premise
stringlengths 12
3.12k
| hypothesis
stringlengths 10
236
| label
stringclasses 3
values | premise_tptp
stringlengths 51
8k
| hypothesis_tptp
stringlengths 41
352
| proof_inputs
listlengths 0
20
| proof
stringlengths 767
76.8k
⌀ | rule_concentration
float64 0
0.72
|
---|---|---|---|---|---|---|---|
Everyone in the room is a humble person. Everyone in the room is generous. Everyone outside the room is a quiet person.
|
Not everyone in the room is a generous person.
|
contradiction
|
(there_is_a_room)&
(~(![X]:(room(X)=>(quiet(X))))=>((![X]:((quiet(X)&person(X))<=>(funny(X)&person(X))))))&
(?[X]:(room(X)&(humble(X))))&
(![X]:(room(X)=>(humble(X)&person(X))))&
(![X]:(quiet(X)=>brave(X)))&
(![X]:(generous(X)=>humble(X)))&
(![X]:(room(X)=>(generous(X))))&
(![X]:(room(X)=>(kind(X)&happy(X)&person(X))))&
(![X]:(~room(X)=>(quiet(X)&person(X))))&
(![X]:(room(X)=>(brave(X))))&
(![X]:(room(X)=>(creative(X)&person(X))))&
(![X]:(room(X)=>(happy(X)&person(X))))&
(?[X]:(room(X)&(humble(X)&person(X))))&
(![X]:(~room(X)=>(((patient(X)&person(X))=>(happy(X)&person(X))))))
|
(there_is_a_room)&
~![X]:(room(X)=>(generous(X)&person(X)))
|
[
"p3",
"p6",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 8669379594412376729694712
% SZS output start Proof for 8669379594412376729694712
47. ! [X0] : (room(X0) => (person(X0) & humble(X0))) [input p3]
50. ! [X0] : (room(X0) => generous(X0)) [input p6]
52. ! [X0] : (~room(X0) => (person(X0) & quiet(X0))) [input p8]
58. ~! [X0] : (room(X0) => (person(X0) & generous(X0))) & there_is_a_room [input hypothesis]
69. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 47]
71. ~! [X0] : (room(X0) => (person(X0) & generous(X0))) [pure predicate removal 58]
146. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 69]
147. ! [X0] : (generous(X0) | ~room(X0)) [ennf transformation 50]
149. ! [X0] : ((person(X0) & quiet(X0)) | room(X0)) [ennf transformation 52]
152. ? [X0] : ((~person(X0) | ~generous(X0)) & room(X0)) [ennf transformation 71]
161. ? [X0] : ((~person(X0) | ~generous(X0)) & room(X0)) => ((~person(sK2) | ~generous(sK2)) & room(sK2)) [choice axiom]
162. (~person(sK2) | ~generous(sK2)) & room(sK2) [skolemisation 152,161]
248. ~room(X0) | person(X0) [cnf transformation 146]
249. ~room(X0) | generous(X0) [cnf transformation 147]
252. person(X0) | room(X0) [cnf transformation 149]
257. room(sK2) [cnf transformation 162]
258. ~person(sK2) | ~generous(sK2) [cnf transformation 162]
270. person(X0) [subsumption resolution 252,248]
271. ~generous(sK2) [subsumption resolution 258,270]
279. generous(sK2) [resolution 249,257]
280. $false [subsumption resolution 279,271]
% SZS output end Proof for 8669379594412376729694712
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.274316 |
Lionel, Marina, Annette are the only persons in the room. If “Lionel is a client of Meta” then “Marina frequently participates in hackathons and coding competitions”. If “everyone in the room does not enjoy spelunking or watches fantasy movies” then “Marina watches fantasy movies”. Everyone anywhere who enjoys deep-sea diving and exploring underwater caves collects rare and antique scientific instruments. Everyone in the room who owns a telescope can play the harmonica. Lionel who owns a telescope watches fantasy movies.
|
Lionel neither frequently participates in hackathons and coding competitions nor can play the harmonica.
|
contradiction
|
room(lionel)&room(marina)&room(annette)&(![X]:(room(X)=>(X='lionel'|X='marina'|X='annette')))&
((is_a_client_of_Meta(lionel))=>(frequently_participates_in_hackathons_and_coding_competitions(marina)))&
((![X]:(room(X)=>(((watches_fantasy_movies(X))|(does_not_enjoy_spelunking(X))))))=>(watches_fantasy_movies(marina)))&
(![X]:(anywhere(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(collects_rare_and_antique_scientific_instruments(X))))))&
(~![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(enjoys_spelunking(X))))))&
(is_a_client_of_Meta(lionel))&
(![X]:(~room(X)=>(((owns_a_smartwatch(X))=>(enjoys_spelunking(X))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))=>(can_play_the_harmonica(X))))))&
(![X]:(~room(X)=>(((can_play_the_harmonica(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))&
(owns_a_smartwatch(annette))&
((owns_a_telescope(lionel))&(watches_fantasy_movies(lionel)))&
(![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(((does_enjoy_trail_running(X))|(is_a_client_of_Meta(X))|(can_play_the_harmonica(X))))))))&
(![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))&
(![X]:(room(X)=>(((((is_a_client_of_Costco(X))|(owns_a_telescope(X))))<=(participates_in_long-distance_cycling_events_across_the_country(X))))))&
(~(is_a_client_of_Costco(annette)))&
((enjoys_deep-sea_diving_and_exploring_underwater_caves(marina))&(enjoys_spelunking(marina)))&
((![X]:((is_a_client_of_Costco(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))&
(![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(owns_a_smartwatch(X))))))&
(((?[X]:(room(X)&watches_fantasy_movies(X)))))&
(![X]:(room(X)=>(((enjoys_spelunking(X))=>(owns_a_smartwatch(X))))))&
(![X]:(room(X)=>(((has_a_tattoo(X))=>(((watches_fantasy_movies(X))&(can_play_the_harmonica(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))
|
room(lionel)&room(marina)&room(annette)&(![X]:(room(X)=>(X='lionel'|X='marina'|X='annette')))&
~((frequently_participates_in_hackathons_and_coding_competitions(lionel))|(can_play_the_harmonica(lionel)))
|
[
"p0",
"p7",
"p10",
"hypothesis"
] |
% SZS status Unsatisfiable for 6062306267710549505271007
% SZS output start Proof for 6062306267710549505271007
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
51. ! [X0] : (room(X0) => (prede(X0) => predb(X0))) [input p7]
54. predk(mary) & prede(mary) [input p10]
65. ~(predb(mary) | preda(mary)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
145. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
146. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 145]
153. ! [X0] : ((predb(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 51]
154. ! [X0] : (predb(X0) | ~prede(X0) | ~room(X0)) [flattening 153]
165. (~predb(mary) & ~preda(mary)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 65]
166. ~predb(mary) & ~preda(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 165]
254. room(mary) [cnf transformation 146]
266. ~prede(X0) | predb(X0) | ~room(X0) [cnf transformation 154]
269. prede(mary) [cnf transformation 54]
284. ~predb(mary) [cnf transformation 166]
315. predb(mary) | ~room(mary) [resolution 266,269]
316. ~room(mary) [subsumption resolution 315,284]
317. $false [subsumption resolution 316,254]
% SZS output end Proof for 6062306267710549505271007
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.033 s
% ------------------------------
% ------------------------------
| 0.001136 |
If “Jeffrey creates YouTube content” then “Jeffrey collects comic books”.
Either “Jeffrey is an enthusiastic bird watcher who travels for rare sightings” or “it is not the case that “Jeffrey is an avid mountain climber who has scaled several peaks”” but not both.
If “Jeffrey makes intricate hand-cut paper art for exhibitions” then “Jeffrey hosts regular game nights featuring complex strategy games”.
Jeffrey hosts regular game nights featuring complex strategy games.
It is not the case that “Jeffrey owns an Android phone”.
Jeffrey is an active member of a local robotics club.
Jeffrey is an avid collector of autographed memorabilia from famous musicians.
Jeffrey collects modern art.
Jeffrey works as a freelance web developer specializing in e-commerce sites.
|
Jeffrey creates YouTube content.
|
neutral
|
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))&
((creates_YouTube_content(jeffrey))=>(collects_comic_books(jeffrey)))&
((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(jeffrey))<~>(~(is_an_avid_mountain_climber_who_has_scaled_several_peaks(jeffrey))))&
((makes_intricate_hand-cut_paper_art_for_exhibitions(jeffrey))=>(hosts_regular_game_nights_featuring_complex_strategy_games(jeffrey)))&
(hosts_regular_game_nights_featuring_complex_strategy_games(jeffrey))&
(~(owns_an_Android_phone(jeffrey)))&
(is_an_active_member_of_a_local_robotics_club(jeffrey))&
(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(jeffrey))&
(collects_modern_art(jeffrey))&
(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(jeffrey))
|
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))&
creates_YouTube_content(jeffrey)
|
[] | null | 0.681446 |
Aaron, Kenneth, Erich, Rose are the only persons in the room. Everyone outside the room enjoys deep-sea diving and exploring underwater caves if they either is a scotch connoisseur or is not an avid collector of autographed memorabilia from famous musicians but not both. Someone in the room enjoys landscape photography. Only one person in the room enjoys deep-sea diving and exploring underwater caves. Someone in the room own a television. If someone collects luxury watches or has a vast collection of first-edition science fiction novels or both then he/she is a scotch connoisseur and vice versa. Everyone outside the room who does not enjoy cross-country skiing or collects antique clocks or both does not enjoy deep-sea diving and exploring underwater caves. Everyone in the room does not enjoy deep-sea diving and exploring underwater caves if and only if they has a piercing. If someone does not enjoy landscape photography then he/she does not enjoy coding in Python and vice versa. Not everyone in the room own a television if they is an avid mountain climber who has scaled several peaks. If someone hosts themed dinner parties featuring gourmet home-cooked meals, is a scotch connoisseur and collects antique clocks then he/she creates bespoke furniture pieces from reclaimed wood or does not own a television or both and vice versa. Everyone anywhere collects first edition books if they travels domestically frequently. Everyone anywhere is a scotch connoisseur. Everyone in the room practices kickboxing if they is an avid collector of autographed memorabilia from famous musicians. Aaron who either is a scotch connoisseur or is not an avid collector of autographed memorabilia from famous musicians but not both enjoys coding in Python. Everyone in the room is an avid mountain climber who has scaled several peaks only if they enjoys coding in Python. Everyone in the room is an avid mountain climber who has scaled several peaks if they has a piercing, does not have a piercing or practices kickboxing.
|
Erich enjoys landscape photography.
|
entailment
|
room(aaron)&room(kenneth)&room(erich)&room(rose)&(![X]:(room(X)=>(X='aaron'|X='kenneth'|X='erich'|X='rose')))&
(![X]:(~room(X)=>(((((is_a_scotch_connoisseur(X))<~>(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))&
(?[X]:(room(X)&(enjoys_landscape_photography(X))))&
(((?[X]:(room(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(Y)))=>(X=Y)))))&
(?[X]:(room(X)&(own_a_television(X))))&
((![X]:((((collects_luxury_watches(X))|(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))<=>(is_a_scotch_connoisseur(X)))))&
(![X]:(~room(X)=>(((((does_not_enjoy_cross-country_skiing(X))|(collects_antique_clocks(X))))=>(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))<=>(has_a_piercing(X))))))&
((![X]:((does_not_enjoy_landscape_photography(X))<=>(does_not_enjoy_coding_in_Python(X)))))&
(~![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(own_a_television(X))))))&
((![X]:((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(is_a_scotch_connoisseur(X))&(collects_antique_clocks(X))))<=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(does_not_own_a_television(X)))))))&
(![X]:(anywhere(X)=>(((travels_domestically_frequently(X))=>(collects_first_edition_books(X))))))&
(![X]:(anywhere(X)=>(is_a_scotch_connoisseur(X))))&
(![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(practices_kickboxing(X))))))&
((((is_a_scotch_connoisseur(aaron))<~>(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(aaron))))&(enjoys_coding_in_Python(aaron)))&
(![X]:(room(X)=>(((enjoys_coding_in_Python(X))<=(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))&
((![X]:((((enjoys_cross-country_skiing(X))<~>(practices_kickboxing(X))))<=>(((own_a_television(X))<~>(drives_a_hybrid_car(X)))))))&
(((?[X]:(room(X)&has_a_piercing(X)))))&
(![X]:(room(X)=>(((does_not_practice_kickboxing(X))=>(enjoys_origami(X))))))&
(![X]:(room(X)=>(((enjoys_origami(X))|(does_not_travel_domestically_frequently(X))))))&
(![X]:(~room(X)=>(((enjoys_landscape_photography(X))=>(enjoys_cross-country_skiing(X))))))&
(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))<=>(does_not_own_a_television(X))))))&
(![X]:(room(X)=>(((((has_a_piercing(X))|(does_not_have_a_piercing(X))|(practices_kickboxing(X))))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))
|
room(aaron)&room(kenneth)&room(erich)&room(rose)&(![X]:(room(X)=>(X='aaron'|X='kenneth'|X='erich'|X='rose')))&
enjoys_landscape_photography(erich)
|
[
"p0",
"p8",
"p15",
"p22",
"hypothesis"
] |
% SZS status Unsatisfiable for 6764340378085147016709002
% SZS output start Proof for 6764340378085147016709002
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
52. ! [X0] : (~predm(X0) <=> ~predf(X0)) [input p8]
59. ! [X0] : (room(X0) => (predt(X0) => predf(X0))) [input p15]
66. ! [X0] : (room(X0) => ((predk(X0) | ~predc(X0) | predc(X0)) => predt(X0))) [input p22]
67. ~(predm(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
143. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
144. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 143]
157. ! [X0] : ((predf(X0) | ~predt(X0)) | ~room(X0)) [ennf transformation 59]
158. ! [X0] : (predf(X0) | ~predt(X0) | ~room(X0)) [flattening 157]
162. ! [X0] : ((predt(X0) | (~predk(X0) & predc(X0) & ~predc(X0))) | ~room(X0)) [ennf transformation 66]
163. ! [X0] : (predt(X0) | (~predk(X0) & predc(X0) & ~predc(X0)) | ~room(X0)) [flattening 162]
164. ~predm(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67]
165. ~predm(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 164]
177. ! [X0] : ((~predm(X0) | predf(X0)) & (~predf(X0) | predm(X0))) [nnf transformation 52]
188. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
189. ~predm(fred) | (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 165,188]
271. room(mary) [cnf transformation 144]
272. room(paul) [cnf transformation 144]
273. room(fred) [cnf transformation 144]
274. room(alice) [cnf transformation 144]
275. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 144]
292. ~predf(X0) | predm(X0) [cnf transformation 177]
309. ~predt(X0) | predf(X0) | ~room(X0) [cnf transformation 158]
323. predt(X0) | ~predc(X0) | ~room(X0) [cnf transformation 163]
324. ~room(X0) | predc(X0) | predt(X0) [cnf transformation 163]
326. ~predm(fred) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189]
327. ~predm(fred) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189]
328. ~predm(fred) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189]
329. ~predm(fred) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189]
330. ~predm(fred) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189]
333. ~room(X0) | predt(X0) [subsumption resolution 323,324]
334. ~predm(fred) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 330,274]
335. ~predm(fred) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 334,273]
336. ~predm(fred) | alice != sK5 | ~room(mary) [subsumption resolution 335,272]
337. ~predm(fred) | alice != sK5 [subsumption resolution 336,271]
339. 1 <=> alice = sK5 [avatar definition]
341. alice != sK5 <- (~1) [avatar component clause 339]
343. 2 <=> predm(fred) [avatar definition]
346. ~1 | ~2 [avatar split clause 337,343,339]
347. ~predm(fred) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 329,274]
348. ~predm(fred) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 347,273]
349. ~predm(fred) | fred != sK5 | ~room(mary) [subsumption resolution 348,272]
350. ~predm(fred) | fred != sK5 [subsumption resolution 349,271]
352. 3 <=> fred = sK5 [avatar definition]
354. fred != sK5 <- (~3) [avatar component clause 352]
355. ~3 | ~2 [avatar split clause 350,343,352]
356. ~predm(fred) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,274]
357. ~predm(fred) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 356,273]
358. ~predm(fred) | paul != sK5 | ~room(mary) [subsumption resolution 357,272]
359. ~predm(fred) | paul != sK5 [subsumption resolution 358,271]
361. 4 <=> paul = sK5 [avatar definition]
363. paul != sK5 <- (~4) [avatar component clause 361]
364. ~4 | ~2 [avatar split clause 359,343,361]
365. ~predm(fred) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 327,274]
366. ~predm(fred) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 365,273]
367. ~predm(fred) | mary != sK5 | ~room(mary) [subsumption resolution 366,272]
368. ~predm(fred) | mary != sK5 [subsumption resolution 367,271]
370. 5 <=> mary = sK5 [avatar definition]
372. mary != sK5 <- (~5) [avatar component clause 370]
373. ~5 | ~2 [avatar split clause 368,343,370]
374. ~predm(fred) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 326,274]
375. ~predm(fred) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 374,273]
376. ~predm(fred) | room(sK5) | ~room(mary) [subsumption resolution 375,272]
377. ~predm(fred) | room(sK5) [subsumption resolution 376,271]
379. 6 <=> room(sK5) [avatar definition]
381. room(sK5) <- (6) [avatar component clause 379]
382. 6 | ~2 [avatar split clause 377,343,379]
390. predt(fred) [resolution 333,273]
478. predf(fred) | ~room(fred) [resolution 309,390]
484. predf(fred) [subsumption resolution 478,273]
770. predm(fred) [resolution 484,292]
773. 2 [avatar split clause 770,343]
846. fred = sK5 | paul = sK5 | mary = sK5 | alice = sK5 <- (6) [resolution 275,381]
932. paul = sK5 | mary = sK5 | alice = sK5 <- (~3, 6) [subsumption resolution 846,354]
933. mary = sK5 | alice = sK5 <- (~3, ~4, 6) [subsumption resolution 932,363]
934. alice = sK5 <- (~3, ~4, ~5, 6) [subsumption resolution 933,372]
935. $false <- (~1, ~3, ~4, ~5, 6) [subsumption resolution 934,341]
936. 1 | 3 | 4 | 5 | ~6 [avatar contradiction clause 935]
937. $false [avatar sat refutation 346,355,364,373,382,773,936]
% SZS output end Proof for 6764340378085147016709002
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5500
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.395394 |
Shelby is the only person in the room.
If “not everyone anywhere does not collect antique jewelry or writes and illustrates their own graphic novels” then “everyone in the room has a curated collection of mid-century modern furniture”.
If “everyone in the room does not collect antique jewelry or collects antique clocks” then “only one person in the room is an expert in identifying and foraging wild edible plants, does not play eSports competitively and collects antique jewelry” otherwise “if someone enjoys kayaking, writes and illustrates their own graphic novels and is a certified scuba diver with advanced underwater photography skills then he/she owns a high-end gaming PC with custom-built components, plays the drums or uses an ios phone”.
“Everyone in the room plays eSports competitively” if “Shelby works as a freelance web developer specializing in e-commerce sites” and vice versa.
If “Shelby collects limited-edition art prints from contemporary artists” then “Shelby does enjoy mountain biking”.
Either “everyone in the room collects antique jewelry or does not collect antique jewelry” or “Shelby is a drone photographer or writes poetry or both” but not both.
“Shelby works as a freelance web developer specializing in e-commerce sites” if “everyone in the room writes poetry or does not write and illustrates their own graphic novels” and vice versa.
Shelby does not read mystery novels.
Shelby has a curated collection of mid-century modern furniture.
Someone anywhere works as a freelance web developer specializing in e-commerce sites.
Everyone in the room who has a curated collection of mid-century modern furniture does not use contact lenses.
Everyone outside the room works as a freelance web developer specializing in e-commerce sites or does not participate in long-distance cycling events across the country.
Everyone anywhere is an expert in identifying and foraging wild edible plants if they is right-handed.
Everyone in the room owns a telescope if they is an expert in identifying and foraging wild edible plants.
Shelby does not collect limited-edition art prints from contemporary artists.
Not everyone in the room owns a telescope or does not play the drums.
Everyone in the room does not own a high-end gaming PC with custom-built components or owns a telescope.
Everyone in the room either plays eSports competitively or has a curated collection of mid-century modern furniture but not both if they owns a high-end gaming PC with custom-built components and vice versa.
|
Shelby does enjoy mountain biking.
|
neutral
|
room(shelby)&(![X]:(room(X)=>(X='shelby')))&
((~![X]:(anywhere(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))|(does_not_collect_antique_jewelry(X))))))=>(![X]:(room(X)=>(has_a_curated_collection_of_mid-century_modern_furniture(X)))))&
(((![X]:(room(X)=>(((collects_antique_clocks(X))|(does_not_collect_antique_jewelry(X))))))=>(((?[X]:(room(X)&((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))&(does_not_play_eSports_competitively(X))&(collects_antique_jewelry(X)))))&(![X,Y]:((room(X)&room(Y)&(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))&(does_not_play_eSports_competitively(X))&(collects_antique_jewelry(X))))&(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(Y))&(does_not_play_eSports_competitively(Y))&(collects_antique_jewelry(Y)))))=>(X=Y))))))&((~(![X]:(room(X)=>(((collects_antique_clocks(X))|(does_not_collect_antique_jewelry(X)))))))=>((![X]:((((enjoys_kayaking(X))&(writes_and_illustrates_their_own_graphic_novels(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(plays_the_drums(X))|(uses_an_ios_phone(X)))))))))&
((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(shelby))<=>(![X]:(room(X)=>(plays_eSports_competitively(X)))))&
((collects_limited-edition_art_prints_from_contemporary_artists(shelby))=>(does_enjoy_mountain_biking(shelby)))&
((![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))|(collects_antique_jewelry(X))))))<~>(((is_a_drone_photographer(shelby))|(writes_poetry(shelby)))))&
((![X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(writes_poetry(X))))))<=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(shelby)))&
(does_not_read_mystery_novels(shelby))&
(has_a_curated_collection_of_mid-century_modern_furniture(shelby))&
(?[X]:(anywhere(X)&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))&
(![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(does_not_use_contact_lenses(X))))))&
(![X]:(~room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))&
(![X]:(anywhere(X)=>(((is_right-handed(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))&
(![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(owns_a_telescope(X))))))&
(does_not_collect_limited-edition_art_prints_from_contemporary_artists(shelby))&
(~![X]:(room(X)=>(((does_not_play_the_drums(X))|(owns_a_telescope(X))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))&
(![X]:(room(X)=>(((((plays_eSports_competitively(X))<~>(has_a_curated_collection_of_mid-century_modern_furniture(X))))<=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))
|
room(shelby)&(![X]:(room(X)=>(X='shelby')))&
does_enjoy_mountain_biking(shelby)
|
[] | null | 0 |
Brent, Ray, Jaime, Wendy, Patricia are the only persons in the room.
If "everyone in the room has a vast collection of first-edition science fiction novels or does not have a vast collection of first-edition science fiction novels" then "everyone in the room who does not enjoy writing detailed reviews of new and classic board games, has a vast collection of first-edition science fiction novels and practices kickboxing practices kickboxing".
Ray does not have a vast collection of first-edition science fiction novels.
If someone is a dedicated volunteer for local community service projects then he/she does not practice kickboxing.
Everyone in the room who does not enjoy writing detailed reviews of new and classic board games has a vast collection of first-edition science fiction novels.
It is true that "Ray neither practices kickboxing nor practices zumba".
|
Wendy practices kickboxing.
|
neutral
|
room(brent)&room(ray)&room(jaime)&room(wendy)&room(patricia)&(![X]:(room(X)=>(X='brent'|X='ray'|X='jaime'|X='wendy'|X='patricia')))&
((![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))=>(![X]:(room(X)=>(((((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))&(has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(practices_kickboxing(X))))=>(practices_kickboxing(X)))))))&
(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(ray))&
((![X]:((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(does_not_practice_kickboxing(X)))))&
(![X]:(room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))&
(~((practices_kickboxing(ray))|(practices_zumba(ray))))&
(![X]:(room(X)=>(((practices_zumba(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))&
(![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(practices_kickboxing(X))))))))&
(?[X]:(~room(X)&(practices_zumba(X))))&
(?[X]:(room(X)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))&
((is_a_dedicated_volunteer_for_local_community_service_projects(jaime))&(has_a_vast_collection_of_first-edition_science_fiction_novels(jaime)))&
(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(jaime))&
(![X]:(~room(X)=>(((practices_zumba(X))=>(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(~![X]:(~room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(practices_zumba(X))))))&
(((does_not_practice_zumba(jaime))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(jaime))))
|
room(brent)&room(ray)&room(jaime)&room(wendy)&room(patricia)&(![X]:(room(X)=>(X='brent'|X='ray'|X='jaime'|X='wendy'|X='patricia')))&
practices_kickboxing(wendy)
|
[] | null | 0.035366 |
Jorge is the only person in the room. Everyone in the room who has a vast collection of first-edition science fiction novels enjoys origami. It is not the case that someone in the room collects first edition books. If someone collects first edition books then he/she is a dedicated volunteer for local community service projects. Everyone anywhere who own a television has a curated collection of mid-century modern furniture. Everyone in the room who has a curated collection of mid-century modern furniture has a piercing. Everyone in the room who has a piercing is a dedicated volunteer for local community service projects. Everyone in the room who enjoys kayaking and exploring remote waterways enjoys origami. Not everyone in the room who enjoys origami competes in national level swimming championships. If someone enjoys stargazing then he/she develops open-source software projects in their free time. Everyone in the room who collects vintage vinyl records has a piercing. Everyone anywhere who competes in national level swimming championships enjoys stargazing. If someone can play the piano then he/she own a television. Everyone in the room who practices archery practices digital art. Not everyone in the room who practices digital art enjoys windsurfing. Everyone outside the room who enjoys windsurfing has a curated collection of mid-century modern furniture. Everyone in the room who has a curated collection of mid-century modern furniture enjoys origami. Everyone in the room who enjoys origami practices pilates. Everyone in the room who practices pilates enjoys skydiving.
|
Jorge collects vintage vinyl records.
|
neutral
|
room(jorge)&(![X]:(room(X)=>(X='jorge')))&
(![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(enjoys_origami(X))))))&
(~(?[X]:(room(X)&(collects_first_edition_books(X)))))&
((![X]:((collects_first_edition_books(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X)))))&
(![X]:(anywhere(X)=>(((own_a_television(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))&
(![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(has_a_piercing(X))))))&
(![X]:(room(X)=>(((has_a_piercing(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(enjoys_origami(X))))))&
(~![X]:(room(X)=>(((enjoys_origami(X))=>(competes_in_national_level_swimming_championships(X))))))&
((![X]:((enjoys_stargazing(X))=>(develops_open-source_software_projects_in_their_free_time(X)))))&
(![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(has_a_piercing(X))))))&
(![X]:(anywhere(X)=>(((competes_in_national_level_swimming_championships(X))=>(enjoys_stargazing(X))))))&
((![X]:((can_play_the_piano(X))=>(own_a_television(X)))))&
(![X]:(room(X)=>(((practices_archery(X))=>(practices_digital_art(X))))))&
(~![X]:(room(X)=>(((practices_digital_art(X))=>(enjoys_windsurfing(X))))))&
(![X]:(~room(X)=>(((enjoys_windsurfing(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))&
(![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(enjoys_origami(X))))))&
(![X]:(room(X)=>(((enjoys_origami(X))=>(practices_pilates(X))))))&
(![X]:(room(X)=>(((practices_pilates(X))=>(enjoys_skydiving(X))))))&
(![X]:(room(X)=>(((own_a_television(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))&
(![X]:(~room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))<=>(enjoys_windsurfing(X))))))
|
room(jorge)&(![X]:(room(X)=>(X='jorge')))&
collects_vintage_vinyl_records(jorge)
|
[] | null | 0.546348 |
Larry, Betty, Sandra, Sylvia are the only persons in the room.
If “Sandra builds model airplanes” then “if someone composes and performs experimental electronic music then he/she is a client of LVMH and vice versa”.
Either “Sylvia travels domestically frequently” or “everyone outside the room travels domestically frequently or does not compose and performs experimental electronic music” but not both.
If “Betty composes and performs experimental electronic music” then “Sandra does not build model airplanes”.
If “Sandra does not build model airplanes” then “Betty streams on Twitch or builds model airplanes or both”.
Sylvia streams on Twitch or travels domestically frequently or both.
Betty streams on Twitch or builds model airplanes or both.
|
Sandra builds model airplanes.
|
neutral
|
room(larry)&room(betty)&room(sandra)&room(sylvia)&(![X]:(room(X)=>(X='larry'|X='betty'|X='sandra'|X='sylvia')))&
((builds_model_airplanes(sandra))=>((![X]:((composes_and_performs_experimental_electronic_music(X))<=>(is_a_client_of_LVMH(X))))))&
((travels_domestically_frequently(sylvia))<~>(![X]:(~room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(travels_domestically_frequently(X)))))))&
(((composes_and_performs_experimental_electronic_music(betty))=>(does_not_build_model_airplanes(sandra)))&
((does_not_build_model_airplanes(sandra))=>(((streams_on_Twitch(betty))|(builds_model_airplanes(betty))))))&
(((streams_on_Twitch(sylvia))|(travels_domestically_frequently(sylvia))))&
(((streams_on_Twitch(betty))|(builds_model_airplanes(betty))))&
(streams_on_Twitch(sandra))&
(((?[X]:(room(X)&composes_and_performs_experimental_electronic_music(X)))))&
(streams_on_Twitch(sylvia))
|
room(larry)&room(betty)&room(sandra)&room(sylvia)&(![X]:(room(X)=>(X='larry'|X='betty'|X='sandra'|X='sylvia')))&
builds_model_airplanes(sandra)
|
[] | null | 0.095672 |
Joseph, Moises, Olivia are the only persons in the room. Either Joseph enjoys deep-sea diving and exploring underwater caves or Moises enjoys deep-sea diving and exploring underwater caves but not both. Either Moises enjoys deep-sea diving and exploring underwater caves or Olivia enjoys deep-sea diving and exploring underwater caves but not both. If it is true that Moises enjoys deep-sea diving and exploring underwater caves then someone in the room does not enjoy deep-sea diving and exploring underwater caves. If Moises does not enjoy deep-sea diving and exploring underwater caves then it is not the case that more than one person outside the room enjoys deep-sea diving and exploring underwater caves. It is not the case that more than one person outside the room enjoys deep-sea diving and exploring underwater caves. Someone outside the room enjoys deep-sea diving and exploring underwater caves. It is not the case that more than one person in the room enjoys deep-sea diving and exploring underwater caves.
|
Moises enjoys deep-sea diving and exploring underwater caves.
|
entailment
|
room(joseph)&room(moises)&room(olivia)&(![X]:(room(X)=>(X='joseph'|X='moises'|X='olivia')))&
((enjoys_deep-sea_diving_and_exploring_underwater_caves(joseph))<~>(enjoys_deep-sea_diving_and_exploring_underwater_caves(moises)))&
((enjoys_deep-sea_diving_and_exploring_underwater_caves(moises))<~>(enjoys_deep-sea_diving_and_exploring_underwater_caves(olivia)))&
((enjoys_deep-sea_diving_and_exploring_underwater_caves(moises))=>(?[X]:(room(X)&(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X)))))&
((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(moises))=>(~((?[X,Y]:(~room(X)&~room(Y)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(Y))&(X!=Y))))))&
(~((?[X,Y]:(~room(X)&~room(Y)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(Y))&(X!=Y)))))&
(?[X]:(~room(X)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))&
(~((?[X,Y]:(room(X)&room(Y)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(Y))&(X!=Y)))))
|
room(joseph)&room(moises)&room(olivia)&(![X]:(room(X)=>(X='joseph'|X='moises'|X='olivia')))&
enjoys_deep-sea_diving_and_exploring_underwater_caves(moises)
|
[
"b42",
"p0",
"p1",
"p2",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 4610496548660206235816042
% SZS output start Proof for 4610496548660206235816042
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. preda(mary) <~> preda(paul) [input p1]
46. preda(paul) <~> preda(fred) [input p2]
51. ~? [X0,X1] : (X0 != X1 & preda(X1) & preda(X0) & room(X1) & room(X0)) [input p7]
52. ~(preda(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
125. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
126. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 125]
130. ! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) [ennf transformation 51]
131. ~preda(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 52]
132. ~preda(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 131]
134. (~preda(paul) | ~preda(mary)) & (preda(paul) | preda(mary)) [nnf transformation 45]
135. (~preda(fred) | ~preda(paul)) & (preda(fred) | preda(paul)) [nnf transformation 46]
140. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom]
141. ~preda(paul) | (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 132,140]
192. mary != fred [cnf transformation 43]
222. room(mary) [cnf transformation 126]
223. room(paul) [cnf transformation 126]
224. room(fred) [cnf transformation 126]
225. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 126]
226. preda(paul) | preda(mary) [cnf transformation 134]
228. preda(fred) | preda(paul) [cnf transformation 135]
236. ~preda(X1) | X0 = X1 | ~preda(X0) | ~room(X1) | ~room(X0) [cnf transformation 130]
237. ~preda(paul) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141]
238. ~preda(paul) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141]
239. ~preda(paul) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141]
240. ~preda(paul) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141]
242. 1 <=> preda(mary) [avatar definition]
243. preda(mary) <- (1) [avatar component clause 242]
246. 2 <=> preda(paul) [avatar definition]
250. 1 | 2 [avatar split clause 226,246,242]
252. 3 <=> preda(fred) [avatar definition]
253. preda(fred) <- (3) [avatar component clause 252]
256. 2 | 3 [avatar split clause 228,252,246]
272. ~preda(paul) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 240,224]
273. ~preda(paul) | fred != sK2 | ~room(mary) [subsumption resolution 272,223]
274. ~preda(paul) | fred != sK2 [subsumption resolution 273,222]
276. 7 <=> fred = sK2 [avatar definition]
278. fred != sK2 <- (~7) [avatar component clause 276]
279. ~7 | ~2 [avatar split clause 274,246,276]
280. ~preda(paul) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 239,224]
281. ~preda(paul) | paul != sK2 | ~room(mary) [subsumption resolution 280,223]
282. ~preda(paul) | paul != sK2 [subsumption resolution 281,222]
284. 8 <=> paul = sK2 [avatar definition]
286. paul != sK2 <- (~8) [avatar component clause 284]
287. ~8 | ~2 [avatar split clause 282,246,284]
288. ~preda(paul) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 238,224]
289. ~preda(paul) | mary != sK2 | ~room(mary) [subsumption resolution 288,223]
290. ~preda(paul) | mary != sK2 [subsumption resolution 289,222]
292. 9 <=> mary = sK2 [avatar definition]
295. ~9 | ~2 [avatar split clause 290,246,292]
296. ~preda(paul) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 237,224]
297. ~preda(paul) | room(sK2) | ~room(mary) [subsumption resolution 296,223]
298. ~preda(paul) | room(sK2) [subsumption resolution 297,222]
300. 10 <=> room(sK2) [avatar definition]
302. room(sK2) <- (10) [avatar component clause 300]
303. 10 | ~2 [avatar split clause 298,246,300]
344. paul = sK2 | mary = sK2 | fred = sK2 <- (10) [resolution 225,302]
358. mary = sK2 | fred = sK2 <- (~8, 10) [subsumption resolution 344,286]
362. mary = sK2 <- (~7, ~8, 10) [subsumption resolution 358,278]
363. 9 | 7 | 8 | ~10 [avatar split clause 362,300,284,276,292]
368. mary = X1 | ~preda(X1) | ~room(mary) | ~room(X1) <- (1) [resolution 236,243]
370. ~preda(X1) | mary = X1 | ~room(X1) <- (1) [subsumption resolution 368,222]
374. mary = fred | ~room(fred) <- (1, 3) [resolution 370,253]
375. ~room(fred) <- (1, 3) [subsumption resolution 374,192]
376. $false <- (1, 3) [subsumption resolution 375,224]
377. ~1 | ~3 [avatar contradiction clause 376]
378. $false [avatar sat refutation 250,256,279,287,295,303,363,377]
% SZS output end Proof for 4610496548660206235816042
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.030 s
% ------------------------------
% ------------------------------
| 0.242637 |
Ernesto, Connie, Steven, Antonio are the only persons in the room. Everyone in the room who does not use a Windows laptop builds model airplanes. Everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals if they collects vintage vinyl records. Everyone in the room builds model airplanes if they uses a Windows laptop. Everyone in the room builds model airplanes if they hosts themed dinner parties featuring gourmet home-cooked meals and vice versa.
|
Steven collects vintage vinyl records.
|
contradiction
|
room(ernesto)&room(connie)&room(steven)&room(antonio)&(![X]:(room(X)=>(X='ernesto'|X='connie'|X='steven'|X='antonio')))&
((![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))|(does_not_build_model_airplanes(X))))))=>(~![X]:(room(X)=>(((does_not_build_model_airplanes(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))&
((![X]:(anywhere(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(is_not_a_Linux_enthusiast(X))))))=>(does_not_travel_domestically_frequently(ernesto)))&
((![X]:(room(X)=>(((is_a_Linux_enthusiast(X))|(does_not_travel_domestically_frequently(X))))))=>(does_not_travel_domestically_frequently(ernesto)))&
((practices_pilates(ernesto))=>(~?[X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))&
((![X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))=>(maintains_a_large,_organic_vegetable_garden_year-round(ernesto)))&
(![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(does_not_practice_pilates(X))))))&
(is_a_Linux_enthusiast(antonio))&
(is_a_Linux_enthusiast(steven))&
(![X]:(room(X)=>(((builds_model_airplanes(X))=>(hosts_regular_workshops_on_creative_writing(X))))))&
(maintains_a_large,_organic_vegetable_garden_year-round(ernesto))&
(![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(enjoys_skydiving(X))))))&
(does_not_maintain_a_large,_organic_vegetable_garden_year-round(steven))&
((![X]:((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(collects_vintage_vinyl_records(X)))))&
(![X]:(room(X)=>(((is_a_Linux_enthusiast(X))|(does_not_use_a_Windows_laptop(X))))))&
(![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))=>(builds_model_airplanes(X))))))&
(![X]:(room(X)=>(((builds_model_airplanes(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))&
(![X]:(room(X)=>(((builds_model_airplanes(X))=>(uses_a_Windows_laptop(X))))))&
(((uses_a_Windows_laptop(antonio))|(enjoys_wildlife_photography(antonio))))&
(enjoys_wildlife_photography(antonio))&
(![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))&
(![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(builds_model_airplanes(X))))))&
(![X]:(room(X)=>(((builds_model_airplanes(X))<=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))&
(((uses_a_Windows_laptop(ernesto))|(does_not_enjoy_wildlife_photography(ernesto))))
|
room(ernesto)&room(connie)&room(steven)&room(antonio)&(![X]:(room(X)=>(X='ernesto'|X='connie'|X='steven'|X='antonio')))&
collects_vintage_vinyl_records(steven)
|
[
"p0",
"p15",
"p20",
"p21",
"p22",
"hypothesis"
] |
% SZS status Unsatisfiable for 4833285232294091794349845
% SZS output start Proof for 4833285232294091794349845
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
59. ! [X0] : (room(X0) => (~predh(X0) => predm(X0))) [input p15]
64. ! [X0] : (room(X0) => (predc(X0) => ~predl(X0))) [input p20]
65. ! [X0] : (room(X0) => (predh(X0) => predm(X0))) [input p21]
66. ! [X0] : (room(X0) => (predm(X0) <=> predl(X0))) [input p22]
68. predc(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
149. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
150. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149]
160. ! [X0] : ((predm(X0) | predh(X0)) | ~room(X0)) [ennf transformation 59]
161. ! [X0] : (predm(X0) | predh(X0) | ~room(X0)) [flattening 160]
166. ! [X0] : ((~predl(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 64]
167. ! [X0] : (~predl(X0) | ~predc(X0) | ~room(X0)) [flattening 166]
168. ! [X0] : ((predm(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 65]
169. ! [X0] : (predm(X0) | ~predh(X0) | ~room(X0)) [flattening 168]
170. ! [X0] : ((predm(X0) <=> predl(X0)) | ~room(X0)) [ennf transformation 66]
171. predc(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68]
172. predc(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 171]
188. ! [X0] : (((predm(X0) | ~predl(X0)) & (predl(X0) | ~predm(X0))) | ~room(X0)) [nnf transformation 170]
271. room(fred) [cnf transformation 150]
293. ~room(X0) | predh(X0) | predm(X0) [cnf transformation 161]
298. ~predc(X0) | ~predl(X0) | ~room(X0) [cnf transformation 167]
299. predm(X0) | ~predh(X0) | ~room(X0) [cnf transformation 169]
300. predl(X0) | ~predm(X0) | ~room(X0) [cnf transformation 188]
308. predc(fred) [cnf transformation 172]
398. ~room(X0) | predm(X0) [subsumption resolution 299,293]
399. ~room(X0) | predl(X0) [subsumption resolution 300,398]
428. predl(fred) [resolution 399,271]
454. ~predl(fred) | ~room(fred) [resolution 298,308]
456. ~room(fred) [subsumption resolution 454,428]
457. $false [subsumption resolution 456,271]
% SZS output end Proof for 4833285232294091794349845
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.025 s
% ------------------------------
% ------------------------------
| 0.409289 |
Normany, Rodolfo, Donald are the only persons in the room.
