plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
siam1251/Fast-SeqSLAM-master
crop_borders.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/crop_borders.m
4,855
utf_8
28cc044092bcab4daa2a35a4434fa835
function [A, vA, vB, bb_rel] = crop_borders(A, bcol, padding, crop_amounts) %CROP_BORDERS Crop the borders of an image or stack of images % % [B, vA, vB, bb_rel] = crop_borders(A, bcol, [padding]) % %IN: % A - HxWxCxN stack of images. % bcol - Cx1 background colour vector. % padding - scalar indicating how much padding to have in relation to % the cropped-image-size (0<=padding<=1). Default: 0 % crop_amounts - 4-element vector of crop amounts: [top,right,bottom,left] % where NaN/Inf indicate auto-cropping, 0 means no cropping, % and any other value mean cropping in pixel amounts. % %OUT: % B - JxKxCxN cropped stack of images. % vA - coordinates in A that contain the cropped image % vB - coordinates in B where the cropped version of A is placed % bb_rel - relative bounding box (used for eps-cropping) %{ % 06/03/15: Improved image cropping thanks to Oscar Hartogensis % 08/06/15: Fixed issue #76: case of transparent figure bgcolor % 21/02/16: Enabled specifying non-automated crop amounts % 04/04/16: Fix per Luiz Carvalho for old Matlab releases %} if nargin < 3 padding = 0; end if nargin < 4 crop_amounts = nan(1,4); % =auto-cropping end crop_amounts(end+1:4) = NaN; % fill missing values with NaN [h, w, c, n] = size(A); if isempty(bcol) % case of transparent bgcolor bcol = A(ceil(end/2),1,:,1); end if isscalar(bcol) bcol = bcol(ones(c, 1)); end % Crop margin from left if ~isfinite(crop_amounts(4)) bail = false; for l = 1:w for a = 1:c if ~all(col(A(:,l,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end else l = 1 + abs(crop_amounts(4)); end % Crop margin from right if ~isfinite(crop_amounts(2)) bcol = A(ceil(end/2),w,:,1); bail = false; for r = w:-1:l for a = 1:c if ~all(col(A(:,r,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end else r = w - abs(crop_amounts(2)); end % Crop margin from top if ~isfinite(crop_amounts(1)) bcol = A(1,ceil(end/2),:,1); bail = false; for t = 1:h for a = 1:c if ~all(col(A(t,:,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end else t = 1 + abs(crop_amounts(1)); end % Crop margin from bottom bcol = A(h,ceil(end/2),:,1); if ~isfinite(crop_amounts(3)) bail = false; for b = h:-1:t for a = 1:c if ~all(col(A(b,:,a,:)) == bcol(a)) bail = true; break; end end if bail break; end end else b = h - abs(crop_amounts(3)); end if padding == 0 % no padding if ~isequal([t b l r], [1 h 1 w]) % Check if we're actually croppping padding = 1; % Leave one boundary pixel to avoid bleeding on resize end elseif abs(padding) < 1 % pad value is a relative fraction of image size padding = sign(padding)*round(mean([b-t r-l])*abs(padding)); % ADJUST PADDING else % pad value is in units of 1/72" points padding = round(padding); % fix cases of non-integer pad value end if padding > 0 % extra padding % Create an empty image, containing the background color, that has the % cropped image size plus the padded border B = repmat(bcol,[(b-t)+1+padding*2,(r-l)+1+padding*2,1,n]); % Fix per Luiz Carvalho % vA - coordinates in A that contain the cropped image vA = [t b l r]; % vB - coordinates in B where the cropped version of A will be placed vB = [padding+1, (b-t)+1+padding, padding+1, (r-l)+1+padding]; % Place the original image in the empty image B(vB(1):vB(2), vB(3):vB(4), :, :) = A(vA(1):vA(2), vA(3):vA(4), :, :); A = B; else % extra cropping vA = [t-padding b+padding l-padding r+padding]; A = A(vA(1):vA(2), vA(3):vA(4), :, :); vB = [NaN NaN NaN NaN]; end % For EPS cropping, determine the relative BoundingBox - bb_rel bb_rel = [l-1 h-b-1 r+1 h-t+1]./[w h w h]; end function A = col(A) A = A(:); end
github
siam1251/Fast-SeqSLAM-master
isolate_axes.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/isolate_axes.m
4,851
utf_8
611d9727e84ad6ba76dcb3543434d0ce
function fh = isolate_axes(ah, vis) %ISOLATE_AXES Isolate the specified axes in a figure on their own % % Examples: % fh = isolate_axes(ah) % fh = isolate_axes(ah, vis) % % This function will create a new figure containing the axes/uipanels % specified, and also their associated legends and colorbars. The objects % specified must all be in the same figure, but they will generally only be % a subset of the objects in the figure. % % IN: % ah - An array of axes and uipanel handles, which must come from the % same figure. % vis - A boolean indicating whether the new figure should be visible. % Default: false. % % OUT: % fh - The handle of the created figure. % Copyright (C) Oliver Woodford 2011-2013 % Thank you to Rosella Blatt for reporting a bug to do with axes in GUIs % 16/03/12: Moved copyfig to its own function. Thanks to Bob Fratantonio % for pointing out that the function is also used in export_fig.m % 12/12/12: Add support for isolating uipanels. Thanks to michael for suggesting it % 08/10/13: Bug fix to allchildren suggested by Will Grant (many thanks!) % 05/12/13: Bug fix to axes having different units. Thanks to Remington Reid for reporting % 21/04/15: Bug fix for exporting uipanels with legend/colorbar on HG1 (reported by Alvaro % on FEX page as a comment on 24-Apr-2014); standardized indentation & help section % 22/04/15: Bug fix: legends and colorbars were not exported when exporting axes handle in HG2 % Make sure we have an array of handles if ~all(ishandle(ah)) error('ah must be an array of handles'); end % Check that the handles are all for axes or uipanels, and are all in the same figure fh = ancestor(ah(1), 'figure'); nAx = numel(ah); for a = 1:nAx if ~ismember(get(ah(a), 'Type'), {'axes', 'uipanel'}) error('All handles must be axes or uipanel handles.'); end if ~isequal(ancestor(ah(a), 'figure'), fh) error('Axes must all come from the same figure.'); end end % Tag the objects so we can find them in the copy old_tag = get(ah, 'Tag'); if nAx == 1 old_tag = {old_tag}; end set(ah, 'Tag', 'ObjectToCopy'); % Create a new figure exactly the same as the old one fh = copyfig(fh); %copyobj(fh, 0); if nargin < 2 || ~vis set(fh, 'Visible', 'off'); end % Reset the object tags for a = 1:nAx set(ah(a), 'Tag', old_tag{a}); end % Find the objects to save ah = findall(fh, 'Tag', 'ObjectToCopy'); if numel(ah) ~= nAx close(fh); error('Incorrect number of objects found.'); end % Set the axes tags to what they should be for a = 1:nAx set(ah(a), 'Tag', old_tag{a}); end % Keep any legends and colorbars which overlap the subplots % Note: in HG1 these are axes objects; in HG2 they are separate objects, therefore we % don't test for the type, only the tag (hopefully nobody but Matlab uses them!) lh = findall(fh, 'Tag', 'legend', '-or', 'Tag', 'Colorbar'); nLeg = numel(lh); if nLeg > 0 set([ah(:); lh(:)], 'Units', 'normalized'); try ax_pos = get(ah, 'OuterPosition'); % axes and figures have the OuterPosition property catch ax_pos = get(ah, 'Position'); % uipanels only have Position, not OuterPosition end if nAx > 1 ax_pos = cell2mat(ax_pos(:)); end ax_pos(:,3:4) = ax_pos(:,3:4) + ax_pos(:,1:2); try leg_pos = get(lh, 'OuterPosition'); catch leg_pos = get(lh, 'Position'); % No OuterPosition in HG2, only in HG1 end if nLeg > 1; leg_pos = cell2mat(leg_pos); end leg_pos(:,3:4) = leg_pos(:,3:4) + leg_pos(:,1:2); ax_pos = shiftdim(ax_pos, -1); % Overlap test M = bsxfun(@lt, leg_pos(:,1), ax_pos(:,:,3)) & ... bsxfun(@lt, leg_pos(:,2), ax_pos(:,:,4)) & ... bsxfun(@gt, leg_pos(:,3), ax_pos(:,:,1)) & ... bsxfun(@gt, leg_pos(:,4), ax_pos(:,:,2)); ah = [ah; lh(any(M, 2))]; end % Get all the objects in the figure axs = findall(fh); % Delete everything except for the input objects and associated items delete(axs(~ismember(axs, [ah; allchildren(ah); allancestors(ah)]))); end function ah = allchildren(ah) ah = findall(ah); if iscell(ah) ah = cell2mat(ah); end ah = ah(:); end function ph = allancestors(ah) ph = []; for a = 1:numel(ah) h = get(ah(a), 'parent'); while h ~= 0 ph = [ph; h]; h = get(h, 'parent'); end end end
github
siam1251/Fast-SeqSLAM-master
im2gif.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/im2gif.m
6,234
utf_8
8ee74d7d94e524410788276aa41dd5f1
%IM2GIF Convert a multiframe image to an animated GIF file % % Examples: % im2gif infile % im2gif infile outfile % im2gif(A, outfile) % im2gif(..., '-nocrop') % im2gif(..., '-nodither') % im2gif(..., '-ncolors', n) % im2gif(..., '-loops', n) % im2gif(..., '-delay', n) % % This function converts a multiframe image to an animated GIF. % % To create an animation from a series of figures, export to a multiframe % TIFF file using export_fig, then convert to a GIF, as follows: % % for a = 2 .^ (3:6) % peaks(a); % export_fig test.tif -nocrop -append % end % im2gif('test.tif', '-delay', 0.5); % %IN: % infile - string containing the name of the input image. % outfile - string containing the name of the output image (must have the % .gif extension). Default: infile, with .gif extension. % A - HxWxCxN array of input images, stacked along fourth dimension, to % be converted to gif. % -nocrop - option indicating that the borders of the output are not to % be cropped. % -nodither - option indicating that dithering is not to be used when % converting the image. % -ncolors - option pair, the value of which indicates the maximum number % of colors the GIF can have. This can also be a quantization % tolerance, between 0 and 1. Default/maximum: 256. % -loops - option pair, the value of which gives the number of times the % animation is to be looped. Default: 65535. % -delay - option pair, the value of which gives the time, in seconds, % between frames. Default: 1/15. % Copyright (C) Oliver Woodford 2011 function im2gif(A, varargin) % Parse the input arguments [A, options] = parse_args(A, varargin{:}); if options.crop ~= 0 % Crop A = crop_borders(A, A(ceil(end/2),1,:,1)); end % Convert to indexed image [h, w, c, n] = size(A); A = reshape(permute(A, [1 2 4 3]), h, w*n, c); map = unique(reshape(A, h*w*n, c), 'rows'); if size(map, 1) > 256 dither_str = {'dither', 'nodither'}; dither_str = dither_str{1+(options.dither==0)}; if options.ncolors <= 1 [B, map] = rgb2ind(A, options.ncolors, dither_str); if size(map, 1) > 256 [B, map] = rgb2ind(A, 256, dither_str); end else [B, map] = rgb2ind(A, min(round(options.ncolors), 256), dither_str); end else if max(map(:)) > 1 map = double(map) / 255; A = double(A) / 255; end B = rgb2ind(im2double(A), map); end B = reshape(B, h, w, 1, n); % Bug fix to rgb2ind map(B(1)+1,:) = im2double(A(1,1,:)); % Save as a gif imwrite(B, map, options.outfile, 'LoopCount', round(options.loops(1)), 'DelayTime', options.delay); end %% Parse the input arguments function [A, options] = parse_args(A, varargin) % Set the defaults options = struct('outfile', '', ... 'dither', true, ... 'crop', true, ... 'ncolors', 256, ... 'loops', 65535, ... 'delay', 1/15); % Go through the arguments a = 0; n = numel(varargin); while a < n a = a + 1; if ischar(varargin{a}) && ~isempty(varargin{a}) if varargin{a}(1) == '-' opt = lower(varargin{a}(2:end)); switch opt case 'nocrop' options.crop = false; case 'nodither' options.dither = false; otherwise if ~isfield(options, opt) error('Option %s not recognized', varargin{a}); end a = a + 1; if ischar(varargin{a}) && ~ischar(options.(opt)) options.(opt) = str2double(varargin{a}); else options.(opt) = varargin{a}; end end else options.outfile = varargin{a}; end end end if isempty(options.outfile) if ~ischar(A) error('No output filename given.'); end % Generate the output filename from the input filename [path, outfile] = fileparts(A); options.outfile = fullfile(path, [outfile '.gif']); end if ischar(A) % Read in the image A = imread_rgb(A); end end %% Read image to uint8 rgb array function [A, alpha] = imread_rgb(name) % Get file info info = imfinfo(name); % Special case formats switch lower(info(1).Format) case 'gif' [A, map] = imread(name, 'frames', 'all'); if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 A = permute(A, [1 2 5 4 3]); end case {'tif', 'tiff'} A = cell(numel(info), 1); for a = 1:numel(A) [A{a}, map] = imread(name, 'Index', a, 'Info', info); if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A{a} = reshape(map(uint32(A{a})+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 end if size(A{a}, 3) == 4 % TIFF in CMYK colourspace - convert to RGB if isfloat(A{a}) A{a} = A{a} * 255; else A{a} = single(A{a}); end A{a} = 255 - A{a}; A{a}(:,:,4) = A{a}(:,:,4) / 255; A{a} = uint8(A(:,:,1:3) .* A{a}(:,:,[4 4 4])); end end A = cat(4, A{:}); otherwise [A, map, alpha] = imread(name); A = A(:,:,:,1); % Keep only first frame of multi-frame files if ~isempty(map) map = uint8(map * 256 - 0.5); % Convert to uint8 for storage A = reshape(map(uint32(A)+1,:), [size(A) size(map, 2)]); % Assume indexed from 0 elseif size(A, 3) == 4 % Assume 4th channel is an alpha matte alpha = A(:,:,4); A = A(:,:,1:3); end end end
github
siam1251/Fast-SeqSLAM-master
read_write_entire_textfile.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/read_write_entire_textfile.m
961
utf_8
775aa1f538c76516c7fb406a4f129320
%READ_WRITE_ENTIRE_TEXTFILE Read or write a whole text file to/from memory % % Read or write an entire text file to/from memory, without leaving the % file open if an error occurs. % % Reading: % fstrm = read_write_entire_textfile(fname) % Writing: % read_write_entire_textfile(fname, fstrm) % %IN: % fname - Pathname of text file to be read in. % fstrm - String to be written to the file, including carriage returns. % %OUT: % fstrm - String read from the file. If an fstrm input is given the % output is the same as that input. function fstrm = read_write_entire_textfile(fname, fstrm) modes = {'rt', 'wt'}; writing = nargin > 1; fh = fopen(fname, modes{1+writing}); if fh == -1 error('Unable to open file %s.', fname); end try if writing fwrite(fh, fstrm, 'char*1'); else fstrm = fread(fh, '*char')'; end catch ex fclose(fh); rethrow(ex); end fclose(fh); end
github
siam1251/Fast-SeqSLAM-master
pdf2eps.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/pdf2eps.m
1,522
utf_8
4c8f0603619234278ed413670d24bdb6
%PDF2EPS Convert a pdf file to eps format using pdftops % % Examples: % pdf2eps source dest % % This function converts a pdf file to eps format. % % This function requires that you have pdftops, from the Xpdf suite of % functions, installed on your system. This can be downloaded from: % http://www.foolabs.com/xpdf % %IN: % source - filename of the source pdf file to convert. The filename is % assumed to already have the extension ".pdf". % dest - filename of the destination eps file. The filename is assumed to % already have the extension ".eps". % Copyright (C) Oliver Woodford 2009-2010 % Thanks to Aldebaro Klautau for reporting a bug when saving to % non-existant directories. function pdf2eps(source, dest) % Construct the options string for pdftops options = ['-q -paper match -eps -level2 "' source '" "' dest '"']; % Convert to eps using pdftops [status, message] = pdftops(options); % Check for error if status % Report error if isempty(message) error('Unable to generate eps. Check destination directory is writable.'); else error(message); end end % Fix the DSC error created by pdftops fid = fopen(dest, 'r+'); if fid == -1 % Cannot open the file return end fgetl(fid); % Get the first line str = fgetl(fid); % Get the second line if strcmp(str(1:min(13, end)), '% Produced by') fseek(fid, -numel(str)-1, 'cof'); fwrite(fid, '%'); % Turn ' ' into '%' end fclose(fid); end
github
siam1251/Fast-SeqSLAM-master
print2array.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/print2array.m
9,613
utf_8
e398a6296734121e6e1983a45298549a
function [A, bcol] = print2array(fig, res, renderer, gs_options) %PRINT2ARRAY Exports a figure to an image array % % Examples: % A = print2array % A = print2array(figure_handle) % A = print2array(figure_handle, resolution) % A = print2array(figure_handle, resolution, renderer) % A = print2array(figure_handle, resolution, renderer, gs_options) % [A bcol] = print2array(...) % % This function outputs a bitmap image of the given figure, at the desired % resolution. % % If renderer is '-painters' then ghostcript needs to be installed. This % can be downloaded from: http://www.ghostscript.com % % IN: % figure_handle - The handle of the figure to be exported. Default: gcf. % resolution - Resolution of the output, as a factor of screen % resolution. Default: 1. % renderer - string containing the renderer paramater to be passed to % print. Default: '-opengl'. % gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If % multiple options are needed, enclose in call array: {'-a','-b'} % % OUT: % A - MxNx3 uint8 image of the figure. % bcol - 1x3 uint8 vector of the background color % Copyright (C) Oliver Woodford 2008-2014, Yair Altman 2015- %{ % 05/09/11: Set EraseModes to normal when using opengl or zbuffer % renderers. Thanks to Pawel Kocieniewski for reporting the issue. % 21/09/11: Bug fix: unit8 -> uint8! Thanks to Tobias Lamour for reporting it. % 14/11/11: Bug fix: stop using hardcopy(), as it interfered with figure size % and erasemode settings. Makes it a bit slower, but more reliable. % Thanks to Phil Trinh and Meelis Lootus for reporting the issues. % 09/12/11: Pass font path to ghostscript. % 27/01/12: Bug fix affecting painters rendering tall figures. Thanks to % Ken Campbell for reporting it. % 03/04/12: Bug fix to median input. Thanks to Andy Matthews for reporting it. % 26/10/12: Set PaperOrientation to portrait. Thanks to Michael Watts for % reporting the issue. % 26/02/15: If temp dir is not writable, use the current folder for temp % EPS/TIF files (Javier Paredes) % 27/02/15: Display suggested workarounds to internal print() error (issue #16) % 28/02/15: Enable users to specify optional ghostscript options (issue #36) % 10/03/15: Fixed minor warning reported by Paul Soderlind; fixed code indentation % 28/05/15: Fixed issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() func) % 07/07/15: Fixed issue #83: use numeric handles in HG1 %} % Generate default input arguments, if needed if nargin < 2 res = 1; if nargin < 1 fig = gcf; end end % Warn if output is large old_mode = get(fig, 'Units'); set(fig, 'Units', 'pixels'); px = get(fig, 'Position'); set(fig, 'Units', old_mode); npx = prod(px(3:4)*res)/1e6; if npx > 30 % 30M pixels or larger! warning('MATLAB:LargeImage', 'print2array generating a %.1fM pixel image. This could be slow and might also cause memory problems.', npx); end % Retrieve the background colour bcol = get(fig, 'Color'); % Set the resolution parameter res_str = ['-r' num2str(ceil(get(0, 'ScreenPixelsPerInch')*res))]; % Generate temporary file name tmp_nam = [tempname '.tif']; try % Ensure that the temp dir is writable (Javier Paredes 26/2/15) fid = fopen(tmp_nam,'w'); fwrite(fid,1); fclose(fid); delete(tmp_nam); % cleanup isTempDirOk = true; catch % Temp dir is not writable, so use the current folder [dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU> fpath = pwd; tmp_nam = fullfile(fpath,[fname fext]); isTempDirOk = false; end % Enable users to specify optional ghostscript options (issue #36) if nargin > 3 && ~isempty(gs_options) if iscell(gs_options) gs_options = sprintf(' %s',gs_options{:}); elseif ~ischar(gs_options) error('gs_options input argument must be a string or cell-array of strings'); else gs_options = [' ' gs_options]; end else gs_options = ''; end if nargin > 2 && strcmp(renderer, '-painters') % Print to eps file if isTempDirOk tmp_eps = [tempname '.eps']; else tmp_eps = fullfile(fpath,[fname '.eps']); end print2eps(tmp_eps, fig, 0, renderer, '-loose'); try % Initialize the command to export to tiff using ghostscript cmd_str = ['-dEPSCrop -q -dNOPAUSE -dBATCH ' res_str ' -sDEVICE=tiff24nc']; % Set the font path fp = font_path(); if ~isempty(fp) cmd_str = [cmd_str ' -sFONTPATH="' fp '"']; end % Add the filenames cmd_str = [cmd_str ' -sOutputFile="' tmp_nam '" "' tmp_eps '"' gs_options]; % Execute the ghostscript command ghostscript(cmd_str); catch me % Delete the intermediate file delete(tmp_eps); rethrow(me); end % Delete the intermediate file delete(tmp_eps); % Read in the generated bitmap A = imread(tmp_nam); % Delete the temporary bitmap file delete(tmp_nam); % Set border pixels to the correct colour if isequal(bcol, 'none') bcol = []; elseif isequal(bcol, [1 1 1]) bcol = uint8([255 255 255]); else for l = 1:size(A, 2) if ~all(reshape(A(:,l,:) == 255, [], 1)) break; end end for r = size(A, 2):-1:l if ~all(reshape(A(:,r,:) == 255, [], 1)) break; end end for t = 1:size(A, 1) if ~all(reshape(A(t,:,:) == 255, [], 1)) break; end end for b = size(A, 1):-1:t if ~all(reshape(A(b,:,:) == 255, [], 1)) break; end end bcol = uint8(median(single([reshape(A(:,[l r],:), [], size(A, 3)); reshape(A([t b],:,:), [], size(A, 3))]), 1)); for c = 1:size(A, 3) A(:,[1:l-1, r+1:end],c) = bcol(c); A([1:t-1, b+1:end],:,c) = bcol(c); end end else if nargin < 3 renderer = '-opengl'; end err = false; % Set paper size old_pos_mode = get(fig, 'PaperPositionMode'); old_orientation = get(fig, 'PaperOrientation'); set(fig, 'PaperPositionMode', 'auto', 'PaperOrientation', 'portrait'); try % Workaround for issue #69: patches with LineWidth==0.75 appear wide (internal bug in Matlab's print() function) fp = []; % in case we get an error below fp = findall(fig, 'Type','patch', 'LineWidth',0.75); set(fp, 'LineWidth',0.5); % Fix issue #83: use numeric handles in HG1 if ~using_hg2(fig), fig = double(fig); end % Print to tiff file print(fig, renderer, res_str, '-dtiff', tmp_nam); % Read in the printed file A = imread(tmp_nam); % Delete the temporary file delete(tmp_nam); catch ex err = true; end set(fp, 'LineWidth',0.75); % restore original figure appearance % Reset paper size set(fig, 'PaperPositionMode', old_pos_mode, 'PaperOrientation', old_orientation); % Throw any error that occurred if err % Display suggested workarounds to internal print() error (issue #16) fprintf(2, 'An error occured with Matlab''s builtin print function.\nTry setting the figure Renderer to ''painters'' or use opengl(''software'').\n\n'); rethrow(ex); end % Set the background color if isequal(bcol, 'none') bcol = []; else bcol = bcol * 255; if isequal(bcol, round(bcol)) bcol = uint8(bcol); else bcol = squeeze(A(1,1,:)); end end end % Check the output size is correct if isequal(res, round(res)) px = round([px([4 3])*res 3]); % round() to avoid an indexing warning below if ~isequal(size(A), px) % Correct the output size A = A(1:min(end,px(1)),1:min(end,px(2)),:); end end end % Function to return (and create, where necessary) the font path function fp = font_path() fp = user_string('gs_font_path'); if ~isempty(fp) return end % Create the path % Start with the default path fp = getenv('GS_FONTPATH'); % Add on the typical directories for a given OS if ispc if ~isempty(fp) fp = [fp ';']; end fp = [fp getenv('WINDIR') filesep 'Fonts']; else if ~isempty(fp) fp = [fp ':']; end fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype']; end user_string('gs_font_path', fp); end
github
siam1251/Fast-SeqSLAM-master
append_pdfs.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/append_pdfs.m
2,759
utf_8
9b52be41aff48bea6f27992396900640
%APPEND_PDFS Appends/concatenates multiple PDF files % % Example: % append_pdfs(output, input1, input2, ...) % append_pdfs(output, input_list{:}) % append_pdfs test.pdf temp1.pdf temp2.pdf % % This function appends multiple PDF files to an existing PDF file, or % concatenates them into a PDF file if the output file doesn't yet exist. % % This function requires that you have ghostscript installed on your % system. Ghostscript can be downloaded from: http://www.ghostscript.com % % IN: % output - string of output file name (including the extension, .pdf). % If it exists it is appended to; if not, it is created. % input1 - string of an input file name (including the extension, .pdf). % All input files are appended in order. % input_list - cell array list of input file name strings. All input % files are appended in order. % Copyright: Oliver Woodford, 2011 % Thanks to Reinhard Knoll for pointing out that appending multiple pdfs in % one go is much faster than appending them one at a time. % Thanks to Michael Teo for reporting the issue of a too long command line. % Issue resolved on 5/5/2011, by passing gs a command file. % Thanks to Martin Wittmann for pointing out the quality issue when % appending multiple bitmaps. % Issue resolved (to best of my ability) 1/6/2011, using the prepress % setting % 26/02/15: If temp dir is not writable, use the output folder for temp % files when appending (Javier Paredes); sanity check of inputs function append_pdfs(varargin) if nargin < 2, return; end % sanity check % Are we appending or creating a new file append = exist(varargin{1}, 'file') == 2; output = [tempname '.pdf']; try % Ensure that the temp dir is writable (Javier Paredes 26/2/15) fid = fopen(output,'w'); fwrite(fid,1); fclose(fid); delete(output); isTempDirOk = true; catch % Temp dir is not writable, so use the output folder [dummy,fname,fext] = fileparts(output); %#ok<ASGLU> fpath = fileparts(varargin{1}); output = fullfile(fpath,[fname fext]); isTempDirOk = false; end if ~append output = varargin{1}; varargin = varargin(2:end); end % Create the command file if isTempDirOk cmdfile = [tempname '.txt']; else cmdfile = fullfile(fpath,[fname '.txt']); end fh = fopen(cmdfile, 'w'); fprintf(fh, '-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="%s" -f', output); fprintf(fh, ' "%s"', varargin{:}); fclose(fh); % Call ghostscript ghostscript(['@"' cmdfile '"']); % Delete the command file delete(cmdfile); % Rename the file if needed if append movefile(output, varargin{1}); end end
github
siam1251/Fast-SeqSLAM-master
using_hg2.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/using_hg2.m
1,037
utf_8
3303caab5694b040103ccb6b689387bf
%USING_HG2 Determine if the HG2 graphics engine is used % % tf = using_hg2(fig) % %IN: % fig - handle to the figure in question. % %OUT: % tf - boolean indicating whether the HG2 graphics engine is being used % (true) or not (false). % 19/06/2015 - Suppress warning in R2015b; cache result for improved performance function tf = using_hg2(fig) persistent tf_cached if isempty(tf_cached) try if nargin < 1, fig = figure('visible','off'); end oldWarn = warning('off','MATLAB:graphicsversion:GraphicsVersionRemoval'); try % This generates a [supressed] warning in R2015b: tf = ~graphicsversion(fig, 'handlegraphics'); catch tf = verLessThan('matlab','8.4'); % =R2014b end warning(oldWarn); catch tf = false; end if nargin < 1, delete(fig); end tf_cached = tf; else tf = tf_cached; end end
github
siam1251/Fast-SeqSLAM-master
eps2pdf.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/eps2pdf.m
8,624
utf_8
24048681d3f737f221497896307fd2f1
function eps2pdf(source, dest, crop, append, gray, quality, gs_options) %EPS2PDF Convert an eps file to pdf format using ghostscript % % Examples: % eps2pdf source dest % eps2pdf(source, dest, crop) % eps2pdf(source, dest, crop, append) % eps2pdf(source, dest, crop, append, gray) % eps2pdf(source, dest, crop, append, gray, quality) % eps2pdf(source, dest, crop, append, gray, quality, gs_options) % % This function converts an eps file to pdf format. The output can be % optionally cropped and also converted to grayscale. If the output pdf % file already exists then the eps file can optionally be appended as a new % page on the end of the eps file. The level of bitmap compression can also % optionally be set. % % This function requires that you have ghostscript installed on your % system. Ghostscript can be downloaded from: http://www.ghostscript.com % % Inputs: % source - filename of the source eps file to convert. The filename is % assumed to already have the extension ".eps". % dest - filename of the destination pdf file. The filename is assumed % to already have the extension ".pdf". % crop - boolean indicating whether to crop the borders off the pdf. % Default: true. % append - boolean indicating whether the eps should be appended to the % end of the pdf as a new page (if the pdf exists already). % Default: false. % gray - boolean indicating whether the output pdf should be grayscale % or not. Default: false. % quality - scalar indicating the level of image bitmap quality to % output. A larger value gives a higher quality. quality > 100 % gives lossless output. Default: ghostscript prepress default. % gs_options - optional ghostscript options (e.g.: '-dNoOutputFonts'). If % multiple options are needed, enclose in call array: {'-a','-b'} % Copyright (C) Oliver Woodford 2009-2014, Yair Altman 2015- % Suggestion of appending pdf files provided by Matt C at: % http://www.mathworks.com/matlabcentral/fileexchange/23629 % Thank you to Fabio Viola for pointing out compression artifacts, leading % to the quality setting. % Thank you to Scott for pointing out the subsampling of very small images, % which was fixed for lossless compression settings. % 9/12/2011 Pass font path to ghostscript. % 26/02/15: If temp dir is not writable, use the dest folder for temp % destination files (Javier Paredes) % 28/02/15: Enable users to specify optional ghostscript options (issue #36) % 01/03/15: Upon GS error, retry without the -sFONTPATH= option (this might solve % some /findfont errors according to James Rankin, FEX Comment 23/01/15) % 23/06/15: Added extra debug info in case of ghostscript error; code indentation % 04/10/15: Suggest a workaround for issue #41 (missing font path; thanks Mariia Fedotenkova) % 22/02/16: Bug fix from latest release of this file (workaround for issue #41) % Intialise the options string for ghostscript options = ['-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="' dest '"']; % Set crop option if nargin < 3 || crop options = [options ' -dEPSCrop']; end % Set the font path fp = font_path(); if ~isempty(fp) options = [options ' -sFONTPATH="' fp '"']; end % Set the grayscale option if nargin > 4 && gray options = [options ' -sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray']; end % Set the bitmap quality if nargin > 5 && ~isempty(quality) options = [options ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false']; if quality > 100 options = [options ' -dColorImageFilter=/FlateEncode -dGrayImageFilter=/FlateEncode -c ".setpdfwrite << /ColorImageDownsampleThreshold 10 /GrayImageDownsampleThreshold 10 >> setdistillerparams"']; else options = [options ' -dColorImageFilter=/DCTEncode -dGrayImageFilter=/DCTEncode']; v = 1 + (quality < 80); quality = 1 - quality / 100; s = sprintf('<< /QFactor %.2f /Blend 1 /HSample [%d 1 1 %d] /VSample [%d 1 1 %d] >>', quality, v, v, v, v); options = sprintf('%s -c ".setpdfwrite << /ColorImageDict %s /GrayImageDict %s >> setdistillerparams"', options, s, s); end end % Enable users to specify optional ghostscript options (issue #36) if nargin > 6 && ~isempty(gs_options) if iscell(gs_options) gs_options = sprintf(' %s',gs_options{:}); elseif ~ischar(gs_options) error('gs_options input argument must be a string or cell-array of strings'); else gs_options = [' ' gs_options]; end options = [options gs_options]; end % Check if the output file exists if nargin > 3 && append && exist(dest, 'file') == 2 % File exists - append current figure to the end tmp_nam = tempname; try % Ensure that the temp dir is writable (Javier Paredes 26/2/15) fid = fopen(tmp_nam,'w'); fwrite(fid,1); fclose(fid); delete(tmp_nam); catch % Temp dir is not writable, so use the dest folder [dummy,fname,fext] = fileparts(tmp_nam); %#ok<ASGLU> fpath = fileparts(dest); tmp_nam = fullfile(fpath,[fname fext]); end % Copy the file copyfile(dest, tmp_nam); % Add the output file names options = [options ' -f "' tmp_nam '" "' source '"']; try % Convert to pdf using ghostscript [status, message] = ghostscript(options); catch me % Delete the intermediate file delete(tmp_nam); rethrow(me); end % Delete the intermediate file delete(tmp_nam); else % File doesn't exist or should be over-written % Add the output file names options = [options ' -f "' source '"']; % Convert to pdf using ghostscript [status, message] = ghostscript(options); end % Check for error if status % Retry without the -sFONTPATH= option (this might solve some GS % /findfont errors according to James Rankin, FEX Comment 23/01/15) orig_options = options; if ~isempty(fp) options = regexprep(options, ' -sFONTPATH=[^ ]+ ',' '); status = ghostscript(options); if ~status, return; end % hurray! (no error) end % Report error if isempty(message) error('Unable to generate pdf. Check destination directory is writable.'); elseif ~isempty(strfind(message,'/typecheck in /findfont')) % Suggest a workaround for issue #41 (missing font path) font_name = strtrim(regexprep(message,'.*Operand stack:\s*(.*)\s*Execution.*','$1')); fprintf(2, 'Ghostscript error: could not find the following font(s): %s\n', font_name); fpath = fileparts(mfilename('fullpath')); gs_fonts_file = fullfile(fpath, '.ignore', 'gs_font_path.txt'); fprintf(2, ' try to add the font''s folder to your %s file\n\n', gs_fonts_file); error('export_fig error'); else fprintf(2, '\nGhostscript error: perhaps %s is open by another application\n', dest); if ~isempty(gs_options) fprintf(2, ' or maybe the%s option(s) are not accepted by your GS version\n', gs_options); end fprintf(2, 'Ghostscript options: %s\n\n', orig_options); error(message); end end end % Function to return (and create, where necessary) the font path function fp = font_path() fp = user_string('gs_font_path'); if ~isempty(fp) return end % Create the path % Start with the default path fp = getenv('GS_FONTPATH'); % Add on the typical directories for a given OS if ispc if ~isempty(fp) fp = [fp ';']; end fp = [fp getenv('WINDIR') filesep 'Fonts']; else if ~isempty(fp) fp = [fp ':']; end fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype']; end user_string('gs_font_path', fp); end
github
siam1251/Fast-SeqSLAM-master
ghostscript.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/ghostscript.m
7,902
utf_8
ff62a40d651197dbea5d3c39998b3bad
function varargout = ghostscript(cmd) %GHOSTSCRIPT Calls a local GhostScript executable with the input command % % Example: % [status result] = ghostscript(cmd) % % Attempts to locate a ghostscript executable, finally asking the user to % specify the directory ghostcript was installed into. The resulting path % is stored for future reference. % % Once found, the executable is called with the input command string. % % This function requires that you have Ghostscript installed on your % system. You can download this from: http://www.ghostscript.com % % IN: % cmd - Command string to be passed into ghostscript. % % OUT: % status - 0 iff command ran without problem. % result - Output from ghostscript. % Copyright: Oliver Woodford, 2009-2015, Yair Altman 2015- %{ % Thanks to Jonas Dorn for the fix for the title of the uigetdir window on Mac OS. % Thanks to Nathan Childress for the fix to default location on 64-bit Windows systems. % 27/04/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and % Shaun Kline for pointing out the issue % 04/05/11 - Thanks to David Chorlian for pointing out an alternative % location for gs on linux. % 12/12/12 - Add extra executable name on Windows. Thanks to Ratish % Punnoose for highlighting the issue. % 28/06/13 - Fix error using GS 9.07 in Linux. Many thanks to Jannick % Steinbring for proposing the fix. % 24/10/13 - Fix error using GS 9.07 in Linux. Many thanks to Johannes % for the fix. % 23/01/14 - Add full path to ghostscript.txt in warning. Thanks to Koen % Vermeer for raising the issue. % 27/02/15 - If Ghostscript croaks, display suggested workarounds % 30/03/15 - Improved performance by caching status of GS path check, if ok % 14/05/15 - Clarified warning message in case GS path could not be saved % 29/05/15 - Avoid cryptic error in case the ghostscipt path cannot be saved (issue #74) % 10/11/15 - Custom GS installation webpage for MacOS. Thanks to Andy Hueni via FEX %} try % Call ghostscript [varargout{1:nargout}] = system([gs_command(gs_path()) cmd]); catch err % Display possible workarounds for Ghostscript croaks url1 = 'https://github.com/altmany/export_fig/issues/12#issuecomment-61467998'; % issue #12 url2 = 'https://github.com/altmany/export_fig/issues/20#issuecomment-63826270'; % issue #20 hg2_str = ''; if using_hg2, hg2_str = ' or Matlab R2014a'; end fprintf(2, 'Ghostscript error. Rolling back to GS 9.10%s may possibly solve this:\n * <a href="%s">%s</a> ',hg2_str,url1,url1); if using_hg2 fprintf(2, '(GS 9.10)\n * <a href="%s">%s</a> (R2014a)',url2,url2); end fprintf('\n\n'); if ismac || isunix url3 = 'https://github.com/altmany/export_fig/issues/27'; % issue #27 fprintf(2, 'Alternatively, this may possibly be due to a font path issue:\n * <a href="%s">%s</a>\n\n',url3,url3); % issue #20 fpath = which(mfilename); if isempty(fpath), fpath = [mfilename('fullpath') '.m']; end fprintf(2, 'Alternatively, if you are using csh, modify shell_cmd from "export..." to "setenv ..."\nat the bottom of <a href="matlab:opentoline(''%s'',174)">%s</a>\n\n',fpath,fpath); end rethrow(err); end end function path_ = gs_path % Return a valid path % Start with the currently set path path_ = user_string('ghostscript'); % Check the path works if check_gs_path(path_) return end % Check whether the binary is on the path if ispc bin = {'gswin32c.exe', 'gswin64c.exe', 'gs'}; else bin = {'gs'}; end for a = 1:numel(bin) path_ = bin{a}; if check_store_gs_path(path_) return end end % Search the obvious places if ispc default_location = 'C:\Program Files\gs\'; dir_list = dir(default_location); if isempty(dir_list) default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit systems dir_list = dir(default_location); end executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'}; ver_num = 0; % If there are multiple versions, use the newest for a = 1:numel(dir_list) ver_num2 = sscanf(dir_list(a).name, 'gs%g'); if ~isempty(ver_num2) && ver_num2 > ver_num for b = 1:numel(executable) path2 = [default_location dir_list(a).name executable{b}]; if exist(path2, 'file') == 2 path_ = path2; ver_num = ver_num2; end end end end if check_store_gs_path(path_) return end else executable = {'/usr/bin/gs', '/usr/local/bin/gs'}; for a = 1:numel(executable) path_ = executable{a}; if check_store_gs_path(path_) return end end end % Ask the user to enter the path while true if strncmp(computer, 'MAC', 3) % Is a Mac % Give separate warning as the uigetdir dialogue box doesn't have a % title uiwait(warndlg('Ghostscript not found. Please locate the program.')) end base = uigetdir('/', 'Ghostcript not found. Please locate the program.'); if isequal(base, 0) % User hit cancel or closed window break; end base = [base filesep]; %#ok<AGROW> bin_dir = {'', ['bin' filesep], ['lib' filesep]}; for a = 1:numel(bin_dir) for b = 1:numel(bin) path_ = [base bin_dir{a} bin{b}]; if exist(path_, 'file') == 2 if check_store_gs_path(path_) return end end end end end if ismac error('Ghostscript not found. Have you installed it (http://pages.uoregon.edu/koch)?'); else error('Ghostscript not found. Have you installed it from www.ghostscript.com?'); end end function good = check_store_gs_path(path_) % Check the path is valid good = check_gs_path(path_); if ~good return end % Update the current default path to the path found if ~user_string('ghostscript', path_) filename = fullfile(fileparts(which('user_string.m')), '.ignore', 'ghostscript.txt'); warning('Path to ghostscript installation could not be saved in %s (perhaps a permissions issue). You can manually create this file and set its contents to %s, to improve performance in future invocations (this warning is safe to ignore).', filename, path_); return end end function good = check_gs_path(path_) persistent isOk if isempty(path_) isOk = false; elseif ~isequal(isOk,true) % Check whether the path is valid [status, message] = system([gs_command(path_) '-h']); %#ok<ASGLU> isOk = status == 0; end good = isOk; end function cmd = gs_command(path_) % Initialize any required system calls before calling ghostscript % TODO: in Unix/Mac, find a way to determine whether to use "export" (bash) or "setenv" (csh/tcsh) shell_cmd = ''; if isunix shell_cmd = 'export LD_LIBRARY_PATH=""; '; % Avoids an error on Linux with GS 9.07 end if ismac shell_cmd = 'export DYLD_LIBRARY_PATH=""; '; % Avoids an error on Mac with GS 9.07 end % Construct the command string cmd = sprintf('%s"%s" ', shell_cmd, path_); end
github
siam1251/Fast-SeqSLAM-master
fix_lines.m
.m
Fast-SeqSLAM-master/graphs/altmany-export_fig-113e357/fix_lines.m
6,441
utf_8
ffda929ebad8144b1e72d528fa5d9460
%FIX_LINES Improves the line style of eps files generated by print % % Examples: % fix_lines fname % fix_lines fname fname2 % fstrm_out = fixlines(fstrm_in) % % This function improves the style of lines in eps files generated by % MATLAB's print function, making them more similar to those seen on % screen. Grid lines are also changed from a dashed style to a dotted % style, for greater differentiation from dashed lines. % % The function also places embedded fonts after the postscript header, in % versions of MATLAB which place the fonts first (R2006b and earlier), in % order to allow programs such as Ghostscript to find the bounding box % information. % %IN: % fname - Name or path of source eps file. % fname2 - Name or path of destination eps file. Default: same as fname. % fstrm_in - File contents of a MATLAB-generated eps file. % %OUT: % fstrm_out - Contents of the eps file with line styles fixed. % Copyright: (C) Oliver Woodford, 2008-2014 % The idea of editing the EPS file to change line styles comes from Jiro % Doke's FIXPSLINESTYLE (fex id: 17928) % The idea of changing dash length with line width came from comments on % fex id: 5743, but the implementation is mine :) % Thank you to Sylvain Favrot for bringing the embedded font/bounding box % interaction in older versions of MATLAB to my attention. % Thank you to D Ko for bringing an error with eps files with tiff previews % to my attention. % Thank you to Laurence K for suggesting the check to see if the file was % opened. % 01/03/15: Issue #20: warn users if using this function in HG2 (R2014b+) % 27/03/15: Fixed out of memory issue with enormous EPS files (generated by print() with OpenGL renderer), related to issue #39 function fstrm = fix_lines(fstrm, fname2) % Issue #20: warn users if using this function in HG2 (R2014b+) if using_hg2 warning('export_fig:hg2','The fix_lines function should not be used in this Matlab version.'); end if nargout == 0 || nargin > 1 if nargin < 2 % Overwrite the input file fname2 = fstrm; end % Read in the file fstrm = read_write_entire_textfile(fstrm); end % Move any embedded fonts after the postscript header if strcmp(fstrm(1:15), '%!PS-AdobeFont-') % Find the start and end of the header ind = regexp(fstrm, '[\n\r]%!PS-Adobe-'); [ind2, ind2] = regexp(fstrm, '[\n\r]%%EndComments[\n\r]+'); % Put the header first if ~isempty(ind) && ~isempty(ind2) && ind(1) < ind2(1) fstrm = fstrm([ind(1)+1:ind2(1) 1:ind(1) ind2(1)+1:end]); end end % Make sure all line width commands come before the line style definitions, % so that dash lengths can be based on the correct widths % Find all line style sections ind = [regexp(fstrm, '[\n\r]SO[\n\r]'),... % This needs to be here even though it doesn't have dots/dashes! regexp(fstrm, '[\n\r]DO[\n\r]'),... regexp(fstrm, '[\n\r]DA[\n\r]'),... regexp(fstrm, '[\n\r]DD[\n\r]')]; ind = sort(ind); % Find line width commands [ind2, ind3] = regexp(fstrm, '[\n\r]\d* w[\n\r]'); % Go through each line style section and swap with any line width commands % near by b = 1; m = numel(ind); n = numel(ind2); for a = 1:m % Go forwards width commands until we pass the current line style while b <= n && ind2(b) < ind(a) b = b + 1; end if b > n % No more width commands break; end % Check we haven't gone past another line style (including SO!) if a < m && ind2(b) > ind(a+1) continue; end % Are the commands close enough to be confident we can swap them? if (ind2(b) - ind(a)) > 8 continue; end % Move the line style command below the line width command fstrm(ind(a)+1:ind3(b)) = [fstrm(ind(a)+4:ind3(b)) fstrm(ind(a)+1:ind(a)+3)]; b = b + 1; end % Find any grid line definitions and change to GR format % Find the DO sections again as they may have moved ind = int32(regexp(fstrm, '[\n\r]DO[\n\r]')); if ~isempty(ind) % Find all occurrences of what are believed to be axes and grid lines ind2 = int32(regexp(fstrm, '[\n\r] *\d* *\d* *mt *\d* *\d* *L[\n\r]')); if ~isempty(ind2) % Now see which DO sections come just before axes and grid lines ind2 = repmat(ind2', [1 numel(ind)]) - repmat(ind, [numel(ind2) 1]); ind2 = any(ind2 > 0 & ind2 < 12); % 12 chars seems about right ind = ind(ind2); % Change any regions we believe to be grid lines to GR fstrm(ind+1) = 'G'; fstrm(ind+2) = 'R'; end end % Define the new styles, including the new GR format % Dot and dash lengths have two parts: a constant amount plus a line width % variable amount. The constant amount comes after dpi2point, and the % variable amount comes after currentlinewidth. If you want to change % dot/dash lengths for a one particular line style only, edit the numbers % in the /DO (dotted lines), /DA (dashed lines), /DD (dot dash lines) and % /GR (grid lines) lines for the style you want to change. new_style = {'/dom { dpi2point 1 currentlinewidth 0.08 mul add mul mul } bdef',... % Dot length macro based on line width '/dam { dpi2point 2 currentlinewidth 0.04 mul add mul mul } bdef',... % Dash length macro based on line width '/SO { [] 0 setdash 0 setlinecap } bdef',... % Solid lines '/DO { [1 dom 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dotted lines '/DA { [4 dam 1.5 dam] 0 setdash 0 setlinecap } bdef',... % Dashed lines '/DD { [1 dom 1.2 dom 4 dam 1.2 dom] 0 setdash 0 setlinecap } bdef',... % Dot dash lines '/GR { [0 dpi2point mul 4 dpi2point mul] 0 setdash 1 setlinecap } bdef'}; % Grid lines - dot spacing remains constant % Construct the output % This is the original (memory-intensive) code: %first_sec = strfind(fstrm, '% line types:'); % Isolate line style definition section %[second_sec, remaining] = strtok(fstrm(first_sec+1:end), '/'); %[remaining, remaining] = strtok(remaining, '%'); %fstrm = [fstrm(1:first_sec) second_sec sprintf('%s\r', new_style{:}) remaining]; fstrm = regexprep(fstrm,'(% line types:.+?)/.+?%',['$1',sprintf('%s\r',new_style{:}),'%']); % Write the output file if nargout == 0 || nargin > 1 read_write_entire_textfile(fname2, fstrm); end end
github
siam1251/Fast-SeqSLAM-master
flann_search.m
.m
Fast-SeqSLAM-master/flann/flann_search.m
3,506
utf_8
cffd29579f0290f0f680a3f12cb7a671
