index
int64
0
0
repo_id
stringlengths
9
205
file_path
stringlengths
31
246
content
stringlengths
1
12.2M
__index_level_0__
int64
0
10k
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkWordCountHBaseIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertTrue; import java.io.IOException; import java.nio.charset.Charset; import java.util.Map; import java.util.Random; import java.util.concurrent.atomic.AtomicBoolean; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.hbase.HBaseSourceTarget; import org.apache.crunch.io.hbase.HBaseTypes; import org.apache.crunch.test.TemporaryPath; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HBaseTestingUtility; import org.apache.hadoop.hbase.HConstants; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Delete; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.client.Table; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.MultiTableInputFormat; import org.apache.hadoop.hbase.mapreduce.MultiTableInputFormatBase; import org.apache.hadoop.hbase.util.Bytes; import org.junit.After; import org.junit.Before; import org.junit.Rule; import org.junit.Test; import com.google.common.base.Joiner; public class SparkWordCountHBaseIT { static class StringifyFn extends MapFn<Pair<ImmutableBytesWritable, Pair<Result, Result>>, String> { @Override public String map(Pair<ImmutableBytesWritable, Pair<Result, Result>> input) { byte[] firstStrBytes = input.second().first().getValue(WORD_COLFAM, null); byte[] secondStrBytes = input.second().second().getValue(WORD_COLFAM, null); if (firstStrBytes != null && secondStrBytes != null) { return Joiner.on(',').join(new String(firstStrBytes, Charset.forName("UTF-8")), new String(secondStrBytes, Charset.forName("UTF-8"))); } return ""; } } @Rule public TemporaryPath tmpDir = new TemporaryPath(); private static final byte[] COUNTS_COLFAM = Bytes.toBytes("cf"); private static final byte[] WORD_COLFAM = Bytes.toBytes("cf"); private HBaseTestingUtility hbaseTestUtil; @SuppressWarnings("serial") public static PTable<String, Long> wordCount(PTable<ImmutableBytesWritable, Result> words) { return words.parallelDo( new DoFn<Pair<ImmutableBytesWritable, Result>, String>() { @Override public void process(Pair<ImmutableBytesWritable, Result> row, Emitter<String> emitter) { byte[] word = row.second().getValue(WORD_COLFAM, null); if (word != null) { emitter.emit(Bytes.toString(word)); } } }, words.getTypeFamily().strings()).count(); } @SuppressWarnings("serial") public static PCollection<Delete> clearCounts(PTable<ImmutableBytesWritable, Result> counts) { return counts.parallelDo("convert to delete", new DoFn<Pair<ImmutableBytesWritable, Result>, Delete>() { @Override public void process(Pair<ImmutableBytesWritable, Result> input, Emitter<Delete> emitter) { Delete delete = new Delete(input.first().get()); emitter.emit(delete); } }, HBaseTypes.deletes()); } @Before public void setUp() throws Exception { Configuration conf = HBaseConfiguration.create(tmpDir.getDefaultConfiguration()); conf.set(HConstants.TEMPORARY_FS_DIRECTORY_KEY, tmpDir.getFile("hbase-staging").getAbsolutePath()); hbaseTestUtil = new HBaseTestingUtility(conf); hbaseTestUtil.startMiniCluster(); } @Test public void testWordCount() throws Exception { run(new SparkPipeline("local", "hbaseWordCount", SparkWordCountHBaseIT.class, hbaseTestUtil.getConfiguration())); } @Test public void testWordCountCustomFormat() throws Exception { run(new SparkPipeline("local", "hbaseWordCountCustom", SparkWordCountHBaseIT.class, hbaseTestUtil.getConfiguration()), MyTableInputFormat.class); assertTrue(MyTableInputFormat.CONSTRUCTED.get()); } @After public void tearDown() throws Exception { hbaseTestUtil.shutdownMiniCluster(); } public void run(Pipeline pipeline) throws Exception { run(pipeline, null); } public void run(Pipeline pipeline, Class<? extends MultiTableInputFormatBase> clazz) throws Exception { Random rand = new Random(); int postFix = rand.nextInt() & 0x7FFFFFFF; TableName inputTableName = TableName.valueOf("crunch_words_" + postFix); TableName outputTableName = TableName.valueOf("crunch_counts_" + postFix); TableName otherTableName = TableName.valueOf("crunch_other_" + postFix); Table inputTable = hbaseTestUtil.createTable(inputTableName, WORD_COLFAM); int key = 0; key = put(inputTable, key, "cat"); key = put(inputTable, key, "cat"); key = put(inputTable, key, "dog"); inputTable.close(); //Setup scan using multiple scans that simply cut the rows in half. Scan scan = new Scan(); scan.addFamily(WORD_COLFAM); byte[] cutoffPoint = Bytes.toBytes(2); scan.setStopRow(cutoffPoint); Scan scan2 = new Scan(); scan.addFamily(WORD_COLFAM); scan2.setStartRow(cutoffPoint); HBaseSourceTarget source = null; if (clazz == null) { source = new HBaseSourceTarget(inputTableName, scan, scan2); } else { source = new HBaseSourceTarget(inputTableName, clazz, new Scan[]{scan, scan2}); } PTable<ImmutableBytesWritable, Result> words = pipeline.read(source); PTable<String, Long> counts = wordCount(words); Map<String, Long> countMap = counts.materializeToMap(); assertEquals(2, countMap.size()); assertEquals(2L, countMap.get("cat").longValue()); assertEquals(1L, countMap.get("dog").longValue()); pipeline.done(); } protected int put(Table table, int key, String value) throws IOException { Put put = new Put(Bytes.toBytes(key)); put.addColumn(WORD_COLFAM, null, Bytes.toBytes(value)); table.put(put); return key + 1; } public static class MyTableInputFormat extends MultiTableInputFormat{ public static final AtomicBoolean CONSTRUCTED = new AtomicBoolean(); public MyTableInputFormat(){ CONSTRUCTED.set(true); } } }
2,200
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkEmptyPCollectionIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.Iterables; import org.apache.crunch.fn.Aggregators; import org.apache.crunch.impl.mr.MRPipeline; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.From; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.writable.Writables; import org.junit.Rule; import org.junit.Test; import static org.junit.Assert.assertFalse; import static org.junit.Assert.assertTrue; public class SparkEmptyPCollectionIT { private static class SplitFn extends DoFn<String, Pair<String, Long>> { @Override public void process(String input, Emitter<Pair<String, Long>> emitter) { for (String word : input.split("\\s+")) { emitter.emit(Pair.of(word, 1L)); } } } @Rule public TemporaryPath tempDir = new TemporaryPath(); @Test public void testEmptyMR() throws Exception { Pipeline p = new SparkPipeline("local", "empty"); assertTrue(Iterables.isEmpty(p.emptyPCollection(Writables.strings()) .parallelDo(new SplitFn(), Writables.tableOf(Writables.strings(), Writables.longs())) .groupByKey() .combineValues(Aggregators.SUM_LONGS()) .materialize())); p.done(); } @Test public void testUnionWithEmptyMR() throws Exception { Pipeline p = new SparkPipeline("local", "empty"); assertFalse(Iterables.isEmpty(p.emptyPCollection(Writables.strings()) .parallelDo(new SplitFn(), Writables.tableOf(Writables.strings(), Writables.longs())) .union( p.read(From.textFile(tempDir.copyResourceFileName("shakes.txt"))) .parallelDo(new SplitFn(), Writables.tableOf(Writables.strings(), Writables.longs()))) .groupByKey() .combineValues(Aggregators.SUM_LONGS()) .materialize())); p.done(); } @Test public void testUnionTableWithEmptyMR() throws Exception { Pipeline p = new SparkPipeline("local", "empty"); assertFalse(Iterables.isEmpty(p.emptyPTable(Writables.tableOf(Writables.strings(), Writables.longs())) .union( p.read(From.textFile(tempDir.copyResourceFileName("shakes.txt"))) .parallelDo(new SplitFn(), Writables.tableOf(Writables.strings(), Writables.longs()))) .groupByKey() .combineValues(Aggregators.SUM_LONGS()) .materialize())); p.done(); } }
2,201
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SkipPTypesIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.From; import org.apache.crunch.io.seq.SeqFileTableSourceTarget; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.Converter; import org.apache.crunch.types.PTableType; import org.apache.crunch.types.writable.Writables; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.junit.Rule; import org.junit.Test; import static org.junit.Assert.assertEquals; public class SkipPTypesIT { @Rule public TemporaryPath tempDir = new TemporaryPath(); PTableType<Text, LongWritable> ptt = Writables.tableOf(Writables.writables(Text.class), Writables.writables(LongWritable.class)); @Test public void testSkipPTypes() throws Exception { String out = tempDir.getFileName("out"); SparkPipeline pipeline = new SparkPipeline("local", "skipptypes"); PCollection<String> shakes = pipeline.read(From.textFile(tempDir.copyResourceFileName("shakes.txt"))); PTable<String, Long> wcnt = shakes.count(); wcnt.write(new MySeqFileTableSourceTarget(out, ptt)); pipeline.run(); PTable<Text, LongWritable> wcntIn = pipeline.read(new MySeqFileTableSourceTarget(out, ptt)); assertEquals(new LongWritable(1L), wcntIn.materialize().iterator().next().second()); pipeline.done(); } static class ToWritables extends MapFn<Pair<String, Long>, Pair<Text, LongWritable>> { @Override public Pair<Text, LongWritable> map(Pair<String, Long> input) { return Pair.of(new Text(input.first()), new LongWritable(input.second())); } } static class MySeqFileTableSourceTarget extends SeqFileTableSourceTarget { public MySeqFileTableSourceTarget(String path, PTableType ptype) { super(path, ptype); } @Override public Converter getConverter() { return new SkipPTypesConverter(getType().getConverter()); } } static class SkipPTypesConverter implements Converter { private Converter delegate; public SkipPTypesConverter(Converter delegate) { this.delegate = delegate; } @Override public Object convertInput(Object key, Object value) { return delegate.convertInput(key, value); } @Override public Object convertIterableInput(Object key, Iterable value) { return delegate.convertIterableInput(key, value); } @Override public Object outputKey(Object value) { return delegate.outputKey(value); } @Override public Object outputValue(Object value) { return delegate.outputValue(value); } @Override public Class getKeyClass() { return delegate.getKeyClass(); } @Override public Class getValueClass() { return delegate.getValueClass(); } @Override public boolean applyPTypeTransforms() { return false; } } }
2,202
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkSortIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.Lists; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.lib.Sort; import org.apache.crunch.test.StringWrapper; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.PType; import org.apache.crunch.types.PTypeFamily; import org.apache.crunch.types.avro.AvroTypeFamily; import org.apache.crunch.types.avro.Avros; import org.apache.crunch.types.writable.WritableTypeFamily; import org.junit.Rule; import org.junit.Test; import java.io.IOException; import java.io.Serializable; import java.util.Arrays; import java.util.List; import static org.apache.crunch.lib.Sort.ColumnOrder.by; import static org.apache.crunch.lib.Sort.Order.ASCENDING; import static org.apache.crunch.lib.Sort.Order.DESCENDING; import static org.apache.crunch.test.StringWrapper.wrap; import static org.junit.Assert.assertEquals; public class SparkSortIT implements Serializable { @Rule public transient TemporaryPath tmpDir = new TemporaryPath(); @Test public void testWritableSortAsc() throws Exception { runSingle(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), Sort.Order.ASCENDING, "A\tand this text as well"); } @Test public void testWritableSortDesc() throws Exception { runSingle(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), Sort.Order.DESCENDING, "B\tthis doc has some text"); } @Test public void testWritableSortAscDesc() throws Exception { runPair(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), by(1, ASCENDING), by(2, DESCENDING), "A", "this doc has this text"); } @Test public void testWritableSortSecondDescFirstAsc() throws Exception { runPair(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), by(2, DESCENDING), by(1, ASCENDING), "A", "this doc has this text"); } @Test public void testWritableSortTripleAscDescAsc() throws Exception { runTriple(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), by(1, ASCENDING), by(2, DESCENDING), by(3, ASCENDING), "A", "this", "doc"); } @Test public void testWritableSortQuadAscDescAscDesc() throws Exception { runQuad(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), by(1, ASCENDING), by(2, DESCENDING), by(3, ASCENDING), by(4, DESCENDING), "A", "this", "doc", "has"); } @Test public void testWritableSortTupleNAscDesc() throws Exception { runTupleN(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), new Sort.ColumnOrder[] { by(1, ASCENDING), by(2, DESCENDING) }, new String[] { "A", "this doc has this text" }); } @Test public void testWritableSortTable() throws Exception { runTable(new SparkPipeline("local", "sort"), WritableTypeFamily.getInstance(), "A"); } @Test public void testAvroSortAsc() throws Exception { runSingle(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), Sort.Order.ASCENDING, "A\tand this text as well"); } @Test public void testAvroSortDesc() throws Exception { runSingle(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), Sort.Order.DESCENDING, "B\tthis doc has some text"); } @Test public void testAvroSortPairAscDesc() throws Exception { runPair(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), by(1, ASCENDING), by(2, DESCENDING), "A", "this doc has this text"); } @Test public void testAvroSortPairSecondDescFirstAsc() throws Exception { runPair(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), by(2, DESCENDING), by(1, ASCENDING), "A", "this doc has this text"); } @Test public void testAvroSortTripleAscDescAsc() throws Exception { runTriple(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), by(1, ASCENDING), by(2, DESCENDING), by(3, ASCENDING), "A", "this", "doc"); } @Test public void testAvroSortQuadAscDescAscDesc() throws Exception { runQuad(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), by(1, ASCENDING), by(2, DESCENDING), by(3, ASCENDING), by(4, DESCENDING), "A", "this", "doc", "has"); } @Test public void testAvroSortTupleNAscDesc() throws Exception { runTupleN(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), new Sort.ColumnOrder[] { by(1, ASCENDING), by(2, DESCENDING) }, new String[] { "A", "this doc has this text" }); } @Test public void testAvroReflectSortPair() throws IOException { Pipeline pipeline = new SparkPipeline("local", "sort"); pipeline.enableDebug(); String rsrc = tmpDir.copyResourceFileName("set2.txt"); PCollection<Pair<String, StringWrapper>> in = pipeline.readTextFile(rsrc) .parallelDo(new MapFn<String, Pair<String, StringWrapper>>() { @Override public Pair<String, StringWrapper> map(String input) { return Pair.of(input, wrap(input)); } }, Avros.pairs(Avros.strings(), Avros.reflects(StringWrapper.class))); PCollection<Pair<String, StringWrapper>> sorted = Sort.sort(in, Sort.Order.ASCENDING); List<Pair<String, StringWrapper>> expected = Lists.newArrayList(); expected.add(Pair.of("a", wrap("a"))); expected.add(Pair.of("c", wrap("c"))); expected.add(Pair.of("d", wrap("d"))); assertEquals(expected, Lists.newArrayList(sorted.materialize())); pipeline.done(); } @Test public void testAvroReflectSortTable() throws IOException { Pipeline pipeline = new SparkPipeline("local", "sort"); PTable<String, StringWrapper> unsorted = pipeline.readTextFile(tmpDir.copyResourceFileName("set2.txt")).parallelDo( new MapFn<String, Pair<String, StringWrapper>>() { @Override public Pair<String, StringWrapper> map(String input) { return Pair.of(input, wrap(input)); } }, Avros.tableOf(Avros.strings(), Avros.reflects(StringWrapper.class))); PTable<String, StringWrapper> sorted = Sort.sort(unsorted); List<Pair<String, StringWrapper>> expected = Lists.newArrayList(); expected.add(Pair.of("a", wrap("a"))); expected.add(Pair.of("c", wrap("c"))); expected.add(Pair.of("d", wrap("d"))); assertEquals(expected, Lists.newArrayList(sorted.materialize())); pipeline.done(); } @Test public void testAvroSortTable() throws Exception { runTable(new SparkPipeline("local", "sort"), AvroTypeFamily.getInstance(), "A"); } private void runSingle(Pipeline pipeline, PTypeFamily typeFamily, Sort.Order order, String firstLine) throws IOException { String inputPath = tmpDir.copyResourceFileName("docs.txt"); PCollection<String> input = pipeline.readTextFile(inputPath); // following turns the input from Writables to required type family PCollection<String> input2 = input.parallelDo(new DoFn<String, String>() { @Override public void process(String input, Emitter<String> emitter) { emitter.emit(input); } }, typeFamily.strings()); PCollection<String> sorted = Sort.sort(input2, order); Iterable<String> lines = sorted.materialize(); assertEquals(firstLine, lines.iterator().next()); pipeline.done(); // TODO: finally } private void runPair(Pipeline pipeline, PTypeFamily typeFamily, Sort.ColumnOrder first, Sort.ColumnOrder second, String firstField, String secondField) throws IOException { String inputPath = tmpDir.copyResourceFileName("docs.txt"); PCollection<String> input = pipeline.readTextFile(inputPath); PTable<String, String> kv = input.parallelDo(new DoFn<String, Pair<String, String>>() { @Override public void process(String input, Emitter<Pair<String, String>> emitter) { String[] split = input.split("[\t]+"); emitter.emit(Pair.of(split[0], split[1])); } }, typeFamily.tableOf(typeFamily.strings(), typeFamily.strings())); PCollection<Pair<String, String>> sorted = Sort.sortPairs(kv, first, second); List<Pair<String, String>> lines = Lists.newArrayList(sorted.materialize()); Pair<String, String> l = lines.iterator().next(); assertEquals(firstField, l.first()); assertEquals(secondField, l.second()); pipeline.done(); } private void runTriple(Pipeline pipeline, PTypeFamily typeFamily, Sort.ColumnOrder first, Sort.ColumnOrder second, Sort.ColumnOrder third, String firstField, String secondField, String thirdField) throws IOException { String inputPath = tmpDir.copyResourceFileName("docs.txt"); PCollection<String> input = pipeline.readTextFile(inputPath); PCollection<Tuple3<String, String, String>> kv = input.parallelDo( new DoFn<String, Tuple3<String, String, String>>() { @Override public void process(String input, Emitter<Tuple3<String, String, String>> emitter) { String[] split = input.split("[\t ]+"); int len = split.length; emitter.emit(Tuple3.of(split[0], split[1 % len], split[2 % len])); } }, typeFamily.triples(typeFamily.strings(), typeFamily.strings(), typeFamily.strings())); PCollection<Tuple3<String, String, String>> sorted = Sort.sortTriples(kv, first, second, third); List<Tuple3<String, String, String>> lines = Lists.newArrayList(sorted.materialize()); Tuple3<String, String, String> l = lines.iterator().next(); assertEquals(firstField, l.first()); assertEquals(secondField, l.second()); assertEquals(thirdField, l.third()); pipeline.done(); } private void runQuad(Pipeline pipeline, PTypeFamily typeFamily, Sort.ColumnOrder first, Sort.ColumnOrder second, Sort.ColumnOrder third, Sort.ColumnOrder fourth, String firstField, String secondField, String thirdField, String fourthField) throws IOException { String inputPath = tmpDir.copyResourceFileName("docs.txt"); PCollection<String> input = pipeline.readTextFile(inputPath); PCollection<Tuple4<String, String, String, String>> kv = input.parallelDo( new DoFn<String, Tuple4<String, String, String, String>>() { @Override public void process(String input, Emitter<Tuple4<String, String, String, String>> emitter) { String[] split = input.split("[\t ]+"); int len = split.length; emitter.emit(Tuple4.of(split[0], split[1 % len], split[2 % len], split[3 % len])); } }, typeFamily.quads(typeFamily.strings(), typeFamily.strings(), typeFamily.strings(), typeFamily.strings())); PCollection<Tuple4<String, String, String, String>> sorted = Sort.sortQuads(kv, first, second, third, fourth); Iterable<Tuple4<String, String, String, String>> lines = sorted.materialize(); Tuple4<String, String, String, String> l = lines.iterator().next(); assertEquals(firstField, l.first()); assertEquals(secondField, l.second()); assertEquals(thirdField, l.third()); assertEquals(fourthField, l.fourth()); pipeline.done(); } private void runTupleN(Pipeline pipeline, PTypeFamily typeFamily, Sort.ColumnOrder[] orders, String[] fields) throws IOException { String inputPath = tmpDir.copyResourceFileName("docs.txt"); PCollection<String> input = pipeline.readTextFile(inputPath); PType[] types = new PType[orders.length]; Arrays.fill(types, typeFamily.strings()); PCollection<TupleN> kv = input.parallelDo(new DoFn<String, TupleN>() { @Override public void process(String input, Emitter<TupleN> emitter) { String[] split = input.split("[\t]+"); emitter.emit(new TupleN(split)); } }, typeFamily.tuples(types)); PCollection<TupleN> sorted = Sort.sortTuples(kv, orders); Iterable<TupleN> lines = sorted.materialize(); TupleN l = lines.iterator().next(); int i = 0; for (String field : fields) { assertEquals(field, l.get(i++)); } pipeline.done(); } private void runTable(Pipeline pipeline, PTypeFamily typeFamily, String firstKey) throws IOException { String inputPath = tmpDir.copyResourceFileName("docs.txt"); PCollection<String> input = pipeline.readTextFile(inputPath); PTable<String, String> table = input.parallelDo(new DoFn<String, Pair<String, String>>() { @Override public void process(String input, Emitter<Pair<String, String>> emitter) { String[] split = input.split("[\t]+"); emitter.emit(Pair.of(split[0], split[1])); } }, typeFamily.tableOf(typeFamily.strings(), typeFamily.strings())); PTable<String, String> sorted = Sort.sort(table); Iterable<Pair<String, String>> lines = sorted.materialize(); Pair<String, String> l = lines.iterator().next(); assertEquals(firstKey, l.first()); pipeline.done(); } }
2,203
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkAggregatorIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.ImmutableList; import com.google.common.collect.Lists; import org.apache.crunch.fn.Aggregators; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.From; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.avro.Avros; import org.junit.Rule; import org.junit.Test; import java.util.Collection; import static org.junit.Assert.assertEquals; public class SparkAggregatorIT { @Rule public TemporaryPath tempDir = new TemporaryPath(); @Test public void testCount() throws Exception { SparkPipeline pipeline = new SparkPipeline("local", "aggregator"); PCollection<String> set1 = pipeline.read(From.textFile(tempDir.copyResourceFileName("set1.txt"))); PCollection<String> set2 = pipeline.read(From.textFile(tempDir.copyResourceFileName("set2.txt"))); Iterable<Pair<Integer, Long>> cnts = set1.union(set2) .parallelDo(new CntFn(), Avros.ints()) .count().materialize(); assertEquals(ImmutableList.of(Pair.of(1, 7L)), Lists.newArrayList(cnts)); pipeline.done(); } @Test public void testAvroFirstN() throws Exception { SparkPipeline pipeline = new SparkPipeline("local", "aggregator"); PCollection<String> set1 = pipeline.read(From.textFile(tempDir.copyResourceFileName("set1.txt"), Avros.strings())); PCollection<String> set2 = pipeline.read(From.textFile(tempDir.copyResourceFileName("set2.txt"), Avros.strings())); Aggregator<String> first5 = Aggregators.FIRST_N(5); Collection<String> aggregate = set1.union(set2).aggregate(first5).asCollection().getValue(); pipeline.done(); assertEquals(5, aggregate.size()); } private static class CntFn extends MapFn<String, Integer> { @Override public Integer map(String input) { return 1; } } }
2,204
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkTaskAttemptIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableSet; import com.google.common.collect.Lists; import com.google.common.collect.Sets; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.From; import org.apache.crunch.io.To; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.avro.Avros; import org.junit.After; import org.junit.Before; import org.junit.Rule; import org.junit.Test; import java.io.IOException; import static org.junit.Assert.assertEquals; public class SparkTaskAttemptIT { @Rule public TemporaryPath tempDir = new TemporaryPath(); private SparkPipeline pipeline; @Before public void setUp() throws IOException { pipeline = new SparkPipeline("local", "taskattempt"); } @After public void tearDown() throws Exception { pipeline.done(); } @Test public void testTaskAttempts() throws Exception { String inputPath = tempDir.copyResourceFileName("set1.txt"); String inputPath2 = tempDir.copyResourceFileName("set2.txt"); PCollection<String> first = pipeline.read(From.textFile(inputPath)); PCollection<String> second = pipeline.read(From.textFile(inputPath2)); Iterable<Pair<Integer, Long>> cnts = first.union(second) .parallelDo(new TaskMapFn(), Avros.ints()) .count() .materialize(); assertEquals(ImmutableSet.of(Pair.of(0, 4L), Pair.of(1, 3L)), Sets.newHashSet(cnts)); } private static class TaskMapFn extends MapFn<String, Integer> { @Override public Integer map(String input) { return getContext().getTaskAttemptID().getTaskID().getId(); } } }
2,205
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SmallCollectionLengthTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import com.google.common.base.Function; import com.google.common.collect.ImmutableList; import com.google.common.collect.Iterables; import org.apache.crunch.PCollection; import org.apache.crunch.PObject; import org.apache.crunch.Pipeline; import org.apache.crunch.types.avro.Avros; import org.junit.Test; import java.io.Serializable; import java.util.ArrayList; import javax.annotation.Nullable; import static org.hamcrest.MatcherAssert.assertThat; import static org.hamcrest.Matchers.not; import static org.hamcrest.Matchers.nullValue; public class SmallCollectionLengthTest implements Serializable { @Test public void smallCollectionsShouldNotHaveNullLength() throws Exception { Pipeline p = new SparkPipeline("local", "foobar"); final ImmutableList<String> allFruits = ImmutableList.of("apelsin", "banan", "citron", "daddel"); final ArrayList<ImmutableList<String>> fruitLists = new ArrayList<>(); for (int i = 0; i <= allFruits.size(); ++i) { fruitLists.add(ImmutableList.copyOf(allFruits.subList(0, i))); } final ArrayList<PObject<Long>> results = new ArrayList<>(); for (ImmutableList<String> fruit : fruitLists) { final PCollection<String> collection = p.create(fruit, Avros.strings()); results.add(collection.length()); } p.run(); final Iterable<Long> lengths = Iterables.transform(results, new Function<PObject<Long>, Long>() { @Nullable @Override public Long apply(@Nullable PObject<Long> input) { return input.getValue(); } }); for (Long length : lengths) { assertThat(length, not(nullValue())); } p.done(); } }
2,206
