automata / automata.py
ClaraBing's picture
add gridworld (and a parent class 'BinaryInputSampler')
d262e6f
raw
history blame
8.63 kB
# Copyright 2020 The HuggingFace Datasets Authors.
# Copyright 2023 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import itertools
import datasets
import numpy as np
from copy import copy
# check python version
import sys
major, minor = sys.version_info[:2]
version = major + 0.1*minor
OLD_PY_VERSION = 1 if version < 3.8 else 0
# Local imports
# from symmetric import SymmetricSampler
_CITATION = """\
"""
_DESCRIPTION = """\
Online dataset mockup.
"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {}
class SyntheticAutomataDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIGS = []
def __init__(self, config={}, **kwargs):
super().__init__(**kwargs)
"""
Set default configs
"""
if 'name' not in config:
config['name'] = 'parity'
if 'length' not in config: # sequence length
config['length'] = 20
if 'size' not in config: # number of sequences
config['size'] = -1
self.data_config = config
self.sampler = dataset_map[config['name']](config)
def _info(self):
features = datasets.Features(
{
"input_ids": datasets.Sequence(datasets.Value("int32"), length=-1),
"label_ids": datasets.Sequence(datasets.Value("int32"), length=-1)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
},
)
]
def _generate_examples(self, split):
for i in itertools.count(start=0):
if i == self.data_config['size']:
break
x, y = self.sampler.sample()
yield i, {
"input_ids": x,
"label_ids": y
}
class AutomatonSampler:
def __init__(self, data_config):
# self.name = name
self.data_config = data_config
if 'seed' in self.data_config:
self.np_rng = np.random.default_rng(self.data_config['seed'])
else:
self.np_rng = np.random.default_rng()
self.T = self.data_config['length']
def f(self, x):
"""
Get output sequence given an input seq
"""
raise NotImplementedError()
def sample(self):
raise NotImplementedError()
class BinaryInputSampler(AutomatonSampler):
def __init__(self, data_config):
super().__init__(data_config)
if 'prob1' not in data_config:
data_config['prob1'] = 0.5
self.prob1 = data_config['prob1']
def f(self, x):
raise NotImplementedError()
def sample(self):
x = self.np_rng.binomial(1, self.prob1, size=self.T)
return x, self.f(x)
class ParitySampler(BinaryInputSampler):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'parity'
def f(self, x):
return np.cumsum(x) % 2
class GridworldSampler(BinaryInputSampler):
"""
Note: gridworld currently doesn't include a no-op.
"""
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'gridworld'
if 'n' not in data_config:
data_config['n'] = 9
"""
NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state.
i.e. the states are 0,1,2,...,S, where S=n-1.
"""
self.n = data_config['n']
self.S = self.n - 1
def f(self, x):
x = copy(x)
x[x == 0] = -1
if OLD_PY_VERSION:
# NOTE: for Python 3.7 or below, accumulate doesn't have the 'initial' argument.
x = np.concatenate([np.array([0]), x]).astype(np.int64)
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0)))
states = states[1:]
else:
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0))
states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
return np.array(states).astype(np.int64)
class FlipFlopSampler(AutomatonSampler):
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'flipflop'
if 'n' not in data_config:
data_config['n'] = 2
self.n_states = data_config['n']
self.n_actions = self.n_states + 1
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T
def f(self, x):
state, states = 0, []
for action in x:
state = self.transition[state, action]
states += state,
return np.array(states)
def sample(self):
rand = np.random.uniform(size=self.T)
nonzero_pos = (rand < 0.5).astype(np.int64)
writes = np.random.choice(range(1, self.n_states+1), size=self.T)
x = writes * nonzero_pos
return x, self.f(x)
class SymmetricSampler(AutomatonSampler):
"""
TODO: add options for labels as functions of states
- parity (whether a state is even): this may need packages (e.g. Permutation from sympy)
- position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups.
"""
def __init__(self, data_config):
super().__init__(data_config)
self.name = 'symmetric'
if 'n' not in data_config:
data_config['n'] = 5 # Default to S5
if 'n_actions' not in data_config:
data_config['n_actions'] = 3
if 'label_type' not in data_config:
# Options: 'state', 'first_chair'
data_config['label_type'] = 'state'
self.n = data_config['n'] # the symmetric group Sn
self.label_type = data_config['label_type']
"""
Get states
"""
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
self.state_label_map = {}
for si, state in enumerate(itertools.permutations(range(self.n))):
enc = self.state_encode(state)
self.state_label_map[enc] = si
"""
Get actions (3 defaults: id, shift-by-1, swap-first-two)
"""
self.n_actions = data_config['n_actions']
self.actions = {0: np.eye(self.n)}
# shift all elements to the right by 1
shift_idx = list(range(1, self.n)) + [0]
self.actions[1] = np.eye(self.n)[shift_idx]
# swap the first 2 elements
shift_idx = [1, 0] + list(range(2, self.n))
self.actions[2] = np.eye(self.n)[shift_idx]
if self.n_actions > 3:
# add permutations in the order given by itertools.permutations
self.all_permutations = list(itertools.permutations(range(self.n)))[1:]
cnt = 2
for each in self.all_permutations:
action = np.eye(self.n)[list(each)]
if np.linalg.norm(action - self.actions[0]) == 0:
continue
elif np.linalg.norm(action - self.actions[1]) == 0:
continue
self.actions[cnt] = action
cnt += 1
if cnt == self.n_actions: break
def get_state_label(self, state):
enc = self.state_encode(state)
return self.state_label_map[enc]
def f(self, x):
curr_state = np.arange(self.n)
labels = []
for action in x:
curr_state = self.actions[action].dot(curr_state)
if self.label_type == 'state':
labels += self.get_state_label(curr_state),
elif self.label_type == 'first_chair':
labels += curr_state[0],
return np.array(labels)
def sample(self):
x = np.random.choice(range(self.n_actions), replace=True, size=self.T)
return x, self.f(x)
dataset_map = {
'gridworld': GridworldSampler,
'flipflop': FlipFlopSampler,
'parity': ParitySampler,
'symmetric': SymmetricSampler,
# TODO: more datasets
}