%Copyright 2008-2009 Marius Muja ([email protected]). All rights reserved. %Copyright 2008-2009 David G. Lowe ([email protected]). All rights reserved. % %THE BSD LICENSE % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions %are met: % %1. Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. %2. Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % %THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR %IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES %OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. %IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, %INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT %NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, %DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY %THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT %(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF %THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. function [indices, dists] = flann_search(data, testset, n, search_params) %NN_SEARCH Fast approximate nearest neighbors search % % Performs a fast approximate nearest neighbor search using an % index constructed using flann_build_index or directly a % dataset. % Marius Muja, January 2008 algos = struct( 'linear', 0, 'kdtree', 1, 'kmeans', 2, 'composite', 3, 'saved', 254, 'autotuned', 255 ); center_algos = struct('random', 0, 'gonzales', 1, 'kmeanspp', 2 ); log_levels = struct('none', 0, 'fatal', 1, 'error', 2, 'warning', 3, 'info', 4); function value = id2value(map, id) fields = fieldnames(map); for i = 1:length(fields), val = cell2mat(fields(i)); if map.(val) == id value = val; break; end end end function id = value2id(map,value) id = map.(value); end default_params = struct('algorithm', 'kdtree' ,'checks', 32, 'trees', 4, 'branching', 32, 'iterations', 5, 'centers_init', 'random', 'cb_index', 0.4, 'target_precision', -1, 'build_weight', 0.01, 'memory_weight', 0, 'sample_fraction', 0.1, 'log_level', 'warning', 'random_seed', 0); if ~isstruct(search_params) error('The "search_params" argument must be a structure'); end params = default_params; fn = fieldnames(search_params); for i = [1:length(fn)], name = cell2mat(fn(i)); params.(name) = search_params.(name); end if ~isnumeric(params.algorithm), params.algorithm = value2id(algos,params.algorithm); end if ~isnumeric(params.centers_init), params.centers_init = value2id(center_algos,params.centers_init); end if ~isnumeric(params.log_level), params.log_level = value2id(log_levels,params.log_level); end if (size(data,1)==1 && size(data,2)==1) % we already have an index [indices,dists] = nearest_neighbors('index_find_nn', data, testset, n, params); else % create the index and search [indices,dists] = nearest_neighbors('find_nn', data, testset, n, params); end end
github
siam1251/Fast-SeqSLAM-master
flann_load_index.m
.m
Fast-SeqSLAM-master/flann/flann_load_index.m
1,578
utf_8
f9bcc41fd5972c5c987d6a4d41bdc796
%Copyright 2008-2009 Marius Muja ([email protected]). All rights reserved. %Copyright 2008-2009 David G. Lowe ([email protected]). All rights reserved. % %THE BSD LICENSE % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions %are met: % %1. Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. %2. Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % %THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR %IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES %OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. %IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, %INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT %NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, %DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY %THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT %(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF %THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. function index = flann_load_index(filename, dataset) %FLANN_LOAD_INDEX Loads an index from disk % % Marius Muja, March 2009 index = nearest_neighbors('load_index', filename, dataset); end
github
siam1251/Fast-SeqSLAM-master
test_flann.m
.m
Fast-SeqSLAM-master/flann/test_flann.m
10,100
utf_8
d65a8eac8c411227a355b4ddbe6de38a
%Copyright 2008-2009 Marius Muja ([email protected]). All rights reserved. %Copyright 2008-2009 David G. Lowe ([email protected]). All rights reserved. % %THE BSD LICENSE % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions %are met: % %1. Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. %2. Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % %THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR %IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES %OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. %IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, %INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT %NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, %DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY %THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT %(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF %THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. function test_flann data_path = './'; outcome = {'FAILED!!!!!!!!!', 'PASSED'}; failed = 0; passed = 0; cnt = 0; ok = 1; function assert(condition) if (~condition) ok = 0; end end function run_test(name, test) ok = 1; cnt = cnt + 1; tic; fprintf('Test %d: %s...',cnt,name); test(); time = toc; if (ok) passed = passed + 1; else failed = failed + 1; end fprintf('done (%g sec) : %s\n',time,cell2mat(outcome(ok+1))) end function status fprintf('-----------------\n'); fprintf('Passed: %d/%d\nFailed: %d/%d\n',passed,cnt,failed,cnt); end dataset = []; testset = []; function test_load_data % load the datasets and testsets % use single precision for better memory efficiency % store the features one per column because MATLAB % uses column major ordering dataset = single(load([data_path 'dataset.dat']))'; testset = single(load([data_path 'testset.dat']))'; assert(size(dataset,1) == size(testset,1)); end run_test('Load data',@test_load_data); match = []; dists = []; function test_linear_search [match,dists] = flann_search(dataset, testset, 10, struct('algorithm','linear')); assert(size(match,1) ==10 && size(match,2) == size(testset,2)); end run_test('Linear search',@test_linear_search); function test_kdtree_search [result, ndists] = flann_search(dataset, testset, 10, struct('algorithm','kdtree',... 'trees',8,... 'checks',64)); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('kd-tree search',@test_kdtree_search); function test_kmeans_search [result, ndists] = flann_search(dataset, testset, 10, struct('algorithm','kmeans',... 'branching',32,... 'iterations',3,... 'checks',120)); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('k-means search',@test_kmeans_search); function test_composite_search [result, ndists] = flann_search(dataset, testset, 10, struct('algorithm','composite',... 'branching',32,... 'iterations',3,... 'trees', 1,... 'checks',64)); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('composite search',@test_composite_search); function test_autotune_search [result, ndists] = flann_search(dataset, testset, 10, struct('algorithm','autotuned',... 'target_precision',0.95,... 'build_weight',0.01,... 'memory_weight',0)); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('search with autotune',@test_autotune_search); function test_index_kdtree_search [index, search_params ] = flann_build_index(dataset, struct('algorithm','kdtree', 'trees',8,... 'checks',64)); [result, ndists] = flann_search(index, testset, 10, search_params); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('index kd-tree search',@test_index_kdtree_search); function test_index_kmeans_search [index, search_params ] = flann_build_index(dataset, struct('algorithm','kmeans',... 'branching',32,... 'iterations',3,... 'checks',120)); [result, ndists] = flann_search(index, testset, 10, search_params); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('index kmeans search',@test_index_kmeans_search); function test_index_kmeans_search_gonzales [index, search_params ] = flann_build_index(dataset, struct('algorithm','kmeans',... 'branching',32,... 'iterations',3,... 'checks',120,... 'centers_init','gonzales')); [result, ndists] = flann_search(index, testset, 10, search_params); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('index kmeans search gonzales',@test_index_kmeans_search_gonzales); function test_index_kmeans_search_kmeanspp [index, search_params ] = flann_build_index(dataset, struct('algorithm','kmeans',... 'branching',32,... 'iterations',3,... 'checks',120,... 'centers_init','kmeanspp')); [result, ndists] = flann_search(index, testset, 10, search_params); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('index kmeans search kmeanspp',@test_index_kmeans_search_kmeanspp); function test_index_composite_search [index, search_params ] = flann_build_index(dataset,struct('algorithm','composite',... 'branching',32,... 'iterations',3,... 'trees', 1,... 'checks',64)); [result, ndists] = flann_search(index, testset, 10, search_params); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('index composite search',@test_index_composite_search); function test_index_autotune_search [index, search_params, speedup ] = flann_build_index(dataset,struct('algorithm','autotuned',... 'target_precision',0.95,... 'build_weight',0.01,... 'memory_weight',0)); [result, ndists] = flann_search(index, testset, 10, search_params); n = size(match,2); precision = (n-sum(abs(result(1,:)-match(1,:))>0))/n; assert(precision>0.9); assert(sum(~(match(1,:)-result(1,:)).*(dists(1,:)-ndists(1,:)))==0); end run_test('index autotune search',@test_index_autotune_search); status(); end
github
siam1251/Fast-SeqSLAM-master
flann_free_index.m
.m
Fast-SeqSLAM-master/flann/flann_free_index.m
1,614
utf_8
5d719d8d60539b6c90bee08d01e458b5
%Copyright 2008-2009 Marius Muja ([email protected]). All rights reserved. %Copyright 2008-2009 David G. Lowe ([email protected]). All rights reserved. % %THE BSD LICENSE % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions %are met: % %1. Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. %2. Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % %THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR %IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES %OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. %IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, %INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT %NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, %DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY %THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT %(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF %THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. function flann_free_index(index_id) %FLANN_FREE_INDEX Deletes the nearest-neighbors index % % Deletes an index constructed using flann_build_index. % Marius Muja, January 2008 nearest_neighbors('free_index',index_id); end
github
siam1251/Fast-SeqSLAM-master
flann_save_index.m
.m
Fast-SeqSLAM-master/flann/flann_save_index.m
1,563
utf_8
5a44d911827fba5422041529b3c01cf6
%Copyright 2008-2009 Marius Muja ([email protected]). All rights reserved. %Copyright 2008-2009 David G. Lowe ([email protected]). All rights reserved. % %THE BSD LICENSE % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions %are met: % %1. Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. %2. Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % %THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR %IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES %OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. %IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, %INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT %NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, %DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY %THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT %(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF %THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. function flann_save_index(index_id, filename) %FLANN_SAVE_INDEX Saves an index to disk % % Marius Muja, March 2010 nearest_neighbors('save_index',index_id, filename); end
github
siam1251/Fast-SeqSLAM-master
flann_set_distance_type.m
.m
Fast-SeqSLAM-master/flann/flann_set_distance_type.m
1,926
utf_8
8ba72989a4ac1bd6b30bec841b9def25
%Copyright 2008-2009 Marius Muja ([email protected]). All rights reserved. %Copyright 2008-2009 David G. Lowe ([email protected]). All rights reserved. % %THE BSD LICENSE % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions %are met: % %1. Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. %2. Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % %THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR %IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES %OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. %IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, %INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT %NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, %DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY %THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT %(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF %THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. function flann_set_distance_type(type, order) %FLANN_LOAD_INDEX Loads an index from disk % % Marius Muja, March 2009 distances = struct('euclidean', 1, 'manhattan', 2, 'minkowski', 3, 'max_dist', 4, 'hik', 5, 'hellinger', 6, 'chi_square', 7, 'cs', 7, 'kullback_leibler', 8, 'kl', 8); function id = value2id(map,value) id = map.(value); end if ~isnumeric(type), type = value2id(distances,type); end if type~=3 order = 0; end nearest_neighbors('set_distance_type', type, order); end
github
siam1251/Fast-SeqSLAM-master
sift.m
.m
Fast-SeqSLAM-master/draw_features/sift.m
2,466
utf_8
414f6d11875ffa2761038d8b112488e5
% [image, descriptors, locs] = sift(imageFile) % % This function reads an image and returns its SIFT keypoints. % Input parameters: % imageFile: the file name for the image. % % Returned: % image: the image array in double format % descriptors: a K-by-128 matrix, where each row gives an invariant % descriptor for one of the K keypoints. The descriptor is a vector % of 128 values normalized to unit length. % locs: K-by-4 matrix, in which each row has the 4 values for a % keypoint location (row, column, scale, orientation). The % orientation is in the range [-PI, PI] radians. % % Credits: Thanks for initial version of this program to D. Alvaro and % J.J. Guerrero, Universidad de Zaragoza (modified by D. Lowe) function [image, descriptors, locs] = sift(imageFile) % Load image image = imread(imageFile); % If you have the Image Processing Toolbox, you can uncomment the following % lines to allow input of color images, which will be converted to grayscale. image = rgb2gray(image); [rows, cols] = size(image); % Convert into PGM imagefile, readable by "keypoints" executable f = fopen('tmp.pgm', 'w'); if f == -1 error('Could not create file tmp.pgm.'); end fprintf(f, 'P5\n%d\n%d\n255\n', cols, rows); fwrite(f, image', 'uint8'); fclose(f); % Call keypoints executable if isunix command = '!./sift '; else command = '!siftWin32 '; end command = [command ' <tmp.pgm >tmp.key']; eval(command); % Open tmp.key and check its header g = fopen('tmp.key', 'r'); if g == -1 error('Could not open file tmp.key.'); end [header, count] = fscanf(g, '%d %d', [1 2]); if count ~= 2 error('Invalid keypoint file beginning.'); end num = header(1); len = header(2); if len ~= 128 error('Keypoint descriptor length invalid (should be 128).'); end % Creates the two output matrices (use known size for efficiency) locs = double(zeros(num, 4)); descriptors = double(zeros(num, 128)); % Parse tmp.key for i = 1:num [vector, count] = fscanf(g, '%f %f %f %f', [1 4]); %row col scale ori if count ~= 4 error('Invalid keypoint file format'); end locs(i, :) = vector(1, :); [descrip, count] = fscanf(g, '%d', [1 len]); if (count ~= 128) error('Invalid keypoint file value.'); end % Normalize each input vector to unit length descrip = descrip / sqrt(sum(descrip.^2)); descriptors(i, :) = descrip(1, :); end fclose(g);
github
siam1251/Fast-SeqSLAM-master
appendimages.m
.m
Fast-SeqSLAM-master/draw_features/siftDemoV4/appendimages.m
461
utf_8
a7ad42558236d4f7bd90dc6e72631d54
% im = appendimages(image1, image2) % % Return a new image that appends the two images side-by-side. function im = appendimages(image1, image2) % Select the image with the fewest rows and fill in enough empty rows % to make it the same height as the other image. rows1 = size(image1,1); rows2 = size(image2,1); if (rows1 < rows2) image1(rows2,1) = 0; else image2(rows1,1) = 0; end % Now append both images side-by-side. im = [image1 image2];
github
siam1251/Fast-SeqSLAM-master
showkeys.m
.m
Fast-SeqSLAM-master/draw_features/siftDemoV4/showkeys.m
1,699
utf_8
4e67466c0fd7739350cb2af5767e10a4
% showkeys(image, locs) % % This function displays an image with SIFT keypoints overlayed. % Input parameters: % image: the file name for the image (grayscale) % locs: matrix in which each row gives a keypoint location (row, % column, scale, orientation) function showkeys(image, locs) disp('Drawing SIFT keypoints ...'); % Draw image with keypoints figure('Position', [50 50 size(image,2) size(image,1)]); colormap('gray'); imagesc(image); hold on; imsize = size(image); for i = 1: size(locs,1) % Draw an arrow, each line transformed according to keypoint parameters. TransformLine(imsize, locs(i,:), 0.0, 0.0, 1.0, 0.0); TransformLine(imsize, locs(i,:), 0.85, 0.1, 1.0, 0.0); TransformLine(imsize, locs(i,:), 0.85, -0.1, 1.0, 0.0); end hold off; % ------ Subroutine: TransformLine ------- % Draw the given line in the image, but first translate, rotate, and % scale according to the keypoint parameters. % % Parameters: % Arrays: % imsize = [rows columns] of image % keypoint = [subpixel_row subpixel_column scale orientation] % % Scalars: % x1, y1; begining of vector % x2, y2; ending of vector function TransformLine(imsize, keypoint, x1, y1, x2, y2) % The scaling of the unit length arrow is set to approximately the radius % of the region used to compute the keypoint descriptor. len = 6 * keypoint(3); % Rotate the keypoints by 'ori' = keypoint(4) s = sin(keypoint(4)); c = cos(keypoint(4)); % Apply transform r1 = keypoint(1) - len * (c * y1 + s * x1); c1 = keypoint(2) + len * (- s * y1 + c * x1); r2 = keypoint(1) - len * (c * y2 + s * x2); c2 = keypoint(2) + len * (- s * y2 + c * x2); line([c1 c2], [r1 r2], 'Color', 'c');
github
siam1251/Fast-SeqSLAM-master
sift.m
.m
Fast-SeqSLAM-master/draw_features/siftDemoV4/sift.m
2,466
utf_8
414f6d11875ffa2761038d8b112488e5
% [image, descriptors, locs] = sift(imageFile) % % This function reads an image and returns its SIFT keypoints. % Input parameters: % imageFile: the file name for the image. % % Returned: % image: the image array in double format % descriptors: a K-by-128 matrix, where each row gives an invariant % descriptor for one of the K keypoints. The descriptor is a vector % of 128 values normalized to unit length. % locs: K-by-4 matrix, in which each row has the 4 values for a % keypoint location (row, column, scale, orientation). The % orientation is in the range [-PI, PI] radians. % % Credits: Thanks for initial version of this program to D. Alvaro and % J.J. Guerrero, Universidad de Zaragoza (modified by D. Lowe) function [image, descriptors, locs] = sift(imageFile) % Load image image = imread(imageFile); % If you have the Image Processing Toolbox, you can uncomment the following % lines to allow input of color images, which will be converted to grayscale. image = rgb2gray(image); [rows, cols] = size(image); % Convert into PGM imagefile, readable by "keypoints" executable f = fopen('tmp.pgm', 'w'); if f == -1 error('Could not create file tmp.pgm.'); end fprintf(f, 'P5\n%d\n%d\n255\n', cols, rows); fwrite(f, image', 'uint8'); fclose(f); % Call keypoints executable if isunix command = '!./sift '; else command = '!siftWin32 '; end command = [command ' <tmp.pgm >tmp.key']; eval(command); % Open tmp.key and check its header g = fopen('tmp.key', 'r'); if g == -1 error('Could not open file tmp.key.'); end [header, count] = fscanf(g, '%d %d', [1 2]); if count ~= 2 error('Invalid keypoint file beginning.'); end num = header(1); len = header(2); if len ~= 128 error('Keypoint descriptor length invalid (should be 128).'); end % Creates the two output matrices (use known size for efficiency) locs = double(zeros(num, 4)); descriptors = double(zeros(num, 128)); % Parse tmp.key for i = 1:num [vector, count] = fscanf(g, '%f %f %f %f', [1 4]); %row col scale ori if count ~= 4 error('Invalid keypoint file format'); end locs(i, :) = vector(1, :); [descrip, count] = fscanf(g, '%d', [1 len]); if (count ~= 128) error('Invalid keypoint file value.'); end % Normalize each input vector to unit length descrip = descrip / sqrt(sum(descrip.^2)); descriptors(i, :) = descrip(1, :); end fclose(g);
github
siam1251/Fast-SeqSLAM-master
match.m
.m
Fast-SeqSLAM-master/draw_features/siftDemoV4/match.m
1,941
utf_8
8b21ce74b4e02359b997273701345d26
% num = match(image1, image2) % % This function reads two images, finds their SIFT features, and % displays lines connecting the matched keypoints. A match is accepted % only if its distance is less than distRatio times the distance to the % second closest match. % It returns the number of matches displayed. % % Example: match('scene.pgm','book.pgm'); function num = match(image1, image2) % Find SIFT keypoints for each image [im1, des1, loc1] = sift(image1); [im2, des2, loc2] = sift(image2); % For efficiency in Matlab, it is cheaper to compute dot products between % unit vectors rather than Euclidean distances. Note that the ratio of % angles (acos of dot products of unit vectors) is a close approximation % to the ratio of Euclidean distances for small angles. % % distRatio: Only keep matches in which the ratio of vector angles from the % nearest to second nearest neighbor is less than distRatio. distRatio = 0.6; % For each descriptor in the first image, select its match to second image. des2t = des2'; % Precompute matrix transpose for i = 1 : size(des1,1) dotprods = des1(i,:) * des2t; % Computes vector of dot products [vals,indx] = sort(acos(dotprods)); % Take inverse cosine and sort results % Check if nearest neighbor has angle less than distRatio times 2nd. if (vals(1) < distRatio * vals(2)) match(i) = indx(1); else match(i) = 0; end end % Create a new image showing the two images side by side. im3 = appendimages(im1,im2); % Show a figure with lines joining the accepted matches. figure('Position', [100 100 size(im3,2) size(im3,1)]); colormap('gray'); imagesc(im3); hold on; cols1 = size(im1,2); for i = 1: size(des1,1) if (match(i) > 0) line([loc1(i,2) loc2(match(i),2)+cols1], ... [loc1(i,1) loc2(match(i),1)], 'Color', 'c'); end end hold off; num = sum(match > 0); fprintf('Found %d matches.\n', num);
github
jianxiongxiao/ProfXkit-master
points2normals.m
.m
ProfXkit-master/points2normals.m
2,552
utf_8
dfc71c0533d195b17cabe47cc78b496b
function normals = points2normals(points) % estimating a normal vector based on nearby 100 points % points is 3 * n matrix for n points if size(points,2)==3 && size(points,1)~=3 points = points'; end normals = lsqnormest(points, 100); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % functions from http://www.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point % Least squares normal estimation from point clouds using PCA % % H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. % Surface reconstruction from unorganized points. % In Proceedings of ACM Siggraph, pages 71:78, 1992. % % p should be a matrix containing the horizontally concatenated column % vectors with points. k is a scalar indicating how many neighbors the % normal estimation is based upon. % % Note that for large point sets, the function performs significantly % faster if Statistics Toolbox >= v. 7.3 is installed. % % Jakob Wilm 2010 function n = lsqnormest(p, k) m = size(p,2); n = zeros(3,m); v = ver('stats'); if str2double(v.Version) >= 7.5 neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1)); else neighbors = k_nearest_neighbors(p, p, k+1); end for i = 1:m x = p(:,neighbors(2:end, i)); p_bar = 1/k * sum(x,2); P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P %P = 2*cov(x); [V,D] = eig(P); [~, idx] = min(diag(D)); % choses the smallest eigenvalue n(:,i) = V(:,idx); % returns the corresponding eigenvector end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Program to find the k - nearest neighbors (kNN) within a set of points. % Distance metric used: Euclidean distance % % Note that this function makes repetitive use of min(), which seems to be % more efficient than sort() for k < 30. function [neighborIds,neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k) numDataPoints = size(dataMatrix,2); numQueryPoints = size(queryMatrix,2); neighborIds = zeros(k,numQueryPoints); neighborDistances = zeros(k,numQueryPoints); D = size(dataMatrix, 1); %dimensionality of points for i=1:numQueryPoints d=zeros(1,numDataPoints); for t=1:D % this is to avoid slow repmat() d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2; end for j=1:k [s,t] = min(d); neighborIds(j,i)=t; neighborDistances(j,i)=sqrt(s); d(t) = NaN; % remove found number from d end end
github
jianxiongxiao/ProfXkit-master
PCAvertex.m
.m
ProfXkit-master/obj2off/PCAvertex.m
659
utf_8
6c8fef996f6c810adad6b830ef0800e1
function vmatOut = PCAvertex(vmat) % vmat: 3xN [C,V]= PCA(vmat(1:2,:),2); Vproj = C'*vmat(1:2,:); vmatOut = [Vproj;vmat(3,:)]; end function [C,V]= PCA(data,num) %data 300*N, C vector , V value data(sum(isnan(data),2)>0,:)=[]; [~,N] = size(data); mn = mean(data,2); data = data - repmat(mn,1,N); covariance = 1 / (N-1) * data * data'; [PC, V] = eigs(covariance); V = real(diag(V)); % sort the value in decreasing order [~, rindices] = sort(-1*V); V = V(rindices); C =PC(:,rindices); C =C(:,1:num); end
github
jianxiongxiao/ProfXkit-master
read_wobj.m
.m
ProfXkit-master/obj2off/read_wobj.m
14,369
utf_8
1dac5218ab27b8c13898d49a05d9a637
function OBJ=read_wobj(fullfilename) % Read the objects from a Wavefront OBJ file % % OBJ=read_wobj(filename); % % OBJ struct containing: % % OBJ.vertices : Vertices coordinates % OBJ.vertices_texture: Texture coordinates % OBJ.vertices_normal : Normal vectors % OBJ.vertices_point : Vertice data used for points and lines % OBJ.material : Parameters from external .MTL file, will contain parameters like % newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks, % example of an entry from the material object: % OBJ.material(i).type = newmtl % OBJ.material(i).data = 'vase_tex' % OBJ.objects : Cell object with all objects in the OBJ file, % example of a mesh object: % OBJ.objects(i).type='f' % OBJ.objects(i).data.vertices: [n x 3 double] % OBJ.objects(i).data.texture: [n x 3 double] % OBJ.objects(i).data.normal: [n x 3 double] % % Example, % OBJ=read_wobj('examples\example10.obj'); % FV.vertices=OBJ.vertices; % FV.faces=OBJ.objects(3).data.vertices; % figure, patch(FV,'facecolor',[1 0 0]); camlight % % Function is written by D.Kroon University of Twente (June 2010) verbose=true; if(exist('fullfilename','var')==0) [filename, filefolder] = uigetfile('*.obj', 'Read obj-file'); fullfilename = [filefolder filename]; end filefolder = fileparts( fullfilename); if(verbose),disp(['Reading Object file : ' fullfilename]); end % Read the DI3D OBJ textfile to a cell array file_words = file2cellarray( fullfilename); % Remove empty cells, merge lines split by "\" and convert strings with values to double [ftype fdata]= fixlines(file_words); % Vertex data vertices=[]; nv=0; vertices_texture=[]; nvt=0; vertices_point=[]; nvp=0; vertices_normal=[]; nvn=0; material=[]; % Surface data no=0; % Loop through the Wavefront object file for iline=1:length(ftype) if(mod(iline,10000)==0), if(verbose),disp(['Lines processed : ' num2str(iline)]); end end type=ftype{iline}; data=fdata{iline}; % Switch on data type line switch(type) case{'mtllib'} if(iscell(data)) datanew=[]; for i=1:length(data) datanew=[datanew data{i}]; if(i<length(data)), datanew=[datanew ' ']; end end data=datanew; end filename_mtl=fullfile(filefolder,data); material=readmtl(filename_mtl,verbose); case('v') % vertices nv=nv+1; if(length(data)==3) % Reserve block of memory if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:3)=0; end % Add to vertices list X Y Z vertices(nv,1:3)=data; else % Reserve block of memory if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:4)=0; end % Add to vertices list X Y Z W vertices(nv,1:4)=data; end case('vp') % Specifies a point in the parameter space of curve or surface nvp=nvp+1; if(length(data)==1) % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1)=0; end % Add to vertices point list U vertices_point(nvp,1)=data; elseif(length(data)==2) % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:2)=0; end % Add to vertices point list U V vertices_point(nvp,1:2)=data; else % Reserve block of memory if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:3)=0; end % Add to vertices point list U V W vertices_point(nvp,1:3)=data; end case('vn') % A normal vector nvn=nvn+1; if(mod(nvn,10000)==1), vertices_normal(nvn+1:nvn+10001,1:3)=0; end % Add to vertices list I J K vertices_normal(nvn,1:3)=data; case('vt') % Vertices Texture Coordinate in photo % U V W nvt=nvt+1; if(length(data)==1) % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1)=0; end % Add to vertices texture list U vertices_texture(nvt,1)=data; elseif(length(data)==2) % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:2)=0; end % Add to vertices texture list U V vertices_texture(nvt,1:2)=data; else % Reserve block of memory if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:3)=0; end % Add to vertices texture list U V W vertices_texture(nvt,1:3)=data; end case('l') no=no+1; %if(mod(no,10000)==1) % objects(no+10001).data=0; %end array_vertices=[]; array_texture=[]; for i=1:length(data), switch class(data) case 'cell' tvals=str2double(stringsplit(data{i},'/')); case 'string' tvals=str2double(stringsplit(data,'/')); otherwise tvals=data(i); end val=tvals(1); if(val<0), val=val+1+nv; end array_vertices(i)=val; if(length(tvals)>1), val=tvals(2); if(val<0), val=val+1+nvt; end array_texture(i)=val; end end objects(no).type='l'; objects(no).data.vertices=array_vertices; objects(no).data.texture=array_texture; case('f') no=no+1; %if(mod(no,10000)==1) % objects(no+10001).data=0; %end array_vertices=[]; array_texture=[]; array_normal=[]; for i=1:length(data); switch class(data) case 'cell' tvals=str2double(stringsplit(data{i},'/')); case 'string' tvals=str2double(stringsplit(data,'/')); otherwise tvals=data(i); end val=tvals(1); if(val<0), val=val+1+nv; end array_vertices(i)=val; if(length(tvals)>1), if(isfinite(tvals(2))) val=tvals(2); if(val<0), val=val+1+nvt; end array_texture(i)=val; end end if(length(tvals)>2), val=tvals(3); if(val<0), val=val+1+nvn; end array_normal(i)=val; end end % A face of more than 3 indices is always split into % multiple faces of only 3 indices. objects(no).type='f'; findex=1:min (3,length(array_vertices)); objects(no).data.vertices=array_vertices(findex); if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end for i=1:length(array_vertices)-3; no=no+1; %if(mod(no,10000)==1), objects(no+10001).data=0; end findex=[1 2+i 3+i]; findex(findex>length(array_vertices))=findex(findex>length(array_vertices))-length(array_vertices); objects(no).type='f'; objects(no).data.vertices=array_vertices(findex); if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end end case{'#','$'} % Comment tline=' %'; if(iscell(data)) for i=1:length(data), tline=[tline ' ' data{i}]; end else tline=[tline data]; end if(verbose), disp(tline); end case{''} otherwise no=no+1; %if(mod(no,10000)==1), objects(no+10001).data=0; end objects(no).type=type; objects(no).data=data; end end % Initialize new object list, which will contain the "collapsed" objects objects2(no).data=0; index=0; i=0; while (i<no), i=i+1; type=objects(i).type; % First face found if((length(type)==1)&&(type(1)=='f')) % Get number of faces for j=i:no type=objects(j).type; if((length(type)~=1)||(type(1)~='f')) j=j-1; break; end end numfaces=(j-i)+1; index=index+1; objects2(index).type='f'; % Process last face first to allocate memory objects2(index).data.vertices(numfaces,:)= objects(i).data.vertices; if(isfield(objects(i).data,'texture')) objects2(index).data.texture(numfaces,:) = objects(i).data.texture; else objects2(index).data.texture=[]; end if(isfield(objects(i).data,'normal')) objects2(index).data.normal(numfaces,:) = objects(i).data.normal; else objects2(index).data.normal=[]; end % All faces to arrays for k=1:numfaces objects2(index).data.vertices(k,:)= objects(i+k-1).data.vertices; if(isfield(objects(i).data,'texture')) objects2(index).data.texture(k,:) = objects(i+k-1).data.texture; end if(isfield(objects(i).data,'normal')) objects2(index).data.normal(k,:) = objects(i+k-1).data.normal; end end i=j; else index=index+1; objects2(index).type=objects(i).type; objects2(index).data=objects(i).data; end end % Add all data to output struct OBJ.objects=objects2(1:index); OBJ.material=material; OBJ.vertices=vertices(1:nv,:); OBJ.vertices_point=vertices_point(1:nvp,:); OBJ.vertices_normal=vertices_normal(1:nvn,:); OBJ.vertices_texture=vertices_texture(1:nvt,:); if(verbose),disp('Finished Reading Object file'); end function twords=stringsplit(tline,tchar) % Get start and end position of all "words" separated by a char i=find(tline(2:end-1)==tchar)+1; i_start=[1 i+1]; i_end=[i-1 length(tline)]; % Create a cell array of the words twords=cell(1,length(i_start)); for j=1:length(i_start), twords{j}=tline(i_start(j):i_end(j)); end function file_words=file2cellarray(filename) % Open a DI3D OBJ textfile fid=fopen(filename,'r'); file_text=fread(fid, inf, 'uint8=>char')'; fclose(fid); file_lines = regexp(file_text, '\n+', 'split'); file_words = regexp(file_lines, '\s+', 'split'); function [ftype fdata]=fixlines(file_words) ftype=cell(size(file_words)); fdata=cell(size(file_words)); iline=0; jline=0; while(iline<length(file_words)) iline=iline+1; twords=removeemptycells(file_words{iline}); if(~isempty(twords)) % Add next line to current line when line end with '\' while(strcmp(twords{end},'\')&&iline<length(file_words)) iline=iline+1; twords(end)=[]; twords=[twords removeemptycells(file_words{iline})]; end % Values to double type=twords{1}; stringdold=true; j=0; switch(type) case{'#','$'} for i=2:length(twords) j=j+1; twords{j}=twords{i}; end otherwise for i=2:length(twords) str=twords{i}; val=str2double(str); stringd=~isfinite(val); if(stringd) j=j+1; twords{j}=str; else if(stringdold) j=j+1; twords{j}=val; else twords{j}=[twords{j} val]; end end stringdold=stringd; end end twords(j+1:end)=[]; jline=jline+1; ftype{jline}=type; if(length(twords)==1), twords=twords{1}; end fdata{jline}=twords; end end ftype(jline+1:end)=[]; fdata(jline+1:end)=[]; function b=removeemptycells(a) j=0; b={}; for i=1:length(a); if(~isempty(a{i})),j=j+1; b{j}=a{i}; end; end function objects=readmtl(filename_mtl,verbose) if(verbose),disp(['Reading Material file : ' filename_mtl]); end file_words=file2cellarray(filename_mtl); % Remove empty cells, merge lines split by "\" and convert strings with values to double [ftype fdata]= fixlines(file_words); % Surface data objects.type(length(ftype))=0; objects.data(length(ftype))=0; no=0; % Loop through the Wavefront object file for iline=1:length(ftype) type=ftype{iline}; data=fdata{iline}; % Switch on data type line switch(type) case{'#','$'} % Comment tline=' %'; if(iscell(data)) for i=1:length(data), tline=[tline ' ' data{i}]; end else tline=[tline data]; end if(verbose), disp(tline); end case{''} otherwise no=no+1; if(mod(no,10000)==1), objects(no+10001).data=0; end objects(no).type=type; objects(no).data=data; end end objects=objects(1:no); if(verbose),disp('Finished Reading Material file'); end
github
jianxiongxiao/ProfXkit-master
quaternion.m
.m
ProfXkit-master/rectifyroom/quaternion.m
85,196
utf_8
2aebad0378f433bf4d26b837b20047a3
classdef quaternion % classdef quaternion, implements quaternion mathematics and 3D rotations % % Properties (SetAccess = protected): % e(4,1) components, basis [1; i; j; k]: e(1) + i*e(2) + j*e(3) + k*e(4) % i*j=k, j*i=-k, j*k=i, k*j=-i, k*i=j, i*k=-j, i*i = j*j = k*k = -1 % % Constructors: % q = quaternion scalar zero quaternion, q.e = [0;0;0;0] % q = quaternion(x) x is a matrix size [4,s1,s2,...] or [s1,4,s2,...], % q is size [s1,s2,...], q(i1,i2,...).e = ... % x(1:4,i1,i2,...) or x(i1,1:4,i2,...).' % q = quaternion(v) v is a matrix size [3,s1,s2,...] or [s1,3,s2,...], % q is size [s1,s2,...], q(i1,i2,...).e = ... % [0;v(1:3,i1,i2,...)] or [0;v(i1,1:3,i2,...).'] % q = quaternion(c) c is a complex matrix size [s1,s2,...], % q is size [s1,s2,...], q(i1,i2,...).e = ... % [real(c(i1,i2,...));imag(c(i1,i2,...));0;0] % q = quaternion(x1,x2) x1,x2 are matrices size [s1,s2,...] or scalars, % q(i1,i2,...).e = [x1(i1,i2,...);x2(i1,i2,...);0;0] % q = quaternion(v1,v2,v3) v1,v2,v3 matrices size [s1,s2,...] or scalars, % q(i1,i2,...).e = [0;v1(i1,i2,...);v2(i1,i2,...);... % v3(i1,i2,...)] % q = quaternion(x1,x2,x3,x4) x1,x2,x3,x4 matrices size [s1,s2,...] or scalars, % q(i1,i2,...).e = [x1(i1,i2,...);x2(i1,i2,...);... % x3(i1,i2,...);x4(i1,i2,...)] % % Quaternion array constructor methods: % q = quaternion.eye(N) quaternion NxN identity matrix % q = quaternion.nan(siz) q(:).e = [NaN;NaN;NaN;NaN] % q = quaternion.ones(siz) q(:).e = [1;0;0;0] % q = quaternion.rand(siz) uniform random quaternions, NOT normalized % to 1, 0 <= q.e(1) <= 1, -1 <= q.e(2:4) <= 1 % q = quaternion.randRot(siz) random quaternions uniform in rotation space % q = quaternion.zeros(siz) q(:).e = [0;0;0;0] % % Rotation constructor methods (all lower case): % q = quaternion.angleaxis(angle,axis) % angle is an array in radians, axis is an array % of vectors size [3,s1,s2,...] or [s1,3,s2,...], % q is size [s1,s2,...], quaternions normalized to 1 % equivalent to rotations about axis by angle % q = quaternion.eulerangles(axes,angles) or % q = quaternion.eulerangles(axes,ang1,ang2,ang3) % axes is a string array or cell string array, % '123' = 'xyz' = 'XYZ' = 'ijk', etc., % angles is an array of Euler angles in radians, % size [3,s1,s2,...] or [s1,3,s2,...], or % (ang1, ang2, ang3) are arrays or scalars of % Euler angles in radians, q is size % [s1,s2,...], quaternions normalized to 1 % equivalent to Euler Angle rotations % q = quaternion.rotateutov(u,v,dimu,dimv) % quaternions normalized to 1 that rotate 3 % element vectors u into the directions of 3 % element vectors v % q = quaternion.rotationmatrix(R) % R is an array of rotation or Direction Cosine % Matrices size [3,3,s1,s2,...] with det(R) == 1, % q(i1,i2,...) = quaternions normalized to 1, % equivalent to R(1:3,1:3,i1,i2,...) % % Rotation methods (Mixed Case): % [angle,axis] = AngleAxis(q) angles in radians, unit vector rotation axes % equivalent to q % qd = Derivative(q,w) quaternion derivatives, w are 3 component % angular velocity vectors, qd = 0.5*q*quaternion(w) % angles = EulerAngles(q,axes) angles are 3 Euler angles equivalent to q, axes % are strings or cell strings, '123' = 'xyz', etc. % [omega,axis] = OmegaAxis(q,t,dim) % instantaneous angular velocities and rotation axes % PlotRotation(q,interval) plot columns of rotation matrices of q, % pause interval between figure updates in seconds % [q1,w1,t1] = PropagateEulerEq(q0,w0,I,t,@torque,odeoptions) % Euler equation numerical propagator, see % help quaternion.PropagateEulerEq % vp = RotateVector(q,v,dim) vp are 3 component vectors, rotations q acting % on vectors v, uses rotation matrix multiplication % vp = RotateVectorQ(q,v,dim) vp are 3 component vectors, rotations q acting % on vectors v, uses quaternion multiplication, % RotateVector is 7 times faster than RotateVectorQ % R = RotationMatrix(q) 3x3 rotation matrices equivalent to q % % Note: % In all rotation operations, the rotations operate from left to right on % 3x1 column vectors and create rotated vectors, not representations of % those vectors in rotated coordinate systems. % For Euler angles, '123' means rotate the vector about x first, about y % second, about z third, i.e.: % vp = rotate(z,angle(3)) * rotate(y,angle(2)) * rotate(x,angle(1)) * v % % Ordinary methods: % n = abs(q) quaternion norm, n = sqrt( sum( q.e.^2 )) % q3 = bsxfun(func,q1,q2) binary singleton expansion of operation func % c = complex(q) complex( real(q), imag(q) ) % qc = conj(q) quaternion conjugate, qc.e = % [q.e(1);-q.e(2);-q.e(3);-q.e(4)] % qt = ctranspose(q) qt = q'; quaternion conjugate transpose, % 2-D (or scalar) q only % qp = cumprod(q,dim) cumulative quaternion array product over % dimension dim % qs = cumsum(q,dim) cumulative quaternion array sum over dimension dim % qd = diff(q,ord,dim) quaternion array difference, order ord, over % dimension dim % ans = display(q) 'q = ( e(1) ) + i( e(2) ) + j( e(3) ) + k( e(4) )' % d = dot(q1,q2) quaternion element dot product, d = dot(q1.e,q2.e) % d = double(q) d = q.e; if size(q) == [s1,s2,...], size(d) == % [4,s1,s2,...] % l = eq(q1,q2) quaternion equality, l = all( q1.e == q2.e ) % l = equiv(q1,q2,tol) quaternion rotational equivalence, within % tolerance tol, l = (q1 == q2) | (q1 == -q2) % qe = exp(q) quaternion exponential, v = q.e(2:4), qe.e = % exp(q.e(1))*[cos(|v|);v.*sin(|v|)./|v|] % ei = imag(q) imaginary e(2) components % qi = interp1(t,q,ti,method) interpolate quaternion array % qi = inverse(q) quaternion inverse, qi = conj(q)./norm(q).^2, % q .* qi = qi .*.q = 1 for q ~= 0 % l = isequal(q1,q2,...) true if equal sizes and values % l = isequaln(q1,q2,...) true if equal including NaNs % l = isequalwithequalnans(q1,q2,...) true if equal including NaNs % l = isfinite(q) true if all( isfinite( q.e )) % l = isinf(q) true if any( isinf( q.e )) % l = isnan(q) true if any( isnan( q.e )) % ej = jmag(q) e(3) components % ek = kmag(q) e(4) components % q3 = ldivide(q1,q2) quaternion left division, q3 = q1 \. q2 = % inverse(q1) *. q2 % ql = log(q) quaternion logarithm, v = q.e(2:4), ql.e = % [log(|q|);v.*acos(q.e(1)./|q|)./|v|] % q3 = minus(q1,q2) quaternion subtraction, q3 = q1 - q2 % q3 = mldivide(q1,q2) left division only defined for scalar q1 % qp = mpower(q,p) quaternion matrix power, qp = q^p, p scalar % integer >= 0, q square quaternion matrix % q3 = mrdivide(q1,q2) right division only defined for scalar q2 % q3 = mtimes(q1,q2) 2-D matrix quaternion multiplication, q3 = q1 * q2 % l = ne(q1,q2) quaternion inequality, l = ~all( q1.e == q2.e ) % n = norm(q) quaternion norm, n = sqrt( sum( q.e.^2 )) % [q,n] = normalize(q) make quaternion norm == 1, unless q == 0, % n = matrix of previous norms % q3 = plus(q1,q2) quaternion addition, q3 = q1 + q2 % qp = power(q,p) quaternion power, qp = q.^p % qp = prod(q,dim) quaternion array product over dimension dim % qp = product(q1,q2) quaternion product of scalar quaternions, % qp = q1 .* q2, noncommutative % q3 = rdivide(q1,q2) quaternion right division, q3 = q1 ./ q2 = % q1 .* inverse(q2) % er = real(q) real e(1) components % qs = slerp(q0,q1,t) quaternion spherical linear interpolation % qr = sqrt(q) qr = q.^0.5, square root % qs = sum(q,dim) quaternion array sum over dimension dim % q3 = times(q1,q2) matrix component quaternion multiplication, % q3 = q1 .* q2, noncommutative % qm = uminus(q) quaternion negation, qm = -q % qp = uplus(q) quaternion unitary plus, qp = +q % ev = vector(q) vector e(2:4) components % % Author: % Mark Tincknell, MIT LL, 29 July 2011, revised 22 November 2013 properties (SetAccess = protected) e = zeros(4,1); end % properties % Array constructors methods function q = quaternion( varargin ) % (constructor) perm = []; sqz = false; switch nargin case 0 % nargin == 0 q.e = zeros(4,1); return; case 1 % nargin == 1 siz = size( varargin{1} ); nel = prod( siz ); if nel == 0 q = quaternion.empty; return; elseif isa( varargin{1}, 'quaternion' ) q = varargin{1}; return; elseif (nel == 1) || ~isreal( varargin{1}(:) ) for iel = nel : -1 : 1 q(iel).e = chop( [real(varargin{1}(iel)); ... imag(varargin{1}(iel)); ... 0; ... 0] ); end q = reshape( q, siz ); return; end [arg4, dim4, perm4] = finddim( varargin{1}, 4 ); if dim4 > 0 siz(dim4) = 1; nel = prod( siz ); if dim4 > 1 perm = perm4; else sqz = true; end for iel = nel : -1 : 1 q(iel).e = chop( arg4(:,iel) ); end else [arg3, dim3, perm3] = finddim( varargin{1}, 3 ); if dim3 > 0 siz(dim3) = 1; nel = prod( siz ); if dim3 > 1 perm = perm3; else sqz = true; end for iel = nel : -1 : 1 q(iel).e = chop( [0; arg3(:,iel)] ); end else error( 'Invalid input' ); end end case 2 % nargin == 2 % real-imaginary only (no j or k) inputs na = cellfun( 'prodofsize', varargin ); [nel, jel] = max( na ); if ~all( (na == 1) | (na == nel) ) error( 'All inputs must be singletons or have the same number of elements' ); end siz = size( varargin{jel} ); for iel = nel : -1 : 1 q(iel).e = chop( [varargin{1}(min(iel,na(1))); ... varargin{2}(min(iel,na(2))); ... 0; 0] ); end case 3 % nargin == 3 % vector inputs (no real, only i, j, k) na = cellfun( 'prodofsize', varargin ); [nel, jel] = max( na ); if ~all( (na == 1) | (na == nel) ) error( 'All inputs must be singletons or have the same number of elements' ); end siz = size( varargin{jel} ); for iel = nel : -1 : 1 q(iel).e = chop( [0; ... varargin{1}(min(iel,na(1))); ... varargin{2}(min(iel,na(2))); ... varargin{3}(min(iel,na(3)))] ); end otherwise % nargin >= 4 na = cellfun( 'prodofsize', varargin ); [nel, jel] = max( na ); if ~all( (na == 1) | (na == nel) ) error( 'All inputs must be singletons or have the same number of elements' ); end siz = size( varargin{jel} ); for iel = nel : -1 : 1 q(iel).e = chop( [varargin{1}(min(iel,na(1))); ... varargin{2}(min(iel,na(2))); ... varargin{3}(min(iel,na(3))); ... varargin{4}(min(iel,na(4)))] ); end end % switch nargin if nel == 0 q = quaternion.empty; end q = reshape( q, siz ); if ~isempty( perm ) q = ipermute( q, perm ); end if sqz q = squeeze( q ); end end % quaternion (constructor) % Ordinary methods function n = abs( q ) n = q.norm; end % abs function q3 = bsxfun( func, q1, q2 ) % function q3 = bsxfun( func, q1, q2 ) % Binary Singleton Expansion for quaternion arrays. Apply the element by % element binary operation specified by the function handle func to arrays % q1 and q2. All dimensions of q1 and q2 must either agree or be length 1. % Inputs: % func function handle (e.g. @plus) of quaternion function or operator % q1(n1) quaternion array % q2(n2) quaternion array % Output: % q3(n3) quaternion array of function or operator outputs % size(q3) = max( size(q1), size(q2) ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end s1 = size( q1 ); s2 = size( q2 ); nd1 = length( s1 ); nd2 = length( s2 ); s1 = [s1, ones(1,nd2-nd1)]; s2 = [s2, ones(1,nd1-nd2)]; if ~all( (s1 == s2) | (s1 == 1) | (s2 == 1) ) error( 'Non-singleton dimensions of q1 and q2 must match each other' ); end c1 = num2cell( s1 ); c2 = num2cell( s2 ); s3 = max( s1, s2 ); nd3 = length( s3 ); n3 = prod( s3 ); q3 = quaternion.nan( s3 ); for i3 = 1 : n3 [ix3{1:nd3}] = ind2sub( s3, i3 ); ix1 = cellfun( @min, ix3, c1, 'UniformOutput', false ); ix2 = cellfun( @min, ix3, c2, 'UniformOutput', false ); q3(i3) = func( q1(ix1{:}), q2(ix2{:}) ); end end % bsxfun function c = complex( q ) c = complex( real( q ), imag( q )); end % complex function qc = conj( q ) d = double( q ); qc = reshape( quaternion( d(1,:), -d(2,:), -d(3,:), -d(4,:) ), ... size( q )); end % conj function qt = ctranspose( q ) qt = transpose( q.conj ); end % ctranspose function qp = cumprod( q, dim ) % function qp = cumprod( q, dim ) % cumulative quaternion array product, dim defaults to first dimension of % length > 1 if isempty( q ) qp = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end qp = q; for is = 2 : size(q,1) qp(is,:) = qp(is-1,:) .