Datasets:
Tasks:
Image Segmentation
Sub-tasks:
semantic-segmentation
Languages:
English
Size:
1K<n<10K
License:
metadata
annotations_creators:
- human
language:
- en
license: mit
pretty_name: VisionReasoner UI Dataset
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
VisionReasoner UI Dataset
This dataset contains user interface (UI) images along with associated annotation prompts and solutions for fine-tuning the VisionReasoner model.
Dataset Description
- Size: 245 samples
- Task: Image Segmentation (Semantic Segmentation)
- Language: English
- License: MIT
Structure
images/
: Folder containing UI images (.webp
format)visionreasoner_dataset.parquet
: Metadata file containing:id
: Unique identifier for each sampleproblem
: Annotation prompt describing the UI element to segmentsolution
: JSON-formatted segmentation solution with bounding boxes and pointsimage
: Reference to the image fileimg_height
: Image height in pixelsimg_width
: Image width in pixels
Usage
To load and preview the dataset:
from datasets import load_dataset
# Load the dataset with trust_remote_code=True
dataset = load_dataset("shirve13/Demo", trust_remote_code=True)
print(dataset["train"][0])
Note: Make sure to use trust_remote_code=True
as this dataset uses a custom loading script.
Dataset Loading Script
The dataset uses a custom loading script (demo.py
) that:
- Loads metadata from the parquet file
- Handles image paths correctly
- Provides proper dataset features for Hugging Face compatibility
Citation
If you use this dataset in your research, please cite:
@dataset{visionreasoner_ui_dataset,
title={VisionReasoner UI Dataset},
author={shirve13},
year={2024},
url={https://huggingface.co/datasets/shirve13/Demo}
}