“No one in the room owns a smartwatch or does not own a smartwatch” if “Rodolfo uses a Windows laptop”.
“Everyone outside the room is wise or does not work on fridays” only if “someone who is humble is younger than someone who owns a smartwatch”.
“Everyone in the room does not use a Windows laptop or is younger than Harriette” only if “all brave persons are wise”.
If “everyone in the room does not work on fridays or is younger than Harriette” then “everyone in the room owns a smartwatch if they works on fridays and vice versa”.
“Normany uses a Windows laptop” only if “at least one person in the room works on fridays”.
If “not everyone in the room does not own a smartwatch or uses a Windows laptop” then “all strong persons are wise”.
Rodolfo owns a smartwatch.
|
All strong persons are wise.
|
entailment
|
room(normany)&room(rodolfo)&room(donald)&(![X]:(room(X)=>(X='normany'|X='rodolfo'|X='donald')))&
((uses_a_Windows_laptop(rodolfo))=>(~?[X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(owns_a_smartwatch(X)))))))&
((![X]:(~room(X)=>(((does_not_work_on_fridays(X))|(wise(X))))))=>(?[X,Y]:((humble(X))&(owns_a_smartwatch(Y))&(younger(X,Y)))))&
((![X]:(room(X)=>(((younger(harriette,X))|(does_not_use_a_Windows_laptop(X))))))=>(![X]:(brave(X)=>wise(X))))&
((![X]:(room(X)=>(((younger(harriette,X))|(does_not_work_on_fridays(X))))))=>(![X]:(room(X)=>(((owns_a_smartwatch(X))<=>(works_on_fridays(X)))))))&
((uses_a_Windows_laptop(normany))=>(((?[X]:(room(X)&works_on_fridays(X))))))&
((~![X]:(room(X)=>(((uses_a_Windows_laptop(X))|(does_not_own_a_smartwatch(X))))))=>(![X]:(strong(X)=>wise(X))))&
((![X]:(room(X)=>(((works_on_fridays(X))|(does_not_own_a_smartwatch(X))))))=>(?[X]:(anywhere(X)&(works_on_fridays(X)))))&
(~(![X]:(room(X)=>(((owns_a_smartwatch(X))|(does_not_own_a_smartwatch(X))))))=>((?[X,Y]:(room(X)&room(Y)&(works_on_fridays(X)&works_on_fridays(Y))&(X!=Y)))))&
(![X]:(brave(X)=>wise(X)))&
(![X]:(room(X)=>(((((owns_a_smartwatch(X))&(younger(norma,X))&(uses_a_Windows_laptop(X))))=>(works_on_fridays(X))))))&
(sibling(norma,rodolfo)&sibling(norma,normany))&
((![X]:((sibling(norma,X))<=>(works_on_fridays(X)))))&
((![X]:((younger(harriette,X))<=>(younger(norma,X)))))&
(((?[X]:(room(X)&does_not_work_on_fridays(X)))))&
(![X]:(room(X)=>(((owns_a_smartwatch(X))|(does_not_own_a_smartwatch(X))))))&
(![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(owns_a_smartwatch(X))))))&
(![X]:(wise(X)=>strong(X)))&
(owns_a_smartwatch(rodolfo))
|
room(normany)&room(rodolfo)&room(donald)&(![X]:(room(X)=>(X='normany'|X='rodolfo'|X='donald')))&
![X]:(strong(X)=>wise(X))
|
[
"p0",
"p1",
"p6",
"p18",
"hypothesis"
] |
% SZS status Unsatisfiable for 5229884583537777906886391
% SZS output start Proof for 5229884583537777906886391
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. predb(paul) => ~? [X0] : (room(X0) => (predt(X0) | ~predt(X0))) [input p1]
50. ~! [X0] : (room(X0) => (~predt(X0) | predb(X0))) => ! [X0] : (strong(X0) => wise(X0)) [input p6]
62. predt(paul) [input p18]
63. ~(! [X0] : (strong(X0) => wise(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
67. ~! [X0] : (room(X0) => (~predt(X0) | predb(X0))) => ! [X1] : (strong(X1) => wise(X1)) [rectify 50]
70. ~(! [X0] : (strong(X0) => wise(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary)) [rectify 63]
147. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
148. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147]
149. ! [X0] : ((~predt(X0) & predt(X0)) & room(X0)) | ~predb(paul) [ennf transformation 45]
150. ! [X0] : (~predt(X0) & predt(X0) & room(X0)) | ~predb(paul) [flattening 149]
156. ! [X1] : (wise(X1) | ~strong(X1)) | ! [X0] : ((~predt(X0) | predb(X0)) | ~room(X0)) [ennf transformation 67]
157. ! [X1] : (wise(X1) | ~strong(X1)) | ! [X0] : (~predt(X0) | predb(X0) | ~room(X0)) [flattening 156]
169. ? [X0] : (~wise(X0) & strong(X0)) | ? [X1] : ((fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 70]
170. ? [X0] : (~wise(X0) & strong(X0)) | ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 169]
182. ! [X0] : (wise(X0) | ~strong(X0)) | ! [X1] : (~predt(X1) | predb(X1) | ~room(X1)) [rectify 157]
194. ? [X0] : (~wise(X0) & strong(X0)) => (~wise(sK10) & strong(sK10)) [choice axiom]
195. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) => (fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) [choice axiom]
196. (~wise(sK10) & strong(sK10)) | (fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 170,195,194]
277. room(mary) [cnf transformation 148]
278. room(paul) [cnf transformation 148]
279. room(fred) [cnf transformation 148]
280. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 148]
282. predt(X0) | ~predb(paul) [cnf transformation 150]
283. ~predt(X0) | ~predb(paul) [cnf transformation 150]
298. wise(X0) | ~strong(X0) | ~predt(X1) | predb(X1) | ~room(X1) [cnf transformation 182]
319. predt(paul) [cnf transformation 62]
320. strong(sK10) | room(sK11) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
321. strong(sK10) | mary != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
322. strong(sK10) | paul != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
323. strong(sK10) | fred != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
324. ~wise(sK10) | room(sK11) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
325. ~wise(sK10) | mary != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
326. ~wise(sK10) | paul != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
327. ~wise(sK10) | fred != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
329. 1 <=> predb(paul) [avatar definition]
331. ~predb(paul) <- (~1) [avatar component clause 329]
333. 2 <=> ! [X0] : ~predt(X0) [avatar definition]
334. ~predt(X0) <- (2) [avatar component clause 333]
335. ~1 | 2 [avatar split clause 283,333,329]
337. 3 <=> ! [X0] : predt(X0) [avatar definition]
338. predt(X0) <- (3) [avatar component clause 337]
339. ~1 | 3 [avatar split clause 282,337,329]
409. 18 <=> ! [X1] : (~predt(X1) | ~room(X1) | predb(X1)) [avatar definition]
410. ~predt(X1) | ~room(X1) | predb(X1) <- (18) [avatar component clause 409]
412. 19 <=> ! [X0] : (wise(X0) | ~strong(X0)) [avatar definition]
413. ~strong(X0) | wise(X0) <- (19) [avatar component clause 412]
414. 18 | 19 [avatar split clause 298,412,409]
434. ~wise(sK10) | fred != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 327,279]
435. ~wise(sK10) | fred != sK11 | ~room(mary) [subsumption resolution 434,278]
436. ~wise(sK10) | fred != sK11 [subsumption resolution 435,277]
438. 24 <=> fred = sK11 [avatar definition]
440. fred != sK11 <- (~24) [avatar component clause 438]
442. 25 <=> wise(sK10) [avatar definition]
444. ~wise(sK10) <- (~25) [avatar component clause 442]
445. ~24 | ~25 [avatar split clause 436,442,438]
446. ~wise(sK10) | paul != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 326,279]
447. ~wise(sK10) | paul != sK11 | ~room(mary) [subsumption resolution 446,278]
448. ~wise(sK10) | paul != sK11 [subsumption resolution 447,277]
450. 26 <=> paul = sK11 [avatar definition]
452. paul != sK11 <- (~26) [avatar component clause 450]
453. ~26 | ~25 [avatar split clause 448,442,450]
454. ~wise(sK10) | mary != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 325,279]
455. ~wise(sK10) | mary != sK11 | ~room(mary) [subsumption resolution 454,278]
456. ~wise(sK10) | mary != sK11 [subsumption resolution 455,277]
458. 27 <=> mary = sK11 [avatar definition]
460. mary != sK11 <- (~27) [avatar component clause 458]
461. ~27 | ~25 [avatar split clause 456,442,458]
462. ~wise(sK10) | room(sK11) | ~room(paul) | ~room(mary) [subsumption resolution 324,279]
463. ~wise(sK10) | room(sK11) | ~room(mary) [subsumption resolution 462,278]
464. ~wise(sK10) | room(sK11) [subsumption resolution 463,277]
466. 28 <=> room(sK11) [avatar definition]
468. room(sK11) <- (28) [avatar component clause 466]
469. 28 | ~25 [avatar split clause 464,442,466]
470. strong(sK10) | fred != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 323,279]
471. strong(sK10) | fred != sK11 | ~room(mary) [subsumption resolution 470,278]
472. strong(sK10) | fred != sK11 [subsumption resolution 471,277]
474. 29 <=> strong(sK10) [avatar definition]
476. strong(sK10) <- (29) [avatar component clause 474]
477. ~24 | 29 [avatar split clause 472,474,438]
478. strong(sK10) | paul != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 322,279]
479. strong(sK10) | paul != sK11 | ~room(mary) [subsumption resolution 478,278]
480. strong(sK10) | paul != sK11 [subsumption resolution 479,277]
481. ~26 | 29 [avatar split clause 480,474,450]
482. strong(sK10) | mary != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 321,279]
483. strong(sK10) | mary != sK11 | ~room(mary) [subsumption resolution 482,278]
484. strong(sK10) | mary != sK11 [subsumption resolution 483,277]
485. ~27 | 29 [avatar split clause 484,474,458]
486. strong(sK10) | room(sK11) | ~room(paul) | ~room(mary) [subsumption resolution 320,279]
487. strong(sK10) | room(sK11) | ~room(mary) [subsumption resolution 486,278]
488. strong(sK10) | room(sK11) [subsumption resolution 487,277]
489. 28 | 29 [avatar split clause 488,474,466]
493. ~room(paul) | predb(paul) <- (18) [resolution 410,319]
494. predb(paul) <- (18) [subsumption resolution 493,278]
495. $false <- (~1, 18) [subsumption resolution 494,331]
496. 1 | ~18 [avatar contradiction clause 495]
577. paul = sK11 | mary = sK11 | fred = sK11 <- (28) [resolution 280,468]
604. mary = sK11 | fred = sK11 <- (~26, 28) [subsumption resolution 577,452]
605. fred = sK11 <- (~26, ~27, 28) [subsumption resolution 604,460]
606. $false <- (~24, ~26, ~27, 28) [subsumption resolution 605,440]
607. 24 | 26 | 27 | ~28 [avatar contradiction clause 606]
610. wise(sK10) <- (19, 29) [resolution 476,413]
611. $false <- (19, ~25, 29) [subsumption resolution 610,444]
612. ~19 | 25 | ~29 [avatar contradiction clause 611]
613. $false <- (2, 3) [subsumption resolution 334,338]
614. ~2 | ~3 [avatar contradiction clause 613]
615. $false [avatar sat refutation 335,339,414,445,453,461,469,477,481,485,489,496,607,612,614]
% SZS output end Proof for 5229884583537777906886391
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.032005 |
Elizabeth, Marylyn, Amanda, Brenda are the only persons in the room.
'Marylyn practices calligraphy' unless 'everyone in the room does not enjoy salsa dancing or enjoys skydiving'.
Everyone in the room does not enjoy salsa dancing or enjoys skydiving.
Everyone in the room who enjoys macrame, enjoys wildlife photography or enjoys making ceramics practices calligraphy.
Everyone in the room owns a high-end gaming PC with custom-built components if they enjoys virtual reality gaming, enjoys wildlife photography and hosts regular workshops on creative writing and vice versa.
Marylyn practices calligraphy.
It is true that 'only one person anywhere practices calligraphy'.
|
Elizabeth owns a high-end gaming PC with custom-built components.
|
contradiction
|
room(elizabeth)&room(marylyn)&room(amanda)&room(brenda)&(![X]:(room(X)=>(X='elizabeth'|X='marylyn'|X='amanda'|X='brenda')))&
(~(![X]:(room(X)=>(((enjoys_skydiving(X))|(does_not_enjoy_salsa_dancing(X))))))=>(practices_calligraphy(marylyn)))&
(![X]:(room(X)=>(((enjoys_skydiving(X))|(does_not_enjoy_salsa_dancing(X))))))&
(![X]:(room(X)=>(((((collects_antique_clocks(X))|(does_not_enjoy_origami(X))|(is_a_scotch_connoisseur(X))))<=>(enjoys_bird_watching(X))))))&
(![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(((owns_a_smart_tv(X))&(enjoys_wildlife_photography(X))&(does_not_use_contact_lenses(X))))))))&
(~(?[X]:(room(X)&(has_a_curated_collection_of_mid-century_modern_furniture(X)))))&
(![X]:(room(X)=>(((enjoys_salsa_dancing(X))<=>(((enjoys_wildlife_photography(X))&(enjoys_skydiving(X))&(enjoys_macrame(X))))))))&
(does_not_enjoy_making_ceramics(elizabeth))&
(![X]:(room(X)=>(((((enjoys_macrame(X))|(enjoys_wildlife_photography(X))|(enjoys_making_ceramics(X))))=>(practices_calligraphy(X))))))&
(~![X]:(room(X)=>(enjoys_bird_watching(X))))&
((?[X,Y]:(room(X)&room(Y)&(has_a_specialized_collection_of_handmade_artisan_pottery(X)&has_a_specialized_collection_of_handmade_artisan_pottery(Y))&(X!=Y))))&
(![X]:(room(X)=>(((enjoys_landscape_photography(X))<=(collects_antique_clocks(X))))))&
(![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(enjoys_origami(X))))))&
(![X]:(room(X)=>(((enjoys_origami(X))=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))&
(![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(enjoys_origami(X))))))&
(![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=>(((enjoys_virtual_reality_gaming(X))&(enjoys_wildlife_photography(X))&(hosts_regular_workshops_on_creative_writing(X))))))))&
(![X]:(room(X)=>(((((enjoys_virtual_reality_gaming(X))&(enjoys_wildlife_photography(X))&(hosts_regular_workshops_on_creative_writing(X))))=>(does_not_own_a_smart_tv(X))))))&
((?[X,Y]:(room(X)&room(Y)&(can_play_the_harmonica(X)&can_play_the_harmonica(Y))&(X!=Y))))&
((enjoys_stargazing(marylyn))&(((enjoys_bird_watching(marylyn))<~>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(marylyn)))))&
(is_an_expert_in_identifying_and_foraging_wild_edible_plants(marylyn))&
(practices_calligraphy(marylyn))&
(((?[X]:(anywhere(X)&practices_calligraphy(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(practices_calligraphy(X))&(practices_calligraphy(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_host_regular_workshops_on_creative_writing(X))))))&
((((enjoys_wildlife_photography(elizabeth))<~>(collects_antique_clocks(elizabeth))))&(does_not_enjoy_logic_puzzles(elizabeth)))&
((?[X,Y]:(room(X)&room(Y)&(enjoys_logic_puzzles(X)&enjoys_logic_puzzles(Y))&(X!=Y))))&
(![X]:(room(X)=>(((enjoys_origami(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))&
(![X]:(room(X)=>(((((enjoys_logic_puzzles(X))&(collects_antique_clocks(X))&(is_a_craft_beer_aficionado(X))))=>(is_a_craft_beer_aficionado(X))))))&
((?[X,Y]:(room(X)&room(Y)&(enjoys_stargazing(X)&enjoys_stargazing(Y))&(X!=Y))))&
(((enjoys_origami(elizabeth))|(enjoys_making_ceramics(elizabeth))))
|
room(elizabeth)&room(marylyn)&room(amanda)&room(brenda)&(![X]:(room(X)=>(X='elizabeth'|X='marylyn'|X='amanda'|X='brenda')))&
owns_a_high-end_gaming_PC_with_custom-built_components(elizabeth)
|
[
"b4",
"b42",
"p0",
"p8",
"p15",
"p20",
"p21",
"hypothesis"
] |
% SZS status Unsatisfiable for 2110705091405016368956665
% SZS output start Proof for 2110705091405016368956665
5. ! [X0] : anywhere(X0) [input b4]
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
52. ! [X0] : (room(X0) => ((predt(X0) | predk(X0) | predb(X0)) => predp(X0))) [input p8]
59. ! [X0] : (room(X0) => (predi(X0) <=> (predg(X0) & predk(X0) & predu(X0)))) [input p15]
64. predp(paul) [input p20]
65. ! [X0,X1] : ((predp(X1) & predp(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (predp(X0) & anywhere(X0)) [input p21]
73. predi(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
74. ! [X0,X1] : ((predp(X1) & predp(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predp(X2) & anywhere(X2)) [rectify 65]
156. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
157. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156]
164. ! [X0] : ((predp(X0) | (~predt(X0) & ~predk(X0) & ~predb(X0))) | ~room(X0)) [ennf transformation 52]
165. ! [X0] : (predp(X0) | (~predt(X0) & ~predk(X0) & ~predb(X0)) | ~room(X0)) [flattening 164]
171. ! [X0] : ((predi(X0) <=> (predg(X0) & predk(X0) & predu(X0))) | ~room(X0)) [ennf transformation 59]
172. ! [X0,X1] : (X0 = X1 | (~predp(X1) | ~predp(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (predp(X2) & anywhere(X2)) [ennf transformation 74]
173. ! [X0,X1] : (X0 = X1 | ~predp(X1) | ~predp(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predp(X2) & anywhere(X2)) [flattening 172]
178. predi(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 73]
179. predi(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 178]
189. ! [X0] : (((predi(X0) | (~predg(X0) | ~predk(X0) | ~predu(X0))) & ((predg(X0) & predk(X0) & predu(X0)) | ~predi(X0))) | ~room(X0)) [nnf transformation 171]
190. ! [X0] : (((predi(X0) | ~predg(X0) | ~predk(X0) | ~predu(X0)) & ((predg(X0) & predk(X0) & predu(X0)) | ~predi(X0))) | ~room(X0)) [flattening 189]
194. ? [X2] : (predp(X2) & anywhere(X2)) => (predp(sK5) & anywhere(sK5)) [choice axiom]
195. ! [X0,X1] : (X0 = X1 | ~predp(X1) | ~predp(X0) | ~anywhere(X1) | ~anywhere(X0)) & (predp(sK5) & anywhere(sK5)) [skolemisation 173,194]
202. anywhere(X0) [cnf transformation 5]
247. mary != paul [cnf transformation 43]
283. room(mary) [cnf transformation 157]
300. ~predk(X0) | predp(X0) | ~room(X0) [cnf transformation 165]
312. ~predi(X0) | predk(X0) | ~room(X0) [cnf transformation 190]
321. predp(paul) [cnf transformation 64]
323. predp(sK5) [cnf transformation 195]
324. X0 = X1 | ~predp(X1) | ~predp(X0) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 195]
344. predi(mary) [cnf transformation 179]
349. 2 <=> predp(paul) [avatar definition]
351. predp(paul) <- (2) [avatar component clause 349]
366. 2 [avatar split clause 321,349]
367. X0 = X1 | ~predp(X1) | ~predp(X0) | ~anywhere(X0) [subsumption resolution 324,202]
368. ~predp(X1) | X0 = X1 | ~predp(X0) [subsumption resolution 367,202]
370. 5 <=> predk(mary) [avatar definition]
371. predk(mary) <- (5) [avatar component clause 370]
495. predk(mary) | ~room(mary) [resolution 312,344]
499. predk(mary) [subsumption resolution 495,283]
500. 5 [avatar split clause 499,370]
501. predp(mary) | ~room(mary) <- (5) [resolution 371,300]
502. predp(mary) <- (5) [subsumption resolution 501,283]
505. ~predp(X0) | sK5 = X0 [resolution 368,323]
511. paul = sK5 <- (2) [resolution 505,351]
512. mary = sK5 <- (5) [resolution 505,502]
515. mary = paul <- (2, 5) [backward demodulation 511,512]
516. $false <- (2, 5) [subsumption resolution 515,247]
517. ~2 | ~5 [avatar contradiction clause 516]
518. $false [avatar sat refutation 366,500,517]
% SZS output end Proof for 2110705091405016368956665
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.215057 |
There is a room.
If “everyone in the room does not build model airplanes or does not own a microscope or both” then “if someone does not enjoy stand-up paddleboarding, does not build model airplanes and does not host themed dinner parties featuring gourmet home-cooked meals then he/she does not drive a hybrid car or does not play video games or both and vice versa” otherwise “everyone in the room does not own a high-end gaming PC with custom-built components”.
Everyone in the room neither does not drive a hybrid car nor does not own a high-end gaming PC with custom-built components.
Everyone outside the room does not stream on Twitch and does not drive a hybrid car.
No one anywhere does not practice urban gardening or does not host themed dinner parties featuring gourmet home-cooked meals or both.
|
Everyone outside the room does not practice urban gardening.
|
entailment
|
(there_is_a_room)&
(((![X]:(room(X)=>(((does_not_build_model_airplanes(X))|(does_not_own_a_microscope(X))))))=>((![X]:((((does_not_enjoy_stand-up_paddleboarding(X))&(does_not_build_model_airplanes(X))&(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))<=>(((does_not_drive_a_hybrid_car(X))|(does_not_play_video_games(X))))))))&((~(![X]:(room(X)=>(((does_not_build_model_airplanes(X))|(does_not_own_a_microscope(X)))))))=>(![X]:(room(X)=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))&
((![X]:(room(X)=>(((does_not_play_video_games(X))&(does_not_collect_rare_minerals(X))))))=>(![X]:(room(X)=>(((does_not_practice_urban_gardening(X))&(does_not_drive_a_hybrid_car(X)))))))&
((![X]:((((does_not_have_a_pet_dog(X))&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))&(is_not_a_Linux_enthusiast(X))))=>(does_not_own_a_microscope(X)))))&
((![X]:((does_not_collect_rare_minerals(X))<=>(is_not_allergic_to_anything(X)))))&
(![X]:(room(X)=>(~((does_not_drive_a_hybrid_car(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))&
(![X]:(~room(X)=>(((does_not_stream_on_Twitch(X))&(does_not_drive_a_hybrid_car(X))))))&
(![X]:(room(X)=>(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))&
(~?[X]:(anywhere(X)=>(((does_not_practice_urban_gardening(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))&
(![X]:(room(X)=>(does_not_stream_on_Twitch(X))))
|
(there_is_a_room)&
![X]:(~room(X)=>(does_not_practice_urban_gardening(X)))
|
[
"p0",
"p1",
"p5",
"p6",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 3640327173966780693744876
% SZS output start Proof for 3640327173966780693744876
44. there_is_a_room [input p0]
45. (~! [X0] : (room(X0) => (~prede(X0) | ~predr(X0))) => ! [X0] : (room(X0) => ~predw(X0))) & (! [X0] : (room(X0) => (~prede(X0) | ~predr(X0))) => ! [X0] : ((~predi(X0) & ~predr(X0) & ~predz(X0)) <=> (~predx(X0) | ~predg(X0)))) [input p1]
49. ! [X0] : (room(X0) => ~(~predw(X0) | ~predg(X0))) [input p5]
50. ! [X0] : (~room(X0) => (~predg(X0) & ~predp(X0))) [input p6]
52. ~? [X0] : (anywhere(X0) => (~predi(X0) | ~preda(X0))) [input p8]
54. ~(! [X0] : (~room(X0) => ~preda(X0)) & there_is_a_room) [input hypothesis]
55. (~! [X0] : (room(X0) => (~prede(X0) | ~predr(X0))) => ! [X1] : (room(X1) => ~predw(X1))) & (! [X2] : (room(X2) => (~prede(X2) | ~predr(X2))) => ! [X3] : ((~predi(X3) & ~predr(X3) & ~predz(X3)) <=> (~predx(X3) | ~predg(X3)))) [rectify 45]
61. ! [X0] : (~room(X0) => ~predg(X0)) [pure predicate removal 50]
64. ~? [X0] : (~predi(X0) | ~preda(X0)) [pure predicate removal 52]
137. (! [X1] : (~predw(X1) | ~room(X1)) | ! [X0] : ((~prede(X0) | ~predr(X0)) | ~room(X0))) & (! [X3] : ((~predi(X3) & ~predr(X3) & ~predz(X3)) <=> (~predx(X3) | ~predg(X3))) | ? [X2] : ((prede(X2) & predr(X2)) & room(X2))) [ennf transformation 55]
138. (! [X1] : (~predw(X1) | ~room(X1)) | ! [X0] : (~prede(X0) | ~predr(X0) | ~room(X0))) & (! [X3] : ((~predi(X3) & ~predr(X3) & ~predz(X3)) <=> (~predx(X3) | ~predg(X3))) | ? [X2] : (prede(X2) & predr(X2) & room(X2))) [flattening 137]
140. ! [X0] : ((predw(X0) & predg(X0)) | ~room(X0)) [ennf transformation 49]
141. ! [X0] : (~predg(X0) | room(X0)) [ennf transformation 61]
142. ! [X0] : (predi(X0) & preda(X0)) [ennf transformation 64]
143. ? [X0] : (preda(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 54]
144. ! [X3] : ((~predi(X3) & ~predr(X3) & ~predz(X3)) <=> (~predx(X3) | ~predg(X3))) | ~sP0 [predicate definition introduction]
145. (! [X1] : (~predw(X1) | ~room(X1)) | ! [X0] : (~prede(X0) | ~predr(X0) | ~room(X0))) & (sP0 | ? [X2] : (prede(X2) & predr(X2) & room(X2))) [definition folding 138,144]
147. ! [X3] : (((~predi(X3) & ~predr(X3) & ~predz(X3)) | (predx(X3) & predg(X3))) & ((~predx(X3) | ~predg(X3)) | (predi(X3) | predr(X3) | predz(X3)))) | ~sP0 [nnf transformation 144]
148. ! [X3] : (((~predi(X3) & ~predr(X3) & ~predz(X3)) | (predx(X3) & predg(X3))) & (~predx(X3) | ~predg(X3) | predi(X3) | predr(X3) | predz(X3))) | ~sP0 [flattening 147]
149. ! [X0] : (((~predi(X0) & ~predr(X0) & ~predz(X0)) | (predx(X0) & predg(X0))) & (~predx(X0) | ~predg(X0) | predi(X0) | predr(X0) | predz(X0))) | ~sP0 [rectify 148]
150. (! [X0] : (~predw(X0) | ~room(X0)) | ! [X1] : (~prede(X1) | ~predr(X1) | ~room(X1))) & (sP0 | ? [X2] : (prede(X2) & predr(X2) & room(X2))) [rectify 145]
151. ? [X2] : (prede(X2) & predr(X2) & room(X2)) => (prede(sK1) & predr(sK1) & room(sK1)) [choice axiom]
152. (! [X0] : (~predw(X0) | ~room(X0)) | ! [X1] : (~prede(X1) | ~predr(X1) | ~room(X1))) & (sP0 | (prede(sK1) & predr(sK1) & room(sK1))) [skolemisation 150,151]
156. ? [X0] : (preda(X0) & ~room(X0)) => (preda(sK3) & ~room(sK3)) [choice axiom]
157. (preda(sK3) & ~room(sK3)) | ~there_is_a_room [skolemisation 143,156]
238. there_is_a_room [cnf transformation 44]
244. ~predi(X0) | predg(X0) | ~sP0 [cnf transformation 149]
246. sP0 | room(sK1) [cnf transformation 152]
247. sP0 | predr(sK1) [cnf transformation 152]
248. sP0 | prede(sK1) [cnf transformation 152]
249. ~predw(X0) | ~room(X0) | ~prede(X1) | ~predr(X1) | ~room(X1) [cnf transformation 152]
253. ~room(X0) | predw(X0) [cnf transformation 140]
254. ~predg(X0) | room(X0) [cnf transformation 141]
256. predi(X0) [cnf transformation 142]
257. ~room(sK3) | ~there_is_a_room [cnf transformation 157]
260. 1 <=> sP0 [avatar definition]
268. 3 <=> ! [X0] : (~predi(X0) | predg(X0)) [avatar definition]
269. ~predi(X0) | predg(X0) <- (3) [avatar component clause 268]
270. ~1 | 3 [avatar split clause 244,268,260]
292. 9 <=> ! [X1] : (~prede(X1) | ~room(X1) | ~predr(X1)) [avatar definition]
293. ~prede(X1) | ~room(X1) | ~predr(X1) <- (9) [avatar component clause 292]
295. 10 <=> ! [X0] : (~predw(X0) | ~room(X0)) [avatar definition]
296. ~predw(X0) | ~room(X0) <- (10) [avatar component clause 295]
297. 9 | 10 [avatar split clause 249,295,292]
299. 11 <=> prede(sK1) [avatar definition]
301. prede(sK1) <- (11) [avatar component clause 299]
302. 11 | 1 [avatar split clause 248,260,299]
304. 12 <=> predr(sK1) [avatar definition]
306. predr(sK1) <- (12) [avatar component clause 304]
307. 12 | 1 [avatar split clause 247,260,304]
309. 13 <=> room(sK1) [avatar definition]
311. room(sK1) <- (13) [avatar component clause 309]
312. 13 | 1 [avatar split clause 246,260,309]
325. ~room(sK3) [subsumption resolution 257,238]
332. ~room(sK1) | ~predr(sK1) <- (9, 11) [resolution 293,301]
333. ~predr(sK1) <- (9, 11, 13) [subsumption resolution 332,311]
334. $false <- (9, 11, 12, 13) [subsumption resolution 333,306]
335. ~9 | ~11 | ~12 | ~13 [avatar contradiction clause 334]
336. ~room(X0) <- (10) [subsumption resolution 296,253]
337. $false <- (10, 13) [resolution 336,311]
340. ~10 | ~13 [avatar contradiction clause 337]
341. predg(X0) <- (3) [subsumption resolution 269,256]
343. room(X0) <- (3) [resolution 341,254]
357. $false <- (3) [resolution 343,325]
360. ~3 [avatar contradiction clause 357]
361. $false [avatar sat refutation 270,297,302,307,312,335,340,360]
% SZS output end Proof for 3640327173966780693744876
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.031 s
% ------------------------------
% ------------------------------
| 0.058243 |
Linda, Mark, Elizabeth are the only persons in the room.
Linda and Elizabeth are respectively creative and brave.
Everyone outside the room is quiet only if they is not a calm old happy person.
Only one person in the room is quiet.
Everyone in the room is not patient if they is a patient curious person.
Everyone in the room who is kind is not a creative person, is tall and is not humble, not funny, not old.
Everyone in the room is not a creative person, is tall and is not humble, not funny, not old only if they is not a patient person.
Linda is not old.
Everyone in the room neither is not a calm person nor is not strong if they is not a humble quiet creative strong generous person.
Everyone anywhere is a tall kind person, is a patient wise person and is a wise humble person only if they is a brave strong funny person.
All tall persons are calm.
All quiet persons are creative.
Everyone in the room is a tall person if they is a humble wise quiet curious person or is a tall person or both.
Everyone in the room who is a tall person is not funny.
If someone is not a wise creative person then he/she is not kind.
