = ''; hist.patient_id = ''; hist.exp_date = ''; hist.exp_time = ''; hist.hist_un0 = ''; hist.views = 0; hist.vols_added = 0; hist.start_field = 0; hist.field_skip = 0; hist.omax = 0; hist.omin = 0; hist.smax = 0; hist.smin = 0; return; % data_history
github
philippboehmsturm/antx-master
extra_nii_hdr.m
.m
antx-master/mritools/others/nii/extra_nii_hdr.m
8,085
utf_8
4f76a8a66736025a0acf3efa15a2d2aa
% Decode extra NIFTI header information into hdr.extra % % Usage: hdr = extra_nii_hdr(hdr) % % hdr can be obtained from load_nii_hdr % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function hdr = extra_nii_hdr(hdr) switch hdr.dime.datatype case 1 extra.NIFTI_DATATYPES = 'DT_BINARY'; case 2 extra.NIFTI_DATATYPES = 'DT_UINT8'; case 4 extra.NIFTI_DATATYPES = 'DT_INT16'; case 8 extra.NIFTI_DATATYPES = 'DT_INT32'; case 16 extra.NIFTI_DATATYPES = 'DT_FLOAT32'; case 32 extra.NIFTI_DATATYPES = 'DT_COMPLEX64'; case 64 extra.NIFTI_DATATYPES = 'DT_FLOAT64'; case 128 extra.NIFTI_DATATYPES = 'DT_RGB24'; case 256 extra.NIFTI_DATATYPES = 'DT_INT8'; case 512 extra.NIFTI_DATATYPES = 'DT_UINT16'; case 768 extra.NIFTI_DATATYPES = 'DT_UINT32'; case 1024 extra.NIFTI_DATATYPES = 'DT_INT64'; case 1280 extra.NIFTI_DATATYPES = 'DT_UINT64'; case 1536 extra.NIFTI_DATATYPES = 'DT_FLOAT128'; case 1792 extra.NIFTI_DATATYPES = 'DT_COMPLEX128'; case 2048 extra.NIFTI_DATATYPES = 'DT_COMPLEX256'; otherwise extra.NIFTI_DATATYPES = 'DT_UNKNOWN'; end switch hdr.dime.intent_code case 2 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CORREL'; case 3 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TTEST'; case 4 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_FTEST'; case 5 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_ZSCORE'; case 6 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHISQ'; case 7 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_BETA'; case 8 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_BINOM'; case 9 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_GAMMA'; case 10 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_POISSON'; case 11 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NORMAL'; case 12 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_FTEST_NONC'; case 13 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHISQ_NONC'; case 14 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOGISTIC'; case 15 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LAPLACE'; case 16 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_UNIFORM'; case 17 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TTEST_NONC'; case 18 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_WEIBULL'; case 19 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_CHI'; case 20 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_INVGAUSS'; case 21 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_EXTVAL'; case 22 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_PVAL'; case 23 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOGPVAL'; case 24 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LOG10PVAL'; case 1001 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_ESTIMATE'; case 1002 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_LABEL'; case 1003 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NEURONAME'; case 1004 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_GENMATRIX'; case 1005 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_SYMMATRIX'; case 1006 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_DISPVECT'; case 1007 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_VECTOR'; case 1008 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_POINTSET'; case 1009 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_TRIANGLE'; case 1010 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_QUATERNION'; case 1011 extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_DIMLESS'; otherwise extra.NIFTI_INTENT_CODES = 'NIFTI_INTENT_NONE'; end extra.NIFTI_INTENT_NAMES = hdr.hist.intent_name; if hdr.hist.sform_code > 0 switch hdr.hist.sform_code case 1 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_SCANNER_ANAT'; case 2 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_ALIGNED_ANAT'; case 3 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_TALAIRACH'; case 4 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_MNI_152'; otherwise extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; elseif hdr.hist.qform_code > 0 extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; switch hdr.hist.qform_code case 1 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_SCANNER_ANAT'; case 2 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_ALIGNED_ANAT'; case 3 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_TALAIRACH'; case 4 extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_MNI_152'; otherwise extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end else extra.NIFTI_SFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; extra.NIFTI_QFORM_CODES = 'NIFTI_XFORM_UNKNOWN'; end switch bitand(hdr.dime.xyzt_units, 7) % mask with 0x07 case 1 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_METER'; case 2 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_MM'; % millimeter case 3 extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_MICRO'; otherwise extra.NIFTI_SPACE_UNIT = 'NIFTI_UNITS_UNKNOWN'; end switch bitand(hdr.dime.xyzt_units, 56) % mask with 0x38 case 8 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_SEC'; case 16 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_MSEC'; case 24 extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_USEC'; % microsecond otherwise extra.NIFTI_TIME_UNIT = 'NIFTI_UNITS_UNKNOWN'; end switch hdr.dime.xyzt_units case 32 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_HZ'; case 40 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_PPM'; % part per million case 48 extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_RADS'; % radians per second otherwise extra.NIFTI_SPECTRAL_UNIT = 'NIFTI_UNITS_UNKNOWN'; end % MRI-specific spatial and temporal information % dim_info = hdr.hk.dim_info; extra.NIFTI_FREQ_DIM = bitand(dim_info, 3); extra.NIFTI_PHASE_DIM = bitand(bitshift(dim_info, -2), 3); extra.NIFTI_SLICE_DIM = bitand(bitshift(dim_info, -4), 3); % Check slice code % switch hdr.dime.slice_code case 1 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_SEQ_INC'; % sequential increasing case 2 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_SEQ_DEC'; % sequential decreasing case 3 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_INC'; % alternating increasing case 4 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_DEC'; % alternating decreasing case 5 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_INC2'; % ALT_INC # 2 case 6 extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_ALT_DEC2'; % ALT_DEC # 2 otherwise extra.NIFTI_SLICE_ORDER = 'NIFTI_SLICE_UNKNOWN'; end % Check NIFTI version % if ~isempty(hdr.hist.magic) & strcmp(hdr.hist.magic(1),'n') & ... ( strcmp(hdr.hist.magic(2),'i') | strcmp(hdr.hist.magic(2),'+') ) & ... str2num(hdr.hist.magic(3)) >= 1 & str2num(hdr.hist.magic(3)) <= 9 extra.NIFTI_VERSION = str2num(hdr.hist.magic(3)); else extra.NIFTI_VERSION = 0; end % Check if data stored in the same file (*.nii) or separate % files (*.hdr/*.img) % if isempty(hdr.hist.magic) extra.NIFTI_ONEFILE = 0; else extra.NIFTI_ONEFILE = strcmp(hdr.hist.magic(2), '+'); end % Swap has been taken care of by checking whether sizeof_hdr is % 348 (machine is 'ieee-le' or 'ieee-be' etc) % % extra.NIFTI_NEEDS_SWAP = (hdr.dime.dim(1) < 0 | hdr.dime.dim(1) > 7); % Check NIFTI header struct contains a 5th (vector) dimension % if hdr.dime.dim(1) > 4 & hdr.dime.dim(6) > 1 extra.NIFTI_5TH_DIM = hdr.dime.dim(6); else extra.NIFTI_5TH_DIM = 0; end hdr.extra = extra; return; % extra_nii_hdr
github
philippboehmsturm/antx-master
rri_xhair.m
.m
antx-master/mritools/others/nii/rri_xhair.m
2,300
utf_8
95954b8cd43e01fba5c4b2f335be1780
% rri_xhair: create a pair of full_cross_hair at point [x y] in % axes h_ax, and return xhair struct % % Usage: xhair = rri_xhair([x y], xhair, h_ax); % % If omit xhair, rri_xhair will create a pair of xhair; otherwise, % rri_xhair will update the xhair. If omit h_ax, current axes will % be used. % % 24-nov-2003 jimmy ([email protected]) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xhair = rri_xhair(varargin) if nargin == 0 error('Please enter a point position as first argument'); return; end if nargin > 0 p = varargin{1}; if ~isnumeric(p) | length(p) ~= 2 error('Invalid point position'); return; else xhair = []; end end if nargin > 1 xhair = varargin{2}; if ~isempty(xhair) if ~isstruct(xhair) error('Invalid xhair struct'); return; elseif ~isfield(xhair,'lx') | ~isfield(xhair,'ly') error('Invalid xhair struct'); return; elseif ~ishandle(xhair.lx) | ~ishandle(xhair.ly) error('Invalid xhair struct'); return; end lx = xhair.lx; ly = xhair.ly; else lx = []; ly = []; end end if nargin > 2 h_ax = varargin{3}; if ~ishandle(h_ax) error('Invalid axes handle'); return; elseif ~strcmp(lower(get(h_ax,'type')), 'axes') error('Invalid axes handle'); return; end else h_ax = gca; end x_range = get(h_ax,'xlim'); y_range = get(h_ax,'ylim'); if ~isempty(xhair) set(lx, 'ydata', [p(2) p(2)]); set(ly, 'xdata', [p(1) p(1)]); set(h_ax, 'selected', 'on'); set(h_ax, 'selected', 'off'); else figure(get(h_ax,'parent')); axes(h_ax); xhair.lx = line('xdata', x_range, 'ydata', [p(2) p(2)], ... 'zdata', [11 11], 'color', [1 0 0], 'hittest', 'off'); xhair.ly = line('xdata', [p(1) p(1)], 'ydata', y_range, ... 'zdata', [11 11], 'color', [1 0 0], 'hittest', 'off'); end set(h_ax,'xlim',x_range); set(h_ax,'ylim',y_range); return;
github
philippboehmsturm/antx-master
save_untouch_nii_hdr.m
.m
antx-master/mritools/others/nii/save_untouch_nii_hdr.m
8,721
utf_8
0d396eaeebb6114f24d56ab74a8299cf
% internal function % - Jimmy Shen ([email protected]) function save_nii_hdr(hdr, fid) if ~isequal(hdr.hk.sizeof_hdr,348), error('hdr.hk.sizeof_hdr must be 348.'); end write_header(hdr, fid); return; % save_nii_hdr %--------------------------------------------------------------------- function write_header(hdr, fid) % Original header structures % struct dsr /* dsr = hdr */ % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ header_key(fid, hdr.hk); image_dimension(fid, hdr.dime); data_history(fid, hdr.hist); % check the file size is 348 bytes % fbytes = ftell(fid); if ~isequal(fbytes,348), msg = sprintf('Header size is not 348 bytes.'); warning(msg); end return; % write_header %--------------------------------------------------------------------- function header_key(fid, hk) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348. % data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars from left % fwrite(fid, data_type(1:10), 'uchar'); pad = zeros(1, 10-length(hk.data_type)); hk.data_type = [hk.data_type char(pad)]; fwrite(fid, hk.data_type(1:10), 'uchar'); % db_name = sprintf('%-18s', hk.db_name); % ensure it is 18 chars from left % fwrite(fid, db_name(1:18), 'uchar'); pad = zeros(1, 18-length(hk.db_name)); hk.db_name = [hk.db_name char(pad)]; fwrite(fid, hk.db_name(1:18), 'uchar'); fwrite(fid, hk.extents(1), 'int32'); fwrite(fid, hk.session_error(1), 'int16'); fwrite(fid, hk.regular(1), 'uchar'); % might be uint8 % fwrite(fid, hk.hkey_un0(1), 'uchar'); % fwrite(fid, hk.hkey_un0(1), 'uint8'); fwrite(fid, hk.dim_info(1), 'uchar'); return; % header_key %--------------------------------------------------------------------- function image_dimension(fid, dime) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width % pixdim[2] - voxel height % pixdim[3] - interslice distance % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ fwrite(fid, dime.dim(1:8), 'int16'); fwrite(fid, dime.intent_p1(1), 'float32'); fwrite(fid, dime.intent_p2(1), 'float32'); fwrite(fid, dime.intent_p3(1), 'float32'); fwrite(fid, dime.intent_code(1), 'int16'); fwrite(fid, dime.datatype(1), 'int16'); fwrite(fid, dime.bitpix(1), 'int16'); fwrite(fid, dime.slice_start(1), 'int16'); fwrite(fid, dime.pixdim(1:8), 'float32'); fwrite(fid, dime.vox_offset(1), 'float32'); fwrite(fid, dime.scl_slope(1), 'float32'); fwrite(fid, dime.scl_inter(1), 'float32'); fwrite(fid, dime.slice_end(1), 'int16'); fwrite(fid, dime.slice_code(1), 'uchar'); fwrite(fid, dime.xyzt_units(1), 'uchar'); fwrite(fid, dime.cal_max(1), 'float32'); fwrite(fid, dime.cal_min(1), 'float32'); fwrite(fid, dime.slice_duration(1), 'float32'); fwrite(fid, dime.toffset(1), 'float32'); fwrite(fid, dime.glmax(1), 'int32'); fwrite(fid, dime.glmin(1), 'int32'); return; % image_dimension %--------------------------------------------------------------------- function data_history(fid, hist) % Original header structures %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ % descrip = sprintf('%-80s', hist.descrip); % 80 chars from left % fwrite(fid, descrip(1:80), 'uchar'); pad = zeros(1, 80-length(hist.descrip)); hist.descrip = [hist.descrip char(pad)]; fwrite(fid, hist.descrip(1:80), 'uchar'); % aux_file = sprintf('%-24s', hist.aux_file); % 24 chars from left % fwrite(fid, aux_file(1:24), 'uchar'); pad = zeros(1, 24-length(hist.aux_file)); hist.aux_file = [hist.aux_file char(pad)]; fwrite(fid, hist.aux_file(1:24), 'uchar'); fwrite(fid, hist.qform_code, 'int16'); fwrite(fid, hist.sform_code, 'int16'); fwrite(fid, hist.quatern_b, 'float32'); fwrite(fid, hist.quatern_c, 'float32'); fwrite(fid, hist.quatern_d, 'float32'); fwrite(fid, hist.qoffset_x, 'float32'); fwrite(fid, hist.qoffset_y, 'float32'); fwrite(fid, hist.qoffset_z, 'float32'); fwrite(fid, hist.srow_x(1:4), 'float32'); fwrite(fid, hist.srow_y(1:4), 'float32'); fwrite(fid, hist.srow_z(1:4), 'float32'); % intent_name = sprintf('%-16s', hist.intent_name); % 16 chars from left % fwrite(fid, intent_name(1:16), 'uchar'); pad = zeros(1, 16-length(hist.intent_name)); hist.intent_name = [hist.intent_name char(pad)]; fwrite(fid, hist.intent_name(1:16), 'uchar'); % magic = sprintf('%-4s', hist.magic); % 4 chars from left % fwrite(fid, magic(1:4), 'uchar'); pad = zeros(1, 4-length(hist.magic)); hist.magic = [hist.magic char(pad)]; fwrite(fid, hist.magic(1:4), 'uchar'); return; % data_history
github
philippboehmsturm/antx-master
expand_nii_scan.m
.m
antx-master/mritools/others/nii/expand_nii_scan.m
1,381
utf_8
0715d668d046bcc608ea78cd0c2089bd
% Expand a multiple-scan NIFTI file into multiple single-scan NIFTI files % % Usage: expand_nii_scan(multi_scan_filename, [img_idx], [path_to_save]) % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function expand_nii_scan(filename, img_idx, newpath) v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); else gzFile = 1; end end if ~exist('newpath','var') | isempty(newpath), newpath = pwd; end if ~exist('img_idx','var') | isempty(img_idx), img_idx = 1:get_nii_frame(filename); end for i=img_idx nii_i = load_untouch_nii(filename, i); fn = [nii_i.fileprefix '_' sprintf('%04d',i)]; pnfn = fullfile(newpath, fn); if exist('gzFile', 'var') pnfn = [pnfn '.nii.gz']; end save_untouch_nii(nii_i, pnfn); end return; % expand_nii_scan
github
philippboehmsturm/antx-master
load_untouch_header_only.m
.m
antx-master/mritools/others/nii/load_untouch_header_only.m
7,255
utf_8
f1210f851ab6610e7656121194cb5c8b
% Load NIfTI / Analyze header without applying any appropriate affine % geometric transform or voxel intensity scaling. It is equivalent to % hdr field when using load_untouch_nii to load dataset. Support both % *.nii and *.hdr file extension. If file extension is not provided, % *.hdr will be used as default. % % Usage: [header, ext, filetype, machine] = load_untouch_header_only(filename) % % filename - NIfTI / Analyze file name. % % Returned values: % % header - struct with NIfTI / Analyze header fields. % % ext - NIfTI extension if it is not empty. % % filetype - 0 for Analyze format (*.hdr/*.img); % 1 for NIFTI format in 2 files (*.hdr/*.img); % 2 for NIFTI format in 1 file (*.nii). % % machine - a string, see below for details. The default here is 'ieee-le'. % % 'native' or 'n' - local machine format - the default % 'ieee-le' or 'l' - IEEE floating point with little-endian % byte ordering % 'ieee-be' or 'b' - IEEE floating point with big-endian % byte ordering % 'vaxd' or 'd' - VAX D floating point and VAX ordering % 'vaxg' or 'g' - VAX G floating point and VAX ordering % 'cray' or 'c' - Cray floating point with big-endian % byte ordering % 'ieee-le.l64' or 'a' - IEEE floating point with little-endian % byte ordering and 64 bit long data type % 'ieee-be.l64' or 's' - IEEE floating point with big-endian byte % ordering and 64 bit long data type. % % Part of this file is copied and modified from: % http://www.mathworks.com/matlabcentral/fileexchange/1878-mri-analyze-tools % % NIFTI data format can be found on: http://nifti.nimh.nih.gov % % - Jimmy Shen ([email protected]) % function [hdr, ext, filetype, machine] = load_untouch_header_only(filename) if ~exist('filename','var') error('Usage: [header, ext, filetype, machine] = load_untouch_header_only(filename)'); end v = version; % Check file extension. If .gz, unpack it into temp folder % if length(filename) > 2 & strcmp(filename(end-2:end), '.gz') if ~strcmp(filename(end-6:end), '.img.gz') & ... ~strcmp(filename(end-6:end), '.hdr.gz') & ... ~strcmp(filename(end-6:end), '.nii.gz') error('Please check filename.'); end if str2num(v(1:3)) < 7.1 | ~usejava('jvm') error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.'); elseif strcmp(filename(end-6:end), '.img.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.hdr.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.hdr.gz') filename1 = filename; filename2 = filename; filename2(end-6:end) = ''; filename2 = [filename2, '.img.gz']; tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename1 = gunzip(filename1, tmpDir); filename2 = gunzip(filename2, tmpDir); filename = char(filename1); % convert from cell to string elseif strcmp(filename(end-6:end), '.nii.gz') tmpDir = tempname; mkdir(tmpDir); gzFileName = filename; filename = gunzip(filename, tmpDir); filename = char(filename); % convert from cell to string end end % Read the dataset header % [hdr, filetype, fileprefix, machine] = load_nii_hdr(filename); if filetype == 0 hdr = load_untouch0_nii_hdr(fileprefix, machine); ext = []; else hdr = load_untouch_nii_hdr(fileprefix, machine, filetype); % Read the header extension % ext = load_nii_ext(filename); end % Set bitpix according to datatype % % /*Acceptable values for datatype are*/ % % 0 None (Unknown bit per voxel) % DT_NONE, DT_UNKNOWN % 1 Binary (ubit1, bitpix=1) % DT_BINARY % 2 Unsigned char (uchar or uint8, bitpix=8) % DT_UINT8, NIFTI_TYPE_UINT8 % 4 Signed short (int16, bitpix=16) % DT_INT16, NIFTI_TYPE_INT16 % 8 Signed integer (int32, bitpix=32) % DT_INT32, NIFTI_TYPE_INT32 % 16 Floating point (single or float32, bitpix=32) % DT_FLOAT32, NIFTI_TYPE_FLOAT32 % 32 Complex, 2 float32 (Use float32, bitpix=64) % DT_COMPLEX64, NIFTI_TYPE_COMPLEX64 % 64 Double precision (double or float64, bitpix=64) % DT_FLOAT64, NIFTI_TYPE_FLOAT64 % 128 uint8 RGB (Use uint8, bitpix=24) % DT_RGB24, NIFTI_TYPE_RGB24 % 256 Signed char (schar or int8, bitpix=8) % DT_INT8, NIFTI_TYPE_INT8 % 511 Single RGB (Use float32, bitpix=96) % DT_RGB96, NIFTI_TYPE_RGB96 % 512 Unsigned short (uint16, bitpix=16) % DT_UNINT16, NIFTI_TYPE_UNINT16 % 768 Unsigned integer (uint32, bitpix=32) % DT_UNINT32, NIFTI_TYPE_UNINT32 % 1024 Signed long long (int64, bitpix=64) % DT_INT64, NIFTI_TYPE_INT64 % 1280 Unsigned long long (uint64, bitpix=64) % DT_UINT64, NIFTI_TYPE_UINT64 % 1536 Long double, float128 (Unsupported, bitpix=128) % DT_FLOAT128, NIFTI_TYPE_FLOAT128 % 1792 Complex128, 2 float64 (Use float64, bitpix=128) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % 2048 Complex256, 2 float128 (Unsupported, bitpix=256) % DT_COMPLEX128, NIFTI_TYPE_COMPLEX128 % switch hdr.dime.datatype case 1, hdr.dime.bitpix = 1; precision = 'ubit1'; case 2, hdr.dime.bitpix = 8; precision = 'uint8'; case 4, hdr.dime.bitpix = 16; precision = 'int16'; case 8, hdr.dime.bitpix = 32; precision = 'int32'; case 16, hdr.dime.bitpix = 32; precision = 'float32'; case 32, hdr.dime.bitpix = 64; precision = 'float32'; case 64, hdr.dime.bitpix = 64; precision = 'float64'; case 128, hdr.dime.bitpix = 24; precision = 'uint8'; case 256 hdr.dime.bitpix = 8; precision = 'int8'; case 511 hdr.dime.bitpix = 96; precision = 'float32'; case 512 hdr.dime.bitpix = 16; precision = 'uint16'; case 768 hdr.dime.bitpix = 32; precision = 'uint32'; case 1024 hdr.dime.bitpix = 64; precision = 'int64'; case 1280 hdr.dime.bitpix = 64; precision = 'uint64'; case 1792, hdr.dime.bitpix = 128; precision = 'float64'; otherwise error('This datatype is not supported'); end tmp = hdr.dime.dim(2:end); tmp(find(tmp < 1)) = 1; hdr.dime.dim(2:end) = tmp; % Clean up after gunzip % if exist('gzFileName', 'var') rmdir(tmpDir,'s'); end return % load_untouch_header_only
github
philippboehmsturm/antx-master
bipolar.m
.m
antx-master/mritools/others/nii/bipolar.m
2,239
utf_8
c860ec93d96b6ab636c985280d79958d
%BIPOLAR returns an M-by-3 matrix containing a blue-red colormap, in % in which red stands for positive, blue stands for negative, % and white stands for 0. % % Usage: cmap = bipolar(M, lo, hi, contrast); or cmap = bipolar; % % cmap: output M-by-3 matrix for BIPOLAR colormap. % M: number of shades in the colormap. By default, it is the % same length as the current colormap. % lo: the lowest value to represent. % hi: the highest value to represent. % % Inspired from the LORETA PASCAL program: % http://www.unizh.ch/keyinst/NewLORETA % % [email protected] % %---------------------------------------------------------------- function cmap = bipolar(M, lo, hi, contrast) if ~exist('contrast','var') contrast = 128; end if ~exist('lo','var') lo = -1; end if ~exist('hi','var') hi = 1; end if ~exist('M','var') cmap = colormap; M = size(cmap,1); end steepness = 10 ^ (1 - (contrast-1)/127); pos_infs = 1e-99; neg_infs = -1e-99; doubleredc = []; doublebluec = []; if lo >= 0 % all positive if lo == 0 lo = pos_infs; end for i=linspace(hi/M, hi, M) t = exp(log(i/hi)*steepness); doubleredc = [doubleredc; [(1-t)+t,(1-t)+0,(1-t)+0]]; end cmap = doubleredc; elseif hi <= 0 % all negative if hi == 0 hi = neg_infs; end for i=linspace(abs(lo)/M, abs(lo), M) t = exp(log(i/abs(lo))*steepness); doublebluec = [doublebluec; [(1-t)+0,(1-t)+0,(1-t)+t]]; end cmap = flipud(doublebluec); else if hi > abs(lo) maxc = hi; else maxc = abs(lo); end for i=linspace(maxc/M, hi, round(M*hi/(hi-lo))) t = exp(log(i/maxc)*steepness); doubleredc = [doubleredc; [(1-t)+t,(1-t)+0,(1-t)+0]]; end for i=linspace(maxc/M, abs(lo), round(M*abs(lo)/(hi-lo))) t = exp(log(i/maxc)*steepness); doublebluec = [doublebluec; [(1-t)+0,(1-t)+0,(1-t)+t]]; end cmap = [flipud(doublebluec); doubleredc]; end return; % bipolar
github
philippboehmsturm/antx-master
save_nii_hdr.m
.m
antx-master/mritools/others/nii/save_nii_hdr.m
9,497
utf_8
66a99df0cb0f3c1f44c6e36dcd13cddf
% internal function % - Jimmy Shen ([email protected]) function save_nii_hdr(hdr, fid) if ~exist('hdr','var') | ~exist('fid','var') error('Usage: save_nii_hdr(hdr, fid)'); end if ~isequal(hdr.hk.sizeof_hdr,348), error('hdr.hk.sizeof_hdr must be 348.'); end if hdr.hist.qform_code == 0 & hdr.hist.sform_code == 0 hdr.hist.sform_code = 1; hdr.hist.srow_x(1) = hdr.dime.pixdim(2); hdr.hist.srow_x(2) = 0; hdr.hist.srow_x(3) = 0; hdr.hist.srow_y(1) = 0; hdr.hist.srow_y(2) = hdr.dime.pixdim(3); hdr.hist.srow_y(3) = 0; hdr.hist.srow_z(1) = 0; hdr.hist.srow_z(2) = 0; hdr.hist.srow_z(3) = hdr.dime.pixdim(4); hdr.hist.srow_x(4) = (1-hdr.hist.originator(1))*hdr.dime.pixdim(2); hdr.hist.srow_y(4) = (1-hdr.hist.originator(2))*hdr.dime.pixdim(3); hdr.hist.srow_z(4) = (1-hdr.hist.originator(3))*hdr.dime.pixdim(4); end write_header(hdr, fid); return; % save_nii_hdr %--------------------------------------------------------------------- function write_header(hdr, fid) % Original header structures % struct dsr /* dsr = hdr */ % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ header_key(fid, hdr.hk); image_dimension(fid, hdr.dime); data_history(fid, hdr.hist); % check the file size is 348 bytes % fbytes = ftell(fid); if ~isequal(fbytes,348), msg = sprintf('Header size is not 348 bytes.'); warning(msg); end return; % write_header %--------------------------------------------------------------------- function header_key(fid, hk) fseek(fid,0,'bof'); % Original header structures % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char dim_info; % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fwrite(fid, hk.sizeof_hdr(1), 'int32'); % must be 348. % data_type = sprintf('%-10s',hk.data_type); % ensure it is 10 chars from left % fwrite(fid, data_type(1:10), 'uchar'); pad = zeros(1, 10-length(hk.data_type)); hk.data_type = [hk.data_type char(pad)]; fwrite(fid, hk.data_type(1:10), 'uchar'); % db_name = sprintf('%-18s', hk.db_name); % ensure it is 18 chars from left % fwrite(fid, db_name(1:18), 'uchar'); pad = zeros(1, 18-length(hk.db_name)); hk.db_name = [hk.db_name char(pad)]; fwrite(fid, hk.db_name(1:18), 'uchar'); fwrite(fid, hk.extents(1), 'int32'); fwrite(fid, hk.session_error(1), 'int16'); fwrite(fid, hk.regular(1), 'uchar'); % might be uint8 % fwrite(fid, hk.hkey_un0(1), 'uchar'); % fwrite(fid, hk.hkey_un0(1), 'uint8'); fwrite(fid, hk.dim_info(1), 'uchar'); return; % header_key %--------------------------------------------------------------------- function image_dimension(fid, dime) % Original header structures % struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % float intent_p1; % char vox_units[4]; /* 16 + 4 */ % float intent_p2; % char cal_units[8]; /* 20 + 4 */ % float intent_p3; % char cal_units[8]; /* 24 + 4 */ % short int intent_code; % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int slice_start; % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width % pixdim[2] - voxel height % pixdim[3] - interslice distance % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float scl_slope; % float roi_scale; /* 72 + 4 */ % float scl_inter; % float funused1; /* 76 + 4 */ % short slice_end; % float funused2; /* 80 + 2 */ % char slice_code; % float funused2; /* 82 + 1 */ % char xyzt_units; % float funused2; /* 83 + 1 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % float slice_duration; % int compressed; /* 92 + 4 */ % float toffset; % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ fwrite(fid, dime.dim(1:8), 'int16'); fwrite(fid, dime.intent_p1(1), 'float32'); fwrite(fid, dime.intent_p2(1), 'float32'); fwrite(fid, dime.intent_p3(1), 'float32'); fwrite(fid, dime.intent_code(1), 'int16'); fwrite(fid, dime.datatype(1), 'int16'); fwrite(fid, dime.bitpix(1), 'int16'); fwrite(fid, dime.slice_start(1), 'int16'); fwrite(fid, dime.pixdim(1:8), 'float32'); fwrite(fid, dime.vox_offset(1), 'float32'); fwrite(fid, dime.scl_slope(1), 'float32'); fwrite(fid, dime.scl_inter(1), 'float32'); fwrite(fid, dime.slice_end(1), 'int16'); fwrite(fid, dime.slice_code(1), 'uchar'); fwrite(fid, dime.xyzt_units(1), 'uchar'); fwrite(fid, dime.cal_max(1), 'float32'); fwrite(fid, dime.cal_min(1), 'float32'); fwrite(fid, dime.slice_duration(1), 'float32'); fwrite(fid, dime.toffset(1), 'float32'); fwrite(fid, dime.glmax(1), 'int32'); fwrite(fid, dime.glmin(1), 'int32'); return; % image_dimension %--------------------------------------------------------------------- function data_history(fid, hist) % Original header structures %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % short int qform_code; /* 104 + 2 */ % short int sform_code; /* 106 + 2 */ % float quatern_b; /* 108 + 4 */ % float quatern_c; /* 112 + 4 */ % float quatern_d; /* 116 + 4 */ % float qoffset_x; /* 120 + 4 */ % float qoffset_y; /* 124 + 4 */ % float qoffset_z; /* 128 + 4 */ % float srow_x[4]; /* 132 + 16 */ % float srow_y[4]; /* 148 + 16 */ % float srow_z[4]; /* 164 + 16 */ % char intent_name[16]; /* 180 + 16 */ % char magic[4]; % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ % descrip = sprintf('%-80s', hist.descrip); % 80 chars from left % fwrite(fid, descrip(1:80), 'uchar'); pad = zeros(1, 80-length(hist.descrip)); hist.descrip = [hist.descrip char(pad)]; fwrite(fid, hist.descrip(1:80), 'uchar'); % aux_file = sprintf('%-24s', hist.aux_file); % 24 chars from left % fwrite(fid, aux_file(1:24), 'uchar'); pad = zeros(1, 24-length(hist.aux_file)); hist.aux_file = [hist.aux_file char(pad)]; fwrite(fid, hist.aux_file(1:24), 'uchar'); fwrite(fid, hist.qform_code, 'int16'); fwrite(fid, hist.sform_code, 'int16'); fwrite(fid, hist.quatern_b, 'float32'); fwrite(fid, hist.quatern_c, 'float32'); fwrite(fid, hist.quatern_d, 'float32'); fwrite(fid, hist.qoffset_x, 'float32'); fwrite(fid, hist.qoffset_y, 'float32'); fwrite(fid, hist.qoffset_z, 'float32'); fwrite(fid, hist.srow_x(1:4), 'float32'); fwrite(fid, hist.srow_y(1:4), 'float32'); fwrite(fid, hist.srow_z(1:4), 'float32'); % intent_name = sprintf('%-16s', hist.intent_name); % 16 chars from left % fwrite(fid, intent_name(1:16), 'uchar'); pad = zeros(1, 16-length(hist.intent_name)); hist.intent_name = [hist.intent_name char(pad)]; fwrite(fid, hist.intent_name(1:16), 'uchar'); % magic = sprintf('%-4s', hist.magic); % 4 chars from left % fwrite(fid, magic(1:4), 'uchar'); pad = zeros(1, 4-length(hist.magic)); hist.magic = [hist.magic char(pad)]; fwrite(fid, hist.magic(1:4), 'uchar'); return; % data_history
github
philippboehmsturm/antx-master
skullstrip_pcnn3d.m
.m
antx-master/mritools/others/PCNN3D/skullstrip_pcnn3d.m
1,473
utf_8
9caa6079dcad36d4cb8d74d33386ce79
function skullstrip_pcnn3d(t2file, fileout, mode ) if 0 skullstrip_pcnn3d(fullfile(pwd,'t2_aa.nii'), fullfile(pwd, '_test1.nii' ), 'mask' ) skullstrip_pcnn3d(fullfile(pwd,'t2_aa.nii'), fullfile(pwd, '_test2.nii' ), 'skullstrip' ) end warning off; % tmpfile=fullfile(fileparts(t2file),'__temp4skullstrip.nii') % copyfile(t2file,tmpfile,'f') % spm_reslice(tmpfile) [bb vox]=world_bb(t2file); % outfile=resize_img5(imname,outname, Voxdim, BB, ismask, interpmethod, dt) % [ha a]=rgetnii('T2.nii'); [ha a]= rgetnii(t2file); brainSize= [100 550]; niter = 100; radelem =4; vdim=abs(vox);%abs(diag(ha.mat(1:3,1:3))'); %[I_border, gi] = PCNN3D( a , 4 , vdim, brainSize ); [args ,I_border, gi] = evalc('PCNN3D( a , radelem , vdim, brainSize );'); disp(args); %get Guess for best iteration. ix=strfind(args,'Guess for best iteration is '); ix2=strfind(args,'.'); ank=ix2(min(find(ix2>ix))); id=str2num(regexprep(args(ix:ank-1),'\D','')); if 0 gi(find(gi<brainSize(1) | gi>brainSize(2)))=nan ;%set nan outside brainsize id= find(diff(gi)==nanmin(diff(gi))); %find plateau id=min(id); end r=I_border{id}; % r=I_border{35} for i=1:length(r) b=full(r{i}); if i==1; x=zeros(size(a));end x(:,:,i)=b; end if strcmp(mode, 'mask') m=x; elseif strcmp(mode, 'skullstrip') m=x.*a; end % rsavenii('_msk',ha,m); rsavenii(fileout,ha,m); close(gcf);
github
philippboehmsturm/antx-master
screencapture.m
.m
antx-master/mritools/others/ScreenCapture/screencapture.m
37,131
utf_8
221211bbef30a51283574e24a0c5fb2a
function imageData = screencapture(varargin) % screencapture - get a screen-capture of a figure frame, component handle, or screen area rectangle % % ScreenCapture gets a screen-capture of any Matlab GUI handle (including desktop, % figure, axes, image or uicontrol), or a specified area rectangle located relative to % the specified handle. Screen area capture is possible by specifying the root (desktop) % handle (=0). The output can be either to an image file or to a Matlab matrix (useful % for displaying via imshow() or for further processing) or to the system clipboard. % This utility also enables adding a toolbar button for easy interactive screen-capture. % % Syntax: % imageData = screencapture(handle, position, target, 'PropName',PropValue, ...) % % Input Parameters: % handle - optional handle to be used for screen-capture origin. % If empty/unsupplied then current figure (gcf) will be used. % position - optional position array in pixels: [x,y,width,height]. % If empty/unsupplied then the handle's position vector will be used. % If both handle and position are empty/unsupplied then the position % will be retrieved via interactive mouse-selection. % If handle is an image, then position is in data (not pixel) units, so the % captured region remains the same after figure/axes resize (like imcrop) % target - optional filename for storing the screen-capture, or the % 'clipboard'/'printer' strings. % If empty/unsupplied then no output to file will be done. % The file format will be determined from the extension (JPG/PNG/...). % Supported formats are those supported by the imwrite function. % 'PropName',PropValue - % optional list of property pairs (e.g., 'target','myImage.png','pos',[10,20,30,40],'handle',gca) % PropNames may be abbreviated and are case-insensitive. % PropNames may also be given in whichever order. % Supported PropNames are: % - 'handle' (default: gcf handle) % - 'position' (default: gcf position array) % - 'target' (default: '') % - 'toolbar' (figure handle; default: gcf) % this adds a screen-capture button to the figure's toolbar % If this parameter is specified, then no screen-capture % will take place and the returned imageData will be []. % % Output parameters: % imageData - image data in a format acceptable by the imshow function % If neither target nor imageData were specified, the user will be % asked to interactively specify the output file. % % Examples: % imageData = screencapture; % interactively select screen-capture rectangle % imageData = screencapture(hListbox); % capture image of a uicontrol % imageData = screencapture(0, [20,30,40,50]); % capture a small desktop region % imageData = screencapture(gcf,[20,30,40,50]); % capture a small figure region % imageData = screencapture(gca,[10,20,30,40]); % capture a small axes region % imshow(imageData); % display the captured image in a matlab figure % imwrite(imageData,'myImage.png'); % save the captured image to file % img = imread('cameraman.tif'); % hImg = imshow(img); % screencapture(hImg,[60,35,140,80]); % capture a region of an image % screencapture(gcf,[],'myFigure.jpg'); % capture the entire figure into file % screencapture(gcf,[],'clipboard'); % capture the entire figure into clipboard % screencapture(gcf,[],'printer'); % print the entire figure % screencapture('handle',gcf,'target','myFigure.jpg'); % same as previous, save to file % screencapture('handle',gcf,'target','clipboard'); % same as previous, copy to clipboard % screencapture('handle',gcf,'target','printer'); % same as previous, send to printer % screencapture('toolbar',gcf); % adds a screen-capture button to gcf's toolbar % screencapture('toolbar',[],'target','sc.bmp'); % same with default output filename % % Technical description: % http://UndocumentedMatlab.com/blog/screencapture-utility/ % % Bugs and suggestions: % Please send to Yair Altman (altmany at gmail dot com) % % See also: % imshow, imwrite, print % % Release history: % 1.17 2016-05-16: Fix annoying warning about JavaFrame property becoming obsolete someday (yes, we know...) % 1.16 2016-04-19: Fix for deployed application suggested by Dwight Bartholomew % 1.10 2014-11-25: Added the 'print' target % 1.9 2014-11-25: Fix for saving GIF files % 1.8 2014-11-16: Fixes for R2014b % 1.7 2014-04-28: Fixed bug when capturing interactive selection % 1.6 2014-04-22: Only enable image formats when saving to an unspecified file via uiputfile % 1.5 2013-04-18: Fixed bug in capture of non-square image; fixes for Win64 % 1.4 2013-01-27: Fixed capture of Desktop (root); enabled rbbox anywhere on desktop (not necesarily in a Matlab figure); enabled output to clipboard (based on Jiro Doke's imclipboard utility); edge-case fixes; added Java compatibility check % 1.3 2012-07-23: Capture current object (uicontrol/axes/figure) if w=h=0 (e.g., by clicking a single point); extra input args sanity checks; fix for docked windows and image axes; include axes labels & ticks by default when capturing axes; use data-units position vector when capturing images; many edge-case fixes % 1.2 2011-01-16: another performance boost (thanks to Jan Simon); some compatibility fixes for Matlab 6.5 (untested) % 1.1 2009-06-03: Handle missing output format; performance boost (thanks to Urs); fix minor root-handle bug; added toolbar button option % 1.0 2009-06-02: First version posted on <a href="http://www.mathworks.com/matlabcentral/fileexchange/authors/27420">MathWorks File Exchange</a> % License to use and modify this code is granted freely to all interested, as long as the original author is % referenced and attributed as such. The original author maintains the right to be solely associated with this work. % Programmed and Copyright by Yair M. Altman: altmany(at)gmail.com % $Revision: 1.17 $ $Date: 2016/05/16 17:59:36 $ % Ensure that java awt is enabled... if ~usejava('awt') error('YMA:screencapture:NeedAwt','ScreenCapture requires Java to run.'); end % Ensure that our Java version supports the Robot class (requires JVM 1.3+) try robot = java.awt.Robot; %#ok<NASGU> catch uiwait(msgbox({['Your Matlab installation is so old that its Java engine (' version('-java') ... ') does not have a java.awt.Robot class. '], ' ', ... 'Without this class, taking a screen-capture is impossible.', ' ', ... 'So, either install JVM 1.3 or higher, or use a newer Matlab release.'}, ... 'ScreenCapture', 'warn')); if nargout, imageData = []; end return; end % Process optional arguments paramsStruct = processArgs(varargin{:}); % If toolbar button requested, add it and exit if ~isempty(paramsStruct.toolbar) % Add the toolbar button addToolbarButton(paramsStruct); % Return the figure to its pre-undocked state (when relevant) redockFigureIfRelevant(paramsStruct); % Exit immediately (do NOT take a screen-capture) if nargout, imageData = []; end return; end % Convert position from handle-relative to desktop Java-based pixels [paramsStruct, msgStr] = convertPos(paramsStruct); % Capture the requested screen rectangle using java.awt.Robot imgData = getScreenCaptureImageData(paramsStruct.position); % Return the figure to its pre-undocked state (when relevant) redockFigureIfRelevant(paramsStruct); % Save image data in file or clipboard, if specified if ~isempty(paramsStruct.target) if strcmpi(paramsStruct.target,'clipboard') if ~isempty(imgData) imclipboard(imgData); else msgbox('No image area selected - not copying image to clipboard','ScreenCapture','warn'); end elseif strncmpi(paramsStruct.target,'print',5) % 'print' or 'printer' if ~isempty(imgData) hNewFig = figure('visible','off'); imshow(imgData); print(hNewFig); delete(hNewFig); else msgbox('No image area selected - not printing screenshot','ScreenCapture','warn'); end else % real filename if ~isempty(imgData) imwrite(imgData,paramsStruct.target); else msgbox(['No image area selected - not saving image file ' paramsStruct.target],'ScreenCapture','warn'); end end end % Return image raster data to user, if requested if nargout imageData = imgData; % If neither output formats was specified (neither target nor output data) elseif isempty(paramsStruct.target) & ~isempty(imgData) %#ok ML6 % Ask the user to specify a file %error('YMA:screencapture:noOutput','No output specified for ScreenCapture: specify the output filename and/or output data'); %format = '*.*'; formats = imformats; for idx = 1 : numel(formats) ext = sprintf('*.%s;',formats(idx).ext{:}); format(idx,1:2) = {ext(1:end-1), formats(idx).description}; %#ok<AGROW> end [filename,pathname] = uiputfile(format,'Save screen capture as'); if ~isequal(filename,0) & ~isequal(pathname,0) %#ok Matlab6 compatibility try filename = fullfile(pathname,filename); imwrite(imgData,filename); catch % possibly a GIF file that requires indexed colors [imgData,map] = rgb2ind(imgData,256); imwrite(imgData,map,filename); end else % TODO - copy to clipboard end end % Display msgStr, if relevant if ~isempty(msgStr) uiwait(msgbox(msgStr,'ScreenCapture')); drawnow; pause(0.05); % time for the msgbox to disappear end return; % debug breakpoint %% Process optional arguments function paramsStruct = processArgs(varargin) % Get the properties in either direct or P-V format [regParams, pvPairs] = parseparams(varargin); % Now process the optional P-V params try % Initialize paramName = []; paramsStruct = []; paramsStruct.handle = []; paramsStruct.position = []; paramsStruct.target = ''; paramsStruct.toolbar = []; paramsStruct.wasDocked = 0; % no false available in ML6 paramsStruct.wasInteractive = 0; % no false available in ML6 % Parse the regular (non-named) params in recption order if ~isempty(regParams) & (isempty(regParams{1}) | ishandle(regParams{1}(1))) %#ok ML6 paramsStruct.handle = regParams{1}; regParams(1) = []; end if ~isempty(regParams) & isnumeric(regParams{1}) & (length(regParams{1}) == 4) %#ok ML6 paramsStruct.position = regParams{1}; regParams(1) = []; end if ~isempty(regParams) & ischar(regParams{1}) %#ok ML6 paramsStruct.target = regParams{1}; end % Parse the optional param PV pairs supportedArgs = {'handle','position','target','toolbar'}; while ~isempty(pvPairs) % Disregard empty propNames (may be due to users mis-interpretting the syntax help) while ~isempty(pvPairs) & isempty(pvPairs{1}) %#ok ML6 pvPairs(1) = []; end if isempty(pvPairs) break; end % Ensure basic format is valid paramName = ''; if ~ischar(pvPairs{1}) error('YMA:screencapture:invalidProperty','Invalid property passed to ScreenCapture'); elseif length(pvPairs) == 1 if isempty(paramsStruct.target) paramsStruct.target = pvPairs{1}; break; else error('YMA:screencapture:noPropertyValue',['No value specified for property ''' pvPairs{1} '''']); end end % Process parameter values paramName = pvPairs{1}; if strcmpi(paramName,'filename') % backward compatibility paramName = 'target'; end paramValue = pvPairs{2}; pvPairs(1:2) = []; idx = find(strncmpi(paramName,supportedArgs,length(paramName))); if ~isempty(idx) %paramsStruct.(lower(supportedArgs{idx(1)})) = paramValue; % incompatible with ML6 paramsStruct = setfield(paramsStruct, lower(supportedArgs{idx(1)}), paramValue); %#ok ML6 % If 'toolbar' param specified, then it cannot be left empty - use gcf if strncmpi(paramName,'toolbar',length(paramName)) & isempty(paramsStruct.toolbar) %#ok ML6 paramsStruct.toolbar = getCurrentFig; end elseif isempty(paramsStruct.target) paramsStruct.target = paramName; pvPairs = {paramValue, pvPairs{:}}; %#ok (more readable this way, although a bit less efficient...) else supportedArgsStr = sprintf('''%s'',',supportedArgs{:}); error('YMA:screencapture:invalidProperty','%s \n%s', ... 'Invalid property passed to ScreenCapture', ... ['Supported property names are: ' supportedArgsStr(1:end-1)]); end end % loop pvPairs catch if ~isempty(paramName), paramName = [' ''' paramName '''']; end error('YMA:screencapture:invalidProperty','Error setting ScreenCapture property %s:\n%s',paramName,lasterr); %#ok<LERR> end %end % processArgs %% Convert position from handle-relative to desktop Java-based pixels function [paramsStruct, msgStr] = convertPos(paramsStruct) msgStr = ''; try % Get the screen-size for later use screenSize = get(0,'ScreenSize'); % Get the containing figure's handle hParent = paramsStruct.handle; if isempty(paramsStruct.handle) paramsStruct.hFigure = getCurrentFig; hParent = paramsStruct.hFigure; else paramsStruct.hFigure = ancestor(paramsStruct.handle,'figure'); end % To get the acurate pixel position, the figure window must be undocked try if strcmpi(get(paramsStruct.hFigure,'WindowStyle'),'docked') set(paramsStruct.hFigure,'WindowStyle','normal'); drawnow; pause(0.25); paramsStruct.wasDocked = 1; % no true available in ML6 end catch % never mind - ignore... end % The figure (if specified) must be in focus if ~isempty(paramsStruct.hFigure) & ishandle(paramsStruct.hFigure) %#ok ML6 isFigureValid = 1; % no true available in ML6 figure(paramsStruct.hFigure); else isFigureValid = 0; % no false available in ML6 end % Flush all graphic events to ensure correct rendering drawnow; pause(0.01); % No handle specified wasPositionGiven = 1; % no true available in ML6 if isempty(paramsStruct.handle) % Set default handle, if not supplied paramsStruct.handle = paramsStruct.hFigure; % If position was not specified, get it interactively using RBBOX if isempty(paramsStruct.position) [paramsStruct.position, jFrameUsed, msgStr] = getInteractivePosition(paramsStruct.hFigure); %#ok<ASGLU> jFrameUsed is unused paramsStruct.wasInteractive = 1; % no true available in ML6 wasPositionGiven = 0; % no false available in ML6 end elseif ~ishandle(paramsStruct.handle) % Handle was supplied - ensure it is a valid handle error('YMA:screencapture:invalidHandle','Invalid handle passed to ScreenCapture'); elseif isempty(paramsStruct.position) % Handle was supplied but position was not, so use the handle's position paramsStruct.position = getPixelPos(paramsStruct.handle); paramsStruct.position(1:2) = 0; wasPositionGiven = 0; % no false available in ML6 elseif ~isnumeric(paramsStruct.position) | (length(paramsStruct.position) ~= 4) %#ok ML6 % Both handle & position were supplied - ensure a valid pixel position vector error('YMA:screencapture:invalidPosition','Invalid position vector passed to ScreenCapture: \nMust be a [x,y,w,h] numeric pixel array'); end % Capture current object (uicontrol/axes/figure) if w=h=0 (single-click in interactive mode) if paramsStruct.position(3)<=0 | paramsStruct.position(4)<=0 %#ok ML6 %TODO - find a way to single-click another Matlab figure (the following does not work) %paramsStruct.position = getPixelPos(ancestor(hittest,'figure')); paramsStruct.position = getPixelPos(paramsStruct.handle); paramsStruct.position(1:2) = 0; paramsStruct.wasInteractive = 0; % no false available in ML6 wasPositionGiven = 0; % no false available in ML6 end % First get the parent handle's desktop-based Matlab pixel position parentPos = [0,0,0,0]; dX = 0; dY = 0; dW = 0; dH = 0; if ~isFigure(hParent) % Get the reguested component's pixel position parentPos = getPixelPos(hParent, 1); % no true available in ML6 % Axes position inaccuracy estimation deltaX = 3; deltaY = -1; % Fix for images if isImage(hParent) % | (isAxes(hParent) & strcmpi(get(hParent,'YDir'),'reverse')) %#ok ML6 % Compensate for resized image axes hAxes = get(hParent,'Parent'); if all(get(hAxes,'DataAspectRatio')==1) % sanity check: this is the normal behavior % Note 18/4/2013: the following fails for non-square images %actualImgSize = min(parentPos(3:4)); %dX = (parentPos(3) - actualImgSize) / 2; %dY = (parentPos(4) - actualImgSize) / 2; %parentPos(3:4) = actualImgSize; % The following should work for all types of images actualImgSize = size(get(hParent,'CData')); dX = (parentPos(3) - min(parentPos(3),actualImgSize(2))) / 2; dY = (parentPos(4) - min(parentPos(4),actualImgSize(1))) / 2; parentPos(3:4) = actualImgSize([2,1]); %parentPos(3) = max(parentPos(3),actualImgSize(2)); %parentPos(4) = max(parentPos(4),actualImgSize(1)); end % Fix user-specified img positions (but not auto-inferred ones) if wasPositionGiven % In images, use data units rather than pixel units % Reverse the YDir ymax = max(get(hParent,'YData')); paramsStruct.position(2) = ymax - paramsStruct.position(2) - paramsStruct.position(4); % Note: it would be best to use hgconvertunits, but: % ^^^^ (1) it fails on Matlab 6, and (2) it doesn't accept Data units %paramsStruct.position = hgconvertunits(hFig, paramsStruct.position, 'Data', 'pixel', hParent); % fails! xLims = get(hParent,'XData'); yLims = get(hParent,'YData'); xPixelsPerData = parentPos(3) / (diff(xLims) + 1); yPixelsPerData = parentPos(4) / (diff(yLims) + 1); paramsStruct.position(1) = round((paramsStruct.position(1)-xLims(1)) * xPixelsPerData); paramsStruct.position(2) = round((paramsStruct.position(2)-yLims(1)) * yPixelsPerData + 2*dY); paramsStruct.position(3) = round( paramsStruct.position(3) * xPixelsPerData); paramsStruct.position(4) = round( paramsStruct.position(4) * yPixelsPerData); % Axes position inaccuracy estimation if strcmpi(computer('arch'),'win64') deltaX = 7; deltaY = -7; else deltaX = 3; deltaY = -3; end else % axes/image position was auto-infered (entire image) % Axes position inaccuracy estimation if strcmpi(computer('arch'),'win64') deltaX = 6; deltaY = -6; else deltaX = 2; deltaY = -2; end dW = -2*dX; dH = -2*dY; end end %hFig = ancestor(hParent,'figure'); hParent = paramsStruct.hFigure; elseif paramsStruct.wasInteractive % interactive figure rectangle % Compensate for 1px rbbox inaccuracies deltaX = 2; deltaY = -2; else % non-interactive figure % Compensate 4px figure boundaries = difference betweeen OuterPosition and Position deltaX = -1; deltaY = 1; end %disp(paramsStruct.position) % for debugging % Now get the pixel position relative to the monitor figurePos = getPixelPos(hParent); desktopPos = figurePos + parentPos; % Now convert to Java-based pixels based on screen size % Note: multiple monitors are automatically handled correctly, since all % ^^^^ Java positions are relative to the main monitor's top-left corner javaX = desktopPos(1) + paramsStruct.position(1) + deltaX + dX; javaY = screenSize(4) - desktopPos(2) - paramsStruct.position(2) - paramsStruct.position(4) + deltaY + dY; width = paramsStruct.position(3) + dW; height = paramsStruct.position(4) + dH; paramsStruct.position = round([javaX, javaY, width, height]); %paramsStruct.position % Ensure the figure is at the front so it can be screen-captured if isFigureValid figure(hParent); drawnow; pause(0.02); end catch % Maybe root/desktop handle (root does not have a 'Position' prop so getPixelPos croaks if isequal(double(hParent),0) % =root/desktop handle; handles case of hParent=[] javaX = paramsStruct.position(1) - 1; javaY = screenSize(4) - paramsStruct.position(2) - paramsStruct.position(4) - 1; paramsStruct.position = [javaX, javaY, paramsStruct.position(3:4)]; end end %end % convertPos %% Interactively get the requested capture rectangle function [positionRect, jFrameUsed, msgStr] = getInteractivePosition(hFig) msgStr = ''; try % First try the invisible-figure approach, in order to % enable rbbox outside any existing figure boundaries f = figure('units','pixel','pos',[-100,-100,10,10],'HitTest','off'); drawnow; pause(0.01); oldWarn = warning('off','MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame'); jf = get(handle(f),'JavaFrame'); warning(oldWarn); try jWindow = jf.fFigureClient.getWindow; catch try jWindow = jf.fHG1Client.getWindow; catch jWindow = jf.getFigurePanelContainer.getParent.getTopLevelAncestor; end end com.sun.awt.AWTUtilities.setWindowOpacity(jWindow,0.05); %=nearly transparent (not fully so that mouse clicks are captured) jWindow.setMaximized(1); % no true available in ML6 jFrameUsed = 1; % no true available in ML6 msg = {'Mouse-click and drag a bounding rectangle for screen-capture ' ... ... %'or single-click any Matlab figure to capture the entire figure.' ... }; catch % Something failed, so revert to a simple rbbox on a visible figure try delete(f); drawnow; catch, end %Cleanup... jFrameUsed = 0; % no false available in ML6 msg = {'Mouse-click within any Matlab figure and then', ... 'drag a bounding rectangle for screen-capture,', ... 'or single-click to capture the entire figure'}; end uiwait(msgbox(msg,'ScreenCapture')); k = waitforbuttonpress; %#ok k is unused %hFig = getCurrentFig; %p1 = get(hFig,'CurrentPoint'); positionRect = rbbox; %p2 = get(hFig,'CurrentPoint'); if jFrameUsed jFrameOrigin = getPixelPos(f); delete(f); drawnow; try figOrigin = getPixelPos(hFig); catch % empty/invalid hFig handle figOrigin = [0,0,0,0]; end else if isempty(hFig) jFrameOrigin = getPixelPos(gcf); else jFrameOrigin = [0,0,0,0]; end figOrigin = [0,0,0,0]; end positionRect(1:2) = positionRect(1:2) + jFrameOrigin(1:2) - figOrigin(1:2); if prod(positionRect(3:4)) > 0 msgStr = sprintf('%dx%d area captured',positionRect(3),positionRect(4)); end %end % getInteractivePosition %% Get current figure (even if its handle is hidden) function hFig = getCurrentFig oldState = get(0,'showHiddenHandles'); set(0,'showHiddenHandles','on'); hFig = get(0,'CurrentFigure'); set(0,'showHiddenHandles',oldState); %end % getCurrentFig %% Get ancestor figure - used for old Matlab versions that don't have a built-in ancestor() function hObj = ancestor(hObj,type) if ~isempty(hObj) & ishandle(hObj) %#ok for Matlab 6 compatibility try hObj = get(hObj,'Ancestor'); catch % never mind... end try %if ~isa(handle(hObj),type) % this is best but always returns 0 in Matlab 6! %if ~isprop(hObj,'type') | ~strcmpi(get(hObj,'type'),type) % no isprop() in ML6! try objType = get(hObj,'type'); catch objType = ''; end if ~strcmpi(objType,type) try parent = get(handle(hObj),'parent'); catch parent = hObj.getParent; % some objs have no 'Parent' prop, just this method... end if ~isempty(parent) % empty parent means root ancestor, so exit hObj = ancestor(parent,type); end end catch % never mind... end end %end % ancestor %% Get position of an HG object in specified units function pos = getPos(hObj,field,units) % Matlab 6 did not have hgconvertunits so use the old way... oldUnits = get(hObj,'units'); if strcmpi(oldUnits,units) % don't modify units unless we must! pos = get(hObj,field); else set(hObj,'units',units); pos = get(hObj,field); set(hObj,'units',oldUnits); end %end % getPos %% Get pixel position of an HG object - for Matlab 6 compatibility function pos = getPixelPos(hObj,varargin) persistent originalObj try stk = dbstack; if ~strcmp(stk(2).name,'getPixelPos') originalObj = hObj; end if isFigure(hObj) %| isAxes(hObj) %try pos = getPos(hObj,'OuterPosition','pixels'); else %catch % getpixelposition is unvectorized unfortunately! pos = getpixelposition(hObj,varargin{:}); % add the axes labels/ticks if relevant (plus a tiny margin to fix 2px label/title inconsistencies) if isAxes(hObj) & ~isImage(originalObj) %#ok ML6 tightInsets = getPos(hObj,'TightInset','pixel'); pos = pos + tightInsets.*[-1,-1,1,1] + [-1,1,1+tightInsets(1:2)]; end end catch try % Matlab 6 did not have getpixelposition nor hgconvertunits so use the old way... pos = getPos(hObj,'Position','pixels'); catch % Maybe the handle does not have a 'Position' prop (e.g., text/line/plot) - use its parent pos = getPixelPos(get(hObj,'parent'),varargin{:}); end end % Handle the case of missing/invalid/empty HG handle if isempty(pos) pos = [0,0,0,0]; end %end % getPixelPos %% Adds a ScreenCapture toolbar button function addToolbarButton(paramsStruct) % Ensure we have a valid toolbar handle hFig = ancestor(paramsStruct.toolbar,'figure'); if isempty(hFig) error('YMA:screencapture:badToolbar','the ''Toolbar'' parameter must contain a valid GUI handle'); end set(hFig,'ToolBar','figure'); hToolbar = findall(hFig,'type','uitoolbar'); if isempty(hToolbar) error('YMA:screencapture:noToolbar','the ''Toolbar'' parameter must contain a figure handle possessing a valid toolbar'); end hToolbar = hToolbar(1); % just in case there are several toolbars... - use only the first % Prepare the camera icon icon = ['3333333333333333'; ... '3333333333333333'; ... '3333300000333333'; ... '3333065556033333'; ... '3000000000000033'; ... '3022222222222033'; ... '3022220002222033'; ... '3022203110222033'; ... '3022201110222033'; ... '3022204440222033'; ... '3022220002222033'; ... '3022222222222033'; ... '3000000000000033'; ... '3333333333333333'; ... '3333333333333333'; ... '3333333333333333']; cm = [ 0 0 0; ... % black 0 0.60 1; ... % light blue 0.53 0.53 0.53; ... % light gray NaN NaN NaN; ... % transparent 0 0.73 0; ... % light green 0.27 0.27 0.27; ... % gray 0.13 0.13 0.13]; % dark gray cdata = ind2rgb(uint8(icon-'0'),cm); % If the button does not already exit hButton = findall(hToolbar,'Tag','ScreenCaptureButton'); tooltip = 'Screen capture'; if ~isempty(paramsStruct.target) tooltip = [tooltip ' to ' paramsStruct.target]; end if isempty(hButton) % Add the button with the icon to the figure's toolbar hButton = uipushtool(hToolbar, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']); %#ok unused else % Otherwise, simply update the existing button set(hButton, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']); end %end % addToolbarButton %% Java-get the actual screen-capture image data function imgData = getScreenCaptureImageData(positionRect) if isempty(positionRect) | all(positionRect==0) | positionRect(3)<=0 | positionRect(4)<=0 %#ok ML6 imgData = []; else % Use java.awt.Robot to take a screen-capture of the specified screen area rect = java.awt.Rectangle(positionRect(1), positionRect(2), positionRect(3), positionRect(4)); robot = java.awt.Robot; jImage = robot.createScreenCapture(rect); % Convert the resulting Java image to a Matlab image % Adapted for a much-improved performance from: % http://www.mathworks.com/support/solutions/data/1-2WPAYR.html h = jImage.getHeight; w = jImage.getWidth; %imgData = zeros([h,w,3],'uint8'); %pixelsData = uint8(jImage.getData.getPixels(0,0,w,h,[])); %for i = 1 : h % base = (i-1)*w*3+1; % imgData(i,1:w,:) = deal(reshape(pixelsData(base:(base+3*w-1)),3,w)'); %end % Performance further improved based on feedback from Urs Schwartz: %pixelsData = reshape(typecast(jImage.getData.getDataStorage,'uint32'),w,h).'; %imgData(:,:,3) = bitshift(bitand(pixelsData,256^1-1),-8*0); %imgData(:,:,2) = bitshift(bitand(pixelsData,256^2-1),-8*1); %imgData(:,:,1) = bitshift(bitand(pixelsData,256^3-1),-8*2); % Performance even further improved based on feedback from Jan Simon: pixelsData = reshape(typecast(jImage.getData.getDataStorage, 'uint8'), 4, w, h); imgData = cat(3, ... transpose(reshape(pixelsData(3, :, :), w, h)), ... transpose(reshape(pixelsData(2, :, :), w, h)), ... transpose(reshape(pixelsData(1, :, :), w, h))); end %end % getInteractivePosition %% Return the figure to its pre-undocked state (when relevant) function redockFigureIfRelevant(paramsStruct) if paramsStruct.wasDocked try set(paramsStruct.hFigure,'WindowStyle','docked'); %drawnow; catch % never mind - ignore... end end %end % redockFigureIfRelevant %% Copy screen-capture to the system clipboard % Adapted from http://www.mathworks.com/matlabcentral/fileexchange/28708-imclipboard/content/imclipboard.m function imclipboard(imgData) % Import necessary Java classes import java.awt.Toolkit.* import java.awt.image.BufferedImage import java.awt.datatransfer.DataFlavor % Add the necessary Java class (ImageSelection) to the Java classpath if ~exist('ImageSelection', 'class') % Obtain the directory of the executable (or of the M-file if not deployed) %javaaddpath(fileparts(which(mfilename)), '-end'); if isdeployed % Stand-alone mode. [status, result] = system('path'); %#ok<ASGLU> MatLabFilePath = char(regexpi(result, 'Path=(.*?);', 'tokens', 'once')); else % MATLAB mode. MatLabFilePath = fileparts(mfilename('fullpath')); end javaaddpath(MatLabFilePath, '-end'); end % Get System Clipboard object (java.awt.Toolkit) cb = getDefaultToolkit.getSystemClipboard; % can't use () in ML6! % Get image size ht = size(imgData, 1); wd = size(imgData, 2); % Convert to Blue-Green-Red format imgData = imgData(:, :, [3 2 1]); % Convert to 3xWxH format imgData = permute(imgData, [3, 2, 1]); % Append Alpha data (not used) imgData = cat(1, imgData, 255*ones(1, wd, ht, 'uint8')); % Create image buffer imBuffer = BufferedImage(wd, ht, BufferedImage.TYPE_INT_RGB); imBuffer.setRGB(0, 0, wd, ht, typecast(imgData(:), 'int32'), 0, wd); % Create ImageSelection object % % custom java class imSelection = ImageSelection(imBuffer); % Set clipboard content to the image cb.setContents(imSelection, []); %end %imclipboard %% Is the provided handle a figure? function flag = isFigure(hObj) flag = isa(handle(hObj),'figure') | isa(hObj,'matlab.ui.Figure'); %end %isFigure %% Is the provided handle an axes? function flag = isAxes(hObj) flag = isa(handle(hObj),'axes') | isa(hObj,'matlab.graphics.axis.Axes'); %end %isFigure %% Is the provided handle an image? function flag = isImage(hObj) flag = isa(handle(hObj),'image') | isa(hObj,'matlab.graphics.primitive.Image'); %end %isFigure %%%%%%%%%%%%%%%%%%%%%%%%%% TODO %%%%%%%%%%%%%%%%%%%%%%%%% % find a way in interactive-mode to single-click another Matlab figure for screen-capture
github
philippboehmsturm/antx-master
demo_WindowAPI.m
.m
antx-master/mritools/others/windowapi/demo_WindowAPI.m
7,664
utf_8
4521f3e55d6634de6a8e4bf7fa63ced1
function demo_WindowAPI % Demo for WindowAPI % The function WindowAPI has grown to an universal super tool. Unfortunately % this reduces the readability of the help section. Therefore I've created this % function to demonstrate the usage of all features. % % Author: Jan Simon, Heidelberg, (C) 2008-2016 matlab.THISYEAR(a)nMINUSsimon.de % $JRev: R-g V:006 Sum:t/JmEwfh8W4x Date:09-Oct-2011 02:42:27 $ % $License: BSD (use/copy/change/redistribute on own risk, mention the author) $ % $File: Tools\UnitTests_\demo_WindowAPI.m $ % Initialize: ================================================================== delay = 1.0; % Seconds between effects % Do the work: ================================================================= fprintf('== %s:\n', mfilename); % Search the compiled C-Mex file: clear('WindowAPI'); MexVersion = WindowAPI(); whichWindowAPI = which(MexVersion); if isempty(whichWindowAPI) error(['JSimon:', mfilename, ':MissingMex'], ... ['*** %s: WindowAPI.mex is not found in the path.\n', ... ' Try to compile it again.'], mfilename); end fprintf('Using: %s\n\n', whichWindowAPI); try % Create a figure to operate on: -------------------------------------------- % The OpenGL renderer is confused by the alpha blending, so Painters is used: disp(' Create a figure:'); FigH = figure('Color', ones(1, 3), 'Renderer', 'Painters'); FigPos = get(FigH, 'Position'); axes('Visible', 'off', 'Units', 'normalized', 'Position', [0, 0, 1, 1]); TextH = text(0.5, 0.5, ' Demo: WindowAPI ', ... 'Units', 'normalized', ... 'FontSize', 20, ... 'HorizontalAlignment', 'center', ... 'BackgroundColor', [0.4, 0.9, 0.0], ... 'Margin', 12); % Move figure to 2nd monitor - on a single monitor setup this request should % be ignored silently: disp(' Try to move figure to 2nd monitor, if existing:'); pause(delay); WindowAPI(FigH, 'Position', FigPos, 2); WindowAPI(FigH, 'ToMonitor'); % If 2nd monitor has different size pause(delay); % Get info about current monitor: disp(' Get info of monitor of the figure:'); Info = WindowAPI(FigH, 'Monitor'); disp(Info); pause(delay); % Set topmost status: disp(' Set figure to topmost, no topmost and to front:'); WindowAPI(FigH, 'topmost'); % Command is not case-sensitive drawnow; WindowAPI(FigH, 'TopMost', 0); drawnow; WindowAPI(FigH, 'front'); drawnow; % Nicer to have the figure on topmost for the rest of the demo: WindowAPI(FigH, 'topmost'); % Minimize, maximize: disp(' Minimize, maximize, restore former size, get current status:'); WindowAPI(FigH, 'minimize'); disp([' ', WindowAPI(FigH, 'GetStatus')]); pause(delay); WindowAPI(FigH, 'restore'); disp([' ', WindowAPI(FigH, 'GetStatus')]); pause(delay); WindowAPI(FigH, 'maximize'); disp([' ', WindowAPI(FigH, 'GetStatus')]); pause(delay); WindowAPI(FigH, 'restore'); pause(delay); % Get the position: disp(' Get window position relative to nearest monitor:'); Location = WindowAPI(FigH, 'Position'); disp(Location); pause(delay); % Partial maximizing: disp(' Maximize horizontally or vertically only:'); WindowAPI(FigH, 'xmax'); pause(delay); WindowAPI(FigH, 'Position', Location.Position, Location.MonitorIndex); pause(delay); WindowAPI(FigH, 'ymax'); pause(delay); disp(' Move back to 1st monitor:'); WindowAPI(FigH, 'Position', Location.Position, 1); WindowAPI(FigH, 'ToMonitor'); pause(delay); % Special maximizing such that the inner figure fill the screen: disp(' Maximize inner figure position to work size:'); disp(' (Taskbar and sidebar are not concealed...)'); WindowAPI(FigH, 'Position', 'work'); pause(delay); disp(' Maximize inner figure position to full monitor:'); WindowAPI(FigH, 'Position', 'full'); % Complete monitor pause(delay); % Maximize the outer position, which is similar to the standard maximization: disp(' Maximize the outer position of the figure:'); disp(' (The window title and menu bar is visible)'); WindowAPI(FigH, 'OuterPosition', 'work'); pause(delay); WindowAPI(FigH, 'OuterPosition', 'full'); % Complete monitor pause(delay); % Move to screen and test using the HWnd handle: disp(' Move back to visible area automatically:'); disp(' (OS Window handle "HWnd" is used, not working for inner position!)'); HWnd = WindowAPI(FigH, 'GetHWnd'); WindowAPI(HWnd, 'OuterPosition', [-100, -100, FigPos(3:4)]); pause(delay); WindowAPI(HWnd, 'ToMonitor'); pause(delay); % Short flashing: disp(' A short flash of the window border:'); WindowAPI(FigH, 'Flash'); % Disable the figure: disp(' Disable the figure - no user intection possible:'); WindowAPI(FigH, 'Enable', 0); pause(delay); WindowAPI(FigH, 'Enable', 1); disp(' Hide the buttons:'); WindowAPI(FigH, 'Button', false); pause(delay); WindowAPI(FigH, 'Button', true); % If a UICONTROL is activated, the figure does *not* gain the focus back by % the command "figure(FigH)" in Matlab 5.3 to 2009a (or higher) - in contrary % to the documentation! disp(' Set the keyboard focus:'); disp(' (The Matlab command "figure(FigH)" is not relialble)'); WindowAPI(FigH, 'SetFocus'); % Alpha blending and stencil color: disp(' Semi-transparent sphere without visible figure'); % Painters or ZBuffer as renderer! OpenGL draws black figures sometimes. AxesH = axes('Units', 'pixels', 'Position', FigPos); sphere; set(AxesH, 'Visible', 'off', 'CameraViewAngle', 30); WindowAPI(FigH, 'Position', 'work'); WindowAPI(FigH, 'Clip'); % No border on neighboring monitors WindowAPI(FigH, 'topmost'); % NOTE: depending on the graphics hardware not all RGB values are working, % because the pixel colors can be sampled to 555 or 565 bits, especially on % laptops. At least 0, and 255 are always regonized, so prefer [255,255,0] or % similar colors: StencilRGB = [255, 255, 255]; WindowAPI(FigH, 'Alpha', 0.2, StencilRGB); for angle = 40:-2:5 set(AxesH, 'CameraViewAngle', angle); drawnow; end disp(' Release the memory used for alpha-blending (important!):'); WindowAPI(FigH, 'Opaque'); delete(AxesH); % Clip visible region: disp(' Clip window border ("splash screen"):'); WindowAPI(FigH, 'Position', FigPos); WindowAPI(FigH, 'Clip'); pause(delay); disp(' Clip specified rectangle:'); set(TextH, 'Units', 'pixels', 'ButtonDownFcn', @cleanup, ... 'String', ' Click to escape! ', ... 'Margin', 10, ... 'EdgeColor', [0.2, 0.7, 0.0], ... 'LineWidth', 2); pos = round(get(TextH, 'Extent')) + [-12, -11, 22, 22]; WindowAPI(FigH, 'Clip', pos); % Lock mouse position: WindowAPI(FigH, 'LockCursor', pos); fprintf('\n ready. CLICK ON THE BOX TO DELETE IT!\n\n'); catch fprintf('\n%s crashed: %s\n\n', mfilename, lasterr); WindowAPI('UnlockCursor'); delete(FigH); end % return; % ****************************************************************************** function cleanup(ObjH, EventData) %#ok<INUSD> % Smooth fading. FigH = ancestor(ObjH, 'figure'); % Unlock the cursor: WindowAPI(FigH, 'LockCursor', 0); % or: WindowAPI(FigH, 'LockCursor'); % or: WindowAPI('UnlockCursor'); % Fade out: for alpha = linspace(1, 0, 20) WindowAPI(FigH, 'Alpha', alpha); pause(0.03); end delete(gcbf); fprintf('%s: Goodbye\n', mfilename); % return;
github
philippboehmsturm/antx-master
spm_uitab.m
.m
antx-master/xspm8/spm_uitab.m
7,695
utf_8
e80b69279b276644a59f0e838bc07817
function [handles] = spm_uitab(hparent,labels,callbacks,... tag,active,height,tab_height) % Create tabs in the SPM Graphics window % FORMAT [handles] = spm_uitab(hfig,labels,callbacks,... % tag,active,height,tab_height) % This functiuon creates tabs in the SPM graphics window. % These tabs may be associated with different sets of axes and uicontrol, % through the use of callback functions linked to the tabs. % IN: % - hparent: the handle of the parent of the tabs (can be the SPM graphics % windows, or the handle of the uipanel of a former spm_uitab...) % - labels: a cell array of string containing the labels of the tabs % - callbacks: a cell array of strings which will be evaluated using the % 'eval' function when clicking on a tab % - tag: a string which is the tags associated with the tabs (useful for % finding them in a window...) % - active: the index of the active tab when creating the uitabs (default % = 1, ie the first tab is active) % - height: the relative height of the tab panels within its parent % spatial extent (default = 1) % - tab_height: the relative height of the tabs within its parent spatial % extent (default = 1) % OUT: % - handles: a structure of handles for the differents tab objects. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_uitab.m 3062 2009-04-17 14:07:40Z jean $ Ntabs = length(labels); if ~exist('callbacks','var') || isempty(callbacks) for i=1:Ntabs callbacks{i} = []; end end if ~exist('tag','var') || isempty(tag) tag = ''; end if ~exist('active','var') || isempty(active) active = 1; end if ~exist('height','var') || isempty(height) height = 1; end if ~exist('tab_height','var') || isempty(tab_height) tab_height = 0.025; end if ~isequal(get(hparent,'type'),'figure') set(hparent,'units','normalized') POS = get(hparent,'position'); pos1 = [POS(1)+0.02,POS(2)+0.01,POS(3)-0.04,POS(4)-(tab_height+0.035)]; dx = 0.1*(POS(3)-0.04)./0.98; dx2 = [0.04,0.93]*(POS(3)-0.04)./0.98; else pos1 = [0.01 0.005 0.98 1-(tab_height+0.01)]; dx = 0.1; dx2 = [0.04,0.93]; end pos1(4) = pos1(4).*height; COLOR = 0.95*[1 1 1]; handles.hp = uipanel(... 'parent',hparent,... 'position',pos1,... 'BorderType','beveledout',... 'BackgroundColor',COLOR,... 'tag',tag); set(handles.hp,'units','normalized'); xl = pos1(1); yu = pos1(2) +pos1(4); ddx = 0.0025; ddy = 0.005; dy = tab_height; if Ntabs > 9 handles.hs(1) = uicontrol(... 'parent',hparent,...'enable','off',... 'style','pushbutton',... 'units','normalized','position',[xl yu dx2(1) dy],... 'SelectionHighlight','off',... 'BackgroundColor',COLOR,... 'callback',@doScroll,... 'value',0,'min',0,'max',Ntabs-9,... 'string','<',... 'tag',tag,... 'BusyAction','cancel',... 'Interruptible','off'); handles.hs(2) = uicontrol(... 'parent',hparent,... 'style','pushbutton',... 'units','normalized','position',[xl+dx2(2) yu 0.05 dy],... 'SelectionHighlight','off',... 'BackgroundColor',COLOR,... 'callback',@doScroll,... 'value',1,'min',1,'max',Ntabs-9,... 'string','>',... 'tag',tag,... 'BusyAction','cancel',... 'Interruptible','off'); set(handles.hs,'units','normalized') xl = xl + dx2(1); end for i =1:min([Ntabs,9]) pos = [xl+dx*(i-1) yu dx dy]; handles.htab(i) = uicontrol(... 'parent',hparent,... 'style','pushbutton',... 'units','normalized','position',pos,... 'SelectionHighlight','off',... 'string',labels{i},... 'BackgroundColor',COLOR,... 'tag',tag); set(handles.htab(i),'units','normalized') pos = [xl+dx*(i-1)+ddx yu-ddy dx-2*ddx 2*ddy]; handles.hh(i) = uicontrol(... 'parent',hparent,... 'style','text',... 'units','normalized','position',pos,... 'BackgroundColor',COLOR,... 'tag',tag); set(handles.hh(i),'units','normalized') end try set(handles.hh(active),'visible','on') catch active = 1; set(handles.hh(active),'visible','on') end others = setdiff(1:min([Ntabs,9]),active); set(handles.htab(active),... 'FontWeight','bold'); set(handles.hh(others),'visible','off'); set(handles.htab(others),... 'ForegroundColor',0.25*[1 1 1]); ud.handles = handles; ud.Ntabs = Ntabs; for i =1:min([Ntabs,9]) ud.ind = i; ud.callback = callbacks{i}; set(handles.htab(i),'callback',@doChoose,'userdata',ud,... 'BusyAction','cancel',... 'Interruptible','off'); if i > 9 set(handles.htab(i),'visible','off'); end end if Ntabs > 9 UD.in = [1:9]; UD.Ntabs = Ntabs; UD.h = handles; UD.active = active; UD.who = -1; UD.callbacks = callbacks; UD.labels = labels; set(handles.hs(1),'userdata',UD,'enable','off'); UD.who = 1; set(handles.hs(2),'userdata',UD); end %========================================================================== % doChoose %========================================================================== function doChoose(o1,o2) ud = get(o1,'userdata'); % Do nothing if called tab is current (active) tab if ~strcmp(get(ud.handles.htab(ud.ind),'FontWeight'),'bold') spm('pointer','watch'); set(ud.handles.hh(ud.ind),'visible','on'); set(ud.handles.htab(ud.ind),... 'ForegroundColor',0*[1 1 1],... 'FontWeight','bold'); others = setdiff(1:length(ud.handles.hh),ud.ind); set(ud.handles.hh(others),'visible','off'); set(ud.handles.htab(others),... 'ForegroundColor',0.25*[1 1 1],... 'FontWeight','normal'); if ud.Ntabs >9 UD = get(ud.handles.hs(1),'userdata'); UD.active = UD.in(ud.ind); UD.who = -1; set(ud.handles.hs(1),'userdata',UD); UD.who = 1; set(ud.handles.hs(2),'userdata',UD); end drawnow if ~isempty(ud.callback) if isa(ud.callback, 'function_handle') feval(ud.callback); else eval(ud.callback); end end drawnow spm('pointer','arrow'); end %========================================================================== % doScroll %========================================================================== function doScroll(o1,o2) ud = get(o1,'userdata'); % active = ud.in(ud.active); ud.in = ud.in + ud.who; if min(ud.in) ==1 set(ud.h.hs(1),'enable','off'); set(ud.h.hs(2),'enable','on'); elseif max(ud.in) ==ud.Ntabs set(ud.h.hs(1),'enable','on'); set(ud.h.hs(2),'enable','off'); else set(ud.h.hs,'enable','on'); end UD.handles = ud.h; UD.Ntabs = ud.Ntabs; for i = 1:length(ud.in) UD.ind = i; UD.callback = ud.callbacks{ud.in(i)}; set(ud.h.htab(i),'userdata',UD,... 'string',ud.labels{ud.in(i)}); if ismember(ud.active,ud.in) ind = find(ud.in==ud.active); set(ud.h.hh(ind),'visible','on'); set(ud.h.htab(ind),... 'ForegroundColor',0*[1 1 1],... 'FontWeight','bold'); others = setdiff(1:9,ind); set(ud.h.hh(others),'visible','off'); set(ud.h.htab(others),... 'ForegroundColor',0.25*[1 1 1],... 'FontWeight','normal'); else others = 1:9; set(ud.h.hh(others),'visible','off'); set(ud.h.htab(others),... 'ForegroundColor',0.25*[1 1 1],... 'FontWeight','normal'); end end ud.who = -1; set(ud.h.hs(1),'userdata',ud) ud.who = 1; set(ud.h.hs(2),'userdata',ud)
github
philippboehmsturm/antx-master
spm_vb_ppm_anova.m
.m
antx-master/xspm8/spm_vb_ppm_anova.m
3,873
utf_8
5360b2f4d1d7fe1f61c455b53a468fd5
function spm_vb_ppm_anova(SPM) % Bayesian ANOVA using model comparison % FORMAT spm_vb_ppm_anova(SPM) % % SPM - Data structure corresponding to a full model (ie. one % containing all experimental conditions). % % This function creates images of differences in log evidence % which characterise the average effect, main effects and interactions % in a factorial design. % % The factorial design is specified in SPM.factor. For a one-way ANOVA % the images % % avg_effect.img % main_effect.img % % are produced. For a two-way ANOVA the following images are produced % % avg_effect.img % main_effect_'factor1'.img % main_effect_'factor2'.img % interaction.img % % These images can then be thresholded. For example a threshold of 4.6 % corresponds to a posterior effect probability of [exp(4.6)] = 0.999. % See paper VB4 for more details. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Will Penny % $Id: spm_vb_ppm_anova.m 1143 2008-02-07 19:33:33Z spm $ disp('Warning: spm_vb_ppm_anova only works for single session data.'); model = spm_vb_models(SPM,SPM.factor); analysis_dir = pwd; for m=1:length(model)-1, model_subdir = ['model_',int2str(m)]; mkdir(analysis_dir,model_subdir); SPM.swd = fullfile(analysis_dir,model_subdir); SPM.Sess(1).U = model(m).U; SPM.Sess(1).U = spm_get_ons(SPM,1); SPM = spm_fMRI_design(SPM,0); % 0 = don't save SPM.mat SPM.PPM.update_F = 1; % Compute evidence for each model SPM.PPM.compute_det_D = 1; spm_spm_vb(SPM); end % Compute differences in contributions to log-evidence images % to assess main effects and interactions nf = length(SPM.factor); if nf==1 % For a single factor % Average effect image1 = fullfile(analysis_dir, 'model_1','LogEv.img'); image2 = fullfile(analysis_dir, 'model_2','LogEv.img'); imout = fullfile(analysis_dir, 'avg_effect.img'); img_subtract(image1,image2,imout); % Main effect of factor image1 = fullfile(analysis_dir, 'model_2','LogEv.img'); image2 = fullfile(analysis_dir, 'LogEv.img'); imout = fullfile(analysis_dir, 'main_effect.img'); img_subtract(image1,image2,imout); elseif nf==2 % For two factors % Average effect image1 = fullfile(analysis_dir, 'model_1','LogEv.img'); image2 = fullfile(analysis_dir, 'model_2','LogEv.img'); imout = fullfile(analysis_dir, 'avg_effect.img'); img_subtract(image1,image2,imout); % Main effect of factor 1 image1 = fullfile(analysis_dir, 'model_2','LogEv.img'); image2 = fullfile(analysis_dir, 'model_3','LogEv.img'); imout = fullfile(analysis_dir, ['main_effect_',SPM.factor(1).name,'.img']); img_subtract(image1,image2,imout); % Main effect of factor 2 image1 = fullfile(analysis_dir, 'model_2','LogEv.img'); image2 = fullfile(analysis_dir, 'model_4','LogEv.img'); imout = fullfile(analysis_dir, ['main_effect_',SPM.factor(2).name,'.img']); img_subtract(image1,image2,imout); % Interaction image1 = fullfile(analysis_dir, 'model_5','LogEv.img'); image2 = fullfile(analysis_dir, 'LogEv.img'); imout = fullfile(analysis_dir, 'interaction.img'); img_subtract(image1,image2,imout); end %----------------------------------------------------------------------- function img_subtract(image1,image2,image_out) % Subtract image 1 from image 2 and write to image out % Note: parameters are names of files Vi = spm_vol(strvcat(image1,image2)); Vo = struct(... 'fname', image_out,... 'dim', [Vi(1).dim(1:3)],... 'dt', [spm_type('float32') spm_platform('bigend')],... 'mat', Vi(1).mat,... 'descrip', 'Difference in Log Evidence'); f = 'i2-i1'; flags = {0,0,1}; Vo = spm_imcalc(Vi,Vo,f,flags);
github
philippboehmsturm/antx-master
spm_fmri_spm_ui.m
.m
antx-master/xspm8/spm_fmri_spm_ui.m
19,258
utf_8
8205c5db88ee6848b51de86102b8b0d0
function [SPM] = spm_fmri_spm_ui(SPM) % Setting up the general linear model for fMRI time-series % FORMAT [SPM] = spm_fmri_spm_ui(SPM) % % creates SPM with the following fields % % xY: [1x1 struct] - data structure % nscan: [double] - vector of scans per session % xBF: [1x1 struct] - Basis function structure (see spm_fMRI_design) % Sess: [1x1 struct] - Session structure (see spm_fMRI_design) % xX: [1x1 struct] - Design matrix structure (see spm_fMRI_design) % xGX: [1x1 struct] - Global variate structure % xVi: [1x1 struct] - Non-sphericity structure % xM: [1x1 struct] - Masking structure % xsDes: [1x1 struct] - Design description structure % % % SPM.xY % P: [n x ? char] - filenames % VY: [n x 1 struct] - filehandles % RT: Repeat time % % SPM.xGX % % iGXcalc: {'none'|'Scaling'} - Global normalization option % sGXcalc: 'mean voxel value' - Calculation method % sGMsca: 'session specific' - Grand mean scaling % rg: [n x 1 double] - Global estimate % GM: 100 - Grand mean % gSF: [n x 1 double] - Global scaling factor % % SPM.xVi % Vi: {[n x n sparse]..} - covariance components % form: {'none'|'AR(1)'} - form of non-sphericity % % SPM.xM % T: [n x 1 double] - Masking index % TH: [n x 1 double] - Threshold % I: 0 % VM: - Mask filehandles % xs: [1x1 struct] - cellstr description % % (see also spm_spm_ui) % %__________________________________________________________________________ % % spm_fmri_spm_ui configures the design matrix, data specification and % filtering that specify the ensuing statistical analysis. These % arguments are passed to spm_spm that then performs the actual parameter % estimation. % % The design matrix defines the experimental design and the nature of % hypothesis testing to be implemented. The design matrix has one row % for each scan and one column for each effect or explanatory variable. % (e.g. regressor or stimulus function). The parameters are estimated in % a least squares sense using the general linear model. Specific profiles % within these parameters are tested using a linear compound or contrast % with the T or F statistic. The resulting statistical map constitutes % an SPM. The SPM{T}/{F} is then characterized in terms of focal or regional % differences by assuming that (under the null hypothesis) the components of % the SPM (i.e. residual fields) behave as smooth stationary Gaussian fields. % % spm_fmri_spm_ui allows you to (i) specify a statistical model in terms % of a design matrix, (ii) associate some data with a pre-specified design % [or (iii) specify both the data and design] and then proceed to estimate % the parameters of the model. % Inferences can be made about the ensuing parameter estimates (at a first % or fixed-effect level) in the results section, or they can be re-entered % into a second (random-effect) level analysis by treating the session or % subject-specific [contrasts of] parameter estimates as new summary data. % Inferences at any level obtain by specifying appropriate T or F contrasts % in the results section to produce SPMs and tables of p values and statistics. % % spm_fmri_spm calls spm_fMRI_design which allows you to configure a % design matrix in terms of events or epochs. % % spm_fMRI_design allows you to build design matrices with separable % session-specific partitions. Each partition may be the same (in which % case it is only necessary to specify it once) or different. Responses % can be either event- or epoch related, The only distinction is the duration % of the underlying input or stimulus function. Mathematically they are both % modelled by convolving a series of delta (stick) or box functions (u), % indicating the onset of an event or epoch with a set of basis % functions. These basis functions model the hemodynamic convolution, % applied by the brain, to the inputs. This convolution can be first-order % or a generalized convolution modelled to second order (if you specify the % Volterra option). [The same inputs are used by the hemodynamic model or % or dynamic causal models which model the convolution explicitly in terms of % hidden state variables (see spm_hdm_ui and spm_dcm_ui).] % Basis functions can be used to plot estimated responses to single events % once the parameters (i.e. basis function coefficients) have % been estimated. The importance of basis functions is that they provide % a graceful transition between simple fixed response models (like the % box-car) and finite impulse response (FIR) models, where there is one % basis function for each scan following an event or epoch onset. The % nice thing about basis functions, compared to FIR models, is that data % sampling and stimulus presentation does not have to be synchronized % thereby allowing a uniform and unbiased sampling of peri-stimulus time. % % Event-related designs may be stochastic or deterministic. Stochastic % designs involve one of a number of trial-types occurring with a % specified probably at successive intervals in time. These % probabilities can be fixed (stationary designs) or time-dependent % (modulated or non-stationary designs). The most efficient designs % obtain when the probabilities of every trial type are equal. % A critical issue in stochastic designs is whether to include null events % If you wish to estimate the evoke response to a specific event % type (as opposed to differential responses) then a null event must be % included (even if it is not modelled explicitly). % % The choice of basis functions depends upon the nature of the inference % sought. One important consideration is whether you want to make % inferences about compounds of parameters (i.e. contrasts). This is % the case if (i) you wish to use a SPM{T} to look separately at % activations and deactivations or (ii) you with to proceed to a second % (random-effect) level of analysis. If this is the case then (for % event-related studies) use a canonical hemodynamic response function % (HRF) and derivatives with respect to latency (and dispersion). Unlike % other bases, contrasts of these effects have a physical interpretation % and represent a parsimonious way of characterising event-related % responses. Bases such as a Fourier set require the SPM{F} for % inference. % % See spm_fMRI_design for more details about how designs are specified. % % Serial correlations in fast fMRI time-series are dealt with as % described in spm_spm. At this stage you need to specify the filtering % that will be applied to the data (and design matrix) to give a % generalized least squares (GLS) estimate of the parameters required. % This filtering is important to ensure that the GLS estimate is % efficient and that the error variance is estimated in an unbiased way. % % The serial correlations will be estimated with a ReML (restricted % maximum likelihood) algorithm using an autoregressive AR(1) model % during parameter estimation. This estimate assumes the same % correlation structure for each voxel, within each session. The ReML % estimates are then used to correct for non-sphericity during inference % by adjusting the statistics and degrees of freedom appropriately. The % discrepancy between estimated and actual intrinsic (i.e. prior to % filtering) correlations are greatest at low frequencies. Therefore % specification of the high-pass filter is particularly important. % % High-pass filtering is implemented at the level of the % filtering matrix K (as opposed to entering as confounds in the design % matrix). The default cut-off period is 128 seconds. Use 'explore design' % to ensure this cut-off is not removing too much experimental variance. % Note that high-pass filtering uses a residual forming matrix (i.e. % it is not a convolution) and is simply to a way to remove confounds % without estimating their parameters explicitly. The constant term % is also incorporated into this filter matrix. % %-------------------------------------------------------------------------- % Refs: % % Friston KJ, Holmes A, Poline J-B, Grasby PJ, Williams SCR, Frackowiak % RSJ & Turner R (1995) Analysis of fMRI time-series revisited. NeuroImage % 2:45-53 % % Worsley KJ and Friston KJ (1995) Analysis of fMRI time-series revisited - % again. NeuroImage 2:178-181 % % Friston KJ, Frith CD, Frackowiak RSJ, & Turner R (1995) Characterising % dynamic brain responses with fMRI: A multivariate approach NeuroImage - % 2:166-172 % % Frith CD, Turner R & Frackowiak RSJ (1995) Characterising evoked % hemodynamics with fMRI Friston KJ, NeuroImage 2:157-165 % % Josephs O, Turner R and Friston KJ (1997) Event-related fMRI, Hum. Brain % Map. 0:00-00 % %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston, Jean-Baptiste Poline & Christian Buchel % $Id: spm_fmri_spm_ui.m 4421 2011-08-04 11:34:28Z guillaume $ SVNid = '$Rev: 4421 $'; %-GUI setup %-------------------------------------------------------------------------- [Finter,Fgraph,CmdLine] = spm('FnUIsetup','fMRI stats model setup',0); % get design matrix and/or data %========================================================================== if ~nargin str = 'specify design or data'; if spm_input(str,1,'b',{'design','data'},[1 0]); % specify a design %------------------------------------------------------------------ if sf_abort, spm_clf(Finter), return, end SPM = spm_fMRI_design; spm_fMRI_design_show(SPM); return else % get design %------------------------------------------------------------------ load(spm_select(1,'^SPM\.mat$','Select SPM.mat')); end else % get design matrix %---------------------------------------------------------------------- SPM = spm_fMRI_design(SPM); end % get Repeat time %-------------------------------------------------------------------------- try SPM.xY.RT; catch SPM.xY.RT = spm_input('Interscan interval {secs}','+1'); end % session and scan number %-------------------------------------------------------------------------- nscan = SPM.nscan; nsess = length(nscan); % check data are specified %-------------------------------------------------------------------------- try SPM.xY.P; catch % get filenames %---------------------------------------------------------------------- P = []; for i = 1:nsess str = sprintf('select scans for session %0.0f',i); q = spm_select(nscan(i),'image',str); P = strvcat(P,q); end % place in data field %---------------------------------------------------------------------- SPM.xY.P = P; end % Assemble remaining design parameters %========================================================================== SPM.SPMid = spm('FnBanner',mfilename,SVNid); % Global normalization %-------------------------------------------------------------------------- try SPM.xGX.iGXcalc; catch spm_input('Global intensity normalisation...',1,'d',mfilename) str = 'remove Global effects'; SPM.xGX.iGXcalc = spm_input(str,'+1','scale|none',{'Scaling' 'None'}); end SPM.xGX.sGXcalc = 'mean voxel value'; SPM.xGX.sGMsca = 'session specific'; % High-pass filtering and serial correlations %========================================================================== % low frequency confounds %-------------------------------------------------------------------------- try myLastWarn = 0; HParam = [SPM.xX.K(:).HParam]; if length(HParam) == 1 HParam = HParam*ones(1,nsess); elseif length(HParam) ~= nsess myLastWarn = 1; error('Continue with manual HPF specification in the catch block'); end catch % specify low frequency confounds %---------------------------------------------------------------------- spm_input('Temporal autocorrelation options','+1','d',mfilename) switch spm_input('High-pass filter?','+1','b','none|specify'); case 'specify' % default in seconds %-------------------------------------------------------------- HParam = spm_get_defaults('stats.fmri.hpf')*ones(1,nsess); str = 'cutoff period (secs)'; HParam = spm_input(str,'+1','e',HParam,[1 nsess]); case 'none' % Inf seconds (i.e. constant term only) %-------------------------------------------------------------- HParam = Inf(1,nsess); end if myLastWarn warning('SPM:InvalidHighPassFilterSpec',... ['Different number of High-pass filter values and sessions.\n',... 'HPF filter configured manually. Design setup will proceed.']); clear myLastWarn end end % create and set filter struct %-------------------------------------------------------------------------- for i = 1:nsess K(i) = struct('HParam', HParam(i),... 'row', SPM.Sess(i).row,... 'RT', SPM.xY.RT); end SPM.xX.K = spm_filter(K); % intrinsic autocorrelations (Vi) %-------------------------------------------------------------------------- try cVi = SPM.xVi.form; catch % Construct Vi structure for non-sphericity ReML estimation %---------------------------------------------------------------------- str = 'Correct for serial correlations?'; cVi = {'none','AR(1)'}; cVi = spm_input(str,'+1','b',cVi); end % create Vi struct %-------------------------------------------------------------------------- if ~ischar(cVi) % AR coefficient specified %---------------------------------------------------------------------- SPM.xVi.Vi = spm_Ce(nscan,cVi(1)); cVi = ['AR( ' sprintf('%0.1f ',cVi) ')']; else switch lower(cVi) case 'none' % xVi.V is i.i.d %-------------------------------------------------------------- SPM.xVi.V = speye(sum(nscan)); cVi = 'i.i.d'; otherwise % otherwise assume AR(0.2) in xVi.Vi %-------------------------------------------------------------- SPM.xVi.Vi = spm_Ce(nscan,0.2); cVi = 'AR(0.2)'; end end SPM.xVi.form = cVi; %========================================================================== % - C O N F I G U R E D E S I G N %========================================================================== spm_clf(Finter); spm('FigName','Configuring, please wait...',Finter,CmdLine); spm('Pointer','Watch'); % get file identifiers %========================================================================== %-Map files %-------------------------------------------------------------------------- fprintf('%-40s: ','Mapping files') %-# VY = spm_vol(SPM.xY.P); fprintf('%30s\n','...done') %-# %-check internal consistency of images %-------------------------------------------------------------------------- spm_check_orientations(VY); %-place in xY %-------------------------------------------------------------------------- SPM.xY.VY = VY; %-Compute Global variate %========================================================================== GM = 100; q = length(VY); g = zeros(q,1); fprintf('%-40s: %30s','Calculating globals',' ') %-# for i = 1:q fprintf('%s%30s',repmat(sprintf('\b'),1,30),sprintf('%4d/%-4d',i,q))%-# g(i) = spm_global(VY(i)); end fprintf('%s%30s\n',repmat(sprintf('\b'),1,30),'...done') %-# % scale if specified (otherwise session specific grand mean scaling) %-------------------------------------------------------------------------- gSF = GM./g; if strcmpi(SPM.xGX.iGXcalc,'none') for i = 1:nsess gSF(SPM.Sess(i).row) = GM./mean(g(SPM.Sess(i).row)); end end %-Apply gSF to memory-mapped scalefactors to implement scaling %-------------------------------------------------------------------------- for i = 1:q SPM.xY.VY(i).pinfo(1:2,:) = SPM.xY.VY(i).pinfo(1:2,:)*gSF(i); end %-place global variates in global structure %-------------------------------------------------------------------------- SPM.xGX.rg = g; SPM.xGX.GM = GM; SPM.xGX.gSF = gSF; %-Masking structure automatically set to 80% of mean %========================================================================== try TH = g.*gSF*spm_get_defaults('mask.thresh'); catch TH = g.*gSF*0.8; end SPM.xM = struct('T', ones(q,1),... 'TH', TH,... 'I', 0,... 'VM', {[]},... 'xs', struct('Masking','analysis threshold')); %-Design description - for saving and display %========================================================================== for i = 1:nsess, ntr(i) = length(SPM.Sess(i).U); end Fstr = sprintf('[min] Cutoff: %d {s}',min([SPM.xX.K(:).HParam])); SPM.xsDes = struct(... 'Basis_functions', SPM.xBF.name,... 'Number_of_sessions', sprintf('%d',nsess),... 'Trials_per_session', sprintf('%-3d',ntr),... 'Interscan_interval', sprintf('%0.2f {s}',SPM.xY.RT),... 'High_pass_Filter', sprintf('Cutoff: %d {s}',SPM.xX.K(1).HParam),... 'Global_calculation', SPM.xGX.sGXcalc,... 'Grand_mean_scaling', SPM.xGX.sGMsca,... 'Global_normalisation', SPM.xGX.iGXcalc); %-Save SPM.mat %========================================================================== fprintf('%-40s: ','Saving SPM configuration') %-# if spm_check_version('matlab','7') >=0 save('SPM.mat', 'SPM', '-V6'); else save('SPM.mat', 'SPM'); end fprintf('%30s\n','...SPM.mat saved') %-# %-Display Design report %========================================================================== if ~CmdLine fprintf('%-40s: ','Design reporting') %-# fname = cat(1,{SPM.xY.VY.fname}'); spm_DesRep('DesMtx',SPM.xX,fname,SPM.xsDes) fprintf('%30s\n','...done') %-# end %-End: Cleanup GUI %========================================================================== spm_clf(Finter) spm('FigName','Stats: configured',Finter,CmdLine); spm('Pointer','Arrow') %========================================================================== %- S U B - F U N C T I O N S %========================================================================== function abort = sf_abort %========================================================================== if exist(fullfile(pwd,'SPM.mat'),'file') str = { 'Current directory contains existing SPM file:',... 'Continuing will overwrite existing file!'}; abort = spm_input(str,1,'bd','stop|continue',[1,0],1,mfilename); if abort, fprintf('%-40s: %30s\n\n',... 'Abort... (existing SPM files)',spm('time')), end else abort = 0; end
github
philippboehmsturm/antx-master
spm_input.m
.m
antx-master/xspm8/spm_input.m
89,733
utf_8
57a58b73c9dcef093e755ad4051efd65
function varargout = spm_input(varargin) % Comprehensive graphical and command line input function % FORMATs (given in Programmers Help) %_______________________________________________________________________ % % spm_input handles most forms of interactive user input for SPM. % (File selection is handled by spm_select.m) % % There are five types of input: String, Evaluated, Conditions, Buttons % and Menus: These prompt for string input; string input which is % evaluated to give a numerical result; selection of one item from a % set of buttons; selection of an item from a menu. % % - STRING, EVALUATED & CONDITION input - % For STRING, EVALUATED and CONDITION input types, a prompt is % displayed adjacent to an editable text entry widget (with a lilac % background!). Clicking in the entry widget allows editing, pressing % <RETURN> or <ENTER> enters the result. You must enter something, % empty answers are not accepted. A default response may be pre-specified % in the entry widget, which will then be outlined. Clicking the border % accepts the default value. % % Basic editing of the entry widget is supported *without* clicking in % the widget, provided no other graphics widget has the focus. (If a % widget has the focus, it is shown highlighted with a thin coloured % line. Clicking on the window background returns the focus to the % window, enabling keyboard accelerators.). This enables you to type % responses to a sequence of questions without having to repeatedly % click the mouse in the text widgets. Supported are BackSpace and % Delete, line kill (^U). Other standard ASCII characters are appended % to the text in the entry widget. Press <RETURN> or <ENTER> to submit % your response. % % A ContextMenu is provided (in the figure background) giving access to % relevant utilities including the facility to load input from a file % (see spm_load.m and examples given below): Click the right button on % the figure background. % % For EVALUATED input, the string submitted is evaluated in the base % MatLab workspace (see MatLab's `eval` command) to give a numerical % value. This permits the entry of numerics, matrices, expressions, % functions or workspace variables. I.e.: % i) - a number, vector or matrix e.g. "[1 2 3 4]" % "[1:4]" % "1:4" % ii) - an expression e.g. "pi^2" % "exp(-[1:36]/5.321)" % iii) - a function (that will be invoked) e.g. "spm_load('tmp.dat')" % (function must be on MATLABPATH) "input_cov(36,5.321)" % iv) - a variable from the base workspace % e.g. "tmp" % % The last three options provide a great deal of power: spm_load will % load a matrix from an ASCII data file and return the results. When % called without an argument, spm_load will pop up a file selection % dialog. Alternatively, this facility can be gained from the % ContextMenu. The second example assummes a custom funcion called % input_cov has been written which expects two arguments, for example % the following file saved as input_cov.m somewhere on the MATLABPATH % (~/matlab, the matlab subdirectory of your home area, and the current % directory, are on the MATLABPATH by default): % % function [x] = input_cov(n,decay) % % data input routine - mono-exponential covariate % % FORMAT [x] = input_cov(n,decay) % % n - number of time points % % decay - decay constant % x = exp(-[1:n]/decay); % % Although this example is trivial, specifying large vectors of % empirical data (e.g. reaction times for 72 scans) is efficient and % reliable using this device. In the last option, a variable called tmp % is picked up from the base workspace. To use this method, set the % variables in the MatLab base workspace before starting an SPM % procedure (but after starting the SPM interface). E.g. % >> tmp=exp(-[1:36]/5.321) % % Occasionally a vector of a specific length will be required: This % will be indicated in the prompt, which will start with "[#]", where % # is the length of vector(s) required. (If a matrix is entered then % at least one dimension should equal #.) % % Occasionally a specific type of number will be required. This should % be obvious from the context. If you enter a number of the wrong type, % you'll be alerted and asked to re-specify. The types are i) Real % numbers; ii) Integers; iii) Whole numbers [0,1,2,3,...] & iv) Natural % numbers [1,2,3,...] % % CONDITIONS type input is for getting indicator vectors. The features % of evaluated input described above are complimented as follows: % v) - a compressed list of digits 0-9 e.g. "12121212" % ii) - a list of indicator characters e.g. "abababab" % a-z mapped to 1-26 in alphabetical order, *except* r ("rest") % which is mapped to zero (case insensitive, [A:Z,a:z] only) % ...in addition the response is checked to ensure integer condition indices. % Occasionally a specific number of conditions will be required: This % will be indicated in the prompt, which will end with (#), where # is % the number of conditions required. % % CONTRAST type input is for getting contrast weight vectors. Enter % contrasts as row-vectors. Contrast weight vectors will be padded with % zeros to the correct length, and checked for validity. (Valid % contrasts are estimable, which are those whose weights vector is in % the row-space of the design matrix.) % % Errors in string evaluation for EVALUATED & CONDITION types are % handled gracefully, the user notified, and prompted to re-enter. % % - BUTTON input - % For Button input, the prompt is displayed adjacent to a small row of % buttons. Press the approprate button. The default button (if % available) has a dark outline. Keyboard accelerators are available % (provided no graphics widget has the focus): <RETURN> or <ENTER> % selects the default button (if available). Typing the first character % of the button label (case insensitive) "presses" that button. (If % these Keys are not unique, then the integer keys 1,2,... "press" the % appropriate button.) % % The CommandLine variant presents a simple menu of buttons and prompts % for a selection. Any default response is indicated, and accepted if % an empty line is input. % % % - MENU input - % For Menu input, the prompt is displayed in a pull down menu widget. % Using the mouse, a selection is made by pulling down the widget and % releasing the mouse on the appropriate response. The default response % (if set) is marked with an asterisk. Keyboard accelerators are % available (provided no graphic widget has the focus) as follows: 'f', % 'n' or 'd' move forward to next response down; 'b', 'p' or 'u' move % backwards to the previous response up the list; the number keys jump % to the appropriate response number; <RETURN> or <ENTER> slelects the % currently displayed response. If a default is available, then % pressing <RETURN> or <ENTER> when the prompt is displayed jumps to % the default response. % % The CommandLine variant presents a simple menu and prompts for a selection. % Any default response is indicated, and accepted if an empty line is % input. % % % - Combination BUTTON/EDIT input - % In this usage, you will be presented with a set of buttons and an % editable text widget. Click one of the buttons to choose that option, % or type your response in the edit widget. Any default response will % be shown in the edit widget. The edit widget behaves in the same way % as with the STRING/EVALUATED input, and expects a single number. % Keypresses edit the text widget (rather than "press" the buttons) % (provided no other graphics widget has the focus). A default response % can be selected with the mouse by clicking the thick border of the % edit widget. % % % - Command line - % If YPos is 0 or global CMDLINE is true, then the command line is used. % Negative YPos overrides CMDLINE, ensuring the GUI is used, at % YPos=abs(YPos). Similarly relative YPos beginning with '!' % (E.g.YPos='!+1') ensures the GUI is used. % % spm_input uses the SPM 'Interactive' window, which is 'Tag'ged % 'Interactive'. If there is no such window, then the current figure is % used, or an 'Interactive' window created if no windows are open. % %----------------------------------------------------------------------- % Programers help is contained in the main body of spm_input.m %----------------------------------------------------------------------- % See : input.m (MatLab Reference Guide) % See also : spm_select.m (SPM file selector dialog) % : spm_input.m (Input wrapper function - handles batch mode) %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Andrew Holmes % $Id: spm_input.m 6071 2014-06-27 12:52:33Z guillaume $ %======================================================================= % - FORMAT specifications for programers %======================================================================= % generic - [p,YPos] = spm_input(Prompt,YPos,Type,...) % string - [p,YPos] = spm_input(Prompt,YPos,'s',DefStr) % string+ - [p,YPos] = spm_input(Prompt,YPos,'s+',DefStr) % evaluated - [p,YPos] = spm_input(Prompt,YPos,'e',DefStr,n) % - natural - [p,YPos] = spm_input(Prompt,YPos,'n',DefStr,n,mx) % - whole - [p,YPos] = spm_input(Prompt,YPos,'w',DefStr,n,mx) % - integer - [p,YPos] = spm_input(Prompt,YPos,'i',DefStr,n) % - real - [p,YPos] = spm_input(Prompt,YPos,'r',DefStr,n,mm) % condition - [p,YPos] = spm_input(Prompt,YPos,'c',DefStr,n,m) % contrast - [p,YPos] = spm_input(Prompt,YPos,'x',DefStr,n,X) % permutation- [p,YPos] = spm_input(Prompt,YPos,'p',DefStr,P,n) % button - [p,YPos] = spm_input(Prompt,YPos,'b',Labels,Values,DefItem) % button/edit combo's (edit for string or typed scalar evaluated input) % [p,YPos] = spm_input(Prompt,YPos,'b?1',Labels,Values,DefStr,mx) % ...where ? in b?1 specifies edit widget type as with string & eval'd input % - [p,YPos] = spm_input(Prompt,YPos,'n1',DefStr,mx) % - [p,YPos] = spm_input(Prompt,YPos,'w1',DefStr,mx) % button dialog % - [p,YPos] = spm_input(Prompt,YPos,'bd',... % Labels,Values,DefItem,Title) % menu - [p,YPos] = spm_input(Prompt,YPos,'m',Labels,Values,DefItem) % display - spm_input(Message,YPos,'d',Label) % display - (GUI only) spm_input(Alert,YPos,'d!',Label) % % yes/no - [p,YPos] = spm_input(Prompt,YPos,'y/n',Values,DefItem) % buttons (shortcut) where Labels is a bar delimited string % - [p,YPos] = spm_input(Prompt,YPos,Labels,Values,DefItem) % % NB: Natural numbers are [1:Inf), Whole numbers are [0:Inf) % % -- Parameters (input) -- % % Prompt - prompt string % - Defaults (missing or empty) to 'Enter an expression' % % YPos - (numeric) vertical position {1 - 12} % - overriden by global CMDLINE % - 0 for command line % - negative to force GUI % - (string) relative vertical position E.g. '+1' % - relative to last position used % - overriden by global CMDLINE % - YPos(1)=='!' forces GUI E.g. '!+1' % - '_' is a shortcut for the lowest GUI position % - Defaults (missing or empty) to '+1' % % Type - type of interrogation % - 's'tring % - 's+' multi-line string % - p returned as cellstr (nx1 cell array of strings) % - DefStr can be a cellstr or string matrix % - 'e'valuated string % - 'n'atural numbers % - 'w'hole numbers % - 'i'ntegers % - 'r'eals % - 'c'ondition indicator vector % - 'x' - contrast entry % - If n(2) or design matrix X is specified, then % contrast matrices are padded with zeros to have % correct length. % - if design matrix X is specified, then contrasts are % checked for validity (i.e. in the row-space of X) % (checking handled by spm_SpUtil) % - 'b'uttons % - 'bd' - button dialog: Uses MatLab's questdlg % - For up to three buttons % - Prompt can be a cellstr with a long multiline message % - CmdLine support as with 'b' type % - button/edit combo's: 'be1','bn1','bw1','bi1','br1' % - second letter of b?1 specifies type for edit widget % - 'n1' - single natural number (buttons 1,2,... & edit) % - 'w1' - single whole number (buttons 0,1,... & edit) % - 'm'enu pulldown % - 'y/n' : Yes or No buttons % (See shortcuts below) % - bar delimited string : buttons with these labels % (See shortcuts below) % - Defaults (missing or empty) to 'e' % % DefStr - Default string to be placed in entry widget for string and % evaluated types % - Defaults to '' % % n ('e', 'c' & 'p' types) % - Size of matrix requred % - NaN for 'e' type implies no checking - returns input as evaluated % - length of n(:) specifies dimension - elements specify size % - Inf implies no restriction % - Scalar n expanded to [n,1] (i.e. a column vector) % (except 'x' contrast type when it's [n,np] for np % - E.g: [n,1] & [1,n] (scalar n) prompt for an n-vector, % returned as column or row vector respectively % [1,Inf] & [Inf,1] prompt for a single vector, % returned as column or row vector respectively % [n,Inf] & [Inf,n] prompts for any number of n-vectors, % returned with row/column dimension n respectively. % [a,b] prompts for an 2D matrix with row dimension a and % column dimension b % [a,Inf,b] prompt for a 3D matrix with row dimension a, % page dimension b, and any column dimension. % - 'c' type can only deal with single vectors % - NaN for 'c' type treated as Inf % - Defaults (missing or empty) to NaN % % n ('x'type) % - Number of contrasts required by 'x' type (n(1)) % ( n(2) can be used specify length of contrast vectors if ) % ( a design matrix isn't passed ) % - Defaults (missing or empty) to 1 - vector contrast % % mx ('n', 'w', 'n1', 'w1', 'bn1' & 'bw1' types) % - Maximum value (inclusive) % % mm ('r' type) % - Maximum and minimum values (inclusive) % % m - Number of unique conditions required by 'c' type % - Inf implies no restriction % - Defaults (missing or empty) to Inf - no restriction % % P - set (vector) of numbers of which a permutation is required % % X - Design matrix for contrast checking in 'x' type % - Can be either a straight matrix or a space structure (see spm_sp) % - Column dimension of design matrix specifies length of contrast % vectors (overriding n(2) is specified). % % Title - Title for questdlg in 'bd' type % % Labels - Labels for button and menu types. % - string matrix, one label per row % - bar delimited string % E.g. 'AnCova|Scaling|None' % % Values - Return values corresponding to Labels for button and menu types % - j-th row is returned if button / menu item j is selected % (row vectors are transposed) % - Defaults (missing or empty) to - (button) Labels % - ( menu ) menu item numbers % % DefItem - Default item number, for button and menu types. % % -- Parameters (output) -- % p - results % YPos - Optional second output argument returns GUI position just used % %----------------------------------------------------------------------- % WINDOWS: % % spm_input uses the SPM 'Interactive' 'Tag'ged window. If this isn't % available and no figures are open, an 'Interactive' SPM window is % created (`spm('CreateIntWin')`). If figures are available, then the % current figure is used *unless* it is 'Tag'ged. % %----------------------------------------------------------------------- % SHORTCUTS: % % Buttons SHORTCUT - If the Type parameter is a bar delimited string, then % the Type is taken as 'b' with the specified labels, and the next parameter % (if specified) is taken for the Values. % % Yes/No question shortcut - p = spm_input(Prompt,YPos,'y/n') expands % to p = spm_input(Prompt,YPos,'b','yes|no',...), enabling easy use of % spm_input for yes/no dialogue. Values defaults to 'yn', so 'y' or 'n' % is returned as appropriate. % %----------------------------------------------------------------------- % EXAMPLES: % ( Specified YPos is overriden if global CMDLINE is ) % ( true, when the command line versions are used. ) % % p = spm_input % Command line input of an evaluated string, default prompt. % p = spm_input('Enter a value',1) % Evaluated string input, prompted by 'Enter a value', in % position 1 of the dialog figure. % p = spm_input(str,'+1','e',0.001) % Evaluated string input, prompted by contents of string str, % in next position of the dialog figure. % Default value of 0.001 offered. % p = spm_input(str,2,'e',[],5) % Evaluated string input, prompted by contents of string str, % in second position of the dialog figure. % Vector of length 5 required - returned as column vector % p = spm_input(str,2,'e',[],[Inf,5]) % ...as above, but can enter multiple 5-vectors in a matrix, % returned with 5-vectors in rows % p = spm_input(str,0,'c','ababab') % Condition string input, prompted by contents of string str % Uses command line interface. % Default string of 'ababab' offered. % p = spm_input(str,0,'c','010101') % As above, but default string of '010101' offered. % [p,YPos] = spm_input(str,'0','s','Image') % String input, same position as last used, prompted by str, % default of 'Image' offered. YPos returns GUI position used. % p = spm_input(str,'-1','y/n') % Yes/No buttons for question with prompt str, in position one % before the last used Returns 'y' or 'n'. % p = spm_input(str,'-1','y/n',[1,0],2) % As above, but returns 1 for yes response, 0 for no, % with 'no' as the default response % p = spm_input(str,4,'AnCova|Scaling') % Presents two buttons labelled 'AnCova' & 'Scaling', with % prompt str, in position 4 of the dialog figure. Returns the % string on the depresed button, where buttons can be pressed % with the mouse or by the respective keyboard accelerators % 'a' & 's' (or 'A' & 'S'). % p = spm_input(str,-4,'b','AnCova|Scaling',[],2) % As above, but makes "Scaling" the default response, and % overrides global CMDLINE % p = spm_input(str,0,'b','AnCova|Scaling|None',[1,2,3]) % Prompts for [A]ncova / [S]caling / [N]one in MatLab command % window, returns 1, 2, or 3 according to the first character % of the entered string as one of 'a', 's', or 'n' (case % insensitive). % p = spm_input(str,1,'b','AnCova',1) % Since there's only one button, this just displays the response % in GUI position 1 (or on the command line if global CMDLINE % is true), and returns 1. % p = spm_input(str,'+0','br1','None|Mask',[-Inf,NaN],0.8) % Presents two buttons labelled "None" & "Mask" (which return % -Inf & NaN if clicked), together with an editable text widget % for entry of a single real number. The default of 0.8 is % initially presented in the edit window, and can be selected by % pressing return. % Uses the previous GUI position, unless global CMDLINE is true, % in which case a command-line equivalent is used. % p = spm_input(str,'+0','w1') % Prompts for a single whole number using a combination of % buttons and edit widget, using the previous GUI position, % or the command line if global CMDLINE is true. % p = spm_input(str,'!0','m','Single Subject|Multi Subject|Multi Study') % Prints the prompt str in a pull down menu containing items % 'Single Subject', 'Multi Subject' & 'Multi Study'. When OK is % clicked p is returned as the index of the choice, 1,2, or 3 % respectively. Uses last used position in GUI, irrespective of % global CMDLINE % p = spm_input(str,5,'m',... % 'Single Subject|Multi Subject|Multi Study',... % ['SS';'MS';'SP'],2) % As above, but returns strings 'SS', 'MS', or 'SP' according to % the respective choice, with 'MS; as the default response. % p = spm_input(str,0,'m',... % 'Single Subject|Multi Subject|Multi Study',... % ['SS';'MS';'SP'],2) % As above, but the menu is presented in the command window % as a numbered list. % spm_input('AnCova, GrandMean scaling',0,'d') % Displays message in a box in the MatLab command window % [null,YPos]=spm_input('Session 1','+1','d!','fMRI') % Displays 'fMRI: Session 1' in next GUI position of the % 'Interactive' window. If CMDLINE is 1, then nothing is done. % Position used is returned in YPos. % %----------------------------------------------------------------------- % FORMAT h = spm_input(Prompt,YPos,'m!',Labels,cb,UD,XCB); % GUI PullDown menu utility - creates a pulldown menu in the Interactive window % FORMAT H = spm_input(Prompt,YPos,'b!',Labels,cb,UD,XCB); % GUI Buttons utility - creates GUI buttons in the Interactive window % % Prompt, YPos, Labels - as with 'm'enu/'b'utton types % cb - CallBack string % UD - UserData % XCB - Extended CallBack handling - allows different CallBack for each item, % and use of UD in CallBack strings. [Defaults to 1 for PullDown type % when multiple CallBacks specified, 0 o/w.] % H - Handle of 'PullDown' uicontrol / 'Button's % % In "normal" mode (when XCB is false), this is essentially a utility % to create a PullDown menu widget or set of buttons in the SPM % 'Interactive' figure, using positioning and Label definition % conveniences of the spm_input 'm'enu & 'b'utton types. If Prompt is % not empty, then the PullDown/Buttons appears on the right, with the % Prompt on the left, otherwise the PullDown/Buttons use the whole % width of the Interactive figure. The PopUp's CallBack string is % specified in cb, and [optional] UserData may be passed as UD. % % For buttons, a separate callback can be specified for each button, by % passing the callbacks corresponding to the Labels as rows of a % cellstr or string matrix. % % This "different CallBacks" facility can also be extended to the % PullDown type, using the "extended callback" mode (when XCB is % true). % In addition, in "extended callback", you can use UD to % refer to the UserData argument in the CallBack strings. (What happens % is this: The cb & UD are stored as fields in the PopUp's UserData % structure, and the PopUp's callback is set to spm_input('!m_cb'), % which reads UD into the functions workspace and eval's the % appropriate CallBack string. Note that this means that base % workspace variables are inaccessible (put what you need in UD), and % that any return arguments from CallBack functions are not passed back % to the base workspace). % % %----------------------------------------------------------------------- % UTILITY FUNCTIONS: % % FORMAT colour = spm_input('!Colour') % Returns colour for input widgets, as specified in COLOUR parameter at % start of code. % colour - [r,g,b] colour triple % % FORMAT [iCond,msg] = spm_input('!iCond',str,n,m) % Parser for special 'c'ondition type: Handles digit strings and % strings of indicator chars. % str - input string % n - length of condition vector required [defaut Inf - no restriction] % m - number of conditions required [default Inf - no restrictions] % iCond - Integer condition indicator vector % msg - status message % % FORMAT hM = spm_input('!InptConMen',Finter,H) % Sets a basic Input ContextMenu for the figure % Finter - figure to set menu in % H - handles of objects to delete on "crash out" option % hM - handle of UIContextMenu % % FORMAT [CmdLine,YPos] = spm_input('!CmdLine',YPos) % Sorts out whether to use CmdLine or not & canonicalises YPos % CmdLine - Binary flag % YPos - Position index % % FORMAT Finter = spm_input('!GetWin',F) % Locates (or creates) figure to work in % F - Interactive Figure, defaults to 'Interactive' % Finter - Handle of figure to use % % FORMAT [PLoc,cF] = spm_input('!PointerJump',RRec,F,XDisp) % Raise window & jump pointer over question % RRec - Response rectangle of current question % F - Interactive Figure, Defaults to 'Interactive' % XDisp - X-displacement of cursor relative to RRec % PLoc - Pointer location before jumping % cF - Current figure before making F current. % % FORMAT [PLoc,cF] = spm_input('!PointerJumpBack',PLoc,cF) % Replace pointer and reset CurrentFigure back % PLoc - Pointer location before jumping % cF - Previous current figure % % FORMAT spm_input('!PrntPrmpt',Prompt,TipStr,Title) % Print prompt for CmdLine questioning % Prompt - prompt string, callstr, or string matrix % TipStr - tip string % Title - title string % % FORMAT [Frec,QRec,PRec,RRec] = spm_input('!InputRects',YPos,rec,F) % Returns rectangles (pixels) used in GUI % YPos - Position index % rec - Rectangle specifier: String, one of 'Frec','QRec','PRec','RRec' % Defaults to '', which returns them all. % F - Interactive Figure, Defaults to spm_figure('FindWin','Interactive') % FRec - Position of interactive window % QRec - Position of entire question % PRec - Position of prompt % RRec - Position of response % % FORMAT spm_input('!DeleteInputObj',F) % Deltes input objects (only) from figure F % F - Interactive Figure, Defaults to spm_figure('FindWin','Interactive') % % FORMAT [CPos,hCPos] = spm_input('!CurrentPos',F) % Returns currently used GUI question positions & their handles % F - Interactive Figure, Defaults to spm_figure('FindWin','Interactive') % CPos - Vector of position indices % hCPos - (n x CPos) matrix of object handles % % FORMAT h = spm_input('!FindInputObj',F) % Returns handles of input GUI objects in figure F % F - Interactive Figure, Defaults to spm_figure('FindWin','Interactive') % h - vector of object handles % % FORMAT [NPos,CPos,hCPos] = spm_input('!NextPos',YPos,F,CmdLine) % Returns next position index, specified by YPos % YPos - Absolute (integer) or relative (string) position index % Defaults to '+1' % F - Interactive Figure, defaults to spm_figure('FindWin','Interactive') % CmdLine - Command line? Defaults to spm_input('!CmdLine',YPos) % NPos - Next position index % CPos & hCPos - as for !CurrentPos % % FORMAT NPos = spm_input('!SetNextPos',YPos,F,CmdLine) % Sets up for input at next position index, specified by YPos. This utility % function can be used stand-alone to implicitly set the next position % by clearing positions NPos and greater. % YPos - Absolute (integer) or relative (string) position index % Defaults to '+1' % F - Interactive Figure, defaults to spm_figure('FindWin','Interactive') % CmdLine - Command line? Defaults to spm_input('!CmdLine',YPos) % NPos - Next position index % % FORMAT MPos = spm_input('!MaxPos',F,FRec3) % Returns maximum position index for figure F % F - Interactive Figure, Defaults to spm_figure('FindWin','Interactive') % Not required if FRec3 is specified % FRec3 - Length of interactive figure in pixels % % FORMAT spm_input('!EditableKeyPressFcn',h,ch) % KeyPress callback for GUI string / eval input % % FORMAT spm_input('!ButtonKeyPressFcn',h,Keys,DefItem,ch) % KeyPress callback for GUI buttons % % FORMAT spm_input('!PullDownKeyPressFcn',h,ch,DefItem) % KeyPress callback for GUI pulldown menus % % FORMAT spm_input('!m_cb') % Extended CallBack handler for 'p' PullDown utility type % % FORMAT spm_input('!dScroll',h,str) % Scroll text string in object h % h - handle of text object % Prompt - Text to scroll (Defaults to 'UserData' of h) % %----------------------------------------------------------------------- % SUBFUNCTIONS: % % FORMAT [Keys,Labs] = sf_labkeys(Labels) % Make unique character keys for the Labels, ignoring case. % Used with 'b'utton types. % % FORMAT [p,msg] = sf_eEval(str,Type,n,m) % Common code for evaluating various input types. % % FORMAT str = sf_SzStr(n,l) % Common code to construct prompt strings for pre-specified vector/matrix sizes % % FORMAT [p,msg] = sf_SzChk(p,n,msg) % Common code to check (& canonicalise) sizes of input vectors/matrices % %_______________________________________________________________________ % @(#)spm_input.m 2.8 Andrew Holmes 03/03/04 %-Parameters %======================================================================= PJump = 1; %-Jumping of pointer to question? TTips = 1; %-Use ToolTipStrings? (which can be annoying!) ConCrash = 1; %-Add "crash out" option to 'Interactive'fig.ContextMenu %-Condition arguments %======================================================================= if nargin<1||isempty(varargin{1}), Prompt=''; else Prompt=varargin{1}; end if ~isempty(Prompt) && ischar(Prompt) && Prompt(1)=='!' %-Utility functions have Prompt string starting with '!' Type = Prompt; else %-Should be an input request: get Type & YPos if nargin<3||isempty(varargin{3}), Type='e'; else Type=varargin{3}; end if any(Type=='|'), Type='b|'; end if nargin<2||isempty(varargin{2}), YPos='+1'; else YPos=varargin{2}; end [CmdLine,YPos] = spm_input('!CmdLine',YPos); if ~CmdLine %-Setup for GUI use %-Locate (or create) figure to work in Finter = spm_input('!GetWin'); COLOUR = get(Finter,'Color'); %-Find out which Y-position to use, setup for use YPos = spm_input('!SetNextPos',YPos,Finter,CmdLine); %-Determine position of objects [FRec,QRec,PRec,RRec]=spm_input('!InputRects',YPos,'',Finter); end end switch lower(Type) case {'s','s+','e','n','w','i','r','c','x','p'} %-String and evaluated input %======================================================================= %-Condition arguments if nargin<6||isempty(varargin{6}), m=[]; else m=varargin{6}; end if nargin<5||isempty(varargin{5}), n=[]; else n=varargin{5}; end if nargin<4, DefStr=''; else DefStr=varargin{4}; end if strcmpi(Type,'s+') %-DefStr should be a cellstr for 's+' type. if isempty(DefStr), DefStr = {}; else DefStr = cellstr(DefStr); end DefStr = DefStr(:); else %-DefStr needs to be a string if ~ischar(DefStr), DefStr=num2str(DefStr); end DefStr = DefStr(:)'; end strM=''; switch lower(Type) %-Type specific defaults/setup case 's', TTstr='enter string'; case 's+',TTstr='enter string - multi-line'; case 'e', TTstr='enter expression to evaluate'; case 'n', TTstr='enter expression - natural number(s)'; if ~isempty(m), strM=sprintf(' (in [1,%d])',m); TTstr=[TTstr,strM]; end case 'w', TTstr='enter expression - whole number(s)'; if ~isempty(m), strM=sprintf(' (in [0,%d])',m); TTstr=[TTstr,strM]; end case 'i', TTstr='enter expression - integer(s)'; case 'r', TTstr='enter expression - real number(s)'; if ~isempty(m), TTstr=[TTstr,sprintf(' in [%g,%g]',min(m),max(m))]; end case 'c', TTstr='enter indicator vector e.g. 0101... or abab...'; if ~isempty(m) && isfinite(m), strM=sprintf(' (%d)',m); end case 'x', TTstr='enter contrast matrix'; case 'p', if isempty(n), error('permutation of what?'), else P=n(:)'; end if isempty(m), n = [1,length(P)]; end m = P; if isempty(setxor(m,[1:max(m)])) TTstr=['enter permutation of [1:',num2str(max(m)),']']; else TTstr=['enter permutation of [',num2str(m),']']; end otherwise TTstr='enter expression'; end strN = sf_SzStr(n); if CmdLine %-Use CmdLine to get answer %----------------------------------------------------------------------- spm_input('!PrntPrmpt',[Prompt,strN,strM],TTstr) %-Do Eval Types in Base workspace, catch errors switch lower(Type), case 's' if ~isempty(DefStr) Prompt=[Prompt,' (Default: ',DefStr,' )']; end str = input([Prompt,' : '],'s'); if isempty(str), str=DefStr; end while isempty(str) spm('Beep') fprintf('! %s : enter something!\n',mfilename) str = input([Prompt,' : '],'s'); if isempty(str), str=DefStr; end end p = str; msg = ''; case 's+' fprintf(['Multi-line input: Type ''.'' on a line',... ' of its own to terminate input.\n']) if ~isempty(DefStr) fprintf('Default : (press return to accept)\n') fprintf(' : %s\n',DefStr{:}) end fprintf('\n') str = input('l001 : ','s'); while (isempty(str) || strcmp(str,'.')) && isempty(DefStr) spm('Beep') fprintf('! %s : enter something!\n',mfilename) str = input('l001 : ','s'); end if isempty(str) %-Accept default p = DefStr; else %-Got some input, allow entry of additional lines p = {str}; str = input(sprintf('l%03u : ',length(p)+1),'s'); while ~strcmp(str,'.') p = [p;{str}]; str = input(sprintf('l%03u : ',length(p)+1),'s'); end end msg = ''; otherwise if ~isempty(DefStr) Prompt=[Prompt,' (Default: ',DefStr,' )']; end str = input([Prompt,' : '],'s'); if isempty(str), str=DefStr; end [p,msg] = sf_eEval(str,Type,n,m); while ischar(p) spm('Beep'), fprintf('! %s : %s\n',mfilename,msg) str = input([Prompt,' : '],'s'); if isempty(str), str=DefStr; end [p,msg] = sf_eEval(str,Type,n,m); end end if ~isempty(msg), fprintf('\t%s\n',msg), end else %-Use GUI to get answer %----------------------------------------------------------------------- %-Create text and edit control objects %--------------------------------------------------------------- hPrmpt = uicontrol(Finter,'Style','Text',... 'String',[strN,Prompt,strM],... 'Tag',['GUIinput_',int2str(YPos)],... 'UserData','',... 'BackgroundColor',COLOUR,... 'HorizontalAlignment','Right',... 'Position',PRec); if TTips, set(hPrmpt,'ToolTipString',[strN,Prompt,strM]); end %-Default button surrounding edit widget (if a DefStr given) %-Callback sets hPrmpt UserData, and EditWidget string, to DefStr % (Buttons UserData holds handles [hPrmpt,hEditWidget], set later) cb = ['set(get(gcbo,''UserData'')*[1;0],''UserData'',',... 'get(gcbo,''String'')),',... 'set(get(gcbo,''UserData'')*[0;1],''String'',',... 'get(gcbo,''String''))']; if ~isempty(DefStr) if iscellstr(DefStr), str=[DefStr{1},'...']; else str=DefStr; end hDef = uicontrol(Finter,'Style','PushButton',... 'String',DefStr,... 'ToolTipString',... ['Click on border to accept default: ' str],... 'Tag',['GUIinput_',int2str(YPos)],... 'UserData',[],... 'BackgroundColor',COLOUR,... 'CallBack',cb,... 'Position',RRec+[-2,-2,+4,+4]); else hDef = []; end %-Edit widget: Callback puts string into hPrompts UserData cb = 'set(get(gcbo,''UserData''),''UserData'',get(gcbo,''String''))'; h = uicontrol(Finter,'Style','Edit',... 'String',DefStr,... 'Max',strcmpi(Type,'s+')+1,... 'Tag',['GUIinput_',int2str(YPos)],... 'UserData',hPrmpt,... 'CallBack',cb,... 'Horizontalalignment','Left',... 'BackgroundColor','w',... 'Position',RRec); set(hDef,'UserData',[hPrmpt,h]) uifocus(h); if TTips, set(h,'ToolTipString',TTstr), end %-Figure ContextMenu for shortcuts hM = spm_input('!InptConMen',Finter,[hPrmpt,hDef,h]); cb = [ 'set(get(gcbo,''UserData''),''String'',',... '[''spm_load('''''',spm_select(1),'''''')'']), ',... 'set(get(get(gcbo,''UserData''),''UserData''),''UserData'',',... 'get(get(gcbo,''UserData''),''String''))']; uimenu(hM,'Label','load from text file','Separator','on',... 'CallBack',cb,'UserData',h) %-Bring window to fore & jump pointer to edit widget [PLoc,cF] = spm_input('!PointerJump',RRec,Finter); %-Setup FigureKeyPressFcn for editing of entry widget without clicking set(Finter,'KeyPressFcn',[... 'spm_input(''!EditableKeyPressFcn'',',... 'findobj(gcf,''Tag'',''GUIinput_',int2str(YPos),''',',... '''Style'',''edit''),',... 'get(gcbf,''CurrentCharacter''))']) %-Wait for edit, do eval Types in Base workspace, catch errors %--------------------------------------------------------------- waitfor(hPrmpt,'UserData') if ~ishandle(hPrmpt), error(['Input window cleared whilst waiting ',... 'for response: Bailing out!']), end str = get(hPrmpt,'UserData'); switch lower(Type), case 's' p = str; msg = ''; case 's+' p = cellstr(str); msg = ''; otherwise [p,msg] = sf_eEval(str,Type,n,m); while ischar(p) set(h,'Style','Text',... 'String',msg,'HorizontalAlignment','Center',... 'ForegroundColor','r') spm('Beep'), pause(2) set(h,'Style','Edit',... 'String',str,... 'HorizontalAlignment','Left',... 'ForegroundColor','k') %set(hPrmpt,'UserData',''); waitfor(hPrmpt,'UserData') if ~ishandle(hPrmpt), error(['Input window cleared ',... 'whilst waiting for response: Bailing out!']),end str = get(hPrmpt,'UserData'); [p,msg] = sf_eEval(str,Type,n,m); end end %-Fix edit window, clean up, reposition pointer, set CurrentFig back delete([hM,hDef]), set(Finter,'KeyPressFcn','') set(h,'Style','Text','HorizontalAlignment','Center',... 'ToolTipString',msg,... 'BackgroundColor',COLOUR) spm_input('!PointerJumpBack',PLoc,cF) drawnow end % (if CmdLine) %-Return response %----------------------------------------------------------------------- varargout = {p,YPos}; case {'b','bd','b|','y/n','be1','bn1','bw1','bi1','br1',... '-n1','n1','-w1','w1','m'} %-'b'utton & 'm'enu Types %======================================================================= %-Condition arguments switch lower(Type), case {'b','be1','bi1','br1','m'} m = []; Title = ''; if nargin<6, DefItem=[]; else DefItem=varargin{6}; end if nargin<5, Values=[]; else Values =varargin{5}; end if nargin<4, Labels=''; else Labels =varargin{4}; end case 'bd' if nargin<7, Title=''; else Title =varargin{7}; end if nargin<6, DefItem=[]; else DefItem=varargin{6}; end if nargin<5, Values=[]; else Values =varargin{5}; end if nargin<4, Labels=''; else Labels =varargin{4}; end case 'y/n' Title = ''; if nargin<5, DefItem=[]; else DefItem=varargin{5}; end if nargin<4, Values=[]; else Values =varargin{4}; end if isempty(Values), Values='yn'; end Labels = {'yes','no'}; case 'b|' Title = ''; if nargin<5, DefItem=[]; else DefItem=varargin{5}; end if nargin<4, Values=[]; else Values =varargin{4}; end Labels = varargin{3}; case 'bn1' if nargin<7, m=[]; else m=varargin{7}; end if nargin<6, DefItem=[]; else DefItem=varargin{6}; end if nargin<5, Values=[]; else Values =varargin{5}; end if nargin<4, Labels=[1:5]'; Values=[1:5]; Type='-n1'; else Labels=varargin{4}; end case 'bw1' if nargin<7, m=[]; else m=varargin{7}; end if nargin<6, DefItem=[]; else DefItem=varargin{6}; end if nargin<5, Values=[]; else Values =varargin{5}; end if nargin<4, Labels=[0:4]'; Values=[0:4]; Type='-w1'; else Labels=varargin{4}; end case {'-n1','n1','-w1','w1'} if nargin<5, m=[]; else m=varargin{5}; end if nargin<4, DefItem=[]; else DefItem=varargin{4}; end switch lower(Type) case {'n1','-n1'}, Labels=[1:min([5,m])]'; Values=Labels'; Type='-n1'; case {'w1','-w1'}, Labels=[0:min([4,m])]'; Values=Labels'; Type='-w1'; end end %-Check some labels were specified if isempty(Labels), error('No Labels specified'), end if iscellstr(Labels), Labels=char(Labels); end %-Convert Labels "option" string to string matrix if required if ischar(Labels) && any(Labels(:)=='|') OptStr=Labels; BarPos=find([OptStr=='|',1]); Labels=OptStr(1:BarPos(1)-1); for Bar = 2:sum(OptStr=='|')+1 Labels=strvcat(Labels,OptStr(BarPos(Bar-1)+1:BarPos(Bar)-1)); end end %-Set default Values for the Labels if isempty(Values) if strcmpi(Type,'m') Values=[1:size(Labels,1)]'; else Values=Labels; end else %-Make sure Values are in rows if size(Labels,1)>1 && size(Values,1)==1, Values = Values'; end %-Check numbers of Labels and Values match if (size(Labels,1)~=size(Values,1)) error('Labels & Values incompatible sizes'), end end %-Numeric Labels to strings if isnumeric(Labels) tmp = Labels; Labels = cell(size(tmp,1),1); for i=1:numel(tmp), Labels{i}=num2str(tmp(i,:)); end Labels=char(Labels); end switch lower(Type), case {'b','bd','b|','y/n'} %-Process button types %======================================================================= %-Make unique character keys for the Labels, sort DefItem %--------------------------------------------------------------- nLabels = size(Labels,1); [Keys,Labs] = sf_labkeys(Labels); if ~isempty(DefItem) && any(DefItem==[1:nLabels]) DefKey = Keys(DefItem); else DefItem = 0; DefKey = ''; end if CmdLine %-Display question prompt spm_input('!PrntPrmpt',Prompt,'',Title) %-Build prompt %------------------------------------------------------- if ~isempty(Labs) Prmpt = ['[',Keys(1),']',deblank(Labs(1,:)),' ']; for i = 2:nLabels Prmpt=[Prmpt,'/ [',Keys(i),']',deblank(Labs(i,:)),' ']; end else Prmpt = ['[',Keys(1),'] ']; for i = 2:nLabels, Prmpt=[Prmpt,'/ [',Keys(i),'] ']; end end if DefItem Prmpt = [Prmpt,... ' (Default: ',deblank(Labels(DefItem,:)),')']; end %-Ask for user response %------------------------------------------------------- if nLabels==1 %-Only one choice - auto-pick & display k = 1; fprintf('%s: %s\t(only option)',Prmpt,Labels) else str = input([Prmpt,'? '],'s'); if isempty(str), str=DefKey; end while isempty(str) || ~any(lower(Keys)==lower(str(1))) if ~isempty(str),fprintf('%c\t!Out of range\n',7),end str = input([Prmpt,'? '],'s'); if isempty(str), str=DefKey; end end k = find(lower(Keys)==lower(str(1))); end fprintf('\n') p = Values(k,:); if ischar(p), p=deblank(p); end elseif strcmpi(Type,'bd') if nLabels>3, error('at most 3 labels for GUI ''bd'' type'), end tmp = cellstr(Labels); if DefItem tmp = [tmp; tmp(DefItem)]; Prompt = cellstr(Prompt); Prompt=Prompt(:); Prompt = [Prompt;{' '};... {['[default: ',tmp{DefItem},']']}]; else tmp = [tmp; tmp(1)]; end k = min(find(strcmp(tmp,... questdlg(Prompt,sprintf('%s%s: %s...',spm('ver'),... spm('GetUser',' (%s)'),Title),tmp{:})))); p = Values(k,:); if ischar(p), p=deblank(p); end else Tag = ['GUIinput_',int2str(YPos)]; %-Tag for widgets %-Create text and edit control objects %-'UserData' of prompt contains answer %------------------------------------------------------- hPrmpt = uicontrol(Finter,'Style','Text',... 'String',Prompt,... 'Tag',Tag,... 'UserData',[],... 'BackgroundColor',COLOUR,... 'HorizontalAlignment','Right',... 'Position',PRec); if TTips, set(hPrmpt,'ToolTipString',Prompt); end if nLabels==1 %-Only one choice - auto-pick k = 1; else %-Draw buttons and process response dX = RRec(3)/nLabels; if TTips, str = ['select with mouse or use kbd: ',... sprintf('%c/',Keys(1:end-1)),Keys(end)]; else str=''; end %-Store button # in buttons 'UserData' property %-Store handle of prompt string in buttons 'Max' property %-Button callback sets UserData of prompt string to % number of pressed button cb = ['set(get(gcbo,''UserData''),''UserData'',',... 'get(gcbo,''Max''))']; H = []; XDisp = []; for i=1:nLabels if i==DefItem %-Default button, outline it h = uicontrol(Finter,'Style','Frame',... 'BackGroundColor','k',... 'ForeGroundColor','k',... 'Tag',Tag,... 'Position',... [RRec(1)+(i-1)*dX ... RRec(2)-1 dX RRec(4)+2]); XDisp = (i-1/3)*dX; H = [H,h]; end h = uicontrol(Finter,'Style','Pushbutton',... 'String',deblank(Labels(i,:)),... 'ToolTipString',sprintf('%s\n%s',deblank(Labels(i,:)),str),... 'Tag',Tag,... 'Max',i,... 'UserData',hPrmpt,... 'BackgroundColor',COLOUR,... 'Callback',cb,... 'Position',[RRec(1)+(i-1)*dX+1 ... RRec(2) dX-2 RRec(4)]); if i == DefItem, uifocus(h); end H = [H,h]; end %-Figure ContextMenu for shortcuts hM = spm_input('!InptConMen',Finter,[hPrmpt,H]); %-Bring window to fore & jump pointer to default button [PLoc,cF]=spm_input('!PointerJump',RRec,Finter,XDisp); %-Callback for KeyPress, to store valid button # in % UserData of Prompt, DefItem if (DefItem~=0) % & return (ASCII-13) is pressed set(Finter,'KeyPressFcn',... ['spm_input(''!ButtonKeyPressFcn'',',... 'findobj(gcf,''Tag'',''',Tag,''',',... '''Style'',''text''),',... '''',lower(Keys),''',',num2str(DefItem),',',... 'get(gcbf,''CurrentCharacter''))']) %-Wait for button press, process results %----------------------------------------------- waitfor(hPrmpt,'UserData') if ~ishandle(hPrmpt) error(['Input objects cleared whilst ',... 'waiting for response: Bailing out!']) end k = get(hPrmpt,'UserData'); %-Clean up delete([H,hM]), set(Finter,'KeyPressFcn','') spm_input('!PointerJumpBack',PLoc,cF) end %-Display answer uicontrol(Finter,'Style','Text',... 'String',deblank(Labels(k,:)),... 'Tag',Tag,... 'Horizontalalignment','Center',... 'BackgroundColor',COLOUR,... 'Position',RRec); drawnow p = Values(k,:); if ischar(p), p=deblank(p); end end case {'be1','bn1','bw1','bi1','br1','-n1','-w1'} %-Process button/entry combo types %======================================================================= if ischar(DefItem), DefStr=DefItem; else DefStr=num2str(DefItem); end if isempty(m), strM=''; else strM=sprintf(' (<=%d)',m); end if CmdLine %-Process default item %--------------------------------------------------------------- if ~isempty(DefItem) [DefVal,msg] = sf_eEval(DefStr,Type(2),1); if ischar(DefVal), error(['Invalid DefItem: ',msg]), end Labels = strvcat(Labels,DefStr); Values = [Values;DefVal]; DefItem = size(Labels,1); end %-Add option to specify... Labels = strvcat(Labels,'specify...'); %-Process options nLabels = size(Labels,1); [Keys,Labs] = sf_labkeys(Labels); if ~isempty(DefItem), DefKey = Keys(DefItem); else DefKey = ''; end %-Print banner prompt %--------------------------------------------------------------- spm_input('!PrntPrmpt',Prompt) %-Display question prompt if Type(1)=='-' %-No special buttons - go straight to input k = size(Labels,1); else %-Offer buttons, default or "specify..." %-Build prompt %------------------------------------------------------- if ~isempty(Labs) Prmpt = ['[',Keys(1),']',deblank(Labs(1,:)),' ']; for i = 2:nLabels Prmpt=[Prmpt,'/ [',Keys(i),']',deblank(Labs(i,:)),' ']; end else Prmpt = ['[',Keys(1),'] ']; for i = 2:nLabels, Prmpt=[Prmpt,'/ [',Keys(i),'] ']; end end if DefItem, Prmpt = [Prmpt,... ' (Default: ',deblank(Labels(DefItem,:)),')']; end %-Ask for user response %------------------------------------------------------- if nLabels==1 %-Only one choice - auto-pick & display k = 1; fprintf('%s: %s\t(only option)',Prmpt,Labels) else str = input([Prmpt,'? '],'s'); if isempty(str), str=DefKey; end while isempty(str) || ~any(lower(Keys)==lower(str(1))) if ~isempty(str),fprintf('%c\t!Invalid response\n',7),end str = input([Prmpt,'? '],'s'); if isempty(str), str=DefKey; end end k = find(lower(Keys)==lower(str(1))); end fprintf('\n') end %-Process response: prompt for value if "specify..." option chosen %=============================================================== if k<size(Labels,1) p = Values(k,:); if ischar(p), p=deblank(p); end else %-"specify option chosen: ask user to specify %------------------------------------------------------- switch lower(Type(2)) case 's', tstr=' string'; case 'e', tstr='n expression'; case 'n', tstr=' natural number'; case 'w', tstr=' whole number'; case 'i', tstr='n integer'; case 'r', tstr=' real number'; otherwise, tstr=''; end Prompt = sprintf('%s (a%s%s)',Prompt,tstr,strM); if ~isempty(DefStr) Prompt=sprintf('%s\b, default %s)',Prompt,DefStr); end str = input([Prompt,' : '],'s'); if isempty(str), str=DefStr; end %-Eval in Base workspace, catch errors [p,msg] = sf_eEval(str,Type(2),1,m); while ischar(p) spm('Beep'), fprintf('! %s : %s\n',mfilename,msg) str = input([Prompt,' : '],'s'); if isempty(str), str=DefStr; end [p,msg] = sf_eEval(str,Type(2),1,m); end end else Tag = ['GUIinput_',int2str(YPos)]; %-Tag for widgets nLabels = size(Labels,1); %-#buttons %-Create text and edit control objects %-'UserData' of prompt contains answer %--------------------------------------------------------------- hPrmpt = uicontrol(Finter,'Style','Text',... 'String',[Prompt,strM],... 'Tag',Tag,... 'UserData',[],... 'BackgroundColor',COLOUR,... 'HorizontalAlignment','Right',... 'Position',PRec); if TTips, set(hPrmpt,'ToolTipString',[Prompt,strM]); end %-Draw buttons & entry widget, & process response dX = RRec(3)*(2/3)/nLabels; %-Store button # in buttons 'UserData' %-Store handle of prompt string in buttons 'Max' property %-Callback sets UserData of prompt string to button number. cb = ['set(get(gcbo,''Max''),''UserData'',get(gcbo,''UserData''))']; if TTips, str=sprintf('select by mouse or enter value in text widget'); else str=''; end H = []; for i=1:nLabels h = uicontrol(Finter,'Style','Pushbutton',... 'String',deblank(Labels(i,:)),... 'Max',hPrmpt,... 'ToolTipString',sprintf('%s\n%s',deblank(Labels(i,:)),str),... 'Tag',Tag,... 'UserData',i,... 'BackgroundColor',COLOUR,... 'Callback',cb,... 'Position',[RRec(1)+(i-1)*dX+1 RRec(2) dX-2 RRec(4)]); H = [H,h]; end %-Default button surrounding edit widget (if a DefStr given) %-Callback sets hPrmpt UserData, and EditWidget string, to DefStr % (Buttons UserData holds handles [hPrmpt,hEditWidget], set later) cb = ['set(get(gcbo,''UserData'')*[1;0],''UserData'',',... 'get(gcbo,''String'')),',... 'set(get(gcbo,''UserData'')*[0;1],''String'',',... 'get(gcbo,''String''))']; if ~isempty(DefStr) hDef = uicontrol(Finter,'Style','PushButton',... 'String',DefStr,... 'ToolTipString',['Click on border to accept ',... 'default: ' DefStr],... 'Tag',Tag,... 'UserData',[],... 'CallBack',cb,... 'BackgroundColor',COLOUR,... 'Position',... [RRec(1)+RRec(3)*(2/3) RRec(2)-2 RRec(3)/3+2 RRec(4)+4]); H = [H,hDef]; else hDef = []; end %-Edit widget: Callback puts string into hPrompts UserData cb = ['set(get(gcbo,''UserData''),''UserData'',get(gcbo,''String''))']; h = uicontrol(Finter,'Style','Edit',... 'String',DefStr,... 'ToolTipString',str,... 'Tag',Tag,... 'UserData',hPrmpt,... 'CallBack',cb,... 'Horizontalalignment','Center',... 'BackgroundColor','w',... 'Position',... [RRec(1)+RRec(3)*(2/3)+2 RRec(2) RRec(3)/3-2 RRec(4)]); set(hDef,'UserData',[hPrmpt,h]) uifocus(h); H = [H,h]; %-Figure ContextMenu for shortcuts hM = spm_input('!InptConMen',Finter,[hPrmpt,H]); %-Bring window to fore & jump pointer to default button [PLoc,cF] = spm_input('!PointerJump',RRec,Finter,RRec(3)*0.95); %-Setup FigureKeyPressFcn for editing of entry widget without clicking set(Finter,'KeyPressFcn',[... 'spm_input(''!EditableKeyPressFcn'',',... 'findobj(gcf,''Tag'',''GUIinput_',int2str(YPos),''',',... '''Style'',''edit''),',... 'get(gcbf,''CurrentCharacter''))']) %-Wait for button press, process results %--------------------------------------------------------------- waitfor(hPrmpt,'UserData') if ~ishandle(hPrmpt), error(['Input objects cleared whilst waiting ',... 'for response: Bailing out!']), end p = get(hPrmpt,'UserData'); if ~ischar(p) k = p; p = Values(k,:); if ischar(p), p=deblank(p); end else Labels = strvcat(Labels,'specify...'); k = size(Labels,1); [p,msg] = sf_eEval(p,Type(2),1,m); while ischar(p) set(H,'Visible','off') h = uicontrol('Style','Text','String',msg,... 'Horizontalalignment','Center',... 'ForegroundColor','r',... 'BackgroundColor',COLOUR,... 'Tag',Tag,'Position',RRec); spm('Beep') pause(2), delete(h), set(H,'Visible','on') set(hPrmpt,'UserData','') waitfor(hPrmpt,'UserData') if ~ishandle(hPrmpt), error(['Input objects cleared ',... 'whilst waiting for response: Bailing out!']),end p = get(hPrmpt,'UserData'); if ischar(p), [p,msg] = sf_eEval(p,Type(2),1,m); end end end %-Clean up delete([H,hM]), set(Finter,'KeyPressFcn','') spm_input('!PointerJumpBack',PLoc,cF) %-Display answer uicontrol(Finter,'Style','Text',... 'String',num2str(p),... 'Tag',Tag,... 'Horizontalalignment','Center',... 'BackgroundColor',COLOUR,... 'Position',RRec); drawnow end % (if CmdLine) case 'm' %-Process menu type %======================================================================= nLabels = size(Labels,1); if ~isempty(DefItem) && ~any(DefItem==[1:nLabels]), DefItem=[]; end %-Process pull down menu type if CmdLine spm_input('!PrntPrmpt',Prompt) nLabels = size(Labels,1); for i = 1:nLabels, fprintf('\t%2d : %s\n',i,Labels(i,:)), end Prmpt = ['Menu choice (1-',int2str(nLabels),')']; if DefItem Prmpt=[Prmpt,' (Default: ',num2str(DefItem),')']; end %-Ask for user response %------------------------------------------------------- if nLabels==1 %-Only one choice - auto-pick & display k = 1; fprintf('Menu choice: 1 - %s\t(only option)',Labels) else k = input([Prmpt,' ? ']); if DefItem && isempty(k), k=DefItem; end while isempty(k) || ~any([1:nLabels]==k) if ~isempty(k),fprintf('%c\t!Out of range\n',7),end k = input([Prmpt,' ? ']); if DefItem && isempty(k), k=DefItem; end end end fprintf('\n') else Tag = ['GUIinput_',int2str(YPos)]; %-Tag for widgets if nLabels==1 %-Only one choice - auto-pick k = 1; else Labs=[repmat(' ',nLabels,2),Labels]; if DefItem Labs(DefItem,1)='*'; H = uicontrol(Finter,'Style','Frame',... 'BackGroundColor','k',... 'ForeGroundColor','k',... 'Position',QRec+[-1,-1,+2,+2]); else H = []; end cb = ['if (get(gcbo,''Value'')>1),',... 'set(gcbo,''UserData'',''Selected''), end']; hPopUp = uicontrol(Finter,'Style','PopUp',... 'HorizontalAlignment','Left',... 'ForegroundColor','k',... 'BackgroundColor',COLOUR,... 'String',strvcat([Prompt,'...'],Labs),... 'Tag',Tag,... 'UserData',DefItem,... 'CallBack',cb,... 'Position',QRec); if TTips cLabs = cellstr(Labels); cInd = num2cell(1:nLabels); scLabs = [cInd; cLabs']; scLabs = sprintf('%d: %s\n',scLabs{:}); set(hPopUp,'ToolTipString',sprintf(['select with ',... 'mouse or type option number (1-',... num2str(nLabels),') & press return\n%s'],scLabs)); end %-Figure ContextMenu for shortcuts hM = spm_input('!InptConMen',Finter,[hPopUp,H]); %-Bring window to fore & jump pointer to menu widget [PLoc,cF] = spm_input('!PointerJump',RRec,Finter); %-Callback for KeyPresses cb=['spm_input(''!PullDownKeyPressFcn'',',... 'findobj(gcf,''Tag'',''',Tag,'''),',... 'get(gcf,''CurrentCharacter''))']; set(Finter,'KeyPressFcn',cb) %-Wait for menu selection %----------------------------------------------- waitfor(hPopUp,'UserData') if ~ishandle(hPopUp), error(['Input object cleared ',... 'whilst waiting for response: Bailing out!']),end k = get(hPopUp,'Value')-1; %-Clean up delete([H,hM]), set(Finter,'KeyPressFcn','') set(hPopUp,'Style','Text',... 'Horizontalalignment','Center',... 'String',deblank(Labels(k,:)),... 'BackgroundColor',COLOUR) spm_input('!PointerJumpBack',PLoc,cF) end %-Display answer uicontrol(Finter,'Style','Text',... 'String',deblank(Labels(k,:)),... 'Tag',Tag,... 'Horizontalalignment','Center',... 'BackgroundColor',COLOUR,... 'Position',QRec); drawnow end p = Values(k,:); if ischar(p), p=deblank(p); end otherwise, error('unrecognised type') end % (switch lower(Type) within case {'b','b|','y/n'}) %-Return response %----------------------------------------------------------------------- varargout = {p,YPos}; case {'m!','b!'} %-GUI PullDown/Buttons utility %======================================================================= % H = spm_input(Prompt,YPos,'p',Labels,cb,UD,XCB) %-Condition arguments if nargin<7, XCB = 0; else XCB = varargin{7}; end if nargin<6, UD = []; else UD = varargin{6}; end if nargin<5, cb = ''; else cb = varargin{5}; end if nargin<4, Labels = []; else Labels = varargin{4}; end if CmdLine, error('Can''t do CmdLine GUI utilities!'), end if isempty(cb), cb = 'disp(''(CallBack not set)'')'; end if ischar(cb), cb = cellstr(cb); end if length(cb)>1 && strcmpi(Type,'m!'), XCB=1; end if iscellstr(Labels), Labels=char(Labels); end %-Convert Labels "option" string to string matrix if required if any(Labels=='|') OptStr=Labels; BarPos=find([OptStr=='|',1]); Labels=OptStr(1:BarPos(1)-1); for Bar = 2:sum(OptStr=='|')+1 Labels=strvcat(Labels,OptStr(BarPos(Bar-1)+1:BarPos(Bar)-1)); end end %-Check #CallBacks if ~( length(cb)==1 || (length(cb)==size(Labels,1)) ) error('Labels & Callbacks size mismatch'), end %-Draw Prompt %----------------------------------------------------------------------- Tag = ['GUIinput_',int2str(YPos)]; %-Tag for widgets if ~isempty(Prompt) uicontrol(Finter,'Style','Text',... 'String',Prompt,... 'Tag',Tag,... 'HorizontalAlignment','Right',... 'BackgroundColor',COLOUR,... 'Position',PRec) Rec = RRec; else Rec = QRec; end %-Sort out UserData for extended callbacks (handled by spm_input('!m_cb') %----------------------------------------------------------------------- if XCB, if iscell(UD), UD={UD}; end, UD = struct('UD',UD,'cb',{cb}); end %-Draw PullDown or Buttons %----------------------------------------------------------------------- switch lower(Type), case 'm!' if XCB, UD.cb=cb; cb = {'spm_input(''!m_cb'')'}; end H = uicontrol(Finter,'Style','PopUp',... 'HorizontalAlignment','Left',... 'ForegroundColor','k',... 'BackgroundColor',COLOUR,... 'String',Labels,... 'Tag',Tag,... 'UserData',UD,... 'CallBack',char(cb),... 'Position',Rec); case 'b!' nLabels = size(Labels,1); dX = Rec(3)/nLabels; H = []; for i=1:nLabels if length(cb)>1, tcb=cb(i); else tcb=cb; end if XCB, UD.cb=tcb; tcb = {'spm_input(''!m_cb'')'}; end h = uicontrol(Finter,'Style','Pushbutton',... 'String',deblank(Labels(i,:)),... 'ToolTipString','',... 'Tag',Tag,... 'UserData',UD,... 'BackgroundColor',COLOUR,... 'Callback',char(tcb),... 'Position',[Rec(1)+(i-1)*dX+1 ... Rec(2) dX-2 Rec(4)]); H = [H,h]; end end %-Bring window to fore & jump pointer to menu widget [PLoc,cF] = spm_input('!PointerJump',RRec,Finter); varargout = {H}; case {'d','d!'} %-Display message %======================================================================= %-Condition arguments if nargin<4, Label=''; else Label=varargin{4}; end if CmdLine && strcmpi(Type,'d') fprintf('\n +-%s%s+',Label,repmat('-',1,57-length(Label))) Prompt = [Prompt,' ']; while ~isempty(Prompt) tmp = length(Prompt); if tmp>56, tmp=min([max(find(Prompt(1:56)==' ')),56]); end fprintf('\n | %s%s |',Prompt(1:tmp),repmat(' ',1,56-tmp)) Prompt(1:tmp)=[]; end fprintf('\n +-%s+\n',repmat('-',1,57)) elseif ~CmdLine if ~isempty(Label), Prompt = [Label,': ',Prompt]; end figure(Finter) %-Create text axes and edit control objects %--------------------------------------------------------------- h = uicontrol(Finter,'Style','Text',... 'String',Prompt(1:min(length(Prompt),56)),... 'FontWeight','bold',... 'Tag',['GUIinput_',int2str(YPos)],... 'HorizontalAlignment','Left',... 'ForegroundColor','k',... 'BackgroundColor',COLOUR,... 'UserData',Prompt,... 'Position',QRec); if length(Prompt)>56 pause(1) set(h,'ToolTipString',Prompt) spm_input('!dScroll',h) uicontrol(Finter,'Style','PushButton','String','>',... 'ToolTipString','press to scroll message',... 'Tag',['GUIinput_',int2str(YPos)],... 'UserData',h,... 'CallBack',[... 'set(gcbo,''Visible'',''off''),',... 'spm_input(''!dScroll'',get(gcbo,''UserData'')),',... 'set(gcbo,''Visible'',''on'')'],... 'BackgroundColor',COLOUR,... 'Position',[QRec(1)+QRec(3)-10,QRec(2),15,QRec(4)]); end end if nargout>0, varargout={[],YPos}; end %======================================================================= % U T I L I T Y F U N C T I O N S %======================================================================= case '!colour' %======================================================================= % colour = spm_input('!Colour') varargout = {COLOUR}; case '!icond' %======================================================================= % [iCond,msg] = spm_input('!iCond',str,n,m) % Parse condition indicator spec strings: % '2 3 2 3', '0 1 0 1', '2323', '0101', 'abab', 'R A R A' if nargin<4, m=Inf; else m=varargin{4}; end if nargin<3, n=NaN; else n=varargin{3}; end if any(isnan(n(:))) n=Inf; elseif (length(n(:))==2 && ~any(n==1)) || length(n(:))>2 error('condition input can only do vectors') end if nargin<2, i=''; else i=varargin{2}; end if isempty(i), varargout={[],'empty input'}; return, end msg = ''; i=i(:)'; if ischar(i) if i(1)=='0' && all(ismember(unique(i(:)),char(abs('0'):abs('9')))) %-Leading zeros in a digit list msg = sprintf('%s expanded',i); z = min(find([diff(i=='0'),1])); i = [zeros(1,z), spm_input('!iCond',i(z+1:end))']; else %-Try an eval, for functions & string #s i = evalin('base',['[',i,']'],'i'); end end if ischar(i) %-Evaluation error from above: see if it's an 'abab' or 'a b a b' type: [c,null,i] = unique(lower(i(~isspace(i)))); if all(ismember(c,char(abs('a'):abs('z')))) %-Map characters a-z to 1-26, but let 'r' be zero (rest) tmp = c-'a'+1; tmp(tmp=='r'-'a'+1)=0; i = tmp(i); msg = [sprintf('[%s] mapped to [',c),... sprintf('%d,',tmp(1:end-1)),... sprintf('%d',tmp(end)),']']; else i = '!'; msg = 'evaluation error'; end elseif ~all(floor(i(:))==i(:)) i = '!'; msg = 'must be integers'; elseif length(i)==1 && prod(n)>1 msg = sprintf('%d expanded',i); i = floor(i./10.^[floor(log10(i)+eps):-1:0]); i = i-[0,10*i(1:end-1)]; end %-Check size of i & #conditions if ~ischar(i), [i,msg] = sf_SzChk(i,n,msg); end if ~ischar(i) && isfinite(m) && length(unique(i))~=m i = '!'; msg = sprintf('%d conditions required',m); end varargout = {i,msg}; case '!inptconmen' %======================================================================= % hM = spm_input('!InptConMen',Finter,H) if nargin<3, H=[]; else H=varargin{3}; end if nargin<2, varargout={[]}; else Finter=varargin{2}; end hM = uicontextmenu('Parent',Finter); uimenu(hM,'Label','help on spm_input',... 'CallBack','spm_help(''spm_input.m'')') if ConCrash uimenu(hM,'Label','crash out','Separator','on',... 'CallBack','delete(get(gcbo,''UserData''))',... 'UserData',[hM,H]) end set(Finter,'UIContextMenu',hM) varargout={hM}; case '!cmdline' %======================================================================= % [CmdLine,YPos] = spm_input('!CmdLine',YPos) %-Sorts out whether to use CmdLine or not & canonicalises YPos if nargin<2, YPos=''; else YPos=varargin{2}; end if isempty(YPos), YPos='+1'; end CmdLine = []; %-Special YPos specifications if ischar(YPos) if(YPos(1)=='!'), CmdLine=0; YPos(1)=[]; end elseif YPos==0 CmdLine=1; elseif YPos<0 CmdLine=0; YPos=-YPos; end CmdLine = spm('CmdLine',CmdLine); if CmdLine, YPos=0; end varargout = {CmdLine,YPos}; case '!getwin' %======================================================================= % Finter = spm_input('!GetWin',F) %-Locate (or create) figure to work in (Don't use 'Tag'ged figs) if nargin<2, F='Interactive'; else F=varargin{2}; end Finter = spm_figure('FindWin',F); if isempty(Finter) if ~isempty(get(0,'Children')) if isempty(get(gcf,'Tag')), Finter = gcf; else Finter = spm('CreateIntWin'); end else Finter = spm('CreateIntWin'); end end varargout = {Finter}; case '!pointerjump' %======================================================================= % [PLoc,cF] = spm_input('!PointerJump',RRec,F,XDisp) %-Raise window & jump pointer over question if nargin<4, XDisp=[]; else XDisp=varargin{4}; end if nargin<3, F='Interactive'; else F=varargin{3}; end if nargin<2, error('Insufficient arguments'), else RRec=varargin{2}; end F = spm_figure('FindWin',F); PLoc = get(0,'PointerLocation'); cF = get(0,'CurrentFigure'); if ~isempty(F) figure(F) FRec = get(F,'Position'); if isempty(XDisp), XDisp=RRec(3)*4/5; end if PJump, set(0,'PointerLocation',... floor([(FRec(1)+RRec(1)+XDisp), (FRec(2)+RRec(2)+RRec(4)/3)])); end end varargout = {PLoc,cF}; case '!pointerjumpback' %======================================================================= % spm_input('!PointerJumpBack',PLoc,cF) %-Replace pointer and reset CurrentFigure back if nargin<4, cF=[]; else F=varargin{3}; end if nargin<2, error('Insufficient arguments'), else PLoc=varargin{2}; end if PJump, set(0,'PointerLocation',PLoc), end cF = spm_figure('FindWin',cF); if ~isempty(cF), set(0,'CurrentFigure',cF); end case '!prntprmpt' %======================================================================= % spm_input('!PrntPrmpt',Prompt,TipStr,Title) %-Print prompt for CmdLine questioning if nargin<4, Title = ''; else Title = varargin{4}; end if nargin<3, TipStr = ''; else TipStr = varargin{3}; end if nargin<2, Prompt = ''; else Prompt = varargin{2}; end if isempty(Prompt), Prompt='Enter an expression'; end Prompt = cellstr(Prompt); if ~isempty(TipStr) tmp = 8 + length(Prompt{end}) + length(TipStr); if tmp < 62 TipStr = sprintf('%s(%s)',repmat(' ',1,70-tmp),TipStr); else TipStr = sprintf('\n%s(%s)',repmat(' ',1,max(0,70-length(TipStr))),TipStr); end end if isempty(Title) fprintf('\n%s\n',repmat('~',1,72)) else fprintf('\n= %s %s\n',Title,repmat('~',1,72-length(Title)-3)) end fprintf('\t%s',Prompt{1}) for i=2:numel(Prompt), fprintf('\n\t%s',Prompt{i}), end fprintf('%s\n%s\n',TipStr,repmat('~',1,72)) case '!inputrects' %======================================================================= % [Frec,QRec,PRec,RRec,Sz,Se] = spm_input('!InputRects',YPos,rec,F) if nargin<4, F='Interactive'; else F=varargin{4}; end if nargin<3, rec=''; else rec=varargin{3}; end if nargin<2, YPos=1; else YPos=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('Figure not found'), end Units = get(F,'Units'); set(F,'Units','pixels') FRec = get(F,'Position'); set(F,'Units',Units); Xdim = FRec(3); Ydim = FRec(4); WS = spm('WinScale'); Sz = round(22*min(WS)); %-Height Pd = Sz/2; %-Pad Se = 2*round(25*min(WS)/2); %-Seperation Yo = round(2*min(WS)); %-Y offset for responses a = 5.5/10; y = Ydim - Se*YPos; QRec = [Pd y Xdim-2*Pd Sz]; %-Question PRec = [Pd y floor(a*Xdim)-2*Pd Sz]; %-Prompt RRec = [ceil(a*Xdim) y+Yo floor((1-a)*Xdim)-Pd Sz]; %-Response % MRec = [010 y Xdim-50 Sz]; %-Menu PullDown % BRec = MRec + [Xdim-50+1, 0+1, 50-Xdim+30, 0]; %-Menu PullDown OK butt if ~isempty(rec) varargout = {eval(rec)}; else varargout = {FRec,QRec,PRec,RRec,Sz,Se}; end case '!deleteinputobj' %======================================================================= % spm_input('!DeleteInputObj',F) if nargin<2, F='Interactive'; else F=varargin{2}; end h = spm_input('!FindInputObj',F); delete(h(h>0)) case {'!currentpos','!findinputobj'} %======================================================================= % [CPos,hCPos] = spm_input('!CurrentPos',F) % h = spm_input('!FindInputObj',F) % hPos contains handles: Columns contain handles corresponding to Pos if nargin<2, F='Interactive'; else F=varargin{2}; end F = spm_figure('FindWin',F); %-Find tags and YPos positions of 'GUIinput_' 'Tag'ged objects H = []; YPos = []; for h = get(F,'Children')' tmp = get(h,'Tag'); if ~isempty(tmp) if strcmp(tmp(1:min(length(tmp),9)),'GUIinput_') H = [H, h]; YPos = [YPos, eval(tmp(10:end))]; end end end switch lower(Type), case '!findinputobj' varargout = {H}; case '!currentpos' if nargout<2 varargout = {max(YPos),[]}; elseif isempty(H) varargout = {[],[]}; else %-Sort out tmp = sort(YPos); CPos = tmp(find([1,diff(tmp)])); nPos = length(CPos); nPerPos = diff(find([1,diff(tmp),1])); hCPos = zeros(max(nPerPos),nPos); for i = 1:nPos hCPos(1:nPerPos(i),i) = H(YPos==CPos(i))'; end varargout = {CPos,hCPos}; end end case '!nextpos' %======================================================================= % [NPos,CPos,hCPos] = spm_input('!NextPos',YPos,F,CmdLine) %-Return next position to use if nargin<3, F='Interactive'; else F=varargin{3}; end if nargin<2, YPos='+1'; else YPos=varargin{2}; end if nargin<4, [CmdLine,YPos]=spm_input('!CmdLine',YPos); else CmdLine=varargin{4}; end F = spm_figure('FindWin',F); %-Get current positions if nargout<3 CPos = spm_input('!CurrentPos',F); hCPos = []; else [CPos,hCPos] = spm_input('!CurrentPos',F); end if CmdLine NPos = 0; else MPos = spm_input('!MaxPos',F); if ischar(YPos) %-Relative YPos %-Strip any '!' prefix from YPos if(YPos(1)=='!'), YPos(1)=[]; end if strncmp(YPos,'_',1) %-YPos='_' means bottom YPos=eval(['MPos+',YPos(2:end)],'MPos'); else YPos = max([0,CPos])+eval(YPos); end else %-Absolute YPos YPos=abs(YPos); end NPos = min(max(1,YPos),MPos); end varargout = {NPos,CPos,hCPos}; case '!setnextpos' %======================================================================= % NPos = spm_input('!SetNextPos',YPos,F,CmdLine) %-Set next position to use if nargin<3, F='Interactive'; else F=varargin{3}; end if nargin<2, YPos='+1'; else YPos=varargin{2}; end if nargin<4, [CmdLine,YPos]=spm_input('!CmdLine',YPos); else CmdLine=varargin{4}; end %-Find out which Y-position to use [NPos,CPos,hCPos] = spm_input('!NextPos',YPos,F,CmdLine); %-Delete any previous inputs using positions NPos and after if any(CPos>=NPos), h=hCPos(:,CPos>=NPos); delete(h(h>0)), end varargout = {NPos}; case '!maxpos' %======================================================================= % MPos = spm_input('!MaxPos',F,FRec3) % if nargin<3 if nargin<2, F='Interactive'; else F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F) FRec3=spm('WinSize','Interactive')*[0;0;0;1]; else %-Get figure size Units = get(F,'Units'); set(F,'Units','pixels') FRec3 = get(F,'Position')*[0;0;0;1]; set(F,'Units',Units); end end Se = round(25*min(spm('WinScale'))); MPos = floor((FRec3-5)/Se); varargout = {MPos}; case '!editablekeypressfcn' %======================================================================= % spm_input('!EditableKeyPressFcn',h,ch,hPrmpt) if nargin<2, error('Insufficient arguments'), else h=varargin{2}; end if isempty(h), set(gcbf,'KeyPressFcn','','UserData',[]), return, end if nargin<3, ch=get(get(h,'Parent'),'CurrentCharacter'); else ch=varargin{3};end if nargin<4, hPrmpt=get(h,'UserData'); else hPrmpt=varargin{4}; end tmp = get(h,'String'); if isempty(tmp), tmp=''; end if iscellstr(tmp) && length(tmp)==1; tmp=tmp{:}; end if isempty(ch) %- shift / control / &c. pressed return elseif any(abs(ch)==[32:126]) %-Character if iscellstr(tmp), return, end tmp = [tmp, ch]; elseif abs(ch)==21 %- ^U - kill tmp = ''; elseif any(abs(ch)==[8,127]) %-BackSpace or Delete if iscellstr(tmp), return, end if ~isempty(tmp), tmp(length(tmp))=''; end elseif abs(ch)==13 %-Return pressed if ~isempty(tmp) set(hPrmpt,'UserData',get(h,'String')) end return else %-Illegal character return end set(h,'String',tmp) case '!buttonkeypressfcn' %======================================================================= % spm_input('!ButtonKeyPressFcn',h,Keys,DefItem,ch) %-Callback for KeyPress, to store valid button # in UserData of Prompt, % DefItem if (DefItem~=0) & return (ASCII-13) is pressed %-Condition arguments if nargin<2, error('Insufficient arguments'), else h=varargin{2}; end if isempty(h), set(gcf,'KeyPressFcn','','UserData',[]), return, end if nargin<3, error('Insufficient arguments'); else Keys=varargin{3}; end if nargin<4, DefItem=0; else DefItem=varargin{4}; end if nargin<5, ch=get(gcf,'CurrentCharacter'); else ch=varargin{5}; end if isempty(ch) %- shift / control / &c. pressed return elseif (DefItem && ch==13) But = DefItem; else But = find(lower(ch)==lower(Keys)); end if ~isempty(But), set(h,'UserData',But), end case '!pulldownkeypressfcn' %======================================================================= % spm_input('!PullDownKeyPressFcn',h,ch,DefItem) if nargin<2, error('Insufficient arguments'), else h=varargin{2}; end if isempty(h), set(gcf,'KeyPressFcn',''), return, end if nargin<3, ch=get(get(h,'Parent'),'CurrentCharacter'); else ch=varargin{3};end if nargin<4, DefItem=get(h,'UserData'); else ch=varargin{4}; end Pmax = get(h,'Max'); Pval = get(h,'Value'); if Pmax==1, return, end if isempty(ch) %- shift / control / &c. pressed return elseif abs(ch)==13 if Pval==1 if DefItem, set(h,'Value',max(2,min(DefItem+1,Pmax))), end else set(h,'UserData','Selected') end elseif any(ch=='bpu') %-Move "b"ack "u"p to "p"revious entry set(h,'Value',max(2,Pval-1)) elseif any(ch=='fnd') %-Move "f"orward "d"own to "n"ext entry set(h,'Value',min(Pval+1,Pmax)) elseif any(ch=='123456789') %-Move to entry n set(h,'Value',max(2,min(eval(ch)+1,Pmax))) else %-Illegal character end case '!m_cb' %-CallBack handler for extended CallBack 'p'ullDown type %======================================================================= % spm_input('!m_cb') %-Get PopUp handle and value h = gcbo; n = get(h,'Value'); %-Get PopUp's UserData, check cb and UD fields exist, extract cb & UD tmp = get(h,'UserData'); if ~(isfield(tmp,'cb') && isfield(tmp,'UD')) error('Invalid UserData structure for spm_input extended callback') end cb = tmp.cb; UD = tmp.UD; %-Evaluate appropriate CallBack string (ignoring any return arguments) % NB: Using varargout={eval(cb{n})}; gives an error if the CallBack % has no return arguments! if length(cb)==1, eval(char(cb)); else eval(cb{n}); end case '!dscroll' %======================================================================= % spm_input('!dScroll',h,Prompt) %-Scroll text in object h if nargin<2, return, else h=varargin{2}; end if nargin<3, Prompt = get(h,'UserData'); else Prompt=varargin{3}; end tmp = Prompt; if length(Prompt)>56 while length(tmp)>56 tic, while(toc<0.1), pause(0.05), end tmp(1)=[]; set(h,'String',tmp(1:min(length(tmp),56))) end pause(1) set(h,'String',Prompt(1:min(length(Prompt),56))) end otherwise %======================================================================= error(['Invalid type/action: ',Type]) %======================================================================= end % (case lower(Type)) %======================================================================= %- S U B - F U N C T I O N S %======================================================================= function [Keys,Labs] = sf_labkeys(Labels) %======================================================================= %-Make unique character keys for the Labels, ignoring case if nargin<1, error('insufficient arguments'), end if iscellstr(Labels), Labels = char(Labels); end if isempty(Labels), Keys=''; Labs=''; return, end Keys=Labels(:,1)'; nLabels = size(Labels,1); if any(~diff(abs(sort(lower(Keys))))) if nLabels<10 Keys = sprintf('%d',[1:nLabels]); elseif nLabels<=26 Keys = sprintf('%c',abs('a')+[0:nLabels-1]); else error('Too many buttons!') end Labs = Labels; else Labs = Labels(:,2:end); end function [p,msg] = sf_eEval(str,Type,n,m) %======================================================================= %-Evaluation and error trapping of typed input if nargin<4, m=[]; end if nargin<3, n=[]; end if nargin<2, Type='e'; end if nargin<1, str=''; end if isempty(str), p='!'; msg='empty input'; return, end switch lower(Type) case 's' p = str; msg = ''; case 'e' p = evalin('base',['[',str,']'],'''!'''); if ischar(p) msg = 'evaluation error'; else [p,msg] = sf_SzChk(p,n); end case 'n' p = evalin('base',['[',str,']'],'''!'''); if ischar(p) msg = 'evaluation error'; elseif any(floor(p(:))~=p(:)|p(:)<1)||~isreal(p) p='!'; msg='natural number(s) required'; elseif ~isempty(m) && any(p(:)>m) p='!'; msg=['max value is ',num2str(m)]; else [p,msg] = sf_SzChk(p,n); end case 'w' p = evalin('base',['[',str,']'],'''!'''); if ischar(p) msg = 'evaluation error'; elseif any(floor(p(:))~=p(:)|p(:)<0)||~isreal(p) p='!'; msg='whole number(s) required'; elseif ~isempty(m) && any(p(:)>m) p='!'; msg=['max value is ',num2str(m)]; else [p,msg] = sf_SzChk(p,n); end case 'i' p = evalin('base',['[',str,']'],'''!'''); if ischar(p) msg = 'evaluation error'; elseif any(floor(p(:))~=p(:))||~isreal(p) p='!'; msg='integer(s) required'; else [p,msg] = sf_SzChk(p,n); end case 'p' p = evalin('base',['[',str,']'],'''!'''); if ischar(p) msg = 'evaluation error'; elseif ~isempty(setxor(p(:)',m)) p='!'; msg='invalid permutation'; else [p,msg] = sf_SzChk(p,n); end case 'r' p = evalin('base',['[',str,']'],'''!'''); if ischar(p) msg = 'evaluation error'; elseif ~isreal(p) p='!'; msg='real number(s) required'; elseif ~isempty(m) && ( max(p)>max(m) || min(p)<min(m) ) p='!'; msg=sprintf('real(s) in [%g,%g] required',min(m),max(m)); else [p,msg] = sf_SzChk(p,n); end case 'c' if isempty(m), m=Inf; end [p,msg] = spm_input('!iCond',str,n,m); case 'x' X = m; %-Design matrix/space-structure if isempty(n), n=1; end %-Sort out contrast matrix dimensions (contrast vectors in rows) if length(n)==1, n=[n,Inf]; else n=reshape(n(1:2),1,2); end if ~isempty(X) % - override n(2) w/ design column dimension n(2) = spm_SpUtil('size',X,2); end p = evalin('base',['[',str,']'],'''!'''); if ischar(p) msg = 'evaluation error'; else if isfinite(n(2)) && size(p,2)<n(2) tmp = n(2) -size(p,2); p = [p, zeros(size(p,1),tmp)]; if size(p,1)>1, str=' columns'; else str='s'; end msg = sprintf('right padded with %d zero%s',tmp,str); else msg = ''; end if size(p,2)>n(2) p='!'; msg=sprintf('too long - only %d prams',n(2)); elseif isfinite(n(1)) && size(p,1)~=n(1) p='!'; if n(1)==1, msg='vector required'; else msg=sprintf('%d contrasts required',n(1)); end elseif ~isempty(X) && ~spm_SpUtil('allCon',X,p') p='!'; msg='invalid contrast'; end end otherwise error('unrecognised type'); end function str = sf_SzStr(n,l) %======================================================================= %-Size info string construction if nargin<2, l=0; else l=1; end if nargin<1, error('insufficient arguments'), end if isempty(n), n=NaN; end n=n(:); if length(n)==1, n=[n,1]; end, dn=length(n); if any(isnan(n)) || (prod(n)==1 && dn<=2) || (dn==2 && min(n)==1 && isinf(max(n))) str = ''; lstr = ''; elseif dn==2 && min(n)==1 str = sprintf('[%d]',max(n)); lstr = [str,'-vector']; elseif dn==2 && sum(isinf(n))==1 str = sprintf('[%d]',min(n)); lstr = [str,'-vector(s)']; else str=''; for i = 1:dn if isfinite(n(i)), str = sprintf('%s,%d',str,n(i)); else str = sprintf('%s,*',str); end end str = ['[',str(2:end),']']; lstr = [str,'-matrix']; end if l, str=sprintf('\t%s',lstr); else str=[str,' ']; end function [p,msg] = sf_SzChk(p,n,msg) %======================================================================= %-Size checking if nargin<3, msg=''; end if nargin<2, n=[]; end, if isempty(n), n=NaN; else n=n(:)'; end if nargin<1, error('insufficient arguments'), end if ischar(p) || any(isnan(n(:))), return, end if length(n)==1, n=[n,1]; end dn = length(n); sp = size(p); dp = ndims(p); if dn==2 && min(n)==1 %-[1,1], [1,n], [n,1], [1,Inf], [Inf,1] - vector - allow transpose %--------------------------------------------------------------- i = min(find(n==max(n))); if n(i)==1 && max(sp)>1 p='!'; msg='scalar required'; elseif ndims(p)~=2 || ~any(sp==1) || ( isfinite(n(i)) && max(sp)~=n(i) ) %-error: Not2D | not vector | not right length if isfinite(n(i)), str=sprintf('%d-',n(i)); else str=''; end p='!'; msg=[str,'vector required']; elseif sp(i)==1 && n(i)~=1 p=p'; msg=[msg,' (input transposed)']; end elseif dn==2 && sum(isinf(n))==1 %-[n,Inf], [Inf,n] - n vector(s) required - allow transposing %--------------------------------------------------------------- i = find(isfinite(n)); if ndims(p)~=2 || ~any(sp==n(i)) p='!'; msg=sprintf('%d-vector(s) required',min(n)); elseif sp(i)~=n p=p'; msg=[msg,' (input transposed)']; end else %-multi-dimensional matrix required - check dimensions %--------------------------------------------------------------- if ndims(p)~=dn || ~all( size(p)==n | isinf(n) ) p = '!'; msg=''; for i = 1:dn if isfinite(n(i)), msg = sprintf('%s,%d',msg,n(i)); else msg = sprintf('%s,*',msg); end end msg = ['[',msg(2:end),']-matrix required']; end end %========================================================================== function uifocus(h) try if strcmpi(get(h, 'Style'), 'PushButton') == 1 uicontrol(gcbo); else uicontrol(h); end end