* q(is,:); end if dim > 1 qp = ipermute( qp, perm ); end end % cumprod function qs = cumsum( q, dim ) % function qs = cumsum( q, dim ) % cumulative quaternion array sum, dim defaults to first dimension of % length > 1 if isempty( q ) qs = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end qs = q; for is = 2 : size(q,1) qs(is,:) = qs(is-1,:) + q(is,:); end if dim > 1 qs = ipermute( qs, perm ); end end % cumsum function qd = diff( q, ord, dim ) % function qd = diff( q, ord, dim ) % quaternion array difference, ord is the order of difference (default = 1) % dim defaults to first dimension of length > 1 if isempty( q ) qd = q; return; end if (nargin < 2) || isempty( ord ) ord = 1; end if ord <= 0 qd = q; return; end if (nargin < 3) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end siz = size( q ); if siz(1) <= 1 qd = quaternion.empty; return; end qd = quaternion.zeros( [(siz(1)-1), siz(2:end)] ); for is = 1 : siz(1)-1 qd(is,:) = q(is+1,:) - q(is,:); end ord = ord - 1; if ord > 0 qd = diff( qd, ord, 1 ); end if dim > 1 qd = ipermute( qd, perm ); end end % diff function display( q ) if ~isequal( get(0,'FormatSpacing'), 'compact' ) disp(' '); end if isempty( q ) fprintf( '%s \t= ([]) + i([]) + j([]) + k([])\n', inputname(1) ) return; end siz = size( q ); nel = [1 cumprod( siz )]; ndm = length( siz ); for iel = 1 : nel(end) if nel(end) == 1 sub = ''; else sub = ')'; jel = iel - 1; for idm = ndm : -1 : 1 idx = floor( jel / nel(idm) ) + 1; sub = [',' int2str(idx) sub]; %#ok<AGROW> jel = rem( jel, nel(idm) ); end sub(1) = '('; end fprintf( '%s%s \t= (%-12.5g) + i(%-12.5g) + j(%-12.5g) + k(%-12.5g)\n', ... inputname(1), sub, q(iel).e ) end end % display function d = dot( q1, q2 ) % function d = dot( q1, q2 ) % quaternion element dot product: d = dot( q1.e, q2.e ), using binary % singleton expansion of quaternion arrays % dn = dot( q1, q2 )/( norm(q1) * norm(q2) ) is the cosine of the angle in % 4D space between 4D vectors q1.e and q2.e d = squeeze( sum( bsxfun( @times, double( q1 ), double( q2 )), 1 )); end % dot function d = double( q ) siz = size( q ); d = reshape( [q.e], [4 siz] ); d = chop( d ); end % double function l = eq( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) l = logical([]); return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end l = bsxfun( @eq, [q1.e], [q2.e] ); l = reshape( all( l, 1 ), siz ); end % eq function l = equiv( q1, q2, tol ) % function l = equiv( q1, q2, tol ) % quaternion rotational equivalence, within tolerance tol, % l = (q1 == q2) | (q1 == -q2) % optional argument tol (default = eps) sets tolerance for difference % from exact equality if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end if (nargin < 3) || isempty( tol ) tol = eps; end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) l = logical([]); return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end dm = chop( bsxfun( @minus, [q1.e], [q2.e] ), tol ); dp = chop( bsxfun( @plus, [q1.e], [q2.e] ), tol ); l = all( (dm == 0) | (dp == 0), 1 ); l = reshape( l, siz ); end % equiv function qe = exp( q ) % function qe = exp( q ) % quaternion exponential, v = q.e(2:4), % qe.e = exp(q.e(1))*[cos(|v|);v.*sin(|v|)./|v|] d = double( q ); siz = size( d ); od = ones( 1, ndims( q )); vn = reshape( sqrt( sum( d(2:4,:).^2, 1 )), [1 siz(2:end)] ); cv = cos( vn ); sv = sin( vn ); n0 = vn ~= 0; sv(n0) = sv(n0) ./ vn(n0); sv = repmat( sv, [3, od] ); ex = repmat( reshape( exp( d(1,:) ), [1 siz(2:end)] ), [4, od] ); de = ex .* [ cv; sv .* reshape( d(2:4,:), [3 siz(2:end)] )]; qe = reshape( quaternion( de(1,:), de(2,:), de(3,:), de(4,:) ), ... size( q )); end % exp function ei = imag( q ) siz = size( q ); d = double( q ); ei = reshape( d(2,:), siz ); end % imag function qi = interp1( varargin ) % function qi = interp1( t, q, ti, method ) or % qi = q.interp1( t, ti, method ) or % qi = interp1( q, ti, method ) % Interpolate quaternion array. If q are rotation quaternions (i.e. % normalized to 1), then -q is equivalent to q, and the sign of q to use as % the second knot of the interpolation is chosen by which ever is closer to % the first knot. Extrapolation (i.e. ti < min(t) or ti > max(t)) gives % qi = quaternion.nan. % Inputs: % t(nt) array of ordinates (e.g. times); if t is not provided t=1:nt % q(nt,nq) quaternion array % ti(ni) array of query (interpolation) points, t(1) <= ti <= t(end) % method [OPTIONAL] 'slerp' or 'linear'; default = 'slerp' % Output: % qi(ni,nq) interpolated quaternion array nna = nnz( ~cellfun( @ischar, varargin )); im = 4; if isa( varargin{1}, 'quaternion' ) q = varargin{1}; siq = size( q ); if nna == 2 if isrow( q ) t = (1 : siq(2)).'; else t = (1 : siq(1)).'; end ti = varargin{2}(:); im = 3; elseif isempty( varargin{2} ) if isrow( q ) t = (1 : siq(2)).'; else t = (1 : siq(1)).'; end ti = varargin{3}(:); else t = varargin{2}(:); ti = varargin{3}(:); end elseif isa( varargin{2}, 'quaternion' ) t = varargin{1}(:); q = varargin{2}; ti = varargin{3}(:); siq = size( q ); else error( 'Input q must be a quaterion' ); end neq = prod( siq ); if neq == 0 qi = quaternion.empty; return; end nt = numel( t ); if siq(1) == nt dim = 1; else [q, dim, perm] = finddim( q, nt ); if dim == 0 error( 'q must have a dimension the same size as t' ); end end iNf = interp1( t, (1:nt).', ti ); iN = max( 1, min( nt-1, floor( iNf ))); jN = max( 2, min( nt, ceil( iNf ))); iNm = repmat( iNf - iN, [1, neq / nt] ); % If q are rotation quaternions (i.e. all normalized to 1), then -q % represents the same rotation. Pick the sign of +/-q that has the closest % dot product to use as the second knot of the interpolation. qj = q(jN,:); if all( abs( norm( q(:) ) - 1 ) <= eps(16) ) qd = dot( q(iN,:), qj ); lq = qd < -qd; qj(lq) = -qj(lq); end if (length( varargin ) >= im) && ... (strncmpi( 'linear', varargin{im}, length( varargin{im} ))) qi = (1 - iNm) .* q(iN,:) + iNm .* qj; else qi = slerp( q(iN,:), qj, iNm ); end if length( siq ) > 2 sin = siq; sin(dim) = numel( ti ); sin = circshift( sin, [0, 1-dim] ); qi = reshape( qi, sin ); end if dim > 1 qi = ipermute( qi, perm ); end end % interp1 function qi = inverse( q ) % function qi = inverse( q ) % quaternion inverse, qi = conj(q)/norm(q)^2, q*qi = qi*q = 1 for q ~= 0 if isempty( q ) qi = q; return; end d = double( q ); d(2:4,:) = -d(2:4,:); n2 = repmat( sum( d.^2, 1 ), 4, ones( 1, ndims( d ) - 1 )); ne0 = n2 ~= 0; di = Inf( size( d )); di(ne0) = d(ne0) ./ n2(ne0); qi = reshape( quaternion( di(1,:), di(2,:), di(3,:), di(4,:) ), ... size( q )); end % inverse function l = isequal( q1, varargin ) % function l = isequal( q1, q2, ... ) nar = numel( varargin ); if nar == 0 error( 'Not enough input arguments' ); end l = false; if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end si1 = size( q1 ); for iar = 1 : nar si2 = size( varargin{iar} ); if (length( si1 ) ~= length( si2 )) || ... ~all( si1 == si2 ) return; else if ~isa( varargin{iar}, 'quaternion' ) q2 = quaternion( ... real(varargin{iar}), imag(varargin{iar}), 0, 0 ); else q2 = varargin{iar}; end if ~isequal( [q1.e], [q2.e] ) return; end end end l = true; end % isequal function l = isequaln( q1, varargin ) % function l = isequaln( q1, q2, ... ) nar = numel( varargin ); if nar == 0 error( 'Not enough input arguments' ); end l = false; if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end si1 = size( q1 ); for iar = 1 : nar si2 = size( varargin{iar} ); if (length( si1 ) ~= length( si2 )) || ... ~all( si1 == si2 ) return; else if ~isa( varargin{iar}, 'quaternion' ) q2 = quaternion( ... real(varargin{iar}), imag(varargin{iar}), 0, 0 ); else q2 = varargin{iar}; end if ~isequaln( [q1.e], [q2.e] ) return; end end end l = true; end % isequaln function l = isequalwithequalnans( q1, varargin ) % function l = isequalwithequalnans( q1, q2, ... ) nar = numel( varargin ); if nar == 0 error( 'Not enough input arguments' ); end l = false; if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end si1 = size( q1 ); for iar = 1 : nar si2 = size( varargin{iar} ); if (length( si1 ) ~= length( si2 )) || ... ~all( si1 == si2 ) return; else if ~isa( varargin{iar}, 'quaternion' ) q2 = quaternion( ... real(varargin{iar}), imag(varargin{iar}), 0, 0 ); else q2 = varargin{iar}; end if ~isequalwithequalnans( [q1.e], [q2.e] ) %#ok<FPARK> return; end end end l = true; end % isequalwithequalnans function l = isfinite( q ) % function l = isfinite( q ), l = all( isfinite( q.e )) d = [q.e]; l = reshape( all( isfinite( d ), 1 ), size( q )); end % isfinite function l = isinf( q ) % function l = isinf( q ), l = any( isinf( q.e )) d = [q.e]; l = reshape( any( isinf( d ), 1 ), size( q )); end % isinf function l = isnan( q ) % function l = isnan( q ), l = any( isnan( q.e )) d = [q.e]; l = reshape( any( isnan( d ), 1 ), size( q )); end % isnan function ej = jmag( q ) siz = size( q ); d = double( q ); ej = reshape( d(3,:), siz ); end % jmag function ek = kmag( q ) siz = size( q ); d = double( q ); ek = reshape( d(4,:), siz ); end % kmag function q3 = ldivide( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ~isequal( si1, si2 ) && (ne1 ~= 1) && (ne2 ~= 1) error( 'Matrix dimensions must agree' ); end for iel = max( ne1, ne2 ) : -1 : 1 q3(iel) = product( q1(min(iel,ne1)).inverse, ... q2(min(iel,ne2)) ); end if ne2 > ne1 q3 = reshape( q3, si2 ); else q3 = reshape( q3, si1 ); end end % ldivide function ql = log( q ) % function ql = log( q ) % quaternion logarithm, v = q.e(2:4), ql.e = [log(|q|);v.*acos(q.e(1)./|q|)./|v|] % logarithm of negative real quaternions is ql.e = [log(|q|);pi;0;0] d = double( q ); d2 = d.^2; siz = size( d ); od = ones( 1, ndims( q )); [vn,qn] = deal( zeros( [1 siz(2:end)] )); vn(:) = sqrt( sum( d2(2:4,:), 1 )); qn(:) = sqrt( sum( d2(1:4,:), 1 )); lq = log( qn ); d1 = reshape( d(1,:), [1 siz(2:end)] ); nq = qn ~= 0; d1(nq) = d1(nq) ./ qn(nq); ac = acos( d1 ); nv = vn ~= 0; ac(nv) = ac(nv) ./ vn(nv); ac = reshape( repmat( ac, [3, od] ), 3, [] ); va = reshape( d(2:4,:) .* ac, [3 siz(2:end)] ); nn = (d1 < 0) & (vn == 0); va(1,nn)= pi; dl = [ lq; va ]; ql = reshape( quaternion( dl(1,:), dl(2,:), dl(3,:), dl(4,:) ), ... size( q )); end % log function q3 = minus( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end d3 = bsxfun( @minus, [q1.e], [q2.e] ); q3 = quaternion( d3(1,:), d3(2,:), d3(3,:), d3(4,:) ); q3 = reshape( q3, siz ); end % minus function q3 = mldivide( q1, q2 ) % function q3 = mldivide( q1, q2 ), left division only defined for scalar q1 if numel( q1 ) > 1 error( 'Left matix division undefined for quaternion arrays' ); end q3 = ldivide( q1, q2 ); end % mldivide function qp = mpower( q, p ) % function qp = mpower( q, p ), quaternion matrix power siq = size( q ); neq = prod( siq ); nep = numel( p ); if neq == 1 qp = power( q, p ); return; elseif isa( p, 'quaternion' ) error( 'Quaternion as matrix exponent is not defined' ); end if (neq == 0) || (nep == 0) qp = quaternion.empty; return; elseif (nep > 1) || (mod( p, 1 ) ~= 0) || (p < 0) || ... (numel( siq ) > 2) || (siq(1) ~= siq(2)) error( 'Inputs must be a scalar non-negative integer power and a square quaternion matrix' ); elseif p == 0 qp = quaternion.eye( siq(1) ); return; end qp = q; for ip = 2 : p qp = qp * q; end end % mpower function q3 = mrdivide( q1, q2 ) % function q3 = mrdivide( q1, q2 ), right division only defined for scalar q2 if numel( q2 ) > 1 error( 'Right matix division undefined for quaternion arrays' ); end q3 = rdivide( q1, q2 ); end % mrdivide function q3 = mtimes( q1, q2 ) % function q3 = mtimes( q1, q2 ) % q3 = matrix quaternion product of 2-D conformable quaternion matrices q1 % and q2 if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 1) || (ne2 == 1) q3 = times( q1, q2 ); return; end if (length( si1 ) ~= 2) || (length( si2 ) ~= 2) error( 'Input arguments must be 2-D' ); end if si1(2) ~= si2(1) error( 'Inner matrix dimensions must agree' ); end q3 = repmat( quaternion, [si1(1) si2(2)] ); for i1 = 1 : si1(1) for i2 = 1 : si2(2) for i3 = 1 : si1(2) q3(i1,i2) = q3(i1,i2) + product( q1(i1,i3), q2(i3,i2) ); end end end end % mtimes function l = ne( q1, q2 ) l = ~eq( q1, q2 ); end % ne function n = norm( q ) n = shiftdim( sqrt( sum( double( q ).^2, 1 )), 1 ); end % norm function [q, n] = normalize( q ) % function [q, n] = normalize( q ) % q = quaternions with norm == 1 (unless q == 0), n = former norms siz = size( q ); nel = prod( siz ); if nel == 0 if nargout > 1 n = zeros( siz ); end return; elseif nel > 1 nel = []; end d = double( q ); n = sqrt( sum( d.^2, 1 )); if all( n(:) == 1 ) if nargout > 1 n = shiftdim( n, 1 ); end return; end n4 = repmat( n, 4, nel ); ne0 = (n4 ~= 0) & (n4 ~= 1); d(ne0) = d(ne0) ./ n4(ne0); q = reshape( quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ), siz ); if nargout > 1 n = shiftdim( n, 1 ); end end % normalize function q3 = plus( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end d3 = bsxfun( @plus, [q1.e], [q2.e] ); q3 = quaternion( d3(1,:), d3(2,:), d3(3,:), d3(4,:) ); q3 = reshape( q3, siz ); end % plus function qp = power( q, p ) % function qp = power( q, p ), quaternion power siq = size( q ); sip = size( p ); neq = prod( siq ); nep = prod( sip ); if (neq == 0) || (nep == 0) qp = quaternion.empty; return; elseif ~isequal( siq, sip ) && (neq ~= 1) && (nep ~= 1) error( 'Matrix dimensions must agree' ); end qp = exp( p .* log( q )); end % power function qp = prod( q, dim ) % function qp = prod( q, dim ) % quaternion array product over dimension dim % dim defaults to first dimension of length > 1 if isempty( q ) qp = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end siz = size( q ); qp = reshape( q(1,:), [1 siz(2:end)] ); for is = 2 : siz(1) qp(1,:) = qp(1,:) .* q(is,:); end if dim > 1 qp = ipermute( qp, perm ); end end % prod function q3 = product( q1, q2 ) % function q3 = product( q1, q2 ) % q3 = quaternion product of scalar quaternions q1 and q2 if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end if (numel( q1 ) ~= 1) || (numel( q2 ) ~= 1) error( 'product not defined for arrays, use mtimes or times' ); end ee = q1.e * q2.e.'; eo = [ee(1,1) - ee(2,2) - ee(3,3) - ee(4,4); ... ee(1,2) + ee(2,1) + ee(3,4) - ee(4,3); ... ee(1,3) - ee(2,4) + ee(3,1) + ee(4,2); ... ee(1,4) + ee(2,3) - ee(3,2) + ee(4,1)]; eo = chop( eo ); q3 = quaternion( eo(1), eo(2), eo(3), eo(4) ); end % product function q3 = rdivide( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ~isequal( si1, si2 ) && (ne1 ~= 1) && (ne2 ~= 1) error( 'Matrix dimensions must agree' ); end for iel = max( ne1, ne2 ) : -1 : 1 q3(iel) = product( q1(min(iel,ne1)), ... q2(min(iel,ne2)).inverse ); end if ne2 > ne1 q3 = reshape( q3, si2 ); else q3 = reshape( q3, si1 ); end end % rdivide function er = real( q ) siz = size( q ); d = double( q ); er = reshape( d(1,:), siz ); end % real function qs = slerp( q0, q1, t ) % function qs = slerp( q0, q1, t ) % quaternion spherical linear interpolation, qs = q0.*(q0.inverse.*q1).^t, % default t = 0.5; see http://en.wikipedia.org/wiki/Slerp if (nargin < 3) || isempty( t ) t = 0.5; end qs = q0 .* (q0.inverse .* q1).^t; end % slerp function qr = sqrt( q ) qr = q.^0.5; end % sqrt function qs = sum( q, dim ) % function qs = sum( q, dim ) % quaternion array sum over dimension dim % dim defaults to first dimension of length > 1 if isempty( q ) qs = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end siz = size( q ); qs = reshape( q(1,:), [1 siz(2:end)] ); for is = 2 : siz(1) qs(1,:) = qs(1,:) + q(is,:); end if dim > 1 qs = ipermute( qs, perm ); end end % sum function q3 = times( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ~isequal( si1, si2 ) && (ne1 ~= 1) && (ne2 ~= 1) error( 'Matrix dimensions must agree' ); end for iel = max( ne1, ne2 ) : -1 : 1 q3(iel) = product( q1(min(iel,ne1)), q2(min(iel,ne2)) ); end if ne2 > ne1 q3 = reshape( q3, si2 ); else q3 = reshape( q3, si1 ); end end % times function qm = uminus( q ) d = -double( q ); qm = reshape( quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ), ... size( q )); end % uminus function qp = uplus( q ) qp = q; end % uplus function ev = vector( q ) siz = size( q ); d = double( q ); ev = reshape( d(2:4,:), [3 siz] ); end % vector function [angle, axis] = AngleAxis( q ) % function [angle, axis] = AngleAxis( q ) or [angle, axis] = q.AngleAxis % Construct angle-axis pairs equivalent to quaternion rotations % Input: % q quaternion array % Outputs: % angle rotation angles in radians, 0 <= angle <= 2*pi % axis 3xN or Nx3 rotation axis unit vectors % Note: angle and axis are constructed so at least 2 out of 3 elements of % axis are >= 0. siz = size( q ); ndm = length( siz ); [angle, s] = deal( zeros( siz )); axis = zeros( [3 siz] ); nel = prod( siz ); if nel == 0 return; end [q, n] = normalize( q ); d = double( q ); neg = repmat( reshape( d(1,:) < 0, [1 siz] ), ... [4, ones(1,ndm)] ); d(neg) = -d(neg); angle(1:end)= 2 * acos( d(1,:) ); s(1:end) = sin( 0.5 * angle ); angle(n==0) = 0; s(s==0) = 1; s3 = shiftdim( s, -1 ); axis(1:end) = bsxfun( @rdivide, reshape( d(2:4,:), [3 siz] ), s3 ); axis(1,(mod(angle,2*pi)==0)) = 1; angle = chop( angle ); axis = chop( axis ); % Flip axis so at least 2 out of 3 elements are >= 0 flip = (sum( axis < 0, 1 ) > 1) | ... ((sum( axis == 0, 1 ) == 2) & (any( axis < 0, 1 ) == 1)); angle(flip) = 2 * pi - angle(flip); flip = repmat( flip, [3, ones(1,ndm)] ); axis(flip) = -axis(flip); axis = squeeze( axis ); end % AngleAxis function qd = Derivative( varargin ) % function qd = Derivative( q, w ) or qd = q.Derivative( w ) % Inputs: % q quaternion array % w 3xN or Nx3 element angle rate vectors in radians/s % Output: % qd quaternion derivatives, qd = 0.5 * q * quaternion(w) if isa( varargin{1}, 'quaternion' ) qd = 0.5 .* varargin{1} .* quaternion( varargin{2} ); else qd = 0.5 .* varargin{2} .* quaternion( varargin{1} ); end end % Derivative function angles = EulerAngles( varargin ) % function angles = EulerAngles( q, axes ) or angles = q.EulerAngles( axes ) % Construct Euler angle triplets equivalent to quaternion rotations % Inputs: % q quaternion array % axes axes designation strings (e.g. '123' = xyz) or cell strings % (e.g. {'123'}) % Output: % angles 3 element Euler Angle vectors in radians ics = cellfun( @ischar, varargin ); if any( ics ) varargin{ics} = cellstr( varargin{ics} ); else ics = cellfun( @iscellstr, varargin ); end if ~any( ics ) error( 'Must provide axes as a string (e.g. ''123'') or cell string (e.g. {''123''})' ); end siv = cellfun( @size, varargin, 'UniformOutput', false ); axes = varargin{ics}; six = siv{ics}; nex = prod( six ); q = varargin{~ics}; siq = siv{~ics}; neq = prod( siq ); if neq == 1 siz = six; nel = nex; elseif nex == 1 siz = siq; nel = neq; elseif nex == neq siz = siq; nel = neq; else error( 'Must have compatible dimensions for quaternion and axes' ); end angles = zeros( [3 siz] ); q = normalize( q ); for jel = 1 : nel iel = min( jel, neq ); switch axes{min(jel,nex)} case {'121', 'xyx', 'XYX', 'iji'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(3)- ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1))); angles(2,iel) = acos(q(iel).e(1).^2+q(iel).e(2).^2- ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4))); case {'123', 'xyz', 'XYZ', 'ijk'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(4).*q(iel).e(3)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); case {'131', 'xzx', 'XZX', 'iki'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3))); angles(2,iel) = acos(q(iel).e(1).^2+q(iel).e(2).^2- ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(4)- ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1))); case {'132', 'xzy', 'XZY', 'ikj'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(4).*q(iel).e(3)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1))); angles(3,iel) = atan2(2.*(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); case {'212', 'yxy', 'YXY', 'jij'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2+ ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(3)- ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4))); case {'213', 'yxz', 'YXZ', 'jik'} angles(1,iel) = atan2(2.*(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(4).*q(iel).e(2)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4))); angles(3,iel) = atan2(2.*(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); case {'231', 'yzx', 'YZX', 'jki'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); case {'232', 'yzy', 'YZY', 'jkj'} angles(1,iel) = atan2((q(iel).e(3).*q(iel).e(4)- ... q(iel).e(2).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2+ ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3))); case {'312', 'zxy', 'ZXY', 'kij'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); case {'313', 'zxz', 'ZXZ', 'kik'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(4)- ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2- ... q(iel).e(3).^2+q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4))); case {'321', 'zyx', 'ZYX', 'kji'} angles(1,iel) = atan2(2.*(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); case {'323', 'zyz', 'ZYZ', 'kjk'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2- ... q(iel).e(3).^2+q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(3).*q(iel).e(4)- ... q(iel).e(2).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1))); otherwise error( 'Invalid output Euler angle axes' ); end % switch axes end % for iel angles = chop( angles ); end % EulerAngles function [omega, axis] = OmegaAxis( q, t, dim ) % function [omega, axis] = OmegaAxis( q, t, dim ) or % [omega, axis] = q.OmegaAxis( t, dim ) % Estimate instantaneous angular velocities and rotation axes from a time % series of quaternions. The angular velocity vector omegav is computed by: % omegav(:,1) = vector( 2*log( q(1) * inverse(q(2)) )/(t(2) - t(1)) ); % omegav(:,i) = vector(... % (log( q(i-1) * inverse(q(i)) ) + log( q(i) * inverse(q(i+1))) )/... % (0.5*(t(i+1) - t(i-1))) ); % omegav(:,end) = vector( 2*log( q(end-1) * inverse(q(end)) )/... % (t(end) - t(end-1)) ); % [axis, omega] = unitvector( omegav ); % Inputs: % q array of normalized (rotation) quaternions % t [OPT] array of monotonically increasing (or decreasing) times. % if omitted or empty, unit time steps are assumed. % t must either be a vector with the same length as dimension % dim of q, or the same size as q. % dim [OPT] dimension of q that is varying in time; if omitted or empty, % the first non-singleton dimension is used. % Outputs: % omega array of instantaneous angular velocities, radians/(unit time) % omega >= 0 % axis instantaneous 3D rotation axis unit vectors at each time if isempty( q ) omega = []; axis = []; return; end if (nargin < 3) || isempty( dim ) if (nargin > 1) && ~isempty( t ) siq = size( q ); sit = size( t ); if isequal( siq, sit ) dim = find( siq > 1, 1 ); else dim = find( siq == length( t ), 1 ); end if isempty( dim ) error( 'size of t must agree with at least one dimension of q' ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); if isequal( siq, sit ) t = permute( t, perm ); end end else [q, dim, perm] = finddim( q, -2 ); if dim == 0 omega = 0; axis = unitvector( q.e(2:4), 1 ); return; end end elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end n = norm( q ); if ~all( abs( n(:) - 1 ) < eps(16) ) error( 'q must be normalized' ); end siq = size( q ); if (nargin < 2) || isempty( t ) t = repmat( (0 : (siq(1)-1)).', [1 siq(2:end)] ); elseif length( t ) == siq(1) t = repmat( t(:), [1 siq(2:end)] ); elseif ~isequal( siq, size( t )) error( 'size of t must match size of q' ); end dt = zeros( siq ); difft = diff( t, 1 ); dt(1,:) = difft(1,:); dt(2:end-1,:) = 0.5 *( difft(1:end-1,:) + difft(2:end,:) ); dt(end,:) = difft(end,:); dq = quaternion.zeros( siq ); q1iq2 = q(1:end-1,:) .* inverse( q(2:end,:) ); neg = real( q1iq2 ) < 0; q1iq2(neg) = -q1iq2(neg); % keep real element >= 0 derivq = log( q1iq2 ); dq(1,:) = 2 .* derivq(1,:); dq(2:end-1,:) = derivq(1:end-1,:) + derivq(2:end,:); dq(end,:) = 2 .* derivq(end,:); omegav = vector( dq ); % angular velocity vectors [axis, omega] = unitvector( omegav, 1 ); omega = reshape( omega(1,:), siq )./ dt; axis = -axis; if dim > 1 axis = ipermute( axis, [1, 1+perm] ); omega = ipermute( omega, perm ); end end % OmegaAxis function PlotRotation( q, interval ) % function PlotRotation( q, interval ) or q.PlotRotation( interval ) % Inputs: % q quaternion array % interval pause between figure updates in seconds, default = 0.1 % Output: % figure plotting the 3 Cartesian axes orientations for the series of % quaternions in array q if (nargin < 2) || isempty( interval ) interval = 0.1; end nel = numel( q ); or = zeros(1,3); ax = eye(3); alx = zeros( nel, 3, 3 ); figure; for iel = 1 : nel % plot3( [ or; ax(:,1).' ], [ or ; ax(:,2).' ], [ or; ax(:,3).' ], ':' ); plot3( [ or; ax(1,:) ], [ or ; ax(2,:) ], [ or; ax(3,:) ], ':' ); hold on set( gca, 'Xlim', [-1 1], 'Ylim', [-1 1], 'Zlim', [-1 1] ); xlabel( 'x' ); ylabel( 'y' ); zlabel( 'z' ); grid on nax = q(iel).RotationMatrix; alx(iel,:,:) = nax; % plot3( [ or; nax(:,1).' ], [ or ; nax(:,2).' ], [ or; nax(:,3).' ], '-', 'LineWidth', 2 ); plot3( [ or; nax(1,:) ], [ or ; nax(2,:) ], [ or; nax(3,:) ], '-', 'LineWidth', 2 ); % plot3( alx(1:iel,:,1), alx(1:iel,:,2), alx(1:iel,:,3), '*' ); plot3( squeeze(alx(1:iel,1,:)), squeeze(alx(1:iel,2,:)), squeeze(alx(1:iel,3,:)), '*' ); if interval pause( interval ); end hold off end end % PlotRotation function [q1, w1, t1] = PropagateEulerEq( q0, w0, I, t, torque, varargin ) % function [q1, w1, t1] = PropagateEulerEq( q0, w0, I, t, torque, odeoptions ) % Inputs: % q0 initial orientation quaternion (normalized, scalar) % w0(3) initial body frame angular velocity vector % I(3) principal body moments of inertia (if no torque, only % ratios of elements of I are used) % t(nt) initial and subsequent (or previous) times t = [t0,t1,...] % (monotonic) % @torque [OPTIONAL] function handle to calculate torque vector: % tau(1:3) = torque( t, y ), where y = [q.e(1:4); w(1:3)] % odeoptions [OPTIONAL] ode45 options % Outputs: % q1(1,nt) array of normalized quaternions at times t1 % w1(3,nt) array of body frame angular velocity vectors at times t1 % t1(1,nt) array of output times % Calls: % Derivative quaternion derivative method % odeset matlab ode options setter % ode45 matlab ode numerical differential equation integrator % torque [OPTIONAL] user-supplied torque as function of time, orientation, % and angular rates; default is no torque % Author: % Mark Tincknell, 20 December 2010 % modified 25 July 2012, enforce normalization of q0 and q1 options = odeset( varargin{:} ); q0 = q0.normalize; y0 = [q0.e; w0(:)]; I0 = [ (I(2) - I(3)) / I(1); (I(3) - I(1)) / I(2); (I(1) - I(2)) / I(3) ]; [T, Y] = ode45( @Euler, t, y0, options ); function yd = Euler( ti, yi ) qi = quaternion( yi(1), yi(2), yi(3), yi(4) ); wi = yi(5:7); qd = double( qi.Derivative( wi )); wd = [ wi(2) * wi(3) * I0(1); wi(3) * wi(1) * I0(2); wi(1) * wi(2) * I0(3) ]; if exist( 'torque', 'var' ) && isa( torque, 'function_handle' ) tau = torque( ti, yi ); wd = tau(:) ./ I + wd; end yd = [ qd; wd ]; end if numel(t) == 2 nT = 2; T = [T(1); T(end)]; Y = [Y(1,:); Y(end,:)]; else nT = length(T); end q1 = repmat( quaternion, [1 nT] ); w1 = zeros( [3 nT] ); t1 = T(:).'; for it = 1 : nT q1(it) = quaternion( Y(it,1), Y(it,2), Y(it,3), Y(it,4) ); w1(:,it) = Y(it,5:7).'; end q1 = q1.normalize; neg = real( q1 ) < 0; q1(neg) = -q1(neg); % keep real element >= 0 end % PropagateEulerEq function vp = RotateVector( varargin ) % function vp = RotateVector( q, v, dim ) or % vp = q.RotateVector( v, dim ) % 3x3 rotation matrices are created from q and matrix multiplication % rotates v into vp. RotateVector is 7 times faster than RotateVectorQ. % Inputs: % q quaternion array % v 3xN or Nx3 element Cartesian vectors % dim [OPTIONAL] dimension of v with size 3 to rotate % Output: % vp 3xN or Nx3 element rotated vectors if nargin < 2 error( 'RotateVector method requires 2 inputs: a vector and a quaternion' ); end if isa( varargin{1}, 'quaternion' ) q = varargin{1}; v = varargin{2}; else v = varargin{1}; q = varargin{2}; end if (nargin > 2) && ~isempty( varargin{3} ) dim = varargin{3}; if size( v, dim ) ~= 3 error( 'Dimension dim of vector v must be size 3' ); end if dim > 1 ndm = ndims( v ); perm = [ dim : ndm, 1 : dim-1 ]; v = permute( v, perm ); end else [v, dim, perm] = finddim( v, 3 ); if dim == 0 error( 'v must have a dimension of size 3' ); end end sip = size( v ); v = reshape( v, 3, [] ); nev = prod( sip )/ 3; R = q.RotationMatrix; siq = size( q ); neq = prod( siq ); if neq == nev vp = zeros( sip ); for iel = 1 : neq vp(:,iel) = R(:,:,iel) * v(:,iel); end if dim > 1 vp = ipermute( vp, perm ); end elseif nev == 1 siz = [3 siq]; vp = zeros( siz ); for iel = 1 : neq vp(:,iel) = R(:,:,iel) * v; end if siz(2) == 1 vp = squeeze( vp ); end elseif neq == 1 vp = R * v; vp = reshape( vp, sip ); if dim > 1 vp = ipermute( vp, perm ); end else error( 'q and v must have compatible dimensions' ); end end % RotateVector function vp = RotateVectorQ( varargin ) % function vp = RotateVectorQ( q, v, dim ) or % vp = q.RotateVectorQ( v, dim ) % quaternions are created from v and quaternion multiplication rotates v % into vp. RotateVector is 7 times faster than RotateVectorQ. % Inputs: % q quaternion array % v 3xN or Nx3 element Cartesian vectors % dim [OPTIONAL] dimension of v with size 3 to rotate % Output: % vp 3xN or Nx3 element rotated vectors if nargin < 2 error( 'RotateVectorQ method requires 2 inputs: a vector and a quaternion' ); end if isa( varargin{1}, 'quaternion' ) q = varargin{1}; v = varargin{2}; else v = varargin{1}; q = varargin{2}; end siv = size( v ); if (nargin > 2) && ~isempty( varargin{3} ) dim = varargin{3}; if size( v, dim ) ~= 3 error( 'Dimension dim of vector v must be size 3' ); end if dim > 1 ndm = ndims( v ); perm = [ dim : ndm, 1 : dim-1 ]; v = permute( v, perm ); end else [v, dim, perm] = finddim( v, 3 ); if dim == 0 error( 'v must have a dimension of size 3' ); end end sip = size( v ); qv = quaternion( v(1,:), v(2,:), v(3,:) ); qv = reshape( qv, [1 sip(2:end)] ); if dim > 1 qv = ipermute( qv, perm ); end q = q.normalize; qp = q .* qv .* q.conj; dp = qp.double; nev = prod( siv )/ 3; sqz = false; if nev == 1 siz = [3 size(q)]; if siz(2) == 1 sqz = true; end else siz = siv; end vp = reshape( dp(2:4,:), siz ); if sqz vp = squeeze( vp ); end end % RotateVectorQ function R = RotationMatrix( q ) % function R = RotationMatrix( q ) or R = q.RotationMatrix % Construct rotation (or direction cosine) matrices from quaternions % Input: % q quaternion array % Output: % R 3x3xN rotation (or direction cosine) matrices siz = size( q ); R = zeros( [3 3 siz] ); nel = prod( siz ); q = normalize( q ); for iel = 1 : nel e11 = q(iel).e(1)^2; e12 = q(iel).e(1) * q(iel).e(2); e13 = q(iel).e(1) * q(iel).e(3); e14 = q(iel).e(1) * q(iel).e(4); e22 = q(iel).e(2)^2; e23 = q(iel).e(2) * q(iel).e(3); e24 = q(iel).e(2) * q(iel).e(4); e33 = q(iel).e(3)^2; e34 = q(iel).e(3) * q(iel).e(4); e44 = q(iel).e(4)^2; R(:,:,iel) = ... [ e11 + e22 - e33 - e44, 2*(e23 - e14), 2*(e24 + e13); ... 2*(e23 + e14), e11 - e22 + e33 - e44, 2*(e34 - e12); ... 2*(e24 - e13), 2*(e34 + e12), e11 - e22 - e33 + e44 ]; end R = chop( R ); end % RotationMatrix end % methods % Static methods methods(Static) function q = angleaxis( angle, axis ) % function q = quaternion.angleaxis( angle, axis ) % Construct quaternions from rotation axes and rotation angles % Inputs: % angle array of rotation angles in radians % axis 3xN or Nx3 array of axes (need not be unit vectors) % Output: % q quaternion array sig = size( angle ); six = size( axis ); [axis, dim, perm] = finddim( axis, 3 ); if dim == 0 error( 'axis must have a dimension of size 3' ); end neg = prod( sig ); nex = prod( six )/ 3; if neg == 1 siz = six; siz(dim)= 1; nel = nex; elseif nex == 1 siz = sig; nel = neg; elseif nex == neg siz = sig; nel = neg; else error( 'angle and axis must have compatible sizes' ); end for iel = nel : -1 : 1 d(:,iel) = AngAxis2e( angle(min(iel,neg)), axis(:,min(iel,nex)) ); end q = quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ); q = reshape( q, siz ); if neg == 1 q = ipermute( q, perm ); end end % quaternion.angleaxis function q = eulerangles( varargin ) % function q = quaternion.eulerangles( axes, angles ) OR % function q = quaternion.eulerangles( axes, ang1, ang2, ang3 ) % Construct quaternions from triplets of axes and Euler angles % Inputs: % axes string array or cell string array % '123' = 'xyz' = 'XYZ' = 'ijk', etc. % angles 3xN or Nx3 array of angles in radians OR % ang1, ang2, ang3 arrays of angles in radians % Output: % q quaternion array ics = cellfun( @ischar, varargin ); if any( ics ) varargin{ics} = cellstr( varargin{ics} ); else ics = cellfun( @iscellstr, varargin ); end siv = cellfun( @size, varargin, 'UniformOutput', false ); axes = varargin{ics}; six = siv{ics}; nex = prod( six ); dim = 1; if nargin == 2 % angles is 3xN or Nx3 array angles = varargin{~ics}; sig = siv{~ics}; [angles, dim, perm] = finddim( angles, 3 ); if dim == 0 error( 'Must supply 3 Euler angles' ); end sig(dim) = 1; neg = prod( sig ); if nex == 1 siz = sig; elseif neg == 1 siz = six; elseif nex == neg siz = sig; end nel = prod( siz ); for iel = nel : -1 : 1 q(iel) = EulerAng2q( axes{min(iel,nex)}, ... angles(:,min(iel,neg)) ); end elseif nargin == 4 % each of 3 angles is separate input argument angles = varargin(~ics); na = cellfun( 'prodofsize', angles ); [neg, jeg] = max( na ); if ~all( (na == 1) | (na == neg) ) error( 'All angles must be singletons or have the same number of elements' ); end sig = size( angles{jeg} ); if nex == 1 siz = sig; elseif neg == 1 siz = six; elseif nex == neg siz = sig; end nel = prod( siz ); for iel = nel : -1 : 1 q(iel) = EulerAng2q( axes{min(iel,nex)}, ... [angles{1}(min(iel,na(1))), ... angles{2}(min(iel,na(2))), ... angles{3}(min(iel,na(3)))] ); end else error( 'Must supply either 2 or 4 input arguments' ); end % if nargin q = reshape( q, siz ); if (dim > 1) && isequal( siz, sig ) q = ipermute( q, perm ); end if ~ismatrix( q ) && (size( q, 1 ) == 1) q = shiftdim( q, 1 ); end end % quaternion.eulerangles function q = eye( N ) % function q = eye( N ) if nargin < 1 N = 1; end if isempty(N) || (N <= 0) q = quaternion.empty; else q = quaternion( eye(N), 0, 0, 0 ); end end % quaternion.eye function q = nan( varargin ) % function q = quaternion.nan( siz ) if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = reshape( quaternion.empty, siz ); else q = quaternion( nan(siz), nan, nan, nan ); end end % quaternion.nan function q = NaN( varargin ) % function q = quaternion.NaN( siz ) q = quaternion.nan( varargin{:} ); end % quaternion.NaN function q = ones( varargin ) % function q = quaternion.ones( siz ) if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = reshape( quaternion.empty, siz ); else q = quaternion( ones(siz), 0, 0, 0 ); end end % quaternion.ones function q = rand( varargin ) % function q = quaternion.rand( siz ) % Input: % siz size of output array q % Output: % q uniform random quaternions, NOT normalized to 1, % 0 <= q.e(1) <= 1, -1 <= q.e(2:4) <= 1 if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = quaternion.empty; return; end d = [ rand( [1, siz] ); 2 * rand( [3, siz] ) - 1 ]; q = quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ); q = reshape( q, siz ); end % quaternion.rand function q = randRot( varargin ) % function q = quaternion.randRot( siz ) % Random quaternions uniform in rotation space % Input: % siz size of output array q % Output: % q random quaternions, normalized to 1, 0 <= q.e(1) <= 1, % uniform over the 3D surface of a 4 dimensional hypersphere if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = quaternion.empty; return; end d = randn( [4, prod( siz )] ); n = sqrt( sum( d.^2, 1 )); dn = bsxfun( @rdivide, d, n ); neg = dn(1,:) < 0; dn(:,neg) = -dn(:,neg); q = quaternion( dn(1,:), dn(2,:), dn(3,:), dn(4,:) ); q = reshape( q, siz ); end % quaternion.randRot function q = rotateutov( u, v, dimu, dimv ) % function q = quaternion.rotateutov( u, v, dimu, dimv ) % Construct quaternions to rotate vectors u into directions of vectors v % Inputs: % u 3x1 or 3xN or 1x3 or Nx3 arrays of vectors % v 3x1 or 3xN or 1x3 or Nx3 arrays of vectors % dimu [OPTIONAL] dimension of u with size 3 to use % dimv [OPTIONAL] dimension of v with size 3 to use % Output: % q quaternion array if (nargin < 3) || isempty( dimu ) [u, dimu, permu] = finddim( u, 3 ); if dimu == 0 error( 'u must have a dimension of size 3' ); end elseif dimu > 1 ndmu = ndims( u ); permu = [ dimu : ndmu, 1 : dimu-1 ]; u = permute( u, permu ); else permu = 1 : ndims(u); end siu = size( u ); siu(1) = 1; neu = prod( siu ); if (nargin < 4) || isempty( dimv ) [v, dimv, permv] = finddim( v, 3 ); if dimv == 0 error( 'v must have a dimension of size 3' ); end elseif dimv > 1 ndmv = ndims( v ); permv = [ dimv : ndmv, 1 : dimv-1 ]; v = permute( v, permv ); else permv = 1 : ndims(v); end siv = size( v ); siv(1) = 1; nev = prod( siv ); if neu == nev siz = siu; nel = neu; perm = permu; dim = dimu; elseif (neu > 1) && (nev == 1) siz = siu; nel = neu; perm = permu; dim = dimu; elseif (neu == 1) && (nev > 1) siz = siv; nel = nev; perm = permv; dim = dimv; else error( 'Number of 3 element vectors in u and v must be 1 or equal' ); end for iel = nel : -1 : 1 q(iel) = UV2q( u(:,min(iel,neu)), v(:,min(iel,nev)) ); end if dim > 1 q = ipermute( reshape( q, siz ), perm ); end end % quaternion.rotateutov function q = rotationmatrix( R ) % function q = quaternion.rotationmatrix( R ) % Construct quaternions from rotation (or direction cosine) matrices % Input: % R 3x3xN rotation (or direction cosine) matrices % Output: % q quaternion array siz = [size(R) 1 1]; if ~all( siz(1:2) == [3 3] ) || ... (abs( det( R(:,:,1) ) - 1 ) > eps(16) ) error( 'Rotation matrices must be 3x3xN with det(R) == 1' ); end nel = prod( siz(3:end) ); for iel = nel : -1 : 1 d(:,iel) = RotMat2e( chop( R(:,:,iel) )); end q = quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ); q = normalize( q ); q = reshape( q, siz(3:end) ); end % quaternion.rotationmatrix function q = zeros( varargin ) % function q = quaternion.zeros( siz ) if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = reshape( quaternion.empty, siz ); else q = quaternion( zeros(siz), 0, 0, 0 ); end end % quaternion.zeros end % methods(Static) end % classdef quaternion % Scalar rotation conversion functions function eout = AngAxis2e( angle, axis ) % function eout = AngAxis2e( angle, axis ) % One Angle-Axis -> one quaternion s = sin( 0.5 * angle ); v = axis(:); vn = norm( v ); if vn == 0 if s == 0 c = 0; else c = 1; end u = zeros( 3, 1 ); else c = cos( 0.5 * angle ); u = v(:) ./ vn; end eout = [ c; s * u ]; if (eout(1) < 0) && (mod( angle/(2*pi), 2 ) ~= 1) eout = -eout; % rotationally equivalent quaternion with real element >= 0 end end % AngAxis2e function qout = EulerAng2q( axes, angles ) % function qout = EulerAng2q( axes, angles ) % One triplet Euler Angles -> one quaternion na = length( axes ); axis = zeros( 3, na ); for i0 = 1 : na switch axes(i0) case {'1', 'i', 'x', 'X'} axis(:,i0) = [ 1; 0; 0 ]; case {'2', 'j', 'y', 'Y'} axis(:,i0) = [ 0; 1; 0 ]; case {'3', 'k', 'z', 'Z'} axis(:,i0) = [ 0; 0; 1 ]; otherwise error( 'Illegal axis designation' ); end end q0 = quaternion.angleaxis( angles(:).', axis ); qout = q0(1); for i0 = 2 : numel(q0) qout = product( q0(i0), qout ); end if qout.e(1) < 0 qout = -qout; % rotationally equivalent quaternion with real element >= 0 end end % EulerAng2q function eout = RotMat2e( R ) % function eout = RotMat2e( R ) % One Rotation Matrix -> one quaternion eout = zeros(4,1); if ~all( all( R == 0 )) eout(1) = 0.5 * sqrt( max( 0, R(1,1) + R(2,2) + R(3,3) + 1 )); if eout(1) == 0 eout(2) = sqrt( max( 0, -0.5 *( R(2,2) + R(3,3) ))) * ... sgn( -R(2,3) ); eout(3) = sqrt( max( 0, -0.5 *( R(1,1) + R(3,3) ))) * ... sgn( -R(1,3) ); eout(4) = sqrt( max( 0, -0.5 *( R(1,1) + R(2,2) ))) * ... sgn( -R(1,2) ); else eout(2) = 0.25 *( R(3,2) - R(2,3) )/ eout(1); eout(3) = 0.25 *( R(1,3) - R(3,1) )/ eout(1); eout(4) = 0.25 *( R(2,1) - R(1,2) )/ eout(1); end end end % RotMat2e function qout = UV2q( u, v ) % function qout = UV2q( u, v ) % One pair vectors U, V -> one quaternion w = cross( u, v ); % construct vector w perpendicular to u and v magw = norm( w ); dotuv = dot( u, v ); if magw == 0 % Either norm(u) == 0 or norm(v) == 0 or dotuv/(norm(u)*norm(v)) == 1 if dotuv >= 0 qout = quaternion( 1, 0, 0, 0 ); return; end % dotuv/(norm(u)*norm(v)) == -1 % If v == [v(1); 0; 0], rotate by pi about the [0; 0; 1] axis if (v(2) == 0) && (v(3) == 0) qout = quaternion( 0, 0, 0, 1 ); return; end % Otherwise constuct "what" such that dot(v,what) == 0, and rotate about it % by pi what = [ 0; -v(3); v(2) ]./ sqrt( v(2)^2 + v(3)^2 ); costh = -1; else % Use w as rotation axis, angle between u and v as rotation angle what = w(:) / magw; costh = dotuv /( norm(u) * norm(v) ); end c = sqrt( 0.5 *( 1 + costh )); % real element >= 0 s = sqrt( 0.5 *( 1 - costh )); eout = [ c; s * what ]; qout = quaternion( eout(1), eout(2), eout(3), eout(4) ); end % UV2q % Helper functions function out = chop( in, tol ) % function out = chop( in, tol ) % Replace values that differ from an integer by <= tol by the integer % Inputs: % in input array % tol tolerance, default = eps % Output: % out input array with integer replacements, if any if (nargin < 2) || isempty( tol ) tol = eps; end out = in; rin = round( in ); lx = abs( rin - in ) <= tol; out(lx) = rin(lx); end % chop function [aout, dim, perm] = finddim( ain, len ) % function [aout, dim, perm] = finddim( ain, len ) % Find first dimension in ain of length len, permute ain to make it first % Inputs: % ain(s1,s2,...) data array, size = [s1, s2, ...] % len length sought, e.g. s2 == len % if len < 0, then find first dimension >= |len| % Outputs: % aout(s2,...,s1) data array, permuted so first dimension is length len % dim dimension number of length len, 0 if ain has none % perm permutation order (for permute and ipermute) of aout, % e.g. [2, ..., 1] % Notes: if no dimension has length len, aout = ain, dim = 0, perm = 1:ndm % ain = ipermute( aout, perm ) siz = size( ain ); ndm = length( siz ); if len < 0 dim = find( siz >= -len, 1, 'first' ); else dim = find( siz == len, 1, 'first' ); end if isempty( dim ) dim = 0; end if dim < 2 aout = ain; perm = 1 : ndm; else % Permute so that dim becomes the first dimension perm = [ dim : ndm, 1 : dim-1 ]; aout = permute( ain, perm ); end end % finddim function s = sgn( x ) % function s = sgn( x ), if x >= 0, s = 1, else s = -1 s = ones( size( x )); s(x < 0) = -1; end % sgn function [u, n] = unitvector( v, dim ) % function [u, n] = unitvector( v, dim ) % Inputs: % v matrix of vectors % dim [OPTIONAL] dimension to normalize, dim >= 1 % if no dim input, use first dimension of length >= 2 % Outputs: % u matrix of unit vectors (except for vectors of norm 0) % n matrix same size as v and u of norms ndm = ndims( v ); if (nargin < 2) || isempty( dim ) [v, dim, perm] = finddim( v, -2 ); if dim == 0 n = sqrt( v.*conj(v) ); n0 = (n ~= 0) & (n ~= 1); u = v; u(n0) = v(n0) ./ n(n0); return; end else perm = [ dim : ndm, 1 : dim-1 ]; v = permute( v, perm ); end u = v; sv = size( v ); n = repmat( sqrt( sum( v.*conj(v), 1 )), [sv(1) ones(1,ndm-1)] ); n0 = (n ~= 0) & (n ~= 1); u(n0) = v(n0) ./ n(n0); u = ipermute( u, perm ); if nargout > 1 n = ipermute( n, perm ); end end % unitvector
github
jianxiongxiao/ProfXkit-master
rectify.m
.m
ProfXkit-master/rectifyroom/rectify.m
5,343
utf_8
58bf71d96dbaac2764184242fe621b7e
function [Rtilt,R] = rectify(XYZ) %% XYZ is HxWx3 matrix % X = XYZ(:,:,1);Y = XYZ(:,:,2);Z = XYZ(:,:,3); % XYZnew = Rtilt*[X(:),Y(:),Z(:)]' [Rtilt,R,world_center] = dominantAxes([eye(3) zeros(3,1)],XYZ); function [Rtilt,R,world_center] = dominantAxes(cameraRt, pts) XYZ = pts; S = 1; points = [reshape(XYZ(:,:,1),1,[]);reshape(XYZ(:,:,2),1,[]);reshape(XYZ(:,:,3),1,[])]; pointsOK = points(:,sum(isnan(points),1)==0); pointsOK = pointsOK(:,1:S:end); %tic;normals = points2normals_radius(pointsOK);toc; normals = points2normals(pointsOK); %{ figure, s =1; quiver3(pointsOK(1,1:S*s:end),pointsOK(2,1:S*s:end),pointsOK(3,1:S*s:end),normals(1,1:S*s:end),normals(2,1:S*s:end),normals(3,1:S*s:end)); quiver3(pointsOK(1,1:S*s:end),pointsOK(2,1:S*s:end),pointsOK(3,1:S*s:end),normals(1,1:s:end),normals(2,1:s:end),normals(3,1:s:end)); figure, indxxx = B == b; pointsOKxxx = pointsOK(:,1:S:end); quiver3(pointsOKxxx(1,indxxx),pointsOKxxx(2,indxxx),pointsOKxxx(3,indxxx),normals(1,indxxx),normals(2,indxxx),normals(3,indxxx)); hold on quiver3(pointsOK(1,1:S*s:end),pointsOK(2,1:S*s:end),pointsOK(3,1:S*s:end),nrm(1,1:s:end),nrm(2,1:s:end),nrm(3,1:s:end),'-.r'); figure, plot3(sphere(1,:),sphere(2,:),sphere(3,:),'.') %} % approximately 1313 bins sphere = icosahedron2sphere(12)'; bins = sphere(:, sphere(1, :) >= 0); %NSAMPLE = 1e5; %sampleind = randsample(1 : size(normals, 2), min(size(normals, 2), NSAMPLE)); %normals = normals(:,sampleind ); [D, B] = max(abs(bins' * normals), [], 1); H = accumarray(cat(2, B', repmat(1, [length(B) 1])), repmat(1, [length(B) 1])); A = eye(3); [~, I] = sort(-H); for j = 1 : 3 if ~isempty(I) b = I(1); % choose mean normal that falls into the biggest bin in_bin = normals(:, B == b); % flip mirrored normals dots = sum(in_bin .* repmat(bins(:, b), [1 size(in_bin, 2)]), 1); in_bin(:, (dots < 0)) = -in_bin(:, (dots < 0)); v = mean(in_bin, 2); v = v / norm(v); A(:, j) = v; fprintf('Bin: %d, Normal: %f %f %f. Contains %d points. Mean vector: %f %f %f\n', b, bins(:, b), H(b), v); % remove bins that are not ~90 degrees away dots = sum(bins(:, I) .* repmat(v, [1 length(I)]), 1); I = I((dots >= cos(deg2rad(110))) & (dots <= cos(deg2rad(70)))); end end axisI = A(:,1); axisII = A(:,2); axisII = axisII - (axisI'*axisII)*axisI; axisII =axisII/norm(axisII); axisIII = cross(axisI,axisII); AA =[axisI,axisII,axisIII -1*[axisI,axisII,axisIII]]; [~, zi] = max(squeeze(cameraRt(1:3, 3, :))'*AA); ZZ = AA(:, zi); [~, xi] = max(squeeze(cameraRt(1:3, 1, :))'*AA); XX = AA(:, xi); [~, yi] = max(squeeze(cameraRt(1:3, 2, :))'*AA); YY = AA(:, yi); %{ for i =1:3, hold on; quiver3(1,1,1,AA(1,i),AA(2,i),AA(3,i)); quiver3(0,0,0,A(1,i),A(2,i),A(3,i)); pause; end axis tight; %} R = [XX YY ZZ]'; q = quaternion.rotateutov(ZZ, [0;0;1]); Rtilt = RotationMatrix(q); world_center = nanmean(reshape(pts,3,[]),2); function rad = deg2rad(deg) rad = deg*pi/180; return; function [coor,tri] = icosahedron2sphere(level) % copyright by Jianxiong Xiao http://mit.edu/jxiao % this function use a icosahedron to sample uniformly on a sphere %{ Please cite this paper if you use this code in your publication: J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan Image-based Street-side City Modeling ACM Transaction on Graphics (TOG), Volume 28, Number 5 Proceedings of ACM SIGGRAPH Asia 2009 %} a= 2/(1+sqrt(5)); M=[ 0 a -1 a 1 0 -a 1 0 0 a 1 -a 1 0 a 1 0 0 a 1 0 -a 1 -1 0 a 0 a 1 1 0 a 0 -a 1 0 a -1 0 -a -1 1 0 -a 0 a -1 -1 0 -a 0 -a -1 0 -a 1 a -1 0 -a -1 0 0 -a -1 -a -1 0 a -1 0 -a 1 0 -1 0 a -1 0 -a -a -1 0 -1 0 -a -1 0 a a 1 0 1 0 -a 1 0 a a -1 0 1 0 a 1 0 -a 0 a 1 -1 0 a -a 1 0 0 a 1 a 1 0 1 0 a 0 a -1 -a 1 0 -1 0 -a 0 a -1 1 0 -a a 1 0 0 -a -1 -1 0 -a -a -1 0 0 -a -1 a -1 0 1 0 -a 0 -a 1 -a -1 0 -1 0 a 0 -a 1 1 0 a a -1 0 ]; coor = reshape(M',3,60)'; %[M(:,[1 2 3]); M(:,[4 5 6]); M(:,[7 8 9])]; [coor, ~, idx] = unique(coor,'rows'); tri = reshape(idx,3,20)'; %{ for i=1:size(tri,1) x(1)=coor(tri(i,1),1); x(2)=coor(tri(i,2),1); x(3)=coor(tri(i,3),1); y(1)=coor(tri(i,1),2); y(2)=coor(tri(i,2),2); y(3)=coor(tri(i,3),2); z(1)=coor(tri(i,1),3); z(2)=coor(tri(i,2),3); z(3)=coor(tri(i,3),3); patch(x,y,z,'r'); end axis equal axis tight %} % extrude coor = coor ./ repmat(sqrt(sum(coor .* coor,2)),1, 3); for i=1:level m = 0; for t=1:size(tri,1) n = size(coor,1); coor(n+1,:) = ( coor(tri(t,1),:) + coor(tri(t,2),:) ) / 2; coor(n+2,:) = ( coor(tri(t,2),:) + coor(tri(t,3),:) ) / 2; coor(n+3,:) = ( coor(tri(t,3),:) + coor(tri(t,1),:) ) / 2; triN(m+1,:) = [n+1 tri(t,1) n+3]; triN(m+2,:) = [n+1 tri(t,2) n+2]; triN(m+3,:) = [n+2 tri(t,3) n+3]; triN(m+4,:) = [n+1 n+2 n+3]; n = n+3; m = m+4; end tri = triN; % uniquefy [coor, ~, idx] = unique(coor,'rows'); tri = idx(tri); % extrude coor = coor ./ repmat(sqrt(sum(coor .* coor,2)),1, 3); end % vertex number: 12 42 162 642