Mark and Linda are happy.
|
Linda is kind.
|
contradiction
|
room(linda)&room(mark)&room(elizabeth)&(![X]:(room(X)=>(X='linda'|X='mark'|X='elizabeth')))&
((creative(linda))&(brave(elizabeth)))&
(![X]:(~room(X)=>(((~(calm(X)&old(X)&happy(X)&person(X)))<=(quiet(X))))))&
(((?[X]:(room(X)&quiet(X)))&(![X,Y]:((room(X)&room(Y)&(quiet(X))&(quiet(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((patient(X)&curious(X)&person(X))=>(~patient(X))))))&
(![X]:(room(X)=>(((kind(X))=>(((~(creative(X)&person(X)))&(tall(X))&(~humble(X)&~funny(X)&~old(X))))))))&
(![X]:(room(X)=>(((~(patient(X)&person(X)))<=(((~(creative(X)&person(X)))&(tall(X))&(~humble(X)&~funny(X)&~old(X))))))))&
(~old(linda))&
(![X]:(room(X)=>(((~(humble(X)&quiet(X)&creative(X)&strong(X)&generous(X)&person(X)))=>(~((~(calm(X)&person(X)))|(~strong(X))))))))&
(![X]:(anywhere(X)=>(((brave(X)&strong(X)&funny(X)&person(X))<=(((tall(X)&kind(X)&person(X))&(patient(X)&wise(X)&person(X))&(wise(X)&humble(X)&person(X))))))))&
(![X]:(tall(X)=>calm(X)))&
(![X]:(quiet(X)=>creative(X)))&
(![X]:(room(X)=>(((((humble(X)&wise(X)&quiet(X)&curious(X)&person(X))|(tall(X)&person(X))))=>(tall(X)&person(X))))))&
(![X]:(room(X)=>(((tall(X)&person(X))=>(~funny(X))))))&
((![X]:((~(wise(X)&creative(X)&person(X)))=>(~kind(X)))))&
(happy(mark)&happy(linda))
|
room(linda)&room(mark)&room(elizabeth)&(![X]:(room(X)=>(X='linda'|X='mark'|X='elizabeth')))&
kind(linda)
|
[
"p0",
"p1",
"p5",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 46499343171980787850472
% SZS output start Proof for 46499343171980787850472
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. brave(fred) & creative(mary) [input p1]
49. ! [X0] : (room(X0) => (kind(X0) => (~old(X0) & ~funny(X0) & ~humble(X0) & tall(X0) & ~(person(X0) & creative(X0))))) [input p5]
58. ! [X0] : (~(person(X0) & creative(X0) & wise(X0)) => ~kind(X0)) [input p14]
60. kind(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
69. ! [X0] : (room(X0) => (kind(X0) => (~old(X0) & ~humble(X0) & tall(X0) & ~(person(X0) & creative(X0))))) [pure predicate removal 49]
71. ! [X0] : (~(person(X0) & creative(X0)) => ~kind(X0)) [pure predicate removal 58]
73. creative(mary) [pure predicate removal 45]
145. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
146. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 145]
151. ! [X0] : (((~old(X0) & ~humble(X0) & tall(X0) & (~person(X0) | ~creative(X0))) | ~kind(X0)) | ~room(X0)) [ennf transformation 69]
152. ! [X0] : ((~old(X0) & ~humble(X0) & tall(X0) & (~person(X0) | ~creative(X0))) | ~kind(X0) | ~room(X0)) [flattening 151]
159. ! [X0] : (~kind(X0) | (person(X0) & creative(X0))) [ennf transformation 71]
160. kind(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 60]
161. kind(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 160]
245. room(mary) [cnf transformation 146]
249. creative(mary) [cnf transformation 73]
254. ~kind(X0) | ~creative(X0) | ~person(X0) | ~room(X0) [cnf transformation 152]
272. ~kind(X0) | person(X0) [cnf transformation 159]
279. kind(mary) [cnf transformation 161]
283. person(mary) [resolution 272,279]
345. ~creative(mary) | ~person(mary) | ~room(mary) [resolution 254,279]
346. ~person(mary) | ~room(mary) [subsumption resolution 345,249]
347. ~room(mary) [subsumption resolution 346,283]
348. $false [subsumption resolution 347,245]
% SZS output end Proof for 46499343171980787850472
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.000764 |
Edmond, Jean are the only persons in the room. Everyone in the room who practices archery is a dedicated volunteer for local community service projects. Everyone in the room who is a wine connoisseur with a private cellar of vintage wines develops open-source software projects in their free time. Edmond does practice yoga. Edmond is a wine connoisseur with a private cellar of vintage wines. Jean is a wine connoisseur with a private cellar of vintage wines, owns a 3D printer or is a dedicated volunteer for local community service projects. Not everyone in the room who is a dedicated volunteer for local community service projects and enjoys virtual reality gaming develops open-source software projects in their free time. Edmond practices archery. Edmond watches fantasy movies. If someone mentors a youth basketball team on weekends, is passionate about collecting and restoring classic cars or is not passionate about collecting and restoring classic cars then he/she does practice yoga and vice versa. At least one person in the room is a dedicated volunteer for local community service projects and enjoys virtual reality gaming. Someone anywhere either practices archery or mentors a youth basketball team on weekends but not both.
|
Everyone in the room does not develop open-source software projects in their free time or practices archery.
|
entailment
|
room(edmond)&room(jean)&(![X]:(room(X)=>(X='edmond'|X='jean')))&
(![X]:(room(X)=>(((practices_archery(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))&
(does_practice_yoga(edmond))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(edmond))&
(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(jean))|(owns_a_3D_printer(jean))|(is_a_dedicated_volunteer_for_local_community_service_projects(jean))))&
(~![X]:(room(X)=>(((((is_a_dedicated_volunteer_for_local_community_service_projects(X))&(enjoys_virtual_reality_gaming(X))))=>(develops_open-source_software_projects_in_their_free_time(X))))))&
(practices_archery(edmond))&
(watches_fantasy_movies(edmond))&
((![X]:((((mentors_a_youth_basketball_team_on_weekends(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))<=>(does_practice_yoga(X)))))&
(((?[X]:(room(X)&((is_a_dedicated_volunteer_for_local_community_service_projects(X))&(enjoys_virtual_reality_gaming(X)))))))&
(?[X]:(anywhere(X)&(((practices_archery(X))<~>(mentors_a_youth_basketball_team_on_weekends(X))))))
|
room(edmond)&room(jean)&(![X]:(room(X)=>(X='edmond'|X='jean')))&
![X]:(room(X)=>(((practices_archery(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X)))))
|
[
"p0",
"p2",
"p4",
"p6",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 4265048836807645225634855
% SZS output start Proof for 4265048836807645225634855
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
46. ! [X0] : (room(X0) => (predj(X0) => predg(X0))) [input p2]
48. predj(mary) [input p4]
50. ~! [X0] : (room(X0) => ((predh(X0) & predf(X0)) => predg(X0))) [input p6]
51. predd(mary) [input p7]
56. ~(! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
57. ~(! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 56]
60. ~! [X0] : (room(X0) => (predf(X0) => predg(X0))) [pure predicate removal 50]
64. ~! [X0] : (room(X0) => predg(X0)) [pure predicate removal 60]
139. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
140. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 139]
141. ! [X0] : ((predg(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 46]
142. ! [X0] : (predg(X0) | ~predj(X0) | ~room(X0)) [flattening 141]
143. ? [X0] : (~predg(X0) & room(X0)) [ennf transformation 64]
146. ? [X0] : ((predg(X0) & ~predd(X0)) & room(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 57]
147. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 146]
148. ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction]
149. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) | sP0 | ~room(paul) | ~room(mary) [definition folding 147,148]
151. ? [X0] : (~predg(X0) & room(X0)) => (~predg(sK1) & room(sK1)) [choice axiom]
152. ~predg(sK1) & room(sK1) [skolemisation 143,151]
158. ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 148]
159. ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 158]
160. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK4 & mary != sK4 & room(sK4)) [choice axiom]
161. (paul != sK4 & mary != sK4 & room(sK4)) | ~sP0 [skolemisation 159,160]
162. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) => (predg(sK5) & ~predd(sK5) & room(sK5)) [choice axiom]
163. (predg(sK5) & ~predd(sK5) & room(sK5)) | sP0 | ~room(paul) | ~room(mary) [skolemisation 149,162]
244. room(mary) [cnf transformation 140]
245. room(paul) [cnf transformation 140]
246. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 140]
247. ~predj(X0) | predg(X0) | ~room(X0) [cnf transformation 142]
249. predj(mary) [cnf transformation 48]
250. room(sK1) [cnf transformation 152]
251. ~predg(sK1) [cnf transformation 152]
252. predd(mary) [cnf transformation 51]
257. room(sK4) | ~sP0 [cnf transformation 161]
258. mary != sK4 | ~sP0 [cnf transformation 161]
259. paul != sK4 | ~sP0 [cnf transformation 161]
260. room(sK5) | sP0 | ~room(paul) | ~room(mary) [cnf transformation 163]
261. ~predd(sK5) | sP0 | ~room(paul) | ~room(mary) [cnf transformation 163]
262. predg(sK5) | sP0 | ~room(paul) | ~room(mary) [cnf transformation 163]
274. 3 <=> sP0 [avatar definition]
278. 4 <=> paul = sK4 [avatar definition]
281. ~3 | ~4 [avatar split clause 259,278,274]
283. 5 <=> mary = sK4 [avatar definition]
285. mary != sK4 <- (~5) [avatar component clause 283]
286. ~3 | ~5 [avatar split clause 258,283,274]
288. 6 <=> room(sK4) [avatar definition]
290. room(sK4) <- (6) [avatar component clause 288]
291. ~3 | 6 [avatar split clause 257,288,274]
292. predg(sK5) | sP0 | ~room(mary) [subsumption resolution 262,245]
293. predg(sK5) | sP0 [subsumption resolution 292,244]
295. 7 <=> predg(sK5) [avatar definition]
297. predg(sK5) <- (7) [avatar component clause 295]
298. 3 | 7 [avatar split clause 293,295,274]
299. ~predd(sK5) | sP0 | ~room(mary) [subsumption resolution 261,245]
300. ~predd(sK5) | sP0 [subsumption resolution 299,244]
302. 8 <=> predd(sK5) [avatar definition]
304. ~predd(sK5) <- (~8) [avatar component clause 302]
305. 3 | ~8 [avatar split clause 300,302,274]
306. room(sK5) | sP0 | ~room(mary) [subsumption resolution 260,245]
307. room(sK5) | sP0 [subsumption resolution 306,244]
309. 9 <=> room(sK5) [avatar definition]
311. room(sK5) <- (9) [avatar component clause 309]
312. 3 | 9 [avatar split clause 307,309,274]
313. predg(mary) | ~room(mary) [resolution 247,249]
314. predg(mary) [subsumption resolution 313,244]
317. mary = sK1 | paul = sK1 [resolution 246,250]
319. mary = sK4 | paul = sK4 <- (6) [resolution 246,290]
321. 10 <=> paul = sK1 [avatar definition]
323. paul = sK1 <- (10) [avatar component clause 321]
325. 11 <=> mary = sK1 [avatar definition]
327. mary = sK1 <- (11) [avatar component clause 325]
328. 10 | 11 [avatar split clause 317,325,321]
338. paul = sK4 <- (~5, 6) [subsumption resolution 319,285]
341. 4 | 5 | ~6 [avatar split clause 338,288,283,278]
344. ~predg(paul) <- (10) [backward demodulation 251,323]
346. mary = sK5 | paul = sK5 <- (9) [resolution 311,246]
348. 14 <=> paul = sK5 [avatar definition]
350. paul = sK5 <- (14) [avatar component clause 348]
352. 15 <=> mary = sK5 [avatar definition]
354. mary = sK5 <- (15) [avatar component clause 352]
355. 14 | 15 | ~9 [avatar split clause 346,309,352,348]
356. predg(paul) <- (7, 14) [backward demodulation 297,350]
359. $false <- (7, 10, 14) [subsumption resolution 356,344]
360. ~7 | ~10 | ~14 [avatar contradiction clause 359]
362. ~predd(mary) <- (~8, 15) [backward demodulation 304,354]
364. $false <- (~8, 15) [subsumption resolution 362,252]
365. 8 | ~15 [avatar contradiction clause 364]
371. ~predg(mary) <- (11) [backward demodulation 251,327]
372. $false <- (11) [subsumption resolution 371,314]
373. ~11 [avatar contradiction clause 372]
375. $false [avatar sat refutation 281,286,291,298,305,312,328,341,355,360,365,373]
% SZS output end Proof for 4265048836807645225634855
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.05084 |
There is a room. “Everyone in the room is not humble” if “everyone outside the room is humble”. Either “no one in the room is not quiet” or “everyone in the room is happy” but not both. Only one person in the room is a calm person. No curious person is tall. Everyone in the room is a humble person. Everyone in the room is a wise person. If someone is a generous person then he/she is not a tall person. Everyone anywhere is a generous person. Not everyone in the room either is a tall person or is a brave person but not both. All kind persons are curious.
|
Everyone in the room is a happy person.
|
entailment
|
(there_is_a_room)&
((![X]:(~room(X)=>(humble(X))))=>(![X]:(room(X)=>(~humble(X)))))&
((~?[X]:(room(X)=>(~quiet(X))))<~>(![X]:(room(X)=>(happy(X)))))&
(((?[X]:(room(X)&calm(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(calm(X)&person(X))&(calm(Y)&person(Y)))=>(X=Y)))))&
(~?[X]:(curious(X)=>tall(X)))&
(![X]:(room(X)=>(humble(X)&person(X))))&
(![X]:(room(X)=>(wise(X)&person(X))))&
((![X]:((generous(X)&person(X))=>(~(tall(X)&person(X))))))&
(![X]:(anywhere(X)=>(generous(X)&person(X))))&
(~![X]:(room(X)=>(((tall(X)&person(X))<~>(brave(X)&person(X))))))&
(![X]:(kind(X)=>curious(X)))&
(![X]:(anywhere(X)=>(quiet(X)&person(X))))
|
(there_is_a_room)&
![X]:(room(X)=>(happy(X)&person(X)))
|
[
"b4",
"p0",
"p1",
"p2",
"p5",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 2422183586763163375480433
% SZS output start Proof for 2422183586763163375480433
5. ! [X0] : anywhere(X0) [input b4]
44. there_is_a_room [input p0]
45. ! [X0] : (~room(X0) => humble(X0)) => ! [X0] : (room(X0) => ~humble(X0)) [input p1]
46. ~? [X0] : (room(X0) => ~quiet(X0)) <~> ! [X0] : (room(X0) => happy(X0)) [input p2]
49. ! [X0] : (room(X0) => (person(X0) & humble(X0))) [input p5]
52. ! [X0] : (anywhere(X0) => (person(X0) & generous(X0))) [input p8]
56. ~(! [X0] : (room(X0) => (person(X0) & happy(X0))) & there_is_a_room) [input hypothesis]
57. ! [X0] : (~room(X0) => humble(X0)) => ! [X1] : (room(X1) => ~humble(X1)) [rectify 45]
58. ~? [X0] : (room(X0) => ~quiet(X0)) <~> ! [X1] : (room(X1) => happy(X1)) [rectify 46]
134. ! [X1] : (~humble(X1) | ~room(X1)) | ? [X0] : (~humble(X0) & ~room(X0)) [ennf transformation 57]
135. ! [X0] : (quiet(X0) & room(X0)) <~> ! [X1] : (happy(X1) | ~room(X1)) [ennf transformation 58]
139. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) [ennf transformation 49]
143. ! [X0] : ((person(X0) & generous(X0)) | ~anywhere(X0)) [ennf transformation 52]
146. ? [X0] : ((~person(X0) | ~happy(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 56]
148. ! [X0] : (~humble(X0) | ~room(X0)) | ? [X1] : (~humble(X1) & ~room(X1)) [rectify 134]
149. ? [X1] : (~humble(X1) & ~room(X1)) => (~humble(sK0) & ~room(sK0)) [choice axiom]
150. ! [X0] : (~humble(X0) | ~room(X0)) | (~humble(sK0) & ~room(sK0)) [skolemisation 148,149]
151. (? [X1] : (~happy(X1) & room(X1)) | ? [X0] : (~quiet(X0) | ~room(X0))) & (! [X1] : (happy(X1) | ~room(X1)) | ! [X0] : (quiet(X0) & room(X0))) [nnf transformation 135]
152. (? [X0] : (~happy(X0) & room(X0)) | ? [X1] : (~quiet(X1) | ~room(X1))) & (! [X2] : (happy(X2) | ~room(X2)) | ! [X3] : (quiet(X3) & room(X3))) [rectify 151]
153. ? [X0] : (~happy(X0) & room(X0)) => (~happy(sK1) & room(sK1)) [choice axiom]
154. ? [X1] : (~quiet(X1) | ~room(X1)) => (~quiet(sK2) | ~room(sK2)) [choice axiom]
155. ((~happy(sK1) & room(sK1)) | (~quiet(sK2) | ~room(sK2))) & (! [X2] : (happy(X2) | ~room(X2)) | ! [X3] : (quiet(X3) & room(X3))) [skolemisation 152,154,153]
162. ? [X0] : ((~person(X0) | ~happy(X0)) & room(X0)) => ((~person(sK5) | ~happy(sK5)) & room(sK5)) [choice axiom]
163. ((~person(sK5) | ~happy(sK5)) & room(sK5)) | ~there_is_a_room [skolemisation 146,162]
164. anywhere(X0) [cnf transformation 5]
245. there_is_a_room [cnf transformation 44]
246. ~humble(X0) | ~room(X0) | ~room(sK0) [cnf transformation 150]
248. happy(X2) | ~room(X2) | room(X3) [cnf transformation 155]
257. ~room(X0) | humble(X0) [cnf transformation 139]
262. person(X0) | ~anywhere(X0) [cnf transformation 143]
270. room(sK5) | ~there_is_a_room [cnf transformation 163]
271. ~person(sK5) | ~happy(sK5) | ~there_is_a_room [cnf transformation 163]
278. 2 <=> ! [X0] : (~humble(X0) | ~room(X0)) [avatar definition]
279. ~humble(X0) | ~room(X0) <- (2) [avatar component clause 278]
282. 3 <=> room(sK0) [avatar definition]
284. ~room(sK0) <- (~3) [avatar component clause 282]
285. ~3 | 2 [avatar split clause 246,278,282]
308. 9 <=> ! [X2] : (happy(X2) | ~room(X2)) [avatar definition]
309. ~room(X2) | happy(X2) <- (9) [avatar component clause 308]
312. 10 <=> ! [X3] : room(X3) [avatar definition]
313. room(X3) <- (10) [avatar component clause 312]
314. 10 | 9 [avatar split clause 248,308,312]
315. person(X0) [subsumption resolution 262,164]
321. ~happy(sK5) | ~there_is_a_room [subsumption resolution 271,315]
322. ~happy(sK5) [subsumption resolution 321,245]
323. room(sK5) [subsumption resolution 270,245]
334. happy(sK5) <- (9) [resolution 309,323]
335. $false <- (9) [subsumption resolution 334,322]
336. ~9 [avatar contradiction clause 335]
337. $false <- (~3, 10) [resolution 313,284]
340. humble(X1) <- (10) [resolution 313,257]
342. 3 | ~10 [avatar contradiction clause 337]
343. ~room(X0) <- (2, 10) [subsumption resolution 279,340]
344. $false <- (2, 10) [subsumption resolution 343,313]
345. ~2 | ~10 [avatar contradiction clause 344]
346. $false [avatar sat refutation 285,314,336,342,345]
% SZS output end Proof for 2422183586763163375480433
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.022 s
% ------------------------------
% ------------------------------
| 0.248107 |
Viola, Carolyn, Edward, Maria, George are the only persons in the room.
Either “Maria collects classic novels” or “no one in the room knows morse code or does not enjoy coding in Python” but not both.
“Maria is not a craft beer aficionado” unless “Viola is a cybersecurity expert”.
If “everyone in the room owns a smartwatch or is not a cybersecurity expert” then “Edward collects classic novels”.
If “everyone outside the room does not compete in national level swimming championships or does not know morse code” then “Carolyn is not a cybersecurity expert” otherwise “Viola dreamt that “Viola is a craft beer aficionado””.
“Everyone in the room does not collect classic novels or knows morse code” only if “Carolyn who is a wine connoisseur with a private cellar of vintage wines either competes in national level swimming championships or does not know morse code but not both”.
Carolyn is a wine connoisseur with a private cellar of vintage wines.
Everyone in the room does not own a smartwatch, competes in national level swimming championships or is a cybersecurity expert if they competes in national level swimming championships and vice versa.
Everyone in the room is a wine connoisseur with a private cellar of vintage wines if they competes in national level swimming championships.
Carolyn who is a wine connoisseur with a private cellar of vintage wines either competes in national level swimming championships or does not know morse code but not both.
Not everyone anywhere owns a smartwatch if they is a craft beer aficionado.
Everyone in the room owns a smartwatch if and only if they knows morse code.
Viola is a wine connoisseur with a private cellar of vintage wines.
Maria competes in national level swimming championships.
Edward is a wine connoisseur with a private cellar of vintage wines.
|
Everyone in the room does not collect classic novels.
|
contradiction
|
room(viola)&room(carolyn)&room(edward)&room(maria)&room(george)&(![X]:(room(X)=>(X='viola'|X='carolyn'|X='edward'|X='maria'|X='george')))&
((collects_classic_novels(maria))<~>(~?[X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))|(knows_morse_code(X)))))))&
(~(is_a_cybersecurity_expert(viola))=>(is_not_a_craft_beer_aficionado(maria)))&
((![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(owns_a_smartwatch(X))))))=>(collects_classic_novels(edward)))&
(((![X]:(~room(X)=>(((does_not_know_morse_code(X))|(does_not_compete_in_national_level_swimming_championships(X))))))=>(is_not_a_cybersecurity_expert(carolyn)))&((~(![X]:(~room(X)=>(((does_not_know_morse_code(X))|(does_not_compete_in_national_level_swimming_championships(X)))))))=>((viola_dream=>(is_a_craft_beer_aficionado(viola))))))&
((![X]:(room(X)=>(((knows_morse_code(X))|(does_not_collect_classic_novels(X))))))=>((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(carolyn))&(((competes_in_national_level_swimming_championships(carolyn))<~>(does_not_know_morse_code(carolyn))))))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(carolyn))&
(![X]:(room(X)=>(((((does_not_own_a_smartwatch(X))|(competes_in_national_level_swimming_championships(X))|(is_a_cybersecurity_expert(X))))<=>(competes_in_national_level_swimming_championships(X))))))&
(![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))&
((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(carolyn))&(((competes_in_national_level_swimming_championships(carolyn))<~>(does_not_know_morse_code(carolyn)))))&
(~![X]:(anywhere(X)=>(((is_a_craft_beer_aficionado(X))=>(owns_a_smartwatch(X))))))&
(![X]:(room(X)=>(((owns_a_smartwatch(X))<=>(knows_morse_code(X))))))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(viola))&
(competes_in_national_level_swimming_championships(maria))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(edward))
|
room(viola)&room(carolyn)&room(edward)&room(maria)&room(george)&(![X]:(room(X)=>(X='viola'|X='carolyn'|X='edward'|X='maria'|X='george')))&
![X]:(room(X)=>(does_not_collect_classic_novels(X)))
|
[
"p0",
"p1",
"p7",
"p9",
"p11",
"hypothesis"
] |
% SZS status Unsatisfiable for 8529926409877471017313831
% SZS output start Proof for 8529926409877471017313831
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. predi(alice) <~> ~? [X0] : (room(X0) => (predk(X0) | ~predf(X0))) [input p1]
51. ! [X0] : (room(X0) => ((predg(X0) | predd(X0) | ~preda(X0)) <=> predd(X0))) [input p7]
53. (predd(paul) <~> ~predk(paul)) & prede(paul) [input p9]
55. ! [X0] : (room(X0) => (preda(X0) <=> predk(X0))) [input p11]
59. ! [X0] : (room(X0) => ~predi(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
61. ! [X0] : (room(X0) => ~predi(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 59]
67. predd(paul) <~> ~predk(paul) [pure predicate removal 53]
142. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
143. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142]
144. predi(alice) <~> ! [X0] : ((~predk(X0) & predf(X0)) & room(X0)) [ennf transformation 45]
145. predi(alice) <~> ! [X0] : (~predk(X0) & predf(X0) & room(X0)) [flattening 144]
153. ! [X0] : (((predg(X0) | predd(X0) | ~preda(X0)) <=> predd(X0)) | ~room(X0)) [ennf transformation 51]
155. ! [X0] : ((preda(X0) <=> predk(X0)) | ~room(X0)) [ennf transformation 55]
156. ! [X0] : (~predi(X0) | ~room(X0)) & ! [X1] : ((john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61]
157. ! [X0] : (~predi(X0) | ~room(X0)) & ! [X1] : (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156]
159. (? [X0] : (predk(X0) | ~predf(X0) | ~room(X0)) | ~predi(alice)) & (! [X0] : (~predk(X0) & predf(X0) & room(X0)) | predi(alice)) [nnf transformation 145]
160. (? [X0] : (predk(X0) | ~predf(X0) | ~room(X0)) | ~predi(alice)) & (! [X1] : (~predk(X1) & predf(X1) & room(X1)) | predi(alice)) [rectify 159]
161. ? [X0] : (predk(X0) | ~predf(X0) | ~room(X0)) => (predk(sK0) | ~predf(sK0) | ~room(sK0)) [choice axiom]
162. ((predk(sK0) | ~predf(sK0) | ~room(sK0)) | ~predi(alice)) & (! [X1] : (~predk(X1) & predf(X1) & room(X1)) | predi(alice)) [skolemisation 160,161]
171. ! [X0] : ((((predg(X0) | predd(X0) | ~preda(X0)) | ~predd(X0)) & (predd(X0) | (~predg(X0) & ~predd(X0) & preda(X0)))) | ~room(X0)) [nnf transformation 153]
172. ! [X0] : (((predg(X0) | predd(X0) | ~preda(X0) | ~predd(X0)) & (predd(X0) | (~predg(X0) & ~predd(X0) & preda(X0)))) | ~room(X0)) [flattening 171]
173. (predk(paul) | ~predd(paul)) & (~predk(paul) | predd(paul)) [nnf transformation 67]
176. ! [X0] : (((preda(X0) | ~predk(X0)) & (predk(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 155]
258. room(paul) [cnf transformation 143]
260. room(alice) [cnf transformation 143]
263. room(X1) | predi(alice) [cnf transformation 162]
265. ~predk(X1) | predi(alice) [cnf transformation 162]
280. ~room(X0) | preda(X0) | predd(X0) [cnf transformation 172]
285. predk(paul) | ~predd(paul) [cnf transformation 173]
288. ~preda(X0) | predk(X0) | ~room(X0) [cnf transformation 176]
297. ~predi(X0) | ~room(X0) [cnf transformation 157]
299. 1 <=> predi(alice) [avatar definition]
300. predi(alice) <- (1) [avatar component clause 299]
316. 5 <=> ! [X1] : ~predk(X1) [avatar definition]
317. ~predk(X1) <- (5) [avatar component clause 316]
318. 1 | 5 [avatar split clause 265,316,299]
324. 7 <=> ! [X1] : room(X1) [avatar definition]
325. room(X1) <- (7) [avatar component clause 324]
326. 1 | 7 [avatar split clause 263,324,299]
379. 19 <=> predd(paul) [avatar definition]
381. ~predd(paul) <- (~19) [avatar component clause 379]
383. 20 <=> predk(paul) [avatar definition]
384. ~predk(paul) <- (~20) [avatar component clause 383]
385. predk(paul) <- (20) [avatar component clause 383]
400. ~19 | 20 [avatar split clause 285,383,379]
404. ~room(alice) <- (1) [resolution 297,300]
406. $false <- (1) [subsumption resolution 404,260]
407. ~1 [avatar contradiction clause 406]
410. predd(X0) | preda(X0) <- (7) [resolution 280,325]
419. preda(paul) <- (7, ~19) [resolution 410,381]
420. predk(paul) | ~room(paul) <- (7, ~19) [resolution 419,288]
421. ~room(paul) <- (7, ~19, ~20) [subsumption resolution 420,384]
422. $false <- (7, ~19, ~20) [subsumption resolution 421,258]
423. ~7 | 19 | 20 [avatar contradiction clause 422]
424. $false <- (5, 20) [subsumption resolution 385,317]
425. ~5 | ~20 [avatar contradiction clause 424]
426. $false [avatar sat refutation 318,326,400,407,423,425]
% SZS output end Proof for 8529926409877471017313831
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0 |
Donna, Floyd, Teresa are the only persons in the room.
“Everyone in the room does not maintain a personal blog focused on cybersecurity tips” unless “no one in the room is not a tea enthusiast”.
“Teresa does not practice yoga, is not a drone photographer and does not practice kickboxing” only if “Teresa neither does not own a smart tv nor does not collect rare minerals”.
“Everyone in the room either cannot play the guitar or is not a tea enthusiast but not both” if “everyone in the room either does not enjoy snowboarding or does not own a significant collection of rare gemstones and minerals but not both”.
Everyone in the room is not a drone photographer.
Everyone in the room neither does not enjoy logic puzzles nor does not practice yoga.
Everyone in the room does not enjoy writing detailed reviews of new and classic board games.
Everyone in the room does not collect historical artifacts related to ancient civilizations and is not an avid hiker.
Everyone in the room does not write a travel blog.
Everyone in the room either does not enjoy writing detailed reviews of new and classic board games or does not enjoy watercolor painting but not both.
|
Floyd does practice yoga.
|
entailment
|
room(donna)&room(floyd)&room(teresa)&(![X]:(room(X)=>(X='donna'|X='floyd'|X='teresa')))&
(~(~?[X]:(room(X)=>(is_not_a_tea_enthusiast(X))))=>(![X]:(room(X)=>(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X)))))&
((((does_not_practice_yoga(teresa))&(is_not_a_drone_photographer(teresa))&(does_not_practice_kickboxing(teresa))))=>(~((does_not_own_a_smart_tv(teresa))|(does_not_collect_rare_minerals(teresa)))))&
((![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))<~>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))=>(![X]:(room(X)=>(((cannot_play_the_guitar(X))<~>(is_not_a_tea_enthusiast(X)))))))&
(![X]:(room(X)=>(is_not_a_drone_photographer(X))))&
(![X]:(room(X)=>(~((does_not_enjoy_logic_puzzles(X))|(does_not_practice_yoga(X))))))&
(![X]:(room(X)=>(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))&
(![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))&(is_not_an_avid_hiker(X))))))&
(![X]:(room(X)=>(does_not_write_a_travel_blog(X))))&
(![X]:(room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))<~>(does_not_enjoy_watercolor_painting(X))))))
|
room(donna)&room(floyd)&room(teresa)&(![X]:(room(X)=>(X='donna'|X='floyd'|X='teresa')))&
does_practice_yoga(floyd)
|
[
"p0",
"p5",
"hypothesis"
] |
% SZS status Unsatisfiable for 4285978436648645511628513
% SZS output start Proof for 4285978436648645511628513
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
49. ! [X0] : (room(X0) => ~(~predf(X0) | ~predc(X0))) [input p5]
54. ~(predf(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
61. ! [X0] : (room(X0) => ~~predf(X0)) [pure predicate removal 49]
138. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
139. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 138]
141. ! [X0] : (predf(X0) | ~room(X0)) [ennf transformation 61]
144. ~predf(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 54]
145. ~predf(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 144]
153. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom]
154. ~predf(paul) | (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 145,153]
235. room(mary) [cnf transformation 139]
236. room(paul) [cnf transformation 139]
237. room(fred) [cnf transformation 139]
238. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 139]
245. ~room(X0) | predf(X0) [cnf transformation 141]
249. ~predf(paul) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154]
250. ~predf(paul) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154]
251. ~predf(paul) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154]
252. ~predf(paul) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154]
278. ~predf(paul) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 252,237]
279. ~predf(paul) | fred != sK1 | ~room(mary) [subsumption resolution 278,236]
280. ~predf(paul) | fred != sK1 [subsumption resolution 279,235]
282. 6 <=> fred = sK1 [avatar definition]
284. fred != sK1 <- (~6) [avatar component clause 282]
286. 7 <=> predf(paul) [avatar definition]
289. ~6 | ~7 [avatar split clause 280,286,282]
290. ~predf(paul) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 251,237]
291. ~predf(paul) | paul != sK1 | ~room(mary) [subsumption resolution 290,236]
292. ~predf(paul) | paul != sK1 [subsumption resolution 291,235]
294. 8 <=> paul = sK1 [avatar definition]
296. paul != sK1 <- (~8) [avatar component clause 294]
297. ~8 | ~7 [avatar split clause 292,286,294]
298. ~predf(paul) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 250,237]
299. ~predf(paul) | mary != sK1 | ~room(mary) [subsumption resolution 298,236]
300. ~predf(paul) | mary != sK1 [subsumption resolution 299,235]
302. 9 <=> mary = sK1 [avatar definition]
304. mary != sK1 <- (~9) [avatar component clause 302]
305. ~9 | ~7 [avatar split clause 300,286,302]
306. ~predf(paul) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 249,237]
307. ~predf(paul) | room(sK1) | ~room(mary) [subsumption resolution 306,236]
308. ~predf(paul) | room(sK1) [subsumption resolution 307,235]
310. 10 <=> room(sK1) [avatar definition]
312. room(sK1) <- (10) [avatar component clause 310]
313. 10 | ~7 [avatar split clause 308,286,310]
315. predf(paul) [resolution 245,236]
320. 7 [avatar split clause 315,286]
367. paul = sK1 | mary = sK1 | fred = sK1 <- (10) [resolution 238,312]
381. mary = sK1 | fred = sK1 <- (~8, 10) [subsumption resolution 367,296]
382. fred = sK1 <- (~8, ~9, 10) [subsumption resolution 381,304]
383. $false <- (~6, ~8, ~9, 10) [subsumption resolution 382,284]
384. 6 | 8 | 9 | ~10 [avatar contradiction clause 383]
385. $false [avatar sat refutation 289,297,305,313,320,384]
% SZS output end Proof for 4285978436648645511628513
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.35206 |
There is a room.
At least one person in the room owns a 3D printer.
Someone outside the room plays video games.
It is not the case that “more than one person in the room creates YouTube content”.
If someone either does practice yoga or is an avid hiker but not both then he/she maintains a personal blog focused on cybersecurity tips and vice versa.
At least one person in the room is a Linux enthusiast.
Someone in the room is a craft beer aficionado.
At least one person in the room is a craft beer aficionado.
Someone in the room creates YouTube content.
Someone in the room does practice yoga.
It is not the case that “at least one person in the room maintains a personal blog focused on cybersecurity tips”.
Someone in the room is an avid hiker.
Someone in the room watches fantasy movies.
Someone in the room volunteers for local environmental conservation projects.
It is not the case that “someone in the room mentors a youth basketball team on weekends”.
Everyone outside the room who is a craft beer aficionado either is a Linux enthusiast or is passionate about collecting and restoring classic cars but not both.
Someone in the room is passionate about collecting and restoring classic cars.
Someone in the room drives a hybrid car.
Someone in the room practices and performs acrobatic dance routines.
|
Everyone in the room owns a 3D printer.
|
neutral
|
(there_is_a_room)&
(((?[X]:(room(X)&owns_a_3D_printer(X)))))&
(?[X]:(~room(X)&(plays_video_games(X))))&
(~((?[X,Y]:(room(X)&room(Y)&(creates_YouTube_content(X)&creates_YouTube_content(Y))&(X!=Y)))))&
((![X]:((((does_practice_yoga(X))<~>(is_an_avid_hiker(X))))<=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))&
(((?[X]:(room(X)&is_a_Linux_enthusiast(X)))))&
(?[X]:(room(X)&(is_a_craft_beer_aficionado(X))))&
(((?[X]:(room(X)&is_a_craft_beer_aficionado(X)))))&
(?[X]:(room(X)&(creates_YouTube_content(X))))&
(?[X]:(room(X)&(does_practice_yoga(X))))&
(~(((?[X]:(room(X)&maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))&
(?[X]:(room(X)&(is_an_avid_hiker(X))))&
(?[X]:(room(X)&(watches_fantasy_movies(X))))&
(?[X]:(room(X)&(volunteers_for_local_environmental_conservation_projects(X))))&
(~(?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X)))))&
(![X]:(~room(X)=>(((is_a_craft_beer_aficionado(X))=>(((is_a_Linux_enthusiast(X))<~>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))&
(?[X]:(room(X)&(is_passionate_about_collecting_and_restoring_classic_cars(X))))&
(?[X]:(room(X)&(drives_a_hybrid_car(X))))&
(?[X]:(room(X)&(practices_and_performs_acrobatic_dance_routines(X))))
|
(there_is_a_room)&
![X]:(room(X)=>(owns_a_3D_printer(X)))
|
[] | null | 0.433532 |
There is a room.
Not everyone in the room has a tattoo or does not enjoy writing detailed reviews of new and classic board games if everyone in the room does not practice urban gardening or is a culinary enthusiast who experiments with international cuisines and vice versa.
If everyone in the room is not right-handed or is right-handed then everyone anywhere who is not right-handed enjoys coding in Python.
Everyone in the room designs and sews custom cosplay costumes for conventions.
Only one person anywhere works as a freelance web developer specializing in e-commerce sites.
Everyone in the room who enjoys virtual reality gaming streams on Twitch.
More than one person in the room enjoys logic puzzles.
Everyone in the room is a client of LVMH if they drives a hybrid car or does not drive a hybrid car or both.
Everyone in the room who is a culinary enthusiast who experiments with international cuisines practices and performs acrobatic dance routines.
Someone in the room builds model airplanes.
Everyone outside the room builds model airplanes.
No one in the room is passionate about collecting and restoring classic cars if they practices and performs acrobatic dance routines.
Everyone in the room practices graffiti art only if they enjoys coding in Python.
Everyone outside the room who enjoys coding in Python does not work as a freelance web developer specializing in e-commerce sites.
If someone drives a hybrid car or enjoys fishing or both then he/she enjoys logic puzzles or enjoys fishing or both.
Not everyone in the room travels domestically frequently only if they works as a freelance web developer specializing in e-commerce sites, is a craft beer aficionado or practices graffiti art.
Everyone in the room who neither does not host regular game nights featuring complex strategy games nor enjoys writing detailed reviews of new and classic board games enjoys fishing.
Someone in the room practices urban gardening.
Everyone anywhere enjoys fishing, practices graffiti art or is passionate about collecting and restoring classic cars if they works as a freelance web developer specializing in e-commerce sites.
More than one person in the room owns a smartwatch.
Not everyone in the room is a culinary enthusiast who experiments with international cuisines if they enjoys landscape photography, enjoys fishing and enjoys writing detailed reviews of new and classic board games.
Everyone outside the room is not a culinary enthusiast who experiments with international cuisines if they enjoys fishing.
Everyone in the room is not a culinary enthusiast who experiments with international cuisines if and only if they is a client of LVMH.