github
philippboehmsturm/antx-master
spm_realign.m
.m
antx-master/xspm8/spm_realign.m
18,390
utf_8
40c5bf8bb41fe8dfc414a2afccf6270d
function P = spm_realign(P,flags) % Estimation of within modality rigid body movement parameters % FORMAT P = spm_realign(P,flags) % % P - matrix of filenames {one string per row} % All operations are performed relative to the first image. % ie. Coregistration is to the first image, and resampling % of images is into the space of the first image. % For multiple sessions, P should be a cell array, where each % cell should be a matrix of filenames. % % flags - a structure containing various options. The fields are: % quality - Quality versus speed trade-off. Highest quality % (1) gives most precise results, whereas lower % qualities gives faster realignment. % The idea is that some voxels contribute little to % the estimation of the realignment parameters. % This parameter is involved in selecting the number % of voxels that are used. % % fwhm - The FWHM of the Gaussian smoothing kernel (mm) % applied to the images before estimating the % realignment parameters. % % sep - the default separation (mm) to sample the images. % % rtm - Register to mean. If field exists then a two pass % procedure is to be used in order to register the % images to the mean of the images after the first % realignment. % % PW - a filename of a weighting image (reciprocal of % standard deviation). If field does not exist, then % no weighting is done. % % interp - B-spline degree used for interpolation % %__________________________________________________________________________ % % Inputs % A series of *.img conforming to SPM data format (see 'Data Format'). % % Outputs % If no output argument, then an updated voxel to world matrix is written % to the headers of the images (a .mat file is created for 4D images). % The details of the transformation are displayed in the % results window as plots of translation and rotation. % A set of realignment parameters are saved for each session, named: % rp_*.txt. %__________________________________________________________________________ % % The voxel to world mappings. % % These are simply 4x4 affine transformation matrices represented in the % NIFTI headers (see http://nifti.nimh.nih.gov/nifti-1 ). % These are normally modified by the `realignment' and `coregistration' % modules. What these matrixes represent is a mapping from % the voxel coordinates (x0,y0,z0) (where the first voxel is at coordinate % (1,1,1)), to coordinates in millimeters (x1,y1,z1). % % x1 = M(1,1)*x0 + M(1,2)*y0 + M(1,3)*z0 + M(1,4) % y1 = M(2,1)*x0 + M(2,2)*y0 + M(2,3)*z0 + M(2,4) % z1 = M(3,1)*x0 + M(3,2)*y0 + M(3,3)*z0 + M(3,4) % % Assuming that image1 has a transformation matrix M1, and image2 has a % transformation matrix M2, the mapping from image1 to image2 is: M2\M1 % (ie. from the coordinate system of image1 into millimeters, followed % by a mapping from millimeters into the space of image2). % % These matrices allow several realignment or coregistration steps to be % combined into a single operation (without the necessity of resampling the % images several times). The `.mat' files are also used by the spatial % normalisation module. %__________________________________________________________________________ % Ref: % Friston KJ, Ashburner J, Frith CD, Poline J-B, Heather JD & Frackowiak % RSJ (1995) Spatial registration and normalization of images Hum. Brain % Map. 2:165-189 %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_realign.m 6071 2014-06-27 12:52:33Z guillaume $ if nargin==0, return; end; def_flags = spm_get_defaults('realign.estimate'); def_flags.PW = ''; def_flags.graphics = 1; def_flags.lkp = 1:6; if nargin < 2, flags = def_flags; else fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags.(fnms{i}) = def_flags.(fnms{i}); end; end; end; if ~iscell(P), tmp = cell(1); tmp{1} = P; P = tmp; end; for i=1:length(P), if ischar(P{i}), P{i} = spm_vol(P{i}); end; end; if ~isempty(flags.PW) && ischar(flags.PW), flags.PW = spm_vol(flags.PW); end; % Remove empty cells PN = {}; j = 1; for i=1:length(P), if ~isempty(P{i}), PN{j} = P{i}; j = j+1; end; end; P = PN; if isempty(P), warning('Nothing to do'); return; end; if length(P)==1, P{1} = realign_series(P{1},flags); if nargout==0, save_parameters(P{1}); end; else Ptmp = P{1}(1); for s=2:numel(P), Ptmp = [Ptmp ; P{s}(1)]; end; Ptmp = realign_series(Ptmp,flags); for s=1:numel(P), M = Ptmp(s).mat*inv(P{s}(1).mat); for i=1:numel(P{s}), P{s}(i).mat = M*P{s}(i).mat; end; end; for s=1:numel(P), P{s} = realign_series(P{s},flags); if nargout==0, save_parameters(P{s}); end; end; end; if nargout==0, % Save Realignment Parameters %--------------------------------------------------------------------------- for s=1:numel(P), for i=1:numel(P{s}), spm_get_space([P{s}(i).fname ',' num2str(P{s}(i).n)], P{s}(i).mat); end; end; end; if flags.graphics, plot_parameters(P); end; if length(P)==1, P=P{1}; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function P = realign_series(P,flags) % Realign a time series of 3D images to the first of the series. % FORMAT P = realign_series(P,flags) % P - a vector of volumes (see spm_vol) %----------------------------------------------------------------------- % P(i).mat is modified to reflect the modified position of the image i. % The scaling (and offset) parameters are also set to contain the % optimum scaling required to match the images. %_______________________________________________________________________ if numel(P)<2, return; end; skip = sqrt(sum(P(1).mat(1:3,1:3).^2)).^(-1)*flags.sep; d = P(1).dim(1:3); lkp = flags.lkp; rand('state',0); % want the results to be consistant. if d(3) < 3, lkp = [1 2 6]; [x1,x2,x3] = ndgrid(1:skip(1):d(1)-.5, 1:skip(2):d(2)-.5, 1:skip(3):d(3)); x1 = x1 + rand(size(x1))*0.5; x2 = x2 + rand(size(x2))*0.5; else [x1,x2,x3]=ndgrid(1:skip(1):d(1)-.5, 1:skip(2):d(2)-.5, 1:skip(3):d(3)-.5); x1 = x1 + rand(size(x1))*0.5; x2 = x2 + rand(size(x2))*0.5; x3 = x3 + rand(size(x3))*0.5; end; x1 = x1(:); x2 = x2(:); x3 = x3(:); % Possibly mask an area of the sample volume. %----------------------------------------------------------------------- if ~isempty(flags.PW), [y1,y2,y3]=coords([0 0 0 0 0 0],P(1).mat,flags.PW.mat,x1,x2,x3); wt = spm_sample_vol(flags.PW,y1,y2,y3,1); msk = find(wt>0.01); x1 = x1(msk); x2 = x2(msk); x3 = x3(msk); wt = wt(msk); else wt = []; end; % Compute rate of change of chi2 w.r.t changes in parameters (matrix A) %----------------------------------------------------------------------- V = smooth_vol(P(1),flags.interp,flags.wrap,flags.fwhm); deg = [flags.interp*[1 1 1]' flags.wrap(:)]; [G,dG1,dG2,dG3] = spm_bsplins(V,x1,x2,x3,deg); clear V A0 = make_A(P(1).mat,x1,x2,x3,dG1,dG2,dG3,wt,lkp); b = G; if ~isempty(wt), b = b.*wt; end; %----------------------------------------------------------------------- if numel(P) > 2, % Remove voxels that contribute very little to the final estimate. % Simulated annealing or something similar could be used to % eliminate a better choice of voxels - but this way will do for % now. It basically involves removing the voxels that contribute % least to the determinant of the inverse covariance matrix. spm_plot_convergence('Init','Eliminating Unimportant Voxels',... 'Relative quality','Iteration'); Alpha = [A0 b]; Alpha = Alpha'*Alpha; det0 = det(Alpha); det1 = det0; spm_plot_convergence('Set',det1/det0); while det1/det0 > flags.quality, dets = zeros(size(A0,1),1); for i=1:size(A0,1), tmp = [A0(i,:) b(i)]; dets(i) = det(Alpha - tmp'*tmp); end; clear tmp [junk,msk] = sort(det1-dets); msk = msk(1:round(length(dets)/10)); A0(msk,:) = []; b(msk,:) = []; G(msk,:) = []; x1(msk,:) = []; x2(msk,:) = []; x3(msk,:) = []; dG1(msk,:) = []; dG2(msk,:) = []; dG3(msk,:) = []; if ~isempty(wt), wt(msk,:) = []; end; Alpha = [A0 b]; Alpha = Alpha'*Alpha; det1 = det(Alpha); spm_plot_convergence('Set',single(det1/det0)); end; spm_plot_convergence('Clear'); end; %----------------------------------------------------------------------- if flags.rtm, count = ones(size(b)); ave = G; grad1 = dG1; grad2 = dG2; grad3 = dG3; end; spm_progress_bar('Init',length(P)-1,'Registering Images'); % Loop over images %----------------------------------------------------------------------- for i=2:length(P), V = smooth_vol(P(i),flags.interp,flags.wrap,flags.fwhm); d = [size(V) 1 1]; d = d(1:3); ss = Inf; countdown = -1; for iter=1:64, [y1,y2,y3] = coords([0 0 0 0 0 0],P(1).mat,P(i).mat,x1,x2,x3); msk = find((y1>=1 & y1<=d(1) & y2>=1 & y2<=d(2) & y3>=1 & y3<=d(3))); if length(msk)<32, error_message(P(i)); end; F = spm_bsplins(V, y1(msk),y2(msk),y3(msk),deg); if ~isempty(wt), F = F.*wt(msk); end; A = A0(msk,:); b1 = b(msk); sc = sum(b1)/sum(F); b1 = b1-F*sc; soln = (A'*A)\(A'*b1); p = [0 0 0 0 0 0 1 1 1 0 0 0]; p(lkp) = p(lkp) + soln'; P(i).mat = inv(spm_matrix(p))*P(i).mat; pss = ss; ss = sum(b1.^2)/length(b1); if (pss-ss)/pss < 1e-8 && countdown == -1, % Stopped converging. countdown = 2; end; if countdown ~= -1, if countdown==0, break; end; countdown = countdown -1; end; end; if flags.rtm, % Generate mean and derivatives of mean tiny = 5e-2; % From spm_vol_utils.c msk = find((y1>=(1-tiny) & y1<=(d(1)+tiny) &... y2>=(1-tiny) & y2<=(d(2)+tiny) &... y3>=(1-tiny) & y3<=(d(3)+tiny))); count(msk) = count(msk) + 1; [G,dG1,dG2,dG3] = spm_bsplins(V,y1(msk),y2(msk),y3(msk),deg); ave(msk) = ave(msk) + G*sc; grad1(msk) = grad1(msk) + dG1*sc; grad2(msk) = grad2(msk) + dG2*sc; grad3(msk) = grad3(msk) + dG3*sc; end; spm_progress_bar('Set',i-1); end; spm_progress_bar('Clear'); if ~flags.rtm, return; end; %_______________________________________________________________________ M=P(1).mat; A0 = make_A(M,x1,x2,x3,grad1./count,grad2./count,grad3./count,wt,lkp); if ~isempty(wt), b = (ave./count).*wt; else b = (ave./count); end clear ave grad1 grad2 grad3 % Loop over images %----------------------------------------------------------------------- spm_progress_bar('Init',length(P),'Registering Images to Mean'); for i=1:length(P), V = smooth_vol(P(i),flags.interp,flags.wrap,flags.fwhm); d = [size(V) 1 1 1]; ss = Inf; countdown = -1; for iter=1:64, [y1,y2,y3] = coords([0 0 0 0 0 0],M,P(i).mat,x1,x2,x3); msk = find((y1>=1 & y1<=d(1) & y2>=1 & y2<=d(2) & y3>=1 & y3<=d(3))); if length(msk)<32, error_message(P(i)); end; F = spm_bsplins(V, y1(msk),y2(msk),y3(msk),deg); if ~isempty(wt), F = F.*wt(msk); end; A = A0(msk,:); b1 = b(msk); sc = sum(b1)/sum(F); b1 = b1-F*sc; soln = (A'*A)\(A'*b1); p = [0 0 0 0 0 0 1 1 1 0 0 0]; p(lkp) = p(lkp) + soln'; P(i).mat = inv(spm_matrix(p))*P(i).mat; pss = ss; ss = sum(b1.^2)/length(b1); if (pss-ss)/pss < 1e-8 && countdown == -1 % Stopped converging. % Do three final iterations to finish off with countdown = 2; end; if countdown ~= -1 if countdown==0, break; end; countdown = countdown -1; end; end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); % Since we are supposed to be aligning everything to the first % image, then we had better do so %----------------------------------------------------------------------- M = M/P(1).mat; for i=1:length(P) P(i).mat = M*P(i).mat; end return; %_______________________________________________________________________ %_______________________________________________________________________ function [y1,y2,y3]=coords(p,M1,M2,x1,x2,x3) % Rigid body transformation of a set of coordinates. M = (inv(M2)*inv(spm_matrix(p))*M1); y1 = M(1,1)*x1 + M(1,2)*x2 + M(1,3)*x3 + M(1,4); y2 = M(2,1)*x1 + M(2,2)*x2 + M(2,3)*x3 + M(2,4); y3 = M(3,1)*x1 + M(3,2)*x2 + M(3,3)*x3 + M(3,4); return; %_______________________________________________________________________ %_______________________________________________________________________ function V = smooth_vol(P,hld,wrp,fwhm) % Convolve the volume in memory. s = sqrt(sum(P.mat(1:3,1:3).^2)).^(-1)*(fwhm/sqrt(8*log(2))); x = round(6*s(1)); x = -x:x; y = round(6*s(2)); y = -y:y; z = round(6*s(3)); z = -z:z; x = exp(-(x).^2/(2*(s(1)).^2)); y = exp(-(y).^2/(2*(s(2)).^2)); z = exp(-(z).^2/(2*(s(3)).^2)); x = x/sum(x); y = y/sum(y); z = z/sum(z); i = (length(x) - 1)/2; j = (length(y) - 1)/2; k = (length(z) - 1)/2; d = [hld*[1 1 1]' wrp(:)]; V = spm_bsplinc(P,d); spm_conv_vol(V,V,x,y,z,-[i j k]); return; %_______________________________________________________________________ %_______________________________________________________________________ function A = make_A(M,x1,x2,x3,dG1,dG2,dG3,wt,lkp) % Matrix of rate of change of weighted difference w.r.t. parameter changes p0 = [0 0 0 0 0 0 1 1 1 0 0 0]; A = zeros(numel(x1),length(lkp)); for i=1:length(lkp) pt = p0; pt(lkp(i)) = pt(i)+1e-6; [y1,y2,y3] = coords(pt,M,M,x1,x2,x3); tmp = sum([y1-x1 y2-x2 y3-x3].*[dG1 dG2 dG3],2)/(-1e-6); if ~isempty(wt), A(:,i) = tmp.*wt; else A(:,i) = tmp; end end return; %_______________________________________________________________________ %_______________________________________________________________________ function error_message(P) str = { 'There is not enough overlap in the images',... 'to obtain a solution.',... ' ',... 'Offending image:',... P.fname,... ' ',... 'Please check that your header information is OK.',... 'The Check Reg utility will show you the initial',... 'alignment between the images, which must be',... 'within about 4cm and about 15 degrees in order',... 'for SPM to find the optimal solution.'}; spm('alert*',str,mfilename,sqrt(-1)); error('insufficient image overlap') %_______________________________________________________________________ %_______________________________________________________________________ function plot_parameters(P) fg=spm_figure('FindWin','Graphics'); if ~isempty(fg), P = cat(1,P{:}); if length(P)<2, return; end; Params = zeros(numel(P),12); for i=1:numel(P), Params(i,:) = spm_imatrix(P(i).mat/P(1).mat); end % display results % translation and rotation over time series %------------------------------------------------------------------- spm_figure('Clear','Graphics'); ax=axes('Position',[0.1 0.65 0.8 0.2],'Parent',fg,'Visible','off'); set(get(ax,'Title'),'String','Image realignment','FontSize',16,'FontWeight','Bold','Visible','on'); x = 0.1; y = 0.9; for i = 1:min([numel(P) 12]) text(x,y,[sprintf('%-4.0f',i) P(i).fname],'FontSize',10,'Interpreter','none','Parent',ax); y = y - 0.08; end if numel(P) > 12 text(x,y,'................ etc','FontSize',10,'Parent',ax); end ax=axes('Position',[0.1 0.35 0.8 0.2],'Parent',fg,'XGrid','on','YGrid','on',... 'NextPlot','replacechildren','ColorOrder',[0 0 1;0 0.5 0;1 0 0]); plot(Params(:,1:3),'Parent',ax) s = {'x translation','y translation','z translation'}; %text([2 2 2], Params(2, 1:3), s, 'Fontsize',10,'Parent',ax) legend(ax, s, 'Location','Best') set(get(ax,'Title'),'String','translation','FontSize',16,'FontWeight','Bold'); set(get(ax,'Xlabel'),'String','image'); set(get(ax,'Ylabel'),'String','mm'); ax=axes('Position',[0.1 0.05 0.8 0.2],'Parent',fg,'XGrid','on','YGrid','on',... 'NextPlot','replacechildren','ColorOrder',[0 0 1;0 0.5 0;1 0 0]); plot(Params(:,4:6)*180/pi,'Parent',ax) s = {'pitch','roll','yaw'}; %text([2 2 2], Params(2, 4:6)*180/pi, s, 'Fontsize',10,'Parent',ax) legend(ax, s, 'Location','Best') set(get(ax,'Title'),'String','rotation','FontSize',16,'FontWeight','Bold'); set(get(ax,'Xlabel'),'String','image'); set(get(ax,'Ylabel'),'String','degrees'); % print realigment parameters spm_print end return; %_______________________________________________________________________ %_______________________________________________________________________ function save_parameters(V) fname = [spm_str_manip(prepend(V(1).fname,'rp_'),'s') '.txt']; n = length(V); Q = zeros(n,6); for j=1:n, qq = spm_imatrix(V(j).mat/V(1).mat); Q(j,:) = qq(1:6); end; save(fname,'Q','-ascii'); return; %_______________________________________________________________________ %_______________________________________________________________________ function PO = prepend(PI,pre) [pth,nm,xt,vr] = spm_fileparts(deblank(PI)); PO = fullfile(pth,[pre nm xt vr]); return; %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_surf.m
.m
antx-master/xspm8/spm_surf.m
9,740
utf_8
aa92ddde8b875463a0fefee45e0a1d79
function varargout = spm_surf(P,mode,thresh) % Surface extraction % FORMAT spm_surf(P,mode,thresh) % % P - char array of filenames % Usually, this will be c1xxx.img & c2xxx.img - grey and white % matter segments created using the segmentation routine. % mode - operation mode [1: rendering, 2: surface, 3: both] % thresh - vector or threshold values for extraction [default: 0.5] % This is only relevant for extracting surfaces, not rendering. % % Generated files (depending on 'mode'): % A "render_xxx.mat" file can be produced that can be used for % rendering activations on to, see spm_render. % % A "xxx.surf.gii" file can also be written, which is created using % Matlab's isosurface function. % This extracted brain surface can be viewed using code something like: % FV = gifti(spm_select(1,'mesh','Select surface data')); % FV = export(FV,'patch'); % fg = spm_figure('GetWin','Graphics'); % ax = axes('Parent',fg); % p = patch(FV, 'Parent',ax,... % 'FaceColor', [0.8 0.7 0.7], 'FaceVertexCData', [],... % 'EdgeColor', 'none',... % 'FaceLighting', 'phong',... % 'SpecularStrength' ,0.7, 'AmbientStrength', 0.1,... % 'DiffuseStrength', 0.7, 'SpecularExponent', 10); % set(0,'CurrentFigure',fg); % set(fg,'CurrentAxes',ax); % l = camlight(-40, 20); % axis image; % rotate3d on; % % FORMAT out = spm_surf(job) % % Input % A job structure with fields % .data - cell array of filenames % .mode - operation mode % .thresh - thresholds for extraction % Output % A struct with fields (depending on operation mode) % .rendfile - cellstring containing render filename % .surffile - cellstring containing surface filename(s) %__________________________________________________________________________ % % This surface extraction is not particularly sophisticated. It simply % smooths the data slightly and extracts the surface at a threshold of % 0.5. The input segmentation images can be manually cleaned up first using % e.g., MRIcron. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_surf.m 4341 2011-06-03 11:24:02Z john $ SVNrev = '$Rev: 4341 $'; spm('FnBanner',mfilename,SVNrev); spm('FigName','Surface'); %-Get input: filenames 'P' %-------------------------------------------------------------------------- try if isstruct(P) job = P; P = strvcat(job.data); mode = job.mode; thresh = job.thresh; end catch [P, sts] = spm_select([1 Inf],'image','Select images'); if ~sts, varargout = {}; return; end end %-Get input: operation mode 'mode' %-------------------------------------------------------------------------- try mode; catch mode = spm_input('Save','+1','m',... ['Save Rendering|'... 'Save Extracted Surface|'... 'Save Rendering and Surface'],[1 2 3],3); end %-Get input: threshold for extraction 'thresh' %-------------------------------------------------------------------------- try thresh; catch thresh = 0.5; end %-Surface extraction %-------------------------------------------------------------------------- spm('FigName','Surface: working'); spm('Pointer','Watch'); out = do_it(P,mode,thresh); spm('Pointer','Arrow'); spm('FigName','Surface: done'); if nargout > 0 varargout{1} = out; end return; %========================================================================== function out = do_it(P,mode,thresh) V = spm_vol(P); br = zeros(V(1).dim(1:3)); for i=1:V(1).dim(3), B = spm_matrix([0 0 i]); tmp = spm_slice_vol(V(1),B,V(1).dim(1:2),1); for j=2:length(V), M = V(j).mat\V(1).mat*B; tmp = tmp + spm_slice_vol(V(j),M,V(1).dim(1:2),1); end br(:,:,i) = tmp; end % Build a 3x3x3 seperable smoothing kernel and smooth %-------------------------------------------------------------------------- kx=[0.75 1 0.75]; ky=[0.75 1 0.75]; kz=[0.75 1 0.75]; sm=sum(kron(kron(kz,ky),kx))^(1/3); kx=kx/sm; ky=ky/sm; kz=kz/sm; spm_conv_vol(br,br,kx,ky,kz,-[1 1 1]); [pth,nam,ext] = fileparts(V(1).fname); if any(mode==[1 3]) % Produce rendering %---------------------------------------------------------------------- out.rendfile{1} = fullfile(pth,['render_' nam '.mat']); tmp = struct('dat',br,'dim',size(br),'mat',V(1).mat); renviews(tmp,out.rendfile{1}); end if any(mode==[2 3]) % Produce extracted surface %---------------------------------------------------------------------- for k=1:numel(thresh) [faces,vertices] = isosurface(br,thresh(k)); % Swap around x and y because isosurface does for some % wierd and wonderful reason. Mat = V(1).mat(1:3,:)*[0 1 0 0;1 0 0 0;0 0 1 0; 0 0 0 1]; vertices = (Mat*[vertices' ; ones(1,size(vertices,1))])'; if numel(thresh)==1 nam1 = nam; else nam1 = sprintf('%s-%d',nam,k); end out.surffile{k} = fullfile(pth,[nam1 '.surf.gii']); save(gifti(struct('faces',faces,'vertices',vertices)),out.surffile{k}); end end return; %========================================================================== function renviews(V,oname) % Produce images for rendering activations to % % FORMAT renviews(V,oname) % V - mapped image to render, or alternatively % a structure of: % V.dat - 3D array % V.dim - size of 3D array % V.mat - affine mapping from voxels to millimeters % oname - the name of the render.mat file. %__________________________________________________________________________ % % Produces a matrix file "render_xxx.mat" which contains everything that % "spm_render" is likely to need. % % Ideally, the input image should contain values in the range of zero % and one, and be smoothed slightly. A threshold of 0.5 is used to % distinguish brain from non-brain. %__________________________________________________________________________ linfun = inline('fprintf([''%-30s%s''],x,[repmat(sprintf(''\b''),1,30)])','x'); linfun('Rendering: '); linfun('Rendering: Transverse 1..'); rend{1} = make_struct(V,[pi 0 pi/2]); linfun('Rendering: Transverse 2..'); rend{2} = make_struct(V,[0 0 pi/2]); linfun('Rendering: Sagittal 1..'); rend{3} = make_struct(V,[0 pi/2 pi]); linfun('Rendering: Sagittal 2..'); rend{4} = make_struct(V,[0 pi/2 0]); linfun('Rendering: Coronal 1..'); rend{5} = make_struct(V,[pi/2 pi/2 0]); linfun('Rendering: Coronal 2..'); rend{6} = make_struct(V,[pi/2 pi/2 pi]); linfun('Rendering: Save..'); if spm_check_version('matlab','7') >= 0 save(oname,'-V6','rend'); else save(oname,'rend'); end linfun(' '); if ~spm('CmdLine') disp_renderings(rend); spm_print; end return; %========================================================================== function str = make_struct(V,thetas) [D,M] = matdim(V.dim(1:3),V.mat,thetas); [ren,dep] = make_pic(V,M*V.mat,D); str = struct('M',M,'ren',ren,'dep',dep); return; %========================================================================== function [ren,zbuf] = make_pic(V,M,D) % A bit of a hack to try and make spm_render_vol produce some slightly % prettier output. It kind of works... if isfield(V,'dat'), vv = V.dat; else vv = V; end; [REN, zbuf, X, Y, Z] = spm_render_vol(vv, M, D, [0.5 1]); fw = max(sqrt(sum(M(1:3,1:3).^2))); msk = find(zbuf==1024); brn = ones(size(X)); brn(msk) = 0; brn = spm_conv(brn,fw); X(msk) = 0; Y(msk) = 0; Z(msk) = 0; msk = find(brn<0.5); tmp = brn; tmp(msk) = 100000; sX = spm_conv(X,fw)./tmp; sY = spm_conv(Y,fw)./tmp; sZ = spm_conv(Z,fw)./tmp; zbuf = spm_conv(zbuf,fw)./tmp; zbuf(msk) = 1024; vec = [-1 1 3]; % The direction of the lighting. vec = vec/norm(vec); [t,dx,dy,dz] = spm_sample_vol(vv,sX,sY,sZ,3); IM = inv(diag([0.5 0.5 1])*M(1:3,1:3))'; ren = IM(1:3,1:3)*[dx(:)' ; dy(:)' ; dz(:)']; len = sqrt(sum(ren.^2,1))+eps; ren = [ren(1,:)./len ; ren(2,:)./len ; ren(3,:)./len]; ren = reshape(vec*ren,[size(dx) 1]); ren(ren<0) = 0; ren(msk) = ren(msk)-0.2; ren = ren*0.8+0.2; mx = max(ren(:)); ren = ren/mx; return; %========================================================================== function disp_renderings(rend) Fgraph = spm_figure('GetWin','Graphics'); spm_results_ui('Clear',Fgraph); hght = 0.95; nrow = ceil(length(rend)/2); ax=axes('Parent',Fgraph,'units','normalized','Position',[0, 0, 1, hght],'Visible','off'); image(0,'Parent',ax); set(ax,'YTick',[],'XTick',[]); for i=1:length(rend), ren = rend{i}.ren; ax=axes('Parent',Fgraph,'units','normalized',... 'Position',[rem(i-1,2)*0.5, floor((i-1)/2)*hght/nrow, 0.5, hght/nrow],... 'Visible','off'); image(ren*64,'Parent',ax); set(ax,'DataAspectRatio',[1 1 1], ... 'PlotBoxAspectRatioMode','auto',... 'YTick',[],'XTick',[],'XDir','normal','YDir','normal'); end drawnow; return; %========================================================================== function [d,M] = matdim(dim,mat,thetas) R = spm_matrix([0 0 0 thetas]); bb = [[1 1 1];dim(1:3)]; c = [ bb(1,1) bb(1,2) bb(1,3) 1 bb(1,1) bb(1,2) bb(2,3) 1 bb(1,1) bb(2,2) bb(1,3) 1 bb(1,1) bb(2,2) bb(2,3) 1 bb(2,1) bb(1,2) bb(1,3) 1 bb(2,1) bb(1,2) bb(2,3) 1 bb(2,1) bb(2,2) bb(1,3) 1 bb(2,1) bb(2,2) bb(2,3) 1]'; tc = diag([2 2 1 1])*R*mat*c; tc = tc(1:3,:)'; mx = max(tc); mn = min(tc); M = spm_matrix(-mn(1:2))*diag([2 2 1 1])*R; d = ceil(abs(mx(1:2)-mn(1:2)))+1; return;
github
philippboehmsturm/antx-master
spm_eeg_plotScalpData.m
.m
antx-master/xspm8/spm_eeg_plotScalpData.m
11,761
utf_8
47767f883d6ed147946a3f14900db01d
function [ZI,f] = spm_eeg_plotScalpData(Z,pos,ChanLabel,in) % Display interpolated sensor data on the scalp in a new figure % FORMAT [ZI,f] = spm_eeg_plotScalpData(Z,pos,ChanLabel,in) % % INPUT: % Z - the data matrix at the sensors % pos - the positions of the sensors % ChanLabel - the names of the sensors % in - a structure containing some informations related to the % main PRESELECTDATA window. This entry is not necessary % OUTPUT % ZI - an image of interpolated data onto the scalp % f - the handle of the figure which displays the interpolated % data %__________________________________________________________________________ % % This function creates a figure whose purpose is to display an % interpolation of the sensor data on the scalp (an image) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_eeg_plotScalpData.m 4375 2011-06-23 10:00:06Z vladimir $ ParentAxes = []; f = []; clim = [min(Z(:))-( max(Z(:))-min(Z(:)) )/63 , max(Z(:))]; figName = 'Image Scalp data'; noButtons = 0; if nargin < 4 || isempty(in) in = []; else if isfield(in,'min') && ... isfield(in,'max') && ... isfield(in,'type') clim = [in.min, in.max]; dc = abs(diff(clim))./63; clim(1) = clim(1) - dc; figName = ['Image Scalp data: ',in.type,' sensors']; if isfield(in,'trN') figName = [figName ', trial #',num2str(in.trN),'.']; end end if isfield(in,'ParentAxes') ParentAxes = in.ParentAxes; end if isfield(in,'f') f = in.f; end if isfield(in,'noButtons') noButtons = ~~in.noButtons; end end if ~isfield(in,'cbar') in.cbar = 1; end if ~isfield(in,'plotpos') in.plotpos = 1; end if size(pos,2) ~= length(ChanLabel) pos = pos'; end nD = size(pos,1); if nD ~= 2 % get 2D positions from 3D positions xyz = pos; [pos] = get2Dfrom3D(xyz); pos = pos'; end % exclude channels ? goodChannels = find(~isnan(pos(1,:))); pos = pos(:,goodChannels); Z = Z(goodChannels,:); ChanLabel = ChanLabel(goodChannels); if ~isempty(in) && isfield(in,'type') && strcmp(in.type, 'MEGPLANAR') [cZ, cpos, cChanLabel] = combineplanar(Z, pos, ChanLabel); else cZ = Z; cpos = pos; cChanLabel = ChanLabel; end xmin = min(cpos(1,:)); xmax = max(cpos(1,:)); dx = (xmax-xmin)./100; ymin = min(cpos(2,:)); ymax = max(cpos(2,:)); dy = (ymax-ymin)./100; x = xmin:dx:xmax; y = ymin:dy:ymax; [XI,YI] = meshgrid(x,y); ZI = griddata(cpos(1,:)',cpos(2,:)',full(double(cZ')),XI,YI); try figure(f) catch f=figure(... 'name',figName,... 'color',[1 1 1],... 'deleteFcn',@dFcn); ParentAxes = axes('parent',f); end COLOR = get(f,'color'); d.hi = image(flipud(ZI),... 'CDataMapping','scaled',... 'Parent',ParentAxes); set(ParentAxes,'nextPlot','add',... 'tag','spm_eeg_plotScalpData') try if length(unique(ZI)) ~= 1 [C,d.hc] = contour(ParentAxes,flipud(ZI),... 'linecolor',0.5.*ones(3,1)); end end caxis(ParentAxes,clim); col = jet; col(1,:) = COLOR; colormap(ParentAxes,col) if in.cbar d.cbar = colorbar('peer',ParentAxes); end axis(ParentAxes,'off') axis(ParentAxes,'equal') axis(ParentAxes,'tight') fpos = cpos; fpos(1,:) = fpos(1,:) - xmin; fpos(2,:) = fpos(2,:) - ymin; fpos(1,:) = fpos(1,:)./(dx); fpos(2,:) = fpos(2,:)./(dy); fpos(2,:) = 100-fpos(2,:); % for display purposes (flipud imagesc) figure(f); if in.plotpos d.hp = plot(ParentAxes,... fpos(1,:),fpos(2,:),... 'ko'); end d.ht = text(fpos(1,:),fpos(2,:),cChanLabel,... 'Parent',ParentAxes,... 'visible','off'); axis(ParentAxes,'image') d.interp.XI = XI; d.interp.YI = YI; d.interp.pos = cpos; d.f = f; d.pos = fpos; d.goodChannels = goodChannels; d.ChanLabel = cChanLabel; d.origChanLabel = ChanLabel; d.origpos = pos; d.ParentAxes = ParentAxes; d.in = in; if ~noButtons d.hsp = uicontrol(f,... 'style','pushbutton',... 'callback',{@dosp},... 'BusyAction','cancel',... 'Interruptible','off',... 'position',[10 50 80 20],... 'string','channel pos'); d.hsn = uicontrol(f,... 'style','pushbutton',... 'callback',{@dosn},... 'BusyAction','cancel',... 'Interruptible','off',... 'position',[10 80 80 20],... 'string','channel names'); end if ~isempty(in) && isfield(in,'handles') ud = get(in.handles.hfig,'userdata'); nT = ud.Nsamples; d.hti = uicontrol(f,... 'style','text',... 'BackgroundColor',COLOR,... 'string',[num2str(in.gridTime(in.x)),' (',in.unit,')'],... 'position',[10 10 120 20]); d.hts = uicontrol(f,... 'style','slider',... 'Position',[130 10 250 20],... 'min',1,'max',nT,... 'value',in.x,'sliderstep',[1./(nT-1) 1./(nT-1)],... 'callback',{@doChangeTime},... 'BusyAction','cancel',... 'Interruptible','off'); set(d.hti,'userdata',d); set(d.hts,'userdata',d); end if ~noButtons set(d.hsp,'userdata',d); set(d.hsn,'userdata',d); end set(d.ParentAxes,'userdata',d); %========================================================================== % dFcn %========================================================================== function dFcn(btn,evd) hf = findobj('tag','Graphics'); D = get(hf,'userdata'); try delete(D.PSD.handles.hli); end %========================================================================== % dosp %========================================================================== function dosp(btn,evd) d = get(btn,'userdata'); switch get(d.hp,'visible'); case 'on' set(d.hp,'visible','off'); case 'off' set(d.hp,'visible','on'); end %========================================================================== % dosn %========================================================================== function dosn(btn,evd) d = get(btn,'userdata'); switch get(d.ht(1),'visible') case 'on' set(d.ht,'visible','off'); case 'off' set(d.ht,'visible','on'); end %========================================================================== % %========================================================================== function doChangeTime(btn,evd) d = get(btn,'userdata'); v = get(btn,'value'); % get data if ishandle(d.in.handles.hfig) D = get(d.in.handles.hfig,'userdata'); if ~isfield(d.in,'trN') trN = 1; else trN = d.in.trN; end if isfield(D,'data') Z = D.data.y(d.in.ind,v,trN); Z = Z(d.goodChannels); if strcmp(d.in.type, 'MEGPLANAR') Z = combineplanar(Z, d.origpos, d.origChanLabel); end clear ud; % interpolate data ZI = griddata(d.interp.pos(1,:),d.interp.pos(2,:),full(double(Z)),d.interp.XI,d.interp.YI); % update data display set(d.hi,'Cdata',flipud(ZI)); % update time index display v = round(v); set(d.hti,'string',[num2str(d.in.gridTime(v)), ' (', d.in.unit, ')']); % update display marker position try;set(d.in.hl,'xdata',[v;v]);end set(d.ParentAxes,'nextPlot','add') try % delete current contour plot delete(findobj(d.ParentAxes,'type','hggroup')); % create new one [C,hc] = contour(d.ParentAxes,flipud(ZI),... 'linecolor',[0.5.*ones(3,1)]); end axis(d.ParentAxes,'image') drawnow else error('Did not find the data!') end else error('SPM Graphics Figure has been deleted!') end %========================================================================== % get2Dfrom3D %========================================================================== function [xy] = get2Dfrom3D(xyz) % function [xy] = get2Dfrom3D(xyz) % This function is used to flatten 3D sensor positions onto the 2D plane % using a modified spherical projection operation. % It is used to visualize channel data. % IN: % - xyz: the carthesian sensor position in 3D space % OUT: % - xy: the (x,y) carthesian coordinates of the sensors after projection % onto the best-fitting sphere if size(xyz,2) ~= 3 xyz = xyz'; end % exclude channels ? badChannels = find(isnan(xyz(:,1))); goodChannels = find(isnan(xyz(:,1))~=1); xyz = xyz(goodChannels,:); % Fit sphere to 3d sensors and center frame [C,R,out] = fitSphere(xyz(:,1),xyz(:,2),xyz(:,3)); xyz = xyz - repmat(C,size(xyz,1),1); % apply transformation using spherical coordinates [TH,PHI,RAD] = cart2sph(xyz(:,1),xyz(:,2),xyz(:,3)); TH = TH - mean(TH); [X,Y,Z] = sph2cart(TH,zeros(size(TH)),RAD.*(cos(PHI+pi./2)+1)); xy = [X(:),Y(:)]; %========================================================================== % combineplanar %========================================================================== function [Z, pos, ChanLabel] = combineplanar(Z, pos, ChanLabel) chanind = zeros(1, numel(ChanLabel)); for i = 1:numel(ChanLabel) chanind(i) = sscanf(ChanLabel{i}, 'MEG%d'); end pairs = []; unpaired = []; paired = zeros(length(chanind)); for i = 1:length(chanind) if ~paired(i) cpair = find(abs(chanind - chanind(i))<2); if length(cpair) == 1 unpaired = [unpaired cpair]; else pairs = [pairs; cpair(:)']; end paired(cpair) = 1; end end if ~isempty(unpaired) warning(['Could not pair all channels. Ignoring ' num2str(length(unpaired)) ' unpaired channels.']); end Z = sqrt(Z(pairs(:, 1)).^2 + Z(pairs(:, 2)).^2); pos = (pos(:, pairs(:, 1)) + pos(:, pairs(:, 2)))./2; ChanLabel = {}; for i = 1:size(pairs,1) ChanLabel{i} = ['MEG' num2str(min(pairs(i,:))) '+' num2str(max(pairs(i,:)))]; end %========================================================================== % fitSphere %========================================================================== function [C,R,out] = fitSphere(x,y,z) % fitSphere Fit sphere. % A = fitSphere(x,y,z) returns the parameters of the best-fit % [C,R,out] = fitSphere(x,y,z) returns the center and radius % sphere to data points in vectors (x,y,z) using Taubin's method. % IN: % - x/y/z: 3D carthesian ccordinates % OUT: % - C: the center of sphere coordinates % - R: the radius of the sphere % - out: an output structure devoted to graphical display of the best fit % sphere % Make sugary one and zero vectors l = ones(length(x),1); O = zeros(length(x),1); % Make design mx D = [(x.*x + y.*y + z.*z) x y z l]; Dx = [2*x l O O O]; Dy = [2*y O l O O]; Dz = [2*z O O l O]; % Create scatter matrices M = D'*D; N = Dx'*Dx + Dy'*Dy + Dz'*Dz; % Extract eigensystem [v, evalues] = eig(M); evalues = diag(evalues); Mrank = sum(evalues > eps*5*norm(M)); if (Mrank == 5) % Full rank -- min ev corresponds to solution Minverse = v'*diag(1./evalues)*v; [v,evalues] = eig(inv(M)*N); [dmin,dminindex] = max(diag(evalues)); pvec = v(:,dminindex(1))'; else % Rank deficient -- just extract nullspace of M pvec = null(M)'; [m,n] = size(pvec); if m > 1 pvec = pvec(1,:) end end % Convert to (R,C) if nargout == 1, if pvec(1) < 0 pvec = -pvec; end C = pvec; else C = -0.5*pvec(2:4) / pvec(1); R = sqrt(sum(C*C') - pvec(5)/pvec(1)); end [X,Y,Z] = sphere; [TH,PHI,R0] = cart2sph(X,Y,Z); [X,Y,Z] = sph2cart(TH,PHI,R); X = X + C(1); Y = Y + C(2); Z = Z + C(3); out.X = X; out.Y = Y; out.Z = Z;
github
philippboehmsturm/antx-master
spm_eeg_render.m
.m
antx-master/xspm8/spm_eeg_render.m
10,872
utf_8
52b7ba99932d4227bf2efefcc8766540
function [out] = spm_eeg_render(m,options) % Visualisation routine for the cortical surface % FORMAT [out] = spm_eeg_render(m,options) % % INPUT: % - m = MATLAB mesh (containing the fields .faces et .vertices) or GIFTI % format file. % - options = structure variable: % .texture = texture to be projected onto the mesh % .clusters = cortical parcelling (cell variable containing the % vertex indices of each cluster) % .clustersName = name of the clusters % .figname = name to be given to the window % .ParentAxes = handle of the axes within which the mesh should be % displayed % .hfig = handle of existing figure. If this option is provided, then % visu_maillage_surf adds the (textured) mesh to the figure hfig, and % a control for its transparancy. % % OUTPUT: % - out: a structure containing the fields: % .hfra: frame structure for movie building % .handles: a structure containing the handles of the created % uicontrols and mesh objects. % .m: the structure used to create the mesh %__________________________________________________________________________ % % This function is a visualization routine, mainly for texture and % clustering on the cortical surface. % NB: The texture and the clusters can not be visualized at the same time. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_eeg_render.m 3051 2009-04-06 14:47:09Z jean $ %----------------------------------------------------------------------% %------------- Common features for any visualization ------------------% %----------------------------------------------------------------------% % Check mesh format try if ischar(m) && exist(m,'file')==2 try m = gifti(m);end end m0.faces = m.faces; m0.vertices = m.vertices; m = m0; clear m0; catch disp('spm_eeg_render: unknown mesh format!') return end % Default options handles.fi = figure(... 'visible','off',... 'color',ones(1,3),... 'NumberTitle','Off',... 'Name','Mesh visualization',... 'tag','visu_maillage_surf'); ns = 0; texture = 'none'; clusters = 'none'; subplotBIN = 0; addMesh = 0; tag = ''; visible = 'on'; ParentAxes = axes('parent',handles.fi); try, options; catch options = [];end % Now get options if ~isempty(options) % get texture if provided try texture = options.texture;end % get ParentAxes try ParentAxes = options.ParentAxes;end % get tag try tag = options.tag;end % get flag for visibility: useful for displaying all objects at once try visible = options.visible;end % get custers if provided try clusters = options.clusters; IND = zeros(1,length(m.vertices)); K = length(clusters); for k = 1:K IND(clusters{k}) = k+1./K; end texture = IND'; end % get figname if provided try set(handles.fi,'NumberTitle','Off','Name',options.figname); end % get figure handle (should be parent of ParentAxes) try figure(options.hfig) if isempty(ParentAxes) ParentAxes = axes('parent',options.hfig,... 'nextplot','add'); end close(handles.fi); handles.fi = options.hfig; addMesh = 1; try % get number of transparency sliders in current figure... hh=get(handles.fi,'children'); ns=length(findobj(hh,'userdata','tag_UIC_transparency')); catch ns=1; end end end handles.ParentAxes = ParentAxes; oldRenderer = get(handles.fi,'renderer'); try if ismac set(handles.fi,'renderer','zbuffer'); else set(handles.fi,'renderer','OpenGL'); end catch set(handles.fi,'renderer','OpenGL'); end % Plot mesh and texture/clusters if isequal(texture,'none') figure(handles.fi) handles.p = patch(m,... 'facecolor', [.5 .5 .5], 'EdgeColor', 'none',... 'FaceLighting','gouraud',... 'parent',ParentAxes,... 'userdata',oldRenderer,... 'visible',visible,... 'tag',tag); else texture = texture(:); figure(handles.fi) if isequal(length(texture),length(m.vertices)) handles.p = patch(m,... 'facevertexcdata',texture,... 'facecolor','interp',... 'EdgeColor', 'none',... 'FaceLighting','gouraud',... 'parent',ParentAxes,... 'userdata',oldRenderer,... 'visible',visible,... 'tag',tag,... 'deleteFcn',@doDelMesh); col = colormap(ParentAxes,jet(256)); udd.tex = texture; udd.cax = caxis(ParentAxes); else texture = 'none'; disp('Warning: size of texture does not match number of vertices!') handles.p = patch(m,'facecolor', [.5 .5 .5], 'EdgeColor', 'none',... 'parent',ParentAxes,... 'userdata',oldRenderer,... 'visible',visible,... 'tag',tag,... 'deleteFcn',@doDelMesh); end end daspect(ParentAxes,[1 1 1]); axis(ParentAxes,'tight'); axis(ParentAxes,'off') camva(ParentAxes,'auto'); set(ParentAxes,'view',[25,45]); % build internal userdata structure udd.p = handles.p; %----------------------------------------------------------------------% %---------------------- GUI tools and buttons -------------------------% %----------------------------------------------------------------------% % Transparancy sliders pos = [20 100 20 245]; pos(1) = pos(1) + ns.*25; handles.transp = uicontrol(handles.fi,... 'style','slider',... 'position',pos,... 'min',0,... 'max',1,... 'value',1,... 'sliderstep',[0.01 0.05],... 'userdata',handles.p,... 'tooltipstring',['mesh #',num2str(ns+1),' transparency control'],... 'callback',{@doTransp},... 'BusyAction','cancel',... 'Interruptible','off',... 'visible',visible,... 'tag',tag); set(handles.transp,'units','normalized') handles.tag = uicontrol(handles.fi,... 'style','text',... 'visible','off',... 'tag',tag,... 'userdata','tag_UIC_transparency'); udd.transp = handles.transp; % Clustering buttons and popup menu if ~isequal(clusters,'none') if subplotBIN subplot(2,1,1) end % set(p,'FaceColor','flat'); col=lines; nc = floor(256./K); col = [repmat([0.8157 0.6666 0.5762],nc/2,1);... kron(col(1:K,:),ones(nc,1))]; if K > 1 col(end-nc/2:end,:) = []; end colormap(ParentAxes,col); tex = zeros(length(m.vertices),length(clusters)+1); tex(:,1) = texture; string = cell(length(clusters)+1,1); string{1} = 'all clusters'; for i = 1:length(clusters) if ~isfield(options,'clustersName') string{i+1} = ['cluster ',num2str(i)]; else string{i+1} = options.clustersName{i}; end tex(clusters{i},i+1) = 1; end udd.tex = tex; udd.tex0 = tex; udd.p = handles.p; udd.col = col; udd.nc = length(clusters); handles.pop = uicontrol(handles.fi,... 'style','popupmenu',... 'position',[20 20 100 40],... 'string',string,... 'callback',{@doSelectCluster},... 'BusyAction','cancel',... 'Interruptible','off',... 'visible',visible,'tag',tag); set(handles.pop,'units','normalized') handles.sli = uicontrol(handles.fi,... 'style','slider',... 'position',[50 10 30 20],'max',udd.nc,... 'sliderstep',[1./(udd.nc+0) 1./(udd.nc+0)],... 'callback',{@doSwitch2nextCluster},... 'BusyAction','cancel',... 'Interruptible','off',... 'visible',visible,'tag',tag); set(handles.sli,'units','normalized') udd.pop = handles.pop; udd.sli = handles.sli; set(handles.pop,'userdata',udd); set(handles.sli,'userdata',udd); end % Texture thresholding sliders if ~isequal(texture,'none') && isequal(clusters,'none') if subplotBIN subplot(2,1,1) end udd.tex0 = texture; udd.col = col; handles.hc = colorbar('peer',ParentAxes); set(handles.hc,'visible',visible) increment = 0.01; % right slider handles.s1 = uicontrol(handles.fi,... 'style','slider',... 'position',[440 28 20 380],... 'min',0,'max',length(udd.col),'value',0,... 'sliderstep',[increment increment],... 'tooltipstring','texture thresholding control',... 'callback',{@doThresh},... 'BusyAction','cancel',... 'Interruptible','off',... 'visible',visible,'tag',tag); set(handles.s1,'units','normalized') udd.s1 = handles.s1; % left slider handles.s2 = uicontrol(handles.fi,... 'style','slider',... 'position',[420 28 20 380],... 'min',1,'max',length(udd.col),... 'value',length(udd.col),... 'sliderstep',[increment increment],... 'tooltipstring','texture thresholding control',... 'callback',{@doThresh},... 'BusyAction','cancel',... 'Interruptible','off',... 'visible',visible,'tag',tag); set(handles.s2,'units','normalized') udd.s2 = handles.s2; set(handles.s1,'userdata',udd); set(handles.s2,'userdata',udd); end set(handles.fi,'visible','on'); drawnow % if ~addMesh camlight % end cameratoolbar(handles.fi,'setmode','orbit') out.hfra = getframe(gcf); out.handles = handles; out.m = m; %--------- subfunctions : BUTTONS CALLBACKS ------------% function doDelMesh(btn,evd) renderer=get(btn,'userdata'); set(gcf,'renderer',renderer); function doTransp(btn,evd) v00=get(btn,'value'); p00=get(btn,'userdata'); set(p00,'facealpha',v00); function doThresh(btn,evd) udd00 = get(btn,'userdata'); ind00 = round(get(udd00.s1,'value')); ind200 = round(get(udd00.s2,'value')); if(ind200>ind00) udd00.col(1:ind00,:)=0.5*ones(ind00,3); udd00.col(ind200+1:end,:)=0.5*ones(size(udd00.col(ind200+1:end,:))); else udd00.col(ind200:ind00,:)=0.5*ones(size(udd00.col(ind200:ind00,:))); end colormap(udd00.col); udd00.cax = caxis; function doSelectCluster(btn,evd) udd00 = get(btn,'userdata'); ind00=get(gcbo,'value'); set(udd00.sli,'value',ind00-1); set(udd00.p,'facevertexcdata',udd00.tex(:,ind00)); if ind00 == 1 colormap(udd00.col); else col00 = colormap(jet); col00(1:end/2,:)=0.5*ones(size(col00(1:end/2,:))); colormap(col00); end udd00.cax = caxis; function doSwitch2nextCluster(btn,evd) v00=get(btn,'value')+1; udd00=get(gcbo,'userdata'); ind00=min([v00 udd00.nc+1]); set(udd00.pop,'value',ind00); set(udd00.p,'facevertexcdata',udd00.tex(:,ind00)); if ind00 == 1 colormap(udd00.col); else col00 = colormap(jet); col00(1:end/2,:)=0.5; colormap(col00); end udd00.cax = caxis;
github
philippboehmsturm/antx-master
spm_write_sn.m
.m
antx-master/xspm8/spm_write_sn.m
19,859
utf_8
0ea1c7ae2ba1644c71deaf8ae1518452
function VO = spm_write_sn(V,prm,flags,extras) % Write out warped images % FORMAT VO = spm_write_sn(V,prm,flags,msk) % V - Images to transform (filenames or volume structure). % prm - Transformation information (filename or structure). % flags - flags structure, with fields... % interp - interpolation method (0-7) % wrap - wrap edges (e.g., [1 1 0] for 2D MRI sequences) % vox - voxel sizes (3 element vector - in mm) % Non-finite values mean use template vox. % bb - bounding box (2x3 matrix - in mm) % Non-finite values mean use template bb. % preserve - either 0 or 1. A value of 1 will "modulate" % the spatially normalised images so that total % units are preserved, rather than just % concentrations. % prefix - Prefix for normalised images. Defaults to 'w'. % msk - An optional cell array for masking the spatially % normalised images (see below). % % Warped images are written prefixed by "w". % % Non-finite vox or bounding box suggests that values should be derived % from the template image. % % Don't use interpolation methods greater than one for data containing % NaNs. %__________________________________________________________________________ % % FORMAT msk = spm_write_sn(V,prm,flags,'mask') % V - Images to transform (filenames or volume structure). % prm - Transformation information (filename or structure). % flags - flags structure, with fields... % wrap - wrap edges (e.g., [1 1 0] for 2D MRI sequences) % vox - voxel sizes (3 element vector - in mm) % Non-finite values mean use template vox. % bb - bounding box (2x3 matrix - in mm) % Non-finite values mean use template bb. % msk - a cell array for masking a series of spatially normalised % images. % % %_________________________________________________________________________ % % FORMAT VO = spm_write_sn(V,prm,'modulate') % V - Spatially normalised images to modulate (filenames or % volume structure). % prm - Transformation information (filename or structure). % % After nonlinear spatial normalization, the relative volumes of some % brain structures will have decreased, whereas others will increase. % The resampling of the images preserves the concentration of pixel % units in the images, so the total counts from structures that have % reduced volumes after spatial normalization will be reduced by an % amount proportional to the volume reduction. % % This routine rescales images after spatial normalization, so that % the total counts from any structure are preserved. It was written % as an optional step in performing voxel based morphometry. % %__________________________________________________________________________ % Copyright (C) 1996-2011 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_write_sn.m 4201 2011-02-15 10:52:00Z ged $ if isempty(V), return; end; if ischar(prm), prm = load(prm); end; if ischar(V), V = spm_vol(V); end; if nargin==3 && ischar(flags) && strcmpi(flags,'modulate'), if nargout==0, modulate(V,prm); else VO = modulate(V,prm); end; return; end; def_flags = spm_get_defaults('normalise.write'); def_flags.prefix = 'w'; if nargin < 3, flags = def_flags; else fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags.(fnms{i}) = def_flags.(fnms{i}); end; end; end; [x,y,z,mat] = get_xyzmat(prm,flags.bb,flags.vox); if nargin==4, if ischar(extras) && strcmpi(extras,'mask'), VO = get_snmask(V,prm,x,y,z,flags.wrap); return; end; if iscell(extras), msk = extras; end; end; if nargout>0 && length(V)>8, error('Too many images to save in memory'); end; if ~exist('msk','var') msk = get_snmask(V,prm,x,y,z,flags.wrap); end; if nargout==0, if isempty(prm.Tr), affine_transform(V,prm,x,y,z,mat,flags,msk); else nonlin_transform(V,prm,x,y,z,mat,flags,msk); end; else if isempty(prm.Tr), VO = affine_transform(V,prm,x,y,z,mat,flags,msk); else VO = nonlin_transform(V,prm,x,y,z,mat,flags,msk); end; end; return; %========================================================================== %========================================================================== function VO = affine_transform(V,prm,x,y,z,mat,flags,msk) [X,Y] = ndgrid(x,y); d = [flags.interp*[1 1 1]' flags.wrap(:)]; spm_progress_bar('Init',numel(V),'Resampling','volumes/slices completed'); for i=1:numel(V), VO = make_hdr_struct(V(i),x,y,z,mat, flags.prefix); if flags.preserve VO.fname = prepend(VO.fname,'m'); end detAff = det(prm.VF(1).mat*prm.Affine/prm.VG(1).mat); if flags.preserve, VO.pinfo(1:2,:) = VO.pinfo(1:2,:)/detAff; end; %Dat= zeros(VO.dim(1:3)); Dat = single(0); Dat(VO.dim(1),VO.dim(2),VO.dim(3)) = 0; C = spm_bsplinc(V(i),d); for j=1:length(z), % Cycle over planes [X2,Y2,Z2] = mmult(X,Y,z(j),V(i).mat\prm.VF(1).mat*prm.Affine); dat = spm_bsplins(C,X2,Y2,Z2,d); if flags.preserve, dat = dat*detAff; end; dat(msk{j}) = NaN; Dat(:,:,j) = single(dat); if numel(V)<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; if nargout~=0, VO.pinfo = [1 0]'; VO.dt = [spm_type('float32') spm_platform('bigend')]; VO.dat = Dat; else spm_write_vol(VO, Dat); end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %========================================================================== %========================================================================== function VO = nonlin_transform(V,prm,x,y,z,mat,flags,msk) [X,Y] = ndgrid(x,y); Tr = prm.Tr; BX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1); BY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1); BZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1); if flags.preserve, DX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1,'diff'); DY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1,'diff'); DZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1,'diff'); end; d = [flags.interp*[1 1 1]' flags.wrap(:)]; spm_progress_bar('Init',numel(V),'Resampling','volumes completed'); for i=1:numel(V), VO = make_hdr_struct(V(i),x,y,z,mat, flags.prefix); if flags.preserve VO.fname = prepend(VO.fname,'m'); end detAff = det(prm.VF(1).mat*prm.Affine/prm.VG(1).mat); % Accumulate data %Dat= zeros(VO.dim(1:3)); Dat = single(0); Dat(VO.dim(1),VO.dim(2),VO.dim(3)) = 0; C = spm_bsplinc(V(i),d); for j=1:length(z), % Cycle over planes % Nonlinear deformations %------------------------------------------------------------------ tx = get_2Dtrans(Tr(:,:,:,1),BZ,j); ty = get_2Dtrans(Tr(:,:,:,2),BZ,j); tz = get_2Dtrans(Tr(:,:,:,3),BZ,j); X1 = X + BX*tx*BY'; Y1 = Y + BX*ty*BY'; Z1 = z(j) + BX*tz*BY'; [X2,Y2,Z2] = mmult(X1,Y1,Z1,V(i).mat\prm.VF(1).mat*prm.Affine); dat = spm_bsplins(C,X2,Y2,Z2,d); dat(msk{j}) = NaN; if ~flags.preserve, Dat(:,:,j) = single(dat); else j11 = DX*tx*BY' + 1; j12 = BX*tx*DY'; j13 = BX*get_2Dtrans(Tr(:,:,:,1),DZ,j)*BY'; j21 = DX*ty*BY'; j22 = BX*ty*DY' + 1; j23 = BX*get_2Dtrans(Tr(:,:,:,2),DZ,j)*BY'; j31 = DX*tz*BY'; j32 = BX*tz*DY'; j33 = BX*get_2Dtrans(Tr(:,:,:,3),DZ,j)*BY' + 1; % The determinant of the Jacobian reflects relative volume changes %----------------------------------------------------------------- dat = dat .* (j11.*(j22.*j33-j23.*j32) - j21.*(j12.*j33-j13.*j32) + j31.*(j12.*j23-j13.*j22)) * detAff; Dat(:,:,j) = single(dat); end; if numel(V)<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; if nargout==0, if flags.preserve, VO = rmfield(VO,'pinfo'); end VO = spm_write_vol(VO,Dat); else VO.pinfo = [1 0]'; VO.dt = [spm_type('float32') spm_platform('bigend')]; VO.dat = Dat; end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %========================================================================== %========================================================================== function VO = modulate(V,prm) spm_progress_bar('Init',numel(V),'Modulating','volumes completed'); for i=1:numel(V), VO = V(i); VO = rmfield(VO,'pinfo'); VO.fname = prepend(VO.fname,'m'); detAff = det(prm.VF(1).mat*prm.Affine/prm.VG(1).mat); %Dat = zeros(VO.dim(1:3)); Dat = single(0); Dat(VO.dim(1),VO.dim(2),VO.dim(3)) = 0; [x,y,z,mat] = get_xyzmat(prm,NaN,NaN,VO); if sum((mat(:)-VO.mat(:)).^2)>1e-7, error('Orientations not compatible'); end; Tr = prm.Tr; if isempty(Tr), for j=1:length(z), % Cycle over planes dat = spm_slice_vol(V(i),spm_matrix([0 0 j]),V(i).dim(1:2),0); Dat(:,:,j) = single(dat); if numel(V)<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; else BX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1); BY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1); BZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1); DX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1,'diff'); DY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1,'diff'); DZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1,'diff'); for j=1:length(z), % Cycle over planes tx = get_2Dtrans(Tr(:,:,:,1),BZ,j); ty = get_2Dtrans(Tr(:,:,:,2),BZ,j); tz = get_2Dtrans(Tr(:,:,:,3),BZ,j); j11 = DX*tx*BY' + 1; j12 = BX*tx*DY'; j13 = BX*get_2Dtrans(Tr(:,:,:,1),DZ,j)*BY'; j21 = DX*ty*BY'; j22 = BX*ty*DY' + 1; j23 = BX*get_2Dtrans(Tr(:,:,:,2),DZ,j)*BY'; j31 = DX*tz*BY'; j32 = BX*tz*DY'; j33 = BX*get_2Dtrans(Tr(:,:,:,3),DZ,j)*BY' + 1; % The determinant of the Jacobian reflects relative volume changes %----------------------------------------------------------------- dat = spm_slice_vol(V(i),spm_matrix([0 0 j]),V(i).dim(1:2),0); dat = dat .* (j11.*(j22.*j33-j23.*j32) - j21.*(j12.*j33-j13.*j32) + j31.*(j12.*j23-j13.*j22)) * detAff; Dat(:,:,j) = single(dat); if numel(V)<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; end; if nargout==0, VO = spm_write_vol(VO,Dat); else VO.pinfo = [1 0]'; VO.dt = [spm_type('float32') spm_platform('bigend')]; VO.dat = Dat; end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %========================================================================== %========================================================================== function VO = make_hdr_struct(V,x,y,z,mat,prefix) VO = V; VO.fname = prepend(V.fname,prefix); VO.mat = mat; VO.dim(1:3) = [length(x) length(y) length(z)]; VO.pinfo = V.pinfo; VO.descrip = 'spm - 3D normalized'; return; %========================================================================== %========================================================================== function T2 = get_2Dtrans(T3,B,j) d = [size(T3) 1 1 1]; tmp = reshape(T3,d(1)*d(2),d(3)); T2 = reshape(tmp*B(j,:)',d(1),d(2)); return; %========================================================================== %_______________________________________________________________________ function PO = prepend(PI,pre) [pth,nm,xt,vr] = spm_fileparts(deblank(PI)); PO = fullfile(pth,[pre nm xt vr]); return; %========================================================================== %========================================================================== function Mask = getmask(X,Y,Z,dim,wrp) % Find range of slice tiny = 5e-2; Mask = true(size(X)); if ~wrp(1), Mask = Mask & (X >= (1-tiny) & X <= (dim(1)+tiny)); end; if ~wrp(2), Mask = Mask & (Y >= (1-tiny) & Y <= (dim(2)+tiny)); end; if ~wrp(3), Mask = Mask & (Z >= (1-tiny) & Z <= (dim(3)+tiny)); end; return; %========================================================================== %========================================================================== function [X2,Y2,Z2] = mmult(X1,Y1,Z1,Mult) if length(Z1) == 1, X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + (Mult(1,3)*Z1 + Mult(1,4)); Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + (Mult(2,3)*Z1 + Mult(2,4)); Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + (Mult(3,3)*Z1 + Mult(3,4)); else X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + Mult(1,3)*Z1 + Mult(1,4); Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + Mult(2,3)*Z1 + Mult(2,4); Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + Mult(3,3)*Z1 + Mult(3,4); end; return; %========================================================================== %========================================================================== function msk = get_snmask(V,prm,x,y,z,wrap) % Generate a mask for where there is data for all images %-------------------------------------------------------------------------- msk = cell(length(z),1); t1 = cat(3,V.mat); t2 = cat(1,V.dim); t = [reshape(t1,[16 length(V)])' t2(:,1:3)]; Tr = prm.Tr; [X,Y] = ndgrid(x,y); BX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1); BY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1); BZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1); if numel(V)>1 && any(any(diff(t,1,1))), spm_progress_bar('Init',length(z),'Computing available voxels','planes completed'); for j=1:length(z), % Cycle over planes Count = zeros(length(x),length(y)); if isempty(Tr), % Generate a mask for where there is data for all images %-------------------------------------------------------------- for i=1:numel(V), [X2,Y2,Z2] = mmult(X,Y,z(j),V(i).mat\prm.VF(1).mat*prm.Affine); Count = Count + getmask(X2,Y2,Z2,V(i).dim(1:3),wrap); end; else % Nonlinear deformations %-------------------------------------------------------------- X1 = X + BX*get_2Dtrans(Tr(:,:,:,1),BZ,j)*BY'; Y1 = Y + BX*get_2Dtrans(Tr(:,:,:,2),BZ,j)*BY'; Z1 = z(j) + BX*get_2Dtrans(Tr(:,:,:,3),BZ,j)*BY'; % Generate a mask for where there is data for all images %-------------------------------------------------------------- for i=1:numel(V), [X2,Y2,Z2] = mmult(X1,Y1,Z1,V(i).mat\prm.VF(1).mat*prm.Affine); Count = Count + getmask(X2,Y2,Z2,V(i).dim(1:3),wrap); end; end; msk{j} = uint32(find(Count ~= numel(V))); spm_progress_bar('Set',j); end; spm_progress_bar('Clear'); else for j=1:length(z), msk{j} = uint32([]); end; end; return; %========================================================================== %========================================================================== function [x,y,z,mat] = get_xyzmat(prm,bb,vox,VG) % The old voxel size and origin notation is used here. % This requires that the position and orientation % of the template is transverse. It would not be % straitforward to account for templates that are % in different orientations because the basis functions % would no longer be seperable. The seperable basis % functions mean that computing the deformation field % from the parameters is much faster. % bb = sort(bb); % vox = abs(vox); if nargin<4, VG = prm.VG(1); if all(~isfinite(bb(:))) && all(~isfinite(vox(:))), x = 1:VG.dim(1); y = 1:VG.dim(2); z = 1:VG.dim(3); mat = VG.mat; return; end end [bb0 vox0] = spm_get_bbox(VG, 'old'); if ~all(isfinite(vox(:))), vox = vox0; end; if ~all(isfinite(bb(:))), bb = bb0; end; msk = find(vox<0); bb = sort(bb); bb(:,msk) = flipud(bb(:,msk)); % Adjust bounding box slightly - so it rounds to closest voxel. % Comment out if not needed. %bb(:,1) = round(bb(:,1)/vox(1))*vox(1); %bb(:,2) = round(bb(:,2)/vox(2))*vox(2); %bb(:,3) = round(bb(:,3)/vox(3))*vox(3); M = prm.VG(1).mat; vxg = sqrt(sum(M(1:3,1:3).^2)); if det(M(1:3,1:3))<0, vxg(1) = -vxg(1); end; ogn = M\[0 0 0 1]'; ogn = ogn(1:3)'; % Convert range into range of voxels within template image x = (bb(1,1):vox(1):bb(2,1))/vxg(1) + ogn(1); y = (bb(1,2):vox(2):bb(2,2))/vxg(2) + ogn(2); z = (bb(1,3):vox(3):bb(2,3))/vxg(3) + ogn(3); og = -vxg.*ogn; % Again, chose whether to round to closest voxel. %of = -vox.*(round(-bb(1,:)./vox)+1); of = bb(1,:)-vox; M1 = [vxg(1) 0 0 og(1) ; 0 vxg(2) 0 og(2) ; 0 0 vxg(3) og(3) ; 0 0 0 1]; M2 = [vox(1) 0 0 of(1) ; 0 vox(2) 0 of(2) ; 0 0 vox(3) of(3) ; 0 0 0 1]; mat = prm.VG(1).mat*inv(M1)*M2; LEFTHANDED = true; if (LEFTHANDED && det(mat(1:3,1:3))>0) || (~LEFTHANDED && det(mat(1:3,1:3))<0), Flp = [-1 0 0 (length(x)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; mat = mat*Flp; x = flipud(x(:))'; end; return; %========================================================================== %========================================================================== function VO = write_dets(P,bb,vox) if nargin==1, job = P; P = job.P; bb = job.bb; vox = job.vox; end; spm_progress_bar('Init',numel(P),'Writing','volumes completed'); for i=1:numel(V), prm = load(deblank(P{i})); [x,y,z,mat] = get_xyzmat(prm,bb,vox); Tr = prm.Tr; BX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1); BY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1); BZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1); DX = spm_dctmtx(prm.VG(1).dim(1),size(Tr,1),x-1,'diff'); DY = spm_dctmtx(prm.VG(1).dim(2),size(Tr,2),y-1,'diff'); DZ = spm_dctmtx(prm.VG(1).dim(3),size(Tr,3),z-1,'diff'); [pth,nam,ext,nm] = spm_fileparts(P{i}); VO = struct('fname',fullfile(pth,['jy_' nam ext nm]),... 'dim',[numel(x),numel(y),numel(z)],... 'dt',[spm_type('float32') spm_platform('bigend')],... 'pinfo',[1 0 0]',... 'mat',mat,... 'n',1,... 'descrip','Jacobian determinants'); VO = spm_create_vol(VO); detAff = det(prm.VF(1).mat*prm.Affine/prm.VG(1).mat); Dat = single(0); Dat(VO.dim(1),VO.dim(2),VO.dim(3)) = 0; for j=1:length(z), % Cycle over planes % Nonlinear deformations tx = get_2Dtrans(Tr(:,:,:,1),BZ,j); ty = get_2Dtrans(Tr(:,:,:,2),BZ,j); tz = get_2Dtrans(Tr(:,:,:,3),BZ,j); %------------------------------------------------------------------ j11 = DX*tx*BY' + 1; j12 = BX*tx*DY'; j13 = BX*get_2Dtrans(Tr(:,:,:,1),DZ,j)*BY'; j21 = DX*ty*BY'; j22 = BX*ty*DY' + 1; j23 = BX*get_2Dtrans(Tr(:,:,:,2),DZ,j)*BY'; j31 = DX*tz*BY'; j32 = BX*tz*DY'; j33 = BX*get_2Dtrans(Tr(:,:,:,3),DZ,j)*BY' + 1; % The determinant of the Jacobian reflects relative volume changes. %------------------------------------------------------------------ dat = (j11.*(j22.*j33-j23.*j32) - j21.*(j12.*j33-j13.*j32) + j31.*(j12.*j23-j13.*j22)) * detAff; Dat(:,:,j) = single(dat); if numel(P)<5, spm_progress_bar('Set',i-1+j/length(z)); end; end; VO = spm_write_vol(VO,Dat); spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %==========================================================================
github
philippboehmsturm/antx-master
spm_DesMtx.m
.m
antx-master/xspm8/spm_DesMtx.m
32,503
utf_8
3378b7ab974fe4c63802be7041a77998
function [X,Pnames,Index,idx,jdx,kdx]=spm_DesMtx(varargin) % Design matrix construction from factor level and covariate vectors % FORMAT [X,Pnames] = spm_DesMtx(<FCLevels-Constraint-FCnames> list) % FORMAT [X,Pnames,Index,idx,jdx,kdx] = spm_DesMtx(FCLevels,Constraint,FCnames) % % <FCLevels-Constraints-FCnames> % - set of arguments specifying a portion of design matrix (see below) % - FCnames parameter, or Constraint and FCnames parameters, are optional % - a list of multiple <FCLevels-Constraint-FCnames> triples can be % specified, where FCnames or Constraint-FCnames may be omitted % within any triple. The program then works recursively. % % X - design matrix % Pnames - paramater names as (constructed from FCnames) - a cellstr % Index - integer index of factor levels % - only returned when computing a single design matrix partition % % idx,jdx,kdx - reference vectors mapping I & Index (described below) % - only returned when computing a single design matrix partition % for unconstrained factor effects ('-' or '~') % % ---------------- % - Utilities: % % FORMAT i = spm_DesMtx('pds',v,m,n) % Patterned data setting function - inspired by MINITAB's "SET" command % v - base pattern vector % m - (scalar natural number) #replications of elements of v [default 1] % n - (scalar natural number) #repeats of pattern [default 1] % i - resultant pattern vector, with v's elements replicated m times, % the resulting vector repeated n times. % % FORMAT [nX,nPnames] = spm_DesMtx('sca',X1,Pnames1,X2,Pnames2,...) % Produces a scaled design matrix nX with max(abs(nX(:))<=1, suitable % for imaging with: image((nX+1)*32) % X1,X2,... - Design matrix partitions % Pnames1, Pnames2,... - Corresponding parameter name string mtx/cellstr (opt) % nX - Scaled design matrix % nPnames - Concatenated parameter names for columns of nX % % FORMAT Fnames = spm_DesMtx('Fnames',Pnames) % Converts parameter names into suitable filenames % Pnames - string mtx/cellstr containing parameter names % Fnames - filenames derived from Pnames. (cellstr) % % FORMAT TPnames = spm_DesMtx('TeXnames',Pnames) % Removes '*'s and '@'s from Pnames, so TPnames suitable for TeX interpretation % Pnames - string mtx/cellstr containing parameter names % TPnames - TeX-ified parameter names % % FORMAT Map = spm_DesMtx('ParMap',aMap) % Returns Nx2 cellstr mapping (greek TeX) parameters to English names, % using the notation established in the SPMcourse notes. % aMap - (optional) Mx2 cellstr of additional or over-ride mappings % Map - cellstr of parameter names (col1) and corresponding English names (col2) % % FORMAT EPnames = spm_DesMtx('ETeXnames',Pnames,aMap) % Translates greek (TeX) parameter names into English using mapping given by % spm_DesMtx('ParMap',aMap) % Pnames - string mtx/cellstr containing parameter names % aMap - (optional) Mx2 cellstr of additional or over-ride mappings % EPnames - cellstr of converted parameter names %_______________________________________________________________________ % % Returns design matrix corresponding to given vectors containing % levels of a factor; two way interactions; covariates (n vectors); % ready-made sections of design matrix; and factor by covariate % interactions. % % The specification for the design matrix is passed in sets of arguments, % each set corresponding to a particular Factor/Covariate/&c., specifying % a section of the design matrix. The set of arguments consists of the % FCLevels matrix (Factor/Covariate levels), an optional constraint string, % and an optional (string) name matrix containing the names of the % Factor/Covariate/&c. % % MAIN EFFECTS: For a main effect, or single factor, the FCLevels % matrix is an integer vector whose values represent the levels of the % factor. The integer factor levels need not be positive, nor in % order. In the '~' constraint types (below), a factor level of zero % is ignored (treated as no effect), and no corresponding column of % design matrix is created. Effects for the factor levels are entered % into the design matrix *in increasing order* of the factor levels. % Check Pnames to find out which columns correspond to which levels of % the factor. % % TWO WAY INTERACTIONS: For a two way interaction effect between two % factors, the FCLevels matrix is an nx2 integer matrix whose columns % indicate the levels of the two factors. An effect is included for % each unique combination of the levels of the two factors. Again, % factor levels must be integer, though not necessarily positive. % Zero levels are ignored in the '~' constraint types described below. % % CONSTRAINTS: Each FactorLevels vector/matrix may be followed by an % (optional) ConstraintString. % % ConstraintStrings for main effects are: % '-' - No Constraint % '~' - Ignore zero level of factor % (I.e. cornerPoint constraint on zero level, % (same as '.0', except zero level is always ignored, % (even if factor only has zero level, in which case % (an empty DesMtx results and a warning is given % '+0' - sum-to-zero constraint % '+0m' - Implicit sum-to-zero constraint % '.' - CornerPoint constraint % '.0' - CornerPoint constraint applied to zero factor level % (warns if there is no zero factor level) % Constraints for two way interaction effects are % '-' - No Constraints % '~' - Ignore zero level of any factor % (I.e. cornerPoint constraint on zero level, % (same as '.ij0', except zero levels are always ignored % '+i0','+j0','+ij0' - sum-to-zero constraints % '.i', '.j', '.ij' - CornerPoint constraints % '.i0','.j0','.ij0' - CornerPoint constraints applied to zero factor level % (warns if there is no zero factor level) % '+i0m', '+j0m' - Implicit sum-to-zero constraints % % With the exception of the "ignore zero" '~' constraint, constraints % are only applied if there are sufficient factor levels. CornerPoint % and explicit sum-to-zero Constraints are applied to the last level of % the factor. % % The implicit sum-to-zero constraints "mean correct" appropriate rows % of the relevant design matrix block. For a main effect, constraint % '+0m' "mean corrects" the main effect block across columns, % corresponding to factor effects B_i, where B_i = B'_i - mean(B'_i) : % The B'_i are the fitted parameters, effectively *relative* factor % parameters, relative to their mean. This leads to a rank deficient % design matrix block. If Matlab's pinv, which implements a % Moore-Penrose pseudoinverse, is used to solve the least squares % problem, then the solution with smallest L2 norm is found, which has % mean(B'_i)=0 provided the remainder of the design is unique (design % matrix blocks of full rank). In this case therefore the B_i are % identically the B'_i - the mean correction imposes the constraint. % % % COVARIATES: The FCLevels matrix here is an nxc matrix whose columns % contain the covariate values. An effect is included for each covariate. % Covariates are identified by ConstraintString 'C'. % % % PRE-SPECIFIED DESIGN BLOCKS: ConstraintString 'X' identifies a % ready-made bit of design matrix - the effect is the same as 'C'. % % % FACTOR BY COVARIATE INTERACTIONS: are identified by ConstraintString % 'FxC'. The last column is understood to contain the covariate. Other % columns are taken to contain integer FactorLevels vectors. The % (unconstrained) interaction of the factors is interacted with the % covariate. Zero factor levels are ignored if ConstraintString '~FxC' % is used. % % % NAMES: Each Factor/Covariate can be 'named', by passing a name % string. Pass a string matrix, or cell array (vector) of strings, % with rows (cells) naming the factors/covariates in the respective % columns of the FCLevels matrix. These names default to <Fac>, <Cov>, % <Fac1>, <Fac2> &c., and are used in the construction of the Pnames % parameter names. % E.g. for an interaction, spm_DesMtx([F1,F2],'+ij0',['subj';'cond']) % giving parameter names such as subj*cond_{1,2} etc... % % Pnames returns a string matrix whose successive rows describe the % effects parameterised in the corresponding columns of the design % matrix. `Fac1*Fac2_{2,3}' would refer to the parameter for the % interaction of the two factors Fac1 & Fac2, at the 2nd level of the % former and the 3rd level of the latter. Other forms are % - Simple main effect (level 1) : <Fac>_{1} % - Three way interaction (level 1,2,3) : <Fac1>*<Fac2>*<Fac3>_{1,2,3} % - Two way factor interaction by covariate interaction : % : <Cov>@<Fac1>*<Fac2>_{1,1} % - Column 3 of prespecified DesMtx block (if unnamed) % : <X> [1] % The special characters `_*()[]{}' are recognised by the scaling % function (spm_DesMtx('sca',...), and should therefore be avoided % when naming effects and covariates. % % % INDEX: An Integer Index matrix is returned if only a single block of % design matrix is being computed (single set of parameters). It % indexes the actual order of the effect levels in the design matrix block. % (Factor levels are introduced in order, regardless of order of % appearence in the factor index matrices, so that the parameters % vector has a sensible order.) This is used to aid recursion. % % Similarly idx,jdx & kdx are indexes returned for a single block of % design matrix consisting of unconstrained factor effects ('-' or '~'). % These indexes map I and Index (in a similar fashion to the `unique` % function) as follows: % - idx & jdx are such that I = Index(:,jdx)' and Index = I(idx,:)' % where vector I is given as a column vector % - If the "ignore zeros" constraint '~' is used, then kdx indexes the % non-zero (combinations) of factor levels, such that % I(kdx,:) = Index(:,jdx)' and Index == I(kdx(idx),:)' % % ---------------- % % The "patterned data setting" (spm_DesMtx('pds'...) is a simple % utility for setting patterned indicator vectors, inspired by % MINITAB's "SET" command. % % The vector v has it's elements replicated m times, and the resulting % vector is itself repeated n times, giving a resultant vector i of % length n*m*length(v) % % Examples: % spm_DesMtx('pds',1:3) % = [1,2,3] % spm_DesMtx('pds',1:3,2) % = [1,1,2,2,3,3] % spm_DesMtx('pds',1:3,2,3) % = [1,1,2,2,3,3,1,1,2,2,3,3,1,1,2,2,3,3] % NB: MINITAB's "SET" command has syntax n(v)m: % % ---------------- % % The design matrix scaling feature is designed to return a scaled % version of a design matrix, with values in [-1,1], suitable for % visualisation. Special care is taken to apply the same normalisation % to blocks of design matrix reflecting a single effect, to preserve % appropriate relationships between columns. Identification of effects % corresponding to columns of design matrix portions is via the parameter % names matrices. The design matrix may be passed in any number of % parts, provided the corresponding parameter names are given. It is % assummed that the block representing an effect is contained within a % single partition. Partitions supplied without corresponding parameter % names are scaled on a column by column basis, the parameters labelled as % <UnSpec> in the returned nPnames matrix. % % Effects are identified using the special characters `_*()[]{}' used in % parameter naming as follows: (here ? is a wildcard) % - ?(?) - general block (column normalised) % - ?[?] - specific block (block normalised) % - ?_{?} - main effect or interaction of main effects % - ?@?_{?} - factor by covariate interaction % Blocks are identified by looking for runs of parameters of the same type % with the same names: E.g. a block of main effects for factor 'Fac1' % would have names like Fac1_{?}. % % Scaling is as follows: % * fMRI blocks are scaled around zero to lie in [-1,1] % * No scaling is carried out if max(abs(tX(:))) is in [.4,1] % This protects dummy variables from normalisation, even if % using implicit sum-to-zero constraints. % * If the block has a single value, it's replaced by 1's % * FxC blocks are normalised so the covariate values cover [-1,1] % but leaving zeros as zero. % * Otherwise, block is scaled to cover [-1,1]. % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Andrew Holmes % $Id: spm_DesMtx.m 4137 2010-12-15 17:18:32Z guillaume $ %-Parse arguments for recursive construction of design matrices %======================================================================= if nargin==0 error('Insufficient arguments'), end if ischar(varargin{1}) %-Non-recursive action string usage Constraint=varargin{1}; elseif nargin>=2 && ~(ischar(varargin{2}) || iscell(varargin{2})) [X1,Pnames1]=spm_DesMtx(varargin{1}); [X2,Pnames2]=spm_DesMtx(varargin{2:end}); X=[X1,X2]; Pnames=[Pnames1;Pnames2]; return elseif nargin>=3 && ~(ischar(varargin{3}) || iscell(varargin{3})) [X1,Pnames1]=spm_DesMtx(varargin{1:2}); [X2,Pnames2]=spm_DesMtx(varargin{3:end}); X=[X1,X2]; Pnames=[Pnames1;Pnames2]; return elseif nargin>=4 [X1,Pnames1]=spm_DesMtx(varargin{1:3}); [X2,Pnames2]=spm_DesMtx(varargin{4:end}); X=[X1,X2]; Pnames=[Pnames1;Pnames2]; return else %-If I is a vector, make it a column vector I=varargin{1}; if size(I,1)==1, I=I'; end %-Sort out constraint and Factor/Covariate name parameters if nargin<2, Constraint='-'; else Constraint=varargin{2}; end if isempty(I), Constraint='mt'; end if nargin<3, FCnames={}; else FCnames=varargin{3}; end if char(FCnames), FCnames=cellstr(FCnames); end end switch Constraint, case 'mt' %-Empty I case %======================================================================= X = []; Pnames = {}; Index = []; case {'C','X'} %-Covariate effect, or ready-made design matrix %======================================================================= %-I contains a covariate (C), or is to be inserted "as is" (X) X = I; %-Construct parameter name index %----------------------------------------------------------------------- if isempty(FCnames) if strcmp(Constraint,'C'), FCnames={'<Cov>'}; else FCnames={'<X>'}; end end if length(FCnames)==1 && size(X,2)>1 Pnames = cell(size(X,2),1); for i=1:size(X,2) Pnames{i} = sprintf('%s [%d]',FCnames{1},i); end elseif length(FCnames)~=size(X,2) error('FCnames doesn''t match covariate/X matrix') else Pnames = FCnames; end case {'-(1)','~(1)'} %-Simple main effect ('~' ignores zero levels) %======================================================================= %-Sort out arguments %----------------------------------------------------------------------- if size(I,2)>1, error('Simple main effect requires vector index'), end if any(I~=floor(I)), error('Non-integer indicator vector'), end if isempty(FCnames), FCnames = {'<Fac>'}; elseif length(FCnames)>1, error('Too many FCnames'), end nXrows = size(I,1); % Sort out unique factor levels - ignore zero level in '~(1)' usage %----------------------------------------------------------------------- if Constraint(1)~='~' [Index,idx,jdx] = unique(I'); kdx = [1:nXrows]; else [Index,idx,jdx] = unique(I(I~=0)'); kdx = find(I~=0)'; if isempty(Index) X=[]; Pnames={}; Index=[]; warning(['factor has only zero level - ',... 'returning empty DesMtx partition']) return end end %-Set up unconstrained X matrix & construct parameter name index %----------------------------------------------------------------------- nXcols = length(Index); %-Columns in ascending order of corresponding factor level X = zeros(nXrows,nXcols); Pnames = cell(nXcols,1); for ii=1:nXcols %-ii indexes i in Index X(:,ii) = I==Index(ii); %-Can't use: for i=Index, X(:,i) = I==i; end % in case Index has holes &/or doesn't start at 1! Pnames{ii} = sprintf('%s_{%d}',FCnames{1},Index(ii)); end %-Don't append effect level if only one level if nXcols==1, Pnames=FCnames; end case {'-','~'} %-Main effect / interaction ('~' ignores zero levels) %======================================================================= if size(I,2)==1 %-Main effect - process directly [X,Pnames,Index,idx,jdx,kdx] = spm_DesMtx(I,[Constraint,'(1)'],FCnames); return end if any((I(:))~=floor(I(:))), error('Non-integer indicator vector'), end % Sort out unique factor level combinations & build design matrix %----------------------------------------------------------------------- %-Make "raw" index to unique effects nI = I - ones(size(I,1),1)*min(I); tmp = max(I)-min(I)+1; tmp = [fliplr(cumprod(tmp(end:-1:2))),1]; rIndex = sum(nI.*(ones(size(I,1),1)*tmp),2)+1; %-Ignore combinations where any factor has level zero in '~' usage if Constraint(1)=='~' rIndex(any(I==0,2))=0; if all(rIndex==0) X=[]; Pnames={}; Index=[]; warning(['no non-zero factor level combinations - ',... 'returning empty DesMtx partition']) return end end %-Build design matrix based on unique factor combinations [X,null,sIndex,idx,jdx,kdx]=spm_DesMtx(rIndex,[Constraint,'(1)']); %-Sort out Index matrix Index = I(kdx(idx),:)'; %-Construct parameter name index %----------------------------------------------------------------------- if isempty(FCnames) tmp = ['<Fac1>',sprintf('*<Fac%d>',2:size(I,2))]; elseif length(FCnames)==size(I,2) tmp = [FCnames{1},sprintf('*%s',FCnames{2:end})]; else error('#FCnames mismatches #Factors in interaction') end Pnames = cell(size(Index,2),1); for c = 1:size(Index,2) Pnames{c} = ... [sprintf('%s_{%d',tmp,Index(1,c)),sprintf(',%d',Index(2:end,c)),'}']; end case {'FxC','-FxC','~FxC'} %-Factor dependent covariate effect % ('~' ignores zero factor levels) %======================================================================= %-Check %----------------------------------------------------------------------- if size(I,2)==1, error('FxC requires multi-column I'), end F = I(:,1:end-1); C = I(:,end); if ~all(all(F==floor(F),1),2) error('non-integer indicies in F partition of FxC'), end if isempty(FCnames) Fnames = ''; Cnames = '<Cov>'; elseif length(FCnames)==size(I,2) Fnames = FCnames(1:end-1); Cnames = FCnames{end}; else error('#FCnames mismatches #Factors+#Cov in FxC') end %-Set up design matrix X & names matrix - ignore zero levels if '~FxC' use %----------------------------------------------------------------------- if Constraint(1)~='~', [X,Pnames,Index] = spm_DesMtx(F,'-',Fnames); else [X,Pnames,Index] = spm_DesMtx(F,'~',Fnames); end X = X.*(C*ones(1,size(X,2))); Pnames = cellstr([repmat([Cnames,'@'],size(Index,2),1),char(Pnames)]); case {'.','.0','+0','+0m'} %-Constrained simple main effect %======================================================================= if size(I,2)~=1, error('Simple main effect requires vector index'), end [X,Pnames,Index] = spm_DesMtx(I,'-(1)',FCnames); %-Impose constraint if more than one effect %----------------------------------------------------------------------- %-Apply uniqueness constraints ('.' & '+0') to last effect, which is % in last column, since column i corresponds to level Index(i) %-'.0' corner point constraint is applied to zero factor level only nXcols = size(X,2); zCol = find(Index==0); if nXcols==1 && ~strcmp(Constraint,'.0') error('only one level: can''t constrain') elseif strcmp(Constraint,'.') X(:,nXcols)=[]; Pnames(nXcols)=[]; Index(nXcols)=[]; elseif strcmp(Constraint,'.0') zCol = find(Index==0); if isempty(zCol), warning('no zero level to constrain') elseif nXcols==1, error('only one level: can''t constrain'), end X(:,zCol)=[]; Pnames(zCol)=[]; Index(zCol)=[]; elseif strcmp(Constraint,'+0') X(find(X(:,nXcols)),:)=-1; X(:,nXcols)=[]; Pnames(nXcols)=[]; Index(nXcols)=[]; elseif strcmp(Constraint,'+0m') X = X - 1/nXcols; end case {'.i','.i0','.j','.j0','.ij','.ij0','+i0','+j0','+ij0','+i0m','+j0m'} %-Two way interaction effects %======================================================================= if size(I,2)~=2, error('Two way interaction requires Nx2 index'), end [X,Pnames,Index] = spm_DesMtx(I,'-',FCnames); %-Implicit sum to zero %----------------------------------------------------------------------- if any(strcmp(Constraint,{'+i0m','+j0m'})) SumIToZero = strcmp(Constraint,'+i0m'); SumJToZero = strcmp(Constraint,'+j0m'); if SumIToZero %-impose implicit SumIToZero constraints Js = sort(Index(2,:)); Js = Js([1,1+find(diff(Js))]); for j = Js rows = find(I(:,2)==j); cols = find(Index(2,:)==j); if length(cols)==1 error('Only one level: Can''t constrain') end X(rows,cols) = X(rows,cols) - 1/length(cols); end end if SumJToZero %-impose implicit SumJToZero constraints Is = sort(Index(1,:)); Is = Is([1,1+find(diff(Is))]); for i = Is rows = find(I(:,1)==i); cols = find(Index(1,:)==i); if length(cols)==1 error('Only one level: Can''t constrain') end X(rows,cols) = X(rows,cols) - 1/length(cols); end end %-Explicit sum to zero %----------------------------------------------------------------------- elseif any(strcmp(Constraint,{'+i0','+j0','+ij0'})) SumIToZero = any(strcmp(Constraint,{'+i0','+ij0'})); SumJToZero = any(strcmp(Constraint,{'+j0','+ij0'})); if SumIToZero %-impose explicit SumIToZero constraints i = max(Index(1,:)); if i==min(Index(1,:)) error('Only one i level: Can''t constrain'), end cols = find(Index(1,:)==i); %-columns to delete for c=cols j=Index(2,c); t_cols=find(Index(2,:)==j); t_rows=find(X(:,c)); %-This ij equals -sum(ij) over other i % (j fixed for this col c). %-So subtract weight of this ij factor from % weights for all other ij factors for this j % to impose the constraint. X(t_rows,t_cols) = X(t_rows,t_cols)... -X(t_rows,c)*ones(1,length(t_cols)); %-( Next line would do it, but only first time round, when all ) % ( weights are 1, and only one weight per row for this j. ) % X(t_rows,t_cols)=-1*ones(length(t_rows),length(t_cols)); end %-delete columns X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[]; end if SumJToZero %-impose explicit SumJToZero constraints j = max(Index(2,:)); if j==min(Index(2,:)) error('Only one j level: Can''t constrain'), end cols=find(Index(2,:)==j); for c=cols i=Index(1,c); t_cols=find(Index(1,:)==i); t_rows=find(X(:,c)); X(t_rows,t_cols) = X(t_rows,t_cols)... -X(t_rows,c)*ones(1,length(t_cols)); end %-delete columns X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[]; end %-Corner point constraints %----------------------------------------------------------------------- elseif any(strcmp(Constraint,{'.i','.i0','.j','.j0','.ij','.ij0'})) CornerPointI = any(strcmp(Constraint,{'.i','.i0','.ij','.ij0'})); CornerPointJ = any(strcmp(Constraint,{'.j','.j0','.ij','.ij0'})); if CornerPointI %-impose CornerPointI constraints if Constraint(end)~='0', i = max(Index(1,:)); else i = 0; end cols=find(Index(1,:)==i); %-columns to delete if isempty(cols) warning('no zero i level to constrain') elseif all(Index(1,:)==i) error('only one i level: can''t constrain') end %-delete columns X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[]; end if CornerPointJ %-impose CornerPointJ constraints if Constraint(end)~='0', j = max(Index(2,:)); else j = 0; end cols=find(Index(2,:)==j); if isempty(cols) warning('no zero j level to constrain') elseif all(Index(2,:)==j) error('only one j level: can''t constrain') end X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[]; end end case {'PDS','pds'} %-Patterned data set utility %======================================================================= % i = spm_DesMtx('pds',v,m,n) if nargin<4, n=1; else n=varargin{4}; end if nargin<3, m=1; else m=varargin{3}; end if nargin<2, varargout={[]}; return, else v=varargin{2}; end if any([size(n),size(m)])>1, error('n & m must be scalars'), end if any(([m,n]~=floor([m,n]))|([m,n]<1)) error('n & m must be natural numbers'), end if sum(size(v)>1)>1, error('v must be a vector'), end %-Computation %----------------------------------------------------------------------- si = ones(1,ndims(v)); si(find(size(v)>1))=n*m*length(v); X = reshape(repmat(v(:)',m,n),si); case {'Sca','sca'} %-Scale DesMtx for imaging %======================================================================= nX = []; nPnames = {}; Carg = 2; %-Loop through the arguments accumulating scaled design matrix nX %----------------------------------------------------------------------- while(Carg <= nargin) rX = varargin{Carg}; Carg=Carg+1; if Carg<=nargin && ~isempty(varargin{Carg}) && ... (ischar(varargin{Carg}) || iscellstr(varargin{Carg})) rPnames = char(varargin{Carg}); Carg=Carg+1; else %-No names to work out blocks from - normalise by column rPnames = repmat('<UnSpec>',size(rX,2),1); end %-Pad out rPnames with 20 spaces to permit looking past line ends rPnames = [rPnames,repmat(' ',size(rPnames,1),20)]; while(~isempty(rX)) if size(rX,2)>1 && max([1,find(rPnames(1,:)=='(')]) < ... max([0,find(rPnames(1,:)==')')]) %-Non-specific block: find the rest & column normalise round zero %=============================================================== c1 = max(find(rPnames(1,:)=='(')); d = any(diff(abs(rPnames(:,1:c1))),2)... | ~any(rPnames(2:end,c1+1:end)==')',2); t = min(find([d;1])); %-Normalise columns of block around zero %------------------------------------------------------- tmp = size(nX,2); nX = [nX, zeros(size(rX,1),t)]; for i=1:t if ~any(rX(:,i)) nX(:,tmp+i) = 0; else nX(:,tmp+i) = rX(:,i)/max(abs(rX(:,i))); end end nPnames = [nPnames; cellstr(rPnames(1:t,:))]; rX(:,1:t) = []; rPnames(1:t,:)=[]; elseif size(rX,2)>1 && max([1,find(rPnames(1,:)=='[')]) < ... max([0,find(rPnames(1,:)==']')]) %-Block: find the rest & normalise together %=============================================================== c1 = max(find(rPnames(1,:)=='[')); d = any(diff(abs(rPnames(:,1:c1))),2)... | ~any(rPnames(2:end,c1+1:end)==']',2); t = min(find([d;1])); %-Normalise block %------------------------------------------------------- nX = [nX,sf_tXsca(rX(:,1:t))]; nPnames = [nPnames; cellstr(rPnames(1:t,:))]; rX(:,1:t) = []; rPnames(1:t,:)=[]; elseif size(rX,2)>1 && max([1,strfind(rPnames(1,:),'_{')]) < ... max([0,find(rPnames(1,:)=='}')]) %-Factor, interaction of factors, or FxC: find the rest... %=============================================================== c1 = max(strfind(rPnames(1,:),'_{')); d = any(diff(abs(rPnames(:,1:c1+1))),2)... | ~any(rPnames(2:end,c1+2:end)=='}',2); t = min(find([d;1])); %-Normalise block %------------------------------------------------------- tX = rX(:,1:t); if any(rPnames(1,1:c1)=='@') %-FxC interaction C = tX(tX~=0); tX(tX~=0) = 2*(C-min(C))/max(C-min(C))-1; nX = [nX,tX]; else %-Straight interaction nX = [nX,sf_tXsca(tX)]; end nPnames = [nPnames; cellstr(rPnames(1:t,:))]; rX(:,1:t) = []; rPnames(1:t,:)=[]; else %-Dunno! Just column normalise %=============================================================== nX = [nX,sf_tXsca(rX(:,1))]; nPnames = [nPnames; cellstr(rPnames(1,:))]; rX(:,1) = []; rPnames(1,:)=[]; end end end X = nX; Pnames = nPnames; case {'Fnames','fnames'} %-Turn parameter names into valid filenames %======================================================================= % Fnames = spm_DesMtx('FNames',Pnames) if nargin<2, varargout={''}; return, end Fnames = varargin{2}; for i=1:numel(Fnames) str = Fnames{i}; str(str==',')='x'; %-',' to 'x' str(str=='*')='-'; %-'*' to '-' str(str=='@')='-'; %-'@' to '-' str(str==' ')='_'; %-' ' to '_' str(str=='/')=''; %- delete '/' str(str=='.')=''; %- delete '.' Fnames{i} = str; end Fnames = spm_str_manip(Fnames,'v'); %- retain only legal characters X = Fnames; case {'TeXnames','texnames'} %-Remove '@' & '*' for TeX interpretation %======================================================================= % TPnames = spm_DesMtx('TeXnames',Pnames) if nargin<2, varargout={''}; return, end TPnames = varargin{2}; for i=1:prod(size(TPnames)) str = TPnames{i}; str(str=='*')=''; %- delete '*' str(str=='@')=''; %- delete '@' TPnames{i} = str; end X = TPnames; case {'ParMap','parmap'} %-Parameter mappings: greek to english %======================================================================= % Map = spm_DesMtx('ParMap',aMap) Map = { '\mu', 'const';... '\theta', 'repl';... '\alpha', 'cond';... '\gamma', 'subj';... '\rho', 'covint';... '\zeta', 'global';... '\epsilon', 'error'}; if nargin<2, aMap={}; else aMap = varargin{2}; end if isempty(aMap), X=Map; return, end if ~(iscellstr(aMap) && ndims(aMap)==2), error('aMap must be an nx2 cellstr'), end for i=1:size(aMap,1) j = find(strcmp(aMap{i,1},Map(:,1))); if isempty(j) Map=[aMap(i,:); Map]; else Map(j,2) = aMap(i,2); end end X = Map; case {'ETeXNames','etexnames'} %-Search & replace: for Englishifying TeX %======================================================================= % EPnames = spm_DesMtx('TeXnames',Pnames,aMap) if nargin<2, varargout={''}; return, end if nargin<3, aMap={}; else aMap = varargin{3}; end Map = spm_DesMtx('ParMap',aMap); EPnames = varargin{2}; for i=1:size(Map,1) EPnames = strrep(EPnames,Map{i,1},Map{i,2}); end X = EPnames; otherwise %-Mis-specified arguments - ERROR %======================================================================= if ischar(varargin{1}) error('unrecognised action string') else error('unrecognised constraint type') end %======================================================================= end %======================================================================= % - S U B F U N C T I O N S %======================================================================= function nX = sf_tXsca(tX) if nargin==0, nX=[]; return, end if abs(max(abs(tX(:)))-0.7)<(.3+1e-10) nX = tX; elseif all(tX(:)==tX(1)) nX = ones(size(tX)); elseif max(abs(tX(:)))<1e-10 nX = zeros(size(tX)); else nX = 2*(tX-min(tX(:)))/max(tX(:)-min(tX(:)))-1; end
github
philippboehmsturm/antx-master
spm_eeg_review_callbacks.m
.m
antx-master/xspm8/spm_eeg_review_callbacks.m
76,846
utf_8
4bf26af64c0f704d189a16b6116cf1fb
function [varargout] = spm_eeg_review_callbacks(varargin) % Callbacks of the M/EEG Review facility %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_eeg_review_callbacks.m 6071 2014-06-27 12:52:33Z guillaume $ spm('pointer','watch'); drawnow expose try D = get(spm_figure('FindWin','Graphics'),'userdata'); handles = D.PSD.handles; end switch varargin{1} %% File I/O case 'file' switch varargin{2} case 'save' D0 = D; D = meeg(rmfield(D,'PSD')); save(D); D = D0; D.PSD.D0 = rmfield(D,'PSD'); set(D.PSD.handles.hfig,'userdata',D) set(D.PSD.handles.BUTTONS.pop1,... 'BackgroundColor',[0.8314 0.8157 0.7843]) case 'saveHistory' spm_eeg_history(D); end %% Get information from MEEG object case 'get' switch varargin{2} case 'VIZU' visuSensors = varargin{3}; VIZU.visuSensors = visuSensors; VIZU.montage.clab = {D.channels(visuSensors).label}; if strcmp(D.transform.ID,'time') M = sparse(length(visuSensors),length(D.channels)); M(sub2ind(size(M),1:length(visuSensors),visuSensors(:)')) = 1; nts = min([2e2,D.Nsamples]); decim = max([floor(D.Nsamples./nts),1]); data = D.data.y(visuSensors,1:decim:D.Nsamples,:); sd = mean(abs(data(:)-mean(data(:))));%std(data(:)); offset = (0:1:length(visuSensors)-1)'*(sd+eps)/2; v_data = 0.25.*data +repmat(offset,[1 size(data,2) size(data,3)]); ma = max(v_data(:))+sd; mi = min(v_data(:))-sd; ylim = [mi ma]; VIZU.visu_scale = 0.25; VIZU.FontSize = 10; VIZU.visu_offset = sd; VIZU.offset = offset; VIZU.ylim = ylim; VIZU.ylim0 = ylim; VIZU.figname = 'main visualization window'; VIZU.montage.M = M; VIZU.y2 = permute(sum(data.^2,1),[2 3 1]); VIZU.sci = size(VIZU.y2,1)./D.Nsamples; else nts = min([2e2,D.Nsamples*length(D.transform.frequencies)]); decim = max([floor(D.Nsamples*length(D.transform.frequencies)./nts),1]); data = D.data.y(visuSensors,:,1:decim:D.Nsamples,:); VIZU.ylim = [min(data(:)) max(data(:))]; end varargout{1} = VIZU; return case 'commentInv' invN = varargin{3}; str = getInfo4Inv(D,invN); varargout{1} = str; return case 'dataInfo' str = getInfo4Data(D); varargout{1} = str; return case 'uitable' D = getUItable(D); case 'prep' Finter = spm_figure('GetWin','Interactive'); D = struct(get(Finter, 'UserData')); D0 = D.other(1).D0; D.other = rmfield(D.other,{'PSD','D0'}); d1 = rmfield(D,'history'); d0 = rmfield(D0,'history'); if isequal(d1,d0) % The objects only differ by their history % => remove last operation from modified object D.history(end) = []; end spm_eeg_review(D); hf = spm_figure('FindWin','Graphics'); D = get(hf,'userdata'); D.PSD.D0 = D0; set(hf,'userdata',D); spm_eeg_review_callbacks('visu','update') spm_clf(Finter) end %% Visualization callbacks case 'visu' switch varargin{2} %% Switch main uitabs: EEG/MEG/OTHER/INFO/SOURCE case 'main' try D.PSD.VIZU.fromTab = D.PSD.VIZU.modality; catch D.PSD.VIZU.fromTab = []; end switch varargin{3} case 'eeg' D.PSD.VIZU.modality = 'eeg'; case 'meg' D.PSD.VIZU.modality = 'meg'; case 'megplanar' D.PSD.VIZU.modality = 'megplanar'; case 'other' D.PSD.VIZU.modality = 'other'; case 'source' D.PSD.VIZU.modality = 'source'; case 'info'; D.PSD.VIZU.modality = 'info'; try D.PSD.VIZU.info = varargin{4}; end case 'standard' D.PSD.VIZU.type = 1; case 'scalp' D.PSD.VIZU.type = 2; end try,D.PSD.VIZU.xlim = get(handles.axes(1),'xlim');end [D] = spm_eeg_review_switchDisplay(D); try updateDisp(D,1); catch set(D.PSD.handles.hfig,'userdata',D); end %% Switch from 'standard' to 'scalp' display type case 'switch' mod = get(gcbo,'userdata'); if ~isequal(mod,D.PSD.VIZU.type) if mod == 1 spm_eeg_review_callbacks('visu','main','standard') else spm_eeg_review_callbacks('visu','main','scalp') end end %% Update display case 'update' try D = varargin{3};end updateDisp(D) %% Scalp interpolation case 'scalp_interp' if ~isempty([D.channels(:).X_plot2D]) x = round(mean(get(handles.axes(1),'xlim'))); ylim = get(handles.axes(1),'ylim'); if D.PSD.VIZU.type==1 in.hl = line('parent',handles.axes,... 'xdata',[x;x],... 'ydata',[ylim(1);ylim(2)]); end switch D.PSD.type case 'continuous' trN = 1; case 'epoched' trN = D.PSD.trials.current(1); in.trN = trN; end in.gridTime = (1:D.Nsamples).*1e3./D.Fsample + D.timeOnset.*1e3; in.unit = 'ms'; in.x = x; in.handles = handles; switch D.PSD.VIZU.modality case 'eeg' I = D.PSD.EEG.I; in.type = 'EEG'; case 'meg' I = D.PSD.MEG.I; in.type = 'MEG'; case 'megplanar' I = D.PSD.MEGPLANAR.I; in.type = 'MEGPLANAR'; case 'other' I = D.PSD.other.I; in.type = 'other'; end I = intersect(I,find(~[D.channels.bad])); try pos(:,1) = [D.channels(I).X_plot2D]'; pos(:,2) = [D.channels(I).Y_plot2D]'; labels = {D.channels(I).label}; y = D.data.y(I,:,trN); in.min = min(y(:)); in.max = max(y(:)); in.ind = I; y = y(:,x); spm_eeg_plotScalpData(y,pos,labels,in); try D.PSD.handles.hli = in.hl; set(D.PSD.handles.hfig,'userdata',D); end catch msgbox('Get 2d positions for these channels!') end else msgbox('Get 2d positions for EEG/MEG channels!') end %% Display sensor positions (and canonical cortical mesh) case 'sensorPos' % get canonical mesh mco = fullfile(spm('Dir'),'canonical','cortex_5124.surf.gii'); msc = fullfile(spm('Dir'),'canonical','scalp_2562.surf.gii'); % get and plot 3D sensor positions try % EEG try for i=1:numel(D.other.inv{end}.datareg) if isequal(D.other.inv{end}.datareg(i).modality,'EEG') pos3d = spm_eeg_inv_transform_points(... D.other.inv{end}.datareg(i).toMNI,... D.other.inv{end}.datareg(i).sensors.pnt); end end opt.figname = 'Coregistred EEG sensor positions'; catch pos3d = [D.sensors.eeg.pnt]; pos3d = pos3d(D.PSD.EEG.I,:); opt.figname = 'Uncoregistred EEG sensor positions'; end pos3d(1,:); % display canonical mesh o = spm_eeg_render(mco,opt); opt.hfig = o.handles.fi; opt.ParentAxes = o.handles.ParentAxes; o = spm_eeg_render(msc,opt); set(o.handles.p,'FaceAlpha',0.75) set(o.handles.transp,'value',0.75) % display sensor position figure(o.handles.fi); set(opt.ParentAxes,'nextplot','add') plot3(opt.ParentAxes,... pos3d(:,1),pos3d(:,2),pos3d(:,3),'.'); try labels = D.PSD.EEG.VIZU.montage.clab; text(pos3d(:,1),pos3d(:,2),pos3d(:,3),... labels,... 'parent',opt.ParentAxes); end axis(opt.ParentAxes,'equal') axis(opt.ParentAxes,'tight') axis(opt.ParentAxes,'off') end try % MEG clear opt pos3d o labels try % multimodal EEG/MEG for i=1:numel(D.other.inv{end}.datareg) if isequal(D.other.inv{end}.datareg(i).modality,'MEG') pos3d = spm_eeg_inv_transform_points(... D.other.inv{end}.datareg(i).toMNI,... D.other.inv{end}.datareg(i).sensors.pnt); end end opt.figname = 'Coregistred MEG sensor positions'; catch pos3d = [D.sensors.meg.pnt]; opt.figname = 'Uncoregistred MEG sensor positions'; end pos3d(1,:); % display canonical mesh o = spm_eeg_render(mco,opt); opt.hfig = o.handles.fi; opt.ParentAxes = o.handles.ParentAxes; o = spm_eeg_render(msc,opt); set(o.handles.p,'FaceAlpha',0.75) set(o.handles.transp,'value',0.75) % display sensor position figure(o.handles.fi); set(opt.ParentAxes,'nextplot','add') plot3(opt.ParentAxes,... pos3d(:,1),pos3d(:,2),pos3d(:,3),'.'); try labels = cat(2,... D.PSD.MEG.VIZU.montage.clab,... D.PSD.MEGPLANAR.VIZU.montage.clab); text(pos3d(:,1),pos3d(:,2),pos3d(:,3),... labels,... 'parent',opt.ParentAxes); end axis(opt.ParentAxes,'equal') axis(opt.ParentAxes,'tight') axis(opt.ParentAxes,'off') end %% Update display for 'SOURCE' main tab case 'inv' cla(D.PSD.handles.axes2,'reset') D.PSD.source.VIZU.current = varargin{3}; updateDisp(D); %% Check xlim when resizing display window using 'standard' %% display type case 'checkXlim' xlim = varargin{3}; ud = get(D.PSD.handles.gpa,'userdata'); xm = mean(xlim); sw = abs(diff(xlim)); if sw <= ud.v.minSizeWindow sw = ud.v.minSizeWindow; elseif sw >= ud.v.nt sw = ud.v.maxSizeWindow; elseif sw >= ud.v.maxSizeWindow sw = ud.v.maxSizeWindow; end if xlim(1) <= 1 && xlim(end) >= ud.v.nt xlim = [1,ud.v.nt]; elseif xlim(1) <= 1 xlim = [1,sw]; elseif xlim(end) >= ud.v.nt xlim = [ud.v.nt-sw+1,ud.v.nt]; end % Restrain buttons usage: if isequal(xlim,[1,ud.v.nt]) set(D.PSD.handles.BUTTONS.vb3,'enable','off') set(handles.BUTTONS.slider_step,'visible','off') set(D.PSD.handles.BUTTONS.goPlusOne,'visible','off'); set(D.PSD.handles.BUTTONS.goMinusOne,'visible','off'); else set(handles.BUTTONS.slider_step,... 'min',sw/2,'max',ud.v.nt-sw/2+1,... 'value',mean(xlim),... 'sliderstep',.1*[sw/(ud.v.nt-1) 4*sw/(ud.v.nt-1)],... 'visible','on'); set(D.PSD.handles.BUTTONS.goPlusOne,'visible','on'); set(D.PSD.handles.BUTTONS.goMinusOne,'visible','on'); if isequal(sw,ud.v.maxSizeWindow) set(D.PSD.handles.BUTTONS.vb3,'enable','off') set(D.PSD.handles.BUTTONS.vb4,'enable','on') elseif isequal(sw,ud.v.minSizeWindow) set(D.PSD.handles.BUTTONS.vb4,'enable','off') set(D.PSD.handles.BUTTONS.vb3,'enable','on') else set(D.PSD.handles.BUTTONS.vb4,'enable','on') set(D.PSD.handles.BUTTONS.vb3,'enable','on') end if xlim(1) == 1 set(D.PSD.handles.BUTTONS.goMinusOne,... 'visible','on','enable','off'); set(D.PSD.handles.BUTTONS.goPlusOne,... 'visible','on','enable','on'); elseif xlim(2) == ud.v.nt set(D.PSD.handles.BUTTONS.goPlusOne,... 'visible','on','enable','off'); set(D.PSD.handles.BUTTONS.goMinusOne,... 'visible','on','enable','on'); else set(D.PSD.handles.BUTTONS.goPlusOne,... 'visible','on','enable','on'); set(D.PSD.handles.BUTTONS.goMinusOne,... 'visible','on','enable','on'); end end if nargout >= 1 varargout{1} = xlim; else D.PSD.VIZU.xlim = xlim; set(D.PSD.handles.hfig,'userdata',D) end %% Contrast/intensity rescaling case 'iten_sc' switch D.PSD.VIZU.modality case 'eeg' D.PSD.EEG.VIZU.visu_scale = varargin{3}*D.PSD.EEG.VIZU.visu_scale; case 'meg' D.PSD.MEG.VIZU.visu_scale = varargin{3}*D.PSD.MEG.VIZU.visu_scale; case 'megplanar' D.PSD.MEGPLANAR.VIZU.visu_scale = varargin{3}*D.PSD.MEGPLANAR.VIZU.visu_scale; case 'other' D.PSD.other.VIZU.visu_scale = varargin{3}*D.PSD.other.VIZU.visu_scale; end updateDisp(D,3); %% Resize plotted data window ('standard' display type) case 'time_w' % Get current plotted data window range and limits xlim = get(handles.axes(1),'xlim'); sw = varargin{3}*diff(xlim); xm = mean(xlim); xlim = xm + 0.5*[-sw,sw]; xlim = spm_eeg_review_callbacks('visu','checkXlim',xlim); D.PSD.VIZU.xlim = xlim; updateDisp(D,4) %% Scroll through data ('standard' display type) case 'slider_t' offset = get(gco,'value'); updateDisp(D) %% Scroll through data page by page ('standard' display type) case 'goOne' % Get current plotted data window range and limits xlim = get(handles.axes(1),'xlim'); sw = diff(xlim); xlim = xlim +varargin{3}*sw; xlim = spm_eeg_review_callbacks('visu','checkXlim',xlim); D.PSD.VIZU.xlim = xlim; updateDisp(D,4) %% Zoom case 'zoom' switch D.PSD.VIZU.type case 1 % 'standard' display type if ~isempty(D.PSD.handles.zoomh) switch get(D.PSD.handles.zoomh,'enable') case 'on' set(D.PSD.handles.zoomh,'enable','off') case 'off' set(D.PSD.handles.zoomh,'enable','on') end else if get(D.PSD.handles.BUTTONS.vb5,'value') zoom on; else zoom off; end %set(D.PSD.handles.BUTTONS.vb5,'value',~val); end case 2 % 'scalp' display type set(D.PSD.handles.BUTTONS.vb5,'value',1) switch D.PSD.VIZU.modality case 'eeg' VIZU = D.PSD.EEG.VIZU; case 'meg' VIZU = D.PSD.MEG.VIZU; case 'megplanar' VIZU = D.PSD.MEGPLANAR.VIZU; case 'other' VIZU = D.PSD.other.VIZU; end try axes(D.PSD.handles.scale);end [x] = ginput(1); indAxes = get(gco,'userdata'); if ~~indAxes hf = figure('color',[1 1 1]); chanLabel = D.channels(VIZU.visuSensors(indAxes)).label; if D.channels(VIZU.visuSensors(indAxes)).bad chanLabel = [chanLabel,' (BAD)']; end set(hf,'name',['channel ',chanLabel]) ha2 = axes('parent',hf,... 'nextplot','add',... 'XGrid','on','YGrid','on'); trN = D.PSD.trials.current(:); Ntrials = length(trN); if strcmp(D.transform.ID,'time') leg = cell(Ntrials,1); col = lines; col = repmat(col(1:7,:),floor(Ntrials./7)+1,1); hp = get(handles.axes(indAxes),'children'); pst = (0:1/D.Fsample:(D.Nsamples-1)/D.Fsample) + D.timeOnset; pst = pst*1e3; % in msec for i=1:Ntrials datai = get(hp(Ntrials-i+1),'ydata')./VIZU.visu_scale; plot(ha2,pst,datai,'color',col(i,:)); leg{i} = D.PSD.trials.TrLabels{trN(i)}; end legend(leg) set(ha2,'xlim',[min(pst),max(pst)],... 'ylim',get(D.PSD.handles.axes(indAxes),'ylim')) xlabel(ha2,'time (in ms after time onset)') unit = 'unknown'; try unit = D.channels(VIZU.visuSensors(indAxes)).units; end if isequal(unit,'unknown') ylabel(ha2,'field intensity ') else ylabel(ha2,['field intensity (in ',unit,')']) end title(ha2,['channel ',chanLabel,... ' (',D.channels(VIZU.visuSensors(indAxes)).type,')']) else % time-frequency data datai = squeeze(D.data.y(VIZU.visuSensors(indAxes),:,:,trN(1))); pst = (0:1/D.Fsample:(D.Nsamples-1)/D.Fsample) + D.timeOnset; pst = pst*1e3; % in msec if any(size(datai)==1) hp2 = plot(datai,... 'parent',ha2); set(ha2,'xtick',1:10:length(pst),'xticklabel',pst(1:10:length(pst)),... 'xlim',[1 length(pst)]); xlabel(ha2,'time (in ms after time onset)') ylabel(ha2,'power in frequency space') title(ha2,['channel ',chanLabel,... ' (',D.channels(VIZU.visuSensors(indAxes)).type,')',... ' -- frequency: ',num2str(D.transform.frequencies),' Hz']) else nx = max([1,length(pst)./10]); xtick = floor(1:nx:length(pst)); ny = max([1,length(D.transform.frequencies)./10]); ytick = floor(1:ny:length(D.transform.frequencies)); hp2 = image(datai,... 'CDataMapping','scaled',... 'parent',ha2); colormap(ha2,jet) colorbar('peer',ha2) set(ha2,... 'xtick',xtick,... 'xticklabel',pst(xtick),... 'xlim',[0.5 length(pst)+0.5],... 'ylim',[0.5 size(datai,1)+0.5],... 'ytick',ytick,... 'yticklabel',D.transform.frequencies(ytick)); xlabel(ha2,'time (in ms after time onset)') ylabel(ha2,'frequency (in Hz)') title(ha2,['channel ',chanLabel,... ' (',D.channels(VIZU.visuSensors(indAxes)).type,')']) caxis(ha2,VIZU.ylim) end end axes(ha2) end set(D.PSD.handles.BUTTONS.vb5,'value',0) end otherwise;disp('unknown command !') end %% Events callbacks accessible from uicontextmenu %% ('standard' display type when playing with 'continuous' data) case 'menuEvent' Nevents = length(D.trials.events); x = [D.trials.events.time]'; x(:,2) = [D.trials.events.duration]'; x(:,2) = sum(x,2); % Find the index of the selected event currentEvent = get(gco,'userdata'); eventType = D.trials.events(currentEvent).type; eventValue = D.trials.events(currentEvent).value; tit = ['Current event is selection #',num2str(currentEvent),... ' /',num2str(Nevents),' (type= ',eventType,', value=',num2str(eventValue),').']; switch varargin{2} % Execute actions accessible from the event contextmenu : click case 'click' % Highlight the selected event hh = findobj('selected','on'); set(hh,'selected','off'); set(gco,'selected','on') % Prompt basic information on the selected event disp(tit) % Execute actions accessible from the event contextmenu : edit event properties case 'EventProperties' set(gco,'selected','on') % Build GUI for manipulating the event properties stc = cell(4,1); default = cell(4,1); stc{1} = 'Current event is a selection of type...'; stc{2} = 'Current event has value...'; stc{3} = 'Starts at (sec)...'; stc{4} = 'Duration (sec)...'; default{1} = eventType; default{2} = num2str(eventValue); default{3} = num2str(x(currentEvent,1)); default{4} = num2str(abs(diff(x(currentEvent,:)))); answer = inputdlg(stc,tit,1,default); if ~isempty(answer) try eventType = answer{1}; eventValue = str2double(answer{2}); D.trials.events(currentEvent).time = str2double(answer{3}); D.trials.events(currentEvent).duration = str2double(answer{4}); D.trials.events(currentEvent).type = eventType; D.trials.events(currentEvent).value = eventValue; end updateDisp(D,2,currentEvent) end % Execute actions accessible from the event contextmenu : go to next/previous event case 'goto' here = mean(x(currentEvent,:)); values = [D.trials.events.value]; xm = mean(x(values==eventValue,:),2); if varargin{3} == 0 ind = find(xm < here); else ind = find(xm > here); end if ~isempty(ind) if varargin{3} == 0 offset = round(max(xm(ind))).*D.Fsample; else offset = round(min(xm(ind))).*D.Fsample; end xlim0 = get(handles.axes,'xlim'); if ~isequal(xlim0,[1 D.Nsamples]) length_window = round(xlim0(2)-xlim0(1)); if offset < round(0.5*length_window) offset = round(0.5*length_window); set(handles.BUTTONS.slider_step,'value',1); elseif offset > D.Nsamples-round(0.5*length_window) offset = D.Nsamples-round(0.5*length_window)-1; set(handles.BUTTONS.slider_step,'value',get(handles.BUTTONS.slider_step,'max')); else set(handles.BUTTONS.slider_step,'value',offset); end xlim = [offset-round(0.5*length_window) offset+round(0.5*length_window)]; xlim(1) = max([xlim(1) 1]); xlim(2) = min([xlim(2) D.Nsamples]); D.PSD.VIZU.xlim = xlim; updateDisp(D,4) end end % Execute actions accessible from the event contextmenu : delete event case 'deleteEvent' D.trials.events(currentEvent) = []; updateDisp(D,2) end %% Events callbacks case 'select' switch varargin{2} %% Switch to another trial (when playing with 'epoched' data) case 'switch' trN = get(gco,'value'); if ~strcmp(D.PSD.VIZU.modality,'source') && D.PSD.VIZU.type == 2 handles = rmfield(D.PSD.handles,'PLOT'); D.PSD.handles = handles; else try cla(D.PSD.handles.axes2,'reset');end end D.PSD.trials.current = trN; status = any([D.trials(trN).bad]); try if status str = 'declare as not bad'; else str = 'declare as bad'; end ud = get(D.PSD.handles.BUTTONS.badEvent,'userdata'); set(D.PSD.handles.BUTTONS.badEvent,... 'tooltipstring',str,... 'cdata',ud.img{2-status},'userdata',ud) end updateDisp(D,1) %% Switch event to 'bad' (when playing with 'epoched' data) case 'bad' trN = D.PSD.trials.current; status = any([D.trials(trN).bad]); str1 = 'not bad'; str2 = 'bad'; if status bad = 0; lab = [' (',str1,')']; str = ['declare as ',str2]; else bad = 1; lab = [' (',str2,')']; str = ['declare as ',str1]; end nt = length(trN); for i=1:nt D.trials(trN(i)).bad = bad; D.PSD.trials.TrLabels{trN(i)} = ['Trial ',num2str(trN(i)),... ': ',D.trials(trN(i)).label,lab]; end set(D.PSD.handles.BUTTONS.list1,'string',D.PSD.trials.TrLabels); ud = get(D.PSD.handles.BUTTONS.badEvent,'userdata'); set(D.PSD.handles.BUTTONS.badEvent,... 'tooltipstring',str,... 'cdata',ud.img{2-bad},'userdata',ud) set(D.PSD.handles.hfig,'userdata',D) %% Add an event to current selection %% (when playing with 'continuous' data) case 'add' [x,tmp] = ginput(1); x = round(x); x(1) = min([max([1 x(1)]) D.Nsamples]); Nevents = length(D.trials.events); D.trials.events(Nevents+1).time = x./D.Fsample; D.trials.events(Nevents+1).duration = 0; D.trials.events(Nevents+1).type = 'Manual'; D.PSD.handles.PLOT.e(Nevents+1) = 0; if Nevents > 0 D.trials.events(Nevents+1).value = D.trials.events(Nevents).value; else D.trials.events(Nevents+1).value = 0; end % Enable tools on selections set(handles.BUTTONS.sb2,'enable','on'); set(handles.BUTTONS.sb3,'enable','on'); % Update display updateDisp(D,2,Nevents+1) %% scroll through data upto next event %% (when playing with 'continuous' data) case 'goto' here = get(handles.BUTTONS.slider_step,'value'); x = [D.trials.events.time]'; xm = x.*D.Fsample; if varargin{3} == 0 ind = find(xm > here+1); else ind = find(xm < here-1); end if ~isempty(ind) if varargin{3} == 1 offset = round(max(xm(ind))); else offset = round(min(xm(ind))); end xlim0 = get(handles.axes,'xlim'); if ~isequal(xlim0,[1 D.Nsamples]) length_window = round(xlim0(2)-xlim0(1)); if offset < round(0.5*length_window) offset = round(0.5*length_window); set(handles.BUTTONS.slider_step,'value',1); elseif offset > D.Nsamples-round(0.5*length_window) offset = D.Nsamples-round(0.5*length_window)-1; set(handles.BUTTONS.slider_step,'value',get(handles.BUTTONS.slider_step,'max')); else set(handles.BUTTONS.slider_step,'value',offset); end xlim = [offset-round(0.5*length_window) offset+round(0.5*length_window)]; xlim(1) = max([xlim(1) 1]); xlim(2) = min([xlim(2) D.Nsamples]); D.PSD.VIZU.xlim = xlim; set(handles.BUTTONS.slider_step,'value',offset); updateDisp(D,4) end end end %% Edit callbacks (from spm_eeg_prep_ui) case 'edit' switch varargin{2} case 'prep' try rotate3d off;end spm_eeg_prep_ui; Finter = spm_figure('GetWin','Interactive'); D0 = D.PSD.D0; D = rmfield(D,'PSD'); if isempty(D.other) D.other = struct([]); end D.other(1).PSD = 1; D.other(1).D0 = D0; D = meeg(D); set(Finter, 'UserData', D); hc = get(Finter,'children'); delete(hc(end)); % get rid of 'file' uimenu... %... and add an 'OK' button: uicontrol(Finter,... 'style','pushbutton','string','OK',... 'callback','spm_eeg_review_callbacks(''get'',''prep'')',... 'tooltipstring','Update data informations in ''SPM Graphics'' window',... 'BusyAction','cancel',... 'Interruptible','off',... 'Tag','EEGprepUI'); spm_eeg_prep_ui('update_menu') delete(setdiff(findobj(Finter), [Finter; findobj(Finter,'Tag','EEGprepUI')])); figure(Finter); end end % Check changes in the meeg object if isstruct(D)&& isfield(D,'PSD') && ... isfield(D.PSD,'D0') d1 = rmfield(D,{'history','PSD'}); d0 = rmfield(D.PSD.D0,'history'); if isequal(d1,d0) set(D.PSD.handles.BUTTONS.pop1,... 'BackgroundColor',[0.8314 0.8157 0.7843]) else set(D.PSD.handles.BUTTONS.pop1,... 'BackgroundColor',[1 0.5 0.5]) end end spm('pointer','arrow'); drawnow expose %% Main update display function [] = updateDisp(D,flags,in) % This function updates the display of the data and events. if ~exist('flag','var') flag = 0; end if ~exist('in','var') in = []; end handles = D.PSD.handles; % Create intermediary display variables : events figure(handles.hfig) % Get current event try trN = D.PSD.trials.current; catch trN = 1; end if ~strcmp(D.PSD.VIZU.modality,'source') switch D.PSD.VIZU.modality case 'eeg' VIZU = D.PSD.EEG.VIZU; case 'meg' VIZU = D.PSD.MEG.VIZU; case 'megplanar' VIZU = D.PSD.MEGPLANAR.VIZU; case 'other' VIZU = D.PSD.other.VIZU; case 'info' return end switch D.PSD.VIZU.type case 1 % Create new data to display % - switch from scalp to standard displays % - switch from EEG/MEG/OTHER/info/inv if ismember(1,flags) % delete previous axes... try delete(D.PSD.handles.axes) delete(D.PSD.handles.gpa) delete(D.PSD.handles.BUTTONS.slider_step) end % gather info for core display function options.hp = handles.tabs.hp; %handles.hfig; options.Fsample = D.Fsample; options.timeOnset = D.timeOnset; options.M = VIZU.visu_scale*full(VIZU.montage.M); options.bad = [D.channels(VIZU.visuSensors(:)).bad]; if strcmp(D.PSD.type,'continuous') && ~isempty(D.trials.events) trN = 1; Nevents = length(D.trials.events); x1 = {D.trials.events(:).type}'; x2 = {D.trials.events(:).value}'; if ~iscellstr(x1) [y1,i1,j1] = unique(cell2mat(x1)); else [y1,i1,j1] = unique(x1); end if ~iscellstr(x2) [y2,i2,j2] = unique(cell2mat(x2)); else [y2,i2,j2] = unique(x2); end A = [j1(:),j2(:)]; [ya,ia,ja] = unique(A,'rows'); options.events = rmfield(D.trials.events,{'duration','value'}); for i=1:length(options.events) options.events(i).time = options.events(i).time.*D.Fsample;% +1; options.events(i).type = ja(i); end end if strcmp(D.PSD.type,'continuous') options.minSizeWindow = 200; try options.itw = round(D.PSD.VIZU.xlim(1):D.PSD.VIZU.xlim(2)); end elseif strcmp(D.PSD.type,'epoched') options.minSizeWindow = 20; try options.itw = round(D.PSD.VIZU.xlim(1):D.PSD.VIZU.xlim(2)); catch options.itw = 1:D.Nsamples; end else try options.itw = round(D.PSD.VIZU.xlim(1):D.PSD.VIZU.xlim(2)); catch options.itw = 1:D.Nsamples; end options.minSizeWindow = 20; end options.minY = min(VIZU.ylim)-eps; options.maxY = max(VIZU.ylim)+eps; options.ds = 5e2; options.pos1 = [0.08 0.11 0.86 0.79]; options.pos2 = [0.08 0.07 0.86 0.025]; options.pos3 = [0.08 0.02 0.86 0.02]; options.maxSizeWindow = 1e5; options.tag = 'plotEEG'; options.offset = VIZU.offset; options.ytick = VIZU.offset; options.yticklabel = VIZU.montage.clab; options.callback = ['spm_eeg_review_callbacks(''visu'',''checkXlim''',... ',get(ud.v.handles.axes,''xlim''))']; % Use file_array for 'continuous' data. if strcmp(D.PSD.type,'continuous') options.transpose = 1; ud = spm_DisplayTimeSeries(D.data.y,options); else ud = spm_DisplayTimeSeries(D.data.y(:,:,trN(1))',options); end % update D D.PSD.handles.axes = ud.v.handles.axes; D.PSD.handles.gpa = ud.v.handles.gpa; D.PSD.handles.BUTTONS.slider_step = ud.v.handles.hslider; D.PSD.handles.PLOT.p = ud.v.handles.hp; % Create uicontextmenu for events (if any) if isfield(options,'events') D.PSD.handles.PLOT.e = [ud.v.et(:).hp]; axes(D.PSD.handles.axes) for i=1:length(options.events) sc.currentEvent = i; sc.eventType = D.trials(trN(1)).events(i).type; sc.eventValue = D.trials(trN(1)).events(i).value; sc.N_select = Nevents; psd_defineMenuEvent(D.PSD.handles.PLOT.e(i),sc); end end for i=1:length(D.PSD.handles.PLOT.p) cmenu = uicontextmenu; uimenu(cmenu,'Label',['channel ',num2str(VIZU.visuSensors(i)),': ',VIZU.montage.clab{i}]); uimenu(cmenu,'Label',['type: ',D.channels(VIZU.visuSensors(i)).type]); uimenu(cmenu,'Label',['bad: ',num2str(D.channels(VIZU.visuSensors(i)).bad)],... 'callback',@switchBC,'userdata',i,... 'BusyAction','cancel',... 'Interruptible','off'); set(D.PSD.handles.PLOT.p(i),'uicontextmenu',cmenu); end set(D.PSD.handles.hfig,'userdata',D); spm_eeg_review_callbacks('visu','checkXlim',... get(D.PSD.handles.axes,'xlim')) end % modify events properties (delete,add,time,...) if ismember(2,flags) Nevents = length(D.trials.events); if Nevents < length(D.PSD.handles.PLOT.e) action = 'delete'; try,delete(D.PSD.handles.PLOT.e),end try,D.PSD.handles.PLOT.e = [];end else action = 'modify'; end col = lines; col = col(1:7,:); x1 = {D.trials.events(:).type}'; x2 = {D.trials.events(:).value}'; if ~iscellstr(x1) [y1,i1,j1] = unique(cell2mat(x1)); else [y1,i1,j1] = unique(x1); end if ~iscellstr(x2) [y2,i2,j2] = unique(cell2mat(x2)); else [y2,i2,j2] = unique(x2); end A = [j1(:),j2(:)]; [ya,ia,ja] = unique(A,'rows'); events = rmfield(D.trials.events,{'duration','value'}); switch action case 'delete' %spm_progress_bar('Init',Nevents,'Replacing events'); axes(D.PSD.handles.axes) for i=1:Nevents events(i).time = D.trials.events(i).time.*D.Fsample;% +1; events(i).type = ja(i); events(i).col = mod(events(i).type+7,7)+1; D.PSD.handles.PLOT.e(i) = plot(D.PSD.handles.axes,... events(i).time.*[1 1],... VIZU.ylim,... 'color',col(events(i).col,:),... 'userdata',i,... 'ButtonDownFcn','set(gco,''selected'',''on'')',... 'Clipping','on'); % Add events uicontextmenu sc.currentEvent = i; sc.eventType = D.trials(trN(1)).events(i).type; sc.eventValue = D.trials(trN(1)).events(i).value; sc.N_select = Nevents; psd_defineMenuEvent(D.PSD.handles.PLOT.e(i),sc); %spm_progress_bar('Set',i) end %spm_progress_bar('Clear') case 'modify' events(in).time = D.trials.events(in).time.*D.Fsample;% +1; events(in).type = ja(in); events(in).col = mod(events(in).type+7,7)+1; D.PSD.handles.PLOT.e(in) = plot(D.PSD.handles.axes,events(in).time.*[1 1],... VIZU.ylim,'color',col(events(in).col,:)); set(D.PSD.handles.PLOT.e(in),'userdata',in,... 'ButtonDownFcn','set(gco,''selected'',''on'')',... 'Clipping','on'); % Add events uicontextmenu sc.currentEvent = in; sc.eventType = D.trials(trN(1)).events(in).type; sc.eventValue = D.trials(trN(1)).events(in).value; sc.N_select = Nevents; psd_defineMenuEvent(D.PSD.handles.PLOT.e(in),sc); end set(handles.hfig,'userdata',D); end % modify scaling factor if ismember(3,flags) ud = get(D.PSD.handles.gpa,'userdata'); ud.v.M = VIZU.visu_scale*full(VIZU.montage.M); xw = floor(get(ud.v.handles.axes,'xlim')); xw(1) = max([1,xw(1)]); if ~ud.v.transpose My = ud.v.M*ud.y(xw(1):1:xw(2),:)'; else My = ud.v.M*ud.y(:,xw(1):1:xw(2)); end for i=1:ud.v.nc set(ud.v.handles.hp(i),'xdata',xw(1):1:xw(2),'ydata',My(i,:)+ud.v.offset(i)) end set(ud.v.handles.axes,'ylim',[ud.v.mi ud.v.ma],'xlim',xw); set(D.PSD.handles.gpa,'userdata',ud); set(handles.hfig,'userdata',D); end % modify plotted time window (goto, ...) if ismember(4,flags) ud = get(D.PSD.handles.gpa,'userdata'); xw = floor(D.PSD.VIZU.xlim); xw(1) = max([1,xw(1)]); if ~ud.v.transpose My = ud.v.M*ud.y(xw(1):1:xw(2),:)'; else My = ud.v.M*ud.y(:,xw(1):1:xw(2)); end for i=1:ud.v.nc set(ud.v.handles.hp(i),'xdata',xw(1):1:xw(2),'ydata',My(i,:)+ud.v.offset(i)) end set(ud.v.handles.axes,'ylim',[ud.v.mi ud.v.ma],'xlim',xw); set(ud.v.handles.pa,'xdata',[xw,fliplr(xw)]); set(ud.v.handles.lb,'xdata',[xw(1) xw(1)]); set(ud.v.handles.rb,'xdata',[xw(2) xw(2)]); sw = diff(xw); set(ud.v.handles.hslider,'value',mean(xw),... 'min',1+sw/2,'max',ud.v.nt-sw/2,... 'sliderstep',.1*[sw/(ud.v.nt-1) 4*sw/(ud.v.nt-1)]); set(handles.hfig,'userdata',D); end case 2 if strcmp(D.transform.ID,'time') Ntrials = length(trN); v_data = zeros(size(VIZU.montage.M,1),... size(D.data.y,2),Ntrials); for i=1:Ntrials v_datai = full(VIZU.montage.M)*D.data.y(:,:,trN(i)); v_datai = VIZU.visu_scale*(v_datai); v_data(:,:,i) = v_datai; end % Create graphical objects if absent if ~isfield(handles,'PLOT') miY = min(v_data(:)); maY = max(v_data(:)); if miY == 0 && maY == 0 miY = -eps; maY = eps; else miY = miY - miY.*1e-3; maY = maY + maY.*1e-3; end for i=1:length(VIZU.visuSensors) cmenu = uicontextmenu; uimenu(cmenu,'Label',['channel ',num2str(VIZU.visuSensors(i)),': ',VIZU.montage.clab{i}]); uimenu(cmenu,'Label',['type: ',D.channels(VIZU.visuSensors(i)).type]); uimenu(cmenu,'Label',['bad: ',num2str(D.channels(VIZU.visuSensors(i)).bad)],... 'callback',@switchBC,'userdata',i,... 'BusyAction','cancel',... 'Interruptible','off'); status = D.channels(VIZU.visuSensors(i)).bad; if ~status color = [1 1 1]; else color = 0.75*[1 1 1]; end set(handles.fra(i),'uicontextmenu',cmenu); set(handles.axes(i),'color',color,... 'ylim',[miY maY]./VIZU.visu_scale); handles.PLOT.p(:,i) = plot(handles.axes(i),squeeze(v_data(i,:,:)),... 'uicontextmenu',cmenu,'userdata',i,'tag','plotEEG'); end % Update axes limits and channel names D.PSD.handles = handles; else % scroll through data for i=1:length(VIZU.visuSensors) for j=1:Ntrials set(handles.PLOT.p(j,i),'ydata',v_data(i,:,j)); end end end % Update scale axes dz = (abs(diff(get(handles.axes(1),'ylim'))))./VIZU.visu_scale; set(handles.scale,'yticklabel',num2str(dz)); set(handles.hfig,'userdata',D); axes(D.PSD.handles.scale) else %---- Time-frequency data !! ----% for i=1:length(VIZU.visuSensors) cmenu = uicontextmenu; uimenu(cmenu,'Label',['channel ',num2str(VIZU.visuSensors(i)),': ',VIZU.montage.clab{i}]); uimenu(cmenu,'Label',['type: ',D.channels(VIZU.visuSensors(i)).type]); % uimenu(cmenu,'Label',['bad: ',num2str(D.channels(VIZU.visuSensors(i)).bad)],... % 'callback',@switchBC,'userdata',i,... % 'BusyAction','cancel',... % 'Interruptible','off'); status = D.channels(VIZU.visuSensors(i)).bad; if ~status color = [1 1 1]; else color = 0.75*[1 1 1]; end datai = squeeze(D.data.y(VIZU.visuSensors(i),:,:,trN(1))); miY = min(datai(:)); maY = max(datai(:)); if any(size(datai)==1) D.PSD.handles.PLOT.im(i) = plot(datai,... 'parent',handles.axes(i),... 'tag','plotEEG',... 'userdata',i,... 'hittest','off'); set(handles.axes(i),... 'ylim',[miY maY]); else D.PSD.handles.PLOT.im(i) = image(datai,... 'parent',handles.axes(i),... 'CDataMapping','scaled',... 'tag','plotEEG',... 'userdata',i,... 'hittest','off'); end set(handles.fra(i),'uicontextmenu',cmenu); end colormap(jet) % This normalizes colorbars across channels and trials: for i=1:length(VIZU.visuSensors) caxis(handles.axes(i),VIZU.ylim); end set(handles.hfig,'userdata',D); end end else % source space % get model/trial info VIZU = D.PSD.source.VIZU; isInv = VIZU.isInv; Ninv = length(isInv); invN = VIZU.isInv(D.PSD.source.VIZU.current); F = VIZU.F; ID = VIZU.ID; model = D.other.inv{invN}.inverse; t0 = get(D.PSD.handles.BUTTONS.slider_step,'value'); tmp = (model.pst-t0).^2; indTime = find(tmp==min(tmp)); gridTime = model.pst(indTime); try % simple time scroll % update time line set(VIZU.lineTime,'xdata',[gridTime;gridTime]); % update mesh's texture tex = VIZU.J(:,indTime); set(D.PSD.handles.mesh,'facevertexcdata',tex) set(D.PSD.handles.BUTTONS.slider_step,'value',gridTime) catch % VIZU.lineTime deleted -> switch to another source recon % get the inverse model info str = getInfo4Inv(D,invN); set(D.PSD.handles.infoText,'string',str); if Ninv>1 if isnan(ID(invN)) xF = find(isnan(ID)); else xF = find(abs(ID-ID(invN))<eps); end if length(xF)>1 D.PSD.handles.hbar = bar(D.PSD.handles.BMCplot,... xF ,F(xF)-min(F(xF)),... 'barwidth',0.5,... 'FaceColor',0.5*[1 1 1],... 'visible','off',... 'tag','plotEEG'); D.PSD.handles.BMCcurrent = plot(D.PSD.handles.BMCplot,... find(xF==invN),0,'ro',... 'visible','off',... 'tag','plotEEG'); set(D.PSD.handles.BMCplot,... 'xtick',xF,... 'xticklabel',D.PSD.source.VIZU.labels(xF),... 'xlim',[0,length(xF)+1]); drawnow else cla(D.PSD.handles.BMCplot); set(D.PSD.handles.BMCplot,... 'xtick',[],... 'xticklabel',{}); end end % get model/trial time series D.PSD.source.VIZU.J = zeros(model.Nd,size(model.T,1)); D.PSD.source.VIZU.J(model.Is,:) = model.J{trN(1)}*model.T'; D.PSD.source.VIZU.miJ = min(min(D.PSD.source.VIZU.J)); D.PSD.source.VIZU.maJ = max(max(D.PSD.source.VIZU.J)); % modify mesh/texture and add spheres... tex = D.PSD.source.VIZU.J(:,indTime); set(D.PSD.handles.axes,'CLim',... [D.PSD.source.VIZU.miJ D.PSD.source.VIZU.maJ]); set(D.PSD.handles.mesh,... 'Vertices',D.other.inv{invN}.mesh.tess_mni.vert,... 'Faces',D.other.inv{invN}.mesh.tess_mni.face,... 'facevertexcdata',tex); try; delete(D.PSD.handles.dipSpheres);end if isfield(D.other.inv{invN}.inverse,'dipfit') ||... ~isequal(D.other.inv{invN}.inverse.xyz,zeros(1,3)) try xyz = D.other.inv{invN}.inverse.dipfit.Lpos; radius = D.other.inv{invN}.inverse.dipfit.radius; catch xyz = D.other.inv{invN}.inverse.xyz'; radius = D.other.inv{invN}.inverse.rad(1); end Np = size(xyz,2); [x,y,z] = sphere(20); axes(D.PSD.handles.axes) for i=1:Np D.PSD.handles.dipSpheres(i) = patch(... surf2patch(x.*radius+xyz(1,i),... y.*radius+xyz(2,i),z.*radius+xyz(3,i))); set(D.PSD.handles.dipSpheres(i),'facecolor',[1 1 1],... 'edgecolor','none','facealpha',0.5,... 'tag','dipSpheres'); end end % modify time series plot itself switch D.PSD.source.VIZU.timeCourses case 1 Jp(1,:) = min(D.PSD.source.VIZU.J,[],1); Jp(2,:) = max(D.PSD.source.VIZU.J,[],1); D.PSD.source.VIZU.plotTC = plot(D.PSD.handles.axes2,... model.pst,Jp','color',0.5*[1 1 1]); set(D.PSD.handles.axes2,'hittest','off') % Add virtual electrode % try % ve = D.PSD.source.VIZU.ve; % catch [mj ve] = max(max(abs(D.PSD.source.VIZU.J),[],2)); D.PSD.source.VIZU.ve =ve; % end Jve = D.PSD.source.VIZU.J(D.PSD.source.VIZU.ve,:); set(D.PSD.handles.axes2,'nextplot','add') try qC = model.qC(ve).*diag(model.qV)'; ci = 1.64*sqrt(qC); D.PSD.source.VIZU.pve2 = plot(D.PSD.handles.axes2,... model.pst,Jve +ci,'b:',model.pst,Jve -ci,'b:'); end D.PSD.source.VIZU.pve = plot(D.PSD.handles.axes2,... model.pst,Jve,'color','b'); set(D.PSD.handles.axes2,'nextplot','replace') otherwise % this is meant to be extended for displaying something % else than just J (e.g. J^2, etc...) end grid(D.PSD.handles.axes2,'on') box(D.PSD.handles.axes2,'on') xlabel(D.PSD.handles.axes2,'peri-stimulus time (ms)') ylabel(D.PSD.handles.axes2,'sources intensity') % add time line repair set(D.PSD.handles.axes2,... 'ylim',[D.PSD.source.VIZU.miJ,D.PSD.source.VIZU.maJ],... 'xlim',[D.PSD.source.VIZU.pst(1),D.PSD.source.VIZU.pst(end)],... 'nextplot','add'); D.PSD.source.VIZU.lineTime = line('parent',D.PSD.handles.axes2,... 'xdata',[gridTime;gridTime],... 'ydata',[D.PSD.source.VIZU.miJ,D.PSD.source.VIZU.maJ]); set(D.PSD.handles.axes2,'nextplot','replace',... 'tag','plotEEG'); % change time slider value if out of bounds set(D.PSD.handles.BUTTONS.slider_step,'value',gridTime) % update data structure set(handles.hfig,'userdata',D); end end %% Switch 'bad channel' status function [] = switchBC(varargin) ind = get(gcbo,'userdata'); D = get(gcf,'userdata'); switch D.PSD.VIZU.modality case 'eeg' I = D.PSD.EEG.I; VIZU = D.PSD.EEG.VIZU; case 'meg' I = D.PSD.MEG.I; VIZU = D.PSD.MEG.VIZU; case 'megplanar' I = D.PSD.MEGPLANAR.I; VIZU = D.PSD.MEGPLANAR.VIZU; case 'other' I = D.PSD.other.I; VIZU = D.PSD.other.VIZU; end status = D.channels(I(ind)).bad; if status status = 0; lineStyle = '-'; color = [1 1 1]; else status = 1; lineStyle = ':'; color = 0.75*[1 1 1]; end D.channels(I(ind)).bad = status; set(D.PSD.handles.hfig,'userdata',D); cmenu = uicontextmenu; uimenu(cmenu,'Label',['channel ',num2str(I(ind)),': ',VIZU.montage.clab{ind}]); uimenu(cmenu,'Label',['type: ',D.channels(I(ind)).type]); uimenu(cmenu,'Label',['bad: ',num2str(status)],... 'callback',@switchBC,'userdata',ind,... 'BusyAction','cancel',... 'Interruptible','off'); switch D.PSD.VIZU.type case 1 set(D.PSD.handles.PLOT.p(ind),'uicontextmenu',cmenu,... 'lineStyle',lineStyle); % ud = get(D.PSD.handles.axes); % ud.v.bad(ind) = status; % set(D.PSD.handles.axes,'userdata',ud); case 2 set(D.PSD.handles.axes(ind),'Color',color); set(D.PSD.handles.fra(ind),'uicontextmenu',cmenu); set(D.PSD.handles.PLOT.p(:,ind),'uicontextmenu',cmenu); axes(D.PSD.handles.scale) end d1 = rmfield(D,{'history','PSD'}); d0 = rmfield(D.PSD.D0,'history'); if isequal(d1,d0) set(D.PSD.handles.BUTTONS.pop1,... 'BackgroundColor',[0.8314 0.8157 0.7843]) else set(D.PSD.handles.BUTTONS.pop1,... 'BackgroundColor',[1 0.5 0.5]) end %% Define menu event function [] = psd_defineMenuEvent(re,sc) % This funcion defines the uicontextmenu associated to the selected events. % All the actions which are accessible using the right mouse click on the % selected events are a priori defined here. % Highlighting the selection set(re,'buttondownfcn','spm_eeg_review_callbacks(''menuEvent'',''click'',0)'); cmenu = uicontextmenu; set(re,'uicontextmenu',cmenu); % Display basic info info = ['--- EVENT #',num2str(sc.currentEvent),' /',... num2str(sc.N_select),' (type= ',sc.eventType,', value= ',num2str(sc.eventValue),') ---']; uimenu(cmenu,'label',info,'enable','off'); % Properties editor uimenu(cmenu,'separator','on','label','Edit event properties',... 'callback','spm_eeg_review_callbacks(''menuEvent'',''EventProperties'',0)',... 'BusyAction','cancel',... 'Interruptible','off'); % Go to next event of the same type hc = uimenu(cmenu,'label','Go to iso-type closest event'); uimenu(hc,'label','forward','callback','spm_eeg_review_callbacks(''menuEvent'',''goto'',1)',... 'BusyAction','cancel',... 'Interruptible','off'); uimenu(hc,'label','backward','callback','spm_eeg_review_callbacks(''menuEvent'',''goto'',0)',... 'BusyAction','cancel',... 'Interruptible','off'); % Delete action uimenu(cmenu,'label','Delete event','callback','spm_eeg_review_callbacks(''menuEvent'',''deleteEvent'',0)',... 'BusyAction','cancel',... 'Interruptible','off'); %% Get info about source reconstruction function str = getInfo4Inv(D,invN) str{1} = ['Label: ',D.other.inv{invN}.comment{1}]; try str{2} = ['Date: ',D.other.inv{invN}.date(1,:),', ',D.other.inv{invN}.date(2,:)]; catch str{2} = ['Date: ',D.other.inv{invN}.date(1,:)]; end if isfield(D.other.inv{invN}.inverse, 'modality') mod0 = D.other.inv{invN}.inverse.modality; if ischar(mod0) mod = mod0; else mod = []; for i = 1:length(mod0) mod = [mod,' ',mod0{i}]; end end str{3} = ['Modality: ',mod]; else % For backward compatibility try mod0 = D.other.inv{invN}.modality; if ischar(mod0) mod = mod0; else mod = []; for i = 1:length(mod0) mod = [mod,' ',mod0{i}]; end end str{3} = ['Modality: ',mod]; catch str{3} = 'Modality: ?'; end end if strcmp(D.other.inv{invN}.method,'Imaging') source = 'distributed'; else source = 'equivalent current dipoles'; end str{4} = ['Source model: ',source,' (',D.other.inv{invN}.method,')']; try str{5} = ['Nb of included dipoles: ',... num2str(length(D.other.inv{invN}.inverse.Is)),... ' / ',num2str(D.other.inv{invN}.inverse.Nd)]; catch str{5} = 'Nb of included dipoles: undefined'; end try str{6} = ['Inversion method: ',D.other.inv{invN}.inverse.type]; catch str{6} = 'Inversion method: undefined'; end try try str{7} = ['Time window: ',... num2str(floor(D.other.inv{invN}.inverse.woi(1))),... ' to ',num2str(floor(D.other.inv{invN}.inverse.woi(2))),' ms']; catch str{7} = ['Time window: ',... num2str(floor(D.other.inv{invN}.inverse.pst(1))),... ' to ',num2str(floor(D.other.inv{invN}.inverse.pst(end))),' ms']; end catch str{7} = 'Time window: undefined'; end try if D.other.inv{invN}.inverse.Han han = 'yes'; else han = 'no'; end str{8} = ['Hanning: ',han]; catch str{8} = ['Hanning: undefined']; end try if isfield(D.other.inv{invN}.inverse,'lpf') str{9} = ['Band pass filter: ',num2str(D.other.inv{invN}.inverse.lpf),... ' to ',num2str(D.other.inv{invN}.inverse.hpf), 'Hz']; else str{9} = ['Band pass filter: default']; end catch str{9} = 'Band pass filter: undefined'; end try str{10} = ['Nb of temporal modes: ',... num2str(size(D.other.inv{invN}.inverse.T,2))]; catch str{10} = 'Nb of temporal modes: undefined'; end try str{11} = ['Variance accounted for: ',... num2str(D.other.inv{invN}.inverse.R2),' %']; catch str{11} = 'Variance accounted for: undefined'; end try str{12} = ['Log model evidence (free energy): ',... num2str(D.other.inv{invN}.inverse.F)]; catch str{12} = 'Log model evidence (free energy): undefined'; end %% Get data info function str = getInfo4Data(D) str{1} = ['File name: ',fullfile(D.path,D.fname)]; str{2} = ['Type: ',D.type]; if ~strcmp(D.transform.ID,'time') str{2} = [str{2},' (time-frequency data, from ',... num2str(D.transform.frequencies(1)),'Hz to ',... num2str(D.transform.frequencies(end)),'Hz']; if strcmp(D.transform.ID,'TF') str{2} = [str{2},')']; else str{2} = [str{2},': phase)']; end end delta_t = D.Nsamples./D.Fsample; gridTime = (1:D.Nsamples)./D.Fsample + D.timeOnset; str{3} = ['Number of time samples: ',num2str(D.Nsamples),' (',num2str(delta_t),' sec, from ',... num2str(gridTime(1)),'s to ',num2str(gridTime(end)),'s)']; str{4} = ['Time sampling frequency: ',num2str(D.Fsample),' Hz']; nb = length(find([D.channels.bad])); str{5} = ['Number of channels: ',num2str(length(D.channels)),' (',num2str(nb),' bad channels)']; nb = length(find([D.trials.bad])); if strcmp(D.type,'continuous') if isfield(D.trials(1),'events') str{6} = ['Number of events: ',num2str(length(D.trials(1).events))]; else str{6} = ['Number of events: ',num2str(0)]; end else str{6} = ['Number of trials: ',num2str(length(D.trials)),' (',num2str(nb),' bad trials)']; end % try,str{7} = ['Time onset: ',num2str(D.timeOnset),' sec'];end %% extracting data from spm_uitable java object function [D] = getUItable(D) ht = D.PSD.handles.infoUItable; cn = get(ht,'columnNames'); table = get(ht,'data'); % !! there is some redundancy here --> to be optimized... table2 = spm_uitable('get',ht); emptyTable = 0; try emptyTable = isempty(cell2mat(table2)); end if length(cn) == 5 % channel info if ~emptyTable nc = length(D.channels); for i=1:nc if ~isempty(table(i,1)) D.channels(i).label = table(i,1); end if ~isempty(table(i,2)) switch lower(table(i,2)) case 'eeg' D.channels(i).type = 'EEG'; case 'meg' D.channels(i).type = 'MEG'; case 'megplanar' D.channels(i).type = 'MEGPLANAR'; case 'megmag' D.channels(i).type = 'MEGMAG'; case 'meggrad' D.channels(i).type = 'MEGGRAD'; case 'refmag' D.channels(i).type = 'REFMAG'; case 'refgrad' D.channels(i).type = 'REFGRAD'; case 'lfp' D.channels(i).type = 'LFP'; case 'eog' D.channels(i).type = 'EOG'; case 'veog' D.channels(i).type = 'VEOG'; case 'heog' D.channels(i).type = 'HEOG'; case 'other' D.channels(i).type = 'Other'; otherwise D.channels(i).type = 'Other'; end end if ~isempty(table(i,3)) switch lower(table(i,3)) case 'yes' D.channels(i).bad = 1; otherwise D.channels(i).bad = 0; end end if ~isempty(table(i,5)) D.channels(i).units = table(i,5); end end % Find indices of channel types (these might have been changed) D.PSD.EEG.I = find(strcmp('EEG',{D.channels.type})); D.PSD.MEG.I = sort([find(strcmp('MEGMAG',{D.channels.type})),... find(strcmp('MEGGRAD',{D.channels.type})) find(strcmp('MEG',{D.channels.type}))]); D.PSD.MEGPLANAR.I = find(strcmp('MEGPLANAR',{D.channels.type})); D.PSD.other.I = setdiff(1:nc,[D.PSD.EEG.I(:);D.PSD.MEG.I(:)]); if ~isempty(D.PSD.EEG.I) [out] = spm_eeg_review_callbacks('get','VIZU',D.PSD.EEG.I); D.PSD.EEG.VIZU = out; else D.PSD.EEG.VIZU = []; end if ~isempty(D.PSD.MEG.I) [out] = spm_eeg_review_callbacks('get','VIZU',D.PSD.MEG.I); D.PSD.MEG.VIZU = out; else D.PSD.MEG.VIZU = []; end if ~isempty(D.PSD.MEGPLANAR.I) [out] = spm_eeg_review_callbacks('get','VIZU',D.PSD.MEGPLANAR.I); D.PSD.MEGPLANAR.VIZU = out; else D.PSD.MEGPLANAR.VIZU = []; end if ~isempty(D.PSD.other.I) [out] = spm_eeg_review_callbacks('get','VIZU',D.PSD.other.I); D.PSD.other.VIZU = out; else D.PSD.other.VIZU = []; end else end elseif length(cn) == 7 if strcmp(D.type,'continuous') if ~emptyTable ne = length(D.trials(1).events); D.trials = rmfield(D.trials,'events'); j = 0; for i=1:ne if isempty(table(i,1))&&... isempty(table(i,2))&&... isempty(table(i,3))&&... isempty(table(i,4))&&... isempty(table(i,5))&&... isempty(table(i,6))&&... isempty(table(i,7)) % Row (ie event) has been cleared/deleted else j = j+1; if ~isempty(table(i,2)) D.trials(1).events(j).type = table(i,2); end if ~isempty(table(i,3)) D.trials(1).events(j).value = str2double(table(i,3)); end if ~isempty(table(i,4)) D.trials(1).events(j).duration = str2double(table(i,4)); end if ~isempty(table(i,5)) D.trials(1).events(j).time = str2double(table(i,5)); end end end else D.trials(1).events = []; delete(ht); end else if ~emptyTable nt = length(D.trials); for i=1:nt if ~isempty(table(i,1)) D.trials(i).label = table(i,1); end ne = length(D.trials(i).events); if ne<2 if ~isempty(table(i,2)) D.trials(i).events.type = table(i,2); end if ~isempty(table(i,3)) D.trials(i).events.value = table(i,3);%str2double(table(i,3)); end end if ~isempty(table(i,6)) switch lower(table(i,6)) case 'yes' D.trials(i).bad = 1; otherwise D.trials(i).bad = 0; end end if D.trials(i).bad str = ' (bad)'; else str = ' (not bad)'; end D.PSD.trials.TrLabels{i} = ['Trial ',num2str(i),': ',D.trials(i).label,str]; end else end end elseif length(cn) == 3 if ~emptyTable nt = length(D.trials); for i=1:nt if ~isempty(table(i,1)) D.trials(i).label = table(i,1); end D.PSD.trials.TrLabels{i} = ['Trial ',num2str(i),' (average of ',... num2str(D.trials(i).repl),' events): ',D.trials(i).label]; end else end elseif length(cn) == 12 % source reconstructions if ~emptyTable if ~~D.PSD.source.VIZU.current isInv = D.PSD.source.VIZU.isInv; inv = D.other.inv; Ninv = length(inv); D.other = rmfield(D.other,'inv'); oV = D.PSD.source.VIZU; D.PSD.source = rmfield(D.PSD.source,'VIZU'); pst = []; j = 0; % counts the total number of final inverse solutions in D k = 0; % counts the number of original 'imaging' inv sol l = 0; % counts the number of final 'imaging' inv sol for i=1:Ninv if ~ismember(i,isInv) % not 'imaging' inverse solutions j = j+1; D.other.inv{j} = inv{i}; else % 'imaging' inverse solutions k = k+1; if isempty(table(k,1))&&... isempty(table(k,2))&&... isempty(table(k,3))&&... isempty(table(k,4))&&... isempty(table(k,5))&&... isempty(table(k,6))&&... isempty(table(k,7))&&... isempty(table(k,8))&&... isempty(table(k,9))&&... isempty(table(k,10))&&... isempty(table(k,11))&&... isempty(table(k,12)) % Row (ie source reconstruction) has been cleared/deleted % => erase inverse solution from D struct else j = j+1; l = l+1; pst = [pst;inv{isInv(k)}.inverse.pst(:)]; D.other.inv{j} = inv{isInv(k)}; D.other.inv{j}.comment{1} = table(k,1); D.PSD.source.VIZU.isInv(l) = j; D.PSD.source.VIZU.F(l) = oV.F(k); D.PSD.source.VIZU.labels{l} = table(k,1); D.PSD.source.VIZU.callbacks(l) = oV.callbacks(k); end end end end if l >= 1 D.other.val = l; D.PSD.source.VIZU.current = 1; D.PSD.source.VIZU.pst = unique(pst); D.PSD.source.VIZU.timeCourses = 1; else try D.other = rmfield(D.other,'val');end D.PSD.source.VIZU.current = 0; end else try D.other = rmfield(D.other,'val');end try D.other = rmfield(D.other,'inv');end D.PSD.source.VIZU.current = 0; D.PSD.source.VIZU.isInv = []; D.PSD.source.VIZU.pst = []; D.PSD.source.VIZU.F = []; D.PSD.source.VIZU.labels = []; D.PSD.source.VIZU.callbacks = []; D.PSD.source.VIZU.timeCourses = []; delete(ht) end end set(D.PSD.handles.hfig,'userdata',D) spm_eeg_review_callbacks('visu','main','info',D.PSD.VIZU.info)