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkMapsideJoinIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.Lists; import org.apache.crunch.fn.FilterFns; import org.apache.crunch.impl.mem.MemPipeline; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.lib.join.JoinStrategy; import org.apache.crunch.lib.join.JoinType; import org.apache.crunch.lib.join.MapsideJoinStrategy; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.writable.Writables; import org.junit.AfterClass; import org.junit.BeforeClass; import org.junit.Rule; import org.junit.Test; import java.io.IOException; import java.util.Collections; import java.util.List; import java.util.Locale; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertTrue; public class SparkMapsideJoinIT { private static String saveTempDir; @BeforeClass public static void setUpClass(){ // Ensure a consistent temporary directory for use of the DistributedCache. // The DistributedCache technically isn't supported when running in local mode, and the default // temporary directiory "/tmp" is used as its location. This typically only causes an issue when // running integration tests on Mac OS X, as OS X doesn't use "/tmp" as it's default temporary // directory. The following call ensures that "/tmp" is used as the temporary directory on all platforms. saveTempDir = System.setProperty("java.io.tmpdir", "/tmp"); } @AfterClass public static void tearDownClass(){ System.setProperty("java.io.tmpdir", saveTempDir); } private static class LineSplitter extends MapFn<String, Pair<Integer, String>> { @Override public Pair<Integer, String> map(String input) { String[] fields = input.split("\\|"); return Pair.of(Integer.parseInt(fields[0]), fields[1]); } } private static class CapOrdersFn extends MapFn<String, String> { @Override public String map(String v) { return v.toUpperCase(Locale.ENGLISH); } } private static class ConcatValuesFn extends MapFn<Pair<String, String>, String> { @Override public String map(Pair<String, String> v) { return v.toString(); } } @Rule public TemporaryPath tmpDir = new TemporaryPath(); @Test public void testMapsideJoin_RightSideIsEmpty() throws IOException { Pipeline pipeline = new SparkPipeline("local", "mapside"); PTable<Integer, String> customerTable = readTable(pipeline, "customers.txt"); PTable<Integer, String> orderTable = readTable(pipeline, "orders.txt"); PTable<Integer, String> filteredOrderTable = orderTable .parallelDo(FilterFns.<Pair<Integer, String>>REJECT_ALL(), orderTable.getPTableType()); JoinStrategy<Integer, String, String> mapsideJoin = new MapsideJoinStrategy<Integer, String, String>(); PTable<Integer, Pair<String, String>> joined = mapsideJoin.join(customerTable, filteredOrderTable, JoinType.INNER_JOIN); List<Pair<Integer, Pair<String, String>>> materializedJoin = Lists.newArrayList(joined.materialize()); assertTrue(materializedJoin.isEmpty()); pipeline.done(); } @Test public void testMapsideJoin() throws IOException { runMapsideJoin(new SparkPipeline("local", "mapside"), false); } @Test public void testMapsideJoin_Materialized() throws IOException { runMapsideJoin(new SparkPipeline("local", "mapside"), true); } @Test public void testMapsideJoin_LeftOuterJoin() throws IOException { runMapsideLeftOuterJoin(new SparkPipeline("local", "mapside"), false); } @Test public void testMapsideJoin_LeftOuterJoin_Materialized() throws IOException { runMapsideLeftOuterJoin(new SparkPipeline("local", "mapside"), true); } private void runMapsideJoin(Pipeline pipeline, boolean materialize) { PTable<Integer, String> customerTable = readTable(pipeline, "customers.txt"); PTable<Integer, String> orderTable = readTable(pipeline, "orders.txt"); JoinStrategy<Integer, String, String> mapsideJoin = new MapsideJoinStrategy<Integer, String, String>(materialize); PTable<Integer, String> custOrders = mapsideJoin.join(customerTable, orderTable, JoinType.INNER_JOIN) .mapValues("concat", new ConcatValuesFn(), Writables.strings()); PTable<Integer, String> ORDER_TABLE = orderTable.mapValues(new CapOrdersFn(), orderTable.getValueType()); PTable<Integer, Pair<String, String>> joined = mapsideJoin.join(custOrders, ORDER_TABLE, JoinType.INNER_JOIN); List<Pair<Integer, Pair<String, String>>> expectedJoinResult = Lists.newArrayList(); expectedJoinResult.add(Pair.of(111, Pair.of("[John Doe,Corn flakes]", "CORN FLAKES"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet paper]", "TOILET PAPER"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet paper]", "TOILET PLUNGER"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet plunger]", "TOILET PAPER"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet plunger]", "TOILET PLUNGER"))); expectedJoinResult.add(Pair.of(333, Pair.of("[Someone Else,Toilet brush]", "TOILET BRUSH"))); Iterable<Pair<Integer, Pair<String, String>>> iter = joined.materialize(); List<Pair<Integer, Pair<String, String>>> joinedResultList = Lists.newArrayList(iter); Collections.sort(joinedResultList); assertEquals(expectedJoinResult, joinedResultList); pipeline.done(); } private void runMapsideLeftOuterJoin(Pipeline pipeline, boolean materialize) { PTable<Integer, String> customerTable = readTable(pipeline, "customers.txt"); PTable<Integer, String> orderTable = readTable(pipeline, "orders.txt"); JoinStrategy<Integer, String, String> mapsideJoin = new MapsideJoinStrategy<Integer, String, String>(materialize); PTable<Integer, String> custOrders = mapsideJoin.join(customerTable, orderTable, JoinType.LEFT_OUTER_JOIN) .mapValues("concat", new ConcatValuesFn(), Writables.strings()); PTable<Integer, String> ORDER_TABLE = orderTable.mapValues(new CapOrdersFn(), orderTable.getValueType()); PTable<Integer, Pair<String, String>> joined = mapsideJoin.join(custOrders, ORDER_TABLE, JoinType.LEFT_OUTER_JOIN); List<Pair<Integer, Pair<String, String>>> expectedJoinResult = Lists.newArrayList(); expectedJoinResult.add(Pair.of(111, Pair.of("[John Doe,Corn flakes]", "CORN FLAKES"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet paper]", "TOILET PAPER"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet paper]", "TOILET PLUNGER"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet plunger]", "TOILET PAPER"))); expectedJoinResult.add(Pair.of(222, Pair.of("[Jane Doe,Toilet plunger]", "TOILET PLUNGER"))); expectedJoinResult.add(Pair.of(333, Pair.of("[Someone Else,Toilet brush]", "TOILET BRUSH"))); expectedJoinResult.add(Pair.of(444, Pair.<String,String>of("[Has No Orders,null]", null))); Iterable<Pair<Integer, Pair<String, String>>> iter = joined.materialize(); List<Pair<Integer, Pair<String, String>>> joinedResultList = Lists.newArrayList(iter); Collections.sort(joinedResultList); assertEquals(expectedJoinResult, joinedResultList); pipeline.done(); } private PTable<Integer, String> readTable(Pipeline pipeline, String filename) { try { return pipeline.readTextFile(tmpDir.copyResourceFileName(filename)).parallelDo("asTable", new LineSplitter(), Writables.tableOf(Writables.ints(), Writables.strings())); } catch (IOException e) { throw new RuntimeException(e); } } }
2,207
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkUnionResultsIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.Lists; import com.google.common.collect.Sets; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.At; import org.apache.crunch.io.To; import org.apache.crunch.lib.PTables; import org.apache.crunch.test.CrunchTestSupport; import org.apache.crunch.types.writable.Writables; import org.junit.Test; import java.io.IOException; import java.io.Serializable; import java.util.List; import java.util.Set; import static org.junit.Assert.assertEquals; public class SparkUnionResultsIT extends CrunchTestSupport implements Serializable { static class StringLengthMapFn extends MapFn<String, Pair<String, Long>> { @Override public Pair<String, Long> map(String input) { increment("my", "counter"); return new Pair<String, Long>(input, 10L); } } /** * Tests combining a GBK output with a map-only job output into a single * unioned collection. */ @Test public void testUnionOfGroupedOutputAndNonGroupedOutput() throws IOException { String inputPath = tempDir.copyResourceFileName("set1.txt"); String inputPath2 = tempDir.copyResourceFileName("set2.txt"); Pipeline pipeline = new SparkPipeline("local", "unionresults"); PCollection<String> set1Lines = pipeline.read(At.textFile(inputPath, Writables.strings())); PCollection<Pair<String, Long>> set1Lengths = set1Lines.parallelDo(new StringLengthMapFn(), Writables.pairs(Writables.strings(), Writables.longs())); PCollection<Pair<String, Long>> set2Counts = pipeline.read(At.textFile(inputPath2, Writables.strings())).count(); PCollection<Pair<String, Long>> union = set1Lengths.union(set2Counts); Set<Pair<String, Long>> unionValues = Sets.newHashSet(union.materialize()); assertEquals(7, unionValues.size()); Set<Pair<String, Long>> expectedPairs = Sets.newHashSet(); expectedPairs.add(Pair.of("b", 10L)); expectedPairs.add(Pair.of("c", 10L)); expectedPairs.add(Pair.of("a", 10L)); expectedPairs.add(Pair.of("e", 10L)); expectedPairs.add(Pair.of("a", 1L)); expectedPairs.add(Pair.of("c", 1L)); expectedPairs.add(Pair.of("d", 1L)); assertEquals(expectedPairs, unionValues); pipeline.done(); } @Test public void testMultiGroupBy() throws Exception { String inputPath = tempDir.copyResourceFileName("set1.txt"); String inputPath2 = tempDir.copyResourceFileName("set2.txt"); String output = tempDir.getFileName("output"); Pipeline pipeline = new SparkPipeline("local", "multigroupby"); PCollection<String> set1Lines = pipeline.read(At.textFile(inputPath, Writables.strings())); PCollection<Pair<String, Long>> set1Lengths = set1Lines.parallelDo(new StringLengthMapFn(), Writables.pairs(Writables.strings(), Writables.longs())); PTable<String, Long> set2Counts = pipeline.read(At.textFile(inputPath2, Writables.strings())).count(); PTables.asPTable(set2Counts.union(set1Lengths)).groupByKey().ungroup() .write(At.sequenceFile(output, Writables.strings(), Writables.longs())); PipelineResult res = pipeline.done(); assertEquals(4, res.getStageResults().get(0).getCounterValue("my", "counter")); } @Test public void testMultiWrite() throws Exception { String inputPath = tempDir.copyResourceFileName("set1.txt"); String inputPath2 = tempDir.copyResourceFileName("set2.txt"); String output = tempDir.getFileName("output"); Pipeline pipeline = new SparkPipeline("local", "multiwrite"); PCollection<String> set1Lines = pipeline.read(At.textFile(inputPath, Writables.strings())); PTable<String, Long> set1Lengths = set1Lines.parallelDo(new StringLengthMapFn(), Writables.tableOf(Writables.strings(), Writables.longs())); PTable<String, Long> set2Counts = pipeline.read(At.textFile(inputPath2, Writables.strings())).count(); TableSourceTarget<String, Long> inter = At.sequenceFile(output, Writables.strings(), Writables.longs()); set1Lengths.write(inter); set2Counts.write(inter, Target.WriteMode.APPEND); pipeline.run(); PTable<String, Long> in = pipeline.read(inter); Set<Pair<String, Long>> values = Sets.newHashSet(in.materialize()); assertEquals(7, values.size()); Set<Pair<String, Long>> expectedPairs = Sets.newHashSet(); expectedPairs.add(Pair.of("b", 10L)); expectedPairs.add(Pair.of("c", 10L)); expectedPairs.add(Pair.of("a", 10L)); expectedPairs.add(Pair.of("e", 10L)); expectedPairs.add(Pair.of("a", 1L)); expectedPairs.add(Pair.of("c", 1L)); expectedPairs.add(Pair.of("d", 1L)); assertEquals(expectedPairs, values); pipeline.done(); } }
2,208
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkCogroupIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import static org.hamcrest.Matchers.is; import static org.junit.Assert.assertThat; import com.google.common.collect.ImmutableMap; import com.google.common.collect.ImmutableSet; import com.google.common.collect.Maps; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.lib.Cogroup; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.test.Tests; import org.apache.crunch.types.PTableType; import org.apache.crunch.types.PTypeFamily; import org.apache.crunch.types.avro.AvroTypeFamily; import org.apache.crunch.types.writable.WritableTypeFamily; import org.junit.After; import org.junit.Before; import org.junit.Rule; import org.junit.Test; import java.io.IOException; import java.util.Collection; import java.util.Map; public class SparkCogroupIT { @Rule public TemporaryPath tmpDir = new TemporaryPath(); private SparkPipeline pipeline; private PCollection<String> lines1; private PCollection<String> lines2; private PCollection<String> lines3; private PCollection<String> lines4; @Before public void setUp() throws IOException { pipeline = new SparkPipeline("local", "wordcount"); lines1 = pipeline.readTextFile(tmpDir.copyResourceFileName(Tests.resource(this, "src1.txt"))); lines2 = pipeline.readTextFile(tmpDir.copyResourceFileName(Tests.resource(this, "src2.txt"))); lines3 = pipeline.readTextFile(tmpDir.copyResourceFileName(Tests.resource(this, "src1.txt"))); lines4 = pipeline.readTextFile(tmpDir.copyResourceFileName(Tests.resource(this, "src2.txt"))); } @After public void tearDown() { pipeline.done(); } @Test public void testCogroupWritables() { runCogroup(WritableTypeFamily.getInstance()); } @Test public void testCogroupAvro() { runCogroup(AvroTypeFamily.getInstance()); } @Test public void testCogroup3Writables() { runCogroup3(WritableTypeFamily.getInstance()); } @Test public void testCogroup3Avro() { runCogroup3(AvroTypeFamily.getInstance()); } @Test public void testCogroup4Writables() { runCogroup4(WritableTypeFamily.getInstance()); } @Test public void testCogroup4Avro() { runCogroup4(AvroTypeFamily.getInstance()); } public void runCogroup(PTypeFamily ptf) { PTableType<String, String> tt = ptf.tableOf(ptf.strings(), ptf.strings()); PTable<String, String> kv1 = lines1.parallelDo("kv1", new KeyValueSplit(), tt); PTable<String, String> kv2 = lines2.parallelDo("kv2", new KeyValueSplit(), tt); PTable<String, Pair<Collection<String>, Collection<String>>> cg = Cogroup.cogroup(kv1, kv2); Map<String, Pair<Collection<String>, Collection<String>>> result = cg.materializeToMap(); Map<String, Pair<Collection<String>, Collection<String>>> actual = Maps.newHashMap(); for (Map.Entry<String, Pair<Collection<String>, Collection<String>>> e : result.entrySet()) { Collection<String> one = ImmutableSet.copyOf(e.getValue().first()); Collection<String> two = ImmutableSet.copyOf(e.getValue().second()); actual.put(e.getKey(), Pair.of(one, two)); } Map<String, Pair<Collection<String>, Collection<String>>> expected = ImmutableMap.of( "a", Pair.of(coll("1-1", "1-4"), coll()), "b", Pair.of(coll("1-2"), coll("2-1")), "c", Pair.of(coll("1-3"), coll("2-2", "2-3")), "d", Pair.of(coll(), coll("2-4")) ); assertThat(actual, is(expected)); } public void runCogroup3(PTypeFamily ptf) { PTableType<String, String> tt = ptf.tableOf(ptf.strings(), ptf.strings()); PTable<String, String> kv1 = lines1.parallelDo("kv1", new KeyValueSplit(), tt); PTable<String, String> kv2 = lines2.parallelDo("kv2", new KeyValueSplit(), tt); PTable<String, String> kv3 = lines3.parallelDo("kv3", new KeyValueSplit(), tt); PTable<String, Tuple3.Collect<String, String, String>> cg = Cogroup.cogroup(kv1, kv2, kv3); Map<String, Tuple3.Collect<String, String, String>> result = cg.materializeToMap(); Map<String, Tuple3.Collect<String, String, String>> actual = Maps.newHashMap(); for (Map.Entry<String, Tuple3.Collect<String, String, String>> e : result.entrySet()) { Collection<String> one = ImmutableSet.copyOf(e.getValue().first()); Collection<String> two = ImmutableSet.copyOf(e.getValue().second()); Collection<String> three = ImmutableSet.copyOf(e.getValue().third()); actual.put(e.getKey(), new Tuple3.Collect<String, String, String>(one, two, three)); } Map<String, Tuple3.Collect<String, String, String>> expected = ImmutableMap.of( "a", new Tuple3.Collect<String, String, String>(coll("1-1", "1-4"), coll(), coll("1-1", "1-4")), "b", new Tuple3.Collect<String, String, String>(coll("1-2"), coll("2-1"), coll("1-2")), "c", new Tuple3.Collect<String, String, String>(coll("1-3"), coll("2-2", "2-3"), coll("1-3")), "d", new Tuple3.Collect<String, String, String>(coll(), coll("2-4"), coll()) ); assertThat(actual, is(expected)); } public void runCogroup4(PTypeFamily ptf) { PTableType<String, String> tt = ptf.tableOf(ptf.strings(), ptf.strings()); PTable<String, String> kv1 = lines1.parallelDo("kv1", new KeyValueSplit(), tt); PTable<String, String> kv2 = lines2.parallelDo("kv2", new KeyValueSplit(), tt); PTable<String, String> kv3 = lines3.parallelDo("kv3", new KeyValueSplit(), tt); PTable<String, String> kv4 = lines4.parallelDo("kv4", new KeyValueSplit(), tt); PTable<String, Tuple4.Collect<String, String, String, String>> cg = Cogroup.cogroup(kv1, kv2, kv3, kv4); Map<String, Tuple4.Collect<String, String, String, String>> result = cg.materializeToMap(); Map<String, Tuple4.Collect<String, String, String, String>> actual = Maps.newHashMap(); for (Map.Entry<String, Tuple4.Collect<String, String, String, String>> e : result.entrySet()) { Collection<String> one = ImmutableSet.copyOf(e.getValue().first()); Collection<String> two = ImmutableSet.copyOf(e.getValue().second()); Collection<String> three = ImmutableSet.copyOf(e.getValue().third()); Collection<String> four = ImmutableSet.copyOf(e.getValue().fourth()); actual.put(e.getKey(), new Tuple4.Collect<String, String, String, String>(one, two, three, four)); } Map<String, Tuple4.Collect<String, String, String, String>> expected = ImmutableMap.of( "a", new Tuple4.Collect<String, String, String, String>(coll("1-1", "1-4"), coll(), coll("1-1", "1-4"), coll()), "b", new Tuple4.Collect<String, String, String, String>(coll("1-2"), coll("2-1"), coll("1-2"), coll("2-1")), "c", new Tuple4.Collect<String, String, String, String>(coll("1-3"), coll("2-2", "2-3"), coll("1-3"), coll("2-2", "2-3")), "d", new Tuple4.Collect<String, String, String, String>(coll(), coll("2-4"), coll(), coll("2-4")) ); assertThat(actual, is(expected)); } private static class KeyValueSplit extends DoFn<String, Pair<String, String>> { @Override public void process(String input, Emitter<Pair<String, String>> emitter) { String[] fields = input.split(","); emitter.emit(Pair.of(fields[0], fields[1])); } } private static Collection<String> coll(String... values) { return ImmutableSet.copyOf(values); } }
2,209
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkTfidfIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import static org.junit.Assert.assertTrue; import java.io.File; import java.io.IOException; import java.io.Serializable; import java.nio.charset.Charset; import java.util.Collection; import java.util.List; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.seq.SeqFileSourceTarget; import org.apache.crunch.lib.Aggregate; import org.apache.crunch.lib.Join; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.PTypeFamily; import org.apache.crunch.types.writable.WritableTypeFamily; import org.apache.hadoop.fs.Path; import org.junit.Before; import org.junit.Rule; import org.junit.Test; import com.google.common.collect.Lists; import com.google.common.io.Files; @SuppressWarnings("serial") public class SparkTfidfIT implements Serializable { @Rule public transient TemporaryPath tmpDir = new TemporaryPath(); // total number of documents, should calculate protected static final double N = 2; private transient Pipeline pipeline; @Before public void setUp() throws Exception { pipeline = new SparkPipeline("local", "tfidf"); } @Test public void testWritablesSingleRun() throws IOException { run(pipeline, WritableTypeFamily.getInstance(), true); } @Test public void testWritablesMultiRun() throws IOException { run(pipeline, WritableTypeFamily.getInstance(), false); } /** * This method should generate a TF-IDF score for the input. */ public PTable<String, Collection<Pair<String, Double>>> generateTFIDF(PCollection<String> docs, Path termFreqPath, PTypeFamily ptf) throws IOException { /* * Input: String Input title text * * Output: PTable<Pair<String, String>, Long> Pair<Pair<word, title>, count * in title> */ PTable<Pair<String, String>, Long> tf = Aggregate.count(docs.parallelDo("term document frequency", new DoFn<String, Pair<String, String>>() { @Override public void process(String doc, Emitter<Pair<String, String>> emitter) { String[] kv = doc.split("\t"); String title = kv[0]; String text = kv[1]; for (String word : text.split("\\W+")) { if (word.length() > 0) { Pair<String, String> pair = Pair.of(word.toLowerCase(), title); emitter.emit(pair); } } } }, ptf.pairs(ptf.strings(), ptf.strings()))); tf.write(new SeqFileSourceTarget<Pair<Pair<String, String>, Long>>(termFreqPath, tf.getPType())); /* * Input: Pair<Pair<String, String>, Long> Pair<Pair<word, title>, count in * title> * * Output: PTable<String, Long> PTable<word, # of docs containing word> */ PTable<String, Long> n = Aggregate.count(tf.parallelDo("little n (# of docs contain word)", new DoFn<Pair<Pair<String, String>, Long>, String>() { @Override public void process(Pair<Pair<String, String>, Long> input, Emitter<String> emitter) { emitter.emit(input.first().first()); } }, ptf.strings())); /* * Input: Pair<Pair<String, String>, Long> Pair<Pair<word, title>, count in * title> * * Output: PTable<String, Pair<String, Long>> PTable<word, Pair<title, count * in title>> */ PTable<String, Collection<Pair<String, Long>>> wordDocumentCountPair = tf.parallelDo( "transform wordDocumentPairCount", new DoFn<Pair<Pair<String, String>, Long>, Pair<String, Collection<Pair<String, Long>>>>() { Collection<Pair<String, Long>> buffer; String key; @Override public void process(Pair<Pair<String, String>, Long> input, Emitter<Pair<String, Collection<Pair<String, Long>>>> emitter) { Pair<String, String> wordDocumentPair = input.first(); if (!wordDocumentPair.first().equals(key)) { flush(emitter); key = wordDocumentPair.first(); buffer = Lists.newArrayList(); } buffer.add(Pair.of(wordDocumentPair.second(), input.second())); } protected void flush(Emitter<Pair<String, Collection<Pair<String, Long>>>> emitter) { if (buffer != null) { emitter.emit(Pair.of(key, buffer)); buffer = null; } } @Override public void cleanup(Emitter<Pair<String, Collection<Pair<String, Long>>>> emitter) { flush(emitter); } }, ptf.tableOf(ptf.strings(), ptf.collections(ptf.pairs(ptf.strings(), ptf.longs())))); PTable<String, Pair<Long, Collection<Pair<String, Long>>>> joinedResults = Join.join(n, wordDocumentCountPair); /* * Input: Pair<String, Pair<Long, Collection<Pair<String, Long>>> Pair<word, * Pair<# of docs containing word, Collection<Pair<title, term frequency>>> * * Output: Pair<String, Collection<Pair<String, Double>>> Pair<word, * Collection<Pair<title, tfidf>>> */ return joinedResults .mapValues( new MapFn<Pair<Long, Collection<Pair<String, Long>>>, Collection<Pair<String, Double>>>() { @Override public Collection<Pair<String, Double>> map( Pair<Long, Collection<Pair<String, Long>>> input) { Collection<Pair<String, Double>> tfidfs = Lists.newArrayList(); double n = input.first(); double idf = Math.log(N / n); for (Pair<String, Long> tf : input.second()) { double tfidf = tf.second() * idf; tfidfs.add(Pair.of(tf.first(), tfidf)); } return tfidfs; } }, ptf.collections(ptf.pairs(ptf.strings(), ptf.doubles()))); } public void run(Pipeline pipeline, PTypeFamily typeFamily, boolean singleRun) throws IOException { String inputFile = tmpDir.copyResourceFileName("docs.txt"); String outputPath1 = tmpDir.getFileName("output1"); String outputPath2 = tmpDir.getFileName("output2"); Path tfPath = tmpDir.getPath("termfreq"); PCollection<String> docs = pipeline.readTextFile(inputFile); PTable<String, Collection<Pair<String, Double>>> results = generateTFIDF(docs, tfPath, typeFamily); pipeline.writeTextFile(results, outputPath1); if (!singleRun) { pipeline.run(); } PTable<String, Collection<Pair<String, Double>>> uppercased = results.mapKeys( new MapFn<String, String>() { @Override public String map(String k1) { return k1.toUpperCase(); } }, results.getKeyType()); pipeline.writeTextFile(uppercased, outputPath2); pipeline.done(); // Check the lowercase version... File outputFile = new File(outputPath1, "part-r-00000"); List<String> lines = Files.readLines(outputFile, Charset.defaultCharset()); boolean passed = false; for (String line : lines) { if (line.startsWith("[the") && line.contains("B,0.6931471805599453")) { passed = true; break; } } assertTrue(passed); // ...and the uppercase version outputFile = new File(outputPath2, "part-r-00000"); lines = Files.readLines(outputFile, Charset.defaultCharset()); passed = false; for (String line : lines) { if (line.startsWith("[THE") && line.contains("B,0.6931471805599453")) { passed = true; break; } } assertTrue(passed); } }
2,210
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkPageRankIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.ImmutableList; import com.google.common.collect.Iterables; import com.google.common.collect.Lists; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.lib.Aggregate; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.PType; import org.apache.crunch.types.PTypeFamily; import org.apache.crunch.types.PTypes; import org.apache.crunch.types.avro.AvroTypeFamily; import org.apache.crunch.types.avro.Avros; import org.apache.crunch.types.writable.WritableTypeFamily; import org.junit.Before; import org.junit.Rule; import org.junit.Test; import java.util.Collection; import java.util.List; import static org.junit.Assert.assertEquals; public class SparkPageRankIT { private static List<String> URLS = ImmutableList.of( "www.A.com www.B.com", "www.A.com www.C.com", "www.A.com www.D.com", "www.A.com www.E.com", "www.B.com www.D.com", "www.B.com www.E.com", "www.C.com www.D.com", "www.D.com www.B.com", "www.E.com www.A.com", "www.F.com www.B.com", "www.F.com www.C.com"); public static class PageRankData { public float score; public float lastScore; public List<String> urls; public PageRankData() { } public PageRankData(float score, float lastScore, Iterable<String> urls) { this.score = score; this.lastScore = lastScore; this.urls = Lists.newArrayList(urls); } public PageRankData next(float newScore) { return new PageRankData(newScore, score, urls); } public float propagatedScore() { return score / urls.size(); } @Override public String toString() { return score + " " + lastScore + " " + urls; } } @Rule public TemporaryPath tmpDir = new TemporaryPath(); private Pipeline pipeline; @Before public void setUp() throws Exception { pipeline = new SparkPipeline("local", "pagerank"); } @Test public void testAvroReflects() throws Exception { PTypeFamily tf = AvroTypeFamily.getInstance(); PType<PageRankData> prType = Avros.reflects(PageRankData.class); run(pipeline, prType, tf); pipeline.done(); } @Test public void testWritablesJSON() throws Exception { PTypeFamily tf = WritableTypeFamily.getInstance(); PType<PageRankData> prType = PTypes.jsonString(PageRankData.class, tf); run(pipeline, prType, tf); pipeline.done(); } public static PTable<String, PageRankData> pageRank(PTable<String, PageRankData> input, final float d) { PTypeFamily ptf = input.getTypeFamily(); PTable<String, Float> outbound = input.parallelDo(new DoFn<Pair<String, PageRankData>, Pair<String, Float>>() { @Override public void process(Pair<String, PageRankData> input, Emitter<Pair<String, Float>> emitter) { PageRankData prd = input.second(); for (String link : prd.urls) { emitter.emit(Pair.of(link, prd.propagatedScore())); } } }, ptf.tableOf(ptf.strings(), ptf.floats())); return input.cogroup(outbound).mapValues( new MapFn<Pair<Collection<PageRankData>, Collection<Float>>, PageRankData>() { @Override public PageRankData map(Pair<Collection<PageRankData>, Collection<Float>> input) { PageRankData prd = Iterables.getOnlyElement(input.first()); Collection<Float> propagatedScores = input.second(); float sum = 0.0f; for (Float s : propagatedScores) { sum += s; } return prd.next(d + (1.0f - d) * sum); } }, input.getValueType()); } public static void run(Pipeline pipeline, PType<PageRankData> prType, PTypeFamily ptf) throws Exception { PTable<String, PageRankData> scores = pipeline.create(URLS, ptf.strings()) .parallelDo(new MapFn<String, Pair<String, String>>() { @Override public Pair<String, String> map(String input) { String[] urls = input.split("\\s+"); return Pair.of(urls[0], urls[1]); } }, ptf.tableOf(ptf.strings(), ptf.strings())).groupByKey() .mapValues(new MapFn<Iterable<String>, PageRankData>() { @Override public PageRankData map(Iterable<String> input) { return new PageRankData(1.0f, 0.0f, input); } }, prType); Float delta = 1.0f; while (delta > 0.01) { scores = pageRank(scores, 0.5f).cache(); delta = Aggregate.max(scores.parallelDo(new MapFn<Pair<String, PageRankData>, Float>() { @Override public Float map(Pair<String, PageRankData> input) { PageRankData prd = input.second(); return Math.abs(prd.score - prd.lastScore); } }, ptf.floats())).getValue(); } assertEquals(0.0048, delta, 0.001); pipeline.done(); } }
2,211