If someone enjoys landscape photography then he/she does not participate in citizen science projects related to wildlife monitoring.
|
Everyone in the room is a culinary enthusiast who experiments with international cuisines.
|
contradiction
|
(there_is_a_room)&
((![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(does_not_practice_urban_gardening(X))))))<=>(~![X]:(room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(has_a_tattoo(X)))))))&
((![X]:(room(X)=>(((is_right-handed(X))|(is_not_right-handed(X))))))=>(![X]:(anywhere(X)=>(((is_not_right-handed(X))=>(enjoys_coding_in_Python(X)))))))&
(![X]:(room(X)=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))&
(((?[X]:(anywhere(X)&works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(streams_on_Twitch(X))))))&
((?[X,Y]:(room(X)&room(Y)&(enjoys_logic_puzzles(X)&enjoys_logic_puzzles(Y))&(X!=Y))))&
(![X]:(room(X)=>(((((drives_a_hybrid_car(X))|(does_not_drive_a_hybrid_car(X))))=>(is_a_client_of_LVMH(X))))))&
(![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))&
(?[X]:(room(X)&(builds_model_airplanes(X))))&
(![X]:(~room(X)=>(builds_model_airplanes(X))))&
(~?[X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))&
(![X]:(room(X)=>(((enjoys_coding_in_Python(X))<=(practices_graffiti_art(X))))))&
(![X]:(~room(X)=>(((enjoys_coding_in_Python(X))=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))&
((![X]:((((drives_a_hybrid_car(X))|(enjoys_fishing(X))))=>(((enjoys_logic_puzzles(X))|(enjoys_fishing(X)))))))&
(~![X]:(room(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(is_a_craft_beer_aficionado(X))|(practices_graffiti_art(X))))<=(travels_domestically_frequently(X))))))&
(![X]:(room(X)=>(((~((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))=>(enjoys_fishing(X))))))&
(?[X]:(room(X)&(practices_urban_gardening(X))))&
(![X]:(anywhere(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(((enjoys_fishing(X))|(practices_graffiti_art(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))&
((?[X,Y]:(room(X)&room(Y)&(owns_a_smartwatch(X)&owns_a_smartwatch(Y))&(X!=Y))))&
(~![X]:(room(X)=>(((((enjoys_landscape_photography(X))&(enjoys_fishing(X))&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))&
(![X]:(~room(X)=>(((enjoys_fishing(X))=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))&
(![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=>(is_a_client_of_LVMH(X))))))&
((![X]:((enjoys_landscape_photography(X))=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))&
(![X]:(room(X)=>(((does_not_own_a_smartwatch(X))<=(enjoys_logic_puzzles(X))))))&
(![X]:(room(X)=>(((does_not_own_a_smartwatch(X))<=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))&
(![X]:(anywhere(X)=>(((is_not_right-handed(X))=>(enjoys_coding_in_Python(X))))))&
(~![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))
|
[
"p11",
"p20",
"hypothesis"
] |
% SZS status Unsatisfiable for 2450048558468794869353411
% SZS output start Proof for 2450048558468794869353411
55. ~? [X0] : (room(X0) => (predj(X0) => prede(X0))) [input p11]
64. ~! [X0] : (room(X0) => ((preds(X0) & predx(X0) & predg(X0)) => predk(X0))) [input p20]
72. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis]
81. ~? [X0] : (room(X0) => prede(X0)) [pure predicate removal 55]
85. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 72]
166. ! [X0] : (~prede(X0) & room(X0)) [ennf transformation 81]
177. ? [X0] : ((~predk(X0) & (preds(X0) & predx(X0) & predg(X0))) & room(X0)) [ennf transformation 64]
178. ? [X0] : (~predk(X0) & preds(X0) & predx(X0) & predg(X0) & room(X0)) [flattening 177]
190. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 85]
217. ? [X0] : (~predk(X0) & preds(X0) & predx(X0) & predg(X0) & room(X0)) => (~predk(sK12) & preds(sK12) & predx(sK12) & predg(sK12) & room(sK12)) [choice axiom]
218. ~predk(sK12) & preds(sK12) & predx(sK12) & predg(sK12) & room(sK12) [skolemisation 178,217]
326. room(X0) [cnf transformation 166]
347. ~predk(sK12) [cnf transformation 218]
359. predk(X0) | ~room(X0) [cnf transformation 190]
431. predk(X0) [subsumption resolution 359,326]
432. $false [resolution 431,347]
% SZS output end Proof for 2450048558468794869353411
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.034 s
% ------------------------------
% ------------------------------
| 0 |
Michaelne is the only person in the room. If “everyone in the room writes a travel blog or does not write a travel blog” then “if someone hosts regular game nights featuring complex strategy games then he/she mentors a youth basketball team on weekends”. If “someone in the room mentors a youth basketball team on weekends” then “everyone outside the room who hosts regular game nights featuring complex strategy games creates large-scale murals for public art installations”. Either “at least one person outside the room hosts regular game nights featuring complex strategy games” or “everyone in the room mentors a youth basketball team on weekends or does not mentor a youth basketball team on weekends” but not both. Either “at least one person in the room has a tattoo” or “at least one person outside the room has a tattoo” but not both. Everyone in the room who creates large-scale murals for public art installations hosts regular game nights featuring complex strategy games. Only one person in the room creates large-scale murals for public art installations. At least one person in the room has a tattoo. Only one person in the room has a tattoo. Only one person in the room mentors a youth basketball team on weekends.
|
Michaelne writes a travel blog, hosts regular game nights featuring complex strategy games and creates large-scale murals for public art installations.
|
neutral
|
room(michaelne)&(![X]:(room(X)=>(X='michaelne')))&
((![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(writes_a_travel_blog(X))))))=>((![X]:((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))&
((?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X))))=>(![X]:(~room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(creates_large-scale_murals_for_public_art_installations(X)))))))&
((((?[X]:(~room(X)&hosts_regular_game_nights_featuring_complex_strategy_games(X)))))<~>(![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(mentors_a_youth_basketball_team_on_weekends(X)))))))&
((((?[X]:(room(X)&has_a_tattoo(X)))))<~>(((?[X]:(~room(X)&has_a_tattoo(X))))))&
(![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))&
(((?[X]:(room(X)&creates_large-scale_murals_for_public_art_installations(X)))&(![X,Y]:((room(X)&room(Y)&(creates_large-scale_murals_for_public_art_installations(X))&(creates_large-scale_murals_for_public_art_installations(Y)))=>(X=Y)))))&
(((?[X]:(room(X)&has_a_tattoo(X)))))&
(((?[X]:(room(X)&has_a_tattoo(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_tattoo(X))&(has_a_tattoo(Y)))=>(X=Y)))))&
(((?[X]:(room(X)&mentors_a_youth_basketball_team_on_weekends(X)))&(![X,Y]:((room(X)&room(Y)&(mentors_a_youth_basketball_team_on_weekends(X))&(mentors_a_youth_basketball_team_on_weekends(Y)))=>(X=Y)))))
|
room(michaelne)&(![X]:(room(X)=>(X='michaelne')))&
((writes_a_travel_blog(michaelne))&(hosts_regular_game_nights_featuring_complex_strategy_games(michaelne))&(creates_large-scale_murals_for_public_art_installations(michaelne)))
|
[] | null | 0.366839 |
Kenneth, Donn are the only persons in the room.
'Everyone in the room is tall' if 'everyone in the room is brave' and vice versa.
'All brave persons are kind' unless 'not everyone in the room is generous'.
If 'everyone in the room is tall or is happy or both' then 'everyone in the room is not generous, is humble and is a kind person' otherwise 'no one outside the room is a patient person'.
Everyone in the room is not patient.
All generous persons are strong.
Everyone in the room is old.
Everyone in the room is not brave.
Everyone in the room is a quiet person.
Everyone in the room either is a brave person or is not patient but not both.
Everyone in the room is calm.
Someone who is curious is quieter than someone who is a curious person.
Everyone in the room is a funny person, is calm or is a curious person if they is not funny, not patient.
|
It is not the case that 'it is not the case that 'it is not the case that 'more than one person in the room is not tall, is a kind person and is a old person'''.
|
neutral
|
room(kenneth)&room(donn)&(![X]:(room(X)=>(X='kenneth'|X='donn')))&
((![X]:(room(X)=>(brave(X))))<=>(![X]:(room(X)=>(tall(X)))))&
(~(~![X]:(room(X)=>(generous(X))))=>(![X]:(brave(X)=>kind(X))))&
(((![X]:(room(X)=>(((tall(X))|(happy(X))))))=>(![X]:(room(X)=>(((~generous(X))&(humble(X))&(kind(X)&person(X)))))))&((~(![X]:(room(X)=>(((tall(X))|(happy(X)))))))=>(~?[X]:(~room(X)=>(patient(X)&person(X))))))&
(![X]:(room(X)=>(~patient(X))))&
(![X]:(generous(X)=>strong(X)))&
(![X]:(room(X)=>(old(X))))&
(![X]:(room(X)=>(~brave(X))))&
(![X]:(room(X)=>(quiet(X)&person(X))))&
(![X]:(room(X)=>(((brave(X)&person(X))<~>(~patient(X))))))&
(![X]:(room(X)=>(calm(X))))&
(?[X,Y]:((curious(X))&(curious(Y)&person(Y))&(quieter(X,Y))))&
(![X]:(room(X)=>(((~funny(X)&~patient(X))=>(((funny(X)&person(X))|(calm(X))|(curious(X)&person(X))))))))
|
room(kenneth)&room(donn)&(![X]:(room(X)=>(X='kenneth'|X='donn')))&
~(~(~((?[X,Y]:(room(X)&room(Y)&(((~tall(X))&(kind(X)&person(X))&(old(X)&person(X)))&((~tall(Y))&(kind(Y)&person(Y))&(old(Y)&person(Y))))&(X!=Y))))))
|
[] | null | 0.41685 |
Jeffrey, Daniel, Paula, Bettie are the only persons in the room. "If someone is an avid hiker or owns a significant collection of rare gemstones and minerals or both then he/she does not own a significant collection of rare gemstones and minerals" unless "Bettie is an avid hiker". Bettie does not own a significant collection of rare gemstones and minerals. Bettie is a client of Meta. Someone in the room designs and sews custom cosplay costumes for conventions.
|
Jeffrey is right-handed.
|
neutral
|
room(jeffrey)&room(daniel)&room(paula)&room(bettie)&(![X]:(room(X)=>(X='jeffrey'|X='daniel'|X='paula'|X='bettie')))&
(~(is_an_avid_hiker(bettie))=>((![X]:((((is_an_avid_hiker(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))=>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))&
(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(bettie))&
(is_a_client_of_Meta(bettie))&
(?[X]:(room(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))&
((enjoys_wildlife_photography(daniel))&(is_an_avid_hiker(daniel)))&
(~![X]:(room(X)=>(((((is_right-handed(X))|(practices_tai_chi(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))=>(((is_not_a_client_of_Meta(X))&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))))&
(((is_right-handed(jeffrey))|(practices_tai_chi(jeffrey))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(jeffrey))))&
(![X]:(~room(X)=>(((((does_not_enjoy_coding_in_Python(X))&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(is_not_an_avid_hiker(X))))))
|
room(jeffrey)&room(daniel)&room(paula)&room(bettie)&(![X]:(room(X)=>(X='jeffrey'|X='daniel'|X='paula'|X='bettie')))&
is_right-handed(jeffrey)
|
[] | null | 0.015566 |
There is a room. “Everyone in the room uses contact lenses or is not a certified yoga instructor teaching classes weekly” if “everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals or is not a member of a local theater group specializing in improv” and vice versa. Either “everyone in the room plays video games or does not collect antique clocks” or “everyone in the room collects antique clocks or does not use contact lenses” but not both. If “everyone in the room does not enjoy landscape photography or plays video games” then “if someone regularly contributes to tech forums and online communities, is a certified yoga instructor teaching classes weekly or plays video games then he/she uses contact lenses or collects antique clocks or both and vice versa” otherwise “everyone in the room collects antique clocks, collects modern art or owns a smartwatch if they enjoys landscape photography, owns a smartwatch or works as a freelance web developer specializing in e-commerce sites and vice versa”. “Not everyone in the room does not own a smartwatch or enjoys landscape photography” if “someone in the room collects modern art or works as a freelance web developer specializing in e-commerce sites or both” and vice versa.
|
Everyone in the room does not collect modern art or owns a smartwatch.
|
neutral
|
(there_is_a_room)&
((![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))<=>(![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(uses_contact_lenses(X)))))))&
((![X]:(room(X)=>(((does_not_collect_antique_clocks(X))|(plays_video_games(X))))))<~>(![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(collects_antique_clocks(X)))))))&
(((![X]:(room(X)=>(((plays_video_games(X))|(does_not_enjoy_landscape_photography(X))))))=>((![X]:((((regularly_contributes_to_tech_forums_and_online_communities(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(plays_video_games(X))))<=>(((uses_contact_lenses(X))|(collects_antique_clocks(X))))))))&((~(![X]:(room(X)=>(((plays_video_games(X))|(does_not_enjoy_landscape_photography(X)))))))=>(![X]:(room(X)=>(((((collects_antique_clocks(X))|(collects_modern_art(X))|(owns_a_smartwatch(X))))<=>(((enjoys_landscape_photography(X))|(owns_a_smartwatch(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))))&
((?[X]:(room(X)&(((collects_modern_art(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))<=>(~![X]:(room(X)=>(((enjoys_landscape_photography(X))|(does_not_own_a_smartwatch(X)))))))&
((?[X]:(room(X)&(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(owns_a_smartwatch(X))))))<=>(![X]:(room(X)=>(((does_not_collect_antique_clocks(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))&
((~![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))<=>(~![X]:(anywhere(X)=>(((does_not_own_a_smartwatch(X))|(uses_contact_lenses(X)))))))&
((![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))))<=>(![X]:(room(X)=>(((does_not_collect_modern_art(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))))))&
(![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))&
(![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(collects_modern_art(X))))))&
(![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))&
(![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))<=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(owns_a_smartwatch(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))))))&
(![X]:(anywhere(X)=>(((does_not_collect_modern_art(X))|(collects_modern_art(X))))))&
(![X]:(room(X)=>(((collects_modern_art(X))<=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(uses_contact_lenses(X))))))))&
(![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(uses_contact_lenses(X))))=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(owns_a_smartwatch(X))|(collects_antique_clocks(X))))))))&
(![X]:(room(X)=>(((((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(owns_a_smartwatch(X))|(collects_antique_clocks(X))))<=>(((enjoys_landscape_photography(X))|(collects_modern_art(X))))))))&
(![X]:(room(X)=>(((does_not_collect_modern_art(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))&
(![X]:(room(X)=>(((does_not_play_video_games(X))|(collects_modern_art(X))))))&
(![X]:(room(X)=>(((collects_modern_art(X))<=>(((enjoys_landscape_photography(X))|(plays_video_games(X))|(owns_a_smartwatch(X))))))))&
(![X]:(room(X)=>(((((enjoys_landscape_photography(X))|(plays_video_games(X))|(owns_a_smartwatch(X))))|(does_not_collect_antique_clocks(X))))))&
(![X]:(~room(X)=>(((does_not_collect_antique_clocks(X))<=>(~((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))))&
(![X]:(room(X)=>(((((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))<=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(collects_modern_art(X))))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((owns_a_smartwatch(X))|(does_not_collect_modern_art(X)))))
|
[] | null | 0.456436 |
Brent, Daryl, Enoch, Regina are the only persons in the room.
Brent is not a tall person.
Everyone in the room who is not a quiet kind person is quiet.
Regina is quieter than Regina.
Daryl is not a kind person.
If someone is not quiet then he/she is a old person and vice versa.
Everyone in the room is quieter than Regina only if they is not a kind old quiet person.
All quiet persons are old.
Regina is older than Enoch.
Everyone anywhere who is richer than Regina is not a tall kind person.
Brent is the least old in the room.
Regina and Enoch are respectively kind and old.
Enoch and Daryl are respectively tall and kind.
|
Everyone in the room is not quiet.
|
contradiction
|
room(brent)&room(daryl)&room(enoch)&room(regina)&(![X]:(room(X)=>(X='brent'|X='daryl'|X='enoch'|X='regina')))&
(~(tall(brent)&person(brent)))&
(![X]:(room(X)=>(((~(quiet(X)&kind(X)&person(X)))=>(quiet(X))))))&
(quieter(regina,regina))&
(~(kind(daryl)&person(daryl)))&
((![X]:((~quiet(X))<=>(old(X)&person(X)))))&
(![X]:(room(X)=>(((~(kind(X)&old(X)&quiet(X)&person(X)))<=(quieter(regina,X))))))&
(![X]:(quiet(X)=>old(X)))&
(older(enoch,regina))&
(![X]:(anywhere(X)=>(((richer(regina,X))=>(~(tall(X)&kind(X)&person(X)))))))&
(![X]:((room(X)&(X!=brent))=>older(brent,X)))&
((kind(regina))&(old(enoch)))&
((tall(enoch))&(kind(daryl)))
|
room(brent)&room(daryl)&room(enoch)&room(regina)&(![X]:(room(X)=>(X='brent'|X='daryl'|X='enoch'|X='regina')))&
![X]:(room(X)=>(~quiet(X)))
|
[
"p0",
"p2",
"hypothesis"
] |
% SZS status Unsatisfiable for 4817934200316881787130695
% SZS output start Proof for 4817934200316881787130695
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
46. ! [X0] : (room(X0) => (~(person(X0) & kind(X0) & quiet(X0)) => quiet(X0))) [input p2]
57. ! [X0] : (room(X0) => ~quiet(X0)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
58. ! [X0] : (room(X0) => ~quiet(X0)) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 57]
130. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
131. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130]
133. ! [X0] : ((quiet(X0) | (person(X0) & kind(X0) & quiet(X0))) | ~room(X0)) [ennf transformation 46]
134. ! [X0] : (quiet(X0) | (person(X0) & kind(X0) & quiet(X0)) | ~room(X0)) [flattening 133]
143. ! [X0] : (~quiet(X0) | ~room(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58]
144. ! [X0] : (~quiet(X0) | ~room(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 143]
232. room(alice) [cnf transformation 131]
235. quiet(X0) | quiet(X0) | ~room(X0) [cnf transformation 134]
257. ~quiet(X0) | ~room(X0) [cnf transformation 144]
258. quiet(X0) | ~room(X0) [duplicate literal removal 235]
280. ~room(X0) [subsumption resolution 257,258]
284. $false [resolution 280,232]
% SZS output end Proof for 4817934200316881787130695
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0 |
Julie, Brendan, Irma, Christopher, Kathy are the only persons in the room.
If “everyone in the room is a tall person” then “Brendan is the least rich in the room”.
Julie and Irma are quiet old persons.
Julie who is old is a old quiet person.
Everyone in the room is a quiet person.
If someone is a tall person then he/she is quiet and is tall and vice versa.
Brendan who is a tall person is quiet.
Only one person anywhere is a tall person.
Irma is the quietest in the room.
If someone is a old person then he/she either is tall or is quiet but not both and vice versa.
Everyone in the room who is tall is a quiet person.
Everyone in the room either is not a tall person or is old but not both if they is old and is a tall person.
|
Kathy is old.
|
entailment
|
room(julie)&room(brendan)&room(irma)&room(christopher)&room(kathy)&(![X]:(room(X)=>(X='julie'|X='brendan'|X='irma'|X='christopher'|X='kathy')))&
((![X]:(room(X)=>(tall(X)&person(X))))=>(![X]:((room(X)&(X!=brendan))=>richer(brendan,X))))&
(quiet(julie)&old(julie)&person(julie)&quiet(irma)&old(irma)&person(irma))&
((old(julie))&(old(julie)&quiet(julie)&person(julie)))&
(![X]:(room(X)=>(quiet(X)&person(X))))&
((![X]:((tall(X)&person(X))<=>(((quiet(X))&(tall(X)))))))&
((tall(brendan)&person(brendan))&(quiet(brendan)))&
(((?[X]:(anywhere(X)&tall(X)&person(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(tall(X)&person(X))&(tall(Y)&person(Y)))=>(X=Y)))))&
(![X]:((room(X)&(X!=irma))=>quieter(X,irma)))&
((![X]:((old(X)&person(X))<=>(((tall(X))<~>(quiet(X)))))))&
(![X]:(room(X)=>(((tall(X))=>(quiet(X)&person(X))))))&
(![X]:(room(X)=>(((((old(X))&(tall(X)&person(X))))=>(((~(tall(X)&person(X)))<~>(old(X))))))))&
(![X]:((room(X)&(X!=brendan))=>richer(brendan,X)))
|
room(julie)&room(brendan)&room(irma)&room(christopher)&room(kathy)&(![X]:(room(X)=>(X='julie'|X='brendan'|X='irma'|X='christopher'|X='kathy')))&
old(kathy)
|
[
"b4",
"b42",
"p0",
"p4",
"p5",
"p6",
"p7",
"p9",
"hypothesis"
] |
% SZS status Unsatisfiable for 66973443766839312587154
% SZS output start Proof for 66973443766839312587154
5. ! [X0] : anywhere(X0) [input b4]
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
48. ! [X0] : (room(X0) => (person(X0) & quiet(X0))) [input p4]
49. ! [X0] : ((person(X0) & tall(X0)) <=> (tall(X0) & quiet(X0))) [input p5]
50. quiet(paul) & person(paul) & tall(paul) [input p6]
51. ! [X0,X1] : ((person(X1) & tall(X1) & person(X0) & tall(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (person(X0) & tall(X0) & anywhere(X0)) [input p7]
53. ! [X0] : ((person(X0) & old(X0)) <=> (tall(X0) <~> quiet(X0))) [input p9]
57. ~(old(john) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
59. ! [X0,X1] : ((person(X1) & tall(X1) & person(X0) & tall(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) [rectify 51]
131. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
132. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 131]
135. ! [X0] : ((person(X0) & quiet(X0)) | ~room(X0)) [ennf transformation 48]
136. ! [X0,X1] : (X0 = X1 | (~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) [ennf transformation 59]
137. ! [X0,X1] : (X0 = X1 | ~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) [flattening 136]
146. ~old(john) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 57]
147. ~old(john) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 146]
152. ! [X0] : (((person(X0) & tall(X0)) | (~tall(X0) | ~quiet(X0))) & ((tall(X0) & quiet(X0)) | (~person(X0) | ~tall(X0)))) [nnf transformation 49]
153. ! [X0] : (((person(X0) & tall(X0)) | ~tall(X0) | ~quiet(X0)) & ((tall(X0) & quiet(X0)) | ~person(X0) | ~tall(X0))) [flattening 152]
154. ? [X2] : (person(X2) & tall(X2) & anywhere(X2)) => (person(sK1) & tall(sK1) & anywhere(sK1)) [choice axiom]
155. ! [X0,X1] : (X0 = X1 | ~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0)) & (person(sK1) & tall(sK1) & anywhere(sK1)) [skolemisation 137,154]
156. ! [X0] : (((person(X0) & old(X0)) | ((tall(X0) | ~quiet(X0)) & (quiet(X0) | ~tall(X0)))) & (((~quiet(X0) | ~tall(X0)) & (quiet(X0) | tall(X0))) | (~person(X0) | ~old(X0)))) [nnf transformation 53]
157. ! [X0] : (((person(X0) & old(X0)) | ((tall(X0) | ~quiet(X0)) & (quiet(X0) | ~tall(X0)))) & (((~quiet(X0) | ~tall(X0)) & (quiet(X0) | tall(X0))) | ~person(X0) | ~old(X0))) [flattening 156]
160. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom]
161. ~old(john) | (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 147,160]
162. anywhere(X0) [cnf transformation 5]
226. paul != john [cnf transformation 43]
243. room(mary) [cnf transformation 132]
244. room(paul) [cnf transformation 132]
245. room(fred) [cnf transformation 132]
246. room(alice) [cnf transformation 132]
247. room(john) [cnf transformation 132]
248. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 132]
261. ~room(X0) | quiet(X0) [cnf transformation 135]
266. ~tall(X0) | person(X0) | ~quiet(X0) [cnf transformation 153]
267. tall(paul) [cnf transformation 50]
268. person(paul) [cnf transformation 50]
273. X0 = X1 | ~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 155]
278. ~quiet(X0) | tall(X0) | old(X0) [cnf transformation 157]
279. person(X0) | quiet(X0) | ~tall(X0) [cnf transformation 157]
287. ~old(john) | room(sK2) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161]
288. ~old(john) | mary != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161]
289. ~old(john) | paul != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161]
290. ~old(john) | fred != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161]
291. ~old(john) | alice != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161]
292. ~old(john) | john != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161]
313. X0 = X1 | ~person(X1) | ~tall(X1) | ~person(X0) | ~tall(X0) | ~anywhere(X0) [subsumption resolution 273,162]
314. ~tall(X1) | ~person(X1) | X0 = X1 | ~person(X0) | ~tall(X0) [subsumption resolution 313,162]
316. ~tall(X0) | person(X0) [subsumption resolution 279,266]
321. ~old(john) | john != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 292,247]
322. ~old(john) | john != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 321,246]
323. ~old(john) | john != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 322,245]
324. ~old(john) | john != sK2 | ~room(mary) [subsumption resolution 323,244]
325. ~old(john) | john != sK2 [subsumption resolution 324,243]
327. 5 <=> john = sK2 [avatar definition]
329. john != sK2 <- (~5) [avatar component clause 327]
331. 6 <=> old(john) [avatar definition]
333. ~old(john) <- (~6) [avatar component clause 331]
334. ~5 | ~6 [avatar split clause 325,331,327]
335. ~old(john) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 291,247]
336. ~old(john) | alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 335,246]
337. ~old(john) | alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 336,245]
338. ~old(john) | alice != sK2 | ~room(mary) [subsumption resolution 337,244]
339. ~old(john) | alice != sK2 [subsumption resolution 338,243]
341. 7 <=> alice = sK2 [avatar definition]
343. alice != sK2 <- (~7) [avatar component clause 341]
344. ~7 | ~6 [avatar split clause 339,331,341]
345. ~old(john) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 290,247]
346. ~old(john) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 345,246]
347. ~old(john) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 346,245]
348. ~old(john) | fred != sK2 | ~room(mary) [subsumption resolution 347,244]
349. ~old(john) | fred != sK2 [subsumption resolution 348,243]
351. 8 <=> fred = sK2 [avatar definition]
353. fred != sK2 <- (~8) [avatar component clause 351]
354. ~8 | ~6 [avatar split clause 349,331,351]
355. ~old(john) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 289,247]
356. ~old(john) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 355,246]
357. ~old(john) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 356,245]
358. ~old(john) | paul != sK2 | ~room(mary) [subsumption resolution 357,244]
359. ~old(john) | paul != sK2 [subsumption resolution 358,243]
361. 9 <=> paul = sK2 [avatar definition]
363. paul != sK2 <- (~9) [avatar component clause 361]
364. ~9 | ~6 [avatar split clause 359,331,361]
365. ~old(john) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 288,247]
366. ~old(john) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 365,246]
367. ~old(john) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 366,245]
368. ~old(john) | mary != sK2 | ~room(mary) [subsumption resolution 367,244]
369. ~old(john) | mary != sK2 [subsumption resolution 368,243]
371. 10 <=> mary = sK2 [avatar definition]
373. mary != sK2 <- (~10) [avatar component clause 371]
374. ~10 | ~6 [avatar split clause 369,331,371]
375. ~old(john) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 287,247]
376. ~old(john) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 375,246]
377. ~old(john) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 376,245]
378. ~old(john) | room(sK2) | ~room(mary) [subsumption resolution 377,244]
379. ~old(john) | room(sK2) [subsumption resolution 378,243]
381. 11 <=> room(sK2) [avatar definition]
383. room(sK2) <- (11) [avatar component clause 381]
384. 11 | ~6 [avatar split clause 379,331,381]
389. quiet(john) [resolution 261,247]
416. tall(john) | old(john) [resolution 278,389]
427. tall(john) <- (~6) [subsumption resolution 416,333]
537. ~person(paul) | paul = X0 | ~person(X0) | ~tall(X0) [resolution 314,267]
540. paul = X0 | ~person(X0) | ~tall(X0) [subsumption resolution 537,268]
541. ~tall(X0) | paul = X0 [subsumption resolution 540,316]
548. paul = john <- (~6) [resolution 541,427]
554. $false <- (~6) [subsumption resolution 548,226]
555. 6 [avatar contradiction clause 554]
581. alice = sK2 | fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (11) [resolution 248,383]
582. fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (~7, 11) [subsumption resolution 581,343]
583. paul = sK2 | mary = sK2 | john = sK2 <- (~7, ~8, 11) [subsumption resolution 582,353]
584. mary = sK2 | john = sK2 <- (~7, ~8, ~9, 11) [subsumption resolution 583,363]
585. john = sK2 <- (~7, ~8, ~9, ~10, 11) [subsumption resolution 584,373]
586. $false <- (~5, ~7, ~8, ~9, ~10, 11) [subsumption resolution 585,329]
587. 5 | 7 | 8 | 9 | 10 | ~11 [avatar contradiction clause 586]
588. $false [avatar sat refutation 334,344,354,364,374,384,555,587]
% SZS output end Proof for 66973443766839312587154
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.41886 |
Joseph, Ashley are the only persons in the room.
Everyone in the room enjoys windsurfing if they creates augmented reality experiences for mobile applications.
Everyone in the room participates in long-distance cycling events across the country if they enjoys windsurfing.
Everyone in the room collects classic novels if they participates in long-distance cycling events across the country.
Everyone in the room does not enjoy windsurfing.
Everyone in the room practices kickboxing.
Everyone in the room enjoys stand-up paddleboarding if they composes and performs experimental electronic music.
|
It is true that “Joseph creates augmented reality experiences for mobile applications”.
|
contradiction
|
room(joseph)&room(ashley)&(![X]:(room(X)=>(X='joseph'|X='ashley')))&
(![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(enjoys_windsurfing(X))))))&
(![X]:(room(X)=>(((enjoys_windsurfing(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))&
(![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(collects_classic_novels(X))))))&
(![X]:(room(X)=>(does_not_enjoy_windsurfing(X))))&
(![X]:(room(X)=>(practices_kickboxing(X))))&
(![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(enjoys_stand-up_paddleboarding(X))))))
|
room(joseph)&room(ashley)&(![X]:(room(X)=>(X='joseph'|X='ashley')))&
creates_augmented_reality_experiences_for_mobile_applications(joseph)
|
[
"p0",
"p1",
"p4",
"hypothesis"
] |
% SZS status Unsatisfiable for 6196619905397692999819905
% SZS output start Proof for 6196619905397692999819905
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. ! [X0] : (room(X0) => (prede(X0) => predr(X0))) [input p1]
48. ! [X0] : (room(X0) => ~predr(X0)) [input p4]
51. prede(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
128. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
129. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 128]
130. ! [X0] : ((predr(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 45]
131. ! [X0] : (predr(X0) | ~prede(X0) | ~room(X0)) [flattening 130]
132. ! [X0] : (~predr(X0) | ~room(X0)) [ennf transformation 48]
133. prede(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 51]
134. prede(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 133]
216. room(mary) [cnf transformation 129]
219. ~prede(X0) | predr(X0) | ~room(X0) [cnf transformation 131]
220. ~predr(X0) | ~room(X0) [cnf transformation 132]
224. prede(mary) [cnf transformation 134]
225. predr(mary) | ~room(mary) [resolution 219,224]
226. predr(mary) [subsumption resolution 225,216]
229. ~room(mary) [resolution 226,220]
230. $false [subsumption resolution 229,216]
% SZS output end Proof for 6196619905397692999819905
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.687359 |
There is a room.
If “everyone outside the room does not enjoy logic puzzles or enjoys rooftop gardening” then “everyone in the room who does not enjoy logic puzzles plays as a goalkeeper for a local amateur soccer team”.
If “everyone in the room does not play as a goalkeeper for a local amateur soccer team or creates bespoke furniture pieces from reclaimed wood” then “everyone in the room who does not play as a goalkeeper for a local amateur soccer team travels domestically frequently”.
Everyone in the room who practices tai chi does enjoy mountain biking.
Everyone in the room who does enjoy mountain biking maintains a large, organic vegetable garden year-round.
Everyone in the room does not enjoy skydiving or works on fridays.
Everyone in the room who does not enjoy skydiving hosts a YouTube channel dedicated to art tutorials.
Everyone in the room who hosts a YouTube channel dedicated to art tutorials plays as a goalkeeper for a local amateur soccer team, travels domestically frequently and owns a smartwatch.
Everyone in the room who plays as a goalkeeper for a local amateur soccer team, travels domestically frequently and owns a smartwatch enjoys skydiving.
Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals works on fridays.
Everyone in the room does not collect first edition books or works on fridays.
Not everyone in the room who does not collect first edition books collects action figures.
Everyone in the room collects action figures if and only if they owns a smartwatch.
Everyone in the room who does enjoy mountain biking owns a smartwatch.
Everyone in the room who works as a freelance web developer specializing in e-commerce sites and makes intricate hand-cut paper art for exhibitions regularly goes on multi-day backpacking trips in national parks.
Everyone in the room who regularly goes on multi-day backpacking trips in national parks is a member of a local theater group specializing in improv.
Everyone in the room who is a member of a local theater group specializing in improv collects action figures.
Everyone in the room who collects action figures maintains a large, organic vegetable garden year-round.
|
Everyone in the room does not play as a goalkeeper for a local amateur soccer team or creates bespoke furniture pieces from reclaimed wood.
|
neutral
|
(there_is_a_room)&
((![X]:(~room(X)=>(((enjoys_rooftop_gardening(X))|(does_not_enjoy_logic_puzzles(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))&
((![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(travels_domestically_frequently(X)))))))&
(![X]:(room(X)=>(((practices_tai_chi(X))=>(does_enjoy_mountain_biking(X))))))&
(![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))&
(![X]:(room(X)=>(((works_on_fridays(X))|(does_not_enjoy_skydiving(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_skydiving(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))&
(![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(travels_domestically_frequently(X))&(owns_a_smartwatch(X))))))))&
(![X]:(room(X)=>(((((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(travels_domestically_frequently(X))&(owns_a_smartwatch(X))))=>(enjoys_skydiving(X))))))&
(![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(works_on_fridays(X))))))&
(![X]:(room(X)=>(((works_on_fridays(X))|(does_not_collect_first_edition_books(X))))))&
(~![X]:(room(X)=>(((does_not_collect_first_edition_books(X))=>(collects_action_figures(X))))))&
(![X]:(room(X)=>(((collects_action_figures(X))<=>(owns_a_smartwatch(X))))))&
(![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(owns_a_smartwatch(X))))))&
(![X]:(room(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))&
(![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))&
(![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(collects_action_figures(X))))))&
(![X]:(room(X)=>(((collects_action_figures(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))&
(![X]:(room(X)=>(((owns_a_smartwatch(X))=>(plays_video_games(X))))))&
(![X]:(room(X)=>(((enjoys_origami(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))))&
(![X]:(room(X)=>(((((plays_video_games(X))&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))|(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))))&
(~![X]:(room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))=>(enjoys_rooftop_gardening(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))
|
[] | null | 0.691886 |
Jane, Donna, Robert are the only persons in the room.
If “everyone in the room cannot play the harmonica or practices and performs acrobatic dance routines” then “everyone in the room who cannot play the harmonica does not enjoy skydiving”.
It is true that “everyone in the room is a member of a local theater group specializing in improv if and only if they uses an ios phone”.
Robert either does not enjoy skydiving or uses an ios phone but not both.
Everyone in the room who cannot play the harmonica does not enjoy skydiving.
Everyone in the room who neither enjoys camping and organizing outdoor survival workshops nor is a member of a local theater group specializing in improv can play the harmonica.
Everyone in the room enjoys camping and organizing outdoor survival workshops if they can play the harmonica and vice versa.
Only one person in the room can play the harmonica.
|
Donna can play the harmonica.
|
contradiction
|
room(jane)&room(donna)&room(robert)&(![X]:(room(X)=>(X='jane'|X='donna'|X='robert')))&
((![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(cannot_play_the_harmonica(X))))))=>(![X]:(room(X)=>(((cannot_play_the_harmonica(X))=>(does_not_enjoy_skydiving(X)))))))&
((![X]:((works_on_fridays(X))<=>(~((enjoys_landscape_photography(X))|(has_completed_a_triathlon(X)))))))&
(((has_completed_a_triathlon(jane))&(owns_a_microscope(jane))&(collects_limited-edition_art_prints_from_contemporary_artists(jane))))&
(![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))&
(![X]:(anywhere(X)=>(((enjoys_landscape_photography(X))=>(does_not_enjoy_macrame(X))))))&
((![X]:((writes_a_travel_blog(X))<=>(enjoys_macrame(X)))))&
(streams_on_Twitch(jane))&
(![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))<=>(uses_an_ios_phone(X))))))&
(![X]:(~room(X)=>(((uses_an_ios_phone(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))&
(![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(enjoys_landscape_photography(X))))))&
(![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(has_completed_a_triathlon(X))))))&
(((does_not_enjoy_skydiving(robert))<~>(uses_an_ios_phone(robert))))&
(![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(cannot_play_the_harmonica(X))))))&
(enjoys_landscape_photography(donna))&
(![X]:(room(X)=>(((cannot_play_the_harmonica(X))=>(does_not_enjoy_skydiving(X))))))&
(![X]:(room(X)=>(((can_play_the_harmonica(X))=>(makes_homemade_pastries(X))))))&
(![X]:(room(X)=>(((makes_homemade_pastries(X))=>(~((works_on_fridays(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))))&
(![X]:(room(X)=>(((~((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))=>(can_play_the_harmonica(X))))))&
(![X]:(room(X)=>(((can_play_the_harmonica(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))&
(![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))<=>(can_play_the_harmonica(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(writes_poetry(X))))))&
(![X]:(room(X)=>(((writes_poetry(X))=>(owns_a_microscope(X))))))&
(((?[X]:(room(X)&can_play_the_harmonica(X)))&(![X,Y]:((room(X)&room(Y)&(can_play_the_harmonica(X))&(can_play_the_harmonica(Y)))=>(X=Y)))))&
(((owns_a_microscope(jane))&(trains_for_and_competes_in_international_triathlons(jane))&(owns_a_smartwatch(jane))))
|
room(jane)&room(donna)&room(robert)&(![X]:(room(X)=>(X='jane'|X='donna'|X='robert')))&
can_play_the_harmonica(donna)
|
[
"b42",
"p0",
"p8",
"p12",
"p15",
"p18",
"p20",
"p23",
"hypothesis"
] |
% SZS status Unsatisfiable for 6503970351177947858824422
% SZS output start Proof for 6503970351177947858824422
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
52. ! [X0] : (room(X0) => (predu(X0) <=> predk(X0))) [input p8]
56. ~predr(fred) <~> predk(fred) [input p12]
59. ! [X0] : (room(X0) => (~predf(X0) => ~predr(X0))) [input p15]
62. ! [X0] : (room(X0) => (~(predu(X0) | predi(X0)) => predf(X0))) [input p18]
64. ! [X0] : (room(X0) => (predi(X0) <=> predf(X0))) [input p20]
67. ! [X0,X1] : ((predf(X1) & predf(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predf(X0) & room(X0)) [input p23]
69. predf(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
71. ! [X0,X1] : ((predf(X1) & predf(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predf(X2) & room(X2)) [rectify 67]
164. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
165. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 164]
168. ! [X0] : ((predu(X0) <=> predk(X0)) | ~room(X0)) [ennf transformation 52]
171. ! [X0] : ((~predr(X0) | predf(X0)) | ~room(X0)) [ennf transformation 59]
172. ! [X0] : (~predr(X0) | predf(X0) | ~room(X0)) [flattening 171]
173. ! [X0] : ((predf(X0) | (predu(X0) | predi(X0))) | ~room(X0)) [ennf transformation 62]
174. ! [X0] : (predf(X0) | predu(X0) | predi(X0) | ~room(X0)) [flattening 173]
177. ! [X0] : ((predi(X0) <=> predf(X0)) | ~room(X0)) [ennf transformation 64]
178. ! [X0,X1] : (X0 = X1 | (~predf(X1) | ~predf(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predf(X2) & room(X2)) [ennf transformation 71]
179. ! [X0,X1] : (X0 = X1 | ~predf(X1) | ~predf(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predf(X2) & room(X2)) [flattening 178]
180. predf(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 69]
181. predf(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 180]
186. ! [X0] : (((predu(X0) | ~predk(X0)) & (predk(X0) | ~predu(X0))) | ~room(X0)) [nnf transformation 168]
187. (~predk(fred) | predr(fred)) & (predk(fred) | ~predr(fred)) [nnf transformation 56]
188. ! [X0] : (((predi(X0) | ~predf(X0)) & (predf(X0) | ~predi(X0))) | ~room(X0)) [nnf transformation 177]
189. ? [X2] : (predf(X2) & room(X2)) => (predf(sK1) & room(sK1)) [choice axiom]
190. ! [X0,X1] : (X0 = X1 | ~predf(X1) | ~predf(X0) | ~room(X1) | ~room(X0)) & (predf(sK1) & room(sK1)) [skolemisation 179,189]
242. paul != fred [cnf transformation 43]
272. room(paul) [cnf transformation 165]
273. room(fred) [cnf transformation 165]
278. ~predu(X0) | predk(X0) | ~room(X0) [cnf transformation 186]
281. ~predk(fred) | predr(fred) [cnf transformation 187]
283. ~predr(X0) | predf(X0) | ~room(X0) [cnf transformation 172]
284. ~room(X0) | predu(X0) | predi(X0) | predf(X0) [cnf transformation 174]
286. ~predi(X0) | predf(X0) | ~room(X0) [cnf transformation 188]
290. ~predf(X1) | X0 = X1 | ~predf(X0) | ~room(X1) | ~room(X0) [cnf transformation 190]
295. predf(paul) [cnf transformation 181]
301. 2 <=> ! [X0] : (~predr(X0) | ~room(X0) | predf(X0)) [avatar definition]
302. ~predr(X0) | ~room(X0) | predf(X0) <- (2) [avatar component clause 301]
315. 5 <=> predr(fred) [avatar definition]
317. predr(fred) <- (5) [avatar component clause 315]
319. 6 <=> predk(fred) [avatar definition]
322. 5 | ~6 [avatar split clause 281,319,315]
324. 2 [avatar split clause 283,301]
336. predu(fred) | predi(fred) | predf(fred) [resolution 284,273]
352. 10 <=> predf(fred) [avatar definition]
353. ~predf(fred) <- (~10) [avatar component clause 352]
354. predf(fred) <- (10) [avatar component clause 352]
356. 11 <=> predi(fred) [avatar definition]
358. predi(fred) <- (11) [avatar component clause 356]
360. 12 <=> predu(fred) [avatar definition]
362. predu(fred) <- (12) [avatar component clause 360]
363. 10 | 11 | 12 [avatar split clause 336,360,356,352]
376. predf(fred) | ~room(fred) <- (11) [resolution 358,286]
441. paul = X1 | ~predf(X1) | ~room(paul) | ~room(X1) [resolution 290,295]
444. ~predf(X1) | paul = X1 | ~room(X1) [subsumption resolution 441,272]
448. paul = fred | ~room(fred) <- (10) [resolution 444,354]
452. ~room(fred) <- (10) [subsumption resolution 448,242]
453. $false <- (10) [subsumption resolution 452,273]
454. ~10 [avatar contradiction clause 453]
458. predf(fred) <- (11) [subsumption resolution 376,273]
459. 10 | ~11 [avatar split clause 458,356,352]
488. predk(fred) | ~room(fred) <- (12) [resolution 362,278]
492. predk(fred) <- (12) [subsumption resolution 488,273]
493. 6 | ~12 [avatar split clause 492,360,319]
494. ~room(fred) | predf(fred) <- (2, 5) [resolution 317,302]
495. predf(fred) <- (2, 5) [subsumption resolution 494,273]
496. $false <- (2, 5, ~10) [subsumption resolution 495,353]
497. ~2 | ~5 | 10 [avatar contradiction clause 496]
498. $false [avatar sat refutation 322,324,363,454,459,493,497]
% SZS output end Proof for 6503970351177947858824422
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.113343 |
There is a room.