github
jianxiongxiao/ProfXkit-master
points2normals.m
.m
ProfXkit-master/rectifyroom/points2normals.m
2,551
utf_8
cffcb4a1ea7aa3af3e895f74f76491fa
function normals = points2normals(points) % estimating a normal vector based on nearby 100 points % points is 3 * n matrix for n points if size(points,2)==3 && size(points,1)~=3 points = points'; end normals = lsqnormest(points, 50); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % functions from http://www.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point % Least squares normal estimation from point clouds using PCA % % H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. % Surface reconstruction from unorganized points. % In Proceedings of ACM Siggraph, pages 71:78, 1992. % % p should be a matrix containing the horizontally concatenated column % vectors with points. k is a scalar indicating how many neighbors the % normal estimation is based upon. % % Note that for large point sets, the function performs significantly % faster if Statistics Toolbox >= v. 7.3 is installed. % % Jakob Wilm 2010 function n = lsqnormest(p, k) m = size(p,2); n = zeros(3,m); v = ver('stats'); if str2double(v.Version) >= 7.5 neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1)); else neighbors = k_nearest_neighbors(p, p, k+1); end for i = 1:m x = p(:,neighbors(2:end, i)); p_bar = 1/k * sum(x,2); P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P %P = 2*cov(x); [V,D] = eig(P); [~, idx] = min(diag(D)); % choses the smallest eigenvalue n(:,i) = V(:,idx); % returns the corresponding eigenvector end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Program to find the k - nearest neighbors (kNN) within a set of points. % Distance metric used: Euclidean distance % % Note that this function makes repetitive use of min(), which seems to be % more efficient than sort() for k < 30. function [neighborIds,neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k) numDataPoints = size(dataMatrix,2); numQueryPoints = size(queryMatrix,2); neighborIds = zeros(k,numQueryPoints); neighborDistances = zeros(k,numQueryPoints); D = size(dataMatrix, 1); %dimensionality of points for i=1:numQueryPoints d=zeros(1,numDataPoints); for t=1:D % this is to avoid slow repmat() d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2; end for j=1:k [s,t] = min(d); neighborIds(j,i)=t; neighborDistances(j,i)=sqrt(s); d(t) = NaN; % remove found number from d end end
github
jianxiongxiao/ProfXkit-master
quaternion.m
.m
ProfXkit-master/depthImproveStructureIO/quaternion.m
85,196
utf_8
2aebad0378f433bf4d26b837b20047a3
classdef quaternion % classdef quaternion, implements quaternion mathematics and 3D rotations % % Properties (SetAccess = protected): % e(4,1) components, basis [1; i; j; k]: e(1) + i*e(2) + j*e(3) + k*e(4) % i*j=k, j*i=-k, j*k=i, k*j=-i, k*i=j, i*k=-j, i*i = j*j = k*k = -1 % % Constructors: % q = quaternion scalar zero quaternion, q.e = [0;0;0;0] % q = quaternion(x) x is a matrix size [4,s1,s2,...] or [s1,4,s2,...], % q is size [s1,s2,...], q(i1,i2,...).e = ... % x(1:4,i1,i2,...) or x(i1,1:4,i2,...).' % q = quaternion(v) v is a matrix size [3,s1,s2,...] or [s1,3,s2,...], % q is size [s1,s2,...], q(i1,i2,...).e = ... % [0;v(1:3,i1,i2,...)] or [0;v(i1,1:3,i2,...).'] % q = quaternion(c) c is a complex matrix size [s1,s2,...], % q is size [s1,s2,...], q(i1,i2,...).e = ... % [real(c(i1,i2,...));imag(c(i1,i2,...));0;0] % q = quaternion(x1,x2) x1,x2 are matrices size [s1,s2,...] or scalars, % q(i1,i2,...).e = [x1(i1,i2,...);x2(i1,i2,...);0;0] % q = quaternion(v1,v2,v3) v1,v2,v3 matrices size [s1,s2,...] or scalars, % q(i1,i2,...).e = [0;v1(i1,i2,...);v2(i1,i2,...);... % v3(i1,i2,...)] % q = quaternion(x1,x2,x3,x4) x1,x2,x3,x4 matrices size [s1,s2,...] or scalars, % q(i1,i2,...).e = [x1(i1,i2,...);x2(i1,i2,...);... % x3(i1,i2,...);x4(i1,i2,...)] % % Quaternion array constructor methods: % q = quaternion.eye(N) quaternion NxN identity matrix % q = quaternion.nan(siz) q(:).e = [NaN;NaN;NaN;NaN] % q = quaternion.ones(siz) q(:).e = [1;0;0;0] % q = quaternion.rand(siz) uniform random quaternions, NOT normalized % to 1, 0 <= q.e(1) <= 1, -1 <= q.e(2:4) <= 1 % q = quaternion.randRot(siz) random quaternions uniform in rotation space % q = quaternion.zeros(siz) q(:).e = [0;0;0;0] % % Rotation constructor methods (all lower case): % q = quaternion.angleaxis(angle,axis) % angle is an array in radians, axis is an array % of vectors size [3,s1,s2,...] or [s1,3,s2,...], % q is size [s1,s2,...], quaternions normalized to 1 % equivalent to rotations about axis by angle % q = quaternion.eulerangles(axes,angles) or % q = quaternion.eulerangles(axes,ang1,ang2,ang3) % axes is a string array or cell string array, % '123' = 'xyz' = 'XYZ' = 'ijk', etc., % angles is an array of Euler angles in radians, % size [3,s1,s2,...] or [s1,3,s2,...], or % (ang1, ang2, ang3) are arrays or scalars of % Euler angles in radians, q is size % [s1,s2,...], quaternions normalized to 1 % equivalent to Euler Angle rotations % q = quaternion.rotateutov(u,v,dimu,dimv) % quaternions normalized to 1 that rotate 3 % element vectors u into the directions of 3 % element vectors v % q = quaternion.rotationmatrix(R) % R is an array of rotation or Direction Cosine % Matrices size [3,3,s1,s2,...] with det(R) == 1, % q(i1,i2,...) = quaternions normalized to 1, % equivalent to R(1:3,1:3,i1,i2,...) % % Rotation methods (Mixed Case): % [angle,axis] = AngleAxis(q) angles in radians, unit vector rotation axes % equivalent to q % qd = Derivative(q,w) quaternion derivatives, w are 3 component % angular velocity vectors, qd = 0.5*q*quaternion(w) % angles = EulerAngles(q,axes) angles are 3 Euler angles equivalent to q, axes % are strings or cell strings, '123' = 'xyz', etc. % [omega,axis] = OmegaAxis(q,t,dim) % instantaneous angular velocities and rotation axes % PlotRotation(q,interval) plot columns of rotation matrices of q, % pause interval between figure updates in seconds % [q1,w1,t1] = PropagateEulerEq(q0,w0,I,t,@torque,odeoptions) % Euler equation numerical propagator, see % help quaternion.PropagateEulerEq % vp = RotateVector(q,v,dim) vp are 3 component vectors, rotations q acting % on vectors v, uses rotation matrix multiplication % vp = RotateVectorQ(q,v,dim) vp are 3 component vectors, rotations q acting % on vectors v, uses quaternion multiplication, % RotateVector is 7 times faster than RotateVectorQ % R = RotationMatrix(q) 3x3 rotation matrices equivalent to q % % Note: % In all rotation operations, the rotations operate from left to right on % 3x1 column vectors and create rotated vectors, not representations of % those vectors in rotated coordinate systems. % For Euler angles, '123' means rotate the vector about x first, about y % second, about z third, i.e.: % vp = rotate(z,angle(3)) * rotate(y,angle(2)) * rotate(x,angle(1)) * v % % Ordinary methods: % n = abs(q) quaternion norm, n = sqrt( sum( q.e.^2 )) % q3 = bsxfun(func,q1,q2) binary singleton expansion of operation func % c = complex(q) complex( real(q), imag(q) ) % qc = conj(q) quaternion conjugate, qc.e = % [q.e(1);-q.e(2);-q.e(3);-q.e(4)] % qt = ctranspose(q) qt = q'; quaternion conjugate transpose, % 2-D (or scalar) q only % qp = cumprod(q,dim) cumulative quaternion array product over % dimension dim % qs = cumsum(q,dim) cumulative quaternion array sum over dimension dim % qd = diff(q,ord,dim) quaternion array difference, order ord, over % dimension dim % ans = display(q) 'q = ( e(1) ) + i( e(2) ) + j( e(3) ) + k( e(4) )' % d = dot(q1,q2) quaternion element dot product, d = dot(q1.e,q2.e) % d = double(q) d = q.e; if size(q) == [s1,s2,...], size(d) == % [4,s1,s2,...] % l = eq(q1,q2) quaternion equality, l = all( q1.e == q2.e ) % l = equiv(q1,q2,tol) quaternion rotational equivalence, within % tolerance tol, l = (q1 == q2) | (q1 == -q2) % qe = exp(q) quaternion exponential, v = q.e(2:4), qe.e = % exp(q.e(1))*[cos(|v|);v.*sin(|v|)./|v|] % ei = imag(q) imaginary e(2) components % qi = interp1(t,q,ti,method) interpolate quaternion array % qi = inverse(q) quaternion inverse, qi = conj(q)./norm(q).^2, % q .* qi = qi .*.q = 1 for q ~= 0 % l = isequal(q1,q2,...) true if equal sizes and values % l = isequaln(q1,q2,...) true if equal including NaNs % l = isequalwithequalnans(q1,q2,...) true if equal including NaNs % l = isfinite(q) true if all( isfinite( q.e )) % l = isinf(q) true if any( isinf( q.e )) % l = isnan(q) true if any( isnan( q.e )) % ej = jmag(q) e(3) components % ek = kmag(q) e(4) components % q3 = ldivide(q1,q2) quaternion left division, q3 = q1 \. q2 = % inverse(q1) *. q2 % ql = log(q) quaternion logarithm, v = q.e(2:4), ql.e = % [log(|q|);v.*acos(q.e(1)./|q|)./|v|] % q3 = minus(q1,q2) quaternion subtraction, q3 = q1 - q2 % q3 = mldivide(q1,q2) left division only defined for scalar q1 % qp = mpower(q,p) quaternion matrix power, qp = q^p, p scalar % integer >= 0, q square quaternion matrix % q3 = mrdivide(q1,q2) right division only defined for scalar q2 % q3 = mtimes(q1,q2) 2-D matrix quaternion multiplication, q3 = q1 * q2 % l = ne(q1,q2) quaternion inequality, l = ~all( q1.e == q2.e ) % n = norm(q) quaternion norm, n = sqrt( sum( q.e.^2 )) % [q,n] = normalize(q) make quaternion norm == 1, unless q == 0, % n = matrix of previous norms % q3 = plus(q1,q2) quaternion addition, q3 = q1 + q2 % qp = power(q,p) quaternion power, qp = q.^p % qp = prod(q,dim) quaternion array product over dimension dim % qp = product(q1,q2) quaternion product of scalar quaternions, % qp = q1 .* q2, noncommutative % q3 = rdivide(q1,q2) quaternion right division, q3 = q1 ./ q2 = % q1 .* inverse(q2) % er = real(q) real e(1) components % qs = slerp(q0,q1,t) quaternion spherical linear interpolation % qr = sqrt(q) qr = q.^0.5, square root % qs = sum(q,dim) quaternion array sum over dimension dim % q3 = times(q1,q2) matrix component quaternion multiplication, % q3 = q1 .* q2, noncommutative % qm = uminus(q) quaternion negation, qm = -q % qp = uplus(q) quaternion unitary plus, qp = +q % ev = vector(q) vector e(2:4) components % % Author: % Mark Tincknell, MIT LL, 29 July 2011, revised 22 November 2013 properties (SetAccess = protected) e = zeros(4,1); end % properties % Array constructors methods function q = quaternion( varargin ) % (constructor) perm = []; sqz = false; switch nargin case 0 % nargin == 0 q.e = zeros(4,1); return; case 1 % nargin == 1 siz = size( varargin{1} ); nel = prod( siz ); if nel == 0 q = quaternion.empty; return; elseif isa( varargin{1}, 'quaternion' ) q = varargin{1}; return; elseif (nel == 1) || ~isreal( varargin{1}(:) ) for iel = nel : -1 : 1 q(iel).e = chop( [real(varargin{1}(iel)); ... imag(varargin{1}(iel)); ... 0; ... 0] ); end q = reshape( q, siz ); return; end [arg4, dim4, perm4] = finddim( varargin{1}, 4 ); if dim4 > 0 siz(dim4) = 1; nel = prod( siz ); if dim4 > 1 perm = perm4; else sqz = true; end for iel = nel : -1 : 1 q(iel).e = chop( arg4(:,iel) ); end else [arg3, dim3, perm3] = finddim( varargin{1}, 3 ); if dim3 > 0 siz(dim3) = 1; nel = prod( siz ); if dim3 > 1 perm = perm3; else sqz = true; end for iel = nel : -1 : 1 q(iel).e = chop( [0; arg3(:,iel)] ); end else error( 'Invalid input' ); end end case 2 % nargin == 2 % real-imaginary only (no j or k) inputs na = cellfun( 'prodofsize', varargin ); [nel, jel] = max( na ); if ~all( (na == 1) | (na == nel) ) error( 'All inputs must be singletons or have the same number of elements' ); end siz = size( varargin{jel} ); for iel = nel : -1 : 1 q(iel).e = chop( [varargin{1}(min(iel,na(1))); ... varargin{2}(min(iel,na(2))); ... 0; 0] ); end case 3 % nargin == 3 % vector inputs (no real, only i, j, k) na = cellfun( 'prodofsize', varargin ); [nel, jel] = max( na ); if ~all( (na == 1) | (na == nel) ) error( 'All inputs must be singletons or have the same number of elements' ); end siz = size( varargin{jel} ); for iel = nel : -1 : 1 q(iel).e = chop( [0; ... varargin{1}(min(iel,na(1))); ... varargin{2}(min(iel,na(2))); ... varargin{3}(min(iel,na(3)))] ); end otherwise % nargin >= 4 na = cellfun( 'prodofsize', varargin ); [nel, jel] = max( na ); if ~all( (na == 1) | (na == nel) ) error( 'All inputs must be singletons or have the same number of elements' ); end siz = size( varargin{jel} ); for iel = nel : -1 : 1 q(iel).e = chop( [varargin{1}(min(iel,na(1))); ... varargin{2}(min(iel,na(2))); ... varargin{3}(min(iel,na(3))); ... varargin{4}(min(iel,na(4)))] ); end end % switch nargin if nel == 0 q = quaternion.empty; end q = reshape( q, siz ); if ~isempty( perm ) q = ipermute( q, perm ); end if sqz q = squeeze( q ); end end % quaternion (constructor) % Ordinary methods function n = abs( q ) n = q.norm; end % abs function q3 = bsxfun( func, q1, q2 ) % function q3 = bsxfun( func, q1, q2 ) % Binary Singleton Expansion for quaternion arrays. Apply the element by % element binary operation specified by the function handle func to arrays % q1 and q2. All dimensions of q1 and q2 must either agree or be length 1. % Inputs: % func function handle (e.g. @plus) of quaternion function or operator % q1(n1) quaternion array % q2(n2) quaternion array % Output: % q3(n3) quaternion array of function or operator outputs % size(q3) = max( size(q1), size(q2) ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end s1 = size( q1 ); s2 = size( q2 ); nd1 = length( s1 ); nd2 = length( s2 ); s1 = [s1, ones(1,nd2-nd1)]; s2 = [s2, ones(1,nd1-nd2)]; if ~all( (s1 == s2) | (s1 == 1) | (s2 == 1) ) error( 'Non-singleton dimensions of q1 and q2 must match each other' ); end c1 = num2cell( s1 ); c2 = num2cell( s2 ); s3 = max( s1, s2 ); nd3 = length( s3 ); n3 = prod( s3 ); q3 = quaternion.nan( s3 ); for i3 = 1 : n3 [ix3{1:nd3}] = ind2sub( s3, i3 ); ix1 = cellfun( @min, ix3, c1, 'UniformOutput', false ); ix2 = cellfun( @min, ix3, c2, 'UniformOutput', false ); q3(i3) = func( q1(ix1{:}), q2(ix2{:}) ); end end % bsxfun function c = complex( q ) c = complex( real( q ), imag( q )); end % complex function qc = conj( q ) d = double( q ); qc = reshape( quaternion( d(1,:), -d(2,:), -d(3,:), -d(4,:) ), ... size( q )); end % conj function qt = ctranspose( q ) qt = transpose( q.conj ); end % ctranspose function qp = cumprod( q, dim ) % function qp = cumprod( q, dim ) % cumulative quaternion array product, dim defaults to first dimension of % length > 1 if isempty( q ) qp = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end qp = q; for is = 2 : size(q,1) qp(is,:) = qp(is-1,:) .* q(is,:); end if dim > 1 qp = ipermute( qp, perm ); end end % cumprod function qs = cumsum( q, dim ) % function qs = cumsum( q, dim ) % cumulative quaternion array sum, dim defaults to first dimension of % length > 1 if isempty( q ) qs = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end qs = q; for is = 2 : size(q,1) qs(is,:) = qs(is-1,:) + q(is,:); end if dim > 1 qs = ipermute( qs, perm ); end end % cumsum function qd = diff( q, ord, dim ) % function qd = diff( q, ord, dim ) % quaternion array difference, ord is the order of difference (default = 1) % dim defaults to first dimension of length > 1 if isempty( q ) qd = q; return; end if (nargin < 2) || isempty( ord ) ord = 1; end if ord <= 0 qd = q; return; end if (nargin < 3) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end siz = size( q ); if siz(1) <= 1 qd = quaternion.empty; return; end qd = quaternion.zeros( [(siz(1)-1), siz(2:end)] ); for is = 1 : siz(1)-1 qd(is,:) = q(is+1,:) - q(is,:); end ord = ord - 1; if ord > 0 qd = diff( qd, ord, 1 ); end if dim > 1 qd = ipermute( qd, perm ); end end % diff function display( q ) if ~isequal( get(0,'FormatSpacing'), 'compact' ) disp(' '); end if isempty( q ) fprintf( '%s \t= ([]) + i([]) + j([]) + k([])\n', inputname(1) ) return; end siz = size( q ); nel = [1 cumprod( siz )]; ndm = length( siz ); for iel = 1 : nel(end) if nel(end) == 1 sub = ''; else sub = ')'; jel = iel - 1; for idm = ndm : -1 : 1 idx = floor( jel / nel(idm) ) + 1; sub = [',' int2str(idx) sub]; %#ok<AGROW> jel = rem( jel, nel(idm) ); end sub(1) = '('; end fprintf( '%s%s \t= (%-12.5g) + i(%-12.5g) + j(%-12.5g) + k(%-12.5g)\n', ... inputname(1), sub, q(iel).e ) end end % display function d = dot( q1, q2 ) % function d = dot( q1, q2 ) % quaternion element dot product: d = dot( q1.e, q2.e ), using binary % singleton expansion of quaternion arrays % dn = dot( q1, q2 )/( norm(q1) * norm(q2) ) is the cosine of the angle in % 4D space between 4D vectors q1.e and q2.e d = squeeze( sum( bsxfun( @times, double( q1 ), double( q2 )), 1 )); end % dot function d = double( q ) siz = size( q ); d = reshape( [q.e], [4 siz] ); d = chop( d ); end % double function l = eq( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) l = logical([]); return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end l = bsxfun( @eq, [q1.e], [q2.e] ); l = reshape( all( l, 1 ), siz ); end % eq function l = equiv( q1, q2, tol ) % function l = equiv( q1, q2, tol ) % quaternion rotational equivalence, within tolerance tol, % l = (q1 == q2) | (q1 == -q2) % optional argument tol (default = eps) sets tolerance for difference % from exact equality if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end if (nargin < 3) || isempty( tol ) tol = eps; end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) l = logical([]); return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end dm = chop( bsxfun( @minus, [q1.e], [q2.e] ), tol ); dp = chop( bsxfun( @plus, [q1.e], [q2.e] ), tol ); l = all( (dm == 0) | (dp == 0), 1 ); l = reshape( l, siz ); end % equiv function qe = exp( q ) % function qe = exp( q ) % quaternion exponential, v = q.e(2:4), % qe.e = exp(q.e(1))*[cos(|v|);v.*sin(|v|)./|v|] d = double( q ); siz = size( d ); od = ones( 1, ndims( q )); vn = reshape( sqrt( sum( d(2:4,:).^2, 1 )), [1 siz(2:end)] ); cv = cos( vn ); sv = sin( vn ); n0 = vn ~= 0; sv(n0) = sv(n0) ./ vn(n0); sv = repmat( sv, [3, od] ); ex = repmat( reshape( exp( d(1,:) ), [1 siz(2:end)] ), [4, od] ); de = ex .* [ cv; sv .* reshape( d(2:4,:), [3 siz(2:end)] )]; qe = reshape( quaternion( de(1,:), de(2,:), de(3,:), de(4,:) ), ... size( q )); end % exp function ei = imag( q ) siz = size( q ); d = double( q ); ei = reshape( d(2,:), siz ); end % imag function qi = interp1( varargin ) % function qi = interp1( t, q, ti, method ) or % qi = q.interp1( t, ti, method ) or % qi = interp1( q, ti, method ) % Interpolate quaternion array. If q are rotation quaternions (i.e. % normalized to 1), then -q is equivalent to q, and the sign of q to use as % the second knot of the interpolation is chosen by which ever is closer to % the first knot. Extrapolation (i.e. ti < min(t) or ti > max(t)) gives % qi = quaternion.nan. % Inputs: % t(nt) array of ordinates (e.g. times); if t is not provided t=1:nt % q(nt,nq) quaternion array % ti(ni) array of query (interpolation) points, t(1) <= ti <= t(end) % method [OPTIONAL] 'slerp' or 'linear'; default = 'slerp' % Output: % qi(ni,nq) interpolated quaternion array nna = nnz( ~cellfun( @ischar, varargin )); im = 4; if isa( varargin{1}, 'quaternion' ) q = varargin{1}; siq = size( q ); if nna == 2 if isrow( q ) t = (1 : siq(2)).'; else t = (1 : siq(1)).'; end ti = varargin{2}(:); im = 3; elseif isempty( varargin{2} ) if isrow( q ) t = (1 : siq(2)).'; else t = (1 : siq(1)).'; end ti = varargin{3}(:); else t = varargin{2}(:); ti = varargin{3}(:); end elseif isa( varargin{2}, 'quaternion' ) t = varargin{1}(:); q = varargin{2}; ti = varargin{3}(:); siq = size( q ); else error( 'Input q must be a quaterion' ); end neq = prod( siq ); if neq == 0 qi = quaternion.empty; return; end nt = numel( t ); if siq(1) == nt dim = 1; else [q, dim, perm] = finddim( q, nt ); if dim == 0 error( 'q must have a dimension the same size as t' ); end end iNf = interp1( t, (1:nt).', ti ); iN = max( 1, min( nt-1, floor( iNf ))); jN = max( 2, min( nt, ceil( iNf ))); iNm = repmat( iNf - iN, [1, neq / nt] ); % If q are rotation quaternions (i.e. all normalized to 1), then -q % represents the same rotation. Pick the sign of +/-q that has the closest % dot product to use as the second knot of the interpolation. qj = q(jN,:); if all( abs( norm( q(:) ) - 1 ) <= eps(16) ) qd = dot( q(iN,:), qj ); lq = qd < -qd; qj(lq) = -qj(lq); end if (length( varargin ) >= im) && ... (strncmpi( 'linear', varargin{im}, length( varargin{im} ))) qi = (1 - iNm) .* q(iN,:) + iNm .* qj; else qi = slerp( q(iN,:), qj, iNm ); end if length( siq ) > 2 sin = siq; sin(dim) = numel( ti ); sin = circshift( sin, [0, 1-dim] ); qi = reshape( qi, sin ); end if dim > 1 qi = ipermute( qi, perm ); end end % interp1 function qi = inverse( q ) % function qi = inverse( q ) % quaternion inverse, qi = conj(q)/norm(q)^2, q*qi = qi*q = 1 for q ~= 0 if isempty( q ) qi = q; return; end d = double( q ); d(2:4,:) = -d(2:4,:); n2 = repmat( sum( d.^2, 1 ), 4, ones( 1, ndims( d ) - 1 )); ne0 = n2 ~= 0; di = Inf( size( d )); di(ne0) = d(ne0) ./ n2(ne0); qi = reshape( quaternion( di(1,:), di(2,:), di(3,:), di(4,:) ), ... size( q )); end % inverse function l = isequal( q1, varargin ) % function l = isequal( q1, q2, ... ) nar = numel( varargin ); if nar == 0 error( 'Not enough input arguments' ); end l = false; if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end si1 = size( q1 ); for iar = 1 : nar si2 = size( varargin{iar} ); if (length( si1 ) ~= length( si2 )) || ... ~all( si1 == si2 ) return; else if ~isa( varargin{iar}, 'quaternion' ) q2 = quaternion( ... real(varargin{iar}), imag(varargin{iar}), 0, 0 ); else q2 = varargin{iar}; end if ~isequal( [q1.e], [q2.e] ) return; end end end l = true; end % isequal function l = isequaln( q1, varargin ) % function l = isequaln( q1, q2, ... ) nar = numel( varargin ); if nar == 0 error( 'Not enough input arguments' ); end l = false; if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end si1 = size( q1 ); for iar = 1 : nar si2 = size( varargin{iar} ); if (length( si1 ) ~= length( si2 )) || ... ~all( si1 == si2 ) return; else if ~isa( varargin{iar}, 'quaternion' ) q2 = quaternion( ... real(varargin{iar}), imag(varargin{iar}), 0, 0 ); else q2 = varargin{iar}; end if ~isequaln( [q1.e], [q2.e] ) return; end end end l = true; end % isequaln function l = isequalwithequalnans( q1, varargin ) % function l = isequalwithequalnans( q1, q2, ... ) nar = numel( varargin ); if nar == 0 error( 'Not enough input arguments' ); end l = false; if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end si1 = size( q1 ); for iar = 1 : nar si2 = size( varargin{iar} ); if (length( si1 ) ~= length( si2 )) || ... ~all( si1 == si2 ) return; else if ~isa( varargin{iar}, 'quaternion' ) q2 = quaternion( ... real(varargin{iar}), imag(varargin{iar}), 0, 0 ); else q2 = varargin{iar}; end if ~isequalwithequalnans( [q1.e], [q2.e] ) %#ok<FPARK> return; end end end l = true; end % isequalwithequalnans function l = isfinite( q ) % function l = isfinite( q ), l = all( isfinite( q.e )) d = [q.e]; l = reshape( all( isfinite( d ), 1 ), size( q )); end % isfinite function l = isinf( q ) % function l = isinf( q ), l = any( isinf( q.e )) d = [q.e]; l = reshape( any( isinf( d ), 1 ), size( q )); end % isinf function l = isnan( q ) % function l = isnan( q ), l = any( isnan( q.e )) d = [q.e]; l = reshape( any( isnan( d ), 1 ), size( q )); end % isnan function ej = jmag( q ) siz = size( q ); d = double( q ); ej = reshape( d(3,:), siz ); end % jmag function ek = kmag( q ) siz = size( q ); d = double( q ); ek = reshape( d(4,:), siz ); end % kmag function q3 = ldivide( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ~isequal( si1, si2 ) && (ne1 ~= 1) && (ne2 ~= 1) error( 'Matrix dimensions must agree' ); end for iel = max( ne1, ne2 ) : -1 : 1 q3(iel) = product( q1(min(iel,ne1)).inverse, ... q2(min(iel,ne2)) ); end if ne2 > ne1 q3 = reshape( q3, si2 ); else q3 = reshape( q3, si1 ); end end % ldivide function ql = log( q ) % function ql = log( q ) % quaternion logarithm, v = q.e(2:4), ql.e = [log(|q|);v.*acos(q.e(1)./|q|)./|v|] % logarithm of negative real quaternions is ql.e = [log(|q|);pi;0;0] d = double( q ); d2 = d.^2; siz = size( d ); od = ones( 1, ndims( q )); [vn,qn] = deal( zeros( [1 siz(2:end)] )); vn(:) = sqrt( sum( d2(2:4,:), 1 )); qn(:) = sqrt( sum( d2(1:4,:), 1 )); lq = log( qn ); d1 = reshape( d(1,:), [1 siz(2:end)] ); nq = qn ~= 0; d1(nq) = d1(nq) ./ qn(nq); ac = acos( d1 ); nv = vn ~= 0; ac(nv) = ac(nv) ./ vn(nv); ac = reshape( repmat( ac, [3, od] ), 3, [] ); va = reshape( d(2:4,:) .* ac, [3 siz(2:end)] ); nn = (d1 < 0) & (vn == 0); va(1,nn)= pi; dl = [ lq; va ]; ql = reshape( quaternion( dl(1,:), dl(2,:), dl(3,:), dl(4,:) ), ... size( q )); end % log function q3 = minus( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end d3 = bsxfun( @minus, [q1.e], [q2.e] ); q3 = quaternion( d3(1,:), d3(2,:), d3(3,:), d3(4,:) ); q3 = reshape( q3, siz ); end % minus function q3 = mldivide( q1, q2 ) % function q3 = mldivide( q1, q2 ), left division only defined for scalar q1 if numel( q1 ) > 1 error( 'Left matix division undefined for quaternion arrays' ); end q3 = ldivide( q1, q2 ); end % mldivide function qp = mpower( q, p ) % function qp = mpower( q, p ), quaternion matrix power siq = size( q ); neq = prod( siq ); nep = numel( p ); if neq == 1 qp = power( q, p ); return; elseif isa( p, 'quaternion' ) error( 'Quaternion as matrix exponent is not defined' ); end if (neq == 0) || (nep == 0) qp = quaternion.empty; return; elseif (nep > 1) || (mod( p, 1 ) ~= 0) || (p < 0) || ... (numel( siq ) > 2) || (siq(1) ~= siq(2)) error( 'Inputs must be a scalar non-negative integer power and a square quaternion matrix' ); elseif p == 0 qp = quaternion.eye( siq(1) ); return; end qp = q; for ip = 2 : p qp = qp * q; end end % mpower function q3 = mrdivide( q1, q2 ) % function q3 = mrdivide( q1, q2 ), right division only defined for scalar q2 if numel( q2 ) > 1 error( 'Right matix division undefined for quaternion arrays' ); end q3 = rdivide( q1, q2 ); end % mrdivide function q3 = mtimes( q1, q2 ) % function q3 = mtimes( q1, q2 ) % q3 = matrix quaternion product of 2-D conformable quaternion matrices q1 % and q2 if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 1) || (ne2 == 1) q3 = times( q1, q2 ); return; end if (length( si1 ) ~= 2) || (length( si2 ) ~= 2) error( 'Input arguments must be 2-D' ); end if si1(2) ~= si2(1) error( 'Inner matrix dimensions must agree' ); end q3 = repmat( quaternion, [si1(1) si2(2)] ); for i1 = 1 : si1(1) for i2 = 1 : si2(2) for i3 = 1 : si1(2) q3(i1,i2) = q3(i1,i2) + product( q1(i1,i3), q2(i3,i2) ); end end end end % mtimes function l = ne( q1, q2 ) l = ~eq( q1, q2 ); end % ne function n = norm( q ) n = shiftdim( sqrt( sum( double( q ).^2, 1 )), 1 ); end % norm function [q, n] = normalize( q ) % function [q, n] = normalize( q ) % q = quaternions with norm == 1 (unless q == 0), n = former norms siz = size( q ); nel = prod( siz ); if nel == 0 if nargout > 1 n = zeros( siz ); end return; elseif nel > 1 nel = []; end d = double( q ); n = sqrt( sum( d.^2, 1 )); if all( n(:) == 1 ) if nargout > 1 n = shiftdim( n, 1 ); end return; end n4 = repmat( n, 4, nel ); ne0 = (n4 ~= 0) & (n4 ~= 1); d(ne0) = d(ne0) ./ n4(ne0); q = reshape( quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ), siz ); if nargout > 1 n = shiftdim( n, 1 ); end end % normalize function q3 = plus( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ne1 == 1 siz = si2; elseif ne2 == 1 siz = si1; elseif isequal( si1, si2 ) siz = si1; else error( 'Matrix dimensions must agree' ); end d3 = bsxfun( @plus, [q1.e], [q2.e] ); q3 = quaternion( d3(1,:), d3(2,:), d3(3,:), d3(4,:) ); q3 = reshape( q3, siz ); end % plus function qp = power( q, p ) % function qp = power( q, p ), quaternion power siq = size( q ); sip = size( p ); neq = prod( siq ); nep = prod( sip ); if (neq == 0) || (nep == 0) qp = quaternion.empty; return; elseif ~isequal( siq, sip ) && (neq ~= 1) && (nep ~= 1) error( 'Matrix dimensions must agree' ); end qp = exp( p .* log( q )); end % power function qp = prod( q, dim ) % function qp = prod( q, dim ) % quaternion array product over dimension dim % dim defaults to first dimension of length > 1 if isempty( q ) qp = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end siz = size( q ); qp = reshape( q(1,:), [1 siz(2:end)] ); for is = 2 : siz(1) qp(1,:) = qp(1,:) .* q(is,:); end if dim > 1 qp = ipermute( qp, perm ); end end % prod function q3 = product( q1, q2 ) % function q3 = product( q1, q2 ) % q3 = quaternion product of scalar quaternions q1 and q2 if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end if (numel( q1 ) ~= 1) || (numel( q2 ) ~= 1) error( 'product not defined for arrays, use mtimes or times' ); end ee = q1.e * q2.e.'; eo = [ee(1,1) - ee(2,2) - ee(3,3) - ee(4,4); ... ee(1,2) + ee(2,1) + ee(3,4) - ee(4,3); ... ee(1,3) - ee(2,4) + ee(3,1) + ee(4,2); ... ee(1,4) + ee(2,3) - ee(3,2) + ee(4,1)]; eo = chop( eo ); q3 = quaternion( eo(1), eo(2), eo(3), eo(4) ); end % product function q3 = rdivide( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ~isequal( si1, si2 ) && (ne1 ~= 1) && (ne2 ~= 1) error( 'Matrix dimensions must agree' ); end for iel = max( ne1, ne2 ) : -1 : 1 q3(iel) = product( q1(min(iel,ne1)), ... q2(min(iel,ne2)).inverse ); end if ne2 > ne1 q3 = reshape( q3, si2 ); else q3 = reshape( q3, si1 ); end end % rdivide function er = real( q ) siz = size( q ); d = double( q ); er = reshape( d(1,:), siz ); end % real function qs = slerp( q0, q1, t ) % function qs = slerp( q0, q1, t ) % quaternion spherical linear interpolation, qs = q0.*(q0.inverse.*q1).^t, % default t = 0.5; see http://en.wikipedia.org/wiki/Slerp if (nargin < 3) || isempty( t ) t = 0.5; end qs = q0 .* (q0.inverse .* q1).^t; end % slerp function qr = sqrt( q ) qr = q.^0.5; end % sqrt function qs = sum( q, dim ) % function qs = sum( q, dim ) % quaternion array sum over dimension dim % dim defaults to first dimension of length > 1 if isempty( q ) qs = q; return; end if (nargin < 2) || isempty( dim ) [q, dim, perm] = finddim( q, -2 ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end siz = size( q ); qs = reshape( q(1,:), [1 siz(2:end)] ); for is = 2 : siz(1) qs(1,:) = qs(1,:) + q(is,:); end if dim > 1 qs = ipermute( qs, perm ); end end % sum function q3 = times( q1, q2 ) if ~isa( q1, 'quaternion' ) q1 = quaternion( real(q1), imag(q1), 0, 0 ); end if ~isa( q2, 'quaternion' ) q2 = quaternion( real(q2), imag(q2), 0, 0 ); end si1 = size( q1 ); si2 = size( q2 ); ne1 = prod( si1 ); ne2 = prod( si2 ); if (ne1 == 0) || (ne2 == 0) q3 = quaternion.empty; return; elseif ~isequal( si1, si2 ) && (ne1 ~= 1) && (ne2 ~= 1) error( 'Matrix dimensions must agree' ); end for iel = max( ne1, ne2 ) : -1 : 1 q3(iel) = product( q1(min(iel,ne1)), q2(min(iel,ne2)) ); end if ne2 > ne1 q3 = reshape( q3, si2 ); else q3 = reshape( q3, si1 ); end end % times function qm = uminus( q ) d = -double( q ); qm = reshape( quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ), ... size( q )); end % uminus function qp = uplus( q ) qp = q; end % uplus function ev = vector( q ) siz = size( q ); d = double( q ); ev = reshape( d(2:4,:), [3 siz] ); end % vector function [angle, axis] = AngleAxis( q ) % function [angle, axis] = AngleAxis( q ) or [angle, axis] = q.AngleAxis % Construct angle-axis pairs equivalent to quaternion rotations % Input: % q quaternion array % Outputs: % angle rotation angles in radians, 0 <= angle <= 2*pi % axis 3xN or Nx3 rotation axis unit vectors % Note: angle and axis are constructed so at least 2 out of 3 elements of % axis are >= 0. siz = size( q ); ndm = length( siz ); [angle, s] = deal( zeros( siz )); axis = zeros( [3 siz] ); nel = prod( siz ); if nel == 0 return; end [q, n] = normalize( q ); d = double( q ); neg = repmat( reshape( d(1,:) < 0, [1 siz] ), ... [4, ones(1,ndm)] ); d(neg) = -d(neg); angle(1:end)= 2 * acos( d(1,:) ); s(1:end) = sin( 0.5 * angle ); angle(n==0) = 0; s(s==0) = 1; s3 = shiftdim( s, -1 ); axis(1:end) = bsxfun( @rdivide, reshape( d(2:4,:), [3 siz] ), s3 ); axis(1,(mod(angle,2*pi)==0)) = 1; angle = chop( angle ); axis = chop( axis ); % Flip axis so at least 2 out of 3 elements are >= 0 flip = (sum( axis < 0, 1 ) > 1) | ... ((sum( axis == 0, 1 ) == 2) & (any( axis < 0, 1 ) == 1)); angle(flip) = 2 * pi - angle(flip); flip = repmat( flip, [3, ones(1,ndm)] ); axis(flip) = -axis(flip); axis = squeeze( axis ); end % AngleAxis function qd = Derivative( varargin ) % function qd = Derivative( q, w ) or qd = q.Derivative( w ) % Inputs: % q quaternion array % w 3xN or Nx3 element angle rate vectors in radians/s % Output: % qd quaternion derivatives, qd = 0.5 * q * quaternion(w) if isa( varargin{1}, 'quaternion' ) qd = 0.5 .* varargin{1} .* quaternion( varargin{2} ); else qd = 0.5 .* varargin{2} .* quaternion( varargin{1} ); end end % Derivative function angles = EulerAngles( varargin ) % function angles = EulerAngles( q, axes ) or angles = q.EulerAngles( axes ) % Construct Euler angle triplets equivalent to quaternion rotations % Inputs: % q quaternion array % axes axes designation strings (e.g. '123' = xyz) or cell strings % (e.g. {'123'}) % Output: % angles 3 element Euler Angle vectors in radians ics = cellfun( @ischar, varargin ); if any( ics ) varargin{ics} = cellstr( varargin{ics} ); else ics = cellfun( @iscellstr, varargin ); end if ~any( ics ) error( 'Must provide axes as a string (e.g. ''123'') or cell string (e.g. {''123''})' ); end siv = cellfun( @size, varargin, 'UniformOutput', false ); axes = varargin{ics}; six = siv{ics}; nex = prod( six ); q = varargin{~ics}; siq = siv{~ics}; neq = prod( siq ); if neq == 1 siz = six; nel = nex; elseif nex == 1 siz = siq; nel = neq; elseif nex == neq siz = siq; nel = neq; else error( 'Must have compatible dimensions for quaternion and axes' ); end angles = zeros( [3 siz] ); q = normalize( q ); for jel = 1 : nel iel = min( jel, neq ); switch axes{min(jel,nex)} case {'121', 'xyx', 'XYX', 'iji'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(3)- ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1))); angles(2,iel) = acos(q(iel).e(1).^2+q(iel).e(2).^2- ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4))); case {'123', 'xyz', 'XYZ', 'ijk'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(4).*q(iel).e(3)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); case {'131', 'xzx', 'XZX', 'iki'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3))); angles(2,iel) = acos(q(iel).e(1).^2+q(iel).e(2).^2- ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(4)- ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1))); case {'132', 'xzy', 'XZY', 'ikj'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(4).*q(iel).e(3)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1))); angles(3,iel) = atan2(2.*(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); case {'212', 'yxy', 'YXY', 'jij'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2+ ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(3)- ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4))); case {'213', 'yxz', 'YXZ', 'jik'} angles(1,iel) = atan2(2.*(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(4).*q(iel).e(2)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4))); angles(3,iel) = atan2(2.*(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); case {'231', 'yzx', 'YZX', 'jki'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); case {'232', 'yzy', 'YZY', 'jkj'} angles(1,iel) = atan2((q(iel).e(3).*q(iel).e(4)- ... q(iel).e(2).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2+ ... q(iel).e(3).^2-q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3))); case {'312', 'zxy', 'ZXY', 'kij'} angles(1,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(3)+ ... q(iel).e(4).*q(iel).e(1)),(q(iel).e(1).^2- ... q(iel).e(2).^2+q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); case {'313', 'zxz', 'ZXZ', 'kik'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(4)- ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2- ... q(iel).e(3).^2+q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4))); case {'321', 'zyx', 'ZYX', 'kji'} angles(1,iel) = atan2(2.*(q(iel).e(4).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(3)),(q(iel).e(1).^2+ ... q(iel).e(2).^2-q(iel).e(3).^2-q(iel).e(4).^2)); angles(2,iel) = asin(2.*(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1))); angles(3,iel) = atan2(2.*(q(iel).e(2).*q(iel).e(1)- ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(1).^2- ... q(iel).e(2).^2-q(iel).e(3).^2+q(iel).e(4).^2)); case {'323', 'zyz', 'ZYZ', 'kjk'} angles(1,iel) = atan2((q(iel).e(2).*q(iel).e(1)+ ... q(iel).e(3).*q(iel).e(4)),(q(iel).e(3).*q(iel).e(1)- ... q(iel).e(2).*q(iel).e(4))); angles(2,iel) = acos(q(iel).e(1).^2-q(iel).e(2).^2- ... q(iel).e(3).^2+q(iel).e(4).^2); angles(3,iel) = atan2((q(iel).e(3).*q(iel).e(4)- ... q(iel).e(2).*q(iel).e(1)),(q(iel).e(2).*q(iel).e(4)+ ... q(iel).e(3).*q(iel).e(1))); otherwise error( 'Invalid output Euler angle axes' ); end % switch axes end % for iel angles = chop( angles ); end % EulerAngles function [omega, axis] = OmegaAxis( q, t, dim ) % function [omega, axis] = OmegaAxis( q, t, dim ) or % [omega, axis] = q.OmegaAxis( t, dim ) % Estimate instantaneous angular velocities and rotation axes from a time % series of quaternions. The angular velocity vector omegav is computed by: % omegav(:,1) = vector( 2*log( q(1) * inverse(q(2)) )/(t(2) - t(1)) ); % omegav(:,i) = vector(... % (log( q(i-1) * inverse(q(i)) ) + log( q(i) * inverse(q(i+1))) )/... % (0.5*(t(i+1) - t(i-1))) ); % omegav(:,end) = vector( 2*log( q(end-1) * inverse(q(end)) )/... % (t(end) - t(end-1)) ); % [axis, omega] = unitvector( omegav ); % Inputs: % q array of normalized (rotation) quaternions % t [OPT] array of monotonically increasing (or decreasing) times. % if omitted or empty, unit time steps are assumed. % t must either be a vector with the same length as dimension % dim of q, or the same size as q. % dim [OPT] dimension of q that is varying in time; if omitted or empty, % the first non-singleton dimension is used. % Outputs: % omega array of instantaneous angular velocities, radians/(unit time) % omega >= 0 % axis instantaneous 3D rotation axis unit vectors at each time if isempty( q ) omega = []; axis = []; return; end if (nargin < 3) || isempty( dim ) if (nargin > 1) && ~isempty( t ) siq = size( q ); sit = size( t ); if isequal( siq, sit ) dim = find( siq > 1, 1 ); else dim = find( siq == length( t ), 1 ); end if isempty( dim ) error( 'size of t must agree with at least one dimension of q' ); elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); if isequal( siq, sit ) t = permute( t, perm ); end end else [q, dim, perm] = finddim( q, -2 ); if dim == 0 omega = 0; axis = unitvector( q.e(2:4), 1 ); return; end end elseif dim > 1 ndm = ndims( q ); perm = [ dim : ndm, 1 : dim-1 ]; q = permute( q, perm ); end n = norm( q ); if ~all( abs( n(:) - 1 ) < eps(16) ) error( 'q must be normalized' ); end siq = size( q ); if (nargin < 2) || isempty( t ) t = repmat( (0 : (siq(1)-1)).', [1 siq(2:end)] ); elseif length( t ) == siq(1) t = repmat( t(:), [1 siq(2:end)] ); elseif ~isequal( siq, size( t )) error( 'size of t must match size of q' ); end dt = zeros( siq ); difft = diff( t, 1 ); dt(1,:) = difft(1,:); dt(2:end-1,:) = 0.5 *( difft(1:end-1,:) + difft(2:end,:) ); dt(end,:) = difft(end,:); dq = quaternion.zeros( siq ); q1iq2 = q(1:end-1,:) .* inverse( q(2:end,:) ); neg = real( q1iq2 ) < 0; q1iq2(neg) = -q1iq2(neg); % keep real element >= 0 derivq = log( q1iq2 ); dq(1,:) = 2 .* derivq(1,:); dq(2:end-1,:) = derivq(1:end-1,:) + derivq(2:end,:); dq(end,:) = 2 .* derivq(end,:); omegav = vector( dq ); % angular velocity vectors [axis, omega] = unitvector( omegav, 1 ); omega = reshape( omega(1,:), siq )./ dt; axis = -axis; if dim > 1 axis = ipermute( axis, [1, 1+perm] ); omega = ipermute( omega, perm ); end end % OmegaAxis function PlotRotation( q, interval ) % function PlotRotation( q, interval ) or q.PlotRotation( interval ) % Inputs: % q quaternion array % interval pause between figure updates in seconds, default = 0.1 % Output: % figure plotting the 3 Cartesian axes orientations for the series of % quaternions in array q if (nargin < 2) || isempty( interval ) interval = 0.1; end nel = numel( q ); or = zeros(1,3); ax = eye(3); alx = zeros( nel, 3, 3 ); figure; for iel = 1 : nel % plot3( [ or; ax(:,1).' ], [ or ; ax(:,2).' ], [ or; ax(:,3).' ], ':' ); plot3( [ or; ax(1,:) ], [ or ; ax(2,:) ], [ or; ax(3,:) ], ':' ); hold on set( gca, 'Xlim', [-1 1], 'Ylim', [-1 1], 'Zlim', [-1 1] ); xlabel( 'x' ); ylabel( 'y' ); zlabel( 'z' ); grid on nax = q(iel).RotationMatrix; alx(iel,:,:) = nax; % plot3( [ or; nax(:,1).' ], [ or ; nax(:,2).' ], [ or; nax(:,3).' ], '-', 'LineWidth', 2 ); plot3( [ or; nax(1,:) ], [ or ; nax(2,:) ], [ or; nax(3,:) ], '-', 'LineWidth', 2 ); % plot3( alx(1:iel,:,1), alx(1:iel,:,2), alx(1:iel,:,3), '*' ); plot3( squeeze(alx(1:iel,1,:)), squeeze(alx(1:iel,2,:)), squeeze(alx(1:iel,3,:)), '*' ); if interval pause( interval ); end hold off end end % PlotRotation function [q1, w1, t1] = PropagateEulerEq( q0, w0, I, t, torque, varargin ) % function [q1, w1, t1] = PropagateEulerEq( q0, w0, I, t, torque, odeoptions ) % Inputs: % q0 initial orientation quaternion (normalized, scalar) % w0(3) initial body frame angular velocity vector % I(3) principal body moments of inertia (if no torque, only % ratios of elements of I are used) % t(nt) initial and subsequent (or previous) times t = [t0,t1,...] % (monotonic) % @torque [OPTIONAL] function handle to calculate torque vector: % tau(1:3) = torque( t, y ), where y = [q.e(1:4); w(1:3)] % odeoptions [OPTIONAL] ode45 options % Outputs: % q1(1,nt) array of normalized quaternions at times t1 % w1(3,nt) array of body frame angular velocity vectors at times t1 % t1(1,nt) array of output times % Calls: % Derivative quaternion derivative method % odeset matlab ode options setter % ode45 matlab ode numerical differential equation integrator % torque [OPTIONAL] user-supplied torque as function of time, orientation, % and angular rates; default is no torque % Author: % Mark Tincknell, 20 December 2010 % modified 25 July 2012, enforce normalization of q0 and q1 options = odeset( varargin{:} ); q0 = q0.normalize; y0 = [q0.e; w0(:)]; I0 = [ (I(2) - I(3)) / I(1); (I(3) - I(1)) / I(2); (I(1) - I(2)) / I(3) ]; [T, Y] = ode45( @Euler, t, y0, options ); function yd = Euler( ti, yi ) qi = quaternion( yi(1), yi(2), yi(3), yi(4) ); wi = yi(5:7); qd = double( qi.Derivative( wi )); wd = [ wi(2) * wi(3) * I0(1); wi(3) * wi(1) * I0(2); wi(1) * wi(2) * I0(3) ]; if exist( 'torque', 'var' ) && isa( torque, 'function_handle' ) tau = torque( ti, yi ); wd = tau(:) ./ I + wd; end yd = [ qd; wd ]; end if numel(t) == 2 nT = 2; T = [T(1); T(end)]; Y = [Y(1,:); Y(end,:)]; else nT = length(T); end q1 = repmat( quaternion, [1 nT] ); w1 = zeros( [3 nT] ); t1 = T(:).'; for it = 1 : nT q1(it) = quaternion( Y(it,1), Y(it,2), Y(it,3), Y(it,4) ); w1(:,it) = Y(it,5:7).'; end q1 = q1.normalize; neg = real( q1 ) < 0; q1(neg) = -q1(neg); % keep real element >= 0 end % PropagateEulerEq function vp = RotateVector( varargin ) % function vp = RotateVector( q, v, dim ) or % vp = q.RotateVector( v, dim ) % 3x3 rotation matrices are created from q and matrix multiplication % rotates v into vp. RotateVector is 7 times faster than RotateVectorQ. % Inputs: % q quaternion array % v 3xN or Nx3 element Cartesian vectors % dim [OPTIONAL] dimension of v with size 3 to rotate % Output: % vp 3xN or Nx3 element rotated vectors if nargin < 2 error( 'RotateVector method requires 2 inputs: a vector and a quaternion' ); end if isa( varargin{1}, 'quaternion' ) q = varargin{1}; v = varargin{2}; else v = varargin{1}; q = varargin{2}; end if (nargin > 2) && ~isempty( varargin{3} ) dim = varargin{3}; if size( v, dim ) ~= 3 error( 'Dimension dim of vector v must be size 3' ); end if dim > 1 ndm = ndims( v ); perm = [ dim : ndm, 1 : dim-1 ]; v = permute( v, perm ); end else [v, dim, perm] = finddim( v, 3 ); if dim == 0 error( 'v must have a dimension of size 3' ); end end sip = size( v ); v = reshape( v, 3, [] ); nev = prod( sip )/ 3; R = q.RotationMatrix; siq = size( q ); neq = prod( siq ); if neq == nev vp = zeros( sip ); for iel = 1 : neq vp(:,iel) = R(:,:,iel) * v(:,iel); end if dim > 1 vp = ipermute( vp, perm ); end elseif nev == 1 siz = [3 siq]; vp = zeros( siz ); for iel = 1 : neq vp(:,iel) = R(:,:,iel) * v; end if siz(2) == 1 vp = squeeze( vp ); end elseif neq == 1 vp = R * v; vp = reshape( vp, sip ); if dim > 1 vp = ipermute( vp, perm ); end else error( 'q and v must have compatible dimensions' ); end end % RotateVector function vp = RotateVectorQ( varargin ) % function vp = RotateVectorQ( q, v, dim ) or % vp = q.RotateVectorQ( v, dim ) % quaternions are created from v and quaternion multiplication rotates v % into vp. RotateVector is 7 times faster than RotateVectorQ. % Inputs: % q quaternion array % v 3xN or Nx3 element Cartesian vectors % dim [OPTIONAL] dimension of v with size 3 to rotate % Output: % vp 3xN or Nx3 element rotated vectors if nargin < 2 error( 'RotateVectorQ method requires 2 inputs: a vector and a quaternion' ); end if isa( varargin{1}, 'quaternion' ) q = varargin{1}; v = varargin{2}; else v = varargin{1}; q = varargin{2}; end siv = size( v ); if (nargin > 2) && ~isempty( varargin{3} ) dim = varargin{3}; if size( v, dim ) ~= 3 error( 'Dimension dim of vector v must be size 3' ); end if dim > 1 ndm = ndims( v ); perm = [ dim : ndm, 1 : dim-1 ]; v = permute( v, perm ); end else [v, dim, perm] = finddim( v, 3 ); if dim == 0 error( 'v must have a dimension of size 3' ); end end sip = size( v ); qv = quaternion( v(1,:), v(2,:), v(3,:) ); qv = reshape( qv, [1 sip(2:end)] ); if dim > 1 qv = ipermute( qv, perm ); end q = q.normalize; qp = q .