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkHFileTargetIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableMap; import com.google.common.collect.Lists; import com.google.common.io.Resources; import org.apache.commons.io.IOUtils; import org.apache.crunch.fn.FilterFns; import org.apache.crunch.impl.mr.run.RuntimeParameters; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.At; import org.apache.crunch.io.hbase.HBaseTypes; import org.apache.crunch.io.hbase.HFileUtils; import org.apache.crunch.io.hbase.ToHBase; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.writable.Writables; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.CellComparatorImpl; import org.apache.hadoop.hbase.CellUtil; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HBaseTestingUtility; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.KeyValueUtil; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.Tag; import org.apache.hadoop.hbase.client.Admin; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.Get; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.RegionLocator; import org.apache.hadoop.hbase.client.Table; import org.apache.hadoop.hbase.io.encoding.DataBlockEncoding; import org.apache.hadoop.hbase.io.hfile.CacheConfig; import org.apache.hadoop.hbase.io.hfile.HFile; import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles; import org.apache.hadoop.hbase.regionserver.KeyValueHeap; import org.apache.hadoop.hbase.regionserver.KeyValueScanner; import org.apache.hadoop.hbase.regionserver.StoreFileReader; import org.apache.hadoop.hbase.regionserver.StoreFileScanner; import org.apache.hadoop.hbase.util.Bytes; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Rule; import org.junit.Test; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.Serializable; import java.nio.charset.Charset; import java.util.List; import java.util.Map; import java.util.Random; import java.util.concurrent.atomic.AtomicInteger; import static org.apache.crunch.types.writable.Writables.nulls; import static org.apache.crunch.types.writable.Writables.tableOf; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertNotSame; import static org.junit.Assert.assertTrue; import static org.junit.Assert.fail; public class SparkHFileTargetIT implements Serializable { private static HBaseTestingUtility HBASE_TEST_UTILITY; private static final byte[] TEST_FAMILY = Bytes.toBytes("test_family"); private static final byte[] TEST_QUALIFIER = Bytes.toBytes("count"); private static final Path TEMP_DIR = new Path("/tmp"); private static final Random RANDOM = new Random(); private static final FilterFn<String> SHORT_WORD_FILTER = new FilterFn<String>() { @Override public boolean accept(String input) { return input.length() <= 2; } }; @Rule public transient TemporaryPath tmpDir = new TemporaryPath(RuntimeParameters.TMP_DIR, "hadoop.tmp.dir"); @BeforeClass public static void setUpClass() throws Exception { // We have to use mini mapreduce cluster, because LocalJobRunner allows only a single reducer // (we will need it to test bulk load against multiple regions). Configuration conf = HBaseConfiguration.create(); // Workaround for HBASE-5711, we need to set config value dfs.datanode.data.dir.perm // equal to the permissions of the temp dirs on the filesystem. These temp dirs were // probably created using this process' umask. So we guess the temp dir permissions as // 0777 & ~umask, and use that to set the config value. Process process = Runtime.getRuntime().exec("/bin/sh -c umask"); BufferedReader br = new BufferedReader(new InputStreamReader(process.getInputStream(), Charset.forName("UTF-8"))); int rc = process.waitFor(); if(rc == 0) { String umask = br.readLine(); int umaskBits = Integer.parseInt(umask, 8); int permBits = 0777 & ~umaskBits; String perms = Integer.toString(permBits, 8); conf.set("dfs.datanode.data.dir.perm", perms); } HBASE_TEST_UTILITY = new HBaseTestingUtility(conf); HBASE_TEST_UTILITY.startMiniCluster(1); } private static Table createTable(int splits) throws Exception { HColumnDescriptor hcol = new HColumnDescriptor(TEST_FAMILY); return createTable(splits, hcol); } private static Table createTable(int splits, HColumnDescriptor... hcols) throws Exception { TableName tableName = TableName.valueOf(Bytes.toBytes("test_table_" + RANDOM.nextInt(1000000000))); HTableDescriptor htable = new HTableDescriptor(tableName); for (HColumnDescriptor hcol : hcols) { htable.addFamily(hcol); } return HBASE_TEST_UTILITY.createTable(htable, Bytes.split(Bytes.toBytes("a"), Bytes.toBytes("z"), splits)); } @AfterClass public static void tearDownClass() throws Exception { HBASE_TEST_UTILITY.shutdownMiniCluster(); } @Before public void setUp() throws IOException { FileSystem fs = HBASE_TEST_UTILITY.getTestFileSystem(); fs.delete(TEMP_DIR, true); } @Test public void testHFileTarget() throws Exception { Pipeline pipeline = new SparkPipeline("local", "hfile", SparkHFileTargetIT.class, HBASE_TEST_UTILITY.getConfiguration()); Path inputPath = copyResourceFileToHDFS("shakes.txt"); Path outputPath = getTempPathOnHDFS("out"); PCollection<String> shakespeare = pipeline.read(At.textFile(inputPath, Writables.strings())); PCollection<String> words = split(shakespeare, "\\s+"); PTable<String, Long> wordCounts = words.count(); pipeline.write(convertToKeyValues(wordCounts), ToHBase.hfile(outputPath)); PipelineResult result = pipeline.run(); assertTrue(result.succeeded()); FileSystem fs = FileSystem.get(HBASE_TEST_UTILITY.getConfiguration()); KeyValue kv = readFromHFiles(fs, outputPath, "and"); assertEquals(375L, Bytes.toLong(CellUtil.cloneValue(kv))); pipeline.done(); } @Test public void testBulkLoad() throws Exception { Pipeline pipeline = new SparkPipeline("local", "hfile", SparkHFileTargetIT.class, HBASE_TEST_UTILITY.getConfiguration()); Path inputPath = copyResourceFileToHDFS("shakes.txt"); Path outputPath = getTempPathOnHDFS("out"); byte[] columnFamilyA = Bytes.toBytes("colfamA"); byte[] columnFamilyB = Bytes.toBytes("colfamB"); Admin admin = HBASE_TEST_UTILITY.getAdmin(); Table testTable = createTable(26, new HColumnDescriptor(columnFamilyA), new HColumnDescriptor(columnFamilyB)); Connection connection = admin.getConnection(); RegionLocator regionLocator = connection.getRegionLocator(testTable.getName()); PCollection<String> shakespeare = pipeline.read(At.textFile(inputPath, Writables.strings())); PCollection<String> words = split(shakespeare, "\\s+"); PTable<String,Long> wordCounts = words.count(); PCollection<Put> wordCountPuts = convertToPuts(wordCounts, columnFamilyA, columnFamilyB); HFileUtils.writePutsToHFilesForIncrementalLoad( wordCountPuts, admin.getConnection(), testTable.getName(), outputPath); PipelineResult result = pipeline.run(); assertTrue(result.succeeded()); new LoadIncrementalHFiles(HBASE_TEST_UTILITY.getConfiguration()) .doBulkLoad(outputPath, admin, testTable, regionLocator); Map<String, Long> EXPECTED = ImmutableMap.<String, Long>builder() .put("__EMPTY__", 1345L) .put("the", 528L) .put("and", 375L) .put("I", 314L) .put("of", 314L) .build(); for (Map.Entry<String, Long> e : EXPECTED.entrySet()) { assertEquals((long) e.getValue(), getWordCountFromTable(testTable, columnFamilyA, e.getKey())); assertEquals((long) e.getValue(), getWordCountFromTable(testTable, columnFamilyB, e.getKey())); } pipeline.done(); } /** See CRUNCH-251 */ @Test public void testMultipleHFileTargets() throws Exception { Pipeline pipeline = new SparkPipeline("local", "hfile", SparkHFileTargetIT.class, HBASE_TEST_UTILITY.getConfiguration()); Path inputPath = copyResourceFileToHDFS("shakes.txt"); Path outputPath1 = getTempPathOnHDFS("out1"); Path outputPath2 = getTempPathOnHDFS("out2"); Admin admin = HBASE_TEST_UTILITY.getAdmin(); Table table1 = createTable(26); Table table2 = createTable(26); Connection connection = admin.getConnection(); RegionLocator regionLocator1 = connection.getRegionLocator(table1.getName()); RegionLocator regionLocator2 = connection.getRegionLocator(table2.getName()); LoadIncrementalHFiles loader = new LoadIncrementalHFiles(HBASE_TEST_UTILITY.getConfiguration()); PCollection<String> shakespeare = pipeline.read(At.textFile(inputPath, Writables.strings())); PCollection<String> words = split(shakespeare, "\\s+"); PCollection<String> shortWords = words.filter(SHORT_WORD_FILTER); PCollection<String> longWords = words.filter(FilterFns.not(SHORT_WORD_FILTER)); PTable<String, Long> shortWordCounts = shortWords.count(); PTable<String, Long> longWordCounts = longWords.count(); HFileUtils.writePutsToHFilesForIncrementalLoad( convertToPuts(shortWordCounts), connection, table1.getName(), outputPath1); HFileUtils.writePutsToHFilesForIncrementalLoad( convertToPuts(longWordCounts), connection, table1.getName(), outputPath2); PipelineResult result = pipeline.run(); assertTrue(result.succeeded()); loader.doBulkLoad(outputPath1, admin, table1, regionLocator1); loader.doBulkLoad(outputPath2, admin, table2, regionLocator2); assertEquals(314L, getWordCountFromTable(table1, "of")); assertEquals(375L, getWordCountFromTable(table2, "and")); pipeline.done(); } @Test public void testHFileUsesFamilyConfig() throws Exception { DataBlockEncoding newBlockEncoding = DataBlockEncoding.PREFIX; assertNotSame(newBlockEncoding, DataBlockEncoding.valueOf(HColumnDescriptor.DEFAULT_DATA_BLOCK_ENCODING)); Pipeline pipeline = new SparkPipeline("local", "hfile", SparkHFileTargetIT.class, HBASE_TEST_UTILITY.getConfiguration()); Path inputPath = copyResourceFileToHDFS("shakes.txt"); Path outputPath = getTempPathOnHDFS("out"); Admin admin = HBASE_TEST_UTILITY.getAdmin(); HColumnDescriptor hcol = new HColumnDescriptor(TEST_FAMILY); hcol.setDataBlockEncoding(newBlockEncoding); Table testTable = createTable(26, hcol); Connection connection = admin.getConnection(); PCollection<String> shakespeare = pipeline.read(At.textFile(inputPath, Writables.strings())); PCollection<String> words = split(shakespeare, "\\s+"); PTable<String,Long> wordCounts = words.count(); PCollection<Put> wordCountPuts = convertToPuts(wordCounts); HFileUtils.writePutsToHFilesForIncrementalLoad( wordCountPuts, connection, testTable.getName(), outputPath); PipelineResult result = pipeline.run(); assertTrue(result.succeeded()); int hfilesCount = 0; Configuration conf = HBASE_TEST_UTILITY.getConfiguration(); FileSystem fs = outputPath.getFileSystem(conf); for (FileStatus e : fs.listStatus(new Path(outputPath, Bytes.toString(TEST_FAMILY)))) { Path f = e.getPath(); if (!f.getName().startsWith("part-")) { // filter out "_SUCCESS" continue; } HFile.Reader reader = null; try { reader = HFile.createReader(fs, f, new CacheConfig(conf), true, conf); assertEquals(DataBlockEncoding.PREFIX, reader.getDataBlockEncoding()); } finally { if (reader != null) { reader.close(); } } hfilesCount++; } assertTrue(hfilesCount > 0); pipeline.done(); } private static PCollection<Put> convertToPuts(PTable<String, Long> in) { return convertToPuts(in, TEST_FAMILY); } private static PCollection<Put> convertToPuts(PTable<String, Long> in, final byte[]...columnFamilies) { return in.parallelDo(new MapFn<Pair<String, Long>, Put>() { @Override public Put map(Pair<String, Long> input) { String w = input.first(); if (w.length() == 0) { w = "__EMPTY__"; } long c = input.second(); Put p = new Put(Bytes.toBytes(w)); for (byte[] columnFamily : columnFamilies) { p.addColumn(columnFamily, TEST_QUALIFIER, Bytes.toBytes(c)); } return p; } }, HBaseTypes.puts()); } private static PCollection<KeyValue> convertToKeyValues(PTable<String, Long> in) { return in.parallelDo(new MapFn<Pair<String, Long>, Pair<KeyValue, Void>>() { @Override public Pair<KeyValue, Void> map(Pair<String, Long> input) { String w = input.first(); if (w.length() == 0) { w = "__EMPTY__"; } long c = input.second(); Cell cell = CellUtil.createCell(Bytes.toBytes(w), Bytes.toBytes(c)); return Pair.of(KeyValueUtil.copyToNewKeyValue(cell), null); } }, tableOf(HBaseTypes.keyValues(), nulls())) .groupByKey(GroupingOptions.builder() .sortComparatorClass(HFileUtils.KeyValueComparator.class) .build()) .ungroup() .keys(); } private static PCollection<String> split(PCollection<String> in, final String regex) { return in.parallelDo(new DoFn<String, String>() { @Override public void process(String input, Emitter<String> emitter) { for (String w : input.split(regex)) { emitter.emit(w); } } }, Writables.strings()); } /** Reads the first value on a given row from a bunch of hfiles. */ private static KeyValue readFromHFiles(FileSystem fs, Path mrOutputPath, String row) throws IOException { List<KeyValueScanner> scanners = Lists.newArrayList(); KeyValue fakeKV = KeyValueUtil.createFirstOnRow(Bytes.toBytes(row)); for (FileStatus e : fs.listStatus(mrOutputPath)) { Path f = e.getPath(); if (!f.getName().startsWith("part-")) { // filter out "_SUCCESS" continue; } StoreFileReader reader = new StoreFileReader( fs, f, new CacheConfig(fs.getConf()), true, new AtomicInteger(), false, fs.getConf()); StoreFileScanner scanner = reader.getStoreFileScanner(false, false, false, 0, 0, false); scanner.seek(fakeKV); // have to call seek of each underlying scanner, otherwise KeyValueHeap won't work scanners.add(scanner); } assertTrue(!scanners.isEmpty()); KeyValueScanner kvh = new KeyValueHeap(scanners, CellComparatorImpl.COMPARATOR); boolean seekOk = kvh.seek(fakeKV); assertTrue(seekOk); Cell kv = kvh.next(); kvh.close(); return KeyValueUtil.copyToNewKeyValue(kv); } private static Path copyResourceFileToHDFS(String resourceName) throws IOException { Configuration conf = HBASE_TEST_UTILITY.getConfiguration(); FileSystem fs = FileSystem.get(conf); Path resultPath = getTempPathOnHDFS(resourceName); InputStream in = null; OutputStream out = null; try { in = Resources.getResource(resourceName).openConnection().getInputStream(); out = fs.create(resultPath); IOUtils.copy(in, out); } finally { IOUtils.closeQuietly(in); IOUtils.closeQuietly(out); } return resultPath; } private static Path getTempPathOnHDFS(String fileName) throws IOException { Configuration conf = HBASE_TEST_UTILITY.getConfiguration(); FileSystem fs = FileSystem.get(conf); Path result = new Path(TEMP_DIR, fileName); return result.makeQualified(fs); } private static long getWordCountFromTable(Table table, String word) throws IOException { return getWordCountFromTable(table, TEST_FAMILY, word); } private static long getWordCountFromTable(Table table, byte[] columnFamily, String word) throws IOException { Get get = new Get(Bytes.toBytes(word)); get.addFamily(columnFamily); byte[] value = table.get(get).value(); if (value == null) { fail("no such row: " + word); } return Bytes.toLong(value); } }
2,212
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/CreateIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.ImmutableList; import org.apache.crunch.fn.Aggregators; import org.apache.crunch.impl.mem.MemPipeline; import org.apache.crunch.impl.mr.MRPipeline; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.test.TemporaryPath; import org.apache.crunch.types.PTypeFamily; import org.apache.crunch.types.avro.AvroTypeFamily; import org.apache.crunch.types.writable.WritableTypeFamily; import org.junit.Rule; import org.junit.Test; import java.util.Map; import static org.junit.Assert.assertEquals; public class CreateIT { @Rule public TemporaryPath tmpDir = new TemporaryPath(); @Test public void testMRWritable() throws Exception { run(new MRPipeline(CreateIT.class, tmpDir.getDefaultConfiguration()), WritableTypeFamily.getInstance()); } @Test public void testMRAvro() throws Exception { run(new MRPipeline(CreateIT.class, tmpDir.getDefaultConfiguration()), AvroTypeFamily.getInstance()); } @Test public void testMemWritable() throws Exception { run(MemPipeline.getInstance(), WritableTypeFamily.getInstance()); } @Test public void testMemAvro() throws Exception { run(MemPipeline.getInstance(), AvroTypeFamily.getInstance()); } @Test public void testSparkWritable() throws Exception { run(new SparkPipeline("local", "CreateIT", CreateIT.class, tmpDir.getDefaultConfiguration()), WritableTypeFamily.getInstance()); } @Test public void testSparkAvro() throws Exception { run(new SparkPipeline("local", "CreateIT", CreateIT.class, tmpDir.getDefaultConfiguration()), AvroTypeFamily.getInstance()); } public static void run(Pipeline p, PTypeFamily ptf) { PTable<String, Long> in = p.create( ImmutableList.of( Pair.of("a", 2L), Pair.of("b", 3L), Pair.of("c", 5L), Pair.of("a", 1L), Pair.of("b", 8L), Pair.of("c", 7L)), ptf.tableOf(ptf.strings(), ptf.longs()), CreateOptions.nameAndParallelism("in", 2)); PTable<String, Long> out = in.groupByKey().combineValues(Aggregators.SUM_LONGS()); Map<String, Long> values = out.materializeToMap(); assertEquals(3, values.size()); assertEquals(3L, values.get("a").longValue()); assertEquals(11L, values.get("b").longValue()); assertEquals(12L, values.get("c").longValue()); p.done(); } }
2,213
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkSecondarySortIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.base.Joiner; import com.google.common.collect.ImmutableList; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.io.From; import org.apache.crunch.lib.SecondarySort; import org.apache.crunch.test.CrunchTestSupport; import org.junit.Test; import java.io.Serializable; import static org.apache.crunch.types.avro.Avros.*; import static org.apache.crunch.types.avro.Avros.ints; import static org.apache.crunch.types.avro.Avros.strings; import static org.junit.Assert.assertEquals; public class SparkSecondarySortIT extends CrunchTestSupport implements Serializable { @Test public void testSecondarySort() throws Exception { Pipeline p = new SparkPipeline("local", "secondarysort"); String inputFile = tempDir.copyResourceFileName("secondary_sort_input.txt"); PTable<String, Pair<Integer, Integer>> in = p.read(From.textFile(inputFile)) .parallelDo(new MapFn<String, Pair<String, Pair<Integer, Integer>>>() { @Override public Pair<String, Pair<Integer, Integer>> map(String input) { String[] pieces = input.split(","); return Pair.of(pieces[0], Pair.of(Integer.valueOf(pieces[1].trim()), Integer.valueOf(pieces[2].trim()))); } }, tableOf(strings(), pairs(ints(), ints()))); Iterable<String> lines = SecondarySort.sortAndApply(in, new MapFn<Pair<String, Iterable<Pair<Integer, Integer>>>, String>() { @Override public String map(Pair<String, Iterable<Pair<Integer, Integer>>> input) { Joiner j = Joiner.on(','); return j.join(input.first(), j.join(input.second())); } }, strings()).materialize(); assertEquals(ImmutableList.of("one,[-5,10],[1,1],[2,-3]", "three,[0,-1]", "two,[1,7],[2,6],[4,5]"), ImmutableList.copyOf(lines)); p.done(); } }
2,214
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/SparkPipelineCallableIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch; import com.google.common.collect.ImmutableMap; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.test.CrunchTestSupport; import org.junit.Test; import java.util.Map; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertFalse; public class SparkPipelineCallableIT extends CrunchTestSupport { @Test public void testSparkShakes() throws Exception { run(new SparkPipeline("local", "PC", SparkPipelineCallableIT.class, tempDir.getDefaultConfiguration()), tempDir.copyResourceFileName("shakes.txt"), false /* fail */); } @Test public void testFailure() throws Exception { run(new SparkPipeline("local", "PC", SparkPipelineCallableIT.class, tempDir.getDefaultConfiguration()), tempDir.copyResourceFileName("shakes.txt"), true /* fail */); } public static int INC1 = 0; public static int INC2 = 0; public static void run(Pipeline p, final String input, final boolean fail) { PTable<String, Long> top3 = p.sequentialDo(new PipelineCallable<PCollection<String>>() { @Override public Status call() { INC1 = 17; return fail ? Status.FAILURE : Status.SUCCESS; } @Override public PCollection<String> getOutput(Pipeline pipeline) { return pipeline.readTextFile(input); } }.named("first")) .sequentialDo("onInput", new PipelineCallable<PCollection<String>>() { @Override protected PCollection<String> getOutput(Pipeline pipeline) { return getOnlyPCollection(); } @Override public Status call() throws Exception { return Status.SUCCESS; } }) .count() .sequentialDo("label", new PipelineCallable<PTable<String, Long>>() { @Override public Status call() { INC2 = 29; if (getPCollection("label") != null) { return Status.SUCCESS; } return Status.FAILURE; } @Override public PTable<String, Long> getOutput(Pipeline pipeline) { return (PTable<String, Long>) getOnlyPCollection(); } }.named("second")) .top(3); if (fail) { assertFalse(p.run().succeeded()); } else { Map<String, Long> counts = top3.materializeToMap(); assertEquals(ImmutableMap.of("", 697L, "Enter.", 7L, "Exeunt.", 21L), counts); assertEquals(17, INC1); assertEquals(29, INC2); } p.done(); } }
2,215
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/test/StringWrapper.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.test; import org.apache.crunch.MapFn; /** * Simple String wrapper for testing with Avro reflection. */ public class StringWrapper implements Comparable<StringWrapper> { public static class StringToStringWrapperMapFn extends MapFn<String, StringWrapper> { @Override public StringWrapper map(String input) { return wrap(input); } } public static class StringWrapperToStringMapFn extends MapFn<StringWrapper, String> { @Override public String map(StringWrapper input) { return input.getValue(); } } private String value; public StringWrapper() { this(""); } public StringWrapper(String value) { this.value = value; } @Override public int compareTo(StringWrapper o) { return this.value.compareTo(o.value); } public String getValue() { return value; } public void setValue(String value) { this.value = value; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + ((value == null) ? 0 : value.hashCode()); return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; StringWrapper other = (StringWrapper) obj; if (value == null) { if (other.value != null) return false; } else if (!value.equals(other.value)) return false; return true; } @Override public String toString() { return "StringWrapper [value=" + value + "]"; } public static StringWrapper wrap(String value) { return new StringWrapper(value); } }
2,216
0
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/it/java/org/apache/crunch/test/Tests.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.test; import static com.google.common.base.Preconditions.checkNotNull; public class Tests { /** * This doesn't check whether the resource exists! * * @param testCase * @param resourceName * @return The path to the resource (never null) */ public static String resource(Object testCase, String resourceName) { checkNotNull(testCase); checkNotNull(resourceName); // Note: We append "Data" because otherwise Eclipse would complain about the // the case's class name clashing with the resource directory's name. return testCase.getClass().getName().replaceAll("\\.", "/") + "Data/" + resourceName; } }
2,217
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/ByteArrayHelper.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import com.google.common.primitives.UnsignedBytes; import org.apache.avro.Schema; import org.apache.avro.io.BinaryData; import java.io.Serializable; import java.util.Arrays; public abstract class ByteArrayHelper implements Serializable { public static final ByteArrayHelper WRITABLES = new ByteArrayHelper() { @Override boolean equal(byte[] left, byte[] right) { return Arrays.equals(left, right); } @Override int hashCode(byte[] value) { return value != null ? Arrays.hashCode(value) : 0; } @Override int compare(byte[] left, byte[] right) { return UnsignedBytes.lexicographicalComparator().compare(left, right); } }; public static ByteArrayHelper forAvroSchema(Schema schema) { return new AvroByteArrayHelper(schema); } abstract boolean equal(byte[] left, byte[] right); abstract int hashCode(byte[] value); abstract int compare(byte[] left, byte[] right); static class AvroByteArrayHelper extends ByteArrayHelper { private String jsonSchema; private transient Schema schema; public AvroByteArrayHelper(Schema schema) { this.jsonSchema = schema.toString(); } private Schema getSchema() { if (schema == null) { schema = new Schema.Parser().parse(jsonSchema); } return schema; } @Override boolean equal(byte[] left, byte[] right) { return compare(left, right) == 0; } @Override int hashCode(byte[] value) { return BinaryData.hashCode(value, 0, value.length, getSchema()); } @Override int compare(byte[] left, byte[] right) { return BinaryData.compare(left, 0, right, 0, getSchema()); } } }
2,218
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/SparkPartitioner.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; public class SparkPartitioner extends org.apache.spark.Partitioner { private final int numPartitions; public SparkPartitioner(int numPartitions) { this.numPartitions = numPartitions; } @Override public int numPartitions() { return numPartitions; } @Override public int getPartition(Object key) { return ((IntByteArray) key).partition; } }
2,219
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/SparkRuntimeContext.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import com.google.common.base.Joiner; import com.google.common.base.Objects; import com.google.common.collect.Lists; import com.google.common.collect.Maps; import com.google.common.io.ByteStreams; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.DoFn; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.mapred.SparkCounter; import org.apache.hadoop.mapreduce.Counter; import org.apache.hadoop.mapreduce.JobID; import org.apache.hadoop.mapreduce.StatusReporter; import org.apache.hadoop.mapreduce.TaskAttemptID; import org.apache.hadoop.mapreduce.TaskID; import org.apache.hadoop.mapreduce.TaskInputOutputContext; import org.apache.hadoop.mapreduce.task.MapContextImpl; import org.apache.spark.Accumulator; import org.apache.spark.SparkFiles; import org.apache.spark.broadcast.Broadcast; import java.io.File; import java.io.IOException; import java.io.Serializable; import java.net.URI; import java.util.List; import java.util.Map; public class SparkRuntimeContext implements Serializable { private String jobName; private Broadcast<byte[]> broadConf; private final Accumulator<Map<String, Map<String, Long>>> counters; private transient Configuration conf; private transient TaskInputOutputContext context; private transient Integer lastTID; public SparkRuntimeContext( String jobName, Accumulator<Map<String, Map<String, Long>>> counters, Broadcast<byte[]> broadConf) { this.jobName = jobName; this.counters = counters; this.broadConf = broadConf; } public void setConf(Broadcast<byte[]> broadConf) { this.broadConf = broadConf; this.conf = null; } public void initialize(DoFn<?, ?> fn, Integer tid) { if (context == null || !Objects.equal(lastTID, tid)) { TaskAttemptID attemptID; if (tid != null) { TaskID taskId = new TaskID(new JobID(jobName, 0), false, tid); attemptID = new TaskAttemptID(taskId, 0); lastTID = tid; } else { attemptID = new TaskAttemptID(); lastTID = null; } configureLocalFiles(); context = new MapContextImpl(getConfiguration(), attemptID, null, null, null, new SparkReporter(counters), null); } fn.setContext(context); fn.initialize(); } private void configureLocalFiles() { try { URI[] uris = DistributedCache.getCacheFiles(getConfiguration()); if (uris != null) { List<String> allFiles = Lists.newArrayList(); for (URI uri : uris) { File f = new File(uri.getPath()); allFiles.add(SparkFiles.get(f.getName())); } String sparkFiles = Joiner.on(',').join(allFiles); // Hacking this for Hadoop1 and Hadoop2 getConfiguration().set("mapreduce.job.cache.local.files", sparkFiles); getConfiguration().set("mapred.cache.localFiles", sparkFiles); } } catch (IOException e) { throw new CrunchRuntimeException(e); } } public Configuration getConfiguration() { if (conf == null) { conf = new Configuration(); try { conf.readFields(ByteStreams.newDataInput(broadConf.value())); } catch (Exception e) { throw new RuntimeException("Error reading broadcast configuration", e); } } return conf; } private static class SparkReporter extends StatusReporter implements Serializable { Accumulator<Map<String, Map<String, Long>>> accum; private transient Map<String, Map<String, Counter>> counters; public SparkReporter(Accumulator<Map<String, Map<String, Long>>> accum) { this.accum = accum; this.counters = Maps.newHashMap(); } @Override public Counter getCounter(Enum<?> anEnum) { return getCounter(anEnum.getDeclaringClass().toString(), anEnum.name()); } @Override public Counter getCounter(String group, String name) { Map<String, Counter> grp = counters.get(group); if (grp == null) { grp = Maps.newTreeMap(); counters.put(group, grp); } if (!grp.containsKey(name)) { grp.put(name, new SparkCounter(group, name, accum)); } return grp.get(name); } @Override public void progress() { } @Override public float getProgress() { return 0; } @Override public void setStatus(String s) { } } }
2,220
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/GuavaUtils.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import com.google.common.base.Function; import org.apache.crunch.Pair; import scala.Tuple2; import javax.annotation.Nullable; public class GuavaUtils { public static <K, V> Function<Tuple2<K, V>, Pair<K, V>> tuple2PairFunc() { return new Function<Tuple2<K, V>, Pair<K, V>>() { @Override public Pair<K, V> apply(@Nullable Tuple2<K, V> kv) { return kv == null ? null : Pair.of(kv._1(), kv._2()); } }; } public static <K, V> Function<Pair<K, V>, Tuple2<K, V>> pair2tupleFunc() { return new Function<Pair<K, V>, Tuple2<K, V>>() { @Override public Tuple2<K, V> apply(@Nullable Pair<K, V> kv) { return kv == null ? null : new Tuple2<K, V>(kv.first(), kv.second()); } }; } }
2,221
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/CounterAccumulatorParam.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import com.google.common.collect.Maps; import org.apache.spark.AccumulatorParam; import java.util.Map; public class CounterAccumulatorParam implements AccumulatorParam<Map<String, Map<String, Long>>> { @Override public Map<String, Map<String, Long>> addAccumulator( Map<String, Map<String, Long>> current, Map<String, Map<String, Long>> added) { for (Map.Entry<String, Map<String, Long>> e : added.entrySet()) { Map<String, Long> grp = current.get(e.getKey()); if (grp == null) { grp = Maps.newTreeMap(); current.put(e.getKey(), grp); } for (Map.Entry<String, Long> f : e.getValue().entrySet()) { Long cnt = grp.get(f.getKey()); cnt = (cnt == null) ? f.getValue() : cnt + f.getValue(); grp.put(f.getKey(), cnt); } } return current; } @Override public Map<String, Map<String, Long>> addInPlace( Map<String, Map<String, Long>> first, Map<String, Map<String, Long>> second) { return addAccumulator(first, second); } @Override public Map<String, Map<String, Long>> zero(Map<String, Map<String, Long>> counts) { return Maps.newHashMap(); } }
2,222
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/SparkComparator.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import org.apache.avro.mapred.AvroKeyComparator; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.GroupingOptions; import org.apache.crunch.types.PGroupedTableType; import org.apache.crunch.types.avro.AvroTypeFamily; import org.apache.crunch.types.writable.WritableType; import org.apache.hadoop.io.ByteWritable; import org.apache.hadoop.io.RawComparator; import org.apache.hadoop.io.WritableComparator; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.util.ReflectionUtils; import java.io.IOException; import java.io.Serializable; import java.util.Comparator; public class SparkComparator implements Comparator<ByteArray>, Serializable { private final Class<? extends RawComparator> cmpClass; private final GroupingOptions options; private final PGroupedTableType ptype; private final SparkRuntimeContext ctxt; private transient RawComparator<?> cmp; public SparkComparator(GroupingOptions options, PGroupedTableType ptype, SparkRuntimeContext ctxt) { if (options.getSortComparatorClass() != null) { this.cmpClass = options.getSortComparatorClass(); } else if (AvroTypeFamily.getInstance().equals(ptype.getFamily())) { this.cmpClass = AvroKeyComparator.class; } else { this.cmpClass = null; } this.options = options; this.ptype = ptype; this.ctxt = ctxt; } @Override public int compare(ByteArray s1, ByteArray s2) { byte[] b1 = s1.value; byte[] b2 = s2.value; return rawComparator().compare(b1, 0, b1.length, b2, 0, b2.length); } private RawComparator<?> rawComparator() { if (cmp == null) { try { ptype.initialize(ctxt.getConfiguration()); Job job = new Job(ctxt.getConfiguration()); ptype.configureShuffle(job, options); if (cmpClass != null) { cmp = ReflectionUtils.newInstance(cmpClass, job.getConfiguration()); } else { cmp = WritableComparator.get(((WritableType) ptype.getTableType().getKeyType()).getSerializationClass()); if (cmp == null) { cmp = new ByteWritable.Comparator(); } } } catch (IOException e) { throw new CrunchRuntimeException("Error configuring sort comparator", e); } } return cmp; } }
2,223
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/SparkCollection.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import org.apache.spark.api.java.JavaRDDLike; public interface SparkCollection { JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime); }