Everyone in the room does not practice urban gardening.
Everyone outside the room does not collect rare and antique scientific instruments, does not practice urban gardening and does not collect rare minerals.
Everyone in the room neither does not enjoy writing detailed reviews of new and classic board games nor practices pilates.
Everyone anywhere does not enjoy writing detailed reviews of new and classic board games or does not enjoy deep-sea diving and exploring underwater caves.
Everyone in the room does not practice kickboxing or does not practice pilates or both.
Everyone in the room is not a client of LVMH.
|
Everyone in the room enjoys writing detailed reviews of new and classic board games.
|
entailment
|
(there_is_a_room)&
(![X]:(room(X)=>(does_not_practice_urban_gardening(X))))&
(![X]:(~room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))&(does_not_practice_urban_gardening(X))&(does_not_collect_rare_minerals(X))))))&
(![X]:(room(X)=>(~((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(practices_pilates(X))))))&
(![X]:(anywhere(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
(![X]:(room(X)=>(((does_not_practice_kickboxing(X))|(does_not_practice_pilates(X))))))&
(![X]:(room(X)=>(is_not_a_client_of_LVMH(X))))
|
(there_is_a_room)&
![X]:(room(X)=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))
|
[
"p0",
"p3",
"hypothesis"
] |
% SZS status Unsatisfiable for 91731065570581512493351
% SZS output start Proof for 91731065570581512493351
44. there_is_a_room [input p0]
47. ! [X0] : (room(X0) => ~(predj(X0) | ~predc(X0))) [input p3]
51. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis]
56. ! [X0] : (room(X0) => ~~predc(X0)) [pure predicate removal 47]
132. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 56]
133. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 51]
135. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK0) & room(sK0)) [choice axiom]
136. (~predc(sK0) & room(sK0)) | ~there_is_a_room [skolemisation 133,135]
217. there_is_a_room [cnf transformation 44]
218. ~room(X0) | predc(X0) [cnf transformation 132]
219. room(sK0) | ~there_is_a_room [cnf transformation 136]
220. ~predc(sK0) | ~there_is_a_room [cnf transformation 136]
221. ~predc(sK0) [subsumption resolution 220,217]
222. room(sK0) [subsumption resolution 219,217]
223. predc(sK0) [resolution 218,222]
224. $false [subsumption resolution 223,221]
% SZS output end Proof for 91731065570581512493351
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.023 s
% ------------------------------
% ------------------------------
| 0.059435 |
Rogelio, Lois, Timothy, Martha, Donald are the only persons in the room.
Everyone in the room owns a significant collection of rare gemstones and minerals if they is an enthusiastic bird watcher who travels for rare sightings.
Everyone in the room who owns a significant collection of rare gemstones and minerals either owns a significant collection of rare gemstones and minerals or is an enthusiastic bird watcher who travels for rare sightings but not both.
Everyone in the room who either owns a significant collection of rare gemstones and minerals or is an enthusiastic bird watcher who travels for rare sightings but not both enjoys cross-country skiing.
If someone is not an enthusiastic bird watcher who travels for rare sightings then he/she enjoys cross-country skiing and vice versa.
Everyone in the room enjoys cross-country skiing if they is an enthusiastic bird watcher who travels for rare sightings.
Rogelio owns a significant collection of rare gemstones and minerals.
|
Donald is an enthusiastic bird watcher who travels for rare sightings.
|
contradiction
|
room(rogelio)&room(lois)&room(timothy)&room(martha)&room(donald)&(![X]:(room(X)=>(X='rogelio'|X='lois'|X='timothy'|X='martha'|X='donald')))&
(![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))&
(![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))<~>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))))&
(![X]:(room(X)=>(((((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))<~>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))=>(enjoys_cross-country_skiing(X))))))&
((![X]:((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<=>(enjoys_cross-country_skiing(X)))))&
(![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(enjoys_cross-country_skiing(X))))))&
(owns_a_significant_collection_of_rare_gemstones_and_minerals(rogelio))
|
room(rogelio)&room(lois)&room(timothy)&room(martha)&room(donald)&(![X]:(room(X)=>(X='rogelio'|X='lois'|X='timothy'|X='martha'|X='donald')))&
is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(donald)
|
[
"p0",
"p1",
"p2",
"hypothesis"
] |
% SZS status Unsatisfiable for 1290805424744608882182210
% SZS output start Proof for 1290805424744608882182210
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. ! [X0] : (room(X0) => (predb(X0) => predc(X0))) [input p1]
46. ! [X0] : (room(X0) => (predc(X0) => (predc(X0) <~> predb(X0)))) [input p2]
51. predb(john) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
124. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
125. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 124]
126. ! [X0] : ((predc(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 45]
127. ! [X0] : (predc(X0) | ~predb(X0) | ~room(X0)) [flattening 126]
128. ! [X0] : (((predc(X0) <~> predb(X0)) | ~predc(X0)) | ~room(X0)) [ennf transformation 46]
129. ! [X0] : ((predc(X0) <~> predb(X0)) | ~predc(X0) | ~room(X0)) [flattening 128]
134. predb(john) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 51]
135. predb(john) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 134]
137. ! [X0] : (((~predb(X0) | ~predc(X0)) & (predb(X0) | predc(X0))) | ~predc(X0) | ~room(X0)) [nnf transformation 129]
224. room(john) [cnf transformation 125]
226. predc(X0) | ~predb(X0) | ~room(X0) [cnf transformation 127]
228. ~predb(X0) | ~predc(X0) | ~predc(X0) | ~room(X0) [cnf transformation 137]
241. predb(john) [cnf transformation 135]
242. ~predb(X0) | ~predc(X0) | ~room(X0) [duplicate literal removal 228]
243. ~predb(X0) | ~room(X0) [subsumption resolution 242,226]
246. ~room(john) [resolution 243,241]
247. $false [subsumption resolution 246,224]
% SZS output end Proof for 1290805424744608882182210
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.033 s
% ------------------------------
% ------------------------------
| 0 |
Larry, Keith, Marc, Thomas, Kelly are the only persons in the room.
If “everyone in the room is a patient person or does not use contact lenses” then “Thomas and Larry are not creative” otherwise “Keith and Thomas are respectively creative and patient”.
“Keith is patient” if “everyone in the room does not use contact lenses or is patient” and vice versa.
If “Marc is patient” then “Keith practices and performs acrobatic dance routines”.
If “Keith is not passionate about collecting and restoring classic cars” then “not everyone in the room does not use contact lenses” otherwise “Thomas is patient, is a creative european and designs and sews custom cosplay costumes for conventions”.
Not everyone in the room designs and sews custom cosplay costumes for conventions.
Larry dreamt that “everyone in the room is not a creative european if they is not passionate about collecting and restoring classic cars”.
Marc is not a creative european.
Keith is a creative person, is passionate about collecting and restoring classic cars and is not a patient european.
Everyone outside the room is patient if they is creative.
Larry is creative.
Larry is not passionate about collecting and restoring classic cars.
Everyone in the room is a creative patient european or does not practice and performs acrobatic dance routines.
Thomas is patient, is a creative european and designs and sews custom cosplay costumes for conventions.
Marc uses contact lenses.
All patient persons are creative.
Not everyone in the room does not work as a freelance web developer specializing in e-commerce sites if they is a patient european.
Larry is patient.
|
Marc practices and performs acrobatic dance routines.
|
contradiction
|
room(larry)&room(keith)&room(marc)&room(thomas)&room(kelly)&(![X]:(room(X)=>(X='larry'|X='keith'|X='marc'|X='thomas'|X='kelly')))&
(((![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(patient(X)&person(X))))))=>(~creative(thomas)&~creative(larry)))&((~(![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(patient(X)&person(X)))))))=>((creative(keith))&(patient(thomas)))))&
((![X]:(room(X)=>(((patient(X))|(does_not_use_contact_lenses(X))))))<=>(patient(keith)))&
((patient(marc))=>(practices_and_performs_acrobatic_dance_routines(keith)))&
(((is_not_passionate_about_collecting_and_restoring_classic_cars(keith))=>(~![X]:(room(X)=>(does_not_use_contact_lenses(X)))))&((~(is_not_passionate_about_collecting_and_restoring_classic_cars(keith)))=>(((patient(thomas))&(creative(thomas)&european(thomas))&(designs_and_sews_custom_cosplay_costumes_for_conventions(thomas))))))&
(~![X]:(room(X)=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))&
((larry_dream=>(![X]:(room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))=>(~(creative(X)&european(X)))))))))&
(~(creative(marc)&european(marc)))&
(((creative(keith)&person(keith))&(is_passionate_about_collecting_and_restoring_classic_cars(keith))&(~(patient(keith)&european(keith)))))&
(![X]:(~room(X)=>(((creative(X))=>(patient(X))))))&
(creative(larry))&
(is_not_passionate_about_collecting_and_restoring_classic_cars(larry))&
(![X]:(room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))|(creative(X)&patient(X)&european(X))))))&
(((patient(thomas))&(creative(thomas)&european(thomas))&(designs_and_sews_custom_cosplay_costumes_for_conventions(thomas))))&
(uses_contact_lenses(marc))&
(![X]:(patient(X)=>creative(X)))&
(~![X]:(room(X)=>(((patient(X)&european(X))=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))&
(patient(larry))&
(![X]:(~room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))<=(does_not_use_contact_lenses(X))))))&
(is_passionate_about_collecting_and_restoring_classic_cars(keith))&
((![X]:((patient(X))=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))|(creative(X)))))))
|
room(larry)&room(keith)&room(marc)&room(thomas)&room(kelly)&(![X]:(room(X)=>(X='larry'|X='keith'|X='marc'|X='thomas'|X='kelly')))&
practices_and_performs_acrobatic_dance_routines(marc)
|
[
"p0",
"p7",
"p12",
"hypothesis"
] |
% SZS status Unsatisfiable for 6177862949320706780778050
% SZS output start Proof for 6177862949320706780778050
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
51. ~(european(fred) & creative(fred)) [input p7]
56. ! [X0] : (room(X0) => ((european(X0) & patient(X0) & creative(X0)) | ~predw(X0))) [input p12]
65. predw(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
141. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
142. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141]
150. ~european(fred) | ~creative(fred) [ennf transformation 51]
154. ! [X0] : (((european(X0) & patient(X0) & creative(X0)) | ~predw(X0)) | ~room(X0)) [ennf transformation 56]
155. ! [X0] : ((european(X0) & patient(X0) & creative(X0)) | ~predw(X0) | ~room(X0)) [flattening 154]
163. predw(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 65]
164. predw(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 163]
261. room(fred) [cnf transformation 142]
288. ~european(fred) | ~creative(fred) [cnf transformation 150]
296. ~predw(X0) | creative(X0) | ~room(X0) [cnf transformation 155]
298. ~predw(X0) | european(X0) | ~room(X0) [cnf transformation 155]
318. predw(fred) [cnf transformation 164]
423. 22 <=> creative(fred) [avatar definition]
427. 23 <=> european(fred) [avatar definition]
429. ~european(fred) <- (~23) [avatar component clause 427]
430. ~22 | ~23 [avatar split clause 288,427,423]
454. creative(fred) | ~room(fred) [resolution 296,318]
458. creative(fred) [subsumption resolution 454,261]
459. 22 [avatar split clause 458,423]
470. european(fred) | ~room(fred) [resolution 298,318]
472. ~room(fred) <- (~23) [subsumption resolution 470,429]
473. $false <- (~23) [subsumption resolution 472,261]
474. 23 [avatar contradiction clause 473]
478. $false [avatar sat refutation 430,459,474]
% SZS output end Proof for 6177862949320706780778050
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.128078 |
There is a room. 'Everyone in the room is not a certified yoga instructor teaching classes weekly or does not collect comic books' only if 'everyone anywhere owns a smart tv if they is not a certified yoga instructor teaching classes weekly'. No one anywhere is a certified yoga instructor teaching classes weekly if they is not a certified yoga instructor teaching classes weekly. Everyone anywhere neither enjoys macrame nor watches fantasy movies if they enjoys writing detailed reviews of new and classic board games, does not enjoy virtual reality gaming or owns a smart tv. Everyone outside the room watches fantasy movies.
|
Everyone outside the room does not enjoy fishing.
|
entailment
|
(there_is_a_room)&
((![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(creates_YouTube_content(X))))))=>(![X]:(~room(X)=>(watches_fantasy_movies(X)))))&
((~![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(writes_a_travel_blog(X))))))<~>(~![X]:(room(X)=>(((writes_a_travel_blog(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))&
((![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(watches_fantasy_movies(X))))))=>(![X]:(anywhere(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(mentors_a_youth_basketball_team_on_weekends(X)))))))&
((![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_create_YouTube_content(X))))))=>(![X]:(room(X)=>(makes_homemade_pastries(X)))))&
((?[X]:(room(X)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))=>(((?[X]:(~room(X)&((enjoys_making_ceramics(X))|(enjoys_virtual_reality_gaming(X))|(makes_homemade_pastries(X)))))&(![X,Y]:((~room(X)&~room(Y)&(((enjoys_making_ceramics(X))|(enjoys_virtual_reality_gaming(X))|(makes_homemade_pastries(X))))&(((enjoys_making_ceramics(Y))|(enjoys_virtual_reality_gaming(Y))|(makes_homemade_pastries(Y)))))=>(X=Y))))))&
((![X]:(room(X)=>(((does_not_collect_comic_books(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>(![X]:(anywhere(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(owns_a_smart_tv(X)))))))&
((![X]:(room(X)=>(((watches_fantasy_movies(X))|(does_not_write_a_travel_blog(X))))))=>(![X]:(anywhere(X)=>(((does_not_write_a_travel_blog(X))=>(does_not_read_mystery_novels(X)))))))&
((![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>((![X]:((enjoys_skydiving(X))=>(((enjoys_skydiving(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(watches_fantasy_movies(X))))))))&
(~?[X]:(anywhere(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))&
((![X]:((owns_a_smart_tv(X))=>(enjoys_virtual_reality_gaming(X)))))&
(![X]:(room(X)=>(((makes_homemade_pastries(X))=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(creates_YouTube_content(X))|(reads_mystery_novels(X))))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))<=(((collects_comic_books(X))|(enjoys_skydiving(X))))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))<=>(writes_a_travel_blog(X))))))&
(![X]:(anywhere(X)=>(((((does_not_enjoy_virtual_reality_gaming(X))<~>(owns_a_telescope(X))))=>(owns_a_smart_tv(X))))))&
(![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(uses_contact_lenses(X))))))&
(![X]:(room(X)=>(((does_not_collect_luxury_watches(X))|(does_not_watche_fantasy_movies(X))))))&
(![X]:(anywhere(X)=>(((((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(does_not_enjoy_virtual_reality_gaming(X))|(owns_a_smart_tv(X))))=>(~((enjoys_macrame(X))|(watches_fantasy_movies(X))))))))&
(![X]:(room(X)=>(((((does_not_own_a_smart_tv(X))&(enjoys_skydiving(X))))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))&
(![X]:(~room(X)=>(watches_fantasy_movies(X))))&
(![X]:(room(X)=>(((enjoys_fishing(X))=>(collects_comic_books(X))))))&
(![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(owns_a_smart_tv(X))))))&
(![X]:(room(X)=>(((owns_a_smart_tv(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))&
(![X]:(room(X)=>(((can_play_the_guitar(X))=>(((owns_a_telescope(X))&(enjoys_fishing(X))&(collects_comic_books(X))))))))&
(![X]:(room(X)=>(((((owns_a_telescope(X))&(enjoys_fishing(X))&(collects_comic_books(X))))=>(enjoys_making_ceramics(X))))))&
(![X]:(~room(X)=>(((enjoys_making_ceramics(X))=>(uses_a_Windows_laptop(X))))))
|
(there_is_a_room)&
![X]:(~room(X)=>(does_not_enjoy_fishing(X)))
|
[
"b4",
"p0",
"p6",
"p9",
"p17",
"p19",
"hypothesis"
] |
% SZS status Unsatisfiable for 6144552463523246559594376
% SZS output start Proof for 6144552463523246559594376
5. ! [X0] : anywhere(X0) [input b4]
44. there_is_a_room [input p0]
50. ! [X0] : (room(X0) => (~predt(X0) | ~predc(X0))) => ! [X0] : (anywhere(X0) => (~predt(X0) => predl(X0))) [input p6]
53. ~? [X0] : (anywhere(X0) => (~predt(X0) => predt(X0))) [input p9]
61. ! [X0] : (anywhere(X0) => ((predl(X0) | ~predq(X0) | predi(X0)) => ~(preds(X0) | predb(X0)))) [input p17]
63. ! [X0] : (~room(X0) => preds(X0)) [input p19]
70. ~(! [X0] : (~room(X0) => ~preda(X0)) & there_is_a_room) [input hypothesis]
76. ! [X0] : (room(X0) => (~predt(X0) | ~predc(X0))) => ! [X1] : (anywhere(X1) => (~predt(X1) => predl(X1))) [rectify 50]
81. ! [X0] : (anywhere(X0) => ((predl(X0) | ~predq(X0) | predi(X0)) => ~preds(X0))) [pure predicate removal 61]
166. ! [X1] : ((predl(X1) | predt(X1)) | ~anywhere(X1)) | ? [X0] : ((predt(X0) & predc(X0)) & room(X0)) [ennf transformation 76]
167. ! [X1] : (predl(X1) | predt(X1) | ~anywhere(X1)) | ? [X0] : (predt(X0) & predc(X0) & room(X0)) [flattening 166]
172. ! [X0] : ((~predt(X0) & ~predt(X0)) & anywhere(X0)) [ennf transformation 53]
173. ! [X0] : (~predt(X0) & ~predt(X0) & anywhere(X0)) [flattening 172]
182. ! [X0] : ((~preds(X0) | (~predl(X0) & predq(X0) & ~predi(X0))) | ~anywhere(X0)) [ennf transformation 81]
183. ! [X0] : (~preds(X0) | (~predl(X0) & predq(X0) & ~predi(X0)) | ~anywhere(X0)) [flattening 182]
186. ! [X0] : (preds(X0) | room(X0)) [ennf transformation 63]
191. ? [X0] : (preda(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 70]
211. ! [X0] : (predl(X0) | predt(X0) | ~anywhere(X0)) | ? [X1] : (predt(X1) & predc(X1) & room(X1)) [rectify 167]
212. ? [X1] : (predt(X1) & predc(X1) & room(X1)) => (predt(sK6) & predc(sK6) & room(sK6)) [choice axiom]
213. ! [X0] : (predl(X0) | predt(X0) | ~anywhere(X0)) | (predt(sK6) & predc(sK6) & room(sK6)) [skolemisation 211,212]
222. ? [X0] : (preda(X0) & ~room(X0)) => (preda(sK9) & ~room(sK9)) [choice axiom]
223. (preda(sK9) & ~room(sK9)) | ~there_is_a_room [skolemisation 191,222]
224. anywhere(X0) [cnf transformation 5]
305. there_is_a_room [cnf transformation 44]
331. predl(X0) | predt(X0) | ~anywhere(X0) | predt(sK6) [cnf transformation 213]
340. ~predt(X0) [cnf transformation 173]
351. ~preds(X0) | ~predl(X0) | ~anywhere(X0) [cnf transformation 183]
353. preds(X0) | room(X0) [cnf transformation 186]
356. ~room(sK9) | ~there_is_a_room [cnf transformation 223]
363. 2 <=> ! [X0] : (preds(X0) | room(X0)) [avatar definition]
364. preds(X0) | room(X0) <- (2) [avatar component clause 363]
462. predl(X0) | predt(X0) | predt(sK6) [subsumption resolution 331,224]
464. 24 <=> predt(sK6) [avatar definition]
466. predt(sK6) <- (24) [avatar component clause 464]
468. 25 <=> ! [X0] : (predl(X0) | predt(X0)) [avatar definition]
469. predl(X0) | predt(X0) <- (25) [avatar component clause 468]
470. 24 | 25 [avatar split clause 462,468,464]
508. ~predl(X0) | ~preds(X0) [subsumption resolution 351,224]
512. 2 [avatar split clause 353,363]
515. ~room(sK9) [subsumption resolution 356,305]
516. predl(X0) <- (25) [subsumption resolution 469,340]
519. ~preds(X0) <- (25) [resolution 508,516]
521. room(X0) <- (2, 25) [resolution 519,364]
522. $false <- (2, 25) [resolution 521,515]
524. ~2 | ~25 [avatar contradiction clause 522]
525. $false <- (24) [subsumption resolution 466,340]
526. ~24 [avatar contradiction clause 525]
527. $false [avatar sat refutation 470,512,524,526]
% SZS output end Proof for 6144552463523246559594376
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.011309 |
Garrett, James, Xavier are the only persons in the room.
Garrett is an enthusiastic bird watcher who travels for rare sightings.
Everyone in the room has a curated collection of mid-century modern furniture if they enjoys logic puzzles.
Garrett is allergic to anything.
Everyone in the room develops open-source software projects in their free time, trains for and competes in international triathlons and makes homemade pastries if they plays video games.
Everyone in the room collects modern art if they develops open-source software projects in their free time, trains for and competes in international triathlons and makes homemade pastries.
If someone enjoys kayaking then he/she does not enjoy deep-sea diving and exploring underwater caves and vice versa.
Everyone outside the room plays video games only if they creates augmented reality experiences for mobile applications.
James creates augmented reality experiences for mobile applications.
Everyone in the room does not collect modern art or is not a tea enthusiast.
Garrett is not a tea enthusiast.
James neither does not enjoy logic puzzles nor writes poetry.
Everyone in the room either has a curated collection of mid-century modern furniture or develops open-source software projects in their free time but not both only if they is allergic to anything.
Everyone in the room collect rare sneakers if they collects modern art.
Garrett enjoys logic puzzles.
James enjoys kayaking and exploring remote waterways.
James is a tea enthusiast.
James develops open-source software projects in their free time.
Everyone anywhere collects antique jewelry if they is a tea enthusiast.
Everyone in the room enjoys kayaking if they plays video games.
More than one person in the room creates augmented reality experiences for mobile applications.
Garrett develops open-source software projects in their free time or makes homemade pastries or both.
Everyone anywhere creates augmented reality experiences for mobile applications only if they is a tea enthusiast.
Someone in the room collects modern art or does not host regular game nights featuring complex strategy games or both.
Everyone in the room collect rare sneakers if they is allergic to anything.
Everyone in the room collect rare sneakers if they hosts regular game nights featuring complex strategy games, enjoys kayaking and writes poetry and vice versa.
|
Garrett enjoys kayaking.
|
entailment
|
room(garrett)&room(james)&room(xavier)&(![X]:(room(X)=>(X='garrett'|X='james'|X='xavier')))&
(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(garrett))&
(![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))&
(is_allergic_to_anything(garrett))&
(![X]:(room(X)=>(((plays_video_games(X))=>(((develops_open-source_software_projects_in_their_free_time(X))&(trains_for_and_competes_in_international_triathlons(X))&(makes_homemade_pastries(X))))))))&
(![X]:(room(X)=>(((((develops_open-source_software_projects_in_their_free_time(X))&(trains_for_and_competes_in_international_triathlons(X))&(makes_homemade_pastries(X))))=>(collects_modern_art(X))))))&
((![X]:((enjoys_kayaking(X))<=>(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X)))))&
(![X]:(~room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=(plays_video_games(X))))))&
(creates_augmented_reality_experiences_for_mobile_applications(james))&
(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(does_not_collect_modern_art(X))))))&
(is_not_a_tea_enthusiast(garrett))&
(~((does_not_enjoy_logic_puzzles(james))|(writes_poetry(james))))&
(![X]:(room(X)=>(((is_allergic_to_anything(X))<=(((has_a_curated_collection_of_mid-century_modern_furniture(X))<~>(develops_open-source_software_projects_in_their_free_time(X))))))))&
(![X]:(room(X)=>(((collects_modern_art(X))=>(collect_rare_sneakers(X))))))&
(enjoys_logic_puzzles(garrett))&
(enjoys_kayaking_and_exploring_remote_waterways(james))&
(is_a_tea_enthusiast(james))&
(develops_open-source_software_projects_in_their_free_time(james))&
(![X]:(anywhere(X)=>(((is_a_tea_enthusiast(X))=>(collects_antique_jewelry(X))))))&
(![X]:(room(X)=>(((plays_video_games(X))=>(enjoys_kayaking(X))))))&
((?[X,Y]:(room(X)&room(Y)&(creates_augmented_reality_experiences_for_mobile_applications(X)&creates_augmented_reality_experiences_for_mobile_applications(Y))&(X!=Y))))&
(((develops_open-source_software_projects_in_their_free_time(garrett))|(makes_homemade_pastries(garrett))))&
(![X]:(anywhere(X)=>(((is_a_tea_enthusiast(X))<=(creates_augmented_reality_experiences_for_mobile_applications(X))))))&
(?[X]:(room(X)&(((collects_modern_art(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))&
(![X]:(room(X)=>(((is_allergic_to_anything(X))=>(collect_rare_sneakers(X))))))&
(![X]:(room(X)=>(((collect_rare_sneakers(X))<=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(enjoys_kayaking(X))&(writes_poetry(X))))))))&
(is_a_certified_yoga_instructor_teaching_classes_weekly(garrett))&
(![X]:(anywhere(X)=>(((enjoys_kayaking(X))<=>(enjoys_kayaking_and_exploring_remote_waterways(X))))))&
(((?[X]:(~room(X)&enjoys_fishing(X)))&(![X,Y]:((~room(X)&~room(Y)&(enjoys_fishing(X))&(enjoys_fishing(Y)))=>(X=Y)))))
|
room(garrett)&room(james)&room(xavier)&(![X]:(room(X)=>(X='garrett'|X='james'|X='xavier')))&
enjoys_kayaking(garrett)
|
[
"p0",
"p3",
"p24",
"p25",
"hypothesis"
] |
% SZS status Unsatisfiable for 1058658757889911973694169
% SZS output start Proof for 1058658757889911973694169
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
47. preds(mary) [input p3]
68. ! [X0] : (room(X0) => (preds(X0) => predy(X0))) [input p24]
69. ! [X0] : (room(X0) => (predy(X0) <=> (predx(X0) & predi(X0) & predd(X0)))) [input p25]
73. ~(predi(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
154. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
155. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 154]
167. ! [X0] : ((predy(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 68]
168. ! [X0] : (predy(X0) | ~preds(X0) | ~room(X0)) [flattening 167]
169. ! [X0] : ((predy(X0) <=> (predx(X0) & predi(X0) & predd(X0))) | ~room(X0)) [ennf transformation 69]
173. ~predi(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 73]
174. ~predi(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 173]
182. ! [X0] : (((predy(X0) | (~predx(X0) | ~predi(X0) | ~predd(X0))) & ((predx(X0) & predi(X0) & predd(X0)) | ~predy(X0))) | ~room(X0)) [nnf transformation 169]
183. ! [X0] : (((predy(X0) | ~predx(X0) | ~predi(X0) | ~predd(X0)) & ((predx(X0) & predi(X0) & predd(X0)) | ~predy(X0))) | ~room(X0)) [flattening 182]
187. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom]
188. ~predi(mary) | (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 174,187]
270. room(mary) [cnf transformation 155]
271. room(paul) [cnf transformation 155]
272. room(fred) [cnf transformation 155]
273. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 155]
275. preds(mary) [cnf transformation 47]
298. ~preds(X0) | predy(X0) | ~room(X0) [cnf transformation 168]
300. ~predy(X0) | predi(X0) | ~room(X0) [cnf transformation 183]
308. ~predi(mary) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188]
309. ~predi(mary) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188]
310. ~predi(mary) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188]
311. ~predi(mary) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188]
324. ~predi(mary) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 311,272]
325. ~predi(mary) | fred != sK4 | ~room(mary) [subsumption resolution 324,271]
326. ~predi(mary) | fred != sK4 [subsumption resolution 325,270]
328. 3 <=> fred = sK4 [avatar definition]
330. fred != sK4 <- (~3) [avatar component clause 328]
332. 4 <=> predi(mary) [avatar definition]
335. ~3 | ~4 [avatar split clause 326,332,328]
336. ~predi(mary) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 310,272]
337. ~predi(mary) | paul != sK4 | ~room(mary) [subsumption resolution 336,271]
338. ~predi(mary) | paul != sK4 [subsumption resolution 337,270]
340. 5 <=> paul = sK4 [avatar definition]
342. paul != sK4 <- (~5) [avatar component clause 340]
343. ~5 | ~4 [avatar split clause 338,332,340]
344. ~predi(mary) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 309,272]
345. ~predi(mary) | mary != sK4 | ~room(mary) [subsumption resolution 344,271]
346. ~predi(mary) | mary != sK4 [subsumption resolution 345,270]
348. 6 <=> mary = sK4 [avatar definition]
350. mary != sK4 <- (~6) [avatar component clause 348]
351. ~6 | ~4 [avatar split clause 346,332,348]
352. ~predi(mary) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 308,272]
353. ~predi(mary) | room(sK4) | ~room(mary) [subsumption resolution 352,271]
354. ~predi(mary) | room(sK4) [subsumption resolution 353,270]
356. 7 <=> room(sK4) [avatar definition]
358. room(sK4) <- (7) [avatar component clause 356]
359. 7 | ~4 [avatar split clause 354,332,356]
376. predy(mary) | ~room(mary) [resolution 298,275]
377. predy(mary) [subsumption resolution 376,270]
380. predi(mary) | ~room(mary) [resolution 300,377]
384. predi(mary) [subsumption resolution 380,270]
385. 4 [avatar split clause 384,332]
442. paul = sK4 | mary = sK4 | fred = sK4 <- (7) [resolution 273,358]
482. mary = sK4 | fred = sK4 <- (~5, 7) [subsumption resolution 442,342]
483. fred = sK4 <- (~5, ~6, 7) [subsumption resolution 482,350]
484. $false <- (~3, ~5, ~6, 7) [subsumption resolution 483,330]
485. 3 | 5 | 6 | ~7 [avatar contradiction clause 484]
486. $false [avatar sat refutation 335,343,351,359,385,485]
% SZS output end Proof for 1058658757889911973694169
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.004484 |
Maryann, Lindy are the only persons in the room.
If “Maryann enjoys wildlife photography” then “Maryann is an avid collector of autographed memorabilia from famous musicians”.
“Lindy participates in long-distance cycling events across the country” if “Maryann does not make intricate hand-cut paper art for exhibitions” and vice versa.
If “Maryann does practice yoga” then “if someone does not enjoy windsurfing then he/she is an avid mountain climber who has scaled several peaks”.
“If someone enjoys wildlife photography then he/she either is an avid collector of autographed memorabilia from famous musicians or is a night owl but not both” if “Lindy is a night owl”.
“Everyone in the room is an avid collector of autographed memorabilia from famous musicians or does not own a smartwatch” if “not everyone in the room mentors a youth basketball team on weekends or does not collect first edition books” and vice versa.
If “everyone in the room enjoys origami or does not practice yoga” then “Maryann collects first edition books”.
If “Maryann collects first edition books” then “everyone in the room enjoys windsurfing if they makes intricate hand-cut paper art for exhibitions”.
Either “Maryann has completed a triathlon” or “everyone anywhere is a night owl or is a member of a local theater group specializing in improv or both” but not both.
If “everyone in the room mentors a youth basketball team on weekends or is not an avid mountain climber who has scaled several peaks” then “if someone is not a dedicated advocate for digital privacy and encryption then he/she composes and performs experimental electronic music and vice versa”.
“If someone does not enjoy stand-up paddleboarding then he/she makes intricate hand-cut paper art for exhibitions and vice versa” if “Lindy participates in long-distance cycling events across the country”.
If “Maryann enjoys origami” then “no one in the room own a television if they enjoys wildlife photography”.
If “Maryann mentors a youth basketball team on weekends” then “at least one person in the room does not collect first edition books”.