github
philippboehmsturm/antx-master
spm_imatrix.m
.m
antx-master/xspm8/spm_imatrix.m
1,545
utf_8
6bd968e6c68acf278802d6e9a58610fa
function P = spm_imatrix(M) % returns the parameters for creating an affine transformation % FORMAT P = spm_imatrix(M) % M - Affine transformation matrix % P - Parameters (see spm_matrix for definitions) %___________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner & Stefan Kiebel % $Id: spm_imatrix.m 1143 2008-02-07 19:33:33Z spm $ % Translations and zooms %----------------------------------------------------------------------- R = M(1:3,1:3); C = chol(R'*R); P = [M(1:3,4)' 0 0 0 diag(C)' 0 0 0]; if det(R)<0, P(7)=-P(7);end % Fix for -ve determinants % Shears %----------------------------------------------------------------------- C = diag(diag(C))\C; P(10:12) = C([4 7 8]); R0 = spm_matrix([0 0 0 0 0 0 P(7:12)]); R0 = R0(1:3,1:3); R1 = R/R0; % This just leaves rotations in matrix R1 %----------------------------------------------------------------------- %[ c5*c6, c5*s6, s5] %[-s4*s5*c6-c4*s6, -s4*s5*s6+c4*c6, s4*c5] %[-c4*s5*c6+s4*s6, -c4*s5*s6-s4*c6, c4*c5] P(5) = asin(rang(R1(1,3))); if (abs(P(5))-pi/2)^2 < 1e-9, P(4) = 0; P(6) = atan2(-rang(R1(2,1)), rang(-R1(3,1)/R1(1,3))); else c = cos(P(5)); P(4) = atan2(rang(R1(2,3)/c), rang(R1(3,3)/c)); P(6) = atan2(rang(R1(1,2)/c), rang(R1(1,1)/c)); end; return; % There may be slight rounding errors making b>1 or b<-1. function a = rang(b) a = min(max(b, -1), 1); return;
github
philippboehmsturm/antx-master
spm_affreg.m
.m
antx-master/xspm8/spm_affreg.m
18,516
utf_8
0861aa4a29a7aac70856750d2c0af6ff
function [M,scal] = spm_affreg(VG,VF,flags,M,scal) % Affine registration using least squares. % FORMAT [M,scal] = spm_affreg(VG,VF,flags,M0,scal0) % % VG - Vector of template volumes. % VF - Source volume. % flags - a structure containing various options. The fields are: % WG - Weighting volume for template image(s). % WF - Weighting volume for source image % Default to []. % sep - Approximate spacing between sampled points (mm). % Defaults to 5. % regtype - regularisation type. Options are: % 'none' - no regularisation % 'rigid' - almost rigid body % 'subj' - inter-subject registration (default). % 'mni' - registration to ICBM templates % globnorm - Global normalisation flag (1) % M0 - (optional) starting estimate. Defaults to eye(4). % scal0 - (optional) starting estimate. % % M - affine transform, such that voxels in VF map to those in % VG by VG.mat\M*VF.mat % scal - scaling factors for VG % % When only one template is used, then the cost function is approximately % symmetric, although a linear combination of templates can be used. % Regularisation is based on assuming a multi-normal distribution for the % elements of the Henckey Tensor. See: % "Non-linear Elastic Deformations". R. W. Ogden (Dover), 1984. % Weighting for the regularisation is determined approximately according % to: % "Incorporating Prior Knowledge into Image Registration" % J. Ashburner, P. Neelin, D. L. Collins, A. C. Evans & K. J. Friston. % NeuroImage 6:344-352 (1997). % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_affreg.m 4152 2011-01-11 14:13:35Z volkmar $ if nargin<5, scal = ones(length(VG),1); end; if nargin<4, M = eye(4); end; def_flags = struct('sep',5, 'regtype','subj','WG',[],'WF',[],'globnorm',1,'debug',0); if nargin < 2 || ~isstruct(flags), flags = def_flags; else fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags.(fnms{i}) = def_flags.(fnms{i}); end; end; end; % Check to ensure inputs are valid... % --------------------------------------------------------------- if length(VF)>1, error('Can not use more than one source image'); end; if ~isempty(flags.WF), if length(flags.WF)>1, error('Can only use one source weighting image'); end; if any(any((VF.mat-flags.WF.mat).^2>1e-8)), error('Source and its weighting image must have same orientation'); end; if any(any(VF.dim(1:3)-flags.WF.dim(1:3))), error('Source and its weighting image must have same dimensions'); end; end; if ~isempty(flags.WG), if length(flags.WG)>1, error('Can only use one template weighting image'); end; tmp = reshape(cat(3,VG(:).mat,flags.WG.mat),16,length(VG)+length(flags.WG)); else tmp = reshape(cat(3,VG(:).mat),16,length(VG)); end; if any(any(diff(tmp,1,2).^2>1e-8)), error('Reference images must all have the same orientation'); end; if ~isempty(flags.WG), tmp = cat(1,VG(:).dim,flags.WG.dim); else tmp = cat(1,VG(:).dim); end; if any(any(diff(tmp(:,1:3),1,1))), error('Reference images must all have the same dimensions'); end; % --------------------------------------------------------------- % Generate points to sample from, adding some jitter in order to % make the cost function smoother. % --------------------------------------------------------------- rand('state',0); % want the results to be consistant. dg = VG(1).dim(1:3); df = VF(1).dim(1:3); if length(VG)==1, skip = sqrt(sum(VG(1).mat(1:3,1:3).^2)).^(-1)*flags.sep; [x1,x2,x3]=ndgrid(1:skip(1):dg(1)-.5, 1:skip(2):dg(2)-.5, 1:skip(3):dg(3)-.5); x1 = x1 + rand(size(x1))*0.5; x1 = x1(:); x2 = x2 + rand(size(x2))*0.5; x2 = x2(:); x3 = x3 + rand(size(x3))*0.5; x3 = x3(:); end; skip = sqrt(sum(VF(1).mat(1:3,1:3).^2)).^(-1)*flags.sep; [y1,y2,y3]=ndgrid(1:skip(1):df(1)-.5, 1:skip(2):df(2)-.5, 1:skip(3):df(3)-.5); y1 = y1 + rand(size(y1))*0.5; y1 = y1(:); y2 = y2 + rand(size(y2))*0.5; y2 = y2(:); y3 = y3 + rand(size(y3))*0.5; y3 = y3(:); % --------------------------------------------------------------- if flags.globnorm, % Scale all images approximately equally % --------------------------------------------------------------- for i=1:length(VG), VG(i).pinfo(1:2,:) = VG(i).pinfo(1:2,:)/spm_global(VG(i)); end; VF(1).pinfo(1:2,:) = VF(1).pinfo(1:2,:)/spm_global(VF(1)); end; % --------------------------------------------------------------- if length(VG)==1, [G,dG1,dG2,dG3] = spm_sample_vol(VG(1),x1,x2,x3,1); if ~isempty(flags.WG), WG = abs(spm_sample_vol(flags.WG,x1,x2,x3,1))+eps; WG(~isfinite(WG)) = 1; end; end; [F,dF1,dF2,dF3] = spm_sample_vol(VF(1),y1,y2,y3,1); if ~isempty(flags.WF), WF = abs(spm_sample_vol(flags.WF,y1,y2,y3,1))+eps; WF(~isfinite(WF)) = 1; end; % --------------------------------------------------------------- n_main_its = 0; ss = Inf; W = [Inf Inf Inf]; est_smo = 1; % --------------------------------------------------------------- for iter=1:256, pss = ss; p0 = [0 0 0 0 0 0 1 1 1 0 0 0]; % Initialise the cost function and its 1st and second derivatives % --------------------------------------------------------------- n = 0; ss = 0; Beta = zeros(12+length(VG),1); Alpha = zeros(12+length(VG)); if length(VG)==1, % Make the cost function symmetric % --------------------------------------------------------------- % Build a matrix to rotate the derivatives by, converting from % derivatives w.r.t. changes in the overall affine transformation % matrix, to derivatives w.r.t. the parameters p. % --------------------------------------------------------------- dt = 0.0001; R = eye(13); MM0 = inv(VG.mat)*inv(spm_matrix(p0))*VG.mat; for i1=1:12, p1 = p0; p1(i1) = p1(i1)+dt; MM1 = (inv(VG.mat)*inv(spm_matrix(p1))*(VG.mat)); R(1:12,i1) = reshape((MM1(1:3,:)-MM0(1:3,:))/dt,12,1); end; % --------------------------------------------------------------- [t1,t2,t3] = coords((M*VF(1).mat)\VG(1).mat,x1,x2,x3); msk = find((t1>=1 & t1<=df(1) & t2>=1 & t2<=df(2) & t3>=1 & t3<=df(3))); if length(msk)<32, error_message; end; t1 = t1(msk); t2 = t2(msk); t3 = t3(msk); t = spm_sample_vol(VF(1), t1,t2,t3,1); % Get weights % --------------------------------------------------------------- if ~isempty(flags.WF) || ~isempty(flags.WG), if isempty(flags.WF), wt = WG(msk); else wt = spm_sample_vol(flags.WF(1), t1,t2,t3,1)+eps; wt(~isfinite(wt)) = 1; if ~isempty(flags.WG), wt = 1./(1./wt + 1./WG(msk)); end; end; wt = sparse(1:length(wt),1:length(wt),wt); else % wt = speye(length(msk)); wt = []; end; % --------------------------------------------------------------- clear t1 t2 t3 % Update the cost function and its 1st and second derivatives. % --------------------------------------------------------------- [AA,Ab,ss1,n1] = costfun(x1,x2,x3,dG1,dG2,dG3,msk,scal^(-2)*t,G(msk)-(1/scal)*t,wt); Alpha = Alpha + R'*AA*R; Beta = Beta + R'*Ab; ss = ss + ss1; n = n + n1; % t = G(msk) - (1/scal)*t; end; if 1, % Build a matrix to rotate the derivatives by, converting from % derivatives w.r.t. changes in the overall affine transformation % matrix, to derivatives w.r.t. the parameters p. % --------------------------------------------------------------- dt = 0.0001; R = eye(12+length(VG)); MM0 = inv(M*VF.mat)*spm_matrix(p0)*M*VF.mat; for i1=1:12, p1 = p0; p1(i1) = p1(i1)+dt; MM1 = (inv(M*VF.mat)*spm_matrix(p1)*M*VF.mat); R(1:12,i1) = reshape((MM1(1:3,:)-MM0(1:3,:))/dt,12,1); end; % --------------------------------------------------------------- [t1,t2,t3] = coords(VG(1).mat\M*VF(1).mat,y1,y2,y3); msk = find((t1>=1 & t1<=dg(1) & t2>=1 & t2<=dg(2) & t3>=1 & t3<=dg(3))); if length(msk)<32, error_message; end; if length(msk)<32, error_message; end; t1 = t1(msk); t2 = t2(msk); t3 = t3(msk); t = zeros(length(t1),length(VG)); % Get weights % --------------------------------------------------------------- if ~isempty(flags.WF) || ~isempty(flags.WG), if isempty(flags.WG), wt = WF(msk); else wt = spm_sample_vol(flags.WG(1), t1,t2,t3,1)+eps; wt(~isfinite(wt)) = 1; if ~isempty(flags.WF), wt = 1./(1./wt + 1./WF(msk)); end; end; wt = sparse(1:length(wt),1:length(wt),wt); else wt = speye(length(msk)); end; % --------------------------------------------------------------- if est_smo, % Compute derivatives of residuals in the space of F % --------------------------------------------------------------- [ds1,ds2,ds3] = transform_derivs(VG(1).mat\M*VF(1).mat,dF1(msk),dF2(msk),dF3(msk)); for i=1:length(VG), [t(:,i),dt1,dt2,dt3] = spm_sample_vol(VG(i), t1,t2,t3,1); ds1 = ds1 - dt1*scal(i); clear dt1 ds2 = ds2 - dt2*scal(i); clear dt2 ds3 = ds3 - dt3*scal(i); clear dt3 end; dss = [ds1'*wt*ds1 ds2'*wt*ds2 ds3'*wt*ds3]; clear ds1 ds2 ds3 else for i=1:length(VG), t(:,i)= spm_sample_vol(VG(i), t1,t2,t3,1); end; end; clear t1 t2 t3 % Update the cost function and its 1st and second derivatives. % --------------------------------------------------------------- [AA,Ab,ss2,n2] = costfun(y1,y2,y3,dF1,dF2,dF3,msk,-t,F(msk)-t*scal,wt); Alpha = Alpha + R'*AA*R; Beta = Beta + R'*Ab; ss = ss + ss2; n = n + n2; end; if est_smo, % Compute a smoothness correction from the residuals and their % derivatives. This is analagous to the one used in: % "Analysis of fMRI Time Series Revisited" % Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SCR, % Frackowiak RSJ, Turner R. Neuroimage 2:45-53 (1995). % --------------------------------------------------------------- vx = sqrt(sum(VG(1).mat(1:3,1:3).^2)); pW = W; W = (2*dss/ss2).^(-.5).*vx; W = min(pW,W); if flags.debug, fprintf('\nSmoothness FWHM: %.3g x %.3g x %.3g mm\n', W*sqrt(8*log(2))); end; if length(VG)==1, dens=2; else dens=1; end; smo = prod(min(dens*flags.sep/sqrt(2*pi)./W,[1 1 1])); est_smo=0; n_main_its = n_main_its + 1; end; % Update the parameter estimates % --------------------------------------------------------------- nu = n*smo; sig2 = ss/nu; [d1,d2] = reg(M,12+length(VG),flags.regtype); soln = (Alpha/sig2+d2)\(Beta/sig2-d1); scal = scal - soln(13:end); M = spm_matrix(p0 + soln(1:12)')*M; if flags.debug, fprintf('%d\t%g\n', iter, ss/n); piccies(VF,VG,M,scal) end; % If cost function stops decreasing, then re-estimate smoothness % and try again. Repeat a few times. % --------------------------------------------------------------- ss = ss/n; if iter>1, spm_plot_convergence('Set',ss); end; if (pss-ss)/pss < 1e-6, est_smo = 1; end; if n_main_its>3, break; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [X1,Y1,Z1] = transform_derivs(Mat,X,Y,Z) % Given the derivatives of a scalar function, return those of the % affine transformed function %_______________________________________________________________________ t1 = Mat(1:3,1:3); t2 = eye(3); if sum((t1(:)-t2(:)).^2) < 1e-12, X1 = X;Y1 = Y; Z1 = Z; else X1 = Mat(1,1)*X + Mat(1,2)*Y + Mat(1,3)*Z; Y1 = Mat(2,1)*X + Mat(2,2)*Y + Mat(2,3)*Z; Z1 = Mat(3,1)*X + Mat(3,2)*Y + Mat(3,3)*Z; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [d1,d2] = reg(M,n,typ) % Analytically compute the first and second derivatives of a penalty % function w.r.t. changes in parameters. if nargin<3, typ = 'subj'; end; if nargin<2, n = 13; end; [mu,isig] = spm_affine_priors(typ); ds = 0.000001; d1 = zeros(n,1); d2 = zeros(n); p0 = [0 0 0 0 0 0 1 1 1 0 0 0]; h0 = penalty(p0,M,mu,isig); for i=7:12, % derivatives are zero w.r.t. rotations and translations p1 = p0; p1(i) = p1(i)+ds; h1 = penalty(p1,M,mu,isig); d1(i) = (h1-h0)/ds; % First derivative for j=7:12, p2 = p0; p2(j) = p2(j)+ds; h2 = penalty(p2,M,mu,isig); p3 = p1; p3(j) = p3(j)+ds; h3 = penalty(p3,M,mu,isig); d2(i,j) = ((h3-h2)/ds-(h1-h0)/ds)/ds; % Second derivative end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function h = penalty(p,M,mu,isig) % Return a penalty based on the elements of an affine transformation, % which is given by: % spm_matrix(p)*M % % The penalty is based on the 6 unique elements of the Hencky tensor % elements being multinormally distributed. %_______________________________________________________________________ % Unique elements of symmetric 3x3 matrix. els = [1 2 3 5 6 9]; T = spm_matrix(p)*M; T = T(1:3,1:3); T = 0.5*logm(T'*T); T = T(els)' - mu; h = T'*isig*T; return; %_______________________________________________________________________ %_______________________________________________________________________ function [y1,y2,y3]=coords(M,x1,x2,x3) % Affine transformation of a set of coordinates. %_______________________________________________________________________ y1 = M(1,1)*x1 + M(1,2)*x2 + M(1,3)*x3 + M(1,4); y2 = M(2,1)*x1 + M(2,2)*x2 + M(2,3)*x3 + M(2,4); y3 = M(3,1)*x1 + M(3,2)*x2 + M(3,3)*x3 + M(3,4); return; %_______________________________________________________________________ %_______________________________________________________________________ function A = make_A(x1,x2,x3,dG1,dG2,dG3,t) % Generate part of a design matrix using the chain rule... % df/dm = df/dy * dy/dm % where % df/dm is the rate of change of intensity w.r.t. affine parameters % df/dy is the gradient of the image f % dy/dm crange of position w.r.t. change of parameters %_______________________________________________________________________ A = [x1.*dG1 x1.*dG2 x1.*dG3 ... x2.*dG1 x2.*dG2 x2.*dG3 ... x3.*dG1 x3.*dG2 x3.*dG3 ... dG1 dG2 dG3 t]; return; %_______________________________________________________________________ %_______________________________________________________________________ function [AA,Ab,ss,n] = costfun(x1,x2,x3,dG1,dG2,dG3,msk,lastcols,b,wt) chunk = 10240; lm = length(msk); AA = zeros(12+size(lastcols,2)); Ab = zeros(12+size(lastcols,2),1); ss = 0; n = 0; for i=1:ceil(lm/chunk), ind = (((i-1)*chunk+1):min(i*chunk,lm))'; msk1 = msk(ind); A1 = make_A(x1(msk1),x2(msk1),x3(msk1),dG1(msk1),dG2(msk1),dG3(msk1),lastcols(ind,:)); b1 = b(ind); if ~isempty(wt), wt1 = wt(ind,ind); AA = AA + A1'*wt1*A1; %Ab = Ab + A1'*wt1*b1; Ab = Ab + (b1'*wt1*A1)'; ss = ss + b1'*wt1*b1; n = n + trace(wt1); clear wt1 else AA = AA + A1'*A1; %Ab = Ab + A1'*b1; Ab = Ab + (b1'*A1)'; ss = ss + b1'*b1; n = n + length(msk1); end; clear A1 b1 msk1 ind end; return; %_______________________________________________________________________ %_______________________________________________________________________ function error_message % Display an error message for when things go wrong. str = { 'There is not enough overlap in the images',... 'to obtain a solution.',... ' ',... 'Please check that your header information is OK.',... 'The Check Reg utility will show you the initial',... 'alignment between the images, which must be',... 'within about 4cm and about 15 degrees in order',... 'for SPM to find the optimal solution.'}; spm('alert*',str,mfilename,sqrt(-1)); error('insufficient image overlap') %_______________________________________________________________________ %_______________________________________________________________________ function piccies(VF,VG,M,scal) % This is for debugging purposes. % It shows the linear combination of template images, the affine % transformed source image, the residual image and a histogram of the % residuals. %_______________________________________________________________________ figure(2); Mt = spm_matrix([0 0 (VG(1).dim(3)+1)/2]); M = (M*VF(1).mat)\VG(1).mat; t = zeros(VG(1).dim(1:2)); for i=1:length(VG); t = t + spm_slice_vol(VG(i), Mt,VG(1).dim(1:2),1)*scal(i); end; u = spm_slice_vol(VF(1),M*Mt,VG(1).dim(1:2),1); subplot(2,2,1);imagesc(t');axis image xy off subplot(2,2,2);imagesc(u');axis image xy off subplot(2,2,3);imagesc(u'-t');axis image xy off %subplot(2,2,4);hist(b,50); % Entropy of residuals may be a nice cost function? drawnow; return; %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_eeg_locate_channels.m
.m
antx-master/xspm8/spm_eeg_locate_channels.m
2,870
utf_8
5c2b41cee32e14bd2f6b0d7565ddd0fb
function [Cel, Cind, x, y] = spm_eeg_locate_channels(D, n, interpolate_bad) % Locate channels and generate mask for converting M/EEG data into images % FORMAT [Cel, Cind, x, y] = spm_eeg_locate_channels(D, n, interpolate_bad) % % D - M/EEG object % n - number of voxels in each direction % interpolate_bad - flag (1/0), whether bad channels should be interpolated % or masked out % % Cel - coordinates of good channels in new coordinate system % Cind - the indices of these channels in the total channel % vector % x, y - x and y coordinates which support data % %__________________________________________________________________________ % % Locates channels and generates mask for converting M/EEG data to NIfTI % format ('analysis at sensor level'). If flag interpolate_bad is set to 1, % the returned x,y-coordinates will include bad sensor position. If % interpolate_bad is 0, these locations are masked out if the sensor are % located at the edge of the setup (where the data cannot be well % interpolated). %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Stefan Kiebel % $Id: spm_eeg_locate_channels.m 2830 2009-03-05 17:27:34Z guillaume $ % put into n x n grid %-------------------------------------------------------------------------- [x, y] = meshgrid(1:n, 1:n); if interpolate_bad % keep bad electrode positions in %---------------------------------------------------------------------- Cel = scale_coor(D.coor2D(D.meegchannels), n); else % bad electrodes are masked out if located at the edge of the setup %---------------------------------------------------------------------- Cel = scale_coor(D.coor2D(setdiff(D.meegchannels, D.badchannels)), n); end ch = convhull(Cel(:, 1), Cel(:, 2)); Ic = find(inpolygon(x, y, Cel(ch, 1), Cel(ch, 2))); Cel = scale_coor(D.coor2D(setdiff(D.meegchannels, D.badchannels)), n); Cind = setdiff(D.meegchannels, D.badchannels); x = x(Ic); y = y(Ic); %========================================================================== % scale_coor %========================================================================== function Cel = scale_coor(Cel, n) % check limits and stretch, if possible dx = max(Cel(1,:)) - min(Cel(1,:)); dy = max(Cel(2,:)) - min(Cel(2,:)); if dx > 1 || dy > 1 error('Coordinates not between 0 and 1'); end scale = (1 - 10^(-6))/max(dx, dy); Cel(1,:) = n*scale*(Cel(1,:) - min(Cel(1,:)) + eps) + 0.5; Cel(2,:) = n*scale*(Cel(2,:) - min(Cel(2,:)) + eps) + 0.5; % shift to middle dx = n+0.5 -n*eps - max(Cel(1,:)); dy = n+0.5 -n*eps - max(Cel(2,:)); Cel(1,:) = Cel(1,:) + dx/2; Cel(2,:) = Cel(2,:) + dy/2; % 2D coordinates in voxel-space (incl. badchannels) Cel = round(Cel)';
github
philippboehmsturm/antx-master
spm_eeg_filter.m
.m
antx-master/xspm8/spm_eeg_filter.m
6,617
utf_8
38ceb423092384f9bf967a6534b6484e
function D = spm_eeg_filter(S) % Filter M/EEG data % FORMAT D = spm_eeg_filter(S) % % S - input structure (optional) % (optional) fields of S: % S.D - MEEG object or filename of M/EEG mat-file % S.filter - struct with the following fields: % type - optional filter type, can be % 'but' Butterworth IIR filter (default) % 'fir' FIR filter using Matlab fir1 function % order - filter order (default - 5 for Butterworth) % band - filterband [low|high|bandpass|stop] % PHz - cutoff frequency [Hz] % dir - optional filter direction, can be % 'onepass' forward filter only % 'onepass-reverse' reverse filter only, i.e. backward in time % 'twopass' zero-phase forward and reverse filter % % D - MEEG object (also written to disk) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Stefan Kiebel % $Id: spm_eeg_filter.m 4127 2010-11-19 18:05:18Z christophe $ SVNrev = '$Rev: 4127 $'; %-Startup %-------------------------------------------------------------------------- spm('FnBanner', mfilename, SVNrev); spm('FigName','M/EEG filter'); spm('Pointer', 'Watch'); if nargin == 0 S = []; end %-Ensure backward compatibility %-------------------------------------------------------------------------- S = spm_eeg_compatibility(S, mfilename); %-Get MEEG object %-------------------------------------------------------------------------- try D = S.D; catch [D, sts] = spm_select(1, 'mat', 'Select M/EEG mat file'); if ~sts, D = []; return; end S.D = D; end D = spm_eeg_load(D); %-Get parameters %-------------------------------------------------------------------------- if ~isfield(S, 'filter') S.filter = []; end if ~isfield(S.filter, 'band') S.filter.band = cell2mat(... spm_input('filterband', '+1', 'm',... 'lowpass|highpass|bandpass|stopband',... {'low','high','bandpass','stop'})); end if ~isfield(S.filter, 'type') S.filter.type = 'butterworth'; end if ~isfield(S.filter, 'order') if strcmp(S.filter.type, 'butterworth') S.filter.order = 5; else S.filter.order = []; end end if ~isfield(S.filter, 'dir') S.filter.dir = 'twopass'; end if ~isfield(S.filter, 'PHz') switch lower(S.filter.band) case {'low','high'} str = 'Cutoff [Hz]'; YPos = -1; while 1 if YPos == -1 YPos = '+1'; end [PHz, YPos] = spm_input(str, YPos, 'r'); if PHz > 0 && PHz < D.fsample/2, break, end str = 'Cutoff must be > 0 & < half sample rate'; end case {'bandpass','stop'} str = 'band [Hz]'; YPos = -1; while 1 if YPos == -1 YPos = '+1'; end [PHz, YPos] = spm_input(str, YPos, 'r', [], 2); if PHz(1) > 0 && PHz(1) < D.fsample/2 && PHz(1) < PHz(2), break, end str = 'Cutoff 1 must be > 0 & < half sample rate and Cutoff 1 must be < Cutoff 2'; end otherwise error('unknown filter band.') end S.filter.PHz = PHz; end %- %-------------------------------------------------------------------------- % generate new meeg object with new filenames Dnew = clone(D, ['f' fnamedat(D)], [D.nchannels D.nsamples D.ntrials]); % determine channels for filtering Fchannels = unique([D.meegchannels, D.eogchannels]); Fs = D.fsample; if strcmp(D.type, 'continuous') % continuous data spm_progress_bar('Init', nchannels(D), 'Channels filtered'); drawnow; if nchannels(D) > 100, Ibar = floor(linspace(1, nchannels(D),100)); else Ibar = [1:nchannels(D)]; end % work on blocks of channels % determine blocksize % determine block size, dependent on memory memsz = spm('Memory'); datasz = nchannels(D)*nsamples(D)*8; % datapoints x 8 bytes per double value blknum = ceil(datasz/memsz); blksz = ceil(nchannels(D)/blknum); blknum = ceil(nchannels(D)/blksz); % now filter blocks of channels chncnt=1; for blk=1:blknum % load old meeg object blockwise into workspace blkchan=chncnt:(min(nchannels(D), chncnt+blksz-1)); if isempty(blkchan), break, end Dtemp=D(blkchan,:,1); chncnt=chncnt+blksz; %loop through channels for j = 1:numel(blkchan) if ismember(blkchan(j), Fchannels) Dtemp(j, :) = spm_eeg_preproc_filter(S.filter, Dtemp(j,:), Fs); end if ismember(j, Ibar), spm_progress_bar('Set', blkchan(j)); end end % write Dtemp to Dnew Dnew(blkchan,:,1)=Dtemp; clear Dtemp; end; else % single trial or epoched spm_progress_bar('Init', D.ntrials, 'Trials filtered'); drawnow; if D.ntrials > 100, Ibar = floor(linspace(1, D.ntrials,100)); else Ibar = [1:D.ntrials]; end for i = 1:D.ntrials d = squeeze(D(:, :, i)); for j = 1:nchannels(D) if ismember(j, Fchannels) d(j,:) = spm_eeg_preproc_filter(S.filter, double(d(j,:)), Fs); end end Dnew(:, 1:Dnew.nsamples, i) = d; if ismember(i, Ibar), spm_progress_bar('Set', i); end end disp('Baseline correction is no longer done automatically by spm_eeg_filter. Use spm_eeg_bc if necessary.'); end spm_progress_bar('Clear'); %-Save new evoked M/EEG dataset %-------------------------------------------------------------------------- D = Dnew; D = D.history(mfilename, S); save(D); %-Cleanup %-------------------------------------------------------------------------- spm('FigName','M/EEG filter: done'); spm('Pointer', 'Arrow'); %========================================================================== function dat = spm_eeg_preproc_filter(filter, dat, Fs) Fp = filter.PHz; if isequal(filter.type, 'fir') type = 'fir'; else type = 'but'; end N = filter.order; dir = filter.dir; switch filter.band case 'low' dat = ft_preproc_lowpassfilter(dat,Fs,Fp,N,type,dir); case 'high' dat = ft_preproc_highpassfilter(dat,Fs,Fp,N,type,dir); case 'bandpass' dat = ft_preproc_bandpassfilter(dat, Fs, Fp, N, type, dir); case 'stop' dat = ft_preproc_bandstopfilter(dat,Fs,Fp,N,type,dir); end
github
philippboehmsturm/antx-master
savexml.m
.m
antx-master/xspm8/savexml.m
5,240
utf_8
575501e05a68903f8f5a2db4cb6a18e9
function savexml(filename, varargin) %SAVEXML Save workspace variables to disk in XML. % SAVEXML FILENAME saves all workspace variables to the XML-file % named FILENAME.xml. The data may be retrieved with LOADXML. if % FILENAME has no extension, .xml is assumed. % % SAVE, by itself, creates the XML-file named 'matlab.xml'. It is % an error if 'matlab.xml' is not writable. % % SAVE FILENAME X saves only X. % SAVE FILENAME X Y Z saves X, Y, and Z. The wildcard '*' can be % used to save only those variables that match a pattern. % % SAVE ... -APPEND adds the variables to an existing file. % % Use the functional form of SAVE, such as SAVE(filename','var1','var2'), % when the filename or variable names are stored in strings. % % See also SAVE, MAT2XML, XMLTREE. % Copyright 2003 Guillaume Flandin. % $Revision: 4393 $ $Date: 2003/07/10 13:50 $ % $Id: savexml.m 4393 2011-07-18 14:52:32Z guillaume $ if nargin == 0 filename = 'matlab.xml'; fprintf('\nSaving to: %s\n\n',filename); else if ~ischar(filename) error('[SAVEXML] Argument must contain a string.'); end [pathstr,name,ext] = fileparts(filename); if isempty(ext) filename = [filename '.xml']; end end if nargin <= 1, varargin = {'*'}; end if nargout > 0 error('[SAVEXML] Too many output arguments.'); end if strcmpi(varargin{end},'-append') if length(varargin) > 1 varargin = varargin(1:end-1); else varargin = {'*'}; end if exist(filename,'file') % TODO % No need to parse the whole tree ? detect duplicate variables ? t = xmltree(filename); else error(sprintf(... '[SAVEXML] Unable to write file %s: file does not exist.',filename)); end else t = xmltree('<matfile/>'); end for i=1:length(varargin) v = evalin('caller',['whos(''' varargin{i} ''')']); if isempty(v) error(['[SAVEXML] Variable ''' varargin{i} ''' not found.']); end for j=1:length(v) [t, uid] = add(t,root(t),'element',v(j).name); t = attributes(t,'add',uid,'type',v(j).class); t = attributes(t,'add',uid,'size',xml_num2str(v(j).size)); t = xml_var2xml(t,evalin('caller',v(j).name),uid); end end save(t,filename); %======================================================================= function t = xml_var2xml(t,v,uid) switch class(v) case {'double','single','logical'} if ~issparse(v) t = add(t,uid,'chardata',xml_num2str(v)); else % logical [i,j,s] = find(v); [t, uid2] = add(t,uid,'element','row'); t = attributes(t,'add',uid2,'size',xml_num2str(size(i))); t = add(t,uid2,'chardata',xml_num2str(i)); [t, uid2] = add(t,uid,'element','col'); t = attributes(t,'add',uid2,'size',xml_num2str(size(j))); t = add(t,uid2,'chardata',xml_num2str(j)); [t, uid2] = add(t,uid,'element','val'); t = attributes(t,'add',uid2,'size',xml_num2str(size(s))); t = add(t,uid2,'chardata',xml_num2str(s)); end case 'struct' names = fieldnames(v); for j=1:prod(size(v)) for i=1:length(names) [t, uid2] = add(t,uid,'element',names{i}); t = attributes(t,'add',uid2,'index',num2str(j)); t = attributes(t,'add',uid2,'type',... class(getfield(v(j),names{i}))); t = attributes(t,'add',uid2,'size', ... xml_num2str(size(getfield(v(j),names{i})))); t = xml_var2xml(t,getfield(v(j),names{i}),uid2); end end case 'cell' for i=1:prod(size(v)) [t, uid2] = add(t,uid,'element','cell'); % TODO % special handling of cellstr ? t = attributes(t,'add',uid2,'index',num2str(i)); t = attributes(t,'add',uid2,'type',class(v{i})); t = attributes(t,'add',uid2,'size',xml_num2str(size(v{i}))); t = xml_var2xml(t,v{i},uid2); end case 'char' % TODO % char values should be in CData if size(v,1) > 1 t = add(t,uid,'chardata',v'); % row-wise order else t = add(t,uid,'chardata',v); end case {'int8','uint8','int16','uint16','int32','uint32'} [t, uid] = add(t,uid,'element',class(v)); % TODO % Handle integer formats (cannot use sprintf or num2str) otherwise if ismember('serialize',methods(class(v))) % TODO % is CData necessary for class output ? t = add(t,uid,'cdata',serialize(v)); else warning(sprintf(... '[SAVEXML] Cannot convert from %s to XML.',class(v))); end end %======================================================================= function s = xml_num2str(n) % TODO % use format ? if isempty(n) s = '[]'; else s = ['[' sprintf('%g ',n(1:end-1))]; s = [s num2str(n(end)) ']']; end
github
philippboehmsturm/antx-master
spm_bilinear.m
.m
antx-master/xspm8/spm_bilinear.m
3,787
utf_8
37e6b8a17a436698a9c87c2c7e5235be
function [H0,H1,H2] = spm_bilinear(A,B,C,D,x0,N,dt) % returns global Volterra kernels for a MIMO Bilinear system % FORMAT [H0,H1,H2] = spm_bilinear(A,B,C,D,x0,N,dt) % A - (n x n) df(x(0),0)/dx - n states % B - (n x n x m) d2f(x(0),0)/dxdu - m inputs % C - (n x m) df(x(0),0)/du - d2f(x(0),0)/dxdu*x(0) % D - (n x 1) f(x(0).0) - df(x(0),0)/dx*x(0) % x0 - (n x 1) x(0) % N - kernel depth {intervals} % dt - interval {seconds} % % Volterra kernels: % % H0 - (n) = h0(t) = y(t) % H1 - (N x n x m) = h1i(t,s1) = dy(t)/dui(t - s1) % H2 - (N x N x n x m x m) = h2ij(t,s1,s2) = d2y(t)/dui(t - s1)duj(t - s2) % % where n = p if modes are specified %___________________________________________________________________________ % Returns Volterra kernels for bilinear systems of the form % % dx/dt = f(x,u) = A*x + B1*x*u1 + ... Bm*x*um + C1u1 + ... Cmum + D % y(t) = x(t) % %--------------------------------------------------------------------------- % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_bilinear.m 1143 2008-02-07 19:33:33Z spm $ % Volterra kernels for bilinear systems %=========================================================================== % parameters %--------------------------------------------------------------------------- n = size(A,1); % state variables m = size(C,2); % inputs A = full(A); B = full(B); C = full(C); D = full(D); % eignvector solution {to reduce M0 to leading diagonal form} %--------------------------------------------------------------------------- M0 = [0 zeros(1,n); D A]; [U J] = eig(M0); V = pinv(U); % Lie operator {M0} %--------------------------------------------------------------------------- M0 = sparse(J); X0 = V*[1; x0]; % 0th order kernel %--------------------------------------------------------------------------- H0 = ex(N*dt*M0)*X0; % 1st order kernel %--------------------------------------------------------------------------- if nargout > 1 % Lie operator {M1} %------------------------------------------------------------------- for i = 1:m M1(:,:,i) = V*[0 zeros(1,n); C(:,i) B(:,:,i)]*U; end % 1st order kernel %------------------------------------------------------------------- H1 = zeros(N,n + 1,m); for p = 1:m for i = 1:N u1 = N - i + 1; H1(u1,:,p) = ex(u1*dt*M0)*M1(:,:,p)*ex(-u1*dt*M0)*H0; end end end % 2nd order kernels %--------------------------------------------------------------------------- if nargout > 2 H2 = zeros(N,N,n + 1,m,m); for p = 1:m for q = 1:m for j = 1:N u2 = N - j + 1; u1 = N - [1:j] + 1; H = ex(u2*dt*M0)*M1(:,:,q)*ex(-u2*dt*M0)*H1(u1,:,p)'; H2(u2,u1,:,q,p) = H'; H2(u1,u2,:,p,q) = H'; end end end end % project to state space and remove kernels associated with the constant %--------------------------------------------------------------------------- if nargout > 0 H0 = real(U*H0); H0 = H0([1:n] + 1); end if nargout > 1 for p = 1:m H1(:,:,p) = real(H1(:,:,p)*U.'); end H1 = H1(:,[1:n] + 1,:); end if nargout > 1 for p = 1:m for q = 1:m for j = 1:N H2(j,:,:,p,q) = real(squeeze(H2(j,:,:,p,q))*U.'); end end end H2 = H2(:,:,[1:n] + 1,:,:); end return % matrix exponential function (for diagonal matrices) %--------------------------------------------------------------------------- function y = ex(x) n = length(x); y = spdiags(exp(diag(x)),0,n,n); return
github
philippboehmsturm/antx-master
spm_powell.m
.m
antx-master/xspm8/spm_powell.m
8,945
utf_8
5c2706664704f8db313454deb4e1b755
function [p,f] = spm_powell(p,xi,tolsc,func,varargin) % Powell optimisation method % FORMAT [p,f] = spm_powell(p,xi,tolsc,func,varargin) % p - Starting parameter values % xi - columns containing directions in which to begin % searching. % tolsc - stopping criteria % - optimisation stops when % sqrt(sum(((p-p_prev)./tolsc).^2))<1 % func - name of evaluated function % varargin - remaining arguments to func (after p) % % p - final parameter estimates % f - function value at minimum % %_______________________________________________________________________ % Method is based on Powell's optimisation method described in % Numerical Recipes (Press, Flannery, Teukolsky & Vetterling). %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_powell.m 4156 2011-01-11 19:03:31Z guillaume $ p = p(:); f = feval(func,p,varargin{:}); for iter=1:512, if numel(p)>1, fprintf('iteration %d...\n', iter); end; ibig = numel(p); pp = p; fp = f; del = 0; for i=1:length(p), ft = f; [p,junk,f] = min1d(p,xi(:,i),func,f,tolsc,varargin{:}); if abs(ft-f) > del, del = abs(ft-f); ibig = i; end; end; if numel(p)==1 || sqrt(sum(((p(:)-pp(:))./tolsc(:)).^2))<1, return; end; ft = feval(func,2.0*p-pp,varargin{:}); if ft < f, [p,xi(:,ibig),f] = min1d(p,p-pp,func,f,tolsc,varargin{:}); end; end; warning('Too many optimisation iterations'); return; %_______________________________________________________________________ %_______________________________________________________________________ function [p,pi,f] = min1d(p,pi,func,f,tolsc,varargin) % Line search for minimum. global lnm % used in funeval lnm = struct('p',p,'pi',pi,'func',func,'args',[]); lnm.args = varargin; min1d_plot('Init', 'Line Minimisation','Function','Parameter Value'); min1d_plot('Set', 0, f); tol = 1/sqrt(sum((pi(:)./tolsc(:)).^2)); t = bracket(f); [f,pmin] = search(t,tol); pi = pi*pmin; p = p + pi; if length(p)<12, for i=1:length(p), fprintf('%-8.4g ', p(i)); end; fprintf('| %.5g\n', f); else fprintf('%.5g\n', f); end min1d_plot('Clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function f = funeval(p) % Reconstruct parameters and evaluate. global lnm % defined in min1d pt = lnm.p+p.*lnm.pi; f = feval(lnm.func,pt,lnm.args{:}); min1d_plot('Set',p,f); return; %_______________________________________________________________________ %_______________________________________________________________________ function t = bracket(f) % Bracket the minimum (t(2)) between t(1) and t(3) gold = (1+sqrt(5))/2; % Golden ratio t(1) = struct('p',0,'f',f); t(2).p = 1; t(2).f = funeval(t(2).p); % if t(2) not better than t(1) then swap if t(2).f > t(1).f, t(3) = t(1); t(1) = t(2); t(2) = t(3); end; t(3).p = t(2).p + gold*(t(2).p-t(1).p); t(3).f = funeval(t(3).p); while t(2).f > t(3).f, % fit a polynomial to t tmp = cat(1,t.p)-t(2).p; pol = pinv([ones(3,1) tmp tmp.^2])*cat(1,t.f); % minimum is when gradient of polynomial is zero % sign of pol(3) (the 2nd deriv) should be +ve if pol(3)>0, % minimum is when gradient of polynomial is zero d = -pol(2)/(2*pol(3)+eps); % A very conservative constraint on the displacement if d > (1+gold)*(t(3).p-t(2).p), d = (1+gold)*(t(3).p-t(2).p); end; u.p = t(2).p+d; else % sign of pol(3) (the 2nd deriv) is not +ve % so extend out by golden ratio instead u.p = t(3).p+gold*(t(3).p-t(2).p); end; % FUNCTION EVALUATION u.f = funeval(u.p); if (t(2).p < u.p) == (u.p < t(3).p), % u is between t(2) and t(3) if u.f < t(3).f, % minimum between t(2) and t(3) - done t(1) = t(2); t(2) = u; return; elseif u.f > t(2).f, % minimum between t(1) and u - done t(3) = u; return; end; end; % Move all 3 points along t(1) = t(2); t(2) = t(3); t(3) = u; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [f,p] = search(t, tol) % Brent's method for line searching - given that minimum is bracketed gold1 = 1-(sqrt(5)-1)/2; % Current and previous displacements d = Inf; pd = Inf; % sort t into best first order [junk,ind] = sort(cat(1,t.f)); t = t(ind); brk = [min(cat(1,t.p)) max(cat(1,t.p))]; for iter=1:128, % check stopping criterion if abs(t(1).p - 0.5*(brk(1)+brk(2)))+0.5*(brk(2)-brk(1)) <= 2*tol, p = t(1).p; f = t(1).f; return; end; % keep last two displacents ppd = pd; pd = d; % fit a polynomial to t tmp = cat(1,t.p)-t(1).p; pol = pinv([ones(3,1) tmp tmp.^2])*cat(1,t.f); % minimum is when gradient of polynomial is zero d = -pol(2)/(2*pol(3)+eps); u.p = t(1).p+d; % check so that displacement is less than the last but two, % that the displaced point is between the brackets % and that the solution is a minimum rather than a maximum eps2 = 2*eps*abs(t(1).p)+eps; if abs(d) > abs(ppd)/2 || u.p < brk(1)+eps2 || u.p > brk(2)-eps2 || pol(3)<=0, % if criteria are not met, then golden search into the larger part if t(1).p >= 0.5*(brk(1)+brk(2)), d = gold1*(brk(1)-t(1).p); else d = gold1*(brk(2)-t(1).p); end; u.p = t(1).p+d; end; % FUNCTION EVALUATION u.f = funeval(u.p); % Insert the new point into the appropriate position and update % the brackets if necessary if u.f <= t(1).f, if u.p >= t(1).p, brk(1)=t(1).p; else brk(2)=t(1).p; end; t(3) = t(2); t(2) = t(1); t(1) = u; else if u.p < t(1).p, brk(1)=u.p; else brk(2)=u.p; end; if u.f <= t(2).f, t(3) = t(2); t(2) = u; elseif u.f <= t(3).f, t(3) = u; end; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function min1d_plot(action,arg1,arg2,arg3,arg4) % Visual output for line minimisation persistent min1dplot %----------------------------------------------------------------------- if (nargin == 0) min1d_plot('Init'); else % initialize %--------------------------------------------------------------- if strcmpi(action,'init') if (nargin<4) arg3 = 'Function'; if (nargin<3) arg2 = 'Value'; if (nargin<2) arg1 = 'Line minimisation'; end end end fg = spm_figure('FindWin','Interactive'); if ~isempty(fg) min1dplot = struct('pointer',get(fg,'Pointer'),'name',get(fg,'Name'),'ax',[]); min1d_plot('Clear'); set(fg,'Pointer','watch'); % set(fg,'Name',arg1); min1dplot.ax = axes('Position', [0.15 0.1 0.8 0.75],... 'Box', 'on','Parent',fg); lab = get(min1dplot.ax,'Xlabel'); set(lab,'string',arg3,'FontSize',10); lab = get(min1dplot.ax,'Ylabel'); set(lab,'string',arg2,'FontSize',10); lab = get(min1dplot.ax,'Title'); set(lab,'string',arg1); line('Xdata',[], 'Ydata',[],... 'LineWidth',2,'Tag','LinMinPlot','Parent',min1dplot.ax,... 'LineStyle','-','Marker','o'); drawnow; end % reset %--------------------------------------------------------------- elseif strcmpi(action,'set') F = spm_figure('FindWin','Interactive'); br = findobj(F,'Tag','LinMinPlot'); if (~isempty(br)) [xd,indx] = sort([get(br,'Xdata') arg1]); yd = [get(br,'Ydata') arg2]; yd = yd(indx); set(br,'Ydata',yd,'Xdata',xd); drawnow; end % clear %--------------------------------------------------------------- elseif strcmpi(action,'clear') fg = spm_figure('FindWin','Interactive'); if isstruct(min1dplot), if ishandle(min1dplot.ax), delete(min1dplot.ax); end set(fg,'Pointer',min1dplot.pointer); set(fg,'Name',min1dplot.name); end spm_figure('Clear',fg); drawnow; end end %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_vol.m
.m
antx-master/xspm8/spm_vol.m
4,687
utf_8
2066ba9cc72b0c288e592c2871538689
function V = spm_vol(P) % Get header information for images. % FORMAT V = spm_vol(P) % P - a matrix of filenames. % V - a vector of structures containing image volume information. % The elements of the structures are: % V.fname - the filename of the image. % V.dim - the x, y and z dimensions of the volume % V.dt - A 1x2 array. First element is datatype (see spm_type). % The second is 1 or 0 depending on the endian-ness. % V.mat - a 4x4 affine transformation matrix mapping from % voxel coordinates to real world coordinates. % V.pinfo - plane info for each plane of the volume. % V.pinfo(1,:) - scale for each plane % V.pinfo(2,:) - offset for each plane % The true voxel intensities of the jth image are given % by: val*V.pinfo(1,j) + V.pinfo(2,j) % V.pinfo(3,:) - offset into image (in bytes). % If the size of pinfo is 3x1, then the volume is assumed % to be contiguous and each plane has the same scalefactor % and offset. %__________________________________________________________________________ % % The fields listed above are essential for the mex routines, but other % fields can also be incorporated into the structure. % % The images are not memory mapped at this step, but are mapped when % the mex routines using the volume information are called. % % Note that spm_vol can also be applied to the filename(s) of 4-dim % volumes. In that case, the elements of V will point to a series of 3-dim % images. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_vol.m 4045 2010-08-26 15:10:46Z guillaume $ if ~nargin V = struct('fname', {},... 'dim', {},... 'dt', {},... 'pinfo', {},... 'mat', {},... 'n', {},... 'descrip', {},... 'private', {}); return; end % If is already a vol structure then just return if isstruct(P), V = P; return; end V = subfunc2(P); %========================================================================== function V = subfunc2(P) if iscell(P) V = cell(size(P)); for j=1:numel(P) if iscell(P{j}) V{j} = subfunc2(P{j}); else V{j} = subfunc1(P{j}); end end else V = subfunc1(P); end %========================================================================== function V = subfunc1(P) if isempty(P), V = []; return; end counter = 0; for i=1:size(P,1) v = subfunc(P(i,:)); [V(counter+1:counter+size(v, 2),1).fname] = deal(''); [V(counter+1:counter+size(v, 2),1).dim] = deal([0 0 0 0]); [V(counter+1:counter+size(v, 2),1).mat] = deal(eye(4)); [V(counter+1:counter+size(v, 2),1).pinfo] = deal([1 0 0]'); [V(counter+1:counter+size(v, 2),1).dt] = deal([0 0]); if isempty(v) hread_error_message(P(i,:)); error(['Can''t get volume information for ''' P(i,:) '''']); end f = fieldnames(v); for j=1:size(f,1) eval(['[V(counter+1:counter+size(v,2),1).' f{j} '] = deal(v.' f{j} ');']); end counter = counter + size(v,2); end %========================================================================== function V = subfunc(p) [pth,nam,ext,n1] = spm_fileparts(deblank(p)); p = fullfile(pth,[nam ext]); n = str2num(n1); if ~spm_existfile(p) error('File "%s" does not exist.', p); end switch ext case {'.nii','.NII'} % Do nothing case {'.img','.IMG'} if ~spm_existfile(fullfile(pth,[nam '.hdr'])) && ... ~spm_existfile(fullfile(pth,[nam '.HDR'])) error('File "%s" does not exist.', fullfile(pth,[nam '.hdr'])); end case {'.hdr','.HDR'} ext = '.img'; p = fullfile(pth,[nam ext]); if ~spm_existfile(p) error('File "%s" does not exist.', p); end otherwise error('File "%s" is not of a recognised type.', p); end V = spm_vol_nifti(p,n); if isempty(n) && length(V.private.dat.dim) > 3 V0(1) = V; for i = 2:V.private.dat.dim(4) V0(i) = spm_vol_nifti(p, i); end V = V0; end if ~isempty(V), return; end return; %========================================================================== function hread_error_message(q) str = {... 'Error reading information on:',... [' ',spm_str_manip(q,'k40d')],... ' ',... 'Please check that it is in the correct format.'}; spm('alert*',str,mfilename,sqrt(-1)); return;
github
philippboehmsturm/antx-master
spm_eeg_epochs.m
.m
antx-master/xspm8/spm_eeg_epochs.m
7,801
utf_8
4fabb15c82422268deb9dca5b1a0ea6b
function D = spm_eeg_epochs(S) % Epoching continuous M/EEG data % FORMAT D = spm_eeg_epochs(S) % % S - input structure (optional) % (optional) fields of S: % S.D - MEEG object or filename of M/EEG mat-file with % continuous data % S.bc - baseline-correct the data (1 - yes, 0 - no). % % Either (to use a ready-made trial definition): % S.epochinfo.trl - Nx2 or Nx3 matrix (N - number of trials) % [start end offset] % S.epochinfo.conditionlabels - one label or cell array of N labels % S.epochinfo.padding - the additional time period around each % trial for which the events are saved with % the trial (to let the user keep and use % for analysis events which are outside) [in ms] % % Or (to define trials using (spm_eeg_definetrial)): % S.pretrig - pre-trigger time [in ms] % S.posttrig - post-trigger time [in ms] % S.trialdef - structure array for trial definition with fields % S.trialdef.conditionlabel - string label for the condition % S.trialdef.eventtype - string % S.trialdef.eventvalue - string, numeric or empty % % S.reviewtrials - review individual trials after selection % S.save - save trial definition % % Output: % D - MEEG object (also written on disk) %__________________________________________________________________________ % % spm_eeg_epochs extracts single trials from continuous EEG/MEG data. The % length of an epoch is determined by the samples before and after stimulus % presentation. One can limit the extracted trials to specific trial types. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Stefan Kiebel % $Id: spm_eeg_epochs.m 4430 2011-08-12 18:47:17Z vladimir $ SVNrev = '$Rev: 4430 $'; %-Startup %-------------------------------------------------------------------------- spm('FnBanner', mfilename, SVNrev); spm('FigName','M/EEG epoching'); spm('Pointer','Watch'); %-Get MEEG object %-------------------------------------------------------------------------- try D = S.D; catch [D, sts] = spm_select(1, 'mat', 'Select M/EEG mat file'); if ~sts, D = []; return; end S.D = D; end D = spm_eeg_load(D); S.D = fullfile(D.path, D.fname); %-Check that the input file contains continuous data %-------------------------------------------------------------------------- if ~strncmpi(D.type, 'cont', 4) error('The file must contain continuous data.'); end if ~isfield(S, 'bc') S.bc = 1; % S.bc = spm_input('Subtract baseline?','+1','yes|no',[1 0], 1); end %-First case: deftrials (default for GUI call) %-------------------------------------------------------------------------- if isfield(S, 'trialdef') || nargin == 0 if isfield(S, 'pretrig') S_definetrial.pretrig = S.pretrig; end if isfield(S, 'posttrig') S_definetrial.posttrig = S.posttrig; end if isfield(S, 'trialdef') S_definetrial.trialdef = S.trialdef; end if isfield(S, 'reviewtrials') S_definetrial.reviewtrials = S.reviewtrials; end if isfield(S, 'save') S_definetrial.save = S.save; end S_definetrial.D = S.D; S_definetrial.event = D.events; S_definetrial.fsample = D.fsample; S_definetrial.timeonset = D.timeonset; S_definetrial.bc = S.bc; [epochinfo.trl, epochinfo.conditionlabels, S] = spm_eeg_definetrial(S_definetrial); %-Second case: epochinfo (trlfile and trl) %-------------------------------------------------------------------------- else try epochinfo.trl = S.epochinfo.trl; epochinfo.conditionlabels = S.epochinfo.conditionlabels; catch try epochinfo.trlfile = S.epochinfo.trlfile; catch epochinfo.trlfile = spm_select(1, 'mat', 'Select a trial definition file'); end try epochinfo.trl = getfield(load(S.epochinfo.trlfile, 'trl'), 'trl'); epochinfo.conditionlabels = getfield(load(epochinfo.trlfile, 'conditionlabels'), 'conditionlabels'); catch error('Trouble reading trl file.'); end end end trl = epochinfo.trl; conditionlabels = epochinfo.conditionlabels; if numel(conditionlabels) == 1 conditionlabels = repmat(conditionlabels, 1, size(trl, 1)); end try epochinfo.padding = S.epochinfo.padding; catch epochinfo.padding = 0; % for history S.epochinfo.padding = epochinfo.padding; end % checks on input if size(trl, 2) >= 3 timeOnset = unique(trl(:, 3))./D.fsample; trl = trl(:, 1:2); else timeOnset = 0; end if length(timeOnset) > 1 error('All trials should have identical baseline'); end nsampl = unique(round(diff(trl, [], 2)))+1; if length(nsampl) > 1 || nsampl<1 error('All trials should have identical and positive lengths'); end inbounds = (trl(:,1)>=1 & trl(:, 2)<=D.nsamples); rejected = find(~inbounds); rejected = rejected(:)'; if ~isempty(rejected) trl = trl(inbounds, :); conditionlabels = conditionlabels(inbounds); warning([D.fname ': Events ' num2str(rejected) ' not extracted - out of bounds']); end ntrial = size(trl, 1); %-Generate new MEEG object with new filenames %-------------------------------------------------------------------------- Dnew = clone(D, ['e' fnamedat(D)], [D.nchannels nsampl, ntrial]); %-Epoch data %-------------------------------------------------------------------------- spm_progress_bar('Init', ntrial, 'Events read'); if ntrial > 100, Ibar = floor(linspace(1, ntrial, 100)); else Ibar = [1:ntrial]; end for i = 1:ntrial d = D(:, trl(i, 1):trl(i, 2), 1); Dnew(:, :, i) = d; Dnew = events(Dnew, i, select_events(D.events, ... [trl(i, 1)/D.fsample-epochinfo.padding trl(i, 2)/D.fsample+epochinfo.padding])); if ismember(i, Ibar), spm_progress_bar('Set', i); end end Dnew = conditions(Dnew, [], conditionlabels); % The conditions will later be sorted in the original order they were defined. if isfield(S, 'trialdef') Dnew = condlist(Dnew, {S.trialdef(:).conditionlabel}); end Dnew = trialonset(Dnew, [], trl(:, 1)./D.fsample+D.trialonset); Dnew = timeonset(Dnew, timeOnset); Dnew = type(Dnew, 'single'); %-Perform baseline correction if there are negative time points %-------------------------------------------------------------------------- if S.bc if time(Dnew, 1) < 0 S1 = []; S1.D = Dnew; S1.time = [time(Dnew, 1, 'ms') 0]; S1.save = false; S1.updatehistory = false; Dnew = spm_eeg_bc(S1); else warning('There was no baseline specified. The data is not baseline-corrected'); end end %-Save new evoked M/EEG dataset %-------------------------------------------------------------------------- D = Dnew; % Remove some redundant stuff potentially put in by spm_eeg_definetrial if isfield(S, 'event'), S = rmfield(S, 'event'); end D = D.history(mfilename, S); save(D); %-Cleanup %-------------------------------------------------------------------------- spm_progress_bar('Clear'); spm('FigName','M/EEG epoching: done'); spm('Pointer','Arrow'); %========================================================================== function event = select_events(event, timeseg) % Utility function to select events according to time segment if ~isempty(event) [time ind] = sort([event(:).time]); selectind = ind(time >= timeseg(1) & time <= timeseg(2)); event = event(selectind); end
github
philippboehmsturm/antx-master
spm_jobman.m
.m
antx-master/xspm8/spm_jobman.m
21,770
utf_8
10c04d4d60570a5fff732bdebb4a6482
function varargout = spm_jobman(varargin) % Main interface for SPM Batch System % This function provides a compatibility layer between SPM and matlabbatch. % It translates spm_jobman callbacks into matlabbatch callbacks and allows % to edit and run SPM5 style batch jobs. % % FORMAT spm_jobman('initcfg') % Initialise jobs configuration and set MATLAB path accordingly. % % FORMAT spm_jobman('run',job) % FORMAT output_list = spm_jobman('run',job) % Run specified job % job - filename of a job (.m, .mat or .xml), or % cell array of filenames, or % 'jobs'/'matlabbatch' variable, or % cell array of 'jobs'/'matlabbatch' variables. % output_list - cell array containing the output arguments from each % module in the job. The format and contents of these % outputs is defined in the configuration of each module % (.prog and .vout callbacks). % % FORMAT job_id = spm_jobman % job_id = spm_jobman('interactive') % job_id = spm_jobman('interactive',job) % job_id = spm_jobman('interactive',job,node) % job_id = spm_jobman('interactive','',node) % Run the user interface in interactive mode. % node - indicate which part of the configuration is to be used. % For example, it could be 'spm.spatial.coreg.estimate'. % job_id - can be used to manipulate this job in cfg_util. Note that % changes to the job in cfg_util will not show up in cfg_ui % unless 'Update View' is called. %__________________________________________________________________________ % % Programmers help: % % FORMAT output_list = spm_jobman('serial') % output_list = spm_jobman('serial',job[,'', input1,...inputN]) % output_list = spm_jobman('serial',job ,node[,input1,...inputN]) % output_list = spm_jobman('serial','' ,node[,input1,...inputN]) % Run the user interface in serial mode. If job is not empty, then node % is silently ignored. Inputs can be a list of arguments. These are passed % on to the open inputs of the specified job/node. Each input should be % suitable to be assigned to item.val{1}. For cfg_repeat/cfg_choice items, % input should be a cell list of indices input{1}...input{k} into % item.value. See cfg_util('filljob',...) for details. % % FORMAT jobs = spm_jobman('spm5tospm8',jobs) % Take a cell list of SPM5 job structures and returns SPM8 compatible versions. % % FORMAT job = spm_jobman('spm5tospm8bulk',jobfiles) % Take a cell string with SPM5 job filenames and saves them in SPM8 % compatible format. The new job files will be MATLAB .m files. Their % filenames will be derived from the input filenames. To make sure they are % valid MATLAB script names they will be processed with % genvarname(filename) and have a '_spm8' string appended to their % filename. % % FORMAT spm_jobman('help',node) % spm_jobman('help',node,width) % Create a cell array containing help information. This is justified % to be 'width' characters wide. e.g. % h = spm_jobman('help','spm.spatial.coreg.estimate'); % for i=1:numel(h), fprintf('%s\n',h{i}); end % % FORMAT [tag, job] = spm_jobman('harvest', job_id|cfg_item|cfg_struct) % Take the job with id job_id in cfg_util and extract what is % needed to save it as a batch job (for experts only). If the argument is a % cfg_item or cfg_struct tree, it will be harvested outside cfg_util. % tag - tag of the root node of the current job/cfg_item tree % job - harvested data from the current job/cfg_item tree % % FORMAT spm_jobman('pulldown') % Create a pulldown 'TASKS' menu in the Graphics window. %__________________________________________________________________________ % % not implemented: FORMAT spm_jobman('jobhelp') % Create a cell array containing help information specific for a certain % job. Help is only printed for items where job specific help is % present. This can be used together with spm_jobman('help') to create a % job specific manual. % % not implemented: FORMAT spm_jobman('chmod') % Change the modality for the TASKS pulldown. % % not implemented: FORMAT spm_jobman('defaults') % Run the interactive defaults editor. % % not implemented: FORMAT output_list = spm_jobman('run_nogui',job) % Run a job without X11 (as long as there is no graphics output from the % job itself). The matlabbatch system does not need graphics output to run % a job. %__________________________________________________________________________ % % This code is based on earlier versions by John Ashburner, Philippe % Ciuciu and Guillaume Flandin. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Copyright (C) 2008 Freiburg Brain Imaging % Volkmar Glauche % $Id: spm_jobman.m 4242 2011-03-11 15:12:04Z guillaume $ persistent isInitCfg; if isempty(isInitCfg) && ~(nargin == 1 && strcmpi(varargin{1},'initcfg')) warning('spm:spm_jobman:NotInitialised',... 'Run spm_jobman(''initcfg''); beforehand'); spm_jobman('initcfg'); end isInitCfg = true; if ~nargin h = cfg_ui; if nargout > 0, varargout = {h}; end return; end cmd = lower(varargin{1}); if strcmp(cmd,'run_nogui') warning('spm:spm_jobman:NotImplemented', ... 'Callback ''%s'' not implemented.', cmd); cmd = 'run'; end if any(strcmp(cmd, {'serial','interactive','run'})) if nargin > 1 % sort out job/node arguments for interactive, serial, run cmds if nargin>=2 && ~isempty(varargin{2}) % do not consider node if job is given if ischar(varargin{2}) || iscellstr(varargin{2}) jobs = load_jobs(varargin{2}); elseif iscell(varargin{2}) if iscell(varargin{2}{1}) % assume varargin{2} is a cell of jobs jobs = varargin{2}; else % assume varargin{2} is a single job jobs{1} = varargin{2}; end end mljob = canonicalise_job(jobs); elseif any(strcmp(cmd, {'interactive','serial'})) && nargin>=3 && isempty(varargin{2}) % Node spec only allowed for 'interactive', 'serial' arg3 = regexprep(varargin{3},'^spmjobs\.','spm.'); mod_cfg_id = cfg_util('tag2mod_cfg_id',arg3); else error('spm:spm_jobman:WrongUI', ... 'Don''t know how to handle this ''%s'' call.', lower(varargin{1})); end end end switch cmd case {'initcfg'} if ~isdeployed addpath(fullfile(spm('Dir'),'matlabbatch')); addpath(fullfile(spm('Dir'),'config')); end cfg_get_defaults('cfg_util.genscript_run', @genscript_run); cfg_util('initcfg'); % This must be the first call to cfg_util if ~spm('cmdline') f = cfg_ui('Visible','off'); % Create invisible batch ui f0 = findobj(f, 'Tag','MenuFile'); % Add entries to file menu f2 = uimenu(f0,'Label','Load SPM5 job', 'Callback',@load_job, ... 'HandleVisibility','off', 'tag','jobs', ... 'Separator','on'); f3 = uimenu(f0,'Label','Bulk Convert SPM5 job(s)', ... 'Callback',@conv_jobs, ... 'HandleVisibility','off', 'tag','jobs'); end case {'interactive'} if exist('mljob', 'var') cjob = cfg_util('initjob', mljob); elseif exist('mod_cfg_id', 'var') if isempty(mod_cfg_id) arg3 = regexprep(varargin{3},'^spmjobs\.','spm.'); warning('spm:spm_jobman:NodeNotFound', ... ['Can not find executable node ''%s'' - running '... 'matlabbatch without default node.'], arg3); cjob = cfg_util('initjob'); else cjob = cfg_util('initjob'); mod_job_id = cfg_util('addtojob', cjob, mod_cfg_id); cfg_util('harvest', cjob, mod_job_id); end else cjob = cfg_util('initjob'); end cfg_ui('local_showjob', findobj(0,'tag','cfg_ui'), cjob); if nargout > 0 varargout{1} = cjob; end case {'serial'} if exist('mljob', 'var') cjob = cfg_util('initjob', mljob); else cjob = cfg_util('initjob'); if nargin > 2 arg3 = regexprep(varargin{3},'^spmjobs\.','spm.'); [mod_cfg_id, item_mod_id] = cfg_util('tag2cfg_id', lower(arg3)); cfg_util('addtojob', cjob, mod_cfg_id); end end sts = cfg_util('filljobui', cjob, @serial_ui, varargin{4:end}); if sts cfg_util('run', cjob); if nargout > 0 varargout{1} = cfg_util('getalloutputs', cjob); end end cfg_util('deljob', cjob); case {'run'} cjob = cfg_util('initjob', mljob); cfg_util('run', cjob); if nargout > 0 varargout{1} = cfg_util('getalloutputs', cjob); end cfg_util('deljob', cjob); case {'spm5tospm8'} varargout{1} = canonicalise_job(varargin{2}); case {'spm5tospm8bulk'} conv_jobs(varargin{2}); case {'harvest'} if nargin == 1 error('spm:spm_jobman:CantHarvest', ... ['Can not harvest job without job_id. Please use ' ... 'spm_jobman(''harvest'', job_id).']); elseif cfg_util('isjob_id', varargin{2}) [tag job] = cfg_util('harvest', varargin{2}); elseif isa(varargin{2}, 'cfg_item') [tag job] = harvest(varargin{2}, varargin{2}, false, false); elseif isstruct(varargin{2}) % try to convert into class before harvesting c = cfg_struct2cfg(varargin{2}); [tag job] = harvest(c,c,false,false); else error('spm:spm_jobman:CantHarvestThis', ... 'Can not harvest this argument.'); end varargout{1} = tag; varargout{2} = job; case {'help'} if (nargin < 2) || isempty(varargin{2}) node = 'spm'; else node = regexprep(varargin{2},'^spmjobs\.','spm.'); end if nargin < 3 width = 60; else width = varargin{3}; end varargout{1} = cfg_util('showdocwidth', width, node); case {'pulldown'} pulldown; case {'defaults'} warning('spm:spm_jobman:NotImplemented', ... 'Callback ''%s'' not implemented.', varargin{1}); case {'chmod'} warning('spm:spm_jobman:NotImplemented', ... 'Callback ''%s'' not implemented.', varargin{1}); case {'jobhelp'} warning('spm:spm_jobman:NotImplemented', ... 'Callback ''%s'' not implemented.', varargin{1}); otherwise error(['"' varargin{1} '" - unknown option']); end %========================================================================== % function [mljob, comp] = canonicalise_job(job) %========================================================================== function [mljob, comp] = canonicalise_job(job) % job: a cell list of job data structures. % Check whether job is a SPM5 or matlabbatch job. In the first case, all % items in job{:} should have a fieldname of either 'temporal', 'spatial', % 'stats', 'tools' or 'util'. If this is the case, then job will be % assigned to mljob{1}.spm, which is the tag of the SPM root % configuration item. comp = true(size(job)); mljob = cell(size(job)); for cj = 1:numel(job) for k = 1:numel(job{cj}) comp(cj) = comp(cj) && any(strcmp(fieldnames(job{cj}{k}), ... {'temporal', 'spatial', 'stats', 'tools', 'util'})); if ~comp(cj) break; end end if comp(cj) tmp = convert_jobs(job{cj}); for i=1:numel(tmp), mljob{cj}{i}.spm = tmp{i}; end else mljob{cj} = job{cj}; end end %========================================================================== % function conv_jobs(varargin) %========================================================================== function conv_jobs(varargin) % Select a list of jobs, canonicalise each of it and save as a .m file % using gencode. spm('Pointer','Watch'); if nargin == 0 || ~iscellstr(varargin{1}) [fname sts] = spm_select([1 Inf], 'batch', 'Select job file(s)'); fname = cellstr(fname); if ~sts, return; end else fname = varargin{1}; end joblist = load_jobs(fname); for k = 1:numel(fname) if ~isempty(joblist{k}) [p n] = spm_fileparts(fname{k}); % Save new job as genvarname(*_spm8).m newfname = fullfile(p, sprintf('%s.m', ... genvarname(sprintf('%s_spm8', n)))); fprintf('SPM5 job: %s\nSPM8 job: %s\n', fname{k}, newfname); cjob = cfg_util('initjob', canonicalise_job(joblist(k))); cfg_util('savejob', cjob, newfname); cfg_util('deljob', cjob); end end spm('Pointer','Arrow'); %========================================================================== % function load_job(varargin) %========================================================================== function load_job(varargin) % Select a single job file, canonicalise it and display it in GUI [fname sts] = spm_select([1 Inf], 'batch', 'Select job file'); if ~sts, return; end spm('Pointer','Watch'); joblist = load_jobs(fname); if ~isempty(joblist{1}) spm_jobman('interactive',joblist{1}); end spm('Pointer','Arrow'); %========================================================================== % function newjobs = load_jobs(job) %========================================================================== function newjobs = load_jobs(job) % Load a list of possible job files, return a cell list of jobs. Jobs can % be either SPM5 (i.e. containing a 'jobs' variable) or SPM8/matlabbatch % jobs. If a job file failed to load, an empty cell is returned in the % list. if ischar(job) filenames = cellstr(job); else filenames = job; end newjobs = {}; for cf = 1:numel(filenames) [p,nam,ext] = fileparts(filenames{cf}); switch ext case '.xml' spm('Pointer','Watch'); try loadxml(filenames{cf},'jobs'); catch try loadxml(filenames{cf},'matlabbatch'); catch warning('spm:spm_jobman:LoadFailed','LoadXML failed: ''%s''',filenames{cf}); end end spm('Pointer','Arrow'); case '.mat' try S=load(filenames{cf}); if isfield(S,'matlabbatch') matlabbatch = S.matlabbatch; elseif isfield(S,'jobs') jobs = S.jobs; else warning('spm:spm_jobman:JobNotFound','No SPM5/SPM8 job found in ''%s''', filenames{cf}); end catch warning('spm:spm_jobman:LoadFailed','Load failed: ''%s''',filenames{cf}); end case '.m' try fid = fopen(filenames{cf},'rt'); str = fread(fid,'*char'); fclose(fid); eval(str); catch warning('spm:spm_jobman:LoadFailed','Load failed: ''%s''',filenames{cf}); end if ~(exist('jobs','var') || exist('matlabbatch','var')) warning('spm:spm_jobman:JobNotFound','No SPM5/SPM8 job found in ''%s''', filenames{cf}); end otherwise warning('Unknown extension: ''%s''', filenames{cf}); end if exist('jobs','var') newjobs = [newjobs(:); {jobs}]; clear jobs; elseif exist('matlabbatch','var') newjobs = [newjobs(:); {matlabbatch}]; clear matlabbatch; end end %========================================================================== % function njobs = convert_jobs(jobs) %========================================================================== function njobs = convert_jobs(jobs) decel = struct('spatial',struct('realign',[],'coreg',[],'normalise',[]),... 'temporal',[],... 'stats',[],... 'meeg',[],... 'util',[],... 'tools',struct('dartel',[])); njobs = {}; for i0 = 1:numel(jobs) tmp0 = fieldnames(jobs{i0}); tmp0 = tmp0{1}; if any(strcmp(tmp0,fieldnames(decel))) for i1=1:numel(jobs{i0}.(tmp0)) tmp1 = fieldnames(jobs{i0}.(tmp0){i1}); tmp1 = tmp1{1}; if ~isempty(decel.(tmp0)) if any(strcmp(tmp1,fieldnames(decel.(tmp0)))), for i2=1:numel(jobs{i0}.(tmp0){i1}.(tmp1)), njobs{end+1} = struct(tmp0,struct(tmp1,jobs{i0}.(tmp0){i1}.(tmp1){i2})); end else njobs{end+1} = struct(tmp0,jobs{i0}.(tmp0){i1}); end else njobs{end+1} = struct(tmp0,jobs{i0}.(tmp0){i1}); end end else njobs{end+1} = jobs{i0}; end end %========================================================================== % function pulldown %========================================================================== function pulldown fg = spm_figure('findwin','Graphics'); if isempty(fg), return; end; delete(findall(fg,'tag','jobs')); f0 = uimenu(fg,'Label','TASKS', ... 'HandleVisibility','off', 'tag','jobs'); f1 = uimenu(f0,'Label','BATCH', 'Callback',@cfg_ui, ... 'HandleVisibility','off', 'tag','jobs'); f4 = uimenu(f0,'Label','SPM (interactive)', ... 'HandleVisibility','off', 'tag','jobs', 'Separator','on'); cfg_ui('local_setmenu', f4, cfg_util('tag2cfg_id', 'spm'), ... @local_init_interactive, false); f5 = uimenu(f0,'Label','SPM (serial)', ... 'HandleVisibility','off', 'tag','jobs'); cfg_ui('local_setmenu', f5, cfg_util('tag2cfg_id', 'spm'), ... @local_init_serial, false); %========================================================================== % function local_init_interactive(varargin) %========================================================================== function local_init_interactive(varargin) cjob = cfg_util('initjob'); mod_cfg_id = get(gcbo,'userdata'); cfg_util('addtojob', cjob, mod_cfg_id); cfg_ui('local_showjob', findobj(0,'tag','cfg_ui'), cjob); %========================================================================== % function local_init_serial(varargin) %========================================================================== function local_init_serial(varargin) mod_cfg_id = get(gcbo,'userdata'); cjob = cfg_util('initjob'); cfg_util('addtojob', cjob, mod_cfg_id); sts = cfg_util('filljobui', cjob, @serial_ui); if sts cfg_util('run', cjob); end cfg_util('deljob', cjob); %========================================================================== % function [val sts] = serial_ui(item) %========================================================================== function [val sts] = serial_ui(item) % wrapper function to translate cfg_util('filljobui'... input requests into % spm_input/cfg_select calls. sts = true; switch class(item) case 'cfg_choice' labels = cell(size(item.values)); values = cell(size(item.values)); for k = 1:numel(item.values) labels{k} = item.values{k}.name; values{k} = k; end val = spm_input(item.name, 1, 'm', labels, values); case 'cfg_menu' val = spm_input(item.name, 1, 'm', item.labels, item.values); val = val{1}; case 'cfg_repeat' labels = cell(size(item.values)); values = cell(size(item.values)); for k = 1:numel(item.values) labels{k} = item.values{k}.name; values{k} = k; end % enter at least item.num(1) values for k = 1:item.num(1) val(k) = spm_input(sprintf('%s(%d)', item.name, k), 1, 'm', ... labels, values); end % enter more (up to varargin{3}(2) values labels = {labels{:} 'Done'}; % values is a cell list of natural numbers, use -1 for Done values = {values{:} -1}; while numel(val) < item.num(2) val1 = spm_input(sprintf('%s(%d)', item.name, numel(val)+1), 1, ... 'm', labels, values); if val1{1} == -1 break; else val(end+1) = val1; end end case 'cfg_entry' val = spm_input(item.name, 1, item.strtype, '', item.num, ... item.extras); case 'cfg_files' [t,sts] = cfg_getfile(item.num, item.filter, item.name, '', ... item.dir, item.ufilter); if sts val = cellstr(t); else val = {}; error('File selector was closed.'); end end %========================================================================== % function [code cont] = genscript_run %========================================================================== function [code cont] = genscript_run % Return code snippet to initialise SPM defaults and run a job generated by % cfg_util('genscript',...) through spm_jobman. modality = spm('CheckModality'); code{1} = sprintf('spm(''defaults'', ''%s'');', modality); code{2} = 'spm_jobman(''serial'', jobs, '''', inputs{:});'; cont = false;
github
philippboehmsturm/antx-master
spm_bms_partition.m
.m
antx-master/xspm8/spm_bms_partition.m
4,648
utf_8
0b0d4cfa175b9620fe86629a8490391c
function spm_bms_partition(BMS) % Compute model partitioning for BMS % FORMAT spm_bms_partition(BMS) % % Input: % BMS structure (BMS.mat) % % Output: % PPM (images) for each of the subsets defined % xppm_subsetn.img (RFX) and ppm_subsetn.img (FFX) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Maria Joao Rosa % $Id: spm_bms_partition.m 4310 2011-04-18 16:07:35Z guillaume $ % Contrast vector % ------------------------------------------------------------------------- spm_input('Specify contrast vector. Example: [1 1 2 2 3 3]',1,'d'); contrast = spm_input('Contrast vector',2,'e',[]); % Inference method to plot % ------------------------------------------------------------------------- method = spm_input('Inference method',3,'b','FFX|RFX',['FFX';'RFX']); nb_subsets = length(unique(contrast)); max_cont = max(contrast); nb_models = length(contrast); switch method case 'FFX' str_method = 'ffx'; str_output = 'ppm'; case 'RFX' str_method = 'rfx'; str_output = 'xppm'; otherwise error('Unknown inference method.'); end % Check if ffx exists % ------------------------------------------------------------------------- if ~isfield(BMS.map,str_method) msgbox(sprintf('No %s analysis in current BMS.mat.',method)); return end % Check number of subsets and nb of models % ------------------------------------------------------------------------- bms_fields = eval(sprintf('BMS.map.%s.ppm',str_method)); nmodels = size(bms_fields,2); if nb_models ~= nmodels || nb_subsets == 1 || max_cont ~= nb_subsets msgbox('Invalid contrast vector!') return end % Get data for each subset % ------------------------------------------------------------------------- data = cell(1,nb_subsets); for i = 1:nmodels, num = contrast(i); data{num} = [data{num};bms_fields{i}]; end % Create new images by summing old the ppms % ------------------------------------------------------------------------- pth = fileparts(BMS.fname); data_vol = cell(nb_subsets,1); ftmp = cell(nb_subsets,1); for j = 1:nb_subsets, data_vol{j} = spm_vol(char(data{j})); n_models_sub = size(data{j},1); ftmp{j} = 'i1'; for jj = 1:n_models_sub-1 ftmp{j} = [ftmp{j},sprintf(' + i%d',jj+1)]; end fname = fullfile(pth,sprintf('subset%d_%s.img',j,str_output)); save_fn{j} = fname; Vo = calc_im(j,data_vol,fname,ftmp); end % Save new BMS structure % ------------------------------------------------------------------------- bms_struct = eval(sprintf('BMS.map.%s',str_method)); bms_struct.subsets = save_fn; switch method case 'FFX' BMS.map.ffx = bms_struct; case 'RFX' BMS.map.rfx = bms_struct; end file_name = BMS.fname; BMS.xSPM = []; save(file_name,'BMS') % Return to results %========================================================================== spm_input('Done',1,'d'); return; %========================================================================== % out = calc_im(j,data_vol,fname,ftmp) %========================================================================== % Function to sum the data (taken from spm_imcalc) %-------------------------------------------------------------------------- function out = calc_im(j,data_vol,fname,ftmp) Vi_tmp = data_vol{j}; Vi = Vi_tmp(1); Vo(j) = struct(... 'fname', fname,... 'dim', Vi.dim,... 'dt', [spm_type('float32') spm_platform('bigend')],... 'mat', Vi.mat,... 'descrip', 'spm - algebra'); hold = 1; mask = 0; dmtx = 0; Vi = data_vol{j}; n = numel(Vi); Y = zeros(Vo(j).dim(1:3)); f = ftmp{j}; for p = 1:Vo(j).dim(3), B = spm_matrix([0 0 -p 0 0 0 1 1 1]); if dmtx, X=zeros(n,prod(Vo(j).dim(1:2))); end for i = 1:n M = inv(B*inv(Vo(j).mat)*Vi(i).mat); d = spm_slice_vol(Vi(i),M,Vo(j).dim(1:2),[hold,NaN]); if (mask<0), d(isnan(d))=0; end; if (mask>0) && ~spm_type(Vi(i).dt(1),'nanrep'), d(d==0)=NaN; end if dmtx, X(i,:) = d(:)'; else eval(['i',num2str(i),'=d;']); end end try eval(['Yp = ' f ';']); catch error(['Can''t evaluate "',f,'".']); end if prod(Vo(j).dim(1:2)) ~= numel(Yp), error(['"',f,'" produced incompatible image.']); end if (mask<0), Yp(isnan(Yp))=0; end Y(:,:,p) = reshape(Yp,Vo(j).dim(1:2)); end temp = Vo(j); temp = spm_write_vol(temp,Y); out(j) = temp;
github
philippboehmsturm/antx-master
spm_eeg_inv_vbecd_disp.m
.m
antx-master/xspm8/spm_eeg_inv_vbecd_disp.m
23,018
UNKNOWN
5277a06e987a0014165d867f7c51bb1b
function spm_eeg_inv_vbecd_disp(action,varargin) % Display the dipoles as obtained from VB-ECD % % FORMAT spm_eeg_inv_vbecd_disp('Init',D) % Display the latest VB-ECD solution saved in the .inv{} field of the % data structure D. % % FORMAT spm_eeg_inv_vbecd_disp('Init',D, ind) % Display the ind^th .inv{} cell element, if it is actually a VB-ECD % solution. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Christophe Phillips % $Id: spm_eeg_inv_vbecd_disp.m 3951 2010-06-28 15:09:36Z gareth $ % Note: % unfortunately I cannot see how to ensure that when zooming in the image % the dipole location stays in place... global st Fig = spm_figure('GetWin','Graphics'); colors = {'y','b','g','r','c','m'}; % 6 possible colors marker = {'o','x','+','*','s','d','v','p','h'}; % 9 possible markers Ncolors = length(colors); Nmarker = length(marker); if nargin == 0, action = 'Init'; end; switch lower(action), %========================================================================== case 'init' %========================================================================== % FORMAT spm_eeg_inv_vbecd_disp('init',D,ind) % Initialise the variables with GUI %-------------------------------------------------------------------------- if nargin<2 D = spm_eeg_load; else D = varargin{1}; end if nargin<3 % find the latest inverse produced with vbecd Ninv = length(D.inv); lind = []; for ii=1:Ninv if isfield(D.inv{ii},'method') && ... strcmp(D.inv{ii}.method,'vbecd') lind = [lind ii]; end end ind = max(lind); if ~ind, spm('alert*','No VB-ECD solution found with this data file!',... 'VB-ECD display') return end else ind = varargin{3}; end % Stash dipole(s) information in sdip structure sdip = D.inv{ind}.inverse; % if the exit flag is not in the structure, assume everything went ok. if ~isfield(sdip,'exitflag') sdip.exitflag = ones(1,sdip.n_seeds); end try error('crap'); Pimg = spm_vol(D.inv{ind}.mesh.sMRI); catch Pimg = spm_vol(fullfile(spm('dir'), 'canonical', 'single_subj_T1.nii')); end spm_orthviews('Reset'); spm_orthviews('Image', Pimg, [0.0 0.45 1 0.55]); spm_orthviews('MaxBB'); spm_orthviews('AddContext') st.callback = 'spm_image(''shopos'');'; % remove clicking in image for ii=1:3, set(st.vols{1}.ax{ii}.ax,'ButtonDownFcn',';'); end WS = spm('WinScale'); % Build GUI %========================================================================== % Location: %-------------------------------------------------------------------------- uicontrol(Fig,'Style','Frame','Position',[60 25 200 325].*WS, ... 'DeleteFcn','spm_image(''reset'');'); uicontrol(Fig,'Style','Frame','Position',[70 250 180 90].*WS); uicontrol(Fig,'Style','Text', 'Position',[75 320 170 016].*WS, ... 'String','Current Position'); uicontrol(Fig,'Style','Text', 'Position',[75 295 35 020].*WS,'String','mm:'); uicontrol(Fig,'Style','Text', 'Position',[75 275 35 020].*WS,'String','vx:'); uicontrol(Fig,'Style','Text', 'Position',[75 255 75 020].*WS,'String','Img Intens.:'); st.mp = uicontrol(Fig,'Style','Text', 'Position',[110 295 135 020].*WS,'String',''); st.vp = uicontrol(Fig,'Style','Text', 'Position',[110 275 135 020].*WS,'String',''); st.in = uicontrol(Fig,'Style','Text', 'Position',[150 255 85 020].*WS,'String',''); c = 'if get(gco,''Value'')==1, spm_orthviews(''Xhairs'',''off''), else, spm_orthviews(''Xhairs'',''on''); end;'; uicontrol(Fig,'Style','togglebutton','Position',[95 220 125 20].*WS,... 'String','Hide Crosshairs','Callback',c,'ToolTipString','show/hide crosshairs'); % Dipoles/seeds selection: %-------------------------------------------------------------------------- uicontrol(Fig,'Style','Frame','Position',[300 25 180 325].*WS); sdip.hdl.hcl = uicontrol(Fig,'Style','pushbutton','Position',[310 320 100 20].*WS, ... 'String','Clear all','CallBack','spm_eeg_inv_vbecd_disp(''ClearAll'')'); sdip.hdl.hseed=zeros(sdip.n_seeds,1); for ii=1:sdip.n_seeds if sdip.exitflag(ii)==1 sdip.hdl.hseed(ii) = uicontrol(Fig,'Style','togglebutton','String',num2str(ii),... 'Position',[310+rem(ii-1,8)*20 295-fix((ii-1)/8)*20 20 20].*WS,... 'CallBack','spm_eeg_inv_vbecd_disp(''ChgSeed'')'); else sdip.hdl.hseed(ii) = uicontrol(Fig,'Style','Text','String',num2str(ii), ... 'Position',[310+rem(ii-1,8)*20 293-fix((ii-1)/8)*20 20 20].*WS) ; end end uicontrol(Fig,'Style','text','String','Select dipole # :', ... 'Position',[310 255-fix((sdip.n_seeds-1)/8)*20 110 20].*WS); txt_box = cell(sdip.n_dip,1); for ii=1:sdip.n_dip, txt_box{ii} = num2str(ii); end txt_box{sdip.n_dip+1} = 'all'; sdip.hdl.hdip = uicontrol(Fig,'Style','popup','String',txt_box, ... 'Position',[420 258-fix((sdip.n_seeds-1)/8)*20 40 20].*WS, ... 'Callback','spm_eeg_inv_vbecd_disp(''ChgDip'')'); % Dipoles orientation and strength: %-------------------------------------------------------------------------- uicontrol(Fig,'Style','Frame','Position',[70 120 180 90].*WS); uicontrol(Fig,'Style','Text', 'Position',[75 190 170 016].*WS, ... 'String','Dipole orientation & strength'); uicontrol(Fig,'Style','Text', 'Position',[75 165 65 020].*WS, ... 'String','x-y-z or.:'); uicontrol(Fig,'Style','Text', 'Position',[75 145 75 020].*WS, ... 'String','theta-phi or.:'); uicontrol(Fig,'Style','Text', 'Position',[75 125 75 020].*WS, ... 'String','Dip. intens.:'); sdip.hdl.hor1 = uicontrol(Fig,'Style','Text', 'Position', ... [140 165 105 020].*WS,'String','a'); sdip.hdl.hor2 = uicontrol(Fig,'Style','Text', 'Position', ... [150 145 85 020].*WS,'String','b'); sdip.hdl.int = uicontrol(Fig,'Style','Text', 'Position', ... [150 125 85 020].*WS,'String','c'); st.vols{1}.sdip = sdip; % First plot = all the seeds that converged ! l_conv = find(sdip.exitflag==1); if isempty(l_conv) error('No seed converged towards a stable solution, nothing to be displayed !') else spm_eeg_inv_vbecd_disp('DrawDip',l_conv,1) set(sdip.hdl.hseed(l_conv),'Value',1); % toggle all buttons end %========================================================================== case 'drawdip' %========================================================================== % FORMAT spm_eeg_inv_vbecd_disp('DrawDip',i_seed,i_dip,sdip) % e.g. spm_eeg_inv_vbecd_disp('DrawDip',1,1,sdip) % e.g. spm_eeg_inv_vbecd_disp('DrawDip',[1:5],1,sdip) %-------------------------------------------------------------------------- if nargin < 2 i_seed = 1; else i_seed = varargin{1}; end if nargin<3 i_dip = 1; else i_dip = varargin{2}; end if nargin<4 if isfield(st.vols{1},'sdip') sdip = st.vols{1}.sdip; else error('I can''t find sdip structure'); end else sdip = varargin{3}; st.vols{1}.sdip = sdip; end if any(i_seed>sdip.n_seeds) || i_dip>(sdip.n_dip+1) error('Wrong i_seed or i_dip index in spm_eeg_inv_vbecd_disp'); end % Note if i_dip==(sdip.n_dip+1) all dipoles are displayed simultaneously, % The 3D cut will then be at the mean location of all sources !!! if i_dip == (sdip.n_dip+1) i_dip = 1:sdip.n_dip; end % if seed indexes passed is wrong (no convergence) remove the wrong ones i_seed(sdip.exitflag(i_seed)~=1) = []; if isempty(i_seed) error('You passed the wrong seed indexes...') end if size(i_seed,2)==1, i_seed=i_seed'; end % Display business %-------------------------------------------------------------------------- loc_mm = sdip.mniloc{i_seed(1)}(:,i_dip); if length(i_seed)>1 % unit = ones(1,sdip.n_dip); for ii = i_seed(2:end) loc_mm = loc_mm + sdip.mniloc{ii}(:,i_dip); end loc_mm = loc_mm/length(i_seed); end if length(i_dip)>1 loc_mm = mean(loc_mm,2); end % Place the underlying image at right cuts spm_orthviews('Reposition',loc_mm); if length(i_dip)>1 tabl_seed_dip = [kron(ones(length(i_dip),1),i_seed') ... kron(i_dip',ones(length(i_seed),1))]; else tabl_seed_dip = [i_seed' ones(length(i_seed),1)*i_dip]; end % Scaling, according to all dipoles in the selected seed sets. % The time displayed is the one corresponding to the maximum EEG power ! Mn_j = -1; l3 = -2:0; for ii = 1:length(i_seed) for jj = 1:sdip.n_dip Mn_j = max([Mn_j sqrt(sum(sdip.jmni{ii}(jj*3+l3,sdip.Mtb).^2))]); end end st.vols{1}.sdip.tabl_seed_dip = tabl_seed_dip; % Display all dipoles, the 1st one + the ones close enough. % Run through the 6 colors and 9 markers to differentiate the dipoles. % NOTA: 2 dipoles coming from the same set will have same colour/marker ind = 1 ; dip_h = zeros(9,size(tabl_seed_dip,1),1); % each dipole displayed has 9 handles: % 3 per view (2*3): for the line, for the circle & for the error js_m = zeros(3,1); % Deal with case of multiple i_seed and i_dip displayed. % make sure dipole from same i_seed have same colour but different marker. pi_dip = find(diff(tabl_seed_dip(:,2))); if isempty(pi_dip) % i.e. only one dip displayed per seed, use old fashion for ii=1:size(tabl_seed_dip,1) if ii>1 if tabl_seed_dip(ii,1)~=tabl_seed_dip(ii-1,1) ind = ind+1; end end ic = mod(ind-1,Ncolors)+1; im = fix(ind/Ncolors)+1; loc_pl = sdip.mniloc{tabl_seed_dip(ii,1)}(:,tabl_seed_dip(ii,2)); js = sdip.jmni{tabl_seed_dip(ii,1)}(tabl_seed_dip(ii,2)*3+l3,sdip.Mtb); vloc = sdip.cov_loc{tabl_seed_dip(ii,1)}(tabl_seed_dip(ii,2)*3+l3,tabl_seed_dip(ii,2)*3+l3); dip_h(:,ii) = add1dip(loc_pl,js/Mn_j*20,vloc, ... marker{im},colors{ic},st.vols{1}.ax,Fig,st.bb); js_m = js_m+js; end else for ii=1:pi_dip(1) if ii>1 if tabl_seed_dip(ii,1)~=tabl_seed_dip(ii-1,1) ind = ind+1; end end ic = mod(ind-1,Ncolors)+1; for jj=1:sdip.n_dip im = mod(jj-1,Nmarker)+1; loc_pl = sdip.mniloc{tabl_seed_dip(ii,1)}(:,jj); js = sdip.jmni{tabl_seed_dip(ii,1)}(jj*3+l3,sdip.Mtb); vloc = sdip.cov_loc{tabl_seed_dip(ii,1)}(jj*3+l3,jj*3+l3); js_m = js_m+js; dip_h(:,ii+(jj-1)*pi_dip(1)) = ... add1dip(loc_pl,js/Mn_j*20,vloc, ... marker{im},colors{ic},st.vols{1}.ax,Fig,st.bb); end end end st.vols{1}.sdip.ax = dip_h; % Display dipoles orientation and strength js_m = js_m/size(tabl_seed_dip,1); [th,phi,Ijs_m] = cart2sph(js_m(1),js_m(2),js_m(3)); Njs_m = round(js_m'/Ijs_m*100)/100; Angle = round([th phi]*1800/pi)/10; set(sdip.hdl.hor1,'String',[num2str(Njs_m(1)),' ',num2str(Njs_m(2)), ... ' ',num2str(Njs_m(3))]); set(sdip.hdl.hor2,'String',[num2str(Angle(1)),'� ',num2str(Angle(2)),'�']); set(sdip.hdl.int,'String',Ijs_m); % Change the colour of toggle button of dipoles actually displayed for ii=tabl_seed_dip(:,1) set(sdip.hdl.hseed(ii),'BackgroundColor',[.7 1 .7]); end %========================================================================== case 'clearall' %========================================================================== % Clears all dipoles, and reset the toggle buttons %-------------------------------------------------------------------------- if isfield(st.vols{1},'sdip') sdip = st.vols{1}.sdip; else error('I can''t find sdip structure'); end disp('Clears all dipoles') spm_eeg_inv_vbecd_disp('ClearDip'); for ii=1:st.vols{1}.sdip.n_seeds if sdip.exitflag(ii)==1 set(st.vols{1}.sdip.hdl.hseed(ii),'Value',0); end end set(st.vols{1}.sdip.hdl.hdip,'Value',1); %========================================================================== case 'chgseed' %========================================================================== % Changes the seeds displayed %-------------------------------------------------------------------------- % disp('Change seed') sdip = st.vols{1}.sdip; if isfield(sdip,'tabl_seed_dip') prev_seeds = p_seed(sdip.tabl_seed_dip); else prev_seeds = []; end l_seed = zeros(sdip.n_seeds,1); for ii=1:sdip.n_seeds if sdip.exitflag(ii)==1 l_seed(ii) = get(sdip.hdl.hseed(ii),'Value'); end end l_seed = find(l_seed); % Modify the list of seeds displayed if isempty(l_seed) % Nothing left displayed i_seed=[]; elseif isempty(prev_seeds) % Just one dipole added, nothing before i_seed=l_seed; elseif length(prev_seeds)>length(l_seed) % One seed removed i_seed = prev_seeds; for ii=1:length(l_seed) p = find(prev_seeds==l_seed(ii)); if ~isempty(p) prev_seeds(p) = []; end % prev_seeds is left with the index of the one removed end i_seed(i_seed==prev_seeds) = []; % Remove the dipole & change the button colour spm_eeg_inv_vbecd_disp('ClearDip',prev_seeds); set(sdip.hdl.hseed(prev_seeds),'BackgroundColor',[.7 .7 .7]); else % One dipole added i_seed = prev_seeds; for ii=1:length(prev_seeds) p = find(prev_seeds(ii)==l_seed); if ~isempty(p) l_seed(p) = []; end % l_seed is left with the index of the one added end i_seed = [i_seed ; l_seed]; end i_dip = get(sdip.hdl.hdip,'Value'); spm_eeg_inv_vbecd_disp('ClearDip'); if ~isempty(i_seed) spm_eeg_inv_vbecd_disp('DrawDip',i_seed,i_dip); end %========================================================================== case 'chgdip' %========================================================================== % Changes the dipole index for the first seed displayed %-------------------------------------------------------------------------- disp('Change dipole') sdip = st.vols{1}.sdip; i_dip = get(sdip.hdl.hdip,'Value'); if isfield(sdip,'tabl_seed_dip') i_seed = p_seed(sdip.tabl_seed_dip); else i_seed = []; end if ~isempty(i_seed) spm_eeg_inv_vbecd_disp('ClearDip') spm_eeg_inv_vbecd_disp('DrawDip',i_seed,i_dip); end %========================================================================== case 'cleardip' %========================================================================== % FORMAT spm_eeg_inv_vbecd_disp('ClearDip',seed_i) % e.g. spm_eeg_inv_vbecd_disp('ClearDip') % clears all displayed dipoles % e.g. spm_eeg_inv_vbecd_disp('ClearDip',1) % clears the first dipole displayed %-------------------------------------------------------------------------- if nargin>2 seed_i = varargin{1}; else seed_i = 0; end if isfield(st.vols{1},'sdip') sdip = st.vols{1}.sdip; else return; % I don't do anything, as I can't find sdip strucure end if isfield(sdip,'ax') Nax = size(sdip.ax,2); else return; % I don't do anything, as I can't find axes info end if seed_i==0 % removes everything for ii=1:Nax for jj=1:9 delete(sdip.ax(jj,ii)); end end for ii=sdip.tabl_seed_dip(:,1) set(sdip.hdl.hseed(ii),'BackgroundColor',[.7 .7 .7]); end sdip = rmfield(sdip,'tabl_seed_dip'); sdip = rmfield(sdip,'ax'); elseif seed_i<=Nax % remove one seed only l_seed = find(sdip.tabl_seed_dip(:,1)==seed_i); for ii=l_seed for jj=1:9 delete(sdip.ax(jj,ii)); end end sdip.ax(:,l_seed) = []; sdip.tabl_seed_dip(l_seed,:) = []; else error('Trying to clear unspecified dipole'); end st.vols{1}.sdip = sdip; %========================================================================== case 'redrawdip' %========================================================================== % spm_eeg_inv_vbecd_disp('RedrawDip') % redraw everything, useful when zooming into image %-------------------------------------------------------------------------- % spm_eeg_inv_vbecd_disp('ClearDip') % spm_eeg_inv_vbecd_disp('ChgDip') % disp('Change dipole') sdip = st.vols{1}.sdip; i_dip = get(sdip.hdl.hdip,'Value'); if isfield(sdip,'tabl_seed_dip') i_seed = p_seed(sdip.tabl_seed_dip); else i_seed = []; end if ~isempty(i_seed) spm_eeg_inv_vbecd_disp('ClearDip') spm_eeg_inv_vbecd_disp('DrawDip',i_seed,i_dip); end %========================================================================== otherwise %========================================================================== warning('Unknown action string'); end % warning(sw); return %========================================================================== % dh = add1dip(loc,js,vloc,mark,col,ax,Fig,bb) %========================================================================== function dh = add1dip(loc,js,vloc,mark,col,ax,Fig,bb) % Plots the dipoles on the 3 views, with an error ellipse for location % Then returns the handle to the plots global st is = inv(st.Space); loc = is(1:3,1:3)*loc(:) + is(1:3,4); % taking into account the zooming/scaling only for the location % NOT for the dipole's amplitude. % Amplitude plotting is quite arbitrary anyway and up to some scaling % defined for better viewing... loc(1,:) = loc(1,:) - bb(1,1)+1; loc(2,:) = loc(2,:) - bb(1,2)+1; loc(3,:) = loc(3,:) - bb(1,3)+1; % +1 added to be like John's orthview code % prepare error ellipse vloc = is(1:3,1:3)*vloc*is(1:3,1:3); [V,E] = eig(vloc); VE = V*diag(sqrt(diag(E))); % use std % VE = V*E; % or use variance ??? dh = zeros(9,1); figure(Fig) % Transverse slice, # 1 %---------------------- set(Fig,'CurrentAxes',ax{1}.ax) set(ax{1}.ax,'NextPlot','add') dh(1) = plot(loc(1),loc(2),[mark,col],'LineWidth',1); dh(2) = plot(loc(1)+[0 js(1)],loc(2)+[0 js(2)],col,'LineWidth',2); % add error ellipse [uu,ss,vv] = svd(VE([1 2],:)); [phi] = cart2pol(uu(1,1),uu(2,1)); e = diag(ss); t = (-1:.02:1)*pi; x = e(1)*cos(t)*cos(phi)-e(2)*sin(t)*sin(phi)+loc(1); y = e(2)*sin(t)*cos(phi)+e(1)*cos(t)*sin(phi)+loc(2); dh(3) = plot(x,y,[':',col],'LineWidth',.5); set(ax{1}.ax,'NextPlot','replace') % Coronal slice, # 2 %---------------------- set(Fig,'CurrentAxes',ax{2}.ax) set(ax{2}.ax,'NextPlot','add') dh(4) = plot(loc(1),loc(3),[mark,col],'LineWidth',1); dh(5) = plot(loc(1)+[0 js(1)],loc(3)+[0 js(3)],col,'LineWidth',2); % add error ellipse [uu,ss,vv] = svd(VE([1 3],:)); [phi] = cart2pol(uu(1,1),uu(2,1)); e = diag(ss); t = (-1:.02:1)*pi; x = e(1)*cos(t)*cos(phi)-e(2)*sin(t)*sin(phi)+loc(1); y = e(2)*sin(t)*cos(phi)+e(1)*cos(t)*sin(phi)+loc(3); dh(6) = plot(x,y,[':',col],'LineWidth',.5); set(ax{2}.ax,'NextPlot','replace') % Sagital slice, # 3 %---------------------- set(Fig,'CurrentAxes',ax{3}.ax) set(ax{3}.ax,'NextPlot','add') % dh(5) = plot(dim(2)-loc(2),loc(3),[mark,col],'LineWidth',2); % dh(6) = plot(dim(2)-loc(2)+[0 -js(2)],loc(3)+[0 js(3)],col,'LineWidth',2); dh(7) = plot(bb(2,2)-bb(1,2)-loc(2),loc(3),[mark,col],'LineWidth',1); dh(8) = plot(bb(2,2)-bb(1,2)-loc(2)+[0 -js(2)],loc(3)+[0 js(3)],col,'LineWidth',2); % add error ellipse [uu,ss,vv] = svd(VE([2 3],:)); [phi] = cart2pol(uu(1,1),uu(2,1)); e = diag(ss); t = (-1:.02:1)*pi; x = -(e(1)*cos(t)*cos(phi)-e(2)*sin(t)*sin(phi))+bb(2,2)-bb(1,2)-loc(2); y = e(2)*sin(t)*cos(phi)+e(1)*cos(t)*sin(phi)+loc(3); dh(9) = plot(x,y,[':',col],'LineWidth',.5); set(ax{3}.ax,'NextPlot','replace') return %========================================================================== % pr_seed = p_seed(tabl_seed_dip) %========================================================================== function pr_seed = p_seed(tabl_seed_dip) % Gets the list of seeds used in the previous display ls = sort(tabl_seed_dip(:,1)); if length(ls)==1 pr_seed = ls; else pr_seed = ls([find(diff(ls)) ; length(ls)]); end % % OLD STUFF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Use it with arguments or not: % - spm_eeg_inv_vbecd_disp('Init') % The routine asks for the dipoles file and image to display % - spm_eeg_inv_vbecd_disp('Init',sdip) % The routine will use the avg152T1 canonical image % - spm_eeg_inv_vbecd_disp('Init',sdip,P) % The routines dispays the dipoles on image P. % % If multiple seeds have been used, you can select the seeds to display % by pressing their index. % Given that the sources could have different locations, the slices % displayed will be the 3D view at the *average* or *mean* locations of % selected sources. % If more than 1 dipole was fitted at a time, then selection of source 1 % to N is possible through the pull-down selector. % % The location of the source/cut is displayed in mm and voxel, as well as % the underlying image intensity at that location. % The cross hair position can be hidden by clicking on its button. % % Nota_1: If the cross hair is manually moved by clicking in the image or % changing its coordinates, the dipole displayed will NOT be at % the right displayed location. That's something that needs to be improved... % % Nota_2: Some seeds may have not converged within the limits fixed, % these dipoles are not displayed... % % Fields needed in sdip structure to plot on an image: % + n_seeds: nr of seeds set used, i.e. nr of solutions calculated % + n_dip: nr of fitted dipoles on the EEG time series % + loc: location of fitted dipoles, cell{1,n_seeds}(3 x n_dip) % remember that loc is fixed over the time window. % + j: sources amplitude over the time window, % cell{1,n_seeds}(3*n_dip x Ntimebins) % + Mtb: index of maximum power in EEG time series used % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % First point to consider % loc_mm = sdip.loc{i_seed(1)}(:,i_dip); % % % PLace the underlying image at right cuts % spm_orthviews('Reposition',loc_mm); % % spm_orthviews('Reposition',loc_vx); % % spm_orthviews('Xhairs','off') % % % if i_seed = set, Are there other dipoles close enough ? % tabl_seed_dip=[i_seed(1) i_dip]; % table summarising which set & dip to use. % if length(i_seed)>1 % unit = ones(1,sdip.n_dip); % for ii = i_seed(2:end)' % d2 = sqrt(sum((sdip.loc{ii}-loc_mm*unit).^2)); % l_cl = find(d2<=lim_cl); % if ~isempty(l_cl) % for jj=l_cl % tabl_seed_dip = [tabl_seed_dip ; [ii jj]]; % end % end % end % end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % get(sdip.hdl.hseed(1),'Value') % for ii=1:sdip.n_seeds, delete(hseed(ii)); end % h1 = uicontrol(Fig,'Style','togglebutton','Position',[600 25 10 10].*WS) % h2 = uicontrol(Fig,'Style','togglebutton','Position',[620 100 20 20].*WS,'String','1') % h2 = uicontrol(Fig,'Style','checkbox','Position',[600 100 10 10].*WS) % h3 = uicontrol(Fig,'Style','radiobutton','Position',[600 150 20 20].*WS) % h4 = uicontrol(Fig,'Style','radiobutton','Position',[700 150 20 20].*WS) % delete(h2),delete(h3),delete(h4), % delete(hdip)
github
philippboehmsturm/antx-master
spm_eeg_definetrial.m
.m
antx-master/xspm8/spm_eeg_definetrial.m
11,429
utf_8
56a6ae7de86bca4e155843aa0d2f736f
function [trl, conditionlabels, S] = spm_eeg_definetrial(S) % Definition of trials based on events % FORMAT[trl, conditionlabels, S] = spm_eeg_definetrial(S) % S - input structure (optional) % (optional) fields of S: % S.event - event struct (optional) % S.fsample - sampling rate % S.dataset - raw dataset (events and fsample can be read from there if absent) % S.inputformat - data type (optional) to force the use of specific data reader % S.timeonset - time of the first sample in the data [default: 0] % S.pretrig - pre-trigger time in ms % S.posttrig - post-trigger time in ms % S.trialdef - structure array for trial definition with fields (optional) % S.trialdef.conditionlabel - string label for the condition % S.trialdef.eventtype - string % S.trialdef.eventvalue - string, numeric or empty % S.reviewtrials - review individual trials after selection (yes/no: 1/0) % S.save - save trial definition (yes/no: 1/0) % OUTPUT: % trl - Nx3 matrix [start end offset] % conditionlabels - Nx1 cell array of strings, label for each trial % S - modified configuration structure (for history) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak, Robert Oostenveld % $Id: spm_eeg_definetrial.m 4756 2012-05-28 15:59:42Z vladimir $ SVNrev = '$Rev: 4756 $'; %-Startup %-------------------------------------------------------------------------- spm('sFnBanner', mfilename, SVNrev); spm('FigName','M/EEG trial definition'); %-Get input parameters %-------------------------------------------------------------------------- try S.inputformat; catch S.inputformat = []; end if ~isfield(S, 'event') || ~isfield(S, 'fsample') if ~isfield(S, 'dataset') S.dataset = spm_select(1, '\.*', 'Select M/EEG data file'); end hdr = ft_read_header(S.dataset, 'fallback', 'biosig', 'headerformat', S.inputformat); S.fsample = hdr.Fs; event = ft_read_event(S.dataset, 'detectflank', 'both', 'eventformat', S.inputformat); if ~isempty(strmatch('UPPT001', hdr.label)) % This is s somewhat ugly fix to the specific problem with event % coding in FIL CTF. It can also be useful for other CTF systems where the % pulses in the event channel go downwards. fil_ctf_events = ft_read_event(S.dataset, 'detectflank', 'down', 'type', 'UPPT001', 'trigshift', -1, 'eventformat', S.inputformat); if ~isempty(fil_ctf_events) [fil_ctf_events(:).type] = deal('FIL_UPPT001_down'); event = cat(1, event(:), fil_ctf_events(:)); end end if ~isempty(strmatch('UPPT002', hdr.label)) % This is s somewhat ugly fix to the specific problem with event % coding in FIL CTF. It can also be useful for other CTF systems where the % pulses in the event channel go downwards. fil_ctf_events = ft_read_event(S.dataset, 'detectflank', 'down', 'type', 'UPPT002', 'trigshift', -1, 'eventformat', S.inputformat); if ~isempty(fil_ctf_events) [fil_ctf_events(:).type] = deal('FIL_UPPT002_down'); event = cat(1, event(:), fil_ctf_events(:)); end end % This is another FIL-specific fix that will hopefully not affect other sites if isfield(hdr, 'orig') && isfield(hdr.orig, 'VERSION') && isequal(uint8(hdr.orig.VERSION),uint8([255 'BIOSEMI'])) ind = strcmp('STATUS', {event(:).type}); val = [event(ind).value]; if any(val>255) bytes = dec2bin(val); bytes = bytes(:, end-7:end); bytes = flipdim(bytes, 2); val = num2cell(bin2dec(bytes)); [event(ind).value] = deal(val{:}); end end else event = S.event; end if ~isfield(S, 'timeonset') S.timeonset = 0; end if ~isfield(event, 'time') for i = 1:numel(event) if S.timeonset == 0 event(i).time = event(i).sample./S.fsample; else event(i).time = (event(i).sample - 1)./S.fsample + S.timeonset; end end end if ~isfield(event, 'sample') for i = 1:numel(event) if S.timeonset == 0 event(i).sample = event(i).time*S.fsample; else event(i).sample = (event(i).time-S.timeonset)*S.fsample+1; end event(i).sample = round(event(i).sample); end end if isempty(event) error('No event information was found in the input'); end if ~isfield(S, 'pretrig') S.pretrig = spm_input('Start of trial in PST [ms]', '+1', 'r', '', 1); end if ~isfield(S, 'posttrig') S.posttrig = spm_input('End of trial in PST [ms]', '+1', 'r', '', 1); end if ~isfield(S, 'trialdef') S.trialdef = []; ncond = spm_input('How many conditions?', '+1', 'n', '1'); for i = 1:ncond OK = 0; pos = '+1'; while ~OK conditionlabel = spm_input(['Label of condition ' num2str(i)], pos, 's'); selected = select_event_ui(event); if isempty(conditionlabel) || isempty(selected) pos = '-1'; else for j = 1:size(selected, 1) S.trialdef = [S.trialdef ... struct('conditionlabel', conditionlabel, ... 'eventtype', selected{j, 1}, ... 'eventvalue', selected{j, 2})]; OK=1; end end end end end for i = 1:length(S.trialdef) if ~isfield(S.trialdef(i),'trlshift') trlshift(i) = 0; else trlshift(i) = round(S.trialdef(i).trlshift * S.fsample/1000); % assume passed as ms end end %-Build trl based on selected events %-------------------------------------------------------------------------- trl = []; conditionlabels = {}; for i=1:numel(S.trialdef) if ischar(S.trialdef(i).eventvalue) % convert single string into cell-array, otherwise the intersection does not work as intended S.trialdef(i).eventvalue = {S.trialdef(i).eventvalue}; end sel = []; % select all events of the specified type and with the specified value for j=find(strcmp(S.trialdef(i).eventtype, {event.type})) if isempty(S.trialdef(i).eventvalue) sel = [sel j]; elseif ~isempty(intersect(event(j).value, S.trialdef(i).eventvalue)) sel = [sel j]; end end for j=1:length(sel) % override the offset of the event trloff = round(0.001*S.pretrig*S.fsample); % also shift the begin sample with the specified amount if ismember(event(sel(j)).type, {'trial', 'average'}) % In case of trial events treat the 0 time point as time of the % event rather than the beginning of the trial trlbeg = event(sel(j)).sample - event(sel(j)).offset + trloff; else trlbeg = event(sel(j)).sample + trloff; end trldur = round(0.001*(-S.pretrig+S.posttrig)*S.fsample); trlend = trlbeg + trldur; % Added by Rik in case wish to shift triggers (e.g, due to a delay % between trigger and visual/auditory stimulus reaching subject). trlbeg = trlbeg + trlshift(i); trlend = trlend + trlshift(i); % add the beginsample, endsample and offset of this trial to the list trl = [trl; trlbeg trlend trloff]; conditionlabels{end+1} = S.trialdef(i).conditionlabel; end end %-Sort the trl in right temporal order %-------------------------------------------------------------------------- [junk, sortind] = sort(trl(:,1)); trl = trl(sortind, :); conditionlabels = conditionlabels(sortind); %-Review selected trials %-------------------------------------------------------------------------- if ~isfield(S, 'reviewtrials') S.reviewtrials = spm_input('Review individual trials?','+1','yes|no',[1 0], 0); end if S.reviewtrials eventstrings=cell(size(trl,1),1); for i=1:size(trl,1) eventstrings{i}=[num2str(i) ' Label: ' conditionlabels{i} ' Time (sec): ' num2str((trl(i, 1)- trl(i, 3))./S.fsample)]; end selected = find(trl(:,1)>0); [indx OK] = listdlg('ListString', eventstrings, 'SelectionMode', 'multiple', 'InitialValue', ... selected, 'Name', 'Select events', 'ListSize', [300 300]); if OK trl=trl(indx, :); conditionlabels = conditionlabels(indx); end end %-Create trial definition file %-------------------------------------------------------------------------- if ~isfield(S, 'save') S.save = spm_input('Save trial definition?','+1','yes|no',[1 0], 0); end if S.save [trlfilename, trlpathname] = uiputfile( ... {'*.mat', 'MATLAB File (*.mat)'}, 'Save trial definition as'); save(fullfile(trlpathname, trlfilename), 'trl', 'conditionlabels'); end %-Cleanup %-------------------------------------------------------------------------- spm('FigName','M/EEG trial definition: done'); %========================================================================== % select_event_ui %========================================================================== function selected = select_event_ui(event) % Allow the user to select an event using GUI selected={}; if isempty(event) fprintf('no events were found\n'); return end eventtype = unique({event.type}); Neventtype = length(eventtype); % Two lists are built in parallel settings={}; % The list of actual values to be used later strsettings={}; % The list of strings to show in the GUI for i=1:Neventtype sel = find(strcmp(eventtype{i}, {event.type})); numind = find(... cellfun('isclass', {event(sel).value}, 'double') & ... ~cellfun('isempty', {event(sel).value})); charind = find(cellfun('isclass', {event(sel).value}, 'char')); emptyind = find(cellfun('isempty', {event(sel).value})); if ~isempty(numind) numvalue = unique([event(sel(numind)).value]); for j=1:length(numvalue) ninstances = sum([event(sel(numind)).value] == numvalue(j)); strsettings=[strsettings; {['Type: ' eventtype{i} ' ; Value: ' num2str(numvalue(j)) ... ' ; ' num2str(ninstances) ' instances']}]; settings=[settings; [eventtype(i), {numvalue(j)}]]; end end if ~isempty(charind) charvalue = unique({event(sel(charind)).value}); if ~iscell(charvalue) charvalue = {charvalue}; end for j=1:length(charvalue) ninstances = length(strmatch(charvalue{j}, {event(sel(charind)).value}, 'exact')); strsettings=[strsettings; {['Type: ' eventtype{i} ' ; Value: ' charvalue{j}... ' ; ' num2str(ninstances) ' instances']}]; settings=[settings; [eventtype(i), charvalue(j)]]; end end if ~isempty(emptyind) strsettings=[strsettings; {['Type: ' eventtype{i} ' ; Value: ; ' ... num2str(length(emptyind)) ' instances']}]; settings=[settings; [eventtype(i), {[]}]]; end end [selection ok]= listdlg('ListString',strsettings, 'SelectionMode', 'multiple', 'Name', 'Select event', 'ListSize', [400 300]); if ok selected=settings(selection, :); else selected={}; end
github
philippboehmsturm/antx-master
spm_mvb_cvk2.m
.m
antx-master/xspm8/spm_mvb_cvk2.m
5,093
utf_8
751f7db1cea711d16bdb424252c3e636
function [p,pc,R2] = spm_mvb_cvk2(MVB,k) % k-fold cross validation of a multivariate Bayesian model % FORMAT [p_value,percent,R2] = spm_mvb_cvk(MVB,k) % % MVB - Multivariate Bayes structure % k - k-fold cross-validation ('0' implies a leave-one-out scheme) % % p - p-value: under a null GLM % percent: proportion correct (median threshold) % R2 - coefficient of determination % % spm_mvb_cvk performs a k-fold cross-validation by trying to predict % the target variable using training and test partitions on orthogonal % mixtures of data (from null space of confounds). % This version uses the optimised covariance model from spm_mvb. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_mvb_cvk2.m 3806 2010-04-06 14:42:32Z ged $ %-partition order %-------------------------------------------------------------------------- try k; catch str = 'k-fold cross-validation'; k = spm_input(str,'!+1','b',{'2','4','8','loo'},[2 4 8 0]); end %-Get figure handles and set title %-------------------------------------------------------------------------- Fmvb = spm_figure('GetWin','MVB'); spm_clf(Fmvb); % get MVB results %========================================================================== try MVB; catch mvb = spm_select(1,'mat','please select models',[],pwd,'MVB_*'); MVB = load(mvb(1,:)); MVB = MVB.MVB; end % whiten target and predictor (X) variables (Y) (i.e., remove correlations) %-------------------------------------------------------------------------- X = MVB.X; X0 = MVB.X0; V = MVB.V; % residual forming matrix %-------------------------------------------------------------------------- Ns = length(X); R = speye(Ns) - X0*pinv(X0); % leave-one-out %-------------------------------------------------------------------------- if ~k k = Ns; end pX = zeros(Ns,1); qX = zeros(Ns,1); qE = zeros(size(MVB.Y,2),k); % k-fold cross-validation %========================================================================== for i = 1:k [px qx qe] = mvb_cv(MVB,i,k); pX = pX + px; qX = qX + qx; qE(:,i) = qe; end % parametric inference %========================================================================== % test correlation %-------------------------------------------------------------------------- [T df] = spm_ancova(X,V,qX,1); p = 1 - spm_Tcdf(T,df(2)); % percent correct (after projection) %-------------------------------------------------------------------------- pX = R*X; qX = R*qX; T = sign(pX - median(pX)) == sign(qX - median(qX)); pc = 100*sum(T)/length(T); R2 = corrcoef(pX,qX); R2 = 100*(R2(1,2)^2); % assign in base memory %-------------------------------------------------------------------------- MVB.p_value = p; MVB.percent = pc; MVB.R2 = R2; MVB.cvk = struct('qX',qX,'qE',qE); % save results %-------------------------------------------------------------------------- save(MVB.name,'MVB') assignin('base','MVB',MVB) % display and plot validation %-------------------------------------------------------------------------- spm_mvb_cvk_display(MVB) return %========================================================================== function [X,qX,qE] = mvb_cv(MVB,n,k) %========================================================================== % MVB - multivariate structure % n - subset % k - partition % Unpack MVB and create test subspace %-------------------------------------------------------------------------- V = MVB.V; U = MVB.M.U; X = MVB.X; Y = MVB.Y; X0 = MVB.X0; h = MVB.M.h; Cp = MVB.M.Cp; % Specify indices of training and test data %-------------------------------------------------------------------------- Ns = length(X); ns = floor(Ns/k); test = [1:ns] + (n - 1)*ns; tran = [1:Ns]; tran(test) = []; test = full(sparse(test,test,1,Ns,Ns)); tran = full(sparse(tran,tran,1,Ns,Ns)); % Training - add test space to confounds %========================================================================== R = speye(Ns) - [X0 test]*pinv([X0 test]); R = spm_svd(R); L = R'*Y*U; % get error covariance %-------------------------------------------------------------------------- Ce = sparse(Ns,Ns); if isstruct(V) for i = 1:length(V) Ce = Ce + h(i)*V{i}; end else Ce = V*h(1); end Ce = R'*Ce*R; % MAP estimates of pattern weights from training data %---------------------------------------------------------------------- MAP = Cp*L'*inv(Ce + L*Cp*L'); qE = MAP*R'*X; % Test - add training space to confounds and get predicted X %========================================================================== R = speye(Ns) - [X0 tran]*pinv([X0 tran]); X = R*X; % test data qE = U*qE; % weights qX = R*Y*qE; % prediction
github
philippboehmsturm/antx-master
spm_eeg_displayECD.m
.m
antx-master/xspm8/spm_eeg_displayECD.m
8,250
utf_8
471c105bf4bbbec394478ff1a280b571
function [out] = spm_eeg_displayECD(Pos,Orient,Var,Names,options) % Plot dipole positions onto the SPM canonical mesh % FORMAT [out] = spm_eeg_displayDipoles(Pos,Orient,Var,Names,options) % % IN (admissible choices): % - Pos: a 3xndip matrix containing the positions of the dipoles in % the canonical frame of reference % - Orient: the same with dipole orientations % - Var: the same with position variance % - Names: the same with dipole names % - options: an optional structure containing % .hfig: the handle of the display figure % .tag: the tag to be associated with the created UI objects % .add: binary variable ({0}, 1: just add dipole in the figure .hfig) % % OUT: % - out: a structure containing the handles of the object in the figure % (including the mesh, the dipoles, the transparency slider, etc...) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_eeg_displayECD.m 4054 2010-08-27 19:27:09Z karl $ % checks and defaults %-------------------------------------------------------------------------- hfig = []; ParentAxes = []; query = []; handles = []; tag = ''; try, options; catch, options = []; end try, hfig = options.hfig; end try, tag = options.tag; end try, ParentAxes = options.ParentAxes; end try, query = options.query; end try, handles = options.handles; end try figure(hfig); catch hfig = spm_figure('GetWin','Graphics'); spm_figure('Clear',hfig); ParentAxes = axes('parent',hfig); end try markersize = options.markersize; catch markersize = 20; end try meshsurf = options.meshsurf; catch meshsurf = fullfile(spm('Dir'),'canonical','cortex_5124.surf.gii'); end if isscalar(Var), Var = Pos*0 + Var^2; end try, Pos{1}; catch, Pos = {Pos}; end try, Orient{1}; catch, Orient = {Orient};end try, Var{1}; catch, Var = {Var}; end ndip = size(Pos{1},2); if ~exist('Names','var') || isempty(Names) for i=1:ndip Names{i} = num2str(i); end end col = ['b','g','r','c','m','y','k','w']; tmp = ceil(ndip./numel(col)); col = repmat(col,1,tmp); pa = get(ParentAxes,'position'); if ndip > 0 if isempty(query) opt.hfig = hfig; opt.ParentAxes = ParentAxes; opt.visible = 'off'; pos2 = [pa(1),pa(2)+0.25*pa(4),0.03,0.5*pa(4)]; out = spm_eeg_render(meshsurf,opt); handles.mesh = out.handles.p; handles.BUTTONS.transp = out.handles.transp; handles.hfig = out.handles.fi; handles.ParentAxes = out.handles.ParentAxes; set(handles.mesh,... 'facealpha',0.1,... 'visible','on') set(handles.BUTTONS.transp,... 'value',0.1,... 'position',pos2,... 'visible','on') end set(ParentAxes,'nextplot','add') for j=1:length(Pos) for i =1:ndip try set(handles.hp(j,i),... 'xdata',Pos{j}(1,i),... 'ydata',Pos{j}(2,i),... 'zdata',Pos{j}(3,i)); catch handles.hp(j,i) = plot3(handles.ParentAxes,... Pos{j}(1,i),Pos{j}(2,i),Pos{j}(3,i),... [col(i),'.'],... 'markerSize',markersize,... 'visible','off'); end try no = sqrt(sum(Orient{j}(:,i).^2)); if no > 0 Oi = 1e1.*Orient{j}(:,i)./no; else Oi = 1e-5*ones(3,1); end try set(handles.hq(j,i),... 'xdata',Pos{j}(1,i),... 'ydata',Pos{j}(2,i),... 'zdata',Pos{j}(3,i),... 'udata',Oi(1),... 'vdata',Oi(2),... 'wdata',Oi(3)) catch handles.hq(j,i) = quiver3(handles.ParentAxes,... Pos{j}(1,i),Pos{j}(2,i),Pos{j}(3,i),... Oi(1),Oi(2),Oi(3),col(i),... 'lineWidth',2,'visible','off'); end if isequal(query,'add') set(handles.hq(j,i),... 'LineStyle','--',... 'lineWidth',1) end end [x,y,z]= ellipsoid(Pos{j}(1,i),Pos{j}(2,i),Pos{j}(3,i),... 1.*sqrt(Var{j}(1,i)),1.*sqrt(Var{j}(2,i)),1.*sqrt(Var{j}(1,i)),20); try set(handles.hs(j,i),... 'xdata',x,... 'ydata',y,... 'zdata',z); catch handles.hs(j,i) = surf(handles.ParentAxes,... x,y,z,... 'edgecolor','none',... 'facecolor',col(i),... 'facealpha',0.2,... 'visible','off'); end try set(handles.ht(j,i),... 'position',Pos{j}(:,i)); catch handles.ht(j,i) = text(... Pos{j}(1,i),Pos{j}(2,i),Pos{j}(3,i),... Names{i},... 'Parent',handles.ParentAxes,... 'visible','off'); end end end if length(Pos) > 1 try, set(handles.hp(end,:),'visible','on'); end try, set(handles.hq(end,:),'visible','on'); end try, set(handles.hs(end,:),'visible','on'); end try, set(handles.ht(end,:),'visible','on'); end handles.uic(1) = uicontrol(handles.fi,... 'units','normalized',... 'position',[0.45,0.5,0.2,0.03],... 'style','radio','string','Show priors',... 'callback',@doChange1,... 'BackgroundColor',[1 1 1],... 'tooltipstring','Display prior locations',... 'userdata',handles,'value',0,... 'BusyAction','cancel',... 'Interruptible','off',... 'tag','plotEEG'); handles.uic(2) = uicontrol(handles.fi,... 'units','normalized',... 'position',[0.45,0.53,0.2,0.03],... 'style','radio','string','Show posteriors',... 'callback',@doChange2,... 'BackgroundColor',[1 1 1],... 'tooltipstring','Display posterior locations',... 'userdata',handles,'value',1,... 'BusyAction','cancel',... 'Interruptible','off',... 'tag','plotEEG'); else try, set(handles.hp(1,:),'visible','on'); end try, set(handles.hq(1,:),'visible','on'); end try, set(handles.hs(1,:),'visible','on'); end try, set(handles.ht(1,:),'visible','on'); end end end try clear out out.handles = handles; catch out = []; end %========================================================================== function doChange1(i1,i2) val = get(i1,'value'); handles = get(i1,'userdata'); if ~val try, set(handles.hp(1,:),'visible','off'); end try, set(handles.hq(1,:),'visible','off'); end try, set(handles.hs(1,:),'visible','off'); end try, set(handles.ht(1,:),'visible','off'); end else try, set(handles.hp(1,:),'visible','on'); end try, set(handles.hq(1,:),'visible','on'); end try, set(handles.hs(1,:),'visible','on'); end try, set(handles.ht(1,:),'visible','on'); end end %========================================================================== function doChange2(i1,i2) val = get(i1,'value'); handles = get(i1,'userdata'); if ~val try, set(handles.hp(2,:),'visible','off'); end try, set(handles.hq(2,:),'visible','off'); end try, set(handles.hs(2,:),'visible','off'); end try, set(handles.ht(2,:),'visible','off'); end else try, set(handles.hp(2,:),'visible','on'); end try, set(handles.hq(2,:),'visible','on'); end try, set(handles.hs(2,:),'visible','on'); end try, set(handles.ht(2,:),'visible','on'); end end
github
philippboehmsturm/antx-master
spm_uw_apply.m
.m
antx-master/xspm8/spm_uw_apply.m
14,676
utf_8
79e215c42faaa2e17fc6bae5cea47179
function varargout = spm_uw_apply(ds,flags) % Reslices images volume by volume % FORMAT spm_uw_apply(ds,[flags]) % or % FORMAT P = spm_uw_apply(ds,[flags]) % % % ds - a structure created by spm_uw_estimate.m containing the fields: % ds can also be an array of structures, each struct corresponding % to one sesssion (it hardly makes sense to try and pool fields across % sessions since there will have been a reshimming). In that case each % session is unwarped separately, unwarped into the distortion space of % the average (default) position of that series, and with the first % scan on the series defining the pahse encode direction. After that each % scan is transformed into the space of the first scan of the first series. % Naturally, there is still only one actual resampling (interpolation). % It will be assumed that the same unwarping parameters have been used % for all sessions (anything else would be truly daft). % % .P - Images used when estimating deformation field and/or % its derivative w.r.t. modelled factors. Note that this % struct-array may contain .mat fields that differ from % those you would observe with spm_vol(P(1).fname). This % is because spm_uw_estimate has an option to re-estimate % the movement parameters. The re-estimated parameters are % not written to disc (in the form of .mat files), but rather % stored in the P array in the ds struct. % % .order - Number of basis functions to use for each dimension. % If the third dimension is left out, the order for % that dimension is calculated to yield a roughly % equal spatial cut-off in all directions. % Default: [8 8 *] % .sfP - Static field supplied by the user. It should be a % filename or handle to a voxel-displacement map in % the same space as the first EPI image of the time- % series. If using the FieldMap toolbox, realignment % should (if necessary) have been performed as part of % the process of creating the VDM. Note also that the % VDM mut be in undistorted space, i.e. if it is % calculated from an EPI based field-map sequence % it should have been inverted before passing it to % spm_uw_estimate. Again, the FieldMap toolbox will % do this for you. % .regorder - Regularisation of derivative fields is based on the % regorder'th (spatial) derivative of the field. % Default: 1 % .lambda - Fudge factor used to decide relative weights of % data and regularisation. % Default: 1e5 % .jm - Jacobian Modulation. If set, intensity (Jacobian) % deformations are included in the model. If zero, % intensity deformations are not considered. % .fot - List of indexes for first order terms to model % derivatives for. Order of parameters as defined % by spm_imatrix. % Default: [4 5] % .sot - List of second order terms to model second % derivatives of. Should be an nx2 matrix where % e.g. [4 4; 4 5; 5 5] means that second partial % derivatives of rotation around x- and y-axis % should be modelled. % Default: [] % .fwhm - FWHM (mm) of smoothing filter applied to images prior % to estimation of deformation fields. % Default: 6 % .rem - Re-Estimation of Movement parameters. Set to unity means % that movement-parameters should be re-estimated at each % iteration. % Default: 0 % .noi - Maximum number of Iterations. % Default: 5 % .exp_round - Point in position space to do Taylor expansion around. % 'First', 'Last' or 'Average'. % .p0 - Average position vector (three translations in mm % and three rotations in degrees) of scans in P. % .q - Deviations from mean position vector of modelled % effects. Corresponds to deviations (and deviations % squared) of a Taylor expansion of deformation fields. % .beta - Coeffeicents of DCT basis functions for partial % derivatives of deformation fields w.r.t. modelled % effects. Scaled such that resulting deformation % fields have units mm^-1 or deg^-1 (and squares % thereof). % .SS - Sum of squared errors for each iteration. % % flags - a structure containing various options. The fields are: % % mask - mask output images (1 for yes, 0 for no) % To avoid artifactual movement-related variance the realigned % set of images can be internally masked, within the set (i.e. % if any image has a zero value at a voxel than all images have % zero values at that voxel). Zero values occur when regions % 'outside' the image are moved 'inside' the image during % realignment. % % mean - write mean image % The average of all the realigned scans is written to % mean*.img. % % interp - the interpolation method (see e.g. spm_bsplins.m). % % which - Values of 0 or 1 are allowed. % 0 - don't create any resliced images. % Useful if you only want a mean resliced image. % 1 - reslice all the images. % % udc - Values 1 or 2 are allowed % 1 - Do only unwarping (not correcting % for changing sampling density). % 2 - Do both unwarping and Jacobian correction. % % % prefix - Filename prefix for resliced image files. Defaults to 'u'. % % The spatially realigned images are written to the orginal % subdirectory with the same filename but prefixed with an 'u'. % They are all aligned with the first. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jesper Andersson % $Id: spm_uw_apply.m 4152 2011-01-11 14:13:35Z volkmar $ tiny = 5e-2; def_flags = spm_get_defaults('realign.write'); def_flags.udc = 1; def_flags.prefix = 'u'; defnames = fieldnames(def_flags); if nargin < 1 || isempty(ds) ds = load(spm_select(1,'.*uw\.mat$','Select Unwarp result file'),'ds'); ds = ds.ds; end % % Default to using Jacobian modulation for the reslicing if it was % used during the estimation phase. % if ds(1).jm ~= 0 def_flags.udc = 2; end % % Replace defaults with user supplied values for all fields % defined by user. % if nargin < 2 || isempty(flags) flags = def_flags; end for i=1:length(defnames) if ~isfield(flags,defnames{i}) flags.(defnames{i}) = def_flags.(defnames{i}); end end if numel(flags.which) == 2 flags.mean = flags.which(2); flags.which = flags.which(1); end ntot = 0; for i=1:length(ds) ntot = ntot + length(ds(i).P); end hold = [repmat(flags.interp,1,3) flags.wrap]; linfun = inline('fprintf(''%-60s%s'', x,repmat(sprintf(''\b''),1,60))'); % % Create empty sfield for all structs. % [ds.sfield] = deal([]); % % Make space for output P-structs if required % if nargout > 0 oP = cell(length(ds),1); end % % First, create mask if so required. % if flags.mask || flags.mean, linfun('Computing mask..'); spm_progress_bar('Init',ntot,'Computing available voxels',... 'volumes completed'); [x,y,z] = ndgrid(1:ds(1).P(1).dim(1),1:ds(1).P(1).dim(2),1:ds(1).P(1).dim(3)); xyz = [x(:) y(:) z(:) ones(prod(ds(1).P(1).dim(1:3)),1)]; clear x y z; if flags.mean Count = zeros(prod(ds(1).P(1).dim(1:3)),1); Integral = zeros(prod(ds(1).P(1).dim(1:3)),1); end % if flags.mask msk = zeros(prod(ds(1).P(1).dim(1:3)),1); % end tv = 1; for s=1:length(ds) def_array = zeros(prod(ds(s).P(1).dim(1:3)),size(ds(s).beta,2)); Bx = spm_dctmtx(ds(s).P(1).dim(1),ds(s).order(1)); By = spm_dctmtx(ds(s).P(1).dim(2),ds(s).order(2)); Bz = spm_dctmtx(ds(s).P(1).dim(3),ds(s).order(3)); if isfield(ds(s),'sfP') && ~isempty(ds(s).sfP) T = ds(s).sfP.mat\ds(1).P(1).mat; txyz = xyz * T'; c = spm_bsplinc(ds(s).sfP,ds(s).hold); ds(s).sfield = spm_bsplins(c,txyz(:,1),txyz(:,2),txyz(:,3),ds(s).hold); ds(s).sfield = ds(s).sfield(:); clear c txyz; end for i=1:size(ds(s).beta,2) def_array(:,i) = spm_get_def(Bx,By,Bz,ds(s).beta(:,i)); end sess_msk = zeros(prod(ds(1).P(1).dim(1:3)),1); for i = 1:numel(ds(s).P) T = inv(ds(s).P(i).mat) * ds(1).P(1).mat; txyz = xyz * T'; txyz(:,2) = txyz(:,2) + spm_get_image_def(ds(s).P(i),ds(s),def_array); tmp = false(size(txyz,1),1); if ~flags.wrap(1), tmp = tmp | txyz(:,1) < (1-tiny) | txyz(:,1) > (ds(s).P(i).dim(1)+tiny); end if ~flags.wrap(2), tmp = tmp | txyz(:,2) < (1-tiny) | txyz(:,2) > (ds(s).P(i).dim(2)+tiny); end if ~flags.wrap(3), tmp = tmp | txyz(:,3) < (1-tiny) | txyz(:,3) > (ds(s).P(i).dim(3)+tiny); end sess_msk = sess_msk + real(tmp); spm_progress_bar('Set',tv); tv = tv+1; end msk = msk + sess_msk; if flags.mean, Count = Count + repmat(length(ds(s).P),prod(ds(s).P(1).dim(1:3)),1) - sess_msk; end % Changed 23/3-05 % % Include static field in estmation of mask. % if isfield(ds(s),'sfP') && ~isempty(ds(s).sfP) T = inv(ds(s).sfP.mat) * ds(1).P(1).mat; txyz = xyz * T'; tmp = false(size(txyz,1),1); if ~flags.wrap(1), tmp = tmp | txyz(:,1) < (1-tiny) | txyz(:,1) > (ds(s).sfP.dim(1)+tiny); end if ~flags.wrap(2), tmp = tmp | txyz(:,2) < (1-tiny) | txyz(:,2) > (ds(s).sfP.dim(2)+tiny); end if ~flags.wrap(3), tmp = tmp | txyz(:,3) < (1-tiny) | txyz(:,3) > (ds(s).sfP.dim(3)+tiny); end msk = msk + real(tmp); end if isfield(ds(s),'sfield') && ~isempty(ds(s).sfield) ds(s).sfield = []; end end if flags.mask, msk = find(msk ~= 0); end end linfun('Reslicing images..'); spm_progress_bar('Init',ntot,'Reslicing','volumes completed'); jP = ds(1).P(1); jP = rmfield(jP,{'fname','descrip','n','private'}); jP.dim = jP.dim(1:3); jP.dt = [spm_type('float64'), spm_platform('bigend')]; jP.pinfo = [1 0]'; tv = 1; for s=1:length(ds) def_array = zeros(prod(ds(s).P(1).dim(1:3)),size(ds(s).beta,2)); Bx = spm_dctmtx(ds(s).P(1).dim(1),ds(s).order(1)); By = spm_dctmtx(ds(s).P(1).dim(2),ds(s).order(2)); Bz = spm_dctmtx(ds(s).P(1).dim(3),ds(s).order(3)); if isfield(ds(s),'sfP') && ~isempty(ds(s).sfP) T = ds(s).sfP.mat\ds(1).P(1).mat; txyz = xyz * T'; c = spm_bsplinc(ds(s).sfP,ds(s).hold); ds(s).sfield = spm_bsplins(c,txyz(:,1),txyz(:,2),txyz(:,3),ds(s).hold); ds(s).sfield = ds(s).sfield(:); clear c txyz; end for i=1:size(ds(s).beta,2) def_array(:,i) = spm_get_def(Bx,By,Bz,ds(s).beta(:,i)); end if flags.udc > 1 ddef_array = zeros(prod(ds(s).P(1).dim(1:3)),size(ds(s).beta,2)); dBy = spm_dctmtx(ds(s).P(1).dim(2),ds(s).order(2),'diff'); for i=1:size(ds(s).beta,2) ddef_array(:,i) = spm_get_def(Bx,dBy,Bz,ds(s).beta(:,i)); end end for i = 1:length(ds(s).P) linfun(['Reslicing volume ' num2str(tv) '..']); % % Read undeformed image. % T = inv(ds(s).P(i).mat) * ds(1).P(1).mat; txyz = xyz * T'; if flags.udc > 1 [def,jac] = spm_get_image_def(ds(s).P(i),ds(s),def_array,ddef_array); else def = spm_get_image_def(ds(s).P(i),ds(s),def_array); end txyz(:,2) = txyz(:,2) + def; if flags.udc > 1 jP.dat = reshape(jac,ds(s).P(i).dim(1:3)); jtxyz = xyz * T'; c = spm_bsplinc(jP.dat,hold); jac = spm_bsplins(c,jtxyz(:,1),jtxyz(:,2),jtxyz(:,3),hold); end c = spm_bsplinc(ds(s).P(i),hold); ima = spm_bsplins(c,txyz(:,1),txyz(:,2),txyz(:,3),hold); if flags.udc > 1 ima = ima .* jac; end % % Write it if so required. % if flags.which PO = ds(s).P(i); PO.fname = prepend(PO.fname,flags.prefix); PO.mat = ds(1).P(1).mat; PO.descrip = 'spm - undeformed'; ivol = ima; if flags.mask ivol(msk) = NaN; end ivol = reshape(ivol,PO.dim(1:3)); PO = spm_create_vol(PO); for ii=1:PO.dim(3), PO = spm_write_plane(PO,ivol(:,:,ii),ii); end; if nargout > 0 oP{s}(i) = PO; end end % % Build up mean image if so required. % if flags.mean Integral = Integral + nan2zero(ima); end spm_progress_bar('Set',tv); tv = tv+1; end if isfield(ds(s),'sfield') && ~isempty(ds(s).sfield) ds(s).sfield = []; end end if flags.mean % Write integral image (16 bit signed) %----------------------------------------------------------- sw = warning('off','MATLAB:divideByZero'); Integral = Integral./Count; warning(sw); PO = ds(1).P(1); [pth,nm,xt,vr] = spm_fileparts(deblank(ds(1).P(1).fname)); PO.fname = fullfile(pth,['mean' flags.prefix nm xt vr]); PO.pinfo = [max(max(max(Integral)))/32767 0 0]'; PO.descrip = 'spm - mean undeformed image'; PO.dt = [4 spm_platform('bigend')]; ivol = reshape(Integral,PO.dim); spm_write_vol(PO,ivol); end linfun(' '); spm_figure('Clear','Interactive'); if nargout > 0 varargout{1} = oP; end return; %_______________________________________________________________________ function PO = prepend(PI,pre) [pth,nm,xt,vr] = spm_fileparts(deblank(PI)); PO = fullfile(pth,[pre nm xt vr]); return; %_______________________________________________________________________ %_______________________________________________________________________ function vo = nan2zero(vi) vo = vi; vo(~isfinite(vo)) = 0; return; %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_eeg_prep_ui.m
.m
antx-master/xspm8/spm_eeg_prep_ui.m
29,442
utf_8
80bb3efbe6195079a20c2e95d5a38104
function spm_eeg_prep_ui(callback) % User interface for spm_eeg_prep function performing several tasks % for preparation of converted MEEG data for further analysis % FORMAT spm_eeg_prep_ui(callback) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: spm_eeg_prep_ui.m 3833 2010-04-22 14:49:48Z vladimir $ spm('Pointer','Watch'); if ~nargin, callback = 'CreateMenu'; end eval(callback); spm('Pointer','Arrow'); %========================================================================== % function CreateMenu %========================================================================== function CreateMenu SVNrev = '$Rev: 3833 $'; spm('FnBanner', 'spm_eeg_prep_ui', SVNrev); Finter = spm('FnUIsetup', 'M/EEG prepare', 0); %-Draw top level menu % ====== File =================================== FileMenu = uimenu(Finter,'Label','File',... 'Tag','EEGprepUI',... 'HandleVisibility','on'); FileOpenMenu = uimenu(FileMenu, ... 'Label','Open',... 'Separator','off',... 'Tag','EEGprepUI',... 'HandleVisibility', 'on',... 'Accelerator','O',... 'Callback', 'spm_eeg_prep_ui(''FileOpenCB'')'); FileSaveMenu = uimenu(FileMenu, ... 'Label','Save',... 'Separator','off',... 'Tag','EEGprepUI',... 'Enable','off',... 'HandleVisibility', 'on',... 'Accelerator','S',... 'Callback', 'spm_eeg_prep_ui(''FileSaveCB'')'); FileExitMenu = uimenu(FileMenu, ... 'Label','Quit',... 'Separator','on',... 'Tag','EEGprepUI',... 'HandleVisibility', 'on',... 'Accelerator','Q',... 'Callback', 'spm_eeg_prep_ui(''FileExitCB'')'); % ====== Channel types =============================== ChanTypeMenu = uimenu(Finter,'Label','Channel types',... 'Tag','EEGprepUI',... 'Enable', 'off', ... 'HandleVisibility','on'); chanTypes = {'EEG', 'EOG', 'ECG', 'EMG', 'LFP', 'Other'}; for i = 1:length(chanTypes) CTypesMenu(i) = uimenu(ChanTypeMenu, 'Label', chanTypes{i},... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''ChanTypeCB'')'); end CTypesRef2MEGMenu = uimenu(ChanTypeMenu, 'Label', 'MEGREF=>MEG',... 'Tag','EEGprepUI',... 'Enable', 'off', ... 'HandleVisibility','on',... 'Separator', 'on',... 'Callback', 'spm_eeg_prep_ui(''MEGChanTypeCB'')'); CTypesDefaultMenu = uimenu(ChanTypeMenu, 'Label', 'Default',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Separator', 'on',... 'Callback', 'spm_eeg_prep_ui(''ChanTypeDefaultCB'')'); CTypesReviewMenu = uimenu(ChanTypeMenu, 'Label', 'Review',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''ChanTypeCB'')'); % ====== Sensors =================================== Coor3DMenu = uimenu(Finter,'Label','Sensors',... 'Tag','EEGprepUI',... 'Enable', 'off', ... 'HandleVisibility','on'); LoadEEGSensMenu = uimenu(Coor3DMenu, 'Label', 'Load EEG sensors',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on'); LoadEEGSensTemplateMenu = uimenu(LoadEEGSensMenu, 'Label', 'Assign default',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''LoadEEGSensTemplateCB'')'); LoadEEGSensMatMenu = uimenu(LoadEEGSensMenu, 'Label', 'From *.mat file',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''LoadEEGSensCB'')'); LoadEEGSensOtherMenu = uimenu(LoadEEGSensMenu, 'Label', 'Convert locations file',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''LoadEEGSensCB'')'); HeadshapeMenu = uimenu(Coor3DMenu, 'Label', 'Load MEG Fiducials/Headshape',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''HeadshapeCB'')'); CoregisterMenu = uimenu(Coor3DMenu, 'Label', 'Coregister',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Separator', 'on', ... 'Callback', 'spm_eeg_prep_ui(''CoregisterCB'')'); % ====== 2D projection =================================== Coor2DMenu = uimenu(Finter, 'Label','2D projection',... 'Tag','EEGprepUI',... 'Enable', 'off', ... 'HandleVisibility','on'); EditMEGMenu = uimenu(Coor2DMenu, 'Label', 'Edit existing MEG',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''EditExistingCoor2DCB'')'); EditEEGMenu = uimenu(Coor2DMenu, 'Label', 'Edit existing EEG',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''EditExistingCoor2DCB'')'); LoadTemplateMenu = uimenu(Coor2DMenu, 'Label', 'Load template',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Separator', 'on', ... 'Callback', 'spm_eeg_prep_ui(''LoadTemplateCB'')'); SaveTemplateMenu = uimenu(Coor2DMenu, 'Label', 'Save template',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''SaveTemplateCB'')'); Project3DEEGMenu = uimenu(Coor2DMenu, 'Label', 'Project 3D (EEG)',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Separator', 'on', ... 'Callback', 'spm_eeg_prep_ui(''Project3DCB'')'); Project3DMEGMenu = uimenu(Coor2DMenu, 'Label', 'Project 3D (MEG)',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''Project3DCB'')'); AddCoor2DMenu = uimenu(Coor2DMenu, 'Label', 'Add sensor',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Separator', 'on', ... 'Callback', 'spm_eeg_prep_ui(''AddCoor2DCB'')'); DeleteCoor2DMenu = uimenu(Coor2DMenu, 'Label', 'Delete sensor',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''DeleteCoor2DCB'')'); UndoMoveCoor2DMenu = uimenu(Coor2DMenu, 'Label', 'Undo move',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''UndoMoveCoor2DCB'')'); ApplyCoor2DMenu = uimenu(Coor2DMenu, 'Label', 'Apply',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Separator', 'on', ... 'Callback', 'spm_eeg_prep_ui(''ApplyCoor2DCB'')'); Clear2DMenu = uimenu(Coor2DMenu, 'Label', 'Clear',... 'Tag','EEGprepUI',... 'Enable', 'on', ... 'HandleVisibility','on',... 'Callback', 'spm_eeg_prep_ui(''Clear2DCB'')'); %========================================================================== % function FileOpenCB %========================================================================== function FileOpenCB D = spm_eeg_load; setD(D); update_menu; %========================================================================== % function FileSaveCB %========================================================================== function FileSaveCB D = getD; if ~isempty(D) D.save; end update_menu; %========================================================================== % function FileExitCB %========================================================================== function FileExitCB spm_figure('Clear','Interactive'); spm('FigName','M/EEG prepare: done'); %========================================================================== % function ChanTypeCB %========================================================================== function ChanTypeCB type = get(gcbo, 'Label'); D = getD; if ~isempty(D) chanlist ={}; for i = 1:D.nchannels if strncmp(D.chantype(i), 'MEG', 3) || strncmp(D.chantype(i), 'REF', 3) chanlist{i} = [num2str(i) ' Label: ' D.chanlabels(i) ' Type: ' D.chantype(i) , ' (nonmodifiable)']; else chanlist{i} = [num2str(i) ' Label: ' D.chanlabels(i) ' Type: ' D.chantype(i)]; end chanlist{i} = [chanlist{i}{:}]; end if strcmpi(type, 'review') listdlg('ListString', chanlist, 'SelectionMode', 'single', 'Name', 'Review channels', 'ListSize', [400 300]); return else [selection ok]= listdlg('ListString', chanlist, 'SelectionMode', 'multiple',... 'InitialValue', strmatch(type, D.chantype) ,'Name', ['Set type to ' type], 'ListSize', [400 300]); selection(strmatch('MEG', chantype(D, selection))) = []; if ok && ~isempty(selection) S.task = 'settype'; S.D = D; S.ind = selection; S.type = type; D = spm_eeg_prep(S); setD(D); end end end update_menu; %========================================================================== % function MEGChanTypeCB %========================================================================== function MEGChanTypeCB S = []; S.D = getD; S.task = 'settype'; switch get(gcbo, 'Label') case 'MEGREF=>MEG' dictionary = { 'REFMAG', 'MEGMAG'; 'REFGRAD', 'MEGGRAD'; }; ind = spm_match_str(S.D.chantype, dictionary(:,1)); grad = S.D.sensors('meg'); if ~isempty(grad) % Under some montages only subset of the reference sensors are % in the grad [junk, sel] = intersect(S.D.chanlabels(ind), grad.label); ind = ind(sel); end S.ind = ind; [sel1, sel2] = spm_match_str(S.D.chantype(S.ind), dictionary(:, 1)); S.type = dictionary(sel2, 2); D = spm_eeg_prep(S); end setD(D); update_menu; %========================================================================== % function ChanTypeDefaultCB %========================================================================== function ChanTypeDefaultCB S.D = getD; S.task = 'defaulttype'; D = spm_eeg_prep(S); setD(D); update_menu; %========================================================================== % function LoadEEGSensTemplateCB %========================================================================== function LoadEEGSensTemplateCB S.D = getD; S.task = 'defaulteegsens'; if strcmp(S.D.modality(1, 0), 'Multimodal') fid = fiducials(S.D); if ~isempty(fid) lblfid = fid.fid.label; S.regfid = match_fiducials({'nas'; 'lpa'; 'rpa'}, lblfid); S.regfid(:, 2) = {'spmnas'; 'spmlpa'; 'spmrpa'}; else warndlg(strvcat('Could not match EEG fiducials for multimodal dataset.', ... ' EEG coregistration might fail.')); end end D = spm_eeg_prep(S); setD(D); update_menu; %========================================================================== % function LoadEEGSensCB %========================================================================== function LoadEEGSensCB D = getD; switch get(gcbo, 'Label') case 'From *.mat file' [S.sensfile, sts] = spm_select(1,'mat','Select EEG sensors file'); if ~sts, return, end S.source = 'mat'; [S.headshapefile, sts] = spm_select(1,'mat','Select EEG fiducials file'); if ~sts, return, end S.fidlabel = spm_input('Fiducial labels:', '+1', 's', 'nas lpa rpa'); case 'Convert locations file' [S.sensfile, sts] = spm_select(1, '.*', 'Select locations file'); if ~sts, return, end S.source = 'locfile'; end if strcmp(D.modality(1, 0), 'Multimodal') if ~isempty(D.fiducials) S.regfid = {}; if strcmp(S.source, 'mat') fidlabel = S.fidlabel; lblshape = {}; fidnum = 0; while ~all(isspace(fidlabel)) fidnum = fidnum+1; [lblshape{fidnum} fidlabel] = strtok(fidlabel); end if (fidnum < 3) error('At least 3 labeled fiducials are necessary'); end else shape = ft_read_headshape(S.sensfile); lblshape = shape.fid.label; end fid = fiducials(D); lblfid = fid.fid.label; S.regfid = match_fiducials(lblshape, lblfid); else warndlg(strvcat('Could not match EEG fiducials for multimodal dataset.', ... ' EEG coregistration might fail.')); end end S.D = D; S.task = 'loadeegsens'; D = spm_eeg_prep(S); % ====== This is for the future ================================== % sens = D.sensors('EEG'); % label = D.chanlabels(strmatch('EEG',D.chantype)); % % [sel1, sel2] = spm_match_str(label, sens.label); % % montage = []; % montage.labelorg = sens.label; % montage.labelnew = label; % montage.tra = sparse(zeros(numel(label), numel(sens.label))); % montage.tra(sub2ind(size(montage.tra), sel1, sel2)) = 1; % % montage = spm_eeg_montage_ui(montage); % % S = []; % S.D = D; % S.task = 'sens2chan'; % S.montage = montage; % % D = spm_eeg_prep(S); setD(D); update_menu; %========================================================================== % function HeadshapeCB %========================================================================== function HeadshapeCB S = []; S.D = getD; S.task = 'headshape'; [S.headshapefile, sts] = spm_select(1, '.*', 'Select fiducials/headshape file'); if ~sts, return, end S.source = 'convert'; shape = ft_read_headshape(S.headshapefile); lblshape = shape.fid.label; fid = fiducials(S.D); if ~isempty(fid) lblfid = fid.fid.label; S.regfid = match_fiducials(lblshape, lblfid); end D = spm_eeg_prep(S); setD(D); update_menu; %========================================================================== % function CoregisterCB %========================================================================== function CoregisterCB S = []; S.D = getD; S.task = 'coregister'; D = spm_eeg_prep(S); % Bring the menu back spm_eeg_prep_ui; setD(D); update_menu; %========================================================================== % function EditExistingCoor2DCB %========================================================================== function EditExistingCoor2DCB D = getD; switch get(gcbo, 'Label') case 'Edit existing MEG' xy = D.coor2D('MEG'); label = D.chanlabels(strmatch('MEG', D.chantype)); case 'Edit existing EEG' xy = D.coor2D('EEG'); label = D.chanlabels(strmatch('EEG', D.chantype, 'exact')); end plot_sensors2D(xy, label); update_menu; %========================================================================== % function LoadTemplateCB %========================================================================== function LoadTemplateCB [sensorfile, sts] = spm_select(1, 'mat', 'Select sensor template file', ... [], fullfile(spm('dir'), 'EEGtemplates')); if ~sts, return, end template = load(sensorfile); if isfield(template, 'Cnames') && isfield(template, 'Cpos') plot_sensors2D(template.Cpos, template.Cnames); end update_menu; %========================================================================== % function SaveTemplateCB %========================================================================== function SaveTemplateCB handles=getHandles; Cnames = handles.label; Cpos = handles.xy; Rxy = 1.5; Nchannels = length(Cnames); [filename, pathname] = uiputfile('*.mat', 'Save channel template as'); save(fullfile(pathname, filename), 'Cnames', 'Cpos', 'Rxy', 'Nchannels'); %========================================================================== % function Project3DCB %========================================================================== function Project3DCB D = getD; switch get(gcbo, 'Label') case 'Project 3D (EEG)' modality = 'EEG'; case 'Project 3D (MEG)' modality = 'MEG'; end if ~isfield(D, 'val') D.val = 1; end if isfield(D, 'inv') && isfield(D.inv{D.val}, 'datareg') datareg = D.inv{D.val}.datareg; ind = strmatch(modality, {datareg(:).modality}, 'exact'); sens = datareg(ind).sensors; else sens = D.sensors(modality); end [xy, label] = spm_eeg_project3D(sens, modality); plot_sensors2D(xy, label); update_menu; %========================================================================== % function AddCoor2DCB %========================================================================== function AddCoor2DCB newlabel = spm_input('Label?', '+1', 's'); if isempty(newlabel) return; end coord = spm_input('Coordinates [x y]', '+1', 'r', '0.5 0.5', 2); handles = getHandles; if ~isfield(handles, 'xy') handles.xy = []; end if ~isfield(handles, 'xy') handles.xy = []; end if ~isfield(handles, 'label') handles.label = {}; end plot_sensors2D([handles.xy coord(:)], ... [handles.label newlabel]); update_menu; %========================================================================== % function ApplyCoor2DCB %========================================================================== function ApplyCoor2DCB handles = getHandles; D = getD; S = []; S.task = 'setcoor2d'; S.D = D; S.xy = handles.xy; S.label = handles.label; D = spm_eeg_prep(S); setD(D); update_menu; %========================================================================== % function update_menu %========================================================================== function update_menu Finter = spm_figure('GetWin','Interactive'); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'File'), 'Enable', 'on'); IsEEG = 'off'; IsMEG = 'off'; IsNeuromag = 'off'; HasSensors = 'off'; HasSensorsEEG = 'off'; HasSensorsMEG = 'off'; HasChannelsMEGREF = 'off'; HasFiducials = 'off'; HasDefaultLocs = 'off'; HasHistory = 'off'; if isa(get(Finter, 'UserData'), 'meeg') Dloaded = 'on'; D = getD; if ~isempty(strmatch('EEG', D.chantype, 'exact')) IsEEG = 'on'; end if ~isempty(strmatch('MEG', D.chantype)); IsMEG = 'on'; end if ft_senstype(D.chanlabels, 'neuromag') &&... isfield(D, 'origchantypes') IsNeuromag = 'on'; end if ~isempty(strmatch('REF', D.chantype)); HasChannelsMEGREF = 'on'; end if ~isempty(D.sensors('EEG')) || ~isempty(D.sensors('MEG')) HasSensors = 'on'; end if ~isempty(D.sensors('EEG')) HasSensorsEEG = 'on'; end if ~isempty(D.sensors('MEG')) HasSensorsMEG = 'on'; end if ~isempty(D.fiducials) HasFiducials = 'on'; end template_sfp = dir(fullfile(spm('dir'), 'EEGtemplates', '*.sfp')); template_sfp = {template_sfp.name}; ind = strmatch([ft_senstype(D.chanlabels) '.sfp'], template_sfp, 'exact'); if ~isempty(ind) HasDefaultLocs = 'on'; end if ~isempty(D.history) HasHistory = 'on'; end else Dloaded = 'off'; end handles = getHandles; IsTemplate = 'off'; IsSelected = 'off'; IsMoved = 'off'; if ~isempty(handles) if isfield(handles, 'xy') && size(handles.xy, 1)>0 IsTemplate = 'on'; end if isfield(handles, 'labelSelected') && ~isempty(handles.labelSelected) IsSelected = 'on'; end if isfield(handles, 'lastMoved') isMoved = 'on'; end end set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Save'), 'Enable', 'on'); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Channel types'), 'Enable', Dloaded); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Sensors'), 'Enable', Dloaded); set(findobj(Finter,'Tag','EEGprepUI', 'Label', '2D projection'), 'Enable', Dloaded); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'MEGREF=>MEG'), 'Enable', HasChannelsMEGREF); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Assign default'), 'Enable', HasDefaultLocs); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Load EEG sensors'), 'Enable', IsEEG); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Load MEG Fiducials/Headshape'), 'Enable', HasSensorsMEG); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Headshape'), 'Enable', HasSensorsMEG); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Coregister'), 'Enable', HasSensors); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Edit existing EEG'), 'Enable', IsEEG); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Edit existing MEG'), 'Enable', IsMEG); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Project 3D (EEG)'), 'Enable', HasSensorsEEG); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Project 3D (MEG)'), 'Enable', HasSensorsMEG); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Delete sensor'), 'Enable', IsSelected); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Undo move'), 'Enable', IsMoved); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Apply'), 'Enable', IsTemplate); set(findobj(Finter,'Tag','EEGprepUI', 'Label', 'Clear'), 'Enable', IsTemplate); delete(setdiff(findobj(Finter), [Finter; findobj(Finter,'Tag','EEGprepUI')])); if strcmp(Dloaded, 'on') && isfield(D,'PSD') && D.PSD == 1 try hc = get(Finter,'children'); hc = findobj(hc,'flat','type','uimenu'); hc = findobj(hc,'flat','label','File'); delete(hc) end uicontrol(Finter,... 'style','pushbutton','string','OK',... 'callback','spm_eeg_review_callbacks(''get'',''prep'')',... 'tooltipstring','Send changes to ''SPM Graphics'' window',... 'BusyAction','cancel',... 'Interruptible','off',... 'Tag','EEGprepUI'); end figure(Finter); %========================================================================== % function getD %========================================================================== function D = getD Finter = spm_figure('GetWin','Interactive'); D = get(Finter, 'UserData'); if ~isa(D, 'meeg') D = []; end %========================================================================== % function setD %========================================================================== function setD(D) Finter = spm_figure('GetWin','Interactive'); set(Finter, 'UserData', D); %========================================================================== % function getHandles %========================================================================== function handles = getHandles Fgraph = spm_figure('GetWin','Graphics'); handles = get(Fgraph, 'UserData'); %========================================================================== % function setHandles %========================================================================== function setHandles(handles) Fgraph = spm_figure('GetWin','Graphics'); set(Fgraph, 'UserData', handles); %========================================================================== % function plot_sensors2D %========================================================================== function plot_sensors2D(xy, label) Fgraph = spm_figure('GetWin','Graphics'); spm_clf(Fgraph); handles = []; if ~isempty(xy) if size(xy, 1) ~= 2 xy = xy'; end xy(xy < 0.05) = 0.05; xy(xy > 0.95) = 0.95; handles.h_lbl=text(xy(1,:), xy(2, :),strvcat(label),... 'FontSize', 9,... 'Color','r',... 'FontWeight','bold'); set(handles.h_lbl, 'ButtonDownFcn', 'spm_eeg_prep_ui(''LabelClickCB'')'); hold on handles.h_el =[]; for i=1:size(xy, 2) handles.h_el(i) = plot(xy(1,i), xy(2,i), 'or'); end set(handles.h_el,'MarkerFaceColor','r','MarkerSize', 2,'MarkerEdgeColor','k'); handles.TemplateFrame = ... plot([0.05 0.05 0.95 0.95 0.05], [0.05 0.95 0.95 0.05 0.05], 'k-'); axis off; end handles.xy = xy; handles.label = label(:)'; setHandles(handles); update_menu; %========================================================================== % function DeleteCoor2DCB %========================================================================== function DeleteCoor2DCB handles = getHandles; graph = spm_figure('GetWin','Graphics'); if isfield(handles, 'labelSelected') && ~isempty(handles.labelSelected) set(graph, 'WindowButtonDownFcn', ''); label=get(handles.labelSelected, 'String'); ind=strmatch(label, handles.label, 'exact'); delete([handles.labelSelected handles.pointSelected]); handles.xy(:, ind)=[]; handles.label(ind) = []; plot_sensors2D(handles.xy, handles.label) end %========================================================================== % function UndoMoveCoor2DCB %========================================================================== function UndoMoveCoor2DCB handles = getHandles; if isfield(handles, 'lastMoved') label = get(handles.lastMoved(end).label, 'String'); ind = strmatch(label, handles.label, 'exact'); handles.xy(:, ind) = handles.lastMoved(end).coords(:); set(handles.lastMoved(end).point, 'XData', handles.lastMoved(end).coords(1)); set(handles.lastMoved(end).point, 'YData', handles.lastMoved(end).coords(2)); set(handles.lastMoved(end).label, 'Position', handles.lastMoved(end).coords); if length(handles.lastMoved)>1 handles.lastMoved = handles.lastMoved(1:(end-1)); else handles = rmfield(handles, 'lastMoved'); end setHandles(handles); update_menu; end %========================================================================== % function LabelClickCB %========================================================================== function LabelClickCB handles=getHandles; Fgraph = spm_figure('GetWin','Graphics'); if isfield(handles, 'labelSelected') && ~isempty(handles.labelSelected) if handles.labelSelected == gcbo set(handles.labelSelected, 'Color', 'r'); set(handles.pointSelected,'MarkerFaceColor', 'r'); set(Fgraph, 'WindowButtonDownFcn', ''); else handles.pointSelected=[]; handles.labelSelected=[]; end else set(Fgraph, 'WindowButtonDownFcn', 'spm_eeg_prep_ui(''LabelMoveCB'')'); coords = get(gcbo, 'Position'); handles.labelSelected=gcbo; handles.pointSelected=findobj(gca, 'Type', 'line',... 'XData', coords(1), 'YData', coords(2)); set(handles.labelSelected, 'Color', 'g'); set(handles.pointSelected,'MarkerFaceColor', 'g'); end setHandles(handles); update_menu; %========================================================================== % function LabelMoveCB %========================================================================== function LabelMoveCB handles = getHandles; Fgraph = spm_figure('GetWin','Graphics'); coords=mean(get(gca, 'CurrentPoint')); coords(coords < 0.05) = 0.05; coords(coords > 0.95) = 0.95; set(handles.pointSelected, 'XData', coords(1)); set(handles.pointSelected, 'YData', coords(2)); set(handles.labelSelected, 'Position', coords); set(handles.labelSelected, 'Color', 'r'); set(handles.pointSelected,'MarkerFaceColor','r','MarkerSize',2,'MarkerEdgeColor','k'); set(Fgraph, 'WindowButtonDownFcn', ''); set(Fgraph, 'WindowButtonMotionFcn', 'spm_eeg_prep_ui(''CancelMoveCB'')'); labelind=strmatch(get(handles.labelSelected, 'String'), handles.label); if isfield(handles, 'lastMoved') handles.lastMoved(end+1).point = handles.pointSelected; handles.lastMoved(end).label = handles.labelSelected; handles.lastMoved(end).coords = handles.xy(:, labelind); else handles.lastMoved.point = handles.pointSelected; handles.lastMoved.label = handles.labelSelected; handles.lastMoved.coords = handles.xy(:, labelind); end handles.xy(:, labelind) = coords(1:2)'; setHandles(handles); update_menu; %========================================================================== % function CancelMoveCB %========================================================================== function CancelMoveCB Fgraph = spm_figure('GetWin','Graphics'); handles = getHandles; handles.pointSelected=[]; handles.labelSelected=[]; set(Fgraph, 'WindowButtonMotionFcn', ''); setHandles(handles); update_menu; %========================================================================== % function Clear2DCB %========================================================================== function Clear2DCB plot_sensors2D([], {}); update_menu; %========================================================================== % function match_fiducials %========================================================================== function regfid = match_fiducials(lblshape, lblfid) if numel(intersect(upper(lblshape), upper(lblfid))) < 3 if numel(lblshape)<3 || numel(lblfid)<3 warndlg('3 fiducials are required'); return; else regfid = {}; for i = 1:length(lblfid) [selection ok]= listdlg('ListString',lblshape, 'SelectionMode', 'single',... 'InitialValue', strmatch(upper(lblfid{i}), upper(lblshape)), ... 'Name', ['Select matching fiducial for ' lblfid{i}], 'ListSize', [400 300]); if ~ok continue end regfid = [regfid; [lblfid(i) lblshape(selection)]]; end if size(regfid, 1) < 3 warndlg('3 fiducials are required to load headshape'); return; end end else [sel1, sel2] = spm_match_str(upper(lblfid), upper(lblshape)); lblfid = lblfid(sel1); lblshape = lblshape(sel2); regfid = [lblfid(:) lblshape(:)]; end