2,224
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/SparkPipeline.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import com.google.common.base.Preconditions; import com.google.common.collect.Maps; import org.apache.crunch.CachingOptions; import org.apache.crunch.CreateOptions; import org.apache.crunch.PCollection; import org.apache.crunch.PTable; import org.apache.crunch.Pair; import org.apache.crunch.PipelineExecution; import org.apache.crunch.PipelineResult; import org.apache.crunch.impl.dist.DistributedPipeline; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.spark.collect.CreatedCollection; import org.apache.crunch.impl.spark.collect.CreatedTable; import org.apache.crunch.impl.spark.collect.EmptyPCollection; import org.apache.crunch.impl.spark.collect.EmptyPTable; import org.apache.crunch.impl.spark.collect.SparkCollectFactory; import org.apache.crunch.io.ReadableSource; import org.apache.crunch.materialize.MaterializableIterable; import org.apache.crunch.types.PTableType; import org.apache.crunch.types.PType; import org.apache.hadoop.conf.Configuration; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.storage.StorageLevel; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.Map; public class SparkPipeline extends DistributedPipeline { private static final Logger LOG = LoggerFactory.getLogger(SparkPipeline.class); private final String sparkConnect; private JavaSparkContext sparkContext; private Class<?> jarClass; private final Map<PCollection<?>, StorageLevel> cachedCollections = Maps.newHashMap(); public SparkPipeline(String sparkConnect, String appName) { this(sparkConnect, appName, null); } public SparkPipeline(String sparkConnect, String appName, Class<?> jarClass) { this(sparkConnect, appName, jarClass, new Configuration()); } public SparkPipeline(String sparkConnect, String appName, Class<?> jarClass, Configuration conf) { super(appName, conf, new SparkCollectFactory()); this.sparkConnect = Preconditions.checkNotNull(sparkConnect); this.jarClass = jarClass; } public SparkPipeline(JavaSparkContext sparkContext, String appName) { this(sparkContext, appName, null, sparkContext != null? sparkContext.hadoopConfiguration(): new Configuration()); } public SparkPipeline(JavaSparkContext sparkContext, String appName, Class<?> jarClass, Configuration conf) { super(appName, conf, new SparkCollectFactory()); this.sparkContext = Preconditions.checkNotNull(sparkContext); this.sparkConnect = sparkContext.getSparkHome().orNull(); this.jarClass = jarClass; } @Override public <T> Iterable<T> materialize(PCollection<T> pcollection) { ReadableSource<T> readableSrc = getMaterializeSourceTarget(pcollection); MaterializableIterable<T> c = new MaterializableIterable<T>(this, readableSrc); if (!outputTargetsToMaterialize.containsKey(pcollection)) { outputTargetsToMaterialize.put((PCollectionImpl) pcollection, c); } return c; } @Override public <S> PCollection<S> emptyPCollection(PType<S> ptype) { return new EmptyPCollection<S>(this, ptype); } @Override public <K, V> PTable<K, V> emptyPTable(PTableType<K, V> ptype) { return new EmptyPTable<K, V>(this, ptype); } @Override public <S> PCollection<S> create(Iterable<S> contents, PType<S> ptype, CreateOptions options) { return new CreatedCollection<S>(this, contents, ptype, options); } @Override public <K, V> PTable<K, V> create(Iterable<Pair<K, V>> contents, PTableType<K, V> ptype, CreateOptions options) { return new CreatedTable<K, V>(this, contents, ptype, options); } @Override public <T> void cache(PCollection<T> pcollection, CachingOptions options) { cachedCollections.put(pcollection, toStorageLevel(options)); } private StorageLevel toStorageLevel(CachingOptions options) { return StorageLevel.apply( options.useDisk(), options.useMemory(), options.deserialized(), options.replicas()); } @Override public PipelineResult run() { try { PipelineExecution exec = runAsync(); exec.waitUntilDone(); return exec.getResult(); } catch (Exception e) { LOG.error("Exception running pipeline", e); return PipelineResult.EMPTY; } } @Override public PipelineExecution runAsync() { Map<PCollectionImpl<?>, MaterializableIterable> toMaterialize = Maps.newHashMap(); for (PCollectionImpl<?> c : outputTargets.keySet()) { if (outputTargetsToMaterialize.containsKey(c)) { toMaterialize.put(c, outputTargetsToMaterialize.get(c)); outputTargetsToMaterialize.remove(c); } } Configuration conf = getConfiguration(); if (sparkContext == null) { SparkConf sparkConf = new SparkConf(); for (Map.Entry<String, String> e : conf) { if (e.getKey().startsWith("spark.")) { sparkConf.set(e.getKey(), e.getValue()); } } this.sparkContext = new JavaSparkContext(sparkConnect, getName(), sparkConf); if (jarClass != null) { String[] jars = JavaSparkContext.jarOfClass(jarClass); if (jars != null && jars.length > 0) { for (String jar : jars) { sparkContext.addJar(jar); } } } } copyConfiguration(conf, sparkContext.hadoopConfiguration()); SparkRuntime runtime = new SparkRuntime(this, sparkContext, conf, outputTargets, toMaterialize, cachedCollections, allPipelineCallables); runtime.execute(); outputTargets.clear(); return runtime; } @Override public PipelineResult done() { PipelineResult res = super.done(); if (sparkContext != null) { sparkContext.stop(); sparkContext = null; } return res; } private static void copyConfiguration(Configuration from, Configuration to) { for (Map.Entry<String, String> e : from) { to.set(e.getKey(), e.getValue()); } } }
2,225
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/SparkRuntime.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import com.google.common.collect.ImmutableList; import com.google.common.collect.ImmutableMap; import com.google.common.collect.Lists; import com.google.common.collect.Maps; import com.google.common.collect.Sets; import com.google.common.util.concurrent.AbstractFuture; import com.google.common.util.concurrent.ListeningExecutorService; import com.google.common.util.concurrent.MoreExecutors; import org.apache.crunch.CombineFn; import org.apache.crunch.PCollection; import org.apache.crunch.PipelineCallable; import org.apache.crunch.PipelineExecution; import org.apache.crunch.PipelineResult; import org.apache.crunch.SourceTarget; import org.apache.crunch.Target; import org.apache.crunch.fn.IdentityFn; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.spark.fn.MapFunction; import org.apache.crunch.impl.spark.fn.OutputConverterFunction; import org.apache.crunch.impl.spark.fn.PairMapFunction; import org.apache.crunch.io.CrunchOutputs; import org.apache.crunch.io.MapReduceTarget; import org.apache.crunch.io.PathTarget; import org.apache.crunch.materialize.MaterializableIterable; import org.apache.crunch.types.Converter; import org.apache.crunch.types.PType; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.FileUtil; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.WritableUtils; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapreduce.CounterGroup; import org.apache.hadoop.mapreduce.Counters; import org.apache.hadoop.mapreduce.Job; import org.apache.spark.Accumulator; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.storage.StorageLevel; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; import java.net.URI; import java.util.Comparator; import java.util.List; import java.util.Map; import java.util.Set; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutionException; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; import java.util.concurrent.atomic.AtomicReference; public class SparkRuntime extends AbstractFuture<PipelineResult> implements PipelineExecution { private static final Logger LOG = LoggerFactory.getLogger(SparkRuntime.class); private SparkPipeline pipeline; private JavaSparkContext sparkContext; private Configuration conf; private CombineFn combineFn; private SparkRuntimeContext ctxt; private Accumulator<Map<String, Map<String, Long>>> counters; private Map<PCollectionImpl<?>, Set<Target>> outputTargets; private Map<PCollectionImpl<?>, MaterializableIterable> toMaterialize; private Map<PCollection<?>, StorageLevel> toCache; private Map<PipelineCallable<?>, Set<Target>> allPipelineCallables; private Set<PipelineCallable<?>> activePipelineCallables; private final CountDownLatch doneSignal = new CountDownLatch(1); private AtomicReference<Status> status = new AtomicReference<Status>(Status.READY); private boolean started; private Thread monitorThread; // Note that this is the oppposite of the MR sort static final Comparator<PCollectionImpl<?>> DEPTH_COMPARATOR = new Comparator<PCollectionImpl<?>>() { @Override public int compare(PCollectionImpl<?> left, PCollectionImpl<?> right) { int cmp = left.getDepth() - right.getDepth(); if (cmp == 0) { // Ensure we don't throw away two output collections at the same depth. // Using the collection name would be nicer here, but names aren't // necessarily unique. cmp = new Integer(left.hashCode()).compareTo(right.hashCode()); } return cmp; } }; public SparkRuntime(SparkPipeline pipeline, JavaSparkContext sparkContext, Configuration conf, Map<PCollectionImpl<?>, Set<Target>> outputTargets, Map<PCollectionImpl<?>, MaterializableIterable> toMaterialize, Map<PCollection<?>, StorageLevel> toCache, Map<PipelineCallable<?>, Set<Target>> allPipelineCallables) { this.pipeline = pipeline; this.sparkContext = sparkContext; this.conf = conf; this.counters = sparkContext.accumulator(Maps.<String, Map<String, Long>>newHashMap(), pipeline.getName(), new CounterAccumulatorParam()); this.ctxt = new SparkRuntimeContext(sparkContext.appName(), counters, sparkContext.broadcast(WritableUtils.toByteArray(conf))); this.outputTargets = Maps.newTreeMap(DEPTH_COMPARATOR); this.outputTargets.putAll(outputTargets); this.toMaterialize = toMaterialize; this.toCache = toCache; this.allPipelineCallables = allPipelineCallables; this.activePipelineCallables = allPipelineCallables.keySet(); this.status.set(Status.READY); this.monitorThread = new Thread(new Runnable() { @Override public void run() { monitorLoop(); } }); } public void setCombineFn(CombineFn combineFn) { this.combineFn = combineFn; } public CombineFn getCombineFn() { CombineFn ret = combineFn; this.combineFn = null; return ret; } private void distributeFiles() { try { URI[] uris = DistributedCache.getCacheFiles(conf); if (uris != null) { URI[] outURIs = new URI[uris.length]; for (int i = 0; i < uris.length; i++) { Path path = new Path(uris[i]); FileSystem fs = path.getFileSystem(conf); if (fs.isFile(path)) { outURIs[i] = uris[i]; } else { Path mergePath = new Path(path.getParent(), "sparkreadable-" + path.getName()); FileUtil.copyMerge(fs, path, fs, mergePath, false, conf, ""); outURIs[i] = mergePath.toUri(); } sparkContext.addFile(outURIs[i].toString()); } DistributedCache.setCacheFiles(outURIs, conf); } } catch (IOException e) { throw new RuntimeException("Error retrieving cache files", e); } } public synchronized SparkRuntime execute() { if (!started) { monitorThread.start(); started = true; } return this; } public JavaSparkContext getSparkContext() { return sparkContext; } public SparkRuntimeContext getRuntimeContext() { return ctxt; } public Configuration getConfiguration() { return conf; } public boolean isValid(JavaRDDLike<?, ?> rdd) { return (rdd != null); //TODO: support multi-contexts } public StorageLevel getStorageLevel(PCollection<?> pcollection) { return toCache.get(pcollection); } @Override public String getPlanDotFile() { return ""; } @Override public Map<String, String> getNamedDotFiles() { return ImmutableMap.of("", ""); } @Override public void waitFor(long timeout, TimeUnit timeUnit) throws InterruptedException { doneSignal.await(timeout, timeUnit); } @Override public void waitUntilDone() throws InterruptedException { doneSignal.await(); } private void runCallables(Set<Target> unfinished) { Set<PipelineCallable<?>> oldCallables = activePipelineCallables; activePipelineCallables = Sets.newHashSet(); List<PipelineCallable<?>> callablesToRun = Lists.newArrayList(); List<PipelineCallable<?>> failedCallables = Lists.newArrayList(); for (PipelineCallable<?> pipelineCallable : oldCallables) { if (Sets.intersection(allPipelineCallables.get(pipelineCallable), unfinished).isEmpty()) { if (pipelineCallable.runSingleThreaded()) { try { if (pipelineCallable.call() != PipelineCallable.Status.SUCCESS) { failedCallables.add(pipelineCallable); } } catch (Throwable t) { pipelineCallable.setMessage(t.getLocalizedMessage()); failedCallables.add(pipelineCallable); } } else { callablesToRun.add(pipelineCallable); } } else { // Still need to run this one activePipelineCallables.add(pipelineCallable); } } ListeningExecutorService es = MoreExecutors.listeningDecorator(Executors.newCachedThreadPool()); try { List<Future<PipelineCallable.Status>> res = es.invokeAll(callablesToRun); for (int i = 0; i < res.size(); i++) { if (res.get(i).get() != PipelineCallable.Status.SUCCESS) { failedCallables.add((PipelineCallable) callablesToRun.get(i)); } } } catch (Throwable t) { t.printStackTrace(); failedCallables.addAll((List) callablesToRun); } finally { es.shutdownNow(); } if (!failedCallables.isEmpty()) { LOG.error("{} callable failure(s) occurred:", failedCallables.size()); for (PipelineCallable<?> c : failedCallables) { LOG.error("{} : {}", c.getName(), c.getMessage()); } status.set(Status.FAILED); set(PipelineResult.EMPTY); doneSignal.countDown(); } } private void monitorLoop() { status.set(Status.RUNNING); long start = System.currentTimeMillis(); Map<PCollectionImpl<?>, Set<Target>> targetDeps = Maps.newTreeMap(DEPTH_COMPARATOR); Set<Target> unfinished = Sets.newHashSet(); for (PCollectionImpl<?> pcollect : outputTargets.keySet()) { targetDeps.put(pcollect, pcollect.getTargetDependencies()); unfinished.addAll(outputTargets.get(pcollect)); } runCallables(unfinished); while (!targetDeps.isEmpty() && doneSignal.getCount() > 0) { Set<Target> allTargets = Sets.newHashSet(); for (PCollectionImpl<?> pcollect : targetDeps.keySet()) { allTargets.addAll(outputTargets.get(pcollect)); } Map<PCollectionImpl<?>, JavaRDDLike<?, ?>> pcolToRdd = Maps.newTreeMap(DEPTH_COMPARATOR); for (PCollectionImpl<?> pcollect : targetDeps.keySet()) { if (Sets.intersection(allTargets, targetDeps.get(pcollect)).isEmpty()) { JavaRDDLike<?, ?> rdd = ((SparkCollection) pcollect).getJavaRDDLike(this); pcolToRdd.put(pcollect, rdd); } } distributeFiles(); for (Map.Entry<PCollectionImpl<?>, JavaRDDLike<?, ?>> e : pcolToRdd.entrySet()) { JavaRDDLike<?, ?> rdd = e.getValue(); PType<?> ptype = e.getKey().getPType(); Set<Target> targets = outputTargets.get(e.getKey()); if (targets.size() > 1) { rdd.rdd().cache(); } for (Target t : targets) { Configuration conf = new Configuration(getConfiguration()); getRuntimeContext().setConf(sparkContext.broadcast(WritableUtils.toByteArray(conf))); if (t instanceof MapReduceTarget) { //TODO: check this earlier Converter c = t.getConverter(ptype); IdentityFn ident = IdentityFn.getInstance(); JavaPairRDD<?, ?> outRDD; if (rdd instanceof JavaRDD) { outRDD = ((JavaRDD) rdd) .map(new MapFunction(c.applyPTypeTransforms() ? ptype.getOutputMapFn() : ident, ctxt)) .mapToPair(new OutputConverterFunction(c)); } else { outRDD = ((JavaPairRDD) rdd) .map(new PairMapFunction(c.applyPTypeTransforms() ? ptype.getOutputMapFn() : ident, ctxt)) .mapToPair(new OutputConverterFunction(c)); } try { Job job = new Job(conf); if (t instanceof PathTarget) { PathTarget pt = (PathTarget) t; pt.configureForMapReduce(job, ptype, pt.getPath(), "out0"); CrunchOutputs.OutputConfig outConfig = CrunchOutputs.getNamedOutputs(job.getConfiguration()).get("out0"); job.setOutputFormatClass(outConfig.bundle.getFormatClass()); job.setOutputKeyClass(outConfig.keyClass); job.setOutputValueClass(outConfig.valueClass); outConfig.bundle.configure(job.getConfiguration()); job.getConfiguration().set("crunch.namedoutput", "out0"); Path tmpPath = pipeline.createTempPath(); outRDD.saveAsNewAPIHadoopFile( tmpPath.toString(), c.getKeyClass(), c.getValueClass(), job.getOutputFormatClass(), job.getConfiguration()); pt.handleOutputs(job.getConfiguration(), tmpPath, -1); } else { //if (t instanceof MapReduceTarget) { MapReduceTarget mrt = (MapReduceTarget) t; mrt.configureForMapReduce(job, ptype, pipeline.createTempPath(), "out0"); CrunchOutputs.OutputConfig outConfig = CrunchOutputs.getNamedOutputs(job.getConfiguration()).get("out0"); job.setOutputFormatClass(outConfig.bundle.getFormatClass()); job.setOutputKeyClass(outConfig.keyClass); job.setOutputValueClass(outConfig.valueClass); outRDD.saveAsHadoopDataset(new JobConf(job.getConfiguration())); } } catch (Exception et) { LOG.error("Spark Exception", et); status.set(Status.FAILED); set(PipelineResult.EMPTY); doneSignal.countDown(); } } } unfinished.removeAll(targets); } if (status.get() == Status.RUNNING) { for (PCollectionImpl<?> output : pcolToRdd.keySet()) { if (toMaterialize.containsKey(output)) { MaterializableIterable mi = toMaterialize.get(output); if (mi.isSourceTarget()) { output.materializeAt((SourceTarget) mi.getSource()); } } targetDeps.remove(output); } } runCallables(unfinished); } if (status.get() != Status.FAILED || status.get() != Status.KILLED) { status.set(Status.SUCCEEDED); set(new PipelineResult( ImmutableList.of(new PipelineResult.StageResult("Spark", getCounters(), start, System.currentTimeMillis())), Status.SUCCEEDED)); } else { set(PipelineResult.EMPTY); } doneSignal.countDown(); } private Counters getCounters() { Counters c = new Counters(); Map<String, Map<String, Long>> values = counters.value(); for (Map.Entry<String, Map<String, Long>> e : values.entrySet()) { CounterGroup cg = c.getGroup(e.getKey()); for (Map.Entry<String, Long> f : e.getValue().entrySet()) { cg.findCounter(f.getKey()).setValue(f.getValue()); } } return c; } @Override public PipelineResult get() throws InterruptedException, ExecutionException { if (getStatus() == Status.READY) { execute(); } return super.get(); } @Override public PipelineResult get(long timeout, TimeUnit unit) throws InterruptedException, TimeoutException, ExecutionException { if (getStatus() == Status.READY) { execute(); } return super.get(timeout, unit); } @Override public Status getStatus() { return status.get(); } @Override public PipelineResult getResult() { try { return get(); } catch (Exception e) { LOG.error("Exception retrieving PipelineResult, returning EMPTY", e); return PipelineResult.EMPTY; } } @Override public void kill() throws InterruptedException { if (started) { sparkContext.stop(); set(PipelineResult.EMPTY); } } }
2,226
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/ByteArray.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; import java.io.Serializable; public class ByteArray implements Serializable, Comparable<ByteArray> { public final byte[] value; protected final ByteArrayHelper helper; public ByteArray(byte[] value, ByteArrayHelper helper) { this.value = value; this.helper = helper; } @Override public boolean equals(Object o) { if (o == null || getClass() != o.getClass()) return false; ByteArray byteArray = (ByteArray) o; return helper.equal(value, byteArray.value); } @Override public int hashCode() { return helper.hashCode(value); } @Override public int compareTo(ByteArray other) { return helper.compare(value, other.value); } }
2,227
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/IntByteArray.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark; public class IntByteArray extends ByteArray { public final int partition; public IntByteArray(int partition, ByteArray delegate) { super(delegate.value, delegate.helper); this.partition = partition; } @Override public boolean equals(Object o) { if (o == null || getClass() != o.getClass()) return false; if (!super.equals(o)) return false; IntByteArray that = (IntByteArray) o; if (partition != that.partition) return false; return true; } @Override public int hashCode() { return 31 * super.hashCode() + partition; } }
2,228
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/CreatedCollection.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import com.google.common.collect.ImmutableList; import com.google.common.collect.Iterables; import com.google.common.collect.Lists; import org.apache.crunch.CreateOptions; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.MapFn; import org.apache.crunch.ReadableData; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.crunch.impl.spark.serde.SerDe; import org.apache.crunch.impl.spark.serde.SerDeFactory; import org.apache.crunch.types.PType; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.api.java.function.Function; import org.apache.spark.storage.StorageLevel; import java.io.IOException; import java.util.List; /** * Represents a Spark-based PCollection that was created from a Java {@code Iterable} of * values. */ public class CreatedCollection<T> extends PCollectionImpl<T> implements SparkCollection { private final Iterable<T> contents; private final PType<T> ptype; private final int parallelism; private JavaRDD<T> rdd; public CreatedCollection(SparkPipeline p, Iterable<T> contents, PType<T> ptype, CreateOptions options) { super(options.getName(), p); this.contents = contents; this.ptype = ptype; this.parallelism = options.getParallelism(); } @Override protected void acceptInternal(Visitor visitor) { // No-op } @Override public List<PCollectionImpl<?>> getParents() { return ImmutableList.of(); } @Override protected ReadableData<T> getReadableDataInternal() { try { return ptype.createSourceTarget(getPipeline().getConfiguration(), getPipeline().createTempPath(), contents, parallelism).asReadable(); } catch (IOException e) { throw new CrunchRuntimeException(e); } } @Override protected long getSizeInternal() { return Iterables.size(contents); } @Override public long getLastModifiedAt() { return -1; } @Override public PType<T> getPType() { return ptype; } @Override public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { if (!runtime.isValid(rdd)) { rdd = getJavaRDDLikeInternal(runtime); rdd.rdd().setName(getName()); StorageLevel sl = runtime.getStorageLevel(this); if (sl != null) { rdd.rdd().persist(sl); } } return rdd; } private JavaRDD<T> getJavaRDDLikeInternal(SparkRuntime runtime) { SerDe serde = SerDeFactory.create(ptype, runtime.getConfiguration()); ptype.initialize(runtime.getConfiguration()); List<ByteArray> res = Lists.newLinkedList(); try { for (T value : contents) { res.add(serde.toBytes(ptype.getOutputMapFn().map(value))); } } catch (Exception e) { throw new CrunchRuntimeException(e); } return runtime.getSparkContext() .parallelize(res, parallelism) .map(new MapInputFn<T>(serde, ptype.getInputMapFn(), runtime.getRuntimeContext())); } static class MapInputFn<T> implements Function<ByteArray, T> { private final SerDe serde; private final MapFn<Object, T> fn; private final SparkRuntimeContext context; private boolean initialized; public MapInputFn(SerDe serde, MapFn<Object, T> fn, SparkRuntimeContext context) { this.serde = serde; this.fn = fn; this.context = context; this.initialized = false; } @Override public T call(ByteArray byteArray) throws Exception { if (!initialized) { context.initialize(fn, -1); initialized = true; } return fn.map(serde.fromBytes(byteArray.value)); } } }
2,229
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/DoTable.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.CombineFn; import org.apache.crunch.DoFn; import org.apache.crunch.Pair; import org.apache.crunch.ParallelDoOptions; import org.apache.crunch.impl.dist.collect.BaseDoTable; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.fn.CrunchPairTuple2; import org.apache.crunch.impl.spark.fn.FlatMapIndexFn; import org.apache.crunch.types.PTableType; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.storage.StorageLevel; public class DoTable<K, V> extends BaseDoTable<K, V> implements SparkCollection { private JavaRDDLike<?, ?> rdd; <S> DoTable(String name, PCollectionImpl<S> parent, DoFn<S, Pair<K, V>> fn, PTableType<K, V> ntype, ParallelDoOptions options) { super(name, parent, fn, ntype, options); } <S> DoTable( String name, PCollectionImpl<S> parent, CombineFn<K, V> combineFn, DoFn<S, Pair<K, V>> fn, PTableType<K, V> ntype) { super(name, parent, combineFn, fn, ntype, ParallelDoOptions.builder().build()); } public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { if (!runtime.isValid(rdd)) { rdd = getJavaRDDLikeInternal(runtime); rdd.rdd().setName(getName()); StorageLevel sl = runtime.getStorageLevel(this); if (sl != null) { rdd.rdd().persist(sl); } } return rdd; } private JavaRDDLike<?, ?> getJavaRDDLikeInternal(SparkRuntime runtime) { if (combineFn instanceof CombineFn && getOnlyParent() instanceof PGroupedTableImpl) { runtime.setCombineFn((CombineFn) combineFn); } JavaRDDLike<?, ?> parentRDD = ((SparkCollection) getOnlyParent()).getJavaRDDLike(runtime); fn.configure(runtime.getConfiguration()); return parentRDD .mapPartitionsWithIndex( new FlatMapIndexFn(fn, parentRDD instanceof JavaPairRDD, runtime.getRuntimeContext()), false) .mapPartitionsToPair(new CrunchPairTuple2()); } }
2,230
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/EmptyPTable.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import com.google.common.collect.ImmutableList; import org.apache.crunch.impl.dist.DistributedPipeline; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.types.PTableType; import org.apache.spark.api.java.JavaRDDLike; import scala.Tuple2; public class EmptyPTable<K, V> extends org.apache.crunch.impl.dist.collect.EmptyPTable<K, V> implements SparkCollection { public EmptyPTable(DistributedPipeline pipeline, PTableType<K, V> ptype) { super(pipeline, ptype); } @Override public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { return runtime.getSparkContext().parallelizePairs(ImmutableList.<Tuple2<K, V>>of()); } }
2,231
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/CreatedTable.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import com.google.common.collect.ImmutableList; import com.google.common.collect.Iterables; import com.google.common.collect.Lists; import org.apache.crunch.CreateOptions; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.MapFn; import org.apache.crunch.Pair; import org.apache.crunch.ReadableData; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.dist.collect.PTableBase; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkPipeline; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.crunch.impl.spark.serde.SerDe; import org.apache.crunch.impl.spark.serde.SerDeFactory; import org.apache.crunch.types.PTableType; import org.apache.crunch.types.PType; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.storage.StorageLevel; import scala.Tuple2; import java.io.IOException; import java.util.List; /** * Represents a Spark-based PTable that was created from a Java {@code Iterable} of * key-value pairs. */ public class CreatedTable<K, V> extends PTableBase<K, V> implements SparkCollection { private final Iterable<Pair<K, V>> contents; private final PTableType<K, V> ptype; private final int parallelism; private JavaPairRDD<K, V> rdd; public CreatedTable( SparkPipeline pipeline, Iterable<Pair<K, V>> contents, PTableType<K, V> ptype, CreateOptions options) { super(options.getName(), pipeline); this.contents = contents; this.ptype = ptype; this.parallelism = options.getParallelism(); } @Override protected void acceptInternal(Visitor visitor) { // No-op } @Override public List<PCollectionImpl<?>> getParents() { return ImmutableList.of(); } @Override protected ReadableData<Pair<K, V>> getReadableDataInternal() { try { return ptype.createSourceTarget(pipeline.getConfiguration(), pipeline.createTempPath(), contents, parallelism).asReadable(); } catch (IOException e) { throw new CrunchRuntimeException(e); } } @Override protected long getSizeInternal() { return Iterables.size(contents); } @Override public long getLastModifiedAt() { return -1; } @Override public PTableType<K, V> getPTableType() { return ptype; } @Override public PType<Pair<K, V>> getPType() { return ptype; } @Override public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { if (!runtime.isValid(rdd)) { rdd = getJavaRDDLikeInternal(runtime); rdd.rdd().setName(getName()); StorageLevel sl = runtime.getStorageLevel(this); if (sl != null) { rdd.rdd().persist(sl); } } return rdd; } private JavaPairRDD<K, V> getJavaRDDLikeInternal(SparkRuntime runtime) { ptype.initialize(runtime.getConfiguration()); PType keyType = ptype.getKeyType(); PType valueType = ptype.getValueType(); SerDe keySerde = SerDeFactory.create(keyType, runtime.getConfiguration()); SerDe valueSerde = SerDeFactory.create(valueType, runtime.getConfiguration()); List<Tuple2<ByteArray, ByteArray>> res = Lists.newLinkedList(); try { for (Pair<K, V> p : contents) { ByteArray key = keySerde.toBytes(keyType.getOutputMapFn().map(p.first())); ByteArray value = valueSerde.toBytes(valueType.getOutputMapFn().map(p.second())); res.add(new Tuple2<ByteArray, ByteArray>(key, value)); } } catch (Exception e) { throw new CrunchRuntimeException(e); } return runtime.getSparkContext() .parallelizePairs(res, parallelism) .mapToPair(new MapPairInputFn<K, V>( keySerde, valueSerde, keyType.getInputMapFn(), valueType.getInputMapFn(), runtime.getRuntimeContext())); } static class MapPairInputFn<K, V> implements PairFunction<Tuple2<ByteArray, ByteArray>, K, V> { private final SerDe keySerde; private final SerDe valueSerde; private final MapFn<Object, K> keyFn; private final MapFn<Object, V> valueFn; private final SparkRuntimeContext context; private boolean initialized; public MapPairInputFn( SerDe keySerde, SerDe valueSerde, MapFn<Object, K> keyFn, MapFn<Object, V> valueFn, SparkRuntimeContext context) { this.keySerde = keySerde; this.valueSerde = valueSerde; this.keyFn = keyFn; this.valueFn = valueFn; this.context = context; this.initialized = false; } @Override public Tuple2<K, V> call(Tuple2<ByteArray, ByteArray> in) throws Exception { if (!initialized) { context.initialize(keyFn, -1); context.initialize(valueFn, -1); initialized = true; } return new Tuple2<K, V>( keyFn.map(keySerde.fromBytes(in._1().value)), valueFn.map(valueSerde.fromBytes(in._2().value))); } } }