Everyone in the room who owns a smartwatch enjoys writing detailed reviews of new and classic board games.
|
Lindy owns a smartwatch.
|
entailment
|
room(maryannann)&room(lindy)&(![X]:(room(X)=>(X='maryannann'|X='lindy')))&
((enjoys_wildlife_photography(maryannann))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(maryannann)))&
((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(maryannann))<=>(participates_in_long-distance_cycling_events_across_the_country(lindy)))&
((does_practice_yoga(maryannann))=>((![X]:((does_not_enjoy_windsurfing(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))&
((is_a_night_owl(lindy))=>((![X]:((enjoys_wildlife_photography(X))=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(is_a_night_owl(X))))))))&
((~![X]:(room(X)=>(((does_not_collect_first_edition_books(X))|(mentors_a_youth_basketball_team_on_weekends(X))))))<=>(![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))))&
(((![X]:(room(X)=>(((does_not_practice_yoga(X))|(enjoys_origami(X))))))=>(collects_first_edition_books(maryannann)))&
((collects_first_edition_books(maryannann))=>(![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(enjoys_windsurfing(X))))))))&
((has_completed_a_triathlon(maryannann))<~>(![X]:(anywhere(X)=>(((is_a_night_owl(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))&
((![X]:(room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(mentors_a_youth_basketball_team_on_weekends(X))))))=>((![X]:((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))<=>(composes_and_performs_experimental_electronic_music(X))))))&
((participates_in_long-distance_cycling_events_across_the_country(lindy))=>((![X]:((does_not_enjoy_stand-up_paddleboarding(X))<=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))&
((enjoys_origami(maryannann))=>(~?[X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(own_a_television(X)))))))&
((mentors_a_youth_basketball_team_on_weekends(maryannann))=>(((?[X]:(room(X)&does_not_collect_first_edition_books(X))))))&
(![X]:(room(X)=>(((owns_a_smartwatch(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
((?[X,Y]:(room(X)&room(Y)&(is_a_member_of_a_local_theater_group_specializing_in_improv(X)&is_a_member_of_a_local_theater_group_specializing_in_improv(Y))&(X!=Y))))&
(owns_a_smartwatch(lindy))&
(is_dedicated_to_sustainable_living_and_zero-waste_practices(lindy))&
(enjoys_wildlife_photography(lindy))&
(![X]:(~room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=(((mentors_a_youth_basketball_team_on_weekends(X))<~>(does_not_have_a_piercing(X))))))))&
(((?[X]:(room(X)&does_not_collect_first_edition_books(X)))))&
(participates_in_long-distance_cycling_events_across_the_country(maryannann))&
(has_a_piercing(lindy))&
(does_not_collect_first_edition_books(maryannann))&
((![X]:((enjoys_stand-up_paddleboarding(X))=>(composes_and_performs_experimental_electronic_music(X)))))&
(![X]:(room(X)=>(((((mentors_a_youth_basketball_team_on_weekends(X))<~>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(enjoys_bird_watching(X))))))
|
room(maryannann)&room(lindy)&(![X]:(room(X)=>(X='maryannann'|X='lindy')))&
owns_a_smartwatch(lindy)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 2874372370780195619529653
% SZS output start Proof for 2874372370780195619529653
44. ! [X0] : (room(X0) => ((predz(X0) <~> preds(X0)) => predp(X0))) & ! [X0] : (predc(X0) => predo(X0)) & ~predi(mary) & predg(paul) & predq(mary) & ? [X0] : (~predi(X0) & room(X0)) & ! [X0] : (~room(X0) => ((predz(X0) <~> ~predg(X0)) => predl(X0))) & predf(paul) & predy(paul) & predx(paul) & ? [X0,X1] : (X0 != X1 & predr(X1) & predr(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (predx(X0) => predd(X0))) & (predz(mary) => ? [X0] : (~predi(X0) & room(X0))) & (predj(mary) => ~? [X0] : (room(X0) => (predf(X0) => prede(X0)))) & (predq(paul) => ! [X0] : (~predc(X0) <=> predv(X0))) & (! [X0] : (room(X0) => (predz(X0) | ~predn(X0))) => ! [X0] : (~predb(X0) <=> predo(X0))) & (predh(mary) <~> ! [X0] : (anywhere(X0) => (predr(X0) | predk(X0)))) & (predi(mary) => ! [X0] : (room(X0) => (predv(X0) => predm(X0)))) & (! [X0] : (room(X0) => (predj(X0) | ~predt(X0))) => predi(mary)) & (~! [X0] : (room(X0) => (predz(X0) | ~predi(X0))) <=> ! [X0] : (room(X0) => (preds(X0) | ~predx(X0)))) & (predk(paul) => ! [X0] : (predf(X0) => (preds(X0) <~> predk(X0)))) & (predt(mary) => ! [X0] : (~predm(X0) => predn(X0))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. ~(predx(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
46. ! [X0] : (room(X0) => ((predz(X0) <~> preds(X0)) => predp(X0))) & ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predg(paul) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & ! [X3] : (~room(X3) => ((predz(X3) <~> ~predg(X3)) => predl(X3))) & predf(paul) & predy(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & ! [X6] : (room(X6) => (predx(X6) => predd(X6))) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predj(mary) => ~? [X8] : (room(X8) => (predf(X8) => prede(X8)))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => (predj(X14) | ~predt(X14))) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [rectify 44]
47. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predg(paul) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & ! [X3] : (~room(X3) => ((predz(X3) <~> ~predg(X3)) => predl(X3))) & predf(paul) & predy(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & ! [X6] : (room(X6) => (predx(X6) => predd(X6))) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predj(mary) => ~? [X8] : (room(X8) => (predf(X8) => prede(X8)))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => (predj(X14) | ~predt(X14))) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 46]
48. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predg(paul) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predy(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & ! [X6] : (room(X6) => (predx(X6) => predd(X6))) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predj(mary) => ~? [X8] : (room(X8) => (predf(X8) => prede(X8)))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => (predj(X14) | ~predt(X14))) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 47]
49. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predy(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & ! [X6] : (room(X6) => (predx(X6) => predd(X6))) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predj(mary) => ~? [X8] : (room(X8) => (predf(X8) => prede(X8)))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => (predj(X14) | ~predt(X14))) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 48]
50. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & ! [X6] : (room(X6) => (predx(X6) => predd(X6))) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predj(mary) => ~? [X8] : (room(X8) => (predf(X8) => prede(X8)))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => (predj(X14) | ~predt(X14))) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 49]
51. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predj(mary) => ~? [X8] : (room(X8) => (predf(X8) => prede(X8)))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => (predj(X14) | ~predt(X14))) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 50]
52. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predj(mary) => ~? [X8] : (room(X8) => ~predf(X8))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => (predj(X14) | ~predt(X14))) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 51]
53. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => (predz(X10) | ~predn(X10))) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => ~predt(X14)) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (predt(mary) => ! [X18] : (~predm(X18) => predn(X18))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 52]
54. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => predz(X10)) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : (room(X14) => ~predt(X14)) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 53]
55. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => predz(X10)) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (predi(mary) => ! [X13] : (room(X13) => (predv(X13) => predm(X13)))) & (! [X14] : ~room(X14) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 54]
56. ! [X1] : (predc(X1) => predo(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (predz(mary) => ? [X7] : (~predi(X7) & room(X7))) & (predq(paul) => ! [X9] : (~predc(X9) <=> predv(X9))) & (! [X10] : (room(X10) => predz(X10)) => ! [X11] : (~predb(X11) <=> predo(X11))) & (predh(mary) <~> ! [X12] : (anywhere(X12) => (predr(X12) | predk(X12)))) & (! [X14] : ~room(X14) => predi(mary)) & (~! [X15] : (room(X15) => (predz(X15) | ~predi(X15))) <=> ! [X16] : (room(X16) => (preds(X16) | ~predx(X16)))) & (predk(paul) => ! [X17] : (predf(X17) => (preds(X17) <~> predk(X17)))) & (~predv(mary) <=> predq(paul)) & (predf(mary) => preds(mary)) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 55]
128. ! [X1] : (predo(X1) | ~predc(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (? [X7] : (~predi(X7) & room(X7)) | ~predz(mary)) & (! [X9] : (~predc(X9) <=> predv(X9)) | ~predq(paul)) & (! [X11] : (~predb(X11) <=> predo(X11)) | ? [X10] : (~predz(X10) & room(X10))) & (predh(mary) <~> ! [X12] : ((predr(X12) | predk(X12)) | ~anywhere(X12))) & (predi(mary) | ? [X14] : room(X14)) & (? [X15] : ((~predz(X15) & predi(X15)) & room(X15)) <=> ! [X16] : ((preds(X16) | ~predx(X16)) | ~room(X16))) & (! [X17] : ((preds(X17) <~> predk(X17)) | ~predf(X17)) | ~predk(paul)) & (~predv(mary) <=> predq(paul)) & (preds(mary) | ~predf(mary)) & ! [X19] : ((paul = X19 | mary = X19) | ~room(X19)) & room(paul) & room(mary) [ennf transformation 56]
129. ! [X1] : (predo(X1) | ~predc(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (? [X7] : (~predi(X7) & room(X7)) | ~predz(mary)) & (! [X9] : (~predc(X9) <=> predv(X9)) | ~predq(paul)) & (! [X11] : (~predb(X11) <=> predo(X11)) | ? [X10] : (~predz(X10) & room(X10))) & (predh(mary) <~> ! [X12] : (predr(X12) | predk(X12) | ~anywhere(X12))) & (predi(mary) | ? [X14] : room(X14)) & (? [X15] : (~predz(X15) & predi(X15) & room(X15)) <=> ! [X16] : (preds(X16) | ~predx(X16) | ~room(X16))) & (! [X17] : ((preds(X17) <~> predk(X17)) | ~predf(X17)) | ~predk(paul)) & (~predv(mary) <=> predq(paul)) & (preds(mary) | ~predf(mary)) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [flattening 128]
130. ~predx(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45]
131. ~predx(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 130]
132. sP0 <=> ? [X15] : (~predz(X15) & predi(X15) & room(X15)) [predicate definition introduction]
133. ! [X1] : (predo(X1) | ~predc(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (? [X7] : (~predi(X7) & room(X7)) | ~predz(mary)) & (! [X9] : (~predc(X9) <=> predv(X9)) | ~predq(paul)) & (! [X11] : (~predb(X11) <=> predo(X11)) | ? [X10] : (~predz(X10) & room(X10))) & (predh(mary) <~> ! [X12] : (predr(X12) | predk(X12) | ~anywhere(X12))) & (predi(mary) | ? [X14] : room(X14)) & (sP0 <=> ! [X16] : (preds(X16) | ~predx(X16) | ~room(X16))) & (! [X17] : ((preds(X17) <~> predk(X17)) | ~predf(X17)) | ~predk(paul)) & (~predv(mary) <=> predq(paul)) & (preds(mary) | ~predf(mary)) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [definition folding 129,132]
139. ! [X1] : (predo(X1) | ~predc(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (? [X7] : (~predi(X7) & room(X7)) | ~predz(mary)) & (! [X9] : ((~predc(X9) | ~predv(X9)) & (predv(X9) | predc(X9))) | ~predq(paul)) & (! [X11] : ((~predb(X11) | ~predo(X11)) & (predo(X11) | predb(X11))) | ? [X10] : (~predz(X10) & room(X10))) & ((? [X12] : (~predr(X12) & ~predk(X12) & anywhere(X12)) | ~predh(mary)) & (! [X12] : (predr(X12) | predk(X12) | ~anywhere(X12)) | predh(mary))) & (predi(mary) | ? [X14] : room(X14)) & ((sP0 | ? [X16] : (~preds(X16) & predx(X16) & room(X16))) & (! [X16] : (preds(X16) | ~predx(X16) | ~room(X16)) | ~sP0)) & (! [X17] : (((~predk(X17) | ~preds(X17)) & (predk(X17) | preds(X17))) | ~predf(X17)) | ~predk(paul)) & ((~predv(mary) | ~predq(paul)) & (predq(paul) | predv(mary))) & (preds(mary) | ~predf(mary)) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [nnf transformation 133]
140. ! [X1] : (predo(X1) | ~predc(X1)) & ~predi(mary) & predq(mary) & ? [X2] : (~predi(X2) & room(X2)) & predf(paul) & predx(paul) & ? [X4,X5] : (X4 != X5 & predr(X5) & predr(X4) & room(X5) & room(X4)) & (? [X7] : (~predi(X7) & room(X7)) | ~predz(mary)) & (! [X9] : ((~predc(X9) | ~predv(X9)) & (predv(X9) | predc(X9))) | ~predq(paul)) & (! [X11] : ((~predb(X11) | ~predo(X11)) & (predo(X11) | predb(X11))) | ? [X10] : (~predz(X10) & room(X10))) & (? [X12] : (~predr(X12) & ~predk(X12) & anywhere(X12)) | ~predh(mary)) & (! [X12] : (predr(X12) | predk(X12) | ~anywhere(X12)) | predh(mary)) & (predi(mary) | ? [X14] : room(X14)) & (sP0 | ? [X16] : (~preds(X16) & predx(X16) & room(X16))) & (! [X16] : (preds(X16) | ~predx(X16) | ~room(X16)) | ~sP0) & (! [X17] : (((~predk(X17) | ~preds(X17)) & (predk(X17) | preds(X17))) | ~predf(X17)) | ~predk(paul)) & (~predv(mary) | ~predq(paul)) & (predq(paul) | predv(mary)) & (preds(mary) | ~predf(mary)) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [flattening 139]
141. ! [X0] : (predo(X0) | ~predc(X0)) & ~predi(mary) & predq(mary) & ? [X1] : (~predi(X1) & room(X1)) & predf(paul) & predx(paul) & ? [X2,X3] : (X2 != X3 & predr(X3) & predr(X2) & room(X3) & room(X2)) & (? [X4] : (~predi(X4) & room(X4)) | ~predz(mary)) & (! [X5] : ((~predc(X5) | ~predv(X5)) & (predv(X5) | predc(X5))) | ~predq(paul)) & (! [X6] : ((~predb(X6) | ~predo(X6)) & (predo(X6) | predb(X6))) | ? [X7] : (~predz(X7) & room(X7))) & (? [X8] : (~predr(X8) & ~predk(X8) & anywhere(X8)) | ~predh(mary)) & (! [X9] : (predr(X9) | predk(X9) | ~anywhere(X9)) | predh(mary)) & (predi(mary) | ? [X10] : room(X10)) & (sP0 | ? [X11] : (~preds(X11) & predx(X11) & room(X11))) & (! [X12] : (preds(X12) | ~predx(X12) | ~room(X12)) | ~sP0) & (! [X13] : (((~predk(X13) | ~preds(X13)) & (predk(X13) | preds(X13))) | ~predf(X13)) | ~predk(paul)) & (~predv(mary) | ~predq(paul)) & (predq(paul) | predv(mary)) & (preds(mary) | ~predf(mary)) & ! [X14] : (paul = X14 | mary = X14 | ~room(X14)) & room(paul) & room(mary) [rectify 140]
142. ? [X1] : (~predi(X1) & room(X1)) => (~predi(sK2) & room(sK2)) [choice axiom]
143. ? [X2,X3] : (X2 != X3 & predr(X3) & predr(X2) & room(X3) & room(X2)) => (sK3 != sK4 & predr(sK4) & predr(sK3) & room(sK4) & room(sK3)) [choice axiom]
144. ? [X4] : (~predi(X4) & room(X4)) => (~predi(sK5) & room(sK5)) [choice axiom]
145. ? [X7] : (~predz(X7) & room(X7)) => (~predz(sK6) & room(sK6)) [choice axiom]
146. ? [X8] : (~predr(X8) & ~predk(X8) & anywhere(X8)) => (~predr(sK7) & ~predk(sK7) & anywhere(sK7)) [choice axiom]
147. ? [X10] : room(X10) => room(sK8) [choice axiom]
148. ? [X11] : (~preds(X11) & predx(X11) & room(X11)) => (~preds(sK9) & predx(sK9) & room(sK9)) [choice axiom]
149. ! [X0] : (predo(X0) | ~predc(X0)) & ~predi(mary) & predq(mary) & (~predi(sK2) & room(sK2)) & predf(paul) & predx(paul) & (sK3 != sK4 & predr(sK4) & predr(sK3) & room(sK4) & room(sK3)) & ((~predi(sK5) & room(sK5)) | ~predz(mary)) & (! [X5] : ((~predc(X5) | ~predv(X5)) & (predv(X5) | predc(X5))) | ~predq(paul)) & (! [X6] : ((~predb(X6) | ~predo(X6)) & (predo(X6) | predb(X6))) | (~predz(sK6) & room(sK6))) & ((~predr(sK7) & ~predk(sK7) & anywhere(sK7)) | ~predh(mary)) & (! [X9] : (predr(X9) | predk(X9) | ~anywhere(X9)) | predh(mary)) & (predi(mary) | room(sK8)) & (sP0 | (~preds(sK9) & predx(sK9) & room(sK9))) & (! [X12] : (preds(X12) | ~predx(X12) | ~room(X12)) | ~sP0) & (! [X13] : (((~predk(X13) | ~preds(X13)) & (predk(X13) | preds(X13))) | ~predf(X13)) | ~predk(paul)) & (~predv(mary) | ~predq(paul)) & (predq(paul) | predv(mary)) & (preds(mary) | ~predf(mary)) & ! [X14] : (paul = X14 | mary = X14 | ~room(X14)) & room(paul) & room(mary) [skolemisation 141,148,147,146,145,144,143,142]
150. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK10 & mary != sK10 & room(sK10)) [choice axiom]
151. ~predx(paul) | (paul != sK10 & mary != sK10 & room(sK10)) | ~room(paul) | ~room(mary) [skolemisation 131,150]
237. room(mary) [cnf transformation 149]
238. room(paul) [cnf transformation 149]
239. ~room(X14) | mary = X14 | paul = X14 [cnf transformation 149]
267. predx(paul) [cnf transformation 149]
274. ~predx(paul) | room(sK10) | ~room(paul) | ~room(mary) [cnf transformation 151]
275. ~predx(paul) | mary != sK10 | ~room(paul) | ~room(mary) [cnf transformation 151]
276. ~predx(paul) | paul != sK10 | ~room(paul) | ~room(mary) [cnf transformation 151]
410. paul != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 276,267]
411. paul != sK10 | ~room(mary) [subsumption resolution 410,238]
412. paul != sK10 [subsumption resolution 411,237]
413. mary != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 275,267]
414. mary != sK10 | ~room(mary) [subsumption resolution 413,238]
415. mary != sK10 [subsumption resolution 414,237]
416. room(sK10) | ~room(paul) | ~room(mary) [subsumption resolution 274,267]
417. room(sK10) | ~room(mary) [subsumption resolution 416,238]
418. room(sK10) [subsumption resolution 417,237]
431. mary = sK10 | paul = sK10 [resolution 239,418]
486. paul = sK10 [subsumption resolution 431,415]
487. $false [subsumption resolution 486,412]
% SZS output end Proof for 2874372370780195619529653
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.041 s
% ------------------------------
% ------------------------------
| 0.396756 |
Helen, Melissa, Aurelio, Karen are the only persons in the room. Helen does not play video games or does not enjoy deep-sea diving and exploring underwater caves or both. If someone does not maintain a large, organic vegetable garden year-round and does not practice digital art then he/she is not an avid mountain climber who has scaled several peaks, does not maintain a large, organic vegetable garden year-round or does not enjoy virtual reality gaming. Only one person in the room is not dedicated to sustainable living and zero-waste practices, is not a Linux enthusiast and does not enjoy writing detailed reviews of new and classic board games. If someone does not practice and performs acrobatic dance routines or does not have a tattoo or both then he/she neither does not collect limited-edition art prints from contemporary artists nor does not collect rare sneakers. Helen does not own a high-end gaming PC with custom-built components, does not collect rare sneakers or is not a cybersecurity expert. If someone either does not create bespoke furniture pieces from reclaimed wood or does not have a tattoo but not both then he/she neither does not collect comic books nor does not maintain a large, organic vegetable garden year-round. Someone in the room does not enjoy mountain biking. Everyone in the room does not have a vast collection of first-edition science fiction novels. Everyone in the room is not a client of LVMH. Someone in the room neither does not enjoy writing detailed reviews of new and classic board games nor does not collect vintage vinyl records. Everyone outside the room neither does not collect rare sneakers nor does not play the drums. Everyone in the room does not practice and performs acrobatic dance routines. Melissa does not maintain a large, organic vegetable garden year-round or does not collect rare sneakers or both. Helen does not collect comic books. Everyone outside the room does not practice and performs acrobatic dance routines and is not a client of LVMH. Everyone in the room does not practice digital art or does not collect rare sneakers or both. Everyone in the room does not collect comic books. Everyone in the room does not have a vast collection of first-edition science fiction novels or does not collect limited-edition art prints from contemporary artists or both. If someone neither is not a cybersecurity expert nor does not enjoy virtual reality gaming then he/she neither does not practice digital art nor does not practice and performs acrobatic dance routines.
|
Helen collects limited-edition art prints from contemporary artists.
|
entailment
|
room(helen)&room(melissa)&room(aurelio)&room(karen)&(![X]:(room(X)=>(X='helen'|X='melissa'|X='aurelio'|X='karen')))&
(((does_not_play_video_games(helen))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(helen))))&
((![X]:((((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))&(does_not_practice_digital_art(X))))=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(does_not_enjoy_virtual_reality_gaming(X)))))))&
(((?[X]:(room(X)&((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(is_not_a_Linux_enthusiast(X))&(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))))&(![X,Y]:((room(X)&room(Y)&(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(is_not_a_Linux_enthusiast(X))&(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))&(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(Y))&(is_not_a_Linux_enthusiast(Y))&(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(Y)))))=>(X=Y)))))&
((![X]:((((does_not_practice_and_performs_acrobatic_dance_routines(X))|(does_not_have_a_tattoo(X))))=>(~((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_collect_rare_sneakers(X)))))))&
(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(helen))|(does_not_collect_rare_sneakers(helen))|(is_not_a_cybersecurity_expert(helen))))&
((![X]:((((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))<~>(does_not_have_a_tattoo(X))))=>(~((does_not_collect_comic_books(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X)))))))&
(?[X]:(room(X)&(does_not_enjoy_mountain_biking(X))))&
(![X]:(room(X)=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))&
(![X]:(room(X)=>(is_not_a_client_of_LVMH(X))))&
(?[X]:(room(X)&(~((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(does_not_collect_vintage_vinyl_records(X))))))&
(![X]:(~room(X)=>(~((does_not_collect_rare_sneakers(X))|(does_not_play_the_drums(X))))))&
(![X]:(room(X)=>(does_not_practice_and_performs_acrobatic_dance_routines(X))))&
(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(melissa))|(does_not_collect_rare_sneakers(melissa))))&
(does_not_collect_comic_books(helen))&
(![X]:(~room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))&(is_not_a_client_of_LVMH(X))))))&
(![X]:(room(X)=>(((does_not_practice_digital_art(X))|(does_not_collect_rare_sneakers(X))))))&
(![X]:(room(X)=>(does_not_collect_comic_books(X))))&
(![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))&
((![X]:((~((is_not_a_cybersecurity_expert(X))|(does_not_enjoy_virtual_reality_gaming(X))))=>(~((does_not_practice_digital_art(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X)))))))&
(![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_enjoy_watercolor_painting(X))))))&
(![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))|(is_not_a_client_of_Meta(X))))))&
(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(karen))&(does_not_practice_digital_art(karen))))&
(does_not_own_a_high-end_gaming_PC_with_custom-built_components(helen))
|
room(helen)&room(melissa)&room(aurelio)&room(karen)&(![X]:(room(X)=>(X='helen'|X='melissa'|X='aurelio'|X='karen')))&
collects_limited-edition_art_prints_from_contemporary_artists(helen)
|
[
"p0",
"p4",
"p12",
"p15",
"hypothesis"
] |
% SZS status Unsatisfiable for 5201216397583430553676201
% SZS output start Proof for 5201216397583430553676201
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
48. ! [X0] : ((~prede(X0) | ~predj(X0)) => ~(~predk(X0) | ~predu(X0))) [input p4]
56. ! [X0] : (room(X0) => ~predj(X0)) [input p12]
59. ! [X0] : (~room(X0) => (~predz(X0) & ~predj(X0))) [input p15]
68. ~(predu(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
74. ! [X0] : (~room(X0) => ~predj(X0)) [pure predicate removal 59]
159. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
160. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 159]
163. ! [X0] : ((predk(X0) & predu(X0)) | (prede(X0) & predj(X0))) [ennf transformation 48]
167. ! [X0] : (~predj(X0) | ~room(X0)) [ennf transformation 56]
168. ! [X0] : (~predj(X0) | room(X0)) [ennf transformation 74]
170. ~predu(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68]
171. ~predu(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 170]
180. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
181. ~predu(mary) | (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 171,180]
262. room(mary) [cnf transformation 160]
263. room(paul) [cnf transformation 160]
264. room(fred) [cnf transformation 160]
265. room(alice) [cnf transformation 160]
266. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 160]
272. predu(X0) | predj(X0) [cnf transformation 163]
284. ~predj(X0) | ~room(X0) [cnf transformation 167]
287. ~predj(X0) | room(X0) [cnf transformation 168]
289. ~predu(mary) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
290. ~predu(mary) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
291. ~predu(mary) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
292. ~predu(mary) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
293. ~predu(mary) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
303. ~predj(X0) [subsumption resolution 287,284]
304. ~predu(mary) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 293,265]
305. ~predu(mary) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 304,264]
306. ~predu(mary) | alice != sK3 | ~room(mary) [subsumption resolution 305,263]
307. ~predu(mary) | alice != sK3 [subsumption resolution 306,262]
309. 3 <=> alice = sK3 [avatar definition]
311. alice != sK3 <- (~3) [avatar component clause 309]
313. 4 <=> predu(mary) [avatar definition]
315. ~predu(mary) <- (~4) [avatar component clause 313]
316. ~3 | ~4 [avatar split clause 307,313,309]
317. ~predu(mary) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 292,265]
318. ~predu(mary) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 317,264]
319. ~predu(mary) | fred != sK3 | ~room(mary) [subsumption resolution 318,263]
320. ~predu(mary) | fred != sK3 [subsumption resolution 319,262]
322. 5 <=> fred = sK3 [avatar definition]
324. fred != sK3 <- (~5) [avatar component clause 322]
325. ~5 | ~4 [avatar split clause 320,313,322]
326. ~predu(mary) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 291,265]
327. ~predu(mary) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 326,264]
328. ~predu(mary) | paul != sK3 | ~room(mary) [subsumption resolution 327,263]
329. ~predu(mary) | paul != sK3 [subsumption resolution 328,262]
331. 6 <=> paul = sK3 [avatar definition]
333. paul != sK3 <- (~6) [avatar component clause 331]
334. ~6 | ~4 [avatar split clause 329,313,331]
335. ~predu(mary) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 290,265]
336. ~predu(mary) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 335,264]
337. ~predu(mary) | mary != sK3 | ~room(mary) [subsumption resolution 336,263]
338. ~predu(mary) | mary != sK3 [subsumption resolution 337,262]
340. 7 <=> mary = sK3 [avatar definition]
342. mary != sK3 <- (~7) [avatar component clause 340]
343. ~7 | ~4 [avatar split clause 338,313,340]
344. ~predu(mary) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 289,265]
345. ~predu(mary) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 344,264]
346. ~predu(mary) | room(sK3) | ~room(mary) [subsumption resolution 345,263]
347. ~predu(mary) | room(sK3) [subsumption resolution 346,262]
349. 8 <=> room(sK3) [avatar definition]
351. room(sK3) <- (8) [avatar component clause 349]
352. 8 | ~4 [avatar split clause 347,313,349]
353. predj(mary) <- (~4) [resolution 272,315]
354. $false <- (~4) [subsumption resolution 353,303]
355. 4 [avatar contradiction clause 354]
399. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 <- (8) [resolution 266,351]
451. paul = sK3 | mary = sK3 | alice = sK3 <- (~5, 8) [subsumption resolution 399,324]
452. mary = sK3 | alice = sK3 <- (~5, ~6, 8) [subsumption resolution 451,333]
453. alice = sK3 <- (~5, ~6, ~7, 8) [subsumption resolution 452,342]
454. $false <- (~3, ~5, ~6, ~7, 8) [subsumption resolution 453,311]
455. 3 | 5 | 6 | 7 | ~8 [avatar contradiction clause 454]
456. $false [avatar sat refutation 316,325,334,343,352,355,455]
% SZS output end Proof for 5201216397583430553676201
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.089086 |
There is a room. “Everyone in the room is not a client of Costco or is an avid hiker” if “everyone in the room is not a client of Costco or does not collect historical artifacts related to ancient civilizations” and vice versa. Everyone in the room who is not a client of Costco is an avid hiker.
|
Everyone outside the room does not have a piercing.
|
neutral
|
(there_is_a_room)&
((![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(is_not_a_client_of_Costco(X))))))<=>(![X]:(room(X)=>(((is_an_avid_hiker(X))|(is_not_a_client_of_Costco(X)))))))&
(![X]:(room(X)=>(((is_not_a_client_of_Costco(X))=>(is_an_avid_hiker(X))))))&
((![X]:((((is_a_client_of_Costco(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))&(is_a_Linux_enthusiast(X))))=>(is_a_client_of_Costco(X)))))&
(![X]:(anywhere(X)=>(((((is_passionate_about_collecting_and_restoring_classic_cars(X))&(is_a_client_of_Costco(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))&
(![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))<=>(is_a_Linux_enthusiast(X))))))&
((?[X,Y]:(room(X)&room(Y)&(((has_a_piercing(X))&(is_a_Linux_enthusiast(X))&(is_a_client_of_Costco(X)))&((has_a_piercing(Y))&(is_a_Linux_enthusiast(Y))&(is_a_client_of_Costco(Y))))&(X!=Y))))&
((![X]:((is_a_client_of_Costco(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X)))))&
(((?[X]:(room(X)&is_a_client_of_Costco(X)))))&
(~![X]:(anywhere(X)=>(((is_a_Linux_enthusiast(X))=>(is_an_avid_hiker(X))))))&
(![X]:(room(X)=>(((is_an_avid_hiker(X))=>(is_a_client_of_Costco(X))))))&
(![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(has_a_piercing(X))))))&
(((?[X]:(~room(X)&is_a_client_of_Costco(X)))))&
(![X]:(room(X)=>(((is_a_client_of_Costco(X))<=(is_a_Linux_enthusiast(X))))))
|
(there_is_a_room)&
![X]:(~room(X)=>(does_not_have_a_piercing(X)))
|
[] | null | 0.182585 |
Christine is the only person in the room.
Christine who does not like Barbara, does not like Ronald and is not liked by Ronald does not like Barbara, does not hate Barbara or is not hated by Betty.
Not everyone in the room does not hate Betty if they does not hate Ronald.
Christine is not liked by Ronald.
Christine is hated by Ronald and is liked by Barbara.
Not everyone anywhere is not liked by Ronald, is hated by Ronald or does not like Betty.
Not everyone outside the room neither is hated by Ronald nor is not liked by Ronald if they neither is hated by Betty nor is not hated by Ronald and vice versa.
|
Christine is liked by Ronald.
|
contradiction
|
room(christine)&(![X]:(room(X)=>(X='christine')))&
((((~like(barbara,christine))&(~like(ronald,christine))&(~like(christine,ronald))))&(((~like(barbara,christine))|(~hate(barbara,christine))|(~hate(christine,betty)))))&
(~![X]:(room(X)=>(((~hate(ronald,X))=>(~hate(betty,X))))))&
(~like(christine,ronald))&
(((hate(christine,ronald))&(like(christine,barbara))))&
(~![X]:(anywhere(X)=>(((~like(X,ronald))|(hate(X,ronald))|(~like(betty,X))))))&
(~![X]:(~room(X)=>(((~((hate(X,ronald))|(~like(X,ronald))))<=>(~((hate(X,betty))|(~hate(X,ronald))))))))
|
room(christine)&(![X]:(room(X)=>(X='christine')))&
like(christine,ronald)
|
[
"p1",
"hypothesis"
] |
% SZS status Unsatisfiable for 5466688373384653486972730
% SZS output start Proof for 5466688373384653486972730
45. (~hate(mary,paul) | ~hate(fred,mary) | ~like(fred,mary)) & ~like(mary,alice) & ~like(alice,mary) & ~like(fred,mary) [input p1]
51. like(mary,alice) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis]
132. like(mary,alice) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 51]
228. ~like(mary,alice) [cnf transformation 45]
247. like(mary,alice) [cnf transformation 132]
277. $false [subsumption resolution 247,228]
% SZS output end Proof for 5466688373384653486972730
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.312201 |
Jim, Christopher are the only persons in the room. "Everyone in the room is a cybersecurity expert if they collects foreign coins" unless "everyone anywhere enjoys bird watching or does not play the violin". If "everyone in the room plays the violin or does not make homemade pastries" then "everyone in the room who plays the violin has a curated collection of mid-century modern furniture, maintains a personal blog focused on cybersecurity tips or plays the violin". Everyone in the room enjoys fishing if they has a curated collection of mid-century modern furniture, maintains a personal blog focused on cybersecurity tips or plays the violin. Everyone in the room who enjoys fishing writes a travel blog. Everyone in the room who makes homemade pastries is a certified scuba diver with advanced underwater photography skills. Everyone anywhere who is a certified scuba diver with advanced underwater photography skills practices kickboxing. Everyone in the room who is a client of LVMH is a cybersecurity expert. Everyone in the room who is a cybersecurity expert designs and sews custom cosplay costumes for conventions. Everyone in the room is not a dedicated advocate for digital privacy and encryption if they designs and sews custom cosplay costumes for conventions. If someone owns a telescope then he/she maintains a personal blog focused on cybersecurity tips and vice versa. Everyone in the room who enjoys kayaking enjoys virtual reality gaming. Everyone in the room who does not use contact lenses is a cybersecurity expert. Everyone in the room who plays the violin has a curated collection of mid-century modern furniture, maintains a personal blog focused on cybersecurity tips or plays the violin. It is not the case that "Christopher plays the violin". Everyone in the room who enjoys kayaking enjoys origami. Everyone in the room who enjoys origami has a curated collection of mid-century modern furniture. At least one person in the room writes a travel blog. Jim writes a travel blog. Christopher enjoys kayaking. If someone watches fantasy movies then he/she plays the violin and vice versa. Everyone in the room hosts regular workshops on creative writing if they plays the violin. Everyone in the room who hosts regular workshops on creative writing watches fantasy movies.
|
Christopher enjoys origami.
|
entailment
|
room(jim)&room(christopher)&(![X]:(room(X)=>(X='jim'|X='christopher')))&
(~(![X]:(anywhere(X)=>(((does_not_play_the_violin(X))|(enjoys_bird_watching(X))))))=>(![X]:(room(X)=>(((collects_foreign_coins(X))=>(is_a_cybersecurity_expert(X)))))))&
((![X]:(room(X)=>(((does_not_make_homemade_pastries(X))|(plays_the_violin(X))))))=>(![X]:(room(X)=>(((plays_the_violin(X))=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(plays_the_violin(X)))))))))&
(![X]:(room(X)=>(((((has_a_curated_collection_of_mid-century_modern_furniture(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(plays_the_violin(X))))=>(enjoys_fishing(X))))))&
(![X]:(room(X)=>(((enjoys_fishing(X))=>(writes_a_travel_blog(X))))))&
(![X]:(room(X)=>(((makes_homemade_pastries(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))&
(![X]:(anywhere(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(practices_kickboxing(X))))))&
(![X]:(room(X)=>(((is_a_client_of_LVMH(X))=>(is_a_cybersecurity_expert(X))))))&
(![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))&
(![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))&
((![X]:((owns_a_telescope(X))<=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))&
(![X]:(room(X)=>(((enjoys_kayaking(X))=>(enjoys_virtual_reality_gaming(X))))))&
(![X]:(room(X)=>(((does_not_use_contact_lenses(X))=>(is_a_cybersecurity_expert(X))))))&
(![X]:(room(X)=>(((plays_the_violin(X))=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(plays_the_violin(X))))))))&
(~(plays_the_violin(christopher)))&
(![X]:(room(X)=>(((enjoys_kayaking(X))=>(enjoys_origami(X))))))&
(![X]:(room(X)=>(((enjoys_origami(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))&
(((?[X]:(room(X)&writes_a_travel_blog(X)))))&
(writes_a_travel_blog(jim))&
(enjoys_kayaking(christopher))&
((![X]:((watches_fantasy_movies(X))<=>(plays_the_violin(X)))))&
(![X]:(room(X)=>(((plays_the_violin(X))=>(hosts_regular_workshops_on_creative_writing(X))))))&
(![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(watches_fantasy_movies(X))))))
|
room(jim)&room(christopher)&(![X]:(room(X)=>(X='jim'|X='christopher')))&
enjoys_origami(christopher)
|
[
"p0",
"p15",
"p19",
"hypothesis"
] |
% SZS status Unsatisfiable for 6117370522023582181953791
% SZS output start Proof for 6117370522023582181953791
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
59. ! [X0] : (room(X0) => (predk(X0) => predm(X0))) [input p15]
63. predk(paul) [input p19]
67. ~(predm(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
159. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
160. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 159]
161. ! [X0] : ((predm(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 59]
162. ! [X0] : (predm(X0) | ~predk(X0) | ~room(X0)) [flattening 161]
168. ~predm(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 67]
169. ~predm(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 168]
173. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom]
174. ~predm(paul) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 169,173]
255. room(mary) [cnf transformation 160]
256. room(paul) [cnf transformation 160]
257. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 160]
259. ~predk(X0) | predm(X0) | ~room(X0) [cnf transformation 162]
261. predk(paul) [cnf transformation 63]
265. ~predm(paul) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 174]
266. ~predm(paul) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 174]
267. ~predm(paul) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 174]
268. ~predm(paul) | paul != sK1 | ~room(mary) [subsumption resolution 267,256]
269. ~predm(paul) | paul != sK1 [subsumption resolution 268,255]
271. 1 <=> paul = sK1 [avatar definition]
273. paul != sK1 <- (~1) [avatar component clause 271]
275. 2 <=> predm(paul) [avatar definition]
278. ~1 | ~2 [avatar split clause 269,275,271]
279. ~predm(paul) | mary != sK1 | ~room(mary) [subsumption resolution 266,256]
280. ~predm(paul) | mary != sK1 [subsumption resolution 279,255]
282. 3 <=> mary = sK1 [avatar definition]
284. mary != sK1 <- (~3) [avatar component clause 282]
285. ~3 | ~2 [avatar split clause 280,275,282]
286. ~predm(paul) | room(sK1) | ~room(mary) [subsumption resolution 265,256]
287. ~predm(paul) | room(sK1) [subsumption resolution 286,255]
289. 4 <=> room(sK1) [avatar definition]
291. room(sK1) <- (4) [avatar component clause 289]
292. 4 | ~2 [avatar split clause 287,275,289]
293. predm(paul) | ~room(paul) [resolution 259,261]
297. predm(paul) [subsumption resolution 293,256]
298. 2 [avatar split clause 297,275]
302. mary = sK1 | paul = sK1 <- (4) [resolution 257,291]
312. paul = sK1 <- (~3, 4) [subsumption resolution 302,284]
313. $false <- (~1, ~3, 4) [subsumption resolution 312,273]
314. 1 | 3 | ~4 [avatar contradiction clause 313]
315. $false [avatar sat refutation 278,285,292,298,314]
% SZS output end Proof for 6117370522023582181953791
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.564871 |
There is a room. Everyone outside the room is dedicated to sustainable living and zero-waste practices only if they collects limited-edition art prints from contemporary artists. Not everyone anywhere who collects limited-edition art prints from contemporary artists either practices pilates or is dedicated to sustainable living and zero-waste practices but not both.
|
Everyone outside the room works as a freelance web developer specializing in e-commerce sites.
|
neutral
|
(there_is_a_room)&
(![X]:(~room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))<=(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))&
(~![X]:(anywhere(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(((practices_pilates(X))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))&
(((?[X]:(room(X)&collects_limited-edition_art_prints_from_contemporary_artists(X)))&(![X,Y]:((room(X)&room(Y)&(collects_limited-edition_art_prints_from_contemporary_artists(X))&(collects_limited-edition_art_prints_from_contemporary_artists(Y)))=>(X=Y)))))&
(((?[X]:(room(X)&is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))&
(![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))&
(?[X]:(room(X)&(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))&
(![X]:(room(X)=>(((((collects_limited-edition_art_prints_from_contemporary_artists(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))=>(practices_pilates(X))))))&
(((?[X]:(room(X)&is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))&(![X,Y]:((room(X)&room(Y)&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(Y)))=>(X=Y)))))&
(![X]:(anywhere(X)=>(((practices_pilates(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))&
((![X]:((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))&
(![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(((practices_pilates(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))
|
(there_is_a_room)&
![X]:(~room(X)=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))
|
[] | null | 0.100221 |
Petra, Maria, Jody, Donald, Gerard are the only persons in the room.