* qv .* q.conj; dp = qp.double; nev = prod( siv )/ 3; sqz = false; if nev == 1 siz = [3 size(q)]; if siz(2) == 1 sqz = true; end else siz = siv; end vp = reshape( dp(2:4,:), siz ); if sqz vp = squeeze( vp ); end end % RotateVectorQ function R = RotationMatrix( q ) % function R = RotationMatrix( q ) or R = q.RotationMatrix % Construct rotation (or direction cosine) matrices from quaternions % Input: % q quaternion array % Output: % R 3x3xN rotation (or direction cosine) matrices siz = size( q ); R = zeros( [3 3 siz] ); nel = prod( siz ); q = normalize( q ); for iel = 1 : nel e11 = q(iel).e(1)^2; e12 = q(iel).e(1) * q(iel).e(2); e13 = q(iel).e(1) * q(iel).e(3); e14 = q(iel).e(1) * q(iel).e(4); e22 = q(iel).e(2)^2; e23 = q(iel).e(2) * q(iel).e(3); e24 = q(iel).e(2) * q(iel).e(4); e33 = q(iel).e(3)^2; e34 = q(iel).e(3) * q(iel).e(4); e44 = q(iel).e(4)^2; R(:,:,iel) = ... [ e11 + e22 - e33 - e44, 2*(e23 - e14), 2*(e24 + e13); ... 2*(e23 + e14), e11 - e22 + e33 - e44, 2*(e34 - e12); ... 2*(e24 - e13), 2*(e34 + e12), e11 - e22 - e33 + e44 ]; end R = chop( R ); end % RotationMatrix end % methods % Static methods methods(Static) function q = angleaxis( angle, axis ) % function q = quaternion.angleaxis( angle, axis ) % Construct quaternions from rotation axes and rotation angles % Inputs: % angle array of rotation angles in radians % axis 3xN or Nx3 array of axes (need not be unit vectors) % Output: % q quaternion array sig = size( angle ); six = size( axis ); [axis, dim, perm] = finddim( axis, 3 ); if dim == 0 error( 'axis must have a dimension of size 3' ); end neg = prod( sig ); nex = prod( six )/ 3; if neg == 1 siz = six; siz(dim)= 1; nel = nex; elseif nex == 1 siz = sig; nel = neg; elseif nex == neg siz = sig; nel = neg; else error( 'angle and axis must have compatible sizes' ); end for iel = nel : -1 : 1 d(:,iel) = AngAxis2e( angle(min(iel,neg)), axis(:,min(iel,nex)) ); end q = quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ); q = reshape( q, siz ); if neg == 1 q = ipermute( q, perm ); end end % quaternion.angleaxis function q = eulerangles( varargin ) % function q = quaternion.eulerangles( axes, angles ) OR % function q = quaternion.eulerangles( axes, ang1, ang2, ang3 ) % Construct quaternions from triplets of axes and Euler angles % Inputs: % axes string array or cell string array % '123' = 'xyz' = 'XYZ' = 'ijk', etc. % angles 3xN or Nx3 array of angles in radians OR % ang1, ang2, ang3 arrays of angles in radians % Output: % q quaternion array ics = cellfun( @ischar, varargin ); if any( ics ) varargin{ics} = cellstr( varargin{ics} ); else ics = cellfun( @iscellstr, varargin ); end siv = cellfun( @size, varargin, 'UniformOutput', false ); axes = varargin{ics}; six = siv{ics}; nex = prod( six ); dim = 1; if nargin == 2 % angles is 3xN or Nx3 array angles = varargin{~ics}; sig = siv{~ics}; [angles, dim, perm] = finddim( angles, 3 ); if dim == 0 error( 'Must supply 3 Euler angles' ); end sig(dim) = 1; neg = prod( sig ); if nex == 1 siz = sig; elseif neg == 1 siz = six; elseif nex == neg siz = sig; end nel = prod( siz ); for iel = nel : -1 : 1 q(iel) = EulerAng2q( axes{min(iel,nex)}, ... angles(:,min(iel,neg)) ); end elseif nargin == 4 % each of 3 angles is separate input argument angles = varargin(~ics); na = cellfun( 'prodofsize', angles ); [neg, jeg] = max( na ); if ~all( (na == 1) | (na == neg) ) error( 'All angles must be singletons or have the same number of elements' ); end sig = size( angles{jeg} ); if nex == 1 siz = sig; elseif neg == 1 siz = six; elseif nex == neg siz = sig; end nel = prod( siz ); for iel = nel : -1 : 1 q(iel) = EulerAng2q( axes{min(iel,nex)}, ... [angles{1}(min(iel,na(1))), ... angles{2}(min(iel,na(2))), ... angles{3}(min(iel,na(3)))] ); end else error( 'Must supply either 2 or 4 input arguments' ); end % if nargin q = reshape( q, siz ); if (dim > 1) && isequal( siz, sig ) q = ipermute( q, perm ); end if ~ismatrix( q ) && (size( q, 1 ) == 1) q = shiftdim( q, 1 ); end end % quaternion.eulerangles function q = eye( N ) % function q = eye( N ) if nargin < 1 N = 1; end if isempty(N) || (N <= 0) q = quaternion.empty; else q = quaternion( eye(N), 0, 0, 0 ); end end % quaternion.eye function q = nan( varargin ) % function q = quaternion.nan( siz ) if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = reshape( quaternion.empty, siz ); else q = quaternion( nan(siz), nan, nan, nan ); end end % quaternion.nan function q = NaN( varargin ) % function q = quaternion.NaN( siz ) q = quaternion.nan( varargin{:} ); end % quaternion.NaN function q = ones( varargin ) % function q = quaternion.ones( siz ) if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = reshape( quaternion.empty, siz ); else q = quaternion( ones(siz), 0, 0, 0 ); end end % quaternion.ones function q = rand( varargin ) % function q = quaternion.rand( siz ) % Input: % siz size of output array q % Output: % q uniform random quaternions, NOT normalized to 1, % 0 <= q.e(1) <= 1, -1 <= q.e(2:4) <= 1 if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = quaternion.empty; return; end d = [ rand( [1, siz] ); 2 * rand( [3, siz] ) - 1 ]; q = quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ); q = reshape( q, siz ); end % quaternion.rand function q = randRot( varargin ) % function q = quaternion.randRot( siz ) % Random quaternions uniform in rotation space % Input: % siz size of output array q % Output: % q random quaternions, normalized to 1, 0 <= q.e(1) <= 1, % uniform over the 3D surface of a 4 dimensional hypersphere if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = quaternion.empty; return; end d = randn( [4, prod( siz )] ); n = sqrt( sum( d.^2, 1 )); dn = bsxfun( @rdivide, d, n ); neg = dn(1,:) < 0; dn(:,neg) = -dn(:,neg); q = quaternion( dn(1,:), dn(2,:), dn(3,:), dn(4,:) ); q = reshape( q, siz ); end % quaternion.randRot function q = rotateutov( u, v, dimu, dimv ) % function q = quaternion.rotateutov( u, v, dimu, dimv ) % Construct quaternions to rotate vectors u into directions of vectors v % Inputs: % u 3x1 or 3xN or 1x3 or Nx3 arrays of vectors % v 3x1 or 3xN or 1x3 or Nx3 arrays of vectors % dimu [OPTIONAL] dimension of u with size 3 to use % dimv [OPTIONAL] dimension of v with size 3 to use % Output: % q quaternion array if (nargin < 3) || isempty( dimu ) [u, dimu, permu] = finddim( u, 3 ); if dimu == 0 error( 'u must have a dimension of size 3' ); end elseif dimu > 1 ndmu = ndims( u ); permu = [ dimu : ndmu, 1 : dimu-1 ]; u = permute( u, permu ); else permu = 1 : ndims(u); end siu = size( u ); siu(1) = 1; neu = prod( siu ); if (nargin < 4) || isempty( dimv ) [v, dimv, permv] = finddim( v, 3 ); if dimv == 0 error( 'v must have a dimension of size 3' ); end elseif dimv > 1 ndmv = ndims( v ); permv = [ dimv : ndmv, 1 : dimv-1 ]; v = permute( v, permv ); else permv = 1 : ndims(v); end siv = size( v ); siv(1) = 1; nev = prod( siv ); if neu == nev siz = siu; nel = neu; perm = permu; dim = dimu; elseif (neu > 1) && (nev == 1) siz = siu; nel = neu; perm = permu; dim = dimu; elseif (neu == 1) && (nev > 1) siz = siv; nel = nev; perm = permv; dim = dimv; else error( 'Number of 3 element vectors in u and v must be 1 or equal' ); end for iel = nel : -1 : 1 q(iel) = UV2q( u(:,min(iel,neu)), v(:,min(iel,nev)) ); end if dim > 1 q = ipermute( reshape( q, siz ), perm ); end end % quaternion.rotateutov function q = rotationmatrix( R ) % function q = quaternion.rotationmatrix( R ) % Construct quaternions from rotation (or direction cosine) matrices % Input: % R 3x3xN rotation (or direction cosine) matrices % Output: % q quaternion array siz = [size(R) 1 1]; if ~all( siz(1:2) == [3 3] ) || ... (abs( det( R(:,:,1) ) - 1 ) > eps(16) ) error( 'Rotation matrices must be 3x3xN with det(R) == 1' ); end nel = prod( siz(3:end) ); for iel = nel : -1 : 1 d(:,iel) = RotMat2e( chop( R(:,:,iel) )); end q = quaternion( d(1,:), d(2,:), d(3,:), d(4,:) ); q = normalize( q ); q = reshape( q, siz(3:end) ); end % quaternion.rotationmatrix function q = zeros( varargin ) % function q = quaternion.zeros( siz ) if isempty( varargin ) siz = [1 1]; elseif numel( varargin ) > 1 siz = [varargin{:}]; elseif isempty( varargin{1} ) siz = [0 0]; elseif numel( varargin{1} ) > 1 siz = varargin{1}; else siz = [varargin{1} varargin{1}]; end if prod( siz ) == 0 q = reshape( quaternion.empty, siz ); else q = quaternion( zeros(siz), 0, 0, 0 ); end end % quaternion.zeros end % methods(Static) end % classdef quaternion % Scalar rotation conversion functions function eout = AngAxis2e( angle, axis ) % function eout = AngAxis2e( angle, axis ) % One Angle-Axis -> one quaternion s = sin( 0.5 * angle ); v = axis(:); vn = norm( v ); if vn == 0 if s == 0 c = 0; else c = 1; end u = zeros( 3, 1 ); else c = cos( 0.5 * angle ); u = v(:) ./ vn; end eout = [ c; s * u ]; if (eout(1) < 0) && (mod( angle/(2*pi), 2 ) ~= 1) eout = -eout; % rotationally equivalent quaternion with real element >= 0 end end % AngAxis2e function qout = EulerAng2q( axes, angles ) % function qout = EulerAng2q( axes, angles ) % One triplet Euler Angles -> one quaternion na = length( axes ); axis = zeros( 3, na ); for i0 = 1 : na switch axes(i0) case {'1', 'i', 'x', 'X'} axis(:,i0) = [ 1; 0; 0 ]; case {'2', 'j', 'y', 'Y'} axis(:,i0) = [ 0; 1; 0 ]; case {'3', 'k', 'z', 'Z'} axis(:,i0) = [ 0; 0; 1 ]; otherwise error( 'Illegal axis designation' ); end end q0 = quaternion.angleaxis( angles(:).', axis ); qout = q0(1); for i0 = 2 : numel(q0) qout = product( q0(i0), qout ); end if qout.e(1) < 0 qout = -qout; % rotationally equivalent quaternion with real element >= 0 end end % EulerAng2q function eout = RotMat2e( R ) % function eout = RotMat2e( R ) % One Rotation Matrix -> one quaternion eout = zeros(4,1); if ~all( all( R == 0 )) eout(1) = 0.5 * sqrt( max( 0, R(1,1) + R(2,2) + R(3,3) + 1 )); if eout(1) == 0 eout(2) = sqrt( max( 0, -0.5 *( R(2,2) + R(3,3) ))) * ... sgn( -R(2,3) ); eout(3) = sqrt( max( 0, -0.5 *( R(1,1) + R(3,3) ))) * ... sgn( -R(1,3) ); eout(4) = sqrt( max( 0, -0.5 *( R(1,1) + R(2,2) ))) * ... sgn( -R(1,2) ); else eout(2) = 0.25 *( R(3,2) - R(2,3) )/ eout(1); eout(3) = 0.25 *( R(1,3) - R(3,1) )/ eout(1); eout(4) = 0.25 *( R(2,1) - R(1,2) )/ eout(1); end end end % RotMat2e function qout = UV2q( u, v ) % function qout = UV2q( u, v ) % One pair vectors U, V -> one quaternion w = cross( u, v ); % construct vector w perpendicular to u and v magw = norm( w ); dotuv = dot( u, v ); if magw == 0 % Either norm(u) == 0 or norm(v) == 0 or dotuv/(norm(u)*norm(v)) == 1 if dotuv >= 0 qout = quaternion( 1, 0, 0, 0 ); return; end % dotuv/(norm(u)*norm(v)) == -1 % If v == [v(1); 0; 0], rotate by pi about the [0; 0; 1] axis if (v(2) == 0) && (v(3) == 0) qout = quaternion( 0, 0, 0, 1 ); return; end % Otherwise constuct "what" such that dot(v,what) == 0, and rotate about it % by pi what = [ 0; -v(3); v(2) ]./ sqrt( v(2)^2 + v(3)^2 ); costh = -1; else % Use w as rotation axis, angle between u and v as rotation angle what = w(:) / magw; costh = dotuv /( norm(u) * norm(v) ); end c = sqrt( 0.5 *( 1 + costh )); % real element >= 0 s = sqrt( 0.5 *( 1 - costh )); eout = [ c; s * what ]; qout = quaternion( eout(1), eout(2), eout(3), eout(4) ); end % UV2q % Helper functions function out = chop( in, tol ) % function out = chop( in, tol ) % Replace values that differ from an integer by <= tol by the integer % Inputs: % in input array % tol tolerance, default = eps % Output: % out input array with integer replacements, if any if (nargin < 2) || isempty( tol ) tol = eps; end out = in; rin = round( in ); lx = abs( rin - in ) <= tol; out(lx) = rin(lx); end % chop function [aout, dim, perm] = finddim( ain, len ) % function [aout, dim, perm] = finddim( ain, len ) % Find first dimension in ain of length len, permute ain to make it first % Inputs: % ain(s1,s2,...) data array, size = [s1, s2, ...] % len length sought, e.g. s2 == len % if len < 0, then find first dimension >= |len| % Outputs: % aout(s2,...,s1) data array, permuted so first dimension is length len % dim dimension number of length len, 0 if ain has none % perm permutation order (for permute and ipermute) of aout, % e.g. [2, ..., 1] % Notes: if no dimension has length len, aout = ain, dim = 0, perm = 1:ndm % ain = ipermute( aout, perm ) siz = size( ain ); ndm = length( siz ); if len < 0 dim = find( siz >= -len, 1, 'first' ); else dim = find( siz == len, 1, 'first' ); end if isempty( dim ) dim = 0; end if dim < 2 aout = ain; perm = 1 : ndm; else % Permute so that dim becomes the first dimension perm = [ dim : ndm, 1 : dim-1 ]; aout = permute( ain, perm ); end end % finddim function s = sgn( x ) % function s = sgn( x ), if x >= 0, s = 1, else s = -1 s = ones( size( x )); s(x < 0) = -1; end % sgn function [u, n] = unitvector( v, dim ) % function [u, n] = unitvector( v, dim ) % Inputs: % v matrix of vectors % dim [OPTIONAL] dimension to normalize, dim >= 1 % if no dim input, use first dimension of length >= 2 % Outputs: % u matrix of unit vectors (except for vectors of norm 0) % n matrix same size as v and u of norms ndm = ndims( v ); if (nargin < 2) || isempty( dim ) [v, dim, perm] = finddim( v, -2 ); if dim == 0 n = sqrt( v.*conj(v) ); n0 = (n ~= 0) & (n ~= 1); u = v; u(n0) = v(n0) ./ n(n0); return; end else perm = [ dim : ndm, 1 : dim-1 ]; v = permute( v, perm ); end u = v; sv = size( v ); n = repmat( sqrt( sum( v.*conj(v), 1 )), [sv(1) ones(1,ndm-1)] ); n0 = (n ~= 0) & (n ~= 1); u(n0) = v(n0) ./ n(n0); u = ipermute( u, perm ); if nargout > 1 n = ipermute( n, perm ); end end % unitvector
github
jianxiongxiao/ProfXkit-master
rectify.m
.m
ProfXkit-master/depthImproveStructureIO/rectify.m
5,343
utf_8
bd641fe58842594e88f1d3d86a1f5271
function [Rtilt,R] = rectify(XYZ) %% XYZ is HxWx3 matrix % X = XYZ(:,:,1);Y = XYZ(:,:,2);Z = XYZ(:,:,3); % XYZnew = Rtilt*[X(:),Y(:),Z(:)]' [Rtilt,R,world_center] = dominantAxes([eye(3) zeros(3,1)],XYZ); function [Rtilt,R,world_center] = dominantAxes(cameraRt, pts) XYZ = pts; S = 10; points = [reshape(XYZ(:,:,1),1,[]);reshape(XYZ(:,:,2),1,[]);reshape(XYZ(:,:,3),1,[])]; pointsOK = points(:,sum(isnan(points),1)==0); pointsOK = pointsOK(:,1:S:end); %tic;normals = points2normals_radius(pointsOK);toc; normals = points2normals(pointsOK); %{ figure, s =1; quiver3(pointsOK(1,1:S*s:end),pointsOK(2,1:S*s:end),pointsOK(3,1:S*s:end),normals(1,1:S*s:end),normals(2,1:S*s:end),normals(3,1:S*s:end)); quiver3(pointsOK(1,1:S*s:end),pointsOK(2,1:S*s:end),pointsOK(3,1:S*s:end),normals(1,1:s:end),normals(2,1:s:end),normals(3,1:s:end)); figure, indxxx = B == b; pointsOKxxx = pointsOK(:,1:S:end); quiver3(pointsOKxxx(1,indxxx),pointsOKxxx(2,indxxx),pointsOKxxx(3,indxxx),normals(1,indxxx),normals(2,indxxx),normals(3,indxxx)); hold on quiver3(pointsOK(1,1:S*s:end),pointsOK(2,1:S*s:end),pointsOK(3,1:S*s:end),nrm(1,1:s:end),nrm(2,1:s:end),nrm(3,1:s:end),'-.r'); figure, plot3(sphere(1,:),sphere(2,:),sphere(3,:),'.') %} % approximately 1313 bins sphere = icosahedron2sphere(4)'; bins = sphere(:, sphere(1, :) >= 0); %NSAMPLE = 1e5; %sampleind = randsample(1 : size(normals, 2), min(size(normals, 2), NSAMPLE)); %normals = normals(:,sampleind ); [D, B] = max(abs(bins' * normals), [], 1); H = accumarray(cat(2, B', repmat(1, [length(B) 1])), repmat(1, [length(B) 1])); A = eye(3); [~, I] = sort(-H); for j = 1 : 3 if ~isempty(I) b = I(1); % choose mean normal that falls into the biggest bin in_bin = normals(:, B == b); % flip mirrored normals dots = sum(in_bin .* repmat(bins(:, b), [1 size(in_bin, 2)]), 1); in_bin(:, (dots < 0)) = -in_bin(:, (dots < 0)); v = mean(in_bin, 2); v = v / norm(v); A(:, j) = v; fprintf('Bin: %d, Normal: %f %f %f. Contains %d points. Mean vector: %f %f %f\n', b, bins(:, b), H(b), v); % remove bins that are not ~90 degrees away dots = sum(bins(:, I) .* repmat(v, [1 length(I)]), 1); I = I((dots >= cos(deg2rad(110))) & (dots <= cos(deg2rad(70)))); end end axisI = A(:,1); axisII = A(:,2); axisII = axisII - (axisI'*axisII)*axisI; axisII =axisII/norm(axisII); axisIII = cross(axisI,axisII); AA =[axisI,axisII,axisIII -1*[axisI,axisII,axisIII]]; [~, zi] = max(squeeze(cameraRt(1:3, 3, :))'*AA); ZZ = AA(:, zi); [~, xi] = max(squeeze(cameraRt(1:3, 1, :))'*AA); XX = AA(:, xi); [~, yi] = max(squeeze(cameraRt(1:3, 2, :))'*AA); YY = AA(:, yi); %{ for i =1:3, hold on; quiver3(1,1,1,AA(1,i),AA(2,i),AA(3,i)); quiver3(0,0,0,A(1,i),A(2,i),A(3,i)); pause; end axis tight; %} R = [XX YY ZZ]'; q = quaternion.rotateutov(ZZ, [0;0;1]); Rtilt = RotationMatrix(q); world_center = nanmean(reshape(pts,3,[]),2); function rad = deg2rad(deg) rad = deg*pi/180; return; function [coor,tri] = icosahedron2sphere(level) % copyright by Jianxiong Xiao http://mit.edu/jxiao % this function use a icosahedron to sample uniformly on a sphere %{ Please cite this paper if you use this code in your publication: J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan Image-based Street-side City Modeling ACM Transaction on Graphics (TOG), Volume 28, Number 5 Proceedings of ACM SIGGRAPH Asia 2009 %} a= 2/(1+sqrt(5)); M=[ 0 a -1 a 1 0 -a 1 0 0 a 1 -a 1 0 a 1 0 0 a 1 0 -a 1 -1 0 a 0 a 1 1 0 a 0 -a 1 0 a -1 0 -a -1 1 0 -a 0 a -1 -1 0 -a 0 -a -1 0 -a 1 a -1 0 -a -1 0 0 -a -1 -a -1 0 a -1 0 -a 1 0 -1 0 a -1 0 -a -a -1 0 -1 0 -a -1 0 a a 1 0 1 0 -a 1 0 a a -1 0 1 0 a 1 0 -a 0 a 1 -1 0 a -a 1 0 0 a 1 a 1 0 1 0 a 0 a -1 -a 1 0 -1 0 -a 0 a -1 1 0 -a a 1 0 0 -a -1 -1 0 -a -a -1 0 0 -a -1 a -1 0 1 0 -a 0 -a 1 -a -1 0 -1 0 a 0 -a 1 1 0 a a -1 0 ]; coor = reshape(M',3,60)'; %[M(:,[1 2 3]); M(:,[4 5 6]); M(:,[7 8 9])]; [coor, ~, idx] = unique(coor,'rows'); tri = reshape(idx,3,20)'; %{ for i=1:size(tri,1) x(1)=coor(tri(i,1),1); x(2)=coor(tri(i,2),1); x(3)=coor(tri(i,3),1); y(1)=coor(tri(i,1),2); y(2)=coor(tri(i,2),2); y(3)=coor(tri(i,3),2); z(1)=coor(tri(i,1),3); z(2)=coor(tri(i,2),3); z(3)=coor(tri(i,3),3); patch(x,y,z,'r'); end axis equal axis tight %} % extrude coor = coor ./ repmat(sqrt(sum(coor .* coor,2)),1, 3); for i=1:level m = 0; for t=1:size(tri,1) n = size(coor,1); coor(n+1,:) = ( coor(tri(t,1),:) + coor(tri(t,2),:) ) / 2; coor(n+2,:) = ( coor(tri(t,2),:) + coor(tri(t,3),:) ) / 2; coor(n+3,:) = ( coor(tri(t,3),:) + coor(tri(t,1),:) ) / 2; triN(m+1,:) = [n+1 tri(t,1) n+3]; triN(m+2,:) = [n+1 tri(t,2) n+2]; triN(m+3,:) = [n+2 tri(t,3) n+3]; triN(m+4,:) = [n+1 n+2 n+3]; n = n+3; m = m+4; end tri = triN; % uniquefy [coor, ~, idx] = unique(coor,'rows'); tri = idx(tri); % extrude coor = coor ./ repmat(sqrt(sum(coor .* coor,2)),1, 3); end % vertex number: 12 42 162 642
github
jianxiongxiao/ProfXkit-master
loadStructureIOdata.m
.m
ProfXkit-master/depthImproveStructureIO/loadStructureIOdata.m
1,696
utf_8
cfffdd283dc7a2322c9963dab946a95a
% Load data taken from Structure IO function data = loadStructureIOdata(directory, frameIDs) % Get image file list imageFiles = dir(fullfile(directory, 'color', '*.jpg')); depthFiles = dir(fullfile(directory, 'depth', '*.png')); % Set default frames to go through if length(frameIDs) == 0 frameIDs = 1:length(imageFiles); end % Loop through all image files to get corresponding image and depth names count = 0; data.depthTimestamp = zeros(1,length(depthFiles)); data.imageTimestamp = zeros(1,length(imageFiles)); for frameID = frameIDs count = count + 1; timestr = regexp(imageFiles(frameID).name,'\d+T\d+\.\d+\.\d+\.\d+-','match'); timeArr = sscanf(timestr{1}, '%dT%d.%d.%d.%d-'); data.imageTimestamp(frameID) = timeArr(1)*24*3600000 + timeArr(2)*3600000+timeArr(3)*60000+timeArr(4)*1000+timeArr(5); timestr = regexp(depthFiles(frameID).name,'\d+T\d+\.\d+\.\d+\.\d+-','match'); timeArr = sscanf(timestr{1}, '%dT%d.%d.%d.%d-'); data.depthTimestamp(frameID) = timeArr(1)*24*3600000 + timeArr(2)*3600000+timeArr(3)*60000+timeArr(4)*1000+timeArr(5); data.imageAll{count} = fullfile(fullfile(directory, 'color', imageFiles(frameID).name)); data.depthAll{count} = fullfile(fullfile(directory, 'depth', depthFiles(frameID).name)); end % Grab camera data data.K = reshape(readValuesFromTxt(fullfile(directory, 'intrinsics.txt')), 3, 3)'; if exist(fullfile(directory, 'intrinsics_d2c.txt'),'file') depthCam = readValuesFromTxt(fullfile(directory, 'intrinsics_d2c.txt')); data.Kdepth = reshape(depthCam(1:9), 3, 3)'; data.RT_d2c = reshape(depthCam(10:21), 4, 3)'; else data.image = data.imageAll; data.depth = data.depthAll; end
github
jianxiongxiao/ProfXkit-master
loadSUN3Dv2.m
.m
ProfXkit-master/depthImproveStructureIO/loadSUN3Dv2.m
4,264
utf_8
200caa9bc4374066976ff436d05416b9
function data = loadSUN3Dv2(sequenceName, frameIDs) if ~exist('sequenceName','var') sequenceName = '2014-04-29_14-39-49_094959634447'; end SUN3Dpath = '/n/fs/sun3d/sun3dv2/'; %{ fileID = fopen(fullfile(SUN3Dpath,sequenceName,'image/time.dat')); imageTimestamp = fread(fileID,'int64'); fclose(fileID); data.image = VideoReader(fullfile(SUN3Dpath,sequenceName,'image/image.mp4')); %} imageFiles = dirSmart(fullfile(SUN3Dpath,sequenceName,'image/'),'jpg'); imageFrameID = zeros(1,length(imageFiles)); imageTimestamp = zeros(1,length(imageFiles)); for i=1:length(imageFiles) id_time = sscanf(imageFiles(i).name, '%d-%ld.jpg'); imageFrameID(i) = id_time(1); imageTimestamp(i) = id_time(2); data.imageAll{i}= fullfile(fullfile(SUN3Dpath,sequenceName,'image',imageFiles(i).name)); end depthFiles = dirSmart(fullfile(SUN3Dpath,sequenceName,'depth/'),'tif'); irFiles = dirSmart(fullfile(SUN3Dpath,sequenceName,'ir/'),'tif'); depthFrameID = zeros(1,length(depthFiles)); depthTimestamp = zeros(1,length(depthFiles)); for i=1:length(depthFiles) id_time = sscanf(depthFiles(i).name, '%d-%ld.tif'); depthFrameID(i) = id_time(1); depthTimestamp(i) = id_time(2); data.depthAll{i}= fullfile(fullfile(SUN3Dpath,sequenceName,'depth',depthFiles(i).name)); end irFrameID = zeros(1,length(irFiles)); irTimestamp = zeros(1,length(irFiles)); for i=1:length(irFiles) id_time = sscanf(irFiles(i).name, '%d-%ld.tif'); irFrameID(i) = id_time(1); irTimestamp(i) = id_time(2); data.irAll{i}= fullfile(fullfile(SUN3Dpath,sequenceName,'ir',irFiles(i).name)); end data.imageTimestamp = imageTimestamp; data.depthTimestamp = depthTimestamp; data.imageTotalFrames = length(data.imageTimestamp); data.depthTotalFrames = length(data.depthTimestamp); % synchronize: find a depth for each image frameCount = length(imageTimestamp); IDimage2depth = zeros(1,frameCount); for i=1:frameCount [~, IDimage2depth(i)]=min(abs(double(depthTimestamp)-double(imageTimestamp(i)))); end if ~exist('frameIDs','var') || isempty(frameIDs) frameIDs = 1:frameCount; end data.sequenceName = sequenceName; cnt = 0; for frameID=frameIDs cnt = cnt + 1; data.depth{cnt} = fullfile(fullfile(SUN3Dpath,sequenceName,'depth',depthFiles(IDimage2depth(frameID)).name)); data.ir{cnt} = fullfile(fullfile(SUN3Dpath,sequenceName,'ir',irFiles(IDimage2depth(frameID)).name)); end kinectID = strsplit(sequenceName,'_'); kinectID = kinectID{end}; data.camera = load(fullfile(SUN3Dpath,'intrinsics',[kinectID '.mat'])); end function files = dirSmart(page, tag) [files, status] = urldir(page, tag); if status == 0 files = dir(fullfile(page, ['*.' tag])); end end function [files, status] = urldir(page, tag) if nargin == 1 tag = '/'; else tag = lower(tag); if strcmp(tag, 'dir') tag = '/'; end if strcmp(tag, 'img') tag = 'jpg'; end end nl = length(tag); nfiles = 0; files = []; % Read page page = strrep(page, '\', '/'); [webpage, status] = urlread(page); if status % Parse page j1 = findstr(lower(webpage), '<a href="'); j2 = findstr(lower(webpage), '</a>'); Nelements = length(j1); if Nelements>0 for f = 1:Nelements % get HREF element chain = webpage(j1(f):j2(f)); jc = findstr(lower(chain), '">'); chain = deblank(chain(10:jc(1)-1)); % check if it is the right type if length(chain)>length(tag)-1 if strcmp(chain(end-nl+1:end), tag) nfiles = nfiles+1; chain = strrep(chain, '%20', ' '); % replace space character files(nfiles).name = chain; files(nfiles).bytes = 1; end end end end end end function XYZcamera = depth2XYZcamera(K, depth) sz = size(depth); [x,y] = meshgrid(1:sz(2), 1:sz(1)); XYZcamera(:,:,1) = (x-K(1,3)).*depth/K(1,1); XYZcamera(:,:,2) = (y-K(2,3)).*depth/K(2,2); XYZcamera(:,:,3) = depth; XYZcamera(:,:,4) = depth~=0; end
github
jianxiongxiao/ProfXkit-master
estimateRt.m
.m
ProfXkit-master/depthImproveStructureIO/estimateRt.m
501
utf_8
d7ad6f4ea024b18ceb9915fec69b9a71
% Usage: Rt = estimateRt(x1, x2) % Rt = estimateRt(x) % % Arguments: % x1, x2 - Two sets of corresponding 3xN set of homogeneous % points. % % x - If a single argument is supplied it is assumed that it % is in the form x = [x1; x2] % Returns: % Rt - The rotation matrix such that x1 = R * x2 + t function Rt = estimateRt(x, npts) [T, Eps] = estimateRigidTransform(x(1:3,:), x(4:6,:)); Rt = T(1:3,:); end
github
jianxiongxiao/ProfXkit-master
get_depth.m
.m
ProfXkit-master/depthImproveStructureIO/get_depth.m
131
utf_8
8ee8bdf3980d7e82262719804012ca95
function depth = get_depth(depth) depth = bitor(bitshift(depth,-3), bitshift(depth,16-3)); depth = double(depth)/1000; end
github
jianxiongxiao/ProfXkit-master
points2ply.m
.m
ProfXkit-master/depthImproveStructureIO/points2ply.m
1,440
utf_8
aac4b7c6b547a9c026121d967f85a036
function points2ply(PLYfilename, coordinate, rgb) % coordinate is 3 * n single matrix for n points % rgb is 3 * n uint8 matrix for n points range [0, 255] if size(coordinate,2)==3 && size(coordinate,1)~=3 coordinate = coordinate'; end isValid = (~isnan(coordinate(1,:))) & (~isnan(coordinate(2,:))) & (~isnan(coordinate(3,:))); coordinate = coordinate(:,isValid); data = reshape(typecast(reshape(single(coordinate),1,[]),'uint8'),3*4,[]); if nargin>2 if size(rgb,2)==3 && size(rgb,1)~=3 rgb = rgb'; end if ~isa(rgb,'uint8') if max(rgb(:))<=1 rgb = rgb * 255; end end if isa(rgb,'double') rgb = uint8(rgb); end rgb = rgb(:,isValid); data = [data; rgb]; end file = fopen(PLYfilename,'w'); fprintf (file, 'ply\n'); fprintf (file, 'format binary_little_endian 1.0\n'); fprintf (file, 'element vertex %d\n', size(data,2)); fprintf (file, 'property float x\n'); fprintf (file, 'property float y\n'); fprintf (file, 'property float z\n'); if nargin>2 fprintf (file, 'property uchar red\n'); fprintf (file, 'property uchar green\n'); fprintf (file, 'property uchar blue\n'); end fprintf (file, 'end_header\n'); fwrite(file, data,'uint8'); fclose(file); end
github
jianxiongxiao/ProfXkit-master
undistort.m
.m
ProfXkit-master/depthImproveStructureIO/undistort.m
4,632
utf_8
e1febb403e3759f567009ee0a0442cce
function x = undistort( xd, k, seed ) %[x] = undistort(xd, k) %INPUT: xd: distorted (normalized) point coordinates in the image plane (2xN matrix) % k: Distortion coefficients (radial and tangential) (5x1 vector) % seed: (OPTIONAL) seed point corrdinates for undistortion % optimization % Written by Fisher Yu k1 = k(1); k2 = k(2); k3 = k(5); p1 = k(3); p2 = k(4); if nargin < 3 seed = xd; % initial guess end % First undistort with oulu algorithm x = undistort_oulu(xd, k); % Find the bad undistorted pixels and refine with better optimization new_xd = distort(x, k); errors = sum((xd - new_xd) .^ 2); badones = errors > 1e-10; num_badones = sum(badones); %fprintf('Found %d bad ones\n', num_badones); if num_badones>0 options = optimoptions(@fsolve,'Display','off','Jacobian','on',... 'Algorithm','trust-region-reflective','PrecondBandWidth',1); f = @(x) undistort_Jv(x, xd(:, badones), k); x(:, badones) = reshape(fsolve(f, seed(:, badones), options), [2, num_badones]); end errors = sum((xd - distort(x, k)) .^ 2); if numel(errors)==424*512 figure; imagesc(reshape(errors,[424 512])); axis equal; axis tight; axis off; colorbar end if numel(errors)==1080*1920 figure; imagesc(reshape(errors,[1080 1920])); axis equal; axis tight; axis off; colorbar end end function [x] = undistort_oulu(xd, k) % %[x] = comp_distortion_oulu(xd,k) % %Compensates for radial and tangential distortion. Model From Oulu university. %For more informatino about the distortion model, check the forward projection mapping function: %project_points.m % %INPUT: xd: distorted (normalized) point coordinates in the image plane (2xN matrix) % k: Distortion coefficients (radial and tangential) (5x1 vector) % %OUTPUT: x: undistorted (normalized) point coordinates in the image plane (2xN matrix) % %Method: Iterative method for compensation. % %NOTE: This compensation has to be done after the subtraction % of the principal point, and division by the focal length. if length(k) == 1, [x] = comp_distortion(xd,k); else k1 = k(1); k2 = k(2); k3 = k(5); p1 = k(3); p2 = k(4); x = xd; % initial guess for kk=1:20, r_2 = sum(x.^2); k_radial = 1 + k1 * r_2 + k2 * r_2.^2 + k3 * r_2.^3; delta_x = [2*p1*x(1,:).*x(2,:) + p2*(r_2 + 2*x(1,:).^2); p1 * (r_2 + 2*x(2,:).^2)+2*p2*x(1,:).*x(2,:)]; x = (xd - delta_x)./(ones(2,1)*k_radial); end; end; end function [F, J] = undistort_J(p, xd, k) F = distort(p, k) - xd; if nargout > 1 J = zeros(2, 2); x = p(1); y = p(2); k1 = k(1); k2 = k(2); k3 = k(5); p1 = k(3); p2 = k(4); J(1, 1) = 1+2.*p1.*y+k1.*(x.^2+y.^2)+k2.*(x.^2+y.^2).^2+k3.*(x.^2+y.^2).^3+ ... p2.*(4.*x+4.*x.*(x.^2+y.^2))+x.*(2.*k1.*x+4.*k2.*x.*(x.^2+y.^2)+ ... 6.*k3.*x.*(x.^2+y.^2).^2); J(1, 2) = 2.*p1.*x+4.*p2.*y.*(x.^2+y.^2)+x.*(2.*k1.*y+4.*k2.*y.*(x.^2+y.^2)+ ... 6.*k3.*y.*(x.^2+y.^2).^2); J(2, 1) = 2.*p1.*x+2.*p2.*y+y.*(2.*k1.*x+4.*k2.*x.*(x.^2+y.^2)+6.*k3.*x.*( ... x.^2+y.^2).^2); J(2, 2) = 1+2.*p2.*x+6.*p1.*y+k1.*(x.^2+y.^2)+k2.*(x.^2+y.^2).^2+k3.*(x.^2+ ... y.^2).^3+y.*(2.*k1.*y+4.*k2.*y.*(x.^2+y.^2)+6.*k3.*y.*(x.^2+y.^2) ... .^2); end end function [F, J] = undistort_Jv(p, xd, k) %tic num_points = size(xd, 2); F = distort(p, k) - xd; if ~isvector(F) F = reshape(F, [numel(F), 1]); end if nargout > 1 Jv = zeros(1, num_points * 4); k1 = k(1); k2 = k(2); k3 = k(5); p1 = k(3); p2 = k(4); x = p(1:2:end); y = p(2:2:end); r2 = x .* x + y .* y; Jv(1:4:end) = 1+2.*p1.*y+k1.*r2+k2.*r2.^2+k3.*r2.^3+ ... p2.*(4.*x+4.*x.*r2)+x.*(2.*k1.*x+4.*k2.*x.*r2+ ... 6.*k3.*x.*r2.^2); Jv(2:4:end) = 2.*p1.*x+4.*p2.*y.*r2+x.*(2.*k1.*y+4.*k2.*y.*r2+ ... 6.*k3.*y.*r2.^2); Jv(3:4:end) = 2.*p1.*x+2.*p2.*y+y.*(2.*k1.*x+4.*k2.*x.*r2+6.*k3.*x.*( ... r2).^2); Jv(4:4:end) = 1+2.*p2.*x+6.*p1.*y+k1.*r2+k2.*r2.^2+k3.*(x.^2+ ... y.^2).^3+y.*(2.*k1.*y+4.*k2.*y.*r2+6.*k3.*y.*r2 ... .^2); indexes = 1:(num_points * 2); is = zeros(1, num_points * 4); is(1:2:end) = indexes; is(2:2:end) = indexes; js = reshape(indexes, [2, num_points]); js = [js; js]; js = reshape(js, [1, numel(js)]); J = sparse(is, js, Jv, num_points * 2, num_points * 2, num_points * 4); end %fprintf('Undistort_Jv took %f seconds\n', toc); end
github
jianxiongxiao/ProfXkit-master
points2normals.m
.m
ProfXkit-master/depthImproveStructureIO/points2normals.m
2,551
utf_8
cffcb4a1ea7aa3af3e895f74f76491fa
function normals = points2normals(points) % estimating a normal vector based on nearby 100 points % points is 3 * n matrix for n points if size(points,2)==3 && size(points,1)~=3 points = points'; end normals = lsqnormest(points, 50); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % functions from http://www.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point % Least squares normal estimation from point clouds using PCA % % H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. % Surface reconstruction from unorganized points. % In Proceedings of ACM Siggraph, pages 71:78, 1992. % % p should be a matrix containing the horizontally concatenated column % vectors with points. k is a scalar indicating how many neighbors the % normal estimation is based upon. % % Note that for large point sets, the function performs significantly % faster if Statistics Toolbox >= v. 7.3 is installed. % % Jakob Wilm 2010 function n = lsqnormest(p, k) m = size(p,2); n = zeros(3,m); v = ver('stats'); if str2double(v.Version) >= 7.5 neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1)); else neighbors = k_nearest_neighbors(p, p, k+1); end for i = 1:m x = p(:,neighbors(2:end, i)); p_bar = 1/k * sum(x,2); P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P %P = 2*cov(x); [V,D] = eig(P); [~, idx] = min(diag(D)); % choses the smallest eigenvalue n(:,i) = V(:,idx); % returns the corresponding eigenvector end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Program to find the k - nearest neighbors (kNN) within a set of points. % Distance metric used: Euclidean distance % % Note that this function makes repetitive use of min(), which seems to be % more efficient than sort() for k < 30. function [neighborIds,neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k) numDataPoints = size(dataMatrix,2); numQueryPoints = size(queryMatrix,2); neighborIds = zeros(k,numQueryPoints); neighborDistances = zeros(k,numQueryPoints); D = size(dataMatrix, 1); %dimensionality of points for i=1:numQueryPoints d=zeros(1,numDataPoints); for t=1:D % this is to avoid slow repmat() d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2; end for j=1:k [s,t] = min(d); neighborIds(j,i)=t; neighborDistances(j,i)=sqrt(s); d(t) = NaN; % remove found number from d end end
github
jianxiongxiao/ProfXkit-master
transformPointCloud.m
.m
ProfXkit-master/depthImproveStructureIO/transformPointCloud.m
130
utf_8
ebf18e96a2a3d9ca20da267e9d345dcd
function XYZtransform = transformPointCloud(XYZ,Rt) XYZtransform = Rt(1:3,1:3) * XYZ + repmat(Rt(1:3,4),1,size(XYZ,2)); end
github
jianxiongxiao/ProfXkit-master
icp.m
.m
ProfXkit-master/depthImproveStructureIO/icp.m
19,013
utf_8
08b226a4c6ddc02c96cb999b6f8dc8fe
function [TR, TT, ER, maxD, t] = icp(q,p,varargin) % this is modified version of the original version % % Perform the Iterative Closest Point algorithm on three dimensional point % clouds. % % [TR, TT] = icp(q,p) returns the rotation matrix TR and translation % vector TT that minimizes the distances from (TR * p + TT) to q. % p is a 3xm matrix and q is a 3xn matrix. % % [TR, TT] = icp(q,p,k) forces the algorithm to make k iterations % exactly. The default is 10 iterations. % % [TR, TT, ER] = icp(q,p,k) also returns the RMS of errors for k % iterations in a (k+1)x1 vector. ER(0) is the initial error. % % [TR, TT, ER, t] = icp(q,p,k) also returns the calculation times per % iteration in a (k+1)x1 vector. t(0) is the time consumed for preprocessing. % % Additional settings may be provided in a parameter list: % % Boundary % {[]} | 1x? vector % If EdgeRejection is set, a vector can be provided that indexes into % q and specifies which points of q are on the boundary. % % EdgeRejection % {false} | true % If EdgeRejection is true, point matches to edge vertices of q are % ignored. Requires that boundary points of q are specified using % Boundary or that a triangulation matrix for q is provided. % % Extrapolation % {false} | true % If Extrapolation is true, the iteration direction will be evaluated % and extrapolated if possible using the method outlined by % Besl and McKay 1992. % % Matching % bruteForce | Delaunay | {kDtree} % Specifies how point matching should be done. % bruteForce is usually the slowest and kDtree is the fastest. % Note that the kDtree option is depends on the Statistics Toolbox % v. 7.3 or higher. % % Minimize % {point} | plane | lmaPoint % Defines whether point to point or point to plane minimization % should be performed. point is based on the SVD approach and is % usually the fastest. plane will often yield higher accuracy. It % uses linearized angles and requires surface normals for all points % in q. Calculation of surface normals requires substantial pre % proccessing. % The option lmaPoint does point to point minimization using the non % linear least squares Levenberg Marquardt algorithm. Results are % generally the same as in points, but computation time may differ. % % Normals % {[]} | n x 3 matrix % A matrix of normals for the n points in q might be provided. % Normals of q are used for point to plane minimization. % Else normals will be found through a PCA of the 4 nearest % neighbors. % % ReturnAll % {false} | true % Determines whether R and T should be returned for all iterations % or only for the last one. If this option is set to true, R will be % a 3x3x(k+1) matrix and T will be a 3x1x(k+1) matrix. % % Triangulation % {[]} | ? x 3 matrix % A triangulation matrix for the points in q can be provided, % enabling EdgeRejection. The elements should index into q, defining % point triples that act together as triangles. % % Verbose % {false} | true % Enables extrapolation output in the Command Window. % % Weight % {@(match)ones(1,m)} | Function handle % For point or plane minimization, a function handle to a weighting % function can be provided. The weighting function will be called % with one argument, a 1xm vector that specifies point pairs by % indexing into q. The weighting function should return a 1xm vector % of weights for every point pair. % % WorstRejection % {0} | scalar in ]0; 1[ % Reject a given percentage of the worst point pairs, based on their % Euclidean distance. % % Martin Kjer and Jakob Wilm, Technical University of Denmark, 2012 % Use the inputParser class to validate input arguments. inp = inputParser; inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3); inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3); inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5); inp.addParamValue('Boundary', [], @(x)size(x,1) == 1); inp.addParamValue('EdgeRejection', false, @(x)islogical(x)); inp.addParamValue('Extrapolation', false, @(x)islogical(x)); validMatching = {'bruteForce','Delaunay','kDtree'}; inp.addParamValue('Matching', 'kDtree', @(x)any(strcmpi(x,validMatching))); validMinimize = {'point','plane','lmapoint'}; inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize))); inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3); inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3); inp.addParamValue('ReturnAll', false, @(x)islogical(x)); inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3); inp.addParamValue('Verbose', false, @(x)islogical(x)); inp.addParamValue('Weight', @(x)ones(1,length(x)), @(x)isa(x,'function_handle')); inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1); inp.addParamValue('SmartRejection', 0, @(x)isscalar(x) && x > 0); inp.parse(q,p,varargin{:}); arg = inp.Results; clear('inp'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Actual implementation % Allocate vector for RMS of errors in every iteration. t = zeros(arg.iter+1,1); % Start timer tic; Np = size(p,2); % Transformed data point cloud pt = p; % Allocate vector for RMS of errors in every iteration. ER = zeros(arg.iter+1,1); maxD = zeros(arg.iter,1); % Initialize temporary transform vector and matrix. T = zeros(3,1); R = eye(3,3); % Initialize total transform vector(s) and rotation matric(es). TT = zeros(3,1, arg.iter+1); TR = repmat(eye(3,3), [1,1, arg.iter+1]); % If Minimize == 'plane', normals are needed if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals)) arg.Normals = lsqnormest(q,4); end % If Matching == 'Delaunay', a triangulation is needed if strcmp(arg.Matching, 'Delaunay') DT = DelaunayTri(transpose(q)); end % If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3) if strcmp(arg.Matching, 'kDtree') kdOBJ = KDTreeSearcher(transpose(q)); end % If edge vertices should be rejected, find edge vertices if arg.EdgeRejection if isempty(arg.Boundary) bdr = find_bound(q, arg.Triangulation); else bdr = arg.Boundary; end end if arg.Extrapolation % Initialize total transform vector (quaternion ; translation vec.) qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)]; % Allocate vector for direction change and change angle. dq = zeros(7,arg.iter+1); theta = zeros(1,arg.iter+1); end t(1) = toc; % Go into main iteration loop for k=1:arg.iter % Do matching switch arg.Matching case 'bruteForce' [match mindist] = match_bruteForce(q,pt); case 'Delaunay' [match mindist] = match_Delaunay(q,pt,DT); case 'kDtree' [match mindist] = match_kDtree(q,pt,kdOBJ); end % If matches to edge vertices should be rejected if arg.EdgeRejection p_idx = not(ismember(match, bdr)); q_idx = match(p_idx); mindist = mindist(p_idx); else p_idx = true(1, Np); q_idx = match; end if k==1 && arg.SmartRejection arg.WorstRejection = sum(mindist > (median(mindist)* arg.SmartRejection))/ length(mindist); fprintf('ICP: Median=%f Threshold=%f WorstRejection=%f\n', median(mindist),median(mindist)* arg.SmartRejection,arg.WorstRejection); % vis %{ figure hist(mindist,0:0.01/10:max(mindist)); hold on; plot(median(mindist),0,'g*'); plot(median(mindist)* arg.SmartRejection,0,'r*'); %} end % If worst matches should be rejected if arg.WorstRejection edge = round((1-arg.WorstRejection)*sum(p_idx)); pairs = find(p_idx); [~, idx] = sort(mindist); p_idx(pairs(idx(edge:end))) = false; q_idx = match(p_idx); mindist = mindist(p_idx); end maxD(k) = max(mindist); if k == 1 ER(k) = sqrt(sum(mindist.^2)/length(mindist)); end switch arg.Minimize case 'point' % Determine weight vector weights = arg.Weight(match); [R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx)); case 'plane' weights = arg.Weight(match); [R,T] = eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx)); case 'lmaPoint' [R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx)); end % Add to the total transformation TR(:,:,k+1) = R*TR(:,:,k); TT(:,:,k+1) = R*TT(:,:,k)+T; % Apply last transformation pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); % Root mean of objective function ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx)); % If Extrapolation, we might be able to move quicker if arg.Extrapolation qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)]; dq(:,k+1) = qq(:,k+1) - qq(:,k); theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1)))); if arg.Verbose disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]); end if k>2 && theta(k+1) < 10 && theta(k) < 10 d = [ER(k+1), ER(k), ER(k-1)]; v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))]; vmax = 25 * norm(dq(:,k+1)); dv = extrapolate(v,d,vmax); if dv ~= 0 q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1)); q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4)); qq(:,k+1) = q_mark; TR(:,:,k+1) = quat2rmat(qq(1:4,k+1)); TT(:,:,k+1) = qq(5:7,k+1); % Reapply total transformation pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); % Recalculate root mean of objective function % Note this is costly and only for fun! switch arg.Matching case 'bruteForce' [~, mindist] = match_bruteForce(q,pt); case 'Delaunay' [~, mindist] = match_Delaunay(q,pt,DT); case 'kDtree' [~, mindist] = match_kDtree(q,pt,kdOBJ); end ER(k+1) = sqrt(sum(mindist.^2)/length(mindist)); end end end t(k+1) = toc; end if not(arg.ReturnAll) TR = TR(:,:,end); TT = TT(:,:,end); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [match mindist] = match_bruteForce(q, p) m = size(p,2); n = size(q,2); match = zeros(1,m); mindist = zeros(1,m); for ki=1:m d=zeros(1,n); for ti=1:3 d=d+(q(ti,:)-p(ti,ki)).^2; end [mindist(ki),match(ki)]=min(d); end mindist = sqrt(mindist); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [match mindist] = match_Delaunay(q, p, DT) match = transpose(nearestNeighbor(DT, transpose(p))); mindist = sqrt(sum((p-q(:,match)).^2,1)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [match mindist] = match_kDtree(~, p, kdOBJ) [match mindist] = knnsearch(kdOBJ,transpose(p)); match = transpose(match); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R,T] = eq_point(q,p,weights) m = size(p,2); n = size(q,2); % normalize weights weights = weights ./ sum(weights); % find data centroid and deviations from centroid q_bar = q * transpose(weights); q_mark = q - repmat(q_bar, 1, n); % Apply weights q_mark = q_mark .* repmat(weights, 3, 1); % find data centroid and deviations from centroid p_bar = p * transpose(weights); p_mark = p - repmat(p_bar, 1, m); % Apply weights %p_mark = p_mark .* repmat(weights, 3, 1); N = p_mark*transpose(q_mark); % taking points of q in matched order [U,~,V] = svd(N); % singular value decomposition R = V*diag([1 1 det(U*V')])*transpose(U); T = q_bar - R*p_bar; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R,T] = eq_plane(q,p,n,weights) n = n .* repmat(weights,3,1); c = cross(p,n); cn = vertcat(c,n); C = cn*transpose(cn); b = - [sum(sum((p-q).*repmat(cn(1,:),3,1).*n)); sum(sum((p-q).*repmat(cn(2,:),3,1).*n)); sum(sum((p-q).*repmat(cn(3,:),3,1).*n)); sum(sum((p-q).*repmat(cn(4,:),3,1).*n)); sum(sum((p-q).*repmat(cn(5,:),3,1).*n)); sum(sum((p-q).*repmat(cn(6,:),3,1).*n))]; X = C\b; cx = cos(X(1)); cy = cos(X(2)); cz = cos(X(3)); sx = sin(X(1)); sy = sin(X(2)); sz = sin(X(3)); R = [cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz; cy*sz cx*cz+sx*sy*sz cx*sy*sz-cz*sx; -sy cy*sx cx*cy]; T = X(4:6); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R,T] = eq_lmaPoint(q,p) Rx = @(a)[1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]; Ry = @(b)[cos(b) 0 sin(b); 0 1 0; -sin(b) 0 cos(b)]; Rz = @(g)[cos(g) -sin(g) 0; sin(g) cos(g) 0; 0 0 1]; Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3)); myfun = @(x,xdata)Rot(x(1:3))*xdata+repmat(x(4:6),1,length(xdata)); options = optimset('Algorithm', 'levenberg-marquardt'); x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options); R = Rot(x(1:3)); T = x(4:6); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Extrapolation in quaternion space. Details are found in: % % Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes. % IEEE Transactions on pattern analysis and machine intelligence, 239?256. function [dv] = extrapolate(v,d,vmax) p1 = polyfit(v,d,1); % linear fit p2 = polyfit(v,d,2); % parabolic fit v1 = -p1(2)/p1(1); % linear zero crossing v2 = -p2(2)/(2*p2(1)); % polynomial top point if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1]) disp('Parabolic update!'); dv = v2; elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])... || (v2 < 0 && issorted([0 v1 vmax])) disp('Line based update!'); dv = v1; elseif v1 > vmax && v2 > vmax disp('Maximum update!'); dv = vmax; else disp('No extrapolation!'); dv = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Determine the RMS error between two point equally sized point clouds with % point correspondance. % ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices. function ER = rms_error(p1,p2) dsq = sum(power(p1 - p2, 2),1); ER = sqrt(mean(dsq)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Converts (orthogonal) rotation matrices R to (unit) quaternion % representations % % Input: A 3x3xn matrix of rotation matrices % Output: A 4xn matrix of n corresponding quaternions % % http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion function quaternion = rmat2quat(R) Qxx = R(1,1,:); Qxy = R(1,2,:); Qxz = R(1,3,:); Qyx = R(2,1,:); Qyy = R(2,2,:); Qyz = R(2,3,:); Qzx = R(3,1,:); Qzy = R(3,2,:); Qzz = R(3,3,:); w = 0.5 * sqrt(1+Qxx+Qyy+Qzz); x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz); y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz); z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz); quaternion = reshape([w;x;y;z],4,[]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Converts (unit) quaternion representations to (orthogonal) rotation matrices R % % Input: A 4xn matrix of n quaternions % Output: A 3x3xn matrix of corresponding rotation matrices % % http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaternion_to_an_orthogonal_matrix function R = quat2rmat(quaternion) q0(1,1,:) = quaternion(1,:); qx(1,1,:) = quaternion(2,:); qy(1,1,:) = quaternion(3,:); qz(1,1,:) = quaternion(4,:); R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy; 2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx; 2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Least squares normal estimation from point clouds using PCA % % H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. % Surface reconstruction from unorganized points. % In Proceedings of ACM Siggraph, pages 71:78, 1992. % % p should be a matrix containing the horizontally concatenated column % vectors with points. k is a scalar indicating how many neighbors the % normal estimation is based upon. % % Note that for large point sets, the function performs significantly % faster if Statistics Toolbox >= v. 7.3 is installed. % % Jakob Wilm 2010 function n = lsqnormest(p, k) m = size(p,2); n = zeros(3,m); v = ver('stats'); if str2double(v.Version) >= 7.5 neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1)); else neighbors = k_nearest_neighbors(p, p, k+1); end for i = 1:m x = p(:,neighbors(2:end, i)); p_bar = 1/k * sum(x,2); P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P %P = 2*cov(x); [V,D] = eig(P); [~, idx] = min(diag(D)); % choses the smallest eigenvalue n(:,i) = V(:,idx); % returns the corresponding eigenvector end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Program to find the k - nearest neighbors (kNN) within a set of points. % Distance metric used: Euclidean distance % % Note that this function makes repetitive use of min(), which seems to be % more efficient than sort() for k < 30. function [neighborIds neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k) numDataPoints = size(dataMatrix,2); numQueryPoints = size(queryMatrix,2); neighborIds = zeros(k,numQueryPoints); neighborDistances = zeros(k,numQueryPoints); D = size(dataMatrix, 1); %dimensionality of points for i=1:numQueryPoints d=zeros(1,numDataPoints); for t=1:D % this is to avoid slow repmat() d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2; end for j=1:k [s,t] = min(d); neighborIds(j,i)=t; neighborDistances(j,i)=sqrt(s); d(t) = NaN; % remove found number from d end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Boundary point determination. Given a set of 3D points and a % corresponding triangle representation, returns those point indices that % define the border/edge of the surface. function bound = find_bound(pts, poly) %Correcting polygon indices and converting datatype poly = double(poly); pts = double(pts); %Calculating freeboundary points: TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)'); FF = freeBoundary(TR); %Output bound = FF(:,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