2,232
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/SparkCollectFactory.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.CombineFn; import org.apache.crunch.DoFn; import org.apache.crunch.GroupingOptions; import org.apache.crunch.PTable; import org.apache.crunch.Pair; import org.apache.crunch.ParallelDoOptions; import org.apache.crunch.Source; import org.apache.crunch.TableSource; import org.apache.crunch.impl.dist.DistributedPipeline; import org.apache.crunch.impl.dist.collect.BaseDoCollection; import org.apache.crunch.impl.dist.collect.BaseDoTable; import org.apache.crunch.impl.dist.collect.BaseGroupedTable; import org.apache.crunch.impl.dist.collect.BaseInputCollection; import org.apache.crunch.impl.dist.collect.BaseInputTable; import org.apache.crunch.impl.dist.collect.BaseUnionCollection; import org.apache.crunch.impl.dist.collect.PCollectionFactory; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.dist.collect.PTableBase; import org.apache.crunch.types.PTableType; import org.apache.crunch.types.PType; import java.util.List; public class SparkCollectFactory implements PCollectionFactory { @Override public <S> BaseInputCollection<S> createInputCollection( Source<S> source, String named, DistributedPipeline pipeline, ParallelDoOptions doOpts) { return new InputCollection<S>(source, named, pipeline, doOpts); } @Override public <K, V> BaseInputTable<K, V> createInputTable( TableSource<K, V> source, String named, DistributedPipeline pipeline, ParallelDoOptions doOpts) { return new InputTable<K, V>(source, named, pipeline, doOpts); } @Override public <S> BaseUnionCollection<S> createUnionCollection(List<? extends PCollectionImpl<S>> internal) { return new UnionCollection<S>(internal); } @Override public <S, T> BaseDoCollection<T> createDoCollection( String name, PCollectionImpl<S> parent, DoFn<S, T> fn, PType<T> type, ParallelDoOptions options) { return new DoCollection<T>(name, parent, fn, type, options); } @Override public <S, K, V> BaseDoTable<K, V> createDoTable( String name, PCollectionImpl<S> parent, DoFn<S, Pair<K, V>> fn, PTableType<K, V> type, ParallelDoOptions options) { return new DoTable<K, V>(name, parent, fn, type, options); } @Override public <S, K, V> BaseDoTable<K, V> createDoTable( String name, PCollectionImpl<S> parent, CombineFn<K, V> combineFn, DoFn<S, Pair<K, V>> fn, PTableType<K, V> type) { return new DoTable<K, V>(name, parent, combineFn, fn, type); } @Override public <K, V> BaseGroupedTable<K, V> createGroupedTable(PTableBase<K, V> parent, GroupingOptions groupingOptions) { return new PGroupedTableImpl<K, V>(parent, groupingOptions); } @Override public <K, V> PTable<K, V> createUnionTable(List<PTableBase<K, V>> internal) { return new UnionTable<K, V>(internal); } }
2,233
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/UnionCollection.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.fn.IdentityFn; import org.apache.crunch.impl.dist.collect.BaseUnionCollection; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.dist.collect.PTableBase; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.fn.FlatMapPairDoFn; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.api.java.function.Function; import org.apache.spark.storage.StorageLevel; import java.util.List; public class UnionCollection<S> extends BaseUnionCollection<S> implements SparkCollection { private JavaRDDLike<?, ?> rdd; UnionCollection(List<? extends PCollectionImpl<S>> collections) { super(collections); } public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { if (!runtime.isValid(rdd)) { rdd = getJavaRDDLikeInternal(runtime); rdd.rdd().setName(getName()); StorageLevel sl = runtime.getStorageLevel(this); if (sl != null) { rdd.rdd().persist(sl); } } return rdd; } private JavaRDDLike<?, ?> getJavaRDDLikeInternal(SparkRuntime runtime) { List<PCollectionImpl<?>> parents = getParents(); JavaRDD[] rdds = new JavaRDD[parents.size()]; for (int i = 0; i < rdds.length; i++) { if (parents.get(i) instanceof PTableBase) { JavaPairRDD prdd = (JavaPairRDD) ((SparkCollection) parents.get(i)).getJavaRDDLike(runtime); rdds[i] = prdd.mapPartitions(new FlatMapPairDoFn(IdentityFn.getInstance(), runtime.getRuntimeContext())); } else { rdds[i] = (JavaRDD) ((SparkCollection) parents.get(i)).getJavaRDDLike(runtime); } } return runtime.getSparkContext().union(rdds); } }
2,234
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/InputCollection.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.MapFn; import org.apache.crunch.ParallelDoOptions; import org.apache.crunch.Source; import org.apache.crunch.fn.IdentityFn; import org.apache.crunch.impl.dist.DistributedPipeline; import org.apache.crunch.impl.dist.collect.BaseInputCollection; import org.apache.crunch.impl.mr.run.CrunchInputFormat; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.fn.InputConverterFunction; import org.apache.crunch.impl.spark.fn.MapFunction; import org.apache.crunch.types.Converter; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDDLike; import java.io.IOException; public class InputCollection<S> extends BaseInputCollection<S> implements SparkCollection { InputCollection(Source<S> source, String named, DistributedPipeline pipeline, ParallelDoOptions doOpts) { super(source, named, pipeline, doOpts); } public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { try { Job job = new Job(runtime.getConfiguration()); FileInputFormat.addInputPaths(job, "/tmp"); //placeholder source.configureSource(job, 0); Converter converter = source.getConverter(); JavaPairRDD<?, ?> input = runtime.getSparkContext().newAPIHadoopRDD( job.getConfiguration(), CrunchInputFormat.class, converter.getKeyClass(), converter.getValueClass()); input.rdd().setName(getName()); MapFn mapFn = converter.applyPTypeTransforms() ? source.getType().getInputMapFn() : IdentityFn.getInstance(); return input .map(new InputConverterFunction(source.getConverter())) .map(new MapFunction(mapFn, runtime.getRuntimeContext())); } catch (IOException e) { throw new RuntimeException(e); } } }
2,235
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/PGroupedTableImpl.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.CombineFn; import org.apache.crunch.GroupingOptions; import org.apache.crunch.impl.dist.collect.BaseGroupedTable; import org.apache.crunch.impl.dist.collect.PTableBase; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkComparator; import org.apache.crunch.impl.spark.SparkPartitioner; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.fn.CombineMapsideFunction; import org.apache.crunch.impl.spark.fn.MapOutputFunction; import org.apache.crunch.impl.spark.fn.PairMapFunction; import org.apache.crunch.impl.spark.fn.PairMapIterableFunction; import org.apache.crunch.impl.spark.fn.PartitionedMapOutputFunction; import org.apache.crunch.impl.spark.fn.ReduceGroupingFunction; import org.apache.crunch.impl.spark.fn.ReduceInputFunction; import org.apache.crunch.impl.spark.serde.AvroSerDe; import org.apache.crunch.impl.spark.serde.SerDe; import org.apache.crunch.impl.spark.serde.WritableSerDe; import org.apache.crunch.types.PTableType; import org.apache.crunch.types.PType; import org.apache.crunch.types.avro.AvroMode; import org.apache.crunch.types.avro.AvroType; import org.apache.crunch.types.writable.WritableType; import org.apache.crunch.util.PartitionUtils; import org.apache.hadoop.conf.Configuration; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.storage.StorageLevel; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.List; import java.util.Map; public class PGroupedTableImpl<K, V> extends BaseGroupedTable<K, V> implements SparkCollection { private static final Logger LOG = LoggerFactory.getLogger(PGroupedTableImpl.class); private JavaRDDLike<?, ?> rdd; PGroupedTableImpl(PTableBase<K, V> parent, GroupingOptions groupingOptions) { super(parent, groupingOptions); } public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { if (!runtime.isValid(rdd)) { rdd = getJavaRDDLikeInternal(runtime, runtime.getCombineFn()); rdd.rdd().setName(getName()); StorageLevel sl = runtime.getStorageLevel(this); if (sl != null) { rdd.rdd().persist(sl); } } return rdd; } private AvroSerDe getAvroSerde(PType ptype, Configuration conf) { AvroType at = (AvroType) ptype; Map<String, String> props = AvroMode.fromType(at).withFactoryFromConfiguration(conf).getModeProperties(); return new AvroSerDe(at, props); } private JavaRDDLike<?, ?> getJavaRDDLikeInternal(SparkRuntime runtime, CombineFn<K, V> combineFn) { JavaPairRDD<K, V> parentRDD = (JavaPairRDD<K, V>) ((SparkCollection)getOnlyParent()).getJavaRDDLike(runtime); if (combineFn != null) { parentRDD = parentRDD.mapPartitionsToPair( new CombineMapsideFunction<K, V>(combineFn, runtime.getRuntimeContext())); } SerDe keySerde, valueSerde; PTableType<K, V> parentType = ptype.getTableType(); if (parentType instanceof AvroType) { keySerde = getAvroSerde(parentType.getKeyType(), runtime.getConfiguration()); valueSerde = getAvroSerde(parentType.getValueType(), runtime.getConfiguration()); } else { keySerde = new WritableSerDe(((WritableType) parentType.getKeyType()).getSerializationClass()); valueSerde = new WritableSerDe(((WritableType) parentType.getValueType()).getSerializationClass()); } int numPartitions = (groupingOptions.getNumReducers() > 0) ? groupingOptions.getNumReducers() : PartitionUtils.getRecommendedPartitions(this, getPipeline().getConfiguration()); if (numPartitions <= 0) { LOG.warn("Attempted to set a non-positive number of partitions"); numPartitions = 1; } JavaPairRDD<ByteArray, List<byte[]>> groupedRDD; if (groupingOptions.getPartitionerClass() != null) { groupedRDD = parentRDD .map(new PairMapFunction(ptype.getOutputMapFn(), runtime.getRuntimeContext())) .mapToPair( new PartitionedMapOutputFunction(keySerde, valueSerde, ptype, numPartitions, groupingOptions, runtime.getRuntimeContext())) .groupByKey(new SparkPartitioner(numPartitions)); } else { groupedRDD = parentRDD .map(new PairMapFunction(ptype.getOutputMapFn(), runtime.getRuntimeContext())) .mapToPair(new MapOutputFunction(keySerde, valueSerde)) .groupByKey(numPartitions); } if (groupingOptions.requireSortedKeys() || groupingOptions.getSortComparatorClass() != null) { SparkComparator scmp = new SparkComparator(groupingOptions, ptype, runtime.getRuntimeContext()); groupedRDD = groupedRDD.sortByKey(scmp); } if (groupingOptions.getGroupingComparatorClass() != null) { groupedRDD = groupedRDD.mapPartitionsToPair( new ReduceGroupingFunction(groupingOptions, ptype, runtime.getRuntimeContext())); } return groupedRDD .map(new ReduceInputFunction(keySerde, valueSerde)) .mapToPair(new PairMapIterableFunction(ptype.getInputMapFn(), runtime.getRuntimeContext())); } }
2,236
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/DoCollection.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.DoFn; import org.apache.crunch.ParallelDoOptions; import org.apache.crunch.impl.dist.collect.BaseDoCollection; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.fn.FlatMapIndexFn; import org.apache.crunch.types.PType; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.storage.StorageLevel; public class DoCollection<S> extends BaseDoCollection<S> implements SparkCollection { private JavaRDDLike<?, ?> rdd; <T> DoCollection(String name, PCollectionImpl<T> parent, DoFn<T, S> fn, PType<S> ntype, ParallelDoOptions options) { super(name, parent, fn, ntype, options); } public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { if (!runtime.isValid(rdd)) { rdd = getJavaRDDLikeInternal(runtime); rdd.rdd().setName(getName()); StorageLevel sl = runtime.getStorageLevel(this); if (sl != null) { rdd.rdd().persist(sl); } } return rdd; } private JavaRDDLike<?, ?> getJavaRDDLikeInternal(SparkRuntime runtime) { JavaRDDLike<?, ?> parentRDD = ((SparkCollection) getOnlyParent()).getJavaRDDLike(runtime); fn.configure(runtime.getConfiguration()); return parentRDD.mapPartitionsWithIndex( new FlatMapIndexFn(fn, parentRDD instanceof JavaPairRDD, runtime.getRuntimeContext()), false); } }
2,237
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/ToByteArrayFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.IntByteArray; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; import java.util.List; public class ToByteArrayFunction implements PairFunction<Tuple2<IntByteArray, List<byte[]>>, ByteArray, List<byte[]>> { @Override public Tuple2<ByteArray, List<byte[]>> call(Tuple2<IntByteArray, List<byte[]>> t) throws Exception { return new Tuple2<ByteArray, List<byte[]>>(t._1(), t._2()); } }
2,238
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/InputTable.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.MapFn; import org.apache.crunch.ParallelDoOptions; import org.apache.crunch.TableSource; import org.apache.crunch.fn.IdentityFn; import org.apache.crunch.impl.dist.DistributedPipeline; import org.apache.crunch.impl.dist.collect.BaseInputTable; import org.apache.crunch.impl.mr.run.CrunchInputFormat; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.fn.InputConverterFunction; import org.apache.crunch.impl.spark.fn.Tuple2MapFunction; import org.apache.crunch.types.Converter; import org.apache.hadoop.mapreduce.Job; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDDLike; import java.io.IOException; public class InputTable<K, V> extends BaseInputTable<K, V> implements SparkCollection { public InputTable(TableSource<K, V> source, String named, DistributedPipeline pipeline, ParallelDoOptions doOpts) { super(source, named, pipeline, doOpts); } @Override public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { try { Job job = new Job(runtime.getConfiguration()); source.configureSource(job, 0); // TODO: a custom input format for crunch-spark Converter converter = source.getConverter(); JavaPairRDD<?, ?> input = runtime.getSparkContext().newAPIHadoopRDD( job.getConfiguration(), CrunchInputFormat.class, converter.getKeyClass(), converter.getValueClass()); input.rdd().setName(getName()); MapFn mapFn = converter.applyPTypeTransforms() ? source.getType().getInputMapFn() : IdentityFn.getInstance(); return input .map(new InputConverterFunction(source.getConverter())) .mapToPair(new Tuple2MapFunction(mapFn, runtime.getRuntimeContext())); } catch (IOException e) { throw new RuntimeException(e); } } }
2,239
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/UnionTable.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import org.apache.crunch.fn.IdentityFn; import org.apache.crunch.impl.dist.collect.BaseUnionTable; import org.apache.crunch.impl.dist.collect.PCollectionImpl; import org.apache.crunch.impl.dist.collect.PTableBase; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.impl.spark.fn.PairFlatMapDoFn; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDDLike; import org.apache.spark.storage.StorageLevel; import java.util.List; public class UnionTable<K, V> extends BaseUnionTable<K, V> implements SparkCollection { private JavaRDDLike<?, ?> rdd; UnionTable(List<PTableBase<K, V>> tables) { super(tables); } public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { if (!runtime.isValid(rdd)) { rdd = getJavaRDDLikeInternal(runtime); rdd.rdd().setName(getName()); StorageLevel sl = runtime.getStorageLevel(this); if (sl != null) { rdd.rdd().persist(sl); } } return rdd; } private JavaRDDLike<?, ?> getJavaRDDLikeInternal(SparkRuntime runtime) { List<PCollectionImpl<?>> parents = getParents(); JavaPairRDD[] rdds = new JavaPairRDD[parents.size()]; for (int i = 0; i < rdds.length; i++) { if (parents.get(i) instanceof PTableBase) { rdds[i] = (JavaPairRDD) ((SparkCollection) parents.get(i)).getJavaRDDLike(runtime); } else { JavaRDD rdd = (JavaRDD) ((SparkCollection) parents.get(i)).getJavaRDDLike(runtime); rdds[i] = rdd.mapPartitionsToPair(new PairFlatMapDoFn(IdentityFn.getInstance(), runtime.getRuntimeContext())); } } return runtime.getSparkContext().union(rdds); } }
2,240
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/collect/EmptyPCollection.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.collect; import com.google.common.collect.ImmutableList; import org.apache.crunch.impl.dist.DistributedPipeline; import org.apache.crunch.impl.spark.SparkCollection; import org.apache.crunch.impl.spark.SparkRuntime; import org.apache.crunch.types.PType; import org.apache.spark.api.java.JavaRDDLike; public class EmptyPCollection<T> extends org.apache.crunch.impl.dist.collect.EmptyPCollection<T> implements SparkCollection { public EmptyPCollection(DistributedPipeline pipeline, PType<T> ptype) { super(pipeline, ptype); } @Override public JavaRDDLike<?, ?> getJavaRDDLike(SparkRuntime runtime) { return runtime.getSparkContext().parallelize(ImmutableList.of()); } }
2,241
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/PairFlatMapDoFn.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import com.google.common.collect.Iterables; import org.apache.crunch.DoFn; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.GuavaUtils; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.spark.api.java.function.PairFlatMapFunction; import scala.Tuple2; import java.util.Iterator; public class PairFlatMapDoFn<T, K, V> implements PairFlatMapFunction<Iterator<T>, K, V> { private final DoFn<T, Pair<K, V>> fn; private final SparkRuntimeContext ctxt; public PairFlatMapDoFn(DoFn<T, Pair<K, V>> fn, SparkRuntimeContext ctxt) { this.fn = fn; this.ctxt = ctxt; } @Override public Iterator<Tuple2<K, V>> call(Iterator<T> input) throws Exception { ctxt.initialize(fn, null); return Iterables.transform( new CrunchIterable<T, Pair<K, V>>(fn, input), GuavaUtils.<K, V>pair2tupleFunc()).iterator(); } }
2,242
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/CrunchIterable.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.DoFn; import org.apache.crunch.util.DoFnIterator; import java.util.Iterator; public class CrunchIterable<S, T> implements Iterable<T> { private final DoFn<S, T> fn; private final Iterator<S> input; public CrunchIterable(DoFn<S, T> fn, Iterator<S> input) { this.fn = fn; this.input = input; } @Override public Iterator<T> iterator() { return new DoFnIterator<S, T>(input, fn); } }
2,243
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/PairMapFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.MapFn; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.spark.api.java.function.Function; import scala.Tuple2; public class PairMapFunction<K, V, S> implements Function<Tuple2<K, V>, S> { private final MapFn<Pair<K, V>, S> fn; private final SparkRuntimeContext ctxt; private boolean initialized; public PairMapFunction(MapFn<Pair<K, V>, S> fn, SparkRuntimeContext ctxt) { this.fn = fn; this.ctxt = ctxt; } @Override public S call(Tuple2<K, V> kv) throws Exception { if (!initialized) { ctxt.initialize(fn, null); initialized = true; } return fn.map(Pair.of(kv._1(), kv._2())); } }
2,244
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/ReduceInputFunction.java
/* * * * * Licensed to the Apache Software Foundation (ASF) under one * * or more contributor license agreements. See the NOTICE file * * distributed with this work for additional information * * regarding copyright ownership. The ASF licenses this file * * to you under the Apache License, Version 2.0 (the * * "License"); you may not use this file except in compliance * * with the License. You may obtain a copy of the License at * * * * http://www.apache.org/licenses/LICENSE-2.0 * * * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, * * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * * limitations under the License. * */ package org.apache.crunch.impl.spark.fn; import com.google.common.collect.Iterables; import com.google.common.collect.Lists; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.serde.SerDe; import org.apache.spark.api.java.function.Function; import scala.Tuple2; import java.util.List; public class ReduceInputFunction<K, V> implements Function<Tuple2<ByteArray, Iterable<byte[]>>, Pair<K, Iterable<V>>> { private final SerDe<K> keySerDe; private final SerDe<V> valueSerDe; public ReduceInputFunction(SerDe<K> keySerDe, SerDe<V> valueSerDe) { this.keySerDe = keySerDe; this.valueSerDe = valueSerDe; } @Override public Pair<K, Iterable<V>> call(Tuple2<ByteArray, Iterable<byte[]>> kv) throws Exception { return Pair.of(keySerDe.fromBytes(kv._1().value), Iterables.transform(kv._2(), valueSerDe.fromBytesFunction())); } }
2,245
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/ReduceGroupingFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import com.google.common.collect.Lists; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.GroupingOptions; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.crunch.types.PGroupedTableType; import org.apache.hadoop.io.RawComparator; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.util.ReflectionUtils; import org.apache.spark.api.java.function.PairFlatMapFunction; import scala.Tuple2; import java.io.IOException; import java.util.Iterator; import java.util.List; public class ReduceGroupingFunction implements PairFlatMapFunction<Iterator<Tuple2<ByteArray, List<byte[]>>>, ByteArray, List<byte[]>> { private final GroupingOptions options; private final PGroupedTableType ptype; private final SparkRuntimeContext ctxt; private transient RawComparator<?> cmp; public ReduceGroupingFunction(GroupingOptions options, PGroupedTableType ptype, SparkRuntimeContext ctxt) { this.options = options; this.ptype = ptype; this.ctxt = ctxt; } @Override public Iterator<Tuple2<ByteArray, List<byte[]>>> call( final Iterator<Tuple2<ByteArray, List<byte[]>>> iter) throws Exception { return new GroupingIterator(iter, rawComparator()); } private RawComparator<?> rawComparator() { if (cmp == null) { try { Job job = new Job(ctxt.getConfiguration()); ptype.configureShuffle(job, options); cmp = ReflectionUtils.newInstance(options.getGroupingComparatorClass(), job.getConfiguration()); } catch (IOException e) { throw new CrunchRuntimeException("Error configuring grouping comparator", e); } } return cmp; } private static class GroupingIterator implements Iterator<Tuple2<ByteArray, List<byte[]>>> { private final Iterator<Tuple2<ByteArray, List<byte[]>>> iter; private final RawComparator cmp; private ByteArray key; private List<byte[]> bytes = Lists.newArrayList(); public GroupingIterator(Iterator<Tuple2<ByteArray, List<byte[]>>> iter, RawComparator cmp) { this.iter = iter; this.cmp = cmp; } @Override public boolean hasNext() { return iter.hasNext() || key != null; } @Override public Tuple2<ByteArray, List<byte[]>> next() { ByteArray nextKey = null; List<byte[]> next = null; while (iter.hasNext()) { Tuple2<ByteArray, List<byte[]>> t = iter.next(); if (key == null) { key = t._1(); bytes.addAll(t._2()); } else if (cmp.compare(key.value, 0, key.value.length, t._1().value, 0, t._1().value.length) == 0) { bytes.addAll(t._2()); } else { nextKey = t._1(); next = Lists.newArrayList(t._2()); break; } } Tuple2<ByteArray, List<byte[]>> ret = new Tuple2<ByteArray, List<byte[]>>(key, bytes); key = nextKey; bytes = next; return ret; } @Override public void remove() { throw new UnsupportedOperationException(); } } }
2,246
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/FlatMapIndexFn.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import com.google.common.base.Function; import com.google.common.collect.Iterators; import org.apache.crunch.DoFn; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.GuavaUtils; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.crunch.util.DoFnIterator; import org.apache.spark.api.java.function.Function2; import scala.Tuple2; import javax.annotation.Nullable; import java.util.Iterator; public class FlatMapIndexFn<S, T> implements Function2<Integer, Iterator, Iterator<T>> { private final DoFn<S, T> fn; private final boolean convertInput; private final SparkRuntimeContext ctxt; public FlatMapIndexFn(DoFn<S, T> fn, boolean convertInput, SparkRuntimeContext ctxt) { this.fn = fn; this.convertInput = convertInput; this.ctxt = ctxt; } @Override public Iterator<T> call(Integer partitionId, Iterator input) throws Exception { ctxt.initialize(fn, partitionId); Iterator in = convertInput ? Iterators.transform(input, GuavaUtils.tuple2PairFunc()) : input; return new DoFnIterator<S, T>(in, fn); } }
2,247
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/InputConverterFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.types.Converter; import org.apache.spark.api.java.function.Function; import scala.Tuple2; public class InputConverterFunction<K, V, S> implements Function<Tuple2<K, V>, S> { private Converter<K, V, S, ?> converter; public InputConverterFunction(Converter<K, V, S, ?> converter) { this.converter = converter; } @Override public S call(Tuple2<K, V> kv) throws Exception { return converter.convertInput(kv._1(), kv._2()); } }
2,248
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/FlatMapPairDoFn.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import com.google.common.collect.Iterators; import org.apache.crunch.DoFn; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.GuavaUtils; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.spark.api.java.function.FlatMapFunction; import scala.Tuple2; import java.util.Iterator; public class FlatMapPairDoFn<K, V, T> implements FlatMapFunction<Iterator<Tuple2<K, V>>, T> { private final DoFn<Pair<K, V>, T> fn; private final SparkRuntimeContext ctxt; public FlatMapPairDoFn(DoFn<Pair<K, V>, T> fn, SparkRuntimeContext ctxt) { this.fn = fn; this.ctxt = ctxt; } @Override public Iterator<T> call(Iterator<Tuple2<K, V>> input) throws Exception { ctxt.initialize(fn, null); return new CrunchIterable<Pair<K, V>, T>(fn, Iterators.transform(input, GuavaUtils.<K, V>tuple2PairFunc())).iterator(); } }
2,249
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/CombineMapsideFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import com.google.common.collect.Lists; import com.google.common.collect.Maps; import com.google.common.collect.UnmodifiableIterator; import org.apache.crunch.CombineFn; import org.apache.crunch.Pair; import org.apache.crunch.impl.mem.emit.InMemoryEmitter; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.spark.api.java.function.PairFlatMapFunction; import scala.Tuple2; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Set; public class CombineMapsideFunction<K, V> implements PairFlatMapFunction<Iterator<Tuple2<K, V>>, K, V> { private static final int REDUCE_EVERY_N = 50000; private final CombineFn<K,V> combineFn; private final SparkRuntimeContext ctxt; public CombineMapsideFunction(CombineFn<K, V> combineFn, SparkRuntimeContext ctxt) { this.combineFn = combineFn; this.ctxt = ctxt; } @Override public Iterator<Tuple2<K, V>> call(Iterator<Tuple2<K, V>> iter) throws Exception { ctxt.initialize(combineFn, null); Map<K, List<V>> cache = Maps.newHashMap(); int cnt = 0; while (iter.hasNext()) { Tuple2<K, V> t = iter.next(); List<V> values = cache.get(t._1()); if (values == null) { values = Lists.newArrayList(); cache.put(t._1(), values); } values.add(t._2()); cnt++; if (cnt % REDUCE_EVERY_N == 0) { cache = reduce(cache); } } return new Flattener<K, V>(cache).iterator(); } private Map<K, List<V>> reduce(Map<K, List<V>> cache) { Set<K> keys = cache.keySet(); Map<K, List<V>> res = Maps.newHashMap(); for (K key : keys) { for (Pair<K, V> p : reduce(key, cache.get(key))) { List<V> values = res.get(p.first()); if (values == null) { values = Lists.newArrayList(); res.put(p.first(), values); } values.add(p.second()); } } return res; } private List<Pair<K, V>> reduce(K key, Iterable<V> values) { InMemoryEmitter<Pair<K, V>> emitter = new InMemoryEmitter<Pair<K, V>>(); combineFn.process(Pair.of(key, values), emitter); combineFn.cleanup(emitter); return emitter.getOutput(); } private static class Flattener<K, V> implements Iterable<Tuple2<K, V>> { private final Map<K, List<V>> entries; public Flattener(Map<K, List<V>> entries) { this.entries = entries; } @Override public Iterator<Tuple2<K, V>> iterator() { return new UnmodifiableIterator<Tuple2<K, V>>() { private Iterator<K> keyIter = entries.keySet().iterator(); private K currentKey; private Iterator<V> valueIter = null; @Override public boolean hasNext() { while (valueIter == null || !valueIter.hasNext()) { if (keyIter.hasNext()) { currentKey = keyIter.next(); valueIter = entries.get(currentKey).iterator(); } else { return false; } } return true; } @Override public Tuple2<K, V> next() { return new Tuple2<K, V>(currentKey, valueIter.next()); } }; } } }
2,250
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/CrunchPairTuple2.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import com.google.common.collect.Iterators; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.GuavaUtils; import org.apache.spark.api.java.function.PairFlatMapFunction; import scala.Tuple2; import java.util.Iterator; public class CrunchPairTuple2<K, V> implements PairFlatMapFunction<Iterator<Pair<K, V>>, K, V> { @Override public Iterator<Tuple2<K, V>> call(final Iterator<Pair<K, V>> iterator) throws Exception { return Iterators.transform(iterator, GuavaUtils.<K, V>pair2tupleFunc()); } }
2,251