github
philippboehmsturm/antx-master
spm_read_netcdf.m
.m
antx-master/xspm8/spm_read_netcdf.m
4,350
utf_8
1cd1b0f7f4b4349d963028c168cd4f2d
function cdf = spm_read_netcdf(fname) % Read the header information from a NetCDF file into a data structure. % FORMAT cdf = spm_read_netcdf(fname) % fname - name of NetCDF file % cdf - data structure % % See: http://www.unidata.ucar.edu/packages/netcdf/ % _________________________________________________________________________ % Copyright (C) 1999-2011 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_read_netcdf.m 4182 2011-02-01 12:29:09Z guillaume $ dsiz = [1 1 2 4 4 8]; fp=fopen(fname,'r','ieee-be'); if fp==-1 cdf = []; return; end % Return null if not a CDF file. %-------------------------------------------------------------------------- mgc = fread(fp,4,'uchar')'; if ~all(['CDF' 1] == mgc) cdf = []; fclose(fp); if all(mgc==[137,72,68,70]) fprintf(['"%s" appears to be based around HDF.\n',... 'This is a newer version of MINC that SPM can not yet read.\n'],... fname); end return; end % I've no idea what this is for numrecs = fread(fp,1,'uint32'); cdf = struct('numrecs', numrecs,... 'dim_array', [], ... 'gatt_array', [], ... 'var_array', []); dt = fread(fp,1,'uint32'); if dt == 10 % Dimensions nelem = fread(fp,1,'uint32'); for j=1:nelem str = readname(fp); dim_length = fread(fp,1,'uint32'); cdf.dim_array(j).name = str; cdf.dim_array(j).dim_length = dim_length; end dt = fread(fp,1,'uint32'); end while ~dt, dt = fread(fp,1,'uint32'); end if dt == 12 % Attributes nelem = fread(fp,1,'uint32'); for j=1:nelem str = readname(fp); nc_type = fread(fp,1,'uint32'); nnelem = fread(fp,1,'uint32'); val = fread(fp,nnelem,dtypestr(nc_type)); if nc_type == 2, val = deblank([val' ' ']); end padding= fread(fp,... ceil(nnelem*dsiz(nc_type)/4)*4-nnelem*dsiz(nc_type),'uchar'); cdf.gatt_array(j).name = str; cdf.gatt_array(j).nc_type = nc_type; cdf.gatt_array(j).val = val; end dt = fread(fp,1,'uint32'); end while ~dt, dt = fread(fp,1,'uint32'); end if dt == 11 % Variables nelem = fread(fp,1,'uint32'); for j=1:nelem str = readname(fp); nnelem = fread(fp,1,'uint32'); val = fread(fp,nnelem,'uint32'); cdf.var_array(j).name = str; cdf.var_array(j).dimid = val+1; cdf.var_array(j).nc_type = 0; cdf.var_array(j).vsize = 0; cdf.var_array(j).begin = 0; dt0 = fread(fp,1,'uint32'); if dt0 == 12 nelem0 = fread(fp,1,'uint32'); for jj=1:nelem0 str = readname(fp); nc_type= fread(fp,1,'uint32'); nnelem = fread(fp,1,'uint32'); val = fread(fp,nnelem,dtypestr(nc_type)); if nc_type == 2, val = deblank([val' ' ']); end padding= fread(fp,... ceil(nnelem*dsiz(nc_type)/4)*4-nnelem*dsiz(nc_type),'uchar'); cdf.var_array(j).vatt_array(jj).name = str; cdf.var_array(j).vatt_array(jj).nc_type = nc_type; cdf.var_array(j).vatt_array(jj).val = val; end dt0 = fread(fp,1,'uint32'); end cdf.var_array(j).nc_type = dt0; cdf.var_array(j).vsize = fread(fp,1,'uint32'); cdf.var_array(j).begin = fread(fp,1,'uint32'); end dt = fread(fp,1,'uint32'); end fclose(fp); %========================================================================== % function str = dtypestr(i) %========================================================================== function str = dtypestr(i) % Returns a string appropriate for reading or writing the CDF data-type. types = char('uint8','uint8','int16','int32','float32','float64'); str = deblank(types(i,:)); %========================================================================== % function name = readname(fp) %========================================================================== function name = readname(fp) % Extracts a name from a CDF file pointed to at the right location by fp. stlen = fread(fp,1,'uint32'); name = deblank([fread(fp,stlen,'uchar')' ' ']); padding = fread(fp,ceil(stlen/4)*4-stlen,'uchar');
github
philippboehmsturm/antx-master
spm_figure.m
.m
antx-master/xspm8/spm_figure.m
38,709
utf_8
4197abc8004aba283a121158d6f42aa7
function varargout=spm_figure(varargin) % Setup and callback functions for Graphics window % FORMAT varargout=spm_figure(varargin) % % spm_figure provides utility routines for using the SPM Graphics % interface. Most used syntaxes are listed here, see the embedded callback % reference in the main body of this function, below the help text. % % FORMAT F = spm_figure('Create',Tag,Name,Visible) % FORMAT F = spm_figure('FindWin',Tag) % FORMAT F = spm_figure('GetWin',Tag) % FORMAT spm_figure('Clear',F,Tags) % FORMAT spm_figure('Close',F) % FORMAT spm_figure('Print',F) % FORMAT spm_figure('WaterMark',F,str,Tag,Angle,Perm) % % FORMAT spm_figure('NewPage',hPage) % FORMAT spm_figure('TurnPage',move,F) % FORMAT spm_figure('DeletePageControls',F) % FORMAT n = spm_figure('#page') % FORMAT n = spm_figure('CurrentPage') %__________________________________________________________________________ % % spm_figure creates and manages the 'Graphics' window. This window and % these facilities may be used independently of SPM, and any number of % Graphics windows my be used within the same MATLAB session. (Though % only one SPM 'Graphics' 'Tag'ed window is permitted). % % The Graphics window is provided with a menu bar at the top that % facilitates editing and printing of the current graphic display. % (This menu is also provided as a figure background "ContextMenu" - % right-clicking on the figure background should bring up the menu). % % "Print": Graphics windows with multi-page axes are printed page by page. % % "Clear": Clears the Graphics window. If in SPM usage (figure 'Tag'ed as % 'Graphics') then all SPM windows are cleared and reset. % % "Colours": % * gray, hot, pink, jet: Sets the colormap to selected item. % * gray-hot, etc: Creates a 'split' colormap {128 x 3 matrix}. % The lower half is a gray scale and the upper half is selected % colormap This colormap is used for viewing 'rendered' SPMs on a % PET, MRI or other background images. % Colormap effects: % * Invert: Inverts (flips) the current color map. % * Brighten and Darken: Brighten and Darken the current colourmap % using the MATLAB BRIGHTEN command, with beta's of +0.2 and -0.2 % respectively. % % For SPM usage, the figure should be 'Tag'ed as 'Graphics'. % % See also: spm_print, spm_clf %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Andrew Holmes % $Id: spm_figure.m 6071 2014-06-27 12:52:33Z guillaume $ %========================================================================== % - FORMAT specifications for embedded CallBack functions %========================================================================== % % FORMAT F = spm_figure % [ShortCut] Defaults to Action 'Create' % % FORMAT F = spm_figure(F) - numeric F % [ShortCut] Defaults to spm_figure('CreateBar',F) % % FORMAT F = spm_figure('Create',Tag,Name,Visible) % Create a full length WhiteBg figure 'Tag'ed Tag (if specified), % with a ToolBar and background context menu. % Equivalent to spm_figure('CreateWin','Tag') and spm_figure('CreateBar') % Tag - 'Tag' string for figure. % Name - Name for window % Visible - 'on' or 'off' % F - Figure used % % FORMAT F = spm_figure('FindWin',F) % Finds window with 'Tag' or figure numnber F - returns empty F if not found % F - (Input) Figure to use [Optional] - 'Tag' string or figure number. % - Defaults to 'Graphics' % F - (Output) Figure number (if found) or empty (if not). % % FORMAT F = spm_figure('GetWin',Tag) % Like spm_figure('FindWin',Tag), except that if no such 'Tag'ged figure % is found and 'Tag' is recognized, one is created. Further, the "got" % window is made current. % Tag - Figure 'Tag' to get, defaults to 'Graphics' % F - Figure number (if found/created) or empty (if not). % % FORMAT spm_figure('Clear',F,Tags) % Clears figure, leaving ToolBar (& other objects with invisible handles) % Optional third argument specifies 'Tag's of objects to delete. % If figure F is 'Tag'ged 'Interactive' (SPM usage), then the window % name and pointer are reset. % F - 'Tag' string or figure number of figure to clear, defaults to gcf % Tags - 'Tag's (string matrix or cell array of strings) of objects to delete % *regardless* of 'HandleVisibility'. Only these objects are deleted. % '!all' denotes all objects % % FORMAT spm_figure('Close',F) % Closes figures (deletion without confirmation) % Also closes the docking container if empty. % F - 'Tag' string or figure number of figure to clear, defaults to gcf % % FORMAT spm_figure('Print',F) % F - [Optional] Figure to print. ('Tag' or figure number) % Defaults to figure 'Tag'ed as 'Graphics'. % If none found, uses CurrentFigure if avaliable. % If objects 'Tag'ed 'NextPage' and 'PrevPage' are found, then the % pages are shown and printed in order. In breif, pages are held as % seperate axes, with ony one 'Visible' at any one time. The handles of % the "page" axes are stored in the 'UserData' of the 'NextPage' % object, while the 'PrevPage' object holds the current page number. % See spm_help('!Disp') for details on setting up paging axes. % % FORMAT [hNextPage, hPrevPage, hPageNo] = spm_figure('NewPage',hPage) % SPM pagination function: Makes objects with handles hPage paginated % Creates pagination buttons if necessary. % hPage - Handles of objects to stick to this page % hNextPage, hPrevPage, hPageNo - Handles of pagination controls % % FORMAT spm_figure('TurnPage',move,F) % SPM pagination function: Turn to specified page % % FORMAT spm_figure('DeletePageControls',F) % SPM pagination function: Deletes page controls % F - [Optional] Figure in which to attempt to turn the page % Defaults to 'Graphics' 'Tag'ged window % % FORMAT n = spm_figure('#page') % Returns the current number of pages. % % FORMAT n = spm_figure('CurrentPage'); % Return the current page number. % % FORMAT spm_figure('WaterMark',F,str,Tag,Angle,Perm) % Adds watermark to figure windows. % F - Figure for watermark. Defaults to gcf % str - Watermark string. Defaults (missing or empty) to SPM % Tag - Tag for watermark axes. Defaults to '' % Angle - Angle for watermark. Defaults to -45 % Perm - If specified, then watermark is permanent (HandleVisibility 'off') % % FORMAT F = spm_figure('CreateWin',Tag,Name,Visible) % Creates a full length WhiteBg figure 'Tag'ged Tag (if specified). % F - Figure created % Tag - Tag for window % Name - Name for window % Visible - 'on' or 'off' % % FORMAT spm_figure('CreateBar',F) % Creates toolbar in figure F (defaults to gcf). F can be a 'Tag' % % FORMAT spm_figure('ColorMap') % Callback for "ColorMap" menu % % FORMAT spm_figure('FontSize') % Callback for "FontSize" menu %__________________________________________________________________________ %-Condition arguments %-------------------------------------------------------------------------- if ~nargin, Action = 'Create'; else Action = varargin{1}; end %========================================================================== switch lower(Action), case 'create' %========================================================================== % F = spm_figure('Create',Tag,Name,Visible) if nargin<4, Visible='on'; else Visible=varargin{4}; end if nargin<3, Name=''; else Name=varargin{3}; end if nargin<2, Tag=''; else Tag=varargin{2}; end F = spm_figure('CreateWin',Tag,Name,Visible); spm_figure('CreateBar',F); spm_figure('FigContextMenu',F); varargout = {F}; %========================================================================== case 'findwin' %========================================================================== % F=spm_figure('FindWin',F) % F=spm_figure('FindWin',Tag) %-Find window: Find window with FigureNumber# / 'Tag' attribute %-Returns empty if window cannot be found - deletes multiple tagged figs. if nargin<2, F='Graphics'; else F=varargin{2}; end if isempty(F) % Leave F empty elseif ischar(F) % Finds Graphics window with 'Tag' string - delete multiples Tag = F; F = findall(allchild(0),'Flat','Tag',Tag); if length(F) > 1 % Multiple Graphics windows - close all but most recent close(F(2:end)) F = F(1); end else % F is supposed to be a figure number - check it if ~any(F==allchild(0)), F=[]; end end varargout = {F}; %========================================================================== case 'getwin' %========================================================================== % F=spm_figure('GetWin',Tag) %-Like spm_figure('FindWin',Tag), except that if no such 'Tag'ged figure % is found and 'Tag' is recognized, one is created. if nargin<2, Tag='Graphics'; else Tag=varargin{2}; end F = spm_figure('FindWin',Tag); if isempty(F) if ischar(Tag) switch Tag case 'Graphics' F = spm_figure('Create','Graphics','Graphics'); case 'DEM' F = spm_figure('Create','DEM','Dynamic Expectation Maximisation'); case 'DFP' F = spm_figure('Create','DFP','Variational filtering'); case 'FMIN' F = spm_figure('Create','FMIN','Function minimisation'); case 'MFM' F = spm_figure('Create','MFM','Mean-field and neural mass models'); case 'MVB' F = spm_figure('Create','MVB','Multivariate Bayes'); case 'SI' F = spm_figure('Create','SI','System Identification'); case 'PPI' F = spm_figure('Create','PPI','Physio/Psycho-Physiologic Interaction'); case 'Interactive' F = spm('CreateIntWin'); otherwise F = spm_figure('Create',Tag,Tag); end end else set(0,'CurrentFigure',F); figure(F); end varargout = {F}; %========================================================================== case 'parentfig' %========================================================================== % F=spm_figure('ParentFig',h) warning('spm_figure(''ParentFig'',h) is deprecated. Use ANCESTOR instead.'); if nargin<2, error('No object specified'), else h=varargin{2}; end F = ancestor(h,'figure'); varargout = {F}; %========================================================================== case 'clear' %========================================================================== % spm_figure('Clear',F,Tags) %-Sort out arguments if nargin<3, Tags=[]; else Tags=varargin{3}; end if nargin<2, F=get(0,'CurrentFigure'); else F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), return, end %-Clear figure isdocked = strcmp(get(F,'WindowStyle'),'docked'); if isempty(Tags) %-Clear figure of objects with 'HandleVisibility' 'on' pos = get(F,'Position'); delete(findall(allchild(F),'flat','HandleVisibility','on')); drawnow if ~isdocked, set(F,'Position',pos); end %-Reset figures callback functions zoom(F,'off'); rotate3d(F,'off'); set(F,'KeyPressFcn','',... 'WindowButtonDownFcn','',... 'WindowButtonMotionFcn','',... 'WindowButtonUpFcn','') %-If this is the 'Interactive' window, reset name & UserData if strcmp(get(F,'Tag'),'Interactive') set(F,'Name','','UserData',[]), end else %-Clear specified objects from figure if ischar(Tags); Tags=cellstr(Tags); end if any(strcmp(Tags(:),'!all')) delete(allchild(F)) else for tag = Tags(:)' delete(findall(allchild(F),'flat','Tag',tag{:})); end end end set(F,'Pointer','Arrow') %if ~isdocked && ~spm('CmdLine'), movegui(F); end %========================================================================== case 'close' %========================================================================== % spm_figure('Close',F) %-Sort out arguments if nargin < 2, F = gcf; else F = varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), return, end %-Detect if SPM windows are in docked mode hMenu = spm_figure('FindWin','Menu'); isdocked = strcmp(get(hMenu,'WindowStyle'),'docked'); %-Close figures (and deleted without confirmation) delete(F); %-If in docked mode and closing SPM, close the container as well if isdocked && ismember(hMenu,F) try desktop = com.mathworks.mde.desk.MLDesktop.getInstance; group = ['Statistical Parametric Mapping (' spm('Ver') ')']; hContainer = desktop.getGroupContainer(group); hContainer.getTopLevelAncestor.hide; end end %========================================================================== case 'print' %========================================================================== % spm_figure('Print',F,fname) %-Arguments & defaults if nargin<3, fname=''; else fname=varargin{3};end if nargin<2, F='Graphics'; else F=varargin{2}; end %-Find window to print, default to gcf if specified figure not found % Return if no figures if ~isempty(F), F = spm_figure('FindWin',F); end if isempty(F), F = get(0,'CurrentFigure'); end if isempty(F), return, end %-Note current figure, & switch to figure to print cF = get(0,'CurrentFigure'); set(0,'CurrentFigure',F) %-See if window has paging controls hNextPage = findall(F,'Tag','NextPage'); hPrevPage = findall(F,'Tag','PrevPage'); hPageNo = findall(F,'Tag','PageNo'); iPaged = ~isempty(hNextPage); %-Temporarily change all units to normalized prior to printing H = findall(allchild(F),'flat','Type','axes'); if ~isempty(H) un = cellstr(get(H,'Units')); set(H,'Units','normalized'); end %-Print if ~iPaged spm_print(fname,F); else hPg = get(hNextPage,'UserData'); Cpage = get(hPageNo, 'UserData'); nPages = size(hPg,1); set([hNextPage,hPrevPage,hPageNo],'Visible','off'); if Cpage~=1 set(hPg{Cpage,1},'Visible','off'); end for p = 1:nPages set(hPg{p,1},'Visible','on'); spm_print(fname,F); set(hPg{p,1},'Visible','off'); end set(hPg{Cpage,1},'Visible','on'); set([hNextPage,hPrevPage,hPageNo],'Visible','on'); end if ~isempty(H), set(H,{'Units'},un); end set(0,'CurrentFigure',cF); %========================================================================== case 'printto' %========================================================================== %spm_figure('PrintTo',F) %-Arguments & defaults if nargin<2, F='Graphics'; else F=varargin{2}; end %-Find window to print, default to gcf if specified figure not found % Return if no figures F=spm_figure('FindWin',F); if isempty(F), F = get(0,'CurrentFigure'); end if isempty(F), return, end [fn, pn, fi] = uiputfile({'*.ps','PostScript file (*.ps)'},'Print to File'); if isequal(fn,0) || isequal(pn,0), return, end psname = fullfile(pn, fn); spm_figure('Print',F,psname); %========================================================================== case 'newpage' %========================================================================== % [hNextPage, hPrevPage, hPageNo] = spm_figure('NewPage',h) if nargin<2 || isempty(varargin{2}), error('No handles to paginate') else h=varargin{2}(:)'; end %-Work out which figure we're in F = ancestor(h(1),'figure'); hNextPage = findall(F,'Tag','NextPage'); hPrevPage = findall(F,'Tag','PrevPage'); hPageNo = findall(F,'Tag','PageNo'); %-Create pagination widgets if required %-------------------------------------------------------------------------- if isempty(hNextPage) WS = spm('WinScale'); FS = spm('FontSizes'); SatFig = findall(0,'Tag','Satellite'); if ~isempty(SatFig) SatFigPos = get(SatFig,'Position'); hNextPagePos = [SatFigPos(3)-25 15 15 15]; hPrevPagePos = [SatFigPos(3)-40 15 15 15]; hPageNo = [SatFigPos(3)-40 5 30 10]; else hNextPagePos = [580 022 015 015].*WS; hPrevPagePos = [565 022 015 015].*WS; hPageNo = [550 005 060 015].*WS; end hNextPage = uicontrol(F,'Style','Pushbutton',... 'HandleVisibility','on',... 'String','>','FontSize',FS(10),... 'ToolTipString','next page',... 'Callback','spm_figure(''TurnPage'',''+1'',gcbf)',... 'Position',hNextPagePos,... 'ForegroundColor',[0 0 0],... 'Tag','NextPage','UserData',[]); hPrevPage = uicontrol(F,'Style','Pushbutton',... 'HandleVisibility','on',... 'String','<','FontSize',FS(10),... 'ToolTipString','previous page',... 'Callback','spm_figure(''TurnPage'',''-1'',gcbf)',... 'Position',hPrevPagePos,... 'Visible','on',... 'Enable','off',... 'Tag','PrevPage'); hPageNo = uicontrol(F,'Style','Text',... 'HandleVisibility','on',... 'String','1',... 'FontSize',FS(6),... 'HorizontalAlignment','center',... 'BackgroundColor','w',... 'Position',hPageNo,... 'Visible','on',... 'UserData',1,... 'Tag','PageNo','UserData',1); end %-Add handles for this page to UserData of hNextPage %-Make handles for this page invisible if PageNo>1 %-------------------------------------------------------------------------- mVis = strcmp('on',get(h,'Visible')); mHit = strcmp('on',get(h,'HitTest')); hPg = get(hNextPage,'UserData'); if isempty(hPg) hPg = {h(mVis), h(~mVis), h(mHit), h(~mHit)}; else hPg = [hPg; {h(mVis), h(~mVis), h(mHit), h(~mHit)}]; set(h(mVis),'Visible','off'); set(h(mHit),'HitTest','off'); end set(hNextPage,'UserData',hPg) %-Return handles to pagination controls if requested if nargout>0, varargout = {[hNextPage, hPrevPage, hPageNo]}; end %========================================================================== case 'turnpage' %========================================================================== % spm_figure('TurnPage',move,F) if nargin<3, F='Graphics'; else F=varargin{3}; end if nargin<2, move=1; else move=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('No Graphics window'), end hNextPage = findall(F,'Tag','NextPage'); hPrevPage = findall(F,'Tag','PrevPage'); hPageNo = findall(F,'Tag','PageNo'); if isempty(hNextPage), return, end hPg = get(hNextPage,'UserData'); Cpage = get(hPageNo, 'UserData'); nPages = size(hPg,1); %-Sort out new page number if ischar(move), Npage = Cpage+eval(move); else Npage = move; end Npage = max(min(Npage,nPages),1); %-Make current page invisible, new page visible, set page number string set(hPg{Cpage,1},'Visible','off'); set(hPg{Cpage,3},'HitTest','off'); set(hPg{Npage,1},'Visible','on'); set(hPg{Npage,3},'HitTest','on'); set(hPageNo,'UserData',Npage,'String',sprintf('%d / %d',Npage,nPages)) for k = 1:length(hPg{Npage,1}) if strcmp(get(hPg{Npage,1}(k),'Type'),'axes') axes(hPg{Npage,1}(k)); end end %-Disable appropriate page turning control if on first/last page if Npage==1, set(hPrevPage,'Enable','off') else set(hPrevPage,'Enable','on'), end if Npage==nPages, set(hNextPage,'Enable','off') else set(hNextPage,'Enable','on'), end %========================================================================== case 'deletepagecontrols' %========================================================================== % spm_figure('DeletePageControls',F) if nargin<2, F='Graphics'; else F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('No Graphics window'), end hNextPage = findall(F,'Tag','NextPage'); hPrevPage = findall(F,'Tag','PrevPage'); hPageNo = findall(F,'Tag','PageNo'); delete([hNextPage hPrevPage hPageNo]) %========================================================================== case '#page' %========================================================================== % n = spm_figure('#Page',F) if nargin<2, F='Graphics'; else F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('No Graphics window'), end hNextPage = findall(F,'Tag','NextPage'); if isempty(hNextPage) n = 1; else n = size(get(hNextPage,'UserData'),1)+1; end varargout = {n}; %========================================================================== case 'currentpage' %========================================================================== % n = spm_figure('CurrentPage', F) if nargin<2, F='Graphics'; else F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), error('No Graphics window'), end hPageNo = findall(F,'Tag','PageNo'); Cpage = get(hPageNo, 'UserData'); varargout = {Cpage}; %========================================================================== case 'watermark' %========================================================================== % spm_figure('WaterMark',F,str,Tag,Angle,Perm) if nargin<6, HVis='on'; else HVis='off'; end if nargin<5, Angle=-45; else Angle=varargin{5}; end if nargin<4 || isempty(varargin{4}), Tag = 'WaterMark'; else Tag=varargin{4}; end if nargin<3 || isempty(varargin{3}), str = 'SPM'; else str=varargin{3}; end if nargin<2, if any(allchild(0)), F=gcf; else F=''; end else F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), return, end %-Specify watermark color from background colour Colour = get(F,'Color'); %-Only mess with grayscale backgrounds if ~all(Colour==Colour(1)), return, end %-Work out colour - lighter unless grey value > 0.9 Colour = Colour+(2*(Colour(1)<0.9)-1)*0.02; cF = get(0,'CurrentFigure'); set(0,'CurrentFigure',F) Units=get(F,'Units'); set(F,'Units','normalized'); h = axes('Position',[0.45,0.5,0.1,0.1],... 'Units','normalized',... 'Visible','off',... 'Tag',Tag); set(F,'Units',Units) text(0.5,0.5,str,... 'FontSize',spm('FontSize',80),... 'FontWeight','Bold',... 'FontName',spm_platform('Font','times'),... 'Rotation',Angle,... 'HorizontalAlignment','Center',... 'VerticalAlignment','middle',... 'Color',Colour,... 'ButtonDownFcn',[... 'if strcmp(get(gcbf,''SelectionType''),''open''),',... 'delete(get(gcbo,''Parent'')),',... 'end']) set(h,'HandleVisibility',HVis) set(0,'CurrentFigure',cF) %========================================================================== case 'createwin' %========================================================================== % F=spm_figure('CreateWin',Tag,Name,Visible) if nargin<4 || isempty(varargin{4}), Visible='on'; else Visible=varargin{4}; end if nargin<3, Name=''; else Name = varargin{3}; end if nargin<2, Tag=''; else Tag = varargin{2}; end FS = spm('FontSizes'); %-Scaled font sizes PF = spm_platform('fonts'); %-Font names (for this platform) Rect = spm('WinSize','Graphics'); %-Graphics window rectangle S0 = spm('WinSize','0',1); %-Screen size (of the current monitor) F = figure(... 'Tag',Tag,... 'Position',[S0(1) S0(2) 0 0] + Rect,... 'Resize','off',... 'Color','w',... 'ColorMap',gray(64),... 'DefaultTextColor','k',... 'DefaultTextInterpreter','none',... 'DefaultTextFontName',PF.helvetica,... 'DefaultTextFontSize',FS(10),... 'DefaultAxesColor','w',... 'DefaultAxesXColor','k',... 'DefaultAxesYColor','k',... 'DefaultAxesZColor','k',... 'DefaultAxesFontName',PF.helvetica,... 'DefaultPatchFaceColor','k',... 'DefaultPatchEdgeColor','k',... 'DefaultSurfaceEdgeColor','k',... 'DefaultLineColor','k',... 'DefaultUicontrolFontName',PF.helvetica,... 'DefaultUicontrolFontSize',FS(10),... 'DefaultUicontrolInterruptible','on',... 'PaperType','A4',... 'PaperUnits','normalized',... 'PaperPosition',[.0726 .0644 .854 .870],... 'InvertHardcopy','off',... 'Renderer',spm_get_defaults('renderer'),... 'Visible','off',... 'Toolbar','none'); if ~isempty(Name) set(F,'Name',sprintf('%s%s: %s',spm('ver'),... spm('getUser',' (%s)'),Name),'NumberTitle','off') end set(F,'Visible',Visible) varargout = {F}; isdocked = strcmp(get(spm_figure('FindWin','Menu'),'WindowStyle'),'docked'); if isdocked try desktop = com.mathworks.mde.desk.MLDesktop.getInstance; group = ['Statistical Parametric Mapping (' spm('Ver') ')']; set(getJFrame(F),'GroupName',group); set(F,'WindowStyle','docked'); end end %========================================================================== case 'createbar' %========================================================================== % spm_figure('CreateBar',F) if nargin<2, if any(allchild(0)), F=gcf; else F=''; end else F=varargin{2}; end F = spm_figure('FindWin',F); if isempty(F), return, end %-Help Menu t0 = findall(allchild(F),'Flat','Label','&Help'); delete(allchild(t0)); set(t0,'Callback',''); if isempty(t0), t0 = uimenu( F,'Label','&Help'); end; pos = get(t0,'Position'); uimenu(t0,'Label','SPM Help','CallBack','spm_help'); uimenu(t0,'Label','SPM Manual (PDF)',... 'CallBack','try,open(fullfile(spm(''dir''),''man'',''manual.pdf''));end'); t1=uimenu(t0,'Label','SPM &Web Resources'); uimenu(t1,'Label','SPM Web &Site',... 'CallBack','web(''http://www.fil.ion.ucl.ac.uk/spm/'');'); uimenu(t1,'Label','SPM &WikiBook',... 'CallBack','web(''http://en.wikibooks.org/wiki/SPM'');'); uimenu(t1,'Separator','on','Label','SPM &Extensions',... 'CallBack','web(''http://www.fil.ion.ucl.ac.uk/spm/ext/'');'); %-Check Menu if ~isdeployed uimenu(t0,'Separator','on','Label','SPM Check Installation',... 'CallBack','spm_check_installation(''full'')'); uimenu(t0,'Label','SPM Check for Updates',... 'CallBack','spm(''alert"'',evalc(''spm_update''),''SPM Update'');'); end %- About Menu uimenu(t0,'Separator','on','Label',['&About ' spm('Ver')],... 'CallBack',@spm_about); uimenu(t0,'Label','&About MATLAB',... 'CallBack','helpmenufcn(gcbf,''HelpAbout'')'); %-Figure Menu t0=uimenu(F, 'Position',pos, 'Label','&SPM Figure', 'HandleVisibility','off', 'Callback',@myisresults); %-Show All Figures uimenu(t0, 'Label','Show All &Windows', 'HandleVisibility','off',... 'CallBack','spm(''Show'');'); %-Dock SPM Figures uimenu(t0, 'Label','&Dock SPM Windows', 'HandleVisibility','off',... 'CallBack',@mydockspm); %-Print Menu t1=uimenu(t0, 'Label','&Save Figure', 'HandleVisibility','off','Separator','on'); uimenu(t1, 'Label','&Default File', 'HandleVisibility','off', ... 'CallBack','spm_figure(''Print'',gcf)'); uimenu(t1, 'Label','&Specify File...', 'HandleVisibility','off', ... 'CallBack','spm_figure(''PrintTo'',spm_figure(''FindWin'',''Graphics''))'); %-Copy Figure if ispc uimenu(t0, 'Label','Co&py Figure', 'HandleVisibility','off',... 'CallBack','editmenufcn(gcbf,''EditCopyFigure'')'); end %-Clear Menu uimenu(t0, 'Label','&Clear Figure', 'HandleVisibility','off', ... 'CallBack','spm_figure(''Clear'',gcbf)'); %-Close non-SPM figures uimenu(t0, 'Label','C&lose non-SPM Figures', 'HandleVisibility','off', ... 'CallBack',@myclosefig); %-Colour Menu t1=uimenu(t0, 'Label','C&olours', 'HandleVisibility','off','Separator','on'); t2=uimenu(t1, 'Label','Colormap'); uimenu(t2, 'Label','Gray', 'CallBack','spm_figure(''ColorMap'',''gray'')'); uimenu(t2, 'Label','Hot', 'CallBack','spm_figure(''ColorMap'',''hot'')'); uimenu(t2, 'Label','Pink', 'CallBack','spm_figure(''ColorMap'',''pink'')'); uimenu(t2, 'Label','Jet', 'CallBack','spm_figure(''ColorMap'',''jet'')'); uimenu(t2, 'Label','Gray-Hot', 'CallBack','spm_figure(''ColorMap'',''gray-hot'')'); uimenu(t2, 'Label','Gray-Cool', 'CallBack','spm_figure(''ColorMap'',''gray-cool'')'); uimenu(t2, 'Label','Gray-Pink', 'CallBack','spm_figure(''ColorMap'',''gray-pink'')'); uimenu(t2, 'Label','Gray-Jet', 'CallBack','spm_figure(''ColorMap'',''gray-jet'')'); t2=uimenu(t1, 'Label','Effects'); uimenu(t2, 'Label','Invert', 'CallBack','spm_figure(''ColorMap'',''invert'')'); uimenu(t2, 'Label','Brighten', 'CallBack','spm_figure(''ColorMap'',''brighten'')'); uimenu(t2, 'Label','Darken', 'CallBack','spm_figure(''ColorMap'',''darken'')'); %-Font Size Menu t1=uimenu(t0, 'Label','&Font Size', 'HandleVisibility','off'); uimenu(t1, 'Label','&Increase', 'CallBack','spm_figure(''FontSize'',1)', 'Accelerator', '='); uimenu(t1, 'Label','&Decrease', 'CallBack','spm_figure(''FontSize'',-1)', 'Accelerator', '-'); %-Satellite Table uimenu(t0, 'Label','&Results Table', 'HandleVisibility','off', ... 'Separator','on', 'Callback',@mysatfig); % Tasks Menu %try, spm_jobman('pulldown'); end %========================================================================== case 'figcontextmenu' %========================================================================== % h = spm_figure('FigContextMenu',F) if nargin<2 F = get(0,'CurrentFigure'); if isempty(F), error('no figure'), end else F = spm_figure('FindWin',varargin{2}); if isempty(F), error('no such figure'), end end h = uicontextmenu('Parent',F,'HandleVisibility','CallBack'); copy_menu(F,h); set(F,'UIContextMenu',h) varargout = {h}; %========================================================================== case 'colormap' %========================================================================== % spm_figure('ColorMap',ColAction) if nargin<2, ColAction='gray'; else ColAction=varargin{2}; end switch lower(ColAction), case 'gray' colormap(gray(64)) case 'hot' colormap(hot(64)) case 'pink' colormap(pink(64)) case 'jet' colormap(jet(64)) case 'gray-hot' tmp = hot(64 + 16); tmp = tmp((1:64) + 16,:); colormap([gray(64); tmp]); case 'gray-cool' cool = [zeros(10,1) zeros(10,1) linspace(0.5,1,10)'; zeros(31,1) linspace(0,1,31)' ones(31,1); linspace(0,1,23)' ones(23,1) ones(23,1) ]; colormap([gray(64); cool]); case 'gray-pink' tmp = pink(64 + 16); tmp = tmp((1:64) + 16,:); colormap([gray(64); tmp]); case 'gray-jet' colormap([gray(64); jet(64)]); case 'invert' colormap(flipud(colormap)); case 'brighten' colormap(brighten(colormap, 0.2)); case 'darken' colormap(brighten(colormap, -0.2)); otherwise error('Illegal ColAction specification'); end %========================================================================== case 'fontsize' %========================================================================== % spm_figure('FontSize',sz) if nargin<2, sz=0; else sz=varargin{2}; end h = [get(0,'CurrentFigure') spm_figure('FindWin','Satellite')]; h = [findall(h,'type','text'); findall(h,'type','uicontrol')]; fs = get(h,'fontsize'); if ~isempty(fs) set(h,{'fontsize'},cellfun(@(x) max(x+sz,eps),fs,'UniformOutput',false)); end %========================================================================== otherwise %========================================================================== warning(['Illegal Action string: ',Action]) end return; %========================================================================== function myisresults(obj,evt) %========================================================================== hr = findall(obj,'Label','&Results Table'); try evalin('base','xSPM;'); set(hr,'Enable','on'); catch set(hr,'Enable','off'); end SatWindow = spm_figure('FindWin','Satellite'); if ~isempty(SatWindow) set(hr,'Checked','on'); else set(hr,'Checked','off'); end %========================================================================== function mysatfig(obj,evt) %========================================================================== SatWindow = spm_figure('FindWin','Satellite'); if ~isempty(SatWindow) figure(SatWindow) else FS = spm('FontSizes'); %-Scaled font sizes PF = spm_platform('fonts'); %-Font names WS = spm('WinSize','0','raw'); %-Screen size (of current monitor) Rect = [WS(1)+5 WS(4)*.40 WS(3)*.49 WS(4)*.57]; figure(... 'Tag','Satellite',... 'Position',Rect,... 'Resize','off',... 'MenuBar','none',... 'Name','SPM: Satellite Results Table',... 'Numbertitle','off',... 'Color','w',... 'ColorMap',gray(64),... 'DefaultTextColor','k',... 'DefaultTextInterpreter','none',... 'DefaultTextFontName',PF.helvetica,... 'DefaultTextFontSize',FS(10),... 'DefaultAxesColor','w',... 'DefaultAxesXColor','k',... 'DefaultAxesYColor','k',... 'DefaultAxesZColor','k',... 'DefaultAxesFontName',PF.helvetica,... 'DefaultPatchFaceColor','k',... 'DefaultPatchEdgeColor','k',... 'DefaultSurfaceEdgeColor','k',... 'DefaultLineColor','k',... 'DefaultUicontrolFontName',PF.helvetica,... 'DefaultUicontrolFontSize',FS(10),... 'DefaultUicontrolInterruptible','on',... 'PaperType','A4',... 'PaperUnits','normalized',... 'PaperPosition',[.0726 .0644 .854 .870],... 'InvertHardcopy','off',... 'Renderer',spm_get_defaults('renderer'),... 'Visible','on'); end %========================================================================== function mydockspm(obj,evt) %========================================================================== % Largely inspired by setFigDockGroup from Yair Altman % http://www.mathworks.com/matlabcentral/fileexchange/16650 hMenu = spm_figure('FindWin','Menu'); hInt = spm_figure('FindWin','Interactive'); hGra = spm_figure('FindWin','Graphics'); h = [hMenu hInt hGra]; group = ['Statistical Parametric Mapping (' spm('Ver') ')']; try desktop = com.mathworks.mde.desk.MLDesktop.getInstance; if ~ismember(group,cell(desktop.getGroupTitles)) desktop.addGroup(group); end for i=1:length(h) set(getJFrame(h(i)),'GroupName',group); end hContainer = desktop.getGroupContainer(group); set(hContainer,'userdata',group); end set(h,'WindowStyle','docked'); try, pause(0.5), desktop.setGroupDocked(group,false); end %========================================================================== function myclosefig(obj,evt) %========================================================================== hMenu = spm_figure('FindWin','Menu'); hInt = spm_figure('FindWin','Interactive'); hGra = spm_figure('FindWin','Graphics'); h = setdiff(findobj(get(0,'children'),'flat','visible','on'), ... [hMenu hInt hGra gcf]); close(h,'force'); %========================================================================== function copy_menu(F,G) %========================================================================== handles = findall(allchild(F),'Flat','Type','uimenu','Visible','on'); if isempty(handles), return; end; for F1=handles(:)' if ~ismember(get(F1,'Label'),{'&Window' '&Desktop'}) G1 = uimenu(G,'Label',get(F1,'Label'),... 'CallBack',get(F1,'CallBack'),... 'Position',get(F1,'Position'),... 'Separator',get(F1,'Separator')); copy_menu(F1,G1); end end %========================================================================== function jframe = getJFrame(h) %========================================================================== warning('off','MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame'); hhFig = handle(h); jframe = []; maxTries = 16; while maxTries > 0 try jframe = get(hhFig,'javaframe'); if ~isempty(jframe) break; else maxTries = maxTries - 1; drawnow; pause(0.1); end catch maxTries = maxTries - 1; drawnow; pause(0.1); end end if isempty(jframe) error('Cannot retrieve the java frame from handle.'); end %========================================================================== function spm_about(obj,evt) %========================================================================== [v,r] = spm('Ver'); h = figure('MenuBar','none',... 'NumberTitle','off',... 'Name',['About ' v],... 'Resize','off',... 'Toolbar','none',... 'Tag','AboutSPM',... 'WindowStyle','Modal',... 'Color',[0 0 0],... 'Visible','off',... 'DoubleBuffer','on'); pos = get(h,'Position'); pos([3 4]) = [300 400]; set(h,'Position',pos); set(h,'Visible','on'); a = axes('Parent',h, 'Units','pixels', 'Position',[50 201 200 200],... 'Visible','off'); IMG = imread(fullfile(spm('Dir'),'man','images','spm8.png')); image(IMG,'Parent',a); set(a,'Visible','off'); a = axes('Parent',h,'Units','pixels','Position',[0 0 300 400],... 'Visible','off','Tag','textcont'); text(0.5,0.45,'Statistical Parametric Mapping','Parent',a,... 'HorizontalAlignment','center','Color',[1 1 1],'FontWeight','Bold'); text(0.5,0.40,[v ' (v' r ')'],'Parent',a,'HorizontalAlignment','center',... 'Color',[1 1 1]); text(0.5,0.30,'Wellcome Trust Centre for Neuroimaging','Parent',a,... 'HorizontalAlignment','center','Color',[1 1 1],'FontWeight','Bold'); text(0.5,0.25,['Copyright (C) 1991,1994-' datestr(now,'yyyy')],... 'Parent',a,'HorizontalAlignment','center','Color',[1 1 1]); text(0.5,0.20,'http://www.fil.ion.ucl.ac.uk/spm/','Parent',a,... 'HorizontalAlignment','center','Color',[1 1 1],... 'ButtonDownFcn','web(''http://www.fil.ion.ucl.ac.uk/spm/'');'); uicontrol('Style','pushbutton','String','Credits','Position',[40 25 60 25],... 'Callback',@myscroll,'BusyAction','Cancel'); uicontrol('Style','pushbutton','String','OK','Position',[200 25 60 25],... 'Callback','close(gcf)','BusyAction','Cancel'); %========================================================================== function myscroll(obj,evt) %========================================================================== ax = findobj(gcf,'Tag','textcont'); cla(ax); [current, previous] = spm_authors; authors = {['*' spm('Ver') '*'] current{:} '' ... '*Previous versions*' previous{:} '' ... '*Thanks to the SPM community*'}; x = 0.2; h = []; for i=1:numel(authors) h(i) = text(0.5,x,authors{i},'Parent',ax,... 'HorizontalAlignment','center','Color',col(x)); if any(authors{i} == '*') set(h(i),'String',strrep(authors{i},'*',''),'FontWeight','Bold'); end x = x - 0.05; end pause(0.5); try for j=1:fix((0.5-(0.2-numel(authors)*0.05))/0.01) for i=1:numel(h) p = get(h(i),'Position'); p2 = p(2)+0.01; set(h(i),'Position',[p(1) p2 p(3)],'Color',col(p2)); if p2 > 0.5, set(h(i),'Visible','off'); end end pause(0.1) end end %========================================================================== function c = col(x) %========================================================================== if x < 0.4 && x > 0.3 c = [1 1 1]; elseif x <= 0.3 c = [1 1 1] - 6*abs(0.3-x); else c = [1 1 1] - 6*abs(0.4-x); end c(c<0) = 0; c(c>1) = 1;
github
philippboehmsturm/antx-master
spm_P_RF.m
.m
antx-master/xspm8/spm_P_RF.m
6,258
utf_8
12cabbf3a8ca0c5e43a3fd4025db3e69
function [P,p,Ec,Ek] = spm_P_RF(c,k,Z,df,STAT,R,n) % Returns the [un]corrected P value using unifed EC theory % FORMAT [P p Ec Ek] = spm_P_RF(c,k,z,df,STAT,R,n) % % c - cluster number % k - extent {RESELS} % z - height {minimum over n values} % df - [df{interest} df{error}] % STAT - Statistical field % 'Z' - Gaussian field % 'T' - T - field % 'X' - Chi squared field % 'F' - F - field % R - RESEL Count {defining search volume} % n - number of component SPMs in conjunction % % P - corrected P value - P(C >= c | K >= k} % p - uncorrected P value % Ec - expected number of clusters (maxima) % Ek - expected number of resels per cluster % %__________________________________________________________________________ % % spm_P_RF returns the probability of c or more clusters with more than % k resels in volume process of R RESELS thresholded at u. All p values % can be considered special cases: % % spm_P_RF(1,0,z,df,STAT,1,n) = uncorrected p value % spm_P_RF(1,0,z,df,STAT,R,n) = corrected p value {based on height z) % spm_P_RF(1,k,u,df,STAT,R,n) = corrected p value {based on extent k at u) % spm_P_RF(c,k,u,df,STAT,R,n) = corrected p value {based on number c at k and u) % spm_P_RF(c,0,u,df,STAT,R,n) = omnibus p value {based on number c at u) % % If n > 1 a conjunction probility over the n values of the statistic % is returned %__________________________________________________________________________ % % References: % % [1] Hasofer AM (1978) Upcrossings of random fields % Suppl Adv Appl Prob 10:14-21 % [2] Friston KJ et al (1994) Assessing the Significance of Focal Activations % Using Their Spatial Extent % Human Brain Mapping 1:210-220 % [3] Worsley KJ et al (1996) A Unified Statistical Approach for Determining % Significant Signals in Images of Cerebral Activation % Human Brain Mapping 4:58-73 %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_P_RF.m 4225 2011-03-02 15:53:05Z guillaume $ % get expectations %========================================================================== % get EC densities %-------------------------------------------------------------------------- D = find(R,1,'last'); R = R(1:D); G = sqrt(pi)./gamma(([1:D])/2); EC = spm_ECdensity(STAT,Z,df); EC = max(EC(1:D),eps); % corrected p value %-------------------------------------------------------------------------- P = triu(toeplitz(EC'.*G))^n; P = P(1,:); EM = (R./G).*P; % <maxima> over D dimensions Ec = sum(EM); % <maxima> EN = P(1)*R(D); % <resels> Ek = EN/EM(D); % Ek = EN/EM(D); % get P{n > k} %========================================================================== % assume a Gaussian form for P{n > k} ~ exp(-beta*k^(2/D)) % Appropriate for SPM{Z} and high d.f. SPM{T} %-------------------------------------------------------------------------- D = D - 1; if ~k || ~D p = 1; elseif STAT == 'Z' beta = (gamma(D/2 + 1)/Ek)^(2/D); p = exp(-beta*(k^(2/D))); elseif STAT == 'T' beta = (gamma(D/2 + 1)/Ek)^(2/D); p = exp(-beta*(k^(2/D))); elseif STAT == 'X' beta = (gamma(D/2 + 1)/Ek)^(2/D); p = exp(-beta*(k^(2/D))); elseif STAT == 'F' beta = (gamma(D/2 + 1)/Ek)^(2/D); p = exp(-beta*(k^(2/D))); end % Poisson clumping heuristic {for multiple clusters} %========================================================================== P = 1 - spm_Pcdf(c - 1,(Ec + eps)*p); % set P and p = [] for non-implemented cases %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if k > 0 && (STAT == 'X' || STAT == 'F') P = []; p = []; end %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %========================================================================== % spm_ECdensity %========================================================================== function [EC] = spm_ECdensity(STAT,t,df) % Returns the EC density %__________________________________________________________________________ % % Reference : Worsley KJ et al 1996, Hum Brain Mapp. 4:58-73 % %-------------------------------------------------------------------------- % EC densities (EC} %-------------------------------------------------------------------------- t = t(:)'; if STAT == 'Z' % Gaussian Field %---------------------------------------------------------------------- a = 4*log(2); b = exp(-t.^2/2); EC(1,:) = 1 - spm_Ncdf(t); EC(2,:) = a^(1/2)/(2*pi)*b; EC(3,:) = a/((2*pi)^(3/2))*b.*t; EC(4,:) = a^(3/2)/((2*pi)^2)*b.*(t.^2 - 1); elseif STAT == 'T' % T - Field %---------------------------------------------------------------------- v = df(2); a = 4*log(2); b = exp(gammaln((v+1)/2) - gammaln(v/2)); c = (1+t.^2/v).^((1-v)/2); EC(1,:) = 1 - spm_Tcdf(t,v); EC(2,:) = a^(1/2)/(2*pi)*c; EC(3,:) = a/((2*pi)^(3/2))*c.*t/((v/2)^(1/2))*b; EC(4,:) = a^(3/2)/((2*pi)^2)*c.*((v-1)*(t.^2)/v - 1); elseif STAT == 'X' % X - Field %---------------------------------------------------------------------- v = df(2); a = (4*log(2))/(2*pi); b = t.^(1/2*(v - 1)).*exp(-t/2-gammaln(v/2))/2^((v-2)/2); EC(1,:) = 1 - spm_Xcdf(t,v); EC(2,:) = a^(1/2)*b; EC(3,:) = a*b.*(t-(v-1)); EC(4,:) = a^(3/2)*b.*(t.^2-(2*v-1)*t+(v-1)*(v-2)); elseif STAT == 'F' % F Field %---------------------------------------------------------------------- k = df(1); v = df(2); a = (4*log(2))/(2*pi); b = gammaln(v/2) + gammaln(k/2); EC(1,:) = 1 - spm_Fcdf(t,df); EC(2,:) = a^(1/2)*exp(gammaln((v+k-1)/2)-b)*2^(1/2)... *(k*t/v).^(1/2*(k-1)).*(1+k*t/v).^(-1/2*(v+k-2)); EC(3,:) = a*exp(gammaln((v+k-2)/2)-b)*(k*t/v).^(1/2*(k-2))... .*(1+k*t/v).^(-1/2*(v+k-2)).*((v-1)*k*t/v-(k-1)); EC(4,:) = a^(3/2)*exp(gammaln((v+k-3)/2)-b)... *2^(-1/2)*(k*t/v).^(1/2*(k-3)).*(1+k*t/v).^(-1/2*(v+k-2))... .*((v-1)*(v-2)*(k*t/v).^2-(2*v*k-v-k-1)*(k*t/v)+(k-1)*(k-2)); end
github
philippboehmsturm/antx-master
spm_dicom_headers.m
.m
antx-master/xspm8/spm_dicom_headers.m
20,594
utf_8
1383d5701aed00742ecf464bb28923b6
function hdr = spm_dicom_headers(P, essentials) % Read header information from DICOM files % FORMAT hdr = spm_dicom_headers(P [,essentials]) % P - array of filenames % essentials - if true, then only save the essential parts of the header % hdr - cell array of headers, one element for each file. % % Contents of headers are approximately explained in: % http://medical.nema.org/dicom/2001.html % % This code will not work for all cases of DICOM data, as DICOM is an % extremely complicated "standard". % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_dicom_headers.m 4334 2011-05-31 16:39:53Z john $ if nargin<2, essentials = false; end dict = readdict; j = 0; hdr = {}; if size(P,1)>1, spm_progress_bar('Init',size(P,1),'Reading DICOM headers','Files complete'); end; for i=1:size(P,1), tmp = readdicomfile(P(i,:),dict); if ~isempty(tmp), if essentials, tmp = spm_dicom_essentials(tmp); end j = j + 1; hdr{j} = tmp; end; if size(P,1)>1, spm_progress_bar('Set',i); end; end; if size(P,1)>1, spm_progress_bar('Clear'); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function ret = readdicomfile(P,dict) ret = []; P = deblank(P); fp = fopen(P,'r','ieee-le'); if fp==-1, warning(['Cant open "' P '".']); return; end; fseek(fp,128,'bof'); dcm = char(fread(fp,4,'uint8')'); if ~strcmp(dcm,'DICM'), % Try truncated DICOM file fomat fseek(fp,0,'bof'); tag.group = fread(fp,1,'ushort'); tag.element = fread(fp,1,'ushort'); if isempty(tag.group) || isempty(tag.element), fclose(fp); warning('Truncated file "%s"',P); return; end; %t = dict.tags(tag.group+1,tag.element+1); if isempty(find(dict.group==tag.group & dict.element==tag.element,1)) && ~(tag.group==8 && tag.element==0), % entry not found in DICOM dict and not from a GE Twin+excite % that starts with with an 8/0 tag that I can't find any % documentation for. fclose(fp); warning(['"' P '" is not a DICOM file.']); return; else fseek(fp,0,'bof'); end; end; try ret = read_dicom(fp, 'il',dict); ret.Filename = fopen(fp); catch fprintf('Trouble reading DICOM file %s, skipping.\n', fopen(fp)); l = lasterror; disp(l.message); end fclose(fp); return; %_______________________________________________________________________ %_______________________________________________________________________ function [ret,len] = read_dicom(fp, flg, dict,lim) if nargin<4, lim=Inf; end; %if lim==2^32-1, lim=Inf; end; len = 0; ret = []; tag = read_tag(fp,flg,dict); while ~isempty(tag) && ~(tag.group==65534 && tag.element==57357), % && tag.length==0), %fprintf('%.4x/%.4x %d\n', tag.group, tag.element, tag.length); if tag.length>0, switch tag.name, case {'GroupLength'}, % Ignore it fseek(fp,tag.length,'cof'); case {'PixelData'}, ret.StartOfPixelData = ftell(fp); ret.SizeOfPixelData = tag.length; ret.VROfPixelData = tag.vr; fseek(fp,tag.length,'cof'); case {'CSAData'}, % raw data ret.StartOfCSAData = ftell(fp); ret.SizeOfCSAData = tag.length; fseek(fp,tag.length,'cof'); case {'CSAImageHeaderInfo', 'CSASeriesHeaderInfo','Private_0029_1110','Private_0029_1120','Private_0029_1210','Private_0029_1220'}, dat = decode_csa(fp,tag.length); ret.(tag.name) = dat; case {'TransferSyntaxUID'}, dat = char(fread(fp,tag.length,'uint8')'); dat = deblank(dat); ret.(tag.name) = dat; switch dat, case {'1.2.840.10008.1.2'}, % Implicit VR Little Endian flg = 'il'; case {'1.2.840.10008.1.2.1'}, % Explicit VR Little Endian flg = 'el'; case {'1.2.840.10008.1.2.1.99'}, % Deflated Explicit VR Little Endian warning(['Cant read Deflated Explicit VR Little Endian file "' fopen(fp) '".']); flg = 'dl'; return; case {'1.2.840.10008.1.2.2'}, % Explicit VR Big Endian %warning(['Cant read Explicit VR Big Endian file "' fopen(fp) '".']); flg = 'eb'; % Unused case {'1.2.840.10008.1.2.4.50','1.2.840.10008.1.2.4.51','1.2.840.10008.1.2.4.70',... '1.2.840.10008.1.2.4.80','1.2.840.10008.1.2.4.90','1.2.840.10008.1.2.4.91'}, % JPEG Explicit VR flg = 'el'; %warning(['Cant read JPEG Encoded file "' fopen(fp) '".']); otherwise, flg = 'el'; warning(['Unknown Transfer Syntax UID for "' fopen(fp) '".']); return; end; otherwise, switch tag.vr, case {'UN'}, % Unknown - read as char dat = fread(fp,tag.length,'uint8')'; case {'AE', 'AS', 'CS', 'DA', 'DS', 'DT', 'IS', 'LO', 'LT',... 'PN', 'SH', 'ST', 'TM', 'UI', 'UT'}, % Character strings dat = char(fread(fp,tag.length,'uint8')'); switch tag.vr, case {'UI','ST'}, dat = deblank(dat); case {'DS'}, try dat = textscan(dat,'%f','delimiter','\\')'; dat = dat{1}; catch dat = textscan(dat,'%f','delimiter','/')'; dat = dat{1}; end case {'IS'}, dat = textscan(dat,'%d','delimiter','\\')'; dat = double(dat{1}); case {'DA'}, dat = strrep(dat,'.',' '); dat = textscan(dat,'%4d%2d%2d'); [y,m,d] = deal(dat{:}); dat = datenum(double(y),double(m),double(d)); case {'TM'}, if any(dat==':'), dat = textscan(dat,'%d:%d:%f'); [h,m,s] = deal(dat{:}); h = double(h); m = double(m); else dat = textscan(dat,'%2d%2d%f'); [h,m,s] = deal(dat{:}); h = double(h); m = double(m); end if isempty(h), h = 0; end; if isempty(m), m = 0; end; if isempty(s), s = 0; end; dat = s+60*(m+60*h); case {'LO'}, dat = uscore_subst(dat); otherwise, end; case {'OB'}, % dont know if this should be signed or unsigned dat = fread(fp,tag.length,'uint8')'; case {'US', 'AT', 'OW'}, dat = fread(fp,tag.length/2,'uint16')'; case {'SS'}, dat = fread(fp,tag.length/2,'int16')'; case {'UL'}, dat = fread(fp,tag.length/4,'uint32')'; case {'SL'}, dat = fread(fp,tag.length/4,'int32')'; case {'FL'}, dat = fread(fp,tag.length/4,'float')'; case {'FD'}, dat = fread(fp,tag.length/8,'double')'; case {'SQ'}, [dat,len1] = read_sq(fp, flg,dict,tag.length); tag.length = len1; otherwise, dat = ''; if tag.length fseek(fp,tag.length,'cof'); warning(['Unknown VR [' num2str(tag.vr+0) '] in "'... fopen(fp) '" (offset=' num2str(ftell(fp)) ').']); end end; if ~isempty(tag.name), ret.(tag.name) = dat; end; end; end; len = len + tag.le + tag.length; if len>=lim, return; end; tag = read_tag(fp,flg,dict); end; if ~isempty(tag), len = len + tag.le; % I can't find this bit in the DICOM standard, but it seems to % be needed for Philips Integra if tag.group==65534 && tag.element==57357 && tag.length~=0, fseek(fp,-4,'cof'); len = len-4; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [ret,len] = read_sq(fp, flg, dict,lim) ret = {}; n = 0; len = 0; while len<lim, tag.group = fread(fp,1,'ushort'); tag.element = fread(fp,1,'ushort'); tag.length = fread(fp,1,'uint'); if isempty(tag.length), return; end; %if tag.length == 2^32-1, % FFFFFFFF %tag.length = Inf; %end; if tag.length==13, tag.length=10; end; len = len + 8; if (tag.group == 65534) && (tag.element == 57344), % FFFE/E000 [Item,len1] = read_dicom(fp, flg, dict, tag.length); len = len + len1; if ~isempty(Item) n = n + 1; ret{n} = Item; else end elseif (tag.group == 65279) && (tag.element == 224), % FEFF/00E0 % Byte-swapped [fname,perm,fmt] = fopen(fp); flg1 = flg; if flg(2)=='b', flg1(2) = 'l'; else flg1(2) = 'b'; end; [Item,len1] = read_dicom(fp, flg1, dict, tag.length); len = len + len1; n = n + 1; ret{n} = Item; pos = ftell(fp); fclose(fp); fp = fopen(fname,perm,fmt); fseek(fp,pos,'bof'); elseif (tag.group == 65534) && (tag.element == 57565), % FFFE/E0DD break; elseif (tag.group == 65279) && (tag.element == 56800), % FEFF/DDE0 % Byte-swapped break; else warning([num2str(tag.group) '/' num2str(tag.element) ' unexpected.']); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function tag = read_tag(fp,flg,dict) tag.group = fread(fp,1,'ushort'); tag.element = fread(fp,1,'ushort'); if isempty(tag.element), tag=[]; return; end; if tag.group == 2, flg = 'el'; end; %t = dict.tags(tag.group+1,tag.element+1); t = find(dict.group==tag.group & dict.element==tag.element); if t>0, tag.name = dict.values(t).name; tag.vr = dict.values(t).vr{1}; else % Set tag.name = '' in order to restrict the fields to those % in the dictionary. With a reduced dictionary, this could % speed things up considerably. % tag.name = ''; tag.name = sprintf('Private_%.4x_%.4x',tag.group,tag.element); tag.vr = 'UN'; end; if flg(2) == 'b', [fname,perm,fmt] = fopen(fp); if strcmp(fmt,'ieee-le') || strcmp(fmt,'ieee-le.l64'), pos = ftell(fp); fclose(fp); fp = fopen(fname,perm,'ieee-be'); fseek(fp,pos,'bof'); end; end; if flg(1) =='e', tag.vr = char(fread(fp,2,'uint8')'); tag.le = 6; switch tag.vr, case {'OB','OW','SQ','UN','UT'} if ~strcmp(tag.vr,'UN') || tag.group~=65534, fseek(fp,2,0); end; tag.length = double(fread(fp,1,'uint')); tag.le = tag.le + 6; case {'AE','AS','AT','CS','DA','DS','DT','FD','FL','IS','LO','LT','PN','SH','SL','SS','ST','TM','UI','UL','US'}, tag.length = double(fread(fp,1,'ushort')); tag.le = tag.le + 2; case char([0 0]) if (tag.group == 65534) && (tag.element == 57357) % at least on GE, ItemDeliminationItem does not have a % VR, but 4 bytes zeroes as length tag.vr = 'UN'; tag.le = 8; tag.length = 0; tmp = fread(fp,1,'ushort'); elseif (tag.group == 65534) && (tag.element == 57565) % SequenceDelimitationItem - NOT ENTIRELY HAPPY WITH THIS double(fread(fp,1,'uint')); tag.vr = 'UN'; tag.length = 0; tag.le = tag.le + 6; else warning('Don''t know how to handle VR of ''\0\0'''); end; otherwise, fseek(fp,2,0); tag.length = double(fread(fp,1,'uint')); tag.le = tag.le + 6; end; else tag.le = 8; tag.length = double(fread(fp,1,'uint')); end; if isempty(tag.vr) || isempty(tag.length), tag = []; return; end; if rem(tag.length,2), if tag.length==4294967295, tag.length = Inf; return; elseif tag.length==13, % disp(['Whichever manufacturer created "' fopen(fp) '" is taking the p***!']); % For some bizarre reason, known only to themselves, they confuse lengths of % 13 with lengths of 10. tag.length = 10; else warning(['Unknown odd numbered Value Length (' sprintf('%x',tag.length) ') in "' fopen(fp) '".']); tag = []; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function dict = readdict(P) if nargin<1, P = 'spm_dicom_dict.mat'; end; try dict = load(P); catch fprintf('\nUnable to load the file "%s".\n', P); rethrow(lasterror); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function dict = readdict_txt fid = fopen('spm_dicom_dict.txt','rt'); file = textscan(fid,'%s','delimiter','\n','whitespace',''); file = file{1}; fclose(fid); clear values i = 0; for i0=1:length(file), words = textscan(file{i0},'%s','delimiter','\t'); words = words{1}; if length(words)>=5 && ~strcmp(words{1}(3:4),'xx'), grp = sscanf(words{1},'%x'); ele = sscanf(words{2},'%x'); if ~isempty(grp) && ~isempty(ele), i = i + 1; group(i) = grp; element(i) = ele; vr = {}; for j=1:length(words{4})/2, vr{j} = words{4}(2*(j-1)+1:2*(j-1)+2); end; name = words{3}; msk = ~(name>='a' & name<='z') & ~(name>='A' & name<='Z') &... ~(name>='0' & name<='9') & ~(name=='_'); name(msk) = ''; values(i) = struct('name',name,'vr',{vr},'vm',words{5}); end; end; end; tags = sparse(group+1,element+1,1:length(group)); dict = struct('values',values,'tags',tags); dict = desparsify(dict); return; %_______________________________________________________________________ %_______________________________________________________________________ function dict = desparsify(dict) [group,element] = find(dict.tags); offs = zeros(size(group)); for k=1:length(group), offs(k) = dict.tags(group(k),element(k)); end; dict.group(offs) = group-1; dict.element(offs) = element-1; return; %_______________________________________________________________________ %_______________________________________________________________________ function t = decode_csa(fp,lim) % Decode shadow information (0029,1010) and (0029,1020) [fname,perm,fmt] = fopen(fp); pos = ftell(fp); if strcmp(fmt,'ieee-be') || strcmp(fmt,'ieee-be.l64'), fclose(fp); fp = fopen(fname,perm,'ieee-le'); fseek(fp,pos,'bof'); end; c = fread(fp,4,'uint8'); fseek(fp,pos,'bof'); if all(c'==[83 86 49 48]), % "SV10" t = decode_csa2(fp,lim); else t = decode_csa1(fp,lim); end; if strcmp(fmt,'ieee-be') || strcmp(fmt,'ieee-be.l64'), fclose(fp); fp = fopen(fname,perm,fmt); end; fseek(fp,pos+lim,'bof'); return; %_______________________________________________________________________ %_______________________________________________________________________ function t = decode_csa1(fp,lim) n = fread(fp,1,'uint32'); if isempty(n) || n>1024 || n <= 0, fseek(fp,lim-4,'cof'); t = struct('name','JUNK: Don''t know how to read this damned file format'); return; end; unused = fread(fp,1,'uint32')'; % Unused "M" or 77 for some reason tot = 2*4; for i=1:n, t(i).name = fread(fp,64,'uint8')'; msk = find(~t(i).name)-1; if ~isempty(msk), t(i).name = char(t(i).name(1:msk(1))); else t(i).name = char(t(i).name); end; t(i).vm = fread(fp,1,'int32')'; t(i).vr = fread(fp,4,'uint8')'; t(i).vr = char(t(i).vr(1:3)); t(i).syngodt = fread(fp,1,'int32')'; t(i).nitems = fread(fp,1,'int32')'; t(i).xx = fread(fp,1,'int32')'; % 77 or 205 tot = tot + 64+4+4+4+4+4; for j=1:t(i).nitems % This bit is just wierd t(i).item(j).xx = fread(fp,4,'int32')'; % [x x 77 x] len = t(i).item(j).xx(1)-t(1).nitems; if len<0 || len+tot+4*4>lim, t(i).item(j).val = ''; tot = tot + 4*4; break; end; t(i).item(j).val = char(fread(fp,len,'uint8')'); fread(fp,4-rem(len,4),'uint8'); tot = tot + 4*4+len+(4-rem(len,4)); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function t = decode_csa2(fp,lim) unused1 = fread(fp,4,'uint8'); % Unused unused2 = fread(fp,4,'uint8'); % Unused n = fread(fp,1,'uint32'); opos = ftell(fp); if isempty(n) || n>1024 || n < 0, fseek(fp,lim-4,'cof'); t = struct('name','Don''t know how to read this damned file format'); return; end; unused = fread(fp,1,'uint32')'; % Unused "M" or 77 for some reason pos = 16; for i=1:n, t(i).name = fread(fp,64,'uint8')'; pos = pos + 64; msk = find(~t(i).name)-1; if ~isempty(msk), t(i).name = char(t(i).name(1:msk(1))); else t(i).name = char(t(i).name); end; t(i).vm = fread(fp,1,'int32')'; t(i).vr = fread(fp,4,'uint8')'; t(i).vr = char(t(i).vr(1:3)); t(i).syngodt = fread(fp,1,'int32')'; t(i).nitems = fread(fp,1,'int32')'; t(i).xx = fread(fp,1,'int32')'; % 77 or 205 pos = pos + 20; for j=1:t(i).nitems t(i).item(j).xx = fread(fp,4,'int32')'; % [x x 77 x] pos = pos + 16; len = t(i).item(j).xx(2); if len>lim-pos, len = lim-pos; t(i).item(j).val = char(fread(fp,len,'uint8')'); fread(fp,rem(4-rem(len,4),4),'uint8'); warning('Problem reading Siemens CSA field'); return; end t(i).item(j).val = char(fread(fp,len,'uint8')'); fread(fp,rem(4-rem(len,4),4),'uint8'); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function str_out = uscore_subst(str_in) str_out = str_in; pos = strfind(str_in,'+AF8-'); if ~isempty(pos), str_out(pos) = '_'; str_out(repmat(pos,4,1)+repmat((1:4)',1,numel(pos))) = []; end return; %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_eeg_inv_mesh_spherify.m
.m
antx-master/xspm8/spm_eeg_inv_mesh_spherify.m
5,338
utf_8
95d0130b96a9bec003e301440cfd4caa
function [pnt, tri] = spm_eeg_inv_mesh_spherify(pnt, tri, varargin) % Takes a cortical mesh and scales it so that it fits into a % unit sphere. % % This function determines the points of the original mesh that support a % convex hull and determines the radius of those points. Subsequently the % radius of the support points is interpolated onto all vertices of the % original mesh, and the vertices of the original mesh are scaled by % dividing them by this interpolated radius. % % Use as % [pnt, tri] = mesh_spherify(pnt, tri, ...) % % Optional arguments should come as key-value pairs and may include % shift = 'no', mean', 'range' % smooth = number (default = 20) % Copyright (C) 2008, Robert Oostenveld % % $Log: mesh_spherify.m,v $ % Revision 1.1 2008/12/18 16:14:08 roboos % new implementation % % $Id: spm_eeg_inv_mesh_spherify.m 2696 2009-02-05 20:29:48Z guillaume $ global fb if isempty(fb) fb = false; end shift = keyval('shift', varargin); smooth = keyval('smooth', varargin); % set the concentration factor if ~isempty(smooth) k = smooth; else k = 100; end % the following code is for debugging if fb figure [sphere_pnt, sphere_tri] = icosahedron162; y = vonmisesfischer(5, [0 0 1], sphere_pnt); triplot(sphere_pnt, sphere_tri, y); end npnt = size(pnt, 1); ntri = size(tri, 1); switch shift case 'mean' pnt(:,1) = pnt(:,1) - mean(pnt(:,1)); pnt(:,2) = pnt(:,2) - mean(pnt(:,2)); pnt(:,3) = pnt(:,3) - mean(pnt(:,3)); case 'range' minx = min(pnt(:,1)); miny = min(pnt(:,2)); minz = min(pnt(:,3)); maxx = max(pnt(:,1)); maxy = max(pnt(:,2)); maxz = max(pnt(:,3)); pnt(:,1) = pnt(:,1) - mean([minx maxx]); pnt(:,2) = pnt(:,2) - mean([miny maxy]); pnt(:,3) = pnt(:,3) - mean([minz maxz]); otherwise % do nothing end % determine the convex hull, especially to determine the support points tric = convhulln(pnt); sel = unique(tric(:)); % create a triangulation for only the support points support_pnt = pnt(sel,:); support_tri = convhulln(support_pnt); if fb figure triplot(support_pnt, support_tri, [], 'faces_skin'); triplot(pnt, tri, [], 'faces_skin'); alpha 0.5 end % determine the radius and thereby scaling factor for the support points support_scale = zeros(length(sel),1); for i=1:length(sel) support_scale(i) = norm(support_pnt(i,:)); end % interpolate the scaling factor for the support points to all points scale = zeros(npnt,1); for i=1:npnt u = pnt(i,:); y = vonmisesfischer(k, u, support_pnt); y = y ./ sum(y); scale(i) = y' * support_scale; end % apply the interpolated scaling to all points pnt(:,1) = pnt(:,1) ./ scale; pnt(:,2) = pnt(:,2) ./ scale; pnt(:,3) = pnt(:,3) ./ scale; % downscale the points further to make sure that nothing sticks out n = zeros(npnt,1); for i = 1:npnt n(i) = norm(pnt(i, :)); end mscale = (1-eps) / max(n); pnt = mscale * pnt; if fb figure [sphere_pnt, sphere_tri] = icosahedron162; triplot(sphere_pnt, sphere_tri, [], 'faces_skin'); triplot(pnt, tri, [], 'faces_skin'); alpha 0.5 end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % VONMISESFISCHER probability distribution % % Use as % y = vonmisesfischer(k, u, x) % where % k = concentration parameter % u = mean direction % x = direction of the points on the sphere % % The von Mises?Fisher distribution is a probability distribution on the % (p?1) dimensional sphere in Rp. If p=2 the distribution reduces to the % von Mises distribution on the circle. The distribution belongs to the % field of directional statistics. % % This implementation is based on % http://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = vonmisesfischer(k, u, x) % the data describes N points in P-dimensional space [n, p] = size(x); % ensure that the direction vectors are unit length u = u ./ norm(u); for i=1:n x(i,:) = x(i,:) ./ norm(x(i,:)); end % FIXME this normalisation is wrong % but it is not yet needed, so the problem is acceptable for now % Cpk = (k^((p/2)-1)) ./ ( (2*pi)^(p/2) * besseli(p/2-1, k)); Cpk = 1; y = exp(k * u * x') ./ Cpk; y = y(:); function [val] = keyval(key, varargin); % KEYVAL returns the value that corresponds to the requested key in a % key-value pair list of variable input arguments % % Use as % [val] = keyval(key, varargin) % % See also VARARGIN % Copyright (C) 2005-2007, Robert Oostenveld % % $Log: keyval.m,v $ % Revision 1.1 2008/11/13 09:55:36 roboos % moved from fieldtrip/private, fileio or from roboos/misc to new location at fieldtrip/public % % Revision 1.2 2007/07/18 12:43:53 roboos % test for an even number of optional input arguments % % Revision 1.1 2005/11/04 10:24:46 roboos % new implementation % if length(varargin)==1 && iscell(varargin{1}) varargin = varargin{1}; end if mod(length(varargin),2) error('optional input arguments should come in key-value pairs, i.e. there should be an even number'); end keys = varargin(1:2:end); vals = varargin(2:2:end); hit = find(strcmp(key, keys)); if length(hit)==0 % the requested key was not found val = []; elseif length(hit)==1 % the requested key was found val = vals{hit}; else error('multiple input arguments with the same name'); end
github
philippboehmsturm/antx-master
spm_image.m
.m
antx-master/xspm8/spm_image.m
20,761
utf_8
a7e827e9560894219b55572753d8dde4
function spm_image(action,varargin) % Image and header display % FORMAT spm_image %__________________________________________________________________________ % % spm_image is an interactive facility that allows orthogonal sections % from an image volume to be displayed. Clicking the cursor on either % of the three images moves the point around which the orthogonal % sections are viewed. The co-ordinates of the cursor are shown both % in voxel co-ordinates and millimeters within some fixed framework. % The intensity at that point in the image (sampled using the current % interpolation scheme) is also given. The position of the crosshairs % can also be moved by specifying the co-ordinates in millimeters to % which they should be moved. Clicking on the horizontal bar above % these boxes will move the cursor back to the origin (analogous to % setting the crosshair position (in mm) to [0 0 0]). % % The images can be re-oriented by entering appropriate translations, % rotations and zooms into the panel on the left. The transformations % can then be saved by hitting the "Reorient images..." button. The % transformations that were applied to the image are saved to the header % information of the selected images. The transformations are considered % to be relative to any existing transformations that may be stored. % Note that the order that the transformations are applied in is the % same as in spm_matrix.m. % % The ``Reset...'' button next to it is for setting the orientation of % images back to transverse. It retains the current voxel sizes, % but sets the origin of the images to be the centre of the volumes % and all rotations back to zero. % % The right panel shows miscellaneous information about the image. % This includes: % Dimensions - the x, y and z dimensions of the image. % Datatype - the computer representation of each voxel. % Intensity - scalefactors and possibly a DC offset. % Miscellaneous other information about the image. % Vox size - the distance (in mm) between the centres of % neighbouring voxels. % Origin - the voxel at the origin of the co-ordinate system % Dir Cos - Direction cosines. This is a widely used % representation of the orientation of an image. % % There are also a few options for different resampling modes, zooms % etc. You can also flip between voxel space or world space. If you % are re-orienting the images, make sure that world space is specified. % Blobs (from activation studies) can be superimposed on the images and % the intensity windowing can also be changed. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_image.m 4205 2011-02-21 15:39:08Z guillaume $ global st if ~nargin, action = 'Init'; end if ~any(strcmpi(action,{'init','reset'})) && ... (isempty(st) || ~isfield(st,'vols') || isempty(st.vols{1})) spm_image('Reset'); warning('Lost all the image information'); return; end switch lower(action) case {'init','display'} % Display image %---------------------------------------------------------------------- if isempty(varargin) [P, sts] = spm_select(1,'image','Select image'); if ~sts, return; end else P = varargin{1}; end if ischar(P), P = spm_vol(P); end P = P(1); init_display(P); case 'repos' % The widgets for translation rotation or zooms have been modified %---------------------------------------------------------------------- trz = varargin{1}; try, st.B(trz) = eval(get(gco,'String')); end set(gco,'String',st.B(trz)); st.vols{1}.premul = spm_matrix(st.B); % spm_orthviews('MaxBB'); spm_image('Zoom'); spm_image('Update'); case 'shopos' % The position of the crosshairs has been moved %---------------------------------------------------------------------- if isfield(st,'mp') fg = spm_figure('Findwin','Graphics'); if any(findobj(fg) == st.mp) set(st.mp,'String',sprintf('%.1f %.1f %.1f',spm_orthviews('Pos'))); pos = spm_orthviews('Pos',1); set(st.vp,'String',sprintf('%.1f %.1f %.1f',pos)); set(st.in,'String',sprintf('%g',spm_sample_vol(st.vols{1},pos(1),pos(2),pos(3),st.hld))); else st.Callback = ';'; st = rmfield(st,{'mp','vp','in'}); end else st.Callback = ';'; end case 'setposmm' % Move the crosshairs to the specified position {mm} %---------------------------------------------------------------------- if isfield(st,'mp') fg = spm_figure('Findwin','Graphics'); if any(findobj(fg) == st.mp) pos = sscanf(get(st.mp,'String'), '%g %g %g'); if length(pos)~=3 pos = spm_orthviews('Pos'); end spm_orthviews('Reposition',pos); end end case 'setposvx' % Move the crosshairs to the specified position {vx} %---------------------------------------------------------------------- if isfield(st,'mp') fg = spm_figure('Findwin','Graphics'); if any(findobj(fg) == st.vp) pos = sscanf(get(st.vp,'String'), '%g %g %g'); if length(pos)~=3 pos = spm_orthviews('pos',1); end tmp = st.vols{1}.premul*st.vols{1}.mat; pos = tmp(1:3,:)*[pos ; 1]; spm_orthviews('Reposition',pos); end end case 'addblobs' % Add blobs to the image - in full colour %---------------------------------------------------------------------- spm_figure('Clear','Interactive'); nblobs = spm_input('Number of sets of blobs',1,'1|2|3|4|5|6',[1 2 3 4 5 6],1); for i=1:nblobs [SPM,xSPM] = spm_getSPM; c = spm_input('Colour','+1','m','Red blobs|Yellow blobs|Green blobs|Cyan blobs|Blue blobs|Magenta blobs',[1 2 3 4 5 6],1); colours = [1 0 0;1 1 0;0 1 0;0 1 1;0 0 1;1 0 1]; spm_orthviews('AddColouredBlobs',1,xSPM.XYZ,xSPM.Z,xSPM.M,colours(c,:)); set(st.blobber,'String','Remove Blobs','Callback','spm_image(''RemoveBlobs'');'); end spm_orthviews('AddContext',1); spm_orthviews('Redraw'); case {'removeblobs','rmblobs'} % Remove all blobs from the images %---------------------------------------------------------------------- spm_orthviews('RemoveBlobs',1); set(st.blobber,'String','Add Blobs','Callback','spm_image(''AddBlobs'');'); spm_orthviews('RemoveContext',1); spm_orthviews('Redraw'); case 'window' % Window %---------------------------------------------------------------------- op = get(st.win,'Value'); if op == 1 spm_orthviews('Window',1); % automatic else spm_orthviews('Window',1,spm_input('Range','+1','e','',2)); end case 'reorient' % Reorient images %---------------------------------------------------------------------- mat = spm_matrix(st.B); if det(mat)<=0 spm('alert!','This will flip the images',mfilename,0,1); end [P, sts] = spm_select([1 Inf], 'image','Images to reorient'); if ~sts, return; else P = cellstr(P); end Mats = zeros(4,4,numel(P)); spm_progress_bar('Init',numel(P),'Reading current orientations',... 'Images Complete'); for i=1:numel(P) Mats(:,:,i) = spm_get_space(P{i}); spm_progress_bar('Set',i); end spm_progress_bar('Init',numel(P),'Reorienting images',... 'Images Complete'); for i=1:numel(P) spm_get_space(P{i},mat*Mats(:,:,i)); spm_progress_bar('Set',i); end spm_progress_bar('Clear'); tmp = spm_get_space([st.vols{1}.fname ',' num2str(st.vols{1}.n)]); if sum((tmp(:)-st.vols{1}.mat(:)).^2) > 1e-8 spm_image('Init',st.vols{1}.fname); end case 'resetorient' % Reset orientation of images %---------------------------------------------------------------------- [P,sts] = spm_select([1 Inf], 'image','Images to reset orientation of'); if ~sts, return; else P = cellstr(P); end spm_progress_bar('Init',numel(P),'Resetting orientations',... 'Images Complete'); for i=1:numel(P) V = spm_vol(P{i}); M = V.mat; vox = sqrt(sum(M(1:3,1:3).^2)); if det(M(1:3,1:3))<0, vox(1) = -vox(1); end orig = (V.dim(1:3)+1)/2; off = -vox.*orig; M = [vox(1) 0 0 off(1) 0 vox(2) 0 off(2) 0 0 vox(3) off(3) 0 0 0 1]; spm_get_space(P{i},M); spm_progress_bar('Set',i); end spm_progress_bar('Clear'); tmp = spm_get_space([st.vols{1}.fname ',' num2str(st.vols{1}.n)]); if sum((tmp(:)-st.vols{1}.mat(:)).^2) > 1e-8 spm_image('Init',st.vols{1}.fname); end case 'update' % Modify the positional information in the right hand panel %---------------------------------------------------------------------- mat = st.vols{1}.premul*st.vols{1}.mat; Z = spm_imatrix(mat); Z = Z(7:9); set(st.posinf.z,'String', sprintf('%.3g x %.3g x %.3g', Z)); O = mat\[0 0 0 1]'; O=O(1:3)'; set(st.posinf.o, 'String', sprintf('%.3g %.3g %.3g', O)); R = spm_imatrix(mat); R = spm_matrix([0 0 0 R(4:6)]); R = R(1:3,1:3); tmp2 = sprintf('%+5.3f %+5.3f %+5.3f', R(1,1:3)); tmp2(tmp2=='+') = ' '; set(st.posinf.m1, 'String', tmp2); tmp2 = sprintf('%+5.3f %+5.3f %+5.3f', R(2,1:3)); tmp2(tmp2=='+') = ' '; set(st.posinf.m2, 'String', tmp2); tmp2 = sprintf('%+5.3f %+5.3f %+5.3f', R(3,1:3)); tmp2(tmp2=='+') = ' '; set(st.posinf.m3, 'String', tmp2); tmp = [[R zeros(3,1)] ; 0 0 0 1]*diag([Z 1])*spm_matrix(-O) - mat; if sum(tmp(:).^2)>1e-5 set(st.posinf.w, 'String', 'Warning: shears involved'); else set(st.posinf.w, 'String', ''); end case 'zoom' % Zoom in %---------------------------------------------------------------------- [zl rl] = spm_orthviews('ZoomMenu'); % Values are listed in reverse order cz = numel(zl)-get(st.zoomer,'Value')+1; spm_orthviews('Zoom',zl(cz),rl(cz)); case 'reset' % Reset %---------------------------------------------------------------------- spm_orthviews('Reset'); spm_figure('Clear','Graphics'); end %========================================================================== function init_display(P) global st fg = spm_figure('GetWin','Graphics'); spm_image('Reset'); spm_orthviews('Image', P, [0.0 0.45 1 0.55]); if isempty(st.vols{1}), return; end spm_orthviews('MaxBB'); st.callback = 'spm_image(''shopos'');'; st.B = [0 0 0 0 0 0 1 1 1 0 0 0]; % Widgets for re-orienting images. %-------------------------------------------------------------------------- WS = spm('WinScale'); uicontrol(fg,'Style','Frame','Position',[60 25 200 325].*WS,'DeleteFcn','spm_image(''reset'');'); uicontrol(fg,'Style','Text', 'Position',[75 220 100 016].*WS,'String','right {mm}'); uicontrol(fg,'Style','Text', 'Position',[75 200 100 016].*WS,'String','forward {mm}'); uicontrol(fg,'Style','Text', 'Position',[75 180 100 016].*WS,'String','up {mm}'); uicontrol(fg,'Style','Text', 'Position',[75 160 100 016].*WS,'String','pitch {rad}'); uicontrol(fg,'Style','Text', 'Position',[75 140 100 016].*WS,'String','roll {rad}'); uicontrol(fg,'Style','Text', 'Position',[75 120 100 016].*WS,'String','yaw {rad}'); uicontrol(fg,'Style','Text', 'Position',[75 100 100 016].*WS,'String','resize {x}'); uicontrol(fg,'Style','Text', 'Position',[75 80 100 016].*WS,'String','resize {y}'); uicontrol(fg,'Style','Text', 'Position',[75 60 100 016].*WS,'String','resize {z}'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',1)','Position',[175 220 065 020].*WS,'String','0','ToolTipString','translate'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',2)','Position',[175 200 065 020].*WS,'String','0','ToolTipString','translate'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',3)','Position',[175 180 065 020].*WS,'String','0','ToolTipString','translate'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',4)','Position',[175 160 065 020].*WS,'String','0','ToolTipString','rotate'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',5)','Position',[175 140 065 020].*WS,'String','0','ToolTipString','rotate'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',6)','Position',[175 120 065 020].*WS,'String','0','ToolTipString','rotate'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',7)','Position',[175 100 065 020].*WS,'String','1','ToolTipString','zoom'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',8)','Position',[175 80 065 020].*WS,'String','1','ToolTipString','zoom'); uicontrol(fg,'Style','edit','Callback','spm_image(''repos'',9)','Position',[175 60 065 020].*WS,'String','1','ToolTipString','zoom'); uicontrol(fg,'Style','Pushbutton','String','Reorient images...','Callback','spm_image(''reorient'')',... 'Position',[70 35 125 020].*WS,'ToolTipString','modify position information of selected images'); uicontrol(fg,'Style','Pushbutton','String','Reset...','Callback','spm_image(''resetorient'')',... 'Position',[195 35 55 020].*WS,'ToolTipString','reset orientations of selected images'); % Crosshair position %-------------------------------------------------------------------------- uicontrol(fg,'Style','Frame','Position',[70 250 180 90].*WS); uicontrol(fg,'Style','Text', 'Position',[75 320 170 016].*WS,'String','Crosshair Position'); uicontrol(fg,'Style','PushButton', 'Position',[75 316 170 006].*WS,... 'Callback','spm_orthviews(''Reposition'',[0 0 0]);','ToolTipString','move crosshairs to origin'); % uicontrol(fg,'Style','PushButton', 'Position',[75 315 170 020].*WS,'String','Crosshair Position',... % 'Callback','spm_orthviews(''Reposition'',[0 0 0]);','ToolTipString','move crosshairs to origin'); uicontrol(fg,'Style','Text', 'Position',[75 295 35 020].*WS,'String','mm:'); uicontrol(fg,'Style','Text', 'Position',[75 275 35 020].*WS,'String','vx:'); uicontrol(fg,'Style','Text', 'Position',[75 255 65 020].*WS,'String','Intensity:'); st.mp = uicontrol(fg,'Style','edit', 'Position',[110 295 135 020].*WS,'String','','Callback','spm_image(''setposmm'')','ToolTipString','move crosshairs to mm coordinates'); st.vp = uicontrol(fg,'Style','edit', 'Position',[110 275 135 020].*WS,'String','','Callback','spm_image(''setposvx'')','ToolTipString','move crosshairs to voxel coordinates'); st.in = uicontrol(fg,'Style','Text', 'Position',[140 255 85 020].*WS,'String',''); % General information %-------------------------------------------------------------------------- uicontrol(fg,'Style','Frame','Position',[305 25 280 325].*WS); uicontrol(fg,'Style','Text','Position' ,[310 330 50 016].*WS,... 'HorizontalAlignment','right', 'String', 'File:'); uicontrol(fg,'Style','Text','Position' ,[360 330 210 016].*WS,... 'HorizontalAlignment','left', 'String', spm_str_manip(st.vols{1}.fname,'k25'),'FontWeight','bold'); uicontrol(fg,'Style','Text','Position' ,[310 310 100 016].*WS,... 'HorizontalAlignment','right', 'String', 'Dimensions:'); uicontrol(fg,'Style','Text','Position' ,[410 310 160 016].*WS,... 'HorizontalAlignment','left', 'String', sprintf('%d x %d x %d', st.vols{1}.dim(1:3)),'FontWeight','bold'); uicontrol(fg,'Style','Text','Position' ,[310 290 100 016].*WS,... 'HorizontalAlignment','right', 'String', 'Datatype:'); uicontrol(fg,'Style','Text','Position' ,[410 290 160 016].*WS,... 'HorizontalAlignment','left', 'String', spm_type(st.vols{1}.dt(1)),'FontWeight','bold'); uicontrol(fg,'Style','Text','Position' ,[310 270 100 016].*WS,... 'HorizontalAlignment','right', 'String', 'Intensity:'); str = 'varied'; if size(st.vols{1}.pinfo,2) == 1 if st.vols{1}.pinfo(2) str = sprintf('Y = %g X + %g', st.vols{1}.pinfo(1:2)'); else str = sprintf('Y = %g X', st.vols{1}.pinfo(1)'); end end uicontrol(fg,'Style','Text','Position' ,[410 270 160 016].*WS,... 'HorizontalAlignment','left', 'String', str,'FontWeight','bold'); if isfield(st.vols{1}, 'descrip') uicontrol(fg,'Style','Text','Position' ,[310 250 260 016].*WS,... 'HorizontalAlignment','center', 'String', st.vols{1}.descrip,'FontWeight','bold'); end % Positional information %-------------------------------------------------------------------------- mat = st.vols{1}.premul*st.vols{1}.mat; Z = spm_imatrix(mat); Z = Z(7:9); uicontrol(fg,'Style','Text','Position' ,[310 210 100 016].*WS,... 'HorizontalAlignment','right', 'String', 'Vox size:'); st.posinf = struct('z',uicontrol(fg,'Style','Text','Position' ,[410 210 160 016].*WS,... 'HorizontalAlignment','left', 'String', sprintf('%.3g x %.3g x %.3g', Z),'FontWeight','bold')); O = mat\[0 0 0 1]'; O=O(1:3)'; uicontrol(fg,'Style','Text','Position' ,[310 190 100 016].*WS,... 'HorizontalAlignment','right', 'String', 'Origin:'); st.posinf.o = uicontrol(fg,'Style','Text','Position' ,[410 190 160 016].*WS,... 'HorizontalAlignment','left', 'String', sprintf('%.3g %.3g %.3g', O),'FontWeight','bold'); R = spm_imatrix(mat); R = spm_matrix([0 0 0 R(4:6)]); R = R(1:3,1:3); uicontrol(fg,'Style','Text','Position' ,[310 170 100 016].*WS,... 'HorizontalAlignment','right', 'String', 'Dir Cos:'); tmp2 = sprintf('%+5.3f %+5.3f %+5.3f', R(1,1:3)); tmp2(tmp2=='+') = ' '; st.posinf.m1 = uicontrol(fg,'Style','Text','Position' ,[410 170 160 016].*WS,... 'HorizontalAlignment','left', 'String', tmp2,'FontWeight','bold'); tmp2 = sprintf('%+5.3f %+5.3f %+5.3f', R(2,1:3)); tmp2(tmp2=='+') = ' '; st.posinf.m2 = uicontrol(fg,'Style','Text','Position' ,[410 150 160 016].*WS,... 'HorizontalAlignment','left', 'String', tmp2,'FontWeight','bold'); tmp2 = sprintf('%+5.3f %+5.3f %+5.3f', R(3,1:3)); tmp2(tmp2=='+') = ' '; st.posinf.m3 = uicontrol(fg,'Style','Text','Position' ,[410 130 160 016].*WS,... 'HorizontalAlignment','left', 'String', tmp2,'FontWeight','bold'); tmp = [[R zeros(3,1)] ; 0 0 0 1]*diag([Z 1])*spm_matrix(-O) - mat; st.posinf.w = uicontrol(fg,'Style','Text','Position' ,[310 110 260 016].*WS,... 'HorizontalAlignment','center', 'String', '','FontWeight','bold'); if sum(tmp(:).^2)>1e-8 set(st.posinf.w, 'String', 'Warning: shears involved'); end % Assorted other buttons %-------------------------------------------------------------------------- uicontrol(fg,'Style','Frame','Position',[310 30 270 70].*WS); zl = spm_orthviews('ZoomMenu'); czlabel = cell(size(zl)); % List zoom steps in reverse order zl = zl(end:-1:1); for cz = 1:numel(zl) if isinf(zl(cz)) czlabel{cz} = 'Full Volume'; elseif isnan(zl(cz)) czlabel{cz} = 'BBox (Y > ...)'; elseif zl(cz) == 0 czlabel{cz} = 'BBox (nonzero)'; else czlabel{cz} = sprintf('%dx%dx%dmm', 2*zl(cz), 2*zl(cz), 2*zl(cz)); end end st.zoomer = uicontrol(fg,'Style','popupmenu' ,'Position',[315 75 125 20].*WS,... 'String',czlabel,... 'Callback','spm_image(''zoom'')','ToolTipString','zoom in by different amounts'); c = 'if get(gco,''Value'')==1, spm_orthviews(''Space''), else, spm_orthviews(''Space'', 1);end;spm_image(''zoom'')'; uicontrol(fg,'Style','popupmenu' ,'Position',[315 55 125 20].*WS,... 'String',char('World Space','Voxel Space'),... 'Callback',c,'ToolTipString','display in aquired/world orientation'); c = 'if get(gco,''Value'')==1, spm_orthviews(''Xhairs'',''off''), else, spm_orthviews(''Xhairs'',''on''); end;'; uicontrol(fg,'Style','togglebutton','Position',[450 75 125 20].*WS,... 'String','Hide Crosshairs','Callback',c,'ToolTipString','show/hide crosshairs'); uicontrol(fg,'Style','popupmenu' ,'Position',[450 55 125 20].*WS,... 'String',char('NN interp','bilin interp','sinc interp'),... 'Callback','tmp_ = [0 1 -4];spm_orthviews(''Interp'',tmp_(get(gco,''Value'')))',... 'Value',2,'ToolTipString','interpolation method for displaying images'); st.win = uicontrol(fg,'Style','popupmenu','Position',[315 35 125 20].*WS,... 'String',char('Auto Window','Manual Window'),'Callback','spm_image(''window'');','ToolTipString','range of voxel intensities displayed'); % uicontrol(fg,'Style','pushbutton','Position',[315 35 125 20].*WS,... % 'String','Window','Callback','spm_image(''window'');','ToolTipString','range of voxel intensities % displayed'); st.blobber = uicontrol(fg,'Style','pushbutton','Position',[450 35 125 20].*WS,... 'String','Add Blobs','Callback','spm_image(''addblobs'');','ToolTipString','superimpose activations');
github
philippboehmsturm/antx-master
spm_eeg_montage_ui.m
.m
antx-master/xspm8/spm_eeg_montage_ui.m
7,209
utf_8
81b00840683562c05ad7e333633cbfb5
function montage = spm_eeg_montage_ui(montage) % GUI for EEG montage (rereference EEG data to new reference channel(s)) % FORMAT montage = spm_eeg_montage_ui(montage) % % montage - structure with fields: % tra - MxN matrix % labelnew - Mx1 cell-array - new labels % labelorg - Nx1 cell-array - original labels % % Output is empty if the GUI is closed. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_eeg_montage_ui.m 3674 2010-01-12 18:25:05Z jean $ error(nargchk(1,1,nargin)); % Create the figure %-------------------------------------------------------------------------- fig = figure; S0 = spm('WinSize','0',1); pos = get(fig,'position'); pos2 = [40 70 pos(3)-60 pos(4)-100]; pos = [S0(1) S0(2) 0 0] + [pos(1) pos(2) 1.8*pos(3) pos(4)]; set(gcf,... 'menubar', 'none',... 'position', pos,... 'numbertitle', 'off',... 'name', 'Montage edition'); addButtons(fig); % Display the uitable component %-------------------------------------------------------------------------- table = cat(2,montage.labelnew(:),num2cell(montage.tra)); colnames = cat(2,'channel labels',montage.labelorg(:)'); pause(1e-1) % This is weird, but fixes java troubles. [ht,hc] = spm_uitable(table,colnames); set(ht,'position',pos2, 'units','normalized'); % Display the matrix representation of the montage %-------------------------------------------------------------------------- ax = axes('position',[0.6 0.18 0.4 0.77]); hi = imagesc(montage.tra,'parent',ax); axis('image'); colormap('bone'); zoom(fig,'on'); % Store info in figure's userdata and wait for user interaction %-------------------------------------------------------------------------- ud.hi = hi; ud.ht = ht; ud.montage = montage; set(fig,'userdata',ud); uiwait(fig); % Get the montage from the GUI %-------------------------------------------------------------------------- try ud = get(fig,'userdata'); montage = ud.montage; close(fig); catch % GUI was closed without 'OK' button montage = []; end %========================================================================== function doAddRow(obj,evd,h) %========================================================================== % 'add row' button subfunction ud = get(h,'userdata'); [M,newLabels] = getM(ud.ht); M = [M;zeros(1,size(M,2))]; newLabels = cat(1,newLabels(:),num2str(size(M,1))); set(ud.ht,'units','pixels'); pos = get(ud.ht,'Position'); delete(ud.ht); table = cat(2,newLabels,num2cell(M)); colnames = cat(2,'channel labels',ud.montage.labelorg(:)'); pause(1) % This is weird, but fixes java troubles. ht = spm_uitable(table,colnames); set(ht,'position',pos,... 'units','normalized'); ud.ht = ht; set(h,'userdata',ud); doCheck(obj,evd,h); %========================================================================== function doLoad(obj,evd,h) %========================================================================== % 'load' button subfunction [t,sts] = spm_select(1,'mat','Load montage file'); if sts montage = load(t); if ismember('montage', fieldnames(montage)) montage = montage.montage; ud = get(h,'userdata'); set(ud.ht,'units','pixels'); pos = get(ud.ht,'Position'); delete(ud.ht); table = cat(2,montage.labelnew(:),num2cell(montage.tra)); colnames = cat(2,'channel labels',montage.labelorg(:)'); pause(1) % This is weird, but fixes java troubles. ht = spm_uitable(table,colnames); set(ht,'position',pos,... 'units','normalized'); ud.ht = ht; ud.montage = montage; set(h,'userdata',ud); pause(1) doCheck(obj,evd,h); else spm('alert!','File did not contain any montage!','Montage edition'); end end %========================================================================== function doSave(obj,evd,h) %========================================================================== % 'save as' button subfunction doCheck(obj,evd,h); ud = get(h,'userdata'); [M,newLabels] = getM(ud.ht); % delete row if empty: ind = ~any(M,2); M(ind,:) = []; newLabels(ind) = []; montage.tra = M; montage.labelorg = ud.montage.labelorg; montage.labelnew = newLabels; uisave('montage','SPMeeg_montage.mat'); %========================================================================== function doOK(obj,evd,h) %========================================================================== % 'OK' button subfunction doCheck(obj,evd,h); ud = get(h,'userdata'); [M, newLabels] = getM(ud.ht); % delete row if empty: ind = ~any(M,2); M(ind,:) = []; newLabels(ind) = []; montage.tra = M; montage.labelorg = ud.montage.labelorg(:); montage.labelnew = newLabels(:); ud.montage = montage; set(h,'userdata',ud); uiresume(h); %========================================================================== function doCheck(obj,evd,h) %========================================================================== % Update the montage display ud = get(h,'userdata'); M = getM(ud.ht); set(ud.hi,'cdata',M); set(gca,'xlim',[0.5 size(M,1)]); set(gca,'ylim',[0.5 size(M,2)]); axis('image'); drawnow; %========================================================================== function [M,newLabels] = getM(ht) %========================================================================== % extracting montage from java object nnew = get(ht,'NumRows'); nold = get(ht,'NumColumns')-1; M = zeros(nnew,nold); data = get(ht,'data'); for i =1:nnew if ~isempty(data(i,1)) newLabels{i} = data(i,1); else newLabels{i} = []; end for j =1:nold if ~isempty(data(i,j+1)) if ~ischar(data(i,j+1)) M(i,j) = data(i,j+1); else M0 = str2double(data(i,j+1)); if ~isempty(M0) M(i,j) = M0; else M(i,j) = 0; end end else M(i,j) = 0; end end end %========================================================================== function addButtons(h) %========================================================================== % adding buttons to the montage GUI hAdd = uicontrol('style','pushbutton',... 'string','Add row','callback',{@doAddRow,h},... 'position',[60 20 80 20]); set(hAdd,'units','normalized'); hLoad = uicontrol('style','pushbutton',... 'string','Load file','callback',{@doLoad,h},... 'position',[180 20 80 20]); set(hLoad,'units','normalized'); hSave = uicontrol('style','pushbutton',... 'string','Save as','callback',{@doSave,h},... 'position',[280 20 80 20]); set(hSave,'units','normalized'); hOK = uicontrol('style','pushbutton',... 'string',' OK ','callback',{@doOK,h},... 'position',[400 20 80 20]); set(hOK,'units','normalized'); hCheck = uicontrol('style','pushbutton',... 'string',' Refresh display ','callback',{@doCheck,h},... 'position',[760 20 120 20]); set(hCheck,'units','normalized');
github
philippboehmsturm/antx-master
spm_interp.m
.m
antx-master/xspm8/spm_interp.m
1,111
utf_8
5f0170891b0600c4824810d278725d9f
function [x] = spm_interp(x,r) % 1 or 2-D array interpolation % FORMAT [x] = spm_interp(x,r) % x - array % r - interpolation rate %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_interp.m 3733 2010-02-18 17:43:18Z karl $ % interpolate %--------------------------------------------------------------------------- [n m] = size(x); if n > 1 && m > 1 % matrix X = zeros(r*n,m); for i = 1:m X(:,i) = interpolate(x(:,i),r); end x = zeros(r*n,r*m); for i = 1:r*n x(i,:) = interpolate(X(i,:),r)'; end elseif n == 1 % row vector x = interpolate(x',r)'; elseif m == 1 % column vector x = interpolate(x,r); end % Interpolate using DCT % ------------------------------------------------------------------------- function [u] = interpolate(y,r) if r == 1; u = y; else y = y(:); n = size(y,1); Dy = spm_dctmtx(r*n,n); Du = spm_dctmtx(n,n); Dy = Dy*sqrt(r); u = Dy*(Du'*y); end
github
philippboehmsturm/antx-master
spm_transverse.m
.m
antx-master/xspm8/spm_transverse.m
15,678
utf_8
22c28b8cda464e1764eee552402294ab
function spm_transverse(varargin) % Rendering of regional effects [SPM{T/F}] on transverse sections % FORMAT spm_transverse('set',SPM,hReg) % FORMAT spm_transverse('setcoords',xyzmm) % FORMAT spm_transverse('clear') % % SPM - structure containing SPM, distribution & filtering details % about the excursion set (xSPM) % - required fields are: % .Z - minimum of n Statistics {filtered on u and k} % .STAT - distribution {Z, T, X or F} % .u - height threshold % .XYZ - location of voxels {voxel coords} % .iM - mm -> voxels matrix % .VOX - voxel dimensions {mm} % .DIM - image dimensions {voxels} % % hReg - handle of MIP XYZ registry object (see spm_XYZreg for details) % % spm_transverse automatically updates its co-ordinates from the % registry, but clicking on the slices has no effect on the registry. % i.e., the updating is one way only. % % See also: spm_getSPM %__________________________________________________________________________ % % spm_transverse is called by the SPM results section and uses % variables in SPM and SPM to create three transverse sections though a % background image. Regional foci from the selected SPM{T/F} are % rendered on this image. % % Although the SPM{.} adopts the neurological convention (left = left) % the rendered images follow the same convention as the original data. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston & John Ashburner % $Id: spm_transverse.m 3348 2009-09-03 10:32:01Z guillaume $ switch lower(varargin{1}) case 'set' % draw slices %---------------------------------------------------------------------- init(varargin{2},varargin{3}); case 'setcoords' % reposition %---------------------------------------------------------------------- disp('Reposition'); case 'clear' % clear %---------------------------------------------------------------------- clear_global; end return; %========================================================================== % function init(SPM,hReg) %========================================================================== function init(SPM,hReg) %-Get figure handles %-------------------------------------------------------------------------- Fgraph = spm_figure('GetWin','Graphics'); %-Get the image on which to render %-------------------------------------------------------------------------- spms = spm_select(1,'image','Select image for rendering on'); spm('Pointer','Watch'); %-Delete previous axis and their pagination controls (if any) %-------------------------------------------------------------------------- spm_results_ui('Clear',Fgraph); global transv transv = struct('blob',[],'V',spm_vol(spms),'h',[],'hReg',hReg,'fig',Fgraph); transv.blob = struct('xyz', round(SPM.XYZ), 't',SPM.Z, 'dim',SPM.DIM(1:3),... 'iM',SPM.iM,... 'vox', sqrt(sum(SPM.M(1:3,1:3).^2)), 'u', SPM.u); %-Get current location and convert to pixel co-ordinates %-------------------------------------------------------------------------- xyzmm = spm_XYZreg('GetCoords',transv.hReg); xyz = round(transv.blob.iM(1:3,:)*[xyzmm; 1]); try units = SPM.units; catch units = {'mm' 'mm' 'mm'}; end %-Extract data from SPM [at one plane separation] and get background slices %-------------------------------------------------------------------------- dim = ceil(transv.blob.dim(1:3)'.*transv.blob.vox); A = transv.blob.iM*transv.V.mat; hld = 0; zoomM = inv(spm_matrix([0 0 -1 0 0 0 transv.blob.vox([1 2]) 1])); zoomM1 = spm_matrix([0 0 0 0 0 0 transv.blob.vox([1 2]) 1]); Q = find(abs(transv.blob.xyz(3,:) - xyz(3)) < 0.5); T2 = full(sparse(transv.blob.xyz(1,Q),transv.blob.xyz(2,Q),transv.blob.t(Q),transv.blob.dim(1),transv.blob.dim(2))); T2 = spm_slice_vol(T2,zoomM,dim([1 2]),[hld NaN]); Q = find(T2==0) ; T2(Q) = NaN; D = zoomM1*[1 0 0 0;0 1 0 0;0 0 1 -xyz(3);0 0 0 1]*A; D2 = spm_slice_vol(transv.V,inv(D),dim([1 2]),1); maxD = max([max(D2(:)) eps]); minD = min([min(D2(:)) eps]); if transv.blob.dim(3) > 1 Q = find(abs(transv.blob.xyz(3,:) - xyz(3)+1) < 0.5); T1 = full(sparse(transv.blob.xyz(1,Q),... transv.blob.xyz(2,Q),transv.blob.t(Q),transv.blob.dim(1),transv.blob.dim(2))); T1 = spm_slice_vol(T1,zoomM,dim([1 2]),[hld NaN]); Q = find(T1==0) ; T1(Q) = NaN; D = zoomM1*[1 0 0 0;0 1 0 0;0 0 1 -xyz(3)+1;0 0 0 1]*A; D1 = spm_slice_vol(transv.V,inv(D),dim([1 2]),1); maxD = max([maxD ; D1(:)]); minD = min([minD ; D1(:)]); Q = find(abs(transv.blob.xyz(3,:) - xyz(3)-1) < 0.5); T3 = full(sparse(transv.blob.xyz(1,Q),... transv.blob.xyz(2,Q),transv.blob.t(Q),transv.blob.dim(1),transv.blob.dim(2))); T3 = spm_slice_vol(T3,zoomM,dim([1 2]),[hld NaN]); Q = find(T3==0) ; T3(Q) = NaN; D = zoomM1*[1 0 0 0;0 1 0 0;0 0 1 -xyz(3)-1;0 0 0 1]*A; D3 = spm_slice_vol(transv.V,inv(D),dim([1 2]),1); maxD = max([maxD ; D3(:)]); minD = min([minD ; D3(:)]); end mx = max([max(T2(:)) eps]); mn = min([min(T2(:)) 0]); D2 = (D2-minD)/(maxD-minD); if transv.blob.dim(3) > 1, D1 = (D1-minD)/(maxD-minD); D3 = (D3-minD)/(maxD-minD); mx = max([mx ; T1(:) ; T3(:) ; eps]); mn = min([mn ; T1(:) ; T3(:) ; 0]); end; %-Configure {128 level} colormap %-------------------------------------------------------------------------- cmap = get(Fgraph,'Colormap'); if size(cmap,1) ~= 128 figure(Fgraph) spm_figure('Colormap','gray-hot') cmap = get(Fgraph,'Colormap'); end D = length(cmap)/2; Q = find(T2(:) > transv.blob.u); T2 = (T2(Q)-mn)/(mx-mn); D2(Q) = 1+1.51/D + T2; T2 = D*D2; if transv.blob.dim(3) > 1 Q = find(T1(:) > transv.blob.u); T1 = (T1(Q)-mn)/(mx-mn); D1(Q) = 1+1.51/D + T1; T1 = D*D1; Q = find(T3(:) > transv.blob.u); T3 = (T3(Q)-mn)/(mx-mn); D3(Q) = 1+1.51/D + T3; T3 = D*D3; end set(Fgraph,'Units','pixels') siz = get(Fgraph,'Position'); siz = siz(3:4); P = xyz.*transv.blob.vox'; %-Render activation foci on background images %-------------------------------------------------------------------------- if transv.blob.dim(3) > 1 zm = min([(siz(1) - 120)/(dim(1)*3),(siz(2)/2 - 60)/dim(2)]); xo = (siz(1)-(dim(1)*zm*3)-120)/2; yo = (siz(2)/2 - dim(2)*zm - 60)/2; transv.h(1) = axes('Units','pixels','Parent',Fgraph,'Position',[20+xo 20+yo dim(1)*zm dim(2)*zm]); transv.h(2) = image(rot90(spm_grid(T1)),'Parent',transv.h(1)); axis image; axis off; tmp = SPM.iM\[xyz(1:2)' (xyz(3)-1) 1]'; ax=transv.h(1);tpoint=get(ax,'title'); str=sprintf('z = %0.0f%s',tmp(3),units{3}); set(tpoint,'string',str); transv.h(3) = line([1 1]*P(1),[0 dim(2)],'Color','w','Parent',transv.h(1)); transv.h(4) = line([0 dim(1)],[1 1]*(dim(2)-P(2)+1),'Color','w','Parent',transv.h(1)); transv.h(5) = axes('Units','pixels','Parent',Fgraph,'Position',[40+dim(1)*zm+xo 20+yo dim(1)*zm dim(2)*zm]); transv.h(6) = image(rot90(spm_grid(T2)),'Parent',transv.h(5)); axis image; axis off; tmp = SPM.iM\[xyz(1:2)' xyz(3) 1]'; ax=transv.h(5);tpoint=get(ax,'title'); str=sprintf('z = %0.0f%s',tmp(3),units{3}); set(tpoint,'string',str); transv.h(7) = line([1 1]*P(1),[0 dim(2)],'Color','w','Parent',transv.h(5)); transv.h(8) = line([0 dim(1)],[1 1]*(dim(2)-P(2)+1),'Color','w','Parent',transv.h(5)); transv.h(9) = axes('Units','pixels','Parent',Fgraph,'Position',[60+dim(1)*zm*2+xo 20+yo dim(1)*zm dim(2)*zm]); transv.h(10) = image(rot90(spm_grid(T3)),'Parent',transv.h(9)); axis image; axis off; tmp = SPM.iM\[xyz(1:2)' (xyz(3)+1) 1]'; ax=transv.h(9);tpoint=get(ax,'title'); str=sprintf('z = %0.0f%s',tmp(3),units{3}); set(tpoint,'string',str); transv.h(11) = line([1 1]*P(1),[0 dim(2)],'Color','w','Parent',transv.h(9)); transv.h(12) = line([0 dim(1)],[1 1]*(dim(2)-P(2)+1),'Color','w','Parent',transv.h(9)); % colorbar %---------------------------------------------------------------------- q = [80+dim(1)*zm*3+xo 20+yo 20 dim(2)*zm]; if SPM.STAT=='P' str='Effect size'; else str=[SPM.STAT ' value']; end transv.h(13) = axes('Units','pixels','Parent',Fgraph,'Position',q,'Visible','off'); transv.h(14) = image([0 mx/32],[mn mx],(1:D)' + D,'Parent',transv.h(13)); ax=transv.h(13); tpoint=get(ax,'title'); set(tpoint,'string',str); set(tpoint,'FontSize',9); %title(ax,str,'FontSize',9); set(ax,'XTickLabel',[]); axis(ax,'xy'); else zm = min([(siz(1) - 80)/dim(1),(siz(2)/2 - 60)/dim(2)]); xo = (siz(1)-(dim(1)*zm)-80)/2; yo = (siz(2)/2 - dim(2)*zm - 60)/2; transv.h(1) = axes('Units','pixels','Parent',Fgraph,'Position',[20+xo 20+yo dim(1)*zm dim(2)*zm]); transv.h(2) = image(rot90(spm_grid(T2)),'Parent',transv.h(1)); axis image; axis off; title(sprintf('z = %0.0f%s',xyzmm(3),units{3})); transv.h(3) = line([1 1]*P(1),[0 dim(2)],'Color','w','Parent',transv.h(1)); transv.h(4) = line([0 dim(1)],[1 1]*(dim(2)-P(2)+1),'Color','w','Parent',transv.h(1)); % colorbar %---------------------------------------------------------------------- q = [40+dim(1)*zm+xo 20+yo 20 dim(2)*zm]; transv.h(5) = axes('Units','pixels','Parent',Fgraph,'Position',q,'Visible','off'); transv.h(6) = image([0 mx/32],[mn mx],(1:D)' + D,'Parent',transv.h(5)); if SPM.STAT=='P' str='Effect size'; else str=[SPM.STAT ' value']; end title(str,'FontSize',9); set(gca,'XTickLabel',[]); axis xy; end spm_XYZreg('Add2Reg',transv.hReg,transv.h(1), 'spm_transverse'); for h=transv.h, set(h,'DeleteFcn',@clear_global); end %-Reset pointer %-------------------------------------------------------------------------- spm('Pointer','Arrow') return; %========================================================================== % function reposition(xyzmm) %========================================================================== function reposition(xyzmm) global transv if ~isstruct(transv), return; end; spm('Pointer','Watch'); %-Get current location and convert to pixel co-ordinates %-------------------------------------------------------------------------- % xyzmm = spm_XYZreg('GetCoords',transv.hReg) xyz = round(transv.blob.iM(1:3,:)*[xyzmm; 1]); % extract data from SPM [at one plane separation] % and get background slices %-------------------------------------------------------------------------- dim = ceil(transv.blob.dim(1:3)'.*transv.blob.vox); A = transv.blob.iM*transv.V.mat; hld = 0; zoomM = inv(spm_matrix([0 0 -1 0 0 0 transv.blob.vox([1 2]) 1])); zoomM1 = spm_matrix([0 0 0 0 0 0 transv.blob.vox([1 2]) 1]); Q = find(abs(transv.blob.xyz(3,:) - xyz(3)) < 0.5); T2 = full(sparse(transv.blob.xyz(1,Q),transv.blob.xyz(2,Q),transv.blob.t(Q),transv.blob.dim(1),transv.blob.dim(2))); T2 = spm_slice_vol(T2,zoomM,dim([1 2]),[hld NaN]); Q = find(T2==0) ; T2(Q) = NaN; D = zoomM1*[1 0 0 0;0 1 0 0;0 0 1 -xyz(3);0 0 0 1]*A; D2 = spm_slice_vol(transv.V,inv(D),dim([1 2]),1); maxD = max([max(D2(:)) eps]); minD = min([min(D2(:)) 0]); if transv.blob.dim(3) > 1 Q = find(abs(transv.blob.xyz(3,:) - xyz(3)+1) < 0.5); T1 = full(sparse(transv.blob.xyz(1,Q),... transv.blob.xyz(2,Q),transv.blob.t(Q),transv.blob.dim(1),transv.blob.dim(2))); T1 = spm_slice_vol(T1,zoomM,dim([1 2]),[hld NaN]); Q = find(T1==0) ; T1(Q) = NaN; D = zoomM1*[1 0 0 0;0 1 0 0;0 0 1 -xyz(3)+1;0 0 0 1]*A; D1 = spm_slice_vol(transv.V,inv(D),dim([1 2]),1); maxD = max([maxD ; D1(:)]); minD = min([minD ; D1(:)]); Q = find(abs(transv.blob.xyz(3,:) - xyz(3)-1) < 0.5); T3 = full(sparse(transv.blob.xyz(1,Q),... transv.blob.xyz(2,Q),transv.blob.t(Q),transv.blob.dim(1),transv.blob.dim(2))); T3 = spm_slice_vol(T3,zoomM,dim([1 2]),[hld NaN]); Q = find(T3==0) ; T3(Q) = NaN; D = zoomM1*[1 0 0 0;0 1 0 0;0 0 1 -xyz(3)-1;0 0 0 1]*A; D3 = spm_slice_vol(transv.V,inv(D),dim([1 2]),1); maxD = max([maxD ; D3(:)]); minD = min([minD ; D3(:)]); end mx = max([max(T2(:)) eps]); mn = min([min(T2(:)) 0]); D2 = (D2-minD)/(maxD-minD); if transv.blob.dim(3) > 1, D1 = (D1-minD)/(maxD-minD); D3 = (D3-minD)/(maxD-minD); mx = max([mx ; T1(:) ; T3(:) ; eps]); mn = min([mn ; T1(:) ; T3(:) ; 0]); end; %-Configure {128 level} colormap %-------------------------------------------------------------------------- cmap = get(transv.fig,'Colormap'); if size(cmap,1) ~= 128 figure(transv.fig) spm_figure('Colormap','gray-hot') cmap = get(transv.fig,'Colormap'); end D = length(cmap)/2; Q = find(T2(:) > transv.blob.u); T2 = (T2(Q)-mn)/(mx-mn); D2(Q) = 1+1.51/D + T2; T2 = D*D2; if transv.blob.dim(3) > 1 Q = find(T1(:) > transv.blob.u); T1 = (T1(Q)-mn)/(mx-mn); D1(Q) = 1+1.51/D + T1; T1 = D*D1; Q = find(T3(:) > transv.blob.u); T3 = (T3(Q)-mn)/(mx-mn); D3(Q) = 1+1.51/D + T3; T3 = D*D3; end P = xyz.*transv.blob.vox'; %-Render activation foci on background images %-------------------------------------------------------------------------- if transv.blob.dim(3) > 1 set(transv.h(2),'Cdata',rot90(spm_grid(T1))); tmp = transv.blob.iM\[xyz(1:2)' (xyz(3)-1) 1]'; set(get(transv.h(1),'Title'),'String',sprintf('z = %0.0fmm',tmp(3))); set(transv.h(3),'Xdata',[1 1]*P(1),'Ydata',[0 dim(2)]); set(transv.h(4),'Xdata',[0 dim(1)],'Ydata',[1 1]*(dim(2)-P(2)+1)); set(transv.h(6),'Cdata',rot90(spm_grid(T2))); set(get(transv.h(5),'Title'),'String',sprintf('z = %0.0fmm',xyzmm(3))); set(transv.h(7),'Xdata',[1 1]*P(1),'Ydata',[0 dim(2)]); set(transv.h(8),'Xdata',[0 dim(1)],'Ydata',[1 1]*(dim(2)-P(2)+1)); set(transv.h(10),'Cdata',rot90(spm_grid(T3))); tmp = transv.blob.iM\[xyz(1:2)' (xyz(3)+1) 1]'; set(get(transv.h(9),'Title'),'String',sprintf('z = %0.0fmm',tmp(3))); set(transv.h(11),'Xdata',[1 1]*P(1),'Ydata',[0 dim(2)]); set(transv.h(12),'Xdata',[0 dim(1)],'Ydata',[1 1]*(dim(2)-P(2)+1)); % colorbar %---------------------------------------------------------------------- set(transv.h(14), 'Ydata',[mn mx], 'Cdata',(1:D)' + D); set(transv.h(13),'XTickLabel',[],'Ylim',[mn mx]); else set(transv.h(2),'Cdata',rot90(spm_grid(T2))); set(get(transv.h(1),'Title'),'String',sprintf('z = %0.0fmm',xyzmm(3))); set(transv.h(3),'Xdata',[1 1]*P(1),'Ydata',[0 dim(2)]); set(transv.h(4),'Xdata',[0 dim(1)],'Ydata',[1 1]*(dim(2)-P(2)+1)); % colorbar %---------------------------------------------------------------------- set(transv.h(6), 'Ydata',[0 d], 'Cdata',(1:D)' + D); set(transv.h(5),'XTickLabel',[],'Ylim',[0 d]); end %-Reset pointer %-------------------------------------------------------------------------- spm('Pointer','Arrow') return; %========================================================================== % function clear_global(varargin) %========================================================================== function clear_global(varargin) global transv if isstruct(transv), for h = transv.h, if ishandle(h), set(h,'DeleteFcn',''); end; end for h = transv.h, if ishandle(h), delete(h); end; end transv = []; clear global transv; end return;
github
philippboehmsturm/antx-master
spm_eeg_prep.m
.m
antx-master/xspm8/spm_eeg_prep.m
17,655
utf_8
d0182fc86adc8bc7eba089ae3f0dab97
function D = spm_eeg_prep(S) % Prepare converted M/EEG data for further analysis % FORMAT D = spm_eeg_prep(S) % S - configuration structure (optional) % (optional) fields of S: % S.D - MEEG object or filename of M/EEG mat-file % S.task - action string. One of 'settype', 'defaulttype', % 'loadtemplate','setcoor2d', 'project3d', 'loadeegsens', % 'defaulteegsens', 'sens2chan', 'headshape', 'coregister'. % S.updatehistory - update history information [default: true] % S.save - save MEEG object [default: false] % % D - MEEG object %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: spm_eeg_prep.m 4808 2012-07-27 15:13:39Z vladimir $ if ~nargin spm_eeg_prep_ui; return; end D = spm_eeg_load(S.D); switch lower(S.task) %---------------------------------------------------------------------- case 'settype' %---------------------------------------------------------------------- D = chantype(D, S.ind, S.type); %---------------------------------------------------------------------- case 'defaulttype' %---------------------------------------------------------------------- if isfield(S, 'ind') ind = S.ind; else ind = 1:D.nchannels; end dictionary = { 'eog', 'EOG'; 'eeg', 'EEG'; 'ecg', 'ECG'; 'lfp', 'LFP'; 'emg', 'EMG'; 'meg', 'MEG'; 'ref', 'REF'; 'megmag', 'MEGMAG'; 'megplanar', 'MEGPLANAR'; 'meggrad', 'MEGGRAD'; 'refmag', 'REFMAG'; 'refgrad', 'REFGRAD' }; D = chantype(D, ind, 'Other'); type = ft_chantype(D.chanlabels); % If there is useful information in the original types it % overwrites the default assignment if isfield(D, 'origchantypes') [sel1, sel2] = spm_match_str(chanlabels(D, ind), D.origchantypes.label); type(ind(sel1)) = D.origchantypes.type(sel2); end spmtype = repmat({'Other'}, 1, length(ind)); [sel1, sel2] = spm_match_str(type(ind), dictionary(:, 1)); spmtype(sel1) = dictionary(sel2, 2); D = chantype(D, ind, spmtype); %---------------------------------------------------------------------- case {'loadtemplate', 'setcoor2d', 'project3d'} %---------------------------------------------------------------------- switch lower(S.task) case 'loadtemplate' template = load(S.P); % must contain Cpos, Cnames xy = template.Cpos; label = template.Cnames; case 'setcoor2d' xy = S.xy; label = S.label; case 'project3d' if ~isfield(D, 'val') D.val = 1; end if isfield(D, 'inv') && isfield(D.inv{D.val}, 'datareg') datareg = D.inv{D.val}.datareg; ind = strmatch(S.modality, {datareg(:).modality}, 'exact'); sens = datareg(ind).sensors; else sens = D.sensors(S.modality); end [xy, label] = spm_eeg_project3D(sens, S.modality); end [sel1, sel2] = spm_match_str(lower(D.chanlabels), lower(label)); if ~isempty(sel1) megind = D.meegchannels('MEG'); eegind = D.meegchannels('EEG'); if ~isempty(intersect(megind, sel1)) && ~isempty(setdiff(megind, sel1)) error('2D locations not found for all MEG channels'); end if ~isempty(intersect(eegind, sel1)) && ~isempty(setdiff(eegind, sel1)) warning(['2D locations not found for all EEG channels, changing type of channels', ... num2str(setdiff(eegind, sel1)) ' to ''Other''']); D = chantype(D, setdiff(eegind, sel1), 'Other'); end D = coor2D(D, sel1, num2cell(xy(:, sel2))); end %---------------------------------------------------------------------- case 'loadeegsens' %---------------------------------------------------------------------- switch S.source case 'mat' senspos = load(S.sensfile); name = fieldnames(senspos); senspos = getfield(senspos,name{1}); label = chanlabels(D, sort(strmatch('EEG', D.chantype, 'exact'))); if size(senspos, 1) ~= length(label) error('To read sensor positions without labels the numbers of sensors and EEG channels should match.'); end elec = []; elec.chanpos = senspos; elec.elecpos = senspos; elec.label = label; headshape = load(S.headshapefile); name = fieldnames(headshape); headshape = getfield(headshape,name{1}); shape = []; fidnum = 0; while ~all(isspace(S.fidlabel)) fidnum = fidnum+1; [shape.fid.label{fidnum} S.fidlabel] = strtok(S.fidlabel); end if (fidnum < 3) || (size(headshape, 1) < fidnum) error('At least 3 labeled fiducials are necessary'); end shape.fid.pnt = headshape(1:fidnum, :); if size(headshape, 1) > fidnum shape.pnt = headshape((fidnum+1):end, :); else shape.pnt = []; end case 'locfile' label = chanlabels(D, D.meegchannels('EEG')); elec = ft_read_sens(S.sensfile); % Remove headshape points hspind = strmatch('headshape', elec.label); elec.chanpos(hspind, :) = []; elec.elecpos(hspind, :) = []; elec.label(hspind) = []; % This handles FIL Polhemus case and other possible cases % when no proper labels are available. if isempty(intersect(label, elec.label)) ind = str2num(strvcat(elec.label)); if length(ind) == length(label) elec.label = label(ind); else error('To read sensor positions without labels the numbers of sensors and EEG channels should match.'); end end shape = ft_read_headshape(S.sensfile); % In case electrode file is used for fiducials, the % electrodes can be used as headshape if ~isfield(shape, 'pnt') || isempty(shape.pnt) && ... size(shape.fid.pnt, 1) > 3 shape.pnt = shape.fid.pnt; end end elec = ft_convert_units(elec, 'mm'); shape= ft_convert_units(shape, 'mm'); if isequal(D.modality(1, 0), 'Multimodal') if ~isempty(D.fiducials) && isfield(S, 'regfid') && ~isempty(S.regfid) M1 = coreg(D.fiducials, shape, S.regfid); elec = ft_transform_sens(M1, elec); else error(['MEG fiducials matched to EEG fiducials are required '... 'to add EEG sensors to a multimodal dataset.']); end else D = fiducials(D, shape); end D = sensors(D, 'EEG', elec); %---------------------------------------------------------------------- case 'defaulteegsens' %---------------------------------------------------------------------- template_sfp = dir(fullfile(spm('dir'), 'EEGtemplates', '*.sfp')); template_sfp = {template_sfp.name}; ind = strmatch([ft_senstype(D.chanlabels(D.meegchannels('EEG'))) '.sfp'], template_sfp, 'exact'); if ~isempty(ind) fid = D.fiducials; if isequal(D.modality(1, 0), 'Multimodal') && ~isempty(fid) nzlbl = {'fidnz', 'nz', 'nas', 'nasion', 'spmnas'}; lelbl = {'fidle', 'fidt9', 'lpa', 'lear', 'earl', 'le', 'l', 't9', 'spmlpa'}; relbl = {'fidre', 'fidt10', 'rpa', 'rear', 'earr', 're', 'r', 't10', 'spmrpa'}; [sel1, nzind] = spm_match_str(nzlbl, lower(fid.fid.label)); if ~isempty(nzind) nzind = nzind(1); end [sel1, leind] = spm_match_str(lelbl, lower(fid.fid.label)); if ~isempty(leind) leind = leind(1); end [sel1, reind] = spm_match_str(relbl, lower(fid.fid.label)); if ~isempty(reind) reind = reind(1); end regfid = fid.fid.label([nzind, leind, reind]); if numel(regfid) < 3 error('Could not automatically understand the MEG fiducial labels. Please use the GUI.'); else regfid = [regfid(:) {'spmnas'; 'spmlpa'; 'spmrpa'}]; end S1 = []; S1.D = D; S1.task = 'loadeegsens'; S1.source = 'locfile'; S1.regfid = regfid; S1.sensfile = fullfile(spm('dir'), 'EEGtemplates', template_sfp{ind}); S1.updatehistory = 0; D = spm_eeg_prep(S1); else elec = ft_read_sens(fullfile(spm('dir'), 'EEGtemplates', template_sfp{ind})); [sel1, sel2] = spm_match_str(lower(D.chanlabels), lower(elec.label)); sens = elec; sens.chanpos = sens.chanpos(sel2, :); sens.elecpos = sens.elecpos(sel2, :); % This takes care of possible case mismatch sens.label = D.chanlabels(sel1); sens.label = sens.label(:); D = sensors(D, 'EEG', sens); % Assumes that the first 3 points in standard location files % are the 3 fiducials (nas, lpa, rpa) fid = []; fid.pnt = elec.elecpos; fid.fid.pnt = elec.elecpos(1:3, :); fid.fid.label = elec.label(1:3); [xy, label] = spm_eeg_project3D(D.sensors('EEG'), 'EEG'); [sel1, sel2] = spm_match_str(lower(D.chanlabels), lower(label)); if ~isempty(sel1) eegind = strmatch('EEG', chantype(D), 'exact'); if ~isempty(intersect(eegind, sel1)) && ~isempty(setdiff(eegind, sel1)) warning(['2D locations not found for all EEG channels, changing type of channels ', ... num2str(setdiff(eegind(:)', sel1(:)')) ' to ''Other''']); D = chantype(D, setdiff(eegind, sel1), 'Other'); end if any(any(coor2D(D, sel1) - xy(:, sel2))) D = coor2D(D, sel1, num2cell(xy(:, sel2))); end end if ~isempty(D.fiducials) && isfield(S, 'regfid') && ~isempty(S.regfid) M1 = coreg(D.fiducials, fid, S.regfid); D = sensors(D, 'EEG', ft_transform_sens(M1, D.sensors('EEG'))); else D = fiducials(D, fid); end end end %---------------------------------------------------------------------- case 'sens2chan' %---------------------------------------------------------------------- montage = S.montage; eeglabel = D.chanlabels(strmatch('EEG',D.chantype)); meglabel = D.chanlabels(strmatch('MEG',D.chantype)); if ~isempty(intersect(eeglabel, montage.labelnew)) sens = sensors(D, 'EEG'); if isempty(sens) error('The montage cannod be applied - no EEG sensors specified'); end sens = ft_apply_montage(sens, montage, 'keepunused', 'no'); D = sensors(D, 'EEG', sens); elseif ~isempty(intersect(meglabel, montage.labelnew)) sens = sensors(D, 'MEG'); if isempty(sens) error('The montage cannod be applied - no MEG sensors specified'); end sens = ft_apply_montage(sens, montage, 'keepunused', 'no'); D = sensors(D, 'MEG', sens); else error('The montage cannot be applied to the sensors'); end %---------------------------------------------------------------------- case 'headshape' %---------------------------------------------------------------------- switch S.source case 'mat' headshape = load(S.headshapefile); name = fieldnames(headshape); headshape = getfield(headshape,name{1}); shape = []; fidnum = 0; while ~all(isspace(S.fidlabel)) fidnum = fidnum+1; [shape.fid.label{fidnum} S.fidlabel] = strtok(S.fidlabel); end if (fidnum < 3) || (size(headshape, 1) < fidnum) error('At least 3 labeled fiducials are necessary'); end shape.fid.pnt = headshape(1:fidnum, :); if size(headshape, 1) > fidnum shape.pnt = headshape((fidnum+1):end, :); else shape.pnt = []; end otherwise shape = ft_read_headshape(S.headshapefile); % In case electrode file is used for fiducials, the % electrodes can be used as headshape if ~isfield(shape, 'pnt') || isempty(shape.pnt) && ... size(shape.fid.pnt, 1) > 3 shape.pnt = shape.fid.pnt; end end shape = ft_convert_units(shape, 'mm'); fid = D.fiducials; if ~isempty(fid) && isfield(S, 'regfid') && ~isempty(S.regfid) M1 = coreg(fid, shape, S.regfid); shape = ft_transform_headshape(M1, shape); end D = fiducials(D, shape); %---------------------------------------------------------------------- case 'coregister' %---------------------------------------------------------------------- [ok, D] = check(D, 'sensfid'); if ~ok error('Coregistration cannot be performed due to missing data'); end try val = D.val; Msize = D.inv{val}.mesh.Msize; catch val = 1; Msize = 1; end D = spm_eeg_inv_mesh_ui(D, val, 1, Msize); D = spm_eeg_inv_datareg_ui(D, val); %---------------------------------------------------------------------- otherwise %---------------------------------------------------------------------- fprintf('Unknown task ''%s'' to perform: Nothing done.\n',S.task); end % When prep is called from other functions with history, history should be % disabled if ~isfield(S, 'updatehistory') || S.updatehistory Stemp = S; Stemp.D = fullfile(D.path,D.fname); Stemp.save = 1; D = D.history('spm_eeg_prep', Stemp); end if isfield(S, 'save') && S.save save(D); end %========================================================================== % function coreg %========================================================================== function M1 = coreg(fid, shape, regfid) [junk, sel1] = spm_match_str(regfid(:, 1), fid.fid.label); [junk, sel2] = spm_match_str(regfid(:, 2), shape.fid.label); S = []; S.targetfid = fid; S.targetfid.fid.pnt = S.targetfid.fid.pnt(sel1, :); S.sourcefid = shape; S.sourcefid.fid.pnt = S.sourcefid.fid.pnt(sel2, :); S.sourcefid.fid.label = S.sourcefid.fid.label(sel2); S.targetfid.fid.label = S.sourcefid.fid.label; S.template = 1; S.useheadshape = 0; M1 = spm_eeg_inv_datareg(S);
github
philippboehmsturm/antx-master
spm_bias_ui.m
.m
antx-master/xspm8/spm_bias_ui.m
5,624
utf_8
bf36e864bf3d49ba97e9bc133ecb84c2
function spm_bias_ui(P) % Non-uniformity correct images. % % The objective function is related to minimising the entropy of % the image histogram, but is modified slightly. % This fixes the problem with the SPM99 non-uniformity correction % algorithm, which tends to try to reduce the image intensities. As % the field was constrainded to have an average value of one, then % this caused the field to bend upwards in regions not included in % computations of image non-uniformity. % %_______________________________________________________________________ % Ref: % J Ashburner. 2002. "Another MRI Bias Correction Approach" [abstract]. % Presented at the 8th International Conference on Functional Mapping of % the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-Rom % in NeuroImage, Vol. 16, No. 2. % %_______________________________________________________________________ % % The Prompts Explained %_______________________________________________________________________ % % 'Scans to correct' - self explanatory % %_______________________________________________________________________ % % Defaults Options %_______________________________________________________________________ %[ things in square brackets indicate corresponding defaults field ] % % 'Number of histogram bins?' % The probability density of the image intensity is represented by a % histogram. The optimum number of bins depends on the number of voxels % in the image. More voxels allows a more detailed representation. % Another factor is any potential aliasing effect due to there being a % discrete number of different intensities in the image. Fewer bins % should be used in this case. % [defaults.bias.nbins] % % 'Regularisation?' % The importance of smoothness for the estimated bias field. Without % any regularisation, the algorithm will attempt to correct for % different grey levels arising from different tissue types, rather than % just correcting bias artifact. % Bias correction uses a Bayesian framework (again) to model intensity % inhomogeneities in the image(s). The variance associated with each % tissue class is assumed to be multiplicative (with the % inhomogeneities). The low frequency intensity variability is % modelled by a linear combination of three dimensional DCT basis % functions (again), using a fast algorithm (again) to generate the % curvature matrix. The regularization is based upon minimizing the % integral of square of the fourth derivatives of the modulation field % (the integral of the squares of the first and second derivs give the % membrane and bending energies respectively). % [defaults.bias.reg] % % 'Cutoff?' % Cutoff of DCT bases. Only DCT bases of periods longer than the % cutoff are used to describe the warps. The number used will % depend on the cutoff and the field of view of the image. % [defaults.bias.cutoff] % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_bias_ui.m 3756 2010-03-05 18:43:37Z guillaume $ global defaults if nargin==1 && strcmpi(P,'defaults'); defaults.bias = edit_defaults(defaults.bias); return; end; bias_ui(defaults.bias); return; %======================================================================= %======================================================================= function bias_ui(flags) % User interface for nonuniformity correction spm('FnBanner',mfilename,'$Rev: 3756 $'); [Finter,unused,CmdLine] = spm('FnUIsetup','Flatten'); spm_help('!ContextHelp',mfilename); PP = spm_select(Inf, 'image', 'Scans to correct'); spm('Pointer','Watch'); for i=1:size(PP,1), spm('FigName',['Flatten: working on scan ' num2str(i)],Finter,CmdLine); drawnow; P = deblank(PP(i,:)); T = spm_bias_estimate(P,flags); [pth,nm,xt,vr] = spm_fileparts(P); S = fullfile(pth,['bias_' nm '.mat']); %S = ['bias_' nm '.mat']; spm_bias_apply(P,S); end; if 0, fg = spm_figure('FindWin','Interactive'); if ~isempty(fg), spm_figure('Clear',fg); end; end spm('FigName','Flatten: done',Finter,CmdLine); spm('Pointer'); return; %======================================================================= %======================================================================= function flags = edit_defaults(flags) nb = [32 64 128 256 512 1024 2048]; tmp = find(nb == flags.nbins); if isempty(tmp), tmp = 6; end; flags.nbins = spm_input('Number of histogram bins?','+1','m',... [' 32 bins | 64 bins| 128 bins| 256 bins| 512 bins|1024 bins|2048 bins'],... nb, tmp); rg = [0 0.00001 0.0001 0.001 0.01 0.1 1.0 10]; tmp = find(rg == flags.reg); if isempty(tmp), tmp = 4; end; flags.reg = spm_input('Regularisation?','+1','m',... ['no regularisation (0)|extremely light regularisation (0.00001)|'... 'very light regularisation (0.0001)|light regularisation (0.001)|',... 'medium regularisation (0.01)|heavy regularisation (0.1)|'... 'very heavy regularisation (1)|extremely heavy regularisation (10)'],... rg, tmp); co = [20 25 30 35 40 45 50 60 70 80 90 100]; tmp = find(co == flags.cutoff); if isempty(tmp), tmp = 4; end; flags.cutoff = spm_input('Cutoff?','+1','m',... [' 20mm cutoff| 25mm cutoff| 30mm cutoff| 35mm cutoff| 40mm cutoff|'... ' 45mm cutoff| 50mm cutoff| 60mm cutoff| 70mm cutoff| 80mm cutoff|'... ' 90mm cutoff|100mm cutoff'],... co, tmp); return; %=======================================================================
github
philippboehmsturm/antx-master
spm_mesh_render.m
.m
antx-master/xspm8/spm_mesh_render.m
26,531
utf_8
8b3c350d44240000e9ceec7b0d41cdc9
function varargout = spm_mesh_render(action,varargin) % Display a surface mesh & various utilities % FORMAT H = spm_mesh_render('Disp',M,'PropertyName',propertyvalue) % M - a GIfTI filename/object or patch structure % H - structure containing handles of various objects % Opens a new figure unless a 'parent' Property is provided with an axis % handle. % % FORMAT H = spm_mesh_render(M) % Shortcut to previous call format. % % FORMAT H = spm_mesh_render('ContextMenu',AX) % AX - axis handle or structure returned by spm_mesh_render('Disp',...) % % FORMAT H = spm_mesh_render('Overlay',AX,P) % AX - axis handle or structure given by spm_mesh_render('Disp',...) % P - data to be overlayed on mesh (see spm_mesh_project) % % FORMAT H = spm_mesh_render('ColourBar',AX,MODE) % AX - axis handle or structure returned by spm_mesh_render('Disp',...) % MODE - {['on'],'off'} % % FORMAT H = spm_mesh_render('ColourMap',AX,MAP) % AX - axis handle or structure returned by spm_mesh_render('Disp',...) % MAP - a colour map matrix % % FORMAT MAP = spm_mesh_render('ColourMap',AX) % Retrieves the current colourmap. % % FORMAT spm_mesh_render('Register',AX,hReg) % AX - axis handle or structure returned by spm_mesh_render('Disp',...) % hReg - Handle of HandleGraphics object to build registry in. % See spm_XYZreg for more information. %__________________________________________________________________________ % Copyright (C) 2010-2011 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: spm_mesh_render.m 5109 2012-12-11 20:53:42Z guillaume $ %-Input parameters %-------------------------------------------------------------------------- if ~nargin, action = 'Disp'; end if ~ischar(action) varargin = {action varargin{:}}; action = 'Disp'; end varargout = {[]}; %-Action %-------------------------------------------------------------------------- switch lower(action) %-Display %====================================================================== case 'disp' if isempty(varargin) [M, sts] = spm_select(1,'mesh','Select surface mesh file'); if ~sts, return; end else M = varargin{1}; end if ischar(M), M = export(gifti(M),'patch'); end O = getOptions(varargin{2:end}); %-Figure & Axis %------------------------------------------------------------------ if isfield(O,'parent') H.axis = O.parent; H.figure = ancestor(H.axis,'figure'); figure(H.figure); axes(H.axis); else H.figure = figure('Color',[1 1 1]); H.axis = axes('Parent',H.figure); set(H.axis,'Visible','off'); end renderer = get(H.figure,'Renderer'); set(H.figure,'Renderer','OpenGL'); %-Patch %------------------------------------------------------------------ P = struct('vertices',M.vertices, 'faces',M.faces); H.patch = patch(P,... 'FaceColor', [0.6 0.6 0.6],... 'EdgeColor', 'none',... 'FaceLighting', 'phong',... 'SpecularStrength', 0.7,... 'AmbientStrength', 0.1,... 'DiffuseStrength', 0.7,... 'SpecularExponent', 10,... 'Clipping', 'off',... 'DeleteFcn', {@myDeleteFcn, renderer},... 'Visible', 'off',... 'Tag', 'SPMMeshRender',... 'Parent', H.axis); setappdata(H.patch,'patch',P); %-Label connected components of the mesh %------------------------------------------------------------------ C = spm_mesh_label(P); setappdata(H.patch,'cclabel',C); %-Compute mesh curvature %------------------------------------------------------------------ curv = spm_mesh_curvature(P) > 0; setappdata(H.patch,'curvature',curv); %-Apply texture to mesh %------------------------------------------------------------------ updateTexture(H,[]); %-Set viewpoint, light and manipulation options %------------------------------------------------------------------ axis(H.axis,'image'); axis(H.axis,'off'); view(H.axis,[-90 0]); material(H.figure,'dull'); H.light = camlight; set(H.light,'Parent',H.axis); H.rotate3d = rotate3d(H.axis); set(H.rotate3d,'Enable','on'); set(H.rotate3d,'ActionPostCallback',{@myPostCallback, H}); %try % setAllowAxesRotate(H.rotate3d, ... % setxor(findobj(H.figure,'Type','axes'),H.axis), false); %end %-Store handles %------------------------------------------------------------------ setappdata(H.axis,'handles',H); set(H.patch,'Visible','on'); %-Add context menu %------------------------------------------------------------------ spm_mesh_render('ContextMenu',H); %-Context Menu %====================================================================== case 'contextmenu' if isempty(varargin), varargin{1} = gca; end H = getHandles(varargin{1}); if ~isempty(get(H.patch,'UIContextMenu')), return; end cmenu = uicontextmenu('Callback',{@myMenuCallback, H}); uimenu(cmenu, 'Label','Inflate', 'Interruptible','off', ... 'Callback',{@myInflate, H}); uimenu(cmenu, 'Label','Overlay...', 'Interruptible','off', ... 'Callback',{@myOverlay, H}); uimenu(cmenu, 'Label','Image Sections...', 'Interruptible','off', ... 'Callback',{@myImageSections, H}); c = uimenu(cmenu, 'Label', 'Connected Components', 'Interruptible','off'); C = getappdata(H.patch,'cclabel'); for i=1:length(unique(C)) uimenu(c, 'Label',sprintf('Component %d',i), 'Checked','on', ... 'Callback',{@myCCLabel, H}); end uimenu(cmenu, 'Label','Rotate', 'Checked','on', 'Separator','on', ... 'Callback',{@mySwitchRotate, H}); uimenu(cmenu, 'Label','Synchronise Views', 'Visible','off', ... 'Checked','off', 'Tag','SynchroMenu', 'Callback',{@mySynchroniseViews, H}); c = uimenu(cmenu, 'Label','View'); uimenu(c, 'Label','Go to Y-Z view (right)', 'Callback', {@myView, H, [90 0]}); uimenu(c, 'Label','Go to Y-Z view (left)', 'Callback', {@myView, H, [-90 0]}); uimenu(c, 'Label','Go to X-Y view (top)', 'Callback', {@myView, H, [0 90]}); uimenu(c, 'Label','Go to X-Y view (bottom)', 'Callback', {@myView, H, [-180 -90]}); uimenu(c, 'Label','Go to X-Z view (front)', 'Callback', {@myView, H, [-180 0]}); uimenu(c, 'Label','Go to X-Z view (back)', 'Callback', {@myView, H, [0 0]}); uimenu(cmenu, 'Label','Colorbar', 'Callback', {@myColourbar, H}); c = uimenu(cmenu, 'Label','Colormap'); clrmp = {'hot' 'jet' 'gray' 'hsv' 'bone' 'copper' 'pink' 'white' ... 'flag' 'lines' 'colorcube' 'prism' 'cool' 'autumn' ... 'spring' 'winter' 'summer'}; for i=1:numel(clrmp) uimenu(c, 'Label', clrmp{i}, 'Callback', {@myColourmap, H}); end c = uimenu(cmenu, 'Label','Transparency'); uimenu(c, 'Label','0%', 'Checked','on', 'Callback', {@myTransparency, H}); uimenu(c, 'Label','20%', 'Checked','off', 'Callback', {@myTransparency, H}); uimenu(c, 'Label','40%', 'Checked','off', 'Callback', {@myTransparency, H}); uimenu(c, 'Label','60%', 'Checked','off', 'Callback', {@myTransparency, H}); uimenu(c, 'Label','80%', 'Checked','off', 'Callback', {@myTransparency, H}); uimenu(cmenu, 'Label','Data Cursor', 'Callback', {@myDataCursor, H}); c = uimenu(cmenu, 'Label','Background Color'); uimenu(c, 'Label','White', 'Callback', {@myBackgroundColor, H, [1 1 1]}); uimenu(c, 'Label','Black', 'Callback', {@myBackgroundColor, H, [0 0 0]}); uimenu(c, 'Label','Custom...', 'Callback', {@myBackgroundColor, H, []}); uimenu(cmenu, 'Label','Save As...', 'Separator', 'on', ... 'Callback', {@mySave, H}); set(H.rotate3d,'enable','off'); try, set(H.rotate3d,'uicontextmenu',cmenu); end try, set(H.patch, 'uicontextmenu',cmenu); end set(H.rotate3d,'enable','on'); dcm_obj = datacursormode(H.figure); set(dcm_obj, 'Enable','off', 'SnapToDataVertex','on', ... 'DisplayStyle','Window', 'Updatefcn',{@myDataCursorUpdate, H}); %-Overlay %====================================================================== case 'overlay' if isempty(varargin), varargin{1} = gca; end H = getHandles(varargin{1}); if nargin < 3, varargin{2} = []; end updateTexture(H,varargin{2:end}); %-Slices %====================================================================== case 'slices' if isempty(varargin), varargin{1} = gca; end H = getHandles(varargin{1}); if nargin < 3, varargin{2} = []; end renderSlices(H,varargin{2:end}); %-ColourBar %====================================================================== case {'colourbar', 'colorbar'} if isempty(varargin), varargin{1} = gca; end if length(varargin) == 1, varargin{2} = 'on'; end H = getHandles(varargin{1}); d = getappdata(H.patch,'data'); col = getappdata(H.patch,'colourmap'); if strcmpi(varargin{2},'off') if isfield(H,'colourbar') && ishandle(H.colourbar) delete(H.colourbar); H = rmfield(H,'colourbar'); setappdata(H.axis,'handles',H); end return; end if isempty(d) || ~any(d(:)), varargout = {H}; return; end if isempty(col), col = hot(256); end if ~isfield(H,'colourbar') || ~ishandle(H.colourbar) H.colourbar = colorbar('peer',H.axis); set(H.colourbar,'Tag',''); set(get(H.colourbar,'Children'),'Tag',''); end c(1:size(col,1),1,1:size(col,2)) = col; ic = findobj(H.colourbar,'Type','image'); if size(d,1) > 1 set(ic,'CData',c(1:size(d,1),:,:)); set(ic,'YData',[1 size(d,1)]); set(H.colourbar,'YLim',[1 size(d,1)]); set(H.colourbar,'YTickLabel',[]); else set(ic,'CData',c); clim = getappdata(H.patch,'clim'); if isempty(clim), clim = [false min(d) max(d)]; end set(ic,'YData',clim(2:3)); set(H.colourbar,'YLim',clim(2:3)); end setappdata(H.axis,'handles',H); %-ColourMap %====================================================================== case {'colourmap', 'colormap'} if isempty(varargin), varargin{1} = gca; end H = getHandles(varargin{1}); if length(varargin) == 1 varargout = { getappdata(H.patch,'colourmap') }; return; else setappdata(H.patch,'colourmap',varargin{2}); d = getappdata(H.patch,'data'); updateTexture(H,d); end %-CLim %====================================================================== case 'clim' if isempty(varargin), varargin{1} = gca; end H = getHandles(varargin{1}); if length(varargin) == 1 c = getappdata(H.patch,'clim'); if ~isempty(c), c = c(2:3); end varargout = { c }; return; else if isempty(varargin{2}) || any(~isfinite(varargin{2})) setappdata(H.patch,'clim',[false NaN NaN]); else setappdata(H.patch,'clim',[true varargin{2}]); end d = getappdata(H.patch,'data'); updateTexture(H,d); end %-Register %====================================================================== case 'register' if isempty(varargin), varargin{1} = gca; end H = getHandles(varargin{1}); hReg = varargin{2}; xyz = spm_XYZreg('GetCoords',hReg); hs = myCrossBar('Create',H,xyz); set(hs,'UserData',hReg); spm_XYZreg('Add2Reg',hReg,hs,@myCrossBar); %-Otherwise... %====================================================================== otherwise try H = spm_mesh_render('Disp',action,varargin{:}); catch error('Unknown action.'); end end varargout = {H}; %========================================================================== function O = getOptions(varargin) O = []; if ~nargin return; elseif nargin == 1 && isstruct(varargin{1}) for i=fieldnames(varargin{1}) O.(lower(i{1})) = varargin{1}.(i{1}); end elseif mod(nargin,2) == 0 for i=1:2:numel(varargin) O.(lower(varargin{i})) = varargin{i+1}; end else error('Invalid list of property/value pairs.'); end %========================================================================== function H = getHandles(H) if ~nargin || isempty(H), H = gca; end if ishandle(H) && ~isappdata(H,'handles') a = H; clear H; H.axis = a; H.figure = ancestor(H.axis,'figure'); H.patch = findobj(H.axis,'type','patch'); H.light = findobj(H.axis,'type','light'); H.rotate3d = rotate3d(H.figure); setappdata(H.axis,'handles',H); elseif ishandle(H) H = getappdata(H,'handles'); else H = getappdata(H.axis,'handles'); end %========================================================================== function myMenuCallback(obj,evt,H) H = getHandles(H); h = findobj(obj,'Label','Rotate'); if strcmpi(get(H.rotate3d,'Enable'),'on') set(h,'Checked','on'); else set(h,'Checked','off'); end if numel(findobj('Tag','SPMMeshRender','Type','Patch')) > 1 h = findobj(obj,'Tag','SynchroMenu'); set(h,'Visible','on'); end h = findobj(obj,'Label','Colorbar'); d = getappdata(H.patch,'data'); if isempty(d) || ~any(d(:)), set(h,'Enable','off'); else set(h,'Enable','on'); end if isfield(H,'colourbar') if ishandle(H.colourbar) set(h,'Checked','on'); else H = rmfield(H,'colourbar'); set(h,'Checked','off'); end else set(h,'Checked','off'); end setappdata(H.axis,'handles',H); %========================================================================== function myPostCallback(obj,evt,H) P = findobj('Tag','SPMMeshRender','Type','Patch'); if numel(P) == 1 camlight(H.light); else for i=1:numel(P) H = getappdata(ancestor(P(i),'axes'),'handles'); camlight(H.light); end end %========================================================================== function varargout = myCrossBar(varargin) switch lower(varargin{1}) case 'create' %---------------------------------------------------------------------- % hMe = myCrossBar('Create',H,xyz) H = varargin{2}; xyz = varargin{3}; hold(H.axis,'on'); hs = plot3(xyz(1),xyz(2),xyz(3),'Marker','+','MarkerSize',60,... 'parent',H.axis,'Color',[1 1 1],'Tag','CrossBar','ButtonDownFcn',{}); varargout = {hs}; case 'setcoords' %---------------------------------------------------------------------- % [xyz,d] = myCrossBar('SetCoords',xyz,hMe) hMe = varargin{3}; xyz = varargin{2}; set(hMe,'XData',xyz(1)); set(hMe,'YData',xyz(2)); set(hMe,'ZData',xyz(3)); varargout = {xyz,[]}; otherwise %---------------------------------------------------------------------- error('Unknown action string') end %========================================================================== function myInflate(obj,evt,H) spm_mesh_inflate(H.patch,Inf,1); axis(H.axis,'image'); %========================================================================== function myCCLabel(obj,evt,H) C = getappdata(H.patch,'cclabel'); F = get(H.patch,'Faces'); ind = sscanf(get(obj,'Label'),'Component %d'); V = get(H.patch,'FaceVertexAlphaData'); Fa = get(H.patch,'FaceAlpha'); if ~isnumeric(Fa) if ~isempty(V), Fa = max(V); else Fa = 1; end if Fa == 0, Fa = 1; end end if isempty(V) || numel(V) == 1 Ve = get(H.patch,'Vertices'); if isempty(V) || V == 1 V = Fa * ones(size(Ve,1),1); else V = zeros(size(Ve,1),1); end end if strcmpi(get(obj,'Checked'),'on') V(reshape(F(C==ind,:),[],1)) = 0; set(obj,'Checked','off'); else V(reshape(F(C==ind,:),[],1)) = Fa; set(obj,'Checked','on'); end set(H.patch, 'FaceVertexAlphaData', V); if all(V) set(H.patch, 'FaceAlpha', Fa); else set(H.patch, 'FaceAlpha', 'interp'); end %========================================================================== function myTransparency(obj,evt,H) t = 1 - sscanf(get(obj,'Label'),'%d%%') / 100; set(H.patch,'FaceAlpha',t); set(get(get(obj,'parent'),'children'),'Checked','off'); set(obj,'Checked','on'); %========================================================================== function mySwitchRotate(obj,evt,H) if strcmpi(get(H.rotate3d,'enable'),'on') set(H.rotate3d,'enable','off'); set(obj,'Checked','off'); else set(H.rotate3d,'enable','on'); set(obj,'Checked','on'); end %========================================================================== function myView(obj,evt,H,varargin) view(H.axis,varargin{1}); axis(H.axis,'image'); camlight(H.light); %========================================================================== function myColourbar(obj,evt,H) y = {'on','off'}; toggle = @(x) y{1+strcmpi(x,'on')}; spm_mesh_render('Colourbar',H,toggle(get(obj,'Checked'))); %========================================================================== function myColourmap(obj,evt,H) spm_mesh_render('Colourmap',H,feval(get(obj,'Label'),256)); %========================================================================== function mySynchroniseViews(obj,evt,H) P = findobj('Tag','SPMMeshRender','Type','Patch'); v = get(H.axis,'cameraposition'); for i=1:numel(P) H = getappdata(ancestor(P(i),'axes'),'handles'); set(H.axis,'cameraposition',v); axis(H.axis,'image'); camlight(H.light); end %========================================================================== function myDataCursor(obj,evt,H) dcm_obj = datacursormode(H.figure); set(dcm_obj, 'Enable','on', 'SnapToDataVertex','on', ... 'DisplayStyle','Window', 'Updatefcn',{@myDataCursorUpdate, H}); %========================================================================== function txt = myDataCursorUpdate(obj,evt,H) pos = get(evt,'Position'); txt = {['X: ',num2str(pos(1))],... ['Y: ',num2str(pos(2))],... ['Z: ',num2str(pos(3))]}; i = ismember(get(H.patch,'vertices'),pos,'rows'); txt = {['Node: ' num2str(find(i))] txt{:}}; d = getappdata(H.patch,'data'); if ~isempty(d) && any(d(:)) if any(i), txt = {txt{:} ['T: ',num2str(d(i))]}; end end hMe = findobj(H.axis,'Tag','CrossBar'); if ~isempty(hMe) ws = warning('off'); spm_XYZreg('SetCoords',pos,get(hMe,'UserData')); warning(ws); end %========================================================================== function myBackgroundColor(obj,evt,H,varargin) if isempty(varargin{1}) c = uisetcolor(H.figure, ... 'Pick a background color...'); if numel(c) == 1, return; end else c = varargin{1}; end h = findobj(H.figure,'Tag','SPMMeshRenderBackground'); if isempty(h) set(H.figure,'Color',c); else set(h,'Color',c); end %========================================================================== function mySave(obj,evt,H) [filename, pathname, filterindex] = uiputfile({... '*.gii' 'GIfTI files (*.gii)'; ... '*.png' 'PNG files (*.png)';... '*.dae' 'Collada files (*.dae)';... '*.idtf' 'IDTF files (*.idtf)'}, 'Save as'); if ~isequal(filename,0) && ~isequal(pathname,0) [pth,nam,ext] = fileparts(filename); switch ext case '.gii' filterindex = 1; case '.png' filterindex = 2; case '.dae' filterindex = 3; case '.idtf' filterindex = 4; otherwise switch filterindex case 1 filename = [filename '.gii']; case 2 filename = [filename '.png']; case 3 filename = [filename '.dae']; end end switch filterindex case 1 G = gifti(H.patch); [p,n,e] = fileparts(filename); [p,n,e] = fileparts(n); switch lower(e) case '.func' save(gifti(getappdata(H.patch,'data')),... fullfile(pathname, filename)); case '.surf' save(gifti(struct('vertices',G.vertices,'faces',G.faces)),... fullfile(pathname, filename)); case '.rgba' save(gifti(G.cdata),fullfile(pathname, filename)); otherwise save(G,fullfile(pathname, filename)); end case 2 u = get(H.axis,'units'); set(H.axis,'units','pixels'); p = get(H.axis,'Position'); r = get(H.figure,'Renderer'); hc = findobj(H.figure,'Tag','SPMMeshRenderBackground'); if isempty(hc) c = get(H.figure,'Color'); else c = get(hc,'Color'); end h = figure('Position',p+[0 0 10 10], ... 'InvertHardcopy','off', ... 'Color',c, ... 'Renderer',r); copyobj(H.axis,h); set(H.axis,'units',u); set(get(h,'children'),'visible','off'); %a = get(h,'children'); %set(a,'Position',get(a,'Position').*[0 0 1 1]+[10 10 0 0]); if isdeployed deployprint(h, '-dpng', '-opengl', fullfile(pathname, filename)); else print(h, '-dpng', '-opengl', fullfile(pathname, filename)); end close(h); set(getappdata(obj,'fig'),'renderer',r); case 3 save(gifti(H.patch),fullfile(pathname, filename),'collada'); case 4 save(gifti(H.patch),fullfile(pathname, filename),'idtf'); end end %========================================================================== function myDeleteFcn(obj,evt,renderer) try, rotate3d(get(obj,'parent'),'off'); end set(ancestor(obj,'figure'),'Renderer',renderer); %========================================================================== function myOverlay(obj,evt,H) [P, sts] = spm_select(1,'\.img|\.nii|\.gii|\.mat','Select file to overlay'); if ~sts, return; end spm_mesh_render('Overlay',H,P); %========================================================================== function myImageSections(obj,evt,H) [P, sts] = spm_select(1,'image','Select image to render'); if ~sts, return; end renderSlices(H,P); %========================================================================== function renderSlices(H,P,pls) if nargin <3 pls = 0.05:0.2:0.9; end N = nifti(P); d = size(N.dat); pls = round(pls.*d(3)); hold(H.axis,'on'); for i=1:numel(pls) [x,y,z] = ndgrid(1:d(1),1:d(2),pls(i)); f = N.dat(:,:,pls(i)); x1 = N.mat(1,1)*x + N.mat(1,2)*y + N.mat(1,3)*z + N.mat(1,4); y1 = N.mat(2,1)*x + N.mat(2,2)*y + N.mat(2,3)*z + N.mat(2,4); z1 = N.mat(3,1)*x + N.mat(3,2)*y + N.mat(3,3)*z + N.mat(3,4); surf(x1,y1,z1, repmat(f,[1 1 3]), 'EdgeColor','none', ... 'Clipping','off', 'Parent',H.axis); end hold(H.axis,'off'); axis(H.axis,'image'); %========================================================================== function C = updateTexture(H,v,col) %-Get colourmap %-------------------------------------------------------------------------- if nargin<3, col = getappdata(H.patch,'colourmap'); end if isempty(col), col = hot(256); end setappdata(H.patch,'colourmap',col); %-Get curvature %-------------------------------------------------------------------------- curv = getappdata(H.patch,'curvature'); if size(curv,2) == 1 curv = 0.5 * repmat(curv,1,3) + 0.3 * repmat(~curv,1,3); end %-Project data onto surface mesh %-------------------------------------------------------------------------- if nargin < 2, v = []; end if ischar(v) [p,n,e] = fileparts(v); if strcmp([n e],'SPM.mat') swd = pwd; spm_figure('GetWin','Interactive'); [SPM,v] = spm_getSPM(struct('swd',p)); cd(swd); else try, spm_vol(v); catch, v = gifti(v); end; end end if isa(v,'gifti'), v = v.cdata; end if isa(v,'file_array'), v = v(); end if isempty(v) v = zeros(size(curv))'; elseif ischar(v) || iscellstr(v) || isstruct(v) v = spm_mesh_project(H.patch,v); elseif isnumeric(v) || islogical(v) if size(v,2) == 1 v = v'; end else error('Unknown data type.'); end v(isinf(v)) = NaN; setappdata(H.patch,'data',v); %-Create RGB representation of data according to colourmap %-------------------------------------------------------------------------- C = zeros(size(v,2),3); clim = getappdata(H.patch, 'clim'); if isempty(clim), clim = [false NaN NaN]; end mi = clim(2); ma = clim(3); if any(v(:)) if size(col,1)>3 if size(v,1) == 1 if ~clim(1), mi = min(v(:)); ma = max(v(:)); end C = squeeze(ind2rgb(floor(((v(:)-mi)/(ma-mi))*size(col,1)),col)); else C = v; v = v'; end else if ~clim(1), ma = max(v(:)); end for i=1:size(v,1) C = C + v(i,:)'/ma * col(i,:); end end else end setappdata(H.patch, 'clim', [false mi ma]); %-Build texture by merging curvature and data %-------------------------------------------------------------------------- C = repmat(~any(v,1),3,1)' .* curv + repmat(any(v,1),3,1)' .* C; set(H.patch, 'FaceVertexCData',C, 'FaceColor','interp'); %-Update the colourbar %-------------------------------------------------------------------------- if isfield(H,'colourbar') spm_mesh_render('Colourbar',H); end