jianxiongxiao/ProfXkit-master
ransacfitRt.m
.m
ProfXkit-master/depthImproveStructureIO/ransacfitRt.m
2,888
utf_8
738399412f806f9855724ff192fe4494
% Usage: [Rt, inliers] = ransacfitRt(x1, x2, t) % % Arguments: % x1 - 3xN set of 3D points. % x2 - 3xN set of 3D points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % Rt - The 3x4 transformation matrix such that x1 = R*x2 + t. % inliers - An array of indices of the elements of x1, x2 that were % the inliers for the best model. % % See Also: RANSAC % Author: Jianxiong Xiao function [Rt, inliers] = ransacfitRt(x, t, feedback) s = 3; % Number of points needed to fit a Rt matrix. if size(x,2)==s inliers = 1:s; Rt = estimateRt(x); return; end fittingfn = @estimateRt; distfn = @euc3Ddist; degenfn = @isdegenerate; % x1 and x2 are 'stacked' to create a 6xN array for ransac [Rt, inliers] = ransac(x, fittingfn, distfn, degenfn, s, t, feedback); if length(inliers)<s Rt = [eye(3) zeros(3,1)]; inliers = []; return; end % Now do a final least squares fit on the data points considered to % be inliers. Rt = estimateRt(x(:,inliers)); end %-------------------------------------------------------------------------- % Note that this code allows for Rt being a cell array of matrices of % which we have to pick the best one. function [bestInliers, bestRt] = euc3Ddist(Rt, x, t) if iscell(Rt) % We have several solutions each of which must be tested nRt = length(Rt); % Number of solutions to test bestRt = Rt{1}; % Initial allocation of best solution ninliers = 0; % Number of inliers for k = 1:nRt d = sum((x(1:3,:) - (Rt{k}(:,1:3)*x(4:6,:)+repmat(Rt{k}(:,4),1,size(x,2)))).^2,1).^0.5; inliers = find(abs(d) < t); % Indices of inlying points if length(inliers) > ninliers % Record best solution ninliers = length(inliers); bestRt = Rt{k}; bestInliers = inliers; end end else % We just have one solution d = sum((x(1:3,:) - (Rt(:,1:3)*x(4:6,:)+repmat(Rt(:,4),1,size(x,2)))).^2,1).^0.5; bestInliers = find(abs(d) < t); % Indices of inlying points bestRt = Rt; % Copy Rt directly to bestRt end end %---------------------------------------------------------------------- % (Degenerate!) function to determine if a set of matched points will result % in a degeneracy in the calculation of a fundamental matrix as needed by % RANSAC. This function assumes this cannot happen... function r = isdegenerate(x) r = 0; end
github
jianxiongxiao/ProfXkit-master
show.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/show.m
4,944
utf_8
e2225be3d05b416c72fc6f1acbde02d0
% SHOW - Displays an image with the right size and colors and with a title. % % Usage: % h = show(im) % h = show(im, figNo) % h = show(im, title) % h = show(im, figNo, title) % % Arguments: im - Either a 2 or 3D array of pixel values or the name % of an image file; % figNo - Optional figure number to display image in. If % figNo is 0 the current figure or subplot is % assumed. % title - Optional string specifying figure title % % Returns: h - Handle to the figure. This allows you to set % additional figure attributes if desired. % % The function displays the image, automatically setting the colour map to % grey if it is a 2D image, or leaving it as colour otherwise, and setting % the axes to be 'equal'. The image is also displayed as 'TrueSize', that % is, pixels on the screen match pixels in the image (if it is possible % to fit it on the screen, otherwise MATLAB rescales it to fit). % % Unless you are doing a subplot (figNo==0) the window is sized to match % the image, leaving no border, and hence saving desktop real estate. % % If figNo is omitted a new figure window is created for the image. If % figNo is supplied, and the figure exists, the existing window is reused to % display the image, otherwise a new window is created. If figNo is 0 the % current figure or subplot is assumed. % % See also: SHOWSURF % Copyright (c) 2000-2009 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % October 2000 Original version % March 2003 Mods to alow figure name in window bar and allow for subplots. % April 2007 Proper recording and restoring of MATLAB warning state. % September 2008 Octave compatible % May 2009 Reworked argument handling logic for extra flexibility function h = show(im, param2, param3) Octave = exist('OCTAVE_VERSION') ~= 0; % Are we running under Octave? if ~Octave s = warning('query','all'); % Record existing warning state. warning('off'); % Turn off warnings that might arise if image % has to be rescaled to fit on screen end % Check case where im is an image filename rather than image data if ~isnumeric(im) & ~islogical(im) Title = im; % Default title is file name im = imread(im); else Title = inputname(1); % Default title is variable name of image data end figNo = -1; % Default value indicating create new figure % If two arguments check type of 2nd argument to see if it is the title or % figure number that has been supplied if nargin == 2 if strcmp(class(param2),'char') Title = param2; elseif isnumeric(param2) && length(param2) == 1 figNo = param2; else error('2nd argument must be a figure number or title'); end elseif nargin == 3 figNo = param2; Title = param3; if ~strcmp(class(Title),'char') error('Title must be a string'); end if ~isnumeric(param2) || length(param2) ~= 1 error('Figure number must be an integer'); end end if figNo > 0 % We have a valid figure number figure(figNo); % Reuse or create a figure window with this number if ~Octave subplot('position',[0 0 1 1]); % Use the whole window end elseif figNo == -1 figNo = figure; % Create new figure window if ~Octave subplot('position',[0 0 1 1]); % Use the whole window end end if ndims(im) == 2 % Display as greyscale imagesc(im); colormap('gray'); else imshow(im); % Display as RGB end if figNo == 0 % Assume we are trying to do a subplot figNo = gcf; % Get the current figure number axis('image'); axis('off'); title(Title); % Use a title rather than rename the figure else axis('image'); axis('off'); set(figNo,'name', [' ' Title]) if ~Octave truesize(figNo); end end if nargout == 1 h = figNo; end if ~Octave warning(s); % Restore warnings end
github
jianxiongxiao/ProfXkit-master
nonmaxsuppts.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/nonmaxsuppts.m
5,086
utf_8
6d711b2f28fd3ea2543d59f3e89139b7
% NONMAXSUPPTS - Non-maximal suppression for features/corners % % Non maxima suppression and thresholding for points generated by a feature % or corner detector. % % Usage: [r,c] = nonmaxsuppts(cim, radius, thresh, im) % / % optional % % [r,c, rsubp, csubp] = nonmaxsuppts(cim, radius, thresh, im) % % Arguments: % cim - corner strength image. % radius - radius of region considered in non-maximal % suppression. Typical values to use might % be 1-3 pixels. % thresh - threshold. % im - optional image data. If this is supplied the % thresholded corners are overlayed on this % image. This can be useful for parameter tuning. % Returns: % r - row coordinates of corner points (integer valued). % c - column coordinates of corner points. % rsubp - If four return values are requested sub-pixel % csubp - localization of feature points is attempted and % returned as an additional set of floating point % coords. Note that you may still want to use the integer % valued coords to specify centres of correlation windows % for feature matching. % % Copyright (c) 2003-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % September 2003 Original version % August 2005 Subpixel localization and Octave compatibility % January 2010 Fix for completely horizontal and vertical lines (by Thomas Stehle, % RWTH Aachen University) % January 2011 Warning given if no maxima found function [r,c, rsubp, csubp] = nonmaxsuppts(cim, radius, thresh, im) subPixel = nargout == 4; % We want sub-pixel locations [rows,cols] = size(cim); % Extract local maxima by performing a grey scale morphological % dilation and then finding points in the corner strength image that % match the dilated image and are also greater than the threshold. sze = 2*radius+1; % Size of dilation mask. mx = ordfilt2(cim,sze^2,ones(sze)); % Grey-scale dilate. % Make mask to exclude points within radius of the image boundary. bordermask = zeros(size(cim)); bordermask(radius+1:end-radius, radius+1:end-radius) = 1; % Find maxima, threshold, and apply bordermask cimmx = (cim==mx) & (cim>thresh) & bordermask; [r,c] = find(cimmx); % Find row,col coords. if subPixel % Compute local maxima to sub pixel accuracy if ~isempty(r) % ...if we have some ponts to work with ind = sub2ind(size(cim),r,c); % 1D indices of feature points w = 1; % Width that we look out on each side of the feature % point to fit a local parabola % Indices of points above, below, left and right of feature point indrminus1 = max(ind-w,1); indrplus1 = min(ind+w,rows*cols); indcminus1 = max(ind-w*rows,1); indcplus1 = min(ind+w*rows,rows*cols); % Solve for quadratic down rows rowshift = zeros(size(ind)); cy = cim(ind); ay = (cim(indrminus1) + cim(indrplus1))/2 - cy; by = ay + cy - cim(indrminus1); rowshift(ay ~= 0) = -w*by(ay ~= 0)./(2*ay(ay ~= 0)); % Maxima of quadradic rowshift(ay == 0) = 0; % Solve for quadratic across columns colshift = zeros(size(ind)); cx = cim(ind); ax = (cim(indcminus1) + cim(indcplus1))/2 - cx; bx = ax + cx - cim(indcminus1); colshift(ax ~= 0) = -w*bx(ax ~= 0)./(2*ax(ax ~= 0)); % Maxima of quadradic colshift(ax == 0) = 0; rsubp = r+rowshift; % Add subpixel corrections to original row csubp = c+colshift; % and column coords. else rsubp = []; csubp = []; end end if nargin==4 & ~isempty(r) % Overlay corners on supplied image. figure(1), imshow(im,[]), hold on if subPixel plot(csubp,rsubp,'r+'), title('corners detected'); else plot(c,r,'r+'), title('corners detected'); end hold off end if isempty(r) % fprintf('No maxima above threshold found\n'); end
github
jianxiongxiao/ProfXkit-master
ransacfitfundmatrix.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/ransacfitfundmatrix.m
5,544
utf_8
b87d72c56902f27c573b6c545f6754ab
% RANSACFITFUNDMATRIX - fits fundamental matrix using RANSAC % % Usage: [F, inliers] = ransacfitfundmatrix(x1, x2, t) % % Arguments: % x1 - 2xN or 3xN set of homogeneous points. If the data is % 2xN it is assumed the homogeneous scale factor is 1. % x2 - 2xN or 3xN set of homogeneous points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % Note that point coordinates are normalised to that their % mean distance from the origin is sqrt(2). The value of % t should be set relative to this, say in the range % 0.001 - 0.01 % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % F - The 3x3 fundamental matrix such that x2'Fx1 = 0. % inliers - An array of indices of the elements of x1, x2 that were % the inliers for the best model. % % See Also: RANSAC, FUNDMATRIX % Copyright (c) 2004-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % February 2004 Original version % August 2005 Distance error function changed to match changes in RANSAC function [F, inliers] = ransacfitfundmatrix(x1, x2, t, feedback) if ~all(size(x1)==size(x2)) error('Data sets x1 and x2 must have the same dimension'); end if nargin == 3 feedback = 0; end [rows,npts] = size(x1); if rows~=2 & rows~=3 error('x1 and x2 must have 2 or 3 rows'); end if rows == 2 % Pad data with homogeneous scale factor of 1 x1 = [x1; ones(1,npts)]; x2 = [x2; ones(1,npts)]; end % Normalise each set of points so that the origin is at centroid and % mean distance from origin is sqrt(2). normalise2dpts also ensures the % scale parameter is 1. Note that 'fundmatrix' will also call % 'normalise2dpts' but the code in 'ransac' that calls the distance % function will not - so it is best that we normalise beforehand. [x1, T1] = normalise2dpts(x1); [x2, T2] = normalise2dpts(x2); s = 8; % Number of points needed to fit a fundamental matrix. Note that % only 7 are needed but the function 'fundmatrix' only % implements the 8-point solution. fittingfn = @fundmatrix; distfn = @funddist; degenfn = @isdegenerate; % x1 and x2 are 'stacked' to create a 6xN array for ransac [F, inliers] = ransac([x1; x2], fittingfn, distfn, degenfn, s, t, feedback); % Now do a final least squares fit on the data points considered to % be inliers. F = fundmatrix(x1(:,inliers), x2(:,inliers)); % Denormalise F = T2'*F*T1; %-------------------------------------------------------------------------- % Function to evaluate the first order approximation of the geometric error % (Sampson distance) of the fit of a fundamental matrix with respect to a % set of matched points as needed by RANSAC. See: Hartley and Zisserman, % 'Multiple View Geometry in Computer Vision', page 270. % % Note that this code allows for F being a cell array of fundamental matrices of % which we have to pick the best one. (A 7 point solution can return up to 3 % solutions) function [bestInliers, bestF] = funddist(F, x, t); x1 = x(1:3,:); % Extract x1 and x2 from x x2 = x(4:6,:); if iscell(F) % We have several solutions each of which must be tested nF = length(F); % Number of solutions to test bestF = F{1}; % Initial allocation of best solution ninliers = 0; % Number of inliers for k = 1:nF x2tFx1 = zeros(1,length(x1)); for n = 1:length(x1) x2tFx1(n) = x2(:,n)'*F{k}*x1(:,n); end Fx1 = F{k}*x1; Ftx2 = F{k}'*x2; % Evaluate distances d = x2tFx1.^2 ./ ... (Fx1(1,:).^2 + Fx1(2,:).^2 + Ftx2(1,:).^2 + Ftx2(2,:).^2); inliers = find(abs(d) < t); % Indices of inlying points if length(inliers) > ninliers % Record best solution ninliers = length(inliers); bestF = F{k}; bestInliers = inliers; end end else % We just have one solution x2tFx1 = zeros(1,length(x1)); for n = 1:length(x1) x2tFx1(n) = x2(:,n)'*F*x1(:,n); end Fx1 = F*x1; Ftx2 = F'*x2; % Evaluate distances d = x2tFx1.^2 ./ ... (Fx1(1,:).^2 + Fx1(2,:).^2 + Ftx2(1,:).^2 + Ftx2(2,:).^2); bestInliers = find(abs(d) < t); % Indices of inlying points bestF = F; % Copy F directly to bestF end %---------------------------------------------------------------------- % (Degenerate!) function to determine if a set of matched points will result % in a degeneracy in the calculation of a fundamental matrix as needed by % RANSAC. This function assumes this cannot happen... function r = isdegenerate(x) r = 0;
github
jianxiongxiao/ProfXkit-master
matrix2quaternion.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/matrix2quaternion.m
2,010
utf_8
ad7a1983aceaa9953be167eddabb22ae
% MATRIX2QUATERNION - Homogeneous matrix to quaternion % % Converts 4x4 homogeneous rotation matrix to quaternion % % Usage: Q = matrix2quaternion(T) % % Argument: T - 4x4 Homogeneous transformation matrix % Returns: Q - a quaternion in the form [w, xi, yj, zk] % % See Also QUATERNION2MATRIX % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. function Q = matrix2quaternion(T) % This code follows the implementation suggested by Hartley and Zisserman R = T(1:3, 1:3); % Extract rotation part of T % Find rotation axis as the eigenvector having unit eigenvalue % Solve (R-I)v = 0; [v,d] = eig(R-eye(3)); % The following code assumes the eigenvalues returned are not necessarily % sorted by size. This may be overcautious on my part. d = diag(abs(d)); % Extract eigenvalues [s, ind] = sort(d); % Find index of smallest one if d(ind(1)) > 0.001 % Hopefully it is close to 0 warning('Rotation matrix is dubious'); end axis = v(:,ind(1)); % Extract appropriate eigenvector if abs(norm(axis) - 1) > .0001 % Debug warning('non unit rotation axis'); end % Now determine the rotation angle twocostheta = trace(R)-1; twosinthetav = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]'; twosintheta = axis'*twosinthetav; theta = atan2(twosintheta, twocostheta); Q = [cos(theta/2); axis*sin(theta/2)];
github
jianxiongxiao/ProfXkit-master
harris.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/harris.m
4,707
utf_8
9123c3c21835dfa4d233abe149d6620d
% HARRIS - Harris corner detector % % Usage: cim = harris(im, sigma) % [cim, r, c] = harris(im, sigma, thresh, radius, disp) % [cim, r, c, rsubp, csubp] = harris(im, sigma, thresh, radius, disp) % % Arguments: % im - image to be processed. % sigma - standard deviation of smoothing Gaussian. Typical % values to use might be 1-3. % thresh - threshold (optional). Try a value ~1000. % radius - radius of region considered in non-maximal % suppression (optional). Typical values to use might % be 1-3. % disp - optional flag (0 or 1) indicating whether you want % to display corners overlayed on the original % image. This can be useful for parameter tuning. This % defaults to 0 % % Returns: % cim - binary image marking corners. % r - row coordinates of corner points. % c - column coordinates of corner points. % rsubp - If five return values are requested sub-pixel % csubp - localization of feature points is attempted and % returned as an additional set of floating point % coords. Note that you may still want to use the integer % valued coords to specify centres of correlation windows % for feature matching. % % If thresh and radius are omitted from the argument list only 'cim' is returned % as a raw corner strength image. You may then want to look at the values % within 'cim' to determine the appropriate threshold value to use. Note that % the Harris corner strength varies with the intensity gradient raised to the % 4th power. Small changes in input image contrast result in huge changes in % the appropriate threshold. % % Note that this code computes Noble's version of the detector which does not % require the parameter 'k'. See comments in code if you wish to use Harris' % original measure. % % See also: NONMAXSUPPTS, DERIVATIVE5 % References: % C.G. Harris and M.J. Stephens. "A combined corner and edge detector", % Proceedings Fourth Alvey Vision Conference, Manchester. % pp 147-151, 1988. % % Alison Noble, "Descriptions of Image Surfaces", PhD thesis, Department % of Engineering Science, Oxford University 1989, p45. % Copyright (c) 2002-2010 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % http://www.csse.uwa.edu.au/~pk/research/matlabfns/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % March 2002 - Original version % December 2002 - Updated comments % August 2005 - Changed so that code calls nonmaxsuppts % August 2010 - Changed to use Farid and Simoncelli's derivative filters function [cim, r, c, rsubp, csubp] = harris(im, sigma, thresh, radius, disp) error(nargchk(2,5,nargin)); if nargin == 4 disp = 0; end if ~isa(im,'double') im = double(im); end subpixel = nargout == 5; % Compute derivatives and elements of the structure tensor. [Ix, Iy] = derivative5(im, 'x', 'y'); Ix2 = gaussfilt(Ix.^2, sigma); Iy2 = gaussfilt(Iy.^2, sigma); Ixy = gaussfilt(Ix.*Iy, sigma); % Compute the Harris corner measure. Note that there are two measures % that can be calculated. I prefer the first one below as given by % Nobel in her thesis (reference above). The second one (commented out) % requires setting a parameter, it is commonly suggested that k=0.04 - I % find this a bit arbitrary and unsatisfactory. cim = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps); % My preferred measure. % k = 0.04; % cim = (Ix2.*Iy2 - Ixy.^2) - k*(Ix2 + Iy2).^2; % Original Harris measure. if nargin > 2 % We should perform nonmaximal suppression and threshold if disp % Call nonmaxsuppts to so that image is displayed if subpixel [r,c,rsubp,csubp] = nonmaxsuppts(cim, radius, thresh, im); else [r,c] = nonmaxsuppts(cim, radius, thresh, im); end else % Just do the nonmaximal suppression if subpixel [r,c,rsubp,csubp] = nonmaxsuppts(cim, radius, thresh); else [r,c] = nonmaxsuppts(cim, radius, thresh); end end end
github
jianxiongxiao/ProfXkit-master
hnormalise.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/hnormalise.m
1,010
utf_8
5c1ed3ba361fa6f28b1517af1924af40
% HNORMALISE - Normalises array of homogeneous coordinates to a scale of 1 % % Usage: nx = hnormalise(x) % % Argument: % x - an Nxnpts array of homogeneous coordinates. % % Returns: % nx - an Nxnpts array of homogeneous coordinates rescaled so % that the scale values nx(N,:) are all 1. % % Note that any homogeneous coordinates at infinity (having a scale value of % 0) are left unchanged. % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/~pk % % February 2004 function nx = hnormalise(x) [rows,npts] = size(x); nx = x; % Find the indices of the points that are not at infinity finiteind = find(abs(x(rows,:)) > eps); %if length(finiteind) ~= npts % warning('Some points are at infinity'); %end % Normalise points not at infinity for r = 1:rows-1 nx(r,finiteind) = x(r,finiteind)./x(rows,finiteind); end nx(rows,finiteind) = 1;
github
jianxiongxiao/ProfXkit-master
homography2d.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/homography2d.m
2,493
utf_8
60985e0ab95fe690d769c83adff61080
% HOMOGRAPHY2D - computes 2D homography % % Usage: H = homography2d(x1, x2) % H = homography2d(x) % % Arguments: % x1 - 3xN set of homogeneous points % x2 - 3xN set of homogeneous points such that x1<->x2 % % x - If a single argument is supplied it is assumed that it % is in the form x = [x1; x2] % Returns: % H - the 3x3 homography such that x2 = H*x1 % % This code follows the normalised direct linear transformation % algorithm given by Hartley and Zisserman "Multiple View Geometry in % Computer Vision" p92. % % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % May 2003 - Original version. % Feb 2004 - Single argument allowed for to enable use with RANSAC. % Feb 2005 - SVD changed to 'Economy' decomposition (thanks to Paul O'Leary) function H = homography2d(varargin) [x1, x2] = checkargs(varargin(:)); % Attempt to normalise each set of points so that the origin % is at centroid and mean distance from origin is sqrt(2). [x1, T1] = normalise2dpts(x1); [x2, T2] = normalise2dpts(x2); % Note that it may have not been possible to normalise % the points if one was at infinity so the following does not % assume that scale parameter w = 1. Npts = length(x1); A = zeros(3*Npts,9); O = [0 0 0]; for n = 1:Npts X = x1(:,n)'; x = x2(1,n); y = x2(2,n); w = x2(3,n); A(3*n-2,:) = [ O -w*X y*X]; A(3*n-1,:) = [ w*X O -x*X]; A(3*n ,:) = [-y*X x*X O ]; end [U,D,V] = svd(A,0); % 'Economy' decomposition for speed % Extract homography H = reshape(V(:,9),3,3)'; % Denormalise H = T2\H*T1; %-------------------------------------------------------------------------- % Function to check argument values and set defaults function [x1, x2] = checkargs(arg); if length(arg) == 2 x1 = arg{1}; x2 = arg{2}; if ~all(size(x1)==size(x2)) error('x1 and x2 must have the same size'); elseif size(x1,1) ~= 3 error('x1 and x2 must be 3xN'); end elseif length(arg) == 1 if size(arg{1},1) ~= 6 error('Single argument x must be 6xN'); else x1 = arg{1}(1:3,:); x2 = arg{1}(4:6,:); end else error('Wrong number of arguments supplied'); end
github
jianxiongxiao/ProfXkit-master
iscolinear.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/iscolinear.m
2,318
utf_8
65025b7413f8f6b4cb16dd1689a5900f
% ISCOLINEAR - are 3 points colinear % % Usage: r = iscolinear(p1, p2, p3, flag) % % Arguments: % p1, p2, p3 - Points in 2D or 3D. % flag - An optional parameter set to 'h' or 'homog' % indicating that p1, p2, p3 are homogneeous % coordinates with arbitrary scale. If this is % omitted it is assumed that the points are % inhomogeneous, or that they are homogeneous with % equal scale. % % Returns: % r = 1 if points are co-linear, 0 otherwise % Copyright (c) 2004-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % February 2004 % January 2005 - modified to allow for homogeneous points of arbitrary % scale (thanks to Michael Kirchhof) function r = iscolinear(p1, p2, p3, flag) if nargin == 3 % Assume inhomogeneous coords flag = 'inhomog'; end if ~all(size(p1)==size(p2)) | ~all(size(p1)==size(p3)) | ... ~(length(p1)==2 | length(p1)==3) error('points must have the same dimension of 2 or 3'); end % If data is 2D, assume they are 2D inhomogeneous coords. Make them % homogeneous with scale 1. if length(p1) == 2 p1(3) = 1; p2(3) = 1; p3(3) = 1; end if flag(1) == 'h' % Apply test that allows for homogeneous coords with arbitrary % scale. p1 X p2 generates a normal vector to plane defined by % origin, p1 and p2. If the dot product of this normal with p3 % is zero then p3 also lies in the plane, hence co-linear. r = abs(dot(cross(p1, p2),p3)) < eps; else % Assume inhomogeneous coords, or homogeneous coords with equal % scale. r = norm(cross(p2-p1, p3-p1)) < eps; end
github
jianxiongxiao/ProfXkit-master
monofilt.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/monofilt.m
6,435
utf_8
07ef46eb32d19a4d79e9ec304c6cb2d3
% MONOFILT - Apply monogenic filters to an image to obtain 2D analytic signal % % Implementation of Felsberg's monogenic filters % % Usage: [f, h1f, h2f, A, theta, psi] = ... % monofilt(im, nscale, minWaveLength, mult, sigmaOnf, orientWrap) % 3 4 2 0.65 1/0 % Arguments: % The convolutions are done via the FFT. Many of the parameters relate % to the specification of the filters in the frequency plane. % % Variable Suggested Description % name value % ---------------------------------------------------------- % im Image to be convolved. % nscale = 3; Number of filter scales. % minWaveLength = 4; Wavelength of smallest scale filter. % mult = 2; Scaling factor between successive filters. % sigmaOnf = 0.65; Ratio of the standard deviation of the % Gaussian describing the log Gabor filter's % transfer function in the frequency domain % to the filter center frequency. % orientWrap 1/0 Optional flag 1/0 to turn on/off % 'wrapping' of orientation data from a % range of -pi .. pi to the range 0 .. pi. % This affects the interpretation of the % phase angle - see note below. Defaults to 0. % Returns: % % f - cell array of bandpass filter responses with respect to scale. % h1f - cell array of bandpass h1 filter responses wrt scale. % h2f - cell array of bandpass h2 filter responses. % A - cell array of monogenic energy responses. % theta - cell array of phase orientation responses. % psi - cell array of phase angle responses. % % If orientWrap is 1 (on) theta will be returned in the range 0 .. pi and % psi (the phase angle) will be returned in the range -pi .. pi. If % orientWrap is 0 theta will be returned in the range -pi .. pi and psi will % be returned in the range -pi/2 .. pi/2. Try both options on an image of a % circle to see what this means! % % Experimentation with sigmaOnf can be useful depending on your application. % I have found values as low as 0.2 (a filter with a *very* large bandwidth) % to be useful on some occasions. % % See also: GABORCONVOLVE % References: % Michael Felsberg and Gerald Sommer. "A New Extension of Linear Signal % Processing for Estimating Local Properties and Detecting Features" % DAGM Symposium 2000, Kiel % % Michael Felsberg and Gerald Sommer. "The Monogenic Signal" IEEE % Transactions on Signal Processing, 49(12):3136-3144, December 2001 % Copyright (c) 2004-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % October 2004 - Original version. % May 2005 - Orientation wrapping and code cleaned up. % August 2005 - Phase calculation improved. function [f, h1f, h2f, A, theta, psi] = ... monofilt(im, nscale, minWaveLength, mult, sigmaOnf, orientWrap) if nargin == 5 orientWrap = 0; % Default is no orientation wrapping end if nargout > 4 thetaPhase = 1; % Calculate orientation and phase else thetaPhase = 0; % Only return filter outputs end [rows,cols] = size(im); IM = fft2(double(im)); % Generate horizontal and vertical frequency grids that vary from % -0.5 to 0.5 [u1, u2] = meshgrid(([1:cols]-(fix(cols/2)+1))/(cols-mod(cols,2)), ... ([1:rows]-(fix(rows/2)+1))/(rows-mod(rows,2))); u1 = ifftshift(u1); % Quadrant shift to put 0 frequency at the corners u2 = ifftshift(u2); radius = sqrt(u1.^2 + u2.^2); % Matrix values contain frequency % values as a radius from centre % (but quadrant shifted) % Get rid of the 0 radius value in the middle (at top left corner after % fftshifting) so that taking the log of the radius, or dividing by the % radius, will not cause trouble. radius(1,1) = 1; H1 = i*u1./radius; % The two monogenic filters in the frequency domain H2 = i*u2./radius; % The two monogenic filters H1 and H2 are oriented in frequency space % but are not selective in terms of the magnitudes of the % frequencies. The code below generates bandpass log-Gabor filters % which are point-wise multiplied by H1 and H2 to produce different % bandpass versions of H1 and H2 for s = 1:nscale wavelength = minWaveLength*mult^(s-1); fo = 1.0/wavelength; % Centre frequency of filter. logGabor = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2)); logGabor(1,1) = 0; % undo the radius fudge. % Generate bandpass versions of H1 and H2 at this scale H1s = H1.*logGabor; H2s = H2.*logGabor; % Apply filters to image in the frequency domain and get spatial % results f{s} = real(ifft2(IM.*logGabor)); h1f{s} = real(ifft2(IM.*H1s)); h2f{s} = real(ifft2(IM.*H2s)); A{s} = sqrt(f{s}.^2 + h1f{s}.^2 + h2f{s}.^2); % Magnitude of Energy. % If requested calculate the orientation and phase angles if thetaPhase theta{s} = atan2(h2f{s}, h1f{s}); % Orientation. % Here phase is measured relative to the h1f-h2f plane as an % 'elevation' angle that ranges over +- pi/2 psi{s} = atan2(f{s}, sqrt(h1f{s}.^2 + h2f{s}.^2)); if orientWrap % Wrap orientation values back into the range 0-pi negind = find(theta{s}<0); theta{s}(negind) = theta{s}(negind) + pi; % Where orientation values have been wrapped we should % adjust phase accordingly **check** psi{s}(negind) = pi-psi{s}(negind); morethanpi = find(psi{s}>pi); psi{s}(morethanpi) = psi{s}(morethanpi)-2*pi; end end end
github
jianxiongxiao/ProfXkit-master
ransacfithomography.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/ransacfithomography.m
4,920
utf_8
d479d49f7c8e8689283005bcbe340b61
% RANSACFITHOMOGRAPHY - fits 2D homography using RANSAC % % Usage: [H, inliers] = ransacfithomography(x1, x2, t) % % Arguments: % x1 - 2xN or 3xN set of homogeneous points. If the data is % 2xN it is assumed the homogeneous scale factor is 1. % x2 - 2xN or 3xN set of homogeneous points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % Note that point coordinates are normalised to that their % mean distance from the origin is sqrt(2). The value of % t should be set relative to this, say in the range % 0.001 - 0.01 % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % H - The 3x3 homography such that x2 = H*x1. % inliers - An array of indices of the elements of x1, x2 that were % the inliers for the best model. % % See Also: ransac, homography2d, homography1d % Copyright (c) 2004-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % February 2004 - original version % July 2004 - error in denormalising corrected (thanks to Andrew Stein) % August 2005 - homogdist2d modified to fit new ransac specification. function [H, inliers] = ransacfithomography(x1, x2, t) if ~all(size(x1)==size(x2)) error('Data sets x1 and x2 must have the same dimension'); end [rows,npts] = size(x1); if rows~=2 & rows~=3 error('x1 and x2 must have 2 or 3 rows'); end if npts < 4 error('Must have at least 4 points to fit homography'); end if rows == 2 % Pad data with homogeneous scale factor of 1 x1 = [x1; ones(1,npts)]; x2 = [x2; ones(1,npts)]; end % Normalise each set of points so that the origin is at centroid and % mean distance from origin is sqrt(2). normalise2dpts also ensures the % scale parameter is 1. Note that 'homography2d' will also call % 'normalise2dpts' but the code in 'ransac' that calls the distance % function will not - so it is best that we normalise beforehand. [x1, T1] = normalise2dpts(x1); [x2, T2] = normalise2dpts(x2); s = 4; % Minimum No of points needed to fit a homography. fittingfn = @homography2d; distfn = @homogdist2d; degenfn = @isdegenerate; % x1 and x2 are 'stacked' to create a 6xN array for ransac [H, inliers] = ransac([x1; x2], fittingfn, distfn, degenfn, s, t); % Now do a final least squares fit on the data points considered to % be inliers. H = homography2d(x1(:,inliers), x2(:,inliers)); % Denormalise H = T2\H*T1; %---------------------------------------------------------------------- % Function to evaluate the symmetric transfer error of a homography with % respect to a set of matched points as needed by RANSAC. function [inliers, H] = homogdist2d(H, x, t); x1 = x(1:3,:); % Extract x1 and x2 from x x2 = x(4:6,:); % Calculate, in both directions, the transfered points Hx1 = H*x1; invHx2 = H\x2; % Normalise so that the homogeneous scale parameter for all coordinates % is 1. x1 = hnormalise(x1); x2 = hnormalise(x2); Hx1 = hnormalise(Hx1); invHx2 = hnormalise(invHx2); d2 = sum((x1-invHx2).^2) + sum((x2-Hx1).^2); inliers = find(abs(d2) < t); %---------------------------------------------------------------------- % Function to determine if a set of 4 pairs of matched points give rise % to a degeneracy in the calculation of a homography as needed by RANSAC. % This involves testing whether any 3 of the 4 points in each set is % colinear. function r = isdegenerate(x) x1 = x(1:3,:); % Extract x1 and x2 from x x2 = x(4:6,:); r = ... iscolinear(x1(:,1),x1(:,2),x1(:,3)) | ... iscolinear(x1(:,1),x1(:,2),x1(:,4)) | ... iscolinear(x1(:,1),x1(:,3),x1(:,4)) | ... iscolinear(x1(:,2),x1(:,3),x1(:,4)) | ... iscolinear(x2(:,1),x2(:,2),x2(:,3)) | ... iscolinear(x2(:,1),x2(:,2),x2(:,4)) | ... iscolinear(x2(:,1),x2(:,3),x2(:,4)) | ... iscolinear(x2(:,2),x2(:,3),x2(:,4));
github
jianxiongxiao/ProfXkit-master
fundmatrix.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/fundmatrix.m
3,961
utf_8
250dfa8051640daab30229f35667f4d6
% FUNDMATRIX - computes fundamental matrix from 8 or more points % % Function computes the fundamental matrix from 8 or more matching points in % a stereo pair of images. The normalised 8 point algorithm given by % Hartley and Zisserman p265 is used. To achieve accurate results it is % recommended that 12 or more points are used % % Usage: [F, e1, e2] = fundmatrix(x1, x2) % [F, e1, e2] = fundmatrix(x) % % Arguments: % x1, x2 - Two sets of corresponding 3xN set of homogeneous % points. % % x - If a single argument is supplied it is assumed that it % is in the form x = [x1; x2] % Returns: % F - The 3x3 fundamental matrix such that x2'*F*x1 = 0. % e1 - The epipole in image 1 such that F*e1 = 0 % e2 - The epipole in image 2 such that F'*e2 = 0 % % Copyright (c) 2002-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % Feb 2002 - Original version. % May 2003 - Tidied up and numerically improved. % Feb 2004 - Single argument allowed to enable use with RANSAC. % Mar 2005 - Epipole calculation added, 'economy' SVD used. % Aug 2005 - Octave compatibility function [F,e1,e2] = fundmatrix(varargin) [x1, x2, npts] = checkargs(varargin(:)); Octave = exist('OCTAVE_VERSION') ~= 0; % Are we running under Octave? % Normalise each set of points so that the origin % is at centroid and mean distance from origin is sqrt(2). % normalise2dpts also ensures the scale parameter is 1. [x1, T1] = normalise2dpts(x1); [x2, T2] = normalise2dpts(x2); % Build the constraint matrix A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ... x1(1,:)' x1(2,:)' ones(npts,1) ]; if Octave [U,D,V] = svd(A); % Don't seem to be able to use the economy % decomposition under Octave here else [U,D,V] = svd(A,0); % Under MATLAB use the economy decomposition end % Extract fundamental matrix from the column of V corresponding to % smallest singular value. F = reshape(V(:,9),3,3)'; % Enforce constraint that fundamental matrix has rank 2 by performing % a svd and then reconstructing with the two largest singular values. [U,D,V] = svd(F,0); F = U*diag([D(1,1) D(2,2) 0])*V'; % Denormalise F = T2'*F*T1; if nargout == 3 % Solve for epipoles [U,D,V] = svd(F,0); e1 = hnormalise(V(:,3)); e2 = hnormalise(U(:,3)); end %-------------------------------------------------------------------------- % Function to check argument values and set defaults function [x1, x2, npts] = checkargs(arg); if length(arg) == 2 x1 = arg{1}; x2 = arg{2}; if ~all(size(x1)==size(x2)) error('x1 and x2 must have the same size'); elseif size(x1,1) ~= 3 error('x1 and x2 must be 3xN'); end elseif length(arg) == 1 if size(arg{1},1) ~= 6 error('Single argument x must be 6xN'); else x1 = arg{1}(1:3,:); x2 = arg{1}(4:6,:); end else error('Wrong number of arguments supplied'); end npts = size(x1,2); if npts < 8 error('At least 8 points are needed to compute the fundamental matrix'); end
github
jianxiongxiao/ProfXkit-master
hline.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/hline.m
1,584
utf_8
7887599478d2ebb7e50fdef565f8f3f5
% HLINE - Plot 2D lines defined in homogeneous coordinates. % % Function for ploting 2D homogeneous lines defined by 2 points % or a line defined by a single homogeneous vector % % Usage: hline(p1,p2) where p1 and p2 are 2D homogeneous points. % hline(p1,p2,'colour_name') 'black' 'red' 'white' etc % hline(l) where l is a line in homogeneous coordinates % hline(l,'colour_name') % % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk @ csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % April 2000 function hline(a,b,c) col = 'blue'; % default colour if nargin >= 2 & isa(a,'double') & isa(b,'double') % Two points specified p1 = a./a(3); % make sure homogeneous points lie in z=1 plane p2 = b./b(3); if nargin == 3 & isa(c,'char') % 2 points and a colour specified col = c; end elseif nargin >= 1 & isa(a,'double') % A single line specified a = a./a(3); % ensure line in z = 1 plane (not needed??) if abs(a(1)) > abs(a(2)) % line is more vertical ylim = get(get(gcf,'CurrentAxes'),'Ylim'); p1 = hcross(a, [0 1 0]'); p2 = hcross(a, [0 -1/ylim(2) 1]'); else % line more horizontal xlim = get(get(gcf,'CurrentAxes'),'Xlim'); p1 = hcross(a, [1 0 0]'); p2 = hcross(a, [-1/xlim(2) 0 1]'); end if nargin == 2 & isa(b,'char') % 1 line vector and a colour specified col = b; end else error('Bad arguments passed to hline'); end line([p1(1) p2(1)], [p1(2) p2(2)], 'color', col);
github
jianxiongxiao/ProfXkit-master
ransac.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/ransac.m
9,583
utf_8
f79cf643308f984914c65e4023a0ac9b
% RANSAC - Robustly fits a model to data with the RANSAC algorithm % % Usage: % % [M, inliers] = ransac(x, fittingfn, distfn, degenfn s, t, feedback, ... % maxDataTrials, maxTrials) % % Arguments: % x - Data sets to which we are seeking to fit a model M % It is assumed that x is of size [d x Npts] % where d is the dimensionality of the data and Npts is % the number of data points. % % fittingfn - Handle to a function that fits a model to s % data from x. It is assumed that the function is of the % form: % M = fittingfn(x) % Note it is possible that the fitting function can return % multiple models (for example up to 3 fundamental matrices % can be fitted to 7 matched points). In this case it is % assumed that the fitting function returns a cell array of % models. % If this function cannot fit a model it should return M as % an empty matrix. % % distfn - Handle to a function that evaluates the % distances from the model to data x. % It is assumed that the function is of the form: % [inliers, M] = distfn(M, x, t) % This function must evaluate the distances between points % and the model returning the indices of elements in x that % are inliers, that is, the points that are within distance % 't' of the model. Additionally, if M is a cell array of % possible models 'distfn' will return the model that has the % most inliers. If there is only one model this function % must still copy the model to the output. After this call M % will be a non-cell object representing only one model. % % degenfn - Handle to a function that determines whether a % set of datapoints will produce a degenerate model. % This is used to discard random samples that do not % result in useful models. % It is assumed that degenfn is a boolean function of % the form: % r = degenfn(x) % It may be that you cannot devise a test for degeneracy in % which case you should write a dummy function that always % returns a value of 1 (true) and rely on 'fittingfn' to return % an empty model should the data set be degenerate. % % s - The minimum number of samples from x required by % fittingfn to fit a model. % % t - The distance threshold between a data point and the model % used to decide whether the point is an inlier or not. % % feedback - An optional flag 0/1. If set to one the trial count and the % estimated total number of trials required is printed out at % each step. Defaults to 0. % % maxDataTrials - Maximum number of attempts to select a non-degenerate % data set. This parameter is optional and defaults to 100. % % maxTrials - Maximum number of iterations. This parameter is optional and % defaults to 1000. % % Returns: % M - The model having the greatest number of inliers. % inliers - An array of indices of the elements of x that were % the inliers for the best model. % % For an example of the use of this function see RANSACFITHOMOGRAPHY or % RANSACFITPLANE % References: % M.A. Fishler and R.C. Boles. "Random sample concensus: A paradigm % for model fitting with applications to image analysis and automated % cartography". Comm. Assoc. Comp, Mach., Vol 24, No 6, pp 381-395, 1981 % % Richard Hartley and Andrew Zisserman. "Multiple View Geometry in % Computer Vision". pp 101-113. Cambridge University Press, 2001 % Copyright (c) 2003-2006 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % May 2003 - Original version % February 2004 - Tidied up. % August 2005 - Specification of distfn changed to allow model fitter to % return multiple models from which the best must be selected % Sept 2006 - Random selection of data points changed to ensure duplicate % points are not selected. % February 2007 - Jordi Ferrer: Arranged warning printout. % Allow maximum trials as optional parameters. % Patch the problem when non-generated data % set is not given in the first iteration. % August 2008 - 'feedback' parameter restored to argument list and other % breaks in code introduced in last update fixed. % December 2008 - Octave compatibility mods % June 2009 - Argument 'MaxTrials' corrected to 'maxTrials'! function [M, inliers] = ransac(x, fittingfn, distfn, degenfn, s, t, feedback, ... maxDataTrials, maxTrials) Octave = exist('OCTAVE_VERSION') ~= 0; % Test number of parameters error ( nargchk ( 6, 9, nargin ) ); if nargin < 9; maxTrials = 50000; end; if nargin < 8; maxDataTrials = 1000; end; if nargin < 7; feedback = 0; end; [rows, npts] = size(x); p = 0.99; % Desired probability of choosing at least one sample % free from outliers bestM = NaN; % Sentinel value allowing detection of solution failure. trialcount = 0; bestscore = 0; N = 1; % Dummy initialisation for number of trials. % for debugging, we fix the set stream = RandStream.getGlobalStream; reset(stream); while N > trialcount % Select at random s datapoints to form a trial model, M. % In selecting these points we have to check that they are not in % a degenerate configuration. degenerate = 1; count = 1; while degenerate % Generate s random indicies in the range 1..npts % (If you do not have the statistics toolbox, or are using Octave, % use the function RANDOMSAMPLE from my webpage) if Octave | ~exist('randsample.m') ind = randomsample(npts, s); else ind = randsample(npts, s); end % Test that these points are not a degenerate configuration. degenerate = feval(degenfn, x(:,ind)); if ~degenerate % Fit model to this random selection of data points. % Note that M may represent a set of models that fit the data in % this case M will be a cell array of models M = feval(fittingfn, x(:,ind)); % Depending on your problem it might be that the only way you % can determine whether a data set is degenerate or not is to % try to fit a model and see if it succeeds. If it fails we % reset degenerate to true. if isempty(M) degenerate = 1; end end % Safeguard against being stuck in this loop forever count = count + 1; if count > maxDataTrials warning('Unable to select a nondegenerate data set'); break end end % Once we are out here we should have some kind of model... % Evaluate distances between points and model returning the indices % of elements in x that are inliers. Additionally, if M is a cell % array of possible models 'distfn' will return the model that has % the most inliers. After this call M will be a non-cell object % representing only one model. [inliers, M] = feval(distfn, M, x, t); % Find the number of inliers to this model. ninliers = length(inliers); % Jianxiong: I change it from > to >= if ninliers >= bestscore % Largest set of inliers so far... bestscore = ninliers; % Record data for this model bestinliers = inliers; bestM = M; % Update estimate of N, the number of trials to ensure we pick, % with probability p, a data set with no outliers. fracinliers = ninliers/npts; pNoOutliers = 1 - fracinliers^s; pNoOutliers = max(eps, pNoOutliers); % Avoid division by -Inf pNoOutliers = min(1-eps, pNoOutliers);% Avoid division by 0. N = log(1-p)/log(pNoOutliers); N = max(N,10); % at least try 20 times end trialcount = trialcount+1; if feedback fprintf('trial %d out of %d \r',trialcount, ceil(N)); end % Safeguard against being stuck in this loop forever if trialcount > maxTrials warning( ... sprintf('ransac reached the maximum number of %d trials',... maxTrials)); break end end %fprintf('\n'); if ~isnan(bestM) % We got a solution M = bestM; inliers = bestinliers; else M = []; inliers = []; error('ransac was unable to find a useful solution'); end