If "Jody enjoys virtual reality gaming" then "Petra who mentors a youth basketball team on weekends has a saltwater aquarium, enjoys bird watching and does not participate in long-distance cycling events across the country".
Gerard travels domestically frequently.
Maria participates in long-distance cycling events across the country, enjoys virtual reality gaming or travels domestically frequently.
If someone has a saltwater aquarium then he/she does not enjoy virtual reality gaming and vice versa.
Donald enjoys virtual reality gaming.
Petra writes poetry.
If someone does not own a television then he/she plays eSports competitively and vice versa.
Everyone in the room enjoys spelunking only if they plays eSports competitively.
Everyone in the room enjoys coding in Python if and only if they is a dedicated volunteer for local community service projects.
Jody is a dedicated volunteer for local community service projects.
At least one person anywhere practices kickboxing.
If someone does not write poetry then he/she plays eSports competitively and vice versa.
|
Petra enjoys spelunking.
|
contradiction
|
room(petra)&room(maria)&room(jody)&room(donald)&room(gerard)&(![X]:(room(X)=>(X='petra'|X='maria'|X='jody'|X='donald'|X='gerard')))&
((enjoys_virtual_reality_gaming(jody))=>((mentors_a_youth_basketball_team_on_weekends(petra))&(((has_a_saltwater_aquarium(petra))&(enjoys_bird_watching(petra))&(does_not_participate_in_long-distance_cycling_events_across_the_country(petra))))))&
(travels_domestically_frequently(gerard))&
(((participates_in_long-distance_cycling_events_across_the_country(maria))|(enjoys_virtual_reality_gaming(maria))|(travels_domestically_frequently(maria))))&
((![X]:((has_a_saltwater_aquarium(X))<=>(does_not_enjoy_virtual_reality_gaming(X)))))&
(enjoys_virtual_reality_gaming(donald))&
(writes_poetry(petra))&
((![X]:((does_not_own_a_television(X))<=>(plays_eSports_competitively(X)))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))<=(enjoys_spelunking(X))))))&
(![X]:(room(X)=>(((enjoys_coding_in_Python(X))<=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(is_a_dedicated_volunteer_for_local_community_service_projects(jody))&
(((?[X]:(anywhere(X)&practices_kickboxing(X)))))&
((![X]:((does_not_write_poetry(X))<=>(plays_eSports_competitively(X)))))
|
room(petra)&room(maria)&room(jody)&room(donald)&room(gerard)&(![X]:(room(X)=>(X='petra'|X='maria'|X='jody'|X='donald'|X='gerard')))&
enjoys_spelunking(petra)
|
[
"p0",
"p6",
"p8",
"p12",
"hypothesis"
] |
% SZS status Unsatisfiable for 3390209920217313795598387
% SZS output start Proof for 3390209920217313795598387
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
50. predn(mary) [input p6]
52. ! [X0] : (room(X0) => (predk(X0) => predd(X0))) [input p8]
56. ! [X0] : (~predn(X0) <=> predd(X0)) [input p12]
57. predk(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
58. ! [X0] : (predd(X0) => ~predn(X0)) [unused predicate definition removal 56]
139. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
140. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 139]
143. ! [X0] : ((predd(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 52]
144. ! [X0] : (predd(X0) | ~predk(X0) | ~room(X0)) [flattening 143]
146. ! [X0] : (~predn(X0) | ~predd(X0)) [ennf transformation 58]
147. predk(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 57]
148. predk(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 147]
231. room(mary) [cnf transformation 140]
240. predn(mary) [cnf transformation 50]
241. ~predk(X0) | predd(X0) | ~room(X0) [cnf transformation 144]
245. ~predd(X0) | ~predn(X0) [cnf transformation 146]
252. predk(mary) [cnf transformation 148]
262. predd(mary) | ~room(mary) [resolution 241,252]
263. predd(mary) [subsumption resolution 262,231]
264. ~predn(mary) [resolution 263,245]
265. $false [subsumption resolution 264,240]
% SZS output end Proof for 3390209920217313795598387
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.003738 |
There is a room. If “everyone in the room does not own a 3D printer or is a coffee connoisseur” then “everyone in the room who does not own a 3D printer is a coffee connoisseur”. “Everyone in the room owns a 3D printer or is not a coffee connoisseur” only if “it is true that “everyone in the room is a coffee connoisseur if they owns a 3D printer””. If “everyone in the room owns a 3D printer or does not own a 3D printer” then “everyone in the room does not own a 3D printer or is not a humble person” otherwise “someone in the room owns a 3D printer”. Either “everyone anywhere is not a humble person” or “everyone anywhere is a coffee connoisseur” but not both. Someone outside the room is not a humble person. Everyone in the room is a humble person. More than one person in the room is a coffee connoisseur. Everyone anywhere is a coffee connoisseur, is a humble person and owns a 3D printer only if they is a coffee connoisseur. Everyone in the room who is a coffee connoisseur does not own a 3D printer.
|
Everyone outside the room does not own a 3D printer.
|
neutral
|
(there_is_a_room)&
((![X]:(room(X)=>(((is_a_coffee_connoisseur(X))|(does_not_own_a_3D_printer(X))))))=>(![X]:(room(X)=>(((does_not_own_a_3D_printer(X))=>(is_a_coffee_connoisseur(X)))))))&
((![X]:(room(X)=>(((is_not_a_coffee_connoisseur(X))|(owns_a_3D_printer(X))))))=>(![X]:(room(X)=>(((owns_a_3D_printer(X))=>(is_a_coffee_connoisseur(X)))))))&
(((![X]:(room(X)=>(((does_not_own_a_3D_printer(X))|(owns_a_3D_printer(X))))))=>(![X]:(room(X)=>(((~(humble(X)&person(X)))|(does_not_own_a_3D_printer(X)))))))&((~(![X]:(room(X)=>(((does_not_own_a_3D_printer(X))|(owns_a_3D_printer(X)))))))=>(?[X]:(room(X)&(owns_a_3D_printer(X))))))&
((![X]:(anywhere(X)=>(~(humble(X)&person(X)))))<~>(![X]:(anywhere(X)=>(is_a_coffee_connoisseur(X)))))&
(?[X]:(~room(X)&(~(humble(X)&person(X)))))&
(![X]:(room(X)=>(humble(X)&person(X))))&
((?[X,Y]:(room(X)&room(Y)&(is_a_coffee_connoisseur(X)&is_a_coffee_connoisseur(Y))&(X!=Y))))&
(![X]:(anywhere(X)=>(((is_a_coffee_connoisseur(X))<=(((is_a_coffee_connoisseur(X))&(humble(X)&person(X))&(owns_a_3D_printer(X))))))))&
(![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(does_not_own_a_3D_printer(X))))))
|
(there_is_a_room)&
![X]:(~room(X)=>(does_not_own_a_3D_printer(X)))
|
[] | null | 0.153402 |
Ronnie, Rose, Dorothy are the only persons in the room. If “Ronnie collects classic novels” then “Ronnie is a wine connoisseur with a private cellar of vintage wines”. It is true that “it is not the case that “someone in the room designs and sews custom cosplay costumes for conventions””. If someone either is a client of LVMH or designs and sews custom cosplay costumes for conventions but not both then he/she designs and sews custom cosplay costumes for conventions.
|
Dorothy is a client of LVMH.
|
contradiction
|
room(ronnie)&room(rose)&room(dorothy)&(![X]:(room(X)=>(X='ronnie'|X='rose'|X='dorothy')))&
((collects_classic_novels(ronnie))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(ronnie)))&
((((?[X]:(room(X)&collects_limited-edition_art_prints_from_contemporary_artists(X)))))=>(![X]:(room(X)=>(((has_a_pet_dog(X))=>(does_not_enjoy_mountain_biking(X)))))))&
((![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_salsa_dancing(X))|(does_not_own_a_telescope(X)))))))&
((![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(enjoys_salsa_dancing(X))))))=>(has_a_pet_dog(ronnie)))&
(![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(enjoys_salsa_dancing(X))))))&
(does_not_collect_limited-edition_art_prints_from_contemporary_artists(ronnie))&
(![X]:(room(X)=>(((collects_luxury_watches(X))=>(does_not_write_poetry(X))))))&
(![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))&
(~![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<~>(does_not_have_a_pet_dog(X))))))))&
(~(?[X]:(room(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))&
(has_a_pet_dog(ronnie))&
(![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))<=>(has_a_pet_dog(X))))))&
((![X]:((enjoys_salsa_dancing(X))<=>(collects_classic_novels(X)))))&
(watches_fantasy_movies(ronnie))&
(![X]:(room(X)=>(((enjoys_fishing(X))<=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))&
(![X]:(~room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(does_not_collect_action_figures(X))))))&
(does_not_enjoy_mountain_biking(ronnie))&
(![X]:(room(X)=>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))&
((![X]:((((is_a_client_of_LVMH(X))<~>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))&
(![X]:(room(X)=>(((does_not_enjoy_stargazing(X))=>(has_a_pet_dog(X))))))
|
room(ronnie)&room(rose)&room(dorothy)&(![X]:(room(X)=>(X='ronnie'|X='rose'|X='dorothy')))&
is_a_client_of_LVMH(dorothy)
|
[
"p0",
"p10",
"p19",
"hypothesis"
] |
% SZS status Unsatisfiable for 6929231419702815804816642
% SZS output start Proof for 6929231419702815804816642
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
54. ~? [X0] : (predb(X0) & room(X0)) [input p10]
63. ! [X0] : ((predp(X0) <~> predb(X0)) => predb(X0)) [input p19]
65. predp(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
149. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
150. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 149]
159. ! [X0] : (~predb(X0) | ~room(X0)) [ennf transformation 54]
162. ! [X0] : (predb(X0) | (predp(X0) <=> predb(X0))) [ennf transformation 63]
163. predp(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 65]
164. predp(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 163]
180. ! [X0] : (predb(X0) | ((predp(X0) | ~predb(X0)) & (predb(X0) | ~predp(X0)))) [nnf transformation 162]
263. room(fred) [cnf transformation 150]
280. ~predb(X0) | ~room(X0) [cnf transformation 159]
288. predb(X0) | predb(X0) | ~predp(X0) [cnf transformation 180]
294. predp(fred) [cnf transformation 164]
295. ~predp(X0) | predb(X0) [duplicate literal removal 288]
362. predb(fred) [resolution 295,294]
363. ~room(fred) [resolution 362,280]
364. $false [subsumption resolution 363,263]
% SZS output end Proof for 6929231419702815804816642
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.134901 |
Juan, Carol, Frank, Michael are the only persons in the room.
Juan is not a old person.
Everyone in the room is not a old curious person only if they is not a happy person and is not a wise humble person.
Carol is not a strong person.
Everyone in the room is not brave, not calm, not kind and is not quiet only if they is not a brave person.
Everyone in the room is not a brave person if they is not curious, not wise, not calm and is not a strong person and vice versa.
Everyone in the room is not generous and is not kind.
Frank who is not a old curious person is not a happy person, is not a strong person and is not a wise old calm person.
Someone in the room is not a old person and is not tall, not brave.
Juan either is not a curious person or is not a kind calm person but not both.
Not everyone in the room is not a happy person if they is not a calm curious person and vice versa.
Frank is not a old curious person.
Frank either is not a calm person or is not wise, not creative but not both.
Everyone in the room neither is not a funny creative person nor is not a kind curious brave person if they either is not generous or is not old but not both and vice versa.
Someone in the room is not a quiet patient funny person, is not a tall person and is not a curious person.
Everyone in the room is not tall, not generous, not old if they is not a brave kind person and vice versa.
Frank who is not a generous creative person is not generous.
If someone is not happy, not generous, not quiet, not creative, not kind, not tall, is not happy and is not a kind person then he/she is not a funny creative calm person, is not a quiet person and is not humble, not quiet, not creative, not wise.
Everyone anywhere neither is not a generous tall person nor is not a quiet old generous strong person only if they is not a wise kind person.
Carol is not a calm person.
Carol is not a generous person.
Not everyone in the room is not a curious patient person and is not a calm happy person only if they is not a curious person.
Everyone in the room is not a curious person only if they is not a tall funny person.
Frank is not a curious person.
Juan is not a tall person.
|
Everyone anywhere neither is a happy person nor is a kind happy person.
|
neutral
|
room(juan)&room(carol)&room(frank)&room(michael)&(![X]:(room(X)=>(X='juan'|X='carol'|X='frank'|X='michael')))&
(~(old(juan)&person(juan)))&
(![X]:(room(X)=>(((((~(happy(X)&person(X)))&(~(wise(X)&humble(X)&person(X)))))<=(~(old(X)&curious(X)&person(X)))))))&
(~(strong(carol)&person(carol)))&
(![X]:(room(X)=>(((~(brave(X)&person(X)))<=(((~brave(X)&~calm(X)&~kind(X))&(~quiet(X))))))))&
(![X]:(room(X)=>(((~(brave(X)&person(X)))<=>(((~curious(X)&~wise(X)&~calm(X))&(~(strong(X)&person(X)))))))))&
(![X]:(room(X)=>(((~generous(X))&(~kind(X))))))&
((~(old(frank)&curious(frank)&person(frank)))&(((~(happy(frank)&person(frank)))&(~(strong(frank)&person(frank)))&(~(wise(frank)&old(frank)&calm(frank)&person(frank))))))&
(?[X]:(room(X)&(((~(old(X)&person(X)))&(~tall(X)&~brave(X))))))&
(((~(curious(juan)&person(juan)))<~>(~(kind(juan)&calm(juan)&person(juan)))))&
(~![X]:(room(X)=>(((~(happy(X)&person(X)))<=>(~(calm(X)&curious(X)&person(X)))))))&
(~(old(frank)&curious(frank)&person(frank)))&
(((~(calm(frank)&person(frank)))<~>(~wise(frank)&~creative(frank))))&
(![X]:(room(X)=>(((~((~(funny(X)&creative(X)&person(X)))|(~(kind(X)&curious(X)&brave(X)&person(X)))))<=>(((~generous(X))<~>(~old(X))))))))&
(?[X]:(room(X)&(((~(quiet(X)&patient(X)&funny(X)&person(X)))&(~(tall(X)&person(X)))&(~(curious(X)&person(X)))))))&
(![X]:(room(X)=>(((~tall(X)&~generous(X)&~old(X))<=>(~(brave(X)&kind(X)&person(X)))))))&
((~(generous(frank)&creative(frank)&person(frank)))&(~generous(frank)))&
((![X]:((((~happy(X)&~generous(X)&~quiet(X)&~creative(X)&~kind(X)&~tall(X))&(~happy(X))&(~(kind(X)&person(X)))))=>(((~(funny(X)&creative(X)&calm(X)&person(X)))&(~(quiet(X)&person(X)))&(~humble(X)&~quiet(X)&~creative(X)&~wise(X)))))))&
(![X]:(anywhere(X)=>(((~(wise(X)&kind(X)&person(X)))<=(~((~(generous(X)&tall(X)&person(X)))|(~(quiet(X)&old(X)&generous(X)&strong(X)&person(X)))))))))&
(~(calm(carol)&person(carol)))&
(~(generous(carol)&person(carol)))&
(~![X]:(room(X)=>(((~(curious(X)&person(X)))<=(((~(curious(X)&patient(X)&person(X)))&(~(calm(X)&happy(X)&person(X)))))))))&
(![X]:(room(X)=>(((~(tall(X)&funny(X)&person(X)))<=(~(curious(X)&person(X)))))))&
(~(curious(frank)&person(frank)))&
(~(tall(juan)&person(juan)))&
(![X]:(room(X)=>(((((~(curious(X)&happy(X)&person(X)))<~>(~patient(X)&~calm(X)&~humble(X)&~funny(X)&~brave(X))))<=>(~(old(X)&humble(X)&person(X)))))))&
(~(old(carol)&curious(carol)&person(carol)))&
(((~calm(michael))&(~quiet(michael))&(~kind(michael))))
|
room(juan)&room(carol)&room(frank)&room(michael)&(![X]:(room(X)=>(X='juan'|X='carol'|X='frank'|X='michael')))&
![X]:(anywhere(X)=>(~((happy(X)&person(X))|(kind(X)&happy(X)&person(X)))))
|
[] | null | 0.491883 |
There is a room.
Everyone in the room does not like Francis, hates Donnie and does not hate Freda only if they neither does not like Richard nor does not hate Donnie.
Everyone in the room who neither does not like Richard nor does not hate Donnie is liked by Elbert, is liked by Donnie and hates Donnie.
Everyone in the room who is liked by Elbert, is liked by Donnie and hates Donnie either is liked by Francis or hates Francis but not both.
Everyone in the room who either is liked by Francis or hates Francis but not both hates Donnie.
Everyone in the room who hates Donnie does not like Freda, does not hate Donnie and hates Freda.
Someone who likes Freda, is hated by Donnie and does not hate Elbert like someone who hates Francis, does not like Richard or does not hate Donnie.
Everyone in the room who does not hate Freda, is hated by Richard or likes Francis is hated by Francis or hates Elbert or both.
Everyone in the room who is hated by Francis or hates Elbert or both does not like Richard and is hated by Donnie.
Everyone outside the room does not like Richard and is hated by Donnie if and only if they hates Donnie.
If someone does not hate Francis or is liked by Elbert or both then he/she is liked by Freda and does not like Freda.
Not everyone in the room who does not hate Richard neither does not hate Francis nor is liked by Francis.
Someone who either likes Richard or does not hate Francis but not both hate someone who either hates Richard or does not like Freda but not both.
No one in the room does not hate Freda, hates Freda or is liked by Freda only if they is liked by Richard and is hated by Donnie.
|
Everyone in the room likes Elbert.
|
neutral
|
(there_is_a_room)&
(![X]:(room(X)=>(((~((~like(richard,X))|(~hate(donnie,X))))<=(((~like(francis,X))&(hate(donnie,X))&(~hate(fredaa,X))))))))&
(![X]:(room(X)=>(((~((~like(richard,X))|(~hate(donnie,X))))=>(((like(X,elbert))&(like(X,donnie))&(hate(donnie,X))))))))&
(![X]:(room(X)=>(((((like(X,elbert))&(like(X,donnie))&(hate(donnie,X))))=>(((like(X,francis))<~>(hate(francis,X))))))))&
(![X]:(room(X)=>(((((like(X,francis))<~>(hate(francis,X))))=>(hate(donnie,X))))))&
(![X]:(room(X)=>(((hate(donnie,X))=>(((~like(fredaa,X))&(~hate(donnie,X))&(hate(fredaa,X))))))))&
(?[X,Y]:((((like(fredaa,X))&(hate(X,donnie))&(~hate(elbert,X))))&(((hate(francis,Y))|(~like(richard,Y))|(~hate(donnie,Y))))&(like(X,Y))))&
(![X]:(room(X)=>(((((~hate(fredaa,X))|(hate(X,richard))|(like(francis,X))))=>(((hate(X,francis))|(hate(elbert,X))))))))&
(![X]:(room(X)=>(((((hate(X,francis))|(hate(elbert,X))))=>(((~like(richard,X))&(hate(X,donnie))))))))&
(![X]:(~room(X)=>(((((~like(richard,X))&(hate(X,donnie))))<=>(hate(donnie,X))))))&
((![X]:((((~hate(francis,X))|(like(X,elbert))))=>(((like(X,fredaa))&(~like(fredaa,X)))))))&
(~![X]:(room(X)=>(((~hate(richard,X))=>(~((~hate(francis,X))|(like(X,francis))))))))&
(?[X,Y]:((((like(richard,X))<~>(~hate(francis,X))))&(((hate(richard,Y))<~>(~like(fredaa,Y))))&(hate(X,Y))))&
(~?[X]:(room(X)=>(((((like(X,richard))&(hate(X,donnie))))<=(((~hate(fredaa,X))|(hate(fredaa,X))|(like(X,fredaa))))))))
|
(there_is_a_room)&
![X]:(room(X)=>(like(elbert,X)))
|
[] | null | 0.130689 |
Francis, Betty, Enrique, Alisa, Pat are the only persons in the room.
Everyone in the room is not an active member of a local robotics club or is an active member of a local robotics club.
Betty does not host themed dinner parties featuring gourmet home-cooked meals.
Everyone in the room is not a craft beer aficionado if and only if they uses an ios phone.
Everyone outside the room has completed a triathlon if they does not use an ios phone.
Someone in the room hosts themed dinner parties featuring gourmet home-cooked meals.
Everyone in the room streams on Twitch if they is an active member of a local robotics club and vice versa.
Everyone in the room streams on Twitch or hosts themed dinner parties featuring gourmet home-cooked meals or both.
Everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals if they is a craft beer aficionado and is an active member of a local robotics club.
Not everyone in the room has completed a triathlon if they streams on Twitch or does not stream on Twitch or both and vice versa.
Everyone in the room does not stream on Twitch or streams on Twitch or does not stream on Twitch or both.
Everyone in the room neither has completed a triathlon nor is a craft beer aficionado only if they is an active member of a local robotics club.
|
Betty is a craft beer aficionado.
|
contradiction
|
room(francis)&room(betty)&room(enrique)&room(alisa)&room(pat)&(![X]:(room(X)=>(X='francis'|X='betty'|X='enrique'|X='alisa'|X='pat')))&
(![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))&
(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(betty))&
(![X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))<=>(uses_an_ios_phone(X))))))&
(![X]:(~room(X)=>(((does_not_use_an_ios_phone(X))=>(has_completed_a_triathlon(X))))))&
(?[X]:(room(X)&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))&
(![X]:(room(X)=>(((streams_on_Twitch(X))<=>(is_an_active_member_of_a_local_robotics_club(X))))))&
(![X]:(room(X)=>(((streams_on_Twitch(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))&
(![X]:(room(X)=>(((((is_a_craft_beer_aficionado(X))&(is_an_active_member_of_a_local_robotics_club(X))))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))&
(~![X]:(room(X)=>(((has_completed_a_triathlon(X))<=>(((streams_on_Twitch(X))|(does_not_stream_on_Twitch(X))))))))&
(![X]:(room(X)=>(((((streams_on_Twitch(X))|(does_not_stream_on_Twitch(X))))|(does_not_stream_on_Twitch(X))))))&
(![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))<=(~((has_completed_a_triathlon(X))|(is_a_craft_beer_aficionado(X))))))))
|
room(francis)&room(betty)&room(enrique)&room(alisa)&room(pat)&(![X]:(room(X)=>(X='francis'|X='betty'|X='enrique'|X='alisa'|X='pat')))&
is_a_craft_beer_aficionado(betty)
|
[
"p0",
"p2",
"p6",
"p7",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 7798238263253511478509561
% SZS output start Proof for 7798238263253511478509561
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
46. ~prede(paul) [input p2]
50. ! [X0] : (room(X0) => (preda(X0) <=> predf(X0))) [input p6]
51. ! [X0] : (room(X0) => (prede(X0) | preda(X0))) [input p7]
52. ! [X0] : (room(X0) => ((predf(X0) & predb(X0)) => prede(X0))) [input p8]
56. predb(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
129. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
130. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 129]
136. ! [X0] : ((preda(X0) <=> predf(X0)) | ~room(X0)) [ennf transformation 50]
137. ! [X0] : ((prede(X0) | preda(X0)) | ~room(X0)) [ennf transformation 51]
138. ! [X0] : (prede(X0) | preda(X0) | ~room(X0)) [flattening 137]
139. ! [X0] : ((prede(X0) | (~predf(X0) | ~predb(X0))) | ~room(X0)) [ennf transformation 52]
140. ! [X0] : (prede(X0) | ~predf(X0) | ~predb(X0) | ~room(X0)) [flattening 139]
146. predb(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 56]
147. predb(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146]
152. ! [X0] : (((preda(X0) | ~predf(X0)) & (predf(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 136]
238. room(paul) [cnf transformation 130]
244. ~prede(paul) [cnf transformation 46]
250. ~preda(X0) | predf(X0) | ~room(X0) [cnf transformation 152]
252. ~room(X0) | preda(X0) | prede(X0) [cnf transformation 138]
253. ~predb(X0) | ~predf(X0) | prede(X0) | ~room(X0) [cnf transformation 140]
266. predb(paul) [cnf transformation 147]
350. preda(paul) | prede(paul) [resolution 252,238]
365. preda(paul) [subsumption resolution 350,244]
400. ~predf(paul) | prede(paul) | ~room(paul) [resolution 253,266]
401. ~predf(paul) | ~room(paul) [subsumption resolution 400,244]
402. ~predf(paul) [subsumption resolution 401,238]
476. predf(paul) | ~room(paul) [resolution 365,250]
477. ~room(paul) [subsumption resolution 476,402]
478. $false [subsumption resolution 477,238]
% SZS output end Proof for 7798238263253511478509561
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.007154 |
There is a room.
If “everyone in the room plays video games or does not volunteer for local environmental conservation projects” then “everyone anywhere who plays video games enjoys stand-up paddleboarding”.
If “everyone in the room does not volunteer for local environmental conservation projects or has completed a triathlon” then “everyone in the room who does not volunteer for local environmental conservation projects enjoys deep-sea diving and exploring underwater caves”.
If “no one in the room enjoys stargazing” then “everyone in the room is a tea enthusiast if they enjoys stand-up paddleboarding”.
Either “everyone outside the room is not a night owl or is a tea enthusiast” or “everyone in the room does not enjoy deep-sea diving and exploring underwater caves or is a night owl” but not both.
Everyone in the room who does not enjoy deep-sea diving and exploring underwater caves enjoys deep-sea diving and exploring underwater caves.
Not everyone anywhere who enjoys deep-sea diving and exploring underwater caves is an amateur astronomer who builds and uses custom telescopes.
Everyone in the room who is an amateur astronomer who builds and uses custom telescopes plays video games.
Everyone in the room who plays video games enjoys deep-sea diving and exploring underwater caves.
Everyone in the room who has completed a triathlon enjoys stand-up paddleboarding.
Everyone in the room plays video games if they enjoys stand-up paddleboarding.
No one in the room volunteers for local environmental conservation projects and does not own an Android phone if they plays video games.
Everyone anywhere who volunteers for local environmental conservation projects and does not own an Android phone enjoys macrame.
Everyone in the room who enjoys macrame enjoys stand-up paddleboarding.
Stanley dreamt that “everyone anywhere who enjoys stand-up paddleboarding owns an Android phone”.
Everyone in the room has completed a triathlon if they owns an Android phone.
Everyone in the room who has completed a triathlon enjoys stargazing and enjoys macrame.
Everyone in the room enjoys stargazing only if they is a tea enthusiast.
|
Everyone in the room does not own an Android phone or enjoys deep-sea diving and exploring underwater caves.
|
entailment
|
(there_is_a_room)&
((![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(plays_video_games(X))))))=>(![X]:(anywhere(X)=>(((plays_video_games(X))=>(enjoys_stand-up_paddleboarding(X)))))))&
((![X]:(room(X)=>(((has_completed_a_triathlon(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))=>(![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))&
((~?[X]:(room(X)=>(enjoys_stargazing(X))))=>(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(is_a_tea_enthusiast(X)))))))&
((![X]:(~room(X)=>(((is_a_tea_enthusiast(X))|(is_not_a_night_owl(X))))))<~>(![X]:(room(X)=>(((is_a_night_owl(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X)))))))&
(![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))&
(~![X]:(anywhere(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(plays_video_games(X))))))&
(![X]:(room(X)=>(((plays_video_games(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))&
(![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(enjoys_stand-up_paddleboarding(X))))))&
(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(plays_video_games(X))))))&
(~?[X]:(room(X)=>(((plays_video_games(X))=>(((volunteers_for_local_environmental_conservation_projects(X))&(does_not_own_an_Android_phone(X))))))))&
(![X]:(anywhere(X)=>(((((volunteers_for_local_environmental_conservation_projects(X))&(does_not_own_an_Android_phone(X))))=>(enjoys_macrame(X))))))&
(![X]:(room(X)=>(((enjoys_macrame(X))=>(enjoys_stand-up_paddleboarding(X))))))&
((stanley_dream=>(![X]:(anywhere(X)=>(((enjoys_stand-up_paddleboarding(X))=>(owns_an_Android_phone(X))))))))&
(![X]:(room(X)=>(((owns_an_Android_phone(X))=>(has_completed_a_triathlon(X))))))&
(![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(((enjoys_stargazing(X))&(enjoys_macrame(X))))))))&
(![X]:(room(X)=>(((is_a_tea_enthusiast(X))<=(enjoys_stargazing(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(does_not_own_an_Android_phone(X)))))
|
[
"p0",
"p5",
"p11",
"hypothesis"
] |
% SZS status Unsatisfiable for 5902596672718935626418078
% SZS output start Proof for 5902596672718935626418078
44. there_is_a_room [input p0]
49. ! [X0] : (room(X0) => (~predj(X0) => predj(X0))) [input p5]
55. ~? [X0] : (room(X0) => (preda(X0) => (~predd(X0) & predb(X0)))) [input p11]
62. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis]
149. ! [X0] : ((predj(X0) | predj(X0)) | ~room(X0)) [ennf transformation 49]
150. ! [X0] : (predj(X0) | predj(X0) | ~room(X0)) [flattening 149]
158. ! [X0] : (((predd(X0) | ~predb(X0)) & preda(X0)) & room(X0)) [ennf transformation 55]
159. ! [X0] : ((predd(X0) | ~predb(X0)) & preda(X0) & room(X0)) [flattening 158]
170. ? [X0] : ((predd(X0) & ~predj(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 62]
171. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) | ~there_is_a_room [flattening 170]
189. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) => (predd(sK6) & ~predj(sK6) & room(sK6)) [choice axiom]
190. (predd(sK6) & ~predj(sK6) & room(sK6)) | ~there_is_a_room [skolemisation 171,189]
272. there_is_a_room [cnf transformation 44]
290. predj(X0) | predj(X0) | ~room(X0) [cnf transformation 150]
296. room(X0) [cnf transformation 159]
306. ~predj(sK6) | ~there_is_a_room [cnf transformation 190]
308. ~room(X0) | predj(X0) [duplicate literal removal 290]
406. ~predj(sK6) [subsumption resolution 306,272]
412. predj(X0) [resolution 308,296]
413. $false [resolution 412,406]
% SZS output end Proof for 5902596672718935626418078
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.022 s
% ------------------------------
% ------------------------------
| 0.337431 |
Eric, Mildred are the only persons in the room. 'It is not the case that 'Mildred enjoys watercolor painting'' if 'no one in the room enjoys watercolor painting or does not watche fantasy movies'. 'Eric composes and performs experimental electronic music' unless 'everyone in the room does not host a YouTube channel dedicated to art tutorials or makes homemade pastries'.
|
Mildred enjoys watercolor painting.
|
neutral
|
room(eric)&room(mildred)&(![X]:(room(X)=>(X='eric'|X='mildred')))&
((~?[X]:(room(X)=>(((does_not_watche_fantasy_movies(X))|(enjoys_watercolor_painting(X))))))=>(~(enjoys_watercolor_painting(mildred))))&
(~(![X]:(room(X)=>(((makes_homemade_pastries(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))=>(composes_and_performs_experimental_electronic_music(eric)))&
((~?[X]:(room(X)=>(((does_not_watche_fantasy_movies(X))|(enjoys_snowboarding(X))))))=>((![X]:((does_practice_yoga(X))<=>(makes_homemade_pastries(X))))))&
((~?[X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_watche_fantasy_movies(X))))))=>((makes_intricate_hand-cut_paper_art_for_exhibitions(mildred))&(owns_a_high-end_gaming_PC_with_custom-built_components(mildred))))&
((![X]:(room(X)=>(((is_an_avid_hiker(X))|(does_not_enjoy_watercolor_painting(X))))))=>(can_play_the_guitar(eric)))&
((enjoys_cross-country_skiing(mildred))=>(~![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(is_an_avid_hiker(X)))))))&
((hosts_a_YouTube_channel_dedicated_to_art_tutorials(mildred))<=>(does_not_make_homemade_pastries(mildred)))&
((collects_classic_novels(eric))=>(![X]:(anywhere(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X)))))))&
((![X]:(room(X)=>(enjoys_cross-country_skiing(X))))<=>(![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(can_play_the_guitar(X)))))))&
(((?[X]:(~room(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))&(![X,Y]:((~room(X)&~room(Y)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((is_a_night_owl(X))=>(enjoys_snowboarding(X))))))&
(![X]:(anywhere(X)=>(((enjoys_snowboarding(X))=>(makes_homemade_pastries(X))))))&
(does_not_enjoy_cross-country_skiing(mildred))&
(![X]:(~room(X)=>(((~((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))=>(enjoys_watercolor_painting(X))))))&
(![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(collects_classic_novels(X))))))&
(((is_a_night_owl(mildred))<~>(has_a_saltwater_aquarium(mildred))))&
(enjoys_deep-sea_diving_and_exploring_underwater_caves(mildred))&
(![X]:(room(X)=>(((does_not_practice_yoga(X))|(has_a_piercing(X))))))&
(~((is_an_avid_hiker(eric))|(collects_classic_novels(eric))))&
(((does_not_have_a_saltwater_aquarium(eric))<~>(enjoys_watercolor_painting(eric))))&
(enjoys_cross-country_skiing(eric))&
(![X]:(room(X)=>(((does_practice_yoga(X))=>(enjoys_cross-country_skiing(X))))))&
(((does_not_have_a_piercing(eric))&(does_not_have_a_saltwater_aquarium(eric))&(owns_a_high-end_gaming_PC_with_custom-built_components(eric))))&
((![X]:((((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))&(can_play_the_guitar(X))&(enjoys_snowboarding(X))))<=>(collects_classic_novels(X)))))&
(![X]:(room(X)=>(((is_a_night_owl(X))=>(does_practice_yoga(X))))))
|
room(eric)&room(mildred)&(![X]:(room(X)=>(X='eric'|X='mildred')))&
enjoys_watercolor_painting(mildred)
|
[] | null | 0.321289 |
Linda, Terry, Forrest are the only persons in the room. If “Linda does not own a significant collection of rare gemstones and minerals” then “it is true that “at least one person in the room does not make homemade pastries””.
|
Terry neither is an avid collector of autographed memorabilia from famous musicians nor creates large-scale murals for public art installations.
|
neutral
|
room(linda)&room(terry)&room(forrest)&(![X]:(room(X)=>(X='linda'|X='terry'|X='forrest')))&
((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(linda))=>(((?[X]:(room(X)&does_not_make_homemade_pastries(X))))))&
((((?[X]:(room(X)&creates_large-scale_murals_for_public_art_installations(X)))))=>(makes_homemade_pastries(linda)))&
(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(linda))&
(![X]:(~room(X)=>(((does_not_collect_comic_books(X))=>(does_not_collect_rare_and_antique_scientific_instruments(X))))))&
(does_not_make_homemade_pastries(linda))&
((enjoys_stand-up_paddleboarding(linda))&(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(linda))&(has_a_pet_dog(linda)))))&
((?[X,Y]:(room(X)&room(Y)&(does_not_host_a_popular_podcast_about_emerging_technologies(X)&does_not_host_a_popular_podcast_about_emerging_technologies(Y))&(X!=Y))))&
(does_not_collect_action_figures(linda))&
(((does_not_host_a_popular_podcast_about_emerging_technologies(linda))<~>(enjoys_stargazing(linda))))&
((![X]:((does_not_enjoy_snowboarding(X))=>(does_not_enjoy_stand-up_paddleboarding(X)))))&
((![X]:((((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(collects_action_figures(X))))=>(((enjoys_stand-up_paddleboarding(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))))&
((![X]:((does_not_enjoy_snowboarding(X))=>(((collects_rare_and_antique_scientific_instruments(X))|(does_not_collect_rare_and_antique_scientific_instruments(X))|(creates_large-scale_murals_for_public_art_installations(X)))))))&
(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(linda))&
(![X]:(room(X)=>(((works_on_fridays(X))=>(does_not_make_homemade_pastries(X))))))&
((![X]:((((enjoys_stargazing(X))&(does_not_host_a_popular_podcast_about_emerging_technologies(X))))<=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))&(does_not_create_large-scale_murals_for_public_art_installations(X)))))))&
(((?[X]:(room(X)&does_not_host_a_popular_podcast_about_emerging_technologies(X)))))&
(enjoys_snowboarding(linda))&
(((?[X]:(room(X)&enjoys_snowboarding(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_snowboarding(X))&(enjoys_snowboarding(Y)))=>(X=Y)))))&
(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(linda))&
(![X]:(room(X)=>(((has_a_pet_dog(X))<=(does_not_collect_rare_and_antique_scientific_instruments(X))))))&
((![X]:((enjoys_stand-up_paddleboarding(X))=>(((does_not_make_homemade_pastries(X))<~>(does_enjoy_mountain_biking(X)))))))&
(has_a_pet_dog(linda))
|
room(linda)&room(terry)&room(forrest)&(![X]:(room(X)=>(X='linda'|X='terry'|X='forrest')))&
~((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(terry))|(creates_large-scale_murals_for_public_art_installations(terry)))
|
[] | null | 0.424052 |
Robert is the only person in the room.
'Robert writes in-depth travel guides for off-the-beaten-path destinations' if 'everyone in the room collects luxury watches or does not play the violin' and vice versa.
If 'it is not the case that 'Robert is a client of Meta'' then 'Robert is a client of Meta'.
If 'Robert uses an ios phone' then 'if someone is a client of Meta then he/she plays the violin and vice versa'.
If someone is a client of Meta then he/she plays the violin and vice versa.
Everyone in the room who creates large-scale murals for public art installations plays as a goalkeeper for a local amateur soccer team.
It is not the case that 'someone outside the room collects limited-edition art prints from contemporary artists'.