github
philippboehmsturm/antx-master
spm_smooth.m
.m
antx-master/xspm8/spm_smooth.m
3,746
utf_8
641f9055c7e9c0b87c38737330881a53
function spm_smooth(P,Q,s,dtype) % 3 dimensional convolution of an image % FORMAT spm_smooth(P,Q,S,dtype) % P - image to be smoothed (or 3D array) % Q - filename for smoothed image (or 3D array) % S - [sx sy sz] Gaussian filter width {FWHM} in mm (or edges) % dtype - datatype [default: 0 == same datatype as P] %____________________________________________________________________________ % % spm_smooth is used to smooth or convolve images in a file (maybe). % % The sum of kernel coeficients are set to unity. Boundary % conditions assume data does not exist outside the image in z (i.e. % the kernel is truncated in z at the boundaries of the image space). S % can be a vector of 3 FWHM values that specifiy an anisotropic % smoothing. If S is a scalar isotropic smoothing is implemented. % % If Q is not a string, it is used as the destination of the smoothed % image. It must already be defined with the same number of elements % as the image. % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner & Tom Nichols % $Id: spm_smooth.m 4172 2011-01-26 12:13:29Z guillaume $ %----------------------------------------------------------------------- if numel(s) == 1, s = [s s s]; end if nargin < 4, dtype = 0; end; if ischar(P), P = spm_vol(P); end; if isstruct(P), for i= 1:numel(P), smooth1(P(i),Q,s,dtype); end else smooth1(P,Q,s,dtype); end %_______________________________________________________________________ %_______________________________________________________________________ function smooth1(P,Q,s,dtype) if isstruct(P), VOX = sqrt(sum(P.mat(1:3,1:3).^2)); else VOX = [1 1 1]; end; if ischar(Q) && isstruct(P), [pth,nam,ext,num] = spm_fileparts(Q); q = fullfile(pth,[nam,ext]); Q = P; Q.fname = q; if ~isempty(num), Q.n = str2num(num); end; if ~isfield(Q,'descrip'), Q.descrip = sprintf('SPM compatible'); end; Q.descrip = sprintf('%s - conv(%g,%g,%g)',Q.descrip, s); if dtype~=0, % Need to figure out some rescaling. Q.dt(1) = dtype; if ~isfinite(spm_type(Q.dt(1),'maxval')), Q.pinfo = [1 0 0]'; % float or double, so scalefactor of 1 else % Need to determine the range of intensities if isfinite(spm_type(P.dt(1),'maxval')), % Integer types have a defined maximum value maxv = spm_type(P.dt(1),'maxval')*P.pinfo(1) + P.pinfo(2); else % Need to find the max and min values in original image mx = -Inf; mn = Inf; for pl=1:P.dim(3), tmp = spm_slice_vol(P,spm_matrix([0 0 pl]),P.dim(1:2),0); tmp = tmp(isfinite(tmp)); mx = max(max(tmp),mx); mn = min(min(tmp),mn); end maxv = max(mx,-mn); end sf = maxv/spm_type(Q.dt(1),'maxval'); Q.pinfo = [sf 0 0]'; end end end % compute parameters for spm_conv_vol %----------------------------------------------------------------------- s = s./VOX; % voxel anisotropy s1 = s/sqrt(8*log(2)); % FWHM -> Gaussian parameter x = round(6*s1(1)); x = -x:x; x = spm_smoothkern(s(1),x,1); x = x/sum(x); y = round(6*s1(2)); y = -y:y; y = spm_smoothkern(s(2),y,1); y = y/sum(y); z = round(6*s1(3)); z = -z:z; z = spm_smoothkern(s(3),z,1); z = z/sum(z); i = (length(x) - 1)/2; j = (length(y) - 1)/2; k = (length(z) - 1)/2; if isstruct(Q), Q = spm_create_vol(Q); end; spm_conv_vol(P,Q,x,y,z,-[i,j,k]);
github
philippboehmsturm/antx-master
spm_eeg_inv_imag_api.m
.m
antx-master/xspm8/spm_eeg_inv_imag_api.m
15,840
utf_8
169f5a7cb18e2a5ae436135b1c16203c
function varargout = spm_eeg_inv_imag_api(varargin) % API for EEG/MEG source reconstruction interface % FORMAT: % FIG = SPM_EEG_INV_IMAG_API launch spm_eeg_inv_imag_api GUI. % SPM_EEG_INV_IMAG_API('callback_name', ...) invoke the named callback. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jeremie Mattout % $Id: spm_eeg_inv_imag_api.m 4260 2011-03-23 13:42:21Z vladimir $ spm('Clear'); % Launch API %========================================================================== if nargin < 2 % open figure %---------------------------------------------------------------------- fig = openfig(mfilename,'reuse'); set(fig,'name',[spm('ver') ': ' get(fig,'name')]); Rect = spm('WinSize','Menu'); S0 = spm('WinSize','0',1); set(fig,'units','pixels'); Fdim = get(fig,'position'); set(fig,'position',[S0(1)+Rect(1) S0(2)+Rect(2) Fdim(3) Fdim(4)]); handles = guihandles(fig); % Use system color scheme for figure: %---------------------------------------------------------------------- set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); handles.fig = fig; guidata(fig,handles); % intialise with D %---------------------------------------------------------------------- try D = spm_eeg_inv_check(varargin{1}); set(handles.DataFile,'String',D.fname); set(handles.Exit,'enable','on') cd(D.path); handles.D = D; Reset(fig, [], handles); guidata(fig,handles); end % INVOKE NAMED SUBFUNCTION OR CALLBACK %-------------------------------------------------------------------------- elseif ischar(varargin{1}) if nargout [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard else feval(varargin{:}); % FEVAL switchyard end else error('Wrong input format.'); end % MAIN FUNCTIONS FOR MODEL SEPCIFICATION AND INVERSION %========================================================================== % --- Executes on button press in CreateMeshes. %-------------------------------------------------------------------------- function CreateMeshes_Callback(hObject, eventdata, handles) handles.D = spm_eeg_inv_mesh_ui(handles.D, handles.D.val, 0); Reset(hObject, eventdata, handles); % --- Executes on button press in Reg2tem. %-------------------------------------------------------------------------- function Reg2tem_Callback(hObject, eventdata, handles) handles.D = spm_eeg_inv_mesh_ui(handles.D, handles.D.val, 1); Reset(hObject, eventdata, handles); % --- Executes on button press in Data Reg. %-------------------------------------------------------------------------- function DataReg_Callback(hObject, eventdata, handles) handles.D = spm_eeg_inv_datareg_ui(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in Forward Model. %-------------------------------------------------------------------------- function Forward_Callback(hObject, eventdata, handles) handles.D = spm_eeg_inv_forward_ui(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in Invert. %-------------------------------------------------------------------------- function Inverse_Callback(hObject, eventdata, handles) handles.D = spm_eeg_invert_ui(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in contrast. %-------------------------------------------------------------------------- function contrast_Callback(hObject, eventdata, handles) handles.D = spm_eeg_inv_results_ui(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in Image. %-------------------------------------------------------------------------- function Image_Callback(hObject, eventdata,handles) handles.D.inv{handles.D.val}.contrast.display = 1; handles.D = spm_eeg_inv_Mesh2Voxels(handles.D); Reset(hObject, eventdata, handles); % LOAD AND EXIT %========================================================================== % --- Executes on button press in Load. %-------------------------------------------------------------------------- function Load_Callback(hObject, eventdata, handles) [S, sts] = spm_select(1, 'mat', 'Select M/EEG mat file'); if ~sts, return; end D = spm_eeg_load(S); [ok, D] = check(D, 'sensfid'); if ~ok if check(D, 'basic') warndlg(['The requested file is not ready for source reconstruction.'... 'See Matlab window for details.']); else warndlg('The meeg file is corrupt or incomplete'); end return end set(handles.DataFile,'String',D.fname); set(handles.Exit,'enable','on'); cd(D.path); handles.D = D; Reset(hObject, eventdata, handles); % --- Executes on button press in Exit. %-------------------------------------------------------------------------- function Exit_Callback(hObject, eventdata, handles) D = handles.D; D.save; varargout{1} = handles.D; assignin('base','D',handles.D) % FUCNTIONS FOR MANAGING DIFFERENT MODELS %========================================================================== % --- Executes on button press in new. %-------------------------------------------------------------------------- function new_Callback(hObject, eventdata, handles) D = handles.D; if ~isfield(D,'inv') val = 1; elseif isempty(D.inv) val = 1; else val = length(D.inv) + 1; D.inv{val} = D.inv{D.val}; end % set D in handles and update analysis specific buttons %-------------------------------------------------------------------------- D.val = val; D = set_CommentDate(D); handles.D = D; set(handles.CreateMeshes,'enable','on') set(handles.Reg2tem,'enable','on') Reset(hObject, eventdata, handles); % --- Executes on button press in next. %-------------------------------------------------------------------------- function next_Callback(hObject, eventdata, handles) if handles.D.val < length(handles.D.inv) handles.D.val = handles.D.val + 1; end Reset(hObject, eventdata, handles); % --- Executes on button press in previous. %-------------------------------------------------------------------------- function previous_Callback(hObject, eventdata, handles) if handles.D.val > 1 handles.D.val = handles.D.val - 1; end Reset(hObject, eventdata, handles); % --- Executes on button press in clear. %-------------------------------------------------------------------------- function clear_Callback(hObject, eventdata, handles) try inv.comment = handles.D.inv{handles.D.val}.comment; inv.date = handles.D.inv{handles.D.val}.date; handles.D.inv{handles.D.val} = inv; end Reset(hObject, eventdata, handles); % --- Executes on button press in delete. %-------------------------------------------------------------------------- function delete_Callback(hObject, eventdata, handles) if ~isempty(handles.D.inv) try str = handles.D.inv{handles.D.val}.comment; warndlg({'you are about to delete:',str{1}}); uiwait end handles.D.inv(handles.D.val) = []; handles.D.val = handles.D.val - 1; end Reset(hObject, eventdata, handles); % Auxillary functions %========================================================================== function Reset(hObject, eventdata, handles) % Check to see if a new analysis is required %-------------------------------------------------------------------------- try set(handles.DataFile,'String',handles.D.fname); end if ~isfield(handles.D,'inv') new_Callback(hObject, eventdata, handles) return end if isempty(handles.D.inv) new_Callback(hObject, eventdata, handles) return end try val = handles.D.val; handles.D.inv{val}; catch handles.D.val = 1; val = 1; end % analysis specification buttons %-------------------------------------------------------------------------- Q = handles.D.inv{val}; % === This is for backward compatibility with SPM8b. Can be removed after % some time if isfield(Q, 'mesh') &&... isfield(Q.mesh, 'tess_ctx') && ~isa(Q.mesh.tess_ctx, 'char') warning(['This is an old version of SPM8b inversion. ',... 'You can only review and export solutions. ',... 'Clear and invert again to update']); Q = rmfield(Q, {'mesh', 'datareg', 'forward'}); end % ========================================================================= set(handles.new, 'enable','on','value',0) set(handles.clear, 'enable','on','value',0) set(handles.delete, 'enable','on','value',0) set(handles.next, 'value',0) set(handles.previous, 'value',0) if val < length(handles.D.inv) set(handles.next, 'enable','on') end if val > 1 set(handles.previous,'enable','on') end if val == 1 set(handles.previous,'enable','off') end if val == length(handles.D.inv) set(handles.next, 'enable','off') end try str = sprintf('%i: %s',val,Q.comment{1}); catch try str = sprintf('%i: %s',val,Q.comment); catch str = sprintf('%i',val); end end set(handles.val, 'Value',val,'string',str); % condition specification %-------------------------------------------------------------------------- try handles.D.con = max(handles.D.con,1); if handles.D.con > length(handles.D.inv{val}.inverse.J); handles.D.con = 1; end catch try handles.D.con = length(handles.D.inv{val}.inverse.J); catch handles.D.con = 0; end end if handles.D.con str = sprintf('condition %d',handles.D.con); set(handles.con,'String',str,'Enable','on','Value',0) else set(handles.con,'Enable','off','Value',0) end % check anaylsis buttons %-------------------------------------------------------------------------- set(handles.DataReg, 'enable','off') set(handles.Forward, 'enable','off') set(handles.Inverse, 'enable','off') set(handles.contrast,'enable','off') set(handles.Image, 'enable','off') set(handles.CheckReg, 'enable','off','Value',0) set(handles.CheckMesh, 'enable','off','Value',0) set(handles.CheckForward, 'enable','off','Value',0) set(handles.CheckInverse, 'enable','off','Value',0) set(handles.CheckContrast,'enable','off','Value',0) set(handles.CheckImage, 'enable','off','Value',0) set(handles.Movie, 'enable','off','Value',0) set(handles.Vis3D, 'enable','off','Value',0) set(handles.Image, 'enable','off','Value',0) set(handles.CreateMeshes,'enable','on') set(handles.Reg2tem,'enable','on') if isfield(Q, 'mesh') set(handles.DataReg, 'enable','on') set(handles.CheckMesh,'enable','on') if isfield(Q,'datareg') && isfield(Q.datareg, 'sensors') set(handles.Forward, 'enable','on') set(handles.CheckReg,'enable','on') if isfield(Q,'forward') && isfield(Q.forward, 'vol') set(handles.Inverse, 'enable','on') set(handles.CheckForward,'enable','on') end end end if isfield(Q,'inverse') && isfield(Q, 'method') set(handles.CheckInverse,'enable','on') if isfield(Q.inverse,'J') set(handles.contrast, 'enable','on') set(handles.Movie, 'enable','on') set(handles.Vis3D, 'enable','on') if isfield(Q,'contrast') set(handles.CheckContrast,'enable','on') set(handles.Image, 'enable','on') if isfield(Q.contrast,'fname') set(handles.CheckImage,'enable','on') end end end end try if strcmp(handles.D.inv{handles.D.val}.method,'Imaging') set(handles.CheckInverse,'String','mip'); set(handles.PST,'Enable','on'); else set(handles.CheckInverse,'String','dip'); set(handles.PST,'Enable','off'); end end set(handles.fig,'Pointer','arrow') assignin('base','D',handles.D) guidata(hObject,handles); % Set Comment and Date for new inverse analysis %-------------------------------------------------------------------------- function S = set_CommentDate(D) clck = fix(clock); if clck(5) < 10 clck = [num2str(clck(4)) ':0' num2str(clck(5))]; else clck = [num2str(clck(4)) ':' num2str(clck(5))]; end D.inv{D.val}.date = strvcat(date,clck); D.inv{D.val}.comment = inputdlg('Comment/Label for this analysis:'); S = D; % CHECKS AND DISPLAYS %========================================================================== % --- Executes on button press in CheckMesh. %-------------------------------------------------------------------------- function CheckMesh_Callback(hObject, eventdata, handles) spm_eeg_inv_checkmeshes(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in CheckReg. %-------------------------------------------------------------------------- function CheckReg_Callback(hObject, eventdata, handles) % check and display registration %-------------------------------------------------------------------------- spm_eeg_inv_checkdatareg(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in CheckForward. %-------------------------------------------------------------------------- function CheckForward_Callback(hObject, eventdata, handles) spm_eeg_inv_checkforward(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in CheckInverse. %-------------------------------------------------------------------------- function CheckInverse_Callback(hObject, eventdata, handles) if strcmp(handles.D.inv{handles.D.val}.method,'Imaging') PST = str2num(get(handles.PST,'String')); spm_eeg_invert_display(handles.D,PST); if length(PST) == 3 && get(handles.extract, 'Value') handles.D = spm_eeg_inv_extract_ui(handles.D, handles.D.val, PST); end elseif strcmp(handles.D.inv{handles.D.val}.method, 'vbecd') spm_eeg_inv_vbecd_disp('init',handles.D); end Reset(hObject, eventdata, handles); % --- Executes on button press in Movie. %-------------------------------------------------------------------------- function Movie_Callback(hObject, eventdata, handles) figure(spm_figure('GetWin','Graphics')); PST(1) = str2num(get(handles.Start,'String')); PST(2) = str2num(get(handles.Stop ,'String')); spm_eeg_invert_display(handles.D,PST); Reset(hObject, eventdata, handles); % --- Executes on button press in CheckContrast. %-------------------------------------------------------------------------- function CheckContrast_Callback(hObject, eventdata, handles) spm_eeg_inv_results_display(handles.D); Reset(hObject, eventdata, handles); % --- Executes on button press in Vis3D. %-------------------------------------------------------------------------- function Vis3D_Callback(hObject, eventdata, handles) Exit_Callback(hObject, eventdata, handles) try spm_eeg_inv_visu3D_api(handles.D); catch spm_eeg_review(handles.D,6,handles.D.val); end Reset(hObject, eventdata, handles); % --- Executes on button press in CheckImage. %-------------------------------------------------------------------------- function CheckImage_Callback(hObject, eventdata, handles) spm_eeg_inv_image_display(handles.D) Reset(hObject, eventdata, handles); % --- Executes on button press in con. %-------------------------------------------------------------------------- function con_Callback(hObject, eventdata, handles) try handles.D.con = handles.D.con + 1; if handles.D.con > length(handles.D.inverse.J); handles.D.con = 1; end end Reset(hObject, eventdata, handles); % --- Executes on button press in help. %-------------------------------------------------------------------------- function help_Callback(hObject, eventdata, handles) edit spm_eeg_inv_help % --- Executes on button press in group. %-------------------------------------------------------------------------- function group_Callback(hObject, eventdata, handles) spm_eeg_inv_group;
github
philippboehmsturm/antx-master
spm_smoothto8bit.m
.m
antx-master/xspm8/spm_smoothto8bit.m
2,427
utf_8
d81ad311f697d9c9ad9899bd8115c3ce
function VO = spm_smoothto8bit(V,fwhm) % 3 dimensional convolution of an image to 8bit data in memory % FORMAT VO = spm_smoothto8bit(V,fwhm) % V - mapped image to be smoothed % fwhm - FWHM of Guassian filter width in mm % VO - smoothed volume in a form that can be used by the % spm_*_vol.mex* functions. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_smoothto8bit.m 4310 2011-04-18 16:07:35Z guillaume $ if nargin>1 && fwhm>0, VO = smoothto8bit(V,fwhm); else VO = V; end return; %_______________________________________________________________________ %_______________________________________________________________________ function VO = smoothto8bit(V,fwhm) % 3 dimensional convolution of an image to 8bit data in memory % FORMAT VO = smoothto8bit(V,fwhm) % V - mapped image to be smoothed % fwhm - FWHM of Guassian filter width in mm % VO - smoothed volume in a form that can be used by the % spm_*_vol.mex* functions. %_______________________________________________________________________ vx = sqrt(sum(V.mat(1:3,1:3).^2)); s = (fwhm./vx./sqrt(8*log(2)) + eps).^2; r = cell(1,3); for i=1:3, r{i}.s = ceil(3.5*sqrt(s(i))); x = -r{i}.s:r{i}.s; r{i}.k = exp(-0.5 * (x.*x)/s(i))/sqrt(2*pi*s(i)); r{i}.k = r{i}.k/sum(r{i}.k); end buff = zeros([V.dim(1:2) r{3}.s*2+1]); VO = V; VO.dt = [spm_type('uint8') spm_platform('bigend')]; V0.dat = uint8(0); V0.dat(VO.dim(1:3)) = uint8(0); VO.pinfo = []; for i=1:V.dim(3)+r{3}.s, if i<=V.dim(3), img = spm_slice_vol(V,spm_matrix([0 0 i]),V.dim(1:2),0); msk = find(~isfinite(img)); img(msk) = 0; buff(:,:,rem(i-1,r{3}.s*2+1)+1) = ... conv2(conv2(img,r{1}.k,'same'),r{2}.k','same'); else buff(:,:,rem(i-1,r{3}.s*2+1)+1) = 0; end if i>r{3}.s, kern = zeros(size(r{3}.k')); kern(rem((i:(i+r{3}.s*2))',r{3}.s*2+1)+1) = r{3}.k'; img = reshape(buff,[prod(V.dim(1:2)) r{3}.s*2+1])*kern; img = reshape(img,V.dim(1:2)); ii = i-r{3}.s; mx = max(img(:)); mn = min(img(:)); if mx==mn, mx=mn+eps; end VO.pinfo(1:2,ii) = [(mx-mn)/255 mn]'; VO.dat(:,:,ii) = uint8(round((img-mn)*(255/(mx-mn)))); end end
github
philippboehmsturm/antx-master
spm_eeg_review_switchDisplay.m
.m
antx-master/xspm8/spm_eeg_review_switchDisplay.m
26,701
utf_8
a75c0568a1bf5e7efc01a71adf3e3e20
function [D] = spm_eeg_review_switchDisplay(D) % Switch between displays in the M/EEG Review facility %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_eeg_review_switchDisplay.m 4136 2010-12-09 22:22:28Z guillaume $ try % only if already displayed stuffs handles = rmfield(D.PSD.handles,'PLOT'); D.PSD.handles = handles; end switch D.PSD.VIZU.modality case 'source' delete(findobj('tag','plotEEG')); [D] = visuRecon(D); case 'info' [D] = DataInfo(D); set(D.PSD.handles.hfig,'userdata',D) otherwise % plot data (EEG/MEG/OTHER) try y = D.data.y(:,D.PSD.VIZU.xlim(1):D.PSD.VIZU.xlim(2)); % ! accelerates memory mapping reading catch D.PSD.VIZU.xlim = [1,min([5e2,D.Nsamples])]; end switch D.PSD.VIZU.type case 1 delete(findobj('tag','plotEEG')) [D] = standardData(D); cameratoolbar('resetcamera') try cameratoolbar('close'); end case 2 delete(findobj('tag','plotEEG')) [D] = scalpData(D); cameratoolbar('resetcamera') try cameratoolbar('close'); end end end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Standard EEG/MEG data plot function [D] = standardData(D) % POS = get(D.PSD.handles.hfig,'position'); switch D.PSD.VIZU.modality case 'eeg' I = D.PSD.EEG.I; scb = 6; case 'meg' I = D.PSD.MEG.I; scb = 6; case 'megplanar' I = D.PSD.MEGPLANAR.I; scb = 6; case 'other' I = D.PSD.other.I; scb = []; % no scalp interpolation button end if isempty(I) uicontrol('style','text',... 'units','normalized','Position',[0.14 0.84 0.7 0.04],... 'string','No channel of this type in the SPM data file !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG') else if ~strcmp(D.transform.ID,'time') uicontrol('style','text',... 'units','normalized','Position',[0.14 0.84 0.7 0.04],... 'string','Not for time-frequency data !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG') else D.PSD.VIZU.type = 1; % add buttons object.type = 'buttons'; object.options.multSelect = 0; object.list = [2;3;4;5;scb]; switch D.PSD.type case 'continuous' object.list = [object.list;9]; case 'epoched' object.list = [object.list;7;11]; if strcmp(D.type,'single') object.list = [object.list;13]; end end D = spm_eeg_review_uis(D,object); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% 'SPM-like' EEG/MEG data plot function [D] = scalpData(D) % POS = get(D.PSD.handles.hfig,'position'); switch D.PSD.VIZU.modality case 'eeg' I = D.PSD.EEG.I; case 'meg' I = D.PSD.MEG.I; case 'megplanar' I = D.PSD.MEGPLANAR.I; case 'other' I = D.PSD.other.I; end if isempty(I) uicontrol('style','text',... 'units','normalized','Position',[0.14 0.84 0.7 0.04],... 'string','No channel of this type in the SPM data file !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG') else if strcmp(D.PSD.type,'continuous') uicontrol('style','text',... 'units','normalized','Position',[0.14 0.84 0.7 0.04],... 'string','Only for epoched data !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG') else D.PSD.VIZU.type = 2; % add buttons object.type = 'buttons'; object.list = [5;7]; if strcmp(D.transform.ID,'time') % only for time data! object.options.multSelect = 1; object.list = [object.list;4;6;11]; else object.options.multSelect = 0; end if strcmp(D.type,'single') object.list = [object.list;13]; end D = spm_eeg_review_uis(D,object); % add axes (!!give channels!!) switch D.PSD.VIZU.modality case 'eeg' I = D.PSD.EEG.I; ylim = D.PSD.EEG.VIZU.ylim; case 'meg' I = D.PSD.MEG.I; ylim = D.PSD.MEG.VIZU.ylim; case 'megplanar' I = D.PSD.MEGPLANAR.I; ylim = D.PSD.MEGPLANAR.VIZU.ylim; case 'other' I = D.PSD.other.I; ylim = D.PSD.other.VIZU.ylim; end object.type = 'axes'; object.what = 'scalp'; object.options.channelPlot = I; object.options.ylim = ylim; D = spm_eeg_review_uis(D,object); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% RENDERING OF INVERSE SOLUTIONS function [D] = visuRecon(D) POS = get(D.PSD.handles.hfig,'position'); if ~~D.PSD.source.VIZU.current isInv = D.PSD.source.VIZU.isInv; Ninv = length(isInv); if D.PSD.source.VIZU.current > Ninv D.PSD.source.VIZU.current = 1; end invN = isInv(D.PSD.source.VIZU.current); pst = D.PSD.source.VIZU.pst; F = D.PSD.source.VIZU.F; ID = D.PSD.source.VIZU.ID; % create uitabs for inverse solutions hInv = D.PSD.handles.tabs.hp; [h] = spm_uitab(hInv,D.PSD.source.VIZU.labels,... D.PSD.source.VIZU.callbacks,'plotEEG',... D.PSD.source.VIZU.current); D.PSD.handles.SubTabs_inv = h; trN = D.PSD.trials.current(1); model = D.other.inv{invN}.inverse; D.PSD.source.VIZU.J = zeros(model.Nd,size(model.T,1)); D.PSD.source.VIZU.J(model.Is,:) = model.J{trN}*model.T'; D.PSD.source.VIZU.miJ = min(min(D.PSD.source.VIZU.J)); D.PSD.source.VIZU.maJ = max(max(D.PSD.source.VIZU.J)); J = D.PSD.source.VIZU.J; miJ = D.PSD.source.VIZU.miJ; maJ = D.PSD.source.VIZU.maJ; time = (model.pst-0).^2; indTime = find(time==min(time)); gridTime = model.pst(indTime); % create axes object.type = 'axes'; object.what = 'source'; object.options.Ninv = Ninv; object.options.miJ = miJ; object.options.maJ = maJ; object.options.pst = pst; D = spm_eeg_review_uis(D,object); % plot BMC free energies in appropriate axes if Ninv>1 if isnan(ID(invN)) xF = find(isnan(ID)); else xF = find(abs(ID-ID(invN))<eps); end if length(xF)>1 D.PSD.handles.hbar = bar(D.PSD.handles.BMCplot,... xF ,F(xF)-min(F(xF)),... 'barwidth',0.5,... 'FaceColor',0.5*[1 1 1],... 'visible','off',... 'tag','plotEEG'); D.PSD.handles.BMCcurrent = plot(D.PSD.handles.BMCplot,... find(xF==invN),0,'ro',... 'visible','off',... 'tag','plotEEG'); set(D.PSD.handles.BMCplot,... 'xtick',xF,... 'xticklabel',D.PSD.source.VIZU.labels(xF),... 'xlim',[0,length(xF)+1]); drawnow end end % Create mesh and related objects Dmesh = D.other.inv{invN}.mesh; mesh.vertices = Dmesh.tess_mni.vert; mesh.faces = Dmesh.tess_mni.face; options.texture = J(:,indTime); options.hfig = D.PSD.handles.hfig; options.ParentAxes = D.PSD.handles.axes; options.tag = 'plotEEG'; options.visible = 'off'; [out] = spm_eeg_render(mesh,options); D.PSD.handles.mesh = out.handles.p; D.PSD.handles.BUTTONS.transp = out.handles.transp; D.PSD.handles.colorbar = out.handles.hc; D.PSD.handles.BUTTONS.ct1 = out.handles.s1; D.PSD.handles.BUTTONS.ct2 = out.handles.s2; % add spheres if constrained inverse solution if isfield(model,'dipfit')... || ~isequal(model.xyz,zeros(1,3)) try xyz = model.dipfit.Lpos; radius = model.dipfit.radius; catch xyz = model.xyz'; radius = model.rad(1); end Np = size(xyz,2); [x,y,z] = sphere(20); axes(D.PSD.handles.axes) for i=1:Np fvc = surf2patch(x.*radius+xyz(1,i),... y.*radius+xyz(2,i),z.*radius+xyz(3,i)); D.PSD.handles.dipSpheres(i) = patch(fvc,... 'parent',D.PSD.handles.axes,... 'facecolor',[1 1 1],... 'edgecolor','none',... 'facealpha',0.5,... 'tag','dipSpheres'); end axis(D.PSD.handles.axes,'tight'); end % plot time courses switch D.PSD.source.VIZU.timeCourses case 1 Jp(1,:) = min(J,[],1); Jp(2,:) = max(J,[],1); D.PSD.source.VIZU.plotTC = plot(D.PSD.handles.axes2,... model.pst,Jp',... 'color',0.5*[1 1 1],... 'visible','off'); % Add virtual electrode try ve = D.PSD.source.VIZU.ve; catch [mj ve] = max(max(abs(J),[],2)); D.PSD.source.VIZU.ve =ve; end Jve = J(D.PSD.source.VIZU.ve,:); try qC = model.qC(ve).*diag(model.qV)'; ci = 1.64*sqrt(qC); D.PSD.source.VIZU.pve2 = plot(D.PSD.handles.axes2,... model.pst,Jve +ci,'b:',model.pst,Jve -ci,'b:'); end D.PSD.source.VIZU.pve = plot(D.PSD.handles.axes2,... model.pst,Jve,... 'color','b',... 'visible','off'); otherwise % this is meant to be extended for displaying something % else than just J (e.g. J^2, etc...) end D.PSD.source.VIZU.lineTime = line('parent',D.PSD.handles.axes2,... 'xdata',[gridTime;gridTime],... 'ydata',[miJ;maJ],... 'visible','off'); set(D.PSD.handles.axes2,... 'ylim',[miJ;maJ]); % create buttons object.type = 'buttons'; object.list = [7;8;10]; object.options.multSelect = 0; object.options.pst = pst; object.options.gridTime = gridTime; D = spm_eeg_review_uis(D,object); % create info text object.type = 'text'; object.what = 'source'; D = spm_eeg_review_uis(D,object); % set graphical object visible set(D.PSD.handles.mesh,'visible','on') set(D.PSD.handles.colorbar,'visible','on') set(D.PSD.handles.axes2,'visible','on') set(D.PSD.source.VIZU.lineTime,'visible','on') set(D.PSD.source.VIZU.plotTC,'visible','on') set(D.PSD.source.VIZU.pve,'visible','on') try set(D.PSD.handles.BMCplot,'visible','on'); set(D.PSD.handles.hbar,'visible','on'); set(D.PSD.handles.BMCcurrent,'visible','on'); set(D.PSD.handles.BMCpanel,'visible','on'); end set(D.PSD.handles.hfig,'userdata',D) else uicontrol('style','text',... 'units','normalized','Position',[0.14 0.84 0.7 0.04],... 'string','There is no (imaging) inverse source reconstruction in this data file !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG') labels{1} = '1'; callbacks{1} = []; hInv = D.PSD.handles.tabs.hp; spm_uitab(hInv,labels,callbacks,'plotEEG'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% GET DATA INFO function [D] = DataInfo(D) switch D.PSD.VIZU.uitable case 'off' % delete graphical objects from other main tabs delete(findobj('tag','plotEEG')); % create info text object.type = 'text'; object.what = 'data'; D = spm_eeg_review_uis(D,object); % add buttons object.type = 'buttons'; object.list = [14,15]; D = spm_eeg_review_uis(D,object); set(D.PSD.handles.BUTTONS.showSensors,... 'position',[0.7 0.9 0.25 0.02]); set(D.PSD.handles.BUTTONS.saveHistory,... 'string','save history as script',... 'position',[0.7 0.87 0.25 0.02]); case 'on' if isempty(D.PSD.VIZU.fromTab) || ~isequal(D.PSD.VIZU.fromTab,'info') % delete graphical objects from other main tabs delete(findobj('tag','plotEEG')); % create info text object.type = 'text'; object.what = 'data'; D = spm_eeg_review_uis(D,object); % Create uitabs for channels and trials try D.PSD.VIZU.info; catch D.PSD.VIZU.info = 4; end labels = {'channels','trials','inv','history'}; callbacks = {'spm_eeg_review_callbacks(''visu'',''main'',''info'',1)',...,... 'spm_eeg_review_callbacks(''visu'',''main'',''info'',2)'... 'spm_eeg_review_callbacks(''visu'',''main'',''info'',3)',... 'spm_eeg_review_callbacks(''visu'',''main'',''info'',4)'}; [h] = spm_uitab(D.PSD.handles.tabs.hp,labels,callbacks,'plotEEG',D.PSD.VIZU.info,0.9); D.PSD.handles.infoTabs = h; else % delete info table (if any) try delete(D.PSD.handles.infoUItable);end % delete info message (if any) try delete(D.PSD.handles.message);end % delete buttons if any try delete(D.PSD.handles.BUTTONS.OKinfo);end try delete(D.PSD.handles.BUTTONS.showSensors);end try delete(D.PSD.handles.BUTTONS.saveHistory);end end % add table and buttons object.type = 'buttons'; object.list = []; switch D.PSD.VIZU.info case 1 % channels info object.list = [object.list;12;14]; nc = length(D.channels); table = cell(nc,5); for i=1:nc table{i,1} = D.channels(i).label; table{i,2} = D.channels(i).type; if D.channels(i).bad table{i,3} = 'yes'; else table{i,3} = 'no'; end if ~isempty(D.channels(i).X_plot2D) table{i,4} = 'yes'; else table{i,4} = 'no'; end table{i,5} = D.channels(i).units; end colnames = {'label','type','bad','position','units'}; [ht,hc] = spm_uitable(table,colnames); set(ht,'units','normalized'); set(hc,'position',[0.1 0.05 0.55 0.7],... 'tag','plotEEG'); D.PSD.handles.infoUItable = ht; D.PSD.handles.infoUItable2 = hc; D = spm_eeg_review_uis(D,object); % this adds the buttons case 2 % trials info object.list = [object.list;12]; ok = 1; if strcmp(D.type,'continuous') try ne = length(D.trials(1).events); if ne == 0 ok = 0; end catch ne = 0; ok = 0; end if ne > 0 table = cell(ne,3); for i=1:ne table{i,1} = D.trials(1).label; table{i,2} = D.trials(1).events(i).type; table{i,3} = num2str(D.trials(1).events(i).value); if ~isempty(D.trials(1).events(i).duration) table{i,4} = num2str(D.trials(1).events(i).duration); else table{i,4} = []; end table{i,5} = num2str(D.trials(1).events(i).time); table{i,6} = 'Undefined'; table{i,7} = num2str(D.trials(1).onset); end colnames = {'label','type','value','duration','time','bad','onset'}; [ht,hc] = spm_uitable(table,colnames); set(ht,'units','normalized'); set(hc,'position',[0.1 0.05 0.74 0.7],... 'tag','plotEEG'); else POS = get(D.PSD.handles.infoTabs.hp,'position'); D.PSD.handles.message = uicontrol('style','text','units','normalized',... 'Position',[0.14 0.84 0.7 0.04].*repmat(POS(3:4),1,2),... 'string','There is no event in this data file !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG'); end else nt = length(D.trials); table = cell(nt,3); if strcmp(D.type,'single') for i=1:nt table{i,1} = D.trials(i).label; ne = length(D.trials(i).events); if ne == 0 || ((ne == 1) && isequal(D.trials(i).events(1).type, 'no events')) table{i,2} = 'no events'; table{i,3} = 'no events'; table{i,4} = 'no events'; table{i,5} = 'no events'; elseif ne >1 table{i,2} = 'multiple events'; table{i,3} = 'multiple events'; table{i,4} = 'multiple events'; table{i,5} = 'multiple events'; else table{i,2} = D.trials(i).events.type; table{i,3} = num2str(D.trials(i).events.value); if ~isempty(D.trials(i).events.duration) table{i,4} = num2str(D.trials(i).events.duration); else table{i,4} = 'Undefined'; end table{i,5} = num2str(D.trials(i).events.time); end if D.trials(i).bad table{i,6} = 'yes'; else table{i,6} = 'no'; end table{i,7} = num2str(D.trials(i).onset); end colnames = {'label','type','value','duration','time','bad','onset'}; [ht,hc] = spm_uitable(table,colnames); set(ht,'units','normalized'); set(hc,'position',[0.1 0.05 0.74 0.7],... 'tag','plotEEG'); else for i=1:nt table{i,1} = D.trials(i).label; table{i,2} = num2str(D.trials(i).repl); if D.trials(i).bad table{i,3} = 'yes'; else table{i,3} = 'no'; end end colnames = {'label','nb of repl','bad'}; [ht,hc] = spm_uitable(table,colnames); set(ht,'units','normalized'); set(hc,'position',[0.1 0.05 0.32 0.7],... 'tag','plotEEG'); end end if ok D.PSD.handles.infoUItable = ht; D.PSD.handles.infoUItable2 = hc; D = spm_eeg_review_uis(D,object); % this adds the buttons end case 3 % inv info object.list = [object.list;12]; isInv = D.PSD.source.VIZU.isInv; % isInv = 1:length(D.other.inv); if numel(isInv) >= 1 %D.PSD.source.VIZU.current ~= 0 Ninv = length(isInv); table = cell(Ninv,12); for i=1:Ninv try table{i,1} = [D.other.inv{isInv(i)}.comment{1},' ']; catch table{i,1} = ' '; end table{i,2} = [D.other.inv{isInv(i)}.date(1,:)]; try table{i,3} = [D.other.inv{isInv(i)}.inverse.modality]; catch try table{i,3} = [D.other.inv{isInv(i)}.modality]; catch table{i,3} = '?'; end end table{i,4} = [D.other.inv{isInv(i)}.method]; try table{i,5} = [num2str(length(D.other.inv{isInv(i)}.inverse.Is))]; catch try table{i,5} = [num2str(D.other.inv{isInv(i)}.inverse.n_dip)]; catch table{i,5} = '?'; end end try table{i,6} = [D.other.inv{isInv(i)}.inverse.type]; catch table{i,6} = '?'; end try table{i,7} = [num2str(floor(D.other.inv{isInv(i)}.inverse.woi(1))),... ' to ',num2str(floor(D.other.inv{isInv(i)}.inverse.woi(2))),' ms']; catch table{i,7} = [num2str(floor(D.other.inv{isInv(i)}.inverse.pst(1))),... ' to ',num2str(floor(D.other.inv{isInv(i)}.inverse.pst(end))),' ms']; end try if D.other.inv{isInv(i)}.inverse.Han han = 'yes'; else han = 'no'; end table{i,8} = [han]; catch table{i,8} = ['?']; end try table{i,9} = [num2str(D.other.inv{isInv(i)}.inverse.lpf),... ' to ',num2str(D.other.inv{isInv(i)}.inverse.hpf), 'Hz']; catch table{i,9} = ['?']; end try table{i,10} = [num2str(size(D.other.inv{isInv(i)}.inverse.T,2))]; catch table{i,10} = '?'; end try table{i,11} = [num2str(D.other.inv{isInv(i)}.inverse.R2)]; catch table{i,11} = '?'; end table{i,12} = [num2str(sum(D.other.inv{isInv(i)}.inverse.F))]; end colnames = {'label','date','modality','model','#dipoles','method',... 'pst','hanning','band pass','#modes','%var','log[p(y|m)]'}; [ht,hc] = spm_uitable('set',table,colnames); set(ht,'units','normalized'); set(hc,'position',[0.1 0.05 0.8 0.7],... 'tag','plotEEG'); D.PSD.handles.infoUItable = ht; D.PSD.handles.infoUItable2 = hc; D = spm_eeg_review_uis(D,object); % this adds the buttons else POS = get(D.PSD.handles.infoTabs.hp,'position'); D.PSD.handles.message = uicontrol('style','text','units','normalized',... 'Position',[0.14 0.84 0.7 0.04].*repmat(POS(3:4),1,2),... 'string','There is no source reconstruction in this data file !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG'); end case 4 % history info object.list = [object.list;15]; table = spm_eeg_history(D); if ~isempty(table) colnames = {'Process','function called','input file','output file'}; [ht,hc] = spm_uitable(table,colnames); set(ht,'units','normalized','editable',0); set(hc,'position',[0.1 0.05 0.8 0.7],... 'tag','plotEEG'); D.PSD.handles.infoUItable = ht; D.PSD.handles.infoUItable2 = hc; else POS = get(D.PSD.handles.infoTabs.hp,'position'); D.PSD.handles.message = uicontrol('style','text','units','normalized',... 'Position',[0.14 0.84 0.7 0.04].*repmat(POS(3:4),1,2),... 'string','The history of this file is not available !',... 'BackgroundColor',0.95*[1 1 1],... 'tag','plotEEG'); end D = spm_eeg_review_uis(D,object); % this adds the buttons end % update data info if action called from 'info' tab... if ~isempty(D.PSD.VIZU.fromTab) && isequal(D.PSD.VIZU.fromTab,'info') [str] = spm_eeg_review_callbacks('get','dataInfo'); set(D.PSD.handles.infoText,'string',str) end end
github
philippboehmsturm/antx-master
spm_dcm_bma_results.m
.m
antx-master/xspm8/spm_dcm_bma_results.m
10,490
utf_8
cfe23c82927c89ef91f7d28a226bff0e
function spm_dcm_bma_results(BMS,method) % Plot histograms from BMA for selected modulatory and driving input % FORMAT spm_dcm_bma_results(BMS,mod_in,drive_in,method) % % Input: % BMS - BMS.mat file % method - inference method (FFX or RFX) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Maria Joao % $Id: spm_dcm_bma_results.m 6071 2014-06-27 12:52:33Z guillaume $ if nargin < 1 fname = spm_select(1,'^BMS.mat$','select BMS.mat file'); else fname = BMS; end % load BMS file %-------------------------------------------------------------------------- load(fname) % Check BMS/BMA method used %-------------------------------------------------------------------------- if nargin < 2 ff = fieldnames(BMS.DCM); Nff = numel(ff); if Nff==2 method = spm_input('Inference method','+1','b','FFX|RFX',['ffx';'rfx']); else % pick the one available if only one method method = char(ff); end end % select method %-------------------------------------------------------------------------- if isfield(BMS.DCM,method) switch method case 'ffx' if isempty(BMS.DCM.ffx.bma) error('No BMA analysis for FFX in BMS file!'); else Nsamp = BMS.DCM.ffx.bma.nsamp; amat = BMS.DCM.ffx.bma.a; bmat = BMS.DCM.ffx.bma.b; cmat = BMS.DCM.ffx.bma.c; dmat = BMS.DCM.ffx.bma.d; end disp('Loading model space...') load(BMS.DCM.ffx.data) load(subj(1).sess(1).model(1).fname) case 'rfx' if isempty(BMS.DCM.rfx.bma) error('No BMA analysis for RFX in BMS file!'); else Nsamp = BMS.DCM.rfx.bma.nsamp; amat = BMS.DCM.rfx.bma.a; bmat = BMS.DCM.rfx.bma.b; cmat = BMS.DCM.rfx.bma.c; dmat = BMS.DCM.rfx.bma.d; end disp('Loading model space...') load(BMS.DCM.rfx.data) load(subj(1).sess(1).model(1).fname) end else msgbox(sprintf('No %s analysis in current BMS.mat file!',method)) return end % number of regions, mod. inputs and names %-------------------------------------------------------------------------- n = size(amat,2); % #region m = size(bmat,3); % #drv/mod inputs mi = size(cmat,2); % Look for modulatory inputs mod_input = []; for ii=1:m % look for bits of B not full of zeros tmp = squeeze(bmat(:,:,ii,:)); if any(tmp(:)) mod_input = [mod_input ii]; end end % Look for effective driving inputs drive_input = []; for ii=1:m % look for bits of not full of zeros tmp = any(cmat(:,ii,:)); if sum(tmp) drive_input = [drive_input ii]; end end % Non linear model ? If so find the driving regions if ~isempty(dmat) nonLin = 1; mod_reg = []; for ii=1:n % look for bits of D not full of zeros tmp = squeeze(dmat(:,:,ii,:)); if any(tmp(:)) mod_reg = [mod_reg ii]; end end else nonLin = 0; mod_reg = []; end if isfield(DCM.Y,'name') for i=1:n, region(i).name = DCM.Y.name{i}; end else for i=1:n, str = sprintf('Region %d',i); region(i).name = spm_input(['Name for ',str],'+1','s'); end end bins = Nsamp/100; % intrinsic connection density %-------------------------------------------------------------------------- F = spm_figure('GetWin','Graphics'); set(F,'name','BMA: results'); FS = spm('FontSizes'); usd.amat = amat; usd.bmat = bmat; usd.cmat = cmat; usd.dmat = dmat; usd.region = region; usd.n = n; usd.m = m; usd.ni = mi; usd.FS = FS; usd.drive_input = drive_input; usd.mod_input = mod_input; if nonLin usd.mod_reg = mod_reg; end usd.bins = bins; usd.Nsamp = Nsamp; set(F,'userdata',usd); clf(F); labels = {'a: int.'}; callbacks = {@plot_a}; for ii = mod_input labels{end+1} = ['b: mod. i#',num2str(ii)]; callbacks{end+1} = @plot_b; end for ii = drive_input labels{end+1} = ['c: drv. i#',num2str(ii)]; callbacks{end+1} = @plot_c; end if nonLin for ii = mod_reg labels{end+1} = ['d: mod. r#',num2str(ii)]; callbacks{end+1} = @plot_d; end end [handles] = spm_uitab(F,labels,callbacks,'BMA_parameters',1); set(handles.htab,'backgroundcolor',[1 1 1]) set(handles.hh,'backgroundcolor',[1 1 1]) set(handles.hp,'HighlightColor',0.8*[1 1 1]) set(handles.hp,'backgroundcolor',[1 1 1]) feval(@plot_a,F) %========================================================================== function plot_a(F) try F; catch F = get(gco,'parent'); end H = findobj(F,'tag','BMA_parameters','type','uipanel'); hc = intersect(findobj('tag','bma_results'),get(H,'children')); if ~isempty(hc) delete(hc) end ud = get(F,'userdata'); titlewin = 'BMA: intrinsic connections (a)'; hTitAx = axes('Parent',H,'Position',[0.2,0.04,0.6,0.02],... 'Visible','off','tag','bma_results'); text(0.55,0,titlewin,'Parent',hTitAx,'HorizontalAlignment','center',... 'VerticalAlignment','baseline','FontWeight','Bold','FontSize',ud.FS(12)) for i=1:ud.n, for j=1:ud.n, k=(i-1)*ud.n+j; subplot(ud.n,ud.n,k); if (i==j) axis off else hist(squeeze(ud.amat(i,j,:)),ud.bins,'r'); amax = max(abs(ud.amat(i,j,:)))*1.05; % enlarge scale by 5% if amax > 0 xlim([-amax amax]) else % case where parameter is constrained to be 0. xlim([-10 10]) end set(gca,'YTickLabel',[]); set(gca,'FontSize',12); title(sprintf('%s to %s',ud.region(j).name,ud.region(i).name)); end end end %========================================================================== function plot_b hf = get(gco,'parent'); ud = get(hf,'userdata'); H = findobj(hf,'tag','BMA_parameters','type','uipanel'); hc = intersect(findobj('tag','bma_results'),get(H,'children')); if ~isempty(hc) delete(hc) end % spot the bmod input index from the fig name ht = intersect(findobj('style','pushbutton'),get(hf,'children')); ht = findobj(ht,'flat','Fontweight','bold'); t_str = get(ht,'string'); b_ind = str2num(t_str(strfind(t_str,'#')+1:end)); i_mod = find(ud.mod_input==b_ind); titlewin = ['BMA: modulatory connections (b',num2str(b_ind),')']; hTitAx = axes('Parent',H,'Position',[0.2,0.04,0.6,0.02],... 'Visible','off','tag','bma_results'); text(0.55,0,titlewin,'Parent',hTitAx,'HorizontalAlignment','center',... 'VerticalAlignment','baseline','FontWeight','Bold','FontSize',ud.FS(12)) for i=1:ud.n, for j=1:ud.n, k=(i-1)*ud.n+j; subplot(ud.n,ud.n,k); if (i==j) axis off else hist(squeeze(ud.bmat(i,j,ud.mod_input(i_mod),:)),ud.bins,'r'); bmax = max(abs(ud.bmat(i,j,ud.mod_input(i_mod),:)))*1.05; % enlarge scale by 5% if bmax > 0 xlim([-bmax bmax]) else % case where parameter is constrained to be 0. xlim([-10 10]) end set(gca,'YTickLabel',[]); set(gca,'FontSize',12); title(sprintf('%s to %s',ud.region(j).name,ud.region(i).name)); end end end %========================================================================== function plot_c hf = get(gco,'parent'); ud = get(hf,'userdata'); H = findobj(hf,'tag','BMA_parameters','type','uipanel'); hc = intersect(findobj('tag','bma_results'),get(H,'children')); if ~isempty(hc) delete(hc) end % spot the c_drv input index from the fig name ht = intersect(findobj('style','pushbutton'),get(hf,'children')); ht = findobj(ht,'flat','Fontweight','bold'); t_str = get(ht,'string'); c_ind = str2num(t_str(strfind(t_str,'#')+1:end)); i_drv = find(ud.drive_input==c_ind); titlewin = ['BMA: input connections (c',num2str(c_ind),')']; hTitAx = axes('Parent',H,'Position',[0.2,0.04,0.6,0.02],... 'Visible','off','tag','bma_results'); text(0.55,0,titlewin,'Parent',hTitAx,'HorizontalAlignment','center',... 'VerticalAlignment','baseline','FontWeight','Bold','FontSize',ud.FS(12)) for j=1:ud.n, subplot(1,ud.n,j); if length(find(ud.cmat(j,ud.drive_input(i_drv),:)==0))==ud.Nsamp plot([0 0],[0 1],'k'); else hist(squeeze(ud.cmat(j,ud.drive_input(i_drv),:)),ud.bins,'r'); cmax = max(abs(ud.cmat(j,ud.drive_input(i_drv),:)))*1.05; % enlarge scale by 5% if cmax > 0 xlim([-cmax cmax]) else % case where parameter is constrained to be 0. xlim([-10 10]) end end set(gca,'YTickLabel',[]); set(gca,'FontSize',12); title(sprintf('%s ',ud.region(j).name)); end %========================================================================== function plot_d hf = get(gco,'parent'); ud = get(hf,'userdata'); H = findobj(hf,'tag','BMA_parameters','type','uipanel'); hc = intersect(findobj('tag','bma_results'),get(H,'children')); if ~isempty(hc) delete(hc) end % spot the d_reg input index from the fig name ht = intersect(findobj('style','pushbutton'),get(hf,'children')); ht = findobj(ht,'flat','Fontweight','bold'); t_str = get(ht,'string'); d_ind = str2num(t_str(strfind(t_str,'#')+1:end)); i_mreg = find(ud.mod_reg==d_ind); titlewin = ['BMA: non-linear connections (d',num2str(d_ind),')']; hTitAx = axes('Parent',H,'Position',[0.2,0.04,0.6,0.02],... 'Visible','off','tag','bma_results'); text(0.55,0,titlewin,'Parent',hTitAx,'HorizontalAlignment','center',... 'VerticalAlignment','baseline','FontWeight','Bold','FontSize',ud.FS(12)) for i=1:ud.n, for j=1:ud.n, k=(i-1)*ud.n+j; subplot(ud.n,ud.n,k); if (i==j) axis off else hist(squeeze(ud.dmat(i,j,ud.mod_reg(i_mreg),:)),ud.bins,'r'); dmax = max(abs(ud.dmat(i,j,ud.mod_reg(i_mreg),:)))*1.05; % enlarge scale by 5% if dmax > 0 xlim([-dmax dmax]) else % case where parameter is constrained to be 0. xlim([-10 10]) end set(gca,'YTickLabel',[]); set(gca,'FontSize',12); title(sprintf('%s to %s',ud.region(j).name,ud.region(i).name)); end end end
github
philippboehmsturm/antx-master
spm_check_filename.m
.m
antx-master/xspm8/spm_check_filename.m
2,311
utf_8
b8de0a161ecbb9d70247bbf51873bb0e
function V = spm_check_filename(V) % Checks paths are valid and tries to restore path names % FORMAT V = spm_check_filename(V) % % V - struct array of file handles %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_check_filename.m 3934 2010-06-17 14:58:25Z guillaume $ if isdeployed, return; end % check filenames %-------------------------------------------------------------------------- for i = 1:length(V) % see if file exists %---------------------------------------------------------------------- if ~spm_existfile(V(i).fname) % try current directory %------------------------------------------------------------------ [p,n,e] = fileparts(V(i).fname); fname = which([n,e]); if ~isempty(fname) V(i).fname = fname; else % try parent directory %-------------------------------------------------------------- cwd = pwd; cd('..') fname = which([n,e]); if ~isempty(fname) V(i).fname = fname; else % try children of parent %---------------------------------------------------------- V = spm_which_filename(V); cd(cwd) return end cd(cwd) end end end %========================================================================== function V = spm_which_filename(V) % get children directories of parent %-------------------------------------------------------------------------- cwd = pwd; cd('..') gwd = genpath(pwd); addpath(gwd); % cycle through handles %-------------------------------------------------------------------------- for i = 1:length(V) try % get relative path (directory and filename) and find in children %------------------------------------------------------------------ j = strfind(V(i).fname,filesep); fname = which(fname(j(end - 1):end)); if ~isempty(fname) V(i).fname = fname; end end end % reset paths %-------------------------------------------------------------------------- rmpath(gwd); cd(cwd);
github
philippboehmsturm/antx-master
spm_defs.m
.m
antx-master/xspm8/spm_defs.m
11,688
utf_8
217cf06b73a160542c57789ec5490b4f
function out = spm_defs(job) % Various deformation field utilities. % FORMAT out = spm_defs(job) % job - a job created via spm_config_defs.m and spm_jobman.m % out - a struct with fields % .def - file name of created deformation field % .warped - file names of warped images % % See spm_config_defs.m for more information. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_defs.m 4194 2011-02-05 18:08:06Z ged $ [Def,mat] = get_comp(job.comp); [dpath ipath] = get_paths(job); out.def = save_def(Def,mat,strvcat(job.ofname),dpath); out.warped = apply_def(Def,mat,strvcat(job.fnames),ipath,job.interp); %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_comp(job) % Return the composition of a number of deformation fields. if isempty(job), error('Empty list of jobs in composition'); end; [Def,mat] = get_job(job{1}); for i=2:numel(job), Def1 = Def; mat1 = mat; [Def,mat] = get_job(job{i}); M = inv(mat1); for j=1:size(Def{1},3) d0 = {double(Def{1}(:,:,j)), double(Def{2}(:,:,j)),double(Def{3}(:,:,j))}; d{1} = M(1,1)*d0{1}+M(1,2)*d0{2}+M(1,3)*d0{3}+M(1,4); d{2} = M(2,1)*d0{1}+M(2,2)*d0{2}+M(2,3)*d0{3}+M(2,4); d{3} = M(3,1)*d0{1}+M(3,2)*d0{2}+M(3,3)*d0{3}+M(3,4); Def{1}(:,:,j) = single(spm_sample_vol(Def1{1},d{:},[1,NaN])); Def{2}(:,:,j) = single(spm_sample_vol(Def1{2},d{:},[1,NaN])); Def{3}(:,:,j) = single(spm_sample_vol(Def1{3},d{:},[1,NaN])); end; end; %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_job(job) % Determine what is required, and pass the relevant bit of the % job out to the appropriate function. fn = fieldnames(job); fn = fn{1}; switch fn case {'comp'} [Def,mat] = get_comp(job.(fn)); case {'def'} [Def,mat] = get_def(job.(fn)); case {'dartel'} [Def,mat] = get_dartel(job.(fn)); case {'sn2def'} [Def,mat] = get_sn2def(job.(fn)); case {'inv'} [Def,mat] = get_inv(job.(fn)); case {'id'} [Def,mat] = get_id(job.(fn)); case {'idbbvox'} [Def,mat] = get_idbbvox(job.(fn)); otherwise error('Unrecognised job type'); end; %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_sn2def(job) % Convert a SPM _sn.mat file into a deformation field, and return it. vox = job.vox; bb = job.bb; sn = load(job.matname{1}); if any(isfinite(bb(:))) || any(isfinite(vox)), [bb0,vox0] = spm_get_bbox(sn.VG(1), 'old'); if any(~isfinite(vox)), vox = vox0; end; if any(~isfinite(bb)), bb = bb0; end; bb = sort(bb); vox = abs(vox); % Adjust bounding box slightly - so it rounds to closest voxel. bb(:,1) = round(bb(:,1)/vox(1))*vox(1); bb(:,2) = round(bb(:,2)/vox(2))*vox(2); bb(:,3) = round(bb(:,3)/vox(3))*vox(3); M = sn.VG(1).mat; vxg = sqrt(sum(M(1:3,1:3).^2)); ogn = M\[0 0 0 1]'; ogn = ogn(1:3)'; % Convert range into range of voxels within template image x = (bb(1,1):vox(1):bb(2,1))/vxg(1) + ogn(1); y = (bb(1,2):vox(2):bb(2,2))/vxg(2) + ogn(2); z = (bb(1,3):vox(3):bb(2,3))/vxg(3) + ogn(3); og = -vxg.*ogn; of = -vox.*(round(-bb(1,:)./vox)+1); M1 = [vxg(1) 0 0 og(1) ; 0 vxg(2) 0 og(2) ; 0 0 vxg(3) og(3) ; 0 0 0 1]; M2 = [vox(1) 0 0 of(1) ; 0 vox(2) 0 of(2) ; 0 0 vox(3) of(3) ; 0 0 0 1]; mat = sn.VG(1).mat*inv(M1)*M2; % dim = [length(x) length(y) length(z)]; else dim = sn.VG(1).dim; x = 1:dim(1); y = 1:dim(2); z = 1:dim(3); mat = sn.VG(1).mat; end [X,Y] = ndgrid(x,y); st = size(sn.Tr); if (prod(st) == 0), affine_only = true; basX = 0; basY = 0; basZ = 0; else affine_only = false; basX = spm_dctmtx(sn.VG(1).dim(1),st(1),x-1); basY = spm_dctmtx(sn.VG(1).dim(2),st(2),y-1); basZ = spm_dctmtx(sn.VG(1).dim(3),st(3),z-1); end, Def = single(0); Def(numel(x),numel(y),numel(z)) = 0; Def = {Def; Def; Def}; for j=1:length(z) if (~affine_only) tx = reshape( reshape(sn.Tr(:,:,:,1),st(1)*st(2),st(3)) *basZ(j,:)', st(1), st(2) ); ty = reshape( reshape(sn.Tr(:,:,:,2),st(1)*st(2),st(3)) *basZ(j,:)', st(1), st(2) ); tz = reshape( reshape(sn.Tr(:,:,:,3),st(1)*st(2),st(3)) *basZ(j,:)', st(1), st(2) ); X1 = X + basX*tx*basY'; Y1 = Y + basX*ty*basY'; Z1 = z(j) + basX*tz*basY'; end Mult = sn.VF.mat*sn.Affine; if (~affine_only) X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + Mult(1,3)*Z1 + Mult(1,4); Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + Mult(2,3)*Z1 + Mult(2,4); Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + Mult(3,3)*Z1 + Mult(3,4); else X2= Mult(1,1)*X + Mult(1,2)*Y + (Mult(1,3)*z(j) + Mult(1,4)); Y2= Mult(2,1)*X + Mult(2,2)*Y + (Mult(2,3)*z(j) + Mult(2,4)); Z2= Mult(3,1)*X + Mult(3,2)*Y + (Mult(3,3)*z(j) + Mult(3,4)); end Def{1}(:,:,j) = single(X2); Def{2}(:,:,j) = single(Y2); Def{3}(:,:,j) = single(Z2); end; %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_def(job) % Load a deformation field saved as an image P = [repmat(job{:},3,1), [',1,1';',1,2';',1,3']]; V = spm_vol(P); Def = cell(3,1); Def{1} = spm_load_float(V(1)); Def{2} = spm_load_float(V(2)); Def{3} = spm_load_float(V(3)); mat = V(1).mat; %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_dartel(job) % Integrate a DARTEL flow field N = nifti(job.flowfield{1}); y = spm_dartel_integrate(N.dat,job.times,job.K); Def = cell(3,1); if all(job.times == [0 1]), M = single(N.mat); mat = N.mat0; else M = single(N.mat0); mat = N.mat; end Def{1} = y(:,:,:,1)*M(1,1) + y(:,:,:,2)*M(1,2) + y(:,:,:,3)*M(1,3) + M(1,4); Def{2} = y(:,:,:,1)*M(2,1) + y(:,:,:,2)*M(2,2) + y(:,:,:,3)*M(2,3) + M(2,4); Def{3} = y(:,:,:,1)*M(3,1) + y(:,:,:,2)*M(3,2) + y(:,:,:,3)*M(3,3) + M(3,4); %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_id(job) % Get an identity transform based on an image volume. N = nifti(job.space{1}); d = [size(N.dat),1]; d = d(1:3); mat = N.mat; Def = cell(3,1); [y1,y2,y3] = ndgrid(1:d(1),1:d(2),1:d(3)); Def{1} = single(y1*mat(1,1) + y2*mat(1,2) + y3*mat(1,3) + mat(1,4)); Def{2} = single(y1*mat(2,1) + y2*mat(2,2) + y3*mat(2,3) + mat(2,4)); Def{3} = single(y1*mat(3,1) + y2*mat(3,2) + y3*mat(3,3) + mat(3,4)); %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_idbbvox(job) % Get an identity transform based on bounding box and voxel size. % This will produce a transversal image. d = floor(diff(job.bb)./job.vox); d(d == 0) = 1; mat = diag([-1 1 1 1])*spm_matrix([job.bb(1,:) 0 0 0 job.vox]); Def = cell(3,1); [y1,y2,y3] = ndgrid(1:d(1),1:d(2),1:d(3)); Def{1} = single(y1*mat(1,1) + y2*mat(1,2) + y3*mat(1,3) + mat(1,4)); Def{2} = single(y1*mat(2,1) + y2*mat(2,2) + y3*mat(2,3) + mat(2,4)); Def{3} = single(y1*mat(3,1) + y2*mat(3,2) + y3*mat(3,3) + mat(3,4)); %_______________________________________________________________________ %_______________________________________________________________________ function [Def,mat] = get_inv(job) % Invert a deformation field (derived from a composition of deformations) VT = spm_vol(job.space{:}); [Def0,mat0] = get_comp(job.comp); M0 = mat0; M1 = inv(VT.mat); M0(4,:) = [0 0 0 1]; M1(4,:) = [0 0 0 1]; [Def{1},Def{2},Def{3}] = spm_invdef(Def0{:},VT.dim(1:3),M1,M0); mat = VT.mat; %_______________________________________________________________________ %_______________________________________________________________________ function [dpath,ipath] = get_paths(job) switch char(fieldnames(job.savedir)) case 'savepwd' dpath = pwd; ipath = pwd; case 'savesrc' dpath = get_dpath(job); ipath = ''; case 'savedef' dpath = get_dpath(job); ipath = dpath; case 'saveusr' dpath = job.savedir.saveusr{1}; ipath = dpath; end %_______________________________________________________________________ %_______________________________________________________________________ function dpath = get_dpath(job) % Determine what is required, and pass the relevant bit of the % job out to the appropriate function. fn = fieldnames(job); fn = fn{1}; switch fn case {'comp'} dpath = get_dpath(job.(fn){1}); case {'def'} dpath = fileparts(job.(fn){1}); case {'dartel'} dpath = fileparts(job.(fn).flowfield{1}); case {'sn2def'} dpath = fileparts(job.(fn).matname{1}); case {'inv'} dpath = fileparts(job.(fn).space{1}); case {'id'} dpath = fileparts(job.(fn).space{1}); otherwise error('Unrecognised job type'); end; %_______________________________________________________________________ %_______________________________________________________________________ function fname = save_def(Def,mat,ofname,odir) % Save a deformation field as an image if isempty(ofname), fname = {}; return; end; fname = {fullfile(odir,['y_' ofname '.nii'])}; dim = [size(Def{1},1) size(Def{1},2) size(Def{1},3) 1 3]; dtype = 'FLOAT32'; off = 0; scale = 1; inter = 0; dat = file_array(fname{1},dim,dtype,off,scale,inter); N = nifti; N.dat = dat; N.mat = mat; N.mat0 = mat; N.mat_intent = 'Aligned'; N.mat0_intent = 'Aligned'; N.intent.code = 'VECTOR'; N.intent.name = 'Mapping'; N.descrip = 'Deformation field'; create(N); N.dat(:,:,:,1,1) = Def{1}; N.dat(:,:,:,1,2) = Def{2}; N.dat(:,:,:,1,3) = Def{3}; return; %_______________________________________________________________________ %_______________________________________________________________________ function ofnames = apply_def(Def,mat,fnames,odir,intrp) % Warp an image or series of images according to a deformation field intrp = [intrp*[1 1 1], 0 0 0]; ofnames = cell(size(fnames,1),1); for i=1:size(fnames,1), V = spm_vol(fnames(i,:)); M = inv(V.mat); [pth,nam,ext,num] = spm_fileparts(deblank(fnames(i,:))); if isempty(odir) % use same path as source image opth = pth; else % use prespecified path opth = odir; end ofnames{i} = fullfile(opth,['w',nam,ext]); Vo = struct('fname',ofnames{i},... 'dim',[size(Def{1},1) size(Def{1},2) size(Def{1},3)],... 'dt',V.dt,... 'pinfo',V.pinfo,... 'mat',mat,... 'n',V.n,... 'descrip',V.descrip); ofnames{i} = [ofnames{i} num]; C = spm_bsplinc(V,intrp); Vo = spm_create_vol(Vo); for j=1:size(Def{1},3) d0 = {double(Def{1}(:,:,j)), double(Def{2}(:,:,j)),double(Def{3}(:,:,j))}; d{1} = M(1,1)*d0{1}+M(1,2)*d0{2}+M(1,3)*d0{3}+M(1,4); d{2} = M(2,1)*d0{1}+M(2,2)*d0{2}+M(2,3)*d0{3}+M(2,4); d{3} = M(3,1)*d0{1}+M(3,2)*d0{2}+M(3,3)*d0{3}+M(3,4); dat = spm_bsplins(C,d{:},intrp); Vo = spm_write_plane(Vo,dat,j); end; end; return;
github
philippboehmsturm/antx-master
spm_sp.m
.m
antx-master/xspm8/spm_sp.m
39,708
utf_8
180830974ed2715dc2f976a356081a60
function varargout = spm_sp(varargin) % Orthogonal (design) matrix space setting & manipulation % FORMAT varargout = spm_spc(action,varargin) % % This function computes the different projectors related to the row % and column spaces X. It should be used to avoid redundant computation % of svd on large X matrix. It is divided into actions that set up the % space, (Create,Set,...) and actions that compute projections (pinv, % pinvXpX, pinvXXp, ...) This is motivated by the problem of rounding % errors that can invalidate some computation and is a tool to work % with spaces. % % The only thing that is not easily computed is the null space of % the line of X (assuming size(X,1) > size(X,2)). % To get this space (a basis of it or a projector on it) use spm_sp on X'. % % The only restriction on the use of the space structure is when X is % so big that you can't fit X and its svd in memory at the same time. % Otherwise, the use of spm_sp will generally speed up computations and % optimise memory use. % % Note that since the design matrix is stored in the space structure, % there is no need to keep a separate copy of it. % % ---------------- % % The structure is: % x = struct(... % 'X', [],... % Mtx % 'tol', [],... % tolerance % 'ds', [],... % vectors of singular values % 'u', [],... % u as in X = u*diag(ds)*v' % 'v', [],... % v as in X = u*diag(ds)*v' % 'rk', [],... % rank % 'oP', [],... % orthogonal projector on X % 'oPp', [],... % orthogonal projector on X' % 'ups', [],... % space in which this one is embeded % 'sus', []); % subspace % % The basic required fields are X, tol, ds, u, v, rk. % % ====================================================================== % % FORMAT x = spm_sp('Set',X) % Set up space structure, storing matrix, singular values, rank & tolerance % X - a (design) matrix (2D) % x - the corresponding space structure, with basic fields filled in % The SVD is an "economy size" svd, using MatLab's svd(X,0) % % % FORMAT r = spm_sp('oP',x[,Y]) % FORMAT r = spm_sp('oPp',x[,Y]) % Return orthogonal projectors, or orthogonal projection of data Y (if passed) % x - space structure of matrix X % r - ('oP' usage) ortho. projection matrix projecting into column space of x.X % - ('oPp' usage) ortho. projection matrix projecting into row space of x.X % Y - data (optional) % - If data are specified then the corresponding projection of data is % returned. This is usually more efficient that computing and applying % the projection matrix directly. % % % FORMAT pX = spm_sp('pinv',x) % Returns a pseudo-inverse of X - pinv(X) - computed efficiently % x - space structure of matrix X % pX - pseudo-inverse of X % This is the same as MatLab's pinv - the Moore-Penrose pseudoinverse % ( Note that because size(pinv(X)) == size(X'), it is not generally ) % ( useful to compute pinv(X)*Data sequentially (as is the case for ) % ( 'res' or 'oP') ) % % % FORMAT pXpX = spm_sp('pinvxpx',x) % Returns a pseudo-inverse of X'X - pinv(X'*X) - computed efficiently % x - space structure of matrix X % pXpX - pseudo-inverse of (X'X) % ( Note that because size(pinv(X'*X)) == [size(X,2) size(X,2)], ) % ( it is not useful to compute pinv(X'X)*Data sequentially unless ) % ( size(X,1) < size(X,2) ) % % % FORMAT XpX = spm_sp('xpx',x) % Returns (X'X) - computed efficiently % x - space structure of matrix X % XpX - (X'X) % % % FORMAT pXXp = spm_sp('pinvxxp',x) % Returns a pseudo-inverse of XX' - pinv(X*X') - computed efficiently % x - space structure of matrix X % pXXp - pseudo-inverse of (XX') % % % FORMAT XXp = spm_sp('xxp',x) % Returns (XX') - computed efficiently % x - space structure of matrix X % XXp - (XX') % % % FORMAT b = spm_sp('isinsp',x,c[,tol]) % FORMAT b = spm_sp('isinspp',x,c[,tol]) % Check whether vectors c are in the column/row space of X % x - space structure of matrix X % c - vector(s) (Multiple vectors passed as a matrix) % tol - (optional) tolerance (for rounding error) % [defaults to tolerance specified in space structure: x.tol] % b - ('isinsp' usage) true if c is in the column space of X % - ('isinspp' usage) true if c is in the column space of X % % FORMAT b = spm_sp('eachinsp',x,c[,tol]) % FORMAT b = spm_sp('eachinspp',x,c[,tol]) % Same as 'isinsp' and 'isinspp' but returns a logical row vector of % length size(c,2). % % FORMAT N = spm_sp('n',x) % Simply returns the null space of matrix X (same as matlab NULL) % (Null space = vectors associated with zero eigenvalues) % x - space structure of matrix X % N - null space % % % FORMAT r = spm_sp('nop',x[,Y]) % Orthogonal projector onto null space of X, or projection of data Y (if passed) % x - space structure of matrix X % Y - (optional) data % r - (if no Y passed) orthogonal projection matrix into the null space of X % - (if Y passed ) orthogonal projection of data into the null space of X % ( Note that if xp = spm_sp('set',x.X'), we have: ) % ( spm_sp('nop',x) == spm_sp('res',xp) ) % ( or, equivalently: ) % ( spm_sp('nop',x) + spm_sp('oP',xp) == eye(size(xp.X,1)); ) % % % FORMAT r = spm_sp('res',x[,Y]) % Returns residual formaing matrix wirit column space of X, or residuals (if Y) % x - space structure of matrix X % Y - (optional) data % r - (if no Y passed) residual forming matrix for design matrix X % - (if Y passed ) residuals, i.e. residual forming matrix times data % ( This will be more efficient than % ( spm_sp('res',x)*Data, when size(X,1) > size(X,2) % Note that this can also be seen as the orthogonal projector onto the % null space of x.X' (which is not generally computed in svd, unless % size(X,1) < size(X,2)). % % % FORMAT oX = spm_sp('ox', x) % FORMAT oXp = spm_sp('oxp',x) % Returns an orthonormal basis for X ('ox' usage) or X' ('oxp' usage) % x - space structure of matrix X % oX - orthonormal basis for X - same as orth(x.X) % xOp - *an* orthonormal for X' (but not the same as orth(x.X')) % % % FORMAT b = spm_sp('isspc',x) % Check a variable is a structure with the right fields for a space structure % x - candidate variable % b - true if x is a structure with fieldnames corresponding to spm_sp('create') % % % FORMAT [b,e] = spm_sp('issetspc',x) % Test whether a variable is a space structure with the basic fields set % x - candidate variable % b - true is x is a structure with fieldnames corresponding to % spm_sp('Create'), which has it's basic fields filled in. % e - string describing why x fails the issetspc test (if it does) % This is simply a gateway function combining spm_sp('isspc',x) with % the internal subfunction sf_isset, which checks that the basic fields % are not empty. See sf_isset (below). % %----------------------------------------------------------------------- % SUBFUNCTIONS: % % FORMAT b = sf_isset(x) % Checks that the basic fields are non-empty (doesn't check they're right!) % x - space structure % b - true if the basic fields are non-empty %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean-Baptiste Poline % $Id: spm_sp.m 1143 2008-02-07 19:33:33Z spm $ if nargin==0 error('Do what? no arguments given...') else action = varargin{1}; end %- check the very basics arguments switch lower(action), case {'create','set','issetspc','isspc'} %- do nothing otherwise, if nargin==1, error('No space : can''t do much!'), end [ok,str] = spm_sp('issetspc',varargin{2}); if ~ok, error(str), else, sX = varargin{2}; end; end; switch lower(action), case 'create' %-Create space structure %======================================================================= % x = spm_sp('Create') varargout = {sf_create}; case 'set' %-Set singular values, space basis, rank & tolerance %======================================================================= % x = spm_sp('Set',X) if nargin==1 error('No design matrix : can''t do much!'), else X = varargin{2}; end if isempty(X), varargout = {sf_create}; return, end %- only sets plain matrices %- check X has 2 dim only if max(size(size(X))) > 2, error('Too many dim in the set'), end if ~isnumeric(X), error('only sets numeric matrices'), end varargout = {sf_set(X)}; case {'p', 'transp'} %-Transpose space of X %======================================================================= switch nargin case 2 varargout = {sf_transp(sX)}; otherwise error('too many input argument in spm_sp'); end % switch nargin case {'op', 'op:'} %-Orthogonal projectors on space of X %======================================================================= % r = spm_sp('oP', sX[,Y]) % r = spm_sp('oP:', sX[,Y]) %- set to 0 less than tolerence values % % if isempty(Y) returns as if Y not given %----------------------------------------------------------------------- switch nargin case 2 switch lower(action), case 'op' varargout = {sf_op(sX)}; case 'op:' varargout = {sf_tol(sf_op(sX),sX.tol)}; end %- switch lower(action), case 3 Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s1(sX), error('Dim dont match'); end; switch lower(action), case 'op' varargout = {sf_op(sX)*Y}; case 'op:' varargout = {sf_tol(sf_op(sX)*Y,sX.tol)}; end % switch lower(action) otherwise error('too many input argument in spm_sp'); end % switch nargin case {'opp', 'opp:'} %-Orthogonal projectors on space of X' %======================================================================= % r = spm_sp('oPp',sX[,Y]) % r = spm_sp('oPp:',sX[,Y]) %- set to 0 less than tolerence values % % if isempty(Y) returns as if Y not given %----------------------------------------------------------------------- switch nargin case 2 switch lower(action), case 'opp' varargout = {sf_opp(sX)}; case 'opp:' varargout = {sf_tol(sf_opp(sX),sX.tol)}; end %- switch lower(action), case 3 Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error('Dim dont match'); end; switch lower(action), case 'opp' varargout = {sf_opp(sX)*Y}; case 'opp:' varargout = {sf_tol(sf_opp(sX)*Y,sX.tol)}; end % switch lower(action) otherwise error('too many input argument in spm_sp'); end % switch nargin case {'x-','x-:'} %-Pseudo-inverse of X - pinv(X) %======================================================================= % = spm_sp('x-',x) switch nargin case 2 switch lower(action), case {'x-'} varargout = { sf_pinv(sX) }; case {'x-:'} varargout = {sf_tol( sf_pinv(sX), sf_t(sX) )}; end case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s1(sX), error(['Dim dont match ' action]); end switch lower(action), case {'x-'} varargout = { sf_pinv(sX)*Y }; case {'x-:'} varargout = {sf_tol( sf_pinv(sX)*Y, sf_t(sX) )}; end otherwise error(['too many input argument in spm_sp ' action]); end % switch nargin case {'xp-','xp-:','x-p','x-p:'} %- Pseudo-inverse of X' %======================================================================= % pX = spm_sp('xp-',x) switch nargin case 2 switch lower(action), case {'xp-','x-p'} varargout = { sf_pinvxp(sX) }; case {'xp-:','x-p:'} varargout = {sf_tol( sf_pinvxp(sX), sf_t(sX) )}; end case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error(['Dim dont match ' action]); end switch lower(action), case {'xp-','x-p'} varargout = { sf_pinvxp(sX)*Y }; case {'xp-:','x-p:'} varargout = {sf_tol( sf_pinvxp(sX)*Y, sf_t(sX) )}; end otherwise error(['too many input argument in spm_sp ' action]); end % switch nargin case {'cukxp-','cukxp-:'} %- Coordinates of pinv(X') in the base of uk %======================================================================= % pX = spm_sp('cukxp-',x) switch nargin case 2 switch lower(action), case {'cukxp-'} varargout = { sf_cukpinvxp(sX) }; case {'cukxp-:'} varargout = {sf_tol(sf_cukpinvxp(sX),sX.tol)}; end case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error(['Dim dont match ' action]); end switch lower(action), case {'cukxp-'} varargout = { sf_cukpinvxp(sX)*Y }; case {'cukxp-:'} varargout = {sf_tol(sf_cukpinvxp(sX)*Y,sX.tol)}; end otherwise error(['too many input argument in spm_sp ' action]); end % switch nargin case {'cukx','cukx:'} %- Coordinates of X in the base of uk %======================================================================= % pX = spm_sp('cukx',x) switch nargin case 2 switch lower(action), case {'cukx'} varargout = { sf_cukx(sX) }; case {'cukx:'} varargout = {sf_tol(sf_cukx(sX),sX.tol)}; end case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error(['Dim dont match ' action]); end switch lower(action), case {'cukx'} varargout = { sf_cukx(sX)*Y }; case {'cukx:'} varargout = {sf_tol(sf_cukx(sX)*Y,sX.tol)}; end otherwise error(['too many input argument in spm_sp ' action]); end % switch nargin case {'rk'} %- Returns rank %======================================================================= varargout = { sf_rk(sX) }; case {'ox', 'oxp'} %-Orthonormal basis sets for X / X' %======================================================================= % oX = spm_sp('ox', x) % oXp = spm_sp('oxp',x) if sf_rk(sX) > 0 switch lower(action) case 'ox' varargout = {sf_uk(sX)}; case 'oxp' varargout = {sf_vk(sX)}; end else switch lower(action) case 'ox' varargout = {zeros(sf_s1(sX),1)}; case 'oxp' varargout = {zeros(sf_s2(sX),1)}; end end case {'x', 'xp'} %- X / X' robust to spm_sp changes %======================================================================= % X = spm_sp('x', x) % X' = spm_sp('xp',x) switch lower(action) case 'x', varargout = {sX.X}; case 'xp', varargout = {sX.X'}; end case {'xi', 'xpi'} %- X(:,i) / X'(:,i) robust to spm_sp changes %======================================================================= % X = spm_sp('xi', x) % X' = spm_sp('xpi',x) i = varargin{3}; % NO CHECKING on i !!! assumes correct switch lower(action) case 'xi', varargout = {sX.X(:,i)}; case 'xpi', varargout = {sX.X(i,:)'}; end case {'uk','uk:'} %- Returns u(:,1:r) %======================================================================= % pX = spm_sp('uk',x) % Notice the difference with 'ox' : 'ox' always returns a basis of the % proper siwe while this returns empty if rank is null warning('can''t you use ox ?'); switch nargin case 2 switch lower(action), case {'uk'} varargout = { sf_uk(sX) }; case {'uk:'} varargout = { sf_tol(sf_uk(sX),sX.tol) }; end case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_rk(sX), error(['Dim dont match ' action]); end switch lower(action), case {'uk'} varargout = { sf_uk(sX)*Y }; case {'uk:'} varargout = {sf_tol(sf_uk(sX)*Y,sX.tol)}; end otherwise error(['too many input argument in spm_sp ' action]); end % switch nargin case {'pinvxpx', 'xpx-', 'pinvxpx:', 'xpx-:',} %- Pseudo-inv of (X'X) %======================================================================= % pXpX = spm_sp('pinvxpx',x [,Y]) switch nargin case 2 switch lower(action), case {'xpx-','pinvxpx'} varargout = {sf_pinvxpx(sX)}; case {'xpx-:','pinvxpx:'} varargout = {sf_tol(sf_pinvxpx(sX),sX.tol)}; end %- case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error('Dim dont match'); end; switch lower(action), case {'xpx-','pinvxpx'} varargout = {sf_pinvxpx(sX)*Y}; case {'xpx-:','pinvxpx:'} varargout = {sf_tol(sf_pinvxpx(sX)*Y,sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'xpx','xpx:'} %-Computation of (X'*X) %======================================================================= % XpX = spm_sp('xpx',x [,Y]) switch nargin case 2 switch lower(action), case {'xpx'} varargout = {sf_xpx(sX)}; case {'xpx:'} varargout = {sf_tol(sf_xpx(sX),sX.tol)}; end %- case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error('Dim dont match'); end; switch lower(action), case {'xpx'} varargout = {sf_xpx(sX)*Y}; case {'xpx:'} varargout = {sf_tol(sf_xpx(sX)*Y,sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'cx->cu','cx->cu:'} %-coordinates in the basis of X -> basis u %======================================================================= % % returns cu such that sX.X*cx == sX.u*cu switch nargin case 2 switch lower(action), case {'cx->cu'} varargout = {sf_cxtwdcu(sX)}; case {'cx->cu:'} varargout = {sf_tol(sf_cxtwdcu(sX),sX.tol)}; end %- case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error('Dim dont match'); end; switch lower(action), case {'cx->cu'} varargout = {sf_cxtwdcu(sX)*Y}; case {'cx->cu:'} varargout = {sf_tol(sf_cxtwdcu(sX)*Y,sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'xxp-','xxp-:','pinvxxp','pinvxxp:'} %-Pseudo-inverse of (XX') %======================================================================= % pXXp = spm_sp('pinvxxp',x [,Y]) switch nargin case 2 switch lower(action), case {'xxp-','pinvxxp'} varargout = {sf_pinvxxp(sX)}; case {'xxp-:','pinvxxp:'} varargout = {sf_tol(sf_pinvxxp(sX),sX.tol)}; end %- case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s1(sX), error('Dim dont match'); end; switch lower(action), case {'xxp-','pinvxxp'} varargout = {sf_pinvxxp(sX)*Y}; case {'xxp-:','pinvxxp:'} varargout = {sf_tol(sf_pinvxxp(sX)*Y,sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'xxp','xxp:'} %-Computation of (X*X') %======================================================================= % XXp = spm_sp('xxp',x) switch nargin case 2 switch lower(action), case {'xxp'} varargout = {sf_xxp(sX)}; case {'xxp:'} varargout = {sf_tol(sf_xxp(sX),sX.tol)}; end %- case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s1(sX), error('Dim dont match'); end; switch lower(action), case {'xxp'} varargout = {sf_xxpY(sX,Y)}; case {'xxp:'} varargout = {sf_tol(sf_xxpY(sX,Y),sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'^p','^p:'} %-Computation of v*(diag(s.^n))*v' %======================================================================= switch nargin case {2,3} if nargin==2, n = 1; else n = varargin{3}; end; if ~isnumeric(n), error('~isnumeric(n)'), end; switch lower(action), case {'^p'} varargout = {sf_jbp(sX,n)}; case {'^p:'} varargout = {sf_tol(sf_jbp(sX,n),sX.tol)}; end %- case 4 n = varargin{3}; if ~isnumeric(n), error('~isnumeric(n)'), end; Y = varargin{4}; if isempty(Y), varargout = {spm_sp(action,sX,n)}; return, end if size(Y,1) ~= sf_s2(sX), error('Dim dont match'); end; switch lower(action), case {'^p'} varargout = {sf_jbp(sX,n)*Y}; case {'^p:'} varargout = {sf_tol(sf_jbp(sX,n)*Y,sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'^','^:'} %-Computation of v*(diag(s.^n))*v' %======================================================================= switch nargin case {2,3} if nargin==2, n = 1; else n = varargin{3}; end; if ~isnumeric(n), error('~isnumeric(n)'), end; switch lower(action), case {'^'} varargout = {sf_jb(sX,n)}; case {'^:'} varargout = {sf_tol(sf_jb(sX,n),sX.tol)}; end %- case 4 n = varargin{3}; if ~isnumeric(n), error('~isnumeric(n)'), end; Y = varargin{4}; if isempty(Y), varargout = {spm_sp(action,sX,n)}; return, end if size(Y,1) ~= sf_s1(sX), error('Dim dont match'); end; switch lower(action), case {'^'} varargout = {sf_jbY(sX,n,Y)}; case {'^:'} varargout = {sf_tol(sf_jbY(sX,n,Y),sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'n'} %-Null space of sX %======================================================================= switch nargin case 2 varargout = {sf_n(sX)}; otherwise error('too many input argument in spm_sp'); end % switch nargin case {'np'} %-Null space of sX' %======================================================================= switch nargin case 2 varargout = {sf_n(sf_transp(sX))}; otherwise error('too many input argument in spm_sp'); end % switch nargin case {'nop', 'nop:'} %- project(or)(ion) into null space %======================================================================= % % % switch nargin case 2 switch lower(action), case {'nop'} n = sf_n(sX); varargout = {n*n'}; case {'nop:'} n = sf_n(sX); varargout = {sf_tol(n*n',sX.tol)}; end %- case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s2(sX), error('Dim dont match'); end; switch lower(action), case {'nop'} n = sf_n(sX); varargout = {n*(n'*Y)}; case {'nop:'} n = sf_n(sX); varargout = {sf_tol(n*(n'*Y),sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'nopp', 'nopp:'} %- projector(ion) into null space of X' %======================================================================= % % switch nargin case 2 switch lower(action), case {'nopp'} varargout = {spm_sp('nop',sf_transp(sX))}; case {'nopp:'} varargout = {spm_sp('nop:',sf_transp(sX))}; end %- case 3 switch lower(action), case {'nopp'} varargout = {spm_sp('nop',sf_transp(sX),varargin{3})}; case {'nopp:'} varargout = {spm_sp('nop:',sf_transp(sX),varargin{3})}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {'res', 'r','r:'} %-Residual formaing matrix / residuals %======================================================================= % r = spm_sp('res',sX[,Y]) % %- 'res' will become obsolete : use 'r' or 'r:' instead %- At some stage, should be merged with 'nop' switch nargin case 2 switch lower(action) case {'r','res'} varargout = {sf_r(sX)}; case {'r:','res:'} varargout = {sf_tol(sf_r(sX),sX.tol)}; end %- case 3 %- check dimensions of Y Y = varargin{3}; if isempty(Y), varargout = {spm_sp(action,sX)}; return, end if size(Y,1) ~= sf_s1(sX), error('Dim dont match'); end; switch lower(action) case {'r','res'} varargout = {sf_rY(sX,Y)}; case {'r:','res:'} varargout = {sf_tol(sf_rY(sX,Y),sX.tol)}; end %- otherwise error('too many input argument in spm_sp'); end % switch nargin case {':'} %======================================================================= % spm_sp(':',sX [,Y [,tol]]) %- Sets Y and tol according to arguments if nargin > 4 error('too many input argument in spm_sp'); else if nargin > 3 if isnumeric(varargin{4}), tol = varargin{4}; else error('tol must be numeric'); end else tol = sX.tol; end if nargin > 2 Y = varargin{3}; %- if isempty, returns empty, end else Y = sX.X; end end varargout = {sf_tol(Y,tol)}; case {'isinsp', 'isinspp'} %- is in space or is in dual space %======================================================================= % b = spm_sp('isinsp',x,c[,tol]) % b = spm_sp('isinspp',x,c[,tol]) %-Check whether vectors are in row/column space of X %-Check arguments %----------------------------------------------------------------------- if nargin<3, error('insufficient arguments - action,x,c required'), end c = varargin{3}; %- if isempty(c), dim wont match exept for empty sp. if nargin<4, tol=sX.tol; else, tol = varargin{4}; end %-Compute according to case %----------------------------------------------------------------------- switch lower(action) case 'isinsp' %-Check dimensions if size(sX.X,1) ~= size(c,1) warning('Vector dim don''t match col. dim : not in space !'); varargout = { 0 }; return; end varargout = {all(all( abs(sf_op(sX)*c - c) <= tol ))}; case 'isinspp' %- check dimensions if size(sX.X,2) ~= size(c,1) warning('Vector dim don''t match row dim : not in space !'); varargout = { 0 }; return; end varargout = {all(all( abs(sf_opp(sX)*c - c) <= tol ))}; end case {'eachinsp', 'eachinspp'} %- each column of c in space or in dual space %======================================================================= % b = spm_sp('eachinsp',x,c[,tol]) % b = spm_sp('eachinspp',x,c[,tol]) %-Check whether vectors are in row/column space of X %-Check arguments %----------------------------------------------------------------------- if nargin<3, error('insufficient arguments - action,x,c required'), end c = varargin{3}; %- if isempty(c), dim wont match exept for empty sp. if nargin<4, tol=sX.tol; else, tol = varargin{4}; end %-Compute according to case %----------------------------------------------------------------------- switch lower(action) case 'eachinsp' %-Check dimensions if size(sX.X,1) ~= size(c,1) warning('Vector dim don''t match col. dim : not in space !'); varargout = { 0 }; return; end varargout = {all( abs(sf_op(sX)*c - c) <= tol )}; case 'eachinspp' %- check dimensions if size(sX.X,2) ~= size(c,1) warning('Vector dim don''t match row dim : not in space !'); varargout = { 0 }; return; end varargout = {all( abs(sf_opp(sX)*c - c) <= tol )}; end case '==' % test wether two spaces are the same %======================================================================= % b = spm_sp('==',x1,X2) if nargin~=3, error('too few/many input arguments - need 3'); else X2 = varargin{3}; end; if isempty(sX.X) if isempty(X2), warning('Both spaces empty'); varargout = { 1 }; else warning('one space empty'); varargout = { 0 }; end; else x2 = spm_sp('Set',X2); maxtol = max(sX.tol,x2.tol); varargout = { all( spm_sp('isinsp',sX,X2,maxtol)) & ... all( spm_sp('isinsp',x2,sX.X,maxtol) ) }; %- I have encountered one case where the max of tol was needed. end; case 'isspc' %-Space structure check %======================================================================= % [b,str] = spm_sp('isspc',x) if nargin~=2, error('too few/many input arguments - need 2'), end %-Check we've been passed a structure if ~isstruct(varargin{2}), varargout={0}; return, end %-Go through required field names checking their existance % (Get fieldnames once and compare: isfield doesn't work for multiple ) % (fields, and repeated calls to isfield would result in unnecessary ) % (replicate calls to fieldnames(varargin{2}). ) b = 1; fnames = fieldnames(varargin{2}); for str = fieldnames(sf_create)' b = b & any(strcmp(str,fnames)); if ~b, break, end end if nargout > 1, if b, str = 'ok'; else, str = 'not a space'; end; varargout = {b,str}; else, varargout = {b}; end; case 'issetspc' %-Is this a completed space structure? %======================================================================= % [b,e] = spm_sp('issetspc',x) if nargin~=2, error('too few/many input arguments - need 2'), end if ~spm_sp('isspc',varargin{2}) varargout = {0,'not a space structure (wrong fieldnames)'}; elseif ~sf_isset(varargin{2}) %-Basic fields aren't filled in varargout = {0,'space not defined (use ''set'')'}; else varargout = {1,'OK!'}; end case 'size' %- gives the size of sX %======================================================================= % size = spm_sp('size',x,dim) % if nargin > 3, error('too many input arguments'), end if nargin == 2, dim = []; else dim = varargin{3}; end if ~isempty(dim) switch dim case 1, varargout = { sf_s1(sX) }; case 2, varargout = { sf_s2(sX) }; otherwise, error(['unknown dimension in ' action]); end else %- assumes want both dim switch nargout case {0,1} varargout = { sf_si(sX) }; case 2 varargout = { sf_s1(sX), sf_s2(sX) }; otherwise error(['too many output arg in ' mfilename ' ' action]); end end otherwise %======================================================================= error(['Invalid action (',action,')']) %======================================================================= end % (case lower(action)) %======================================================================= %- S U B - F U N C T I O N S %======================================================================= % % The rule I tried to follow is that the space structure is accessed % only in this sub function part : any sX.whatever should be % prohibited elsewhere .... still a lot to clean !!! function x = sf_create %======================================================================= x = struct(... 'X', [],... % Matrix 'tol', [],... % tolerance 'ds', [],... % vectors of singular values 'u', [],... % u as in X = u*diag(ds)*v' 'v', [], ... % v as in X = u*diag(ds)*v' 'rk', [],... % rank 'oP', [],... % orthogonal projector on X 'oPp', [],... % orthogonal projector on X' 'ups', [],... % space in which this one is embeded 'sus', []); % subspace function x = sf_set(X) %======================================================================= x = sf_create; x.X = X; %-- Compute the svd with svd(X,0) : find all the singular values of x.X %-- SVD(FULL(A)) will usually perform better than SVDS(A,MIN(SIZE(A))) %- if more column that lines, performs on X' if size(X,1) < size(X,2) [x.v, s, x.u] = svd(full(X'),0); else [x.u, s, x.v] = svd(full(X),0); end x.ds = diag(s); clear s; %-- compute the tolerance x.tol = max(size(x.X))*max(abs(x.ds))*eps; %-- compute the rank x.rk = sum(x.ds > x.tol); function x = sf_transp(x) %======================================================================= % %- Tranpspose the space : note that tmp is not touched, therefore %- only contains the address, no duplication of data is performed. x.X = x.X'; tmp = x.v; x.v = x.u; x.u = tmp; tmp = x.oP; x.oP = x.oPp; x.oPp = tmp; clear tmp; function b = sf_isset(x) %======================================================================= b = ~( isempty(x.X) |... isempty(x.u) |... isempty(x.v) |... isempty(x.ds) |... isempty(x.tol) |... isempty(x.rk) ); function s1 = sf_s1(x) %======================================================================= s1 = size(x.X,1); function s2 = sf_s2(x) %======================================================================= s2 = size(x.X,2); function si = sf_si(x) %======================================================================= si = size(x.X); function r = sf_rk(x) %======================================================================= r = x.rk; function uk = sf_uk(x) %======================================================================= uk = x.u(:,1:sf_rk(x)); function vk = sf_vk(x) %======================================================================= vk = x.v(:,1:sf_rk(x)); function sk = sf_sk(x) %======================================================================= sk = x.ds(1:sf_rk(x)); function t = sf_t(x) %======================================================================= t = x.tol; function x = sf_tol(x,t) %======================================================================= x(abs(x) < t) = 0; function op = sf_op(sX) %======================================================================= if sX.rk > 0 op = sX.u(:,[1:sX.rk])*sX.u(:,[1:sX.rk])'; else op = zeros( size(sX.X,1) ); end; %!!!! to implement : a clever version of sf_opY (see sf_rY) function opp = sf_opp(sX) %======================================================================= if sX.rk > 0 opp = sX.v(:,[1:sX.rk])*sX.v(:,[1:sX.rk])'; else opp = zeros( size(sX.X,2) ); end; %!!!! to implement : a clever version of sf_oppY (see sf_rY) function px = sf_pinv(sX) %======================================================================= r = sX.rk; if r > 0 px = sX.v(:,1:r)*diag( ones(r,1)./sX.ds(1:r) )*sX.u(:,1:r)'; else px = zeros(size(sX.X,2),size(sX.X,1)); end function px = sf_pinvxp(sX) %======================================================================= r = sX.rk; if r > 0 px = sX.u(:,1:r)*diag( ones(r,1)./sX.ds(1:r) )*sX.v(:,1:r)'; else px = zeros(size(sX.X)); end function px = sf_pinvxpx(sX) %======================================================================= r = sX.rk; if r > 0 px = sX.v(:,1:r)*diag( sX.ds(1:r).^(-2) )*sX.v(:,1:r)'; else px = zeros(size(sX.X,2)); end function px = sf_jbp(sX,n) %======================================================================= r = sX.rk; if r > 0 px = sX.v(:,1:r)*diag( sX.ds(1:r).^(n) )*sX.v(:,1:r)'; else px = zeros(size(sX.X,2)); end function x = sf_jb(sX,n) %======================================================================= r = sX.rk; if r > 0 x = sX.u(:,1:r)*diag( sX.ds(1:r).^(n) )*sX.u(:,1:r)'; else x = zeros(size(sX.X,1)); end function y = sf_jbY(sX,n,Y) %======================================================================= r = sX.rk; if r > 0 y = ( sX.u(:,1:r)*diag(sX.ds(1:r).^n) )*(sX.u(:,1:r)'*Y); else y = zeros(size(sX.X,1),size(Y,2)); end %!!!! to implement : a clever version of sf_jbY (see sf_rY) function x = sf_cxtwdcu(sX) %======================================================================= %- coordinates in sX.X -> coordinates in sX.u(:,1:rk) x = diag(sX.ds)*sX.v'; function x = sf_cukpinvxp(sX) %======================================================================= %- coordinates of pinv(sX.X') in the basis sX.u(:,1:rk) r = sX.rk; if r > 0 x = diag( ones(r,1)./sX.ds(1:r) )*sX.v(:,1:r)'; else x = zeros( size(sX.X,2) ); end function x = sf_cukx(sX) %======================================================================= %- coordinates of sX.X in the basis sX.u(:,1:rk) r = sX.rk; if r > 0 x = diag( sX.ds(1:r) )*sX.v(:,1:r)'; else x = zeros( size(sX.X,2) ); end function x = sf_xpx(sX) %======================================================================= r = sX.rk; if r > 0 x = sX.v(:,1:r)*diag( sX.ds(1:r).^2 )*sX.v(:,1:r)'; else x = zeros(size(sX.X,2)); end function x = sf_xxp(sX) %======================================================================= r = sX.rk; if r > 0 x = sX.u(:,1:r)*diag( sX.ds(1:r).^2 )*sX.u(:,1:r)'; else x = zeros(size(sX.X,1)); end function x = sf_xxpY(sX,Y) %======================================================================= r = sX.rk; if r > 0 x = sX.u(:,1:r)*diag( sX.ds(1:r).^2 )*(sX.u(:,1:r)'*Y); else x = zeros(size(sX.X,1),size(Y,2)); end function x = sf_pinvxxp(sX) %======================================================================= r = sX.rk; if r > 0 x = sX.u(:,1:r)*diag( sX.ds(1:r).^(-2) )*sX.u(:,1:r)'; else x = zeros(size(sX.X,1)); end function n = sf_n(sX) %======================================================================= % if the null space is in sX.v, returns it % otherwise, performs Gramm Schmidt orthogonalisation. % % r = sX.rk; [q p]= size(sX.X); if r > 0 if q >= p %- the null space is entirely in v if r == p, n = zeros(p,1); else, n = sX.v(:,r+1:p); end else %- only part of n is in v: same as computing the null sp of sX' n = null(sX.X); %----- BUG !!!! in that part ---------------------------------------- %- v = zeros(p,p-q); j = 1; i = 1; z = zeros(p,1); %- while i <= p %- o = z; o(i) = 1; vpoi = [sX.v(i,:) v(i,1:j-1)]'; %- o = sf_tol(o - [sX.v v(:,1:j-1)]*vpoi,sX.tol); %- if any(o), v(:,j) = o/((o'*o)^(1/2)); j = j + 1; end; %- i = i + 1; %- if i>p, error('gramm shmidt error'); end; %- end %- n = [sX.v(:,r+1:q) v]; %-------------------------------------------------------------------- end else n = eye(p); end function r = sf_r(sX) %======================================================================= %- %- returns the residual forming matrix for the space sX %- for internal use. doesn't Check whether oP exist. r = eye(size(sX.X,1)) - sf_op(sX) ; function Y = sf_rY(sX,Y) %======================================================================= % r = spm_sp('r',sX[,Y]) % %- tries to minimise the computation by looking whether we should do %- I - u*(u'*Y) or n*(n'*Y) as in 'nop' r = sX.rk; [q p]= size(sX.X); if r > 0 %- else returns the input; if r < q-r %- we better do I - u*u' Y = Y - sX.u(:,[1:r])*(sX.u(:,[1:r])'*Y); % warning('route1'); else %- is it worth computing the n ortho basis ? if size(Y,2) < 5*q Y = sf_r(sX)*Y; % warning('route2'); else n = sf_n(sf_transp(sX)); % warning('route3'); Y = n*(n'*Y); end end end
github
philippboehmsturm/antx-master
spm_dicom_essentials.m
.m
antx-master/xspm8/spm_dicom_essentials.m
3,266
utf_8
586ff55f155ffdd002e53be7402aa26f
function hdr1 = spm_dicom_essentials(hdr0) % Remove unused fields from DICOM header % FORMAT hdr1 = spm_dicom_essentials(hdr0) % hdr0 - original DICOM header % hdr1 - Stripped down DICOM header. % % With lots of DICOM files, the size of all the headers can become too % big for all the fields to be saved. The idea here is to strip down % the headers to their essentials. % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_dicom_essentials.m 4385 2011-07-08 16:53:38Z guillaume $ used_fields = {... 'AcquisitionDate',... 'AcquisitionNumber',... 'AcquisitionTime',... 'BitsAllocated',... 'BitsStored',... 'CSAImageHeaderInfo',... 'Columns',... 'EchoNumbers',... 'EchoTime',... 'Filename',... 'FlipAngle',... 'HighBit',... 'ImageOrientationPatient',... 'ImagePositionPatient',... 'ImageType',... 'InstanceNumber',... 'MagneticFieldStrength',... 'Manufacturer',... 'Modality',... 'MRAcquisitionType',... 'PatientID',... 'PatientsName',... 'PixelRepresentation',... 'PixelSpacing',... 'Private_0029_1110',... 'Private_0029_1210',... 'ProtocolName',... 'RepetitionTime',... 'RescaleIntercept',... 'RescaleSlope',... 'Rows',... 'SOPClassUID',... 'SamplesperPixel',... 'ScanningSequence',... 'SequenceName',... 'SeriesDescription',... 'SeriesInstanceUID',... 'SeriesNumber',... 'SliceNormalVector',... 'SliceThickness',... 'SpacingBetweenSlices',... 'StartOfPixelData',... 'StudyDate',... 'StudyTime',... 'TransferSyntaxUID',... 'VROfPixelData',... 'ScanOptions'}; fnames = fieldnames(hdr0); for i=1:numel(used_fields) if ismember(used_fields{i},fnames) hdr1.(used_fields{i}) = hdr0.(used_fields{i}); end end Private_spectroscopy_fields = {... 'Columns',... 'Rows',... 'ImageOrientationPatient',... 'ImagePositionPatient',... 'SliceThickness',... 'PixelSpacing',... 'VoiPhaseFoV',... 'VoiReadoutFoV',... 'VoiThickness'}; if isfield(hdr1,'Private_0029_1110') hdr1.Private_0029_1110 = ... getfields(hdr1.Private_0029_1110,... Private_spectroscopy_fields); end if isfield(hdr1,'Private_0029_1210') hdr1.Private_0029_1210 = ... getfields(hdr1.Private_0029_1210,... Private_spectroscopy_fields); end if isfield(hdr1,'CSAImageHeaderInfo') CSAImageHeaderInfo_fields = {... 'SliceNormalVector',... 'NumberOfImagesInMosaic',... 'AcquisitionMatrixText',... 'ICE_Dims'}; hdr1.CSAImageHeaderInfo = ... getfields(hdr1.CSAImageHeaderInfo,... CSAImageHeaderInfo_fields); end if isfield(hdr1,'CSASeriesHeaderInfo') CSASeriesHeaderInfo_fields = {}; hdr1.CSASeriesHeaderInfo = ... getfields(hdr1.CSASeriesHeaderInfo,... CSASeriesHeaderInfo_fields); end function str1 = getfields(str0,names) str1 = []; for i=1:numel(names) for j=1:numel(str0) if strcmp(str0(j).name,names{i}) str1 = [str1,str0(j)]; end end end
github
philippboehmsturm/antx-master
spm_ecat2nifti.m
.m
antx-master/xspm8/spm_ecat2nifti.m
16,572
utf_8
753e9a7e6e367abce74e0a0c4878f6c5
function N = spm_ecat2nifti(fname,opts) % Import ECAT 7 images from CTI PET scanners. % FORMAT N = spm_ecat2nifti(fname) % fname - name of ECAT file % _______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner & Roger Gunn % $Id: spm_ecat2nifti.m 3691 2010-01-20 17:08:30Z guillaume $ if nargin==1 opts = struct('ext','.nii'); else if opts.ext(1) ~= '.', opts.ext = ['.' opts.ext]; end end fp = fopen(fname,'r','ieee-be'); if fp == -1, error(['Can''t open "' fname '".']); return; end mh = ECAT7_mheader(fp); if ~strcmp(mh.MAGIC_NUMBER,'MATRIX70v') &&... ~strcmp(mh.MAGIC_NUMBER,'MATRIX71v') &&... ~strcmp(mh.MAGIC_NUMBER,'MATRIX72v'), error(['"' fname '" does not appear to be ECAT 7 format.']); fclose(fp); return; end if mh.FILE_TYPE ~= 7, error(['"' fname '" does not appear to be an image file.']); fclose(fp); return; end list = s7_matlist(fp); matches = find((list(:,4) == 1) | (list(:,4) == 2)); llist = list(matches,:); for i=1:size(llist,1), sh(i) = ECAT7_sheader(fp,llist(i,2)); end; fclose(fp); for i=1:size(llist,1), dim = [sh(i).X_DIMENSION sh(i).Y_DIMENSION sh(i).Z_DIMENSION]; dtype = [4 1]; off = 512*llist(i,2); scale = sh(i).SCALE_FACTOR*mh.ECAT_CALIBRATION_FACTOR; inter = 0; dati = file_array(fname,dim,dtype,off,scale,inter); dircos = diag([-1 -1 -1]); step = ([sh(i).X_PIXEL_SIZE sh(i).Y_PIXEL_SIZE sh(i).Z_PIXEL_SIZE]*10); start = -(dim(1:3)'/2).*step'; mat = [[dircos*diag(step) dircos*start] ; [0 0 0 1]]; matnum = sprintf('%.8x',list(i,1)); [pth,nam,ext] = fileparts(fname); fnameo = fullfile(pwd,[nam '_' matnum opts.ext]); dato = file_array(fnameo,dim,[4 spm_platform('bigend')],0,scale,inter); N = nifti; N.dat = dato; N.mat = mat; N.mat0 = mat; N.mat_intent = 'aligned'; N.mat0_intent = 'scanner'; N.descrip = sh(i).ANNOTATION; N.timing = struct('toffset',sh(i).FRAME_START_TIME/1000,'tspace',sh(i).FRAME_DURATION/1000); create(N); for j=1:dim(3), N.dat(:,:,j) = dati(:,:,j); end; N.extras = struct('mh',mh,'sh',sh(i)); end; return; %_______________________________________________________________________ %_______________________________________________________________________ %S7_MATLIST List the available matrixes in an ECAT 7 file. % LIST = S7_MATLIST(FP) lists the available matrixes % in the file specified by FP. % % Columns in LIST: % 1 - Matrix identifier. % 2 - Matrix subheader record number % 3 - Last record number of matrix data block. % 4 - Matrix status: % 1 - exists - rw % 2 - exists - ro % 3 - matrix deleted % function list = s7_matlist(fp) % I believe fp should be opened with: % fp = fopen(filename,'r','ieee-be'); fseek(fp,512,'bof'); block = fread(fp,128,'int'); if size(block,1) ~= 128 list = []; return; end; block = reshape(block,4,32); list = []; while block(2,1) ~= 2, if block(1,1)+block(4,1) ~= 31, list = []; return; end; list = [list block(:,2:32)]; fseek(fp,512*(block(2,1)-1),'bof'); block = fread(fp,128,'int'); if size(block,1) ~= 128, list = []; return; end; block = reshape(block,4,32); end list = [list block(:,2:(block(4,1)+1))]; list = list'; return; %_______________________________________________________________________ %_______________________________________________________________________ function SHEADER=ECAT7_sheader(fid,record) % % Sub header read routine for ECAT 7 image files % % Roger Gunn, 260298 off = (record-1)*512; status = fseek(fid, off,'bof'); data_type = fread(fid,1,'uint16',0); num_dimensions = fread(fid,1,'uint16',0); x_dimension = fread(fid,1,'uint16',0); y_dimension = fread(fid,1,'uint16',0); z_dimension = fread(fid,1,'uint16',0); x_offset = fread(fid,1,'float32',0); y_offset = fread(fid,1,'float32',0); z_offset = fread(fid,1,'float32',0); recon_zoom = fread(fid,1,'float32',0); scale_factor = fread(fid,1,'float32',0); image_min = fread(fid,1,'int16',0); image_max = fread(fid,1,'int16',0); x_pixel_size = fread(fid,1,'float32',0); y_pixel_size = fread(fid,1,'float32',0); z_pixel_size = fread(fid,1,'float32',0); frame_duration = fread(fid,1,'uint32',0); frame_start_time = fread(fid,1,'uint32',0); filter_code = fread(fid,1,'uint16',0); x_resolution = fread(fid,1,'float32',0); y_resolution = fread(fid,1,'float32',0); z_resolution = fread(fid,1,'float32',0); num_r_elements = fread(fid,1,'float32',0); num_angles = fread(fid,1,'float32',0); z_rotation_angle = fread(fid,1,'float32',0); decay_corr_fctr = fread(fid,1,'float32',0); corrections_applied = fread(fid,1,'uint32',0); gate_duration = fread(fid,1,'uint32',0); r_wave_offset = fread(fid,1,'uint32',0); num_accepted_beats = fread(fid,1,'uint32',0); filter_cutoff_frequency = fread(fid,1,'float32',0); filter_resolution = fread(fid,1,'float32',0); filter_ramp_slope = fread(fid,1,'float32',0); filter_order = fread(fid,1,'uint16',0); filter_scatter_fraction = fread(fid,1,'float32',0); filter_scatter_slope = fread(fid,1,'float32',0); annotation = fread(fid,40,'char',0); mt_1_1 = fread(fid,1,'float32',0); mt_1_2 = fread(fid,1,'float32',0); mt_1_3 = fread(fid,1,'float32',0); mt_2_1 = fread(fid,1,'float32',0); mt_2_2 = fread(fid,1,'float32',0); mt_2_3 = fread(fid,1,'float32',0); mt_3_1 = fread(fid,1,'float32',0); mt_3_2 = fread(fid,1,'float32',0); mt_3_3 = fread(fid,1,'float32',0); rfilter_cutoff = fread(fid,1,'float32',0); rfilter_resolution = fread(fid,1,'float32',0); rfilter_code = fread(fid,1,'uint16',0); rfilter_order = fread(fid,1,'uint16',0); zfilter_cutoff = fread(fid,1,'float32',0); zfilter_resolution = fread(fid,1,'float32',0); zfilter_code = fread(fid,1,'uint16',0); zfilter_order = fread(fid,1,'uint16',0); mt_4_1 = fread(fid,1,'float32',0); mt_4_2 = fread(fid,1,'float32',0); mt_4_3 = fread(fid,1,'float32',0); scatter_type = fread(fid,1,'uint16',0); recon_type = fread(fid,1,'uint16',0); recon_views = fread(fid,1,'uint16',0); fill = fread(fid,1,'uint16',0); annotation = deblank(char(annotation.*(annotation>0))'); SHEADER = struct('DATA_TYPE', data_type, ... 'NUM_DIMENSIONS', num_dimensions, ... 'X_DIMENSION', x_dimension, ... 'Y_DIMENSION', y_dimension, ... 'Z_DIMENSION', z_dimension, ... 'X_OFFSET', x_offset, ... 'Y_OFFSET', y_offset, ... 'Z_OFFSET', z_offset, ... 'RECON_ZOOM', recon_zoom, ... 'SCALE_FACTOR', scale_factor, ... 'IMAGE_MIN', image_min, ... 'IMAGE_MAX', image_max, ... 'X_PIXEL_SIZE', x_pixel_size, ... 'Y_PIXEL_SIZE', y_pixel_size, ... 'Z_PIXEL_SIZE', z_pixel_size, ... 'FRAME_DURATION', frame_duration, ... 'FRAME_START_TIME', frame_start_time, ... 'FILTER_CODE', filter_code, ... 'X_RESOLUTION', x_resolution, ... 'Y_RESOLUTION', y_resolution, ... 'Z_RESOLUTION', z_resolution, ... 'NUM_R_ELEMENTS', num_r_elements, ... 'NUM_ANGLES', num_angles, ... 'Z_ROTATION_ANGLE', z_rotation_angle, ... 'DECAY_CORR_FCTR', decay_corr_fctr, ... 'CORRECTIONS_APPLIED', corrections_applied, ... 'GATE_DURATION', gate_duration, ... 'R_WAVE_OFFSET', r_wave_offset, ... 'NUM_ACCEPTED_BEATS', num_accepted_beats, ... 'FILTER_CUTOFF_FREQUENCY', filter_cutoff_frequency, ... 'FILTER_RESOLUTION', filter_resolution, ... 'FILTER_RAMP_SLOPE', filter_ramp_slope, ... 'FILTER_ORDER', filter_order, ... 'FILTER_SCATTER_CORRECTION', filter_scatter_fraction, ... 'FILTER_SCATTER_SLOPE', filter_scatter_slope, ... 'ANNOTATION', annotation, ... 'MT_1_1', mt_1_1, ... 'MT_1_2', mt_1_2, ... 'MT_1_3', mt_1_3, ... 'MT_2_1', mt_2_1, ... 'MT_2_2', mt_2_2, ... 'MT_2_3', mt_2_3, ... 'MT_3_1', mt_3_1, ... 'MT_3_2', mt_3_2, ... 'MT_3_3', mt_3_3, ... 'RFILTER_CUTOFF', rfilter_cutoff, ... 'RFILTER_RESOLUTION', rfilter_resolution, ... 'RFILTER_CODE', rfilter_code, ... 'RFILTER_ORDER', rfilter_order, ... 'ZFILTER_CUTOFF', zfilter_cutoff, ... 'ZFILTER_RESOLUTION', zfilter_resolution, ... 'ZFILTER_CODE', zfilter_code, ... 'ZFILTER_ORDER', zfilter_order, ... 'MT_4_1', mt_4_1, ... 'MT_4_2', mt_4_2, ... 'MT_4_3', mt_4_3, ... 'SCATTER_TYPE', scatter_type, ... 'RECON_TYPE', recon_type, ... 'RECON_VIEWS', recon_views, ... 'FILL', fill); return; %_______________________________________________________________________ function [MHEADER]=ECAT7_mheader(fid) % % Main header read routine for ECAT 7 image files % % Roger Gunn, 260298 status = fseek(fid, 0,'bof'); magic_number = fread(fid,14,'char',0); original_file_name = fread(fid,32,'char',0); sw_version = fread(fid,1,'uint16',0); system_type = fread(fid,1,'uint16',0); file_type = fread(fid,1,'uint16',0); serial_number = fread(fid,10,'char',0); scan_start_time = fread(fid,1,'uint32',0); isotope_name = fread(fid,8,'char',0); isotope_halflife = fread(fid,1,'float32',0); radiopharmaceutical = fread(fid,32,'char',0); gantry_tilt = fread(fid,1,'float32',0); gantry_rotation = fread(fid,1,'float32',0); bed_elevation = fread(fid,1,'float32',0); intrinsic_tilt = fread(fid,1,'float32',0); wobble_speed = fread(fid,1,'uint16',0); transm_source_type = fread(fid,1,'uint16',0); distance_scanned = fread(fid,1,'float32',0); transaxial_fov = fread(fid,1,'float32',0); angular_compression = fread(fid,1,'uint16',0); coin_samp_mode = fread(fid,1,'uint16',0); axial_samp_mode = fread(fid,1,'uint16',0); ecat_calibration_factor = fread(fid,1,'float32',0); calibration_units = fread(fid,1,'uint16',0); calibration_units_type = fread(fid,1,'uint16',0); compression_code = fread(fid,1,'uint16',0); study_type = fread(fid,12,'char',0); patient_id = fread(fid,16,'char',0); patient_name = fread(fid,32,'char',0); patient_sex = fread(fid,1,'char',0); patient_dexterity = fread(fid,1,'char',0); patient_age = fread(fid,1,'float32',0); patient_height = fread(fid,1,'float32',0); patient_weight = fread(fid,1,'float32',0); patient_birth_date = fread(fid,1,'uint32',0); physician_name = fread(fid,32,'char',0); operator_name = fread(fid,32,'char',0); study_description = fread(fid,32,'char',0); acquisition_type = fread(fid,1,'uint16',0); patient_orientation = fread(fid,1,'uint16',0); facility_name = fread(fid,20,'char',0); num_planes = fread(fid,1,'uint16',0); num_frames = fread(fid,1,'uint16',0); num_gates = fread(fid,1,'uint16',0); num_bed_pos = fread(fid,1,'uint16',0); init_bed_position = fread(fid,1,'float32',0); bed_position = zeros(15,1); for bed=1:15, tmp = fread(fid,1,'float32',0); if ~isempty(tmp), bed_position(bed) = tmp; end; end; plane_separation = fread(fid,1,'float32',0); lwr_sctr_thres = fread(fid,1,'uint16',0); lwr_true_thres = fread(fid,1,'uint16',0); upr_true_thres = fread(fid,1,'uint16',0); user_process_code = fread(fid,10,'char',0); acquisition_mode = fread(fid,1,'uint16',0); bin_size = fread(fid,1,'float32',0); branching_fraction = fread(fid,1,'float32',0); dose_start_time = fread(fid,1,'uint32',0); dosage = fread(fid,1,'float32',0); well_counter_corr_factor = fread(fid,1,'float32',0); data_units = fread(fid,32,'char',0); septa_state = fread(fid,1,'uint16',0); fill = fread(fid,1,'uint16',0); magic_number = deblank(char(magic_number.*(magic_number>32))'); original_file_name = deblank(char(original_file_name.*(original_file_name>0))'); serial_number = deblank(char(serial_number.*(serial_number>0))'); isotope_name = deblank(char(isotope_name.*(isotope_name>0))'); radiopharmaceutical = deblank(char(radiopharmaceutical.*(radiopharmaceutical>0))'); study_type = deblank(char(study_type.*(study_type>0))'); patient_id = deblank(char(patient_id.*(patient_id>0))'); patient_name = deblank(char(patient_name.*(patient_name>0))'); patient_sex = deblank(char(patient_sex.*(patient_sex>0))'); patient_dexterity = deblank(char(patient_dexterity.*(patient_dexterity>0))'); physician_name = deblank(char(physician_name.*(physician_name>0))'); operator_name = deblank(char(operator_name.*(operator_name>0))'); study_description = deblank(char(study_description.*(study_description>0))'); facility_name = deblank(char(facility_name.*(facility_name>0))'); user_process_code = deblank(char(user_process_code.*(user_process_code>0))'); data_units = deblank(char(data_units.*(data_units>0))'); MHEADER = struct('MAGIC_NUMBER', magic_number, ... 'ORIGINAL_FILE_NAME', original_file_name, ... 'SW_VERSION', sw_version, ... 'SYSTEM_TYPE', system_type, ... 'FILE_TYPE', file_type, ... 'SERIAL_NUMBER', serial_number, ... 'SCAN_START_TIME', scan_start_time, ... 'ISOTOPE_NAME', isotope_name, ... 'ISOTOPE_HALFLIFE', isotope_halflife, ... 'RADIOPHARMACEUTICAL', radiopharmaceutical, ... 'GANTRY_TILT', gantry_tilt, ... 'GANTRY_ROTATION', gantry_rotation, ... 'BED_ELEVATION', bed_elevation, ... 'INTRINSIC_TILT', intrinsic_tilt, ... 'WOBBLE_SPEED', wobble_speed, ... 'TRANSM_SOURCE_TYPE', transm_source_type, ... 'DISTANCE_SCANNED', distance_scanned, ... 'TRANSAXIAL_FOV', transaxial_fov, ... 'ANGULAR_COMPRESSION', angular_compression, ... 'COIN_SAMP_MODE', coin_samp_mode, ... 'AXIAL_SAMP_MODE', axial_samp_mode, ... 'ECAT_CALIBRATION_FACTOR', ecat_calibration_factor, ... 'CALIBRATION_UNITS', calibration_units, ... 'CALIBRATION_UNITS_TYPE', calibration_units_type, ... 'COMPRESSION_CODE', compression_code, ... 'STUDY_TYPE', study_type, ... 'PATIENT_ID', patient_id, ... 'PATIENT_NAME', patient_name, ... 'PATIENT_SEX', patient_sex, ... 'PATIENT_DEXTERITY', patient_dexterity, ... 'PATIENT_AGE', patient_age, ... 'PATIENT_HEIGHT', patient_height, ... 'PATIENT_WEIGHT', patient_weight, ... 'PATIENT_BIRTH_DATE', patient_birth_date, ... 'PHYSICIAN_NAME', physician_name, ... 'OPERATOR_NAME', operator_name, ... 'STUDY_DESCRIPTION', study_description, ... 'ACQUISITION_TYPE', acquisition_type, ... 'PATIENT_ORIENTATION', patient_orientation, ... 'FACILITY_NAME', facility_name, ... 'NUM_PLANES', num_planes, ... 'NUM_FRAMES', num_frames, ... 'NUM_GATES', num_gates, ... 'NUM_BED_POS', num_bed_pos, ... 'INIT_BED_POSITION', init_bed_position, ... 'BED_POSITION', bed_position, ... 'PLANE_SEPARATION', plane_separation, ... 'LWR_SCTR_THRES', lwr_sctr_thres, ... 'LWR_TRUE_THRES', lwr_true_thres, ... 'UPR_TRUE_THRES', upr_true_thres, ... 'USER_PROCESS_CODE', user_process_code, ... 'ACQUISITION_MODE', acquisition_mode, ... 'BIN_SIZE', bin_size, ... 'BRANCHING_FRACTION', branching_fraction, ... 'DOSE_START_TIME', dose_start_time, ... 'DOSAGE', dosage, ... 'WELL_COUNTER_CORR_FACTOR', well_counter_corr_factor, ... 'DATA_UNITS', data_units, ... 'SEPTA_STATE', septa_state, ... 'FILL', fill); return; %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_platform.m
.m
antx-master/xspm8/spm_platform.m
8,916
utf_8
1ead463af23059fb998f62b124a12a6d
function varargout=spm_platform(varargin) % Platform specific configuration parameters for SPM % % FORMAT ans = spm_platform(arg) % arg - optional string argument, can be % - 'bigend' - return whether this architecture is bigendian % - 0 - is little endian % - 1 - is big endian % - 'filesys' - type of filesystem % - 'unx' - UNIX % - 'win' - DOS % - 'sepchar' - returns directory separator % - 'user' - returns username % - 'host' - returns system's host name % - 'tempdir' - returns name of temp directory % - 'drives' - returns string containing valid drive letters % % FORMAT PlatFontNames = spm_platform('fonts') % Returns structure with fields named after the generic (UNIX) fonts, the % field containing the name of the platform specific font. % % FORMAT PlatFontName = spm_platform('font',GenFontName) % Maps generic (UNIX) FontNames to platform specific FontNames % % FORMAT PLATFORM = spm_platform('init',comp) % Initialises platform specific parameters in persistent PLATFORM % (External gateway to init_platform(comp) subfunction) % comp - computer to use [defaults to MATLAB's `computer`] % PLATFORM - copy of persistent PLATFORM % % FORMAT spm_platform % Initialises platform specific parameters in persistent PLATFORM % (External gateway to init_platform(computer) subfunction) % % ---------------- % SUBFUNCTIONS: % % FORMAT init_platform(comp) % Initialise platform specific parameters in persistent PLATFORM % comp - computer to use [defaults to MATLAB's `computer`] % %-------------------------------------------------------------------------- % % Since calls to spm_platform will be made frequently, most platform % specific parameters are stored as a structure in the persistent variable % PLATFORM. Subsequent calls use the information from this persistent % variable, if it exists. % % Platform specific definitions are contained in the data structures at % the beginning of the init_platform subfunction at the end of this % file. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Matthew Brett % $Id: spm_platform.m 4137 2010-12-15 17:18:32Z guillaume $ %-Initialise %-------------------------------------------------------------------------- persistent PLATFORM if isempty(PLATFORM), PLATFORM = init_platform; end if nargin==0, return, end switch lower(varargin{1}), case 'init' %-(re)initialise %========================================================================== init_platform(varargin{2:end}); varargout = {PLATFORM}; case 'bigend' %-Return endian for this architecture %========================================================================== varargout = {PLATFORM.bigend}; case 'filesys' %-Return file system %========================================================================== varargout = {PLATFORM.filesys}; case 'sepchar' %-Return file separator character %========================================================================== warning('use filesep instead (supported by MathWorks)') varargout = {PLATFORM.sepchar}; case 'rootlen' %-Return length in chars of root directory name %======================================================================= varargout = {PLATFORM.rootlen}; case 'user' %-Return user string %========================================================================== varargout = {PLATFORM.user}; case 'host' %-Return hostname %========================================================================== varargout = {PLATFORM.host}; case 'drives' %-Return drives %========================================================================== varargout = {PLATFORM.drives}; case 'tempdir' %-Return temporary directory %========================================================================== twd = getenv('SPMTMP'); if isempty(twd) twd = tempdir; end varargout = {twd}; case {'font','fonts'} %-Map default font names to platform font names %========================================================================== if nargin<2, varargout={PLATFORM.font}; return, end switch lower(varargin{2}) case 'times' varargout = {PLATFORM.font.times}; case 'courier' varargout = {PLATFORM.font.courier}; case 'helvetica' varargout = {PLATFORM.font.helvetica}; case 'symbol' varargout = {PLATFORM.font.symbol}; otherwise warning(['Unknown font ',varargin{2},', using default']) varargout = {PLATFORM.font.helvetica}; end otherwise %-Unknown Action string %========================================================================== error('Unknown Action string') %========================================================================== end %========================================================================== %- S U B - F U N C T I O N S %========================================================================== function PLATFORM = init_platform(comp) %-Initialise platform variables %========================================================================== if nargin<1 comp = computer; if any(comp=='-') % Octave if isunix switch uname.machine case 'x86_64' comp = 'GLNXA64'; case {'i586','i686'} comp = 'GLNX86'; end elseif ispc comp = 'PCWIN'; elseif ismac comp = 'MACI'; end end end %-Platform definitions %-------------------------------------------------------------------------- PDefs = {'PCWIN', 'win', 0;... 'PCWIN64', 'win', 0;... 'MAC', 'unx', 1;... 'MACI', 'unx', 0;... 'MACI64', 'unx', 0;... 'SOL2', 'unx', 1;... 'SOL64', 'unx', 1;... 'GLNX86', 'unx', 0;... 'GLNXA64', 'unx', 0}; PDefs = cell2struct(PDefs,{'computer','filesys','endian'},2); %-Which computer? %-------------------------------------------------------------------------- [issup, ci] = ismember(comp,{PDefs.computer}); if ~issup error([comp ' not supported architecture for ' spm('Ver')]); end %-Set byte ordering %-------------------------------------------------------------------------- PLATFORM.bigend = PDefs(ci).endian; %-Set filesystem type %-------------------------------------------------------------------------- PLATFORM.filesys = PDefs(ci).filesys; %-File separator character %-------------------------------------------------------------------------- PLATFORM.sepchar = filesep; %-Username %-------------------------------------------------------------------------- switch PLATFORM.filesys case 'unx' PLATFORM.user = getenv('USER'); case 'win' PLATFORM.user = getenv('USERNAME'); otherwise error(['Don''t know filesystem ',PLATFORM.filesys]) end if isempty(PLATFORM.user), PLATFORM.user = 'anonymous'; end %-Hostname %-------------------------------------------------------------------------- [sts, Host] = system('hostname'); if sts if strcmp(PLATFORM.filesys,'win') Host = getenv('COMPUTERNAME'); else Host = getenv('HOSTNAME'); end Host = regexp(Host,'(.*?)\.','tokens','once'); else Host = Host(1:end-1); end PLATFORM.host = Host; %-Drives %-------------------------------------------------------------------------- PLATFORM.drives = ''; if strcmp(PLATFORM.filesys,'win') driveLett = cellstr(char(('C':'Z')')); for i=1:numel(driveLett) if exist([driveLett{i} ':\'],'dir') PLATFORM.drives = [PLATFORM.drives driveLett{i}]; end end end %-Fonts %-------------------------------------------------------------------------- switch comp case {'MAC','MACI','MACI64'} PLATFORM.font.helvetica = 'TrebuchetMS'; PLATFORM.font.times = 'Times'; PLATFORM.font.courier = 'Courier'; PLATFORM.font.symbol = 'Symbol'; case {'SOL2','SOL64','GLNX86','GLNXA64'} PLATFORM.font.helvetica = 'Helvetica'; PLATFORM.font.times = 'Times'; PLATFORM.font.courier = 'Courier'; PLATFORM.font.symbol = 'Symbol'; case {'PCWIN','PCWIN64'} PLATFORM.font.helvetica = 'Arial Narrow'; PLATFORM.font.times = 'Times New Roman'; PLATFORM.font.courier = 'Courier New'; PLATFORM.font.symbol = 'Symbol'; end
github
philippboehmsturm/antx-master
spm_vb_graphcut.m
.m
antx-master/xspm8/spm_vb_graphcut.m
6,187
utf_8
e66c1e4a9a6d484998db51df14cba084
function labels = spm_vb_graphcut(labels,index,I,W,depth,grnd_type,CUTOFF,DIM) % Recursive bi-partition of a graph using the isoperimetric algorithm % % FORMAT labels = spm_vb_graphcut(labels,index,I,W,depth,grnd_type,CUTOFF,DIM) % % labels each voxel is lableled depending on whihc segment is belongs % index index of current node set in labels vector % I InMask XYZ voxel (node set) indices % W weight matrix i.e. adjacency matrix containing edge weights % of graph % depth depth of recursion % grnd_type 'random' or 'max' - ground node selected at random or the % node with maximal degree % CUTOFF minimal number of voxels in a segment of the partition % DIM dimensions of data %__________________________________________________________________________ % % Recursive bi-partition of a graph using the isoperimetric algorithm by % Grady et al. This routine is adapted from "The Graph Analysis Toolbox: % Image Processing on Arbitrary Graphs", available through Matlab Central % File Exchange. See also Grady, L. Schwartz, E. L. (2006) "Isoperimetric % graph partitioning for image segmentation", % IEEE Trans Pattern Anal Mach Intell, 28(3),pp469-75 %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Lee Harrison % $Id: spm_vb_graphcut.m 2923 2009-03-23 18:34:51Z guillaume $ try, grnd_type; catch, grnd_type = 'random'; end %-Initialize s = rand('twister'); rand('seed',0); N = length(index); terminate = 0; %-Partition current graph if N > CUTOFF reject = 1; d = sum(W,2); % "degree" of each node switch grnd_type case 'max' id = find(d==max(d)); ground = id(ceil(rand(1)*length(id))); case 'random' ground = ceil(rand(1)*N); end while reject == 1, if N < 1e5, method = 'direct'; else, method = 'cg'; end parts = bipartition(W,CUTOFF,ground,method); nparts = [length(parts{1}),length(parts{2})]; if min(nparts) < CUTOFF, terminate = 1; break, end for k = 1:2, % check if partitions are contiguous bw = zeros(DIM(1),DIM(2),DIM(3)); bw(I(parts{k})) = 1; [tmp,NUM] = spm_bwlabel(bw,6); if NUM > 1 reject = 1; ground = ceil(rand(1)*N); % re-select ground node fprintf('depth %1.0f, partition %1.0f of 2, reject ',depth,k); fprintf('\n') break else reject = 0; fprintf('depth %1.0f, partition %1.0f of 2, accept ',depth,k); fprintf('\n') end end end else terminate = 1; end if terminate labels = labels; fprintf('depth %1.0f, end of branch ',depth); fprintf('\n') rand('twister',s); else %Accept partition and update labels tmpInd = find(labels>labels(index(1))); labels(tmpInd) = labels(tmpInd) + 1; %Make room for new class labels(index(parts{2})) = labels(index(parts{2})) + 1; %Mark new class %Continue recursion on each partition if nparts(1) > CUTOFF labels = spm_vb_graphcut(labels,index(parts{1}),I(parts{1}),... W(parts{1},parts{1}),depth + 1,grnd_type,CUTOFF,DIM); end if nparts(2) > CUTOFF labels = spm_vb_graphcut(labels,index(parts{2}),I(parts{2}),... W(parts{2},parts{2}),depth + 1,grnd_type,CUTOFF,DIM); end end %========================================================================== % function parts = bipartition(W,CUTOFF,ground,method) %========================================================================== function parts = bipartition(W,CUTOFF,ground,method) % Computes bi-partition of a graph using isoperimetric algorithm. % FORMAT parts = bipartition(W,CUTOFF,ground,method) % parts 1x2 cell containing indices of each partition % W weight matrix % CUTOFF minimal number of voxels in a segment of the partition % ground ground node index % method used to solve L0*x0=d0. Options are 'direct' or 'cg', which % x0 = L0\d0 or preconditioned conjugate gradients (see Matlab % rountine pcg.m) try, method; catch, method = 'direct'; end %-Laplacian matrix d = sum(W,2); L = diag(d) - W; N = length(d); %-Compute reduced Laplacian matrix, i.e. remove ground node index = [1:(ground-1),(ground+1):N]; d0 = d(index); L0 = L(index,index); %-Solve system of equations L0*x0=d0 switch method case 'direct' x0 = L0\d0; case 'cg' x0 = pcg(L0,d0,[],N,diag(d0)); end %-Error catch if numerical instability occurs (due to ill-conditioned or %singular matrix) minVal = min(min(x0)); if minVal < 0 x0(find(x0 < 0)) = max(max(x0)) + 1; end %-Re-insert ground point x0 = [x0(1:(ground-1));0;x0((ground):(N-1))]; %-Remove sparseness of output x0 = full(x0); %-Determine cut point (ratio cut method) indicator = sparse(N,1); %-Sort values sortX = sortrows([x0,[1:N]'],1)'; %-Find total volume totalVolume = sum(d); halfTotalVolume = totalVolume/2; %-Calculate denominators sortedDegree = d(sortX(2,:))'; denominators = cumsum(sortedDegree); tmpIndex = find(denominators > halfTotalVolume); denominators(tmpIndex) = totalVolume - denominators(tmpIndex); %-Calculate numerators L = L(sortX(2,:),sortX(2,:)) - diag(sortedDegree); numerators = cumsum(sum((L - 2*triu(L)),2))'; if min(numerators) < 0 %Line used to avoid negative values due to precision issues numerators = numerators - min(numerators) + eps; end %-Calculate ratios for Isoperimetric criteria sw = warning('off','MATLAB:divideByZero'); [constant,minCut] = min(numerators(CUTOFF:(N-CUTOFF))./ ... denominators(CUTOFF:(N-CUTOFF))); minCut = minCut + CUTOFF - 1; warning(sw); %-Output partitions parts{1} = sortX(2,1:(minCut))'; parts{2} = sortX(2,(minCut+1):N);
github
philippboehmsturm/antx-master
spm_preproc.m
.m
antx-master/xspm8/spm_preproc.m
20,562
utf_8
4fb344b9d6037ec12448af8a5f36eaff
function results = spm_preproc(varargin) % Combined Segmentation and Spatial Normalisation % % FORMAT results = spm_preproc(V,opts) % V - image to work with % opts - options % opts.tpm - n tissue probability images for each class % opts.ngaus - number of Gaussians per class (n+1 classes) % opts.warpreg - warping regularisation % opts.warpco - cutoff distance for DCT basis functions % opts.biasreg - regularisation for bias correction % opts.biasfwhm - FWHM of Gausian form for bias regularisation % opts.regtype - regularisation for affine part % opts.fudge - a fudge factor % opts.msk - unused %__________________________________________________________________________ % Copyright (C) 2005-2011 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_preproc.m 4677 2012-03-05 15:39:35Z john $ opts0 = spm_get_defaults('preproc'); opts0 = rmfield(opts0,'output'); opts0.tpm = char(opts0.tpm); % In defaults, tpms are stored as cellstr opts0.msk = ''; if ~nargin V = spm_select(1,'image'); else V = varargin{1}; end if ischar(V), V = spm_vol(V); end if nargin < 2 opts = opts0; else opts = varargin{2}; fnms = fieldnames(opts0); for i=1:length(fnms) if ~isfield(opts,fnms{i}), opts.(fnms{i}) = opts0.(fnms{i}); end end end if length(opts.ngaus) ~= size(opts.tpm,1)+1 error('Number of Gaussians per class is not compatible with number of classes'); end K = sum(opts.ngaus); Kb = length(opts.ngaus); lkp = []; for k=1:Kb lkp = [lkp ones(1,opts.ngaus(k))*k]; end B = spm_vol(opts.tpm); b0 = spm_load_priors(B); d = V(1).dim(1:3); vx = sqrt(sum(V(1).mat(1:3,1:3).^2)); sk = max([1 1 1],round(opts.samp*[1 1 1]./vx)); [x0,y0,o] = ndgrid(1:sk(1):d(1),1:sk(2):d(2),1); z0 = 1:sk(3):d(3); tiny = eps; vx = sqrt(sum(V(1).mat(1:3,1:3).^2)); kron = inline('spm_krutil(a,b)','a','b'); % BENDING ENERGY REGULARIZATION for warping %----------------------------------------------------------------------- lam = 0.001; d2 = max(round((V(1).dim(1:3).*vx)/opts.warpco),[1 1 1]); kx = (pi*((1:d2(1))'-1)/d(1)/vx(1)).^2; ky = (pi*((1:d2(2))'-1)/d(2)/vx(2)).^2; kz = (pi*((1:d2(3))'-1)/d(3)/vx(3)).^2; Cwarp = (1*kron(kz.^2,kron(ky.^0,kx.^0)) +... 1*kron(kz.^0,kron(ky.^2,kx.^0)) +... 1*kron(kz.^0,kron(ky.^0,kx.^2)) +... 2*kron(kz.^1,kron(ky.^1,kx.^0)) +... 2*kron(kz.^1,kron(ky.^0,kx.^1)) +... 2*kron(kz.^0,kron(ky.^1,kx.^1)) ); Cwarp = Cwarp*opts.warpreg; Cwarp = [Cwarp*vx(1)^4 ; Cwarp*vx(2)^4 ; Cwarp*vx(3)^4]; Cwarp = sparse(1:length(Cwarp),1:length(Cwarp),Cwarp,length(Cwarp),length(Cwarp)); B3warp = spm_dctmtx(d(3),d2(3),z0); B2warp = spm_dctmtx(d(2),d2(2),y0(1,:)'); B1warp = spm_dctmtx(d(1),d2(1),x0(:,1)); lmR = speye(size(Cwarp)); Twarp = zeros([d2 3]); % GAUSSIAN REGULARISATION for bias correction %-------------------------------------------------------------------------- fwhm = opts.biasfwhm; sd = vx(1)*V(1).dim(1)/fwhm; d3(1) = ceil(sd*2); krn_x = exp(-(0:(d3(1)-1)).^2/sd.^2)/sqrt(vx(1)); sd = vx(2)*V(1).dim(2)/fwhm; d3(2) = ceil(sd*2); krn_y = exp(-(0:(d3(2)-1)).^2/sd.^2)/sqrt(vx(2)); sd = vx(3)*V(1).dim(3)/fwhm; d3(3) = ceil(sd*2); krn_z = exp(-(0:(d3(3)-1)).^2/sd.^2)/sqrt(vx(3)); Cbias = kron(krn_z,kron(krn_y,krn_x)).^(-2)*opts.biasreg; Cbias = sparse(1:length(Cbias),1:length(Cbias),Cbias,length(Cbias),length(Cbias)); B3bias = spm_dctmtx(d(3),d3(3),z0); B2bias = spm_dctmtx(d(2),d3(2),y0(1,:)'); B1bias = spm_dctmtx(d(1),d3(1),x0(:,1)); lmRb = speye(size(Cbias)); Tbias = zeros(d3); % Fudge Factor - to (approximately) account for non-independence of voxels ff = opts.fudge; ff = max(1,ff^3/prod(sk)/abs(det(V.mat(1:3,1:3)))); Cwarp = Cwarp*ff; Cbias = Cbias*ff; ll = -Inf; llr = 0; llrb = 0; tol1 = 1e-4; % Stopping criterion. For more accuracy, use a smaller value d = [size(x0) length(z0)]; f = zeros(d); for z=1:length(z0) f(:,:,z) = spm_sample_vol(V,x0,y0,o*z0(z),0); end [thresh,mx] = spm_minmax(f); mn = zeros(K,1); % give same results each time st = rand('state'); % st = rng; rand('state',0); % rng(0,'v5uniform'); % rng('defaults'); for k1=1:Kb kk = sum(lkp==k1); mn(lkp==k1) = rand(kk,1)*mx; end rand('state',st); % rng(st); vr = ones(K,1)*mx^2; mg = ones(K,1)/K; if ~isempty(opts.msk) VM = spm_vol(opts.msk); if sum(sum((VM.mat-V(1).mat).^2)) > 1e-6 || any(VM.dim(1:3) ~= V(1).dim(1:3)) error('Mask must have the same dimensions and orientation as the image.'); end end Affine = eye(4); if isfield(opts,'Affine'), % A request from Rik Henson Affine = opts.Affine; fprintf(1,'Using user-defined matrix for initial affine transformation\n'); end; if ~isempty(opts.regtype) Affine = spm_maff(V,{x0,y0,z0},b0,B(1).mat,Affine,opts.regtype,ff*100); Affine = spm_maff(V,{x0,y0,z0},b0,B(1).mat,Affine,opts.regtype,ff); end M = B(1).mat\Affine*V(1).mat; nm = 0; for z=1:length(z0) x1 = M(1,1)*x0 + M(1,2)*y0 + (M(1,3)*z0(z) + M(1,4)); y1 = M(2,1)*x0 + M(2,2)*y0 + (M(2,3)*z0(z) + M(2,4)); z1 = M(3,1)*x0 + M(3,2)*y0 + (M(3,3)*z0(z) + M(3,4)); buf(z).msk = spm_sample_priors(b0{end},x1,y1,z1,1)<(1-1/512); fz = f(:,:,z); %buf(z).msk = fz>thresh; buf(z).msk = buf(z).msk & isfinite(fz) & (fz~=0); if ~isempty(opts.msk), msk = spm_sample_vol(VM,x0,y0,o*z0(z),0); buf(z).msk = buf(z).msk & msk; end buf(z).nm = sum(buf(z).msk(:)); buf(z).f = fz(buf(z).msk); nm = nm + buf(z).nm; buf(z).bf(1:buf(z).nm,1) = single(1); buf(z).dat = single(0); if buf(z).nm, buf(z).dat(buf(z).nm,Kb) = single(0); end end clear f finalit = 0; spm_plot_convergence('Init','Processing','Log-likelihood','Iteration'); for iter=1:100 if finalit % THIS CODE MAY BE USED IN FUTURE % Reload the data for the final iteration. This iteration % does not do any registration, so there is no need to % mask out the background voxels. %------------------------------------------------------------------ llrb = -0.5*Tbias(:)'*Cbias*Tbias(:); for z=1:length(z0) fz = spm_sample_vol(V,x0,y0,o*z0(z),0); buf(z).msk = fz~=0; if ~isempty(opts.msk) msk = spm_sample_vol(VM,x0,y0,o*z0(z),0); buf(z).msk = buf(z).msk & msk; end buf(z).nm = sum(buf(z).msk(:)); buf(z).f = fz(buf(z).msk); nm = nm + buf(z).nm; buf(z).bf(1:buf(z).nm,1) = single(1); buf(z).dat = single(0); if buf(z).nm buf(z).dat(buf(z).nm,Kb) = single(0); end if buf(z).nm bf = transf(B1bias,B2bias,B3bias(z,:),Tbias); tmp = bf(buf(z).msk); llrb = llrb + sum(tmp); buf(z).bf = single(exp(tmp)); end end % The background won't fit well any more, so increase the % variances of these Gaussians in order to give it a chance vr(lkp(K)) = vr(lkp(K))*8; spm_plot_convergence('Init','Processing','Log-likelihood','Iteration'); end % Load the warped prior probability images into the buffer %---------------------------------------------------------------------- for z=1:length(z0) if ~buf(z).nm, continue; end [x1,y1,z1] = defs(Twarp,z,B1warp,B2warp,B3warp,x0,y0,z0,M,buf(z).msk); for k1=1:Kb tmp = spm_sample_priors(b0{k1},x1,y1,z1,k1==Kb); buf(z).dat(:,k1) = single(tmp); end end for iter1=1:10 % Estimate cluster parameters %================================================================== for subit=1:40 oll = ll; mom0 = zeros(K,1)+tiny; mom1 = zeros(K,1); mom2 = zeros(K,1); mgm = zeros(Kb,1); ll = llr+llrb; for z=1:length(z0) if ~buf(z).nm, continue; end bf = double(buf(z).bf); cr = double(buf(z).f).*bf; q = zeros(buf(z).nm,K); b = zeros(buf(z).nm,Kb); s = zeros(buf(z).nm,1)+tiny; for k1=1:Kb pr = double(buf(z).dat(:,k1)); b(:,k1) = pr; s = s + pr*sum(mg(lkp==k1)); end for k1=1:Kb b(:,k1) = b(:,k1)./s; end mgm = mgm + sum(b,1)'; for k=1:K q(:,k) = mg(k)*b(:,lkp(k)) .* exp((cr-mn(k)).^2/(-2*vr(k)))/sqrt(2*pi*vr(k)); end sq = sum(q,2)+tiny; ll = ll + sum(log(sq)); for k=1:K % Moments p1 = q(:,k)./sq; mom0(k) = mom0(k) + sum(p1(:)); p1 = p1.*cr; mom1(k) = mom1(k) + sum(p1(:)); p1 = p1.*cr; mom2(k) = mom2(k) + sum(p1(:)); end end % Mixing proportions, Means and Variances for k=1:K mg(k) = (mom0(k)+eps)/(mgm(lkp(k))+eps); mn(k) = mom1(k)/(mom0(k)+eps); vr(k) =(mom2(k)-mom1(k)*mom1(k)/mom0(k)+1e6*eps)/(mom0(k)+eps); vr(k) = max(vr(k),eps); end if subit>1 || (iter>1 && ~finalit), spm_plot_convergence('Set',ll); end; if finalit, fprintf('Mix: %g\n',ll); end; if subit == 1 ooll = ll; elseif (ll-oll)<tol1*nm % Improvement is small, so go to next step break; end end % Estimate bias %================================================================== if prod(d3)>0 for subit=1:40 % Compute objective function and its 1st and second derivatives Alpha = zeros(prod(d3),prod(d3)); % Second derivatives Beta = zeros(prod(d3),1); % First derivatives ollrb = llrb; oll = ll; ll = llr+llrb; for z=1:length(z0) if ~buf(z).nm, continue; end bf = double(buf(z).bf); cr = double(buf(z).f).*bf; q = zeros(buf(z).nm,K); for k=1:K q(:,k) = double(buf(z).dat(:,lkp(k)))*mg(k); end s = sum(q,2)+tiny; for k=1:K q(:,k) = q(:,k)./s .* exp((cr-mn(k)).^2/(-2*vr(k)))/sqrt(2*pi*vr(k)); end sq = sum(q,2)+tiny; ll = ll + sum(log(sq)); w1 = zeros(buf(z).nm,1); w2 = zeros(buf(z).nm,1); for k=1:K tmp = q(:,k)./sq/vr(k); w1 = w1 + tmp.*(mn(k) - cr); w2 = w2 + tmp; end wt1 = zeros(d(1:2)); wt1(buf(z).msk) = 1 + cr.*w1; wt2 = zeros(d(1:2)); wt2(buf(z).msk) = cr.*(cr.*w2 - w1); b3 = B3bias(z,:)'; Beta = Beta + kron(b3,spm_krutil(wt1,B1bias,B2bias,0)); Alpha = Alpha + kron(b3*b3',spm_krutil(wt2,B1bias,B2bias,1)); clear w1 w2 wt1 wt2 b3 end if finalit, fprintf('Bia: %g\n',ll); end if subit > 1 && ~(ll>oll) % Hasn't improved, so go back to previous solution Tbias = oTbias; llrb = ollrb; for z=1:length(z0) if ~buf(z).nm, continue; end bf = transf(B1bias,B2bias,B3bias(z,:),Tbias); buf(z).bf = single(exp(bf(buf(z).msk))); end break; else % Accept new solution spm_plot_convergence('Set',ll); oTbias = Tbias; if subit > 1 && ~((ll-oll)>tol1*nm) % Improvement is only small, so go to next step break; else % Use new solution and continue the Levenberg-Marquardt iterations Tbias = reshape((Alpha + Cbias + lmRb)\((Alpha+lmRb)*Tbias(:) + Beta),d3); llrb = -0.5*Tbias(:)'*Cbias*Tbias(:); for z=1:length(z0) if ~buf(z).nm, continue; end bf = transf(B1bias,B2bias,B3bias(z,:),Tbias); tmp = bf(buf(z).msk); llrb = llrb + sum(tmp); buf(z).bf = single(exp(tmp)); end end end end if ~((ll-ooll)>tol1*nm), break; end end end if finalit, break; end % Estimate deformations %====================================================================== mg1 = full(sparse(lkp,1,mg)); ll = llr+llrb; for z=1:length(z0) if ~buf(z).nm, continue; end bf = double(buf(z).bf); cr = double(buf(z).f).*bf; q = zeros(buf(z).nm,Kb); tmp = zeros(buf(z).nm,1)+tiny; s = zeros(buf(z).nm,1)+tiny; for k1=1:Kb s = s + mg1(k1)*double(buf(z).dat(:,k1)); end for k1=1:Kb kk = find(lkp==k1); pp = zeros(buf(z).nm,1); for k=kk pp = pp + exp((cr-mn(k)).^2/(-2*vr(k)))/sqrt(2*pi*vr(k))*mg(k); end q(:,k1) = pp; tmp = tmp+pp.*double(buf(z).dat(:,k1))./s; end ll = ll + sum(log(tmp)); for k1=1:Kb buf(z).dat(:,k1) = single(q(:,k1)); end end for subit=1:20 oll = ll; A = cell(3,3); A{1,1} = zeros(prod(d2)); A{1,2} = zeros(prod(d2)); A{1,3} = zeros(prod(d2)); A{2,2} = zeros(prod(d2)); A{2,3} = zeros(prod(d2)); A{3,3} = zeros(prod(d2)); Beta = zeros(prod(d2)*3,1); for z=1:length(z0) if ~buf(z).nm, continue; end [x1,y1,z1] = defs(Twarp,z,B1warp,B2warp,B3warp,x0,y0,z0,M,buf(z).msk); b = zeros(buf(z).nm,Kb); db1 = zeros(buf(z).nm,Kb); db2 = zeros(buf(z).nm,Kb); db3 = zeros(buf(z).nm,Kb); s = zeros(buf(z).nm,1)+tiny; ds1 = zeros(buf(z).nm,1); ds2 = zeros(buf(z).nm,1); ds3 = zeros(buf(z).nm,1); p = zeros(buf(z).nm,1)+tiny; dp1 = zeros(buf(z).nm,1); dp2 = zeros(buf(z).nm,1); dp3 = zeros(buf(z).nm,1); for k1=1:Kb [b(:,k1),db1(:,k1),db2(:,k1),db3(:,k1)] = spm_sample_priors(b0{k1},x1,y1,z1,k1==Kb); s = s + mg1(k1)* b(:,k1); ds1 = ds1 + mg1(k1)*db1(:,k1); ds2 = ds2 + mg1(k1)*db2(:,k1); ds3 = ds3 + mg1(k1)*db3(:,k1); end for k1=1:Kb b(:,k1) = b(:,k1)./s; db1(:,k1) = (db1(:,k1)-b(:,k1).*ds1)./s; db2(:,k1) = (db2(:,k1)-b(:,k1).*ds2)./s; db3(:,k1) = (db3(:,k1)-b(:,k1).*ds3)./s; pp = double(buf(z).dat(:,k1)); p = p + pp.*b(:,k1); dp1 = dp1 + pp.*(M(1,1)*db1(:,k1) + M(2,1)*db2(:,k1) + M(3,1)*db3(:,k1)); dp2 = dp2 + pp.*(M(1,2)*db1(:,k1) + M(2,2)*db2(:,k1) + M(3,2)*db3(:,k1)); dp3 = dp3 + pp.*(M(1,3)*db1(:,k1) + M(2,3)*db2(:,k1) + M(3,3)*db3(:,k1)); end clear x1 y1 z1 b db1 db2 db3 s ds1 ds2 ds3 tmp = zeros(d(1:2)); tmp(buf(z).msk) = dp1./p; dp1 = tmp; tmp(buf(z).msk) = dp2./p; dp2 = tmp; tmp(buf(z).msk) = dp3./p; dp3 = tmp; b3 = B3warp(z,:)'; Beta = Beta - [... kron(b3,spm_krutil(dp1,B1warp,B2warp,0)) kron(b3,spm_krutil(dp2,B1warp,B2warp,0)) kron(b3,spm_krutil(dp3,B1warp,B2warp,0))]; b3b3 = b3*b3'; A{1,1} = A{1,1} + kron(b3b3,spm_krutil(dp1.*dp1,B1warp,B2warp,1)); A{1,2} = A{1,2} + kron(b3b3,spm_krutil(dp1.*dp2,B1warp,B2warp,1)); A{1,3} = A{1,3} + kron(b3b3,spm_krutil(dp1.*dp3,B1warp,B2warp,1)); A{2,2} = A{2,2} + kron(b3b3,spm_krutil(dp2.*dp2,B1warp,B2warp,1)); A{2,3} = A{2,3} + kron(b3b3,spm_krutil(dp2.*dp3,B1warp,B2warp,1)); A{3,3} = A{3,3} + kron(b3b3,spm_krutil(dp3.*dp3,B1warp,B2warp,1)); clear b3 b3b3 tmp p dp1 dp2 dp3 end Alpha = [A{1,1} A{1,2} A{1,3} ; A{1,2} A{2,2} A{2,3}; A{1,3} A{2,3} A{3,3}]; clear A for subit1 = 1:3 if iter==1, nTwarp = (Alpha+lmR*lam + 10*Cwarp)\((Alpha+lmR*lam)*Twarp(:) - Beta); else nTwarp = (Alpha+lmR*lam + Cwarp)\((Alpha+lmR*lam)*Twarp(:) - Beta); end nTwarp = reshape(nTwarp,[d2 3]); nllr = -0.5*nTwarp(:)'*Cwarp*nTwarp(:); nll = nllr+llrb; for z=1:length(z0) if ~buf(z).nm, continue; end [x1,y1,z1] = defs(nTwarp,z,B1warp,B2warp,B3warp,x0,y0,z0,M,buf(z).msk); sq = zeros(buf(z).nm,1) + tiny; b = zeros(buf(z).nm,Kb); s = zeros(buf(z).nm,1)+tiny; for k1=1:Kb b(:,k1) = spm_sample_priors(b0{k1},x1,y1,z1,k1==Kb); s = s + mg1(k1)*b(:,k1); end for k1=1:Kb sq = sq + double(buf(z).dat(:,k1)).*b(:,k1)./s; end clear b nll = nll + sum(log(sq)); clear sq x1 y1 z1 end if nll<ll % Worse solution, so use old solution and increase regularisation lam = lam*10; else % Accept new solution ll = nll; llr = nllr; Twarp = nTwarp; lam = lam*0.5; break end end spm_plot_convergence('Set',ll); if (ll-oll)<tol1*nm, break; end end if ~((ll-ooll)>tol1*nm) finalit = 1; break; % This can be commented out. end end spm_plot_convergence('Clear'); results = opts; results.image = V; results.tpm = B; results.Affine = Affine; results.Twarp = Twarp; results.Tbias = Tbias; results.mg = mg; results.mn = mn; results.vr = vr; results.thresh = 0; %thresh; results.ll = ll; return %======================================================================= %======================================================================= function t = transf(B1,B2,B3,T) if ~isempty(T), d2 = [size(T) 1]; t1 = reshape(reshape(T, d2(1)*d2(2),d2(3))*B3', d2(1), d2(2)); t = B1*t1*B2'; else t = zeros(size(B1,1),size(B2,1)); end; return; %======================================================================= %======================================================================= function [x1,y1,z1] = defs(Twarp,z,B1,B2,B3,x0,y0,z0,M,msk) x1a = x0 + transf(B1,B2,B3(z,:),Twarp(:,:,:,1)); y1a = y0 + transf(B1,B2,B3(z,:),Twarp(:,:,:,2)); z1a = z0(z) + transf(B1,B2,B3(z,:),Twarp(:,:,:,3)); if nargin>=10, x1a = x1a(msk); y1a = y1a(msk); z1a = z1a(msk); end; x1 = M(1,1)*x1a + M(1,2)*y1a + M(1,3)*z1a + M(1,4); y1 = M(2,1)*x1a + M(2,2)*y1a + M(2,3)*z1a + M(2,4); z1 = M(3,1)*x1a + M(3,2)*y1a + M(3,3)*z1a + M(3,4); return; %=======================================================================
github
philippboehmsturm/antx-master
spm_preproc_write.m
.m
antx-master/xspm8/spm_preproc_write.m
8,906
utf_8
6313e4e753e749911aac1143ba425149
function spm_preproc_write(p,opts) % Write out VBM preprocessed data % FORMAT spm_preproc_write(p,opts) % p - results from spm_prep2sn % opts - writing options. A struct containing these fields: % biascor - write bias corrected image % GM - flags for which images should be written % WM - similar to GM % CSF - similar to GM %__________________________________________________________________________ % Copyright (C) 2005-2011 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_preproc_write.m 4199 2011-02-10 20:07:17Z guillaume $ if ischar(p), p = load(p); end if nargin==1 opts = spm_get_defaults('preproc.output'); end if numel(p)>0 b0 = spm_load_priors(p(1).VG); end for i=1:numel(p) preproc_apply(p(i),opts,b0); end return; %========================================================================== %========================================================================== function preproc_apply(p,opts,b0) %sopts = [opts.GM ; opts.WM ; opts.CSF]; nclasses = size(fieldnames(opts),1) - 2 ; switch nclasses case 3 sopts = [opts.GM ; opts.WM ; opts.CSF]; case 4 sopts = [opts.GM ; opts.WM ; opts.CSF ; opts.EXTRA1]; case 5 sopts = [opts.GM ; opts.WM ; opts.CSF ; opts.EXTRA1 ; opts.EXTRA2]; otherwise error('Unsupported number of classes!') end [pth,nam,ext]=fileparts(p.VF.fname); T = p.flags.Twarp; bsol = p.flags.Tbias; d2 = [size(T) 1]; d = p.VF.dim(1:3); [x1,x2,o] = ndgrid(1:d(1),1:d(2),1); x3 = 1:d(3); d3 = [size(bsol) 1]; B1 = spm_dctmtx(d(1),d2(1)); B2 = spm_dctmtx(d(2),d2(2)); B3 = spm_dctmtx(d(3),d2(3)); bB3 = spm_dctmtx(d(3),d3(3),x3); bB2 = spm_dctmtx(d(2),d3(2),x2(1,:)'); bB1 = spm_dctmtx(d(1),d3(1),x1(:,1)); mg = p.flags.mg; mn = p.flags.mn; vr = p.flags.vr; K = length(p.flags.mg); Kb = length(p.flags.ngaus); for k1=1:size(sopts,1), %dat{k1} = zeros(d(1:3),'uint8'); dat{k1} = uint8(0); dat{k1}(d(1),d(2),d(3)) = 0; if sopts(k1,3), Vt = struct('fname', fullfile(pth,['c', num2str(k1), nam, ext]),... 'dim', p.VF.dim,... 'dt', [spm_type('uint8') spm_platform('bigend')],... 'pinfo', [1/255 0 0]',... 'mat', p.VF.mat,... 'n', [1 1],... 'descrip', ['Tissue class ' num2str(k1)]); Vt = spm_create_vol(Vt); VO(k1) = Vt; end; end; if opts.biascor, VB = struct('fname', fullfile(pth,['m', nam, ext]),... 'dim', p.VF.dim(1:3),... 'dt', [spm_type('float32') spm_platform('bigend')],... 'pinfo', [1 0 0]',... 'mat', p.VF.mat,... 'n', [1 1],... 'descrip', 'Bias Corrected'); VB = spm_create_vol(VB); end; lkp = []; for k=1:Kb, lkp = [lkp ones(1,p.flags.ngaus(k))*k]; end; spm_progress_bar('init',length(x3),['Working on ' nam],'Planes completed'); M = p.VG(1).mat\p.flags.Affine*p.VF.mat; for z=1:length(x3), % Bias corrected image f = spm_sample_vol(p.VF,x1,x2,o*x3(z),0); cr = exp(transf(bB1,bB2,bB3(z,:),bsol)).*f; if opts.biascor, % Write a plane of bias corrected data VB = spm_write_plane(VB,cr,z); end; if any(sopts(:)), msk = (f==0) | ~isfinite(f); [t1,t2,t3] = defs(T,z,B1,B2,B3,x1,x2,x3,M); q = zeros([d(1:2) Kb]); bt = zeros([d(1:2) Kb]); for k1=1:Kb, bt(:,:,k1) = spm_sample_priors(b0{k1},t1,t2,t3,k1==Kb); end; b = zeros([d(1:2) K]); for k=1:K, b(:,:,k) = bt(:,:,lkp(k))*mg(k); end; s = sum(b,3); for k=1:K, p1 = exp((cr-mn(k)).^2/(-2*vr(k)))/sqrt(2*pi*vr(k)+eps); q(:,:,lkp(k)) = q(:,:,lkp(k)) + p1.*b(:,:,k)./s; end; sq = sum(q,3)+eps; sw = warning('off','MATLAB:divideByZero'); for k1=1:size(sopts,1), tmp = q(:,:,k1); tmp(msk) = 0; tmp = tmp./sq; dat{k1}(:,:,z) = uint8(round(255 * tmp)); end; warning(sw); end; spm_progress_bar('set',z); end; spm_progress_bar('clear'); if opts.cleanup > 0, [dat{1},dat{2},dat{3}] = clean_gwc(dat{1},dat{2},dat{3}, opts.cleanup); end; if any(sopts(:,3)), for z=1:length(x3), for k1=1:size(sopts,1), if sopts(k1,3), tmp = double(dat{k1}(:,:,z))/255; spm_write_plane(VO(k1),tmp,z); end; end; end; end; for k1=1:size(sopts,1), if any(sopts(k1,1:2)), so = struct('wrap',[0 0 0],'interp',1,'vox',[NaN NaN NaN],... 'bb',ones(2,3)*NaN,'preserve',0); ovx = abs(det(p.VG(1).mat(1:3,1:3)))^(1/3); fwhm = max(ovx./sqrt(sum(p.VF.mat(1:3,1:3).^2))-1,0.1); dat{k1} = decimate(dat{k1},fwhm); fn = fullfile(pth,['c', num2str(k1), nam, ext]); dim = [size(dat{k1}) 1]; VT = struct('fname',fn,'dim',dim(1:3),... 'dt', [spm_type('uint8') spm_platform('bigend')],... 'pinfo',[1/255 0]','mat',p.VF.mat,'dat',dat{k1}); if sopts(k1,2), spm_write_sn(VT,p,so); end; so.preserve = 1; if sopts(k1,1), VN = spm_write_sn(VT,p,so); VN.fname = fullfile(pth,['mwc', num2str(k1), nam, ext]); spm_write_vol(VN,VN.dat); end; end; end; return; %========================================================================== %========================================================================== function [x1,y1,z1] = defs(sol,z,B1,B2,B3,x0,y0,z0,M) x1a = x0 + transf(B1,B2,B3(z,:),sol(:,:,:,1)); y1a = y0 + transf(B1,B2,B3(z,:),sol(:,:,:,2)); z1a = z0(z) + transf(B1,B2,B3(z,:),sol(:,:,:,3)); x1 = M(1,1)*x1a + M(1,2)*y1a + M(1,3)*z1a + M(1,4); y1 = M(2,1)*x1a + M(2,2)*y1a + M(2,3)*z1a + M(2,4); z1 = M(3,1)*x1a + M(3,2)*y1a + M(3,3)*z1a + M(3,4); return; %========================================================================== %========================================================================== function t = transf(B1,B2,B3,T) if ~isempty(T) d2 = [size(T) 1]; t1 = reshape(reshape(T, d2(1)*d2(2),d2(3))*B3', d2(1), d2(2)); t = B1*t1*B2'; else t = zeros(size(B1,1),size(B2,1),size(B3,1)); end; return; %========================================================================== %========================================================================== function dat = decimate(dat,fwhm) % Convolve the volume in memory (fwhm in voxels). lim = ceil(2*fwhm); x = -lim(1):lim(1); x = spm_smoothkern(fwhm(1),x); x = x/sum(x); y = -lim(2):lim(2); y = spm_smoothkern(fwhm(2),y); y = y/sum(y); z = -lim(3):lim(3); z = spm_smoothkern(fwhm(3),z); z = z/sum(z); i = (length(x) - 1)/2; j = (length(y) - 1)/2; k = (length(z) - 1)/2; spm_conv_vol(dat,dat,x,y,z,-[i j k]); return; %========================================================================== %========================================================================== function [g,w,c] = clean_gwc(g,w,c, level) if nargin<4, level = 1; end; b = w; b(1) = w(1); % Build a 3x3x3 seperable smoothing kernel %-------------------------------------------------------------------------- kx=[0.75 1 0.75]; ky=[0.75 1 0.75]; kz=[0.75 1 0.75]; sm=sum(kron(kron(kz,ky),kx))^(1/3); kx=kx/sm; ky=ky/sm; kz=kz/sm; th1 = 0.15; if level==2, th1 = 0.2; end; % Erosions and conditional dilations %-------------------------------------------------------------------------- niter = 32; spm_progress_bar('Init',niter,'Extracting Brain','Iterations completed'); for j=1:niter, if j>2, th=th1; else th=0.6; end; % Dilate after two its of erosion. for i=1:size(b,3), gp = double(g(:,:,i)); wp = double(w(:,:,i)); bp = double(b(:,:,i))/255; bp = (bp>th).*(wp+gp); b(:,:,i) = uint8(round(bp)); end; spm_conv_vol(b,b,kx,ky,kz,-[1 1 1]); spm_progress_bar('Set',j); end; th = 0.05; for i=1:size(b,3), gp = double(g(:,:,i))/255; wp = double(w(:,:,i))/255; cp = double(c(:,:,i))/255; bp = double(b(:,:,i))/255; bp = ((bp>th).*(wp+gp))>th; g(:,:,i) = uint8(round(255*gp.*bp./(gp+wp+cp+eps))); w(:,:,i) = uint8(round(255*wp.*bp./(gp+wp+cp+eps))); c(:,:,i) = uint8(round(255*(cp.*bp./(gp+wp+cp+eps)+cp.*(1-bp)))); end; spm_progress_bar('Clear'); return; %==========================================================================
