|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
import itertools |
|
|
|
import datasets |
|
import numpy as np |
|
from copy import copy |
|
|
|
|
|
import sys |
|
major, minor = sys.version_info[:2] |
|
version = major + 0.1*minor |
|
OLD_PY_VERSION = 1 if version < 3.8 else 0 |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Online dataset mockup. |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
_URLS = {} |
|
|
|
class SyntheticAutomataDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("0.0.0") |
|
BUILDER_CONFIGS = [] |
|
|
|
def __init__(self, config={}, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
""" |
|
Set default configs |
|
""" |
|
if 'name' not in config: |
|
config['name'] = 'parity' |
|
if 'length' not in config: |
|
config['length'] = 20 |
|
if 'size' not in config: |
|
config['size'] = -1 |
|
|
|
self.data_config = config |
|
self.sampler = dataset_map[config['name']](config) |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"input_ids": datasets.Sequence(datasets.Value("int32"), length=-1), |
|
"label_ids": datasets.Sequence(datasets.Value("int32"), length=-1) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, split): |
|
for i in itertools.count(start=0): |
|
if i == self.data_config['size']: |
|
break |
|
x, y = self.sampler.sample() |
|
yield i, { |
|
"input_ids": x, |
|
"label_ids": y |
|
} |
|
|
|
|
|
class AutomatonSampler: |
|
def __init__(self, data_config): |
|
|
|
self.data_config = data_config |
|
|
|
if 'seed' in self.data_config: |
|
self.np_rng = np.random.default_rng(self.data_config['seed']) |
|
else: |
|
self.np_rng = np.random.default_rng() |
|
|
|
self.T = self.data_config['length'] |
|
|
|
def f(self, x): |
|
""" |
|
Get output sequence given an input seq |
|
""" |
|
raise NotImplementedError() |
|
|
|
def sample(self): |
|
raise NotImplementedError() |
|
|
|
|
|
class BinaryInputSampler(AutomatonSampler): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
|
|
if 'prob1' not in data_config: |
|
data_config['prob1'] = 0.5 |
|
self.prob1 = data_config['prob1'] |
|
|
|
def f(self, x): |
|
raise NotImplementedError() |
|
|
|
def sample(self): |
|
x = self.np_rng.binomial(1, self.prob1, size=self.T) |
|
return x, self.f(x) |
|
|
|
class ParitySampler(BinaryInputSampler): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'parity' |
|
|
|
def f(self, x): |
|
return np.cumsum(x) % 2 |
|
|
|
class GridworldSampler(BinaryInputSampler): |
|
""" |
|
Note: gridworld currently doesn't include a no-op. |
|
""" |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'gridworld' |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 9 |
|
""" |
|
NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state. |
|
i.e. the states are 0,1,2,...,S, where S=n-1. |
|
""" |
|
self.n = data_config['n'] |
|
self.S = self.n - 1 |
|
|
|
def f(self, x): |
|
x = copy(x) |
|
x[x == 0] = -1 |
|
if OLD_PY_VERSION: |
|
|
|
x = np.concatenate([np.array([0]), x]).astype(np.int64) |
|
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0))) |
|
states = states[1:] |
|
else: |
|
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0)) |
|
states = states[1:] |
|
return np.array(states).astype(np.int64) |
|
|
|
|
|
|
|
class FlipFlopSampler(AutomatonSampler): |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'flipflop' |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 2 |
|
|
|
self.n_states = data_config['n'] |
|
self.n_actions = self.n_states + 1 |
|
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T |
|
|
|
def f(self, x): |
|
state, states = 0, [] |
|
for action in x: |
|
state = self.transition[state, action] |
|
states += state, |
|
return np.array(states) |
|
|
|
def sample(self): |
|
rand = np.random.uniform(size=self.T) |
|
nonzero_pos = (rand < 0.5).astype(np.int64) |
|
writes = np.random.choice(range(1, self.n_states+1), size=self.T) |
|
x = writes * nonzero_pos |
|
return x, self.f(x) |
|
|
|
|
|
class SymmetricSampler(AutomatonSampler): |
|
""" |
|
TODO: add options for labels as functions of states |
|
- parity (whether a state is even): this may need packages (e.g. Permutation from sympy) |
|
- position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups. |
|
""" |
|
def __init__(self, data_config): |
|
super().__init__(data_config) |
|
self.name = 'symmetric' |
|
|
|
if 'n' not in data_config: |
|
data_config['n'] = 5 |
|
if 'n_actions' not in data_config: |
|
data_config['n_actions'] = 3 |
|
if 'label_type' not in data_config: |
|
|
|
data_config['label_type'] = 'state' |
|
|
|
self.n = data_config['n'] |
|
self.label_type = data_config['label_type'] |
|
|
|
""" |
|
Get states |
|
""" |
|
self.state_encode = lambda state: ''.join([str(int(each)) for each in state]) |
|
self.state_label_map = {} |
|
for si, state in enumerate(itertools.permutations(range(self.n))): |
|
enc = self.state_encode(state) |
|
self.state_label_map[enc] = si |
|
|
|
""" |
|
Get actions (3 defaults: id, shift-by-1, swap-first-two) |
|
""" |
|
self.n_actions = data_config['n_actions'] |
|
self.actions = {0: np.eye(self.n)} |
|
|
|
shift_idx = list(range(1, self.n)) + [0] |
|
self.actions[1] = np.eye(self.n)[shift_idx] |
|
|
|
shift_idx = [1, 0] + list(range(2, self.n)) |
|
self.actions[2] = np.eye(self.n)[shift_idx] |
|
|
|
if self.n_actions > 3: |
|
|
|
self.all_permutations = list(itertools.permutations(range(self.n)))[1:] |
|
cnt = 2 |
|
for each in self.all_permutations: |
|
action = np.eye(self.n)[list(each)] |
|
if np.linalg.norm(action - self.actions[0]) == 0: |
|
continue |
|
elif np.linalg.norm(action - self.actions[1]) == 0: |
|
continue |
|
self.actions[cnt] = action |
|
cnt += 1 |
|
if cnt == self.n_actions: break |
|
|
|
def get_state_label(self, state): |
|
enc = self.state_encode(state) |
|
return self.state_label_map[enc] |
|
|
|
def f(self, x): |
|
curr_state = np.arange(self.n) |
|
labels = [] |
|
for action in x: |
|
curr_state = self.actions[action].dot(curr_state) |
|
|
|
if self.label_type == 'state': |
|
labels += self.get_state_label(curr_state), |
|
elif self.label_type == 'first_chair': |
|
labels += curr_state[0], |
|
|
|
return np.array(labels) |
|
|
|
def sample(self): |
|
x = np.random.choice(range(self.n_actions), replace=True, size=self.T) |
|
|
|
return x, self.f(x) |
|
|
|
|
|
dataset_map = { |
|
'gridworld': GridworldSampler, |
|
'flipflop': FlipFlopSampler, |
|
'parity': ParitySampler, |
|
'symmetric': SymmetricSampler, |
|
|
|
} |
|
|