github
jianxiongxiao/ProfXkit-master
gaussfilt.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/gaussfilt.m
892
utf_8
266e718eee73f61a8bc07650565a1692
% GAUSSFILT - Small wrapper function for convenient Gaussian filtering % % Usage: smim = gaussfilt(im, sigma) % % Arguments: im - Image to be smoothed. % sigma - Standard deviation of Gaussian filter. % % Returns: smim - Smoothed image. % % See also: INTEGGAUSSFILT % Peter Kovesi % Centre for Explortion Targeting % The University of Western Australia % http://www.csse.uwa.edu.au/~pk/research/matlabfns/ % March 2010 function smim = gaussfilt(im, sigma) assert(ndims(im) == 2, 'Image must be greyscale'); % If needed convert im to double if ~strcmp(class(im),'double') im = double(im); end sze = ceil(6*sigma); if ~mod(sze,2) % Ensure filter size is odd sze = sze+1; end sze = max(sze,1); % and make sure it is at least 1 h = fspecial('gaussian', [sze sze], sigma); smim = filter2(h, im);
github
jianxiongxiao/ProfXkit-master
derivative5.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/derivative5.m
4,808
utf_8
989b39a3f681a8cad7375573fa1a7a0f
% DERIVATIVE5 - 5-Tap 1st and 2nd discrete derivatives % % This function computes 1st and 2nd derivatives of an image using the 5-tap % coefficients given by Farid and Simoncelli. The results are significantly % more accurate than MATLAB's GRADIENT function on edges that are at angles % other than vertical or horizontal. This in turn improves gradient orientation % estimation enormously. If you are after extreme accuracy try using DERIVATIVE7. % % Usage: [gx, gy, gxx, gyy, gxy] = derivative5(im, derivative specifiers) % % Arguments: % im - Image to compute derivatives from. % derivative specifiers - A comma separated list of character strings % that can be any of 'x', 'y', 'xx', 'yy' or 'xy' % These can be in any order, the order of the % computed output arguments will match the order % of the derivative specifier strings. % Returns: % Function returns requested derivatives which can be: % gx, gy - 1st derivative in x and y % gxx, gyy - 2nd derivative in x and y % gxy - 1st derivative in y of 1st derivative in x % % Examples: % Just compute 1st derivatives in x and y % [gx, gy] = derivative5(im, 'x', 'y'); % % Compute 2nd derivative in x, 1st derivative in y and 2nd derivative in y % [gxx, gy, gyy] = derivative5(im, 'xx', 'y', 'yy') % % See also: DERIVATIVE7 % Reference: Hany Farid and Eero Simoncelli "Differentiation of Discrete % Multi-Dimensional Signals" IEEE Trans. Image Processing. 13(4): 496-508 (2004) % Copyright (c) 2010 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % http://www.csse.uwa.edu.au/~pk/research/matlabfns/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % April 2010 function varargout = derivative5(im, varargin) varargin = varargin(:); varargout = cell(size(varargin)); % Check if we are just computing 1st derivatives. If so use the % interpolant and derivative filters optimized for 1st derivatives, else % use 2nd derivative filters and interpolant coefficients. % Detection is done by seeing if any of the derivative specifier % arguments is longer than 1 char, this implies 2nd derivative needed. secondDeriv = false; for n = 1:length(varargin) if length(varargin{n}) > 1 secondDeriv = true; break end end if ~secondDeriv % 5 tap 1st derivative cofficients. These are optimal if you are just % seeking the 1st deriavtives p = [0.037659 0.249153 0.426375 0.249153 0.037659]; d1 =[0.109604 0.276691 0.000000 -0.276691 -0.109604]; else % 5-tap 2nd derivative coefficients. The associated 1st derivative % coefficients are not quite as optimal as the ones above but are % consistent with the 2nd derivative interpolator p and thus are % appropriate to use if you are after both 1st and 2nd derivatives. p = [0.030320 0.249724 0.439911 0.249724 0.030320]; d1 = [0.104550 0.292315 0.000000 -0.292315 -0.104550]; d2 = [0.232905 0.002668 -0.471147 0.002668 0.232905]; end % Compute derivatives. Note that in the 1st call below MATLAB's conv2 % function performs a 1D convolution down the columns using p then a 1D % convolution along the rows using d1. etc etc. gx = false; for n = 1:length(varargin) if strcmpi('x', varargin{n}) varargout{n} = conv2(p, d1, im, 'same'); gx = true; % Record that gx is available for gxy if needed gxn = n; elseif strcmpi('y', varargin{n}) varargout{n} = conv2(d1, p, im, 'same'); elseif strcmpi('xx', varargin{n}) varargout{n} = conv2(p, d2, im, 'same'); elseif strcmpi('yy', varargin{n}) varargout{n} = conv2(d2, p, im, 'same'); elseif strcmpi('xy', varargin{n}) | strcmpi('yx', varargin{n}) if gx varargout{n} = conv2(d1, p, varargout{gxn}, 'same'); else gx = conv2(p, d1, im, 'same'); varargout{n} = conv2(d1, p, gx, 'same'); end else error(sprintf('''%s'' is an unrecognized derivative option',varargin{n})); end end
github
jianxiongxiao/ProfXkit-master
quaternion2matrix.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/quaternion2matrix.m
1,413
utf_8
7296cadf62f6ca9273e726ffd7e19d95
% QUATERNION2MATRIX - Quaternion to a 4x4 homogeneous transformation matrix % % Usage: T = quaternion2matrix(Q) % % Argument: Q - a quaternion in the form [w xi yj zk] % Returns: T - 4x4 Homogeneous rotation matrix % % See also MATRIX2QUATERNION, NEWQUATERNION, QUATERNIONROTATE % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. function T = quaternion2matrix(Q) Q = Q/norm(Q); % Ensure Q has unit norm % Set up convenience variables w = Q(1); x = Q(2); y = Q(3); z = Q(4); w2 = w^2; x2 = x^2; y2 = y^2; z2 = z^2; xy = x*y; xz = x*z; yz = y*z; wx = w*x; wy = w*y; wz = w*z; T = [w2+x2-y2-z2 , 2*(xy - wz) , 2*(wy + xz) , 0 2*(wz + xy) , w2-x2+y2-z2 , 2*(yz - wx) , 0 2*(xz - wy) , 2*(wx + yz) , w2-x2-y2+z2 , 0 0 , 0 , 0 , 1];
github
jianxiongxiao/ProfXkit-master
matchbymonogenicphase.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/matchbymonogenicphase.m
9,328
utf_8
e63225faedcf391fb6411d27d71a208e
% MATCHBYMONOGENICPHASE - match image feature points using monogenic phase data % % Function generates putative matches between previously detected % feature points in two images by looking for points that have minimal % differences in monogenic phase data within windows surrounding each point. % Only points that correlate most strongly with each other in *both* % directions are returned. This is a simple-minded N^2 comparison. % % This matcher performs rather well relative to normalised greyscale % correlation. Typically there are more putative matches found and fewer % outliers. There is a greater computational cost in the pre-filtering stage % but potentially the matching stage is much faster as each pixel is effectively % encoded with only 3 bits. (Though this potential speed is not realized in this % implementation) % % Usage: [m1,m2] = matchbymonogenicphase(im1, p1, im2, p2, w, dmax, ... % nscale, minWaveLength, mult, sigmaOnf) % % Arguments: % im1, im2 - Images containing points that we wish to match. % p1, p2 - Coordinates of feature pointed detected in im1 and % im2 respectively using a corner detector (say Harris % or phasecong2). p1 and p2 are [2xnpts] arrays though % p1 and p2 are not expected to have the same number % of points. The first row of p1 and p2 gives the row % coordinate of each feature point, the second row % gives the column of each point. % w - Window size (in pixels) over which the phase bit codes % around each feature point are matched. This should % be an odd number. % dmax - Maximum search radius for matching points. Used to % improve speed when there is little disparity between % images. Even setting it to a generous value of 1/4 of % the image size gives a useful speedup. % nscale - Number of filter scales. % minWaveLength - Wavelength of smallest scale filter. % mult - Scaling factor between successive filters. % sigmaOnf - Ratio of the standard deviation of the Gaussian % describing the log Gabor filter's transfer function in % the frequency domain to the filter center frequency. % % % Returns: % m1, m2 - Coordinates of points selected from p1 and p2 % respectively such that (putatively) m1(:,i) matches % m2(:,i). m1 and m2 are [2xnpts] arrays defining the % points in each of the images in the form [row;col]. % % % I have had good success with the folowing parameters: % % w = 11; Window size for correlation matching, 7 or greater % seems fine. % dmax = 50; % nscale = 1; Just one scale can give very good results. Adding % another scale doubles computation % minWaveLength = 10; % mult = 4; This is irrelevant if only one scale is used. If you do % use more than one scale try values in the range 2-4. % sigmaOnf = .2; This results in a *very* large bandwidth filter. A % large bandwidth seems to be very important in the % matching performance. % % See Also: MATCHBYCORRELATION, MONOFILT % Copyright (c) 2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % May 2005 - Original version adapted from matchbycorrelation.m function [m1,m2,cormat] = matchbymonogenicphase(im1, p1, im2, p2, w, dmax, ... nscale, minWaveLength, mult, sigmaOnf) orientWrap = 0; [f1, h1f1, h2f1, A1] = ... monofilt(im1, nscale, minWaveLength, mult, sigmaOnf, orientWrap); [f2, h1f2, h2f2, A2] = ... monofilt(im2, nscale, minWaveLength, mult, sigmaOnf, orientWrap); % Normalise filter outputs to unit vectors (should also have masking for % unreliable filter outputs) for s = 1:nscale % f1{s} = f1{s}./A1{s}; f2{s} = f2{s}./A2{s}; % h1f1{s} = h1f1{s}./A1{s}; h1f2{s} = h1f2{s}./A2{s}; % h2f1{s} = h2f1{s}./A1{s}; h2f2{s} = h2f2{s}./A2{s}; % Try quantizing oriented phase vector to 8 octants to see what % effect this has (Performance seems to be reduced only slightly) f1{s} = sign(f1{s}); f2{s} = sign(f2{s}); h1f1{s} = sign(h1f1{s}); h1f2{s} = sign(h1f2{s}); h2f1{s} = sign(h2f1{s}); h2f2{s} = sign(h2f2{s}); end % Generate correlation matrix cormat = correlationmatrix(f1, h1f1, h2f1, p1, ... f2, h1f2, h2f2, p2, w, dmax); [corrows,corcols] = size(cormat); % Find max along rows give strongest match in p2 for each p1 [mp2forp1, colp2forp1] = max(cormat,[],2); % Find max down cols give strongest match in p1 for each p2 [mp1forp2, rowp1forp2] = max(cormat,[],1); % Now find matches that were consistent in both directions p1ind = zeros(1,length(p1)); % Arrays for storing matched indices p2ind = zeros(1,length(p2)); indcount = 0; for n = 1:corrows if rowp1forp2(colp2forp1(n)) == n % consistent both ways indcount = indcount + 1; p1ind(indcount) = n; p2ind(indcount) = colp2forp1(n); end end % Trim arrays of indices of matched points p1ind = p1ind(1:indcount); p2ind = p2ind(1:indcount); % Extract matched points from original arrays m1 = p1(:,p1ind); m2 = p2(:,p2ind); %------------------------------------------------------------------------- % Function that does the work. This function builds a 'correlation' matrix % that holds the correlation strength of every point relative to every other % point. While this seems a bit wasteful we need all this data if we want % to find pairs of points that correlate maximally in both directions. function cormat = correlationmatrix(f1, h1f1, h2f1, p1, ... f2, h1f2, h2f2, p2, w, dmax) if mod(w, 2) == 0 | w < 3 error('Window size should be odd and >= 3'); end r = (w-1)/2; % 'radius' of correlation window [rows1, npts1] = size(p1); [rows2, npts2] = size(p2); if rows1 ~= 2 | rows2 ~= 2 error('Feature points must be specified in 2xN arrays'); end % Reorganize monogenic phase data into a 4D matrices for convenience [im1rows,im1cols] = size(f1{1}); [im2rows,im2cols] = size(f2{1}); nscale = length(f1); phase1 = zeros(im1rows,im1cols,nscale,3); phase2 = zeros(im2rows,im2cols,nscale,3); for s = 1:nscale phase1(:,:,s,1) = f1{s}; phase1(:,:,s,2) = h1f1{s}; phase1(:,:,s,3) = h2f1{s}; phase2(:,:,s,1) = f2{s}; phase2(:,:,s,2) = h1f2{s}; phase2(:,:,s,3) = h2f2{s}; end % Initialize correlation matrix values to -infinity cormat = repmat(-inf, npts1, npts2); % For every feature point in the first image extract a window of data % and correlate with a window corresponding to every feature point in % the other image. Any feature point less than distance 'r' from the % boundary of an image is not considered. % Find indices of points that are distance 'r' or greater from % boundary on image1 and image2; n1ind = find(p1(1,:)>r & p1(1,:)<im1rows+1-r & ... p1(2,:)>r & p1(2,:)<im1cols+1-r); n2ind = find(p2(1,:)>r & p2(1,:)<im2rows+1-r & ... p2(2,:)>r & p2(2,:)<im2cols+1-r); for n1 = n1ind % Identify the indices of points in p2 that we need to consider. if dmax == inf n2indmod = n2ind; % We have to consider all of n2ind else % Compute distances from p1(:,n1) to all available p2. p1pad = repmat(p1(:,n1),1,length(n2ind)); dists2 = sum((p1pad-p2(:,n2ind)).^2); % Find indices of points in p2 that are within distance dmax of % p1(:,n1) n2indmod = n2ind(find(dists2 < dmax^2)); end % Generate window in 1st image w1 = phase1(p1(1,n1)-r:p1(1,n1)+r, p1(2,n1)-r:p1(2,n1)+r, :, :); for n2 = n2indmod % Generate window in 2nd image w2 = phase2(p2(1,n2)-r:p2(1,n2)+r, p2(2,n2)-r:p2(2,n2)+r, :, :); % Compute dot product as correlation measure cormat(n1,n2) = w1(:)'*w2(:); % *** Need to add mask stuff end end
github
jianxiongxiao/ProfXkit-master
normalise2dpts.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/normalise2dpts.m
2,361
utf_8
2b9d94a3681186006a3fd47a45faf939
% NORMALISE2DPTS - normalises 2D homogeneous points % % Function translates and normalises a set of 2D homogeneous points % so that their centroid is at the origin and their mean distance from % the origin is sqrt(2). This process typically improves the % conditioning of any equations used to solve homographies, fundamental % matrices etc. % % Usage: [newpts, T] = normalise2dpts(pts) % % Argument: % pts - 3xN array of 2D homogeneous coordinates % % Returns: % newpts - 3xN array of transformed 2D homogeneous coordinates. The % scaling parameter is normalised to 1 unless the point is at % infinity. % T - The 3x3 transformation matrix, newpts = T*pts % % If there are some points at infinity the normalisation transform % is calculated using just the finite points. Being a scaling and % translating transform this will not affect the points at infinity. % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % May 2003 - Original version % February 2004 - Modified to deal with points at infinity. % December 2008 - meandist calculation modified to work with Octave 3.0.1 % (thanks to Ron Parr) function [newpts, T] = normalise2dpts(pts) if size(pts,1) ~= 3 error('pts must be 3xN'); end % Find the indices of the points that are not at infinity finiteind = find(abs(pts(3,:)) > eps); if length(finiteind) ~= size(pts,2) warning('Some points are at infinity'); end % For the finite points ensure homogeneous coords have scale of 1 pts(1,finiteind) = pts(1,finiteind)./pts(3,finiteind); pts(2,finiteind) = pts(2,finiteind)./pts(3,finiteind); pts(3,finiteind) = 1; c = mean(pts(1:2,finiteind)')'; % Centroid of finite points newp(1,finiteind) = pts(1,finiteind)-c(1); % Shift origin to centroid. newp(2,finiteind) = pts(2,finiteind)-c(2); dist = sqrt(newp(1,finiteind).^2 + newp(2,finiteind).^2); meandist = mean(dist(:)); % Ensure dist is a column vector for Octave 3.0.1 scale = sqrt(2)/meandist; T = [scale 0 -scale*c(1) 0 scale -scale*c(2) 0 0 1 ]; newpts = T*pts;
github
jianxiongxiao/ProfXkit-master
hcross.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/hcross.m
919
utf_8
dbb3f3d4ef79e25ca3000ea976409e0c
% HCROSS - Homogeneous cross product, result normalised to s = 1. % % Function to form cross product between two points, or lines, % in homogeneous coodinates. The result is normalised to lie % in the scale = 1 plane. % % Usage: c = hcross(a,b) % % Copyright (c) 2000-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % April 2000 function c = hcross(a,b) c = cross(a,b); c = c/c(3);
github
jianxiongxiao/ProfXkit-master
matchbycorrelation.m
.m
ProfXkit-master/depthImproveStructureIO/lib/peter/matchbycorrelation.m
7,076
utf_8
12d7e8d4ad6e140c94444ddc3682d518
% MATCHBYCORRELATION - match image feature points by correlation % % Function generates putative matches between previously detected % feature points in two images by looking for points that are maximally % correlated with each other within windows surrounding each point. % Only points that correlate most strongly with each other in *both* % directions are returned. % This is a simple-minded N^2 comparison. % % Usage: [m1, m2, p1ind, p2ind, cormat] = ... % matchbycorrelation(im1, p1, im2, p2, w, dmax) % % Arguments: % im1, im2 - Images containing points that we wish to match. % p1, p2 - Coordinates of feature pointed detected in im1 and % im2 respectively using a corner detector (say Harris % or phasecong2). p1 and p2 are [2xnpts] arrays though % p1 and p2 are not expected to have the same number % of points. The first row of p1 and p2 gives the row % coordinate of each feature point, the second row % gives the column of each point. % w - Window size (in pixels) over which the correlation % around each feature point is performed. This should % be an odd number. % dmax - (Optional) Maximum search radius for matching % points. Used to improve speed when there is little % disparity between images. Even setting it to a generous % value of 1/4 of the image size gives a useful % speedup. If this parameter is omitted it defaults to Inf. % % % Returns: % m1, m2 - Coordinates of points selected from p1 and p2 % respectively such that (putatively) m1(:,i) matches % m2(:,i). m1 and m2 are [2xnpts] arrays defining the % points in each of the images in the form [row;col]. % p1ind, p2ind - Indices of points in p1 and p2 that form a match. Thus, % m1 = p1(:,p1ind) and m2 = p2(:,p2ind) % cormat - Correlation matrix; rows correspond to points in p1, % columns correspond to points in p2 % Copyright (c) 2004-2009 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % February 2004 - Original version % May 2004 - Speed improvements + constraint on search radius for % additional speed % August 2004 - Vectorized distance calculation for more speed % (thanks to Daniel Wedge) % December 2009 - Added return of indices of matching points from original % point arrays function [m1, m2, p1ind, p2ind, cormat] = ... matchbycorrelation(im1, p1, im2, p2, w, dmax) if nargin == 5 dmax = Inf; end im1 = double(im1); im2 = double(im2); % Subtract image smoothed with an averaging filter of size wXw from % each of the images. This compensates for brightness differences in % each image. Doing it now allows faster correlation calculation. im1 = im1 - filter2(fspecial('average',w),im1); im2 = im2 - filter2(fspecial('average',w),im2); % Generate correlation matrix cormat = correlatiomatrix(im1, p1, im2, p2, w, dmax); [corrows,corcols] = size(cormat); % Find max along rows give strongest match in p2 for each p1 [mp2forp1, colp2forp1] = max(cormat,[],2); % Find max down cols give strongest match in p1 for each p2 [mp1forp2, rowp1forp2] = max(cormat,[],1); % Now find matches that were consistent in both directions p1ind = zeros(1,length(p1)); % Arrays for storing matched indices p2ind = zeros(1,length(p2)); indcount = 0; for n = 1:corrows if rowp1forp2(colp2forp1(n)) == n % consistent both ways indcount = indcount + 1; p1ind(indcount) = n; p2ind(indcount) = colp2forp1(n); end end % Trim arrays of indices of matched points p1ind = p1ind(1:indcount); p2ind = p2ind(1:indcount); % Extract matched points from original arrays m1 = p1(:,p1ind); m2 = p2(:,p2ind); %------------------------------------------------------------------------- % Function that does the work. This function builds a correlation matrix % that holds the correlation strength of every point relative to every % other point. While this seems a bit wasteful we need all this data if % we want to find pairs of points that correlate maximally in both % directions. % % This code assumes im1 and im2 have zero mean. This speeds the % calculation of the normalised correlation measure. function cormat = correlatiomatrix(im1, p1, im2, p2, w, dmax) if mod(w, 2) == 0 error('Window size should be odd'); end [rows1, npts1] = size(p1); [rows2, npts2] = size(p2); % Initialize correlation matrix values to -infinty cormat = -ones(npts1,npts2)*Inf; if rows1 ~= 2 | rows2 ~= 2 error('Feature points must be specified in 2xN arrays'); end [im1rows, im1cols] = size(im1); [im2rows, im2cols] = size(im2); r = (w-1)/2; % 'radius' of correlation window % For every feature point in the first image extract a window of data % and correlate with a window corresponding to every feature point in % the other image. Any feature point less than distance 'r' from the % boundary of an image is not considered. % Find indices of points that are distance 'r' or greater from % boundary on image1 and image2; n1ind = find(p1(1,:)>r & p1(1,:)<im1rows+1-r & ... p1(2,:)>r & p1(2,:)<im1cols+1-r); n2ind = find(p2(1,:)>r & p2(1,:)<im2rows+1-r & ... p2(2,:)>r & p2(2,:)<im2cols+1-r); for n1 = n1ind % Generate window in 1st image w1 = im1(p1(1,n1)-r:p1(1,n1)+r, p1(2,n1)-r:p1(2,n1)+r); % Pre-normalise w1 to a unit vector. w1 = w1./sqrt(sum(sum(w1.*w1))); % Identify the indices of points in p2 that we need to consider. if dmax == inf n2indmod = n2ind; % We have to consider all of n2ind else % Compute distances from p1(:,n1) to all available p2. p1pad = repmat(p1(:,n1),1,length(n2ind)); dists2 = sum((p1pad-p2(:,n2ind)).^2); % Find indices of points in p2 that are within distance dmax of % p1(:,n1) n2indmod = n2ind(find(dists2 < dmax^2)); end % Calculate noralised correlation measure. Note this gives % significantly better matches than the unnormalised one. for n2 = n2indmod % Generate window in 2nd image w2 = im2(p2(1,n2)-r:p2(1,n2)+r, p2(2,n2)-r:p2(2,n2)+r); cormat(n1,n2) = sum(sum(w1.*w2))/sqrt(sum(sum(w2.*w2))); end end
github
jianxiongxiao/ProfXkit-master
vl_compile.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/vl_compile.m
5,060
utf_8
978f5189bb9b2a16db3368891f79aaa6
function vl_compile(compiler) % VL_COMPILE Compile VLFeat MEX files % VL_COMPILE() uses MEX() to compile VLFeat MEX files. This command % works only under Windows and is used to re-build problematic % binaries. The preferred method of compiling VLFeat on both UNIX % and Windows is through the provided Makefiles. % % VL_COMPILE() only compiles the MEX files and assumes that the % VLFeat DLL (i.e. the file VLFEATROOT/bin/win{32,64}/vl.dll) has % already been built. This file is built by the Makefiles. % % By default VL_COMPILE() assumes that Visual C++ is the active % MATLAB compiler. VL_COMPILE('lcc') assumes that the active % compiler is LCC instead (see MEX -SETUP). Unfortunately LCC does % not seem to be able to compile the latest versions of VLFeat due % to bugs in the support of 64-bit integers. Therefore it is % recommended to use Visual C++ instead. % % See also: VL_NOPREFIX(), VL_HELP(). % Authors: Andrea Vedadli, Jonghyun Choi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 1, compiler = 'visualc' ; end switch lower(compiler) case 'visualc' fprintf('%s: assuming that Visual C++ is the active compiler\n', mfilename) ; useLcc = false ; case 'lcc' fprintf('%s: assuming that LCC is the active compiler\n', mfilename) ; warning('LCC may fail to compile VLFeat. See help vl_compile.') ; useLcc = true ; otherwise error('Unknown compiler ''%s''.', compiler) end vlDir = vl_root ; toolboxDir = fullfile(vlDir, 'toolbox') ; switch computer case 'PCWIN' fprintf('%s: compiling for PCWIN (32 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw32') ; binwDir = fullfile(vlDir, 'bin', 'win32') ; case 'PCWIN64' fprintf('%s: compiling for PCWIN64 (64 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw64') ; binwDir = fullfile(vlDir, 'bin', 'win64') ; otherwise error('The architecture is neither PCWIN nor PCWIN64. See help vl_compile.') ; end impLibPath = fullfile(binwDir, 'vl.lib') ; libDir = fullfile(binwDir, 'vl.dll') ; mkd(mexwDir) ; % find the subdirectories of toolbox that we should process subDirs = dir(toolboxDir) ; subDirs = subDirs([subDirs.isdir]) ; discard = regexp({subDirs.name}, '^(.|..|noprefix|mex.*)$', 'start') ; keep = cellfun('isempty', discard) ; subDirs = subDirs(keep) ; subDirs = {subDirs.name} ; % Copy support files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ~exist(fullfile(binwDir, 'vl.dll')) error('The VLFeat DLL (%s) could not be found. See help vl_compile.', ... fullfile(binwDir, 'vl.dll')) ; end tmp = dir(fullfile(binwDir, '*.dll')) ; supportFileNames = {tmp.name} ; for fi = 1:length(supportFileNames) name = supportFileNames{fi} ; cp(fullfile(binwDir, name), ... fullfile(mexwDir, name) ) ; end % Ensure implib for LCC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if useLcc lccImpLibDir = fullfile(mexwDir, 'lcc') ; lccImpLibPath = fullfile(lccImpLibDir, 'VL.lib') ; lccRoot = fullfile(matlabroot, 'sys', 'lcc', 'bin') ; lccImpExePath = fullfile(lccRoot, 'lcc_implib.exe') ; mkd(lccImpLibDir) ; cp(fullfile(binwDir, 'vl.dll'), fullfile(lccImpLibDir, 'vl.dll')) ; cmd = ['"' lccImpExePath '"', ' -u ', '"' fullfile(lccImpLibDir, 'vl.dll') '"'] ; fprintf('Running:\n> %s\n', cmd) ; curPath = pwd ; try cd(lccImpLibDir) ; [d,w] = system(cmd) ; if d, error(w); end cd(curPath) ; catch cd(curPath) ; error(lasterr) ; end end % Compile each mex file ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for i = 1:length(subDirs) thisDir = fullfile(toolboxDir, subDirs{i}) ; fileNames = ls(fullfile(thisDir, '*.c')); for f = 1:size(fileNames,1) fileName = fileNames(f, :) ; sp = strfind(fileName, ' '); if length(sp) > 0, fileName = fileName(1:sp-1); end filePath = fullfile(thisDir, fileName); fprintf('MEX %s\n', filePath); dot = strfind(fileName, '.'); mexFile = fullfile(mexwDir, [fileName(1:dot) 'dll']); if exist(mexFile) delete(mexFile) end cmd = {['-I' toolboxDir], ... ['-I' vlDir], ... '-O', ... '-outdir', mexwDir, ... filePath } ; if useLcc cmd{end+1} = lccImpLibPath ; else cmd{end+1} = impLibPath ; end mex(cmd{:}) ; end end % -------------------------------------------------------------------- function cp(src,dst) % -------------------------------------------------------------------- if ~exist(dst,'file') fprintf('Copying ''%s'' to ''%s''.\n', src,dst) ; copyfile(src,dst) ; end % -------------------------------------------------------------------- function mkd(dst) % -------------------------------------------------------------------- if ~exist(dst, 'dir') fprintf('Creating directory ''%s''.', dst) ; mkdir(dst) ; end
github
jianxiongxiao/ProfXkit-master
vl_noprefix.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/vl_noprefix.m
1,875
utf_8
97d8755f0ba139ac1304bc423d3d86d3
function vl_noprefix % VL_NOPREFIX Create a prefix-less version of VLFeat commands % VL_NOPREFIX() creats prefix-less stubs for VLFeat functions % (e.g. SIFT for VL_SIFT). This function is seldom used as the stubs % are included in the VLFeat binary distribution anyways. Moreover, % on UNIX platforms, the stubs are generally constructed by the % Makefile. % % See also: VL_COMPILE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). root = fileparts(which(mfilename)) ; list = listMFilesX(root); outDir = fullfile(root, 'noprefix') ; if ~exist(outDir, 'dir') mkdir(outDir) ; end for li = 1:length(list) name = list(li).name(1:end-2) ; % remove .m nname = name(4:end) ; % remove vl_ stubPath = fullfile(outDir, [nname '.m']) ; fout = fopen(stubPath, 'w') ; fprintf('Creating stub %s for %s\n', stubPath, nname) ; fprintf(fout, 'function varargout = %s(varargin)\n', nname) ; fprintf(fout, '%% %s Stub for %s\n', upper(nname), upper(name)) ; fprintf(fout, '[varargout{1:nargout}] = %s(varargin{:})\n', name) ; fclose(fout) ; end end function list = listMFilesX(root) list = struct('name', {}, 'path', {}) ; files = dir(root) ; for fi = 1:length(files) name = files(fi).name ; if files(fi).isdir if any(regexp(name, '^(\.|\.\.|noprefix)$')) continue ; else tmp = listMFilesX(fullfile(root, name)) ; list = [list, tmp] ; end end if any(regexp(name, '^vl_(demo|test).*m$')) continue ; elseif any(regexp(name, '^vl_(demo|setup|compile|help|root|noprefix)\.m$')) continue ; elseif any(regexp(name, '\.m$')) list(end+1) = struct(... 'name', {name}, ... 'path', {fullfile(root, name)}) ; end end end
github
jianxiongxiao/ProfXkit-master
vl_pegasos.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/misc/vl_pegasos.m
2,837
utf_8
d5e0915c439ece94eb5597a07090b67d
% VL_PEGASOS [deprecated] % VL_PEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_pegasos(X,Y,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end % parameters for vl_maketrainingset setvarargin = {}; if (sum(strcmpi('HOMKERMAP',varargin))) setvarargin{end+1} = 'HOMKERMAP'; setvarargin{end+1} = varargin{find(strcmpi('HOMKERMAP',varargin),1)+1}; varargin(find(strcmpi('HOMKERMAP',varargin),1)+1)=[]; varargin(find(strcmpi('HOMKERMAP',varargin),1))=[]; end if (sum(strcmpi('KChi2',varargin))) setvarargin{end+1} = 'KChi2'; varargin(find(strcmpi('KChi2',varargin),1))=[]; end if (sum(strcmpi('KINTERS',varargin))) setvarargin{end+1} = 'KINTERS'; varargin(find(strcmpi('KINTERS',varargin),1))=[]; end if (sum(strcmpi('KL1',varargin))) setvarargin{end+1} = 'KL1'; varargin(find(strcmpi('KL1',varargin),1))=[]; end if (sum(strcmpi('KJS',varargin))) setvarargin{end+1} = 'KJS'; varargin(find(strcmpi('KJS',varargin),1))=[]; end if (sum(strcmpi('Period',varargin))) setvarargin{end+1} = 'Period'; setvarargin{end+1} = varargin{find(strcmpi('Period',varargin),1)+1}; varargin(find(strcmpi('Period',varargin),1)+1)=[]; varargin(find(strcmpi('Period',varargin),1))=[]; end if (sum(strcmpi('Window',varargin))) setvarargin{end+1} = 'Window'; setvarargin{end+1} = varargin{find(strcmpi('Window',varargin),1)+1}; varargin(find(strcmpi('Window',varargin),1)+1)=[]; varargin(find(strcmpi('Window',varargin),1))=[]; end if (sum(strcmpi('Gamma',varargin))) setvarargin{end+1} = 'Gamma'; setvarargin{end+1} = varargin{find(strcmpi('Gamma',varargin),1)+1}; varargin(find(strcmpi('Gamma',varargin),1)+1)=[]; varargin(find(strcmpi('Gamma',varargin),1))=[]; end setvarargin{:} DATA = vl_maketrainingset(double(X),int8(Y),setvarargin{:}); DATA [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_pegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
jianxiongxiao/ProfXkit-master
vl_svmpegasos.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/misc/vl_svmpegasos.m
1,178
utf_8
009c2a2b87a375d529ed1a4dbe3af59f
% VL_SVMPEGASOS [deprecated] % VL_SVMPEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_svmpegasos(DATA,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_svmpegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
jianxiongxiao/ProfXkit-master
vl_override.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/misc/vl_override.m
4,654
utf_8
e233d2ecaeb68f56034a976060c594c5
function config = vl_override(config,update,varargin) % VL_OVERRIDE Override structure subset % CONFIG = VL_OVERRIDE(CONFIG, UPDATE) copies recursively the fileds % of the structure UPDATE to the corresponding fields of the % struture CONFIG. % % Usually CONFIG is interpreted as a list of paramters with their % default values and UPDATE as a list of new paramete values. % % VL_OVERRIDE(..., 'Warn') prints a warning message whenever: (i) % UPDATE has a field not found in CONFIG, or (ii) non-leaf values of % CONFIG are overwritten. % % VL_OVERRIDE(..., 'Skip') skips fields of UPDATE that are not found % in CONFIG instead of copying them. % % VL_OVERRIDE(..., 'CaseI') matches field names in a % case-insensitive manner. % % Remark:: % Fields are copied at the deepest possible level. For instance, % if CONFIG has fields A.B.C1=1 and A.B.C2=2, and if UPDATE is the % structure A.B.C1=3, then VL_OVERRIDE() returns a strucuture with % fields A.B.C1=3, A.B.C2=2. By contrast, if UPDATE is the % structure A.B=4, then the field A.B is copied, and VL_OVERRIDE() % returns the structure A.B=4 (specifying 'Warn' would warn about % the fact that the substructure B.C1, B.C2 is being deleted). % % Remark:: % Two fields are matched if they correspond exactly. Specifically, % two fileds A(IA).(FA) and B(IA).FB of two struct arrays A and B % match if, and only if, (i) A and B have the same dimensions, % (ii) IA == IB, and (iii) FA == FB. % % See also: VL_ARGPARSE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). warn = false ; skip = false ; err = false ; casei = false ; if length(varargin) == 1 & ~ischar(varargin{1}) % legacy warn = 1 ; end if ~warn & length(varargin) > 0 for i=1:length(varargin) switch lower(varargin{i}) case 'warn' warn = true ; case 'skip' skip = true ; case 'err' err = true ; case 'argparse' argparse = true ; case 'casei' casei = true ; otherwise error(sprintf('Unknown option ''%s''.',varargin{i})) ; end end end % if CONFIG is not a struct array just copy UPDATE verbatim if ~isstruct(config) config = update ; return ; end % if CONFIG is a struct array but UPDATE is not, no match can be % established and we simply copy UPDATE verbatim if ~isstruct(update) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays, but have different % dimensions then nom atch can be established and we simply copy % UPDATE verbatim if numel(update) ~= numel(config) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays of the same % dimension, we override recursively each field for idx=1:numel(update) fields = fieldnames(update) ; for i = 1:length(fields) updateFieldName = fields{i} ; if casei configFieldName = findFieldI(config, updateFieldName) ; else configFieldName = findField(config, updateFieldName) ; end if ~isempty(configFieldName) config(idx).(configFieldName) = ... vl_override(config(idx).(configFieldName), ... update(idx).(updateFieldName)) ; else if warn warning(sprintf('copied field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if err error(sprintf('The field ''%s'' is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if skip if warn warning(sprintf('skipping field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end continue ; end config(idx).(updateFieldName) = update(idx).(updateFieldName) ; end end end % -------------------------------------------------------------------- function field = findFieldI(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmpi(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end % -------------------------------------------------------------------- function field = findField(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmp(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end
github
jianxiongxiao/ProfXkit-master
vl_quickvis.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/quickshift/vl_quickvis.m
3,696
utf_8
27f199dad4c5b9c192a5dd3abc59f9da
function [Iedge dists map gaps] = vl_quickvis(I, ratio, kernelsize, maxdist, maxcuts) % VL_QUICKVIS Create an edge image from a Quickshift segmentation. % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. RATIO controls the tradeoff % between color consistency and spatial consistency (See VL_QUICKSEG) and % KERNELSIZE controls the bandwidth of the density estimator (See VL_QUICKSEG, % VL_QUICKSHIFT). MAXDIST is the maximum distance between neighbors which % increase the density. % % VL_QUICKVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at % most MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) also % returns the DIST thresholds that were chosen. % % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, DISTS) will use the DISTS % specified % % [IEDGE,DISTS,MAP,GAPS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) % also returns the MAP and GAPS from VL_QUICKSHIFT. % % See Also: VL_QUICKSHIFT(), VL_QUICKSEG(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin == 4 dists = maxdist; maxdist = max(dists); [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); else [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end [Iedge dists] = mapvis(map, gaps, dists); function [Iedge dists] = mapvis(map, gaps, maxdist, maxcuts) % MAPVIS Create an edge image from a Quickshift segmentation. % IEDGE = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. MAXDIST is the maximum % distance between neighbors which increase the density. % % MAPVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at most % MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) also returns the DIST % thresholds that were chosen. % % IEDGE = MAPVIS(MAP, GAPS, DISTS) will use the DISTS specified % % See Also: VL_QUICKVIS, VL_QUICKSHIFT, VL_QUICKSEG if nargin == 3 dists = maxdist; maxdist = max(dists); else dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh % throw away min region size instead of maxdist? ind = find(dists < maxdist); dists = dists(ind); if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end Iedge = zeros(size(map)); for i = 1:length(dists) s = find(gaps >= dists(i)); mapdist = map; mapdist(s) = s; [mapped labels] = vl_flatmap(mapdist); fprintf('%d/%d %d regions\n', i, length(dists), length(unique(mapped))) borders = getborders(mapped); Iedge(borders) = dists(i); %Iedge(borders) = Iedge(borders) + 1; %Iedge(borders) = i; end %%%%%%%%% GETBORDERS function borders = getborders(map) dx = conv2(map, [-1 1], 'same'); dy = conv2(map, [-1 1]', 'same'); borders = find(dx ~= 0 | dy ~= 0);
github
jianxiongxiao/ProfXkit-master
vl_demo_aib.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/demo/vl_demo_aib.m
2,928
utf_8
590c6db09451ea608d87bfd094662cac
function vl_demo_aib % VL_DEMO_AIB Test Agglomerative Information Bottleneck (AIB) D = 4 ; K = 20 ; randn('state',0) ; rand('state',0) ; X1 = randn(2,300) ; X1(1,:) = X1(1,:) + 2 ; X2 = randn(2,300) ; X2(1,:) = X2(1,:) - 2 ; X3 = randn(2,300) ; X3(2,:) = X3(2,:) + 2 ; figure(1) ; clf ; hold on ; vl_plotframe(X1,'color','r') ; vl_plotframe(X2,'color','g') ; vl_plotframe(X3,'color','b') ; axis equal ; xlim([-4 4]); ylim([-4 4]); axis off ; rectangle('position',D*[-1 -1 2 2]) vl_demo_print('aib_basic_data', .6) ; C = 1:K*K ; Pcx = zeros(3,K*K) ; f1 = quantize(X1,D,K) ; f2 = quantize(X2,D,K) ; f3 = quantize(X3,D,K) ; Pcx(1,:) = vl_binsum(Pcx(1,:), ones(size(f1)), f1) ; Pcx(2,:) = vl_binsum(Pcx(2,:), ones(size(f2)), f2) ; Pcx(3,:) = vl_binsum(Pcx(3,:), ones(size(f3)), f3) ; Pcx = Pcx / sum(Pcx(:)) ; [parents, cost] = vl_aib(Pcx) ; cutsize = [K*K, 10, 3, 2, 1] ; for i=1:length(cutsize) [cut,map,short] = vl_aibcut(parents, cutsize(i)) ; parents_cut(short > 0) = parents(short(short > 0)) ; C = short(1:K*K+1) ; [drop1,drop2,C] = unique(C) ; figure(i+1) ; clf ; plotquantization(D,K,C) ; hold on ; %plottree(D,K,parents_cut) ; axis equal ; axis off ; title(sprintf('%d clusters', cutsize(i))) ; vl_demo_print(sprintf('aib_basic_clust_%d',i),.6) ; end % -------------------------------------------------------------------- function f = quantize(X,D,K) % -------------------------------------------------------------------- d = 2*D / K ; j = round((X(1,:) + D) / d) ; i = round((X(2,:) + D) / d) ; j = max(min(j,K),1) ; i = max(min(i,K),1) ; f = sub2ind([K K],i,j) ; % -------------------------------------------------------------------- function [i,j] = plotquantization(D,K,C) % -------------------------------------------------------------------- hold on ; cl = [[.3 .3 .3] ; .5*hsv(max(C)-1)+.5] ; d = 2*D / K ; for i=0:K-1 for j=0:K-1 patch(d*(j+[0 1 1 0])-D, ... d*(i+[0 0 1 1])-D, ... cl(C(j*K+i+1),:)) ; end end % -------------------------------------------------------------------- function h = plottree(D,K,parents) % -------------------------------------------------------------------- d = 2*D / K ; C = zeros(2,2*K*K-1)+NaN ; N = zeros(1,2*K*K-1) ; for i=0:K-1 for j=0:K-1 C(:,j*K+i+1) = [d*j-D; d*i-D]+d/2 ; N(:,j*K+i+1) = 1 ; end end for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; if all(isnan(C(:,i))), continue; end if all(isnan(C(:,p))) C(:,p) = C(:,i) / N(i) ; else C(:,p) = C(:,p) + C(:,i) / N(i) ; end N(p) = N(p) + 1 ; end C(1,:) = C(1,:) ./ N ; C(2,:) = C(2,:) ./ N ; xt = zeros(3, 2*length(parents)-1)+NaN ; yt = zeros(3, 2*length(parents)-1)+NaN ; for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; xt(1,i) = C(1,i) ; xt(2,i) = C(1,p) ; yt(1,i) = C(2,i) ; yt(2,i) = C(2,p) ; end h=line(xt(:),yt(:),'linestyle','-','marker','.','linewidth',3) ;
github
jianxiongxiao/ProfXkit-master
vl_demo_alldist.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/demo/vl_demo_alldist.m
5,460
utf_8
6d008a64d93445b9d7199b55d58db7eb
function vl_demo_alldist % numRepetitions = 3 ; numDimensions = 1000 ; numSamplesRange = [300] ; settingsRange = {{'alldist2', 'double', 'l2', }, ... {'alldist', 'double', 'l2', 'nosimd'}, ... {'alldist', 'double', 'l2' }, ... {'alldist2', 'single', 'l2', }, ... {'alldist', 'single', 'l2', 'nosimd'}, ... {'alldist', 'single', 'l2' }, ... {'alldist2', 'double', 'l1', }, ... {'alldist', 'double', 'l1', 'nosimd'}, ... {'alldist', 'double', 'l1' }, ... {'alldist2', 'single', 'l1', }, ... {'alldist', 'single', 'l1', 'nosimd'}, ... {'alldist', 'single', 'l1' }, ... {'alldist2', 'double', 'chi2', }, ... {'alldist', 'double', 'chi2', 'nosimd'}, ... {'alldist', 'double', 'chi2' }, ... {'alldist2', 'single', 'chi2', }, ... {'alldist', 'single', 'chi2', 'nosimd'}, ... {'alldist', 'single', 'chi2' }, ... {'alldist2', 'double', 'hell', }, ... {'alldist', 'double', 'hell', 'nosimd'}, ... {'alldist', 'double', 'hell' }, ... {'alldist2', 'single', 'hell', }, ... {'alldist', 'single', 'hell', 'nosimd'}, ... {'alldist', 'single', 'hell' }, ... {'alldist2', 'double', 'kl2', }, ... {'alldist', 'double', 'kl2', 'nosimd'}, ... {'alldist', 'double', 'kl2' }, ... {'alldist2', 'single', 'kl2', }, ... {'alldist', 'single', 'kl2', 'nosimd'}, ... {'alldist', 'single', 'kl2' }, ... {'alldist2', 'double', 'kl1', }, ... {'alldist', 'double', 'kl1', 'nosimd'}, ... {'alldist', 'double', 'kl1' }, ... {'alldist2', 'single', 'kl1', }, ... {'alldist', 'single', 'kl1', 'nosimd'}, ... {'alldist', 'single', 'kl1' }, ... {'alldist2', 'double', 'kchi2', }, ... {'alldist', 'double', 'kchi2', 'nosimd'}, ... {'alldist', 'double', 'kchi2' }, ... {'alldist2', 'single', 'kchi2', }, ... {'alldist', 'single', 'kchi2', 'nosimd'}, ... {'alldist', 'single', 'kchi2' }, ... {'alldist2', 'double', 'khell', }, ... {'alldist', 'double', 'khell', 'nosimd'}, ... {'alldist', 'double', 'khell' }, ... {'alldist2', 'single', 'khell', }, ... {'alldist', 'single', 'khell', 'nosimd'}, ... {'alldist', 'single', 'khell' }, ... } ; %settingsRange = settingsRange(end-5:end) ; styles = {} ; for marker={'x','+','.','*','o'} for color={'r','g','b','k','y'} styles{end+1} = {'color', char(color), 'marker', char(marker)} ; end end for ni=1:length(numSamplesRange) for ti=1:length(settingsRange) tocs = [] ; for ri=1:numRepetitions rand('state',ri) ; randn('state',ri) ; numSamples = numSamplesRange(ni) ; settings = settingsRange{ti} ; [tocs(end+1), D] = run_experiment(numDimensions, ... numSamples, ... settings) ; end means(ni,ti) = mean(tocs) ; stds(ni,ti) = std(tocs) ; if mod(ti-1,3) == 0 D0 = D ; else err = max(abs(D(:)-D0(:))) ; fprintf('err %f\n', err) ; if err > 1, keyboard ; end end end end if 0 figure(1) ; clf ; hold on ; numStyles = length(styles) ; for ti=1:length(settingsRange) si = mod(ti - 1, numStyles) + 1 ; h(ti) = plot(numSamplesRange, means(:,ti), styles{si}{:}) ; leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; errorbar(numSamplesRange, means(:,ti), stds(:,ti), 'linestyle', 'none') ; end end for ti=1:length(settingsRange) leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; end figure(1) ; clf ; barh(means(end,:)) ; set(gca,'ytick', 1:length(leg), 'yticklabel', leg,'ydir','reverse') ; xlabel('Time [s]') ; function [elaps, D] = run_experiment(numDimensions, numSamples, settings) distType = 'l2' ; algType = 'alldist' ; classType = 'double' ; useSimd = true ; for si=1:length(settings) arg = settings{si} ; switch arg case {'l1', 'l2', 'chi2', 'hell', 'kl2', 'kl1', 'kchi2', 'khell'} distType = arg ; case {'alldist', 'alldist2'} algType = arg ; case {'single', 'double'} classType = arg ; case 'simd' useSimd = true ; case 'nosimd' useSimd = false ; otherwise assert(false) ; end end X = rand(numDimensions, numSamples) ; X(X < .3) = 0 ; switch classType case 'double' case 'single' X = single(X) ; end vl_simdctrl(double(useSimd)) ; switch algType case 'alldist' tic ; D = vl_alldist(X, distType) ; elaps = toc ; case 'alldist2' tic ; D = vl_alldist2(X, distType) ; elaps = toc ; end
github
jianxiongxiao/ProfXkit-master
vl_demo_svm.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/demo/vl_demo_svm.m
1,235
utf_8
7cf6b3504e4fc2cbd10ff3fec6e331a7
% VL_DEMO_SVM Demo: SVM: 2D linear learning function vl_demo_svm y=[];X=[]; % Load training data X and their labels y load('vl_demo_svm_data.mat') Xp = X(:,y==1); Xn = X(:,y==-1); figure plot(Xn(1,:),Xn(2,:),'*r') hold on plot(Xp(1,:),Xp(2,:),'*b') axis equal ; vl_demo_print('svm_training') ; % Parameters lambda = 0.01 ; % Regularization parameter maxIter = 1000 ; % Maximum number of iterations energy = [] ; % Diagnostic function function diagnostics(svm) energy = [energy [svm.objective ; svm.dualObjective ; svm.dualityGap ] ] ; end % Training the SVM energy = [] ; [w b info] = vl_svmtrain(X, y, lambda,... 'MaxNumIterations',maxIter,... 'DiagnosticFunction',@diagnostics,... 'DiagnosticFrequency',1) % Visualisation eq = [num2str(w(1)) '*x+' num2str(w(2)) '*y+' num2str(b)]; line = ezplot(eq, [-0.9 0.9 -0.9 0.9]); set(line, 'Color', [0 0.8 0],'linewidth', 2); vl_demo_print('svm_training_result') ; figure hold on plot(energy(1,:),'--b') ; plot(energy(2,:),'-.g') ; plot(energy(3,:),'r') ; legend('Primal objective','Dual objective','Duality gap') xlabel('Diagnostics iteration') ylabel('Energy') vl_demo_print('svm_energy') ; end