github
philippboehmsturm/antx-master
spm_robust_glm.m
.m
antx-master/xspm8/spm_robust_glm.m
3,455
utf_8
bcb212d68b21aa060a764bdf025894e1
function [B, W] = spm_robust_glm(Y, X, dim, ks) % Apply robust GLM % FORMAT [B, W] = spm_robust_glm(Y, X, dim, ks) % Y - data matrix % X - design matrix % dim - the dimension along which the function will work % ks - offset of the weighting function (default: 3) % % OUTPUT: % B - parameter estimates % W - estimated weights % % Implementation of: % Wager TD, Keller MC, Lacey SC, Jonides J. % Increased sensitivity in neuroimaging analyses using robust regression. % Neuroimage. 2005 May 15;26(1):99-113 %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % James Kilner, Vladimir Litvak % $Id: spm_robust_glm.m 4407 2011-07-26 12:13:00Z vladimir $ if nargin < 3 || isempty(ks) ks = 3; end if nargin < 2 || isempty(dim) dim = 1; end %-Remember the original data size and size of the mean %-------------------------------------------------------------------------- origsize = size(Y); borigsize = origsize; borigsize(dim) = size(X, 2); %-Convert the data to repetitions x points matrix %-------------------------------------------------------------------------- if dim > 1 Y = shiftdim(Y, dim-1); end if length(origsize) > 2 Y = reshape(Y, size(Y, 1), []); end %-Check the design matrix and compute leverages %-------------------------------------------------------------------------- if size(X, 1) ~= size(Y, 1) error('The number of rows in the design matrix should match dimension of interest.'); end H = diag(X*inv(X'*X)*X'); H = repmat(H(:), 1, size(Y, 2)); %-Rescale the data %-------------------------------------------------------------------------- [Y, scalefactor] = spm_cond_units(Y); %-Actual robust GLM %-------------------------------------------------------------------------- ores=1; nres=10; n=0; YY = Y; YY(isnan(YY)) = 0; while max(abs(ores-nres))>sqrt(1E-8) ores=nres; n=n+1; if n == 1 W = ones(size(Y)); W(isnan(Y)) = 0; end B = zeros(size(X, 2), size(Y, 2)); for i = 1:size(Y, 2); B(:, i) = inv(X'*diag(W(:, i))*X)*X'*diag(W(:, i))*YY(:, i); end if n > 200 warning('Robust GLM could not converge. Maximal number of iterations exceeded.'); break; end res = Y-X*B; mad = nanmedian(abs(res-repmat(nanmedian(res), size(res, 1), 1))); res = res./repmat(mad, size(res, 1), 1); res = res.*H; res = abs(res)-ks; res(res<0)=0; nres= (sum(res(~isnan(res)).^2)); W = (abs(res)<1) .* ((1 - res.^2).^2); W(isnan(Y)) = 0; W(Y == 0) = 0; %Assuming X is a real measurement end disp(['Robust GLM finished after ' num2str(n) ' iterations.']); %-Restore the betas and weights to the original data dimensions %-------------------------------------------------------------------------- B = B./scalefactor; if length(origsize) > 2 B = reshape(B, circshift(borigsize, [1 -(dim-1)])); W = reshape(W, circshift(origsize, [1 -(dim-1)])); end if dim > 1 B = shiftdim(B, length(origsize)-dim+1); W = shiftdim(W, length(origsize)-dim+1); end %-Helper function %-------------------------------------------------------------------------- function Y = nanmedian(X) if ~any(any(isnan(X))) Y = median(X); else Y = zeros(1, size(X,2)); for i = 1:size(X, 2) Y(i) = median(X(~isnan(X(:, i)), i)); end end
github
philippboehmsturm/antx-master
spm_inv_spd.m
.m
antx-master/xspm8/spm_inv_spd.m
2,156
utf_8
cd4bba226b2f3ecf23302491c65f9bfe
function X = spm_inv_spd(A, TOL) % inverse for symmetric positive (semi)definite matrices % FORMAT X = spm_inv_spd(A,TOL) % % A - symmetric positive definite matrix (e.g. covariance or precision) % X - inverse (should remain symmetric positive definite) % % TOL - tolerance: default = exp(-32) %__________________________________________________________________________ % Copyright (C) 2011 Wellcome Trust Centre for Neuroimaging % Ged Ridgway % $Id: spm_inv_spd.m 4360 2011-06-14 16:46:37Z ged $ % if ~all(isfinite(A(:))), error('Matrix has non-finite elements!'); end if nargin < 2 TOL = exp(-32); end [i j] = find(A); if isempty(i) % Special cases: empty or all-zero matrix, return identity/TOL %---------------------------------------------------------------------- X = eye(length(A)) / TOL; elseif all(i == j) % diagonal matrix %---------------------------------------------------------------------- d = diag(A); d = invtol(d, TOL); if issparse(A) n = length(A); X = sparse(1:n, 1:n, d); else X = diag(d); end elseif norm(A - A', 1) < TOL % symmetric, try LDL factorisation (but with L->X to save memory) %---------------------------------------------------------------------- [X D P] = ldl(full(A)); % P'*A*P = L*D*L', A = P*L*D*L'*P' [i j d] = find(D); % non-diagonal values indicate not positive semi-definite if all(i == j) d = invtol(d, TOL); % inv(A) = P*inv(L')*inv(D)*inv(L)*P' = (L\P')'*inv(D)*(L\P') % triangular system should be quick to solve and stay approx tri. X = X\P'; X = X'*diag(d)*X; if issparse(A), X = sparse(X); end else error('Matrix is not positive semi-definite according to ldl') end else error('Matrix is not symmetric to given tolerance'); end % if ~all(isfinite(X(:))), error('Inverse has non-finite elements!'); end function d = invtol(d, TOL) % compute reciprocal of values, clamped to lie between TOL and 1/TOL if any(d < -TOL) error('Matrix is not positive semi-definite at given tolerance') end d = max(d, TOL); d = 1./d; d = max(d, TOL);
github
philippboehmsturm/antx-master
spm.m
.m
antx-master/xspm8/spm.m
49,057
utf_8
98c0598c63fb03fb76fb44b4320b9c53
function varargout=spm(varargin) % SPM: Statistical Parametric Mapping (startup function) %_______________________________________________________________________ % ___ ____ __ __ % / __)( _ \( \/ ) % \__ \ )___/ ) ( Statistical Parametric Mapping % (___/(__) (_/\/\_) SPM - http://www.fil.ion.ucl.ac.uk/spm/ %_______________________________________________________________________ % % SPM (Statistical Parametric Mapping) is a package for the analysis % functional brain mapping experiments. It is the in-house package of % the Wellcome Trust Centre for Neuroimaging, and is available to the % scientific community as copyright freeware under the terms of the % GNU General Public Licence. % % Theoretical, computational and other details of the package are % available in SPM's "Help" facility. This can be launched from the % main SPM Menu window using the "Help" button, or directly from the % command line using the command `spm_help`. % % Details of this release are available via the "About SPM" help topic % (file spm.man), accessible from the SPM splash screen. (Or type % `spm_help spm.man` in the MATLAB command window) % % This spm function initialises the default parameters, and displays a % splash screen with buttons leading to the PET, fMRI and M/EEG % modalities. Alternatively, `spm('pet')`, `spm('fmri')`, `spm('eeg')` % (equivalently `spm pet`, `spm fmri` and `spm eeg`) lead directly to % the respective modality interfaces. % % Once the modality is chosen, (and it can be toggled mid-session) the % SPM user interface is displayed. This provides a constant visual % environment in which data analysis is implemented. The layout has % been designed to be simple and at the same time show all the % facilities that are available. The interface consists of three % windows: A menu window with pushbuttons for the SPM routines (each % button has a 'CallBack' string which launches the appropriate % function/script); A blank panel used for interaction with the user; % And a graphics figure with various editing and print facilities (see % spm_figure.m). (These windows are 'Tag'ged 'Menu', 'Interactive', and % 'Graphics' respectively, and should be referred to by their tags % rather than their figure numbers.) % % Further interaction with the user is (mainly) via questioning in the % 'Interactive' window (managed by spm_input), and file selection % (managed by spm_select). See the help on spm_input.m and spm_select.m for % details on using these functions. % % If a "message of the day" file named spm_motd.man exists in the SPM % directory (alongside spm.m) then it is displayed in the Graphics % window on startup. % % Arguments to this routine (spm.m) lead to various setup facilities, % mainly of use to SPM power users and programmers. See programmers % FORMAT & help in the main body of spm.m % %_______________________________________________________________________ % SPM is developed by members and collaborators of the % Wellcome Trust Centre for Neuroimaging %-SVN ID and authorship of this program... %----------------------------------------------------------------------- % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Andrew Holmes % $Id: spm.m 6128 2014-08-01 16:09:57Z guillaume $ %======================================================================= % - FORMAT specifications for embedded CallBack functions %======================================================================= %( This is a multi function function, the first argument is an action ) %( string, specifying the particular action function to take. Recall ) %( MATLAB's command-function duality: `spm Welcome` is equivalent to ) %( `spm('Welcome')`. ) % % FORMAT spm % Defaults to spm('Welcome') % % FORMAT spm('Welcome') % Clears command window, deletes all figures, prints welcome banner and % splash screen, sets window defaults. % % FORMAT spm('AsciiWelcome') % Prints ASCII welcome banner in MATLAB command window. % % FORMAT spm('PET') spm('FMRI') spm('EEG') % Closes all windows and draws new Menu, Interactive, and Graphics % windows for an SPM session. The buttons in the Menu window launch the % main analysis routines. % % FORMAT spm('ChMod',Modality) % Changes modality of SPM: Currently SPM supports PET & MRI modalities, % each of which have a slightly different Menu window and different % defaults. This function switches to the specified modality, setting % defaults and displaying the relevant buttons. % % FORMAT spm('defaults',Modality) % Sets default global variables for the specified modality. % % FORMAT [Modality,ModNum]=spm('CheckModality',Modality) % Checks the specified modality against those supported, returns % upper(Modality) and the Modality number, it's position in the list of % supported Modalities. % % FORMAT Fmenu = spm('CreateMenuWin',Vis) % Creates SPM menu window, 'Tag'ged 'Menu' % F - handle of figure created % Vis - Visibility, 'on' or 'off' % % Finter = FORMAT spm('CreateIntWin',Vis) % Creates an SPM Interactive window, 'Tag'ged 'Interactive' % F - handle of figure created % Vis - Visibility, 'on' or 'off' % % FORMAT [Finter,Fgraph,CmdLine] = spm('FnUIsetup',Iname,bGX,CmdLine) % Robust UIsetup procedure for functions: % Returns handles of 'Interactive' and 'Graphics' figures. % Creates 'Interactive' figure if ~CmdLine, creates 'Graphics' figure if bGX. % Iname - Name for 'Interactive' window % bGX - Need a Graphics window? [default 1] % CmdLine - CommandLine usage? [default spm('CmdLine')] % Finter - handle of 'Interactive' figure % Fgraph - handle of 'Graphics' figure % CmdLine - CommandLine usage? % % FORMAT WS=spm('WinScale') % Returns ratios of current display dimensions to that of a 1152 x 900 % Sun display. WS=[Xratio,Yratio,Xratio,Yratio]. Used for scaling other % GUI elements. % (Function duplicated in spm_figure.m, repeated to reduce inter-dependencies.) % % FORMAT [FS,sf] = spm('FontSize',FS) % FORMAT [FS,sf] = spm('FontSizes',FS) % Returns fontsizes FS scaled for the current display. % FORMAT sf = spm('FontScale') % Returns font scaling factor % FS - (vector of) Font sizes to scale [default [1:36]] % sf - font scaling factor (FS(out) = floor(FS(in)*sf) % % Rect = spm('WinSize',Win,raw) % Returns sizes and positions for SPM windows. % Win - 'Menu', 'Interactive', 'Graphics', or '0' % - Window whose position is required. Only first character is % examined. '0' returns size of root workspace. % raw - If specified, then positions are for a 1152 x 900 Sun display. % Otherwise the positions are scaled for the current display. % % FORMAT [c,cName] = spm('Colour') % Returns the RGB triple and a description for the current en-vogue SPM % colour, the background colour for the Menu and Help windows. % % FORMAT F = spm('FigName',Iname,F,CmdLine) % Set name of figure F to "SPMver (User): Iname" if ~CmdLine % Robust to absence of figure. % Iname - Name for figure % F (input) - Handle (or 'Tag') of figure to name [default 'Interactive'] % CmdLine - CommandLine usage? [default spm('CmdLine')] % F (output) - Handle of figure named % % FORMAT Fs = spm('Show') % Opens all SPM figure windows (with HandleVisibility) using `figure`. % Maintains current figure. % Fs - vector containing all HandleVisible figures (i.e. get(0,'Children')) % % FORMAT spm('Clear',Finter, Fgraph) % Clears and resets SPM-GUI, clears and timestamps MATLAB command window. % Finter - handle or 'Tag' of 'Interactive' figure [default 'Interactive'] % Fgraph - handle or 'Tag' of 'Graphics' figure [default 'Graphics'] % % FORMAT SPMid = spm('FnBanner', Fn,FnV) % Prints a function start banner, for version FnV of function Fn, & datestamps % FORMAT SPMid = spm('SFnBanner',Fn,FnV) % Prints a sub-function start banner % FORMAT SPMid = spm('SSFnBanner',Fn,FnV) % Prints a sub-sub-function start banner % Fn - Function name (string) % FnV - Function version (string) % SPMid - ID string: [SPMver: Fn (FnV)] % % FORMAT SPMdir = spm('Dir',Mfile) % Returns the directory containing the version of spm in use, % identified as the first in MATLABPATH containing the Mfile spm (this % file) (or Mfile if specified). % % FORMAT [v,r] = spm('Ver',Mfile,ReDo) % Returns the current version (v) and release (r) of file Mfile. This % corresponds to the Last changed Revision number extracted from the % Subversion Id tag. % If Mfile is absent or empty then it returns the current SPM version (v) % and release (r), extracted from the file Contents.m in the SPM directory % (these information are cached in a persistent variable to enable repeat % use without recomputation). % If Redo [default false] is true, then the cached current SPM information % are not used but recomputed (and recached). % % FORMAT ver = spm('Version') % Returns a string containing SPM version and release numbers. % % FORMAT v = spm('MLver') % Returns MATLAB version, truncated to major & minor revision numbers % % FORMAT xTB = spm('TBs') % Identifies installed SPM toolboxes: SPM toolboxes are defined as the % contents of sub-directories of fullfile(spm('Dir'),'toolbox') - the % SPM toolbox installation directory. For SPM to pick a toolbox up, % there must be a single mfile in the directory whose name ends with % the toolbox directory name. (I.e. A toolbox called "test" would be in % the "test" subdirectory of spm('Dir'), with a single file named % *test.m.) This M-file is regarded as the launch file for the % toolbox. % xTB - structure array containing toolbox definitions % xTB.name - name of toolbox (taken as toolbox directory name) % xTB.prog - launch program for toolbox % xTB.dir - toolbox directory % % FORMAT spm('TBlaunch',xTB,i) % Launch a toolbox, prepending TBdir to path if necessary % xTB - toolbox definition structure (i.e. from spm('TBs') % xTB.name - name of toolbox % xTB.prog - name of program to launch toolbox % xTB.dir - toolbox directory (prepended to path if not on path) % % FORMAT [v1,v2,...] = spm('GetGlobal',name1,name2,...) % Returns values of global variables (without declaring them global) % name1, name2,... - name strings of desired globals % a1, a2,... - corresponding values of global variables with given names % ([] is returned as value if global variable doesn't exist) % % FORMAT CmdLine = spm('CmdLine',CmdLine) % Command line SPM usage? % CmdLine (input) - CmdLine preference % [defaults (missing or empty) to global defaults.cmdline,] % [if it exists, or 0 (GUI) otherwise. ] % CmdLine (output) - true if global CmdLine if true, % or if on a terminal with no support for graphics windows. % % FORMAT spm('PopUpCB',h) % Callback handler for PopUp UI menus with multiple callbacks as cellstr UserData % % FORMAT str = spm('GetUser',fmt) % Returns current users login name, extracted from the hosting environment % fmt - format string: If USER is defined then sprintf(fmt,USER) is returned % % FORMAT spm('Beep') % Plays the keyboard beep! % % FORMAT spm('time') % Returns the current time and date as hh:mm dd/mm/yyyy % % FORMAT spm('Pointer',Pointer) % Changes pointer on all SPM (HandleVisible) windows to type Pointer % Pointer defaults to 'Arrow'. Robust to absence of windows % % FORMAT h = spm('alert',Message,Title,CmdLine,wait) % FORMAT h = spm('alert"',Message,Title,CmdLine,wait) % FORMAT h = spm('alert*',Message,Title,CmdLine,wait) % FORMAT h = spm('alert!',Message,Title,CmdLine,wait) % Displays an alert, either in a GUI msgbox, or as text in the command window. % ( 'alert"' uses the 'help' msgbox icon, 'alert*' the ) % ( 'error' icon, 'alert!' the 'warn' icon ) % Message - string (or cellstr) containing message to print % Title - title string for alert % CmdLine - CmdLine preference [default spm('CmdLine')] % - If CmdLine is complex, then a CmdLine alert is always used, % possibly in addition to a msgbox (the latter according % to spm('CmdLine').) % wait - if true, waits until user dismisses GUI / confirms text alert % [default 0] (if doing both GUI & text, waits on GUI alert) % h - handle of msgbox created, empty if CmdLine used % % FORMAT spm('Delete',file) % Delete file(s), using spm_select and confirmation dialogs. % % FORMAT spm('Run',mscript) % Run M-script(s), using spm_select. % % FORMAT spm('Clean') % Clear all variables, globals, functions, MEX links and class definitions. % % FORMAT spm('Help',varargin) % Merely a gateway to spm_help(varargin) - so you can type "spm help" % % FORMAT spm('Quit') % Quit SPM, delete all windows and clear the command window. % %_______________________________________________________________________ %% hack-p warning off; %-Parameters %----------------------------------------------------------------------- Modalities = {'PET','FMRI','EEG'}; %-Format arguments %----------------------------------------------------------------------- if nargin == 0, Action = 'Welcome'; else Action = varargin{1}; end %======================================================================= switch lower(Action), case 'welcome' %-Welcome splash screen %======================================================================= % spm('Welcome') spm_check_installation('basic'); defaults = spm('GetGlobal','defaults'); if isfield(defaults,'modality') spm(defaults.modality); return end %-Open startup window, set window defaults %----------------------------------------------------------------------- Fwelcome = openfig(fullfile(spm('Dir'),'spm_Welcome.fig'),'new','invisible'); set(Fwelcome,'name',sprintf('%s%s',spm('ver'),spm('GetUser',' (%s)'))); set(get(findobj(Fwelcome,'Type','axes'),'children'),'FontName',spm_platform('Font','Times')); set(findobj(Fwelcome,'Tag','SPM_VER'),'String',spm('Ver')); RectW = spm('WinSize','W',1); Rect0 = spm('WinSize','0',1); set(Fwelcome,'Units','pixels', 'Position',... [Rect0(1)+(Rect0(3)-RectW(3))/2, Rect0(2)+(Rect0(4)-RectW(4))/2, RectW(3), RectW(4)]); set(Fwelcome,'Color',[1 1 1]*.8); set(Fwelcome,'Visible','on'); %======================================================================= case 'asciiwelcome' %-ASCII SPM banner welcome %======================================================================= % spm('AsciiWelcome') disp( ' ___ ____ __ __ '); disp( '/ __)( _ \( \/ ) '); disp( '\__ \ )___/ ) ( Statistical Parametric Mapping '); disp(['(___/(__) (_/\/\_) ',spm('Ver'),' - http://www.fil.ion.ucl.ac.uk/spm/']); fprintf('\n'); %======================================================================= case lower(Modalities) %-Initialise SPM in PET, fMRI, EEG modality %======================================================================= % spm(Modality) spm_check_installation('basic'); try, feature('JavaFigures',0); end %-Initialisation and workspace canonicalisation %----------------------------------------------------------------------- % local_clc; % spm('AsciiWelcome'); fprintf('\n\nInitialising SPM'); % Modality = upper(Action); fprintf('.'); % spm_figure('close',allchild(0)); fprintf('.'); %% hack-p close(findobj(0,'tag','Graphics')); close(findobj(0,'tag','Menu')); close(findobj(0,'tag','Interactive')); Modality = upper(Action); fprintf('.'); %-Load startup global defaults %----------------------------------------------------------------------- spm_defaults; fprintf('.'); %-Setup for batch system %----------------------------------------------------------------------- spm_jobman('initcfg'); spm_select('prevdirs',[spm('Dir') filesep]); %-Draw SPM windows %----------------------------------------------------------------------- if ~spm('CmdLine') Fmenu = spm('CreateMenuWin','off'); fprintf('.'); Finter = spm('CreateIntWin','off'); fprintf('.'); else Fmenu = []; Finter = []; end Fgraph = spm_figure('Create','Graphics','Graphics','off'); fprintf('.'); spm_figure('WaterMark',Finter,spm('Ver'),'',45); fprintf('.'); Fmotd = fullfile(spm('Dir'),'spm_motd.man'); if exist(Fmotd,'file'), spm_help('!Disp',Fmotd,'',Fgraph,spm('Ver')); end fprintf('.'); %-Setup for current modality %----------------------------------------------------------------------- spm('ChMod',Modality); fprintf('.'); %-Reveal windows %----------------------------------------------------------------------- set([Fmenu,Finter,Fgraph],'Visible','on'); fprintf('done\n\n'); %-Print present working directory %----------------------------------------------------------------------- fprintf('SPM present working directory:\n\t%s\n',pwd) %======================================================================= case 'chmod' %-Change SPM modality PET<->fMRI<->EEG %======================================================================= % spm('ChMod',Modality) %----------------------------------------------------------------------- %-Sort out arguments %----------------------------------------------------------------------- if nargin<2, Modality = ''; else Modality = varargin{2}; end [Modality,ModNum] = spm('CheckModality',Modality); %-Sort out global defaults %----------------------------------------------------------------------- spm('defaults',Modality); %-Sort out visability of appropriate controls on Menu window %----------------------------------------------------------------------- Fmenu = spm_figure('FindWin','Menu'); if ~isempty(Fmenu) if strcmpi(Modality,'PET') set(findobj(Fmenu, 'Tag', 'FMRI'), 'Visible', 'off'); set(findobj(Fmenu, 'Tag', 'EEG'), 'Visible', 'off'); set(findobj(Fmenu, 'Tag', 'PETFMRI'), 'Visible', 'on' ); set(findobj(Fmenu, 'Tag', 'PET'), 'Visible', 'on' ); elseif strcmpi(Modality,'FMRI') set(findobj(Fmenu, 'Tag', 'EEG'), 'Visible', 'off'); set(findobj(Fmenu, 'Tag', 'PET'), 'Visible', 'off'); set(findobj(Fmenu, 'Tag', 'PETFMRI'), 'Visible', 'on' ); set(findobj(Fmenu, 'Tag', 'FMRI'), 'Visible', 'on' ); else set(findobj(Fmenu, 'Tag', 'PETFMRI'), 'Visible', 'off'); set(findobj(Fmenu, 'Tag', 'PET'), 'Visible', 'off'); set(findobj(Fmenu, 'Tag', 'FMRI'), 'Visible', 'off'); set(findobj(Fmenu, 'Tag', 'EEG'), 'Visible', 'on' ); end set(findobj(Fmenu,'Tag','Modality'),'Value',ModNum,'UserData',ModNum); else warning('SPM Menu window not found'); end %======================================================================= case 'defaults' %-Set SPM defaults (as global variable) %======================================================================= % spm('defaults',Modality) %----------------------------------------------------------------------- if nargin<2, Modality=''; else Modality=varargin{2}; end Modality = spm('CheckModality',Modality); %-Re-initialise, load defaults (from spm_defaults.m) and store modality %----------------------------------------------------------------------- clear global defaults spm_get_defaults('modality',Modality); %-Addpath modality-specific toolboxes %----------------------------------------------------------------------- if strcmpi(Modality,'EEG') && ~isdeployed addpath(fullfile(spm('Dir'),'external','fieldtrip')); clear ft_defaults clear global ft_default ft_defaults; addpath(fullfile(spm('Dir'),'external','bemcp')); addpath(fullfile(spm('Dir'),'external','ctf')); addpath(fullfile(spm('Dir'),'external','eeprobe')); addpath(fullfile(spm('Dir'),'external','mne')); addpath(fullfile(spm('Dir'),'external','yokogawa')); addpath(fullfile(spm('Dir'),'toolbox', 'dcm_meeg')); addpath(fullfile(spm('Dir'),'toolbox', 'spectral')); addpath(fullfile(spm('Dir'),'toolbox', 'Neural_Models')); addpath(fullfile(spm('Dir'),'toolbox', 'Beamforming')); addpath(fullfile(spm('Dir'),'toolbox', 'MEEGtools')); end %-Turn output pagination off in Octave %----------------------------------------------------------------------- if strcmpi(spm_check_version,'octave') try more('off'); page_screen_output(false); page_output_immediately(true); end end %-Return defaults variable if asked %----------------------------------------------------------------------- if nargout, varargout = {spm_get_defaults}; end %======================================================================= case 'checkmodality' %-Check & canonicalise modality string %======================================================================= % [Modality,ModNum] = spm('CheckModality',Modality) %----------------------------------------------------------------------- if nargin<2, Modality=''; else Modality=upper(varargin{2}); end if isempty(Modality) try Modality = spm_get_defaults('modality'); end end if ischar(Modality) ModNum = find(ismember(Modalities,Modality)); else if ~any(Modality == 1:length(Modalities)) Modality = 'ERROR'; ModNum = []; else ModNum = Modality; Modality = Modalities{ModNum}; end end if isempty(ModNum) if isempty(Modality) fprintf('Modality is not set: use spm(''defaults'',''MOD''); '); fprintf('where MOD is one of PET, FMRI, EEG.\n'); end error('Unknown Modality.'); end varargout = {upper(Modality),ModNum}; %======================================================================= case 'createmenuwin' %-Create SPM menu window %======================================================================= % Fmenu = spm('CreateMenuWin',Vis) %----------------------------------------------------------------------- if nargin<2, Vis='on'; else Vis=varargin{2}; end %-Close any existing 'Menu' 'Tag'ged windows %----------------------------------------------------------------------- delete(spm_figure('FindWin','Menu')) Fmenu = openfig(fullfile(spm('Dir'),'spm_Menu.fig'),'new','invisible'); set(Fmenu,'name',sprintf('%s%s: Menu',spm('ver'),spm('GetUser',' (%s)'))); S0 = spm('WinSize','0',1); SM = spm('WinSize','M'); set(Fmenu,'Units','pixels', 'Position',[S0(1) S0(2) 0 0] + SM); %-Set SPM colour %----------------------------------------------------------------------- set(findobj(Fmenu,'Tag', 'frame'),'backgroundColor',spm('colour')); set(Fmenu,'Color',[1 1 1]*.8); try if ismac b = findobj(Fmenu,'Style','pushbutton'); set(b,'backgroundColor',get(b(1),'backgroundColor')+0.002); end end %-Set Utils %----------------------------------------------------------------------- set(findobj(Fmenu,'Tag', 'Utils'), 'String',{'Utils...',... 'CD',... 'PWD',... 'Run M-file',... 'Load MAT-file',... 'Save MAT-file',... 'Delete files',... 'Show SPM'}); set(findobj(Fmenu,'Tag', 'Utils'), 'UserData',{... ['spm(''FnBanner'',''CD'');' ... 'cd(spm_select(1,''dir'',''Select new working directory''));' ... 'spm(''alert"'',{''New working directory:'',['' '',pwd]},''CD'',1);'],... ['spm(''FnBanner'',''PWD'');' ... 'spm(''alert"'',{''Present working directory:'',['' '',pwd]},''PWD'',1);'],... ['spm(''FnBanner'',''Run M-file'');' ... 'spm(''Run'');'],... ['spm(''FnBanner'',''Load MAT-file'');' ... 'load(spm_select(1,''mat'',''Select MAT-file''));'],... ['spm(''FnBanner'',''Save MAT-file'');' ... 'save(spm_input(''Output filename'',1,''s''));'],... ['spm(''FnBanner'',''Delete files'');' ... 'spm(''Delete'');'],... ['spm(''FnBanner'',''Show SPM'');' ... 'spm(''Show'');']}); %-Set Toolboxes %----------------------------------------------------------------------- xTB = spm('tbs'); if ~isempty(xTB) set(findobj(Fmenu,'Tag', 'Toolbox'),'String',{'Toolbox:' xTB.name }); set(findobj(Fmenu,'Tag', 'Toolbox'),'UserData',xTB); else set(findobj(Fmenu,'Tag', 'Toolbox'),'Visible','off') end set(Fmenu,'Visible',Vis); varargout = {Fmenu}; %======================================================================= case 'createintwin' %-Create SPM interactive window %======================================================================= % Finter = spm('CreateIntWin',Vis) %----------------------------------------------------------------------- if nargin<2, Vis='on'; else Vis=varargin{2}; end %-Close any existing 'Interactive' 'Tag'ged windows %----------------------------------------------------------------------- delete(spm_figure('FindWin','Interactive')) %-Create SPM Interactive window %----------------------------------------------------------------------- FS = spm('FontSizes'); PF = spm_platform('fonts'); S0 = spm('WinSize','0',1); SI = spm('WinSize','I'); Finter = figure('IntegerHandle','off',... 'Tag','Interactive',... 'Name',spm('Ver'),... 'NumberTitle','off',... 'Units','pixels',... 'Position',[S0(1) S0(2) 0 0] + SI,... 'Resize','on',... 'Color',[1 1 1]*.8,... 'MenuBar','none',... 'DefaultTextFontName',PF.helvetica,... 'DefaultTextFontSize',FS(10),... 'DefaultAxesFontName',PF.helvetica,... 'DefaultUicontrolBackgroundColor',[1 1 1]*.7,... 'DefaultUicontrolFontName',PF.helvetica,... 'DefaultUicontrolFontSize',FS(10),... 'DefaultUicontrolInterruptible','on',... 'Renderer','painters',... 'Visible',Vis); varargout = {Finter}; %======================================================================= case 'fnuisetup' %-Robust UI setup for main SPM functions %======================================================================= % [Finter,Fgraph,CmdLine] = spm('FnUIsetup',Iname,bGX,CmdLine) %----------------------------------------------------------------------- if nargin<4, CmdLine=spm('CmdLine'); else CmdLine=varargin{4}; end if nargin<3, bGX=1; else bGX=varargin{3}; end if nargin<2, Iname=''; else Iname=varargin{2}; end if CmdLine Finter = spm_figure('FindWin','Interactive'); if ~isempty(Finter), spm_figure('Clear',Finter), end %if ~isempty(Iname), fprintf('%s:\n',Iname), end else Finter = spm_figure('GetWin','Interactive'); spm_figure('Clear',Finter) if ~isempty(Iname) str = sprintf('%s (%s): %s',spm('ver'),spm('GetUser'),Iname); else str = ''; end set(Finter,'Name',str) end if bGX Fgraph = spm_figure('GetWin','Graphics'); spm_figure('Clear',Fgraph) else Fgraph = spm_figure('FindWin','Graphics'); end varargout = {Finter,Fgraph,CmdLine}; %======================================================================= case 'winscale' %-Window scale factors (to fit display) %======================================================================= % WS = spm('WinScale') %----------------------------------------------------------------------- S0 = spm('WinSize','0',1); if all(ismember(S0(:),[0 1])) varargout = {[1 1 1 1]}; return; end tmp = [S0(3)/1152 (S0(4)-50)/900]; varargout = {min(tmp)*[1 1 1 1]}; % Make sure that aspect ratio is about right - for funny shaped screens % varargout = {[S0(3)/1152 (S0(4)-50)/900 S0(3)/1152 (S0(4)-50)/900]}; %======================================================================= case {'fontsize','fontsizes','fontscale'} %-Font scaling %======================================================================= % [FS,sf] = spm('FontSize',FS) % [FS,sf] = spm('FontSizes',FS) % sf = spm('FontScale') %----------------------------------------------------------------------- if nargin<2, FS=1:36; else FS=varargin{2}; end offset = 1; %try, if ismac, offset = 1.4; end; end sf = offset + 0.85*(min(spm('WinScale'))-1); if strcmpi(Action,'fontscale') varargout = {sf}; else varargout = {ceil(FS*sf),sf}; end %======================================================================= case 'winsize' %-Standard SPM window locations and sizes %======================================================================= % Rect = spm('WinSize',Win,raw) %----------------------------------------------------------------------- if nargin<3, raw=0; else raw=1; end if nargin<2, Win=''; else Win=varargin{2}; end Rect = [[108 466 400 445];... [108 045 400 395];... [515 015 600 865];... [326 310 500 280]]; if isempty(Win) %-All windows elseif upper(Win(1))=='M' %-Menu window Rect = Rect(1,:); elseif upper(Win(1))=='I' %-Interactive window Rect = Rect(2,:); elseif upper(Win(1))=='G' %-Graphics window Rect = Rect(3,:); elseif upper(Win(1))=='W' %-Welcome window Rect = Rect(4,:); elseif Win(1)=='0' %-Root workspace Rect = get(0, 'MonitorPosition'); if all(ismember(Rect(:),[0 1])) warning('SPM:noDisplay','Unable to open display.'); end if size(Rect,1) > 1 % Multiple Monitors %-Use Monitor containing the Pointer pl = get(0,'PointerLocation'); Rect(:,[3 4]) = Rect(:,[3 4]) + Rect(:,[1 2]); w = find(pl(1)>=Rect(:,1) & pl(1)<=Rect(:,3) &... pl(2)>=Rect(:,2) & pl(2)<=Rect(:,4)); if numel(w)~=1, w = 1; end Rect = Rect(w,:); %-Make sure that the format is [x y width height] Rect(1,[3 4]) = Rect(1,[3 4]) - Rect(1,[1 2]) + 1; end else error('Unknown Win type'); end if ~raw WS = repmat(spm('WinScale'),size(Rect,1),1); Rect = Rect.*WS; end varargout = {Rect}; %======================================================================= case 'colour' %-SPM interface colour %======================================================================= % spm('Colour') %----------------------------------------------------------------------- %-Pre-developmental livery % varargout = {[1.0,0.2,0.3],'fightening red'}; %-Developmental livery % varargout = {[0.7,1.0,0.7],'flourescent green'}; %-Alpha release livery % varargout = {[0.9,0.9,0.5],'over-ripe banana'}; %-Beta release livery % varargout = {[0.9 0.8 0.9],'blackcurrant purple'}; %-Distribution livery varargout = {[0.8 0.8 1.0],'vile violet'}; try varargout = {spm_get_defaults('ui.colour'),'bluish'}; end %======================================================================= case 'figname' %-Robust SPM figure naming %======================================================================= % F = spm('FigName',Iname,F,CmdLine) %----------------------------------------------------------------------- if nargin<4, CmdLine=spm('CmdLine'); else CmdLine=varargin{4}; end if nargin<3, F='Interactive'; else F=varargin{3}; end if nargin<2, Iname=''; else Iname=varargin{2}; end %if ~isempty(Iname), fprintf('\t%s\n',Iname), end if CmdLine, varargout={[]}; return, end F = spm_figure('FindWin',F); if ~isempty(F) && ~isempty(Iname) set(F,'Name',sprintf('%s (%s): %s',spm('ver'),spm('GetUser'),Iname)) end varargout={F}; %======================================================================= case 'show' %-Bring visible MATLAB windows to the fore %======================================================================= % Fs = spm('Show') %----------------------------------------------------------------------- cF = get(0,'CurrentFigure'); Fs = get(0,'Children'); Fs = findobj(Fs,'flat','Visible','on'); for F=Fs(:)', figure(F), end try, figure(cF), set(0,'CurrentFigure',cF); end varargout={Fs}; %======================================================================= case 'clear' %-Clear SPM GUI %======================================================================= % spm('Clear',Finter, Fgraph) %----------------------------------------------------------------------- if nargin<3, Fgraph='Graphics'; else Fgraph=varargin{3}; end if nargin<2, Finter='Interactive'; else Finter=varargin{2}; end spm_figure('Clear',Fgraph) spm_figure('Clear',Finter) spm('Pointer','Arrow') spm_conman('Initialise','reset'); local_clc; fprintf('\n'); %evalin('base','clear') %======================================================================= case {'fnbanner','sfnbanner','ssfnbanner'} %-Text banners for functions %======================================================================= % SPMid = spm('FnBanner', Fn,FnV) % SPMid = spm('SFnBanner',Fn,FnV) % SPMid = spm('SSFnBanner',Fn,FnV) %----------------------------------------------------------------------- time = spm('time'); str = spm('ver'); if nargin>=2, str = [str,': ',varargin{2}]; end if nargin>=3 v = regexp(varargin{3},'\$Rev: (\d*) \$','tokens','once'); if ~isempty(v) str = [str,' (v',v{1},')']; else str = [str,' (v',varargin{3},')']; end end switch lower(Action) case 'fnbanner' tab = ''; wid = 72; lch = '='; case 'sfnbanner' tab = sprintf('\t'); wid = 72-8; lch = '-'; case 'ssfnbanner' tab = sprintf('\t\t'); wid = 72-2*8; lch = '-'; end fprintf('\n%s%s',tab,str) fprintf('%c',repmat(' ',1,wid-length([str,time]))) fprintf('%s\n%s',time,tab) fprintf('%c',repmat(lch,1,wid)),fprintf('\n') varargout = {str}; %======================================================================= case 'dir' %-Identify specific (SPM) directory %======================================================================= % spm('Dir',Mfile) %----------------------------------------------------------------------- if nargin<2, Mfile='spm'; else Mfile=varargin{2}; end SPMdir = which(Mfile); if isempty(SPMdir) %-Not found or full pathname given if exist(Mfile,'file')==2 %-Full pathname SPMdir = Mfile; else error(['Can''t find ',Mfile,' on MATLABPATH']); end end SPMdir = fileparts(SPMdir); varargout = {SPMdir}; %======================================================================= case 'ver' %-SPM version %======================================================================= % [SPMver, SPMrel] = spm('Ver',Mfile,ReDo) %----------------------------------------------------------------------- if nargin > 3, warning('This usage of "spm ver" is now deprecated.'); end if nargin ~= 3, ReDo = false; else ReDo = logical(varargin{3}); end if nargin == 1 || (nargin > 1 && isempty(varargin{2})) Mfile = ''; else Mfile = which(varargin{2}); if isempty(Mfile) error('Can''t find %s on MATLABPATH.',varargin{2}); end end v = spm_version(ReDo); if isempty(Mfile) varargout = {v.Release v.Version}; else unknown = struct('file',Mfile,'id','???','date','','author',''); if ~isdeployed fp = fopen(Mfile,'rt'); if fp == -1, error('Can''t read %s.',Mfile); end str = fread(fp,Inf,'*uchar'); fclose(fp); str = char(str(:)'); r = regexp(str,['\$Id: (?<file>\S+) (?<id>[0-9]+) (?<date>\S+) ' ... '(\S+Z) (?<author>\S+) \$'],'names','once'); if isempty(r), r = unknown; end else r = unknown; end varargout = {r(1).id v.Release}; end %======================================================================= case 'version' %-SPM version %======================================================================= % v = spm('Version') %----------------------------------------------------------------------- [v, r] = spm('Ver'); varargout = {sprintf('%s (%s)',v,r)}; %======================================================================= case 'mlver' %-MATLAB major & point version number %======================================================================= % v = spm('MLver') %----------------------------------------------------------------------- v = version; tmp = find(v=='.'); if length(tmp)>1, varargout={v(1:tmp(2)-1)}; end %======================================================================= case 'tbs' %-Identify installed toolboxes %======================================================================= % xTB = spm('TBs') %----------------------------------------------------------------------- % Toolbox directory %----------------------------------------------------------------------- Tdir = fullfile(spm('Dir'),'toolbox'); %-List of potential installed toolboxes directories %----------------------------------------------------------------------- if exist(Tdir,'dir') d = dir(Tdir); d = {d([d.isdir]).name}; d = {d{cellfun('isempty',regexp(d,'^\.'))}}; else d = {}; end %-Look for a "main" M-file in each potential directory %----------------------------------------------------------------------- xTB = []; for i = 1:length(d) tdir = fullfile(Tdir,d{i}); fn = cellstr(spm_select('List',tdir,['^.*' d{i} '\.m$'])); if ~isempty(fn{1}), xTB(end+1).name = strrep(d{i},'_',''); xTB(end).prog = spm_str_manip(fn{1},'r'); xTB(end).dir = tdir; end end varargout{1} = xTB; %======================================================================= case 'tblaunch' %-Launch an SPM toolbox %======================================================================= % xTB = spm('TBlaunch',xTB,i) %----------------------------------------------------------------------- if nargin < 3, i = 1; else i = varargin{3}; end if nargin < 2, xTB = spm('TBs'); else xTB = varargin{2}; end if i > 0 %-Addpath (& report) %------------------------------------------------------------------- if isempty(strfind(path,xTB(i).dir)) if ~isdeployed, addpath(xTB(i).dir,'-begin'); end spm('alert"',{'Toolbox directory prepended to MATLAB path:',... xTB(i).dir},... [xTB(i).name,' toolbox'],1); end %-Launch %------------------------------------------------------------------- evalin('base',xTB(i).prog); end %======================================================================= case 'getglobal' %-Get global variable cleanly %======================================================================= % varargout = spm('GetGlobal',varargin) %----------------------------------------------------------------------- wg = who('global'); for i=1:nargin-1 if any(strcmp(wg,varargin{i+1})) eval(['global ',varargin{i+1},', tmp=',varargin{i+1},';']) varargout{i} = tmp; else varargout{i} = []; end end %======================================================================= case 'cmdline' %-SPM command line mode? %======================================================================= % CmdLine = spm('CmdLine',CmdLine) %----------------------------------------------------------------------- if nargin<2, CmdLine=[]; else CmdLine=varargin{2}; end if isempty(CmdLine) try CmdLine = spm_get_defaults('cmdline'); catch CmdLine = 0; end end varargout = { CmdLine | ... (get(0,'ScreenDepth')==0) | ... strcmpi(spm_check_version,'octave') }; %======================================================================= case 'popupcb' %-Callback handling utility for PopUp menus %======================================================================= % spm('PopUpCB',h) %----------------------------------------------------------------------- if nargin<2, h=gcbo; else h=varargin{2}; end v = get(h,'Value'); if v==1, return, end set(h,'Value',1) CBs = get(h,'UserData'); CB = CBs{v-1}; if ischar(CB) evalin('base',CB) elseif isa(CB,'function_handle') feval(CB); elseif iscell(CB) feval(CB{:}); else error('Invalid CallBack.'); end %======================================================================= case 'getuser' %-Get user name %======================================================================= % str = spm('GetUser',fmt) %----------------------------------------------------------------------- str = spm_platform('user'); if ~isempty(str) && nargin>1, str = sprintf(varargin{2},str); end varargout = {str}; %======================================================================= case 'beep' %-Produce beep sound %======================================================================= % spm('Beep') %----------------------------------------------------------------------- beep; %======================================================================= case 'time' %-Return formatted date/time string %======================================================================= % [timestr, date_vec] = spm('Time') %----------------------------------------------------------------------- tmp = clock; varargout = {sprintf('%02d:%02d:%02d - %02d/%02d/%4d',... tmp(4),tmp(5),floor(tmp(6)),tmp(3),tmp(2),tmp(1)), tmp}; %======================================================================= case 'memory' %======================================================================= % m = spm('Memory') %----------------------------------------------------------------------- maxmemdef = 200*1024*1024; % 200 MB %m = spm_get_defaults('stats.maxmem'); m = maxmemdef; varargout = {m}; %======================================================================= case 'pointer' %-Set mouse pointer in all MATLAB windows %======================================================================= % spm('Pointer',Pointer) %----------------------------------------------------------------------- if nargin<2, Pointer='Arrow'; else Pointer=varargin{2}; end set(get(0,'Children'),'Pointer',lower(Pointer)) %======================================================================= case {'alert','alert"','alert*','alert!'} %-Alert dialogs %======================================================================= % h = spm('alert',Message,Title,CmdLine,wait) %----------------------------------------------------------------------- %- Globals %----------------------------------------------------------------------- if nargin<5, wait = 0; else wait = varargin{5}; end if nargin<4, CmdLine = []; else CmdLine = varargin{4}; end if nargin<3, Title = ''; else Title = varargin{3}; end if nargin<2, Message = ''; else Message = varargin{2}; end Message = cellstr(Message); if isreal(CmdLine) CmdLine = spm('CmdLine',CmdLine); CmdLine2 = 0; else CmdLine = spm('CmdLine'); CmdLine2 = 1; end timestr = spm('Time'); SPMv = spm('ver'); switch(lower(Action)) case 'alert', icon = 'none'; str = '--- '; case 'alert"', icon = 'help'; str = '~ - '; case 'alert*', icon = 'error'; str = '* - '; case 'alert!', icon = 'warn'; str = '! - '; end if CmdLine || CmdLine2 Message(strcmp(Message,'')) = {' '}; tmp = sprintf('%s: %s',SPMv,Title); fprintf('\n %s%s %s\n\n',str,tmp,repmat('-',1,62-length(tmp))) fprintf(' %s\n',Message{:}) fprintf('\n %s %s\n\n',repmat('-',1,62-length(timestr)),timestr) h = []; end if ~CmdLine tmp = max(size(char(Message),2),42) - length(SPMv) - length(timestr); str = sprintf('%s %s %s',SPMv,repmat(' ',1,tmp-4),timestr); h = msgbox([{''};Message(:);{''};{''};{str}],... sprintf('%s%s: %s',SPMv,spm('GetUser',' (%s)'),Title),... icon,'non-modal'); drawnow set(h,'windowstyle','modal'); end if wait if isempty(h) input(' press ENTER to continue...'); else uiwait(h) h = []; end end if nargout, varargout = {h}; end %======================================================================= case 'run' %-Run script(s) %======================================================================= % spm('Run',mscript) %----------------------------------------------------------------------- if nargin<2 [mscript, sts] = spm_select(Inf,'.*\.m$','Select M-file(s) to run'); if ~sts || isempty(mscript), return; end else mscript = varargin{2}; end mscript = cellstr(mscript); for i=1:numel(mscript) if isdeployed [p,n,e] = fileparts(mscript{i}); if isempty(p), p = pwd; end if isempty(e), e = '.m'; end mscript{i} = fullfile(p,[n e]); fid = fopen(mscript{i}); if fid == -1, error('Cannot open %s',mscript{i}); end S = fscanf(fid,'%c'); fclose(fid); try evalin('base',S); catch fprintf('Execution failed: %s\n',mscript{i}); rethrow(lasterror); end else try run(mscript{i}); catch fprintf('Execution failed: %s\n',mscript{i}); rethrow(lasterror); end end end %======================================================================= case 'delete' %-Delete file(s) %======================================================================= % spm('Delete',file) %----------------------------------------------------------------------- if nargin<2 [P, sts] = spm_select(Inf,'.*','Select file(s) to delete'); if ~sts, return; end else P = varargin(2:end); end P = cellstr(P); P = P(:); n = numel(P); if n==0 || (n==1 && isempty(P{1})), return; end if n<4 str=[{' '};P]; elseif n<11 str=[{' '};P;{' ';sprintf('(%d files)',n)}]; else str=[{' '};P(1:min(n,10));{'...';' ';sprintf('(%d files)',n)}]; end if spm_input(str,-1,'bd','delete|cancel',[1,0],[],'confirm file delete') feval(@spm_unlink,P{:}); spm('alert"',P,'file delete',1); end %======================================================================= case 'clean' %-Clean MATLAB workspace %======================================================================= % spm('Clean') %----------------------------------------------------------------------- evalin('base','clear all'); evalc('clear classes'); %======================================================================= case 'help' %-Pass through for spm_help %======================================================================= % spm('Help',varargin) %----------------------------------------------------------------------- if nargin>1, spm_help(varargin{2:end}), else spm_help, end %======================================================================= case 'quit' %-Quit SPM and clean up %======================================================================= % spm('Quit') %----------------------------------------------------------------------- % spm_figure('close',allchild(0)); % local_clc; % fprintf('Bye for now...\n\n'); %% hack-p close(findobj(0,'tag','Graphics')); close(findobj(0,'tag','Menu')); close(findobj(0,'tag','Interactive')); %======================================================================= otherwise %-Unknown action string %======================================================================= error('Unknown action string'); %======================================================================= end %======================================================================= function local_clc %-Clear command window %======================================================================= if ~isdeployed clc; end %======================================================================= function v = spm_version(ReDo) %-Retrieve SPM version %======================================================================= persistent SPM_VER; v = SPM_VER; if isempty(SPM_VER) || (nargin > 0 && ReDo) v = struct('Name','','Version','','Release','','Date',''); try if isdeployed % in deployed mode, M-files are encrypted % (even if first two lines of Contents.m "should" be preserved) vfile = fullfile(spm('Dir'),'Contents.txt'); else vfile = fullfile(spm('Dir'),'Contents.m'); end fid = fopen(vfile,'rt'); if fid == -1, error(str); end l1 = fgetl(fid); l2 = fgetl(fid); fclose(fid); l1 = strtrim(l1(2:end)); l2 = strtrim(l2(2:end)); t = textscan(l2,'%s','delimiter',' '); t = t{1}; v.Name = l1; v.Date = t{4}; v.Version = t{2}; v.Release = t{3}(2:end-1); catch error('Can''t obtain SPM Revision information.'); end SPM_VER = v; end
github
philippboehmsturm/antx-master
spm_orthviews.m
.m
antx-master/xspm8/spm_orthviews.m
84,666
utf_8
4edf17c77a1c5d30eb009dd4cd64b24b
function varargout = spm_orthviews(action,varargin) % Display orthogonal views of a set of images % FORMAT H = spm_orthviews('Image',filename[,position]) % filename - name of image to display % area - position of image {relative} % - area(1) - position x % - area(2) - position y % - area(3) - size x % - area(4) - size y % H - handle for ortho sections % % FORMAT spm_orthviews('Redraw') % Redraws the images % % FORMAT spm_orthviews('Reposition',centre) % centre - X, Y & Z coordinates of centre voxel % % FORMAT spm_orthviews('Space'[,handle[,M,dim]]) % handle - the view to define the space by, optionally with extra % transformation matrix and dimensions (e.g. one of the blobs % of a view) % with no arguments - puts things into mm space % % FORMAT H = spm_orthviews('Caption', handle, string, [Property, Value]) % handle - the view to which a caption should be added % string - the caption text to add % optional: Property-Value pairs, e.g. 'FontWeight', 'Bold' % % H - the handle to the object whose String property has the caption % % FORMAT spm_orthviews('BB',bb) % bb - bounding box % [loX loY loZ % hiX hiY hiZ] % % FORMAT spm_orthviews('MaxBB') % sets the bounding box big enough display the whole of all images % % FORMAT spm_orthviews('Resolution'[,res]) % res - resolution (mm) % sets the sampling resolution for all images. The effective resolution % will be the minimum of res and the voxel sizes of all images. If no % resolution is specified, the minimum of 1mm and the voxel sizes of the % images is used. % % FORMAT spm_orthviews('Zoom'[,fov[,res]]) % fov - half width of field of view (mm) % res - resolution (mm) % sets the displayed part and sampling resolution for all images. The % image display will be centered at the current crosshair position. The % image region [xhairs-fov xhairs+fov] will be shown. % If no argument is given or fov == Inf, the image display will be reset to % "Full Volume". If fov == 0, the image will be zoomed to the bounding box % from spm_get_bbox for the non-zero voxels of the image. If fov is NaN, % then a threshold can be entered, and spm_get_bbox will be used to derive % the bounding box of the voxels above this threshold. % Optionally, the display resolution can be set as well. % % FORMAT spm_orthviews('Delete', handle) % handle - image number to delete % % FORMAT spm_orthviews('Reset') % clears the orthogonal views % % FORMAT spm_orthviews('Pos') % returns the co-ordinate of the crosshairs in millimetres in the % standard space. % % FORMAT spm_orthviews('Pos', i) % returns the voxel co-ordinate of the crosshairs in the image in the % ith orthogonal section. % % FORMAT spm_orthviews('Xhairs','off') OR spm_orthviews('Xhairs') % disables the cross-hairs on the display. % % FORMAT spm_orthviews('Xhairs','on') % enables the cross-hairs. % % FORMAT spm_orthviews('Interp',hld) % sets the hold value to hld (see spm_slice_vol). % % FORMAT spm_orthviews('AddBlobs',handle,XYZ,Z,mat,name) % Adds blobs from a pointlist to the image specified by the handle(s). % handle - image number to add blobs to % XYZ - blob voxel locations % Z - blob voxel intensities % mat - matrix from voxels to millimeters of blob. % name - a name for this blob % This method only adds one set of blobs, and displays them using a % split colour table. % % FORMAT spm_orthviews('SetBlobsMax', vn, bn, mx) % Set maximum value for blobs overlay number bn of view number vn to mx. % % FORMAT spm_orthviews('AddColouredBlobs',handle,XYZ,Z,mat,colour,name) % Adds blobs from a pointlist to the image specified by the handle(s). % handle - image number to add blobs to % XYZ - blob voxel locations % Z - blob voxel intensities % mat - matrix from voxels to millimeters of blob. % colour - the 3 vector containing the colour that the blobs should be % name - a name for this blob % Several sets of blobs can be added in this way, and it uses full colour. % Although it may not be particularly attractive on the screen, the colour % blobs print well. % % FORMAT spm_orthviews('AddColourBar',handle,blobno) % Adds colourbar for a specified blob set. % handle - image number % blobno - blob number % % FORMAT spm_orthviews('RemoveBlobs',handle) % Removes all blobs from the image specified by the handle(s). % % FORMAT spm_orthviews('Addtruecolourimage',handle,filename,colourmap,prop,mx,mn) % Adds blobs from an image in true colour. % handle - image number to add blobs to [default: 1] % filename - image containing blob data [default: request via GUI] % colourmap - colormap to display blobs in [default: GUI input] % prop - intensity proportion of activation cf grayscale [default: 0.4] % mx - maximum intensity to scale to [maximum value in activation image] % mn - minimum intensity to scale to [minimum value in activation image] % % FORMAT spm_orthviews('Register',hReg) % hReg - Handle of HandleGraphics object to build registry in. % See spm_XYZreg for more information. % % FORMAT spm_orthviews('AddContext',handle) % handle - image number to add context menu to % % FORMAT spm_orthviews('RemoveContext',handle) % handle - image number to remove context menu from % % FORMAT spm_orthviews('ZoomMenu',zoom,res) % FORMAT [zoom, res] = spm_orthviews('ZoomMenu') % zoom - A list of predefined zoom values % res - A list of predefined resolutions % This list is used by spm_image and spm_orthviews('addcontext',...) to % create the 'Zoom' menu. The values can be retrieved by calling % spm_orthviews('ZoomMenu') with 2 output arguments. Values of 0, NaN and % Inf are treated specially, see the help for spm_orthviews('Zoom' ...). %__________________________________________________________________________ % % PLUGINS % The display capabilities of spm_orthviews can be extended with plugins. % These are located in the spm_orthviews subdirectory of the SPM % distribution. % The functionality of plugins can be accessed via calls to % spm_orthviews('plugin_name', plugin_arguments). For detailed descriptions % of each plugin see help spm_orthviews/spm_ov_'plugin_name'. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner et al % $Id: spm_orthviews.m 6071 2014-06-27 12:52:33Z guillaume $ % The basic fields of st are: % n - the number of images currently being displayed % vols - a cell array containing the data on each of the % displayed images. % Space - a mapping between the displayed images and the % mm space of each image. % bb - the bounding box of the displayed images. % centre - the current centre of the orthogonal views % callback - a callback to be evaluated on a button-click. % xhairs - crosshairs off/on % hld - the interpolation method % fig - the figure that everything is displayed in % mode - the position/orientation of the sagittal view. % - currently always 1 % % st.registry.hReg \_ See spm_XYZreg for documentation % st.registry.hMe / % % For each of the displayed images, there is a non-empty entry in the % vols cell array. Handles returned by "spm_orthviews('Image',.....)" % indicate the position in the cell array of the newly created ortho-view. % Operations on each ortho-view require the handle to be passed. % % When a new image is displayed, the cell entry contains the information % returned by spm_vol (type help spm_vol for more info). In addition, % there are a few other fields, some of which are documented here: % % premul - a matrix to premultiply the .mat field by. Useful % for re-orienting images. % window - either 'auto' or an intensity range to display the % image with. % mapping - Mapping of image intensities to grey values. Currently % one of 'linear', 'histeq', loghisteq', % 'quadhisteq'. Default is 'linear'. % Histogram equalisation depends on the image toolbox % and is only available if there is a license available % for it. % ax - a cell array containing an element for the three % views. The fields of each element are handles for % the axis, image and crosshairs. % % blobs - optional. Is there for using to superimpose blobs. % vol - 3D array of image data % mat - a mapping from vox-to-mm (see spm_vol, or % help on image formats). % max - maximum intensity for scaling to. If it % does not exist, then images are auto-scaled. % % There are two colouring modes: full colour, and split % colour. When using full colour, there should be a % 'colour' field for each cell element. When using % split colourscale, there is a handle for the colorbar % axis. % % colour - if it exists it contains the % red,green,blue that the blobs should be % displayed in. % cbar - handle for colorbar (for split colourscale). % % PLUGINS % The plugin concept has been developed to extend the display capabilities % of spm_orthviews without the need to rewrite parts of it. Interaction % between spm_orthviews and plugins takes place % a) at startup: The subfunction 'reset_st' looks for folders % 'spm_orthviews' in spm('Dir') and each toolbox % folder. Files with a name spm_ov_PLUGINNAME.m in any of % these folders will be treated as plugins. % For each such file, PLUGINNAME will be added to the list % st.plugins{:}. % The subfunction 'add_context' calls each plugin with % feval(['spm_ov_', st.plugins{k}], ... % 'context_menu', i, parent_menu) % Each plugin may add its own submenu to the context % menu. % b) at redraw: After images and blobs of st.vols{i} are drawn, the % struct st.vols{i} is checked for field names that occur in % the plugin list st.plugins{:}. For each matching entry, the % corresponding plugin is called with the command 'redraw': % feval(['spm_ov_', st.plugins{k}], ... % 'redraw', i, TM0, TD, CM0, CD, SM0, SD); % The values of TM0, TD, CM0, CD, SM0, SD are defined in the % same way as in the redraw subfunction of spm_orthviews. % It is up to the plugin to do all necessary redraw % operations for its display contents. Each displayed item % must have set its property 'HitTest' to 'off' to let events % go through to the underlying axis, which is responsible for % callback handling. The order in which plugins are called is % undefined. global st; persistent zoomlist; persistent reslist; if isempty(st), reset_st; end if nargin == 0, action = ''; end if ~any(strcmpi(action,{'reposition','pos'})) spm('Pointer','Watch'); end switch lower(action) case 'image', H = specify_image(varargin{1}); if ~isempty(H) if numel(varargin)>=2 st.vols{H}.area = varargin{2}; else st.vols{H}.area = [0 0 1 1]; end if isempty(st.bb), st.bb = maxbb; end resolution; bbox; cm_pos; end varargout{1} = H; mmcentre = mean(st.Space*[maxbb';1 1],2)'; st.centre = mmcentre(1:3); redraw_all case 'caption' vh = valid_handles(varargin{1}); nh = numel(vh); xlh = nan(nh, 1); for i = 1:nh xlh(i) = get(st.vols{vh(i)}.ax{3}.ax, 'XLabel'); if iscell(varargin{2}) if i <= length(varargin{2}) set(xlh(i), 'String', varargin{2}{i}); end else set(xlh(i), 'String', varargin{2}); end for np = 4:2:nargin property = varargin{np-1}; value = varargin{np}; set(xlh(i), property, value); end end varargout{1} = xlh; case 'bb', if ~isempty(varargin) && all(size(varargin{1})==[2 3]), st.bb = varargin{1}; end bbox; redraw_all; case 'redraw', redraw_all; eval(st.callback); if isfield(st,'registry'), spm_XYZreg('SetCoords',st.centre,st.registry.hReg,st.registry.hMe); end case 'reposition', if isempty(varargin), tmp = findcent; else tmp = varargin{1}; end if numel(tmp) == 3 h = valid_handles(st.snap); if ~isempty(h) tmp = st.vols{h(1)}.mat * ... round(st.vols{h(1)}.mat\[tmp(:); 1]); end st.centre = tmp(1:3); end redraw_all; eval(st.callback); if isfield(st,'registry') spm_XYZreg('SetCoords',st.centre,st.registry.hReg,st.registry.hMe); end cm_pos; case 'setcoords', st.centre = varargin{1}; st.centre = st.centre(:); redraw_all; eval(st.callback); cm_pos; case 'space', if numel(varargin)<1 st.Space = eye(4); st.bb = maxbb; resolution; bbox; redraw_all; else space(varargin{:}); resolution; bbox; redraw_all; end case 'maxbb', st.bb = maxbb; bbox; redraw_all; case 'resolution', resolution(varargin{:}); bbox; redraw_all; case 'window', if numel(varargin)<2 win = 'auto'; elseif numel(varargin{2})==2 win = varargin{2}; end for i=valid_handles(varargin{1}) st.vols{i}.window = win; end redraw(varargin{1}); case 'delete', my_delete(varargin{1}); case 'move', move(varargin{1},varargin{2}); % redraw_all; case 'reset', my_reset; case 'pos', if isempty(varargin) H = st.centre(:); else H = pos(varargin{1}); end varargout{1} = H; case 'interp', st.hld = varargin{1}; redraw_all; case 'xhairs', xhairs(varargin{1}); case 'register', register(varargin{1}); case 'addblobs', addblobs(varargin{:}); % redraw(varargin{1}); case 'setblobsmax' st.vols{varargin{1}}.blobs{varargin{2}}.max = varargin{3}; spm_orthviews('redraw') case 'addcolouredblobs', addcolouredblobs(varargin{:}); % redraw(varargin{1}); case 'addimage', addimage(varargin{1}, varargin{2}); % redraw(varargin{1}); case 'addcolouredimage', addcolouredimage(varargin{1}, varargin{2},varargin{3}); % redraw(varargin{1}); case 'addtruecolourimage', if nargin < 2 varargin(1) = {1}; end if nargin < 3 varargin(2) = {spm_select(1, 'image', 'Image with activation signal')}; end if nargin < 4 actc = []; while isempty(actc) actc = getcmap(spm_input('Colourmap for activation image', '+1','s')); end varargin(3) = {actc}; end if nargin < 5 varargin(4) = {0.4}; end if nargin < 6 actv = spm_vol(varargin{2}); varargin(5) = {max([eps maxval(actv)])}; end if nargin < 7 varargin(6) = {min([0 minval(actv)])}; end addtruecolourimage(varargin{1}, varargin{2},varargin{3}, varargin{4}, ... varargin{5}, varargin{6}); % redraw(varargin{1}); case 'addcolourbar', addcolourbar(varargin{1}, varargin{2}); case {'removeblobs','rmblobs'}, rmblobs(varargin{1}); redraw(varargin{1}); case 'addcontext', if nargin == 1 handles = 1:24; else handles = varargin{1}; end addcontexts(handles); case {'removecontext','rmcontext'}, if nargin == 1 handles = 1:24; else handles = varargin{1}; end rmcontexts(handles); case 'context_menu', c_menu(varargin{:}); case 'valid_handles', if nargin == 1 handles = 1:24; else handles = varargin{1}; end varargout{1} = valid_handles(handles); case 'zoom', zoom_op(varargin{:}); case 'zoommenu', if isempty(zoomlist) zoomlist = [NaN 0 5 10 20 40 80 Inf]; reslist = [1 1 .125 .25 .5 .5 1 1 ]; end if nargin >= 3 if all(cellfun(@isnumeric,varargin(1:2))) && ... numel(varargin{1})==numel(varargin{2}) zoomlist = varargin{1}(:); reslist = varargin{2}(:); else warning('spm_orthviews:zoom',... 'Invalid zoom or resolution list.') end end if nargout > 0 varargout{1} = zoomlist; end if nargout > 1 varargout{2} = reslist; end otherwise, addonaction = strcmpi(st.plugins,action); if any(addonaction) feval(['spm_ov_' st.plugins{addonaction}],varargin{:}); end end spm('Pointer','Arrow'); return; %_______________________________________________________________________ %_______________________________________________________________________ function addblobs(handle, xyz, t, mat, name) global st if nargin < 5 name = ''; end; for i=valid_handles(handle), if ~isempty(xyz), rcp = round(xyz); dim = max(rcp,[],2)'; off = rcp(1,:) + dim(1)*(rcp(2,:)-1 + dim(2)*(rcp(3,:)-1)); vol = zeros(dim)+NaN; vol(off) = t; vol = reshape(vol,dim); st.vols{i}.blobs=cell(1,1); mx = max([eps max(t)]); mn = min([0 min(t)]); st.vols{i}.blobs{1} = struct('vol',vol,'mat',mat,'max',mx, 'min',mn,'name',name); addcolourbar(handle,1); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function addimage(handle, fname) global st for i=valid_handles(handle), if isstruct(fname), vol = fname(1); else vol = spm_vol(fname); end; mat = vol.mat; st.vols{i}.blobs=cell(1,1); mx = max([eps maxval(vol)]); mn = min([0 minval(vol)]); st.vols{i}.blobs{1} = struct('vol',vol,'mat',mat,'max',mx,'min',mn); addcolourbar(handle,1); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function addcolouredblobs(handle, xyz, t, mat, colour, name) if nargin < 6 name = ''; end; global st for i=valid_handles(handle), if ~isempty(xyz), rcp = round(xyz); dim = max(rcp,[],2)'; off = rcp(1,:) + dim(1)*(rcp(2,:)-1 + dim(2)*(rcp(3,:)-1)); vol = zeros(dim)+NaN; vol(off) = t; vol = reshape(vol,dim); if ~isfield(st.vols{i},'blobs'), st.vols{i}.blobs=cell(1,1); bset = 1; else bset = numel(st.vols{i}.blobs)+1; end; mx = max([eps maxval(vol)]); mn = min([0 minval(vol)]); st.vols{i}.blobs{bset} = struct('vol',vol, 'mat',mat, ... 'max',mx, 'min',mn, ... 'colour',colour, 'name',name); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function addcolouredimage(handle, fname,colour) global st for i=valid_handles(handle), if isstruct(fname), vol = fname(1); else vol = spm_vol(fname); end; mat = vol.mat; if ~isfield(st.vols{i},'blobs'), st.vols{i}.blobs=cell(1,1); bset = 1; else bset = numel(st.vols{i}.blobs)+1; end; mx = max([eps maxval(vol)]); mn = min([0 minval(vol)]); st.vols{i}.blobs{bset} = struct('vol',vol,'mat',mat,'max',mx,'min',mn,'colour',colour); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function addtruecolourimage(handle,fname,colourmap,prop,mx,mn) % adds true colour image to current displayed image global st for i=valid_handles(handle), if isstruct(fname), vol = fname(1); else vol = spm_vol(fname); end; mat = vol.mat; if ~isfield(st.vols{i},'blobs'), st.vols{i}.blobs=cell(1,1); bset = 1; else bset = numel(st.vols{i}.blobs)+1; end; c = struct('cmap', colourmap,'prop',prop); st.vols{i}.blobs{bset} = struct('vol',vol,'mat',mat,'max',mx, ... 'min',mn,'colour',c); addcolourbar(handle,bset); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function addcolourbar(vh,bh) global st if st.mode == 0, axpos = get(st.vols{vh}.ax{2}.ax,'Position'); else axpos = get(st.vols{vh}.ax{1}.ax,'Position'); end; st.vols{vh}.blobs{bh}.cbar = axes('Parent',st.fig,... 'Position',[(axpos(1)+axpos(3)+0.05+(bh-1)*.1) (axpos(2)+0.005) 0.05 (axpos(4)-0.01)],... 'Box','on', 'YDir','normal', 'XTickLabel',[], 'XTick',[]); if isfield(st.vols{vh}.blobs{bh},'name') ylabel(st.vols{vh}.blobs{bh}.name,'parent',st.vols{vh}.blobs{bh}.cbar); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function rmblobs(handle) global st for i=valid_handles(handle), if isfield(st.vols{i},'blobs'), for j=1:numel(st.vols{i}.blobs), if isfield(st.vols{i}.blobs{j},'cbar') && ishandle(st.vols{i}.blobs{j}.cbar), delete(st.vols{i}.blobs{j}.cbar); end; end; st.vols{i} = rmfield(st.vols{i},'blobs'); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function register(hreg) global st tmp = uicontrol('Position',[0 0 1 1],'Visible','off','Parent',st.fig); h = valid_handles(1:24); if ~isempty(h), tmp = st.vols{h(1)}.ax{1}.ax; st.registry = struct('hReg',hreg,'hMe', tmp); spm_XYZreg('Add2Reg',st.registry.hReg,st.registry.hMe, 'spm_orthviews'); else warning('Nothing to register with'); end; st.centre = spm_XYZreg('GetCoords',st.registry.hReg); st.centre = st.centre(:); return; %_______________________________________________________________________ %_______________________________________________________________________ function xhairs(arg1) global st st.xhairs = 0; opt = 'on'; if ~strcmp(arg1,'on'), opt = 'off'; else st.xhairs = 1; end; for i=valid_handles(1:24), for j=1:3, set(st.vols{i}.ax{j}.lx,'Visible',opt); set(st.vols{i}.ax{j}.ly,'Visible',opt); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function H = pos(arg1) global st H = []; for arg1=valid_handles(arg1), is = inv(st.vols{arg1}.premul*st.vols{arg1}.mat); H = is(1:3,1:3)*st.centre(:) + is(1:3,4); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function my_reset global st if ~isempty(st) && isfield(st,'registry') && ishandle(st.registry.hMe), delete(st.registry.hMe); st = rmfield(st,'registry'); end; my_delete(1:24); reset_st; return; %_______________________________________________________________________ %_______________________________________________________________________ function my_delete(arg1) global st % remove blobs (and colourbars, if any) rmblobs(arg1); % remove displayed axes for i=valid_handles(arg1), kids = get(st.fig,'Children'); for j=1:3, if any(kids == st.vols{i}.ax{j}.ax), set(get(st.vols{i}.ax{j}.ax,'Children'),'DeleteFcn',''); delete(st.vols{i}.ax{j}.ax); end; end; st.vols{i} = []; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function resolution(arg1) global st if nargin == 0 res = 1; % Default minimum resolution 1mm else res = arg1; end for i=valid_handles(1:24) % adapt resolution to smallest voxel size of displayed images res = min([res,sqrt(sum((st.vols{i}.mat(1:3,1:3)).^2))]); end res = res/mean(svd(st.Space(1:3,1:3))); Mat = diag([res res res 1]); st.Space = st.Space*Mat; st.bb = st.bb/res; return; %_______________________________________________________________________ %_______________________________________________________________________ function move(handle,pos) global st for handle = valid_handles(handle), st.vols{handle}.area = pos; end; bbox; % redraw(valid_handles(handle)); return; %_______________________________________________________________________ %_______________________________________________________________________ function bb = maxbb global st mn = [Inf Inf Inf]; mx = -mn; for i=valid_handles(1:24) premul = st.Space \ st.vols{i}.premul; bb = spm_get_bbox(st.vols{i}, 'fv', premul); mx = max([bb ; mx]); mn = min([bb ; mn]); end; bb = [mn ; mx]; return; %_______________________________________________________________________ %_______________________________________________________________________ function space(arg1,M,dim) global st if ~isempty(st.vols{arg1}) num = arg1; if nargin < 2 M = st.vols{num}.mat; dim = st.vols{num}.dim(1:3); end; Mat = st.vols{num}.premul(1:3,1:3)*M(1:3,1:3); vox = sqrt(sum(Mat.^2)); if det(Mat(1:3,1:3))<0, vox(1) = -vox(1); end; Mat = diag([vox 1]); Space = (M)/Mat; bb = [1 1 1; dim]; bb = [bb [1;1]]; bb=bb*Mat'; bb=bb(:,1:3); bb=sort(bb); st.Space = Space; st.bb = bb; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function zoom_op(varargin) global st if nargin > 0 fov = varargin{1}; else fov = Inf; end if nargin > 1 res = varargin{2}; else res = Inf; end if isinf(fov) st.bb = maxbb; elseif isnan(fov) || fov == 0 current_handle = valid_handles(1:24); if numel(current_handle) > 1 % called from check reg context menu current_handle = get_current_handle; end if fov == 0 % zoom to bounding box of current image ~= 0 thr = 'nz'; else % zoom to bounding box of current image > chosen threshold thr = spm_input('Threshold (Y > ...)', '+1', 'r', '0', 1); end premul = st.Space \ st.vols{current_handle}.premul; st.bb = spm_get_bbox(st.vols{current_handle}, thr, premul); else vx = sqrt(sum(st.Space(1:3,1:3).^2)); vx = vx.^(-1); pos = spm_orthviews('pos'); pos = st.Space\[pos ; 1]; pos = pos(1:3)'; st.bb = [pos-fov*vx; pos+fov*vx]; end; resolution(res); bbox; redraw_all; if isfield(st.vols{1},'sdip') spm_eeg_inv_vbecd_disp('RedrawDip'); end return; %_______________________________________________________________________ %_______________________________________________________________________ function H = specify_image(arg1) global st H=[]; if isstruct(arg1), V = arg1(1); else try V = spm_vol(arg1); catch fprintf('Can not use image "%s"\n', arg1); return; end; end; if numel(V)>1, V=V(1); end ii = 1; while ~isempty(st.vols{ii}), ii = ii + 1; end; DeleteFcn = ['spm_orthviews(''Delete'',' num2str(ii) ');']; V.ax = cell(3,1); for i=1:3, ax = axes('Visible','off','Parent',st.fig,'DeleteFcn',DeleteFcn,... 'YDir','normal','ButtonDownFcn',@repos_start); d = image(0,'Tag','Transverse','Parent',ax,... 'DeleteFcn',DeleteFcn); set(ax,'Ydir','normal','ButtonDownFcn',@repos_start); lx = line(0,0,'Parent',ax,'DeleteFcn',DeleteFcn,'Color',[0 0 1]); ly = line(0,0,'Parent',ax,'DeleteFcn',DeleteFcn,'Color',[0 0 1]); if ~st.xhairs, set(lx,'Visible','off'); set(ly,'Visible','off'); end; V.ax{i} = struct('ax',ax,'d',d,'lx',lx,'ly',ly); end; V.premul = eye(4); V.window = 'auto'; V.mapping = 'linear'; st.vols{ii} = V; H = ii; return; %_______________________________________________________________________ %_______________________________________________________________________ function repos_start(varargin) % don't use right mouse button to start reposition if ~strcmpi(get(gcbf,'SelectionType'),'alt') set(gcbf,'windowbuttonmotionfcn',@repos_move, 'windowbuttonupfcn',@repos_end); spm_orthviews('reposition'); end %_______________________________________________________________________ %_______________________________________________________________________ function repos_move(varargin) spm_orthviews('reposition'); %_______________________________________________________________________ %_______________________________________________________________________ function repos_end(varargin) set(gcbf,'windowbuttonmotionfcn','', 'windowbuttonupfcn',''); %_______________________________________________________________________ %_______________________________________________________________________ function addcontexts(handles) for ii = valid_handles(handles), addcontext(ii); end; spm_orthviews('reposition',spm_orthviews('pos')); return; %_______________________________________________________________________ %_______________________________________________________________________ function rmcontexts(handles) global st for ii = valid_handles(handles), for i=1:3, set(st.vols{ii}.ax{i}.ax,'UIcontextmenu',[]); st.vols{ii}.ax{i} = rmfield(st.vols{ii}.ax{i},'cm'); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function bbox global st Dims = diff(st.bb)'+1; TD = Dims([1 2])'; CD = Dims([1 3])'; if st.mode == 0, SD = Dims([3 2])'; else SD = Dims([2 3])'; end; un = get(st.fig,'Units');set(st.fig,'Units','Pixels'); sz = get(st.fig,'Position');set(st.fig,'Units',un); sz = sz(3:4); sz(2) = sz(2)-40; for i=valid_handles(1:24), area = st.vols{i}.area(:); area = [area(1)*sz(1) area(2)*sz(2) area(3)*sz(1) area(4)*sz(2)]; if st.mode == 0, sx = area(3)/(Dims(1)+Dims(3))/1.02; else sx = area(3)/(Dims(1)+Dims(2))/1.02; end; sy = area(4)/(Dims(2)+Dims(3))/1.02; s = min([sx sy]); offy = (area(4)-(Dims(2)+Dims(3))*1.02*s)/2 + area(2); sky = s*(Dims(2)+Dims(3))*0.02; if st.mode == 0, offx = (area(3)-(Dims(1)+Dims(3))*1.02*s)/2 + area(1); skx = s*(Dims(1)+Dims(3))*0.02; else offx = (area(3)-(Dims(1)+Dims(2))*1.02*s)/2 + area(1); skx = s*(Dims(1)+Dims(2))*0.02; end; % Transverse set(st.vols{i}.ax{1}.ax,'Units','pixels', ... 'Position',[offx offy s*Dims(1) s*Dims(2)],... 'Units','normalized','Xlim',[0 TD(1)]+0.5,'Ylim',[0 TD(2)]+0.5,... 'Visible','on','XTick',[],'YTick',[]); % Coronal set(st.vols{i}.ax{2}.ax,'Units','Pixels',... 'Position',[offx offy+s*Dims(2)+sky s*Dims(1) s*Dims(3)],... 'Units','normalized','Xlim',[0 CD(1)]+0.5,'Ylim',[0 CD(2)]+0.5,... 'Visible','on','XTick',[],'YTick',[]); % Sagittal if st.mode == 0, set(st.vols{i}.ax{3}.ax,'Units','Pixels', 'Box','on',... 'Position',[offx+s*Dims(1)+skx offy s*Dims(3) s*Dims(2)],... 'Units','normalized','Xlim',[0 SD(1)]+0.5,'Ylim',[0 SD(2)]+0.5,... 'Visible','on','XTick',[],'YTick',[]); else set(st.vols{i}.ax{3}.ax,'Units','Pixels', 'Box','on',... 'Position',[offx+s*Dims(1)+skx offy+s*Dims(2)+sky s*Dims(2) s*Dims(3)],... 'Units','normalized','Xlim',[0 SD(1)]+0.5,'Ylim',[0 SD(2)]+0.5,... 'Visible','on','XTick',[],'YTick',[]); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function redraw_all redraw(1:24); return; %_______________________________________________________________________ %_______________________________________________________________________ function mx = maxval(vol) if isstruct(vol), mx = -Inf; for i=1:vol.dim(3), tmp = spm_slice_vol(vol,spm_matrix([0 0 i]),vol.dim(1:2),0); imx = max(tmp(isfinite(tmp))); if ~isempty(imx),mx = max(mx,imx);end end; else mx = max(vol(isfinite(vol))); end; %_______________________________________________________________________ %_______________________________________________________________________ function mn = minval(vol) if isstruct(vol), mn = Inf; for i=1:vol.dim(3), tmp = spm_slice_vol(vol,spm_matrix([0 0 i]),vol.dim(1:2),0); imn = min(tmp(isfinite(tmp))); if ~isempty(imn),mn = min(mn,imn);end end; else mn = min(vol(isfinite(vol))); end; %_______________________________________________________________________ %_______________________________________________________________________ function redraw(arg1) global st bb = st.bb; Dims = round(diff(bb)'+1); is = inv(st.Space); cent = is(1:3,1:3)*st.centre(:) + is(1:3,4); for i = valid_handles(arg1), M = st.Space\st.vols{i}.premul*st.vols{i}.mat; TM0 = [ 1 0 0 -bb(1,1)+1 0 1 0 -bb(1,2)+1 0 0 1 -cent(3) 0 0 0 1]; TM = inv(TM0*M); TD = Dims([1 2]); CM0 = [ 1 0 0 -bb(1,1)+1 0 0 1 -bb(1,3)+1 0 1 0 -cent(2) 0 0 0 1]; CM = inv(CM0*M); CD = Dims([1 3]); if st.mode ==0, SM0 = [ 0 0 1 -bb(1,3)+1 0 1 0 -bb(1,2)+1 1 0 0 -cent(1) 0 0 0 1]; SM = inv(SM0*M); SD = Dims([3 2]); else SM0 = [ 0 -1 0 +bb(2,2)+1 0 0 1 -bb(1,3)+1 1 0 0 -cent(1) 0 0 0 1]; SM = inv(SM0*M); SD = Dims([2 3]); end; try imgt = spm_slice_vol(st.vols{i},TM,TD,st.hld)'; imgc = spm_slice_vol(st.vols{i},CM,CD,st.hld)'; imgs = spm_slice_vol(st.vols{i},SM,SD,st.hld)'; ok = true; catch fprintf('Image "%s" can not be resampled\n', st.vols{i}.fname); ok = false; end if ok, % get min/max threshold if strcmp(st.vols{i}.window,'auto') mn = -Inf; mx = Inf; else mn = min(st.vols{i}.window); mx = max(st.vols{i}.window); end; % threshold images imgt = max(imgt,mn); imgt = min(imgt,mx); imgc = max(imgc,mn); imgc = min(imgc,mx); imgs = max(imgs,mn); imgs = min(imgs,mx); % compute intensity mapping, if histeq is available if license('test','image_toolbox') == 0 st.vols{i}.mapping = 'linear'; end; switch st.vols{i}.mapping, case 'linear', case 'histeq', % scale images to a range between 0 and 1 imgt1=(imgt-min(imgt(:)))/(max(imgt(:)-min(imgt(:)))+eps); imgc1=(imgc-min(imgc(:)))/(max(imgc(:)-min(imgc(:)))+eps); imgs1=(imgs-min(imgs(:)))/(max(imgs(:)-min(imgs(:)))+eps); img = histeq([imgt1(:); imgc1(:); imgs1(:)],1024); imgt = reshape(img(1:numel(imgt1)),size(imgt1)); imgc = reshape(img(numel(imgt1)+(1:numel(imgc1))),size(imgc1)); imgs = reshape(img(numel(imgt1)+numel(imgc1)+(1:numel(imgs1))),size(imgs1)); mn = 0; mx = 1; case 'quadhisteq', % scale images to a range between 0 and 1 imgt1=(imgt-min(imgt(:)))/(max(imgt(:)-min(imgt(:)))+eps); imgc1=(imgc-min(imgc(:)))/(max(imgc(:)-min(imgc(:)))+eps); imgs1=(imgs-min(imgs(:)))/(max(imgs(:)-min(imgs(:)))+eps); img = histeq([imgt1(:).^2; imgc1(:).^2; imgs1(:).^2],1024); imgt = reshape(img(1:numel(imgt1)),size(imgt1)); imgc = reshape(img(numel(imgt1)+(1:numel(imgc1))),size(imgc1)); imgs = reshape(img(numel(imgt1)+numel(imgc1)+(1:numel(imgs1))),size(imgs1)); mn = 0; mx = 1; case 'loghisteq', sw = warning('off','MATLAB:log:logOfZero'); imgt = log(imgt-min(imgt(:))); imgc = log(imgc-min(imgc(:))); imgs = log(imgs-min(imgs(:))); warning(sw); imgt(~isfinite(imgt)) = 0; imgc(~isfinite(imgc)) = 0; imgs(~isfinite(imgs)) = 0; % scale log images to a range between 0 and 1 imgt1=(imgt-min(imgt(:)))/(max(imgt(:)-min(imgt(:)))+eps); imgc1=(imgc-min(imgc(:)))/(max(imgc(:)-min(imgc(:)))+eps); imgs1=(imgs-min(imgs(:)))/(max(imgs(:)-min(imgs(:)))+eps); img = histeq([imgt1(:); imgc1(:); imgs1(:)],1024); imgt = reshape(img(1:numel(imgt1)),size(imgt1)); imgc = reshape(img(numel(imgt1)+(1:numel(imgc1))),size(imgc1)); imgs = reshape(img(numel(imgt1)+numel(imgc1)+(1:numel(imgs1))),size(imgs1)); mn = 0; mx = 1; end; % recompute min/max for display if strcmp(st.vols{i}.window,'auto') mx = -inf; mn = inf; end; if ~isempty(imgt), tmp = imgt(isfinite(imgt)); mx = max([mx max(max(tmp))]); mn = min([mn min(min(tmp))]); end; if ~isempty(imgc), tmp = imgc(isfinite(imgc)); mx = max([mx max(max(tmp))]); mn = min([mn min(min(tmp))]); end; if ~isempty(imgs), tmp = imgs(isfinite(imgs)); mx = max([mx max(max(tmp))]); mn = min([mn min(min(tmp))]); end; if mx==mn, mx=mn+eps; end; if isfield(st.vols{i},'blobs'), if ~isfield(st.vols{i}.blobs{1},'colour'), % Add blobs for display using the split colourmap scal = 64/(mx-mn); dcoff = -mn*scal; imgt = imgt*scal+dcoff; imgc = imgc*scal+dcoff; imgs = imgs*scal+dcoff; if isfield(st.vols{i}.blobs{1},'max'), mx = st.vols{i}.blobs{1}.max; else mx = max([eps maxval(st.vols{i}.blobs{1}.vol)]); st.vols{i}.blobs{1}.max = mx; end; if isfield(st.vols{i}.blobs{1},'min'), mn = st.vols{i}.blobs{1}.min; else mn = min([0 minval(st.vols{i}.blobs{1}.vol)]); st.vols{i}.blobs{1}.min = mn; end; vol = st.vols{i}.blobs{1}.vol; M = st.Space\st.vols{i}.premul*st.vols{i}.blobs{1}.mat; tmpt = spm_slice_vol(vol,inv(TM0*M),TD,[0 NaN])'; tmpc = spm_slice_vol(vol,inv(CM0*M),CD,[0 NaN])'; tmps = spm_slice_vol(vol,inv(SM0*M),SD,[0 NaN])'; %tmpt_z = find(tmpt==0);tmpt(tmpt_z) = NaN; %tmpc_z = find(tmpc==0);tmpc(tmpc_z) = NaN; %tmps_z = find(tmps==0);tmps(tmps_z) = NaN; sc = 64/(mx-mn); off = 65.51-mn*sc; msk = find(isfinite(tmpt)); imgt(msk) = off+tmpt(msk)*sc; msk = find(isfinite(tmpc)); imgc(msk) = off+tmpc(msk)*sc; msk = find(isfinite(tmps)); imgs(msk) = off+tmps(msk)*sc; cmap = get(st.fig,'Colormap'); if size(cmap,1)~=128 figure(st.fig) spm_figure('Colormap','gray-hot') end; redraw_colourbar(i,1,[mn mx],(1:64)'+64); elseif isstruct(st.vols{i}.blobs{1}.colour), % Add blobs for display using a defined % colourmap % colourmaps gryc = (0:63)'*ones(1,3)/63; actc = ... st.vols{1}.blobs{1}.colour.cmap; actp = ... st.vols{1}.blobs{1}.colour.prop; % scale grayscale image, not isfinite -> black imgt = scaletocmap(imgt,mn,mx,gryc,65); imgc = scaletocmap(imgc,mn,mx,gryc,65); imgs = scaletocmap(imgs,mn,mx,gryc,65); gryc = [gryc; 0 0 0]; % get max for blob image if isfield(st.vols{i}.blobs{1},'max'), cmx = st.vols{i}.blobs{1}.max; else cmx = max([eps maxval(st.vols{i}.blobs{1}.vol)]); end; if isfield(st.vols{i}.blobs{1},'min'), cmn = st.vols{i}.blobs{1}.min; else cmn = -cmx; end; % get blob data vol = st.vols{i}.blobs{1}.vol; M = st.Space\st.vols{i}.premul*st.vols{i}.blobs{1}.mat; tmpt = spm_slice_vol(vol,inv(TM0*M),TD,[0 NaN])'; tmpc = spm_slice_vol(vol,inv(CM0*M),CD,[0 NaN])'; tmps = spm_slice_vol(vol,inv(SM0*M),SD,[0 NaN])'; % actimg scaled round 0, black NaNs topc = size(actc,1)+1; tmpt = scaletocmap(tmpt,cmn,cmx,actc,topc); tmpc = scaletocmap(tmpc,cmn,cmx,actc,topc); tmps = scaletocmap(tmps,cmn,cmx,actc,topc); actc = [actc; 0 0 0]; % combine gray and blob data to % truecolour imgt = reshape(actc(tmpt(:),:)*actp+ ... gryc(imgt(:),:)*(1-actp), ... [size(imgt) 3]); imgc = reshape(actc(tmpc(:),:)*actp+ ... gryc(imgc(:),:)*(1-actp), ... [size(imgc) 3]); imgs = reshape(actc(tmps(:),:)*actp+ ... gryc(imgs(:),:)*(1-actp), ... [size(imgs) 3]); csz = size(st.vols{i}.blobs{1}.colour.cmap); cdata = reshape(st.vols{i}.blobs{1}.colour.cmap, [csz(1) 1 csz(2)]); redraw_colourbar(i,1,[cmn cmx],cdata); else % Add full colour blobs - several sets at once scal = 1/(mx-mn); dcoff = -mn*scal; wt = zeros(size(imgt)); wc = zeros(size(imgc)); ws = zeros(size(imgs)); imgt = repmat(imgt*scal+dcoff,[1,1,3]); imgc = repmat(imgc*scal+dcoff,[1,1,3]); imgs = repmat(imgs*scal+dcoff,[1,1,3]); cimgt = zeros(size(imgt)); cimgc = zeros(size(imgc)); cimgs = zeros(size(imgs)); colour = zeros(numel(st.vols{i}.blobs),3); for j=1:numel(st.vols{i}.blobs) % get colours of all images first if isfield(st.vols{i}.blobs{j},'colour'), colour(j,:) = reshape(st.vols{i}.blobs{j}.colour, [1 3]); else colour(j,:) = [1 0 0]; end; end; %colour = colour/max(sum(colour)); for j=1:numel(st.vols{i}.blobs), if isfield(st.vols{i}.blobs{j},'max'), mx = st.vols{i}.blobs{j}.max; else mx = max([eps max(st.vols{i}.blobs{j}.vol(:))]); st.vols{i}.blobs{j}.max = mx; end; if isfield(st.vols{i}.blobs{j},'min'), mn = st.vols{i}.blobs{j}.min; else mn = min([0 min(st.vols{i}.blobs{j}.vol(:))]); st.vols{i}.blobs{j}.min = mn; end; vol = st.vols{i}.blobs{j}.vol; M = st.Space\st.vols{i}.premul*st.vols{i}.blobs{j}.mat; tmpt = spm_slice_vol(vol,inv(TM0*M),TD,[0 NaN])'; tmpc = spm_slice_vol(vol,inv(CM0*M),CD,[0 NaN])'; tmps = spm_slice_vol(vol,inv(SM0*M),SD,[0 NaN])'; % check min/max of sampled image % against mn/mx as given in st tmpt(tmpt(:)<mn) = mn; tmpc(tmpc(:)<mn) = mn; tmps(tmps(:)<mn) = mn; tmpt(tmpt(:)>mx) = mx; tmpc(tmpc(:)>mx) = mx; tmps(tmps(:)>mx) = mx; tmpt = (tmpt-mn)/(mx-mn); tmpc = (tmpc-mn)/(mx-mn); tmps = (tmps-mn)/(mx-mn); tmpt(~isfinite(tmpt)) = 0; tmpc(~isfinite(tmpc)) = 0; tmps(~isfinite(tmps)) = 0; cimgt = cimgt + cat(3,tmpt*colour(j,1),tmpt*colour(j,2),tmpt*colour(j,3)); cimgc = cimgc + cat(3,tmpc*colour(j,1),tmpc*colour(j,2),tmpc*colour(j,3)); cimgs = cimgs + cat(3,tmps*colour(j,1),tmps*colour(j,2),tmps*colour(j,3)); wt = wt + tmpt; wc = wc + tmpc; ws = ws + tmps; cdata=permute(shiftdim((1/64:1/64:1)'* ... colour(j,:),-1),[2 1 3]); redraw_colourbar(i,j,[mn mx],cdata); end; imgt = repmat(1-wt,[1 1 3]).*imgt+cimgt; imgc = repmat(1-wc,[1 1 3]).*imgc+cimgc; imgs = repmat(1-ws,[1 1 3]).*imgs+cimgs; imgt(imgt<0)=0; imgt(imgt>1)=1; imgc(imgc<0)=0; imgc(imgc>1)=1; imgs(imgs<0)=0; imgs(imgs>1)=1; end; else scal = 64/(mx-mn); dcoff = -mn*scal; imgt = imgt*scal+dcoff; imgc = imgc*scal+dcoff; imgs = imgs*scal+dcoff; end; set(st.vols{i}.ax{1}.d,'HitTest','off', 'Cdata',imgt); set(st.vols{i}.ax{1}.lx,'HitTest','off',... 'Xdata',[0 TD(1)]+0.5,'Ydata',[1 1]*(cent(2)-bb(1,2)+1)); set(st.vols{i}.ax{1}.ly,'HitTest','off',... 'Ydata',[0 TD(2)]+0.5,'Xdata',[1 1]*(cent(1)-bb(1,1)+1)); set(st.vols{i}.ax{2}.d,'HitTest','off', 'Cdata',imgc); set(st.vols{i}.ax{2}.lx,'HitTest','off',... 'Xdata',[0 CD(1)]+0.5,'Ydata',[1 1]*(cent(3)-bb(1,3)+1)); set(st.vols{i}.ax{2}.ly,'HitTest','off',... 'Ydata',[0 CD(2)]+0.5,'Xdata',[1 1]*(cent(1)-bb(1,1)+1)); set(st.vols{i}.ax{3}.d,'HitTest','off','Cdata',imgs); if st.mode ==0, set(st.vols{i}.ax{3}.lx,'HitTest','off',... 'Xdata',[0 SD(1)]+0.5,'Ydata',[1 1]*(cent(2)-bb(1,2)+1)); set(st.vols{i}.ax{3}.ly,'HitTest','off',... 'Ydata',[0 SD(2)]+0.5,'Xdata',[1 1]*(cent(3)-bb(1,3)+1)); else set(st.vols{i}.ax{3}.lx,'HitTest','off',... 'Xdata',[0 SD(1)]+0.5,'Ydata',[1 1]*(cent(3)-bb(1,3)+1)); set(st.vols{i}.ax{3}.ly,'HitTest','off',... 'Ydata',[0 SD(2)]+0.5,'Xdata',[1 1]*(bb(2,2)+1-cent(2))); end; if ~isempty(st.plugins) % process any addons for k = 1:numel(st.plugins), if isfield(st.vols{i},st.plugins{k}), feval(['spm_ov_', st.plugins{k}], ... 'redraw', i, TM0, TD, CM0, CD, SM0, SD); end; end; end; end; end; drawnow; return; %_______________________________________________________________________ %_______________________________________________________________________ function redraw_colourbar(vh,bh,interval,cdata) global st if isfield(st.vols{vh}.blobs{bh},'cbar') if st.mode == 0, axpos = get(st.vols{vh}.ax{2}.ax,'Position'); else axpos = get(st.vols{vh}.ax{1}.ax,'Position'); end; % only scale cdata if we have out-of-range truecolour values if ndims(cdata)==3 && max(cdata(:))>1 cdata=cdata./max(cdata(:)); end; image([0 1],interval,cdata,'Parent',st.vols{vh}.blobs{bh}.cbar); set(st.vols{vh}.blobs{bh}.cbar, ... 'Position',[(axpos(1)+axpos(3)+0.05+(bh-1)*.1)... (axpos(2)+0.005) 0.05 (axpos(4)-0.01)],... 'YDir','normal','XTickLabel',[],'XTick',[]); if isfield(st.vols{vh}.blobs{bh},'name') ylabel(st.vols{vh}.blobs{bh}.name,'parent',st.vols{vh}.blobs{bh}.cbar); end; end; %_______________________________________________________________________ %_______________________________________________________________________ function centre = findcent global st obj = get(st.fig,'CurrentObject'); centre = []; cent = []; cp = []; for i=valid_handles(1:24), for j=1:3, if ~isempty(obj), if (st.vols{i}.ax{j}.ax == obj), cp = get(obj,'CurrentPoint'); end; end; if ~isempty(cp), cp = cp(1,1:2); is = inv(st.Space); cent = is(1:3,1:3)*st.centre(:) + is(1:3,4); switch j, case 1, cent([1 2])=[cp(1)+st.bb(1,1)-1 cp(2)+st.bb(1,2)-1]; case 2, cent([1 3])=[cp(1)+st.bb(1,1)-1 cp(2)+st.bb(1,3)-1]; case 3, if st.mode ==0, cent([3 2])=[cp(1)+st.bb(1,3)-1 cp(2)+st.bb(1,2)-1]; else cent([2 3])=[st.bb(2,2)+1-cp(1) cp(2)+st.bb(1,3)-1]; end; end; break; end; end; if ~isempty(cent), break; end; end; if ~isempty(cent), centre = st.Space(1:3,1:3)*cent(:) + st.Space(1:3,4); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function handles = valid_handles(handles) global st; if isempty(st) || ~isfield(st,'vols') handles = []; else handles = handles(:)'; handles = handles(handles<=24 & handles>=1 & ~rem(handles,1)); for h=handles, if isempty(st.vols{h}), handles(handles==h)=[]; end; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function reset_st global st fig = spm_figure('FindWin','Graphics'); bb = []; %[ [-78 78]' [-112 76]' [-50 85]' ]; st = struct('n', 0, 'vols',[], 'bb',bb,'Space',eye(4),'centre',[0 0 0],'callback',';','xhairs',1,'hld',1,'fig',fig,'mode',1,'plugins',{{}},'snap',[]); st.vols = cell(24,1); xTB = spm('TBs'); if ~isempty(xTB) pluginbase = {spm('Dir') xTB.dir}; else pluginbase = {spm('Dir')}; end for k = 1:numel(pluginbase) pluginpath = fullfile(pluginbase{k},'spm_orthviews'); if isdir(pluginpath) pluginfiles = dir(fullfile(pluginpath,'spm_ov_*.m')); if ~isempty(pluginfiles) if ~isdeployed, addpath(pluginpath); end % fprintf('spm_orthviews: Using Plugins in %s\n', pluginpath); for l = 1:numel(pluginfiles) [p, pluginname, e, v] = spm_fileparts(pluginfiles(l).name); st.plugins{end+1} = strrep(pluginname, 'spm_ov_',''); % fprintf('%s\n',st.plugins{k}); end; end; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function img = scaletocmap(inpimg,mn,mx,cmap,miscol) if nargin < 5, miscol=1;end cml = size(cmap,1); scf = (cml-1)/(mx-mn); img = round((inpimg-mn)*scf)+1; img(img<1) = 1; img(img>cml) = cml; img(~isfinite(img)) = miscol; return; %_______________________________________________________________________ %_______________________________________________________________________ function cmap = getcmap(acmapname) % get colormap of name acmapname if ~isempty(acmapname), cmap = evalin('base',acmapname,'[]'); if isempty(cmap), % not a matrix, is .mat file? [p, f, e] = fileparts(acmapname); acmat = fullfile(p, [f '.mat']); if exist(acmat, 'file'), s = struct2cell(load(acmat)); cmap = s{1}; end; end; end; if size(cmap, 2)~=3, warning('Colormap was not an N by 3 matrix') cmap = []; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function item_parent = addcontext(volhandle) global st; %create context menu fg = spm_figure('Findwin','Graphics');set(0,'CurrentFigure',fg); %contextmenu item_parent = uicontextmenu; %contextsubmenu 0 item00 = uimenu(item_parent, 'Label','unknown image'); spm_orthviews('context_menu','image_info',item00,volhandle); item0a = uimenu(item_parent, 'UserData','pos_mm', 'Callback','spm_orthviews(''context_menu'',''repos_mm'');','Separator','on'); item0b = uimenu(item_parent, 'UserData','pos_vx', 'Callback','spm_orthviews(''context_menu'',''repos_vx'');'); item0c = uimenu(item_parent, 'UserData','v_value'); %contextsubmenu 1 item1 = uimenu(item_parent,'Label','Zoom','Separator','on'); [zl, rl] = spm_orthviews('ZoomMenu'); for cz = numel(zl):-1:1 if isinf(zl(cz)) czlabel = 'Full Volume'; elseif isnan(zl(cz)) czlabel = 'BBox, this image > ...'; elseif zl(cz) == 0 czlabel = 'BBox, this image nonzero'; else czlabel = sprintf('%dx%d mm', 2*zl(cz), 2*zl(cz)); end item1_x = uimenu(item1, 'Label',czlabel,... 'Callback', sprintf(... 'spm_orthviews(''context_menu'',''zoom'',%d,%d)',... zl(cz),rl(cz))); if isinf(zl(cz)) % default display is Full Volume set(item1_x, 'Checked','on'); end end %contextsubmenu 2 checked={'off','off'}; checked{st.xhairs+1} = 'on'; item2 = uimenu(item_parent,'Label','Crosshairs'); item2_1 = uimenu(item2, 'Label','on', 'Callback','spm_orthviews(''context_menu'',''Xhair'',''on'');','Checked',checked{2}); item2_2 = uimenu(item2, 'Label','off', 'Callback','spm_orthviews(''context_menu'',''Xhair'',''off'');','Checked',checked{1}); %contextsubmenu 3 if st.Space == eye(4) checked = {'off', 'on'}; else checked = {'on', 'off'}; end; item3 = uimenu(item_parent,'Label','Orientation'); item3_1 = uimenu(item3, 'Label','World space', 'Callback','spm_orthviews(''context_menu'',''orientation'',3);','Checked',checked{2}); item3_2 = uimenu(item3, 'Label','Voxel space (1st image)', 'Callback','spm_orthviews(''context_menu'',''orientation'',2);','Checked',checked{1}); item3_3 = uimenu(item3, 'Label','Voxel space (this image)', 'Callback','spm_orthviews(''context_menu'',''orientation'',1);','Checked','off'); %contextsubmenu 3 if isempty(st.snap) checked = {'off', 'on'}; else checked = {'on', 'off'}; end; item3 = uimenu(item_parent,'Label','Snap to Grid'); item3_1 = uimenu(item3, 'Label','Don''t snap', 'Callback','spm_orthviews(''context_menu'',''snap'',3);','Checked',checked{2}); item3_2 = uimenu(item3, 'Label','Snap to 1st image', 'Callback','spm_orthviews(''context_menu'',''snap'',2);','Checked',checked{1}); item3_3 = uimenu(item3, 'Label','Snap to this image', 'Callback','spm_orthviews(''context_menu'',''snap'',1);','Checked','off'); %contextsubmenu 4 if st.hld == 0, checked = {'off', 'off', 'on'}; elseif st.hld > 0, checked = {'off', 'on', 'off'}; else checked = {'on', 'off', 'off'}; end; item4 = uimenu(item_parent,'Label','Interpolation'); item4_1 = uimenu(item4, 'Label','NN', 'Callback','spm_orthviews(''context_menu'',''interpolation'',3);', 'Checked',checked{3}); item4_2 = uimenu(item4, 'Label','Bilin', 'Callback','spm_orthviews(''context_menu'',''interpolation'',2);','Checked',checked{2}); item4_3 = uimenu(item4, 'Label','Sinc', 'Callback','spm_orthviews(''context_menu'',''interpolation'',1);','Checked',checked{1}); %contextsubmenu 5 % item5 = uimenu(item_parent,'Label','Position', 'Callback','spm_orthviews(''context_menu'',''position'');'); %contextsubmenu 6 item6 = uimenu(item_parent,'Label','Image','Separator','on'); item6_1 = uimenu(item6, 'Label','Window'); item6_1_1 = uimenu(item6_1, 'Label','local'); item6_1_1_1 = uimenu(item6_1_1, 'Label','auto', 'Callback','spm_orthviews(''context_menu'',''window'',2);'); item6_1_1_2 = uimenu(item6_1_1, 'Label','manual', 'Callback','spm_orthviews(''context_menu'',''window'',1);'); item6_1_2 = uimenu(item6_1, 'Label','global'); item6_1_2_1 = uimenu(item6_1_2, 'Label','auto', 'Callback','spm_orthviews(''context_menu'',''window_gl'',2);'); item6_1_2_2 = uimenu(item6_1_2, 'Label','manual', 'Callback','spm_orthviews(''context_menu'',''window_gl'',1);'); if license('test','image_toolbox') == 1 offon = {'off', 'on'}; checked = offon(strcmp(st.vols{volhandle}.mapping, ... {'linear', 'histeq', 'loghisteq', 'quadhisteq'})+1); item6_2 = uimenu(item6, 'Label','Intensity mapping'); item6_2_1 = uimenu(item6_2, 'Label','local'); item6_2_1_1 = uimenu(item6_2_1, 'Label','Linear', 'Checked',checked{1}, ... 'Callback','spm_orthviews(''context_menu'',''mapping'',''linear'');'); item6_2_1_2 = uimenu(item6_2_1, 'Label','Equalised histogram', 'Checked',checked{2}, ... 'Callback','spm_orthviews(''context_menu'',''mapping'',''histeq'');'); item6_2_1_3 = uimenu(item6_2_1, 'Label','Equalised log-histogram', 'Checked',checked{3}, ... 'Callback','spm_orthviews(''context_menu'',''mapping'',''loghisteq'');'); item6_2_1_4 = uimenu(item6_2_1, 'Label','Equalised squared-histogram', 'Checked',checked{4}, ... 'Callback','spm_orthviews(''context_menu'',''mapping'',''quadhisteq'');'); item6_2_2 = uimenu(item6_2, 'Label','global'); item6_2_2_1 = uimenu(item6_2_2, 'Label','Linear', 'Checked',checked{1}, ... 'Callback','spm_orthviews(''context_menu'',''mapping_gl'',''linear'');'); item6_2_2_2 = uimenu(item6_2_2, 'Label','Equalised histogram', 'Checked',checked{2}, ... 'Callback','spm_orthviews(''context_menu'',''mapping_gl'',''histeq'');'); item6_2_2_3 = uimenu(item6_2_2, 'Label','Equalised log-histogram', 'Checked',checked{3}, ... 'Callback','spm_orthviews(''context_menu'',''mapping_gl'',''loghisteq'');'); item6_2_2_4 = uimenu(item6_2_2, 'Label','Equalised squared-histogram', 'Checked',checked{4}, ... 'Callback','spm_orthviews(''context_menu'',''mapping_gl'',''quadhisteq'');'); end; %contextsubmenu 7 item7 = uimenu(item_parent,'Label','Blobs'); item7_1 = uimenu(item7, 'Label','Add blobs'); item7_1_1 = uimenu(item7_1, 'Label','local', 'Callback','spm_orthviews(''context_menu'',''add_blobs'',2);'); item7_1_2 = uimenu(item7_1, 'Label','global', 'Callback','spm_orthviews(''context_menu'',''add_blobs'',1);'); item7_2 = uimenu(item7, 'Label','Add image'); item7_2_1 = uimenu(item7_2, 'Label','local', 'Callback','spm_orthviews(''context_menu'',''add_image'',2);'); item7_2_2 = uimenu(item7_2, 'Label','global', 'Callback','spm_orthviews(''context_menu'',''add_image'',1);'); item7_3 = uimenu(item7, 'Label','Add colored blobs','Separator','on'); item7_3_1 = uimenu(item7_3, 'Label','local', 'Callback','spm_orthviews(''context_menu'',''add_c_blobs'',2);'); item7_3_2 = uimenu(item7_3, 'Label','global', 'Callback','spm_orthviews(''context_menu'',''add_c_blobs'',1);'); item7_4 = uimenu(item7, 'Label','Add colored image'); item7_4_1 = uimenu(item7_4, 'Label','local', 'Callback','spm_orthviews(''context_menu'',''add_c_image'',2);'); item7_4_2 = uimenu(item7_4, 'Label','global', 'Callback','spm_orthviews(''context_menu'',''add_c_image'',1);'); item7_5 = uimenu(item7, 'Label','Remove blobs', 'Visible','off','Separator','on'); item7_6 = uimenu(item7, 'Label','Remove colored blobs','Visible','off'); item7_6_1 = uimenu(item7_6, 'Label','local', 'Visible','on'); item7_6_2 = uimenu(item7_6, 'Label','global','Visible','on'); item7_7 = uimenu(item7, 'Label','Set blobs max', 'Visible','off'); for i=1:3, set(st.vols{volhandle}.ax{i}.ax,'UIcontextmenu',item_parent); st.vols{volhandle}.ax{i}.cm = item_parent; end; % process any plugins for k = 1:numel(st.plugins), feval(['spm_ov_', st.plugins{k}], ... 'context_menu', volhandle, item_parent); if k==1 h = get(item_parent,'Children'); set(h(1),'Separator','on'); end end; return; %_______________________________________________________________________ %_______________________________________________________________________ function c_menu(varargin) global st switch lower(varargin{1}), case 'image_info', if nargin <3, current_handle = get_current_handle; else current_handle = varargin{3}; end; if isfield(st.vols{current_handle},'fname'), [p,n,e,v] = spm_fileparts(st.vols{current_handle}.fname); if isfield(st.vols{current_handle},'n') v = sprintf(',%d',st.vols{current_handle}.n); end; set(varargin{2}, 'Label',[n e v]); end; delete(get(varargin{2},'children')); if exist('p','var') item1 = uimenu(varargin{2}, 'Label', p); end; if isfield(st.vols{current_handle},'descrip'), item2 = uimenu(varargin{2}, 'Label',... st.vols{current_handle}.descrip); end; dt = st.vols{current_handle}.dt(1); item3 = uimenu(varargin{2}, 'Label', sprintf('Data type: %s', spm_type(dt))); str = 'Intensity: varied'; if size(st.vols{current_handle}.pinfo,2) == 1, if st.vols{current_handle}.pinfo(2), str = sprintf('Intensity: Y = %g X + %g',... st.vols{current_handle}.pinfo(1:2)'); else str = sprintf('Intensity: Y = %g X', st.vols{current_handle}.pinfo(1)'); end; end; item4 = uimenu(varargin{2}, 'Label',str); item5 = uimenu(varargin{2}, 'Label', 'Image dims', 'Separator','on'); item51 = uimenu(varargin{2}, 'Label',... sprintf('%dx%dx%d', st.vols{current_handle}.dim(1:3))); prms = spm_imatrix(st.vols{current_handle}.mat); item6 = uimenu(varargin{2}, 'Label','Voxel size', 'Separator','on'); item61 = uimenu(varargin{2}, 'Label', sprintf('%.2f %.2f %.2f', prms(7:9))); item7 = uimenu(varargin{2}, 'Label','Origin', 'Separator','on'); item71 = uimenu(varargin{2}, 'Label',... sprintf('%.2f %.2f %.2f', prms(1:3))); R = spm_matrix([0 0 0 prms(4:6)]); item8 = uimenu(varargin{2}, 'Label','Rotations', 'Separator','on'); item81 = uimenu(varargin{2}, 'Label', sprintf('%.2f %.2f %.2f', R(1,1:3))); item82 = uimenu(varargin{2}, 'Label', sprintf('%.2f %.2f %.2f', R(2,1:3))); item83 = uimenu(varargin{2}, 'Label', sprintf('%.2f %.2f %.2f', R(3,1:3))); item9 = uimenu(varargin{2},... 'Label','Specify other image...',... 'Callback','spm_orthviews(''context_menu'',''swap_img'');',... 'Separator','on'); case 'repos_mm', oldpos_mm = spm_orthviews('pos'); newpos_mm = spm_input('New Position (mm)','+1','r',sprintf('%.2f %.2f %.2f',oldpos_mm),3); spm_orthviews('reposition',newpos_mm); case 'repos_vx' current_handle = get_current_handle; oldpos_vx = spm_orthviews('pos', current_handle); newpos_vx = spm_input('New Position (voxels)','+1','r',sprintf('%.2f %.2f %.2f',oldpos_vx),3); newpos_mm = st.vols{current_handle}.mat*[newpos_vx;1]; spm_orthviews('reposition',newpos_mm(1:3)); case 'zoom' zoom_all(varargin{2:end}); bbox; redraw_all; case 'xhair', spm_orthviews('Xhairs',varargin{2}); cm_handles = get_cm_handles; for i = 1:numel(cm_handles), z_handle = get(findobj(cm_handles(i),'label','Crosshairs'),'Children'); set(z_handle,'Checked','off'); %reset check if strcmp(varargin{2},'off'), op = 1; else op = 2; end set(z_handle(op),'Checked','on'); end; case 'orientation', cm_handles = get_cm_handles; for i = 1:numel(cm_handles), z_handle = get(findobj(cm_handles(i),'label','Orientation'),'Children'); set(z_handle,'Checked','off'); end; if varargin{2} == 3, spm_orthviews('Space'); for i = 1:numel(cm_handles), z_handle = findobj(cm_handles(i),'label','World space'); set(z_handle,'Checked','on'); end; elseif varargin{2} == 2, spm_orthviews('Space',1); for i = 1:numel(cm_handles), z_handle = findobj(cm_handles(i),'label',... 'Voxel space (1st image)'); set(z_handle,'Checked','on'); end; else spm_orthviews('Space',get_current_handle); z_handle = findobj(st.vols{get_current_handle}.ax{1}.cm, ... 'label','Voxel space (this image)'); set(z_handle,'Checked','on'); return; end; case 'snap', cm_handles = get_cm_handles; for i = 1:numel(cm_handles), z_handle = get(findobj(cm_handles(i),'label','Snap to Grid'),'Children'); set(z_handle,'Checked','off'); end; if varargin{2} == 3, st.snap = []; elseif varargin{2} == 2, st.snap = 1; else st.snap = get_current_handle; z_handle = get(findobj(st.vols{get_current_handle}.ax{1}.cm,'label','Snap to Grid'),'Children'); set(z_handle(1),'Checked','on'); return; end; for i = 1:numel(cm_handles), z_handle = get(findobj(cm_handles(i),'label','Snap to Grid'),'Children'); set(z_handle(varargin{2}),'Checked','on'); end; case 'interpolation', tmp = [-4 1 0]; st.hld = tmp(varargin{2}); cm_handles = get_cm_handles; for i = 1:numel(cm_handles), z_handle = get(findobj(cm_handles(i),'label','Interpolation'),'Children'); set(z_handle,'Checked','off'); set(z_handle(varargin{2}),'Checked','on'); end; redraw_all; case 'window', current_handle = get_current_handle; if varargin{2} == 2, spm_orthviews('window',current_handle); else if isnumeric(st.vols{current_handle}.window) defstr = sprintf('%.2f %.2f', st.vols{current_handle}.window); else defstr = ''; end; [w yp] = spm_input('Range','+1','e',defstr,[1 inf]); while numel(w) < 1 || numel(w) > 2 uiwait(warndlg('Window must be one or two numbers','Wrong input size','modal')); [w yp] = spm_input('Range',yp,'e',defstr,[1 inf]); end if numel(w) == 1 w(2) = w(1)+eps; end spm_orthviews('window',current_handle,w); end; case 'window_gl', if varargin{2} == 2, for i = 1:numel(get_cm_handles), st.vols{i}.window = 'auto'; end; else current_handle = get_current_handle; if isnumeric(st.vols{current_handle}.window) defstr = sprintf('%d %d', st.vols{current_handle}.window); else defstr = ''; end; [w yp] = spm_input('Range','+1','e',defstr,[1 inf]); while numel(w) < 1 || numel(w) > 2 uiwait(warndlg('Window must be one or two numbers','Wrong input size','modal')); [w yp] = spm_input('Range',yp,'e',defstr,[1 inf]); end if numel(w) == 1 w(2) = w(1)+eps; end for i = 1:numel(get_cm_handles), st.vols{i}.window = w; end; end; redraw_all; case 'mapping', checked = strcmp(varargin{2}, ... {'linear', 'histeq', 'loghisteq', ... 'quadhisteq'}); checked = checked(end:-1:1); % Handles are stored in inverse order current_handle = get_current_handle; cm_handles = get_cm_handles; st.vols{current_handle}.mapping = varargin{2}; z_handle = get(findobj(cm_handles(current_handle), ... 'label','Intensity mapping'),'Children'); for k = 1:numel(z_handle) c_handle = get(z_handle(k), 'Children'); set(c_handle, 'checked', 'off'); set(c_handle(checked), 'checked', 'on'); end; redraw_all; case 'mapping_gl', checked = strcmp(varargin{2}, ... {'linear', 'histeq', 'loghisteq', 'quadhisteq'}); checked = checked(end:-1:1); % Handles are stored in inverse order cm_handles = get_cm_handles; for k = valid_handles(1:24), st.vols{k}.mapping = varargin{2}; z_handle = get(findobj(cm_handles(k), ... 'label','Intensity mapping'),'Children'); for l = 1:numel(z_handle) c_handle = get(z_handle(l), 'Children'); set(c_handle, 'checked', 'off'); set(c_handle(checked), 'checked', 'on'); end; end; redraw_all; case 'swap_img', current_handle = get_current_handle; newimg = spm_select(1,'image','select new image'); if ~isempty(newimg) new_info = spm_vol(newimg); fn = fieldnames(new_info); for k=1:numel(fn) st.vols{current_handle}.(fn{k}) = new_info.(fn{k}); end; spm_orthviews('context_menu','image_info',get(gcbo, 'parent')); redraw_all; end case 'add_blobs', % Add blobs to the image - in split colortable cm_handles = valid_handles(1:24); if varargin{2} == 2, cm_handles = get_current_handle; end; spm_input('!DeleteInputObj'); [SPM,xSPM] = spm_getSPM; if ~isempty(SPM) for i = 1:numel(cm_handles), addblobs(cm_handles(i),xSPM.XYZ,xSPM.Z,xSPM.M); % Add options for removing blobs c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Remove blobs'); set(c_handle,'Visible','on'); delete(get(c_handle,'Children')); item7_3_1 = uimenu(c_handle,'Label','local','Callback','spm_orthviews(''context_menu'',''remove_blobs'',2);'); if varargin{2} == 1, item7_3_2 = uimenu(c_handle,'Label','global','Callback','spm_orthviews(''context_menu'',''remove_blobs'',1);'); end; % Add options for setting maxima for blobs c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Set blobs max'); set(c_handle,'Visible','on'); delete(get(c_handle,'Children')); uimenu(c_handle,'Label','local','Callback','spm_orthviews(''context_menu'',''setblobsmax'',2);'); if varargin{2} == 1, uimenu(c_handle,'Label','global','Callback','spm_orthviews(''context_menu'',''setblobsmax'',1);'); end; end; redraw_all; end case 'remove_blobs', cm_handles = valid_handles(1:24); if varargin{2} == 2, cm_handles = get_current_handle; end; for i = 1:numel(cm_handles), rmblobs(cm_handles(i)); % Remove options for removing blobs c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Remove blobs'); delete(get(c_handle,'Children')); set(c_handle,'Visible','off'); % Remove options for setting maxima for blobs c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Set blobs max'); set(c_handle,'Visible','off'); end; redraw_all; case 'add_image', % Add blobs to the image - in split colortable cm_handles = valid_handles(1:24); if varargin{2} == 2, cm_handles = get_current_handle; end; spm_input('!DeleteInputObj'); fname = spm_select(1,'image','select image'); if ~isempty(fname) for i = 1:numel(cm_handles), addimage(cm_handles(i),fname); % Add options for removing blobs c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Remove blobs'); set(c_handle,'Visible','on'); delete(get(c_handle,'Children')); item7_3_1 = uimenu(c_handle,'Label','local','Callback','spm_orthviews(''context_menu'',''remove_blobs'',2);'); if varargin{2} == 1, item7_3_2 = uimenu(c_handle,'Label','global','Callback','spm_orthviews(''context_menu'',''remove_blobs'',1);'); end; % Add options for setting maxima for blobs c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Set blobs max'); set(c_handle,'Visible','on'); delete(get(c_handle,'Children')); uimenu(c_handle,'Label','local','Callback','spm_orthviews(''context_menu'',''setblobsmax'',2);'); if varargin{2} == 1, uimenu(c_handle,'Label','global','Callback','spm_orthviews(''context_menu'',''setblobsmax'',1);'); end; end; redraw_all; end case 'add_c_blobs', % Add blobs to the image - in full colour cm_handles = valid_handles(1:24); if varargin{2} == 2, cm_handles = get_current_handle; end; spm_input('!DeleteInputObj'); [SPM,xSPM] = spm_getSPM; if ~isempty(SPM) c = spm_input('Colour','+1','m',... 'Red blobs|Yellow blobs|Green blobs|Cyan blobs|Blue blobs|Magenta blobs',[1 2 3 4 5 6],1); colours = [1 0 0;1 1 0;0 1 0;0 1 1;0 0 1;1 0 1]; c_names = {'red';'yellow';'green';'cyan';'blue';'magenta'}; hlabel = sprintf('%s (%s)',xSPM.title,c_names{c}); for i = 1:numel(cm_handles), addcolouredblobs(cm_handles(i),xSPM.XYZ,xSPM.Z,xSPM.M,colours(c,:),xSPM.title); addcolourbar(cm_handles(i),numel(st.vols{cm_handles(i)}.blobs)); c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Remove colored blobs'); ch_c_handle = get(c_handle,'Children'); set(c_handle,'Visible','on'); %set(ch_c_handle,'Visible',on'); item7_4_1 = uimenu(ch_c_handle(2),'Label',hlabel,'ForegroundColor',colours(c,:),... 'Callback','c = get(gcbo,''UserData'');spm_orthviews(''context_menu'',''remove_c_blobs'',2,c);',... 'UserData',c); if varargin{2} == 1, item7_4_2 = uimenu(ch_c_handle(1),'Label',hlabel,'ForegroundColor',colours(c,:),... 'Callback','c = get(gcbo,''UserData'');spm_orthviews(''context_menu'',''remove_c_blobs'',1,c);',... 'UserData',c); end; end; redraw_all; end case 'remove_c_blobs', cm_handles = valid_handles(1:24); if varargin{2} == 2, cm_handles = get_current_handle; end; colours = [1 0 0;1 1 0;0 1 0;0 1 1;0 0 1;1 0 1]; for i = 1:numel(cm_handles), if isfield(st.vols{cm_handles(i)},'blobs'), for j = 1:numel(st.vols{cm_handles(i)}.blobs), if all(st.vols{cm_handles(i)}.blobs{j}.colour == colours(varargin{3},:)); if isfield(st.vols{cm_handles(i)}.blobs{j},'cbar') delete(st.vols{cm_handles(i)}.blobs{j}.cbar); end st.vols{cm_handles(i)}.blobs(j) = []; break; end; end; rm_c_menu = findobj(st.vols{cm_handles(i)}.ax{1}.cm,'Label','Remove colored blobs'); delete(gcbo); if isempty(st.vols{cm_handles(i)}.blobs), st.vols{cm_handles(i)} = rmfield(st.vols{cm_handles(i)},'blobs'); set(rm_c_menu, 'Visible', 'off'); end; end; end; redraw_all; case 'add_c_image', % Add truecolored image cm_handles = valid_handles(1:24); if varargin{2} == 2, cm_handles = get_current_handle;end; spm_input('!DeleteInputObj'); fname = spm_select([1 Inf],'image','select image(s)'); for k = 1:size(fname,1) c = spm_input(sprintf('Image %d: Colour',k),'+1','m','Red blobs|Yellow blobs|Green blobs|Cyan blobs|Blue blobs|Magenta blobs',[1 2 3 4 5 6],1); colours = [1 0 0;1 1 0;0 1 0;0 1 1;0 0 1;1 0 1]; c_names = {'red';'yellow';'green';'cyan';'blue';'magenta'}; hlabel = sprintf('%s (%s)',fname(k,:),c_names{c}); for i = 1:numel(cm_handles), addcolouredimage(cm_handles(i),fname(k,:),colours(c,:)); addcolourbar(cm_handles(i),numel(st.vols{cm_handles(i)}.blobs)); c_handle = findobj(findobj(st.vols{cm_handles(i)}.ax{1}.cm,'label','Blobs'),'Label','Remove colored blobs'); ch_c_handle = get(c_handle,'Children'); set(c_handle,'Visible','on'); %set(ch_c_handle,'Visible',on'); item7_4_1 = uimenu(ch_c_handle(2),'Label',hlabel,'ForegroundColor',colours(c,:),... 'Callback','c = get(gcbo,''UserData'');spm_orthviews(''context_menu'',''remove_c_blobs'',2,c);','UserData',c); if varargin{2} == 1 item7_4_2 = uimenu(ch_c_handle(1),'Label',hlabel,'ForegroundColor',colours(c,:),... 'Callback','c = get(gcbo,''UserData'');spm_orthviews(''context_menu'',''remove_c_blobs'',1,c);',... 'UserData',c); end end redraw_all; end case 'setblobsmax' if varargin{2} == 1 % global cm_handles = valid_handles(1:24); mx = -inf; for i = 1:numel(cm_handles) if ~isfield(st.vols{cm_handles(i)}, 'blobs'), continue, end for j = 1:numel(st.vols{cm_handles(i)}.blobs) mx = max(mx, st.vols{cm_handles(i)}.blobs{j}.max); end end mx = spm_input('Maximum value', '+1', 'r', mx, 1); for i = 1:numel(cm_handles) if ~isfield(st.vols{cm_handles(i)}, 'blobs'), continue, end for j = 1:numel(st.vols{cm_handles(i)}.blobs) st.vols{cm_handles(i)}.blobs{j}.max = mx; end end else % local (should handle coloured blobs, but not implemented yet) cm_handle = get_current_handle; colours = [1 0 0;1 1 0;0 1 0;0 1 1;0 0 1;1 0 1]; if ~isfield(st.vols{cm_handle}, 'blobs'), return, end for j = 1:numel(st.vols{cm_handle}.blobs) if nargin < 4 || ... all(st.vols{cm_handle}.blobs{j}.colour == colours(varargin{3},:)) mx = st.vols{cm_handle}.blobs{j}.max; mx = spm_input('Maximum value', '+1', 'r', mx, 1); st.vols{cm_handle}.blobs{j}.max = mx; end end end redraw_all; end; %_______________________________________________________________________ %_______________________________________________________________________ function current_handle = get_current_handle cm_handle = get(gca,'UIContextMenu'); cm_handles = get_cm_handles; current_handle = find(cm_handles==cm_handle); return; %_______________________________________________________________________ %_______________________________________________________________________ function cm_pos global st for i = 1:numel(valid_handles(1:24)), if isfield(st.vols{i}.ax{1},'cm') set(findobj(st.vols{i}.ax{1}.cm,'UserData','pos_mm'),... 'Label',sprintf('mm: %.1f %.1f %.1f',spm_orthviews('pos'))); pos = spm_orthviews('pos',i); set(findobj(st.vols{i}.ax{1}.cm,'UserData','pos_vx'),... 'Label',sprintf('vx: %.1f %.1f %.1f',pos)); set(findobj(st.vols{i}.ax{1}.cm,'UserData','v_value'),... 'Label',sprintf('Y = %g',spm_sample_vol(st.vols{i},pos(1),pos(2),pos(3),st.hld))); end end; return; %_______________________________________________________________________ %_______________________________________________________________________ function cm_handles = get_cm_handles global st cm_handles = []; for i=valid_handles(1:24), cm_handles = [cm_handles st.vols{i}.ax{1}.cm]; end return; %_______________________________________________________________________ %_______________________________________________________________________ function zoom_all(zoom,res) global st cm_handles = get_cm_handles; zoom_op(zoom,res); for i = 1:numel(cm_handles) z_handle = get(findobj(cm_handles(i),'label','Zoom'),'Children'); set(z_handle,'Checked','off'); if isinf(zoom) set(findobj(z_handle,'Label','Full Volume'),'Checked','on'); elseif zoom > 0 set(findobj(z_handle,'Label',sprintf('%dx%d mm', 2*zoom, 2*zoom)),'Checked','on'); end % leave all unchecked if either bounding box option was chosen end return;
github
philippboehmsturm/antx-master
spm_FcUtil.m
.m
antx-master/xspm8/spm_FcUtil.m
30,975
utf_8
0d64cc7e875dbb54242a27a69ebaee99
function varargout = spm_FcUtil(varargin) % Contrast utilities % FORMAT varargout = spm_FcUtil(action,varargin) %_______________________________________________________________________ % % spm_FcUtil is a multi-function function containing various utilities % for contrast construction and manipulation. In general, it accepts % design matrices as plain matrices or as space structures setup by % spm_sp (that is preferable in general). % % The use of spm_FcUtil should help with robustness issues and % maintainability of SPM. % Note that when space structures are passed % as arguments is is assummed that their basic fields are filled in. % See spm_sp for details of (design) space structures and their % manipulation. % % % ====================================================================== % case 'fconfields' %- fields of F contrast % Fc = spm_FcUtil('FconFields') % %- simply returns the fields of a contrast structure. % %======================================================================= % case 'set' %- Create an F contrast % Fc = spm_FcUtil('Set',name, STAT, set_action, value, sX) % %- Set will fill in the contrast structure, in particular %- c (in the contrast space), X1o (the space actually tested) and %- X0 (the space left untested), such that space([X1o X0]) == sX. %- STAT is either 'F' or 'T'; %- name is a string descibing the contrast. % %- There are three ways to set a contrast : %- set_action is 'c','c+' : value can then be zeros. %- dimensions are in X', %- f c+ is used, value is projected onto sX'; %- iX0 is set to 'c' or 'c+'; %- set_action is 'iX0' : defines the indices of the columns %- that will not be tested. Can be empty. %- set_action is 'X0' : defines the space that will remain %- unchanged. The orthogonal complement is %- tested; iX0 is set to 'X0'; %- %======================================================================= % case 'isfcon' %- Is it an F contrast ? % b = spm_FcUtil('IsFcon',Fc) % %======================================================================= % case 'fconedf' %- F contrast edf % [edf_tsp edf_Xsp] = spm_FcUtil('FconEdf', Fc, sX [, V]) % %- compute the effective degrees of freedom of the numerator edf_tsp %- and (optionally) the denominator edf_Xsp of the contrast. % %======================================================================= % case 'hsqr' %-Extra sum of squares sqr matrix for beta's from contrast % hsqr = spm_FcUtil('Hsqr',Fc, sX) % %- This computes the matrix hsqr such that a the numerator of an F test %- will be beta'*hsqr'*hsqr*beta % %======================================================================= % case 'h' %-Extra sum of squares matrix for beta's from contrast % H = spm_FcUtil('H',Fc, sX) % %- This computes the matrix H such that a the numerator of an F test %- will be beta'*H*beta %- %======================================================================= % case 'yc' %- Fitted data corrected for confounds defined by Fc % Yc = spm_FcUtil('Yc',Fc, sX, b) % %- Input : b : the betas %- Returns the corrected data Yc for given contrast. Y = Yc + Y0 + error % %======================================================================= % case 'y0' %- Confounds data defined by Fc % Y0 = spm_FcUtil('Y0',Fc, sX, b) % %- Input : b : the betas %- Returns the confound data Y0 for a given contrast. Y = Yc + Y0 + error % %======================================================================= % case {'|_'} %- Fc orthogonalisation % Fc = spm_FcUtil('|_',Fc1, sX, Fc2) % %- Orthogonolise a (list of) contrasts Fc1 wrt a (list of) contrast Fc2 %- such that the space these contrasts test are orthogonal. %- If contrasts are not estimable contrasts, works with the estimable %- part. In any case, returns estimable contrasts. % %======================================================================= % case {'|_?'} %- Are contrasts orthogonals % b = spm_FcUtil('|_?',Fc1, sX [, Fc2]) % %- Tests whether a (list of) contrast is orthogonal. Works with the %- estimable part if they are not estimable. With only one argument, %- tests whether the list is made of orthogonal contrasts. With Fc2 %- provided, tests whether the two (list of) contrast are orthogonal. % %======================================================================= % case 'in' %- Fc1 is in list of contrasts Fc2 % [iFc2 iFc1] = spm_FcUtil('In', Fc1, sX, Fc2) % %- Tests wether a (list of) contrast Fc1 is in a list of contrast Fc2. %- returns the indices iFc2 where element of Fc1 have been found %- in Fc2 and the indices iFc1 of the element of Fc1 found in Fc2. %- These indices are not necessarily unique. % %======================================================================= % case '~unique' %- Fc list unique % idx = spm_FcUtil('~unique', Fc, sX) % %- returns indices ofredundant contrasts in Fc %- such that Fc(idx) = [] makes Fc unique. % %======================================================================= % case {'0|[]','[]|0'} %- Fc is null or empty % b = spm_FcUtil('0|[]', Fc, sX) % %- NB : for the "null" part, checks if the contrast is in the null space %- of sX (completely non estimable !) %======================================================================= % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean-Baptiste Poline % $Id: spm_FcUtil.m 4137 2010-12-15 17:18:32Z guillaume $ %-Format arguments %----------------------------------------------------------------------- if nargin==0, error('do what? no arguments given...') else action = varargin{1}; end switch lower(action), case 'fconfields' %- fields of F contrast %======================================================================= % Fc = spm_FcUtil('FconFields') if nargout > 1, error('Too many output arguments: FconFields'), end if nargin > 1, error('Too many input arguments: FconFields'), end varargout = {sf_FconFields}; case {'set','v1set'} %- Create an F contrast %======================================================================= % Fc = spm_FcUtil('Set',name, STAT, set_action, value, sX) % % Sets the contrast structure with set_action either 'c', 'X0' or 'iX0' % resp. for a contrast, the null hyp. space or the indices of which. % STAT can be 'T' or 'F'. % % If not set by iX0 (in which case field .iX0 containes the indices), % field .iX0 is set as a string containing the set_action: {'X0','c','c+','ukX0'} % % if STAT is T, then set_action should be 'c' or 'c+' % (at the moment, just a warning...) % if STAT is T and set_action is 'c' or 'c+', then % checks whether it is a real T. % % 'v1set' is NOT provided for backward compatibility so far ... %-check # arguments... %-------------------------------------------------------------------------- if nargin<6, error('insufficient arguments'), end if nargout > 1, error('Too many output arguments Set'), end %-check arguments... %-------------------------------------------------------------------------- if ~ischar(varargin{2}), error('~ischar(name)'), end if ~(varargin{3}=='F'||varargin{3}=='T'||varargin{3}=='P'), error('~(STAT==F|STAT==T|STAT==P)'), end if ~ischar(varargin{4}), error('~ischar(varargin{4})'); else set_action = varargin{4}; end sX = varargin{6}; if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end if isempty(sX.X), error('Empty space X in Set'); end Fc = sf_FconFields; %- use the name as a flag to insure that F-contrast has been %- properly created; Fc.name = varargin{2}; Fc.STAT = varargin{3}; if Fc.STAT=='T' && ~(any(strcmp(set_action,{'c+','c'}))) warning('enter T stat with contrast - here no check rank == 1'); end [sC sL] = spm_sp('size',sX); %- allow to define the contrast the old (version 1) way ? %- NO. v1 = strcmp(action,'v1set'); switch set_action, case {'c','c+'} Fc.iX0 = set_action; c = spm_sp(':', sX, varargin{5}); if isempty(c) [Fc.X1o.ukX1o Fc.X0.ukX0] = spm_SpUtil('+c->Tsp',sX,[]); %- v1 [Fc.X1o Fc.X0] = spm_SpUtil('c->Tsp',sX,[]); Fc.c = c; elseif size(c,1) ~= sL, error(['not contrast dim. in ' mfilename ' ' set_action]); else if strcmp(set_action,'c+') if ~spm_sp('isinspp',sX,c), c = spm_sp('oPp:',sX,c); end end; if Fc.STAT=='T' && ~sf_is_T(sX,c) %- Could be make more self-correcting by giving back an F error('trying to define a t that looks like an F'); end Fc.c = c; [Fc.X1o.ukX1o Fc.X0.ukX0] = spm_SpUtil('+c->Tsp',sX,c); %- v1 [Fc.X1o Fc.X0] = spm_SpUtil('c->Tsp',sX,c); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % 'option given for completeness - not for SPM use' case {'X0'} warning('option given for completeness - not for SPM use'); Fc.iX0 = set_action; X0 = spm_sp(':', sX, varargin{5}); if isempty(X0), Fc.c = spm_sp('xpx',sX); Fc.X1o.ukX1o = spm_sp('cukx',sX); Fc.X0.ukX0 = []; elseif size(X0,1) ~= sC, error('dimension of X0 wrong in Set'); else Fc.c = spm_SpUtil('X0->c',sX,X0); Fc.X0.ukX0 = spm_sp('ox',sX)'*X0; Fc.X1o.ukX1o = spm_SpUtil('+c->Tsp',sX,Fc.c); end case 'ukX0' warning('option given for completeness - not for SPM use'); Fc.iX0 = set_action; if isempty(ukX0), Fc.c = spm_sp('xpx',sX); Fc.X1o.ukX1o = spm_sp('cukx',sX); Fc.X0.ukX0 = []; elseif size(ukX0,1) ~= spm_sp('rk',sX), error('dimension of cukX0 wrong in Set'); else Fc.c = spm_SpUtil('+X0->c',sX,ukX0); Fc.X0.ukX0 = ukX0; Fc.X1o.ukX1o = spm_SpUtil('+c->Tsp',sX,Fc.c); end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ case 'iX0' iX0 = varargin{5}; iX0 = spm_SpUtil('iX0check',iX0,sL); Fc.iX0 = iX0; Fc.X0.ukX0 = spm_sp('ox',sX)' * spm_sp('Xi',sX,iX0); if isempty(iX0), Fc.c = spm_sp('xpx',sX); Fc.X1o.ukX1o = spm_sp('cukx',sX); else Fc.c = spm_SpUtil('i0->c',sX,iX0); Fc.X1o.ukX1o = spm_SpUtil('+c->Tsp',sX,Fc.c); end otherwise error('wrong action in Set '); end varargout = {Fc}; case 'x0' % spm_FcUtil('X0',Fc,sX) %======================================================================= if nargin ~= 3, error('too few/many input arguments - need 2'); else Fc = varargin{2}; sX = varargin{3}; end if nargout ~= 1, error('too few/many output arguments - need 1'), end if ~sf_IsFcon(Fc), error('argument is not a contrast struct'), end if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end varargout = {sf_X0(Fc,sX)}; case 'x1o' % spm_FcUtil('X1o',Fc,sX) %======================================================================= if nargin ~= 3, error('too few/many input arguments - need 2'); else Fc = varargin{2}; sX = varargin{3}; end if nargout ~= 1, error('too few/many output arguments - need 1'), end if ~sf_IsFcon(Fc), error('argument is not a contrast struct'), end if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end varargout = {sf_X1o(Fc,sX)}; case 'isfcon' %- Is it an F contrast ? %======================================================================= % yes_no = spm_FcUtil('IsFcon',Fc) if nargin~=2, error('too few/many input arguments - need 2'), end if ~isstruct(varargin{2}), varargout={0}; else varargout = {sf_IsFcon(varargin{2})}; end case 'fconedf' %- F contrast edf %======================================================================= % [edf_tsp edf_Xsp] = spm_FcUtil('FconEdf', Fc, sX [, V]) if nargin<3, error('Insufficient arguments'), end if nargout >= 3, error('Too many output argument.'), end Fc = varargin{2}; sX = varargin{3}; if nargin == 4, V = varargin{4}; else V = []; end if ~sf_IsFcon(Fc), error('Fc must be Fcon'), end if ~spm_sp('isspc',sX) sX = spm_sp('set',sX); end if ~sf_isempty_X1o(Fc) [trMV, trMVMV] = spm_SpUtil('trMV',sf_X1o(Fc,sX),V); else trMV = 0; trMVMV = 0; end if ~trMVMV, edf_tsp = 0; warning('edf_tsp = 0'), else edf_tsp = trMV^2/trMVMV; end; if nargout == 2 [trRV, trRVRV] = spm_SpUtil('trRV',sX,V); if ~trRVRV, edf_Xsp = 0; warning('edf_Xsp = 0'), else edf_Xsp = trRV^2/trRVRV; end; varargout = {edf_tsp, edf_Xsp}; else varargout = {edf_tsp}; end %======================================================================= %======================================================================= % parts that use F contrast %======================================================================= %======================================================================= % % Quick reference : L : can be lists of ... %------------------------- % ('Hsqr',Fc, sX) : Out: Hsqr / ESS = b' * Hsqr' * Hsqr * b % ('H',Fc, sX) : Out: H / ESS = b' * H * b % ('Yc',Fc, sX, b) : Out: Y corrected = X*b - X0*X0- *Y % ('Y0',Fc, sX, b) : Out: Y0 = X0*X0- *Y % ('|_',LFc1, sX, LFc2) : Out: Fc1 orthog. wrt Fc2 % ('|_?',LFc1,sX [,LFc2]): Out: is Fc2 ortho to Fc1 or is Fc1 ortho ? % ('In', LFc1, sX, LFc2) : Out: indices of Fc2 if "in", 0 otherwise % ('~unique', LFc, sX) : Out: indices of redundant contrasts % ('0|[]', Fc, sX) : Out: 1 if Fc is zero or empty, 0 otherwise case 'hsqr' %-Extra sum of squares matrix for beta's from contrast %======================================================================= % hsqr = spm_FcUtil('Hsqr',Fc, sX) if nargin<3, error('Insufficient arguments'), end if nargout>1, error('Too many output argument.'), end Fc = varargin{2}; sX = varargin{3}; if ~sf_IsFcon(Fc), error('Fc must be F-contrast'), end if ~sf_IsSet(Fc), error('Fcon must be set'); end; %- if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; if sf_isempty_X1o(Fc) if ~sf_isempty_X0(Fc) %- assumes that X0 is sX.X %- warning(' Empty X1o in spm_FcUtil(''Hsqr'',Fc,sX) '); varargout = { zeros(1,spm_sp('size',sX,2)) }; else error(' Fc must be set '); end else varargout = { sf_Hsqr(Fc,sX) }; end case 'h' %-Extra sum of squares matrix for beta's from contrast %======================================================================= % H = spm_FcUtil('H',Fc, sX) % Empty and zeros dealing : % This routine never returns an empty matrix. % If sf_isempty_X1o(Fc) | isempty(Fc.c) it explicitly % returns a zeros projection matrix. if nargin<2, error('Insufficient arguments'), end if nargout>1, error('Too many output argument.'), end Fc = varargin{2}; sX = varargin{3}; if ~sf_IsFcon(Fc), error('Fc must be F-contrast'), end if ~sf_IsSet(Fc), error('Fcon must be set'); end; %- if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; if sf_isempty_X1o(Fc) if ~sf_isempty_X0(Fc) %- assumes that X0 is sX.X %- warning(' Empty X1o in spm_FcUtil(''H'',Fc,sX) '); varargout = { zeros(spm_sp('size',sX,2)) }; else error(' Fc must be set '); end else varargout = { sf_H(Fc,sX) }; end case 'yc' %- Fitted data corrected for confounds defined by Fc %======================================================================= % Yc = spm_FcUtil('Yc',Fc, sX, b) if nargin < 4, error('Insufficient arguments'), end if nargout > 1, error('Too many output argument.'), end Fc = varargin{2}; sX = varargin{3}; b = varargin{4}; if ~sf_IsFcon(Fc), error('Fc must be F-contrast'), end if ~sf_IsSet(Fc), error('Fcon must be set'); end; if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; % if ~spm_FcUtil('Rcompatible',Fc,sX), ... % error('sX and Fc must be compatible'), end; if spm_sp('size',sX,2) ~= size(b,1), error('sX and b must be compatible'), end; if sf_isempty_X1o(Fc) if ~sf_isempty_X0(Fc) %- if space of interest empty or null, returns zeros ! varargout = { zeros(spm_sp('size',sX,1),size(b,2)) }; else error(' Fc must be set '); end else varargout = { sf_Yc(Fc,sX,b) }; end case 'y0' %- Fitted data corrected for confounds defined by Fc %======================================================================= % Y0 = spm_FcUtil('Y0',Fc, sX, b) if nargin < 4, error('Insufficient arguments'), end if nargout > 1, error('Too many output argument.'), end Fc = varargin{2}; sX = varargin{3}; b = varargin{4}; if ~sf_IsFcon(Fc), error('Fc must be F-contrast'), end if ~sf_IsSet(Fc), error('Fcon must be set'); end; if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; if spm_sp('size',sX,2) ~= size(b,1), error('sX and b must be compatible'), end; if sf_isempty_X1o(Fc) if ~sf_isempty_X0(Fc) %- if space of interest empty or null, returns zeros ! varargout = { sX.X*b }; else error(' Fc must be set '); end else varargout = { sf_Y0(Fc,sX,b) }; end case {'|_'} %- Fc orthogonalisation %======================================================================= % Fc = spm_FcUtil('|_',Fc1, sX, Fc2) % returns Fc1 orthogonolised wrt Fc2 if nargin < 4, error('Insufficient arguments'), end if nargout > 1, error('Too many output argument.'), end Fc1 = varargin{2}; sX = varargin{3}; Fc2 = varargin{4}; %-check arguments %----------------------------------------------------------------------- L1 = length(Fc1); if ~L1, warning('no contrast given to |_'); varargout = {[]}; return; end for i=1:L1 if ~sf_IsFcon(Fc1(i)), error('Fc1(i) must be a contrast'), end end L2 = length(Fc2); if ~L2, error('must have at least a contrast in Fc2'); end for i=1:L2 if ~sf_IsFcon(Fc2(i)), error('Fc2(i) must be a contrast'), end end if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; %-create an F-contrast for all the Fc2 %-------------------------------------------------------------------------- str = Fc2(1).name; for i=2:L2 str = [str ' ' Fc2(i).name]; end; Fc2 = spm_FcUtil('Set',str,'F','c+',cat(2,Fc2(:).c),sX); if sf_isempty_X1o(Fc2) || sf_isnull(Fc2,sX) varargout = {Fc1}; else for i=1:L1 if sf_isempty_X1o(Fc1(i)) || sf_isnull(Fc1(i),sX) %- Fc1(i) is an [] or 0 contrast : ortho to anything; out(i) = Fc1(i); else out(i) = sf_fcortho(Fc1(i), sX, Fc2); end end varargout = {out}; end case {'|_?'} %- Are contrasts orthogonals %======================================================================= % b = spm_FcUtil('|_?',Fc1, sX [, Fc2]) if nargin < 3, error('Insufficient arguments'), end Fc1 = varargin{2}; sX = varargin{3}; if nargin > 3, Fc2 = varargin{4}; else Fc2 = []; end; if isempty(Fc1), error('give at least one non empty contrast'), end; if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; for i=1:length(Fc1) if ~sf_IsFcon(Fc1(i)), error('Fc1(i) must be a contrast'), end end for i=1:length(Fc2) if ~sf_IsFcon(Fc2(i)), error('Fc2(i) must be a contrast'), end end varargout = { sf_Rortho(Fc1,sX,Fc2) }; case 'in' %- Fc1 is in list of contrasts Fc2 %======================================================================= % [iFc2 iFc1] = spm_FcUtil('In', Fc1, sX, Fc2) % returns indice of Fc2 if "in", 0 otherwise % NB : If T- stat, the routine checks whether Fc.c is of % size one. This is ensure if contrast is set % or manipulated (ortho ..) with spm_FcUtil % note that the algorithmn works \emph{only because} Fc2(?).c % and Fc1.c are in space(X') if nargin < 4, error('Insufficient arguments'), end if nargout > 2, error('Too many output argument.'), end Fc1 = varargin{2}; Fc2 = varargin{4}; sX = varargin{3}; L1 = length(Fc1); if ~L1, warning('no contrast given to in'); if nargout == 2, varargout = {[] []}; else varargout = {[]}; end; return; end for i=1:L1 if ~sf_IsFcon(Fc1(i)), error('Fc1(i) must be a contrast'), end end L2 = length(Fc2); if ~L2, error('must have at least a contrast in Fc2'); end for i=1:L2 if ~sf_IsFcon(Fc2(i)), error('Fc2(i) must be F-contrast'), end end if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; [idxFc2 idxFc1] = sf_in(Fc1, sX, Fc2); if isempty(idxFc2), idxFc2 = 0; end if isempty(idxFc1), idxFc1 = 0; end switch nargout case {0,1} varargout = { idxFc2 }; case 2 varargout = { idxFc2 idxFc1 }; otherwise error('Too many or not enough output arguments'); end case '~unique' %- Fc list unique %======================================================================= % idx = spm_FcUtil('~unique', Fc, sX) %- returns indices of redundant contrasts in Fc %- such that Fc(idx) = [] makes Fc unique. %- if already unique returns [] if nargin ~= 3, error('Insufficient/too many arguments'), end Fc = varargin{2}; sX = varargin{3}; %---------------------------- L1 = length(Fc); if ~L1, warning('no contrast given '); varargout = {[]}; return; end for i=1:L1 if ~sf_IsFcon(Fc(i)), error('Fc(i) must be a contrast'), end end if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; %---------------------------- varargout = { unique(sf_notunique(Fc, sX))}; case {'0|[]','[]|0'} %- Fc is null or empty %======================================================================= % b = spm_FcUtil('0|[]', Fc, sX) % returns 1 if F-contrast is empty or null; assumes the contrast is set. if nargin ~= 3, error('Insufficient/too many arguments'), end Fc = varargin{2}; sX = varargin{3}; %---------------------------- L1 = length(Fc); if ~L1, warning('no contrast given to |_'); varargout = {[]}; return; end for i=1:L1 if ~sf_IsFcon(Fc(i)), error('Fc(i) must be a contrast'), end end if ~spm_sp('isspc',sX), sX = spm_sp('set',sX); end; %---------------------------- idx = []; for i=1:L1 if sf_isempty_X1o(Fc(i)) || sf_isnull(Fc(i),sX), idx = [idx i]; end end if isempty(idx) varargout = {0}; else varargout = {idx}; end %======================================================================= otherwise %======================================================================= error('Unknown action string in spm_FcUtil') end; %---- switch lower(action), %======================================================================= %======================================================================= % Sub Functions %======================================================================= %======================================================================= %======================================================================= % Fcon = spm_FcUtil('FconFields') function Fc = sf_FconFields Fc = struct(... 'name', '',... 'STAT', '',... 'c', [],... 'X0', struct('ukX0',[]),... 'iX0', [],... 'X1o', struct('ukX1o',[]),... 'eidf', [],... 'Vcon', [],... 'Vspm', []); %======================================================================= % used internally. Minimum contrast structure function minFc = sf_MinFcFields minFc = struct(... 'name', '',... 'STAT', '',... 'c', [],... 'X0', [],... 'X1o', []); %======================================================================= % yes_no = spm_FcUtil('IsFcon',Fc) function b = sf_IsFcon(Fc) %- check that minimum fields of a contrast are in Fc b = 1; minnames = fieldnames(sf_MinFcFields); FCnames = fieldnames(Fc); for str = minnames' b = b & any(strcmp(str,FCnames)); if ~b, break, end end %======================================================================= % used internally; To be set, a contrast structure should have % either X1o or X0 non empty. X1o can be non empty because c % is non empty. function b = sf_IsSet(Fc) b = ~sf_isempty_X0(Fc) | ~sf_isempty_X1o(Fc); %======================================================================= % used internally % function v = sf_ver(Fc) if isstruct(Fc.X0), v = 2; else v = 1; end %======================================================================= % used internally function b = sf_isempty_X1o(Fc) if sf_ver(Fc) > 1, b = isempty(Fc.X1o.ukX1o); %- consistency check if b ~= isempty(Fc.c), Fc.c, Fc.X1o.ukX1o, error('Contrast internally not consistent'); end else b = isempty(Fc.X1o); %- consistency check if b ~= isempty(Fc.c), Fc.c, Fc.X1o, error('Contrast internally not consistent'); end end %======================================================================= % used internally function b = sf_X1o(Fc,sX) if sf_ver(Fc) > 1, b = spm_sp('ox',sX)*Fc.X1o.ukX1o; else b = Fc.X1o; end %======================================================================= % used internally function b = sf_X0(Fc,sX) if sf_ver(Fc) > 1, b = spm_sp('ox',sX)*Fc.X0.ukX0; else b = Fc.X0; end %======================================================================= % used internally function b = sf_isempty_X0(Fc) if sf_ver(Fc) > 1, b = isempty(Fc.X0.ukX0); else b = isempty(Fc.X0); end %======================================================================= % Hsqr = spm_Fcutil('Hsqr',Fc,sX) function hsqr = sf_Hsqr(Fc,sX) % % Notations : H equiv to X1o, H = uk*a1, X = uk*ax, r = rk(sX), % sX.X is (n,p), H is (n,q), a1 is (r,q), ax is (r,p) % oxa1 is an orthonormal basis for a1, oxa1 is (r,qo<=q) % Algorithm : % v1 : Y'*H*(H'*H)-*H'*Y = b'*X'*H*(H'*H)-*H'*X*b % = b'*X'*oxH*oxH'*X*b % so hsrq is set to oxH'*X, a (q,n)*(n,p) op. + computation of oxH % v2 : X'*H*(H'*H)-*H'*X = ax'*uk'*uk*a1*(a1'*uk'*uk*a1)-*a1'*uk'*uk*ax % = ax'*a1*(a1'*a1)-*a1'*ax % = ax'*oxa1*oxa1'*ax % % so hsrq is set to oxa1'*ax : a (qo,r)*(r,p) operation! -:)) % + computation of oxa1. %-**** fprintf('v%d\n',sf_ver(Fc)); if sf_ver(Fc) > 1, hsqr = spm_sp('ox',spm_sp('set',Fc.X1o.ukX1o))' * spm_sp('cukx',sX); else hsqr = spm_sp('ox',spm_sp('set',Fc.X1o))'*spm_sp('x',sX); end %======================================================================= % H = spm_FcUtil('H',Fc) function H = sf_H(Fc,sX) % % Notations : H equiv to X1o, H = uk*a1, X = uk*ax % Algorithm : % v1 : Y'*H*(H'*H)-*H'*Y = b'*X'*H*(H'*H)-*H'*X*b % = b'*c*(H'*H)-*c'*b % = b'*c*(c'*(X'*X)-*c)-*c'*b %- v1 : Note that pinv(Fc.X1o' * Fc.X1o) is not too bad %- because dimensions are only (q,q). See sf_hsqr for notations. %- Fc.c and Fc.X1o should match. This is ensure by using FcUtil. %-**** fprintf('v%d\n',sf_ver(Fc)); if sf_ver(Fc) > 1, hsqr = sf_Hsqr(Fc,sX); H = hsqr' * hsqr; else H = Fc.c * pinv(Fc.X1o' * Fc.X1o) * Fc.c'; % H = {c*spm_sp('x-',spm_sp('Set',c'*spm_sp('xpx-',sX)*c) )*c'} end %======================================================================= % Yc = spm_FcUtil('Yc',Fc,sX,b) function Yc = sf_Yc(Fc,sX,b) Yc = sX.X*spm_sp('xpx-',sX)*sf_H(Fc,sX)*b; %======================================================================= % Y0 = spm_FcUtil('Y0',Fc,sX,b) function Y0 = sf_Y0(Fc,sX,b) Y0 = sX.X*(eye(spm_sp('size',sX,2)) - spm_sp('xpx-',sX)*sf_H(Fc,sX))*b; %======================================================================= % Fc = spm_FcUtil('|_',Fc1, sX, Fc2) function Fc1o = sf_fcortho(Fc1, sX, Fc2) %--- use the space facility to ensure the proper tolerance dealing... c1_2 = Fc1.c - sf_H(Fc2,sX)*spm_sp('xpx-:',sX,Fc1.c); Fc1o = spm_FcUtil('Set',['(' Fc1.name ' |_ (' Fc2.name '))'], ... Fc1.STAT, 'c+',c1_2,sX); %- In the large (scans) dimension : %- c = sX.X'*spm_sp('r:',spm_sp('set',Fc2.X1o),Fc1.X1o); %- Fc1o = spm_FcUtil('Set',['(' Fc1.name ' |_ (' Fc2.name '))'], ... %- Fc1.STAT, 'c',c,sX); %======================================================================= function b = sf_Rortho(Fc1,sX,Fc2) if isempty(Fc2) if length(Fc1) <= 1, b = 0; else c1 = cat(2,Fc1(:).c); b = ~any(any( abs(triu(c1'*spm_sp('xpx-:',sX,c1), 1)) > sX.tol)); end else c1 = cat(2,Fc1(:).c); c2 = cat(2,Fc2(:).c); b = ~any(any( abs(c1'*spm_sp('xpx-:',sX,c2)) > sX.tol )); end %======================================================================= % b = spm_FcUtil('0|[]', Fc, sX) %- returns 1 if F-contrast is empty or null; assumes the contrast is set. %- Assumes that if Fc.c contains only zeros, so does Fc.X1o. %- this is ensured if spm_FcUtil is used function boul = sf_isnull(Fc,sX) % boul = ~any(any(spm_sp('oPp:',sX,Fc.c))); %======================================================================= % Fc = spm_FcUtil('Set',name, STAT, set_action, value, sX) function boul = sf_is_T(sX,c) %- assumes that the dimensions are OK %- assumes c is not empty %- Does NOT assumes that c is space of sX' %- A rank of zero can be defined %- if the rank == 1, checks whether same directions boul = 1; if ~spm_sp('isinspp',sX,c), c = spm_sp('oPp:',sX,c); end; if rank(c) > 1 || any(any(c'*c < 0)), boul = 0; end; %======================================================================= function [idxFc2, idxFc1] = sf_in(Fc1, sX, Fc2) L2 = length(Fc2); L1 = length(Fc1); idxFc1 = []; idxFc2 = []; for j=1:L1 %- project Fc1(j).c if not estimable if ~spm_sp('isinspp',sX,Fc1(j).c), %- warning ? c1 = spm_sp('oPp:',sX,Fc1(j).c); else c1 = Fc1(j).c; end sc1 = spm_sp('Set',c1); S = Fc1(j).STAT; boul = 0; for i =1:L2 if Fc2(i).STAT == S %- the same statistics. else just go on to the next contrast boul = spm_sp('==',sc1,spm_sp('oPp',sX,Fc2(i).c)); %- if they are the same space and T stat (same direction), %- then check wether they are in the same ORIENTATION %- works because size(X1o,2) == 1, else .* with (Fc1(j).c'*Fc2(i).c) if boul && S == 'T' atmp = sf_X1o(Fc1(j),sX); btmp = sf_X1o(Fc2(i),sX); boul = ~any(any( (atmp' * btmp) < 0 )); end %- note the indices if boul, idxFc1 = [idxFc1 j]; idxFc2 = [idxFc2 i]; end end end end %- for j=1:L1 %======================================================================= function idx = sf_notunique(Fc, sX) %- works recursively ... %- and use the fact that [] + i == [] %- quite long for large sets ... l = length(Fc); if l == 1, idx = []; else idx = [ (1+sf_in(Fc(1),sX,Fc(2:l))) (1+sf_notunique(Fc(2:l), sX))]; end
github
philippboehmsturm/antx-master
spm_read_hdr.m
.m
antx-master/xspm8/spm_read_hdr.m
5,627
utf_8
785bdd356119ce704a546f3774cd819e
function [hdr,otherendian] = spm_read_hdr(fname) % Read (SPM customised) Analyze header % FORMAT [hdr,otherendian] = spm_read_hdr(fname) % fname - .hdr filename % hdr - structure containing Analyze header % otherendian - byte swapping necessary flag %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_read_hdr.m 4310 2011-04-18 16:07:35Z guillaume $ fid = fopen(fname,'r','native'); otherendian = 0; if (fid > 0) dime = read_dime(fid); if dime.dim(1)<0 || dime.dim(1)>15, % Appears to be other-endian % Re-open other-endian fclose(fid); if spm_platform('bigend'), fid = fopen(fname,'r','ieee-le'); else fid = fopen(fname,'r','ieee-be'); end; otherendian = 1; dime = read_dime(fid); end; hk = read_hk(fid); hist = read_hist(fid); hdr.hk = hk; hdr.dime = dime; hdr.hist = hist; % SPM specific bit - unused %if hdr.hk.sizeof_hdr > 348, % spmf = read_spmf(fid,dime.dim(5)); % if ~isempty(spmf), % hdr.spmf = spmf; % end; %end; fclose(fid); else hdr = []; otherendian = NaN; %error(['Problem opening header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function hk = read_hk(fid) % read (struct) header_key %----------------------------------------------------------------------- fseek(fid,0,'bof'); hk.sizeof_hdr = fread(fid,1,'int32'); hk.data_type = mysetstr(fread(fid,10,'uchar'))'; hk.db_name = mysetstr(fread(fid,18,'uchar'))'; hk.extents = fread(fid,1,'int32'); hk.session_error = fread(fid,1,'int16'); hk.regular = mysetstr(fread(fid,1,'uchar'))'; hk.hkey_un0 = mysetstr(fread(fid,1,'uchar'))'; if isempty(hk.hkey_un0), error(['Problem reading "hk" of header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function dime = read_dime(fid) % read (struct) image_dimension %----------------------------------------------------------------------- fseek(fid,40,'bof'); dime.dim = fread(fid,8,'int16')'; dime.vox_units = mysetstr(fread(fid,4,'uchar'))'; dime.cal_units = mysetstr(fread(fid,8,'uchar'))'; dime.unused1 = fread(fid,1,'int16'); dime.datatype = fread(fid,1,'int16'); dime.bitpix = fread(fid,1,'int16'); dime.dim_un0 = fread(fid,1,'int16'); dime.pixdim = fread(fid,8,'float')'; dime.vox_offset = fread(fid,1,'float'); dime.funused1 = fread(fid,1,'float'); dime.funused2 = fread(fid,1,'float'); dime.funused3 = fread(fid,1,'float'); dime.cal_max = fread(fid,1,'float'); dime.cal_min = fread(fid,1,'float'); dime.compressed = fread(fid,1,'int32'); dime.verified = fread(fid,1,'int32'); dime.glmax = fread(fid,1,'int32'); dime.glmin = fread(fid,1,'int32'); if isempty(dime.glmin), error(['Problem reading "dime" of header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function hist = read_hist(fid) % read (struct) data_history %----------------------------------------------------------------------- fseek(fid,148,'bof'); hist.descrip = mysetstr(fread(fid,80,'uchar'))'; hist.aux_file = mysetstr(fread(fid,24,'uchar'))'; hist.orient = fread(fid,1,'uchar'); hist.origin = fread(fid,5,'int16')'; hist.generated = mysetstr(fread(fid,10,'uchar'))'; hist.scannum = mysetstr(fread(fid,10,'uchar'))'; hist.patient_id = mysetstr(fread(fid,10,'uchar'))'; hist.exp_date = mysetstr(fread(fid,10,'uchar'))'; hist.exp_time = mysetstr(fread(fid,10,'uchar'))'; hist.hist_un0 = mysetstr(fread(fid,3,'uchar'))'; hist.views = fread(fid,1,'int32'); hist.vols_added = fread(fid,1,'int32'); hist.start_field= fread(fid,1,'int32'); hist.field_skip = fread(fid,1,'int32'); hist.omax = fread(fid,1,'int32'); hist.omin = fread(fid,1,'int32'); hist.smax = fread(fid,1,'int32'); hist.smin = fread(fid,1,'int32'); if isempty(hist.smin), error(['Problem reading "hist" of header file (' fopen(fid) ').']); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function spmf = read_spmf(fid,n) % Read SPM specific fields % This bit may be used in the future for extending the Analyze header. fseek(fid,348,'bof'); mgc = fread(fid,1,'int32'); % Magic number if mgc ~= 20020417, spmf = []; return; end; for j=1:n, spmf(j).mat = fread(fid,16,'double'); % Orientation information spmf(j).unused = fread(fid,384,'uchar'); % Extra unused stuff if length(spmf(j).unused)<384, error(['Problem reading "spmf" of header file (' fopen(fid) ').']); end; spmf(j).mat = reshape(spmf(j).mat,[4 4]); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function out = mysetstr(in) tmp = find(in == 0); tmp = min([min(tmp) length(in)]); out = char([in(1:tmp)' zeros(1,length(in)-(tmp))])'; return; %_______________________________________________________________________ %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_eeg_inv_visu3D_api.m
.m
antx-master/xspm8/spm_eeg_inv_visu3D_api.m
28,460
utf_8
31ed5e0329581a73574a4b7986a89440