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/Tuple2MapFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.MapFn; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class Tuple2MapFunction<K, V> implements PairFunction<Pair<K, V>, K, V> { private final MapFn<Pair<K, V>, Pair<K, V>> fn; private final SparkRuntimeContext ctxt; private boolean initialized; public Tuple2MapFunction(MapFn<Pair<K, V>, Pair<K, V>> fn, SparkRuntimeContext ctxt) { this.fn = fn; this.ctxt = ctxt; } @Override public Tuple2<K, V> call(Pair<K, V> p) throws Exception { if (!initialized) { ctxt.initialize(fn, null); initialized = true; } Pair<K, V> res = fn.map(p); return new Tuple2<K, V>(res.first(), res.second()); } }
2,252
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/MapOutputFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.serde.SerDe; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class MapOutputFunction<K, V> implements PairFunction<Pair<K, V>, ByteArray, byte[]> { private final SerDe keySerde; private final SerDe valueSerde; public MapOutputFunction(SerDe keySerde, SerDe valueSerde) { this.keySerde = keySerde; this.valueSerde = valueSerde; } @Override public Tuple2<ByteArray, byte[]> call(Pair<K, V> p) throws Exception { return new Tuple2<ByteArray, byte[]>( keySerde.toBytes(p.first()), valueSerde.toBytes(p.second()).value); } }
2,253
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/PairMapIterableFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.MapFn; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; import java.util.List; public class PairMapIterableFunction<K, V, S, T> implements PairFunction<Pair<K, List<V>>, S, Iterable<T>> { private final MapFn<Pair<K, List<V>>, Pair<S, Iterable<T>>> fn; private final SparkRuntimeContext runtimeContext; private boolean initialized; public PairMapIterableFunction( MapFn<Pair<K, List<V>>, Pair<S, Iterable<T>>> fn, SparkRuntimeContext runtimeContext) { this.fn = fn; this.runtimeContext = runtimeContext; } @Override public Tuple2<S, Iterable<T>> call(Pair<K, List<V>> input) throws Exception { if (!initialized) { runtimeContext.initialize(fn, null); initialized = true; } Pair<S, Iterable<T>> out = fn.map(input); return new Tuple2<S, Iterable<T>>(out.first(), out.second()); } }
2,254
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/OutputConverterFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.types.Converter; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class OutputConverterFunction<K, V, S> implements PairFunction<S, K, V> { private Converter<K, V, S, ?> converter; public OutputConverterFunction(Converter<K, V, S, ?> converter) { this.converter = converter; } @Override public Tuple2<K, V> call(S s) throws Exception { return new Tuple2<K, V>(converter.outputKey(s), converter.outputValue(s)); } }
2,255
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/MapFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.MapFn; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.spark.api.java.function.Function; public class MapFunction implements Function<Object, Object> { private final MapFn fn; private final SparkRuntimeContext ctxt; private boolean initialized; public MapFunction(MapFn fn, SparkRuntimeContext ctxt) { this.fn = fn; this.ctxt = ctxt; } @Override public Object call(Object o) throws Exception { if (!initialized) { ctxt.initialize(fn, null); initialized = true; } return fn.map(o); } }
2,256
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/fn/PartitionedMapOutputFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.GroupingOptions; import org.apache.crunch.Pair; import org.apache.crunch.impl.spark.IntByteArray; import org.apache.crunch.impl.spark.SparkRuntimeContext; import org.apache.crunch.impl.spark.serde.SerDe; import org.apache.crunch.types.PGroupedTableType; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.util.ReflectionUtils; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; import java.io.IOException; public class PartitionedMapOutputFunction<K, V> implements PairFunction<Pair<K, V>, IntByteArray, byte[]> { private final SerDe<K> keySerde; private final SerDe<V> valueSerde; private final PGroupedTableType<K, V> ptype; private final int numPartitions; private final SparkRuntimeContext runtimeContext; private final GroupingOptions options; private transient Partitioner partitioner; public PartitionedMapOutputFunction( SerDe<K> keySerde, SerDe<V> valueSerde, PGroupedTableType<K, V> ptype, int numPartitions, GroupingOptions options, SparkRuntimeContext runtimeContext) { this.keySerde = keySerde; this.valueSerde = valueSerde; this.ptype = ptype; this.numPartitions = numPartitions; this.options = options; this.runtimeContext = runtimeContext; } @Override public Tuple2<IntByteArray, byte[]> call(Pair<K, V> p) throws Exception { int partition = getPartitioner().getPartition(p.first(), p.second(), numPartitions); return new Tuple2<IntByteArray, byte[]>( new IntByteArray(partition, keySerde.toBytes(p.first())), valueSerde.toBytes(p.second()).value); } private Partitioner getPartitioner() { if (partitioner == null) { try { ptype.initialize(runtimeContext.getConfiguration()); Job job = new Job(runtimeContext.getConfiguration()); options.configure(job); ptype.configureShuffle(job, options); partitioner = ReflectionUtils.newInstance(options.getPartitionerClass(), job.getConfiguration()); } catch (IOException e) { throw new CrunchRuntimeException("Error configuring partitioner", e); } } return partitioner; } }
2,257
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/serde/SerDeFactory.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.serde; import org.apache.crunch.types.PType; import org.apache.crunch.types.avro.AvroMode; import org.apache.crunch.types.avro.AvroType; import org.apache.crunch.types.writable.WritableType; import org.apache.crunch.types.writable.WritableTypeFamily; import org.apache.hadoop.conf.Configuration; import java.util.Map; public class SerDeFactory { public static SerDe create(PType<?> ptype, Configuration conf) { if (WritableTypeFamily.getInstance().equals(ptype.getFamily())) { return new WritableSerDe(((WritableType) ptype).getSerializationClass()); } else { AvroType at = (AvroType) ptype; Map<String, String> props = AvroMode.fromType(at).withFactoryFromConfiguration(conf).getModeProperties(); return new AvroSerDe(at, props); } } }
2,258
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/serde/AvroSerDe.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.serde; import com.google.common.base.Function; import org.apache.avro.io.DatumReader; import org.apache.avro.io.DatumWriter; import org.apache.avro.io.Decoder; import org.apache.avro.io.DecoderFactory; import org.apache.avro.io.Encoder; import org.apache.avro.io.EncoderFactory; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.ByteArrayHelper; import org.apache.crunch.types.avro.AvroMode; import org.apache.crunch.types.avro.AvroType; import org.apache.crunch.types.avro.Avros; import org.apache.hadoop.conf.Configuration; import javax.annotation.Nullable; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.util.Map; public class AvroSerDe<T> implements SerDe<T> { private AvroType<T> avroType; private Map<String, String> modeProperties; private ByteArrayHelper helper; private transient AvroMode mode; private transient DatumWriter<T> writer; private transient DatumReader<T> reader; public AvroSerDe(AvroType<T> avroType, Map<String, String> modeProperties) { this.avroType = avroType; this.modeProperties = modeProperties; if (avroType.hasReflect() && avroType.hasSpecific()) { Avros.checkCombiningSpecificAndReflectionSchemas(); } this.helper = ByteArrayHelper.forAvroSchema(avroType.getSchema()); } private AvroMode getMode() { if (mode == null) { mode = AvroMode.fromType(avroType); if (modeProperties != null && !modeProperties.isEmpty()) { Configuration conf = new Configuration(); for (Map.Entry<String, String> e : modeProperties.entrySet()) { conf.set(e.getKey(), e.getValue()); } mode = mode.withFactoryFromConfiguration(conf); } } return mode; } private DatumWriter<T> getWriter() { if (writer == null) { writer = getMode().getWriter(avroType.getSchema()); } return writer; } private DatumReader<T> getReader() { if (reader == null) { reader = getMode().getReader(avroType.getSchema()); } return reader; } @Override public ByteArray toBytes(T obj) throws Exception { ByteArrayOutputStream out = new ByteArrayOutputStream(); Encoder encoder = EncoderFactory.get().binaryEncoder(out, null); getWriter().write(obj, encoder); encoder.flush(); out.close(); return new ByteArray(out.toByteArray(), helper); } @Override public T fromBytes(byte[] bytes) { Decoder decoder = DecoderFactory.get().binaryDecoder(bytes, null); try { return getReader().read(null, decoder); } catch (IOException e) { throw new RuntimeException(e); } } @Override public Function<byte[], T> fromBytesFunction() { return new Function<byte[], T>() { @Override public T apply(@Nullable byte[] input) { return fromBytes(input); } }; } }
2,259
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/serde/SerDe.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.serde; import com.google.common.base.Function; import org.apache.crunch.impl.spark.ByteArray; import org.apache.hadoop.conf.Configuration; import java.io.Serializable; public interface SerDe<T> extends Serializable { ByteArray toBytes(T obj) throws Exception; T fromBytes(byte[] bytes); Function<byte[], T> fromBytesFunction(); }
2,260
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/impl/spark/serde/WritableSerDe.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.impl.spark.serde; import com.google.common.base.Function; import org.apache.crunch.impl.spark.ByteArray; import org.apache.crunch.impl.spark.ByteArrayHelper; import org.apache.hadoop.io.Writable; import org.apache.hadoop.util.ReflectionUtils; import javax.annotation.Nullable; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.DataInputStream; import java.io.DataOutputStream; import java.io.IOException; public class WritableSerDe implements SerDe<Writable> { Class<? extends Writable> clazz; public WritableSerDe(Class<? extends Writable> clazz) { this.clazz = clazz; } @Override public ByteArray toBytes(Writable obj) throws Exception { ByteArrayOutputStream baos = new ByteArrayOutputStream(); DataOutputStream dos = new DataOutputStream(baos); obj.write(dos); dos.close(); return new ByteArray(baos.toByteArray(), ByteArrayHelper.WRITABLES); } @Override public Writable fromBytes(byte[] bytes) { Writable inst = ReflectionUtils.newInstance(clazz, null); ByteArrayInputStream bais = new ByteArrayInputStream(bytes); DataInputStream dis = new DataInputStream(bais); try { inst.readFields(dis); } catch (IOException e) { throw new RuntimeException(e); } return inst; } @Override public Function<byte[], Writable> fromBytesFunction() { return new Function<byte[], Writable>() { @Override public Writable apply(@Nullable byte[] input) { return fromBytes(input); } }; } }
2,261
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SDoubleFlatMapFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.Emitter; import org.apache.spark.api.java.function.DoubleFlatMapFunction; /** * A Crunch-compatible abstract base class for Spark's {@link DoubleFlatMapFunction}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SDoubleFlatMapFunction<T> extends SparkDoFn<T, Double> implements DoubleFlatMapFunction<T> { @Override public void process(T input, Emitter<Double> emitter) { try { for (Double d : new IterableIterator<Double>(call(input))) { emitter.emit(d); } } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,262
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/IterableIterator.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import java.util.Iterator; class IterableIterator<T> implements Iterable<T> { private final Iterator<T> itr; IterableIterator(Iterator<T> itr) { this.itr = itr; } public Iterator<T> iterator() { return itr;} }
2,263
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SparkDoFn.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.DoFn; import org.apache.crunch.Emitter; abstract class SparkDoFn<T, R> extends DoFn<T, R> { @Override public final void initialize() { // Forced no-op for Spark compatibility } @Override public final void cleanup(Emitter<R> emitter) { // Forced no-op for Spark compatibility } }
2,264
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SFlatMapFunction2.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.DoFn; import org.apache.crunch.Emitter; import org.apache.crunch.Pair; import org.apache.spark.api.java.function.FlatMapFunction2; /** * A Crunch-compatible abstract base class for Spark's {@link FlatMapFunction2}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SFlatMapFunction2<K, V, R> extends DoFn<Pair<K, V>, R> implements FlatMapFunction2<K, V, R> { @Override public void process(Pair<K, V> input, Emitter<R> emitter) { try { for (R r : new IterableIterator<R>(call(input.first(), input.second()))) { emitter.emit(r); } } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,265
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SPairFlatMapFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.Emitter; import org.apache.crunch.Pair; import org.apache.spark.api.java.function.PairFlatMapFunction; import scala.Tuple2; /** * A Crunch-compatible abstract base class for Spark's {@link PairFlatMapFunction}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SPairFlatMapFunction<T, K, V> extends SparkDoFn<T, Pair<K, V>> implements PairFlatMapFunction<T, K, V> { @Override public void process(T input, Emitter<Pair<K, V>> emitter) { try { for (Tuple2<K, V> kv : new IterableIterator<Tuple2<K, V>>(call(input))) { emitter.emit(Pair.of(kv._1(), kv._2())); } } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,266
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SparkMapFn.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.Emitter; import org.apache.crunch.MapFn; abstract class SparkMapFn<T, R> extends MapFn<T, R> { @Override public final void initialize() { // Forced no-op for Spark compatibility } @Override public final void cleanup(Emitter<R> emitter) { // Forced no-op for Spark compatibility } }
2,267
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SFunctions.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import java.util.Iterator; import org.apache.spark.api.java.function.DoubleFlatMapFunction; import org.apache.spark.api.java.function.DoubleFunction; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.FlatMapFunction2; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; /** * Utility methods for wrapping existing Spark Java API Functions for * Crunch compatibility. */ public final class SFunctions { public static <T, R> SFunction<T, R> wrap(final Function<T, R> f) { return new SFunction<T, R>() { @Override public R call(T t) throws Exception { return f.call(t); } }; } public static <K, V, R> SFunction2<K, V, R> wrap(final Function2<K, V, R> f) { return new SFunction2<K, V, R>() { @Override public R call(K k, V v) throws Exception { return f.call(k, v); } }; } public static <T, K, V> SPairFunction<T, K, V> wrap(final PairFunction<T, K, V> f) { return new SPairFunction<T, K, V>() { @Override public Tuple2<K, V> call(T t) throws Exception { return f.call(t); } }; } public static <T, R> SFlatMapFunction<T, R> wrap(final FlatMapFunction<T, R> f) { return new SFlatMapFunction<T, R>() { @Override public Iterator<R> call(T t) throws Exception { return f.call(t); } }; } public static <K, V, R> SFlatMapFunction2<K, V, R> wrap(final FlatMapFunction2<K, V, R> f) { return new SFlatMapFunction2<K, V, R>() { @Override public Iterator<R> call(K k, V v) throws Exception { return f.call(k, v); } }; } public static <T> SDoubleFunction<T> wrap(final DoubleFunction<T> f) { return new SDoubleFunction<T>() { @Override public double call(T t) throws Exception { return f.call(t); } }; } public static <T> SDoubleFlatMapFunction<T> wrap(final DoubleFlatMapFunction<T> f) { return new SDoubleFlatMapFunction<T>() { @Override public Iterator<Double> call(T t) throws Exception { return f.call(t); } }; } private SFunctions() {} }
2,268
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SPairFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.Pair; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; /** * A Crunch-compatible abstract base class for Spark's {@link PairFunction}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SPairFunction<T, K, V> extends SparkMapFn<T, Pair<K, V>> implements PairFunction<T, K, V> { @Override public Pair<K, V> map(T input) { try { Tuple2<K, V> t = call(input); return t == null ? null : Pair.of(t._1(), t._2()); } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,269
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SFlatMapFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.Emitter; import org.apache.spark.api.java.function.FlatMapFunction; /** * A Crunch-compatible abstract base class for Spark's {@link FlatMapFunction}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SFlatMapFunction<T, R> extends SparkDoFn<T, R> implements FlatMapFunction<T, R> { @Override public void process(T input, Emitter<R> emitter) { try { for (R r : new IterableIterator<R>(call(input))) { emitter.emit(r); } } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,270
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.spark.api.java.function.Function; /** * A Crunch-compatible abstract base class for Spark's {@link Function}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SFunction<T, R> extends SparkMapFn<T, R> implements Function<T, R> { @Override public R map(T input) { try { return call(input); } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,271
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SFunction2.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.Pair; import org.apache.spark.api.java.function.Function2; /** * A Crunch-compatible abstract base class for Spark's {@link Function2}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SFunction2<K, V, R> extends SparkMapFn<Pair<K, V>, R> implements Function2<K, V, R> { @Override public R map(Pair<K, V> input) { try { return call(input.first(), input.second()); } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,272
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-spark/src/main/java/org/apache/crunch/fn/SDoubleFunction.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.fn; import org.apache.crunch.CrunchRuntimeException; import org.apache.spark.api.java.function.DoubleFunction; /** * A Crunch-compatible abstract base class for Spark's {@link DoubleFunction}. Subclasses * of this class may be used against either Crunch {@code PCollections} or Spark {@code RDDs}. */ public abstract class SDoubleFunction<T> extends SparkMapFn<T, Double> implements DoubleFunction<T> { @Override public Double map(T input) { try { return call(input); } catch (Exception e) { throw new CrunchRuntimeException(e); } } }
2,273
0
Create_ds/crunch/crunch-spark/src/main/java/org/apache/hadoop
Create_ds/crunch/crunch-spark/src/main/java/org/apache/hadoop/mapred/SparkCounter.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.mapred; import com.google.common.collect.ImmutableMap; import org.apache.spark.Accumulator; import java.util.Map; public class SparkCounter extends Counters.Counter { private String group; private String name; private long value = 0; private Accumulator<Map<String, Map<String, Long>>> accum; public SparkCounter(String group, String name, Accumulator<Map<String, Map<String, Long>>> accum) { this.group = group; this.name = name; this.accum = accum; } public SparkCounter(String group, String name, long value) { this.group = group; this.name = name; this.value = value; } @Override public String getName() { return name; } @Override public String getDisplayName() { return name; } @Override public long getValue() { return value; } @Override public long getCounter() { return getValue(); } @Override public void increment(long inc) { this.value += inc; accum.add(ImmutableMap.<String, Map<String, Long>>of(group, ImmutableMap.of(name, inc))); } @Override public void setValue(long newValue) { long delta = newValue - value; accum.add(ImmutableMap.<String, Map<String, Long>>of(group, ImmutableMap.of(name, delta))); this.value = newValue; } }
2,274
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/types
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/types/orc/TupleObjectInspectorTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.types.orc; import static org.junit.Assert.*; import java.nio.ByteBuffer; import java.util.List; import org.apache.crunch.Pair; import org.apache.crunch.TupleN; import org.apache.crunch.types.TupleFactory; import org.apache.crunch.types.orc.TupleObjectInspector.ByteBufferObjectInspector; import org.apache.crunch.types.writable.Writables; import org.apache.hadoop.io.BytesWritable; import org.junit.Test; public class TupleObjectInspectorTest { @Test public void testTupleObjectInspector() { // test get TupleObjectInspector<TupleN> toi = new TupleObjectInspector<TupleN>(TupleFactory.TUPLEN, Writables.strings(), Writables.ints(), Writables.floats()); TupleN tuple = new TupleN("Alice", 28, 165.2f); List<Object> values = toi.getStructFieldsDataAsList(tuple); assertEquals("Alice", values.get(0)); assertEquals(28, values.get(1)); assertEquals(165.2f, values.get(2)); // test create TupleN newTuple = toi.create("Alice", 28, 165.2f); assertEquals(tuple, newTuple); TupleObjectInspector<Pair> poi = new TupleObjectInspector<Pair>(TupleFactory.PAIR, Writables.strings(), Writables.ints()); Pair pair = poi.create("word", 29); assertEquals("word", pair.first()); assertEquals(29, pair.second()); } @Test public void testByteBufferObjectInspector() { byte[] bytes = {0, 9, 4, 18, 64, 6, 1}; BytesWritable bw = new BytesWritable(bytes); ByteBuffer buf = ByteBuffer.wrap(bytes); ByteBufferObjectInspector bboi = new ByteBufferObjectInspector(); assertArrayEquals(bytes, bboi.getPrimitiveJavaObject(buf)); assertEquals(bw, bboi.getPrimitiveWritableObject(buf)); assertEquals(buf, bboi.create(bytes)); assertEquals(buf, bboi.create(bw)); ByteBuffer newBuf = bboi.copyObject(buf); assertTrue(buf != newBuf); assertEquals(buf, newBuf); } }
2,275
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/types
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/types/orc/OrcsTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.types.orc; import static org.junit.Assert.*; import java.sql.Timestamp; import java.util.Arrays; import java.util.HashMap; import java.util.Map; import org.apache.crunch.Pair; import org.apache.crunch.TupleN; import org.apache.crunch.io.orc.OrcWritable; import org.apache.crunch.test.orc.pojos.AddressBook; import org.apache.crunch.test.orc.pojos.Person; import org.apache.crunch.types.PType; import org.apache.crunch.types.writable.Writables; import org.apache.hadoop.hive.common.type.HiveVarchar; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde2.io.HiveVarcharWritable; import org.apache.hadoop.hive.serde2.io.TimestampWritable; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.junit.Test; public class OrcsTest { @SuppressWarnings({ "unchecked", "rawtypes" }) protected static void testInputOutputFn(PType ptype, Object java, OrcWritable orc) { initialize(ptype); assertEquals(java, ptype.getInputMapFn().map(orc)); assertEquals(orc, ptype.getOutputMapFn().map(java)); } private static void initialize(PType ptype) { ptype.getInputMapFn().initialize(); ptype.getOutputMapFn().initialize(); } @Test public void testOrcs() { String mapValueTypeStr = "struct<a:string,b:int>"; String typeStr = "struct<a:int,b:string,c:float,d:varchar(64)" + ",e:map<string," + mapValueTypeStr + ">>"; TypeInfo mapValueTypeInfo = TypeInfoUtils.getTypeInfoFromTypeString(mapValueTypeStr); TypeInfo typeInfo = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); PType<OrcStruct> ptype = Orcs.orcs(typeInfo); HiveVarchar varchar = new HiveVarchar("Hello World", 32); Map<Text, OrcStruct> map = new HashMap<Text, OrcStruct>(); OrcStruct value = OrcUtils.createOrcStruct(mapValueTypeInfo, new Text("age"), new IntWritable(24)); map.put(new Text("Bob"), value); OrcStruct s = OrcUtils.createOrcStruct(typeInfo, new IntWritable(1024), new Text("Alice"), null, new HiveVarcharWritable(varchar), map); OrcWritable w = new OrcWritable(); w.set(s); testInputOutputFn(ptype, s, w); } @Test public void testReflects() { PType<AddressBook> ptype = Orcs.reflects(AddressBook.class); AddressBook ab = new AddressBook(); ab.setMyName("John Smith"); ab.setMyNumbers(Arrays.asList("919-333-4452", "650-777-4329")); Map<String, Person> contacts = new HashMap<String, Person>(); contacts.put("Alice", new Person("Alice", 23, Arrays.asList("666-677-9999"))); contacts.put("Bob", new Person("Bob", 26, Arrays.asList("999-888-1132", "000-222-9934"))); contacts.put("David", null); ab.setContacts(contacts); Timestamp now = new Timestamp(System.currentTimeMillis()); ab.setUpdateTime(now); byte[] signature = {0, 0, 64, 68, 39, 0}; ab.setSignature(signature); Map<Text, OrcStruct> map = new HashMap<Text, OrcStruct>(); map.put(new Text("Alice"), OrcUtils.createOrcStruct(Person.TYPE_INFO, new Text("Alice"), new IntWritable(23), Arrays.asList(new Text("666-677-9999")))); map.put(new Text("Bob"), OrcUtils.createOrcStruct(Person.TYPE_INFO, new Text("Bob"), new IntWritable(26), Arrays.asList(new Text("999-888-1132"), new Text("000-222-9934")))); map.put(new Text("David"), null); OrcStruct s = OrcUtils.createOrcStruct(AddressBook.TYPE_INFO, new Text("John Smith"), Arrays.asList(new Text("919-333-4452"), new Text("650-777-4329")), map, new TimestampWritable(now), new BytesWritable(signature)); OrcWritable w = new OrcWritable(); w.set(s); testInputOutputFn(ptype, ab, w); } @Test public void testTuples() { PType<TupleN> ptype = Orcs.tuples(Writables.ints(), Writables.strings(), Orcs.reflects(Person.class), Writables.tableOf(Writables.strings(), Orcs.reflects(Person.class))); TupleN t = new TupleN(1, "John Smith", new Person("Alice", 23, Arrays.asList("666-677-9999")), new Pair<String, Person>("Bob", new Person("Bob", 26, Arrays.asList("999-888-1132", "000-222-9934")))); String typeStr = "struct<a:int,b:string,c:" + Person.TYPE_STR + ",d:struct<d1:string,d2:" + Person.TYPE_STR + ">>"; TypeInfo typeInfo = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); String tableTypeStr = "struct<a:string,b:" + Person.TYPE_STR + ">"; TypeInfo tableTypeInfo = TypeInfoUtils.getTypeInfoFromTypeString(tableTypeStr); OrcStruct s = OrcUtils.createOrcStruct(typeInfo, new IntWritable(1), new Text("John Smith"), OrcUtils.createOrcStruct(Person.TYPE_INFO, new Text("Alice"), new IntWritable(23), Arrays.asList(new Text("666-677-9999")) ), OrcUtils.createOrcStruct(tableTypeInfo, new Text("Bob"), OrcUtils.createOrcStruct(Person.TYPE_INFO, new Text("Bob"), new IntWritable(26), Arrays.asList(new Text("999-888-1132"), new Text("000-222-9934")) ) ) ); OrcWritable w = new OrcWritable(); w.set(s); testInputOutputFn(ptype, t, w); } }
2,276
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/test/orc
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/test/orc/pojos/AddressBook.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.test.orc.pojos; import java.sql.Timestamp; import java.util.Arrays; import java.util.List; import java.util.Map; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; public class AddressBook { public static final String TYPE_STR = "struct<myname:string,mynumbers:array<string>," + "contacts:map<string," + Person.TYPE_STR + ">,updatetime:timestamp,signature:binary>"; public static final TypeInfo TYPE_INFO = TypeInfoUtils.getTypeInfoFromTypeString(TYPE_STR); private String myName; private List<String> myNumbers; private Map<String, Person> contacts; private Timestamp updateTime; private byte[] signature; public AddressBook() {} public AddressBook(String myName, List<String> myNumbers, Map<String, Person> contacts, Timestamp updateTime, byte[] signature) { super(); this.myName = myName; this.myNumbers = myNumbers; this.contacts = contacts; this.updateTime = updateTime; this.signature = signature; } public String getMyName() { return myName; } public void setMyName(String myName) { this.myName = myName; } public List<String> getMyNumbers() { return myNumbers; } public void setMyNumbers(List<String> myNumbers) { this.myNumbers = myNumbers; } public Map<String, Person> getContacts() { return contacts; } public void setContacts(Map<String, Person> contacts) { this.contacts = contacts; } public Timestamp getUpdateTime() { return updateTime; } public void setUpdateTime(Timestamp updateTime) { this.updateTime = updateTime; } public byte[] getSignature() { return signature; } public void setSignature(byte[] signature) { this.signature = signature; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + ((contacts == null) ? 0 : contacts.hashCode()); result = prime * result + ((myName == null) ? 0 : myName.hashCode()); result = prime * result + ((myNumbers == null) ? 0 : myNumbers.hashCode()); result = prime * result + Arrays.hashCode(signature); result = prime * result + ((updateTime == null) ? 0 : updateTime.hashCode()); return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; AddressBook other = (AddressBook) obj; if (contacts == null) { if (other.contacts != null) return false; } else if (!contacts.equals(other.contacts)) return false; if (myName == null) { if (other.myName != null) return false; } else if (!myName.equals(other.myName)) return false; if (myNumbers == null) { if (other.myNumbers != null) return false; } else if (!myNumbers.equals(other.myNumbers)) return false; if (!Arrays.equals(signature, other.signature)) return false; if (updateTime == null) { if (other.updateTime != null) return false; } else if (!updateTime.equals(other.updateTime)) return false; return true; } }