github
jianxiongxiao/ProfXkit-master
vl_demo_kdtree_sift.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/demo/vl_demo_kdtree_sift.m
6,832
utf_8
e676f80ac330a351f0110533c6ebba89
function vl_demo_kdtree_sift % VL_DEMO_KDTREE_SIFT % Demonstrates the use of a kd-tree forest to match SIFT % features. If FLANN is present, this function runs a comparison % against it. % AUTORIGHS rand('state',0) ; randn('state',0); do_median = 0 ; do_mean = 1 ; % try to setup flann if ~exist('flann_search', 'file') if exist(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) addpath(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) ; end end do_flann = exist('nearest_neighbors') == 3 ; if ~do_flann warning('FLANN not found. Comparison disabled.') ; end maxNumComparisonsRange = [1 10 50 100 200 300 400] ; numTreesRange = [1 2 5 10] ; % get data (SIFT features) im1 = imread(fullfile(vl_root, 'data', 'roofs1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'roofs2.jpg')) ; im1 = single(rgb2gray(im1)) ; im2 = single(rgb2gray(im2)) ; [f1,d1] = vl_sift(im1,'firstoctave',-1,'floatdescriptors','verbose') ; [f2,d2] = vl_sift(im2,'firstoctave',-1,'floatdescriptors','verbose') ; % add some noise to make matches unique d1 = single(d1) + rand(size(d1)) ; d2 = single(d2) + rand(size(d2)) ; % match exhaustively to get the ground truth elapsedDirect = tic ; D = vl_alldist(d1,d2) ; [drop, best] = min(D, [], 1) ; elapsedDirect = toc(elapsedDirect) ; for ti=1:length(numTreesRange) for vi=1:length(maxNumComparisonsRange) v = maxNumComparisonsRange(vi) ; t = numTreesRange(ti) ; if do_median tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'median', ... 'numtrees', t) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons',v) ; elapsedKD_median(vi,ti) = toc ; errors_median(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_median(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_mean tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'mean', ... 'numtrees', t) ; %kdtree = readflann(kdtree, '/tmp/flann.txt') ; %checkx(kdtree, d1, 1, 1) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons', v) ; elapsedKD_mean(vi,ti) = toc ; errors_mean(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_mean(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_flann tic ; [i, d] = flann_search(d1, d2, 1, struct('algorithm','kdtree', ... 'trees', t, ... 'checks', v)); ifla = i ; elapsedKD_flann(vi,ti) = toc; errors_flann(vi,ti) = sum(i ~= best) / length(best) ; errorsD_flann(vi,ti) = mean(abs(d - drop) ./ drop) ; end end end figure(1) ; clf ; leg = {} ; hnd = [] ; sty = {{'color','r'},{'color','g'},... {'color','b'},{'color','c'},... {'color','k'}} ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errors_median(:,ti),'-*',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errors_mean(:,ti), '-o',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errors_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('percentage of incorrect matches (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_incorrect',.6) ; figure(2) ; clf ; leg = {} ; hnd = [] ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errorsD_median(:,ti),'*-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errorsD_mean(:,ti), 'o-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errorsD_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('relative overestimation of minmium distannce (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_distortion',.6) ; % -------------------------------------------------------------------- function checkx(kdtree, X, t, n, mib, mab) % -------------------------------------------------------------------- if nargin <= 4 mib = -inf * ones(size(X,1),1) ; mab = +inf * ones(size(X,1),1) ; end lc = kdtree.trees(t).nodes.lowerChild(n) ; uc = kdtree.trees(t).nodes.upperChild(n) ; if lc < 0 for i=-lc:-uc-1 di = kdtree.trees(t).dataIndex(i) ; if any(X(:,di) > mab) error('a') ; end if any(X(:,di) < mib) error('b') ; end end return end i = kdtree.trees(t).nodes.splitDimension(n) ; v = kdtree.trees(t).nodes.splitThreshold(n) ; mab_ = mab ; mab_(i) = min(mab(i), v) ; checkx(kdtree, X, t, lc, mib, mab_) ; mib_ = mib ; mib_(i) = max(mib(i), v) ; checkx(kdtree, X, t, uc, mib_, mab) ; % -------------------------------------------------------------------- function kdtree = readflann(kdtree, path) % -------------------------------------------------------------------- data = textread(path)' ; for i=1:size(data,2) nodeIds = data(1,:) ; ni = find(nodeIds == data(1,i)) ; if ~isnan(data(2,i)) % internal node li = find(nodeIds == data(4,i)) ; ri = find(nodeIds == data(5,i)) ; kdtree.trees(1).nodes.lowerChild(ni) = int32(li) ; kdtree.trees(1).nodes.upperChild(ni) = int32(ri) ; kdtree.trees(1).nodes.splitThreshold(ni) = single(data(2,i)) ; kdtree.trees(1).nodes.splitDimension(ni) = single(data(3,i)+1) ; else di = data(3,i) + 1 ; kdtree.trees(1).nodes.lowerChild(ni) = int32(- di) ; kdtree.trees(1).nodes.upperChild(ni) = int32(- di - 1) ; end kdtree.trees(1).dataIndex = uint32(1:kdtree.numData) ; end
github
jianxiongxiao/ProfXkit-master
vl_impattern.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/imop/vl_impattern.m
6,876
utf_8
1716a4d107f0186be3d11c647bc628ce
function im = vl_impattern(varargin) % VL_IMPATTERN Generate an image from a stock pattern % IM=VLPATTERN(NAME) returns an instance of the specified % pattern. These stock patterns are useful for testing algoirthms. % % All generated patterns are returned as an image of class % DOUBLE. Both gray-scale and colour images have range in [0,1]. % % VL_IMPATTERN() without arguments shows a gallery of the stock % patterns. The following patterns are supported: % % Wedge:: % The image of a wedge. % % Cone:: % The image of a cone. % % SmoothChecker:: % A checkerboard with Gaussian filtering on top. Use the % option-value pair 'sigma', SIGMA to specify the standard % deviation of the smoothing and the pair 'step', STEP to specfity % the checker size in pixels. % % ThreeDotsSquare:: % A pattern with three small dots and two squares. % % UniformNoise:: % Random i.i.d. noise. % % Blobs: % Gaussian blobs of various sizes and anisotropies. % % Blobs1: % Gaussian blobs of various orientations and anisotropies. % % Blob: % One Gaussian blob. Use the option-value pairs 'sigma', % 'orientation', and 'anisotropy' to specify the respective % parameters. 'sigma' is the scalar standard deviation of an % isotropic blob (the image domain is the rectangle % [-1,1]^2). 'orientation' is the clockwise rotation (as the Y % axis points downards). 'anisotropy' (>= 1) is the ratio of the % the largest over the smallest axis of the blob (the smallest % axis length is set by 'sigma'). Set 'cut' to TRUE to cut half % half of the blob. % % A stock image:: % Any of 'box', 'roofs1', 'roofs2', 'river1', 'river2', 'spotted'. % % All pattern accept a SIZE parameter [WIDTH,HEIGHT]. For all but % the stock images, the default size is [128,128]. % Author: Andrea Vedaldi % Copyright (C) 2012 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin > 0 pattern=varargin{1} ; varargin=varargin(2:end) ; else pattern = 'gallery' ; end patterns = {'wedge','cone','smoothChecker','threeDotsSquare', ... 'blob', 'blobs', 'blobs1', ... 'box', 'roofs1', 'roofs2', 'river1', 'river2'} ; % spooling switch lower(pattern) case 'wedge', im = wedge(varargin) ; case 'cone', im = cone(varargin) ; case 'smoothchecker', im = smoothChecker(varargin) ; case 'threedotssquare', im = threeDotSquare(varargin) ; case 'uniformnoise', im = uniformNoise(varargin) ; case 'blob', im = blob(varargin) ; case 'blobs', im = blobs(varargin) ; case 'blobs1', im = blobs1(varargin) ; case {'box','roofs1','roofs2','river1','river2','spots'} im = stockImage(pattern, varargin) ; case 'gallery' clf ; num = numel(patterns) ; for p = 1:num vl_tightsubplot(num,p,'box','outer') ; imagesc(vl_impattern(patterns{p}),[0 1]) ; axis image off ; title(patterns{p}) ; end colormap gray ; return ; otherwise error('Unknown patter ''%s''.', pattern) ; end if nargout == 0 clf ; imagesc(im) ; hold on ; colormap gray ; axis image off ; title(pattern) ; clear im ; end function [u,v,opts,args] = commonOpts(args) opts.size = [128 128] ; [opts,args] = vl_argparse(opts, args) ; ur = linspace(-1,1,opts.size(2)) ; vr = linspace(-1,1,opts.size(1)) ; [u,v] = meshgrid(ur,vr); function im = wedge(args) [u,v,opts,args] = commonOpts(args) ; im = abs(u) + abs(v) > (1/4) ; im(v < 0) = 0 ; function im = cone(args) [u,v,opts,args] = commonOpts(args) ; im = sqrt(u.^2+v.^2) ; im = im / max(im(:)) ; function im = smoothChecker(args) opts.size = [128 128] ; opts.step = 16 ; opts.sigma = 2 ; opts = vl_argparse(opts, args) ; [u,v] = meshgrid(0:opts.size(1)-1, 0:opts.size(2)-1) ; im = xor((mod(u,opts.step*2) < opts.step),... (mod(v,opts.step*2) < opts.step)) ; im = double(im) ; im = vl_imsmooth(im, opts.sigma) ; function im = threeDotSquare(args) [u,v,opts,args] = commonOpts(args) ; im = ones(size(u)) ; im(-2/3<u & u<2/3 & -2/3<v & v<2/3) = .75 ; im(-1/3<u & u<1/3 & -1/3<v & v<1/3) = .50 ; [drop,i] = min(abs(v(:,1))) ; [drop,j1] = min(abs(u(1,:)-1/6)) ; [drop,j2] = min(abs(u(1,:))) ; [drop,j3] = min(abs(u(1,:)+1/6)) ; im(i,j1) = 0 ; im(i,j2) = 0 ; im(i,j3) = 0 ; function im = blobs(args) [u,v,opts,args] = commonOpts(args) ; im = zeros(size(u)) ; num = 5 ; square = 2 / num ; sigma = square / 2 / 3 ; scales = logspace(log10(0.5), log10(1), num) ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; A = sigma * diag([scales(i) scales(i)/skews(j)]) * [1 -1 ; 1 1] / sqrt(2) ; C = inv(A'*A) ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = blob(args) [u,v,opts,args] = commonOpts(args) ; opts.sigma = 0.15 ; opts.anisotropy = .5 ; opts.orientation = 2/3 * pi ; opts.cut = false ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; th = opts.orientation ; R = [cos(th) -sin(th) ; sin(th) cos(th)] ; A = opts.sigma * R * diag([opts.anisotropy 1]) ; T = [0;0] ; [x,y] = vl_waffine(inv(A),-inv(A)*T,u,v) ; im = exp(-0.5 *(x.^2 + y.^2)) ; if opts.cut im = im .* double(x > 0) ; end function im = blobs1(args) [u,v,opts,args] = commonOpts(args) ; opts.number = 5 ; opts.sigma = [] ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; square = 2 / opts.number ; num = opts.number ; if isempty(opts.sigma) sigma = 1/6 * square ; else sigma = opts.sigma * square ; end rotations = linspace(0,pi,num+1) ; rotations(end) = [] ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; th = rotations(i) ; R = [cos(th) -sin(th); sin(th) cos(th)] ; A = sigma * R * diag([1 1/skews(j)]) ; C = inv(A*A') ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = uniformNoise(args) opts.size = [128 128] ; opts.seed = 1 ; opts = vl_argparse(opts, args) ; state = vl_twister('state') ; vl_twister('state',opts.seed) ; im = vl_twister(opts.size([2 1])) ; vl_twister('state',state) ; function im = stockImage(pattern,args) opts.size = [] ; opts = vl_argparse(opts, args) ; switch pattern case 'river1', path='river1.jpg' ; case 'river2', path='river2.jpg' ; case 'roofs1', path='roofs1.jpg' ; case 'roofs2', path='roofs2.jpg' ; case 'box', path='box.pgm' ; case 'spots', path='spots.jpg' ; end im = imread(fullfile(vl_root,'data',path)) ; im = im2double(im) ; if ~isempty(opts.size) im = imresize(im, opts.size) ; im = max(im,0) ; im = min(im,1) ; end
github
jianxiongxiao/ProfXkit-master
vl_tpsu.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/imop/vl_tpsu.m
1,755
utf_8
09f36e1a707c069b375eb2817d0e5f13
function [U,dU,delta]=vl_tpsu(X,Y) % VL_TPSU Compute the U matrix of a thin-plate spline transformation % U=VL_TPSU(X,Y) returns the matrix % % [ U(|X(:,1) - Y(:,1)|) ... U(|X(:,1) - Y(:,N)|) ] % [ ] % [ U(|X(:,M) - Y(:,1)|) ... U(|X(:,M) - Y(:,N)|) ] % % where X is a 2xM matrix and Y a 2xN matrix of points and U(r) is % the opposite -r^2 log(r^2) of the radial basis function of the % thin plate spline specified by X and Y. % % [U,dU]=vl_tpsu(x,y) returns the derivatives of the columns of U with % respect to the parameters Y. The derivatives are arranged in a % Mx2xN array, one layer per column of U. % % See also: VL_TPS(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if exist('tpsumx') U = tpsumx(X,Y) ; else M=size(X,2) ; N=size(Y,2) ; % Faster than repmat, but still fairly slow r2 = ... (X( ones(N,1), :)' - Y( ones(1,M), :)).^2 + ... (X( 1+ones(N,1), :)' - Y(1+ones(1,M), :)).^2 ; U = - rb(r2) ; end if nargout > 1 M=size(X,2) ; N=size(Y,2) ; dx = X( ones(N,1), :)' - Y( ones(1,M), :) ; dy = X(1+ones(N,1), :)' - Y(1+ones(1,M), :) ; r2 = (dx.^2 + dy.^2) ; r = sqrt(r2) ; coeff = drb(r)./(r+eps) ; dU = reshape( [coeff .* dx ; coeff .* dy], M, 2, N) ; end % The radial basis function function y = rb(r2) y = zeros(size(r2)) ; sel = find(r2 ~= 0) ; y(sel) = - r2(sel) .* log(r2(sel)) ; % The derivative of the radial basis function function y = drb(r) y = zeros(size(r)) ; sel = find(r ~= 0) ; y(sel) = - 4 * r(sel) .* log(r(sel)) - 2 * r(sel) ;
github
jianxiongxiao/ProfXkit-master
vl_xyz2lab.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/imop/vl_xyz2lab.m
1,570
utf_8
09f95a6f9ae19c22486ec1157357f0e3
function J=vl_xyz2lab(I,il) % VL_XYZ2LAB Convert XYZ color space to LAB % J = VL_XYZ2LAB(I) converts the image from XYZ format to LAB format. % % VL_XYZ2LAB(I,IL) uses one of the illuminants A, B, C, E, D50, D55, % D65, D75, D93. The default illuminatn is E. % % See also: VL_XYZ2LUV(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 2 il='E' ; end switch lower(il) case 'a' xw = 0.4476 ; yw = 0.4074 ; case 'b' xw = 0.3324 ; yw = 0.3474 ; case 'c' xw = 0.3101 ; yw = 0.3162 ; case 'e' xw = 1/3 ; yw = 1/3 ; case 'd50' xw = 0.3457 ; yw = 0.3585 ; case 'd55' xw = 0.3324 ; yw = 0.3474 ; case 'd65' xw = 0.312713 ; yw = 0.329016 ; case 'd75' xw = 0.299 ; yw = 0.3149 ; case 'd93' xw = 0.2848 ; yw = 0.2932 ; end J=zeros(size(I)) ; % Reference white Yw = 1.0 ; Xw = xw/yw ; Zw = (1-xw-yw)/yw * Yw ; % XYZ components X = I(:,:,1) ; Y = I(:,:,2) ; Z = I(:,:,3) ; x = X/Xw ; y = Y/Yw ; z = Z/Zw ; L = 116 * f(y) - 16 ; a = 500*(f(x) - f(y)) ; b = 200*(f(y) - f(z)) ; J = cat(3,L,a,b) ; % -------------------------------------------------------------------- function b=f(a) % -------------------------------------------------------------------- sp = find(a > 0.00856) ; sm = find(a <= 0.00856) ; k = 903.3 ; b=zeros(size(a)) ; b(sp) = a(sp).^(1/3) ; b(sm) = (k*a(sm) + 16)/116 ;
github
jianxiongxiao/ProfXkit-master
vl_test_gmm.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_gmm.m
1,332
utf_8
76782cae6c98781c6c38d4cbf5549d94
function results = vl_test_gmm(varargin) % VL_TEST_GMM % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; end function s = setup() randn('state',0) ; s.X = randn(128, 1000) ; end function test_multithreading(s) dataTypes = {'single','double'} ; for dataType = dataTypes conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; vl_threads(0) ; [means, covariances, priors, ll, posteriors] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_twister('state',0) ; vl_threads(1) ; [means_, covariances_, priors_, ll_, posteriors_] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_assert_almost_equal(means, means_, 1e-2) ; vl_assert_almost_equal(covariances, covariances_, 1e-2) ; vl_assert_almost_equal(priors, priors_, 1e-2) ; vl_assert_almost_equal(ll, ll_, 1e-2 * abs(ll)) ; vl_assert_almost_equal(posteriors, posteriors_, 1e-2) ; end end
github
jianxiongxiao/ProfXkit-master
vl_test_twister.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_twister.m
1,251
utf_8
2bfb5a30cbd6df6ac80c66b73f8646da
function results = vl_test_twister(varargin) % VL_TEST_TWISTER vl_test_init ; function test_illegal_args() vl_assert_exception(@() vl_twister(-1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister(1, -1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister([1, -1]), 'vl:invalidArgument') ; function test_seed_by_scalar() rand('twister',1) ; a = rand ; vl_twister('state',1) ; b = vl_twister ; vl_assert_equal(a,b,'seed by scalar + VL_TWISTER()') ; function test_get_set_state() rand('twister',1) ; a = rand('twister') ; vl_twister('state',1) ; b = vl_twister('state') ; vl_assert_equal(a,b,'read state') ; a(1) = a(1) + 1 ; vl_twister('state',a) ; b = vl_twister('state') ; vl_assert_equal(a,b,'set state') ; function test_multi_dimensions() b = rand('twister') ; rand('twister',b) ; vl_twister('state',b) ; a=rand([1 2 3 4 5]) ; b=vl_twister([1 2 3 4 5]) ; vl_assert_equal(a,b,'VL_TWISTER([M N P ...])') ; function test_multi_multi_args() rand('twister',1) ; a=rand(1, 2, 3, 4, 5) ; vl_twister('state',1) ; b=vl_twister(1, 2, 3, 4, 5) ; vl_assert_equal(a,b,'VL_TWISTER(M, N, P, ...)') ; function test_square() rand('twister',1) ; a=rand(10) ; vl_twister('state',1) ; b=vl_twister(10) ; vl_assert_equal(a,b,'VL_TWISTER(N)') ;
github
jianxiongxiao/ProfXkit-master
vl_test_kdtree.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_kdtree.m
2,449
utf_8
9d7ad2b435a88c22084b38e5eb5f9eb9
function results = vl_test_kdtree(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.X = single(randn(10, 1000)) ; s.Q = single(randn(10, 10)) ; function test_nearest(s) for tmethod = {'median', 'mean'} for type = {@single, @double} conv = type{1} ; tmethod = char(tmethod) ; X = conv(s.X) ; Q = conv(s.Q) ; tree = vl_kdtreebuild(X,'ThresholdMethod', tmethod) ; [nn, d2] = vl_kdtreequery(tree, X, Q) ; D2 = vl_alldist2(X, Q, 'l2') ; [d2_, nn_] = min(D2) ; vl_assert_equal(... nn,uint32(nn_),... 'incorrect nns: type=%s th. method=%s', func2str(conv), tmethod) ; vl_assert_almost_equal(... d2,d2_,... 'incorrect distances: type=%s th. method=%s', func2str(conv), tmethod) ; end end function test_nearests(s) numNeighbors = 7 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; vl_assert_equal(nn,uint32(nn_)) ; vl_assert_almost_equal(d2,d2_) ; function test_ann(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 50 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end function test_ann_forest(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 25 ; numTrees = 5 ; tree = vl_kdtreebuild(s.X, 'numTrees', 5) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end
github
jianxiongxiao/ProfXkit-master
vl_test_imwbackward.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_imwbackward.m
514
utf_8
33baa0784c8f6f785a2951d7f1b49199
function results = vl_test_imwbackward(varargin) % VL_TEST_IMWBACKWARD vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; function test_identity(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_almost_equal(s.I, vl_imwbackward(xr,yr,s.I,x,y)) ; function test_invalid_args(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_exception(@() vl_imwbackward(xr,yr,single(s.I),x,y), 'vl:invalidArgument') ;
github
jianxiongxiao/ProfXkit-master
vl_test_alphanum.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_alphanum.m
1,624
utf_8
2da2b768c2d0f86d699b8f31614aa424
function results = vl_test_alphanum(varargin) % VL_TEST_ALPHANUM vl_test_init ; function s = setup() s.strings = ... {'1000X Radonius Maximus','10X Radonius','200X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','Allegia 50 Clasteron','Allegia 500 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 6R Clasteron','Alpha 100','Alpha 2','Alpha 200','Alpha 2A','Alpha 2A-8000','Alpha 2A-900','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 5000','Callisto Morphamax 600','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 700','Callisto Morphamax 7000','Xiph Xlater 10000','Xiph Xlater 2000','Xiph Xlater 300','Xiph Xlater 40','Xiph Xlater 5','Xiph Xlater 50','Xiph Xlater 500','Xiph Xlater 5000','Xiph Xlater 58'} ; s.sortedStrings = ... {'10X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','200X Radonius','1000X Radonius Maximus','Allegia 6R Clasteron','Allegia 50 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 500 Clasteron','Alpha 2','Alpha 2A','Alpha 2A-900','Alpha 2A-8000','Alpha 100','Alpha 200','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 600','Callisto Morphamax 700','Callisto Morphamax 5000','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 7000','Xiph Xlater 5','Xiph Xlater 40','Xiph Xlater 50','Xiph Xlater 58','Xiph Xlater 300','Xiph Xlater 500','Xiph Xlater 2000','Xiph Xlater 5000','Xiph Xlater 10000'} ; function test_basic(s) sorted = vl_alphanum(s.strings) ; assert(isequal(sorted,s.sortedStrings)) ;
github
jianxiongxiao/ProfXkit-master
vl_test_printsize.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_printsize.m
1,447
utf_8
0f0b6437c648b7a2e1310900262bd765
function results = vl_test_printsize(varargin) % VL_TEST_PRINTSIZE vl_test_init ; function s = setup() s.fig = figure(1) ; s.usletter = [8.5, 11] ; % inches s.a4 = [8.26772, 11.6929] ; clf(s.fig) ; plot(1:10) ; function teardown(s) close(s.fig) ; function test_basic(s) for sigma = [1 0.5 0.2] vl_printsize(s.fig, sigma) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), sigma*s.usletter(1), 1e-4) ; vl_assert_almost_equal(pos(1), 0, 1e-4) ; vl_assert_almost_equal(pos(3), sigma*s.usletter(1), 1e-4) ; end function test_papertype(s) vl_printsize(s.fig, 1, 'papertype', 'a4') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.a4(1), 1e-4) ; function test_margin(s) m = 0.5 ; vl_printsize(s.fig, 1, 'margin', m) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.usletter(1) * (1 + 2*m), 1e-4) ; vl_assert_almost_equal(pos(1), s.usletter(1) * m, 1e-4) ; function test_reference(s) sigma = 1 ; vl_printsize(s.fig, 1, 'reference', 'vertical') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(2), sigma*s.usletter(2), 1e-4) ; vl_assert_almost_equal(pos(2), 0, 1e-4) ; vl_assert_almost_equal(pos(4), sigma*s.usletter(2), 1e-4) ;
github
jianxiongxiao/ProfXkit-master
vl_test_cummax.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_cummax.m
762
utf_8
3dddb5736dfffacdd94b156e67cb9c14
function results = vl_test_cummax(varargin) % VL_TEST_CUMMAX vl_test_init ; function test_basic() vl_assert_almost_equal(... vl_cummax(1), 1) ; vl_assert_almost_equal(... vl_cummax([1 2 3 4], 2), [1 2 3 4]) ; function test_multidim() a = [1 2 3 4 3 2 1] ; b = [1 2 3 4 4 4 4] ; for k=1:6 dims = ones(1,6) ; dims(k) = numel(a) ; a = reshape(a, dims) ; b = reshape(b, dims) ; vl_assert_almost_equal(... vl_cummax(a, k), b) ; end function test_storage_classes() types = {@double, @single, @int64, @uint64, ... @int32, @uint32, @int16, @uint16, ... @int8, @uint8} ; for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_cummax(a(eye(3))), a(toeplitz([1 1 1], [1 0 0 ]))) ; end end
github
jianxiongxiao/ProfXkit-master
vl_test_imintegral.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_imintegral.m
1,429
utf_8
4750f04ab0ac9fc4f55df2c8583e5498
function results = vl_test_imintegral(varargin) % VL_TEST_IMINTEGRAL vl_test_init ; function state = setup() state.I = ones(5,6) ; state.correct = [ 1 2 3 4 5 6 ; 2 4 6 8 10 12 ; 3 6 9 12 15 18 ; 4 8 12 16 20 24 ; 5 10 15 20 25 30 ; ] ; function test_matlab_equivalent(s) vl_assert_equal(slow_imintegral(s.I), s.correct) ; function test_basic(s) vl_assert_equal(vl_imintegral(s.I), s.correct) ; function test_multi_dimensional(s) vl_assert_equal(vl_imintegral(repmat(s.I, [1 1 3])), ... repmat(s.correct, [1 1 3])) ; function test_random(s) numTests = 50 ; for i = 1:numTests I = rand(5) ; vl_assert_almost_equal(vl_imintegral(s.I), ... slow_imintegral(s.I)) ; end function test_datatypes(s) vl_assert_equal(single(vl_imintegral(s.I)), single(s.correct)) ; vl_assert_equal(double(vl_imintegral(s.I)), double(s.correct)) ; vl_assert_equal(uint32(vl_imintegral(s.I)), uint32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(s.I)), int32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(-s.I)), -int32(s.correct)) ; function integral = slow_imintegral(I) integral = zeros(size(I)); for k = 1:size(I,3) for r = 1:size(I,1) for c = 1:size(I,2) integral(r,c,k) = sum(sum(I(1:r,1:c,k))); end end end
github
jianxiongxiao/ProfXkit-master
vl_test_sift.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_sift.m
1,318
utf_8
806c61f9db9f2ebb1d649c9bfcf3dc0a
function results = vl_test_sift(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() s.I = im2single(imread(fullfile(vl_root,'data','box.pgm'))) ; [s.ubc.f, s.ubc.d] = ... vl_ubcread(fullfile(vl_root,'data','box.sift')) ; function test_ubc_descriptor(s) err = [] ; [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'frames', s.ubc.f) ; D2 = vl_alldist(f, s.ubc.f) ; [drop, perm] = min(D2) ; f = f(:,perm) ; d = d(:,perm) ; error = mean(sqrt(sum((single(s.ubc.d) - single(d)).^2))) ... / mean(sqrt(sum(single(s.ubc.d).^2))) ; assert(error < 0.1, ... 'sift descriptor did not produce desctiptors similar to UBC ones') ; function test_ubc_detector(s) [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'peakthresh', .01, ... 'edgethresh', 10) ; s.ubc.f(4,:) = mod(s.ubc.f(4,:), 2*pi) ; f(4,:) = mod(f(4,:), 2*pi) ; % scale the components so that 1 pixel erro in x,y,z is equal to a % 10-th of angle. S = diag([1 1 1 20/pi]); D2 = vl_alldist(S * s.ubc.f, S * f) ; [d2,perm] = sort(min(D2)) ; error = sqrt(d2) ; quant80 = round(.8 * size(f,2)) ; % check for less than one pixel error at 80% quantile assert(error(quant80) < 1, ... 'sift detector did not produce enough keypoints similar to UBC ones') ;
github
jianxiongxiao/ProfXkit-master
vl_test_binsum.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_binsum.m
1,301
utf_8
5bbd389cbc4d997e413d809fe4efda6d
function results = vl_test_binsum(varargin) % VL_TEST_BINSUM vl_test_init ; function test_three_args() vl_assert_almost_equal(... vl_binsum([0 0], 1, 2), [0 1]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, 1), [0 7]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, [1 2 2 2 2 2 2 2]), [0 0]) ; function test_four_args() vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1], [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1]', [1 2 3]', 2), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3]', 2), 2*eye(3)) ; function test_3d_one() Z = zeros(3,3,3) ; B = 3*ones(3,1,3) ; R = Z ; R(:,3,:) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, 17, B, 2), R) ; function test_3d_two() Z = zeros(3,3,3) ; B = 3*ones(3,3,1) ; X = zeros(3,3,1) ; X(:,:,1) = 17 ; R = Z ; R(:,:,3) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, X, B, 3), R) ; function test_storage_classes() types = {@double, @single, @int64, @uint64, ... @int32, @uint32, @int16, @uint16, ... @int8, @uint8} ; for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_binsum(a(eye(3)), a([1 1 1]), b([1 2 3]), 1), a(2*eye(3))) ; end end
github
jianxiongxiao/ProfXkit-master
vl_test_lbp.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_lbp.m
1,056
utf_8
3b5cca50109af84014e56a4280a3352a
function results = vl_test_lbp(varargin) % VL_TEST_TWISTER vl_test_init ; function test_one_on() I = {} ; I{1} = [0 0 0 ; 0 0 1 ; 0 0 0] ; I{2} = [0 0 0 ; 0 0 0 ; 0 0 1] ; I{3} = [0 0 0 ; 0 0 0 ; 0 1 0] ; I{4} = [0 0 0 ; 0 0 0 ; 1 0 0] ; I{5} = [0 0 0 ; 1 0 0 ; 0 0 0] ; I{6} = [1 0 0 ; 0 0 0 ; 0 0 0] ; I{7} = [0 1 0 ; 0 0 0 ; 0 0 0] ; I{8} = [0 0 1 ; 0 0 0 ; 0 0 0] ; for j=0:7 h = vl_lbp(single(I{j+1}), 3) ; h = find(squeeze(h)) ; vl_assert_equal(h, j * 7 + 1) ; end function test_two_on() I = {} ; I{1} = [0 0 0 ; 0 0 1 ; 0 0 1] ; I{2} = [0 0 0 ; 0 0 0 ; 0 1 1] ; I{3} = [0 0 0 ; 0 0 0 ; 1 1 0] ; I{4} = [0 0 0 ; 1 0 0 ; 1 0 0] ; I{5} = [1 0 0 ; 1 0 0 ; 0 0 0] ; I{6} = [1 1 0 ; 0 0 0 ; 0 0 0] ; I{7} = [0 1 1 ; 0 0 0 ; 0 0 0] ; I{8} = [0 0 1 ; 0 0 1 ; 0 0 0] ; for j=0:7 h = vl_lbp(single(I{j+1}), 3) ; h = find(squeeze(h)) ; vl_assert_equal(h, j * 7 + 2) ; end function test_fliplr() randn('state',0) ; I = randn(256,256,1,'single') ; f = vl_lbp(fliplr(I), 8) ; f_ = vl_lbpfliplr(vl_lbp(I, 8)) ; vl_assert_almost_equal(f,f_,1e-3) ;
github
jianxiongxiao/ProfXkit-master
vl_test_colsubset.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_colsubset.m
828
utf_8
be0c080007445b36333b863326fb0f15
function results = vl_test_colsubset(varargin) % VL_TEST_COLSUBSET vl_test_init ; function s = setup() s.x = [5 2 3 6 4 7 1 9 8 0] ; function test_beginning(s) vl_assert_equal(1:5, vl_colsubset(1:10, 5, 'beginning')) ; vl_assert_equal(1:5, vl_colsubset(1:10, .5, 'beginning')) ; function test_ending(s) vl_assert_equal(6:10, vl_colsubset(1:10, 5, 'ending')) ; vl_assert_equal(6:10, vl_colsubset(1:10, .5, 'ending')) ; function test_largest(s) vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, 5, 'largest')) ; vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, .5, 'largest')) ; function test_smallest(s) vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, 5, 'smallest')) ; vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, .5, 'smallest')) ; function test_random(s) assert(numel(intersect(s.x, vl_colsubset(s.x, 5, 'random'))) == 5) ;
github
jianxiongxiao/ProfXkit-master
vl_test_alldist.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_alldist.m
2,373
utf_8
9ea1a36c97fe715dfa2b8693876808ff
function results = vl_test_alldist(varargin) % VL_TEST_ALLDIST vl_test_init ; function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js', ... 'kchi2', 'kl2', 'kl1', 'khell', 'kjs'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) x - x .* log2(1 + y/x) + y - y .* log2(1 + x/y), ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y), ... @(x,y) .5 * (x .* log2(1 + y/x) + y .* log2(1 + x/y))} ; types = {'single', 'double'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; vl_assert_almost_equal(... vl_alldist(X,Y,dists{d}), ... makedist(distsEquiv{d},X,Y), ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist(X,X,ker) ; kyy = vl_alldist(Y,Y,ker) ; kxy = vl_alldist(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
jianxiongxiao/ProfXkit-master
vl_test_ihashsum.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_ihashsum.m
581
utf_8
edc283062469af62056b0782b171f5fc
function results = vl_test_ihashsum(varargin) % VL_TEST_IHASHSUM vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(round(16*rand(2,100))) ; sel = find(all(s.data==0)) ; s.data(1,sel)=1 ; function test_hash(s) D = size(s.data,1) ; K = 5 ; h = zeros(1,K,'uint32') ; id = zeros(D,K,'uint8'); next = zeros(1,K,'uint32') ; [h,id,next] = vl_ihashsum(h,id,next,K,s.data) ; sel = vl_ihashfind(id,next,K,s.data) ; count = double(h(sel)) ; [drop,i,j] = unique(s.data','rows') ; for k=1:size(s.data,2) count_(k) = sum(j == j(k)) ; end vl_assert_equal(count,count_) ;
github
jianxiongxiao/ProfXkit-master
vl_test_grad.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_grad.m
434
utf_8
4d03eb33a6a4f68659f868da95930ffb
function results = vl_test_grad(varargin) % VL_TEST_GRAD vl_test_init ; function s = setup() s.I = rand(150,253) ; s.I_small = rand(2,2) ; function test_equiv(s) vl_assert_equal(gradient(s.I), vl_grad(s.I)) ; function test_equiv_small(s) vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ; function test_equiv_forward(s) Ix = diff(s.I,2,1) ; Iy = diff(s.I,2,1) ; vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ;
github
jianxiongxiao/ProfXkit-master
vl_test_whistc.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_whistc.m
1,384
utf_8
81c446d35c82957659840ab2a579ec2c
function results = vl_test_whistc(varargin) % VL_TEST_WHISTC vl_test_init ; function test_acc() x = ones(1, 10) ; e = 1 ; o = 1:10 ; vl_assert_equal(vl_whistc(x, o, e), 55) ; function test_basic() x = 1:10 ; e = 1:10 ; o = ones(1, 10) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; x = linspace(-1,11,100) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; function test_multidim() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_nan() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; x(1:7:end) = NaN ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_no_edges() x = rand(10, 20, 30) ; o = ones(size(x)) ; vl_assert_equal(histc(1, []), vl_whistc(1, 1, [])) ; vl_assert_equal(histc(x, []), vl_whistc(x, o, [])) ; vl_assert_equal(histc(x, [], 1), vl_whistc(x, o, [], 1)) ; vl_assert_equal(histc(x, [], 2), vl_whistc(x, o, [], 2)) ; vl_assert_equal(histc(x, [], 3), vl_whistc(x, o, [], 3)) ;
github
jianxiongxiao/ProfXkit-master
vl_test_roc.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_roc.m
1,019
utf_8
9b2ae71c9dc3eda0fc54c65d55054d0c
function results = vl_test_roc(varargin) % VL_TEST_ROC vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(tpr, [0 1 2 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 3 2 1 0] / 3) ; function test_perfect_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(info.eer, 0) ; vl_assert_almost_equal(info.auc, 1) ; function test_swap1_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(tpr, [0 1 1 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 2 2 1 0] / 3) ; function test_swap1_tptn_stable(s) [tpr,tnr] = vl_roc(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(tpr, [1 2 1 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 2 2 1 0] / 3) ; function test_swap1_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(info.eer, 1/3) ; vl_assert_almost_equal(info.auc, 1 - 1/(2*3)) ;
github
jianxiongxiao/ProfXkit-master
vl_test_dsift.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_dsift.m
2,048
utf_8
fbbfb16d5a21936c1862d9551f657ccc
function results = vl_test_dsift(varargin) % VL_TEST_DSIFT vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = rgb2gray(single(I)) ; function test_fast_slow(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSize = 5 ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; [f_, d_] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors', ... 'fast') ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift fast approximation not close') ; function test_sift(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSizeRange = [1 1.2 5] ; for wi = 1:length(windowSizeRange) windowSize = windowSizeRange(wi) ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; numKeys = size(f, 2) ; f_ = [f ; ones(1, numKeys) * scale ; zeros(1, numKeys)] ; [f_, d_] = vl_sift(s.I, ... 'magnif', magnif, ... 'frames', f_, ... 'firstoctave', -1, ... 'levels', 5, ... 'floatdescriptors', ... 'windowsize', windowSize) ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift and sift equivalence') ; end
github
jianxiongxiao/ProfXkit-master
vl_test_alldist2.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_alldist2.m
2,284
utf_8
89a787e3d83516653ae8d99c808b9d67
function results = vl_test_alldist2(varargin) % VL_TEST_ALLDIST vl_test_init ; % TODO: test integer classes function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist2(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist2(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist2(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', ... 'kchi2', 'kl2', 'kl1', 'khell'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y)}; types = {'single', 'double', 'sparse'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; a = vl_alldist2(X,Y,dists{d}) ; b = makedist(distsEquiv{d},X,Y) ; vl_assert_almost_equal(a,b, ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist2(X,X,ker) ; kyy = vl_alldist2(Y,Y,ker) ; kxy = vl_alldist2(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist2(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
jianxiongxiao/ProfXkit-master
vl_test_fisher.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_fisher.m
1,703
utf_8
41b28dce7f0d0ae5cb6abd942acbef56
function results = vl_test_fisher(varargin) % VL_TEST_FISHER vl_test_init ; function s = setup() randn('state',0) ; dimension = 5 ; numData = 21 ; numComponents = 3 ; s.x = randn(dimension,numData) ; s.mu = randn(dimension,numComponents) ; s.sigma2 = ones(dimension,numComponents) ; s.prior = ones(1,numComponents) ; s.prior = s.prior / sum(s.prior) ; function test_basic(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior) ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_norm(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'normalized') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_sqrt(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'squareroot') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_improved(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function enc = simple_fisher(x, mu, sigma2, pri) sigma = sqrt(sigma2) ; for i = 1:size(mu,2) delta{i} = bsxfun(@times, bsxfun(@minus, x, mu(:,i)), 1./sigma(:,i)) ; q(i,:) = log(pri(i)) - 0.5 * log(sigma2(i)) - 0.5 * sum(delta{i}.^2,1) ; end q = exp(bsxfun(@minus, q, max(q,[],1))) ; q = bsxfun(@times, q, 1 ./ sum(q,1)) ; n = size(x,2) ; for i = 1:size(mu,2) u{i} = delta{i} * q(i,:)' / n / sqrt(pri(i)) ; v{i} = (delta{i}.^2 - 1) * q(i,:)' / n / sqrt(2*pri(i)) ; end enc = cat(1, u{:}, v{:}) ;
github
jianxiongxiao/ProfXkit-master
vl_test_imsmooth.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_imsmooth.m
1,837
utf_8
718235242cad61c9804ba5e881c22f59
function results = vl_test_imsmooth(varargin) % VL_TEST_IMSMOOTH vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; I = max(min(vl_imdown(I),1),0) ; s.I = single(I) ; function test_pad_by_continuity(s) % Convolving a constant signal padded with continuity does not change % the signal. I = ones(3) ; for ker = {'triangular', 'gaussian'} ker = char(ker) ; J = vl_imsmooth(I, 2, ... 'kernel', ker, ... 'padding', 'continuity') ; vl_assert_almost_equal(J, I, 1e-4, ... 'padding by continutiy with kernel = %s', ker) ; end function test_kernels(s) for ker = {'triangular', 'gaussian'} ker = char(ker) ; for type = {@single, @double} for simd = [0 1] for sigma = [1 2 7] for step = [1 2 3] vl_simdctrl(simd) ; conv = type{1} ; g = equivalent_kernel(ker, sigma) ; J = vl_imsmooth(conv(s.I), sigma, ... 'kernel', ker, ... 'padding', 'zero', ... 'subsample', step) ; J_ = conv(convolve(s.I, g, step)) ; vl_assert_almost_equal(J, J_, 1e-4, ... 'kernel=%s sigma=%f step=%d simd=%d', ... ker, sigma, step, simd) ; end end end end end function g = equivalent_kernel(ker, sigma) switch ker case 'gaussian' W = ceil(4*sigma) ; g = exp(-.5*((-W:W)/(sigma+eps)).^2) ; case 'triangular' W = max(round(sigma),1) ; g = W - abs(-W+1:W-1) ; end g = g / sum(g) ; function I = convolve(I, g, step) if strcmp(class(I),'single') g = single(g) ; else g = double(g) ; end for k=1:size(I,3) I(:,:,k) = conv2(g,g,I(:,:,k),'same'); end I = I(1:step:end,1:step:end,:) ;
github
jianxiongxiao/ProfXkit-master
vl_test_svmtrain.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_svmtrain.m
4,277
utf_8
071b7c66191a22e8236fda16752b27aa
function results = vl_test_svmtrain(varargin) % VL_TEST_SVMTRAIN vl_test_init ; end function s = setup() randn('state',0) ; Np = 10 ; Nn = 10 ; xp = diag([1 3])*randn(2, Np) ; xn = diag([1 3])*randn(2, Nn) ; xp(1,:) = xp(1,:) + 2 + 1 ; xn(1,:) = xn(1,:) - 2 + 1 ; s.x = [xp xn] ; s.y = [ones(1,Np) -ones(1,Nn)] ; s.lambda = 0.01 ; s.biasMultiplier = 10 ; if 0 figure(1) ; clf; vl_plotframe(xp, 'g') ; hold on ; vl_plotframe(xn, 'r') ; axis equal ; grid on ; end % Run LibSVM as an accuate solver to compare results with. Note that % LibSVM optimizes a slightly different cost function due to the way % the bias is handled. % [s.w, s.b] = accurate_solver(s.x, s.y, s.lambda, s.biasMultiplier) ; s.w = [1.180762951236242; 0.098366470721632] ; s.b = -1.540018443946204 ; s.obj = obj(s, s.w, s.b) ; end function test_sgd_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sgd', ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', 1/s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % there are no absolute guarantees on the objective gap, but % the heuristic SGD uses as stopping criterion seems reasonable % within a factor 10 at least. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-2) ; end end function test_sdca_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % the gap with the accurate solver cannot be % greater than the duality gap. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-3) ; end end function test_weights(s) for algo = {'sgd', 'sdca'} for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; numRepeats = 10 ; pos = find(s.y > 0) ; neg = find(s.y < 0) ; weights = ones(1, numel(s.y)) ; weights(pos) = numRepeats ; % simulate weighting by repeating positives [w b info] = vl_svmtrain(... s.x(:, [repmat(pos,1,numRepeats) neg]), ... s.y(:, [repmat(pos,1,numRepeats) neg]), ... s.lambda / (numel(pos) *numRepeats + numel(neg)) / (numel(pos) + numel(neg)), ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4) ; % apply weigthing [w_ b_ info_] = vl_svmtrain(... s.x, ... s.y, ... s.lambda, ... 'Solver', char(algo), ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4, ... 'Weights', weights) ; vl_assert_almost_equal(conv([w; b]), conv([w_; b_]), 0.05) ; end end end function test_homkermap(s) for solver = {'sgd', 'sdca'} for conv = {@single,@double} conv = conv{1} ; dataset = vl_svmdataset(conv(s.x), 'homkermap', struct('order',1)) ; vl_twister('state',0) ; [w_ b_] = vl_svmtrain(dataset, s.y, s.lambda) ; x_hom = vl_homkermap(conv(s.x), 1) ; vl_twister('state',0) ; [w b] = vl_svmtrain(x_hom, s.y, s.lambda) ; vl_assert_almost_equal([w; b],[w_; b_], 1e-7) ; end end end function [w,b] = accurate_solver(X, y, lambda, biasMultiplier) addpath opt/libsvm/matlab/ N = size(X,2) ; model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 -e 0.00001 ', 1/(lambda*N))) ; w = X(:,model.SVs) * model.sv_coef ; b = - model.rho ; format long ; disp('model w:') disp(w) disp('bias b:') disp(b) end function o = obj(s, w, b) o = (sum(w.*w) + b*b) * s.lambda / 2 + mean(max(0, 1 - s.y .* (w'*s.x + b))) ; end
github
jianxiongxiao/ProfXkit-master
vl_test_phow.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_phow.m
549
utf_8
f761a3bb218af855986263c67b2da411
function results = vl_test_phow(varargin) % VL_TEST_PHOPW vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = single(s.I) ; function test_gray(s) [f,d] = vl_phow(s.I, 'color', 'gray') ; assert(size(d,1) == 128) ; function test_rgb(s) [f,d] = vl_phow(s.I, 'color', 'rgb') ; assert(size(d,1) == 128*3) ; function test_hsv(s) [f,d] = vl_phow(s.I, 'color', 'hsv') ; assert(size(d,1) == 128*3) ; function test_opponent(s) [f,d] = vl_phow(s.I, 'color', 'opponent') ; assert(size(d,1) == 128*3) ;
github
jianxiongxiao/ProfXkit-master
vl_test_kmeans.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_kmeans.m
3,632
utf_8
719f7fca81e19eed5cc45c2ca251aad0
function results = vl_test_kmeans(varargin) % VL_TEST_KMEANS % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; function s = setup() randn('state',0) ; s.X = randn(128, 100) ; function test_basic(s) [centers, assignments, en] = vl_kmeans(s.X, 10, 'NumRepetitions', 10) ; [centers_, assignments_, en_] = simpleKMeans(s.X, 10) ; assert(en_ <= 1.1 * en, 'vl_kmeans did not optimize enough') ; function test_algorithms(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; [centers, assignments, en] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Lloyd', ... 'Distance', distance) ; vl_twister('state',0) ; [centers_, assignments_, en_] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Elkan', ... 'Distance', distance) ; vl_twister('state',0) ; [centers__, assignments__, en__] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'ANN', ... 'Distance', distance, ... 'NumTrees', 3, ... 'MaxNumComparisons',0) ; vl_assert_almost_equal(centers, centers_, 1e-5) ; vl_assert_almost_equal(assignments, assignments_, 1e-5) ; vl_assert_almost_equal(en, en_, 1e-5) ; vl_assert_almost_equal(centers, centers__, 1e-5) ; vl_assert_almost_equal(assignments, assignments__, 1e-5) ; vl_assert_almost_equal(en, en__, 1e-5) ; vl_assert_almost_equal(centers_, centers__, 1e-5) ; vl_assert_almost_equal(assignments_, assignments__, 1e-5) ; vl_assert_almost_equal(en_, en__, 1e-5) ; end end function test_patterns(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; data = [1 1 0 0 ; 1 0 1 0] ; data = conversion(data) ; [centers, assignments, en] = vl_kmeans(data, 4, ... 'NumRepetitions', 100, ... 'Distance', distance) ; assert(isempty(setdiff(data', centers', 'rows'))) ; end end function [centers, assignments, en] = simpleKMeans(X, numCenters) [dimension, numData] = size(X) ; centers = randn(dimension, numCenters) ; for iter = 1:10 [dists, assignments] = min(vl_alldist(centers, X)) ; en = sum(dists) ; centers = [zeros(dimension, numCenters) ; ones(1, numCenters)] ; centers = vl_binsum(centers, ... [X ; ones(1,numData)], ... repmat(assignments, dimension+1, 1), 2) ; centers = centers(1:end-1, :) ./ repmat(centers(end,:), dimension, 1) ; end
github
jianxiongxiao/ProfXkit-master
vl_test_hikmeans.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_hikmeans.m
463
utf_8
dc3b493646e66316184e86ff4e6138ab
function results = vl_test_hikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [tree, assign] = vl_hikmeans(s.data,3,100) ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [tree, assign] = vl_hikmeans(s.data,3,100,'method','elkan') ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ;
github
jianxiongxiao/ProfXkit-master
vl_test_aib.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_aib.m
1,277
utf_8
78978ae54e7ebe991d136336ba4bf9c6
function results = vl_test_aib(varargin) % VL_TEST_AIB vl_test_init ; function s = setup() s = [] ; function test_basic(s) Pcx = [.3 .3 0 0 0 0 .2 .2] ; % This results in the AIB tree % % 1 - \ % 5 - \ % 2 - / \ % - 7 % 3 - \ / % 6 - / % 4 - / % % coded by the map [5 5 6 6 7 1] (1 denotes the root). [parents,cost] = vl_aib(Pcx) ; vl_assert_equal(parents, [5 5 6 6 7 7 1]) ; vl_assert_almost_equal(mi(Pcx)*[1 1 1], cost(1:3), 1e-3) ; [cut,map,short] = vl_aibcut(parents,2) ; vl_assert_equal(cut, [5 6]) ; vl_assert_equal(map, [1 1 2 2 1 2 0]) ; vl_assert_equal(short, [5 5 6 6 5 6 7]) ; function test_cluster_null(s) Pcx = [.5 .5 0 0 0 0 0 0] ; % This results in the AIB tree % % 1 - \ % 5 % 2 - / % % 3 x % % 4 x % % If ClusterNull is specified, the values 3 and 4 % which have zero probability are merged first % % 1 ----------\ % 7 % 2 ----- \ / % 6-/ % 3 -\ / % 5 -/ % 4 -/ parents1 = vl_aib(Pcx) ; parents2 = vl_aib(Pcx,'ClusterNull') ; vl_assert_equal(parents1, [5 5 0 0 1 0 0]) ; vl_assert_equal(parents2(3), parents2(4)) ; function x = mi(P) % mutual information P1 = sum(P,1) ; P2 = sum(P,2) ; x = sum(sum(P .* log(max(P,1e-10) ./ (P2*P1)))) ;
github
jianxiongxiao/ProfXkit-master
vl_test_plotbox.m
.m
ProfXkit-master/depthImproveStructureIO/lib/vlfeat/toolbox/xtest/vl_test_plotbox.m
414
utf_8
aa06ce4932a213fb933bbede6072b029
function results = vl_test_plotbox(varargin) % VL_TEST_PLOTBOX vl_test_init ; function test_basic(s) figure(1) ; clf ; vl_plotbox([-1 -1 1 1]') ; xlim([-2 2]) ; ylim([-2 2]) ; close(1) ; function test_multiple(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10)) ; close(1) ; function test_style(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10), 'r-.', 'LineWidth', 3) ; close(1) ;