function varargout = spm_eeg_inv_visu3D_api(varargin) % SPM_EEG_INV_VISU3D_API M-file for spm_eeg_inv_visu3D_api.fig % - FIG = SPM_EEG_INV_VISU3D_API launch spm_eeg_inv_visu3D_api GUI. % - D = SPM_EEG_INV_VISU3D_API(D) open with D % - SPM_EEG_INV_VISU3D_API(filename) where filename is the eeg/meg .mat file % - SPM_EEG_INV_VISU3D_API('callback_name', ...) invoke the named callback. % % Last Modified by GUIDE v2.5 18-Feb-2011 14:23:27 %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jeremie Mattout % $Id: spm_eeg_inv_visu3D_api.m 4211 2011-02-23 16:00:02Z vladimir $ % INITIALISATION CODE %-------------------------------------------------------------------------- if nargin == 0 || nargin == 1 % LAUNCH GUI % open new api %---------------------------------------------------------------------- fig = openfig(mfilename,'new'); handles = guihandles(fig); handles.fig = fig; guidata(fig,handles); set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); % load D if possible and try to open %---------------------------------------------------------------------- try handles.D = spm_eeg_inv_check(varargin{1}); set(handles.DataFile,'String',handles.D.fname) spm_eeg_inv_visu3D_api_OpeningFcn(fig, [], handles) end % return figure handle if necessary %---------------------------------------------------------------------- if nargout > 0 varargout{1} = fig; end elseif ischar(varargin{1}) try if (nargout) [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard else feval(varargin{:}); % FEVAL switchyard end catch disp(lasterror); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes just before spm_eeg_inv_visu3D_api is made visible. function spm_eeg_inv_visu3D_api_OpeningFcn(hObject, eventdata, handles) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % LOAD DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% try D = handles.D; catch D = spm_eeg_load(spm_select(1, '.mat', 'Select EEG/MEG mat file')); end if ~isfield(D,'inv') error('Please specify and invert a forward model\n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GET RESULTS (default: current or last analysis) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure(handles.fig); axes(handles.sensors_axes); try, val = D.val; catch, val = 1; D.val = 1; end try, con = D.con; catch, con = 1; D.con = 1; end if (D.con == 0) || (D.con > length(D.inv{D.val}.inverse.J)) con = 1; D.con = 1; end handles.D = D; set(handles.DataFile,'String',D.fname); set(handles.next,'String',sprintf('model %i',val)); set(handles.con, 'String',sprintf('condition %i',con)); set(handles.fig,'name',['Source visualisation -' D.fname]) if strcmp(D.inv{val}.method,'ECD') warndlg('Please create an imaging solution'); guidata(hObject,handles); return end set(handles.LogEv,'String',num2str(D.inv{val}.inverse.F)); set(handles.LogEv,'Enable','inactive'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % OBSERVED ACTIVITY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % start with response %-------------------------------------------------------------------------- try % Load Gain or Lead field matrix %---------------------------------------------------------------------- dimT = 256; dimS = D.inv{val}.inverse.Nd; Is = D.inv{val}.inverse.Is; L = D.inv{val}.inverse.L; U = D.inv{val}.inverse.U; T = D.inv{val}.inverse.T; Y = D.inv{val}.inverse.Y{con}; Ts = ceil(linspace(1,size(T,1),dimT)); % source data %---------------------------------------------------------------------- set(handles.Activity,'Value',1); J = sparse(dimS,dimT); J(Is,:) = D.inv{val}.inverse.J{con}*T(Ts,:)'; handles.dimT = dimT; handles.dimS = dimS; handles.pst = D.inv{val}.inverse.pst(Ts); handles.srcs_data = J; handles.Nmax = max(abs(J(:))); handles.Is = Is; % sensor data %---------------------------------------------------------------------- if ~iscell(U) U = {U'}; end A = spm_pinv(spm_cat(spm_diag(U))')'; handles.sens_data = A*Y*T(Ts,:)'; handles.pred_data = A*L*J(Is,:); catch warndlg({'Please invert your model';'inverse solution not valid'}); return end % case 'windowed response' or contrast' %-------------------------------------------------------------------------- try JW = sparse(dimS,1); GW = sparse(dimS,1); JW(Is,:) = D.inv{val}.contrast.JW{con}; GW(Is,:) = D.inv{val}.contrast.GW{con}; handles.woi = D.inv{val}.contrast.woi; handles.fboi = D.inv{val}.contrast.fboi; handles.W = D.inv{val}.contrast.W(Ts,:); handles.srcs_data_w = JW; handles.sens_data_w = handles.sens_data*handles.W(:,1); handles.pred_data_w = handles.pred_data*handles.W(:,1); handles.srcs_data_ev = GW; handles.sens_data_ev = sum((handles.sens_data*handles.W).^2,2); handles.pred_data_ev = sum((handles.pred_data*handles.W).^2,2); set(handles.Activity,'enable','on'); catch set(handles.Activity,'enable','off'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % LOAD CORTICAL MESH (default: Individual) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% try vert = D.inv{val}.mesh.tess_mni.vert; face = D.inv{val}.mesh.tess_mni.face; set(handles.Template, 'Value',1); set(handles.Individual,'Value',0); catch try vert = D.inv{val}.mesh.tess_ctx.vert; face = D.inv{val}.mesh.tess_ctx.face; set(handles.Template, 'Value',0); set(handles.Individual,'Value',1); catch warndlg('There is no mesh associated with these data'); return end end handles.vert = vert; handles.face = face; handles.grayc = sqrt(sum((vert.^2),2)); handles.grayc = handles.grayc'/max(handles.grayc); clear vert face %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SLIDER INITIALISATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% set(handles.slider_transparency,'Min',0,'Max',1,'Value',1,'sliderstep',[0.01 0.05]); set(handles.slider_srcs_up, 'Min',0,'Max',1,'Value',0,'sliderstep',[0.01 0.05]); set(handles.slider_srcs_down, 'Min',0,'Max',1,'Value',1,'sliderstep',[0.01 0.05]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % INITIAL SOURCE LEVEL DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% axes(handles.sources_axes); cla; axis off set(handles.slider_time, 'Enable','on'); set(handles.time_bin, 'Enable','on'); set(handles.slider_time, 'Value',1); set(handles.time_bin, 'String',num2str(fix(handles.pst(1)))); set(handles.slider_time, 'Min',1,'Max',handles.dimT,'sliderstep',[1/(handles.dimT-1) 2/(handles.dimT-1)]); set(handles.checkbox_absv,'Enable','on','Value',1); set(handles.checkbox_norm,'Enable','on','Value',0); srcs_disp = full(abs(handles.srcs_data(:,1))); handles.fig1 = patch('vertices',handles.vert,'faces',handles.face,'FaceVertexCData',srcs_disp); % display %-------------------------------------------------------------------------- set(handles.fig1,'FaceColor',[.5 .5 .5],'EdgeColor','none'); shading interp lighting gouraud camlight zoom off lightangle(0,270);lightangle(270,0),lightangle(0,0),lightangle(90,0); material([.1 .1 .4 .5 .4]); view(140,15); axis image handles.colorbar = colorbar; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % LOAD SENSOR FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ic = {}; if iscell(D.inv{val}.inverse.Ic) for i = 1:numel(D.inv{val}.inverse.Ic) if i == 1 Ic{i} = 1:length(D.inv{val}.inverse.Ic{i}); else Ic{i} = Ic{i-1}(end)+(1:length(D.inv{val}.inverse.Ic{i})); end end else Ic{1} = 1:length(D.inv{val}.inverse.Ic); end handles.Ic = Ic; coor = D.coor2D(full(spm_cat(D.inv{val}.inverse.Ic))); xp = coor(1,:)'; yp = coor(2,:)'; x = linspace(min(xp),max(xp),64); y = linspace(min(yp),max(yp),64); [xm,ym] = meshgrid(x,y); handles.sens_coord = [xp yp]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % INITIAL SENSOR LEVEL DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(D.inv{val}.inverse, 'modality') set(handles.modality, 'String', D.inv{val}.inverse.modality); else set(handles.modality, 'String', 'MEEG'); % This is for backward compatibility with old DCM-IMG end figure(handles.fig) axes(handles.sensors_axes); cla; axis off im = get(handles.modality, 'Value'); ic = handles.Ic{im}; disp = full(handles.sens_data(ic,1)); imagesc(x,y,griddata(xp(ic),yp(ic),disp,xm,ym)); axis image xy off handles.sens_coord_x = x; handles.sens_coord_y = y; handles.sens_coord2D_X = xm; handles.sens_coord2D_Y = ym; hold on handles.sensor_loc = plot(handles.sens_coord(ic,1),handles.sens_coord(ic,2),'o','MarkerFaceColor',[1 1 1]/2,'MarkerSize',6); set(handles.checkbox_sensloc,'Value',1); hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % INITIAL SENSOR LEVEL DISPLAY - PREDICTED %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% axes(handles.pred_axes); cla; disp = full(handles.pred_data(ic,1)); imagesc(x,y,griddata(xp(ic),yp(ic),disp,xm,ym)); axis image xy off drawnow guidata(hObject,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % UPDATE SOURCE LEVEL DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function UpDate_Display_SRCS(hObject,handles) axes(handles.sources_axes); if isfield(handles,'fig1') ActToDisp = get(handles.Activity,'Value'); A = get(handles.checkbox_absv,'Value'); N = get(handles.checkbox_norm,'Value'); switch ActToDisp % case 1: response (J) %------------------------------------------------------------------ case 1 TS = fix(get(handles.slider_time,'Value')); if A srcs_disp = abs(handles.srcs_data(:,TS)); else srcs_disp = handles.srcs_data(:,TS); end if N if A handles.Vmin = 0; handles.Vmax = handles.Nmax; else handles.Vmin = -handles.Nmax; handles.Vmax = handles.Nmax; end else handles.Vmin = min(srcs_disp); handles.Vmax = max(srcs_disp); end % case 2: Windowed response (JW) %------------------------------------------------------------------ case 2 handles.Vmin = min(handles.srcs_data_w); handles.Vmax = max(handles.srcs_data_w); srcs_disp = handles.srcs_data_w; % case 3: Evoked power (JWWJ) %------------------------------------------------------------------ case 3 handles.Vmin = min(handles.srcs_data_ev); handles.Vmax = max(handles.srcs_data_ev); srcs_disp = handles.srcs_data_ev; % case 4: Induced power (JWWJ) %------------------------------------------------------------------ case 4 handles.Vmin = min(handles.srcs_data_ind); handles.Vmax = max(handles.srcs_data_ind); srcs_disp = handles.srcs_data_ind; end set(handles.fig1,'FaceVertexCData',full(srcs_disp)); set(handles.sources_axes,'CLim',[handles.Vmin handles.Vmax]); set(handles.sources_axes,'CLimMode','manual'); end % Adjust the threshold %-------------------------------------------------------------------------- Set_colormap(hObject, [], handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % UPDATE SENSOR LEVEL DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function UpDate_Display_SENS(hObject,handles) TypOfDisp = get(handles.sens_display,'Value'); ActToDisp = get(handles.Activity,'Value'); im = get(handles.modality, 'Value'); ic = handles.Ic{im}; % topography %-------------------------------------------------------------------------- if TypOfDisp == 1 % responses at one pst %---------------------------------------------------------------------- if ActToDisp == 1 TS = fix(get(handles.slider_time,'Value')); sens_disp = handles.sens_data(ic,TS); pred_disp = handles.pred_data(ic,TS); % contrast %---------------------------------------------------------------------- elseif ActToDisp == 2 sens_disp = handles.sens_data_w; pred_disp = handles.pred_data_w; % power %---------------------------------------------------------------------- elseif ActToDisp == 3 sens_disp = handles.sens_data_ev; pred_disp = handles.pred_data_ev; end axes(handles.sensors_axes); disp = griddata(handles.sens_coord(ic,1),handles.sens_coord(ic,2),full(sens_disp),handles.sens_coord2D_X,handles.sens_coord2D_Y); imagesc(handles.sens_coord_x,handles.sens_coord_y,disp); axis image xy off % add sensor locations %---------------------------------------------------------------------- try, delete(handles.sensor_loc); end hold(handles.sensors_axes, 'on'); handles.sensor_loc = plot(handles.sensors_axes,... handles.sens_coord(ic,1),handles.sens_coord(ic,2),'o','MarkerFaceColor',[1 1 1]/2,'MarkerSize',6); hold(handles.sensors_axes, 'off'); axes(handles.pred_axes); disp = griddata(handles.sens_coord(ic,1),handles.sens_coord(ic,2),full(pred_disp),handles.sens_coord2D_X,handles.sens_coord2D_Y); imagesc(handles.sens_coord_x,handles.sens_coord_y,disp); axis image xy off; checkbox_sensloc_Callback(hObject, [], handles); % time series %-------------------------------------------------------------------------- elseif TypOfDisp == 2 axes(handles.sensors_axes) daspect('auto') handles.fig2 = ... plot(handles.pst,handles.sens_data(ic, :),'b-.',handles.pst,handles.pred_data(ic, :),'r:'); if ActToDisp > 1 hold on Scal = norm(handles.sens_data,1)/norm(handles.W,1); plot(handles.pst,handles.W*Scal,'k') hold off end axis on tight; axes(handles.pred_axes); cla, axis off end % Adjust the threshold %-------------------------------------------------------------------------- Set_colormap(hObject, [], handles); guidata(hObject,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % LOAD DATA FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function DataFile_Callback(hObject, eventdata, handles) S = get(handles.DataFile,'String'); try D = spm_eeg_ldata(S); catch LoadData_Callback(hObject, eventdata, handles); end % --- Executes on button press in LoadData. function LoadData_Callback(hObject, eventdata, handles) S = spm_select(1, '.mat', 'Select EEG/MEG mat file'); handles.D = spm_eeg_load(S); spm_eeg_inv_visu3D_api_OpeningFcn(hObject, [], handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ACTIVITY TO DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on selection change in Activity. function Activity_Callback(hObject, eventdata, handles) ActToDisp = get(handles.Activity,'Value'); if ActToDisp == 1 set(handles.checkbox_absv, 'Enable','on'); set(handles.checkbox_norm, 'Enable','on'); set(handles.slider_time, 'Enable','on'); set(handles.time_bin, 'Enable','on'); else set(handles.checkbox_norm, 'Enable','off'); set(handles.slider_time, 'Enable','off'); set(handles.time_bin, 'Enable','off'); end if ActToDisp == 2 set(handles.checkbox_absv, 'Enable','off'); end % update displays %-------------------------------------------------------------------------- UpDate_Display_SRCS(hObject,handles); UpDate_Display_SENS(hObject,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SWITCH FROM TEMPLATE MESH TO INDIVIDUAL MESH AND BACK %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Individual_Callback(hObject, eventdata, handles) set(handles.Template,'Value',0); try tess_ctx = gifti(handles.D.inv{handles.D.val}.mesh.tess_ctx); handles.vert = tess_ctx.vertices; set(handles.Template, 'Value',0); set(handles.Individual,'Value',1); end handles.grayc = sqrt(sum((handles.vert.^2)')); handles.grayc = handles.grayc'/max(handles.grayc); set(handles.fig1,'vertices',handles.vert,'faces',handles.face); UpDate_Display_SRCS(hObject,handles); axes(handles.sources_axes); axis image; guidata(hObject,handles); %-------------------------------------------------------------------------- function Template_Callback(hObject, eventdata, handles) set(handles.Individual,'Value',0); try handles.vert = handles.D.inv{handles.D.val}.mesh.tess_mni.vert; set(handles.Template, 'Value',1); set(handles.Individual,'Value',0); end handles.grayc = sqrt(sum((handles.vert.^2)')); handles.grayc = handles.grayc'/max(handles.grayc); set(handles.fig1,'vertices',handles.vert,'faces',handles.face); UpDate_Display_SRCS(hObject,handles); axes(handles.sources_axes); axis image; guidata(hObject,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % THRESHOLD SLIDERS - SOURCE LEVEL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% upper threshold % --- Executes on slider movement. function slider_srcs_up_Callback(hObject, eventdata, handles) Set_colormap(hObject, eventdata, handles); %%% lower threshold % --- Executes on slider movement. function slider_srcs_down_Callback(hObject, eventdata, handles) Set_colormap(hObject, eventdata, handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % TRANSPARENCY SLIDER %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on slider movement. function slider_transparency_Callback(hObject, eventdata, handles) Transparency = get(hObject,'Value'); set(handles.fig1,'facealpha',Transparency); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NORMALISE VALUES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in checkbox_norm. function checkbox_norm_Callback(hObject, eventdata, handles) UpDate_Display_SRCS(hObject,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % USE ABSOLUTE VALUES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in checkbox_absv. function checkbox_absv_Callback(hObject, eventdata, handles) UpDate_Display_SRCS(hObject,handles); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DISPLAY SENSOR LOCATIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on button press in checkbox_sensloc. function checkbox_sensloc_Callback(hObject, eventdata, handles) try if get(handles.checkbox_sensloc,'Value') set(handles.sensor_loc,'Visible','on'); else set(handles.sensor_loc,'Visible','off'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % TIME SLIDER - SOURCE & SENSOR LEVEL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on slider movement. function slider_time_Callback(hObject, eventdata, handles) ST = fix(handles.pst(fix(get(hObject,'Value')))); set(handles.time_bin,'String',num2str(ST)); % Source and sensor space update %-------------------------------------------------------------------------- UpDate_Display_SRCS(hObject,handles); UpDate_Display_SENS(hObject,handles); % --- Callback function function time_bin_Callback(hObject, eventdata, handles) [i ST] = min(abs(handles.pst - str2double(get(hObject,'String')))); set(handles.slider_time,'Value',fix(ST)); % Source and sensor space update %-------------------------------------------------------------------------- UpDate_Display_SRCS(hObject,handles); UpDate_Display_SENS(hObject,handles); % --- Executes on button press in movie. %-------------------------------------------------------------------------- function movie_Callback(hObject, eventdata, handles) global MOVIE for t = 1:length(handles.pst) set(handles.slider_time,'Value',t); ST = fix(handles.pst(t)); set(handles.time_bin,'String',num2str(ST)); UpDate_Display_SRCS(hObject,handles); % record movie if requested %---------------------------------------------------------------------- if MOVIE, M(t) = getframe(handles.sources_axes); end; end UpDate_Display_SENS(hObject,handles); try filename = fullfile(handles.D.path,'SourceMovie'); movie2avi(M,filename,'compression','Indeo3','FPS',24) end % --- Executes on button press in movie_sens. %-------------------------------------------------------------------------- function movie_sens_Callback(hObject, eventdata, handles) global MOVIE for t = 1:length(handles.pst) set(handles.slider_time,'Value',t); ST = fix(handles.pst(t)); set(handles.time_bin,'String',num2str(ST)); UpDate_Display_SENS(hObject,handles); % record movie if requested %---------------------------------------------------------------------- if MOVIE, M(t) = getframe(handles.sensors_axes); end; end UpDate_Display_SRCS(hObject,handles); try filename = fullfile(handles.D.path,'SensorMovie'); movie2avi(M,filename,'compression','Indeo3','FPS',24) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % TYPE OF SENSOR LEVEL DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % --- Executes on selection change in sens_display. function sens_display_Callback(hObject, eventdata, handles) TypOfDisp = get(handles.sens_display,'Value'); % if time series %-------------------------------------------------------------------------- if TypOfDisp == 2 set(handles.checkbox_sensloc,'Value',0); set(handles.checkbox_sensloc,'Enable','off'); else set(handles.checkbox_sensloc,'Value',1); set(handles.checkbox_sensloc,'Enable','on'); end UpDate_Display_SENS(hObject,handles); % --- Executes on button press in Exit. %-------------------------------------------------------------------------- function Exit_Callback(hObject, eventdata, handles) spm_eeg_inv_visu3D_api_OutputFcn(hObject, eventdata, handles); close(handles.fig); % --- Executes on button press in Mip. %-------------------------------------------------------------------------- function Mip_Callback(hObject, eventdata, handles) ActToDisp = get(handles.Activity,'Value'); if get(handles.Activity,'Value') == 1 PST = str2num(get(handles.time_bin,'String')); spm_eeg_invert_display(handles.D,PST); else spm_eeg_inv_results_display(handles.D); end % --- Outputs from this function are returned to the command line. %-------------------------------------------------------------------------- function varargout = spm_eeg_inv_visu3D_api_OutputFcn(hObject, eventdata, handles) D = handles.D; if nargout == 1 varargout{1} = D; end % --- rest threshold %-------------------------------------------------------------------------- function Set_colormap(hObject, eventdata, handles) NewMap = jet; % unsigned values %-------------------------------------------------------------------------- if get(handles.checkbox_absv,'Value') || get(handles.Activity,'Value') == 3 UpTh = get(handles.slider_srcs_up, 'Value'); N = length(NewMap); Low = fix(N*UpTh); Hig = fix(N - N*UpTh); i = [ones(Low,1); [1:Hig]'*N/Hig]; NewMap = NewMap(fix(i),:); % signed values %-------------------------------------------------------------------------- else UpTh = get(handles.slider_srcs_up, 'Value'); DoTh = 1 - get(handles.slider_srcs_down,'Value'); N = length(NewMap)/2; Low = fix(N - N*DoTh); Hig = fix(N - N*UpTh); i = [[1:Low]'*N/Low; ones(N + N - Hig - Low,1)*N; [1:Hig]'*N/Hig + N]; NewMap = NewMap(fix(i),:); end colormap(NewMap); drawnow % --- Executes on button press in next. %-------------------------------------------------------------------------- function next_Callback(hObject, eventdata, handles) if length(handles.D.inv) == 1 set(handles.next,'Value',0); return end handles.D.val = handles.D.val + 1; handles.D.con = 1; if handles.D.val > length(handles.D.inv) handles.D.val = 1; end set(handles.next,'String',sprintf('model %d',handles.D.val),'Value',0); spm_eeg_inv_visu3D_api_OpeningFcn(hObject, eventdata, handles) % --- Executes on button press in previous. %-------------------------------------------------------------------------- function con_Callback(hObject, eventdata, handles) if length(handles.D.inv{handles.D.val}.inverse.J) == 1 set(handles.con,'Value',0); return end handles.D.con = handles.D.con + 1; if handles.D.con > length(handles.D.inv{handles.D.val}.inverse.J) handles.D.con = 1; end set(handles.con,'String',sprintf('condition %d',handles.D.con),'Value',0); spm_eeg_inv_visu3D_api_OpeningFcn(hObject, eventdata, handles) % --- Executes on button press in VDE. %-------------------------------------------------------------------------- function Velec_Callback(hObject, eventdata, handles) axes(handles.sources_axes); rotate3d off; datacursormode off; if isfield(handles, 'velec') delete(handles.velec); handles = rmfield(handles, 'velec'); end set(handles.fig1, 'ButtonDownFcn', @Velec_ButtonDown) guidata(hObject,handles); function Velec_ButtonDown(hObject, eventdata) handles = guidata(hObject); vert = handles.vert(handles.Is, :); coord = get(handles.sources_axes, 'CurrentPoint'); dist = sum((vert - repmat(coord(1, :), size(vert, 1), 1)).^2, 2); [junk, ind] = min(dist); coord = vert(ind, :); axes(handles.sources_axes); hold on handles.velec = plot3(coord(1), coord(2), coord(3), 'rv', 'MarkerSize', 10); spm_eeg_invert_display(handles.D, coord); set(handles.fig1, 'ButtonDownFcn', ''); guidata(hObject,handles); % --- Executes on button press in Rot. function Rot_Callback(hObject, eventdata, handles) %-------------------------------------------------------------------------- rotate3d(handles.sources_axes) return % --- Executes on selection change in modality. function modality_Callback(hObject, eventdata, handles) % hObject handle to modality (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns modality contents as cell array % contents{get(hObject,'Value')} returns selected item from modality UpDate_Display_SENS(hObject,handles)
github
philippboehmsturm/antx-master
spm_load.m
.m
antx-master/xspm8/spm_load.m
1,187
utf_8
9e2a506bf52d19a51a627ece881f02b2
function [x] = spm_load(f) % function to load ascii file data as matrix % FORMAT [x] = spm_load(f) % f - file {ascii file containing a regular array of numbers % x - corresponding data matrix %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_load.m 1143 2008-02-07 19:33:33Z spm $ %-Get a filename if none was passed %----------------------------------------------------------------------- x = []; if nargin == 0 [f,p] = uigetfile({'*.mat';'*.txt';'*.dat'}); try f = fullfile(p,f); end end %-Load the data file into double precision matrix x %----------------------------------------------------------------------- try x = load(f,'-ascii'); return end try x = load(f,'-mat'); x = getdata(x); end if ~isnumeric(x), x = []; end function x = getdata(s) % get numberic data x from the fields of structure s %-------------------------------------------------------------------------- x = []; f = fieldnames(s); for i = 1:length(f) x = s.(f{i}); if isnumeric(x),return; end if isstruct(x), x = getdata(x); end end
github
philippboehmsturm/antx-master
spm_reslice.m
.m
antx-master/xspm8/spm_reslice.m
13,297
utf_8
831352bc3482e5f11321a4d86aac663d
function spm_reslice(P,flags) % Rigid body reslicing of images % FORMAT spm_reslice(P,flags) % % P - matrix or cell array of filenames {one string per row} % All operations are performed relative to the first image. % ie. Coregistration is to the first image, and resampling % of images is into the space of the first image. % % flags - a structure containing various options. The fields are: % % mask - mask output images (true/false) [default: true] % To avoid artifactual movement-related variance the % realigned set of images can be internally masked, within % the set (i.e. if any image has a zero value at a voxel % than all images have zero values at that voxel). Zero % values occur when regions 'outside' the image are moved % 'inside' the image during realignment. % % mean - write mean image (true/false) [default: true] % The average of all the realigned scans is written to % an image file with 'mean' prefix. % % interp - the B-spline interpolation method [default: 1] % Non-finite values result in Fourier interpolation. Note % that Fourier interpolation only works for purely rigid % body transformations. Voxel sizes must all be identical % and isotropic. % % which - values of 0, 1 or 2 are allowed [default: 2] % 0 - don't create any resliced images. % Useful if you only want a mean resliced image. % 1 - don't reslice the first image. % The first image is not actually moved, so it may % not be necessary to resample it. % 2 - reslice all the images. % If which is a 2-element vector, flags.mean will be set % to flags.which(2). % % wrap - three values of either 0 or 1, representing wrapping in % each of the dimensions. For fMRI, [1 1 0] would be used. % For PET, it would be [0 0 0]. [default: [0 0 0]] % % prefix - prefix for resliced images [default: 'r'] % %__________________________________________________________________________ % % The spatially realigned images are written to the original subdirectory % with the same (prefixed) filename. They are all aligned with the first. % % Inputs: % A series of images conforming to SPM data format (see 'Data Format'). The % relative displacement of the images is stored in their header. % % Outputs: % The routine uses information in their headers and writes the realigned % image files to the same subdirectory with a prefix. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_reslice.m 4179 2011-01-28 13:57:20Z volkmar $ %__________________________________________________________________________ % % The headers of the images contain a 4x4 affine transformation matrix 'M', % usually affected bu the `realignment' and `coregistration' modules. % What these matrices contain is a mapping from the voxel coordinates % (x0,y0,z0) (where the first voxel is at coordinate (1,1,1)), to % coordinates in millimeters (x1,y1,z1). % % x1 = M(1,1)*x0 + M(1,2)*y0 + M(1,3)*z0 + M(1,4) % y1 = M(2,1)*x0 + M(2,2)*y0 + M(2,3)*z0 + M(2,4) % z1 = M(3,1)*x0 + M(3,2)*y0 + M(3,3)*z0 + M(3,4) % % Assuming that image1 has a transformation matrix M1, and image2 has a % transformation matrix M2, the mapping from image1 to image2 is: M2\M1 % (ie. from the coordinate system of image1 into millimeters, followed % by a mapping from millimeters into the space of image2). % % Several spatial transformations (realignment, coregistration, % normalisation) can be combined into a single operation (without the % necessity of resampling the images several times). % %__________________________________________________________________________ % Refs: % % Friston KJ, Williams SR, Howard R Frackowiak RSJ and Turner R (1995) % Movement-related effect in fMRI time-series. Mag. Res. Med. 35:346-355 % % W. F. Eddy, M. Fitzgerald and D. C. Noll (1996) Improved Image % Registration by Using Fourier Interpolation. Mag. Res. Med. 36(6):923-931 % % R. W. Cox and A. Jesmanowicz (1999) Real-Time 3D Image Registration % for Functional MRI. Mag. Res. Med. 42(6):1014-1018 %__________________________________________________________________________ def_flags = spm_get_defaults('realign.write'); def_flags.prefix = 'r'; if nargin < 2 flags = def_flags; else fnms = fieldnames(def_flags); for i=1:length(fnms) if ~isfield(flags,fnms{i}) flags.(fnms{i}) = def_flags.(fnms{i}); end end end if numel(flags.which) == 2 flags.mean = flags.which(2); flags.which = flags.which(1); elseif ~isfield(flags,'mean') flags.mean = 1; end if ~nargin || isempty(P), P = spm_select([2 Inf],'image'); end if iscellstr(P), P = char(P); end; if ischar(P), P = spm_vol(P); end; reslice_images(P,flags); %========================================================================== function reslice_images(P,flags) % Reslices images volume by volume % FORMAT reslice_images(P,flags) % See main function for a description of the input parameters if ~isfinite(flags.interp), % Use Fourier method % Check for non-rigid transformations in the matrixes for i=1:numel(P) pp = P(1).mat\P(i).mat; if any(abs(svd(pp(1:3,1:3))-1)>1e-7) fprintf('\n Zooms or shears appear to be needed'); fprintf('\n (probably due to non-isotropic voxels).'); fprintf('\n These can not yet be done using the'); fprintf('\n Fourier reslicing method. Switching to'); fprintf('\n 7th degree B-spline interpolation instead.\n\n'); flags.interp = 7; break end end end if flags.mask || flags.mean spm_progress_bar('Init',P(1).dim(3),'Computing available voxels','planes completed'); x1 = repmat((1:P(1).dim(1))',1,P(1).dim(2)); x2 = repmat( 1:P(1).dim(2) ,P(1).dim(1),1); if flags.mean Count = zeros(P(1).dim(1:3)); Integral = zeros(P(1).dim(1:3)); end if flags.mask, msk = cell(P(1).dim(3),1); end; for x3 = 1:P(1).dim(3) tmp = zeros(P(1).dim(1:2)); for i = 1:numel(P) tmp = tmp + getmask(inv(P(1).mat\P(i).mat),x1,x2,x3,P(i).dim(1:3),flags.wrap); end if flags.mask, msk{x3} = find(tmp ~= numel(P)); end; if flags.mean, Count(:,:,x3) = tmp; end; spm_progress_bar('Set',x3); end end nread = numel(P); if ~flags.mean if flags.which == 1, nread = nread - 1; end; if flags.which == 0, nread = 0; end; end spm_progress_bar('Init',nread,'Reslicing','volumes completed'); [x1,x2] = ndgrid(1:P(1).dim(1),1:P(1).dim(2)); nread = 0; d = [flags.interp*[1 1 1]' flags.wrap(:)]; for i = 1:numel(P) if (i>1 && flags.which==1) || flags.which==2 write_vol = 1; else write_vol = 0; end if write_vol || flags.mean read_vol = 1; else read_vol = 0; end if read_vol if ~isfinite(flags.interp) v = abs(kspace3d(spm_bsplinc(P(i),[0 0 0 ; 0 0 0]'),P(1).mat\P(i).mat)); for x3 = 1:P(1).dim(3) if flags.mean Integral(:,:,x3) = ... Integral(:,:,x3) + ... nan2zero(v(:,:,x3) .* ... getmask(inv(P(1).mat\P(i).mat),x1,x2,x3,P(i).dim(1:3),flags.wrap)); end if flags.mask tmp = v(:,:,x3); tmp(msk{x3}) = NaN; v(:,:,x3) = tmp; end end else C = spm_bsplinc(P(i), d); v = zeros(P(1).dim); for x3 = 1:P(1).dim(3) [tmp,y1,y2,y3] = getmask(inv(P(1).mat\P(i).mat),x1,x2,x3,P(i).dim(1:3),flags.wrap); v(:,:,x3) = spm_bsplins(C, y1,y2,y3, d); % v(~tmp) = 0; if flags.mean Integral(:,:,x3) = Integral(:,:,x3) + nan2zero(v(:,:,x3)); end if flags.mask tmp = v(:,:,x3); tmp(msk{x3}) = NaN; v(:,:,x3) = tmp; end end end if write_vol VO = P(i); [pth,nm,xt,vr] = spm_fileparts(deblank(P(i).fname)); VO.fname = fullfile(pth,[flags.prefix nm xt vr]); VO.dim = P(1).dim(1:3); VO.dt = P(i).dt; VO.pinfo = P(i).pinfo; VO.mat = P(1).mat; VO.descrip = 'spm - realigned'; VO = spm_write_vol(VO,v); end nread = nread + 1; end spm_progress_bar('Set',nread); end if flags.mean % Write integral image (16 bit signed) %---------------------------------------------------------------------- Integral = Integral./Count; PO = P(1); PO = rmfield(PO,'pinfo'); [pth,nm,xt] = spm_fileparts(deblank(P(1).fname)); PO.fname = fullfile(pth,['mean' nm xt]); PO.pinfo = [max(max(max(Integral)))/32767 0 0]'; PO.descrip = 'spm - mean image'; PO.dt = [spm_type('int16') spm_platform('bigend')]; spm_write_vol(PO,Integral); end spm_figure('Clear','Interactive'); %========================================================================== function v = kspace3d(v,M) % 3D rigid body transformation performed as shears in 1D Fourier space. % FORMAT v1 = kspace3d(v,M) % Inputs: % v - the image stored as a 3D array. % M - the rigid body transformation matrix. % Output: % v - the transformed image. % % The routine is based on the excellent papers: % R. W. Cox and A. Jesmanowicz (1999) % Real-Time 3D Image Registration for Functional MRI % Magnetic Resonance in Medicine 42(6):1014-1018 % % W. F. Eddy, M. Fitzgerald and D. C. Noll (1996) % Improved Image Registration by Using Fourier Interpolation % Magnetic Resonance in Medicine 36(6):923-931 %__________________________________________________________________________ [S0,S1,S2,S3] = shear_decomp(M); d = [size(v) 1 1 1]; g = 2.^ceil(log2(d)); if any(g~=d) tmp = v; v = zeros(g); v(1:d(1),1:d(2),1:d(3)) = tmp; clear tmp; end % XY-shear tmp1 = -sqrt(-1)*2*pi*([0:((g(3)-1)/2) 0 (-g(3)/2+1):-1])/g(3); for j=1:g(2) t = reshape( exp((j*S3(3,2) + S3(3,1)*(1:g(1)) + S3(3,4)).'*tmp1) ,[g(1) 1 g(3)]); v(:,j,:) = real(ifft(fft(v(:,j,:),[],3).*t,[],3)); end % XZ-shear tmp1 = -sqrt(-1)*2*pi*([0:((g(2)-1)/2) 0 (-g(2)/2+1):-1])/g(2); for k=1:g(3) t = exp( (k*S2(2,3) + S2(2,1)*(1:g(1)) + S2(2,4)).'*tmp1); v(:,:,k) = real(ifft(fft(v(:,:,k),[],2).*t,[],2)); end % YZ-shear tmp1 = -sqrt(-1)*2*pi*([0:((g(1)-1)/2) 0 (-g(1)/2+1):-1])/g(1); for k=1:g(3) t = exp( tmp1.'*(k*S1(1,3) + S1(1,2)*(1:g(2)) + S1(1,4))); v(:,:,k) = real(ifft(fft(v(:,:,k),[],1).*t,[],1)); end % XY-shear tmp1 = -sqrt(-1)*2*pi*([0:((g(3)-1)/2) 0 (-g(3)/2+1):-1])/g(3); for j=1:g(2) t = reshape( exp( (j*S0(3,2) + S0(3,1)*(1:g(1)) + S0(3,4)).'*tmp1) ,[g(1) 1 g(3)]); v(:,j,:) = real(ifft(fft(v(:,j,:),[],3).*t,[],3)); end if any(g~=d), v = v(1:d(1),1:d(2),1:d(3)); end %========================================================================== function [S0,S1,S2,S3] = shear_decomp(A) % Decompose rotation and translation matrix A into shears S0, S1, S2 and % S3, such that A = S0*S1*S2*S3. The original procedure is documented in: % R. W. Cox and A. Jesmanowicz (1999) % Real-Time 3D Image Registration for Functional MRI % Magnetic Resonance in Medicine 42(6):1014-1018 A0 = A(1:3,1:3); if any(abs(svd(A0)-1)>1e-7), error('Can''t decompose matrix'); end t = A0(2,3); if t==0, t=eps; end a0 = pinv(A0([1 2],[2 3])')*[(A0(3,2)-(A0(2,2)-1)/t) (A0(3,3)-1)]'; S0 = [1 0 0; 0 1 0; a0(1) a0(2) 1]; A1 = S0\A0; a1 = pinv(A1([2 3],[2 3])')*A1(1,[2 3])'; S1 = [1 a1(1) a1(2); 0 1 0; 0 0 1]; A2 = S1\A1; a2 = pinv(A2([1 3],[1 3])')*A2(2,[1 3])'; S2 = [1 0 0; a2(1) 1 a2(2); 0 0 1]; A3 = S2\A2; a3 = pinv(A3([1 2],[1 2])')*A3(3,[1 2])'; S3 = [1 0 0; 0 1 0; a3(1) a3(2) 1]; s3 = A(3,4)-a0(1)*A(1,4)-a0(2)*A(2,4); s1 = A(1,4)-a1(1)*A(2,4); s2 = A(2,4); S0 = [[S0 [0 0 s3]'];[0 0 0 1]]; S1 = [[S1 [s1 0 0]'];[0 0 0 1]]; S2 = [[S2 [0 s2 0]'];[0 0 0 1]]; S3 = [[S3 [0 0 0]'];[0 0 0 1]]; %========================================================================== function [Mask,y1,y2,y3] = getmask(M,x1,x2,x3,dim,wrp) tiny = 5e-2; % From spm_vol_utils.c y1 = M(1,1)*x1+M(1,2)*x2+(M(1,3)*x3+M(1,4)); y2 = M(2,1)*x1+M(2,2)*x2+(M(2,3)*x3+M(2,4)); y3 = M(3,1)*x1+M(3,2)*x2+(M(3,3)*x3+M(3,4)); Mask = true(size(y1)); if ~wrp(1), Mask = Mask & (y1 >= (1-tiny) & y1 <= (dim(1)+tiny)); end if ~wrp(2), Mask = Mask & (y2 >= (1-tiny) & y2 <= (dim(2)+tiny)); end if ~wrp(3), Mask = Mask & (y3 >= (1-tiny) & y3 <= (dim(3)+tiny)); end %========================================================================== function vo = nan2zero(vi) vo = vi; vo(~isfinite(vo)) = 0;
github
philippboehmsturm/antx-master
spm_render.m
.m
antx-master/xspm8/spm_render.m
13,308
utf_8
8570c1025420d1ad7f3d512eeee07ddc
function spm_render(dat,brt,rendfile) % Render blobs on surface of a 'standard' brain % FORMAT spm_render(dat,brt,rendfile) % % dat - a struct array of length 1 to 3 % each element is a structure containing: % - XYZ - the x, y & z coordinates of the transformed SPM{.} % values in units of voxels. % - t - the SPM{.} values. % - mat - affine matrix mapping from XYZ voxels to MNI. % - dim - dimensions of volume from which XYZ is drawn. % brt - brightness control: % If NaN, then displays using the old style with hot % metal for the blobs, and grey for the brain. % Otherwise, it is used as a ``gamma correction'' to % optionally brighten the blobs up a little. % rendfile - the file containing the images to render on to (see also % spm_surf.m) or a surface mesh file. % % Without arguments, spm_render acts as its own UI. %__________________________________________________________________________ % % spm_render prompts for details of up to three SPM{.}s that are then % displayed superimposed on the surface of a 'standard' brain. % % The first is shown in red, then green then blue. % % The blobs which are displayed are the integral of all transformed t % values, exponentially decayed according to their depth. Voxels that % are 10mm behind the surface have half the intensity of ones at the % surface. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_render.m 4018 2010-07-27 18:22:42Z guillaume $ SVNrev = '$Rev: 4018 $'; global prevrend if ~isstruct(prevrend) prevrend = struct('rendfile','', 'brt',[], 'col',[]); end %-Parse arguments, get data if not passed as parameters %========================================================================== if nargin < 1 spm('FnBanner',mfilename,SVNrev); spm('FigName','Results: render'); num = spm_input('Number of sets',1,'1 set|2 sets|3 sets',[1 2 3],1); for i = 1:num [SPM,xSPM] = spm_getSPM; dat(i) = struct( 'XYZ', xSPM.XYZ,... 't', xSPM.Z',... 'mat', xSPM.M,... 'dim', xSPM.DIM); end showbar = 1; else num = length(dat); showbar = 0; end %-Get surface %-------------------------------------------------------------------------- if nargin < 3 || isempty(prevrend.rendfile) [rendfile, sts] = spm_select(1,'mesh','Render file'); % .mat or .gii file if ~sts, return; end end prevrend.rendfile = rendfile; [p,f,e] = fileparts(rendfile); loadgifti = false; if strcmpi(e,'.mat') load(rendfile); if ~exist('rend','var') && ~exist('Matrixes','var') loadgifti = true; end end if ~strcmpi(e,'.mat') || loadgifti try rend = export(gifti(rendfile),'patch'); catch error('\nCannot read render file "%s".\n', rendfile); end if num == 1 col = hot(256); else col = eye(3); if spm_input('Which colours?','!+1','b',{'RGB','Custom'},[0 1],1) for k = 1:num col(k,:) = uisetcolor(col(k,:),sprintf('Colour of blob set %d',k)); end end end surf_rend(dat,rend,col); return end %-Get brightness & colours %-------------------------------------------------------------------------- if nargin < 2 || isempty(prevrend.brt) brt = 1; if num==1 brt = spm_input('Style',1,'new|old',[1 NaN], 1); end if isfinite(brt) brt = spm_input('Brighten blobs',1,'none|slightly|more|lots',[1 0.75 0.5 0.25], 1); col = eye(3); % ask for custom colours & get rgb values %------------------------------------------------------------------ if spm_input('Which colours?','!+1','b',{'RGB','Custom'},[0 1],1) for k = 1:num col(k,:) = uisetcolor(col(k,:),sprintf('Colour of blob set %d',k)); end end else col = []; end elseif isfinite(brt) && isempty(prevrend.col) col = eye(3); elseif isfinite(brt) % don't need to check prevrend.col again col = prevrend.col; else col = []; end prevrend.brt = brt; prevrend.col = col; %-Perform the rendering %========================================================================== spm('Pointer','Watch'); if ~exist('rend','var') % Assume old format... rend = cell(size(Matrixes,1),1); for i=1:size(Matrixes,1), rend{i}=struct('M',eval(Matrixes(i,:)),... 'ren',eval(Rens(i,:)),... 'dep',eval(Depths(i,:))); rend{i}.ren = rend{i}.ren/max(max(rend{i}.ren)); end end if showbar, spm_progress_bar('Init', size(dat,1)*length(rend),... 'Formatting Renderings', 'Number completed'); end for i=1:length(rend), rend{i}.max=0; rend{i}.data = cell(size(dat,1),1); if issparse(rend{i}.ren), % Assume that images have been DCT compressed % - the SPM99 distribution was originally too big. d = size(rend{i}.ren); B1 = spm_dctmtx(d(1),d(1)); B2 = spm_dctmtx(d(2),d(2)); rend{i}.ren = B1*rend{i}.ren*B2'; % the depths did not compress so well with % a straight DCT - therefore it was modified slightly rend{i}.dep = exp(B1*rend{i}.dep*B2')-1; end rend{i}.ren(rend{i}.ren>=1) = 1; rend{i}.ren(rend{i}.ren<=0) = 0; if showbar, spm_progress_bar('Set', i); end end if showbar, spm_progress_bar('Clear'); end if showbar, spm_progress_bar('Init', length(dat)*length(rend),... 'Making pictures', 'Number completed'); end mx = zeros(length(rend),1)+eps; mn = zeros(length(rend),1); for j=1:length(dat), XYZ = dat(j).XYZ; t = dat(j).t; dim = dat(j).dim; mat = dat(j).mat; for i=1:length(rend), % transform from Talairach space to space of the rendered image %------------------------------------------------------------------ M1 = rend{i}.M*mat; zm = sum(M1(1:2,1:3).^2,2).^(-1/2); M2 = diag([zm' 1 1]); M = M2*M1; cor = [1 1 1 ; dim(1) 1 1 ; 1 dim(2) 1; dim(1) dim(2) 1 ; 1 1 dim(3) ; dim(1) 1 dim(3) ; 1 dim(2) dim(3); dim(1) dim(2) dim(3)]'; tcor= M(1:3,1:3)*cor + M(1:3,4)*ones(1,8); off = min(tcor(1:2,:)'); M2 = spm_matrix(-off+1)*M2; M = M2*M1; xyz = (M(1:3,1:3)*XYZ + M(1:3,4)*ones(1,size(XYZ,2))); d2 = ceil(max(xyz(1:2,:)')); % Calculate 'depth' of values %------------------------------------------------------------------ if ~isempty(d2) dep = spm_slice_vol(rend{i}.dep,spm_matrix([0 0 1])*inv(M2),d2,1); z1 = dep(round(xyz(1,:))+round(xyz(2,:)-1)*size(dep,1)); if ~isfinite(brt), msk = find(xyz(3,:) < (z1+20) & xyz(3,:) > (z1-5)); else msk = find(xyz(3,:) < (z1+60) & xyz(3,:) > (z1-5)); end else msk = []; end if ~isempty(msk), % Generate an image of the integral of the blob values. %-------------------------------------------------------------- xyz = xyz(:,msk); if ~isfinite(brt), t0 = t(msk); else dst = xyz(3,:) - z1(msk); dst = max(dst,0); t0 = t(msk).*exp((log(0.5)/10)*dst)'; end X0 = full(sparse(round(xyz(1,:)), round(xyz(2,:)), t0, d2(1), d2(2))); hld = 1; if ~isfinite(brt), hld = 0; end X = spm_slice_vol(X0,spm_matrix([0 0 1])*M2,size(rend{i}.dep),hld); msk = find(X<0); X(msk) = 0; else X = zeros(size(rend{i}.dep)); end % Brighten the blobs %------------------------------------------------------------------ if isfinite(brt), X = X.^brt; end mx(j) = max([mx(j) max(max(X))]); mn(j) = min([mn(j) min(min(X))]); rend{i}.data{j} = X; if showbar, spm_progress_bar('Set', i+(j-1)*length(rend)); end end end mxmx = max(mx); mnmn = min(mn); if showbar, spm_progress_bar('Clear'); end Fgraph = spm_figure('GetWin','Graphics'); spm_results_ui('Clear',Fgraph); nrow = ceil(length(rend)/2); if showbar, hght = 0.95; else hght = 0.5; end % subplot('Position',[0, 0, 1, hght]); ax=axes('Parent',Fgraph,'units','normalized','Position',[0, 0, 1, hght],'Visible','off'); image(0,'Parent',ax); set(ax,'YTick',[],'XTick',[]); if ~isfinite(brt), % Old style split colourmap display. %---------------------------------------------------------------------- load Split; colormap(split); for i=1:length(rend), ren = rend{i}.ren; X = (rend{i}.data{1}-mnmn)/(mxmx-mnmn); msk = find(X); ren(msk) = X(msk)+(1+1.51/64); ax=axes('Parent',Fgraph,'units','normalized',... 'Position',[rem(i-1,2)*0.5, floor((i-1)/2)*hght/nrow, 0.5, hght/nrow],... 'Visible','off'); image(ren*64,'Parent',ax); set(ax,'DataAspectRatio',[1 1 1], ... 'PlotBoxAspectRatioMode','auto',... 'YTick',[],'XTick',[],'XDir','normal','YDir','normal'); end else % Combine the brain surface renderings with the blobs, and display using % 24 bit colour. %---------------------------------------------------------------------- for i=1:length(rend), ren = rend{i}.ren; X = cell(3,1); for j=1:length(rend{i}.data), X{j} = rend{i}.data{j}/(mxmx-mnmn)-mnmn; end for j=(length(rend{i}.data)+1):3 X{j}=zeros(size(X{1})); end rgb = zeros([size(ren) 3]); tmp = ren.*max(1-X{1}-X{2}-X{3},0); for k = 1:3 rgb(:,:,k) = tmp + X{1}*col(1,k) + X{2}*col(2,k) +X{3}*col(3,k); end rgb(rgb>1) = 1; ax=axes('Parent',Fgraph,'units','normalized',... 'Position',[rem(i-1,2)*0.5, floor((i-1)/2)*hght/nrow, 0.5, hght/nrow],... 'nextplot','add', ... 'Visible','off'); image(rgb,'Parent',ax); set(ax,'DataAspectRatio',[1 1 1], ... 'PlotBoxAspectRatioMode','auto',... 'YTick',[],'XTick',[],... 'XDir','normal','YDir','normal'); end end spm('Pointer','Arrow'); %========================================================================== % function surf_rend(dat,rend,col) %========================================================================== function surf_rend(dat,rend,col) %-Setup figure and axis %-------------------------------------------------------------------------- Fgraph = spm_figure('GetWin','Graphics'); spm_results_ui('Clear',Fgraph); ax0 = axes(... 'Tag', 'SPMMeshRenderBackground',... 'Parent', Fgraph,... 'Units', 'normalized',... 'Color', [1 1 1],... 'XTick', [],... 'YTick', [],... 'Position', [-0.05, -0.05, 1.05, 0.555]); ax = axes(... 'Parent', Fgraph,... 'Units', 'normalized',... 'Position', [0.05, 0.05, 0.9, 0.4],... 'Visible', 'off'); H = spm_mesh_render('Disp',rend,struct('parent',ax)); spm_mesh_render('Overlay',H,dat,col); try setAllowAxesRotate(H.rotate3d, setxor(findobj(Fgraph,'Type','axes'),ax), false); end %-Register with MIP %-------------------------------------------------------------------------- try % meaningless when called outside spm_results_ui hReg = spm_XYZreg('FindReg',spm_figure('GetWin','Interactive')); xyz = spm_XYZreg('GetCoords',hReg); hs = mydispcursor('Create',ax,dat.mat,xyz); spm_XYZreg('Add2Reg',hReg,hs,@mydispcursor); end %========================================================================== function varargout = mydispcursor(varargin) switch lower(varargin{1}) %====================================================================== case 'create' %====================================================================== % hMe = mydispcursor('Create',ax,M,xyz) ax = varargin{2}; M = varargin{3}; xyz = varargin{4}; [X,Y,Z] = sphere; vx = sqrt(sum(M(1:3,1:3).^2)); X = X*vx(1) + xyz(1); Y = Y*vx(2) + xyz(2); Z = Z*vx(3) + xyz(3); hold(ax,'on'); hs = surf(X,Y,Z,'parent',ax,... 'EdgeColor','none','FaceColor',[1 0 0],'FaceLighting', 'phong'); set(hs,'UserData',xyz); varargout = {hs}; %======================================================================= case 'setcoords' % Set co-ordinates %======================================================================= % [xyz,d] = mydispcursor('SetCoords',xyz,hMe,hC) hMe = varargin{3}; pxyz = get(hMe,'UserData'); xyz = varargin{2}; set(hMe,'XData',get(hMe,'XData') - pxyz(1) + xyz(1)); set(hMe,'YData',get(hMe,'YData') - pxyz(2) + xyz(2)); set(hMe,'ZData',get(hMe,'ZData') - pxyz(3) + xyz(3)); set(hMe,'UserData',xyz); varargout = {xyz,[]}; %======================================================================= otherwise %======================================================================= error('Unknown action string') end
github
philippboehmsturm/antx-master
spm_uitable.m
.m
antx-master/xspm8/spm_uitable.m
12,089
utf_8
d558e960781ada6e23daad2fcf5012c3
function [varargout] = spm_uitable(varargin) % WARNING: This feature is not supported in MATLAB % and the API and functionality may change in a future release. % UITABLE creates a two dimensional graphic uitable component in a figure window. % UITABLE creates a 1x1 uitable object using default property values in % a figure window. % % UITABLE(numrows,numcolumns) creates a uitable object with specified % number of rows and columns. % % UITABLE(data,columnNames) creates a uitable object with the specified % data and columnNames. Data can be a cell array or a vector and % columnNames should be cell arrays. % % UITABLE('PropertyName1',value1,'PropertyName2',value2,...) creates a % uitable object with specified property values. MATLAB uses default % property values for any property not explicitly set. The properties % that user can set are: ColumnNames, Data, GridColor, NumColumns, % NumRows, Position, ColumnWidth and RowHeight. % % UITABLE(figurehandle, ...) creates a uitable object in the figure % window specified by the figure handle. % % HANDLE = UITABLE(...) creates a uitable object and returns its handle. % % Properties: % % ColumnNames: Cell array of strings for column names. % Data: Cell array of values to be displayed in the table. % GridColor: string, RGB vector. % NumColumns: int specifying number of columns. % NumRows: int specifying number of rows. % Parent: Handle to figure or uipanel. If not specified, it is gcf. % Position: 4 element vector specifying the position. % ColumnWidth: int specifying the width of columns. % RowHeight: int specifying the height of columns. % % Enabled: Boolean specifying if a column is enabled. % Editable: Boolean specifying if a column is editable. % Units: String - pixels/normalized/inches/points/centimeters. % Visible: Boolean specifying if table is visible. % DataChangedCallback - Callback function name or handle. % % % Examples: % % t = uitable(3, 2); % % Creates a 3x2 empty uitable object in a figure window. % % f = figure; % t = uitable(f, rand(5), {'A', 'B', 'C', 'D', 'E'}); % % Creates a 5x5 uitable object in a figure window with the specified % data and the column names. % % data = rand(3); % colnames = {'X-Data', 'Y-Data', 'Z-Data'}; % t = uitable(data, colnames,'Position', [20 20 250 100]); % % Creates a uitable object with the specified data and column names and % the specified Position. % % See also AWTCREATE, AWTINVOKE, JAVACOMPONENT, UITREE, UITREENODE % Copyright 2002-2006 The MathWorks, Inc. % $Revision: 6071 $ $Date: 2006/11/29 21:53:13 $ % Release: R14. This feature will not work in previous versions of MATLAB. % $Id: spm_uitable.m 6071 2014-06-27 12:52:33Z guillaume $ % Setup and P-V parsing if isempty(varargin) if ~isempty(javachk('awt')) || spm_check_version('matlab','7.3') <= 0 varargout{1} = 'off'; else varargout{1} = 'on'; end if spm_check_version('matlab','8.4') >= 0 warning('spm_uitable disabled, use uitable.'); varargout{1} = 'off'; end return end if ~isempty(javachk('awt')) || ... spm_check_version('matlab','7.3') <= 0 || ... spm_check_version('matlab','8.4') >= 0 % R2014b, use uitable varargout{1} = []; varargout{2} = []; return; end if ischar(varargin{1}) switch varargin{1} case 'set' data = varargin{2}; columnNames = varargin{3}; [htable,hcontainer] = UiTable(data,columnNames); varargout{1} = htable; varargout{2} = hcontainer; case 'get' htable = varargin{2}; columnNames = get(htable,'columnNames'); nc = get(htable,'NumColumns'); nr = get(htable,'NumRows'); data = get(htable,'data'); data2 = cell(nr,nc); for i=1:nc for j=1:nr data2{j,i} = data(j,i); end end varargout{1} = data2; varargout{2} = columnNames; end else [htable,hcontainer] = UiTable(varargin{:}); varargout{1} = htable; varargout{2} = hcontainer; end function [table,container] = UiTable(varargin) error(nargoutchk(0,2,nargout)); parent = []; numargs = nargin; datastatus=false; columnstatus=false; rownum = 1; colnum = 1; % Default to a 1x1 table. position = [20 20 200 200]; combo_box_found = false; check_box_found = false; import com.mathworks.hg.peer.UitablePeer; if (numargs > 0 && isscalar(varargin{1}) && ishandle(varargin{1}) && ... isa(handle(varargin{1}), 'figure')) parent = varargin{1}; varargin = varargin(2:end); numargs = numargs - 1; end if (numargs > 0 && isscalar(varargin{1}) && ishandle(varargin{1})) if ~isa(varargin{1}, 'javax.swing.table.DefaultTableModel') error('MATLAB:uitable:UnrecognizedParameter', ['Unrecognized parameter: ', varargin{1}]); end data_model = varargin{1}; varargin = varargin(2:end); numargs = numargs - 1; elseif ((numargs > 1) && isscalar(varargin{1}) && isscalar(varargin{2})) if(isnumeric(varargin{1}) && isnumeric(varargin{2})) rownum = varargin{1}; colnum = varargin{2}; varargin = varargin(3:end); numargs = numargs-2; else error('MATLAB:uitable:InputMustBeScalar', 'When using UITABLE numrows and numcols have to be numeric scalars.') end elseif ((numargs > 1) && isequal(size(varargin{2},1), 1) && iscell(varargin{2})) if (size(varargin{1},2) == size(varargin{2},2)) if (isnumeric(varargin{1})) varargin{1} = num2cell(varargin{1}); end else error('MATLAB:uitable:MustMatchInfo', 'Number of column names must match number of columns in data'); end data = varargin{1}; datastatus = true; coln = varargin{1+1}; columnstatus = true; varargin = varargin(3:end); numargs = numargs-2; end for i = 1:2:numargs-1 if (~ischar(varargin{i})) error('MATLAB:uitable:UnrecognizedParameter', ['Unrecognized parameter: ', varargin{i}]); end switch lower(varargin{i}) case 'data' if (isnumeric(varargin{i+1})) varargin{i+1} = num2cell(varargin{i+1}); end data = varargin{i+1}; datastatus = true; case 'columnnames' if(iscell(varargin{i+1})) coln = varargin{i+1}; columnstatus = true; else error('MATLAB:uitable:InvalidCellArray', 'When using UITABLE Column data should be 1xn cell array') end case 'numrows' if (isnumeric(varargin{i+1})) rownum = varargin{i+1}; else error('MATLAB:uitable:NumrowsMustBeScalar', 'numrows has to be a scalar') end case 'numcolumns' if (isnumeric(varargin{i+1})) colnum = varargin{i+1}; else error('MATLAB:uitable:NumcolumnsMustBeScalar', 'numcolumns has to be a scalar') end case 'gridcolor' if (ischar(varargin{i+1})) gridcolor = varargin{i+1}; else if (isnumeric(varargin{i+1}) && (numel(varargin{i+1}) == 3)) gridcolor = varargin{i+1}; else error('MATLAB:uitable:InvalidString', 'gridcolor has to be a valid string') end end case 'rowheight' if (isnumeric(varargin{i+1})) rowheight = varargin{i+1}; else error('MATLAB:uitable:RowheightMustBeScalar', 'rowheight has to be a scalar') end case 'parent' if ishandle(varargin{i+1}) parent = varargin{i+1}; else error('MATLAB:uitable:InvalidParent', 'parent must be a valid handle') end case 'position' if (isnumeric(varargin{i+1})) position = varargin{i+1}; else error('MATLAB:uitable:InvalidPosition', 'position has to be a 1x4 numeric array') end case 'columnwidth' if (isnumeric(varargin{i+1})) columnwidth = varargin{i+1}; else error('MATLAB:uitable:ColumnwidthMustBeScalar', 'columnwidth has to be a scalar') end otherwise error('MATLAB:uitable:UnrecognizedParameter', ['Unrecognized parameter: ', varargin{i}]); end end % ---combo/check box detection--- % if (datastatus) if (iscell(data)) rownum = size(data,1); colnum = size(data,2); combo_count =0; check_count = 0; combo_box_data = num2cell(zeros(1, colnum)); combo_box_column = zeros(1, colnum); check_box_column = zeros(1, colnum); for j = 1:rownum for k = 1:colnum if (iscell(data{j,k})) combo_box_found = true; combo_count = combo_count + 1; combo_box_data{combo_count} = data{j,k}; combo_box_column(combo_count ) = k; dc = data{j,k}; data{j,k} = dc{1}; else if(islogical(data{j,k})) check_box_found = true; check_count = check_count + 1; check_box_column(check_count) = k; end end end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check the validity of the parent and/or create a figure. if isempty(parent) parent = gcf; % Get the current figure. Create one if not available end if ( columnstatus && datastatus ) if(size(data,2) ~= size(coln,2)) error('MATLAB:NeedSameNumberColumns', 'Number of columns in both Data and ColumnNames should match'); end elseif ( ~columnstatus && datastatus ) for i=1:size(data,2) coln{i} = num2str(i); end columnstatus = true; elseif ( columnstatus && ~datastatus) error('MATLAB:uitable:NoDataProvided', 'No Data provided along with ColumnNames'); end if (~exist('data_model', 'var')) data_model = javax.swing.table.DefaultTableModel; end if exist('rownum', 'var') data_model.setRowCount(rownum); end if exist('colnum', 'var') data_model.setColumnCount(colnum); end table_h= UitablePeer(data_model); % We should have valid data and column names here. if (datastatus), table_h.setData(data); end; if (columnstatus), table_h.setColumnNames(coln); end; if (combo_box_found), for i=1:combo_count table_h.setComboBoxEditor(combo_box_data(i), combo_box_column(i)); end end if (check_box_found), for i = 1: check_count table_h.setCheckBoxEditor(check_box_column(i)); end end % pass the specified parent and let javacomponent decide its validity. [obj, container] = javacomponent(table_h, position, parent); % javacomponent returns a UDD handle for the java component passed in. table = obj; % Have to do a drawnow here to make the properties stick. Try to restrict % the drawnow call to only when it is absolutely required. flushed = false; if exist('gridcolor', 'var') pause(.1); drawnow; flushed = true; table_h.setGridColor(gridcolor); end if exist('rowheight', 'var') if (~flushed) drawnow; end table_h.setRowHeight(rowheight); end if exist('columnwidth', 'var') table_h.setColumnWidth(columnwidth); end; % % Add a predestroy listener so we can call cleanup on the table. % addlistener(table, 'ObjectBeingDestroyed', {@componentDelete}); varargout{1} = table; varargout{2} = container; function componentDelete(src, evd) %#ok % Clean up the table here so it disengages all its internal listeners. src.cleanup;
github
philippboehmsturm/antx-master
spm_eeg_convert.m
.m
antx-master/xspm8/spm_eeg_convert.m
16,945
utf_8
a71c71902f215e5d6bfa54b043e525d8
function D = spm_eeg_convert(S) % Main function for converting different M/EEG formats to SPM8 format. % FORMAT D = spm_eeg_convert(S) % S - can be string (file name) or struct (see below) % % If S is a struct it can have the optional following fields: % S.dataset - file name % S.continuous - 1 - convert data as continuous % 0 - convert data as epoched (requires data that is % already epoched or a trial definition file). % S.timewindow - [start end] in sec. Boundaries for a sub-segment of % continuous data [default: all] % S.outfile - output file name (default 'spm8_' + input) % S.channels - 'all' - convert all channels % or cell array of labels % S.usetrials - 1 - take the trials as defined in the data [default] % 0 - use trial definition file even though the data is % already epoched % S.trlfile - name of the trial definition file % S.datatype - data type for the data file one of % 'float32-le' [default], 'float64-le' % S.inputformat - data type (optional) to force the use of specific data % reader % S.eventpadding - the additional time period around each trial for which % the events are saved with the trial (to let the user % keep and use for analysis events which are outside % trial borders), in seconds. [default: 0] % S.conditionlabel - labels for the trials in the data [default: 'Undefined'] % S.blocksize - size of blocks used internally to split large files % [default: ~100Mb] % S.checkboundary - 1 - check if there are breaks in the file and do not % read across those breaks [default] % 0 - ignore breaks (not recommended). % S.saveorigheader - 1 - save original data header with the dataset % 0 - do not keep the original header [default] % % % D - MEEG object (also written on disk) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: spm_eeg_convert.m 4430 2011-08-12 18:47:17Z vladimir $ if ischar(S) temp = S; S = []; S.dataset = temp; end if ~isfield(S, 'dataset') error('Dataset must be specified.'); end if ~isfield(S, 'outfile'), S.outfile = ['spm8_' spm_str_manip(S.dataset,'tr')]; end if ~isfield(S, 'channels'), S.channels = 'all'; end if ~isfield(S, 'timewindow'), S.timewindow = []; end if ~isfield(S, 'blocksize'), S.blocksize = 3276800; end %100 Mb if ~isfield(S, 'checkboundary'), S.checkboundary = 1; end if ~isfield(S, 'usetrials'), S.usetrials = 1; end if ~isfield(S, 'datatype'), S.datatype = 'float32-le'; end if ~isfield(S, 'eventpadding'), S.eventpadding = 0; end if ~isfield(S, 'saveorigheader'), S.saveorigheader = 0; end if ~isfield(S, 'conditionlabel'), S.conditionlabel = 'Undefined' ; end if ~isfield(S, 'inputformat'), S.inputformat = [] ; end if ~iscell(S.conditionlabel) S.conditionlabel = {S.conditionlabel}; end %--------- Read and check header hdr = ft_read_header(S.dataset, 'fallback', 'biosig', 'headerformat', S.inputformat); if isfield(hdr, 'label') [unique_label junk ind]=unique(hdr.label); if length(unique_label)~=length(hdr.label) warning(['Data file contains several channels with ',... 'the same name. These channels cannot be processed and will be disregarded']); % This finds the repeating labels and removes all their occurences sortind=sort(ind); [junk ind2]=setdiff(hdr.label, unique_label(sortind(find(diff(sortind)==0)))); hdr.label=hdr.label(ind2); hdr.nChans=length(hdr.label); end end if ~isfield(S, 'continuous') S.continuous = (hdr.nTrials == 1); end %--------- Read and prepare events try event = ft_read_event(S.dataset, 'detectflank', 'both', 'eventformat', S.inputformat); if ~isempty(strmatch('UPPT001', hdr.label)) % This is s somewhat ugly fix to the specific problem with event % coding in FIL CTF. It can also be useful for other CTF systems where the % pulses in the event channel go downwards. fil_ctf_events = ft_read_event(S.dataset, 'detectflank', 'down', 'type', 'UPPT001', 'trigshift', -1, 'eventformat', S.inputformat); if ~isempty(fil_ctf_events) [fil_ctf_events(:).type] = deal('FIL_UPPT001_down'); event = cat(1, event(:), fil_ctf_events(:)); end end if ~isempty(strmatch('UPPT002', hdr.label)) % This is s somewhat ugly fix to the specific problem with event % coding in FIL CTF. It can also be useful for other CTF systems where the % pulses in the event channel go downwards. fil_ctf_events = ft_read_event(S.dataset, 'detectflank', 'down', 'type', 'UPPT002', 'trigshift', -1, 'eventformat', S.inputformat); if ~isempty(fil_ctf_events) [fil_ctf_events(:).type] = deal('FIL_UPPT002_down'); event = cat(1, event(:), fil_ctf_events(:)); end end % This is another FIL-specific fix that will hopefully not affect other sites if isfield(hdr, 'orig') && isfield(hdr.orig, 'VERSION') && isequal(uint8(hdr.orig.VERSION),uint8([255 'BIOSEMI'])) ind = strcmp('STATUS', {event(:).type}); val = [event(ind).value]; if any(val>255) bytes = dec2bin(val); bytes = bytes(:, end-7:end); bytes = flipdim(bytes, 2); val = num2cell(bin2dec(bytes)); [event(ind).value] = deal(val{:}); end end catch warning(['Could not read events from file ' S.dataset]); event = []; end % Replace samples with time if numel(event)>0 for i = 1:numel(event) event(i).time = event(i).sample./hdr.Fs; end end %--------- Start making the header D = []; D.Fsample = hdr.Fs; %--------- Select channels if ~strcmp(S.channels, 'all') [junk, chansel] = spm_match_str(S.channels, hdr.label); else if isfield(hdr, 'nChans') chansel = 1:hdr.nChans; else chansel = 1:length(hdr.label); end end nchan = length(chansel); D.channels = repmat(struct('bad', 0), 1, nchan); if isfield(hdr, 'label') [D.channels(:).label] = deal(hdr.label{chansel}); end %--------- Preparations specific to reading mode (continuous/epoched) if S.continuous if isempty(S.timewindow) if hdr.nTrials == 1 segmentbounds = [1 hdr.nSamples]; elseif ~S.checkboundary segmentbounds = [1 hdr.nSamples*hdr.nTrials]; else error('The data cannot be read without ignoring trial borders'); end S.timewindow = segmentbounds./D.Fsample; else segmentbounds = round(S.timewindow.*D.Fsample); segmentbounds(1) = max(segmentbounds(1), 1); end %--------- Sort events and put in the trial if ~isempty(event) event = rmfield(event, {'offset', 'sample'}); event = select_events(event, ... [S.timewindow(1)-S.eventpadding S.timewindow(2)+S.eventpadding]); end D.trials.label = S.conditionlabel{1}; D.trials.events = event; D.trials.onset = S.timewindow(1); %--------- Break too long segments into blocks nblocksamples = floor(S.blocksize/nchan); nsampl = diff(segmentbounds)+1; trl = [segmentbounds(1):nblocksamples:segmentbounds(2)]; if (trl(end)==segmentbounds(2)) trl = trl(1:(end-1)); end trl = [trl(:) [trl(2:end)-1 segmentbounds(2)]']; ntrial = size(trl, 1); readbytrials = 0; D.timeOnset = (trl(1,1)-1)./hdr.Fs; D.Nsamples = nsampl; else % Read by trials if ~S.usetrials if ~isfield(S, 'trl') trl = getfield(load(S.trlfile, 'trl'), 'trl'); else trl = S.trl; end trl = double(trl); if size(trl, 2) >= 3 D.timeOnset = unique(trl(:, 3))./D.Fsample; trl = trl(:, 1:2); else D.timeOnset = 0; end if length(D.timeOnset) > 1 error('All trials should have identical baseline'); end try conditionlabels = getfield(load(S.trlfile, 'conditionlabels'), 'conditionlabels'); catch conditionlabels = S.conditionlabel; end if ~iscell(conditionlabels) conditionlabels = {conditionlabels}; end if numel(conditionlabels) == 1 conditionlabels = repmat(conditionlabels, 1, size(trl, 1)); end readbytrials = 0; else try trialind = sort([strmatch('trial', {event.type}, 'exact'), ... strmatch('average', {event.type}, 'exact')]); trl = [event(trialind).sample]; trl = double(trl(:)); trl = [trl trl+double([event(trialind).duration]')-1]; try offset = unique([event(trialind).offset]); catch offset = []; end if length(offset) == 1 D.timeOnset = offset/D.Fsample; else D.timeOnset = 0; end conditionlabels = {}; for i = 1:length(trialind) if isempty(event(trialind(i)).value) conditionlabels{i} = S.conditionlabel{1}; else if all(ischar(event(trialind(i)).value)) conditionlabels{i} = event(trialind(i)).value; else conditionlabels{i} = num2str(event(trialind(i)).value); end end end if hdr.nTrials>1 && size(trl, 1)~=hdr.nTrials warning('Mismatch between trial definition in events and in data. Ignoring events'); readbytrials = 1; else readbytrials = 0; end event = event(setdiff(1:numel(event), trialind)); catch if hdr.nTrials == 1 error('Could not define trials based on data. Use continuous option or trial definition file.'); else readbytrials = 1; end end end if readbytrials nsampl = hdr.nSamples; ntrial = hdr.nTrials; trl = zeros(ntrial, 2); if exist('conditionlabels', 'var') ~= 1 || length(conditionlabels) ~= ntrial conditionlabels = repmat(S.conditionlabel, 1, ntrial); end else nsampl = unique(diff(trl, [], 2))+1; if length(nsampl) > 1 error('All trials should have identical lengths'); end inbounds = (trl(:,1)>=1 & trl(:, 2)<=hdr.nSamples*hdr.nTrials)'; rejected = find(~inbounds); if ~isempty(rejected) trl = trl(inbounds, :); conditionlabels = conditionlabels(inbounds); warning([S.dataset ': Trials ' num2str(rejected) ' not read - out of bounds']); end ntrial = size(trl, 1); if ntrial == 0 warning([S.dataset ': No trials to read. Bailing out.']); D = []; return; end end D.Nsamples = nsampl; if isfield(event, 'sample') event = rmfield(event, 'sample'); end end %--------- Prepare for reading the data [outpath, outfile] = fileparts(S.outfile); if isempty(outpath) outpath = pwd; end if isempty(outfile) outfile = 'spm8'; end D.path = outpath; D.fname = [outfile '.mat']; D.data.fnamedat = [outfile '.dat']; D.data.datatype = S.datatype; if S.continuous datafile = file_array(fullfile(D.path, D.data.fnamedat), [nchan nsampl], S.datatype); else datafile = file_array(fullfile(D.path, D.data.fnamedat), [nchan nsampl ntrial], S.datatype); end % physically initialise file datafile(end,end) = 0; spm_progress_bar('Init', ntrial, 'reading and converting'); drawnow; if ntrial > 100, Ibar = floor(linspace(1, ntrial,100)); else Ibar = [1:ntrial]; end %--------- Read the data offset = 1; for i = 1:ntrial if readbytrials dat = ft_read_data(S.dataset,'header', hdr, 'begtrial', i, 'endtrial', i,... 'chanindx', chansel, 'checkboundary', S.checkboundary, 'fallback', 'biosig', 'dataformat', S.inputformat); else dat = ft_read_data(S.dataset,'header', hdr, 'begsample', trl(i, 1), 'endsample', trl(i, 2),... 'chanindx', chansel, 'checkboundary', S.checkboundary, 'fallback', 'biosig', 'dataformat', S.inputformat); end % Sometimes ft_read_data returns sparse output dat = full(dat); if S.continuous nblocksamples = size(dat,2); datafile(:, offset:(offset+nblocksamples-1)) = dat; offset = offset+nblocksamples; else datafile(:, :, i) = dat; D.trials(i).label = conditionlabels{i}; D.trials(i).onset = trl(i, 1)./D.Fsample; D.trials(i).events = select_events(event, ... [ trl(i, 1)./D.Fsample-S.eventpadding trl(i, 2)./D.Fsample+S.eventpadding]); end if ismember(i, Ibar) spm_progress_bar('Set', i); end end spm_progress_bar('Clear'); % Specify sensor positions and fiducials if isfield(hdr, 'grad') D.sensors.meg = ft_convert_units(hdr.grad, 'mm'); end if isfield(hdr, 'elec') D.sensors.eeg = ft_convert_units(hdr.elec, 'mm'); else try D.sensors.eeg = ft_convert_units(ft_read_sens(S.dataset, 'fileformat', S.inputformat), 'mm'); % It might be that read_sens will return the grad for MEG datasets if isfield(D.sensors.eeg, 'ori') D.sensors.eeg = []; end catch warning('Could not obtain electrode locations automatically.'); end end try D.fiducials = ft_convert_units(ft_read_headshape(S.dataset, 'fileformat', S.inputformat), 'mm'); catch warning('Could not obtain fiducials automatically.'); end %--------- Create meeg object D = meeg(D); % history D = D.history('spm_eeg_convert', S); if isfield(hdr, 'orig') if S.saveorigheader D.origheader = hdr.orig; end % Uses fileio function to get the information about channel types stored in % the original header. This is now mainly useful for Neuromag support but might % have other functions in the future. origchantypes = ft_chantype(hdr); [sel1, sel2] = spm_match_str(D.chanlabels, hdr.label); origchantypes = origchantypes(sel2); if length(strmatch('unknown', origchantypes, 'exact')) ~= numel(origchantypes) D.origchantypes = struct([]); D.origchantypes(1).label = hdr.label(sel2); D.origchantypes(1).type = origchantypes; end end S1 = []; S1.task = 'defaulttype'; S1.D = D; S1.updatehistory = 0; D = spm_eeg_prep(S1); % Assign default EEG sensor positions if possible if ~isempty(strmatch('EEG', D.chantype, 'exact')) if isempty(D.sensors('EEG')) S1 = []; S1.task = 'defaulteegsens'; S1.updatehistory = 0; S1.D = D; D = spm_eeg_prep(S1); else S1 = []; S1.task = 'project3D'; S1.modality = 'EEG'; S1.updatehistory = 0; S1.D = D; D = spm_eeg_prep(S1); end end % Create 2D positions for MEG % by projecting the 3D positions to 2D if ~isempty(strmatch('MEG', D.chantype)) && ~isempty(D.sensors('MEG')) S1 = []; S1.task = 'project3D'; S1.modality = 'MEG'; S1.updatehistory = 0; S1.D = D; D = spm_eeg_prep(S1); end % If channel units are available, store them. if isfield(hdr, 'unit') [sel1, sel2] = spm_match_str(D.chanlabels, hdr.label); D = units(D, sel1, hdr.unit(sel2)); end % The conditions will later be sorted in the original order they were defined. if isfield(S, 'trialdef') D = condlist(D, {S.trialdef(:).conditionlabel}); end save(D); %========================================================================== % select_events %========================================================================== function event = select_events(event, timeseg) % Utility function to select events according to time segment % FORMAT event = select_events(event, timeseg) if ~isempty(event) [time ind] = sort([event(:).time]); selectind = ind(time>=timeseg(1) & time<=timeseg(2)); event = event(selectind); end
github
philippboehmsturm/antx-master
spm_maff.m
.m
antx-master/xspm8/spm_maff.m
8,022
utf_8
33d6a7e3d4b7305bf9bd04c4ffb4eef5
function M = spm_maff(varargin) % Affine registration to MNI space using mutual information % FORMAT M = spm_maff(P,samp,x,b0,MF,M,regtyp,ff) % P - filename or structure handle of image % x - cell array of {x1,x2,x3}, where x1 and x2 are % co-ordinates (from ndgrid), and x3 is a list of % slice numbers to use % b0 - a cell array of belonging probability images % (see spm_load_priors.m). % MF - voxel-to-world transform of belonging probability % images % M - starting estimates % regtype - regularisation type % 'mni' - registration of European brains with MNI space % 'eastern' - registration of East Asian brains with MNI space % 'rigid' - rigid(ish)-body registration % 'subj' - inter-subject registration % 'none' - no regularisation % ff - a fudge factor (derived from the one above) %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_maff.m 4178 2011-01-27 15:12:53Z guillaume $ [buf,MG] = loadbuf(varargin{1:2}); M = affreg(buf, MG, varargin{2:end}); return; %_______________________________________________________________________ %_______________________________________________________________________ function [buf,MG] = loadbuf(V,x) if ischar(V), V = spm_vol(V); end; x1 = x{1}; x2 = x{2}; x3 = x{3}; % Load the image V = spm_vol(V); d = V(1).dim(1:3); o = ones(size(x1)); d = [size(x1) length(x3)]; g = zeros(d); spm_progress_bar('Init',V.dim(3),'Loading volume','Planes loaded'); for i=1:d(3) g(:,:,i) = spm_sample_vol(V,x1,x2,o*x3(i),0); spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); % Convert the image to unsigned bytes [mn,mx] = spm_minmax(g); sw = warning('off','all'); for z=1:length(x3), gz = g(:,:,z); buf(z).msk = gz>mn & isfinite(gz); buf(z).nm = sum(buf(z).msk(:)); gz = double(gz(buf(z).msk)); buf(z).g = uint8(round(gz*(255/mx))); end; warning(sw); MG = V.mat; return; %_______________________________________________________________________ %_______________________________________________________________________ function [M,h0] = affreg(buf,MG,x,b0,MF,M,regtyp,ff) % Do the work x1 = x{1}; x2 = x{2}; x3 = x{3}; [mu,isig] = spm_affine_priors(regtyp); mu = [zeros(6,1) ; mu]; isig = [zeros(6,12) ; zeros(6,6) isig]; isig = isig*ff; Alpha0 = isig; Beta0 = -isig*mu; sol = M2P(M); sol1 = sol; ll = -Inf; nsmp = sum(cat(1,buf.nm)); pr = struct('b',[],'db1',[],'db2',[],'db3',[]); spm_plot_convergence('Init','Registering','Log-likelihood','Iteration'); for iter=1:200 penalty = (sol1-mu)'*isig*(sol1-mu); T = MF\P2M(sol1)*MG; R = derivs(MF,sol1,MG); y1a = T(1,1)*x1 + T(1,2)*x2 + T(1,4); y2a = T(2,1)*x1 + T(2,2)*x2 + T(2,4); y3a = T(3,1)*x1 + T(3,2)*x2 + T(3,4); h0 = zeros(256,length(b0)-1)+eps; for i=1:length(x3), if ~buf(i).nm, continue; end; y1 = y1a(buf(i).msk) + T(1,3)*x3(i); y2 = y2a(buf(i).msk) + T(2,3)*x3(i); y3 = y3a(buf(i).msk) + T(3,3)*x3(i); for k=1:size(h0,2), pr(k).b = spm_sample_priors(b0{k},y1,y2,y3,k==length(b0)); h0(:,k) = h0(:,k) + spm_hist(buf(i).g,pr(k).b); end; end; h1 = (h0+eps); ssh = sum(h1(:)); krn = spm_smoothkern(2,(-256:256)',0); h1 = conv2(h1,krn,'same'); h1 = h1/ssh; h2 = log2(h1./(sum(h1,2)*sum(h1,1))); ll1 = sum(sum(h0.*h2))/ssh - penalty/ssh; spm_plot_convergence('Set',ll1); if ll1-ll<1e-5, break; end; ll = ll1; sol = sol1; Alpha = zeros(12); Beta = zeros(12,1); for i=1:length(x3), nz = buf(i).nm; if ~nz, continue; end; msk = buf(i).msk; gi = double(buf(i).g)+1; y1 = y1a(msk) + T(1,3)*x3(i); y2 = y2a(msk) + T(2,3)*x3(i); y3 = y3a(msk) + T(3,3)*x3(i); dmi1 = zeros(nz,1); dmi2 = zeros(nz,1); dmi3 = zeros(nz,1); for k=1:size(h0,2), [pr(k).b, pr(k).db1, pr(k).db2, pr(k).db3] = spm_sample_priors(b0{k},y1,y2,y3,k==length(b0)); tmp = -h2(gi,k); dmi1 = dmi1 + tmp.*pr(k).db1; dmi2 = dmi2 + tmp.*pr(k).db2; dmi3 = dmi3 + tmp.*pr(k).db3; end; x1m = x1(msk); x2m = x2(msk); x3m = x3(i); A = [dmi1.*x1m dmi2.*x1m dmi3.*x1m... dmi1.*x2m dmi2.*x2m dmi3.*x2m... dmi1 *x3m dmi2 *x3m dmi3 *x3m... dmi1 dmi2 dmi3]; Alpha = Alpha + A'*A; Beta = Beta + sum(A,1)'; end; drawnow; Alpha = R'*Alpha*R; Beta = R'*Beta; % Gauss-Newton update sol1 = (Alpha+Alpha0)\(Alpha*sol - Beta - Beta0); end; spm_plot_convergence('Clear'); M = P2M(sol); return; %_______________________________________________________________________ %_______________________________________________________________________ function P = M2P(M) % Polar decomposition parameterisation of affine transform, % based on matrix logs J = M(1:3,1:3); V = sqrtm(J*J'); R = V\J; lV = logm(V); lR = -logm(R); if sum(sum(imag(lR).^2))>1e-6 error('Rotations by pi are still a problem.'); else lR = real(lR); end P = zeros(12,1); P(1:3) = M(1:3,4); P(4:6) = lR([2 3 6]); P(7:12) = lV([1 2 3 5 6 9]); return; %_______________________________________________________________________ %_______________________________________________________________________ function M = P2M(P) % Polar decomposition parameterisation of affine transform, % based on matrix logs % Translations D = P(1:3); D = D(:); % Rotation part ind = [2 3 6]; T = zeros(3); T(ind) = -P(4:6); R = expm(T-T'); % Symmetric part (zooms and shears) ind = [1 2 3 5 6 9]; T = zeros(3); T(ind) = P(7:12); V = expm(T+T'-diag(diag(T))); M = [V*R D ; 0 0 0 1]; return; %_______________________________________________________________________ %_______________________________________________________________________ function R = derivs(MF,P,MG) % Numerically compute derivatives of Affine transformation matrix w.r.t. % changes in the parameters. R = zeros(12,12); M0 = MF\P2M(P)*MG; M0 = M0(1:3,:); for i=1:12 dp = 0.000000001; P1 = P; P1(i) = P1(i) + dp; M1 = MF\P2M(P1)*MG; M1 = M1(1:3,:); R(:,i) = (M1(:)-M0(:))/dp; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [h0,d1] = reg_unused(M) % Try to analytically compute the first and second derivatives of a % penalty function w.r.t. changes in parameters. It works for first % derivatives, but I couldn't make it work for the second derivs - so % I gave up and tried a new strategy. T = M(1:3,1:3); [U,S,V] = svd(T); s = diag(S); h0 = sum(log(s).^2); d1s = 2*log(s)./s; %d2s = 2./s.^2-2*log(s)./s.^2; d1 = zeros(12,1); for j=1:3 for i1=1:9 T1 = zeros(3,3); T1(i1) = 1; t1 = U(:,j)'*T1*V(:,j); d1(i1) = d1(i1) + d1s(j)*t1; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function M = P2M_unused(P) % SVD parameterisation of affine transform, based on matrix-logs. % Translations D = P(1:3); D = D(:); % Rotation U ind = [2 3 6]; T = zeros(3); T(ind) = P(4:6); U = expm(T-T'); % Diagonal zooming matrix S = expm(diag(P(7:9))); % Rotation V' T(ind) = P(10:12); V = expm(T'-T); M = [U*S*V' D ; 0 0 0 1]; return; %_______________________________________________________________________ %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_diff.m
.m
antx-master/xspm8/spm_diff.m
4,795
utf_8
ad03f0b9baf443336e6690d292b28a58
function [varargout] = spm_diff(varargin) % matrix high-order numerical differentiation % FORMAT [dfdx] = spm_diff(f,x,...,n) % FORMAT [dfdx] = spm_diff(f,x,...,n,V) % FORMAT [dfdx] = spm_diff(f,x,...,n,'q') % % f - [inline] function f(x{1},...) % x - input argument[s] % n - arguments to differentiate w.r.t. % % V - cell array of matrices that allow for differentiation w.r.t. % to a linear transformation of the parameters: i.e., returns % % df/dy{i}; x = V{i}y{i}; V = dx(i)/dy(i) % % q - flag to preclude default concatenation of dfdx % % dfdx - df/dx{i} ; n = i % dfdx{p}...{q} - df/dx{i}dx{j}(q)...dx{k}(p) ; n = [i j ... k] % % % - a cunning recursive routine %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_diff.m 4060 2010-09-01 17:17:36Z karl $ % create inline object %-------------------------------------------------------------------------- f = varargin{1}; % parse input arguments %-------------------------------------------------------------------------- if iscell(varargin{end}) x = varargin(2:(end - 2)); n = varargin{end - 1}; V = varargin{end}; q = 1; elseif isnumeric(varargin{end}) x = varargin(2:(end - 1)); n = varargin{end}; V = cell(1,length(x)); q = 1; elseif ischar(varargin{end}) x = varargin(2:(end - 2)); n = varargin{end - 1}; V = cell(1,length(x)); q = 0; else error('improper call') end % check transform matrices V = dxdy %-------------------------------------------------------------------------- for i = 1:length(x) try V{i}; catch V{i} = []; end if isempty(V{i}) && any(n == i); V{i} = speye(length(spm_vec(x{i}))); end end % initialise %-------------------------------------------------------------------------- m = n(end); xm = spm_vec(x{m}); dx = exp(-8); J = cell(1,size(V{m},2)); % proceed to derivatives %========================================================================== if length(n) == 1 % dfdx %---------------------------------------------------------------------- f0 = feval(f,x{:}); for i = 1:length(J) xi = x; xmi = xm + V{m}(:,i)*dx; xi{m} = spm_unvec(xmi,x{m}); fi = feval(f,xi{:}); J{i} = spm_dfdx(fi,f0,dx); end % return numeric array for first-order derivatives %====================================================================== % vectorise f %---------------------------------------------------------------------- f = spm_vec(f0); % if there are no arguments to differentiate w.r.t. ... %---------------------------------------------------------------------- if isempty(xm) J = sparse(length(f),0); % or there are no arguments to differentiate %---------------------------------------------------------------------- elseif isempty(f) J = sparse(0,length(xm)); end % or differentiation of a vector %---------------------------------------------------------------------- if isvec(f0) && q % concatenate into a matrix %------------------------------------------------------------------ if size(f0,2) == 1 J = spm_cat(J); else J = spm_cat(J')'; end end % assign output argument and return %---------------------------------------------------------------------- varargout{1} = J; varargout{2} = f0; else % dfdxdxdx.... %---------------------------------------------------------------------- f0 = cell(1,length(n)); [f0{:}] = spm_diff(f,x{:},n(1:end - 1),V); for i = 1:length(J) xi = x; xmi = xm + V{m}(:,i)*dx; xi{m} = spm_unvec(xmi,x{m}); fi = spm_diff(f,xi{:},n(1:end - 1),V); J{i} = spm_dfdx(fi,f0{1},dx); end varargout = [{J} f0]; end function dfdx = spm_dfdx(f,f0,dx) % cell subtraction %-------------------------------------------------------------------------- if iscell(f) dfdx = f; for i = 1:length(f(:)) dfdx{i} = spm_dfdx(f{i},f0{i},dx); end elseif isstruct(f) dfdx = (spm_vec(f) - spm_vec(f0))/dx; else dfdx = (f - f0)/dx; end function is = isvec(v) % isvector(v) returns true if v is 1-by-n or n-by-1 where n>=0 %__________________________________________________________________________ % vec if just two dimensions, and one (or both) unity %-------------------------------------------------------------------------- is = length(size(v)) == 2 && isnumeric(v); is = is && (size(v,1) == 1 || size(v,2) == 1);
github
philippboehmsturm/antx-master
spm_DisplayTimeSeries.m
.m
antx-master/xspm8/spm_DisplayTimeSeries.m
14,418
utf_8
16a41e1bf873e9a548085da219e4b413
function [ud] = spm_DisplayTimeSeries(y,options) % This function builds a GUI for 'smart' time series display. % FORMAT function [ud] = spm_DisplayTimeSeries(y,options) % IN: % - y: the txn data, where t is the number of time sample, and p the % number of 'channels' % - options: a structure (default is empty), which allows to adapt this % function to specific needs. Optional fields are: % .hp: the handle of the parent figure/object. This is used to % include the time series display in a panel/figure. By default, a % new figure will be created. % .Fsample: the sample rate of the data (in Hz) % .events: a nex1 structure vector containing the time indices of the % events and their type (if any). Default is empty. Basic structure % contains fields .time and .type (see bellow). % .M: a pxn matrix premultiplied to the data when plotted (default is % 1). % .bad a px1 binary vector containing the good/bad status of the % channels. Default is zeros(p,1). % .transpose: a binary variable that transposes the data (useful for % file_array display). Using options.transpose = 1 is similar to do % something similar to plot(y'). Default is 0. % .minY: the min value of the plotted data (used to define the main % axes limit). Default is calculated according to the offset. % .maxY: the max value of the plotted data (used to define the main % axes limit). Default is calculated according to the offset. % .minSizeWindow: minimum size of the plotted window (in number of % time samples). {min([200,0.5*size(y,1)]} % .maxSizeWindow: maximum size of the plotted window (in number of % time samples). {min([5000,size(y,1)])} % .ds: an integer giving the number of displayed time samples when % dynamically moving the display time window. Default is 1e4. If you % set it to Inf, no downsampling is applied. % .callback: a string or function handle which is evaluated after % each release of the mouse button (when moving the patch or clicking % on the slider). Default is empty. % .tag: a string used to tag both axes % .pos1: a 4x1 vector containing the position of the main display % axes {[0.13 0.3 0.775 0.655]} % .pos2: a 4x1 vector containing the position of the global power % display axes {[0.13 0.05 0.775 0.15]} % .pos3: a 4x1 vector containing the position of the temporal slider % {[0.13 0.01 0.775 0.02]} % .itw: a vector containing the indices of data time samples % initially displayed in the main axes {1:minSizeWindow} % .ytick: the 'ytick' property of the main axes % .yticklabel: the 'yticklabel' property of the main axes % .offset: a px1 vector containing the vertical offset that has to be % added to each of the plotted time series % !! .ytick, .yticklabel and .offset can be used to display labelled % time series one above each other !! % OUT: % - ud: a structure containing all relevant informations about the % graphical objects created for the GUI. This is useful for maniupalting % the figure later on (see bellow). %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Jean Daunizeau % $Id: spm_DisplayTimeSeries.m 6295 2015-01-02 16:09:24Z guillaume $ if ~exist('options','var') options = []; end % Get optional parameters if any) and set up defaults %========================================================================== if ~isempty(options) && isfield(options,'hp') hp = options.hp; else hp = figure; end if ~isempty(options) && isfield(options,'Fsample') Fsample = options.Fsample; else Fsample = 1; end if ~isempty(options) && isfield(options,'timeOnset') timeOnset = options.timeOnset; else timeOnset = 0; end if ~isempty(options) && isfield(options,'events') events = options.events; else events = []; end if ~isempty(options) && isfield(options,'transpose') transpose = options.transpose; else transpose = 0; end if ~isempty(options) && isfield(options,'M') M = options.M; nc = size(M,1); if ~transpose nt = size(y,1); else nt = size(y,2); end else M = 1; if ~transpose [nt,nc] = size(y); else [nc,nt] = size(y); end end if ~isempty(options) && isfield(options,'bad') bad = options.bad; else bad = zeros(nc,1); end if ~isempty(options) && isfield(options,'minSizeWindow') minSizeWindow = options.minSizeWindow; else minSizeWindow = 200; end minSizeWindow = min([minSizeWindow,.5*nt]); if ~isempty(options) && isfield(options,'maxSizeWindow') maxSizeWindow = options.maxSizeWindow; else maxSizeWindow = 5000; end maxSizeWindow = min([maxSizeWindow,nt]); if ~isempty(options) && isfield(options,'ds') ds = options.ds; else ds = 1e4; end if ~isempty(options) && isfield(options,'callback') callback = options.callback; else callback = []; end if ~isempty(options) && isfield(options,'tag') tag = options.tag; else tag = ''; end if ~isempty(options) && isfield(options,'pos1') pos1 = options.pos1; else pos1 = [0.13 0.32 0.775 0.655]; end if ~isempty(options) && isfield(options,'pos2') pos2 = options.pos2; else pos2 = [0.13 0.12 0.775 0.15]; end if ~isempty(options) && isfield(options,'pos3') pos3 = options.pos3; else pos3 = [0.10 0.02 0.84 0.05]; end if ~isempty(options) && isfield(options,'itw') itw = options.itw; else itw = 1:minSizeWindow; end if ~isempty(options) && isfield(options,'ytick') ytick = options.ytick; else ytick = []; end if ~isempty(options) && isfield(options,'yticklabel') yticklabel = options.yticklabel; else yticklabel = []; end if ~isempty(options) && isfield(options,'offset') offset = options.offset(:); else offset = zeros(nc,1); end if ~isempty(options) && isfield(options,'minY') minY = options.minY; else yo = y + repmat(offset',nt,1); minY = min(yo(:)); end if ~isempty(options) && isfield(options,'maxY') maxY = options.maxY; else try maxY = max(yo(:)); catch yo = y + repmat(offset',nt,1); maxY = max(yo(:)); end end % Initialize display %========================================================================== % Get basic info about data ud.y = y; ud.v.bad = bad; ud.v.transpose = transpose; ud.v.nc = nc; ud.v.nt = nt; ud.v.ds = ds; ud.v.M = M; ud.v.mi = minY; ud.v.ma = maxY; ud.v.minSizeWindow = minSizeWindow; ud.v.maxSizeWindow = maxSizeWindow; ud.v.offset = offset; ud.v.et = events; ud.v.handles.hp = hp; ud.callback = callback; % Get downsampled global power decim = max([1,round(nt./1000)]); ud.v.ind = 1:decim:nt; if ~ud.v.transpose My = ud.v.M*y(ud.v.ind,:)'; ud.v.y2 = sum(My.^2,1); else My = ud.v.M*y(:,ud.v.ind); ud.v.y2 = sum(My.^2,1); end mi = min(ud.v.y2); ma = max(ud.v.y2); if mi == 0 && ma == 0 mi = -eps; ma = eps; else mi = mi - mi.*1e-3; ma = ma + ma.*1e-3; end % Create axes if spm_check_version('matlab','8.4') >= 0 dispmode = {'SortMethod','childorder'}; else dispmode = {'drawmode','fast'}; end ud.v.handles.axes = axes('parent',hp,... 'units','normalized',... 'position',pos1,... 'xtick',[],'xticklabel',[],... 'ytick',ytick,'yticklabel',yticklabel,... 'tag',tag,... 'nextplot','add',... dispmode{:}); ud.v.handles.gpa = axes('parent',hp,... 'units','normalized',... 'position',pos2,... 'tag',tag,'nextplot','add','ytick',[],... 'box','off',... 'color','none',... 'ygrid','off',... dispmode{:}); % Initialize time series col = colormap(lines); col = col(1:7,:); ud.v.handles.hp = zeros(nc,1); if ~ud.v.transpose My = ud.v.M*y(itw,:)'; else My = ud.v.M*y(:,itw); end for i=1:ud.v.nc ii = mod(i+7,7)+1; ud.v.handles.hp(i) = plot(ud.v.handles.axes,... itw,My(i,:)+offset(i),... 'color',col(ii,:)); if ud.v.bad(i) set(ud.v.handles.hp(i),'linestyle',':') end end ud.v.handles.gpp = plot(ud.v.handles.gpa,... ud.v.ind,ud.v.y2,... 'color',0.5*[1 1 1]); % Add events if any if ~isempty(ud.v.et) for i=1:length(ud.v.et) ud.v.et(i).col = mod(ud.v.et(i).type+7,7)+1; ud.v.et(i).hp = plot(ud.v.handles.axes,... ud.v.et(i).time.*[1 1],... [ud.v.mi,ud.v.ma],... 'color',col(ud.v.et(i).col,:),... 'userdata',i,... 'ButtonDownFcn','set(gco,''selected'',''on'')',... 'Clipping','on'); end end % Add display scrolling patch and borders ud.v.handles.pa = patch('parent',ud.v.handles.gpa,... 'xdata',[itw(1) itw(end) itw(end) itw(1)],... 'ydata',[mi mi ma ma],... 'edgecolor','none',... 'facecolor',[.5 .5 .5],... 'facealpha',0.5,... 'ButtonDownFcn',@doPatch,... 'interruptible','off'); ud.v.handles.lb = plot(ud.v.handles.gpa,... [itw(1) itw(1)],[mi ma],... 'k',... 'buttondownfcn',@doLb,... 'interruptible','off'); ud.v.handles.rb = plot(ud.v.handles.gpa,... [itw(end) itw(end)],[mi ma],... 'k',... 'buttondownfcn',@doRb,... 'interruptible','off'); % Adapt axes properties to display tgrid = (0:(nt-1))./Fsample + timeOnset; set(ud.v.handles.gpa,... 'ylim',[mi ma],... 'xlim',[1 nt]); xtick = floor(get(ud.v.handles.gpa,'xtick')); xtick(xtick==0) = 1; a = cell(length(xtick),1); for i=1:length(xtick) a{i} = num2str(tgrid(xtick(i)),2); end set(ud.v.handles.gpa,... 'xtick',xtick,... 'xticklabel',a); set(ud.v.handles.axes,... 'xlim',[itw(1) itw(end)],... 'ylim',[ud.v.mi ud.v.ma]); % Add temporal slider ud.v.handles.hslider = uicontrol('parent',hp,... 'style','slider',... 'units','normalized',... 'Position',pos3,... 'min',max([1,minSizeWindow/2-1]),... 'max',min([ud.v.nt,ud.v.nt-minSizeWindow/2+1]),... 'value',mean([itw(1),itw(end)]),... 'sliderstep',.1*[minSizeWindow/(ud.v.nt-1) 4*minSizeWindow/(ud.v.nt-1)],... 'callback',@doScroll,... 'userdata',ud.v.handles.gpa,... 'BusyAction','cancel',... 'Interruptible','on',... 'tooltipstring','Scroll data',... 'tag',tag); % Store required info in global power axes set(ud.v.handles.gpa,'userdata',ud) axes(ud.v.handles.gpa) % Subfunctions %========================================================================== function doScroll(src,evt) gpa = get(src,'userdata'); xm = get(src,'value'); ud = get(gpa,'userdata'); sw = diff(get(ud.v.handles.axes,'xlim')); xl = xm + [-sw./2,+sw./2]; if xl(1) >= 1 && xl(2) <= ud.v.nt xl = round(xl); if ~ud.v.transpose My = ud.v.M*ud.y(xl(1):xl(2),:)'; else My = ud.v.M*ud.y(:,xl(1):xl(2)); end doPlot(My,xl,ud.v,1) end if ~isempty(ud.callback) try eval(ud.callback);end end function doPatch(src,evt) hf = gcf; set(hf,'WindowButtonDownFcn',@doPatch,... 'WindowButtonUpFcn',@UndoPatch,... 'WindowButtonMotionFcn',{@movePatch},... 'Pointer','fleur') function doLb(src,evt) hf = gcf; set(hf,'WindowButtonDownFcn',@doLb,... 'WindowButtonUpFcn',@UndoPatch,... 'WindowButtonMotionFcn',{@moveLb},... 'Pointer','left') function doRb(src,evt) hf = gcf; set(hf,'WindowButtonDownFcn',@doRb,... 'WindowButtonUpFcn',@UndoPatch,... 'WindowButtonMotionFcn',{@moveRb},... 'Pointer','right') function UndoPatch(src,evt) ha = gca; hf = gcf; set(hf,'WindowButtonMotionFcn',[],... 'WindowButtonDownFcn',[],... 'WindowButtonUpFcn',[],... 'Pointer','arrow') ud = get(ha,'userdata'); xw = get(ud.v.handles.axes,'xlim'); if ~ud.v.transpose My = ud.v.M*ud.y(xw(1):xw(2),:)'; else My = ud.v.M*ud.y(:,xw(1):xw(2)); end doPlot(My,xw,ud.v,1); if ~isempty(ud.callback) try eval(ud.callback);end end function movePatch(src,evt) ha = gca; cp = get(ha,'CurrentPoint'); ud = get(ha,'userdata'); xm = cp(1); sw = diff(get(ud.v.handles.axes,'xlim')); xl = xm + [-sw./2,+sw./2]; if xl(1) >= 1 && xl(2) <= ud.v.nt xl = round(xl); decim = max([1,round(sw./ud.v.ds)]); if ~ud.v.transpose My = ud.v.M*ud.y(xl(1):decim:xl(2),:)'; else My = ud.v.M*ud.y(:,xl(1):decim:xl(2)); end doPlot(My,xl,ud.v,decim) elseif xl(2) > ud.v.nt xl = [ud.v.nt-sw,ud.v.nt]; decim = max([1,round(sw./ud.v.ds)]); if ~ud.v.transpose My = ud.v.M*ud.y(xl(1):decim:xl(2),:)'; else My = ud.v.M*ud.y(:,xl(1):decim:xl(2)); end doPlot(My,xl,ud.v,decim) elseif xl(1) < 1 xl = [1,sw+1]; decim = max([1,round(sw./ud.v.ds)]); if ~ud.v.transpose My = ud.v.M*ud.y(xl(1):decim:xl(2),:)'; else My = ud.v.M*ud.y(:,xl(1):decim:xl(2)); end doPlot(My,xl,ud.v,decim) end function moveLb(src,evt) ha = gca; cp = get(ha,'CurrentPoint'); cp = max([cp(1),1]); ud = get(ha,'userdata'); xw = get(ud.v.handles.pa,'xdata'); if cp(1) <= xw(2) - ud.v.minSizeWindow ... && diff([cp(1) xw(2)]) <= ud.v.maxSizeWindow cp = [round(cp(1)) xw(2)]; sw = diff(cp); decim = max([1,round(sw./ud.v.ds)]); if ~ud.v.transpose My = ud.v.M*ud.y(cp(1):decim:cp(2),:)'; else My = ud.v.M*ud.y(:,cp(1):decim:cp(2)); end doPlot(My,cp,ud.v,decim) end function moveRb(src,evt) ha = gca; cp = get(ha,'CurrentPoint'); ud = get(ha,'userdata'); cp = min([cp(1),ud.v.ind(end)]); xw = get(ud.v.handles.pa,'xdata'); if xw(1) <= cp(1) - ud.v.minSizeWindow ... && diff([xw(1) cp(1)]) <= ud.v.maxSizeWindow cp = [xw(1) round(cp(1))]; sw = diff(cp); decim = max([1,round(sw./ud.v.ds)]); if ~ud.v.transpose My = ud.v.M*ud.y(cp(1):decim:cp(2),:)'; else My = ud.v.M*ud.y(:,cp(1):decim:cp(2)); end doPlot(My,cp,ud.v,decim) end function doPlot(y,xw,v,decim) for i=1:v.nc set(v.handles.hp(i),... 'xdata',xw(1):decim:xw(2),... 'ydata',y(i,:)+v.offset(i)) end set(v.handles.axes,... 'ylim',[v.mi v.ma],'xlim',xw); set(v.handles.pa,... 'xdata',[xw,fliplr(xw)]); set(v.handles.lb,... 'xdata',[xw(1) xw(1)]); set(v.handles.rb,... 'xdata',[xw(2) xw(2)]); sw = diff(xw); set(v.handles.hslider,... 'value',mean(xw),... 'min',max([1,sw/2-1]),... 'max',max([v.nt,v.nt-sw/2+1]),... 'sliderstep',.1*[sw/(v.nt-1) 4*sw/(v.nt-1)]);
github
philippboehmsturm/antx-master
loadxml.m
.m
antx-master/xspm8/loadxml.m
4,985
utf_8
9429ec4334b8abc0ff9910e7c9019fdc
function varargout = loadxml(filename,varargin) %LOADXML Load workspace variables from disk (XML file). % LOADXML FILENAME retrieves all variables from a file given a full % pathname or a MATLABPATH relative partial pathname (see PARTIALPATH). % If FILENAME has no extension LOAD looks for FILENAME and FILENAME.xml % and treats it as an XML file. % % LOAD, by itself, uses the XML file named 'matlab.xml'. It is an error % if 'matlab.xml' is not found. % % LOAD FILENAME X loads only X. % LOAD FILENAME X Y Z ... loads just the specified variables. The % wildcard '*' loads variables that match a pattern. % Requested variables from FILENAME are created in the workspace. % % S = LOAD(...) returns the contents of FILENAME in variable S. S is % a struct containing fields matching the variables retrieved. % % Use the functional form of LOAD, such as LOAD('filename'), when the % file name is stored in a string, when an output argument is requested, % or if FILENAME contains spaces. % % See also LOAD, XML2MAT, XMLTREE. % Copyright 2003 Guillaume Flandin. % $Revision: 4393 $ $Date: 2003/07/10 13:50 $ % $Id: loadxml.m 4393 2011-07-18 14:52:32Z guillaume $ if nargin == 0 filename = 'matlab.xml'; fprintf('\nLoading from: %s\n\n',filename); end if ~ischar(filename) error('[LOADXML] Argument must contain a string.'); end if ~exist(filename,'file') filename = [filename '.xml']; if ~exist(filename,'file') error(sprintf(... '[LOADXML] Unable to read file %s: file does not exist',filename)); end end if nargout > 1, error('[LOADXML] Too many output arguments.'); end t = xmltree(filename); uid = children(t,root(t)); if nargout == 1 % varargout{1} = struct([]); % Matlab 6.0 and above end flagfirstvar = 1; for i=1:length(uid) if strcmp(get(t,uid(i),'type'),'element') vname = get(t,uid(i),'name'); % TODO % No need to parse the whole tree if isempty(varargin) | ismember(varargin,vname) v = xml_create_var(t,uid(i)); if nargout == 1 if flagfirstvar varargout{1} = struct(vname,v); flagfirstvar = 0; else varargout{1} = setfield(varargout{1},vname,v); end else assignin('caller',vname,v); end end end end %======================================================================= function v = xml_create_var(t,uid) type = attributes(t,'get',uid,'type'); sz = str2num(attributes(t,'get',uid,'size')); switch type case 'double' v = str2num(get(t,children(t,uid),'value')); if ~isempty(sz) v = reshape(v,sz); end case 'sparse' u = children(t,uid); for k=1:length(u) if strcmp(get(t,u(k),'name'),'row') i = str2num(get(t,children(t,u(k)),'value')); elseif strcmp(get(t,u(k),'name'),'col') j = str2num(get(t,children(t,u(k)),'value')); elseif strcmp(get(t,u(k),'name'),'val') s = str2num(get(t,children(t,u(k)),'value')); end end v = sparse(i,j,s,sz(1),sz(2)); case 'struct' u = children(t,uid); v = []; % works with Matlab < 6.0 for i=1:length(u) s(1).type = '()'; s(1).subs = {str2num(attributes(t,'get',u(i),'index'))}; s(2).type = '.'; s(2).subs = get(t,u(i),'name'); v = subsasgn(v,s,xml_create_var(t,u(i))); end if isempty(u), v = struct([]); % Need Matlab 6.0 and above end case 'cell' v = cell(sz); u = children(t,uid); for i=1:length(u) v{str2num(attributes(t,'get',u(i),'index'))} = ... xml_create_var(t,u(i)); end case 'char' if isempty(children(t,uid)) v = ''; else v = get(t,children(t,uid),'value'); end try % this can fail if blank spaces are lost or entity escaping if ~isempty(sz) if sz(1) > 1 v = reshape(v,fliplr(sz))'; % row-wise order else v = reshape(v,sz); end end end case {'int8','uint8','int16','uint16','int32','uint32'} % TODO % Handle integer formats warning(sprintf('%s matrices not handled.',type)); v = 0; otherwise try, v = feval(class(v),get(t,uid,'value')); catch, warning(sprintf(... '[LOADXML] Cannot convert from XML to %s.',type)); end end
github
philippboehmsturm/antx-master
spm_robust_average.m
.m
antx-master/xspm8/spm_robust_average.m
3,381
utf_8
8a8769e0ba80b51f950c5472f6f79613
function [Y,W] = spm_robust_average(X, dim, ks) % Apply robust averaging routine to X sets % FORMAT [Y,W] = spm_robust_averaget(X, dim, ks) % X - data matrix to be averaged % dim - the dimension along which the function will work % ks - offset of the weighting function (default: 3) % % W - estimated weights %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % James Kilner % $Id: spm_robust_average.m 5204 2013-01-24 11:27:30Z vladimir $ if nargin < 3 || isempty(ks) ks = 3; end if nargin < 2 || isempty(dim) dim = 1; end %-Remember the original data size and size of the mean %-------------------------------------------------------------------------- origsize = size(X); morigsize = origsize; morigsize(dim) = 1; if length(origsize)<dim || origsize(dim) == 1 warning('There is only one replication in the data. Robust averaging cannot be done.'); Y = X; W = ones(size(X)); return; end %-Convert the data to repetitions x points matrix %-------------------------------------------------------------------------- if dim > 1 X = shiftdim(X, dim-1); end if length(origsize) > 2 X = reshape(X, size(X, 1), []); end %-Rescale the data %-------------------------------------------------------------------------- [X, scalefactor] = spm_cond_units(X); %-Actual robust averaging %-------------------------------------------------------------------------- ores=1; nres=10; n=0; W = zeros(size(X)); while max(abs(ores-nres))>sqrt(1E-8) ores=nres; n=n+1; if n==1 Y = nanmedian(X); else XX = X; XX(isnan(XX)) = 0; Y = sum(W.*XX)./sum(W); end if n > 200 warning('Robust averaging could not converge. Maximal number of iterations exceeded.'); break; end res = X-repmat(Y, size(X, 1), 1); mad = nanmedian(abs(res-repmat(nanmedian(res), size(res, 1), 1))); ind1 = find(mad==0); ind2 = find(mad~=0); W(:, ind1) = ~res(:, ind1); if ~isempty(ind2) res = res(:, ind2); mad = mad(ind2); res = res./repmat(mad, size(res, 1), 1); res = abs(res)-ks; res(res<0) = 0; nres = (sum(res(~isnan(res)).^2)); W(:, ind2) = (abs(res)<1) .* ((1 - res.^2).^2); W(W == 0) = eps; % This is to prevent appearance of NaNs when normalizing W(isnan(X)) = 0; W(X == 0 & ~repmat(all(X==0), size(X, 1), 1)) = 0; %Assuming X is a real measurement end end disp(['Robust averaging finished after ' num2str(n) ' iterations.']); %-Restore the average and weights to the original data dimensions %-------------------------------------------------------------------------- Y = Y./scalefactor; if length(origsize) > 2 Y = reshape(Y, circshift(morigsize, [1 -(dim-1)])); W = reshape(W, circshift(origsize, [1 -(dim-1)])); end if dim > 1 Y = shiftdim(Y, length(origsize)-dim+1); W = shiftdim(W, length(origsize)-dim+1); end %-Helper function %-------------------------------------------------------------------------- function Y = nanmedian(X) if ~any(any(isnan(X))) Y = median(X); else Y = zeros(1, size(X,2)); for i = 1:size(X, 2) Y(i) = median(X(~isnan(X(:, i)), i)); end end
github
philippboehmsturm/antx-master
spm_BMS_F_smpl.m
.m
antx-master/xspm8/spm_BMS_F_smpl.m
1,628
utf_8
ee07ac8baecef03c27abc7bbde7c2ebe
function [s_samp,s_bound] = spm_BMS_F_smpl (alpha,lme,alpha0) % Get sample and lower bound approx. for model evidence p(y|r) % in group BMS; see spm_BMS_F. % % FORMAT [s_samp,s_bound] = spm_BMS_F_smpl (alpha,lme,alpha0) % % REFERENCE: See appendix in % Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ % Bayesian Model Selection for Group Studies. NeuroImage (under review) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Will Penny % $Id: spm_BMS_F_smpl.m 2626 2009-01-20 16:30:08Z maria $ % prevent numerical problems max_val = log(realmax('double')); for i=1:size(lme,1), lme(i,:) = lme(i,:) - mean(lme(i,:)); for k = 1:size(lme,2), lme(i,k) = sign(lme(i,k)) * min(max_val,abs(lme(i,k))); end end % Number of samples per alpha bin (0.1) Nsamp = 1e3; % Sample from univariate gamma densities then normalise % (see Dirichlet entry in Wikipedia or Ferguson (1973) Ann. Stat. 1, % 209-230) Nk = length(alpha); for k = 1:Nk, alpha_samp(:,k) = spm_gamrnd(alpha(k),1,Nsamp,1); end Ni = size(lme,1); for i = 1:Ni, s_approx(i) = sum((alpha./sum(alpha)).*lme(i,:)); s(i) = 0; for n = 1:Nsamp, s(i) = s(i) + si_fun(alpha_samp(n,:),lme(i,:)); end s(i) = s(i)/Nsamp; end s_bound = sum(s_approx); s_samp = sum(s); return %========================================================================= function [si] = si_fun (alpha,lme) % Check a lower bound % FORMAT [si] = si_fun (alpha,lme) esi = sum((exp(lme).*alpha)/sum(alpha)); si = log(esi); return
github
philippboehmsturm/antx-master
spm_normalise.m
.m
antx-master/xspm8/spm_normalise.m
12,919
utf_8
716d6de42742658332dc1d1712f9738f
function params = spm_normalise(VG,VF,matname,VWG,VWF,flags) % Spatial (stereotactic) normalisation % % FORMAT params = spm_normalise(VG,VF,matname,VWG,VWF,flags) % VG - template handle(s) % VF - handle of image to estimate params from % matname - name of file to store deformation definitions % VWG - template weighting image % VWF - source weighting image % flags - flags. If any field is not passed, then defaults are assumed. % (defaults values are defined in spm_defaults.m) % smosrc - smoothing of source image (FWHM of Gaussian in mm). % smoref - smoothing of template image (defaults to 0). % regtype - regularisation type for affine registration % See spm_affreg.m % cutoff - Cutoff of the DCT bases. Lower values mean more % basis functions are used % nits - number of nonlinear iterations % reg - amount of regularisation % _________________________________________________________________________ % % This module spatially (stereotactically) normalises MRI, PET or SPECT % images into a standard space defined by some ideal model or template % image[s]. The template images supplied with SPM conform to the space % defined by the ICBM, NIH P-20 project, and approximate that of the % the space described in the atlas of Talairach and Tournoux (1988). % The transformation can also be applied to any other image that has % been coregistered with these scans. % % % Mechanism % Generally, the algorithms work by minimising the sum of squares % difference between the image which is to be normalised, and a linear % combination of one or more template images. For the least squares % registration to produce an unbiased estimate of the spatial % transformation, the image contrast in the templates (or linear % combination of templates) should be similar to that of the image from % which the spatial normalization is derived. The registration simply % searches for an optimum solution. If the starting estimates are not % good, then the optimum it finds may not find the global optimum. % % The first step of the normalization is to determine the optimum % 12-parameter affine transformation. Initially, the registration is % performed by matching the whole of the head (including the scalp) to % the template. Following this, the registration proceeded by only % matching the brains together, by appropriate weighting of the template % voxels. This is a completely automated procedure (that does not % require ``scalp editing'') that discounts the confounding effects of % skull and scalp differences. A Bayesian framework is used, such that % the registration searches for the solution that maximizes the a % posteriori probability of it being correct. i.e., it maximizes the % product of the likelihood function (derived from the residual squared % difference) and the prior function (which is based on the probability % of obtaining a particular set of zooms and shears). % % The affine registration is followed by estimating nonlinear deformations, % whereby the deformations are defined by a linear combination of three % dimensional discrete cosine transform (DCT) basis functions. % The parameters represent coefficients of the deformations in % three orthogonal directions. The matching involved simultaneously % minimizing the bending energies of the deformation fields and the % residual squared difference between the images and template(s). % % An option is provided for allowing weighting images (consisting of pixel % values between the range of zero to one) to be used for registering % abnormal or lesioned brains. These images should match the dimensions % of the image from which the parameters are estimated, and should contain % zeros corresponding to regions of abnormal tissue. % % % Uses % Primarily for stereotactic normalization to facilitate inter-subject % averaging and precise characterization of functional anatomy. It is % not necessary to spatially normalise the data (this is only a % pre-requisite for intersubject averaging or reporting in the % Talairach space). % % Inputs % The first input is the image which is to be normalised. This image % should be of the same modality (and MRI sequence etc) as the template % which is specified. The same spatial transformation can then be % applied to any other images of the same subject. These files should % conform to the SPM data format (See 'Data Format'). Many subjects can % be entered at once, and there is no restriction on image dimensions % or voxel size. % % Providing that the images have a correct voxel-to-world mapping, % which describes the spatial relationship between them, it is % possible to spatially normalise the images without having first % resliced them all into the same space. % % Default values of parameters pertaining to the extent and sampling of % the standard space can be changed, including the model or template % image[s]. % % % Outputs % The details of the transformations are displayed in the results window, % and the parameters are saved in the "*_sn.mat" file. % %__________________________________________________________________________ % Refs: % K.J. Friston, J. Ashburner, C.D. Frith, J.-B. Poline, % J.D. Heather, and R.S.J. Frackowiak % Spatial Registration and Normalization of Images. % Human Brain Mapping 2:165-189(1995) % % J. Ashburner, P. Neelin, D.L. Collins, A.C. Evans and K. J. Friston % Incorporating Prior Knowledge into Image Registration. % NeuroImage 6:344-352 (1997) % % J. Ashburner and K. J. Friston % Nonlinear Spatial Normalization using Basis Functions. % Human Brain Mapping 7(4):in press (1999) %__________________________________________________________________________ % Copyright (C) 2002-2011 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_normalise.m 4621 2012-01-13 11:12:40Z guillaume $ if nargin<2, error('Incorrect usage.'); end; if ischar(VF), VF = spm_vol(VF); end; if ischar(VG), VG = spm_vol(VG); end; if nargin<3, if nargout==0, [pth,nm,xt,vr] = spm_fileparts(deblank(VF(1).fname)); matname = fullfile(pth,[nm '_sn.mat']); else matname = ''; end; end; if nargin<4, VWG = ''; end; if nargin<5, VWF = ''; end; if ischar(VWG), VWG=spm_vol(VWG); end; if ischar(VWF), VWF=spm_vol(VWF); end; def_flags = spm_get_defaults('normalise.estimate'); def_flags.graphics = 1; if nargin < 6, flags = def_flags; else fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags.(fnms{i}) = def_flags.(fnms{i}); end; end; end; fprintf('Smoothing by %g & %gmm..\n', flags.smoref, flags.smosrc); VF1 = spm_smoothto8bit(VF,flags.smosrc); % Rescale images so that globals are better conditioned VF1.pinfo(1:2,:) = VF1.pinfo(1:2,:)/spm_global(VF1); for i=1:numel(VG), VG1(i) = spm_smoothto8bit(VG(i),flags.smoref); VG1(i).pinfo(1:2,:) = VG1(i).pinfo(1:2,:)/spm_global(VG(i)); end; % Affine Normalisation %-------------------------------------------------------------------------- fprintf('Coarse Affine Registration..\n'); aflags = struct('sep',max(flags.smoref,flags.smosrc), 'regtype',flags.regtype,... 'WG',[],'WF',[],'globnorm',0); aflags.sep = max(aflags.sep,max(sqrt(sum(VG(1).mat(1:3,1:3).^2)))); aflags.sep = max(aflags.sep,max(sqrt(sum(VF(1).mat(1:3,1:3).^2)))); M = eye(4); %spm_matrix(prms'); spm_plot_convergence('Init','Affine Registration','Mean squared difference','Iteration'); [M,scal] = spm_affreg(VG1, VF1, aflags, M); fprintf('Fine Affine Registration..\n'); aflags.WG = VWG; aflags.WF = VWF; aflags.sep = aflags.sep/2; [M,scal] = spm_affreg(VG1, VF1, aflags, M,scal); Affine = inv(VG(1).mat\M*VF1(1).mat); spm_plot_convergence('Clear'); % Basis function Normalisation %-------------------------------------------------------------------------- fov = VF1(1).dim(1:3).*sqrt(sum(VF1(1).mat(1:3,1:3).^2)); if any(fov<15*flags.smosrc/2 & VF1(1).dim(1:3)<15), fprintf('Field of view too small for nonlinear registration\n'); Tr = []; elseif isfinite(flags.cutoff) && flags.nits && ~isinf(flags.reg), fprintf('3D CT Norm...\n'); Tr = snbasis(VG1,VF1,VWG,VWF,Affine,... max(flags.smoref,flags.smosrc),flags.cutoff,flags.nits,flags.reg); else Tr = []; end; clear VF1 VG1 flags.version = 'spm_normalise.m 2.12 04/11/26'; flags.date = date; params = struct('Affine',Affine, 'Tr',Tr, 'VF',VF, 'VG',VG, 'flags',flags); if flags.graphics, spm_normalise_disp(params,VF); end; % Remove dat fields before saving %-------------------------------------------------------------------------- if isfield(VF,'dat'), VF = rmfield(VF,'dat'); end; if isfield(VG,'dat'), VG = rmfield(VG,'dat'); end; if ~isempty(matname), fprintf('Saving Parameters..\n'); if spm_check_version('matlab','7') >= 0, save(matname,'-V6','Affine','Tr','VF','VG','flags'); else save(matname,'Affine','Tr','VF','VG','flags'); end; end; return; %__________________________________________________________________________ %__________________________________________________________________________ function Tr = snbasis(VG,VF,VWG,VWF,Affine,fwhm,cutoff,nits,reg) % 3D Basis Function Normalization % FORMAT Tr = snbasis(VG,VF,VWG,VWF,Affine,fwhm,cutoff,nits,reg) % VG - Template volumes (see spm_vol). % VF - Volume to normalise. % VWG - weighting Volume - for template. % VWF - weighting Volume - for object. % Affine - A 4x4 transformation (in voxel space). % fwhm - smoothness of images. % cutoff - frequency cutoff of basis functions. % nits - number of iterations. % reg - regularisation. % Tr - Discrete cosine transform of the warps in X, Y & Z. % % snbasis performs a spatial normalization based upon a 3D % discrete cosine transform. % %__________________________________________________________________________ fwhm = [fwhm 30]; % Number of basis functions for x, y & z %-------------------------------------------------------------------------- tmp = sqrt(sum(VG(1).mat(1:3,1:3).^2)); k = max(round((VG(1).dim(1:3).*tmp)/cutoff),[1 1 1]); % Scaling is to improve stability. %-------------------------------------------------------------------------- stabilise = 8; basX = spm_dctmtx(VG(1).dim(1),k(1))*stabilise; basY = spm_dctmtx(VG(1).dim(2),k(2))*stabilise; basZ = spm_dctmtx(VG(1).dim(3),k(3))*stabilise; dbasX = spm_dctmtx(VG(1).dim(1),k(1),'diff')*stabilise; dbasY = spm_dctmtx(VG(1).dim(2),k(2),'diff')*stabilise; dbasZ = spm_dctmtx(VG(1).dim(3),k(3),'diff')*stabilise; vx1 = sqrt(sum(VG(1).mat(1:3,1:3).^2)); vx2 = vx1; kx = (pi*((1:k(1))'-1)/VG(1).dim(1)/vx1(1)).^2; ox=ones(k(1),1); ky = (pi*((1:k(2))'-1)/VG(1).dim(2)/vx1(2)).^2; oy=ones(k(2),1); kz = (pi*((1:k(3))'-1)/VG(1).dim(3)/vx1(3)).^2; oz=ones(k(3),1); if 1, % BENDING ENERGY REGULARIZATION % Estimate a suitable sparse diagonal inverse covariance matrix for % the parameters (IC0). %------------------------------------------------------------------ IC0 = (1*kron(kz.^2,kron(ky.^0,kx.^0)) +... 1*kron(kz.^0,kron(ky.^2,kx.^0)) +... 1*kron(kz.^0,kron(ky.^0,kx.^2)) +... 2*kron(kz.^1,kron(ky.^1,kx.^0)) +... 2*kron(kz.^1,kron(ky.^0,kx.^1)) +... 2*kron(kz.^0,kron(ky.^1,kx.^1)) ); IC0 = reg*IC0*stabilise^6; IC0 = [IC0*vx2(1)^4 ; IC0*vx2(2)^4 ; IC0*vx2(3)^4 ; zeros(prod(size(VG))*4,1)]; IC0 = sparse(1:length(IC0),1:length(IC0),IC0,length(IC0),length(IC0)); else % MEMBRANE ENERGY (LAPLACIAN) REGULARIZATION %------------------------------------------------------------------ IC0 = kron(kron(oz,oy),kx) + kron(kron(oz,ky),ox) + kron(kron(kz,oy),ox); IC0 = reg*IC0*stabilise^6; IC0 = [IC0*vx2(1)^2 ; IC0*vx2(2)^2 ; IC0*vx2(3)^2 ; zeros(prod(size(VG))*4,1)]; IC0 = sparse(1:length(IC0),1:length(IC0),IC0,length(IC0),length(IC0)); end; % Generate starting estimates. %-------------------------------------------------------------------------- s1 = 3*prod(k); s2 = s1 + numel(VG)*4; T = zeros(s2,1); T(s1+(1:4:numel(VG)*4)) = 1; pVar = Inf; for iter=1:nits, fprintf(' iteration %2d: ', iter); [Alpha,Beta,Var,fw] = spm_brainwarp(VG,VF,Affine,basX,basY,basZ,dbasX,dbasY,dbasZ,T,fwhm,VWG, VWF); if Var>pVar, scal = pVar/Var ; Var = pVar; else scal = 1; end; pVar = Var; T = (Alpha + IC0*scal)\(Alpha*T + Beta); fwhm(2) = min([fw fwhm(2)]); fprintf(' FWHM = %6.4g Var = %g\n', fw,Var); end; % Values of the 3D-DCT %-------------------------------------------------------------------------- Tr = reshape(T(1:s1),[k 3]) * stabilise.^3; return;
github
philippboehmsturm/antx-master
spm_eeg_ft2spm.m
.m
antx-master/xspm8/spm_eeg_ft2spm.m
6,129
utf_8
a5369fdb03fab87d6f33d7a88c8bbac1
function D = spm_eeg_ft2spm(ftdata, filename) % Converter from Fieldtrip (http://www.ru.nl/fcdonders/fieldtrip/) % data structures to SPM8 file format %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: spm_eeg_ft2spm.m 4038 2010-08-10 10:39:00Z vladimir $ isTF = 0; % If raw format if iscell(ftdata.time) if length(ftdata.time)>1 % Initial checks if any(diff(cellfun('length', ftdata.time))~=0) error('SPM can only handle data with equal trial lengths.'); else times=cell2mat(ftdata.time(:)); if any(diff(times(:, 1))~=0) || any(diff(times(:, end))~=0) error('SPM can only handle data the same trial borders.'); end end end Ntrials=length(ftdata.trial); Nchannels = size(ftdata.trial{1},1); Nsamples = size(ftdata.trial{1},2); data = zeros(Nchannels, Nsamples, Ntrials); for n=1:Ntrials data(:,:,n) = ftdata.trial{n}; end ftdata.time = ftdata.time{1}; else Nchannels = numel(ftdata.label); Nsamples = length(ftdata.time); rptind=strmatch('rpt', tokenize(ftdata.dimord, '_')); if isempty(rptind) rptind=strmatch('subj', tokenize(ftdata.dimord, '_')); end timeind=strmatch('time', tokenize(ftdata.dimord, '_')); chanind=strmatch('chan', tokenize(ftdata.dimord, '_')); if any(ismember({'trial', 'individual', 'avg'}, fieldnames(ftdata) )) % timelockanalysis if ~isempty(rptind) if isfield(ftdata, 'trial') Ntrials = size(ftdata.trial, rptind); data =permute(ftdata.trial, [chanind, timeind, rptind]); else Ntrials = size(ftdata.individual, rptind); data =permute(ftdata.individual, [chanind, timeind, rptind]); end else Ntrials = 1; data =permute(ftdata.avg, [chanind, timeind]); end elseif isfield(ftdata, 'powspctrm') isTF = 1; Nfrequencies = numel(ftdata.freq); freqind = strmatch('freq', tokenize(ftdata.dimord, '_')); if ~isempty(rptind) Ntrials = size(ftdata.powspctrm, rptind); data = permute(ftdata.powspctrm, [chanind, freqind, timeind, rptind]); else Ntrials = 1; data = permute(ftdata.powspctrm, [chanind, freqind, timeind]); end end end %--------- Start making the header D = []; % sampling rate in Hz if isfield(ftdata, 'fsample') D.Fsample = ftdata.fsample; else D.Fsample = 1./mean(diff(ftdata.time)); end D.timeOnset = ftdata.time(1); % Number of time bins in peri-stimulus time D.Nsamples = Nsamples; % Names of channels in order of the data D.channels = struct('label', ftdata.label); D.trials = repmat(struct('label', {'Undefined'}), 1, Ntrials); [pathname, fname] = fileparts(filename); D.path = pathname; D.fname = [fname '.mat']; D.data.fnamedat = [fname '.dat']; D.data.datatype = 'float32-le'; if ~isTF if Ntrials == 1 datafile = file_array(fullfile(D.path, D.data.fnamedat), [Nchannels Nsamples], D.data.datatype); % physically initialise file datafile(end,end) = 0; datafile(:, :) = data; else datafile = file_array(fullfile(D.path, D.data.fnamedat), [Nchannels Nsamples Ntrials], D.data.datatype); % physically initialise file datafile(end,end) = 0; datafile(:, :, :) = data; end else if Ntrials == 1 datafile = file_array(fullfile(D.path, D.data.fnamedat), [Nchannels Nfrequencies Nsamples], D.data.datatype); % physically initialise file datafile(end,end) = 0; datafile(:, :, :) = data; else datafile = file_array(fullfile(D.path, D.data.fnamedat), [Nchannels Nfrequencies Nsamples Ntrials], D.data.datatype); % physically initialise file datafile(end,end) = 0; datafile(:, :, :, :) = data; end D.transform.ID = 'TF'; D.transform.frequencies = ftdata.freq; end D.data.y = datafile; D = meeg(D); if isfield(ftdata, 'hdr') % Uses fileio function to get the information about channel types stored in % the original header. This is now mainly useful for Neuromag support but might % have other functions in the future. origchantypes = ft_chantype(ftdata.hdr); [sel1, sel2] = spm_match_str(D.chanlabels, ftdata.hdr.label); origchantypes = origchantypes(sel2); if length(strmatch('unknown', origchantypes, 'exact')) ~= numel(origchantypes) D.origchantypes = struct([]); D.origchantypes(1).label = ftdata.hdr.label(sel2); D.origchantypes(1).type = origchantypes; end end % Set channel types to default S1 = []; S1.task = 'defaulttype'; S1.D = D; S1.updatehistory = 0; D = spm_eeg_prep(S1); if Ntrials == 1 D = type(D, 'continuous'); else D = type(D, 'single'); end if isfield(ftdata, 'hdr') && isfield(ftdata.hdr, 'grad') D = sensors(D, 'MEG', ft_convert_units(ftdata.hdr.grad, 'mm')); S = []; S.task = 'project3D'; S.modality = 'MEG'; S.updatehistory = 0; S.D = D; D = spm_eeg_prep(S); end [ok D] = check(D); save(D); function [tok] = tokenize(str, sep, rep) % TOKENIZE cuts a string into pieces, returning a cell array % % Use as % t = tokenize(str, sep) % t = tokenize(str, sep, rep) % where str is a string and sep is the separator at which you want % to cut it into pieces. % % Using the optional boolean flag rep you can specify whether repeated % seperator characters should be squeezed together (e.g. multiple % spaces between two words). The default is rep=1, i.e. repeated % seperators are treated as one. % Copyright (C) 2003-2006, Robert Oostenveld tok = {}; f = find(str==sep); f = [0, f, length(str)+1]; for i=1:(length(f)-1) tok{i} = str((f(i)+1):(f(i+1)-1)); end if nargin<3 || rep % remove empty cells, which occur if the separator is repeated (e.g. multiple spaces) tok(find(cellfun('isempty', tok)))=[]; end
github
philippboehmsturm/antx-master
spm_pf.m
.m
antx-master/xspm8/spm_pf.m
6,768
utf_8
7a122bb3a5c25e63f4470b6ba52cdb54
function [qx,qP,qD,xhist] = spm_pf(M,y,U) % Particle Filtering for dynamic models % FORMAT [qx,qP,qD,xhist] = spm_pf(M,y) % M - model specification structure % y - output or data (N x T) % U - exogenous input % % M(1).x % initial states % M(1).f = inline(f,'x','v','P') % state equation % M(1).g = inline(g,'x','v','P') % observer equation % M(1).pE % parameters % M(1).V % observation noise precision % % M(2).v % initial process noise % M(2).V % process noise precision % % qx - conditional expectation of states % qP - {1 x T} conditional covariance of states % qD - full sample %__________________________________________________________________________ % See notes at the end of this script for details and a demo. This routine % is based on: % % var der Merwe R, Doucet A, de Freitas N and Wan E (2000). The % unscented particle filter. Technical Report CUED/F-INFENG/TR 380 %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_pf.m 1143 2008-02-07 19:33:33Z spm $ % check model specification %-------------------------------------------------------------------------- M = spm_DEM_M_set(M); dt = M(1).E.dt; if length(M) ~=2 errordlg('spm_pf requires a two-level model') return end % INITIALISATION: %========================================================================== T = length(y); % number of time points n = M(2).l; % number of innovations N = 200; % number of particles. % precision of measurement noise %-------------------------------------------------------------------------- R = M(1).V; for i = 1:length(M(1).Q) R = R + M(1).Q{i}*exp(M(1).h(i)); end P = M(1).pE; % parameters Q = M(2).V.^-.5; % root covariance of innovations v = kron(ones(1,N),M(2).v); % innovations x = kron(ones(1,N),M(1).x); % hidden states v = v + 128*Q*randn(size(v)); % inputs %-------------------------------------------------------------------------- if nargin < 3 U = sparse(n,T); end for t = 1:T % PREDICTION STEP: with the (8x) transition prior as proposal %---------------------------------------------------------------------- for i = 1:N v(:,i) = 8*Q*randn(n,1) + U(:,t); f = M(1).f(x(:,i),v(:,i),P); dfdx = spm_diff(M(1).f,x(:,i),v(:,i),P,1); xPred(:,i) = x(:,i) + spm_dx(dfdx,f,dt); end % EVALUATE IMPORTANCE WEIGHTS: and normalise %---------------------------------------------------------------------- for i = 1:N yPred = M(1).g(xPred(:,i),v(:,i),P); ePred = yPred - y(:,t); w(i) = ePred'*R*ePred; end w = w - min(w); w = exp(-w/2); w = w/sum(w); % SELECTION STEP: multinomial resampling. %---------------------------------------------------------------------- x = xPred(:,multinomial(1:N,w)); % report and record moments %---------------------------------------------------------------------- qx(:,t) = mean(x,2); qP{t} = cov(x'); qX(:,t) = x(:); fprintf('PF: time-step = %i : %i\n',t,T); end % sample density %========================================================================== if nargout > 3 xhist = linspace(min(qX(:)),max(qX(:)),32); for i = 1:T q = hist(qX(:,i),xhist); qD(:,i) = q(:); end end return function I = multinomial(inIndex,q); %========================================================================== % PURPOSE : Performs the resampling stage of the SIR % in order(number of samples) steps. % INPUTS : - inIndex = Input particle indices. % - q = Normalised importance ratios. % OUTPUTS : - I = Resampled indices. % AUTHORS : Arnaud Doucet and Nando de Freitas % MULTINOMIAL SAMPLING: % generate S ordered random variables uniformly distributed in [0,1] % high speed Niclas Bergman Procedure %-------------------------------------------------------------------------- q = q(:); S = length(q); % S = Number of particles. N_babies = zeros(1,S); cumDist = cumsum(q'); u = fliplr(cumprod(rand(1,S).^(1./(S:-1:1)))); j = 1; for i = 1:S while (u(1,i) > cumDist(1,j)) j = j + 1; end N_babies(1,j) = N_babies(1,j) + 1; end; % COPY RESAMPLED TRAJECTORIES: %-------------------------------------------------------------------------- index = 1; for i = 1:S if (N_babies(1,i)>0) for j=index:index+N_babies(1,i)-1 I(j) = inIndex(i); end; end; index = index + N_babies(1,i); end return %========================================================================== % notes and demo: %========================================================================== % The code below generates a nonlinear, non-Gaussian problem (S) comprising % a model S.M and data S.Y (c.f. van der Merwe et al 2000)) % % The model is f(x) = dxdt % = 1 + sin(0.04*pi*t) - log(2)*x + n % y = g(x) % = (x.^2)/5 : if t < 30 % -2 + x/2 : otherwise % i.e. the output nonlinearity becomes linear after 30 time steps. In this % implementation time is modelled as an auxiliary state variable. n is % the process noise, which is modelled as a log-normal variate. e is % Gaussian observation noise. % model specification %-------------------------------------------------------------------------- f = '[1; (1 + sin(P(2)*pi*x(1)) - P(1)*x(2) + exp(v))]'; g = '(x(1) > 30)*(-2 + x(2)/2) + ~(x(1) > 30)*(x(2).^2)/5'; M(1).x = [1; 1]; % initial states M(1).f = inline(f,'x','v','P'); % state equation M(1).g = inline(g,'x','v','P'); % observer equation M(1).pE = [log(2) 0.04]; % parameters M(1).V = exp(4); % observation noise precision M(2).v = 0; % initial process log(noise) M(2).V = 2.4; % process log(noise) precision % generate data (output) %-------------------------------------------------------------------------- T = 60; % number of time points S = spm_DEM_generate(M,T); % Particle filtering %-------------------------------------------------------------------------- pf_x = spm_pf(M,S.Y); % plot results %-------------------------------------------------------------------------- x = S.pU.x{1}; plot([1:T],x(2,:),[1:T],pf_x(2,:)) legend({'true','PF'})
github
philippboehmsturm/antx-master
spm_SpUtil.m
.m
antx-master/xspm8/spm_SpUtil.m
27,031
utf_8
52ecc1ec2086a8b82b6e6192fd8f435a
function varargout = spm_SpUtil(varargin) % Space matrix utilities % FORMAT varargout = spm_SpUtil(action,varargin) % %_______________________________________________________________________ % % spm_SpUtil is a multi-function function containing various utilities % for Design matrix and contrast construction and manipulation. In % general, it accepts design matrices as plain matrices or as space % structures setup by spm_sp. % % Many of the space utilities are computed using an SVD of the design % matrix. The advantage of using space structures is that the svd of % the design matrix is stored in the space structure, thereby saving % unnecessary repeated computation of the SVD. This presents a % considerable efficiency gain for large design matrices. % % Note that when space structures are passed as arguments is is % assummed that their basic fields are filled in. See spm_sp for % details of (design) space structures and their manipulation. % % Quick Reference : %--------------------- % ('isCon',x,c) : % ('allCon',x,c) : % ('ConR',x,c) : % ('ConO',x,c) : % ('size',x,dim) : % ('iX0check',i0,sL) : %--------------------- % ('i0->c',x,i0) : Out : c % ('c->Tsp',x,c) : Out : [X1o [X0]] % ('+c->Tsp',x,c) : Out : [ukX1o [ukX0]] % ('i0->x1o',x,i0) : Use ('i0->c',x,i0) and ('c->Tsp',X,c) % ('+i0->x1o',x,i0) : Use ('i0->c',x,i0) and ('+c->Tsp',X,c) % ('X0->c',x,X0) :~ % ('+X0->c',x,cukX0) :~ %--------------------- % ('trRV',x[,V]) : % ('trMV',x[,V]) : % ('i0->edf',x,i0,V) : % %--------------------- % % Improvement compared to the spm99 beta version : % % Improvements in df computation using spm_SpUtil('trRV',x[,V]) and % spm_SpUtil('trMV',sX [,V]). The degrees of freedom computation requires % in general that the trace of RV and of RVRV be computed, where R is a % projector onto either a sub space of the design space or the residual % space, namely the space that is orthogonal to the design space. V is % the (estimated or assumed) variance covariance matrix and is a number % of scans by number of scans matrix which can be huge in some cases. We % have (thanks to S Rouquette and JB) speed up this computation % by using matlab built in functions of the frobenius norm and some theorems % on trace computations. % % ====================================================================== % % FORMAT i = spm_SpUtil('isCon',x,c) % Tests whether weight vectors specify contrasts % x - Design matrix X, or space structure of X % c - contrast matrix (I.e. matrix of contrast weights, contrasts in columns) % Must have column dimension matching that of X % [defaults to eye(size(X,2)) to test uniqueness of parameter estimates] % i - logical row vector indiciating estimability of contrasts in c % % A linear combination of the parameter estimates is a contrast if and % only if the weight vector is in the space spanned by the rows of X. % % The algorithm works by regressing the contrast weight vectors using % design matrix X' (X transposed). Any contrast weight vectors will be % fitted exactly by this procedure, leaving zero residual. Parameter % tol is the tolerance applied when searching for zero residuals. % % Christensen R (1996) % "Plane Answers to Complex Questions" % 2nd Ed. Springer-Verlag, New York % % Andrade A, Paradis AL, Rouquette S and Poline JB, NeuroImage 9, 1999 % ---------------- % % FORMAT i = spm_SpUtil('allCon',x,c) % Tests whether all weight vectors specify contrasts: % Same as all(spm_SpUtil('isCon',x,c)). % % ---------------- % % FORMAT r = spm_SpUtil('ConR',x,c) % Assess orthogonality of contrasts (wirit the data) % x - Design matrix X, or space structure of X % c - contrast matrix (I.e. matrix of contrast weights, contrasts in columns) % Must have column dimension matching that of X % defaults to eye(size(X,2)) to test independence of parameter estimates % r - Contrast correlation matrix, of dimension the number of contrasts. % % For the general linear model Y = X*B + E, a contrast weight vector c % defines a contrast c*B. This is estimated by c*b, where b are the % least squares estimates of B given by b=pinv(X)*Y. Thus, c*b = w*Y, % where weight vector w is given by w=c*pinv(X); Since the data are % assummed independent, two contrasts are indpendent if the % corresponding weight vectors are orthogonal. % % r is the matrix of normalised inner products between the weight % vectors corresponding to the contrasts. For iid E, r is the % correlation matrix of the contrasts. % % The logical matrix ~r will be true for orthogonal pairs of contrasts. % % ---------------- % % FORMAT r = spm_SpUtil('ConO',x,c) % Assess orthogonality of contrasts (wirit the data) % x - Design matrix X, or space structure of X % c - contrast matrix (I.e. matrix of contrast weights, contrasts in columns) % Must have column dimension matching that of X % [defaults to eye(size(X,2)) to test uniqueness of parameter estimates] % r - Contrast orthogonality matrix, of dimension the number of contrasts. % % This is the same as ~spm_SpUtil('ConR',X,c), but uses a quicker % algorithm by looking at the orthogonality of the subspaces of the % design space which are implied by the contrasts: % r = abs(c*X'*X*c')<tol % % ---------------- % % FORMAT c = spm_SpUtil('i0->c',x,i0) % Return F-contrast for specified design matrix partition % x - Design matrix X, or space structure of X % i0 - column indices of null hypothesis design matrix % % This functionality returns a rank n mxp matrix of contrasts suitable % for an extra-sum-of-squares F-test comparing the design X, with a % reduced design. The design matrix for the reduced design is X0 = % X(:,i0), a reduction of n degrees of freedom. % % The algorithm, due to J-B, and derived from Christensen, computes the % contrasts as an orthonormal basis set for the rows of the % hypothesised redundant columns of the design matrix, after % orthogonalisation with respect to X0. For non-unique designs, there % are a variety of ways to produce equivalent F-contrasts. This method % produces contrasts with non-zero weights only for the hypothesised % redundant columns. % % ---------------- % % case {'x0->c'} %- % FORMAT c = spm_SpUtil('X0->c',sX,X0) % ---------------- % % FORMAT [X1,X0] = spm_SpUtil('c->TSp',X,c) % Orthogonalised partitioning of design space implied by F-contrast % x - Design matrix X, or space structure of X % c - contrast matrix (I.e. matrix of contrast weights, contrasts in columns) % Must have column dimension matching that of X % X1o - contrast space - design matrix corresponding according to contrast % (orthogonalised wirit X0) % X0 - matrix reduced according to null hypothesis % (of same size as X but rank deficient) % FORMAT [uX1,uX0] = spm_SpUtil('c->TSp+',X,c) % + version to deal with the X1o and X0 partitions in the "uk basis" % % ( Note that unless X0 is reduced to a set of linearely independant ) % ( vectors, c will only be contained in the null space of X0. If X0 ) % ( is "reduced", then the "parent" space of c must be reduced as well ) % ( for c to be the actual null space of X0. ) % % This functionality returns a design matrix subpartition whose columns % span the hypothesised null design space of a given contrast. Note % that X1 is orthogonal(ised) to X0, reflecting the situation when an % F-contrast is tested using the extra sum-of-squares principle (when % the extra distance in the hypothesised null space is measured % orthogonal to the space of X0). % % Note that the null space design matrix will probably not be a simple % sub-partition of the full design matrix, although the space spanned % will be the same. % % ---------------- % % FORMAT X1 = spm_SpUtil('i0->x1o',X,i0) % x - Design matrix X, or space structure of X % i0 - Columns of X that make up X0 - the reduced model (Ho:B1=0) % X1 - Hypothesised null design space, i.e. that part of X orthogonal to X0 % This offers the same functionality as the 'c->TSp' option, but for % simple reduced models formed from the columns of X. % % FORMAT X1 = spm_SpUtil('i0->x1o+',X,i0) % + version to deal with the X1o and X0 partitions in the "uk basis" % % ---------------- % % FORMAT [trRV,trRVRV] = spm_SpUtil('trRV',x[,V]) % trace(RV) & trace(RVRV) - used in df calculation % x - Design matrix X, or space structure of X % V - V matrix [defult eye] (trRV == trRVRV if V==eye, since R idempotent) % trRV - trace(R*V), computed efficiently % trRVRV - trace(R*V*R*V), computed efficiently % This uses the Karl's cunning understanding of the trace: % (tr(A*B) = sum(sum(A'*B)). % If the space of X is set, then algorithm uses x.u to avoid extra computation. % % ---------------- % % FORMAT [trMV, trMVMV]] = spm_SpUtil('trMV',x[,V]) % trace(MV) & trace(MVMV) if two ouput arguments. % x - Design matrix X, or space structure of X % V - V matrix [defult eye] (trMV == trMVMV if V==eye, since M idempotent) % trMV - trace(M*V), computed efficiently % trMVMV - trace(M*V*M*V), computed efficiently % Again, this uses the Karl's cunning understanding of the trace: % (tr(A*B) = sum(sum(A'.*B)). % If the space of X is set, then algorithm uses x.u to avoid extra computation. % % ---------------- % % OBSOLETE use FcUtil('H') for spm_SpUtil('c->H',x,c) % Extra sum of squares matrix O for beta's from contrast % x - Design matrix X, or space structure of X % c - contrast matrix (I.e. matrix of contrast weights, contrasts in columns) % Must have column dimension matching that of X % O - Matrix such that b'*O*b = extra sum of squares for F-test of contrast c % % ---------------- % % OBSOLETE use spm_sp('=='...) for spm_SpUtil('c==X1o',x,c) {or 'cxpequi'} % x - Design matrix X, or space structure of X % c - contrast matrix (I.e. matrix of contrast weights, contrasts in columns) % Must have column dimension matching that of X % b - True is c is a spanning set for space of X % (I.e. if contrast and space test the same thing) % % ---------------- % % FORMAT [df1,df2] = spm_SpUtil('i0->edf',x,i0,V) {or 'edf'} % (effective) df1 and df2 the residual df for the projector onto the % null space of x' (residual forming projector) and the numerator of % the F-test where i0 are the columns for the null hypothesis model. % x - Design matrix X, or space structure of X % i0 - Columns of X corresponding to X0 partition X = [X1,X0] & with % parameters B = [B1;B0]. Ho:B1=0 % V - V matrix % % ---------------- % % FORMAT sz = spm_SpUtil('size',x,dim) % FORMAT [sz1,sz2,...] = spm_SpUtil('size',x) % Returns size of design matrix % (Like MatLab's `size`, but copes with design matrices inside structures.) % x - Design matrix X, or structure containing design matrix in field X % (Structure needn't be a space structure.) % dim - dimension which to size % sz - size % %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Andrew Holmes Jean-Baptiste Poline % $Id: spm_SpUtil.m 4137 2010-12-15 17:18:32Z guillaume $ % (frobenius norm trick by S. Rouquette) %-Format arguments %----------------------------------------------------------------------- if nargin==0, error('do what? no arguments given...') else action = varargin{1}; end switch lower(action), case {'iscon','allcon','conr','cono'} %======================================================================= % i = spm_SpUtil('isCon',x,c) if nargin==0, varargout={[]}; error('isCon : no argument specified'), end; if nargin==1, varargout={[]}; warning('isCon : no contrast specified'); return; end; if ~spm_sp('isspc',varargin{2}) sX = spm_sp('Set',varargin{2}); else sX = varargin{2}; end if nargin==2, c=eye(spm_sp('size',sX,2)); else c=varargin{3}; end; if isempty(c), varargout={[]}; return, end switch lower(action) case 'iscon' varargout = { spm_sp('eachinspp',sX,c) }; case 'allcon' varargout = {spm_sp('isinspp',sX,c)}; case 'conr' if size(c,1) ~= spm_sp('size',sX,2) error('Contrast not of the right size'), end %-Compute inner products of data weight vectors % (c'b = c'*pinv(X)*Y = w'*Y % (=> w*w' = c'*pinv(X)*pinv(X)'*c == c'*pinv(X'*X)*c r = c'*spm_sp('XpX-',sX)*c; %-normalize by "cov(r)" to get correlations r = r./(sqrt(diag(r))*sqrt(diag(r))'); r(abs(r) < sX.tol)=0; %-set near-zeros to zero varargout = {r}; %-return r case 'cono' %-This is the same as ~spm_SpUtil('ConR',x,c), and so returns % the contrast orthogonality (though not their corelations). varargout = { abs(c'* spm_sp('XpX',sX) *c) < sX.tol}; end case {'+c->tsp','c->tsp'} %- Ortho. partitioning implied by F-contrast %======================================================================= % spm_SpUtil('c->Tsp',sX,c) % + version of 'c->tsp'. % The + version returns the same in the base u(:,1:r). %--------- begin argument check ------------------------------ if nargin ~= 3, error(['Wrong number of arguments in ' action]) else sX = varargin{2}; c = varargin{3}; end; if nargout > 2, error(['Too many output arguments in ' action]), end; if ~spm_sp('isspc',sX), sX = spm_sp('set',varargin{2}); end; if sX.rk == 0, error('c->Tsp null rank sX == 0'); end; if ~isempty(c) && spm_sp('size',sX,2) ~= size(c,1), error(' c->TSp matrix & contrast dimensions don''t match'); end %--------- end argument check --------------------------------- %- project c onto the space of X' if needed %------------------------------------------- if ~isempty(c) && ~spm_sp('isinspp',sX,c), warning([sprintf('\n') 'c is not a proper contrast in ' action ... ' in ' mfilename sprintf('\n') '!!! projecting...' ]); disp('from'), c, disp('to'), c = spm_sp('oPp:',sX,c) end cukFlag = strcmp(lower(action),'+c->tsp'); switch nargout % case 0 % warning(['no output demanded in ' mfilename ' ' action]) case {0,1} if ~isempty(c) && any(any(c)) %- c not empty & not null if cukFlag, varargout = { spm_sp('cukxp-:',sX,c) }; else varargout = { spm_sp('xp-:',sX,c) }; end else if isempty(c), varargout = { [] }; %- c empty else %- c null if cukFlag, varargout = { spm_sp('cukx',sX,c) }; else varargout = { spm_sp('x',sX)*c }; end end end case 2 if ~isempty(c) && any(any(c)) %- not empty and not null if cukFlag, varargout = { spm_sp('cukxp-:',sX,c), ... %- X1o spm_sp('cukx',sX,spm_sp('r',spm_sp('set',c))) }; %- X0 else varargout = { spm_sp(':',sX, spm_sp('xp-:',sX,c)), ... %- X1o spm_sp(':',sX, ... spm_sp('x',sX)*spm_sp('r',spm_sp('set',c))) }; %- X0 end else if isempty(c), %- empty if cukFlag, varargout = { [], spm_sp('cukx',sX) }; else varargout = { [], spm_sp('x',sX) }; end else %- null if cukFlag, varargout = { spm_sp(':',sX,spm_sp('cukx',sX,c)), ... spm_sp(':',sX,spm_sp('cukx',sX)) }; else varargout = { spm_sp('x',sX)*c, spm_sp('x',sX)}; end end; end otherwise error(['wrong number of output argument in ' action]); end case {'i0->x1o','+i0->x1o'} %- Space tested whilst keeping size of X(i0) %======================================================================= % X1o = spm_SpUtil('i0->X1o',sX,i0) % arguments are checked in calls to spm_Util %-------------------------------------------- if nargin<3, error('Insufficient arguments'), else sX = varargin{2}; i0 = varargin{3}; end; cukFlag = strcmp(lower(action),'+i0->x1o'); c = spm_SpUtil('i0->c',sX,i0); if cukFlag, varargout = { spm_SpUtil('+c->TSp',sX,c) }; else varargout = { spm_SpUtil('c->TSp',sX,c) }; end case {'i0->c'} %- %======================================================================= % c = spm_SpUtil('i0->c',sX,i0) % % if i0 == [] : returns a proper contrast % if i0 == [1:size(sX.X,2)] : returns []; % %- Algorithm : avoids the pinv(X0) and insure consistency %- Get the estimable parts of c0 and c1 %- remove from c1_estimable the estimable part of c0. %- Use the rotation making X1o orthog. to X0. %- i0 is checked when Fc is created %- If i0 defines a space that is the space of X but with %- fewer vectors, c is null. %--------- begin argument check -------------------------------- if nargin<3, error('Insufficient arguments'), else sX = varargin{2}; i0 = varargin{3}; end; if ~spm_sp('isspc',sX), sX = spm_sp('set',varargin{2}); end; if spm_sp('rk',sX) == 0, error('i0->c null rank sX == 0'); end; sL = spm_sp('size',sX,2); i0 = sf_check_i0(i0,sL); %--------- end argument check ---------------------------------- c0 = eye(sL); c0 = c0(:,i0); c1 = eye(sL); c1 = c1(:,setdiff(1:sL,i0)); %- try to avoid the matlab error when doing svd of matrices with %- high multiplicities. (svd convergence pb) if ~ spm_sp('isinspp',sX,c0), c0 = spm_sp('oPp:',sX,c0); end; if ~ spm_sp('isinspp',sX,c1), c1 = spm_sp('oPp:',sX,c1); end; if ~isempty(c1) if ~isempty(c0) %- varargout = { spm_sp('res',spm_sp('set',opp*c0),opp*c1) }; %- varargout = { c1 - c0*pinv(c0)*c1 }; NB: matlab pinv uses %- svd: will fail if spm_sp('set') fails. varargout = { spm_sp('r:',spm_sp('set',c0),c1) }; else varargout = { spm_sp('xpx',sX) }; end; else varargout = { [] }; %- not zeros(sL,1) : this is return when %- appropriate end %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ case {'+x0->c','x0->c'} %- %======================================================================= % c = spm_SpUtil('X0->c',sX,X0) % c = spm_SpUtil('+X0->c',sX,cukX0) % + version of 'x0->c'. % The + version returns the same in the base u(:,1:r). warning('Not tested for release - provided for completeness'); cukFlag = strcmp(lower(action),'+x0->c'); %--------- begin argument check --------- if nargin<3, error('Insufficient arguments'), else sX = varargin{2}; if cukFlag, cukX0 = varargin{3}; else X0 = varargin{3}; end end if ~spm_sp('isspc',sX), sX = spm_sp('set',varargin{2}); end if spm_sp('rk',sX) == 0, error(['null rank sX == 0 in ' action]); end if cukFlag if ~isempty(cukX0) && spm_sp('rk',sX) ~= size(cukX0,1), cukX0, spm_sp('rk',sX), error(['cukX0 of wrong size ' mfilename ' ' action]), end else if ~isempty(X0) && spm_sp('size',sX,1) ~= size(X0,1), X0, spm_sp('size',sX,1), error(['X0 of wrong size ' mfilename ' ' action]),X0, end end %--------- end argument check --------- if cukFlag if isempty(cukX0), X0 = []; else X0 = spm_sp('ox',sX)*cukX0; end end varargout = { sf_X0_2_c(X0,sX) }; case {'c->h','betarc'} %-Extra sum of squares matrix for beta's from %- contrast : use F-contrast if possible %======================================================================= % H = spm_SpUtil('c->H',sX,c) error(' Obsolete : Use F-contrast utilities ''H'' or ''Hsqr''... '); %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %======================================================================= %======================================================================= % trace part %======================================================================= %======================================================================= % case 'trrv' %-Traces for (effective) df calculation %======================================================================= % [trRV,trRVRV]= spm_SpUtil('trRV',x[,V]) if nargin == 1, error('insufficient arguments'); else sX = varargin{2}; end; if ~spm_sp('isspc',sX), sX = spm_sp('Set',sX); end; rk = spm_sp('rk',sX); sL = spm_sp('size',sX,1); if sL == 0, warning('space with no dimension '); if nargout==1, varargout = {[]}; else varargout = {[], []}; end else if nargin > 2 && ~isempty(varargin{3}) V = varargin{3}; u = sX.u(:,1:rk); clear sX; if nargout==1 %-only trRV needed if rk==0 || isempty(rk), trMV = 0; else trMV = sum(sum( u .* (V*u) )); end varargout = { trace(V) - trMV}; else %-trRVRV is needed as well if rk==0 || isempty(rk), trMV = 0; trRVRV = (norm(V,'fro'))^2; trV = trace(V); clear V u else Vu = V*u; trV = trace(V); trRVRV = (norm(V,'fro'))^2; clear V; trRVRV = trRVRV - 2*(norm(Vu,'fro'))^2; trRVRV = trRVRV + (norm(u'*Vu,'fro'))^2; trMV = sum(sum( u .* Vu )); clear u Vu end varargout = {(trV - trMV), trRVRV}; end else %- nargin == 2 | isempty(varargin{3}) if nargout==1 if rk==0 || isempty(rk), varargout = {sL}; else varargout = {sL - rk}; end else if rk==0 || isempty(rk), varargout = {sL,sL}; else varargout = {sL - rk, sL - rk}; end end end end case 'trmv' %-Traces for (effective) Fdf calculation %======================================================================= % [trMV, trMVMV]] = spm_SpUtil('trMV',sX [,V]) % % NB : When V is given empty, the routine asssumes it's identity % This is used in spm_FcUtil. if nargin == 1, error('insufficient arguments'); else sX = varargin{2}; end; if ~spm_sp('isspc',sX), sX = spm_sp('Set',sX); end; rk = spm_sp('rk',sX); if isempty(rk) warning('Rank is empty'); if nargout==1, varargout = {[]}; else varargout = {[], []}; end return; elseif rk==0, warning('Rank is null in spm_SpUtil trMV '); if nargout==1, varargout = {0}; else varargout = {0, 0}; end return; end; if nargin > 2 && ~isempty(varargin{3}) %- V provided, and assumed correct ! V = varargin{3}; u = sX.u(:,1:rk); clear sX; if nargout==1 %-only trMV needed trMV = sum(sum(u' .* (u'*V) )); varargout = {trMV}; else %-trMVMV is needed as well Vu = V*u; clear V trMV = sum(sum( u .* Vu )); trMVMV = (norm(u'*Vu,'fro'))^2; clear u Vu varargout = {trMV, trMVMV}; end else % nargin == 2 | isempty(varargin{3}) %-no V specified: trMV == trMVMV if nargout==1 varargout = {rk}; else varargout = {rk, rk}; end end case {'i0->edf','edf'} %-Effective F degrees of freedom %======================================================================= % [df1,df2] = spm_SpUtil('i0->edf',sX,i0,V) %----------------------------------------------------------------------- %--------- begin argument check ---------------------------------------- if nargin<3, error('insufficient arguments'), else i0 = varargin{3}; sX = varargin{2}; end if ~spm_sp('isspc',sX), sX = spm_sp('Set',sX); end; i0 = sf_check_i0(i0,spm_sp('size',sX,2)); if nargin == 4, V=varargin{4}; else V = eye(spm_sp('size',sX,1)); end; if nargin>4, error('Too many input arguments'), end; %--------- end argument check ------------------------------------------ warning(' Use F-contrast utilities if possible ... '); [trRV,trRVRV] = spm_SpUtil('trRV', sX, V); [trMpV,trMpVMpV] = spm_SpUtil('trMV',spm_SpUtil('i0->x1o',sX, i0),V); varargout = {trMpV^2/trMpVMpV, trRV^2/trRVRV}; %======================================================================= %======================================================================= % Utilities %======================================================================= %======================================================================= case 'size' %-Size of design matrix %======================================================================= % sz = spm_SpUtil('size',x,dim) if nargin<3, dim=[]; else dim = varargin{3}; end if nargin<2, error('insufficient arguments'), end if isstruct(varargin{2}) if isfield(varargin{2},'X') sz = size(varargin{2}.X); else error('no X field'); end; else sz = size(varargin{2}); end if ~isempty(dim) if dim>length(sz), sz = 1; else sz = sz(dim); end varargout = {sz}; elseif nargout>1 varargout = cell(1,min(nargout,length(sz))); for i=1:min(nargout,length(sz)), varargout{i} = sz(i); end else varargout = {sz}; end case 'ix0check' %- %======================================================================= % i0c = spm_SpUtil('iX0check',i0,sL) if nargin<3, error('insufficient arguments'), else i0 = varargin{2}; sL = varargin{3}; end; varargout = {sf_check_i0(i0,sL)}; otherwise %======================================================================= error('Unknown action string in spm_SpUtil') %======================================================================= end %======================================================================= function i0c = sf_check_i0(i0,sL) % NB : [] = sf_check_i0([],SL); % if all(ismember(i0,[0,1])) && length(i0(:))==sL, i0c=find(i0); elseif ~isempty(i0) && any(floor(i0)~=i0) || any(i0<1) || any(i0>sL) error('logical mask or vector of column indices required') else i0c = i0; end %======================================================================= function c = sf_X0_2_c(X0,sX) % %- Algorithm to avoids the pinv(X0) and insure consistency %- Get a contrast that span the space of X0 and is estimable %- Get the orthogonal complement and project onto the estimable space %- Strip zeros columns and use the rotation making X1o orthog. to X0 % !!! tolerance dealing ? if ~isempty(X0) sc0 = spm_sp('set',spm_sp('x-',sX,X0)); if sc0.rk c = spm_sp('oPp:',sX,spm_sp('r',sc0)); else c = spm_sp('oPp',sX); end; c = c(:,any(c)); sL = spm_sp('size',sX,2); %- why the "& size(X0,2) ~= sL" !!!? if isempty(c) && size(X0,2) ~= sL c = zeros(sL,1); end else c = spm_sp('xpx',sX); end %- c = spm_sp('r',sc0,spm_sp('oxp',sX)); would also works.