2,277
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/test/orc
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/test/orc/pojos/Person.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.test.orc.pojos; import java.util.List; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; public class Person { public static final String TYPE_STR = "struct<name:string,age:int,number:array<string>>"; public static final TypeInfo TYPE_INFO = TypeInfoUtils.getTypeInfoFromTypeString(TYPE_STR); private String name; private int age; private List<String> numbers; public Person() {} public Person(String name, int age, List<String> numbers) { super(); this.name = name; this.age = age; this.numbers = numbers; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } public List<String> getNumbers() { return numbers; } public void setNumbers(List<String> numbers) { this.numbers = numbers; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + age; result = prime * result + ((name == null) ? 0 : name.hashCode()); result = prime * result + ((numbers == null) ? 0 : numbers.hashCode()); return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Person other = (Person) obj; if (age != other.age) return false; if (name == null) { if (other.name != null) return false; } else if (!name.equals(other.name)) return false; if (numbers == null) { if (other.numbers != null) return false; } else if (!numbers.equals(other.numbers)) return false; return true; } }
2,278
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io/orc/OrcFileTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.junit.After; import org.junit.Before; import com.google.common.io.Files; public class OrcFileTest { protected transient Configuration conf; protected transient FileSystem fs; protected transient Path tempPath; @Before public void setUp() throws IOException { conf = new Configuration(); tempPath = new Path(Files.createTempDir().getAbsolutePath()); fs = tempPath.getFileSystem(conf); } @After public void tearDown() throws IOException { fs.delete(tempPath, true); } }
2,279
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io/orc/OrcFileReaderWriterTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import static org.junit.Assert.*; import java.io.IOException; import java.util.Arrays; import java.util.Iterator; import org.apache.crunch.io.orc.OrcFileSource; import org.apache.crunch.io.orc.OrcFileWriter; import org.apache.crunch.test.orc.pojos.Person; import org.apache.crunch.types.PType; import org.apache.crunch.types.orc.Orcs; import org.apache.hadoop.fs.Path; import org.junit.Test; public class OrcFileReaderWriterTest extends OrcFileTest { @Test public void testReadWrite() throws IOException { Path path = new Path(tempPath, "test.orc"); PType<Person> ptype = Orcs.reflects(Person.class); OrcFileWriter<Person> writer = new OrcFileWriter<Person>(conf, path, ptype); Person p1 = new Person("Alice", 23, Arrays.asList("666-677-9999")); Person p2 = new Person("Bob", 26, null); writer.write(p1); writer.write(p2); writer.close(); OrcFileSource<Person> reader = new OrcFileSource<Person>(path, ptype); Iterator<Person> iter = reader.read(conf).iterator(); assertEquals(p1, iter.next()); assertEquals(p2, iter.next()); } }
2,280
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io/orc/OrcFileReaderFactoryTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import static org.junit.Assert.assertNotNull; import static org.junit.Assert.assertNull; import java.io.IOException; import java.util.List; import org.apache.crunch.types.PType; import org.apache.crunch.types.orc.OrcUtils; import org.apache.crunch.types.orc.Orcs; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; import org.apache.hadoop.io.FloatWritable; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.junit.Test; public class OrcFileReaderFactoryTest extends OrcFileTest { @Test public void testColumnPruning() throws IOException { Path path = new Path(tempPath, "test.orc"); String typeStr = "struct<a:int,b:string,c:float>"; TypeInfo info = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); StructObjectInspector soi = (StructObjectInspector) OrcStruct.createObjectInspector(info); PType<OrcStruct> ptype = Orcs.orcs(info); OrcFileWriter<OrcStruct> writer = new OrcFileWriter<OrcStruct>(conf, path, ptype); writer.write(OrcUtils.createOrcStruct(info, new IntWritable(1), new Text("Alice"), new FloatWritable(167.2f))); writer.write(OrcUtils.createOrcStruct(info, new IntWritable(2), new Text("Bob"), new FloatWritable(179.7f))); writer.close(); int[] readColumns = {1}; OrcFileSource<OrcStruct> source = new OrcFileSource<OrcStruct>(path, ptype, readColumns); for (OrcStruct row : source.read(conf)) { List<Object> list = soi.getStructFieldsDataAsList(row); assertNull(list.get(0)); assertNotNull(list.get(1)); assertNull(list.get(2)); } } }
2,281
0
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/test/java/org/apache/crunch/io/orc/OrcWritableTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import static org.junit.Assert.*; import java.util.List; import org.apache.crunch.types.orc.OrcUtils; import org.apache.crunch.types.writable.WritableDeepCopier; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe; import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; import org.apache.hadoop.io.FloatWritable; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.junit.Test; public class OrcWritableTest { @Test public void testDeepCopy() { String typeStr = "struct<a:int,b:string,c:float>"; TypeInfo info = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); StructObjectInspector oi = (StructObjectInspector) OrcStruct.createObjectInspector(info); BinarySortableSerDe serde = OrcUtils.createBinarySerde(info); OrcStruct struct = OrcUtils.createOrcStruct(info, new IntWritable(1), new Text("Alice"), new FloatWritable(165.3f)); OrcWritable writable = new OrcWritable(); writable.set(struct); assertTrue(struct == writable.get()); writable.setObjectInspector(oi); writable.setSerde(serde); WritableDeepCopier<OrcWritable> deepCopier = new WritableDeepCopier<OrcWritable>(OrcWritable.class); OrcWritable copied = deepCopier.deepCopy(writable); assertTrue(writable != copied); assertEquals(writable, copied); copied.setObjectInspector(oi); copied.setSerde(serde); OrcStruct copiedStruct = copied.get(); assertTrue(struct != copiedStruct); assertEquals(struct, copiedStruct); List<Object> items = oi.getStructFieldsDataAsList(struct); List<Object> copiedItems = oi.getStructFieldsDataAsList(copiedStruct); for (int i = 0; i < items.size(); i++) { assertTrue(items.get(i) != copiedItems.get(i)); assertEquals(items.get(i), copiedItems.get(i)); } OrcWritable copied2 = deepCopier.deepCopy(copied); assertTrue(copied2 != copied); assertEquals(copied2, copied); copied2.setObjectInspector(oi); copied2.setSerde(serde); OrcStruct copiedStruct2 = copied2.get(); assertTrue(copiedStruct2 != copiedStruct); assertEquals(copiedStruct2, copiedStruct); List<Object> copiedItems2 = oi.getStructFieldsDataAsList(copiedStruct2); for (int i = 0; i < items.size(); i++) { assertTrue(copiedItems2.get(i) != copiedItems.get(i)); assertEquals(copiedItems2.get(i), copiedItems.get(i)); } } @Test public void testCompareTo() { String typeStr = "struct<a:int,b:string,c:float>"; TypeInfo info = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); StructObjectInspector oi = (StructObjectInspector) OrcStruct.createObjectInspector(info); BinarySortableSerDe serde = OrcUtils.createBinarySerde(info); OrcStruct struct1 = OrcUtils.createOrcStruct(info, new IntWritable(1), new Text("AAA"), new FloatWritable(3.2f)); OrcStruct struct2 = OrcUtils.createOrcStruct(info, new IntWritable(1), new Text("AAB"), null); OrcStruct struct3 = OrcUtils.createOrcStruct(info, new IntWritable(2), new Text("AAA"), null); OrcStruct struct4 = OrcUtils.createOrcStruct(info, new IntWritable(2), new Text("AAA"), new FloatWritable(3.2f)); OrcWritable writable1 = new OrcWritable(); writable1.set(struct1); OrcWritable writable2 = new OrcWritable(); writable2.set(struct2); OrcWritable writable3 = new OrcWritable(); writable3.set(struct3); OrcWritable writable4 = new OrcWritable(); writable4.set(struct4); writable1.setObjectInspector(oi); writable2.setObjectInspector(oi); writable3.setObjectInspector(oi); writable4.setObjectInspector(oi); writable1.setSerde(serde); writable2.setSerde(serde); writable3.setSerde(serde); writable4.setSerde(serde); assertTrue(writable1.compareTo(writable2) < 0); assertTrue(writable2.compareTo(writable3) < 0); assertTrue(writable1.compareTo(writable3) < 0); assertTrue(writable3.compareTo(writable4) < 0); } }
2,282
0
Create_ds/crunch/crunch-hive/src/it/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/it/java/org/apache/crunch/io/orc/OrcFileSourceTargetIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import static org.junit.Assert.*; import java.io.IOException; import java.io.Serializable; import java.util.Arrays; import java.util.List; import org.apache.crunch.PCollection; import org.apache.crunch.PTable; import org.apache.crunch.Pair; import org.apache.crunch.Pipeline; import org.apache.crunch.TupleN; import org.apache.crunch.impl.mr.MRPipeline; import org.apache.crunch.io.orc.OrcFileSource; import org.apache.crunch.io.orc.OrcFileTarget; import org.apache.crunch.io.orc.OrcFileWriter; import org.apache.crunch.test.orc.pojos.Person; import org.apache.crunch.types.PType; import org.apache.crunch.types.orc.OrcUtils; import org.apache.crunch.types.orc.Orcs; import org.apache.crunch.types.writable.Writables; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.junit.Test; import com.google.common.collect.Lists; public class OrcFileSourceTargetIT extends OrcFileTest implements Serializable { private void generateInputData() throws IOException { String typeStr = "struct<name:string,age:int,numbers:array<string>>"; TypeInfo typeInfo = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); OrcStruct s = OrcUtils.createOrcStruct(typeInfo, new Text("Alice"), new IntWritable(23), Arrays.asList(new Text("919-342-5555"), new Text("650-333-2913"))); OrcFileWriter<OrcStruct> writer = new OrcFileWriter<OrcStruct>(conf, new Path(tempPath, "input.orc"), Orcs.orcs(typeInfo)); writer.write(s); writer.close(); } private <T> void testSourceTarget(PType<T> ptype, T expected) { Path inputPath = new Path(tempPath, "input.orc"); Path outputPath = new Path(tempPath, "output"); Pipeline pipeline = new MRPipeline(OrcFileSourceTargetIT.class, conf); OrcFileSource<T> source = new OrcFileSource<T>(inputPath, ptype); PCollection<T> rows = pipeline.read(source); List<T> result = Lists.newArrayList(rows.materialize()); assertEquals(Lists.newArrayList(expected), result); OrcFileTarget target = new OrcFileTarget(outputPath); pipeline.write(rows, target); assertTrue(pipeline.done().succeeded()); OrcFileReaderFactory<T> reader = new OrcFileReaderFactory<T>(ptype); List<T> newResult = Lists.newArrayList(reader.read(fs, inputPath)); assertEquals(Lists.newArrayList(expected), newResult); } @Test public void testOrcs() throws IOException { generateInputData(); String typeStr = "struct<name:string,age:int,numbers:array<string>>"; TypeInfo typeInfo = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); OrcStruct expected = OrcUtils.createOrcStruct(typeInfo, new Text("Alice"), new IntWritable(23), Arrays.asList(new Text("919-342-5555"), new Text("650-333-2913"))); testSourceTarget(Orcs.orcs(typeInfo), expected); } @Test public void testReflects() throws IOException { generateInputData(); Person expected = new Person("Alice", 23, Arrays.asList("919-342-5555", "650-333-2913")); testSourceTarget(Orcs.reflects(Person.class), expected); } @Test public void testTuples() throws IOException { generateInputData(); TupleN expected = new TupleN("Alice", 23, Arrays.asList("919-342-5555", "650-333-2913")); testSourceTarget(Orcs.tuples(Writables.strings(), Writables.ints(), Writables.collections(Writables.strings())), expected); } @Test public void testColumnPruning() throws IOException { generateInputData(); Pipeline pipeline = new MRPipeline(OrcFileSourceTargetIT.class, conf); int[] readColumns = {0, 1}; OrcFileSource<Person> source = new OrcFileSource<Person>(new Path(tempPath, "input.orc"), Orcs.reflects(Person.class), readColumns); PCollection<Person> rows = pipeline.read(source); List<Person> result = Lists.newArrayList(rows.materialize()); Person expected = new Person("Alice", 23, null); assertEquals(Lists.newArrayList(expected), result); } @Test public void testGrouping() throws IOException { String typeStr = "struct<name:string,age:int,numbers:array<string>>"; TypeInfo typeInfo = TypeInfoUtils.getTypeInfoFromTypeString(typeStr); OrcStruct s1 = OrcUtils.createOrcStruct(typeInfo, new Text("Bob"), new IntWritable(28), null); OrcStruct s2 = OrcUtils.createOrcStruct(typeInfo, new Text("Bob"), new IntWritable(28), null); OrcStruct s3 = OrcUtils.createOrcStruct(typeInfo, new Text("Alice"), new IntWritable(23), Arrays.asList(new Text("444-333-9999"))); OrcStruct s4 = OrcUtils.createOrcStruct(typeInfo, new Text("Alice"), new IntWritable(36), Arrays.asList(new Text("919-342-5555"), new Text("650-333-2913"))); Path inputPath = new Path(tempPath, "input.orc"); OrcFileWriter<OrcStruct> writer = new OrcFileWriter<OrcStruct>(conf, inputPath, Orcs.orcs(typeInfo)); writer.write(s1); writer.write(s2); writer.write(s3); writer.write(s4); writer.close(); Pipeline pipeline = new MRPipeline(OrcFileSourceTargetIT.class, conf); OrcFileSource<Person> source = new OrcFileSource<Person>(inputPath, Orcs.reflects(Person.class)); PCollection<Person> rows = pipeline.read(source); PTable<Person, Long> count = rows.count(); List<Pair<Person, Long>> result = Lists.newArrayList(count.materialize()); List<Pair<Person, Long>> expected = Lists.newArrayList( Pair.of(new Person("Alice", 23, Arrays.asList("444-333-9999")), 1L), Pair.of(new Person("Alice", 36, Arrays.asList("919-342-5555", "650-333-2913")), 1L), Pair.of(new Person("Bob", 28, null), 2L)); assertEquals(expected, result); } }
2,283
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/types
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/types/orc/Orcs.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.types.orc; import java.lang.reflect.Field; import java.util.HashMap; import java.util.Map; import org.apache.crunch.MapFn; import org.apache.crunch.Tuple; import org.apache.crunch.TupleN; import org.apache.crunch.fn.CompositeMapFn; import org.apache.crunch.io.orc.OrcWritable; import org.apache.crunch.types.PType; import org.apache.crunch.types.TupleFactory; import org.apache.crunch.types.writable.WritableType; import org.apache.crunch.types.writable.Writables; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory.ObjectInspectorOptions; import org.apache.hadoop.hive.serde2.objectinspector.SettableStructObjectInspector; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; /** * Utilities to create PTypes for ORC serialization / deserialization * */ public class Orcs { /** * Create a PType to directly use OrcStruct as the deserialized format. This * is the fastest way for serialization/deserializations. However, users * need to use ObjectInspectors to handle the OrcStruct. Currently, void and * union types are not supported. * * @param typeInfo * @return */ public static final PType<OrcStruct> orcs(TypeInfo typeInfo) { return Writables.derived(OrcStruct.class, new OrcInFn(typeInfo), new OrcOutFn(typeInfo), Writables.writables(OrcWritable.class)); } /** * Create a PType which uses reflection to serialize/deserialize java POJOs * to/from ORC. There are some restrictions of the POJO: 1) it must have a * default, no-arg constructor; 2) All of its fields must be Hive primitive * types or collection types that have Hive equivalents; 3) Void and Union * are not supported yet. * * @param clazz * @return */ public static final <T> PType<T> reflects(Class<T> clazz) { TypeInfo reflectInfo = createReflectTypeInfo(clazz); return Writables.derived(clazz, new ReflectInFn<T>(clazz), new ReflectOutFn<T>(clazz), orcs(reflectInfo)); } private static TypeInfo createReflectTypeInfo(Class<?> clazz) { ObjectInspector reflectOi = ObjectInspectorFactory .getReflectionObjectInspector(clazz, ObjectInspectorOptions.JAVA); return TypeInfoUtils.getTypeInfoFromObjectInspector(reflectOi); } /** * Create a tuple-based PType. Users can use other Crunch PTypes (such as * Writables.ints(), Orcs.reflects(), Writables.pairs(), ...) to construct * the PType. Currently, nulls and unions are not supported. * * @param ptypes * @return */ public static final PType<TupleN> tuples(PType... ptypes) { TypeInfo tupleInfo = createTupleTypeInfo(ptypes); return derived(TupleN.class, new TupleInFn<TupleN>(TupleFactory.TUPLEN, ptypes), new TupleOutFn<TupleN>(ptypes), orcs(tupleInfo), ptypes); } // derived, but override subtypes static <S, T> PType<T> derived(Class<T> clazz, MapFn<S, T> inputFn, MapFn<T, S> outputFn, PType<S> base, PType[] subTypes) { WritableType<S, ?> wt = (WritableType<S, ?>) base; MapFn input = new CompositeMapFn(wt.getInputMapFn(), inputFn); MapFn output = new CompositeMapFn(outputFn, wt.getOutputMapFn()); return new WritableType(clazz, wt.getSerializationClass(), input, output, subTypes); } private static TypeInfo createTupleTypeInfo(PType... ptypes) { ObjectInspector tupleOi = new TupleObjectInspector(null, ptypes); return TypeInfoUtils.getTypeInfoFromObjectInspector(tupleOi); } private static class OrcInFn extends MapFn<OrcWritable, OrcStruct> { private TypeInfo typeInfo; private transient ObjectInspector oi; private transient BinarySortableSerDe serde; public OrcInFn(TypeInfo typeInfo) { this.typeInfo = typeInfo; } @Override public void initialize() { oi = OrcStruct.createObjectInspector(typeInfo); serde = OrcUtils.createBinarySerde(typeInfo); } @Override public OrcStruct map(OrcWritable input) { input.setObjectInspector(oi); input.setSerde(serde); return input.get(); } } private static class OrcOutFn extends MapFn<OrcStruct, OrcWritable> { private TypeInfo typeInfo; private transient ObjectInspector oi; private transient BinarySortableSerDe serde; public OrcOutFn(TypeInfo typeInfo) { this.typeInfo = typeInfo; } @Override public void initialize() { oi = OrcStruct.createObjectInspector(typeInfo); serde = OrcUtils.createBinarySerde(typeInfo); } @Override public OrcWritable map(OrcStruct input) { OrcWritable output = new OrcWritable(); output.setObjectInspector(oi); output.setSerde(serde); output.set(input); return output; } } private static Map<Class<?>, Field[]> fieldsCache = new HashMap<Class<?>, Field[]>(); private static class ReflectInFn<T> extends MapFn<OrcStruct, T> { private Class<T> typeClass; private TypeInfo typeInfo; private transient ObjectInspector reflectOi; private transient ObjectInspector orcOi; @Override public void initialize() { reflectOi = ObjectInspectorFactory .getReflectionObjectInspector(typeClass, ObjectInspectorOptions.JAVA); orcOi = OrcStruct.createObjectInspector(typeInfo); } public ReflectInFn(Class<T> typeClass) { this.typeClass = typeClass; typeInfo = createReflectTypeInfo(typeClass); } @Override public T map(OrcStruct input) { return (T) OrcUtils.convert(input, orcOi, reflectOi); } } private static class ReflectOutFn<T> extends MapFn<T, OrcStruct> { private Class<T> typeClass; private TypeInfo typeInfo; private transient ObjectInspector reflectOi; private transient SettableStructObjectInspector orcOi; @Override public void initialize() { reflectOi = ObjectInspectorFactory.getReflectionObjectInspector(typeClass, ObjectInspectorOptions.JAVA); orcOi = (SettableStructObjectInspector) OrcStruct.createObjectInspector(typeInfo); } public ReflectOutFn(Class<T> typeClass) { this.typeClass = typeClass; typeInfo = createReflectTypeInfo(typeClass); } @Override public OrcStruct map(T input) { return (OrcStruct) OrcUtils.convert(input, reflectOi, orcOi); } } private static class TupleInFn<T extends Tuple> extends MapFn<OrcStruct, T> { private PType[] ptypes; private TupleFactory<T> tupleFactory; private transient ObjectInspector tupleOi; private transient ObjectInspector orcOi; public TupleInFn(TupleFactory<T> tupleFactory, PType... ptypes) { this.tupleFactory = tupleFactory; this.ptypes = ptypes; } @Override public void initialize() { tupleOi = new TupleObjectInspector<T>(tupleFactory, ptypes); TypeInfo info = TypeInfoUtils.getTypeInfoFromObjectInspector(tupleOi); orcOi = OrcStruct.createObjectInspector(info); } @Override public T map(OrcStruct input) { return (T) OrcUtils.convert(input, orcOi, tupleOi); } } private static class TupleOutFn<T extends Tuple> extends MapFn<T, OrcStruct> { private PType[] ptypes; private transient ObjectInspector tupleOi; private transient ObjectInspector orcOi; public TupleOutFn(PType... ptypes) { this.ptypes = ptypes; } @Override public void initialize() { tupleOi = new TupleObjectInspector<T>(null, ptypes); TypeInfo info = TypeInfoUtils.getTypeInfoFromObjectInspector(tupleOi); orcOi = OrcStruct.createObjectInspector(info); } @Override public OrcStruct map(T input) { return (OrcStruct) OrcUtils.convert(input, tupleOi, orcOi); } } }
2,284
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/types
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/types/orc/TupleObjectInspector.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.types.orc; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Collection; import java.util.List; import java.util.Map; import org.apache.crunch.Tuple; import org.apache.crunch.Union; import org.apache.crunch.types.PType; import org.apache.crunch.types.TupleFactory; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory; import org.apache.hadoop.hive.serde2.objectinspector.StructField; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory.ObjectInspectorOptions; import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.AbstractPrimitiveJavaObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableBinaryObjectInspector; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory; import org.apache.hadoop.io.BytesWritable; /** * An object inspector to define the structure of Crunch Tuples * */ public class TupleObjectInspector<T extends Tuple> extends StructObjectInspector { private TupleFactory<T> tupleFactory; private List<TupleField> fields; public TupleObjectInspector(TupleFactory<T> tupleFactory, PType... ptypes) { this.tupleFactory = tupleFactory; fields = new ArrayList<TupleField>(); for (int i = 0; i < ptypes.length; i++) { TupleField field = new TupleField(i, ptypes[i]); fields.add(field); } } static class TupleField implements StructField { private int index; private ObjectInspector oi; public TupleField(int index, PType<?> ptype) { this.index = index; oi = createObjectInspector(ptype); } private ObjectInspector createObjectInspector(PType<?> ptype) { Class typeClass = ptype.getTypeClass(); if (typeClass == Union.class || typeClass == Void.class) { throw new IllegalArgumentException(typeClass.getName() + " is not supported yet"); } ObjectInspector result; if (typeClass == ByteBuffer.class) { result = new ByteBufferObjectInspector(); } else if (typeClass == Collection.class) { ObjectInspector itemOi = createObjectInspector(ptype.getSubTypes().get(0)); result = ObjectInspectorFactory.getStandardListObjectInspector(itemOi); } else if (typeClass == Map.class) { ObjectInspector keyOi = ObjectInspectorFactory .getReflectionObjectInspector(String.class, ObjectInspectorOptions.JAVA); ObjectInspector valueOi = createObjectInspector(ptype.getSubTypes().get(0)); result = ObjectInspectorFactory.getStandardMapObjectInspector(keyOi, valueOi); } else if (Tuple.class.isAssignableFrom(typeClass)) { result = new TupleObjectInspector(TupleFactory.getTupleFactory(typeClass), ptype.getSubTypes().toArray(new PType[0])); } else { result = ObjectInspectorFactory.getReflectionObjectInspector(typeClass, ObjectInspectorOptions.JAVA); } return result; } @Override public String getFieldName() { return "_col" + index; } @Override public ObjectInspector getFieldObjectInspector() { return oi; } @Override public int getFieldID() { return index; } @Override public String getFieldComment() { return null; } } @Override public String getTypeName() { StringBuilder buffer = new StringBuilder(); buffer.append("struct<"); for (int i = 0; i < fields.size(); ++i) { StructField field = fields.get(i); if (i != 0) { buffer.append(","); } buffer.append(field.getFieldName()); buffer.append(":"); buffer.append(field.getFieldObjectInspector().getTypeName()); } buffer.append(">"); return buffer.toString(); } @Override public Category getCategory() { return Category.STRUCT; } public T create(Object... values) { return tupleFactory.makeTuple(values); } @Override public List<? extends StructField> getAllStructFieldRefs() { return fields; } @Override public StructField getStructFieldRef(String fieldName) { for (StructField field : fields) { if (field.getFieldName().equals(fieldName)) { return field; } } return null; } @Override public Object getStructFieldData(Object data, StructField fieldRef) { TupleField field = (TupleField) fieldRef; return ((T) data).get(field.index); } @Override public List<Object> getStructFieldsDataAsList(Object data) { T tuple = (T) data; List<Object> result = new ArrayList<Object>(); for (int i = 0; i < tuple.size(); i++) { result.add(tuple.get(i)); } return result; } static class ByteBufferObjectInspector extends AbstractPrimitiveJavaObjectInspector implements SettableBinaryObjectInspector { ByteBufferObjectInspector() { super(TypeInfoFactory.binaryTypeInfo); } @Override public ByteBuffer copyObject(Object o) { if (o == null) { return null; } byte[] oldBytes = getPrimitiveJavaObject(o); byte[] copiedBytes = new byte[oldBytes.length]; System.arraycopy(oldBytes, 0, copiedBytes, 0, oldBytes.length); ByteBuffer duplicate = ByteBuffer.wrap(copiedBytes); return duplicate; } @Override public BytesWritable getPrimitiveWritableObject(Object o) { if (o == null) { return null; } ByteBuffer buf = (ByteBuffer) o; BytesWritable bw = new BytesWritable(); bw.set(buf.array(), buf.arrayOffset(), buf.limit()); return bw; } @Override public byte[] getPrimitiveJavaObject(Object o) { if (o == null) { return null; } ByteBuffer buf = (ByteBuffer) o; byte[] b = new byte[buf.limit()]; System.arraycopy(buf.array(), buf.arrayOffset(), b, 0, b.length); return b; } @Override public Object set(Object o, byte[] b) { throw new UnsupportedOperationException("set is not supported"); } @Override public Object set(Object o, BytesWritable bw) { throw new UnsupportedOperationException("set is not supported"); } @Override public ByteBuffer create(byte[] bb) { return bb == null ? null : ByteBuffer.wrap(bb); } @Override public ByteBuffer create(BytesWritable bw) { return bw == null ? null : ByteBuffer.wrap(bw.getBytes()); } } }
2,285
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/types