github
philippboehmsturm/antx-master
spm_dicom_convert.m
.m
antx-master/xspm8/spm_dicom_convert.m
45,741
utf_8
3053cf7d299fcdf734d63ad35fd14602
function out = spm_dicom_convert(hdr,opts,root_dir,format) % Convert DICOM images into something that SPM can use % FORMAT spm_dicom_convert(hdr,opts,root_dir,format) % Inputs: % hdr - a cell array of DICOM headers from spm_dicom_headers % opts - options % 'all' - all DICOM files [default] % 'mosaic' - the mosaic images % 'standard' - standard DICOM files % 'spect' - SIEMENS Spectroscopy DICOMs (some formats only) % This will write out a 5D NIFTI containing real and % imaginary part of the spectroscopy time points at the % position of spectroscopy voxel(s). % 'raw' - convert raw FIDs (not implemented) % root_dir - 'flat' - do not produce file tree [default] % With all other options, files will be sorted into % directories according to their sequence/protocol names % 'date_time' - Place files under ./<StudyDate-StudyTime> % 'patid' - Place files under ./<PatID> % 'patid_date' - Place files under ./<PatID-StudyDate> % 'patname' - Place files under ./<PatName> % 'series' - Place files in series folders, without % creating patient folders % format - output format % 'img' Two file (hdr+img) NIfTI format [default] % 'nii' Single file NIfTI format % All images will contain a single 3D dataset, 4D images % will not be created. % Output: % out - a struct with a single field .files. out.files contains a % cellstring with filenames of created files. If no files are % created, a cell with an empty string {''} is returned. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner & Jesper Andersson % $Id: spm_dicom_convert.m 4368 2011-06-20 11:59:54Z john $ if nargin<2, opts = 'all'; end if nargin<3, root_dir = 'flat';end if nargin<4, format = 'img'; end [images,other] = select_tomographic_images(hdr); [spect,guff] = select_spectroscopy_images(other); [mosaic,standard] = select_mosaic_images(images); fmos = {}; fstd = {}; fspe = {}; if (strcmp(opts,'all') || strcmp(opts,'mosaic')) && ~isempty(mosaic), fmos = convert_mosaic(mosaic,root_dir,format); end; if (strcmp(opts,'all') || strcmp(opts,'standard')) && ~isempty(standard), fstd = convert_standard(standard,root_dir,format); end; if (strcmp(opts,'all') || strcmp(opts,'spect')) && ~isempty(spect), fspe = convert_spectroscopy(spect,root_dir,format); end; out.files = [fmos(:); fstd(:); fspe(:)]; if isempty(out.files) out.files = {''}; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function fnames = convert_mosaic(hdr,root_dir,format) spm_progress_bar('Init',length(hdr),'Writing Mosaic', 'Files written'); fnames = cell(length(hdr),1); for i=1:length(hdr), % Output filename %------------------------------------------------------------------- fnames{i} = getfilelocation(hdr{i},root_dir,'f',format); % Image dimensions and data %------------------------------------------------------------------- nc = hdr{i}.Columns; nr = hdr{i}.Rows; dim = [0 0 0]; dim(3) = read_NumberOfImagesInMosaic(hdr{i}); np = [nc nr]/ceil(sqrt(dim(3))); dim(1:2) = np; if ~all(np==floor(np)), warning('%s: dimension problem [Num Images=%d, Num Cols=%d, Num Rows=%d].',... hdr{i}.Filename,dim(3), nc,nr); continue; end; % Apparently, this is not the right way of doing it. %np = read_AcquisitionMatrixText(hdr{i}); %if rem(nc, np(1)) || rem(nr, np(2)), % warning('%s: %dx%d wont fit into %dx%d.',hdr{i}.Filename,... % np(1), np(2), nc,nr); % return; %end; %dim = [np read_NumberOfImagesInMosaic(hdr{i})]; mosaic = read_image_data(hdr{i}); volume = zeros(dim); for j=1:dim(3), img = mosaic((1:np(1))+np(1)*rem(j-1,nc/np(1)), (np(2):-1:1)+np(2)*floor((j-1)/(nc/np(1)))); if ~any(img(:)), volume = volume(:,:,1:(j-1)); break; end; volume(:,:,j) = img; end; dim = size(volume); dt = determine_datatype(hdr{1}); % Orientation information %------------------------------------------------------------------- % Axial Analyze voxel co-ordinate system: % x increases right to left % y increases posterior to anterior % z increases inferior to superior % DICOM patient co-ordinate system: % x increases right to left % y increases anterior to posterior % z increases inferior to superior % T&T co-ordinate system: % x increases left to right % y increases posterior to anterior % z increases inferior to superior analyze_to_dicom = [diag([1 -1 1]) [0 (dim(2)-1) 0]'; 0 0 0 1]*[eye(4,3) [-1 -1 -1 1]']; vox = [hdr{i}.PixelSpacing(:); hdr{i}.SpacingBetweenSlices]; pos = hdr{i}.ImagePositionPatient(:); orient = reshape(hdr{i}.ImageOrientationPatient,[3 2]); orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end; % The image position vector is not correct. In dicom this vector points to % the upper left corner of the image. Perhaps it is unlucky that this is % calculated in the syngo software from the vector pointing to the center of % the slice (keep in mind: upper left slice) with the enlarged FoV. dicom_to_patient = [orient*diag(vox) pos ; 0 0 0 1]; truepos = dicom_to_patient *[(size(mosaic)-dim(1:2))/2 0 1]'; dicom_to_patient = [orient*diag(vox) truepos(1:3) ; 0 0 0 1]; patient_to_tal = diag([-1 -1 1 1]); mat = patient_to_tal*dicom_to_patient*analyze_to_dicom; % Maybe flip the image depending on SliceNormalVector from 0029,1010 %------------------------------------------------------------------- SliceNormalVector = read_SliceNormalVector(hdr{i}); if det([reshape(hdr{i}.ImageOrientationPatient,[3 2]) SliceNormalVector(:)])<0; volume = volume(:,:,end:-1:1); mat = mat*[eye(3) [0 0 -(dim(3)-1)]'; 0 0 0 1]; end; % Possibly useful information %------------------------------------------------------------------- tim = datevec(hdr{i}.AcquisitionTime/(24*60*60)); descrip = sprintf('%gT %s %s TR=%gms/TE=%gms/FA=%gdeg %s %d:%d:%.5g Mosaic',... hdr{i}.MagneticFieldStrength, hdr{i}.MRAcquisitionType,... deblank(hdr{i}.ScanningSequence),... hdr{i}.RepetitionTime,hdr{i}.EchoTime,hdr{i}.FlipAngle,... datestr(hdr{i}.AcquisitionDate),tim(4),tim(5),tim(6)); % descrip = [deblank(descrip) ' ' hdr{i}.PatientsName]; if ~true, % LEFT-HANDED STORAGE mat = mat*[-1 0 0 (dim(1)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; volume = flipdim(volume,1); end; %if isfield(hdr{i},'RescaleSlope') && hdr{i}.RescaleSlope ~= 1, % volume = volume*hdr{i}.RescaleSlope; %end; %if isfield(hdr{i},'RescaleIntercept') && hdr{i}.RescaleIntercept ~= 0, % volume = volume + hdr{i}.RescaleIntercept; %end; %V = struct('fname',fname, 'dim',dim, 'dt',dt, 'mat',mat, 'descrip',descrip); %spm_write_vol(V,volume); % Note that data are no longer scaled by the maximum amount. % This may lead to rounding errors in smoothed data, but it % will get around other problems. RescaleSlope = 1; RescaleIntercept = 0; if isfield(hdr{i},'RescaleSlope') && hdr{i}.RescaleSlope ~= 1, RescaleSlope = hdr{i}.RescaleSlope; end; if isfield(hdr{i},'RescaleIntercept') && hdr{i}.RescaleIntercept ~= 0, RescaleIntercept = hdr{i}.RescaleIntercept; end; N = nifti; N.dat = file_array(fnames{i},dim,dt,0,RescaleSlope,RescaleIntercept); N.mat = mat; N.mat0 = mat; N.mat_intent = 'Scanner'; N.mat0_intent = 'Scanner'; N.descrip = descrip; create(N); % Write the data unscaled dat = N.dat; dat.scl_slope = []; dat.scl_inter = []; % write out volume at once - see spm_write_plane.m for performance comments dat(:,:,:) = volume; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function fnames = convert_standard(hdr,root_dir,format) hdr = sort_into_volumes(hdr); fnames = cell(length(hdr),1); for i=1:length(hdr), fnames{i} = write_volume(hdr{i},root_dir,format); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function vol = sort_into_volumes(hdr) % % First of all, sort into volumes based on relevant % fields in the header. % vol{1}{1} = hdr{1}; for i=2:length(hdr), %orient = reshape(hdr{i}.ImageOrientationPatient,[3 2]); %xy1 = hdr{i}.ImagePositionPatient(:)*orient; match = 0; if isfield(hdr{i},'CSAImageHeaderInfo') && isfield(hdr{i}.CSAImageHeaderInfo,'name') ice1 = sscanf( ... strrep(get_numaris4_val(hdr{i}.CSAImageHeaderInfo,'ICE_Dims'), ... 'X', '-1'), '%i_%i_%i_%i_%i_%i_%i_%i_%i')'; dimsel = logical([1 1 1 1 1 1 0 0 1]); else ice1 = []; end; for j=1:length(vol), %orient = reshape(vol{j}{1}.ImageOrientationPatient,[3 2]); %xy2 = vol{j}{1}.ImagePositionPatient(:)*orient; % This line is a fudge because of some problematic data that Bogdan, % Cynthia and Stefan were trying to convert. I hope it won't cause % problems for others -JA % dist2 = sum((xy1-xy2).^2); dist2 = 0; if strcmp(hdr{i}.Modality,'CT') && ... strcmp(vol{j}{1}.Modality,'CT') % Our CT seems to have shears in slice positions dist2 = 0; end; if ~isempty(ice1) && isfield(vol{j}{1},'CSAImageHeaderInfo') && isfield(vol{j}{1}.CSAImageHeaderInfo(1),'name') % Replace 'X' in ICE_Dims by '-1' ice2 = sscanf( ... strrep(get_numaris4_val(vol{j}{1}.CSAImageHeaderInfo,'ICE_Dims'), ... 'X', '-1'), '%i_%i_%i_%i_%i_%i_%i_%i_%i')'; if ~isempty(ice2) identical_ice_dims=all(ice1(dimsel)==ice2(dimsel)); else identical_ice_dims = 0; % have ice1 but not ice2, -> % something must be different end, else identical_ice_dims = 1; % No way of knowing if there is no CSAImageHeaderInfo end; try match = hdr{i}.SeriesNumber == vol{j}{1}.SeriesNumber &&... hdr{i}.Rows == vol{j}{1}.Rows &&... hdr{i}.Columns == vol{j}{1}.Columns &&... sum((hdr{i}.ImageOrientationPatient - vol{j}{1}.ImageOrientationPatient).^2)<1e-4 &&... sum((hdr{i}.PixelSpacing - vol{j}{1}.PixelSpacing).^2)<1e-4 && ... identical_ice_dims && dist2<1e-3; %if (hdr{i}.AcquisitionNumber ~= hdr{i}.InstanceNumber) || ... % (vol{j}{1}.AcquisitionNumber ~= vol{j}{1}.InstanceNumber) % match = match && (hdr{i}.AcquisitionNumber == vol{j}{1}.AcquisitionNumber) %end; % For raw image data, tell apart real/complex or phase/magnitude if isfield(hdr{i},'ImageType') && isfield(vol{j}{1}, 'ImageType') match = match && strcmp(hdr{i}.ImageType, vol{j}{1}.ImageType); end; if isfield(hdr{i},'SequenceName') && isfield(vol{j}{1}, 'SequenceName') match = match && strcmp(hdr{i}.SequenceName,vol{j}{1}.SequenceName); end; if isfield(hdr{i},'SeriesInstanceUID') && isfield(vol{j}{1}, 'SeriesInstanceUID') match = match && strcmp(hdr{i}.SeriesInstanceUID,vol{j}{1}.SeriesInstanceUID); end; if isfield(hdr{i},'EchoNumbers') && isfield(vol{j}{1}, 'EchoNumbers') match = match && hdr{i}.EchoNumbers == vol{j}{1}.EchoNumbers; end; catch match = 0; end if match vol{j}{end+1} = hdr{i}; break; end; end; if ~match, vol{end+1}{1} = hdr{i}; end; end; %dcm = vol; %save('dicom_headers.mat','dcm'); % % Secondly, sort volumes into ascending/descending % slices depending on .ImageOrientationPatient field. % vol2 = {}; for j=1:length(vol), orient = reshape(vol{j}{1}.ImageOrientationPatient,[3 2]); proj = null(orient'); if det([orient proj])<0, proj = -proj; end; z = zeros(length(vol{j}),1); for i=1:length(vol{j}), z(i) = vol{j}{i}.ImagePositionPatient(:)'*proj; end; [z,index] = sort(z); vol{j} = vol{j}(index); if length(vol{j})>1, % dist = diff(z); if any(diff(z)==0) tmp = sort_into_vols_again(vol{j}); vol{j} = tmp{1}; vol2 = {vol2{:} tmp{2:end}}; end; end; end; vol = {vol{:} vol2{:}}; for j=1:length(vol), if length(vol{j})>1, orient = reshape(vol{j}{1}.ImageOrientationPatient,[3 2]); proj = null(orient'); if det([orient proj])<0, proj = -proj; end; z = zeros(length(vol{j}),1); for i=1:length(vol{j}), z(i) = vol{j}{i}.ImagePositionPatient(:)'*proj; end; dist = diff(sort(z)); if sum((dist-mean(dist)).^2)/length(dist)>1e-4, fprintf('***************************************************\n'); fprintf('* VARIABLE SLICE SPACING *\n'); fprintf('* This may be due to missing DICOM files. *\n'); if checkfields(vol{j}{1},'PatientID','SeriesNumber','AcquisitionNumber','InstanceNumber'), fprintf('* %s / %d / %d / %d \n',... deblank(vol{j}{1}.PatientID), vol{j}{1}.SeriesNumber, ... vol{j}{1}.AcquisitionNumber, vol{j}{1}.InstanceNumber); fprintf('* *\n'); end; fprintf('* %20.4g *\n', dist); fprintf('***************************************************\n'); end; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function vol2 = sort_into_vols_again(volj) if ~isfield(volj{1},'InstanceNumber'), fprintf('***************************************************\n'); fprintf('* The slices may be all mixed up and the data *\n'); fprintf('* not really usable. Talk to your physicists *\n'); fprintf('* about this. *\n'); fprintf('***************************************************\n'); vol2 = {volj}; return; end; fprintf('***************************************************\n'); fprintf('* The AcquisitionNumber counter does not appear *\n'); fprintf('* to be changing from one volume to another. *\n'); fprintf('* Another possible explanation is that the same *\n'); fprintf('* DICOM slices are used multiple times. *\n'); %fprintf('* Talk to your MR sequence developers or scanner *\n'); %fprintf('* supplier to have this fixed. *\n'); fprintf('* The conversion is having to guess how slices *\n'); fprintf('* should be arranged into volumes. *\n'); if checkfields(volj{1},'PatientID','SeriesNumber','AcquisitionNumber'), fprintf('* %s / %d / %d\n',... deblank(volj{1}.PatientID), volj{1}.SeriesNumber, ... volj{1}.AcquisitionNumber); end; fprintf('***************************************************\n'); z = zeros(length(volj),1); t = zeros(length(volj),1); d = zeros(length(volj),1); orient = reshape(volj{1}.ImageOrientationPatient,[3 2]); proj = null(orient'); if det([orient proj])<0, proj = -proj; end; for i=1:length(volj), z(i) = volj{i}.ImagePositionPatient(:)'*proj; t(i) = volj{i}.InstanceNumber; end; % msg = 0; [t,index] = sort(t); volj = volj(index); z = z(index); msk = find(diff(t)==0); if any(msk), % fprintf('***************************************************\n'); % fprintf('* These files have the same InstanceNumber: *\n'); % for i=1:length(msk), % [tmp,nam1,ext1] = fileparts(volj{msk(i)}.Filename); % [tmp,nam2,ext2] = fileparts(volj{msk(i)+1}.Filename); % fprintf('* %s%s = %s%s (%d)\n', nam1,ext1,nam2,ext2, volj{msk(i)}.InstanceNumber); % end; % fprintf('***************************************************\n'); index = [true ; diff(t)~=0]; t = t(index); z = z(index); d = d(index); volj = volj(index); end; %if any(diff(sort(t))~=1), msg = 1; end; [z,index] = sort(z); volj = volj(index); t = t(index); vol2 = {}; while ~all(d), i = find(~d); i = i(1); i = find(z==z(i)); [t(i),si] = sort(t(i)); volj(i) = volj(i(si)); for i1=1:length(i), if length(vol2)<i1, vol2{i1} = {}; end; vol2{i1} = {vol2{i1}{:} volj{i(i1)}}; end; d(i) = 1; end; msg = 0; if any(diff(sort(t))~=1), msg = 1; end; if ~msg, len = length(vol2{1}); for i=2:length(vol2), if length(vol2{i}) ~= len, msg = 1; break; end; end; end; if msg, fprintf('***************************************************\n'); fprintf('* There are missing DICOM files, so the the *\n'); fprintf('* resulting volumes may be messed up. *\n'); if checkfields(volj{1},'PatientID','SeriesNumber','AcquisitionNumber'), fprintf('* %s / %d / %d\n',... deblank(volj{1}.PatientID), volj{1}.SeriesNumber, ... volj{1}.AcquisitionNumber); end; fprintf('***************************************************\n'); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function fname = write_volume(hdr,root_dir,format) % Output filename %------------------------------------------------------------------- fname = getfilelocation(hdr{1}, root_dir,'s',format); % Image dimensions %------------------------------------------------------------------- nc = hdr{1}.Columns; nr = hdr{1}.Rows; dim = [nc nr length(hdr)]; dt = determine_datatype(hdr{1}); % Orientation information %------------------------------------------------------------------- % Axial Analyze voxel co-ordinate system: % x increases right to left % y increases posterior to anterior % z increases inferior to superior % DICOM patient co-ordinate system: % x increases right to left % y increases anterior to posterior % z increases inferior to superior % T&T co-ordinate system: % x increases left to right % y increases posterior to anterior % z increases inferior to superior analyze_to_dicom = [diag([1 -1 1]) [0 (dim(2)+1) 0]'; 0 0 0 1]; % Flip voxels in y patient_to_tal = diag([-1 -1 1 1]); % Flip mm coords in x and y directions R = [reshape(hdr{1}.ImageOrientationPatient,3,2)*diag(hdr{1}.PixelSpacing); 0 0]; x1 = [1;1;1;1]; y1 = [hdr{1}.ImagePositionPatient(:); 1]; if length(hdr)>1, x2 = [1;1;dim(3); 1]; y2 = [hdr{end}.ImagePositionPatient(:); 1]; else orient = reshape(hdr{1}.ImageOrientationPatient,[3 2]); orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end; if checkfields(hdr{1},'SliceThickness'), z = hdr{1}.SliceThickness; else z = 1; end x2 = [0;0;1;0]; y2 = [orient*[0;0;z];0]; end dicom_to_patient = [y1 y2 R]/[x1 x2 eye(4,2)]; mat = patient_to_tal*dicom_to_patient*analyze_to_dicom; % Possibly useful information %------------------------------------------------------------------- if checkfields(hdr{1},'AcquisitionTime','MagneticFieldStrength','MRAcquisitionType',... 'ScanningSequence','RepetitionTime','EchoTime','FlipAngle',... 'AcquisitionDate'), if isfield(hdr{1},'ScanOptions'), ScanOptions = hdr{1}.ScanOptions; else ScanOptions = 'no'; end tim = datevec(hdr{1}.AcquisitionTime/(24*60*60)); descrip = sprintf('%gT %s %s TR=%gms/TE=%gms/FA=%gdeg/SO=%s %s %d:%d:%.5g',... hdr{1}.MagneticFieldStrength, hdr{1}.MRAcquisitionType,... deblank(hdr{1}.ScanningSequence),... hdr{1}.RepetitionTime,hdr{1}.EchoTime,hdr{1}.FlipAngle,... ScanOptions,... datestr(hdr{1}.AcquisitionDate),tim(4),tim(5),tim(6)); else descrip = hdr{1}.Modality; end; if ~true, % LEFT-HANDED STORAGE mat = mat*[-1 0 0 (dim(1)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; end; % Write the image volume %------------------------------------------------------------------- spm_progress_bar('Init',length(hdr),['Writing ' fname], 'Planes written'); N = nifti; pinfos = [ones(length(hdr),1) zeros(length(hdr),1)]; for i=1:length(hdr) if isfield(hdr{i},'RescaleSlope'), pinfos(i,1) = hdr{i}.RescaleSlope; end if isfield(hdr{i},'RescaleIntercept'), pinfos(i,2) = hdr{i}.RescaleIntercept; end end if any(any(diff(pinfos,1))), % Ensure random numbers are reproducible (see later) % when intensities are dithered to prevent aliasing effects. rand('state',0); end volume = zeros(dim); for i=1:length(hdr), plane = read_image_data(hdr{i}); if any(any(diff(pinfos,1))), % This is to prevent aliasing effects in any subsequent histograms % of the data (eg for mutual information coregistration). % It's a bit inelegant, but probably necessary for when slices are % individually rescaled. plane = double(plane) + rand(size(plane)) - 0.5; end if pinfos(i,1)~=1, plane = plane*pinfos(i,1); end; if pinfos(i,2)~=0, plane = plane+pinfos(i,2); end; plane = fliplr(plane); if ~true, plane = flipud(plane); end; % LEFT-HANDED STORAGE volume(:,:,i) = plane; spm_progress_bar('Set',i); end; if ~any(any(diff(pinfos,1))), % Same slopes and intercepts for all slices pinfo = pinfos(1,:); else % Variable slopes and intercept (maybe PET/SPECT) mx = max(volume(:)); mn = min(volume(:)); %% Slope and Intercept %% 32767*pinfo(1) + pinfo(2) = mx %% -32768*pinfo(1) + pinfo(2) = mn % pinfo = ([32767 1; -32768 1]\[mx; mn])'; % Slope only dt = 'int16-be'; pinfo = [max(mx/32767,-mn/32768) 0]; end N.dat = file_array(fname,dim,dt,0,pinfo(1),pinfo(2)); N.mat = mat; N.mat0 = mat; N.mat_intent = 'Scanner'; N.mat0_intent = 'Scanner'; N.descrip = descrip; create(N); N.dat(:,:,:) = volume; spm_progress_bar('Clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function fnames = convert_spectroscopy(hdr,root_dir,format) fnames = cell(length(hdr),1); for i=1:length(hdr), fnames{i} = write_spectroscopy_volume(hdr(i),root_dir,format); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function fname = write_spectroscopy_volume(hdr,root_dir,format) % Output filename %------------------------------------------------------------------- fname = getfilelocation(hdr{1}, root_dir,'S',format); % guess private field to use if isfield(hdr{1}, 'Private_0029_1210') privdat = hdr{1}.Private_0029_1210; elseif isfield(hdr{1}, 'Private_0029_1110') privdat = hdr{1}.Private_0029_1110; else disp('Don''t know how to handle these spectroscopy data'); fname = ''; return; end % Image dimensions %------------------------------------------------------------------- nc = get_numaris4_numval(privdat,'Columns'); nr = get_numaris4_numval(privdat,'Rows'); % Guess number of timepoints in file - don't know whether this should be % 'DataPointRows'-by-'DataPointColumns' or 'SpectroscopyAcquisitionDataColumns' ntp = get_numaris4_numval(privdat,'DataPointRows')*get_numaris4_numval(privdat,'DataPointColumns'); dim = [nc nr numel(hdr) 2 ntp]; dt = spm_type('float32'); % Fixed datatype % Orientation information %------------------------------------------------------------------- % Axial Analyze voxel co-ordinate system: % x increases right to left % y increases posterior to anterior % z increases inferior to superior % DICOM patient co-ordinate system: % x increases right to left % y increases anterior to posterior % z increases inferior to superior % T&T co-ordinate system: % x increases left to right % y increases posterior to anterior % z increases inferior to superior analyze_to_dicom = [diag([1 -1 1]) [0 (dim(2)+1) 0]'; 0 0 0 1]; % Flip voxels in y patient_to_tal = diag([-1 -1 1 1]); % Flip mm coords in x and y directions shift_vx = [eye(4,3) [.5; .5; 0; 1]]; orient = reshape(get_numaris4_numval(privdat,... 'ImageOrientationPatient'),[3 2]); ps = get_numaris4_numval(privdat,'PixelSpacing'); if nc*nr == 1 % Single Voxel Spectroscopy (based on the following information from SIEMENS) %--------------------------------------------------------------- % NOTE: Internally the position vector of the CSI matrix shows to the outer border % of the first voxel. Therefore the position vector has to be corrected. % (Note: The convention of Siemens spectroscopy raw data is in contrast to the % DICOM standard where the position vector points to the center of the first voxel.) %--------------------------------------------------------------- % SIEMENS decides which definition to use based on the contents of the % 'PixelSpacing' internal header field. If it has non-zero values, % assume DICOM convention. If any value is zero, assume SIEMENS % internal convention for this direction. % Note that in SIEMENS code, there is a shift when PixelSpacing is % zero. Here, the shift seems to be necessary when PixelSpacing is % non-zero. This may indicate more fundamental problems with % orientation decoding. if ps(1) == 0 % row ps(1) = get_numaris4_numval(privdat,... 'VoiPhaseFoV'); shift_vx(1,4) = 0; end if ps(2) == 0 % col ps(2) = get_numaris4_numval(privdat,... 'VoiReadoutFoV'); shift_vx(2,4) = 0; end end pos = get_numaris4_numval(privdat,'ImagePositionPatient'); % for some reason, pixel spacing needs to be swapped R = [orient*diag(ps([2 1])); 0 0]; x1 = [1;1;1;1]; y1 = [pos; 1]; if length(hdr)>1, error('spm_dicom_convert:spectroscopy',... 'Don''t know how to handle multislice spectroscopy data.'); else orient(:,3) = null(orient'); if det(orient)<0, orient(:,3) = -orient(:,3); end; try z = get_numaris4_numval(privdat,... 'VoiThickness'); catch try z = get_numaris4_numval(privdat,... 'SliceThickness'); catch z = 1; end end; x2 = [0;0;1;0]; y2 = [orient*[0;0;z];0]; end dicom_to_patient = [y1 y2 R]/[x1 x2 eye(4,2)]; mat = patient_to_tal*dicom_to_patient*shift_vx*analyze_to_dicom; % Possibly useful information %------------------------------------------------------------------- if checkfields(hdr{1},'AcquisitionTime','MagneticFieldStrength','MRAcquisitionType',... 'ScanningSequence','RepetitionTime','EchoTime','FlipAngle',... 'AcquisitionDate'), tim = datevec(hdr{1}.AcquisitionTime/(24*60*60)); descrip = sprintf('%gT %s %s TR=%gms/TE=%gms/FA=%gdeg %s %d:%d:%.5g',... hdr{1}.MagneticFieldStrength, hdr{1}.MRAcquisitionType,... deblank(hdr{1}.ScanningSequence),... hdr{1}.RepetitionTime,hdr{1}.EchoTime,hdr{1}.FlipAngle,... datestr(hdr{1}.AcquisitionDate),tim(4),tim(5),tim(6)); else descrip = hdr{1}.Modality; end; if ~true, % LEFT-HANDED STORAGE mat = mat*[-1 0 0 (dim(1)+1); 0 1 0 0; 0 0 1 0; 0 0 0 1]; end; % Write the image volume %------------------------------------------------------------------- N = nifti; pinfo = [1 0]; if isfield(hdr{1},'RescaleSlope'), pinfo(1) = hdr{1}.RescaleSlope; end; if isfield(hdr{1},'RescaleIntercept'), pinfo(2) = hdr{1}.RescaleIntercept; end; N.dat = file_array(fname,dim,dt,0,pinfo(1),pinfo(2)); N.mat = mat; N.mat0 = mat; N.mat_intent = 'Scanner'; N.mat0_intent = 'Scanner'; N.descrip = descrip; N.extras = struct('MagneticFieldStrength',... get_numaris4_numval(privdat,'MagneticFieldStrength'),... 'TransmitterReferenceAmplitude',... get_numaris4_numval(privdat,'TransmitterReferenceAmplitude')); create(N); % Read data, swap dimensions data = permute(reshape(read_spect_data(hdr{1},privdat),dim([4 5 1 2 3])), ... [3 4 5 1 2]); % plane = fliplr(plane); N.dat(:,:,:,:,:) = data; return; %_______________________________________________________________________ %_______________________________________________________________________ function [images,guff] = select_tomographic_images(hdr) images = {}; guff = {}; for i=1:length(hdr), if ~checkfields(hdr{i},'Modality') || ~(strcmp(hdr{i}.Modality,'MR') ||... strcmp(hdr{i}.Modality,'PT') || strcmp(hdr{i}.Modality,'CT')) if checkfields(hdr{i},'Modality'), fprintf('File "%s" can not be converted because it is of type "%s", which is not MRI, CT or PET.\n', hdr{i}.Filename, hdr{i}.Modality); else fprintf('File "%s" can not be converted because it does not encode an image.\n', hdr{i}.Filename); end guff = [guff(:)',hdr(i)]; elseif ~checkfields(hdr{i},'StartOfPixelData','SamplesperPixel',... 'Rows','Columns','BitsAllocated','BitsStored','HighBit','PixelRepresentation'), disp(['Cant find "Image Pixel" information for "' hdr{i}.Filename '".']); guff = [guff(:)',hdr(i)]; %elseif isfield(hdr{i},'Private_2001_105f'), % % This field corresponds to: > Stack Sequence 2001,105F SQ VNAP, COPY % % http://www.medical.philips.com/main/company/connectivity/mri/index.html % % No documentation about this private field is yet available. % disp('Cant yet convert Phillips Intera DICOM.'); % guff = {guff{:},hdr{i}}; elseif ~(checkfields(hdr{i},'PixelSpacing','ImagePositionPatient','ImageOrientationPatient')||isfield(hdr{i},'Private_0029_1110')||isfield(hdr{i},'Private_0029_1210')), disp(['Cant find "Image Plane" information for "' hdr{i}.Filename '".']); guff = [guff(:)',hdr(i)]; elseif ~checkfields(hdr{i},'PatientID','SeriesNumber','AcquisitionNumber','InstanceNumber'), %disp(['Cant find suitable filename info for "' hdr{i}.Filename '".']); if ~isfield(hdr{i},'SeriesNumber') disp('Setting SeriesNumber to 1'); hdr{i}.SeriesNumber=1; images = [images(:)',hdr(i)]; end; if ~isfield(hdr{i},'AcquisitionNumber') if isfield(hdr{i},'Manufacturer') && ~isempty(strfind(upper(hdr{1}.Manufacturer), 'PHILIPS')) % WHY DO PHILIPS DO THINGS LIKE THIS???? if isfield(hdr{i},'InstanceNumber') hdr{i}.AcquisitionNumber = hdr{i}.InstanceNumber; else disp('Setting AcquisitionNumber to 1'); hdr{i}.AcquisitionNumber=1; end else disp('Setting AcquisitionNumber to 1'); hdr{i}.AcquisitionNumber=1; end images = [images(:)',hdr(i)]; end; if ~isfield(hdr{i},'InstanceNumber') disp('Setting InstanceNumber to 1'); hdr{i}.InstanceNumber=1; images = [images(:)',hdr(i)]; end; else images = [images(:)',hdr(i)]; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [mosaic,standard] = select_mosaic_images(hdr) mosaic = {}; standard = {}; for i=1:length(hdr), if ~checkfields(hdr{i},'ImageType','CSAImageHeaderInfo') ||... isfield(hdr{i}.CSAImageHeaderInfo,'junk') ||... isempty(read_AcquisitionMatrixText(hdr{i})) ||... isempty(read_NumberOfImagesInMosaic(hdr{i})) ||... read_NumberOfImagesInMosaic(hdr{i}) == 0 % NumberOfImagesInMosaic seems to be set to zero for pseudo images % containing e.g. online-fMRI design matrices, don't treat them as % mosaics standard = {standard{:}, hdr{i}}; else mosaic = {mosaic{:},hdr{i}}; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function [spect,images] = select_spectroscopy_images(hdr) spectsel = zeros(1,numel(hdr)); for i=1:length(hdr), if isfield(hdr{i},'SOPClassUID') spectsel(i) = strcmp(hdr{i}.SOPClassUID,'1.3.12.2.1107.5.9.1'); end; end; spect = hdr(logical(spectsel)); images = hdr(~logical(spectsel)); return; %_______________________________________________________________________ %_______________________________________________________________________ function ok = checkfields(hdr,varargin) ok = 1; for i=1:(nargin-1), if ~isfield(hdr,varargin{i}), ok = 0; break; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function clean = strip_unwanted(dirty) msk = (dirty>='a'&dirty<='z') | (dirty>='A'&dirty<='Z') |... (dirty>='0'&dirty<='9') | dirty=='_'; clean = dirty(msk); return; %_______________________________________________________________________ %_______________________________________________________________________ function img = read_image_data(hdr) img = []; if hdr.SamplesperPixel ~= 1, warning([hdr.Filename ': SamplesperPixel = ' num2str(hdr.SamplesperPixel) ' - cant be an MRI']); return; end; prec = ['ubit' num2str(hdr.BitsAllocated) '=>' 'uint32']; if isfield(hdr,'TransferSyntaxUID') && strcmp(hdr.TransferSyntaxUID,'1.2.840.10008.1.2.2') && strcmp(hdr.VROfPixelData,'OW'), fp = fopen(hdr.Filename,'r','ieee-be'); else fp = fopen(hdr.Filename,'r','ieee-le'); end; if fp==-1, warning([hdr.Filename ': cant open file']); return; end; if isfield(hdr,'TransferSyntaxUID') switch(hdr.TransferSyntaxUID) case {'1.2.840.10008.1.2.4.50','1.2.840.10008.1.2.4.51','1.2.840.10008.1.2.4.70',... '1.2.840.10008.1.2.4.80','1.2.840.10008.1.2.4.90','1.2.840.10008.1.2.4.91'}, % try to read PixelData as JPEG image - offset is just a guess offset = 16; fseek(fp,hdr.StartOfPixelData+offset,'bof'); img = fread(fp,Inf,'*uint8'); % save PixelData into temp file - imread and its subroutines can only % read from file, not from memory tfile = tempname; tfp = fopen(tfile,'w+'); fwrite(tfp,img,'uint8'); fclose(tfp); % read decompressed data, transpose to match DICOM row/column order img = imread(tfile)'; delete(tfile); otherwise fseek(fp,hdr.StartOfPixelData,'bof'); img = fread(fp,hdr.Rows*hdr.Columns,prec); end else fseek(fp,hdr.StartOfPixelData,'bof'); img = fread(fp,hdr.Rows*hdr.Columns,prec); end fclose(fp); if numel(img)~=hdr.Rows*hdr.Columns, error([hdr.Filename ': cant read whole image']); end; img = bitshift(img,hdr.BitsStored-hdr.HighBit-1); if hdr.PixelRepresentation, % Signed data - done this way because bitshift only % works with signed data. Negative values are stored % as 2s complement. neg = logical(bitshift(bitand(img,uint32(2^hdr.HighBit)),-hdr.HighBit)); msk = (2^hdr.HighBit - 1); img = double(bitand(img,msk)); img(neg) = img(neg)-2^(hdr.HighBit); else % Unsigned data msk = (2^(hdr.HighBit+1) - 1); img = double(bitand(img,msk)); end; img = reshape(img,hdr.Columns,hdr.Rows); return; %_______________________________________________________________________ %_______________________________________________________________________ function img = read_spect_data(hdr,privdat) % Guess number of timepoints in file - don't know whether this should be % 'DataPointRows'-by-'DataPointColumns' or 'SpectroscopyAcquisitionDataColumns' ntp = get_numaris4_numval(privdat,'DataPointRows')*get_numaris4_numval(privdat,'DataPointColumns'); % Data is stored as complex float32 values, timepoint by timepoint, voxel % by voxel. Reshaping is done in write_spectroscopy_volume. if ntp*2*4 ~= hdr.SizeOfCSAData warning([hdr.Filename,': Data size mismatch.']); end fp = fopen(hdr.Filename,'r','ieee-le'); fseek(fp,hdr.StartOfCSAData,'bof'); img = fread(fp,2*ntp,'float32'); fclose(fp); return; %_______________________________________________________________________ %_______________________________________________________________________ function nrm = read_SliceNormalVector(hdr) str = hdr.CSAImageHeaderInfo; val = get_numaris4_val(str,'SliceNormalVector'); for i=1:3, nrm(i,1) = sscanf(val(i,:),'%g'); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function n = read_NumberOfImagesInMosaic(hdr) str = hdr.CSAImageHeaderInfo; val = get_numaris4_val(str,'NumberOfImagesInMosaic'); n = sscanf(val','%d'); if isempty(n), n=[]; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function dim = read_AcquisitionMatrixText(hdr) str = hdr.CSAImageHeaderInfo; val = get_numaris4_val(str,'AcquisitionMatrixText'); dim = sscanf(val','%d*%d')'; if length(dim)==1, dim = sscanf(val','%dp*%d')'; end; if isempty(dim), dim=[]; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function val = get_numaris4_val(str,name) name = deblank(name); val = {}; for i=1:length(str), if strcmp(deblank(str(i).name),name), for j=1:str(i).nitems, if str(i).item(j).xx(1), val = {val{:} str(i).item(j).val}; end; end; break; end; end; val = strvcat(val{:}); return; %_______________________________________________________________________ %_______________________________________________________________________ function val = get_numaris4_numval(str,name) val1 = get_numaris4_val(str,name); val = zeros(size(val1,1),1); for k = 1:size(val1,1) val(k)=str2num(val1(k,:)); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function fname = getfilelocation(hdr,root_dir,prefix,format) if nargin < 3 prefix = 'f'; end; if strncmp(root_dir,'ice',3) root_dir = root_dir(4:end); imtype = textscan(hdr.ImageType,'%s','delimiter','\\'); try imtype = imtype{1}{3}; catch imtype = ''; end; prefix = [prefix imtype get_numaris4_val(hdr.CSAImageHeaderInfo,'ICE_Dims')]; end; if strcmp(root_dir, 'flat') % Standard SPM file conversion %------------------------------------------------------------------- if checkfields(hdr,'SeriesNumber','AcquisitionNumber') if checkfields(hdr,'EchoNumbers') fname = sprintf('%s%s-%.4d-%.5d-%.6d-%.2d.%s', prefix, strip_unwanted(hdr.PatientID),... hdr.SeriesNumber, hdr.AcquisitionNumber, hdr.InstanceNumber,... hdr.EchoNumbers, format); else fname = sprintf('%s%s-%.4d-%.5d-%.6d.%s', prefix, strip_unwanted(hdr.PatientID),... hdr.SeriesNumber, hdr.AcquisitionNumber, ... hdr.InstanceNumber, format); end; else fname = sprintf('%s%s-%.6d.%s',prefix, ... strip_unwanted(hdr.PatientID),hdr.InstanceNumber, format); end; fname = fullfile(pwd,fname); return; end; % more fancy stuff - sort images into subdirectories if ~isfield(hdr,'ProtocolName') if isfield(hdr,'SequenceName') hdr.ProtocolName = hdr.SequenceName; else hdr.ProtocolName='unknown'; end; end; if ~isfield(hdr,'SeriesDescription') hdr.SeriesDescription = 'unknown'; end; if ~isfield(hdr,'EchoNumbers') hdr.EchoNumbers = 0; end; m = sprintf('%02d', floor(rem(hdr.StudyTime/60,60))); h = sprintf('%02d', floor(hdr.StudyTime/3600)); studydate = sprintf('%s_%s-%s', datestr(hdr.StudyDate,'yyyy-mm-dd'), ... h,m); switch root_dir case {'date_time','series'} id = studydate; case {'patid', 'patid_date', 'patname'}, id = strip_unwanted(hdr.PatientID); end; serdes = strrep(strip_unwanted(hdr.SeriesDescription),... strip_unwanted(hdr.ProtocolName),''); protname = sprintf('%s%s_%.4d',strip_unwanted(hdr.ProtocolName), ... serdes, hdr.SeriesNumber); switch root_dir case 'date_time', dname = fullfile(pwd, id, protname); case 'patid', dname = fullfile(pwd, id, protname); case 'patid_date', dname = fullfile(pwd, id, studydate, protname); case 'patname', dname = fullfile(pwd, strip_unwanted(hdr.PatientsName), ... id, protname); case 'series', dname = fullfile(pwd, protname); otherwise error('unknown file root specification'); end; if ~exist(dname,'dir'), mkdir_rec(dname); end; % some non-product sequences on SIEMENS scanners seem to have problems % with image numbering in MOSAICs - doublettes, unreliable ordering % etc. To distinguish, always include Acquisition time in image name sa = sprintf('%02d', floor(rem(hdr.AcquisitionTime,60))); ma = sprintf('%02d', floor(rem(hdr.AcquisitionTime/60,60))); ha = sprintf('%02d', floor(hdr.AcquisitionTime/3600)); fname = sprintf('%s%s-%s%s%s-%.5d-%.5d-%d.%s', prefix, id, ha, ma, sa, ... hdr.AcquisitionNumber,hdr.InstanceNumber, ... hdr.EchoNumbers,format); fname = fullfile(dname, fname); %_______________________________________________________________________ %_______________________________________________________________________ function suc = mkdir_rec(str) % works on full pathnames only opwd=pwd; if str(end) ~= filesep, str = [str filesep];end; pos = strfind(str,filesep); suc = zeros(1,length(pos)); for g=2:length(pos) if ~exist(str(1:pos(g)-1),'dir'), cd(str(1:pos(g-1)-1)); suc(g) = mkdir(str(pos(g-1)+1:pos(g)-1)); end; end; cd(opwd); return; %_______________________________________________________________________ %_______________________________________________________________________ function ret = read_ascconv(hdr) % In SIEMENS data, there is an ASCII text section with % additional information items. This section starts with a code % ### ASCCONV BEGIN ### % and ends with % ### ASCCONV END ### % It is read by spm_dicom_headers into an entry 'MrProtocol' in % CSASeriesHeaderInfo or into an entry 'MrPhoenixProtocol' in % Private_0029_1110 or Private_0029_1120. % The additional items are assignments in C syntax, here they are just % translated according to % [] -> () % " -> ' % 0xX -> hex2dec('X') % and collected in a struct. ret=struct; % get ascconv data if isfield(hdr, 'Private_0029_1110') X = get_numaris4_val(hdr.Private_0029_1110,'MrPhoenixProtocol'); elseif isfield(hdr, 'Private_0029_1120') X = get_numaris4_val(hdr.Private_0029_1120,'MrPhoenixProtocol'); else X=get_numaris4_val(hdr.CSASeriesHeaderInfo,'MrProtocol'); end ascstart = strfind(X,'### ASCCONV BEGIN ###'); ascend = strfind(X,'### ASCCONV END ###'); if ~isempty(ascstart) && ~isempty(ascend) tokens = textscan(char(X((ascstart+22):(ascend-1))),'%s', ... 'delimiter',char(10)); tokens{1}=regexprep(tokens{1},{'\[([0-9]*)\]','"(.*)"','0x([0-9a-fA-F]*)'},{'($1+1)','''$1''','hex2dec(''$1'')'}); % If everything would evaluate correctly, we could use % eval(sprintf('ret.%s;\n',tokens{1}{:})); for k = 1:numel(tokens{1}) try eval(['ret.' tokens{1}{k} ';']); catch disp(['AscConv: Error evaluating ''ret.' tokens{1}{k} ''';']); end; end; end; %_______________________________________________________________________ %_______________________________________________________________________ function dt = determine_datatype(hdr) % Determine what datatype to use for NIfTI images be = spm_platform('bigend'); if hdr.HighBit>16 if hdr.PixelRepresentation dt = [spm_type( 'int32') be]; else dt = [spm_type('uint32') be]; end else if hdr.PixelRepresentation || hdr.HighBit<=15 dt = [spm_type( 'int16') be]; else dt = [spm_type('uint16') be]; end end
github
philippboehmsturm/antx-master
spm_spm_ui.m
.m
antx-master/xspm8/spm_spm_ui.m
98,074
utf_8
dfdd679af4a4b15272726dcb46e888fe
function varargout = spm_spm_ui(varargin) % Setting up the general linear model for independent data % FORMATs (given in Programmers Help) %_______________________________________________________________________ % % spm_spm_ui.m configures the design matrix (describing the general % linear model), data specification, and other parameters necessary for % the statistical analysis. These parameters are saved in a % configuration file (SPM.mat) in the current directory, and are % passed on to spm_spm.m which estimates the design. Inference on these % estimated parameters is then handled by the SPM results section. % % A separate program (spm_spm_fmri_ui.m) handles design configuration % for fMRI time series, though this program can be used for fMRI data % when observations can be regarded as independent. % % ---------------------------------------------------------------------- % % Various data and parameters need to be supplied to specify the design: % * the image files % * indicators of the corresponding condition/subject/group % * any covariates, nuisance variables, or design matrix partitions % * the type of global normalisation (if any) % * grand mean scaling options % * thresholds and masks defining the image volume to analyse % % The interface supports a comprehensive range of options for all these % parameters, which are described below in the order in which the % information is requested. Rather than ask for all these parameters, % spm_spm_ui.m uses a "Design Definition", a structure describing the % options and defaults appropriate for a particular analysis. Thus, % once the user has chosen a design, a subset of the following prompts % will be presented. % % If the pre-specified design definitions don't quite have the combination % of options you want, you can pass a custom design structure D to be used % as parameter: spm_spm_ui('cfg',D). The format of the design structure % and option definitions are given in the programmers help, at the top of % the main body of the code. % % ---------------- % % Design class & Design type % ========================== % % Unless a design definition is passed to spm_spm_ui.m as a parameter, % the user is prompted first to select a design class, and then to % select a design type from that class. % % The designs are split into three classes: % i) Basic stats: basic models for simple statistics % These specify designs suitable for simple voxel-by-voxel analyses. % - one-sample t-test % - two-sample t-test % - paired t-test % - one way Anova % - one way Anova (with constant) % - one way Anova (within subject) % - simple regression (equivalent to correlation) % - multiple regression % - multiple regression (with constant) % - basic AnCova (ANalysis of COVAriance) % (essentially a two-sample t-test with a nuisance covariate) % % ii) PET models: models suitable for analysis of PET/SPECT experiments % - Single-subject: conditions & covariates % - Single-subject: covariates only % % - Multi-subj: conditions & covariates % - Multi-subj: cond x subj interaction & covariates % - Multi-subj: covariates only % - Multi-group: conditions & covariates % - Multi-group: covariates only % % - Population main effect: 2 cond's, 1 scan/cond (paired t-test) % - Dodgy population main effect: >2 cond's, 1 scan/cond % - Compare-populations: 1 scan/subject (two sample t-test) % - Compare-populations: 1 scan/subject (AnCova) % % - The Full Monty... (asks you everything!) % % iii) SPM96 PET models: models used in SPM96 for PET/SPECT % These models are provided for backward compatibility, but as they % don't include some of the advanced modelling features, we recommend % you switch to the new (SPM99) models at the earliest opportunity. % - SPM96:Single-subject: replicated conditions % - SPM96:Single-subject: replicated conditions & covariates % - SPM96:Single-subject: covariates only % - SPM96:Multi-subject: different conditions % - SPM96:Multi-subject: replicated conditions % - SPM96:Multi-subject: different conditions & covariates % - SPM96:Multi-subject: replicated conditions & covariates % - SPM96:Multi-subject: covariates only % - SPM96:Multi-group: different conditions % - SPM96:Multi-group: replicated conditions % - SPM96:Multi-group: different conditions & covariates % - SPM96:Multi-group: replicated conditions & covariates % - SPM96:Multi-group: covariates only % - SPM96:Compare-groups: 1 scan per subject % % % Random effects, generalisability, population inference... % ========================================================= % % Note that SPM only considers a single component of variance, the % residual error variance. When there are repeated measures, all % analyses with SPM are fixed effects analyses, and inference only % extends to the particular subjects under consideration (at the times % they were imaged). % % In particular, the multi-subject and multi-group designs ignore the % variability in response from subject to subject. Since the % scan-to-scan (within-condition, within-subject variability is much % smaller than the between subject variance which is ignored), this can % lead to detection of group effects that are not representative of the % population(s) from which the subjects are drawn. This is particularly % serious for multi-group designs comparing two groups. If inference % regarding the population is required, a random effects analysis is % required. % % However, random effects analyses can be effected by appropriately % summarising the data, thereby collapsing the model such that the % residual variance for the new model contains precisely the variance % components needed for a random effects analysis. In many cases, the % fixed effects models here can be used as the first stage in such a % two-stage procedure to produce appropriate summary data, which can % then be used as raw data for a second-level analysis. For instance, % the "Multi-subj: cond x subj interaction & covariates" design can be % used to write out an image of the activation for each subject. A % simple t-test on these activation images then turns out to be % equivalent to a mixed-effects analysis with random subject and % subject by condition interaction effects, inferring for the % population based on this sample of subjects (strictly speaking the % design would have to be balanced, with equal numbers of scans per % condition per subject, and also only two conditions per subject). For % additional details, see spm_RandFX.man. % % ---------------- % % Selecting image files & indicating conditions % ============================================= % % You may now be prompted to specify how many studies, subjects and % conditions you have, and then will be promted to select the scans. % % The data should all have the same orientation and image and voxel size. % % File selection is handled by spm_select.m - the help for which describes % efficient use of the interface. % % You may be asked to indicate the conditions for a set of scans, with % a prompt like "[12] Enter conditions? (2)". For this particular % example you need to indicate for 12 scans the corresponding % condition, in this case from 2 conditions. Enter a vector of % indicators, like '0 1 0 1...', or a string of indicators, like % '010101010101' or '121212121212', or 'rararararara'. (This % "conditions" input is handled by spm_input.m, where comprehensive % help can be found.) % % ---------------- % % Covariate & nuisance variable entry % =================================== % % * If applicable, you'll be asked to specify covariates and nuisance % variables. Unlike SPM94/5/6, where the design was partitioned into % effects of interest and nuisance effects for the computation of % adjusted data and the F-statistic (which was used to thresh out % voxels where there appeared to be no effects of interest), SPM99 does % not partition the design in this way. The only remaining distinction % between effects of interest (including covariates) and nuisance % effects is their location in the design matrix, which we have % retained for continuity. Pre-specified design matrix partitions can % be entered. (The number of covariates / nuisance variables specified, % is actually the number of times you are prompted for entry, not the % number of resulting design matrix columns.) You will be given the % opportunity to name the covariate. % % * Factor by covariate interactions: For covariate vectors, you may be % offered a choice of interaction options. (This was called "covariate % specific fits" in SPM95/6.) The full list of possible options is: % - <none> % - with replication % - with condition (across group) % - with subject (across group) % - with group % - with condition (within group) % - with subject (within group) % % * Covariate centering: At this stage may also be offered "covariate % centering" options. The default is usually that appropriate for the % interaction chosen, and ensures that main effects of the interacting % factor aren't affected by the covariate. You are advised to choose % the default, unless you have other modelling considerations. The full % list of possible options is: % - around overall mean % - around replication means % - around condition means (across group) % - around subject means (across group) % - around group means % - around condition means (within group) % - around subject means (within group) % - <no centering> % % ---------------- % % Global options % ============== % % Depending on the design configuration, you may be offered a selection % of global normalisation and scaling options: % % * Method of global flow calculation % - SPM96:Compare-groups: 1 scan per subject % - None (assumming no other options requiring the global value chosen) % - User defined (enter your own vector of global values) % - SPM standard: mean voxel value (within per image fullmean/8 mask) % % * Grand mean scaling : Scaling of the overall grand mean simply % scales all the data by a common factor such that the mean of all the % global values is the value specified. For qualitative data, this puts % the data into an intuitively accessible scale without altering the % statistics. When proportional scaling global normalisation is used % (see below), each image is seperately scaled such that it's global % value is that specified (in which case the grand mean is also % implicitly scaled to that value). When using AnCova or no global % normalisation, with data from different subjects or sessions, an % intermediate situation may be appropriate, and you may be given the % option to scale group, session or subject grand means seperately. The % full list of possible options is: % - scaling of overall grand mean % - caling of replication grand means % - caling of condition grand means (across group) % - caling of subject grand means (across group) % - caling of group grand means % - caling of condition (within group) grand means % - caling of subject (within group) grand means % - implicit in PropSca global normalisation) % - no grand Mean scaling>' % % * Global normalisation option : Global nuisance effects are usually % accounted for either by scaling the images so that they all have the % same global value (proportional scaling), or by including the global % covariate as a nuisance effect in the general linear model (AnCova). % Much has been written on which to use, and when. Basically, since % proportional scaling also scales the variance term, it is appropriate % for situations where the global measurement predominantly reflects % gain or sensitivity. Where variance is constant across the range of % global values, linear modelling in an AnCova approach has more % flexibility, since the model is not restricted to a simple % proportional regression. % % Considering AnCova global normalisation, since subjects are unlikely % to have the same relationship between global and local measurements, % a subject-specific AnCova ("AnCova by subject"), fitting a different % slope and intercept for each subject, would be preferred to the % single common slope of a straight AnCova. (Assumming there's enough % scans per subject to estimate such an effect.) This is basically an % interaction of the global covariate with the subject factor. You may % be offered various AnCova options, corresponding to interactions with % various factors according to the design definition: The full list of % possible options is: % - AnCova % - AnCova by replication % - AnCova by condition (across group) % - AnCova by subject (across group) % - AnCova by group % - AnCova by condition (within group) % - AnCova by subject (within group) % - Proportional scaling % - <no global normalisation> % % Since differences between subjects may be due to gain and sensitivity % effects, AnCova by subject could be combined with "grand mean scaling % by subject" to obtain a combination of between subject proportional % scaling and within subject AnCova. % % * Global centering: Lastly, for some designs using AnCova, you will % be offered a choice of centering options for the global covariate. As % with covariate centering, this is only relevant if you have a % particular interest in the parameter estimates. Usually, the default % of a centering corresponding to the AnCova used is chosen. The full % list of possible options is: % - around overall mean % - around replication means % - around condition means (across group) % - around subject means (across group) % - around group means % - around condition means (within group) % - around subject means (within group) % - <no centering> % - around user specified value % - (as implied by AnCova) % - GM (The grand mean scaled value) % - (redundant: not doing AnCova) % % % % Note that this is a logical ordering for the global options, which is % not the order used by the interface due to algorithm constraints. The % interface asks for the options in this order: % - Global normalisation % - Grand mean scaling options % (if not using proportional scaling global normalisation) % - Value for grand mean scaling proportional scaling GloNorm % (if appropriate) % - Global centering options % - Value for global centering (if "user-defined" chosen) % - Method of calculation % % ---------------- % % Masking options % =============== % % The mask specifies the voxels within the image volume which are to be % assessed. SPM supports three methods of masking. The volume analysed % is the intersection of all masks: % % i) Threshold masking : "Analysis threshold" % - images are thresholded at a given value and only voxels at % which all images exceed the threshold are included in the % analysis. % - The threshold can be absolute, or a proportion of the global % value (after scaling), or "-Inf" for no threshold masking. % - (This was called "Grey matter threshold" in SPM94/5/6) % % ii) Implicit masking % - An "implicit mask" is a mask implied by a particular voxel % value. Voxels with this mask value are excluded from the % analysis. % - For image data-types with a representation of NaN % (see spm_type.m), NaN's is the implicit mask value, (and % NaN's are always masked out). % - For image data-types without a representation of NaN, zero is % the mask value, and the user can choose whether zero voxels % should be masked out or not. % % iii) Explicit masking % - Explicit masks are other images containing (implicit) masks % that are to be applied to the current analysis. % - All voxels with value NaN (for image data-types with a % representation of NaN), or zero (for other data types) are % excluded from the analysis. % - Explicit mask images can have any orientation and voxel/image % size. Nearest neighbour interpolation of a mask image is used if % the voxel centers of the input images do not coincide with that % of the mask image. % % % ---------------- % % Non-sphericity correction % ========================= % % In some instances the i.i.d. assumptions about the errors do not hold: % % Identity assumption: % The identity assumption, of equal error variance (homoscedasticity), can % be violated if the levels of a factor do not have the same error variance. % For example, in a 2nd-level analysis of variance, one contrast may be scaled % differently from another. Another example would be the comparison of % qualitatively different dependant variables (e.g. normals vs. patients). If % You say no to identity assumptions, you will be asked whether the error % variance is the same over levels of each factor. Different variances % (heteroscedasticy) induce different error covariance components that % are estimated using restricted maximum likelihood (see below). % % Independence assumption. % In some situations, certain factors may contain random effects. These induce % dependencies or covariance components in the error terms. If you say no % to independence assumptions, you will be asked whether random effects % should be modelled for each factor. A simple example of this would be % modelling the random effects of subject. These cause correlations among the % error terms of observation from the same subject. For simplicity, it is % assumed that the random effects of each factor are i.i.d. One can always % re-specify the covariance components by hand in SPM.xVi.Vi for more % complicated models % % ReML % The ensuing covariance components will be estimated using ReML in spm_spm % (assuming the same for all responsive voxels) and used to adjust the % statistics and degrees of freedom during inference. By default spm_spm % will use weighted least squares to produce Gauss-Markov or Maximum % likelihood estimators using the non-sphericity structure specified at this % stage. The components will be found in xX.xVi and enter the estimation % procedure exactly as the serial correlations in fMRI models. % % see also: spm_reml.m and spm_non_sphericity.m % % ---------------- % % Multivariate analyses % ===================== % % Mulitvariate analyses with n-variate response variables are supported % and automatically invoke a ManCova and CVA in spm_spm. Multivariate % designs are, at the moment limited to Basic and PET designs. % % ---------------------------------------------------------------------- % % Variables saved in the SPM stucture % % xY.VY - nScan x 1 struct array of memory mapped images % (see spm_vol for definition of the map structure) % xX - structure describing design matrix % xX.D - design definition structure % (See definition in main body of spm_spm_ui.m) % xX.I - nScan x 4 matrix of factor level indicators % I(n,i) is the level of factor i corresponding to image n % xX.sF - 1x4 cellstr containing the names of the four factors % xX.sF{i} is the name of factor i % xX.X - design matrix % xX.xVi - correlation constraints for non-spericity correction % xX.iH - vector of H partition (condition effects) indices, % identifying columns of X correspoding to H % xX.iC - vector of C partition (covariates of interest) indices % xX.iB - vector of B partition (block effects) indices % xX.iG - vector of G partition (nuisance variables) indices % xX.name - p x 1 cellstr of effect names corresponding to columns % of the design matrix % % xC - structure array of covariate details % xC(i).rc - raw (as entered) i-th covariate % xC(i).rcname - name of this covariate (string) % xC(i).c - covariate as appears in design matrix (after any scaling, % centering of interactions) % xC(i).cname - cellstr containing names for effects corresponding to % columns of xC(i).c % xC(i).iCC - covariate centering option % xC(i).iCFI - covariate by factor interaction option % xC(i).type - covariate type: 1=interest, 2=nuisance, 3=global % xC(i).cols - columns of design matrix corresponding to xC(i).c % xC(i).descrip - cellstr containing a description of the covariate % % xGX - structure describing global options and values % xGX.iGXcalc - global calculation option used % xGX.sGXcalc - string describing global calculation used % xGX.rg - raw globals (before scaling and such like) % xGX.iGMsca - grand mean scaling option % xGX.sGMsca - string describing grand mean scaling % xGX.GM - value for grand mean (/proportional) scaling % xGX.gSF - global scaling factor (applied to xGX.rg) % xGX.iGC - global covariate centering option % xGX.sGC - string describing global covariate centering option % xGX.gc - center for global covariate % xGX.iGloNorm - Global normalisation option % xGX.sGloNorm - string describing global normalisation option % % xM - structure describing masking options % xM.T - Threshold masking value (-Inf=>None, % real=>absolute, complex=>proportional (i.e. times global) ) % xM.TH - nScan x 1 vector of analysis thresholds, one per image % xM.I - Implicit masking (0=>none, 1=>implicit zero/NaN mask) % xM.VM - struct array of explicit mask images % (empty if no explicit masks) % xM.xs - structure describing masking options % (format is same as for xsDes described below) % % xsDes - structure of strings describing the design: % Fieldnames are essentially topic strings (use "_"'s for % spaces), and the field values should be strings or cellstr's % of information regarding that topic. spm_DesRep.m % uses this structure to produce a printed description % of the design, displaying the fieldnames (with "_"'s % converted to spaces) in bold as topics, with % the corresponding text to the right % % SPMid - String identifying SPM and program versions % % ---------------- % % NB: The SPM.mat file is not very portable: It contains % memory-mapped handles for the images, which hardcodes the full file % pathname and datatype. Therefore, subsequent to creating the % SPM.mat, you cannot move the image files, and cannot move the % entire analysis to a system with a different byte-order (even if the % full file pathnames are retained. Further, the image scalefactors % will have been pre-scaled to effect any grand mean or global % scaling. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Andrew Holmes % $Id: spm_spm_ui.m 4185 2011-02-01 18:46:18Z guillaume $ SCCSid = '$Rev: 4185 $'; %======================================================================= % - FORMAT specifications for programers %======================================================================= %( This is a multi function function, the first argument is an action ) %( string, specifying the particular action function to take. ) % % FORMAT spm_spm_ui('CFG',D) % Configure design % D - design definition structure - see format definition below % (If D is a struct array, then the user is asked to choose from the % design definitions in the array. If D is not specified as an % argument, then user is asked to choose from the standard internal % definitions) % % FORMAT [P,I] = spm_spm_ui('Files&Indices',DsF,Dn,DbaTime) % PET/SPECT file & factor level input % DsF - 1x4 cellstr of factor names (ie D.sF) % Dn - 1x4 vector indicating the number of levels (ie D.n) % DbaTime - ask for F3 images in time order, with F2 levels input by user? % P - nScan x 1 cellsrt of image filenames % I - nScan x 4 matrix of factor level indices % % FORMAT D = spm_spm_ui('DesDefs_Stats') % Design definitions for simple statistics % D - struct array of design definitions (see definition below) % % FORMAT D = spm_spm_ui('DesDefs_PET') % Design definitions for PET/SPECT models % D - struct array of design definitions (see definition below) % % FORMAT D = spm_spm_ui('DesDefs_PET96') % Design definitions for SPM96 PET/SPECT models % D - struct array of design definitions (see definition below) %======================================================================= % Design definitions specification for programers & power users %======================================================================= % Within spm_spm_ui.m, a definition structure, D, determines the % various options, defaults and specifications appropriate for a % particular design. Usually one uses one of the pre-specified % definitions chosen from the menu, which are specified in the function % actions at the end of the program (spm_spm_ui('DesDefs_Stats'), % spm_spm_ui('DesDefs_PET'), spm_spm_ui('DesDefs_PET96')). For % customised use of spm_spm_ui.m, the design definition structure is % shown by the following example: % % D = struct(... % 'DesName','The Full Monty...',... % 'n',[Inf Inf Inf Inf], 'sF',{{'repl','cond','subj','group'}},... % 'Hform', 'I(:,[4,2]),''-'',{''stud'',''cond''}',... % 'Bform', 'I(:,[4,3]),''-'',{''stud'',''subj''}',... % 'nC',[Inf,Inf],'iCC',{{[1:8],[1:8]}},'iCFI',{{[1:7],[1:7]}},... % 'iGXcalc',[1,2,3],'iGMsca',[1:7],'GM',50,... % 'iGloNorm',[1:9],'iGC',[1:11],... % 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... % 'b',struct('aTime',1)); % % ( Note that the struct command expands cell arrays to give multiple ) % ( records, so if you want a cell array as a field value, you have to ) % ( embed it within another cell, hence the double "{{"'s. ) % % ---------------- % % Design structure fields and option definitions % ============================================== % % D.Desname - a string naming the design % % In general, spm_spm_ui.m accomodates four factors. Usually these are % 'group', 'subject', 'condition' & 'replication', but to allow for a % flexible interface these are dynamically named for different designs, % and are referred to as Factor4, Factor3, Factor2, and Factor1 % respectively. The first part of the D definition dictates the names % and number of factor levels (i.e. number of subjects etc.) relevant % for this design, and also how the H (condition) and B (block) % partitions of the design matrix should be constructed. % % D.n - a 1x4 vector, indicating the number of levels. D.n(i) % for i in [1:4] is the number of levels for factor i. % Specify D.n(i) as 1 to ignore this factor level, % otherwise the number of levels can be pre-specified as a % given number, or given as Inf to allow the user to % choose the number of levels. % % D.sF - a 1x4 cellstr containing the names of the four % factors. D.sF{i} is the name of factor i. % % D.b.aTime - a binary indicator specifying whether images within F3 % level (subject) are selected in time order. For time % order (D.b.aTime=1), F2 levels are indicated by a user % input "condition" string (input handled by spm_input's % 'c' type). When (D.b.aTime=0), images for each F3 are % selected by F2 (condition). The latter was the mode of % SPM95 and SPM96. (SPM94 and SPMclassic didn't do % replications of conditions.) % % Once the user has entered the images and indicated the factor levels, % a nScan x 4 matrix, I, of indicator variables is constructed % specifying for each scan the relevant level of each of the four % factors. I(n,i) is the level of factor i corresponding to image n. % This I matrix of factor indicators is then used to construct the H % and B forms of the design matrix according to the prescripton in the % design definition D: % % D.Hform - a string specifying the form of the H partition of the % design matrix. The string is evaluated as an argument % string for spm_DesMtx, which builds design matrix % partitions from indicator vectors. % (eval(['[H,Hnames] = spm_DesMtx(',D.Hform,');'])) % % D.BForm - a string specifying the form of the G partition. % % ( Note that a constant H partition is dropped if the B partition can ) % ( model the constant effect. ) % % The next part of the design definition defines covariate options. % Covariates are split into covariates (of interest) and nuisance % variables. The covariates of interest and nuisance variables are put % into the C & G partitions of the design matrox (the final design % matrix is [H,C,B,G], where global nuisance covariates are appended to % G). In SPM94/5/6 the design matrix was partitioned into effects of % interest [H,C] and effects of no interest [B,G], with an F-test for % no effects of interest and adjusted data (for effects of no interest) % following from these partitions. SPM99 is more freestyle, with % adjustments and F-tests specified by contrasts. However, the concept % of effects of interest and of no interest has been maintained for % continuity, and spm_spm_ui.m computes an F-contrast to test for "no % effects of interest". % % D.nC - a 1x2 vector: D.nC(1) is the number of covariates, % D.nC(2) the number of nuisance variables. Specify zero % to skip covariate entry, the actual number of % covariates, or Inf to let the user specify the number of % covariates. As with earlier versions, blocks of design % matrix can be entered. However, these are now treated as % a single covariate entity, so the number of % covariates.nuisance variables is now the number of items % you are prompted for, regardless of their dimension. (In % SPM95-6 this number was the number of covariate vectors % that could be entered.) % % D.iCC - a 1x2 cell array containing two vectors indicating the % allowable covariate centering options for this design. % These options are defined in the body of spm_spm_ui.m, % in variables sCC & CFIforms. Use negative indices to % indicate the default, if any - the largest negative % wins. % % D.iCFI - a 1x2 cell array containing two vectors indicating the % allowable covariate by factor interactions for this % design. Interactions are only offered with a factor if % it has multiple levels. The options are defined in the % body of spm_spm_ui.m, in variables sCFI & CFIforms. Use % negative indicies to indicate a default. % % The next part defines global options: % % D.iGXcalc - a vector of possible global calculation options for % this design, as listed in the body of spm_spm_ui.m in % variable sGXcalc. (If other global options are chosen, % then the "omit" option is not offered.) Again, negative % values indicate a default. % % D.iGloNorm - a vector of possible global normalisation options for % this design, as described in the body of spm_spm_ui.m in % variable sGloNorm. % % D.iGMsca - a vector of possible grand mean scaling options, as % described in the body of spm_spm_ui.m in variable % sGMsca. (Note that grand mean scaling is redundent when % using proportional scaling global flow normalisation.) % % D.iGC - a vector of possible global covariate centering % options, corresponding to the descriptions in variable % iCC given in the body of spm_spm_ui.m. This is only % relevant for AnCova type global normalisation, and even % then only if you're actually interested in constraining % the values of the parameters in some useful way. % Usually, one chooses option 10, "as implied by AnCova". % % The next component specifies masking options: % % D.M_.T - a vector defining the analysis threshold: Specify % "-Inf" as an element to offer "None" as an option. If a % real element is found, then absolute thresholding is % offered, with the first real value proffered as default % threshold. If an imaginary element is found, then % proportional thresholding if offered (i.e. the threshold % is a proportion of the image global), with the (abs of) % the first imaginary element proffered as default. % % D.M_.I - Implicit masking? 0-no, 1-yes, Inf-ask. (This is % irrelevant for image types with a representation of NaN, % since NaN is then the mask value, and NaN's are always % masked.) % % D.M.X - Explicit masking? 0-no, 1-yes, Inf-ask. % % ---------------- % % To use a customised design structure D, type spm_spm_ui('cfg',D) in the % Matlab command window. % % The easiest way to generate a customised design definition structure % is to tweak one of the pre-defined definitions. The following code % will prompt you to select one of the pre-defined designs, and return % the design definition structure for you to work on: % % D = spm_spm_ui(char(spm_input('Select design class...','+1','m',... % {'Basic stats','Standard PET designs','SPM96 PET designs'},... % {'DesDefs_Stats','DesDefs_PET','DesDefs_PET96'},2))); % D = D(spm_input('Select design type...','+1','m',{D.DesName}')) % %_______________________________________________________________________ % @(#)spm_spm_ui.m 2.54 Andrew Holmes 04/12/09 %-Condition arguments %----------------------------------------------------------------------- if (nargin==0), Action = 'CFG'; else, Action = varargin{1}; end switch lower(Action) case 'cfg' %=================================================================== % - C O N F I G U R E D E S I G N %=================================================================== % spm_spm_ui('CFG',D) if nargin<2, D = []; else, D = varargin{2}; end %-GUI setup %------------------------------------------------------------------- SPMid = spm('FnBanner',mfilename,SCCSid); [Finter,Fgraph,CmdLine] = spm('FnUIsetup','Stats: Setup analysis',0); spm_help('!ContextHelp',mfilename) %-Ask about overwriting files from previous analyses... %------------------------------------------------------------------- if exist(fullfile('.','SPM.mat')) str = { 'Current directory contains existing SPM file:',... 'Continuing will overwrite existing file!'}; if spm_input(str,1,'bd','stop|continue',[1,0],1,mfilename); fprintf('%-40s: %30s\n\n',... 'Abort... (existing SPM file)',spm('time')) spm_clf(Finter) return end end %-Option definitions %------------------------------------------------------------------- %-Generic factor names sF = {'sF1','sF2','sF3','sF4'}; %-Covariate by factor interaction options sCFI = {'<none>';... %-1 'with sF1';'with sF2';'with sF3';'with sF4';... %-2:5 'with sF2 (within sF4)';'with sF3 (within sF4)'}; %-6,7 %-DesMtx argument components for covariate by factor interaction options % (Used for CFI's Covariate Centering (CC), GMscale & Global normalisation) CFIforms = { '[]', 'C', '{}';... %-1 'I(:,1)', 'FxC', '{D.sF{1}}';... %-2 'I(:,2)', 'FxC', '{D.sF{2}}';... %-3 'I(:,3)', 'FxC', '{D.sF{3}}';... %-4 'I(:,4)', 'FxC', '{D.sF{4}}';... %-5 'I(:,[4,2])', 'FxC', '{D.sF{4},D.sF{2}}';... %-6 'I(:,[4,3])', 'FxC', '{D.sF{4},D.sF{3}}' }; %-7 %-Centre (mean correction) options for covariates & globals (CC) % (options 9-12 are for centering of global when using AnCova GloNorm) (GC) sCC = { 'around overall mean';... %-1 'around sF1 means';... %-2 'around sF2 means';... %-3 'around sF3 means';... %-4 'around sF4 means';... %-5 'around sF2 (within sF4) means';... %-6 'around sF3 (within sF4) means';... %-7 '<no centering>';... %-8 'around user specified value';... %-9 '(as implied by AnCova)';... %-10 'GM';... %-11 '(redundant: not doing AnCova)'}'; %-12 %-DesMtx I forms for covariate centering options CCforms = {'ones(nScan,1)',CFIforms{2:end,1},''}'; %-Global normalization options (options 1-7 match CFIforms) (GloNorm) sGloNorm = { 'AnCova';... %-1 'AnCova by sF1';... %-2 'AnCova by sF2';... %-3 'AnCova by sF3';... %-4 'AnCova by sF4';... %-5 'AnCova by sF2 (within sF4)';... %-6 'AnCova by sF3 (within sF4)';... %-7 'proportional scaling';... %-8 '<no global normalisation>'}; %-9 %-Grand mean scaling options (GMsca) sGMsca = { 'scaling of overall grand mean';... %-1 'scaling of sF1 grand means';... %-2 'scaling of sF2 grand means';... %-3 'scaling of sF3 grand means';... %-4 'scaling of sF4 grand means';... %-5 'scaling of sF2 (within sF4) grand means';... %-6 'scaling of sF3 (within sF4) grand means';... %-7 '(implicit in PropSca global normalisation)';... %-8 '<no grand Mean scaling>' }; %-9 %-NB: Grand mean scaling by subject is redundent for proportional scaling %-Global calculation options (GXcalc) sGXcalc = { 'omit';... %-1 'user specified';... %-2 'mean voxel value (within per image fullmean/8 mask)'}; %-3 %=================================================================== %-D E S I G N P A R A M E T E R S %=================================================================== %-Get design type %------------------------------------------------------------------- if isempty(D) D = spm_spm_ui( ... char(spm_input('Select design class...','+1','m',... {'Basic stats','Standard PET designs','SPM96 PET designs'},... {'DesDefs_Stats','DesDefs_PET','DesDefs_PET96'},2))); end D = D(spm_input('Select design type...','+1','m',{D.DesName}')); %-Set factor names for this design %------------------------------------------------------------------- sCC = sf_estrrep(sCC,[sF',D.sF']); sCFI = sf_estrrep(sCFI,[sF',D.sF']); sGloNorm = sf_estrrep(sGloNorm,[sF',D.sF']); sGMsca = sf_estrrep(sGMsca,[sF',D.sF']); %-Get filenames & factor indicies %------------------------------------------------------------------- [P,I] = spm_spm_ui('Files&Indices',D.sF,D.n,D.b.aTime); nScan = size(I,1); %-#obs %-Additional design parameters %------------------------------------------------------------------- bL = any(diff(I,1),1); %-Multiple factor levels? % NB: bL(2) might be thrown by user specified f1 levels % (D.b.aTime & D.n(2)>1) - assumme user is consistent? bFI = [bL(1),bL(2:3)&~bL(4),bL(4),bL([2,3])&bL(4)]; %-Allowable interactions for covariates %-Only offer interactions with multi-level factors, and % don't offer by F2|F3 if bL(4)! %-Build Condition (H) and Block (B) partitions %=================================================================== H=[];Hnames=[]; B=[];Bnames=[]; eval(['[H,Hnames] = spm_DesMtx(',D.Hform,');']) if rank(H)==nScan, error('unestimable condition effects'), end eval(['[B,Bnames] = spm_DesMtx(',D.Bform,');']) if rank(B)==nScan, error('unestimable block effects'), end %-Drop a constant H partition if B partition can model constant if size(H,2)>0 & all(H(:)==1) & (rank([H B])==rank(B)) H = []; Hnames = {}; warning('Dropping redundant constant H partition') end %-Covariate partition(s): interest (C) & nuisance (G) excluding global %=================================================================== nC = D.nC; %-Default #covariates C = {[],[]}; Cnames = {{},{}}; %-Covariate DesMtx partitions & names xC = []; %-Struct array to hold raw covariates dcname = {'CovInt','NusCov'}; %-Default root names for covariates dstr = {'covariate','nuisance variable'}; GUIpos = spm_input('!NextPos'); nc = [0,0]; for i = 1:2 % 1:covariates of interest, 2:nuisance variables if isinf(nC(i)), nC(i)=spm_input(['# ',dstr{i},'s'],GUIpos,'w1'); end while nc(i) < nC(i) %-Create prompt, get covariate, get covariate name %----------------------------------------------------------- if nC(i)==1 str=dstr{i}; else str=sprintf('%s %d',dstr{i},nc(i)+1); end c = spm_input(str,GUIpos,'r',[],[nScan,Inf]); if any(isnan(c(:))), break, end %-NaN is dummy value to exit nc(i) = nc(i)+1; %-#Covariates (so far) if nC(i)>1, tstr = sprintf('%s^{%d}',dcname{i},nc(i)); else, tstr = dcname{i}; end cname = spm_input([str,' name?'],'+1','s',tstr); rc = c; %-Save covariate value rcname = cname; %-Save covariate name %-Interaction option? (if single covariate vector entered)? %----------------------------------------------------------- if size(c,2) == 1 %-User choice of interaction options, default is negative %-Only offer interactions for appropriate factor combinations if length(D.iCFI{i})>1 iCFI = intersect(abs(D.iCFI{i}),find([1,bFI])); dCFI = max([1,intersect(iCFI,-D.iCFI{i}(D.iCFI{i}<0))]); iCFI = spm_input([str,': interaction?'],'+1','m',... sCFI(iCFI),iCFI,find(iCFI==dCFI)); else iCFI = abs(D.iCFI{i}); %-AutoSelect default option end else iCFI = 1; end %-Centre covariate(s)? (Default centring to correspond to CFI) % Always offer "no centering" as default for design matrix blocks %----------------------------------------------------------- DiCC = D.iCC{i}; if size(c,2)>1, DiCC = union(DiCC,-8); end if length(DiCC)>1 %-User has a choice of centering options %-Only offer factor specific for appropriate factor combinations iCC = intersect(abs(DiCC),find([1,bFI,1]) ); %-Default is max -ve option in D, overridden by iCFI if CFI if iCFI == 1, dCC = -DiCC(DiCC<0); else, dCC = iCFI; end dCC = max([1,intersect(iCC,dCC)]); iCC = spm_input([str,': centre?'],'+1','m',... sCC(iCC),iCC,find(iCC==dCC)); else iCC = abs(DiCC); %-AutoSelect default option end %-Centre within factor levels as appropriate if any(iCC == [1:7]), c = c - spm_meanby(c,eval(CCforms{iCC})); end %-Do any interaction (only for single covariate vectors) %----------------------------------------------------------- if iCFI > 1 %-(NB:iCFI=1 if size(c,2)>1) tI = [eval(CFIforms{iCFI,1}),c]; tConst = CFIforms{iCFI,2}; tFnames = [eval(CFIforms{iCFI,3}),{cname}]; [c,cname] = spm_DesMtx(tI,tConst,tFnames); elseif size(c,2)>1 %-Design matrix block [null,cname] = spm_DesMtx(c,'X',cname); else cname = {cname}; end %-Store raw covariate details in xC struct for reference %-Pack c into appropriate DesMtx partition %----------------------------------------------------------- %-Construct description string for covariate str = {sprintf('%s: %s',str,rcname)}; if size(rc,2)>1, str = {sprintf('%s (block of %d covariates)',... str{:},size(rc,2))}; end if iCC < 8, str=[str;{['used centered ',sCC{iCC}]}]; end if iCFI> 1, str=[str;{['fitted as interaction ',sCFI{iCFI}]}]; end tmp = struct( 'rc',rc, 'rcname',rcname,... 'c',c, 'cname',{cname},... 'iCC',iCC, 'iCFI',iCFI,... 'type',i,... 'cols',[1:size(c,2)] + ... size([H,C{1}],2) + ... size([B,C{2}],2)*(i-1),... 'descrip',{str} ); if isempty(xC), xC = tmp; else, xC = [xC,tmp]; end C{i} = [C{i},c]; Cnames{i} = [Cnames{i}; cname]; end % (while) end % (for) clear c tI tConst tFnames spm_input('!SetNextPos',GUIpos); %-Unpack into C & G design matrix sub-partitions G = C{2}; Gnames = Cnames{2}; C = C{1}; Cnames = Cnames{1}; %-Options... %=================================================================== %-Global normalization options (GloNorm) %------------------------------------------------------------------- if length(D.iGloNorm)>1 %-User choice of global normalisation options, default is negative %-Only offer factor specific for appropriate factor combinations iGloNorm = intersect(abs(D.iGloNorm),find([1,bFI,1,1])); dGloNorm = max([0,intersect(iGloNorm,-D.iGloNorm(D.iGloNorm<0))]); iGloNorm = spm_input('GloNorm: Select global normalisation','+1','m',... sGloNorm(iGloNorm),iGloNorm,find(iGloNorm==dGloNorm)); else iGloNorm = abs(D.iGloNorm); end %-Grand mean scaling options (GMsca) %------------------------------------------------------------------- if iGloNorm==8 iGMsca=8; %-grand mean scaling implicit in PropSca GloNorm elseif length(D.iGMsca)==1 iGMsca = abs(D.iGMsca); else %-User choice of grand mean scaling options %-Only offer factor specific for appropriate factor combinations iGMsca = intersect(abs(D.iGMsca),find([1,bFI,0,1])); %-Default is max -ve option in D, overridden by iGloNorm if AnCova if iGloNorm==9, dGMsca=-D.iGMsca(D.iGMsca<0); else, dGMsca=iGloNorm; end dGMsca = max([0,intersect(iGMsca,dGMsca)]); iGMsca = spm_input('GMsca: grand mean scaling','+1','m',... sGMsca(iGMsca),iGMsca,find(iGMsca==dGMsca)); end %-Value for PropSca / GMsca (GM) %------------------------------------------------------------------- if iGMsca == 9 %-Not scaling (GMsca or PropSca) GM = 0; %-Set GM to zero when not scaling else %-Ask user value of GM if iGloNorm==8 str = 'PropSca global mean to'; else str = [strrep(sGMsca{iGMsca},'scaling of','scale'),' to']; end GM = spm_input(str,'+1','r',D.GM,1); %-If GM is zero then don't GMsca! or PropSca GloNorm if GM==0, iGMsca=9; if iGloNorm==8, iGloNorm=9; end, end end %-Sort out description strings for GloNorm and GMsca %------------------------------------------------------------------- sGloNorm = sGloNorm{iGloNorm}; sGMsca = sGMsca{iGMsca}; if iGloNorm==8 sGloNorm = sprintf('%s to %-4g',sGloNorm,GM); elseif iGMsca<8 sGMsca = sprintf('%s to %-4g',sGMsca,GM); end %-Global centering (for AnCova GloNorm) (GC) %------------------------------------------------------------------- %-Specify the centering option for the global covariate for AnCova %-Basically, if 'GMsca'ling then should centre to GM (iGC=11). Otherwise, % should centre in similar fashion to AnCova (i.e. by the same factor(s)), % such that models are seperable (iGC=10). This is particularly important % for subject specific condition effects if then passed on to a second-level % model. (See also spm_adjmean_ui.m) SPM96 (& earlier) used to just centre % GX around its (overall) mean (iGC=1). %-This code allows more general options to be specified (but is complex) %-Setting D.iGC=[-10,-11] gives the standard choices above %-If not doing AnCova then GC is irrelevant if ~any(iGloNorm == [1:7]) iGC = 12; gc = []; else %-Annotate options 10 & 11 with specific details %--------------------------------------------------------------- %-Tag '(as implied by AnCova)' with actual AnCova situation sCC{10} = [sCC{iGloNorm},' (<= ',sGloNorm,')']; %-Tag 'GM' case with actual GM & GMsca case sCC{11} = sprintf('around GM=%g (i.e. %s after grand mean scaling)',... GM,strrep(sCC{iGMsca},'around ','')); %-Constuct vector of allowable iGC %--------------------------------------------------------------- %-Weed out redundent factor combinations from pre-set allowable options iGC = intersect(abs(D.iGC),find([1,bFI,1,1,1,1])); %-Omit 'GM' option if didn't GMsca (iGMsca~=8 'cos doing AnCova) if any(iGMsca==[8,9]), iGC = setdiff(iGC,11); end %-Omit 'GM' option if same as '(as implied by AnCova)' if iGloNorm==iGMsca, iGC = setdiff(iGC,11); end %-If there's a choice, set defaults (if any), & get answer %--------------------------------------------------------------- if length(iGC)>1 dGC = max([0,intersect(iGC,-D.iGC(D.iGC<0))]); str = 'Centre global covariate'; if iGMsca<8, str = [str,' (after grand mean scaling)']; end iGC = spm_input(str,'+1','m',sCC(iGC),iGC,find(iGC==dGC)); elseif isempty(iGC) error('Configuration error: empty iGC') end %-If 'user specified' then get value %--------------------------------------------------------------- if iGC==9 gc = spm_input('Centre globals around','+0','r',D.GM,1); sCC{9} = sprintf('%s of %g',sCC{iGC},gc); else gc = 0; end end %-Thresholds & masks defining voxels to analyse (MASK) %=================================================================== GUIpos = spm_input('!NextPos'); %-Analysis threshold mask %------------------------------------------------------------------- %-Work out available options: % -Inf=>None, real=>absolute, complex=>proportional, (i.e. times global) M_T = D.M_.T; if isempty(M_T), M_T = [-Inf, 100, 0.8*sqrt(-1)]; end M_T = { 'none', M_T(min(find(isinf(M_T))));... 'absolute', M_T(min(find(isfinite(M_T)&(M_T==real(M_T)))));... 'relative', M_T(min(find(isfinite(M_T)&(M_T~=real(M_T))))) }; %-Work out available options %-If there's a choice between proportional and absolute then ask %------------------------------------------------------------------- q = ~[isempty(M_T{1,2}), isempty(M_T{2,2}), isempty(M_T{3,2})]; if all(q(2:3)) tmp = spm_input('Threshold masking',GUIpos,'b',M_T(q,1),find(q)); q(setdiff([1:3],tmp))=0; end %-Get mask value - note that at most one of q(2:3) is true %------------------------------------------------------------------- if ~any(q) %-Oops - nothing specified! M_T = -Inf; elseif all(q==[1,0,0]) %-no threshold masking M_T = -Inf; else %-get mask value if q(1), args = {'br1','None',-Inf,abs(M_T{1+find(q(2:3)),2})}; else, args = {'r',abs(M_T{1+find(q(2:3)),2})}; end if q(2) M_T = spm_input('threshold',GUIpos,args{:}); elseif q(3) M_T = spm_input('threshold (relative to global)',GUIpos,... args{:}); if isfinite(M_T) & isreal(M_T), M_T=M_T*sqrt(-1); end else error('Shouldn''t get here!') end end %-Make a description string %------------------------------------------------------------------- if isinf(M_T) xsM.Analysis_threshold = 'None (-Inf)'; elseif isreal(M_T) xsM.Analysis_threshold = sprintf('images thresholded at %6g',M_T); else xsM.Analysis_threshold = sprintf(['images thresholded at %6g ',... 'times global'],imag(M_T)); end %-Implicit masking: Ignore zero voxels in low data-types? %------------------------------------------------------------------- % (Implicit mask is NaN in higher data-types.) type = getfield(spm_vol(P{1,1}),'dt')*[1,0]'; if ~spm_type(type,'nanrep') switch D.M_.I case Inf, M_I = spm_input('Implicit mask (ignore zero''s)?',... '+1','y/n',[1,0],1); %-Ask case {0,1}, M_I = D.M_.I; %-Pre-specified otherwise, error('unrecognised D.M_.I type') end if M_I, xsM.Implicit_masking = 'Yes: zero''s treated as missing'; else, xsm.Implicit_masking = 'No'; end else M_I = 1; xsM.Implicit_masking = 'Yes: NaN''s treated as missing'; end %-Explicit mask images (map them later...) %------------------------------------------------------------------- switch(D.M_.X) case Inf, M_X = spm_input('explicitly mask images?','+1','y/n',[1,0],2); case {0,1}, M_X = D.M_.X; otherwise, error('unrecognised D.M_.X type') end if M_X, M_P = spm_select(Inf,'image','select mask images'); else, M_P = {}; end %-Global calculation (GXcalc) %=================================================================== iGXcalc = abs(D.iGXcalc); %-Only offer "omit" option if not doing any GloNorm, GMsca or PropTHRESH if ~(iGloNorm==9 & iGMsca==9 & (isinf(M_T)|isreal(M_T))) iGXcalc = intersect(iGXcalc,[2:size(sGXcalc,1)]); end if isempty(iGXcalc) error('no GXcalc options') elseif length(iGXcalc)>1 %-User choice of global calculation options, default is negative dGXcalc = max([1,intersect(iGXcalc,-D.iGXcalc(D.iGXcalc<0))]); iGXcalc = spm_input('Global calculation','+1','m',... sGXcalc(iGXcalc),iGXcalc,find(iGXcalc==dGXcalc)); else iGXcalc = abs(D.iGXcalc); end if iGXcalc==2 %-Get user specified globals g = spm_input('globals','+0','r',[],[nScan,1]); end sGXcalc = sGXcalc{iGXcalc}; % Non-sphericity correction (set xVi.var and .dep) %=================================================================== xVi.I = I; nL = max(I); % number of levels mL = find(nL > 1); % multilevel factors xVi.var = sparse(1,4); % unequal variances xVi.dep = sparse(1,4); % dependencies if length(mL) > 1 % repeated measures design %--------------------------------------------------------------- if spm_input('non-sphericity correction?','+1','y/n',[1,0],0) % make menu strings %----------------------------------------------------------- for i = 1:4 mstr{i} = sprintf('%s (%i levels)',D.sF{i},nL(i)); end mstr = mstr(mL); % are errors identical %----------------------------------------------------------- if spm_input('are errors identical','+1','y/n',[0,1],0) str = 'unequal variances are between'; [i j] = min(nL(mL)); i = spm_input(str,'+0','m',mstr,[],j); % set in xVi and eliminate from dependency option %------------------------------------------------------- xVi.var(mL(i)) = 1; mL(i) = []; mstr(i) = []; end % are errors independent %----------------------------------------------------------- if spm_input('are errors independent','+1','y/n',[0,1],0) str = ' dependencies are within'; [i j] = max(nL(mL)); i = spm_input(str,'+0','m',mstr,[],j); % set in xVi %------------------------------------------------------- xVi.dep(mL(i)) = 1; end end end %-Place covariance components Q{:} in xVi.Vi %------------------------------------------------------------------- xVi = spm_non_sphericity(xVi); %=================================================================== % - C O N F I G U R E D E S I G N %=================================================================== spm('FigName','Stats: configuring',Finter,CmdLine); spm('Pointer','Watch'); %-Images & image info: Map Y image files and check consistency of % dimensions and orientation / voxel size %=================================================================== fprintf('%-40s: ','Mapping files') %-# VY = spm_vol(char(P)); %-Check compatability of images (Bombs for single image) %------------------------------------------------------------------- spm_check_orientations(VY); fprintf('%30s\n','...done') %-# %-Global values, scaling and global normalisation %=================================================================== %-Compute global values %------------------------------------------------------------------- switch iGXcalc, case 1 %-Don't compute => no GMsca (iGMsca==9) or GloNorm (iGloNorm==9) g = []; case 2 %-User specified globals case 3 %-Compute as mean voxel value (within per image fullmean/8 mask) g = zeros(nScan,1 ); fprintf('%-40s: %30s','Calculating globals',' ') %-# for i = 1:nScan str = sprintf('%3d/%-3d',i,nScan); fprintf('%s%30s',repmat(sprintf('\b'),1,30),str)%-# g(i) = spm_global(VY(i)); end fprintf('%s%30s\n',repmat(sprintf('\b'),1,30),'...done') %-# otherwise error('illegal iGXcalc') end rg = g; fprintf('%-40s: ','Design configuration') %-# %-Scaling: compute global scaling factors gSF required to implement % proportional scaling global normalisation (PropSca) or grand mean % scaling (GMsca), as specified by iGMsca (& iGloNorm) %------------------------------------------------------------------- switch iGMsca, case 8 %-Proportional scaling global normalisation if iGloNorm~=8, error('iGloNorm-iGMsca(8) mismatch for PropSca'), end gSF = GM./g; g = GM*ones(nScan,1); case {1,2,3,4,5,6,7} %-Grand mean scaling according to iGMsca gSF = GM./spm_meanby(g,eval(CCforms{iGMsca})); g = g.*gSF; case 9 %-No grand mean scaling gSF = ones(nScan,1); otherwise error('illegal iGMsca') end %-Apply gSF to memory-mapped scalefactors to implement scaling %------------------------------------------------------------------- for i = 1:nScan VY(i).pinfo(1:2,:) = VY(i).pinfo(1:2,:)*gSF(i); end %-AnCova: Construct global nuisance covariates partition (if AnCova) %------------------------------------------------------------------- if any(iGloNorm == [1:7]) %-Centre global covariate as requested %--------------------------------------------------------------- switch iGC, case {1,2,3,4,5,6,7} %-Standard sCC options gc = spm_meanby(g,eval(CCforms{iGC})); case 8 %-No centering gc = 0; case 9 %-User specified centre %-gc set above case 10 %-As implied by AnCova option gc = spm_meanby(g,eval(CCforms{iGloNorm})); case 11 %-Around GM gc = GM; otherwise %-unknown iGC error('unexpected iGC value') end %-AnCova - add scaled centred global to DesMtx `G' partition %--------------------------------------------------------------- rcname = 'global'; tI = [eval(CFIforms{iGloNorm,1}),g - gc]; tConst = CFIforms{iGloNorm,2}; tFnames = [eval(CFIforms{iGloNorm,3}),{rcname}]; [f,gnames] = spm_DesMtx(tI,tConst,tFnames); clear tI tConst tFnames %-Save GX info in xC struct for reference %--------------------------------------------------------------- str = {sprintf('%s: %s',dstr{2},rcname)}; if any(iGMsca==[1:7]), str=[str;{['(after ',sGMsca,')']}]; end if iGC ~= 8, str=[str;{['used centered ',sCC{iGC}]}]; end if iGloNorm > 1 str=[str;{['fitted as interaction ',sCFI{iGloNorm}]}]; end tmp = struct( 'rc',rg.*gSF, 'rcname',rcname,... 'c',f, 'cname' ,{gnames},... 'iCC',iGC, 'iCFI' ,iGloNorm,... 'type', 3,... 'cols',[1:size(f,2)] + size([H C B G],2),... 'descrip', {str} ); G = [G,f]; Gnames = [Gnames; gnames]; if isempty(xC), xC = tmp; else, xC = [xC,tmp]; end elseif iGloNorm==8 | iGXcalc>1 %-Globals calculated, but not AnCova: Make a note of globals %--------------------------------------------------------------- if iGloNorm==8 str = { 'global values: (used for proportional scaling)';... '("raw" unscaled globals shown)'}; elseif isfinite(M_T) & ~isreal(M_T) str = { 'global values: (used to compute analysis threshold)'}; else str = { 'global values: (computed but not used)'}; end rcname ='global'; tmp = struct( 'rc',rg, 'rcname',rcname,... 'c',{[]}, 'cname' ,{{}},... 'iCC',0, 'iCFI' ,0,... 'type', 3,... 'cols', {[]},... 'descrip', {str} ); if isempty(xC), xC = tmp; else, xC = [xC,tmp]; end end %-Save info on global calculation in xGX structure %------------------------------------------------------------------- xGX = struct(... 'iGXcalc',iGXcalc, 'sGXcalc',sGXcalc, 'rg',rg,... 'iGMsca',iGMsca, 'sGMsca',sGMsca, 'GM',GM,'gSF',gSF,... 'iGC', iGC, 'sGC', sCC{iGC}, 'gc', gc,... 'iGloNorm',iGloNorm, 'sGloNorm',sGloNorm); %-Construct masking information structure and compute actual analysis % threshold using scaled globals (rg.*gSF) %------------------------------------------------------------------- if isreal(M_T), M_TH = M_T * ones(nScan,1); %-NB: -Inf is real else, M_TH = imag(M_T) * (rg.*gSF); end if ~isempty(M_P) VM = spm_vol(char(M_P)); xsM.Explicit_masking = [{'Yes: mask images :'};{VM.fname}']; else VM = []; xsM.Explicit_masking = 'No'; end xM = struct('T',M_T, 'TH',M_TH, 'I',M_I, 'VM',{VM}, 'xs',xsM); %-Construct full design matrix (X), parameter names and structure (xX) %=================================================================== X = [H C B G]; tmp = cumsum([size(H,2), size(C,2), size(B,2), size(G,2)]); xX = struct( 'X', X,... 'iH', [1:size(H,2)],... 'iC', [1:size(C,2)] + tmp(1),... 'iB', [1:size(B,2)] + tmp(2),... 'iG', [1:size(G,2)] + tmp(3),... 'name', {[Hnames; Cnames; Bnames; Gnames]},... 'I', I,... 'sF', {D.sF}); %-Design description (an nx2 cellstr) - for saving and display %=================================================================== tmp = { sprintf('%d condition, +%d covariate, +%d block, +%d nuisance',... size(H,2),size(C,2),size(B,2),size(G,2));... sprintf('%d total, having %d degrees of freedom',... size(X,2),rank(X));... sprintf('leaving %d degrees of freedom from %d images',... size(X,1)-rank(X),size(X,1)) }; xsDes = struct( 'Design', {D.DesName},... 'Global_calculation', {sGXcalc},... 'Grand_mean_scaling', {sGMsca},... 'Global_normalisation', {sGloNorm},... 'Parameters', {tmp} ); fprintf('%30s\n','...done') %-# %-Assemble SPM structure %=================================================================== SPM.xY.P = P; % filenames SPM.xY.VY = VY; % mapped data SPM.nscan = size(xX.X,1); % scan number SPM.xX = xX; % design structure SPM.xC = xC; % covariate structure SPM.xGX = xGX; % global structure SPM.xVi = xVi; % non-sphericity structure SPM.xM = xM; % mask structure SPM.xsDes = xsDes; % description SPM.SPMid = SPMid; % version %-Save SPM.mat and set output argument %------------------------------------------------------------------- fprintf('%-40s: ','Saving SPM configuration') %-# if spm_check_version('matlab','7') >=0 save('SPM.mat', 'SPM', '-V6'); else save('SPM.mat', 'SPM'); end; fprintf('%30s\n','...SPM.mat saved') %-# varargout = {SPM}; %-Display Design report %=================================================================== fprintf('%-40s: ','Design reporting') %-# fname = cat(1,{SPM.xY.VY.fname}'); spm_DesRep('DesMtx',SPM.xX,fname,SPM.xsDes) fprintf('%30s\n','...done') %-End: Cleanup GUI %=================================================================== spm_clf(Finter) spm('Pointer','Arrow') fprintf('%-40s: %30s\n','Completed',spm('time')) %-# spm('FigName','Stats: configured',Finter,CmdLine); spm('Pointer','Arrow') fprintf('\n\n') case 'files&indices' %=================================================================== % - Get files and factor indices %=================================================================== % [P,I] = spm_spm_ui('Files&Indices',DsF,Dn,DbaTime,nV) % DbaTime=D.b.aTime; Dn=D.n; DsF=D.sF; if nargin<5, nV = 1; else, nV = varargin{5}; end if nargin<4, DbaTime = 1; else, DbaTime = varargin{4}; end if nargin<3, Dn = [Inf,Inf,Inf,Inf]; else, Dn=varargin{3}; end if nargin<2, DsF = {'Fac1','Fac2','Fac3','Fac4'}; else, DsF=varargin{2}; end %-Initialise variables %------------------------------------------------------------------- i4 = []; % factor 4 index (usually group) i3 = []; % factor 3 index (usually subject), per f4 i2 = []; % factor 2 index (usually condition), per f3/f4 i1 = []; % factor 1 index (usually replication), per f2/f3/f4 P = {}; % cell array of string filenames %-Accrue filenames and factor level indicator vectors %------------------------------------------------------------------- bMV = nV>1; if isinf(Dn(4)), n4 = spm_input(['#',DsF{4},'''s'],'+1','n1'); else, n4 = Dn(4); end bL4 = n4>1; ti2 = ''; GUIpos = spm_input('!NextPos'); for j4 = 1:n4 spm_input('!SetNextPos',GUIpos); sF4P=''; if bL4, sF4P=[DsF{4},' ',int2str(j4),': ']; end if isinf(Dn(3)), n3=spm_input([sF4P,'#',DsF{3},'''s'],'+1','n1'); else, n3 = Dn(3); end bL3 = n3>1; if DbaTime & Dn(2)>1 %disp('NB:selecting in time order - manually specify conditions') %-NB: This means f2 levels might not be 1:n2 GUIpos2 = spm_input('!NextPos'); for j3 = 1:n3 sF3P=''; if bL3, sF3P=[DsF{3},' ',int2str(j3),': ']; end str = [sF4P,sF3P]; tP = {}; n21 = Dn(2)*Dn(1); for v=1:nV vstr=''; if bMV, vstr=sprintf(' (var-%d)',v); end ttP = cellstr(spm_select(n21,'image',[str,'select images',vstr])); n21 = length(ttP); tP = [tP,ttP]; end ti2 = spm_input([str,' ',DsF{2},'?'],GUIpos2,'c',ti2',n21,Dn(2)); %-Work out i1 & check [tl2,null,j] = unique(ti2); tn1 = zeros(size(tl2)); ti1 = zeros(size(ti2)); for i=1:length(tl2) tn1(i)=sum(j==i); ti1(ti2==tl2(i))=1:tn1(i); end if isfinite(Dn(1)) & any(tn1~=Dn(1)) %-#i1 levels mismatches specification in Dn(1) error(sprintf('#%s not %d as pre-specified',DsF{1},Dn(1))) end P = [P;tP]; i4 = [i4; j4*ones(n21,1)]; i3 = [i3; j3*ones(n21,1)]; i2 = [i2; ti2]; i1 = [i1; ti1]; end else if isinf(Dn(2)) n2 = spm_input([sF4P,'#',DsF{2},'''s'],'+1','n1'); else n2 = Dn(2); end bL2 = n2>1; if n2==1 & Dn(1)==1 %-single scan per f3 (subj) %disp('NB:single scan per f3') str = [sF4P,'select images, ',DsF{3},' 1-',int2str(n3)]; tP = {}; for v=1:nV vstr=''; if bMV, vstr=sprintf(' (var-%d)',v); end ttP = cellstr(spm_select(n3,'image',[str,vstr])); tP = [tP,ttP]; end P = [P;tP]; i4 = [i4; j4*ones(n3,1)]; i3 = [i3; [1:n3]']; i2 = [i2; ones(n3,1)]; i1 = [i1; ones(n3,1)]; else %-multi scan per f3 (subj) case %disp('NB:multi scan per f3') for j3 = 1:n3 sF3P=''; if bL3, sF3P=[DsF{3},' ',int2str(j3),': ']; end if Dn(1)==1 %-No f1 (repl) within f2 (cond) %disp('NB:no f1 within f2') str = [sF4P,sF3P,'select images: ',DsF{2},... ' 1-',int2str(n2)]; tP = {}; for v=1:nV vstr=''; if bMV, vstr=sprintf(' (var-%d)',v); end ttP = cellstr(spm_select(n2,'image',[str,vstr])); tP = [tP,ttP]; end P = [P;tP]; i4 = [i4; j4*ones(n2,1)]; i3 = [i3; j3*ones(n2,1)]; i2 = [i2; [1:n2]']; i1 = [i1; ones(n2,1)]; else %-multi f1 (repl) within f2 (cond) %disp('NB:f1 within f2') for j2 = 1:n2 sF2P=''; if bL2, sF2P=[DsF{2},' ',int2str(j2),': ']; end str = [sF4P,sF3P,sF2P,' select images...']; tP = {}; n1 = Dn(1); for v=1:nV vstr=''; if bMV, vstr=sprintf(' (var-%d)',v); end ttP = cellstr(spm_select(n1,'image',[str,vstr])); n1 = length(ttP); tP = [tP,ttP]; end P = [P;tP]; i4 = [i4; j4*ones(n1,1)]; i3 = [i3; j3*ones(n1,1)]; i2 = [i2; j2*ones(n1,1)]; i1 = [i1; [1:n1]']; end % (for j2) end % (if Dn(1)==1) end % (for j3) end % (if n2==1 &...) end % (if DbaTime & Dn(2)>1) end % (for j4) varargout = {P,[i1,i2,i3,i4]}; case 'desdefs_stats' %=================================================================== % - Basic Stats Design definitions... %=================================================================== % D = spm_spm_ui('DesDefs_Stats'); % These are the basic Stats design definitions... %-Note: struct expands cell array values to give multiple records: % => must embed cell arrays within another cell array! %-Negative indices indicate defaults (first used) D = struct(... 'DesName','One sample t-test',... 'n', [Inf 1 1 1], 'sF',{{'obs','','',''}},... 'Hform', 'I(:,2),''-'',''mean''',... 'Bform', '[]',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',-Inf,'I',Inf,'X',Inf),... 'b',struct('aTime',0)); D = [D, struct(... 'DesName','Two sample t-test',... 'n', [Inf 2 1 1], 'sF',{{'obs','group','',''}},... 'Hform', 'I(:,2),''-'',''group''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',1))]; D = [D, struct(... 'DesName','Paired t-test',... 'n', [1 2 Inf 1], 'sF',{{'','cond','pair',''}},... 'Hform', 'I(:,2),''-'',''condition''',... 'Bform', 'I(:,3),''-'',''\gamma''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','One way Anova',... 'n', [Inf Inf 1 1], 'sF',{{'repl','group','',''}},... 'Hform', 'I(:,2),''-'',''group''',... 'Bform', '[]',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','One way Anova (with constant)',... 'n', [Inf Inf 1 1], 'sF',{{'repl','group','',''}},... 'Hform', 'I(:,2),''-'',''group''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','One way Anova (Within-subjects)',... 'n', [1 Inf Inf 1],'sF',{{'repl','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','Simple regression (correlation)',... 'n', [Inf 1 1 1], 'sF',{{'repl','','',''}},... 'Hform', '[]',... 'Bform', 'I(:,2),''-'',''\mu''',... 'nC',[1,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','Multiple regression',... 'n', [Inf 1 1 1], 'sF',{{'repl','','',''}},... 'Hform', '[]',... 'Bform', '[]',... 'nC',[Inf,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','Multiple regression (with constant)',... 'n', [Inf 1 1 1], 'sF',{{'repl','','',''}},... 'Hform', '[]',... 'Bform', 'I(:,2),''-'',''\mu''',... 'nC',[Inf,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','AnCova',... 'n', [Inf Inf 1 1], 'sF',{{'repl','group','',''}},... 'Hform', 'I(:,2),''-'',''group''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,1],'iCC',{{8,1}},'iCFI',{{1,1}},... 'iGXcalc',[-1,2,3],'iGMsca',[1,-9],'GM',[],... 'iGloNorm',9,'iGC',12,... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',0))]; varargout = {D}; case 'desdefs_pet' %=================================================================== % - Standard (SPM99) PET/SPECT Design definitions... %=================================================================== % D = spm_spm_ui('DesDefs_PET'); % These are the standard PET design definitions... %-Single subject %------------------------------------------------------------------- D = struct(... 'DesName','Single-subject: conditions & covariates',... 'n', [Inf Inf 1 1], 'sF',{{'repl','condition','',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[Inf,Inf],'iCC',{{[-1,3,8],[-1,8]}},'iCFI',{{[1,3],1}},... 'iGXcalc',[1,2,-3],'iGMsca',[-1,9],'GM',50,... 'iGloNorm',[1,8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',1)); D = [D, struct(... 'DesName','Single-subject: covariates only',... 'n', [Inf 1 1 1], 'sF',{{'repl','','',''}},... 'Hform', '[]',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[Inf,Inf],'iCC',{{[-1,8],[-1,8]}},'iCFI',{{1,1}},... 'iGXcalc',[1,2,-3],'iGMsca',[-1,9],'GM',50,... 'iGloNorm',[1,8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',1))]; %-Multi-subject %------------------------------------------------------------------- D = [D, struct(... 'DesName','Multi-subj: conditions & covariates',... 'n',[Inf Inf Inf 1], 'sF',{{'repl','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[Inf,Inf],'iCC',{{[1,3,4,8],[1,4,8]}},'iCFI',{{[1,3,-4],[1,-4]}},... 'iGXcalc',[1,2,-3],'iGMsca',[-4,9],'GM',50,... 'iGloNorm',[4,8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',1))]; D = [D, struct(... 'DesName','Multi-subj: cond x subj interaction & covariates',... 'n',[Inf Inf Inf 1], 'sF',{{'repl','condition','subject',''}},... 'Hform', 'I(:,[3,2]),''-'',{''subj'',''cond''}',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[Inf,Inf],'iCC',{{[1,3,4,8],[1,4,8]}},'iCFI',{{[1,3,-4],[1,-4]}},... 'iGXcalc',[1,2,-3],'iGMsca',[-4,9],'GM',50,... 'iGloNorm',[4,8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',1))]; D = [D, struct(... 'DesName','Multi-subj: covariates only',... 'n',[Inf 1 Inf 1], 'sF',{{'repl','','subject',''}},... 'Hform', '[]',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[Inf,Inf],'iCC',{{[1,4,8],[1,4,8]}},'iCFI',{{[1,-4],[1,-4]}},... 'iGXcalc',[1,2,-3],'iGMsca',[-4,9],'GM',50,... 'iGloNorm',[4,8:9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; %-Multi-group %------------------------------------------------------------------- D = [D, struct(... 'DesName','Multi-group: conditions & covariates',... 'n',[Inf Inf Inf Inf], 'sF',{{'repl','condition','subject','group'}},... 'Hform', 'I(:,[4,2]),''-'',{''stud'',''cond''}',... 'Bform', 'I(:,[4,3]),''-'',{''stud'',''subj''}',... 'nC',[Inf,Inf],'iCC',{{[5:8],[5,7,8]}},'iCFI',{{[1,5,6,-7],[1,5,-7]}},... 'iGXcalc',[1,2,-3],'iGMsca',[-7,9],'GM',50,... 'iGloNorm',[7,8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',1))]; D = [D, struct(... 'DesName','Multi-group: covariates only',... 'n',[Inf 1 Inf Inf], 'sF',{{'repl','','subject','group'}},... 'Hform', '[]',... 'Bform', 'I(:,[4,3]),''-'',{''stud'',''subj''}',... 'nC',[Inf,Inf],'iCC',{{[5,7,8],[5,7,8]}},'iCFI',{{[1,5,-7],[1,5,-7]}},... 'iGXcalc',[1,2,-3],'iGMsca',[-7,9],'GM',50,... 'iGloNorm',[7,8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; %-Population comparisons %------------------------------------------------------------------- D = [D, struct(... 'DesName',... 'Population main effect: 2 cond''s, 1 scan/cond (paired t-test)',... 'n',[1 2 Inf 1], 'sF',{{'','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[1,2,-3],'iGMsca',[-1,9],'GM',50,... 'iGloNorm',[8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName',... 'Dodgy population main effect: >2 cond''s, 1 scan/cond',... 'n',[1 Inf Inf 1], 'sF',{{'','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[1,2,-3],'iGMsca',[-1,9],'GM',50,... 'iGloNorm',[8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','Compare-populations: 1 scan/subject (two sample t-test)',... 'n',[Inf 2 1 1], 'sF',{{'subject','group','',''}},... 'Hform', 'I(:,2),''-'',''group''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',[1,2,-3],'iGMsca',[-1,9],'GM',50,... 'iGloNorm',[8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','Compare-populations: 1 scan/subject (AnCova)',... 'n',[Inf 2 1 1], 'sF',{{'subject','group','',''}},... 'Hform', 'I(:,2),''-'',''group''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,Inf],'iCC',{{8,1}},'iCFI',{{1,1}},... 'iGXcalc',[1,2,-3],'iGMsca',[-1,9],'GM',50,... 'iGloNorm',[1,8,9],'iGC',10,... 'M_',struct('T',[0,0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; %-The Full Monty! %------------------------------------------------------------------- D = [D, struct(... 'DesName','The Full Monty...',... 'n',[Inf Inf Inf Inf], 'sF',{{'repl','cond','subj','group'}},... 'Hform', 'I(:,[4,2]),''-'',{''stud'',''cond''}',... 'Bform', 'I(:,[4,3]),''-'',{''stud'',''subj''}',... 'nC',[Inf,Inf],'iCC',{{[1:8],[1:8]}},'iCFI',{{[1:7],[1:7]}},... 'iGXcalc',[1,2,3],'iGMsca',[1:7],'GM',50,... 'iGloNorm',[1:9],'iGC',[1:11],... 'M_',struct('T',[-Inf,0,0.8*sqrt(-1)],'I',Inf,'X',Inf),... 'b',struct('aTime',1))]; varargout = {D}; case 'desdefs_pet96' %=================================================================== % - SPM96 PET/SPECT Design definitions... %=================================================================== % D = spm_spm_ui('DesDefs_PET96'); %-Single subject %------------------------------------------------------------------- D = struct(... 'DesName','SPM96:Single-subject: replicated conditions',... 'n', [Inf Inf 1 1], 'sF',{{'repl','condition','',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0)); D = [D, struct(... 'DesName','SPM96:Single-subject: replicated conditions & covariates',... 'n', [Inf Inf 1 1], 'sF',{{'repl','condition','',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[Inf,Inf],'iCC',{{1,1}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Single-subject: covariates only',... 'n', [Inf 1 1 1], 'sF',{{'repl','','',''}},... 'Hform', '[]',... 'Bform', 'I(:,3),''-'',''\mu''',... 'nC',[Inf,Inf],'iCC',{{1,1}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; %-Multi-subject %------------------------------------------------------------------- D = [D, struct(... 'DesName','SPM96:Multi-subject: different conditions',... 'n', [1 Inf Inf 1], 'sF',{{'','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''scancond''',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,4,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-subject: replicated conditions',... 'n',[Inf Inf Inf 1], 'sF',{{'repl','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,4,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-subject: different conditions & covariates',... 'n', [1 Inf Inf 1], 'sF',{{'','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''cond''',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[Inf,Inf],'iCC',{{1,1}},'iCFI',{{[1,4],[1,4]}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,4,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-subject: replicated conditions & covariates',... 'n',[Inf Inf Inf 1], 'sF',{{'repl','condition','subject',''}},... 'Hform', 'I(:,2),''-'',''condition''',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[Inf,Inf],'iCC',{{1,1}},'iCFI',{{[1,3,4],[1,4]}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,4,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-subject: covariates only',... 'n',[Inf 1 Inf 1], 'sF',{{'repl','','subject',''}},... 'Hform', '[]',... 'Bform', 'I(:,3),''-'',''subj''',... 'nC',[Inf,Inf],'iCC',{{[1,4,8],[1,4,8]}},'iCFI',{{[1,4],[1,4]}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,4,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; %-Multi-study %------------------------------------------------------------------- D = [D, struct(... 'DesName','SPM96:Multi-study: different conditions',... 'n',[1 Inf Inf Inf], 'sF',{{'','cond','subj','study'}},... 'Hform', 'I(:,[4,2]),''-'',{''study'',''cond''}',... 'Bform', 'I(:,[4,3]),''-'',{''study'',''subj''}',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,5,9],'GM',50,... 'iGloNorm',[1,5,7,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-study: replicated conditions',... 'n',[Inf Inf Inf Inf], 'sF',{{'repl','cond','subj','study'}},... 'Hform', 'I(:,[4,2]),''-'',{''study'',''condition''}',... 'Bform', 'I(:,[4,3]),''-'',{''study'',''subj''}',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,5,9],'GM',50,... 'iGloNorm',[1,5,7,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-study: different conditions & covariates',... 'n',[1 Inf Inf Inf], 'sF',{{'','cond','subj','study'}},... 'Hform', 'I(:,[4,2]),''-'',{''study'',''cond''}',... 'Bform', 'I(:,[4,3]),''-'',{''study'',''subj''}',... 'nC',[Inf,Inf],'iCC',{{1,1}},'iCFI',{{[1,5,6,7],[1,5,7]}},... 'iGXcalc',3,'iGMsca',[1,5,9],'GM',50,... 'iGloNorm',[1,5,7,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-study: replicated conditions & covariates',... 'n',[Inf Inf Inf Inf], 'sF',{{'','cond','subj','study'}},... 'Hform', 'I(:,[4,2]),''-'',{''study'',''condition''}',... 'Bform', 'I(:,[4,3]),''-'',{''study'',''subj''}',... 'nC',[Inf,Inf],'iCC',{{1,1}},'iCFI',{{[1,5,6,7],[1,5,7]}},... 'iGXcalc',3,'iGMsca',[1,5,9],'GM',50,... 'iGloNorm',[1,5,7,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; D = [D, struct(... 'DesName','SPM96:Multi-study: covariates only',... 'n',[Inf 1 Inf Inf], 'sF',{{'repl','','subj','study'}},... 'Hform', '[]',... 'Bform', 'I(:,[4,3]),''-'',{''study'',''subj''}',... 'nC',[Inf,Inf],'iCC',{{1,1}},'iCFI',{{[1,5,7],[1,5,7]}},... 'iGXcalc',3,'iGMsca',[1,5,9],'GM',50,... 'iGloNorm',[1,5,7,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; %-Group comparisons %------------------------------------------------------------------- D = [D, struct(... 'DesName','SPM96:Compare-groups: 1 scan per subject',... 'n',[Inf Inf 1 1], 'sF',{{'subject','group','',''}},... 'Hform', 'I(:,2),''-'',''group''',... 'Bform', '[]',... 'nC',[0,0],'iCC',{{8,8}},'iCFI',{{1,1}},... 'iGXcalc',3,'iGMsca',[1,9],'GM',50,... 'iGloNorm',[1,8,9],'iGC',10,... 'M_',struct('T',[0.8*sqrt(-1)],'I',0,'X',0),... 'b',struct('aTime',0))]; varargout = {D}; otherwise %=================================================================== % - U N K N O W N A C T I O N %=================================================================== warning(['Illegal Action string: ',Action]) %=================================================================== % - E N D %=================================================================== end %======================================================================= %- S U B - F U N C T I O N S %======================================================================= function str = sf_estrrep(str,srstr) %======================================================================= for i = 1:size(srstr,1) str = strrep(str,srstr{i,1},srstr{i,2}); end
github
philippboehmsturm/antx-master
spm_minmax.m
.m
antx-master/xspm8/spm_minmax.m
3,751
utf_8
1a7267151fb6239e66dbd59584c49bea
function [mnv,mxv] = spm_minmax(g) % Compute a suitable range of intensities for VBM preprocessing stuff % FORMAT [mnv,mxv] = spm_minmax(g) % g - array of data % mnv - minimum value % mxv - maximum value % % A MOG with two Gaussians is fitted to the intensities. The lower % Gaussian is assumed to represent background. The lower value is % where there is a 50% probability of being above background. The % upper value is one that encompases 99.5% of the values. %____________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_minmax.m 2774 2009-02-23 14:40:17Z john $ d = [size(g) 1]; mxv = double(max(g(:))); mnv = double(min(g(:))); h = zeros(256,1); spm_progress_bar('Init',d(3),'Initial histogram','Planes loaded'); sw = warning('off','all'); for i=1:d(3) h = h + spm_hist(uint8(round(g(:,:,i)*(255/mxv))),ones(d(1)*d(2),1)); spm_progress_bar('Set',i); end; warning(sw); spm_progress_bar('Clear'); % Occasional problems with partially masked data because the first Gaussian % just fits the big peak at zero. This will fix that one, but cause problems % for skull-stripped data. h(1) = 0; h(end) = 0; % Very crude heuristic to find a suitable lower limit. The large amount % of background really messes up mutual information registration. % Begin by modelling the intensity histogram with two Gaussians. One % for background, and the other for tissue. [mn,v,mg] = fithisto((0:255)',h,1000,[1 128],[32 128].^2,[1 1]); pr = distribution(mn,v,mg,(0:255)'); %fg = spm_figure('FindWin','Interactive'); %if ~isempty(fg) % figure(fg); % plot((0:255)',h/sum(h),'b', (0:255)',pr,'r'); % drawnow; %end; % Find the lowest intensity above the mean of the first Gaussian % where there is more than 50% probability of not being background mnd = find((pr(:,1)./(sum(pr,2)+eps) < 0.5) & (0:255)' >mn(1)); if isempty(mnd) || mnd(1)==1 || mn(1)>mn(2), mnd = 1; else mnd = mnd(1)-1; end mnv = mnd*mxv/255; % Upper limit should get 99.5% of the intensities of the % non-background region ch = cumsum(h(mnd:end))/sum(h(mnd:end)); ch = find(ch>0.995)+mnd; mxv = ch(1)/255*mxv; return; %_______________________________________________________________________ %_______________________________________________________________________ function [mn,v,mg,ll]=fithisto(x,h,maxit,n,v,mg) % Fit a mixture of Gaussians to a histogram h = h(:); x = x(:); sml = mean(diff(x))/1000; if nargin==4 mg = sum(h); mn = sum(x.*h)/mg; v = (x - mn); v = sum(v.*v.*h)/mg*ones(1,n); mn = (1:n)'/n*(max(x)-min(x))+min(x); mg = mg*ones(1,n)/n; elseif nargin==6 mn = n; n = length(mn); else error('Incorrect usage'); end; ll = Inf; for it=1:maxit prb = distribution(mn,v,mg,x); scal = sum(prb,2)+eps; oll = ll; ll = -sum(h.*log(scal)); if it>2 && oll-ll < length(x)/n*1e-9 break; end; for j=1:n p = h.*prb(:,j)./scal; mg(j) = sum(p); mn(j) = sum(x.*p)/mg(j); vr = x-mn(j); v(j) = sum(vr.*vr.*p)/mg(j)+sml; end; mg = mg + 1e-3; mg = mg/sum(mg); end; %_______________________________________________________________________ %_______________________________________________________________________ function y=distribution(m,v,g,x) % Gaussian probability density if nargin ~= 4 error('not enough input arguments'); end; x = x(:); m = m(:); v = v(:); g = g(:); if ~all(size(m) == size(v) & size(m) == size(g)) error('incompatible dimensions'); end; for i=1:size(m,1) d = x-m(i); amp = g(i)/sqrt(2*pi*v(i)); y(:,i) = amp*exp(-0.5 * (d.*d)/v(i)); end; return;
github
philippboehmsturm/antx-master
spm_create_vol.m
.m
antx-master/xspm8/spm_create_vol.m
4,967
utf_8
7a051f745805c44e02ffd7b190e4a2c8
function V = spm_create_vol(V,varargin) % Create a volume % FORMAT V = spm_create_vol(V) % V - image volume information (see spm_vol.m) %____________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_create_vol.m 1169 2008-02-26 14:53:43Z volkmar $ for i=1:numel(V), if nargin>1, v = create_vol(V(i),varargin{:}); else v = create_vol(V(i)); end; f = fieldnames(v); for j=1:size(f,1), V(i).(f{j}) = v.(f{j}); end; end; function V = create_vol(V,varargin) if ~isstruct(V), error('Not a structure.'); end; if ~isfield(V,'fname'), error('No "fname" field'); end; if ~isfield(V,'dim'), error('No "dim" field'); end; if ~all(size(V.dim)==[1 3]), error(['"dim" field is the wrong size (' num2str(size(V.dim)) ').']); end; if ~isfield(V,'n'), V.n = [1 1]; else V.n = [V.n(:)' 1 1]; V.n = V.n(1:2); end; if V.n(1)>1 && V.n(2)>1, error('Can only do up to 4D data (%s).',V.fname); end; if ~isfield(V,'dt'), V.dt = [spm_type('float64') spm_platform('bigend')]; end; dt{1} = spm_type(V.dt(1)); if strcmp(dt{1},'unknown'), error(['"' dt{1} '" is an unrecognised datatype (' num2str(V.dt(1)) ').']); end; if V.dt(2), dt{2} = 'BE'; else dt{2} = 'LE'; end; if ~isfield(V,'pinfo'), V.pinfo = [Inf Inf 0]'; end; if size(V.pinfo,1)==2, V.pinfo(3,:) = 0; end; V.fname = deblank(V.fname); [pth,nam,ext] = fileparts(V.fname); switch ext, case {'.img'} minoff = 0; case {'.nii'} minoff = 352; otherwise error(['"' ext '" is not a recognised extension.']); end; bits = spm_type(V.dt(1),'bits'); minoff = minoff + ceil(prod(V.dim(1:2))*bits/8)*V.dim(3)*(V.n(1)-1+V.n(2)-1); V.pinfo(3,1) = max(V.pinfo(3,:),minoff); if ~isfield(V,'descrip'), V.descrip = ''; end; if ~isfield(V,'private'), V.private = struct; end; dim = [V.dim(1:3) V.n]; dat = file_array(V.fname,dim,[dt{1} '-' dt{2}],0,V.pinfo(1),V.pinfo(2)); N = nifti; N.dat = dat; N.mat = V.mat; N.mat0 = V.mat; N.mat_intent = 'Aligned'; N.mat0_intent = 'Aligned'; N.descrip = V.descrip; try N0 = nifti(V.fname); % Just overwrite if both are single volume files. tmp = [N0.dat.dim ones(1,5)]; if prod(tmp(4:end))==1 && prod(dim(4:end))==1 N0 = []; end; catch N0 = []; end; if ~isempty(N0), % If the dimensions differ, then there is the potential for things to go badly wrong. tmp = [N0.dat.dim ones(1,5)]; if any(tmp(1:3) ~= dim(1:3)) warning(['Incompatible x,y,z dimensions in file "' V.fname '" [' num2str(tmp(1:3)) ']~=[' num2str(dim(1:3)) '].']); end; if dim(5) > tmp(5) && tmp(4) > 1, warning(['Incompatible 4th and 5th dimensions in file "' V.fname '" (' num2str([tmp(4:5) dim(4:5)]) ').']); end; N.dat.dim = [dim(1:3) max(dim(4:5),tmp(4:5))]; if ~strcmp(dat.dtype,N0.dat.dtype), warning(['Incompatible datatype in file "' V.fname '" ' N0.dat.dtype ' ~= ' dat.dtype '.']); end; if single(N.dat.scl_slope) ~= single(N0.dat.scl_slope) && (size(N0.dat,4)>1 || V.n(1)>1), warning(['Incompatible scalefactor in "' V.fname '" ' num2str(N0.dat.scl_slope) '~=' num2str(N.dat.scl_slope) '.']); end; if single(N.dat.scl_inter) ~= single(N0.dat.scl_inter), warning(['Incompatible intercept in "' V.fname '" ' num2str(N0.dat.scl_inter) '~=' num2str(N.dat.scl_inter) '.']); end; if single(N.dat.offset) ~= single(N0.dat.offset), warning(['Incompatible intercept in "' V.fname '" ' num2str(N0.dat.offset) '~=' num2str(N.dat.offset) '.']); end; if V.n(1)==1, % Ensure volumes 2..N have the original matrix nt = size(N.dat,4); if nt>1 && sum(sum((N0.mat-V.mat).^2))>1e-8, M0 = N0.mat; if ~isfield(N0.extras,'mat'), N0.extras.mat = zeros([4 4 nt]); else if size(N0.extras.mat,4)<nt, N0.extras.mat(:,:,nt) = zeros(4); end; end; for i=2:nt, if sum(sum(N0.extras.mat(:,:,i).^2))==0, N0.extras.mat(:,:,i) = M0; end; end; N.extras.mat = N0.extras.mat; end; N0.mat = V.mat; if strcmp(N0.mat0_intent,'Aligned'), N.mat0 = V.mat; end; if ~isempty(N.extras) && isstruct(N.extras) && isfield(N.extras,'mat') &&... size(N.extras.mat,3)>=1, N.extras.mat(:,:,V.n(1)) = V.mat; end; else N.extras.mat(:,:,V.n(1)) = V.mat; end; if ~isempty(N0.extras) && isstruct(N0.extras) && isfield(N0.extras,'mat'), N0.extras.mat(:,:,V.n(1)) = N.mat; N.extras = N0.extras; end; if sum((V.mat(:)-N0.mat(:)).^2) > 1e-4, N.extras.mat(:,:,V.n(1)) = V.mat; end; end; create(N); V.private = N;
github
philippboehmsturm/antx-master
spm_check_results.m
.m
antx-master/xspm8/spm_check_results.m
2,501
utf_8
a9b2a3fb54c8c128a16928e69bb03bb4
function spm_check_results(SPMs,xSPM) % Display several MIPs in the same figure % FORMAT spm_check_results(SPMs,xSPM) % SPMs - char or cell array of paths to SPM.mat[s] % xSPM - structure containing thresholding details, see spm_getSPM.m % % Beware: syntax and features of this function are likely to change. %__________________________________________________________________________ % Copyright (C) 2012 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: spm_check_results.m 4661 2012-02-20 17:48:16Z guillaume $ cwd = pwd; %-Get input parameter SPMs %-------------------------------------------------------------------------- if ~nargin || isempty(SPMs) [SPMs, sts] = spm_select(Inf,'^SPM\.mat$','Select SPM.mat[s]'); if ~sts, return; end end SPMs = cellstr(SPMs); %-Get input parameter xSPM %-------------------------------------------------------------------------- xSPM.swd = spm_file(SPMs{1},'fpath'); try, [xSPM.thresDesc, xSPM.u] = convert_desc(xSPM.thresDesc); end [tmp, xSPM] = spm_getSPM(xSPM); if ~isfield(xSPM,'units'), xSPM.units = {'mm' 'mm' 'mm'}; end [xSPM.thresDesc, xSPM.u] = convert_desc(xSPM.thresDesc); %- %-------------------------------------------------------------------------- Fgraph = spm_figure('GetWin','Graphics'); spm_figure('Clear','Graphics'); mn = numel(SPMs); n = round(mn^0.4); m = ceil(mn/n); w = 1/n; h = 1/m; ds = (w+h)*0.02; for ij=1:numel(SPMs) i = 1-h*(floor((ij-1)/n)+1); j = w*rem(ij-1,n); xSPM.swd = spm_file(SPMs{ij},'fpath'); [tmp, myxSPM] = spm_getSPM(xSPM); hMIPax(ij) = axes('Parent',Fgraph,'Position',[j+ds/2 i+ds/2 w-ds h-ds],'Visible','off'); hMIPax(ij) = spm_mip_ui(myxSPM.Z,myxSPM.XYZmm,myxSPM.M,myxSPM.DIM,hMIPax(ij),myxSPM.units); axis(hMIPax(ij),'image'); set(findobj(hMIPax(ij),'type','image'),'UIContextMenu',[]); hReg = get(hMIPax(ij),'UserData'); set(hReg.hXr,'visible','off'); set(hReg.hMIPxyz,'visible','off'); end linkaxes(hMIPax); cd(cwd); %========================================================================== % function [str, u] = convert_desc(str) %========================================================================== function [str, u] = convert_desc(str) td = regexp(str,'p\D?(?<u>[\.\d]+) \((?<thresDesc>\S+)\)','names'); if isempty(td) td = regexp(str,'\w=(?<u>[\.\d]+)','names'); td.thresDesc = 'none'; end if strcmp(td.thresDesc,'unc.'), td.thresDesc = 'none'; end u = str2double(td.u); str = td.thresDesc;