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/types/orc/OrcUtils.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.types.orc; import java.sql.Date; import java.sql.Timestamp; import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.crunch.CrunchRuntimeException; import org.apache.hadoop.hive.common.type.HiveChar; import org.apache.hadoop.hive.common.type.HiveDecimal; import org.apache.hadoop.hive.common.type.HiveVarchar; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde.serdeConstants; import org.apache.hadoop.hive.serde2.SerDeException; import org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe; import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.MapObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory; import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.SettableListObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.SettableMapObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.SettableStructObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.StructField; import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory.ObjectInspectorOptions; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableBinaryObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableBooleanObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableByteObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableDateObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableDoubleObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableFloatObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableHiveCharObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableHiveDecimalObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableHiveVarcharObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableIntObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableLongObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableShortObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableStringObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.SettableTimestampObjectInspector; import org.apache.hadoop.hive.serde2.typeinfo.StructTypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; public class OrcUtils { /** * Generate TypeInfo for a given java class based on reflection * * @param typeClass * @return */ public static TypeInfo getTypeInfo(Class<?> typeClass) { ObjectInspector oi = ObjectInspectorFactory .getReflectionObjectInspector(typeClass, ObjectInspectorOptions.JAVA); return TypeInfoUtils.getTypeInfoFromObjectInspector(oi); } /** * Create an object of OrcStruct given a type string and a list of objects * * @param typeInfo * @param objs * @return */ public static OrcStruct createOrcStruct(TypeInfo typeInfo, Object... objs) { SettableStructObjectInspector oi = (SettableStructObjectInspector) OrcStruct .createObjectInspector(typeInfo); List<StructField> fields = (List<StructField>) oi.getAllStructFieldRefs(); OrcStruct result = (OrcStruct) oi.create(); result.setNumFields(fields.size()); for (int i = 0; i < fields.size(); i++) { oi.setStructFieldData(result, fields.get(i), objs[i]); } return result; } /** * Create a binary serde for OrcStruct serialization/deserialization * * @param typeInfo * @return */ public static BinarySortableSerDe createBinarySerde(TypeInfo typeInfo){ BinarySortableSerDe serde = new BinarySortableSerDe(); StringBuffer nameSb = new StringBuffer(); StringBuffer typeSb = new StringBuffer(); StructTypeInfo sti = (StructTypeInfo) typeInfo; for (String name : sti.getAllStructFieldNames()) { nameSb.append(name); nameSb.append(','); } for (TypeInfo info : sti.getAllStructFieldTypeInfos()) { typeSb.append(info.toString()); typeSb.append(','); } Properties tbl = new Properties(); String names = nameSb.length() > 0 ? nameSb.substring(0, nameSb.length() - 1) : ""; String types = typeSb.length() > 0 ? typeSb.substring(0, typeSb.length() - 1) : ""; tbl.setProperty(serdeConstants.LIST_COLUMNS, names); tbl.setProperty(serdeConstants.LIST_COLUMN_TYPES, types); try { serde.initialize(null, tbl); } catch (SerDeException e) { throw new CrunchRuntimeException("Unable to initialize binary serde"); } return serde; } /** * Convert an object from / to OrcStruct * * @param from * @param fromOi * @param toOi * @return */ public static Object convert(Object from, ObjectInspector fromOi, ObjectInspector toOi) { if (from == null) { return null; } Object to; switch (fromOi.getCategory()) { case PRIMITIVE: PrimitiveObjectInspector fromPoi = (PrimitiveObjectInspector) fromOi; switch (fromPoi.getPrimitiveCategory()) { case FLOAT: SettableFloatObjectInspector floatOi = (SettableFloatObjectInspector) toOi; return floatOi.create((Float) fromPoi.getPrimitiveJavaObject(from)); case DOUBLE: SettableDoubleObjectInspector doubleOi = (SettableDoubleObjectInspector) toOi; return doubleOi.create((Double) fromPoi.getPrimitiveJavaObject(from)); case BOOLEAN: SettableBooleanObjectInspector boolOi = (SettableBooleanObjectInspector) toOi; return boolOi.create((Boolean) fromPoi.getPrimitiveJavaObject(from)); case INT: SettableIntObjectInspector intOi = (SettableIntObjectInspector) toOi; return intOi.create((Integer) fromPoi.getPrimitiveJavaObject(from)); case LONG: SettableLongObjectInspector longOi = (SettableLongObjectInspector) toOi; return longOi.create((Long) fromPoi.getPrimitiveJavaObject(from)); case STRING: SettableStringObjectInspector strOi = (SettableStringObjectInspector) toOi; return strOi.create((String) fromPoi.getPrimitiveJavaObject(from)); case BYTE: SettableByteObjectInspector byteOi = (SettableByteObjectInspector) toOi; return byteOi.create((Byte) fromPoi.getPrimitiveJavaObject(from)); case SHORT: SettableShortObjectInspector shortOi = (SettableShortObjectInspector) toOi; return shortOi.create((Short) fromPoi.getPrimitiveJavaObject(from)); case BINARY: SettableBinaryObjectInspector binOi = (SettableBinaryObjectInspector) toOi; return binOi.create((byte[]) fromPoi.getPrimitiveJavaObject(from)); case TIMESTAMP: SettableTimestampObjectInspector timeOi = (SettableTimestampObjectInspector) toOi; return timeOi.create((Timestamp) fromPoi.getPrimitiveJavaObject(from)); case DATE: SettableDateObjectInspector dateOi = (SettableDateObjectInspector) toOi; return dateOi.create((Date) fromPoi.getPrimitiveJavaObject(from)); case DECIMAL: SettableHiveDecimalObjectInspector decimalOi = (SettableHiveDecimalObjectInspector) toOi; return decimalOi.create((HiveDecimal) fromPoi.getPrimitiveJavaObject(from)); case CHAR: SettableHiveCharObjectInspector charOi = (SettableHiveCharObjectInspector) toOi; return charOi.create((HiveChar) fromPoi.getPrimitiveJavaObject(from)); case VARCHAR: SettableHiveVarcharObjectInspector varcharOi = (SettableHiveVarcharObjectInspector) toOi; return varcharOi.create((HiveVarchar) fromPoi.getPrimitiveJavaObject(from)); case VOID: throw new IllegalArgumentException("Void type is not supported yet"); default: throw new IllegalArgumentException("Unknown primitive type " + (fromPoi).getPrimitiveCategory()); } case STRUCT: StructObjectInspector fromSoi = (StructObjectInspector) fromOi; List<StructField> fromFields = (List<StructField>) fromSoi.getAllStructFieldRefs(); List<Object> fromItems = fromSoi.getStructFieldsDataAsList(from); // this is a tuple. use TupleObjectInspector to construct the result if (toOi instanceof TupleObjectInspector) { TupleObjectInspector toToi = (TupleObjectInspector) toOi; List<StructField> toFields = (List<StructField>) toToi.getAllStructFieldRefs(); Object[] values = new Object[fromItems.size()]; for (int i = 0; i < fromItems.size(); i++) { values[i] = convert(fromItems.get(i), fromFields.get(i).getFieldObjectInspector(), toFields.get(i).getFieldObjectInspector()); } return toToi.create(values); } SettableStructObjectInspector toSoi = (SettableStructObjectInspector) toOi; List<StructField> toFields = (List<StructField>) toSoi.getAllStructFieldRefs(); to = toSoi.create(); for (int i = 0; i < fromItems.size(); i++) { Object converted = convert(fromItems.get(i), fromFields.get(i).getFieldObjectInspector(), toFields.get(i).getFieldObjectInspector()); toSoi.setStructFieldData(to, toFields.get(i), converted); } return to; case MAP: MapObjectInspector fromMoi = (MapObjectInspector) fromOi; SettableMapObjectInspector toMoi = (SettableMapObjectInspector) toOi; to = toMoi.create(); // do not reuse for (Map.Entry<?, ?> entry : fromMoi.getMap(from).entrySet()) { Object convertedKey = convert(entry.getKey(), fromMoi.getMapKeyObjectInspector(), toMoi.getMapKeyObjectInspector()); Object convertedValue = convert(entry.getValue(), fromMoi.getMapValueObjectInspector(), toMoi.getMapValueObjectInspector()); toMoi.put(to, convertedKey, convertedValue); } return to; case LIST: ListObjectInspector fromLoi = (ListObjectInspector) fromOi; List<?> fromList = fromLoi.getList(from); SettableListObjectInspector toLoi = (SettableListObjectInspector) toOi; to = toLoi.create(fromList.size()); // do not reuse for (int i = 0; i < fromList.size(); i++) { Object converted = convert(fromList.get(i), fromLoi.getListElementObjectInspector(), toLoi.getListElementObjectInspector()); toLoi.set(to, i, converted); } return to; case UNION: throw new IllegalArgumentException("Union type is not supported yet"); default: throw new IllegalArgumentException("Unknown type " + fromOi.getCategory()); } } }
2,286
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcCrunchOutputFormat.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.io.IOException; import org.apache.hadoop.hive.ql.io.orc.OrcNewOutputFormat; import org.apache.hadoop.hive.ql.io.orc.OrcSerde; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class OrcCrunchOutputFormat extends FileOutputFormat<NullWritable, OrcWritable> { private OrcNewOutputFormat outputFormat = new OrcNewOutputFormat(); @Override public RecordWriter<NullWritable, OrcWritable> getRecordWriter( TaskAttemptContext job) throws IOException, InterruptedException { RecordWriter<NullWritable, Writable> writer = outputFormat.getRecordWriter(job); return new OrcCrunchRecordWriter(writer); } static class OrcCrunchRecordWriter extends RecordWriter<NullWritable, OrcWritable> { private final RecordWriter<NullWritable, Writable> writer; private final OrcSerde orcSerde; OrcCrunchRecordWriter(RecordWriter<NullWritable, Writable> writer) { this.writer = writer; this.orcSerde = new OrcSerde(); } @Override public void write(NullWritable key, OrcWritable value) throws IOException, InterruptedException { if (value.get() == null) { throw new NullPointerException("Cannot write null records to orc file"); } writer.write(key, orcSerde.serialize(value.get(), value.getObjectInspector())); } @Override public void close(TaskAttemptContext context) throws IOException, InterruptedException { writer.close(context); } } }
2,287
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcFileSourceTarget.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import org.apache.crunch.io.FileNamingScheme; import org.apache.crunch.io.PathTarget; import org.apache.crunch.io.ReadableSource; import org.apache.crunch.io.SequentialFileNamingScheme; import org.apache.crunch.io.impl.ReadableSourcePathTargetImpl; import org.apache.crunch.types.PType; import org.apache.hadoop.fs.Path; public class OrcFileSourceTarget<T> extends ReadableSourcePathTargetImpl<T> { public OrcFileSourceTarget(Path path, PType<T> ptype) { this(path, ptype, SequentialFileNamingScheme.getInstance()); } public OrcFileSourceTarget(Path path, PType<T> ptype, FileNamingScheme fileNameScheme) { this(new OrcFileSource<T>(path, ptype), new OrcFileTarget(path), fileNameScheme); } public OrcFileSourceTarget(ReadableSource<T> source, PathTarget target, FileNamingScheme fileNamingScheme) { super(source, target, fileNamingScheme); } @Override public String toString() { return target.toString(); } }
2,288
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcFileTarget.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import org.apache.crunch.SourceTarget; import org.apache.crunch.io.FileNamingScheme; import org.apache.crunch.io.SequentialFileNamingScheme; import org.apache.crunch.io.impl.FileTargetImpl; import org.apache.crunch.types.PType; import org.apache.hadoop.fs.Path; public class OrcFileTarget extends FileTargetImpl { public OrcFileTarget(String path) { this(new Path(path)); } public OrcFileTarget(Path path) { this(path, SequentialFileNamingScheme.getInstance()); } public OrcFileTarget(Path path, FileNamingScheme fileNamingScheme) { super(path, OrcCrunchOutputFormat.class, fileNamingScheme); } @Override public String toString() { return "Orc(" + path.toString() + ")"; } @Override public <T> SourceTarget<T> asSourceTarget(PType<T> ptype) { return new OrcFileSourceTarget<T>(path, ptype).fileSystem(getFileSystem()); } }
2,289
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcFileSource.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.io.IOException; import java.util.List; import org.apache.crunch.ReadableData; import org.apache.crunch.io.FormatBundle; import org.apache.crunch.io.ReadableSource; import org.apache.crunch.io.impl.FileSourceImpl; import org.apache.crunch.types.PType; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.serde2.ColumnProjectionUtils; public class OrcFileSource<T> extends FileSourceImpl<T> implements ReadableSource<T> { private int[] readColumns; public static final String HIVE_READ_ALL_COLUMNS = "hive.io.file.read.all.columns"; private static <S> FormatBundle<OrcCrunchInputFormat> getBundle(int[] readColumns) { FormatBundle<OrcCrunchInputFormat> fb = FormatBundle.forInput(OrcCrunchInputFormat.class); if (readColumns != null) { // setting configurations for column pruning fb.set(HIVE_READ_ALL_COLUMNS, "false"); fb.set(ColumnProjectionUtils.READ_COLUMN_IDS_CONF_STR, getColumnIdsStr(readColumns)); } return fb; } static String getColumnIdsStr(int[] columns) { StringBuilder sb = new StringBuilder(); for (int c : columns) { sb.append(c); sb.append(','); } return sb.length() > 0 ? sb.substring(0, sb.length() - 1) : ""; } public OrcFileSource(Path path, PType<T> ptype) { this(path, ptype, null); } /** * Constructor for column pruning optimization * * @param path * @param ptype * @param readColumns columns which will be read */ public OrcFileSource(Path path, PType<T> ptype, int[] readColumns) { super(path, ptype, getBundle(readColumns)); this.readColumns = readColumns; } public OrcFileSource(List<Path> paths, PType<T> ptype) { this(paths, ptype, null); } /** * Constructor for column pruning optimization * * @param paths * @param ptype * @param columns columns which will be reserved */ public OrcFileSource(List<Path> paths, PType<T> ptype, int[] columns) { super(paths, ptype, getBundle(columns)); } @Override public String toString() { return "Orc(" + pathsAsString() + ")"; } @Override public Iterable<T> read(Configuration conf) throws IOException { return read(conf, new OrcFileReaderFactory<T>(ptype, readColumns)); } @Override public ReadableData<T> asReadable() { return new OrcReadableData<T>(this.paths, ptype, readColumns); } }
2,290
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcReadableData.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.util.List; import org.apache.crunch.io.FileReaderFactory; import org.apache.crunch.io.impl.ReadableDataImpl; import org.apache.crunch.types.PType; import org.apache.hadoop.fs.Path; public class OrcReadableData<T> extends ReadableDataImpl<T> { private final PType<T> ptype; private final int[] readColumns; public OrcReadableData(List<Path> paths, PType<T> ptype) { this(paths, ptype, null); } public OrcReadableData(List<Path> paths, PType<T> ptype, int[] readColumns) { super(paths); this.ptype = ptype; this.readColumns = readColumns; } @Override public FileReaderFactory<T> getFileReaderFactory() { return new OrcFileReaderFactory<T>(ptype, readColumns); } }
2,291
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcWritable.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.types.orc.OrcUtils; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde2.SerDeException; import org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.WritableComparable; public class OrcWritable implements WritableComparable<OrcWritable> { private OrcStruct orc; private ObjectInspector oi; // object inspector for orc struct private BytesWritable blob; // serialized from orc struct private BinarySortableSerDe serde; @Override public void write(DataOutput out) throws IOException { serialize(); blob.write(out); } private void serialize() { try { if (blob == null) { // Make a copy since BinarySortableSerDe will reuse the byte buffer. // This is not very efficient for the current implementation. Shall we // implement a no-reuse version of BinarySortableSerDe? byte[] bytes = ((BytesWritable) serde.serialize(orc, oi)).getBytes(); byte[] newBytes = new byte[bytes.length]; System.arraycopy(bytes, 0, newBytes, 0, bytes.length); blob = new BytesWritable(newBytes); } } catch (SerDeException e) { throw new CrunchRuntimeException("Unable to serialize object: " + orc); } } @Override public void readFields(DataInput in) throws IOException { blob = new BytesWritable(); blob.readFields(in); orc = null; // the orc struct is stale } @Override public int compareTo(OrcWritable arg0) { serialize(); arg0.serialize(); return ((Comparable) blob).compareTo((Comparable) arg0.blob); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; return compareTo((OrcWritable) obj) == 0; } @Override public int hashCode() { return blob == null ? 0 : blob.hashCode(); } public void setSerde(BinarySortableSerDe serde) { this.serde = serde; } public void setObjectInspector(ObjectInspector oi) { this.oi = oi; } public ObjectInspector getObjectInspector() { return oi; } public void set(OrcStruct orcStruct) { this.orc = orcStruct; blob = null; // the blob is stale } public OrcStruct get() { if (orc == null && blob != null) { makeOrcStruct(); } return orc; } private void makeOrcStruct() { try { Object row = serde.deserialize(blob); StructObjectInspector rowOi = (StructObjectInspector) serde.getObjectInspector(); orc = (OrcStruct) OrcUtils.convert(row, rowOi, oi); } catch (SerDeException e) { throw new CrunchRuntimeException("Unable to deserialize blob: " + blob); } } }
2,292
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcCrunchInputFormat.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.io.IOException; import java.util.List; import org.apache.hadoop.hive.ql.io.orc.OrcNewInputFormat; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.InputFormat; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; public class OrcCrunchInputFormat extends InputFormat<NullWritable, OrcWritable> { private OrcNewInputFormat inputFormat = new OrcNewInputFormat(); @Override public List<InputSplit> getSplits(JobContext context) throws IOException, InterruptedException { return inputFormat.getSplits(context); } @Override public RecordReader<NullWritable, OrcWritable> createRecordReader( InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { RecordReader<NullWritable, OrcStruct> reader = inputFormat.createRecordReader( split, context); return new OrcCrunchRecordReader(reader); } static class OrcCrunchRecordReader extends RecordReader<NullWritable, OrcWritable> { private final RecordReader<NullWritable, OrcStruct> reader; private OrcWritable value = new OrcWritable(); OrcCrunchRecordReader(RecordReader<NullWritable, OrcStruct> reader) { this.reader = reader; } @Override public void close() throws IOException { reader.close(); } @Override public NullWritable getCurrentKey() throws IOException, InterruptedException { return NullWritable.get(); } @Override public OrcWritable getCurrentValue() throws IOException, InterruptedException { return value; } @Override public float getProgress() throws IOException, InterruptedException { return reader.getProgress(); } @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { } @Override public boolean nextKeyValue() throws IOException, InterruptedException { boolean hasNext = reader.nextKeyValue(); if (hasNext) { value.set(reader.getCurrentValue()); } return hasNext; } } }
2,293
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcFileWriter.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.io.Closeable; import java.io.IOException; import org.apache.crunch.MapFn; import org.apache.crunch.types.PType; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat; import org.apache.hadoop.hive.ql.io.orc.OrcSerde; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.OutputFormat; import org.apache.hadoop.mapred.RecordWriter; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.util.Progressable; /** * A writer class which is corresponding to OrcFileReaderFactory. Mainly used * for test purpose * * @param <T> */ public class OrcFileWriter<T> implements Closeable { private RecordWriter<NullWritable, Object> writer; private MapFn<T, Object> mapFn; private final OrcSerde serde; static class NullProgress implements Progressable { @Override public void progress() { } } public OrcFileWriter(Configuration conf, Path path, PType<T> pType) throws IOException { JobConf jobConf = new JobConf(conf); OutputFormat outputFormat = new OrcOutputFormat(); writer = outputFormat.getRecordWriter(null, jobConf, path.toString(), new NullProgress()); mapFn = pType.getOutputMapFn(); mapFn.initialize(); serde = new OrcSerde(); } public void write(T t) throws IOException { OrcWritable ow = (OrcWritable) mapFn.map(t); if (ow.get() == null) { throw new NullPointerException("Cannot write null records to orc file"); } writer.write(NullWritable.get(), serde.serialize(ow.get(), ow.getObjectInspector())); } @Override public void close() throws IOException { writer.close(Reporter.NULL); } }
2,294
0
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io
Create_ds/crunch/crunch-hive/src/main/java/org/apache/crunch/io/orc/OrcFileReaderFactory.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.io.orc; import java.util.Iterator; import org.apache.crunch.CrunchRuntimeException; import org.apache.crunch.MapFn; import org.apache.crunch.io.FileReaderFactory; import org.apache.crunch.types.PType; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.ql.io.orc.OrcInputFormat; import org.apache.hadoop.hive.ql.io.orc.OrcStruct; import org.apache.hadoop.hive.serde2.ColumnProjectionUtils; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapred.FileSplit; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.RecordReader; import org.apache.hadoop.mapred.Reporter; import com.google.common.collect.UnmodifiableIterator; public class OrcFileReaderFactory<T> implements FileReaderFactory<T> { private MapFn<Object, T> inputFn; private OrcInputFormat inputFormat = new OrcInputFormat(); private int[] readColumns; public OrcFileReaderFactory(PType<T> ptype) { this(ptype, null); } public OrcFileReaderFactory(PType<T> ptype, int[] readColumns) { inputFn = ptype.getInputMapFn(); this.readColumns = readColumns; } @Override public Iterator<T> read(FileSystem fs, final Path path) { try { if (!fs.isFile(path)) { throw new CrunchRuntimeException("Not a file: " + path); } inputFn.initialize(); FileStatus status = fs.getFileStatus(path); FileSplit split = new FileSplit(path, 0, status.getLen(), new String[0]); JobConf conf = new JobConf(); if (readColumns != null) { conf.setBoolean(OrcFileSource.HIVE_READ_ALL_COLUMNS, false); conf.set(ColumnProjectionUtils.READ_COLUMN_IDS_CONF_STR, OrcFileSource.getColumnIdsStr(readColumns)); } final RecordReader<NullWritable, OrcStruct> reader = inputFormat.getRecordReader(split, conf, Reporter.NULL); return new UnmodifiableIterator<T>() { private boolean checked = false; private boolean hasNext; private OrcStruct value; private OrcWritable writable = new OrcWritable(); @Override public boolean hasNext() { try { if (value == null) { value = reader.createValue(); } if (!checked) { hasNext = reader.next(NullWritable.get(), value); checked = true; } return hasNext; } catch (Exception e) { throw new CrunchRuntimeException("Error while reading local file: " + path, e); } } @Override public T next() { try { if (value == null) { value = reader.createValue(); } if (!checked) { reader.next(NullWritable.get(), value); } checked = false; writable.set(value); return inputFn.map(writable); } catch (Exception e) { throw new CrunchRuntimeException("Error while reading local file: " + path, e); } } }; } catch (Exception e) { throw new CrunchRuntimeException("Error while reading local file: " + path, e); } } }
2,295
0
Create_ds/crunch/crunch-contrib/src/test/java/org/apache/crunch/contrib
Create_ds/crunch/crunch-contrib/src/test/java/org/apache/crunch/contrib/text/ParseTest.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.contrib.text; import static org.apache.crunch.contrib.text.Extractors.*; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertFalse; import static org.junit.Assert.assertTrue; import java.util.Collection; import org.apache.crunch.PCollection; import org.apache.crunch.Pair; import org.apache.crunch.Tuple3; import org.apache.crunch.Tuple4; import org.apache.crunch.TupleN; import org.apache.crunch.impl.mem.MemPipeline; import org.apache.crunch.types.avro.Avros; import org.junit.Test; import com.google.common.collect.ImmutableList; public class ParseTest { @Test public void testInt() { assertEquals(Integer.valueOf(1729), xint().extract("1729")); assertEquals(Integer.valueOf(321), xint(321).extract("foo")); } @Test public void testString() { assertEquals("bar", xstring().extract("bar")); } @Test public void testPairWithDrop() { TokenizerFactory sf = TokenizerFactory.builder().delimiter(",").drop(0, 2).build(); assertEquals(Pair.of(1, "abc"), xpair(sf, xint(), xstring()).extract("foo,1,17.29,abc")); } @Test public void testTripsWithSkip() { TokenizerFactory sf = TokenizerFactory.builder().delimiter(";").skip("^foo").build(); assertEquals(Tuple3.of(17, "abc", 3.4f), xtriple(sf, xint(), xstring(), xfloat()).extract("foo17;abc;3.4")); } @Test public void testTripsWithKeep() { TokenizerFactory sf = TokenizerFactory.builder().delimiter(";").keep(1, 2, 3).build(); assertEquals(Tuple3.of(17, "abc", 3.4f), xtriple(sf, xint(), xstring(), xfloat()).extract("foo;17;abc;3.4")); } @Test public void testQuadsWithWhitespace() { TokenizerFactory sf = TokenizerFactory.getDefaultInstance(); assertEquals(Tuple4.of(1.3, "foo", true, 1L), xquad(sf, xdouble(), xstring(), xboolean(), xlong()).extract("1.3 foo true 1")); } @Test public void testTupleN() { TokenizerFactory sf = TokenizerFactory.builder().delimiter(",").build(); assertEquals(new TupleN(1, false, true, 2, 3), xtupleN(sf, xint(), xboolean(), xboolean(), xint(), xint()).extract("1,false,true,2,3")); } @Test public void testCollections() { TokenizerFactory sf = TokenizerFactory.builder().delimiter(";").build(); // Use 3000 as the default for values we can't parse Extractor<Collection<Integer>> x = xcollect(sf, xint(3000)); assertEquals(ImmutableList.of(1, 2, 3), x.extract("1;2;3")); assertFalse(x.errorOnLastRecord()); assertEquals(ImmutableList.of(17, 29, 3000), x.extract("17;29;a")); assertTrue(x.errorOnLastRecord()); assertEquals(1, x.getStats().getErrorCount()); } @Test public void testNestedComposites() { TokenizerFactory outer = TokenizerFactory.builder().delimiter(";").build(); TokenizerFactory inner = TokenizerFactory.builder().delimiter(",").build(); Extractor<Pair<Pair<Long, Integer>, Tuple3<String, Integer, Float>>> extractor = xpair(outer, xpair(inner, xlong(), xint()), xtriple(inner, xstring(), xint(), xfloat())); assertEquals(Pair.of(Pair.of(1L, 2), Tuple3.of("a", 17, 29.0f)), extractor.extract("1,2;a,17,29")); } @Test public void testParse() { TokenizerFactory sf = TokenizerFactory.builder().delimiter(",").build(); PCollection<String> lines = MemPipeline.typedCollectionOf(Avros.strings(), "1,3.0"); Iterable<Pair<Integer, Float>> it = Parse.parse("test", lines, xpair(sf, xint(), xfloat())).materialize(); assertEquals(ImmutableList.of(Pair.of(1, 3.0f)), it); } }
2,296
0
Create_ds/crunch/crunch-contrib/src/it/java/org/apache/crunch/contrib/io
Create_ds/crunch/crunch-contrib/src/it/java/org/apache/crunch/contrib/io/jdbc/DataBaseSourceIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.contrib.io.jdbc; import static org.junit.Assert.assertEquals; import java.io.File; import java.io.Serializable; import java.util.List; import org.apache.crunch.DoFn; import org.apache.crunch.Emitter; import org.apache.crunch.PCollection; import org.apache.crunch.Pipeline; import org.apache.crunch.impl.mr.MRPipeline; import org.apache.crunch.test.CrunchTestSupport; import org.apache.crunch.types.writable.Writables; import org.h2.tools.RunScript; import org.h2.tools.Server; import org.junit.After; import org.junit.Before; import org.junit.Test; import com.google.common.collect.Lists; import com.google.common.collect.Sets; public class DataBaseSourceIT extends CrunchTestSupport implements Serializable { private transient Server server; @Before public void start() throws Exception { File file = tempDir.copyResourceFile("data.script"); server = Server.createTcpServer().start(); RunScript.execute("jdbc:h2:file:/tmp/test", "sa", "", file.getAbsolutePath(), "utf-8", false); } @After public void stop() throws Exception { server.stop(); new File("/tmp/test.h2.db").delete(); } @Test public void testReadFromSource() throws Exception { Pipeline pipeline = new MRPipeline(DataBaseSourceIT.class); DataBaseSource<IdentifiableName> dbsrc = new DataBaseSource.Builder<IdentifiableName>(IdentifiableName.class) .setDriverClass(org.h2.Driver.class) .setUrl("jdbc:h2:file:/tmp/test").setUsername("sa").setPassword("") .selectSQLQuery("SELECT ID, NAME FROM TEST").countSQLQuery("select count(*) from Test").build(); PCollection<IdentifiableName> cdidata = pipeline.read(dbsrc); PCollection<String> names = cdidata.parallelDo(new DoFn<IdentifiableName, String>() { @Override public void process(IdentifiableName input, Emitter<String> emitter) { emitter.emit(input.name.toString()); } }, Writables.strings()); List<String> nameList = Lists.newArrayList(names.materialize()); pipeline.done(); assertEquals(2, nameList.size()); assertEquals(Sets.newHashSet("Hello", "World"), Sets.newHashSet(nameList)); } }
2,297
0
Create_ds/crunch/crunch-contrib/src/it/java/org/apache/crunch/contrib
Create_ds/crunch/crunch-contrib/src/it/java/org/apache/crunch/contrib/bloomfilter/BloomFiltersIT.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.crunch.contrib.bloomfilter; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertTrue; import java.io.IOException; import java.io.Serializable; import java.nio.charset.Charset; import java.util.Arrays; import java.util.Collection; import java.util.HashSet; import java.util.List; import java.util.Map; import org.apache.commons.lang.StringUtils; import org.apache.crunch.test.CrunchTestSupport; import org.apache.hadoop.fs.Path; import org.apache.hadoop.util.bloom.BloomFilter; import org.apache.hadoop.util.bloom.Key; import org.junit.Test; public class BloomFiltersIT extends CrunchTestSupport implements Serializable { @Test public void testFilterCreation() throws IOException { String inputPath = tempDir.copyResourceFileName("shakes.txt"); BloomFilterFn<String> filterFn = new BloomFilterFn<String>() { @Override public Collection<Key> generateKeys(String input) { List<String> parts = Arrays.asList(StringUtils.split(input, " ")); Collection<Key> keys = new HashSet<Key>(); for (String stringpart : parts) { keys.add(new Key(stringpart.getBytes(Charset.forName("UTF-8")))); } return keys; } }; Map<String, BloomFilter> filterValues = BloomFilterFactory.createFilter(new Path(inputPath), filterFn).getValue(); assertEquals(1, filterValues.size()); BloomFilter filter = filterValues.get("shakes.txt"); assertTrue(filter.membershipTest(new Key("Mcbeth".getBytes(Charset.forName("UTF-8"))))); assertTrue(filter.membershipTest(new Key("apples".getBytes(Charset.forName("UTF-8"))))); } }
2,298
0
Create_ds/crunch/crunch-contrib/src/main/java/org/apache/crunch
Create_ds/crunch/crunch-contrib/src/main/java/org/apache/crunch/contrib/package-info.java
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * User contributions that may be interesting for special applications. * * Things included in this package or its subpackages are maintained * by the Crunch team, but are too specialized to include them in the * core library. */ package org.apache.crunch.contrib;
2,299