Robert creates large-scale murals for public art installations.
Everyone outside the room who has a piercing enjoys snowboarding.
If someone has a pet dog then he/she plays as a goalkeeper for a local amateur soccer team and vice versa.
It is not the case that 'Robert enjoys camping and organizing outdoor survival workshops'.
Everyone in the room who plays as a goalkeeper for a local amateur soccer team bakes bread at home.
Robert enjoys camping and organizing outdoor survival workshops, plays as a goalkeeper for a local amateur soccer team or plays the violin.
Someone in the room practices urban gardening.
|
Robert writes in-depth travel guides for off-the-beaten-path destinations.
|
neutral
|
room(robert)&(![X]:(room(X)=>(X='robert')))&
((![X]:(room(X)=>(((does_not_play_the_violin(X))|(collects_luxury_watches(X))))))<=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(robert)))&
((~(is_a_client_of_Meta(robert)))=>(is_a_client_of_Meta(robert)))&
((uses_an_ios_phone(robert))=>((![X]:((is_a_client_of_Meta(X))<=>(plays_the_violin(X))))))&
((![X]:((is_a_client_of_Meta(X))<=>(plays_the_violin(X)))))&
(![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))&
(~(?[X]:(~room(X)&(collects_limited-edition_art_prints_from_contemporary_artists(X)))))&
(creates_large-scale_murals_for_public_art_installations(robert))&
(![X]:(~room(X)=>(((has_a_piercing(X))=>(enjoys_snowboarding(X))))))&
((![X]:((has_a_pet_dog(X))<=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))&
(~(enjoys_camping_and_organizing_outdoor_survival_workshops(robert)))&
(![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(bakes_bread_at_home(X))))))&
(((enjoys_camping_and_organizing_outdoor_survival_workshops(robert))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(robert))|(plays_the_violin(robert))))&
(?[X]:(room(X)&(practices_urban_gardening(X))))&
(![X]:(~room(X)=>(((collects_luxury_watches(X))=>(((uses_an_ios_phone(X))&(is_a_client_of_Meta(X))&(enjoys_landscape_photography(X))))))))
|
room(robert)&(![X]:(room(X)=>(X='robert')))&
writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(robert)
|
[] | null | 0.476877 |
Laura, David are the only persons in the room.
“Everyone in the room enjoys bird watching only if they is an avid collector of autographed memorabilia from famous musicians” unless “everyone in the room does not own a television or is an avid collector of autographed memorabilia from famous musicians”.
If “everyone in the room participates in citizen science projects related to wildlife monitoring” then “if someone practices digital art or maintains a large, organic vegetable garden year-round or both then he/she enjoys coding in Python”.
“No one in the room can play the piano or does not bake bread at home” only if “Laura who does not own a television enjoys bird watching”.
If “Laura enjoys stand-up paddleboarding and does not participate in citizen science projects related to wildlife monitoring” then “everyone in the room enjoys stand-up paddleboarding or does not maintain a large, organic vegetable garden year-round”.
If “everyone in the room enjoys stand-up paddleboarding or does not maintain a large, organic vegetable garden year-round” then “more than one person in the room does practice yoga”.
“David maintains a large, organic vegetable garden year-round” if “at least one person in the room practices digital art”.
|
Everyone in the room does not enjoy bird watching or enjoys stand-up paddleboarding.
|
neutral
|
room(laura)&room(david)&(![X]:(room(X)=>(X='laura'|X='david')))&
(~(![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_own_a_television(X))))))=>(![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=(enjoys_bird_watching(X)))))))&
((![X]:(room(X)=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))=>((![X]:((((practices_digital_art(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))=>(enjoys_coding_in_Python(X))))))&
((~?[X]:(room(X)=>(((does_not_bake_bread_at_home(X))|(can_play_the_piano(X))))))=>((does_not_own_a_television(laura))&(enjoys_bird_watching(laura))))&
(((((enjoys_stand-up_paddleboarding(laura))&(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(laura))))=>(![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(enjoys_stand-up_paddleboarding(X)))))))&
((![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(enjoys_stand-up_paddleboarding(X))))))=>((?[X,Y]:(room(X)&room(Y)&(does_practice_yoga(X)&does_practice_yoga(Y))&(X!=Y))))))&
((((?[X]:(room(X)&practices_digital_art(X)))))=>(maintains_a_large,_organic_vegetable_garden_year-round(david)))&
((does_not_bake_bread_at_home(david))=>(![X]:(room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))&(knows_morse_code(X))&(collects_vintage_stamps(X))))=>(practices_digital_art(X)))))))&
((![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))|(enjoys_bird_watching(X))))))=>(enjoys_coding_in_Python(laura)))&
((![X]:(room(X)=>(((enjoys_bird_watching(X))|(does_not_practice_digital_art(X))))))<=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(david)))&
((maintains_a_large,_organic_vegetable_garden_year-round(laura))<=>(![X]:(~room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X)))))))&
((![X]:(~room(X)=>(((does_not_own_a_television(X))|(enjoys_stand-up_paddleboarding(X))))))<~>(develops_open-source_software_projects_in_their_free_time(laura)))&
((![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))=>((does_not_read_mystery_novels(david))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(david))))&
((~(creates_YouTube_content(laura)))=>(![X]:(room(X)=>(((knows_morse_code(X))|(does_not_enjoy_logic_puzzles(X)))))))&
((((enjoys_coding_in_Python(laura))&(practices_digital_art(laura))))=>(does_not_enjoy_logic_puzzles(david)))&
(![X]:(room(X)=>(((creates_YouTube_content(X))=>(((enjoys_logic_puzzles(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))))&
(![X]:(~room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))&
((does_not_enjoy_logic_puzzles(laura))&(((practices_digital_art(laura))<~>(does_not_own_a_television(laura)))))&
(![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(does_not_practice_digital_art(X))))))&
(enjoys_bird_watching(laura))&
(![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(develops_open-source_software_projects_in_their_free_time(X))))))&
((![X]:((collects_vintage_stamps(X))<=>(((does_practice_yoga(X))&(reads_mystery_novels(X)))))))&
(![X]:(~room(X)=>(((drives_a_hybrid_car(X))=>(enjoys_logic_puzzles(X))))))&
((![X]:((enjoys_coding_in_Python(X))<=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))&
(mentors_a_youth_basketball_team_on_weekends(laura))&
((![X]:((knows_morse_code(X))=>(bakes_bread_at_home(X)))))&
(~![X]:(room(X)=>(((((mentors_a_youth_basketball_team_on_weekends(X))&(does_practice_yoga(X))&(knows_morse_code(X))))<=(collects_vintage_vinyl_records(X))))))&
(enjoys_logic_puzzles(david))&
(![X]:(room(X)=>(((knows_morse_code(X))=>(((drives_a_hybrid_car(X))&(can_play_the_piano(X))&(maintains_a_large,_organic_vegetable_garden_year-round(X))))))))
|
room(laura)&room(david)&(![X]:(room(X)=>(X='laura'|X='david')))&
![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_bird_watching(X)))))
|
[] | null | 0.011781 |
Dorthy, Nia are the only persons in the room. “Dorthy collects comic books” only if “Dorthy is a Linux enthusiast”. Either “Dorthy does not read mystery novels” or “no one in the room does not collect historical artifacts related to ancient civilizations or practices and performs acrobatic dance routines” but not both. If “Dorthy does not collect antique jewelry” then “at least one person in the room either enjoys virtual reality gaming or does not enjoy landscape photography but not both”. If “at least one person in the room either enjoys virtual reality gaming or does not enjoy landscape photography but not both” then “Dorthy does not own a smartwatch”. “Dorthy is not a Linux enthusiast” if “Dorthy does not have a saltwater aquarium”.
|
Dorthy has a saltwater aquarium.
|
entailment
|
room(dorthy)&room(nia)&(![X]:(room(X)=>(X='dorthy'|X='nia')))&
((collects_comic_books(dorthy))=>(is_a_Linux_enthusiast(dorthy)))&
((does_not_read_mystery_novels(dorthy))<~>(~?[X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X)))))))&
(((does_not_collect_antique_jewelry(dorthy))=>(((?[X]:(room(X)&((enjoys_virtual_reality_gaming(X))<~>(does_not_enjoy_landscape_photography(X))))))))&
((((?[X]:(room(X)&((enjoys_virtual_reality_gaming(X))<~>(does_not_enjoy_landscape_photography(X)))))))=>(does_not_own_a_smartwatch(dorthy))))&
((does_not_have_a_saltwater_aquarium(dorthy))=>(is_not_a_Linux_enthusiast(dorthy)))&
(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))&(enjoys_landscape_photography(X))&(is_a_Linux_enthusiast(X))))))&
(~((does_not_collect_historical_artifacts_related_to_ancient_civilizations(dorthy))|(does_not_collect_comic_books(dorthy))))&
(enjoys_rooftop_gardening(dorthy))&
(?[X]:(anywhere(X)&(does_not_own_a_television(X))))&
(![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))=>(~((is_an_active_member_of_a_local_robotics_club(X))|(plays_eSports_competitively(X))))))))&
(![X]:(~room(X)=>(((~((is_an_active_member_of_a_local_robotics_club(X))|(plays_eSports_competitively(X))))=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<~>(does_not_compete_in_national_level_swimming_championships(X))))))))&
(practices_and_performs_acrobatic_dance_routines(dorthy))&
(?[X]:(anywhere(X)&(is_a_wine_connoisseur(X))))&
(![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(does_not_have_a_saltwater_aquarium(X))))))&
(((?[X]:(room(X)&has_a_saltwater_aquarium(X)))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(own_a_television(X))))))&
(own_a_television(dorthy))&
(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))=>(is_a_Linux_enthusiast(X))))))
|
room(dorthy)&room(nia)&(![X]:(room(X)=>(X='dorthy'|X='nia')))&
has_a_saltwater_aquarium(dorthy)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 5168532838455207915325388
% SZS output start Proof for 5168532838455207915325388
44. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X0] : (room(X0) => (predw(X0) => predy(X0))) & ? [X0] : (predn(X0) & room(X0)) & ! [X0] : (room(X0) => (predb(X0) => ~predn(X0))) & ? [X0] : (predh(X0) & anywhere(X0)) & predq(mary) & ! [X0] : (~room(X0) => (~(predw(X0) | predc(X0)) => (predo(X0) <~> ~predr(X0)))) & ! [X0] : (room(X0) => (~predc(X0) => ~(predw(X0) | predc(X0)))) & ? [X0] : (~predy(X0) & anywhere(X0)) & predx(mary) & ~(~predg(mary) | ~predp(mary)) & ! [X0] : (room(X0) => (preds(X0) & predk(X0) & ~predu(X0))) & (~predn(mary) => ~preds(mary)) & (? [X0] : ((predv(X0) <~> ~predk(X0)) & room(X0)) => ~predl(mary)) & (~predj(mary) => ? [X0] : ((predv(X0) <~> ~predk(X0)) & room(X0))) & (~predt(mary) <~> ~? [X0] : (room(X0) => (~predp(X0) | predq(X0)))) & (predg(mary) => preds(mary)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. ~(predn(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
46. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & ! [X3] : (room(X3) => (predb(X3) => ~predn(X3))) & ? [X4] : (predh(X4) & anywhere(X4)) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : (~predy(X7) & anywhere(X7)) & predx(mary) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & predk(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (? [X9] : ((predv(X9) <~> ~predk(X9)) & room(X9)) => ~predl(mary)) & (~predj(mary) => ? [X10] : ((predv(X10) <~> ~predk(X10)) & room(X10))) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [rectify 44]
47. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & ? [X4] : (predh(X4) & anywhere(X4)) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : (~predy(X7) & anywhere(X7)) & predx(mary) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & predk(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (? [X9] : ((predv(X9) <~> ~predk(X9)) & room(X9)) => ~predl(mary)) & (~predj(mary) => ? [X10] : ((predv(X10) <~> ~predk(X10)) & room(X10))) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 46]
48. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & ? [X4] : anywhere(X4) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : (~predy(X7) & anywhere(X7)) & predx(mary) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & predk(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (? [X9] : ((predv(X9) <~> ~predk(X9)) & room(X9)) => ~predl(mary)) & (~predj(mary) => ? [X10] : ((predv(X10) <~> ~predk(X10)) & room(X10))) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 47]
49. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & ? [X4] : anywhere(X4) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : (~predy(X7) & anywhere(X7)) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & predk(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (? [X9] : ((predv(X9) <~> ~predk(X9)) & room(X9)) => ~predl(mary)) & (~predj(mary) => ? [X10] : ((predv(X10) <~> ~predk(X10)) & room(X10))) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 48]
50. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & ? [X4] : anywhere(X4) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : (~predy(X7) & anywhere(X7)) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & predk(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (~predj(mary) => ? [X10] : ((predv(X10) <~> ~predk(X10)) & room(X10))) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 49]
51. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & ? [X4] : anywhere(X4) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : (~predy(X7) & anywhere(X7)) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & predk(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 50]
52. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & ? [X4] : anywhere(X4) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : (~predy(X7) & anywhere(X7)) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 51]
53. ! [X0] : (room(X0) => (~predu(X0) => preds(X0))) & predy(mary) & ! [X1] : (room(X1) => (predw(X1) => predy(X1))) & ? [X2] : (predn(X2) & room(X2)) & predq(mary) & ! [X5] : (~room(X5) => (~(predw(X5) | predc(X5)) => (predo(X5) <~> ~predr(X5)))) & ! [X6] : (room(X6) => (~predc(X6) => ~(predw(X6) | predc(X6)))) & ? [X7] : ~predy(X7) & ~(~predg(mary) | ~predp(mary)) & ! [X8] : (room(X8) => (preds(X8) & ~predu(X8))) & (~predn(mary) => ~preds(mary)) & (~predt(mary) <~> ~? [X11] : (room(X11) => (~predp(X11) | predq(X11)))) & (predg(mary) => preds(mary)) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 52]
126. ! [X0] : ((preds(X0) | predu(X0)) | ~room(X0)) & predy(mary) & ! [X1] : ((predy(X1) | ~predw(X1)) | ~room(X1)) & ? [X2] : (predn(X2) & room(X2)) & predq(mary) & ! [X5] : (((predo(X5) <~> ~predr(X5)) | (predw(X5) | predc(X5))) | room(X5)) & ! [X6] : (((~predw(X6) & ~predc(X6)) | predc(X6)) | ~room(X6)) & ? [X7] : ~predy(X7) & (predg(mary) & predp(mary)) & ! [X8] : ((preds(X8) & ~predu(X8)) | ~room(X8)) & (~preds(mary) | predn(mary)) & (~predt(mary) <~> ! [X11] : ((predp(X11) & ~predq(X11)) & room(X11))) & (preds(mary) | ~predg(mary)) & ! [X12] : ((paul = X12 | mary = X12) | ~room(X12)) & room(paul) & room(mary) [ennf transformation 53]
127. ! [X0] : (preds(X0) | predu(X0) | ~room(X0)) & predy(mary) & ! [X1] : (predy(X1) | ~predw(X1) | ~room(X1)) & ? [X2] : (predn(X2) & room(X2)) & predq(mary) & ! [X5] : ((predo(X5) <~> ~predr(X5)) | predw(X5) | predc(X5) | room(X5)) & ! [X6] : ((~predw(X6) & ~predc(X6)) | predc(X6) | ~room(X6)) & ? [X7] : ~predy(X7) & predg(mary) & predp(mary) & ! [X8] : ((preds(X8) & ~predu(X8)) | ~room(X8)) & (~preds(mary) | predn(mary)) & (~predt(mary) <~> ! [X11] : (predp(X11) & ~predq(X11) & room(X11))) & (preds(mary) | ~predg(mary)) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [flattening 126]
128. ~predn(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45]
129. ~predn(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 128]
131. ! [X0] : (preds(X0) | predu(X0) | ~room(X0)) & predy(mary) & ! [X1] : (predy(X1) | ~predw(X1) | ~room(X1)) & ? [X2] : (predn(X2) & room(X2)) & predq(mary) & ! [X5] : (((predr(X5) | ~predo(X5)) & (~predr(X5) | predo(X5))) | predw(X5) | predc(X5) | room(X5)) & ! [X6] : ((~predw(X6) & ~predc(X6)) | predc(X6) | ~room(X6)) & ? [X7] : ~predy(X7) & predg(mary) & predp(mary) & ! [X8] : ((preds(X8) & ~predu(X8)) | ~room(X8)) & (~preds(mary) | predn(mary)) & ((? [X11] : (~predp(X11) | predq(X11) | ~room(X11)) | predt(mary)) & (! [X11] : (predp(X11) & ~predq(X11) & room(X11)) | ~predt(mary))) & (preds(mary) | ~predg(mary)) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [nnf transformation 127]
132. ! [X0] : (preds(X0) | predu(X0) | ~room(X0)) & predy(mary) & ! [X1] : (predy(X1) | ~predw(X1) | ~room(X1)) & ? [X2] : (predn(X2) & room(X2)) & predq(mary) & ! [X5] : (((predr(X5) | ~predo(X5)) & (~predr(X5) | predo(X5))) | predw(X5) | predc(X5) | room(X5)) & ! [X6] : ((~predw(X6) & ~predc(X6)) | predc(X6) | ~room(X6)) & ? [X7] : ~predy(X7) & predg(mary) & predp(mary) & ! [X8] : ((preds(X8) & ~predu(X8)) | ~room(X8)) & (~preds(mary) | predn(mary)) & (? [X11] : (~predp(X11) | predq(X11) | ~room(X11)) | predt(mary)) & (! [X11] : (predp(X11) & ~predq(X11) & room(X11)) | ~predt(mary)) & (preds(mary) | ~predg(mary)) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [flattening 131]
133. ! [X0] : (preds(X0) | predu(X0) | ~room(X0)) & predy(mary) & ! [X1] : (predy(X1) | ~predw(X1) | ~room(X1)) & ? [X2] : (predn(X2) & room(X2)) & predq(mary) & ! [X3] : (((predr(X3) | ~predo(X3)) & (~predr(X3) | predo(X3))) | predw(X3) | predc(X3) | room(X3)) & ! [X4] : ((~predw(X4) & ~predc(X4)) | predc(X4) | ~room(X4)) & ? [X5] : ~predy(X5) & predg(mary) & predp(mary) & ! [X6] : ((preds(X6) & ~predu(X6)) | ~room(X6)) & (~preds(mary) | predn(mary)) & (? [X7] : (~predp(X7) | predq(X7) | ~room(X7)) | predt(mary)) & (! [X8] : (predp(X8) & ~predq(X8) & room(X8)) | ~predt(mary)) & (preds(mary) | ~predg(mary)) & ! [X9] : (paul = X9 | mary = X9 | ~room(X9)) & room(paul) & room(mary) [rectify 132]
134. ? [X2] : (predn(X2) & room(X2)) => (predn(sK0) & room(sK0)) [choice axiom]
135. ? [X5] : ~predy(X5) => ~predy(sK1) [choice axiom]
136. ? [X7] : (~predp(X7) | predq(X7) | ~room(X7)) => (~predp(sK2) | predq(sK2) | ~room(sK2)) [choice axiom]
137. ! [X0] : (preds(X0) | predu(X0) | ~room(X0)) & predy(mary) & ! [X1] : (predy(X1) | ~predw(X1) | ~room(X1)) & (predn(sK0) & room(sK0)) & predq(mary) & ! [X3] : (((predr(X3) | ~predo(X3)) & (~predr(X3) | predo(X3))) | predw(X3) | predc(X3) | room(X3)) & ! [X4] : ((~predw(X4) & ~predc(X4)) | predc(X4) | ~room(X4)) & ~predy(sK1) & predg(mary) & predp(mary) & ! [X6] : ((preds(X6) & ~predu(X6)) | ~room(X6)) & (~preds(mary) | predn(mary)) & ((~predp(sK2) | predq(sK2) | ~room(sK2)) | predt(mary)) & (! [X8] : (predp(X8) & ~predq(X8) & room(X8)) | ~predt(mary)) & (preds(mary) | ~predg(mary)) & ! [X9] : (paul = X9 | mary = X9 | ~room(X9)) & room(paul) & room(mary) [skolemisation 133,136,135,134]
138. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
139. ~predn(mary) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 129,138]
220. room(mary) [cnf transformation 137]
221. room(paul) [cnf transformation 137]
222. ~room(X9) | mary = X9 | paul = X9 [cnf transformation 137]
223. preds(mary) | ~predg(mary) [cnf transformation 137]
228. ~preds(mary) | predn(mary) [cnf transformation 137]
232. predg(mary) [cnf transformation 137]
244. ~predn(mary) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 139]
245. ~predn(mary) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 139]
246. ~predn(mary) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 139]
248. 1 <=> predn(mary) [avatar definition]
252. 2 <=> preds(mary) [avatar definition]
255. 1 | ~2 [avatar split clause 228,252,248]
285. preds(mary) [subsumption resolution 223,232]
286. 2 [avatar split clause 285,252]
287. ~predn(mary) | paul != sK3 | ~room(mary) [subsumption resolution 246,221]
288. ~predn(mary) | paul != sK3 [subsumption resolution 287,220]
290. 10 <=> paul = sK3 [avatar definition]
292. paul != sK3 <- (~10) [avatar component clause 290]
293. ~10 | ~1 [avatar split clause 288,248,290]
294. ~predn(mary) | mary != sK3 | ~room(mary) [subsumption resolution 245,221]
295. ~predn(mary) | mary != sK3 [subsumption resolution 294,220]
297. 11 <=> mary = sK3 [avatar definition]
299. mary != sK3 <- (~11) [avatar component clause 297]
300. ~11 | ~1 [avatar split clause 295,248,297]
301. ~predn(mary) | room(sK3) | ~room(mary) [subsumption resolution 244,221]
302. ~predn(mary) | room(sK3) [subsumption resolution 301,220]
304. 12 <=> room(sK3) [avatar definition]
306. room(sK3) <- (12) [avatar component clause 304]
307. 12 | ~1 [avatar split clause 302,248,304]
319. mary = sK3 | paul = sK3 <- (12) [resolution 222,306]
329. paul = sK3 <- (~11, 12) [subsumption resolution 319,299]
330. $false <- (~10, ~11, 12) [subsumption resolution 329,292]
331. 10 | 11 | ~12 [avatar contradiction clause 330]
332. $false [avatar sat refutation 255,286,293,300,307,331]
% SZS output end Proof for 5168532838455207915325388
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.020334 |
Barry, Fred, Jennifer, Julie, Richard are the only persons in the room.
"Someone in the room neither enjoys landscape photography nor collects comic books" if "Richard enjoys landscape photography" and vice versa.
If "it is not the case that "Barry enjoys landscape photography or collects comic books or both"" then "it is not the case that "Jennifer practices calligraphy"".
If "it is not the case that "Richard practices calligraphy"" then "Fred enjoys landscape photography".
If "it is not the case that "Barry practices pilates"" then "Richard collects comic books".
"Someone in the room practices pilates" only if "if someone practices calligraphy then he/she enjoys landscape photography and vice versa".
Fred enjoys landscape photography.
Someone in the room practices pilates.
It is not the case that "Fred practices pilates".
At least one person in the room practices calligraphy.
Someone in the room practices calligraphy.
Barry practices pilates.
Julie neither practices calligraphy nor enjoys landscape photography.
Barry collects comic books.
Fred practices calligraphy or enjoys landscape photography or both.
Barry practices calligraphy.
If someone practices calligraphy then he/she enjoys landscape photography and vice versa.
Richard enjoys landscape photography.
Richard practices calligraphy.
It is not the case that "Jennifer practices calligraphy".
|
Richard collects comic books.
|
neutral
|
room(barry)&room(fred)&room(jennifer)&room(julie)&room(richard)&(![X]:(room(X)=>(X='barry'|X='fred'|X='jennifer'|X='julie'|X='richard')))&
((enjoys_landscape_photography(richard))<=>(?[X]:(room(X)&(~((enjoys_landscape_photography(X))|(collects_comic_books(X)))))))&
((~(((enjoys_landscape_photography(barry))|(collects_comic_books(barry)))))=>(~(practices_calligraphy(jennifer))))&
((~(practices_calligraphy(richard)))=>(enjoys_landscape_photography(fred)))&
((~(practices_pilates(barry)))=>(collects_comic_books(richard)))&
((?[X]:(room(X)&(practices_pilates(X))))=>((![X]:((practices_calligraphy(X))<=>(enjoys_landscape_photography(X))))))&
(enjoys_landscape_photography(fred))&
(?[X]:(room(X)&(practices_pilates(X))))&
(~(practices_pilates(fred)))&
(((?[X]:(room(X)&practices_calligraphy(X)))))&
(?[X]:(room(X)&(practices_calligraphy(X))))&
(practices_pilates(barry))&
(~((practices_calligraphy(julie))|(enjoys_landscape_photography(julie))))&
(collects_comic_books(barry))&
(((practices_calligraphy(fred))|(enjoys_landscape_photography(fred))))&
(practices_calligraphy(barry))&
((![X]:((practices_calligraphy(X))<=>(enjoys_landscape_photography(X)))))&
(enjoys_landscape_photography(richard))&
(practices_calligraphy(richard))&
(~(practices_calligraphy(jennifer)))
|
room(barry)&room(fred)&room(jennifer)&room(julie)&room(richard)&(![X]:(room(X)=>(X='barry'|X='fred'|X='jennifer'|X='julie'|X='richard')))&
collects_comic_books(richard)
|
[] | null | 0.647519 |
Joseph is the only person in the room.
Joseph does not volunteer for local environmental conservation projects or is a drone photographer or both.
Everyone anywhere is a skilled home brewer experimenting with craft beer recipes and creates YouTube content if they neither is an avid mountain climber who has scaled several peaks nor creates YouTube content.
Everyone in the room who is a skilled home brewer experimenting with craft beer recipes and creates YouTube content owns a smart tv.
Joseph is a skilled home brewer experimenting with craft beer recipes.
Joseph volunteers for local environmental conservation projects.
Someone outside the room owns a smart tv.
Everyone in the room is a wine connoisseur if they uses a Windows laptop and vice versa.
Everyone in the room either can play the flute or uses a Windows laptop but not both if they can play the flute.
Joseph volunteers for local environmental conservation projects, is a dedicated advocate for digital privacy and encryption or owns a smart tv.
Everyone outside the room who is an avid mountain climber who has scaled several peaks is a dedicated advocate for digital privacy and encryption.
Everyone in the room can play the piano if they enjoys writing detailed reviews of new and classic board games.
Joseph owns a smartwatch, collects classic novels or is a drone photographer.
It is not the case that “Joseph is not a member of a local theater group specializing in improv”.
|
Joseph regularly contributes to tech forums and online communities.
|
neutral
|
room(joseph)&(![X]:(room(X)=>(X='joseph')))&
(((does_not_volunteer_for_local_environmental_conservation_projects(joseph))|(is_a_drone_photographer(joseph))))&
(![X]:(anywhere(X)=>(((~((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(creates_YouTube_content(X))))=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(creates_YouTube_content(X))))))))&
(![X]:(room(X)=>(((((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(creates_YouTube_content(X))))=>(owns_a_smart_tv(X))))))&
(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(joseph))&
(volunteers_for_local_environmental_conservation_projects(joseph))&
(?[X]:(~room(X)&(owns_a_smart_tv(X))))&
(![X]:(room(X)=>(((is_a_wine_connoisseur(X))<=>(uses_a_Windows_laptop(X))))))&
(![X]:(room(X)=>(((can_play_the_flute(X))=>(((can_play_the_flute(X))<~>(uses_a_Windows_laptop(X))))))))&
(((volunteers_for_local_environmental_conservation_projects(joseph))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(joseph))|(owns_a_smart_tv(joseph))))&
(![X]:(~room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))&
(![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(can_play_the_piano(X))))))&
(((owns_a_smartwatch(joseph))|(collects_classic_novels(joseph))|(is_a_drone_photographer(joseph))))&
(~(is_not_a_member_of_a_local_theater_group_specializing_in_improv(joseph)))&
(is_a_member_of_a_local_theater_group_specializing_in_improv(joseph))&
(![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))=>(owns_a_smartwatch(X))))))&
(((uses_a_Windows_laptop(joseph))<~>(enjoys_stand-up_paddleboarding(joseph))))&
(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(joseph))&
(![X]:(~room(X)=>(((is_a_wine_connoisseur(X))|(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))&
(?[X]:(room(X)&(((develops_open-source_software_projects_in_their_free_time(X))&(is_a_client_of_Meta(X))&(is_a_wine_connoisseur(X))))))&
(![X]:(room(X)=>(((~((owns_a_telescope(X))|(is_a_drone_photographer(X))))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))&
(![X]:(~room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(does_not_own_a_telescope(X))))))&
(![X]:(room(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))&
(practices_pilates(joseph))&
(((develops_open-source_software_projects_in_their_free_time(joseph))|(enjoys_stand-up_paddleboarding(joseph))))&
(![X]:(~room(X)=>(((((uses_a_Windows_laptop(X))&(enjoys_rooftop_gardening(X))&(owns_a_telescope(X))))<=(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))
|
room(joseph)&(![X]:(room(X)=>(X='joseph')))&
regularly_contributes_to_tech_forums_and_online_communities(joseph)
|
[] | null | 0 |
Daniel, Karen are the only persons in the room.
Karen mentors a youth basketball team on weekends if Daniel does not know morse code and vice versa.
Either someone outside the room does not collect classic novels or Karen does not enjoy fishing but not both.
Either Daniel mentors a youth basketball team on weekends or someone in the room is an avid hiker but not both.
Daniel collects luxury watches if Daniel does not participate in long-distance cycling events across the country and vice versa.
Karen either does not participate in long-distance cycling events across the country or participates in long-distance cycling events across the country but not both.
Karen knows morse code.
Daniel enjoys fishing or does not make homemade pastries or both.
Daniel knows morse code.
If someone is not an avid mountain climber who has scaled several peaks then he/she is not a culinary enthusiast who experiments with international cuisines and is an avid hiker and vice versa.
|
Daniel collects luxury watches.
|
neutral
|
room(daniel)&room(karen)&(![X]:(room(X)=>(X='daniel'|X='karen')))&
((does_not_know_morse_code(daniel))<=>(mentors_a_youth_basketball_team_on_weekends(karen)))&
((?[X]:(~room(X)&(does_not_collect_classic_novels(X))))<~>(does_not_enjoy_fishing(karen)))&
((mentors_a_youth_basketball_team_on_weekends(daniel))<~>(?[X]:(room(X)&(is_an_avid_hiker(X)))))&
((does_not_participate_in_long-distance_cycling_events_across_the_country(daniel))<=>(collects_luxury_watches(daniel)))&
(((does_not_participate_in_long-distance_cycling_events_across_the_country(karen))<~>(participates_in_long-distance_cycling_events_across_the_country(karen))))&
(knows_morse_code(karen))&
(((enjoys_fishing(daniel))|(does_not_make_homemade_pastries(daniel))))&
(knows_morse_code(daniel))&
((![X]:((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))<=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(is_an_avid_hiker(X)))))))
|
room(daniel)&room(karen)&(![X]:(room(X)=>(X='daniel'|X='karen')))&
collects_luxury_watches(daniel)
|
[] | null | 0.106076 |
There is a room. If “everyone outside the room collects luxury watches or does not practice calligraphy” then “no one in the room is allergic to anything if they collects luxury watches”. “Everyone in the room who works on fridays creates large-scale murals for public art installations” unless “someone anywhere owns a high-end gaming PC with custom-built components”. “Everyone in the room collects luxury watches if they practices urban gardening” unless “everyone in the room creates large-scale murals for public art installations”. Everyone outside the room participates in citizen science projects related to wildlife monitoring if they practices zumba. Everyone in the room who participates in citizen science projects related to wildlife monitoring owns a smartwatch. Everyone in the room owns a smartwatch if they is an amateur astronomer who builds and uses custom telescopes and vice versa. Everyone in the room owns a smartwatch if they practices urban gardening or has a saltwater aquarium or both. Someone in the room owns a high-end gaming PC with custom-built components. Everyone in the room does not enjoy bird watching if they does not enjoy coding in Python. Everyone in the room creates large-scale murals for public art installations. More than one person in the room is allergic to anything. Everyone in the room who has a saltwater aquarium enjoys macrame. Everyone anywhere who enjoys macrame trains for and competes in international triathlons. Everyone in the room practices kickboxing if they neither enjoys fishing nor can play the guitar. Everyone in the room who collects modern art owns an extensive assortment of vintage comic book memorabilia. Everyone outside the room collects historical artifacts related to ancient civilizations if they enjoys bird watching. Everyone outside the room who does not enjoy mountain biking is an active member of a local robotics club. Everyone in the room travels domestically frequently and creates large-scale murals for public art installations if they can play the guitar. If someone travels domestically frequently and has a saltwater aquarium then he/she is an amateur astronomer who builds and uses custom telescopes and vice versa. Everyone in the room who has a saltwater aquarium does not own a smartwatch and does not practice kickboxing.
|
Everyone in the room practices urban gardening.
|
contradiction
|
(there_is_a_room)&
((![X]:(~room(X)=>(((does_not_practice_calligraphy(X))|(collects_luxury_watches(X))))))=>(~?[X]:(room(X)=>(((collects_luxury_watches(X))=>(is_allergic_to_anything(X)))))))&
(~(?[X]:(anywhere(X)&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(![X]:(room(X)=>(((works_on_fridays(X))=>(creates_large-scale_murals_for_public_art_installations(X)))))))&
(~(![X]:(room(X)=>(creates_large-scale_murals_for_public_art_installations(X))))=>(![X]:(room(X)=>(((practices_urban_gardening(X))=>(collects_luxury_watches(X)))))))&
(![X]:(~room(X)=>(((practices_zumba(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))&
(![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(owns_a_smartwatch(X))))))&
(![X]:(room(X)=>(((owns_a_smartwatch(X))<=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(![X]:(room(X)=>(((((practices_urban_gardening(X))|(has_a_saltwater_aquarium(X))))=>(owns_a_smartwatch(X))))))&
(?[X]:(room(X)&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))&
(![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))=>(does_not_enjoy_bird_watching(X))))))&
(![X]:(room(X)=>(creates_large-scale_murals_for_public_art_installations(X))))&
((?[X,Y]:(room(X)&room(Y)&(is_allergic_to_anything(X)&is_allergic_to_anything(Y))&(X!=Y))))&
(![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(enjoys_macrame(X))))))&
(![X]:(anywhere(X)=>(((enjoys_macrame(X))=>(trains_for_and_competes_in_international_triathlons(X))))))&
(![X]:(room(X)=>(((~((enjoys_fishing(X))|(can_play_the_guitar(X))))=>(practices_kickboxing(X))))))&
(![X]:(room(X)=>(((collects_modern_art(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))&
(![X]:(~room(X)=>(((enjoys_bird_watching(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))&
(![X]:(~room(X)=>(((does_not_enjoy_mountain_biking(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))&
(![X]:(room(X)=>(((can_play_the_guitar(X))=>(((travels_domestically_frequently(X))&(creates_large-scale_murals_for_public_art_installations(X))))))))&
(![X]:(anywhere(X)=>(((enjoys_fishing(X))|(travels_domestically_frequently(X))))))&
(![X]:(room(X)=>(((enjoys_macrame(X))=>(practices_kickboxing(X))))))&
((![X]:((((travels_domestically_frequently(X))&(has_a_saltwater_aquarium(X))))<=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))&
((![X]:((travels_domestically_frequently(X))<=>(does_enjoy_mountain_biking(X)))))&
(![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(((does_not_own_a_smartwatch(X))&(does_not_practice_kickboxing(X))))))))
|
(there_is_a_room)&
![X]:(room(X)=>(practices_urban_gardening(X)))
|
[
"p6",
"p7",
"p8",
"p21",
"p23",
"hypothesis"
] |
% SZS status Unsatisfiable for 143166404019041116898002
% SZS output start Proof for 143166404019041116898002
50. ! [X0] : (room(X0) => (predd(X0) <=> predi(X0))) [input p6]
51. ! [X0] : (room(X0) => ((predg(X0) | predc(X0)) => predd(X0))) [input p7]
52. ? [X0] : (predf(X0) & room(X0)) [input p8]
65. ! [X0] : ((predg(X0) & predo(X0)) <=> predi(X0)) [input p21]
67. ! [X0] : (room(X0) => (predg(X0) => (~preds(X0) & ~predd(X0)))) [input p23]
68. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis]
87. ? [X0] : room(X0) [pure predicate removal 52]
89. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 68]
164. ! [X0] : ((predd(X0) <=> predi(X0)) | ~room(X0)) [ennf transformation 50]
165. ! [X0] : ((predd(X0) | (~predg(X0) & ~predc(X0))) | ~room(X0)) [ennf transformation 51]
166. ! [X0] : (predd(X0) | (~predg(X0) & ~predc(X0)) | ~room(X0)) [flattening 165]
171. ! [X0] : (((~preds(X0) & ~predd(X0)) | ~predg(X0)) | ~room(X0)) [ennf transformation 67]
172. ! [X0] : ((~preds(X0) & ~predd(X0)) | ~predg(X0) | ~room(X0)) [flattening 171]
173. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 89]
178. ! [X0] : (((predd(X0) | ~predi(X0)) & (predi(X0) | ~predd(X0))) | ~room(X0)) [nnf transformation 164]
179. ? [X0] : room(X0) => room(sK1) [choice axiom]
180. room(sK1) [skolemisation 87,179]
183. ! [X0] : (((predg(X0) & predo(X0)) | ~predi(X0)) & (predi(X0) | (~predg(X0) | ~predo(X0)))) [nnf transformation 65]
184. ! [X0] : (((predg(X0) & predo(X0)) | ~predi(X0)) & (predi(X0) | ~predg(X0) | ~predo(X0))) [flattening 183]
272. ~predd(X0) | predi(X0) | ~room(X0) [cnf transformation 178]
274. ~predc(X0) | predd(X0) | ~room(X0) [cnf transformation 166]
275. ~predg(X0) | predd(X0) | ~room(X0) [cnf transformation 166]
276. room(sK1) [cnf transformation 180]
286. ~predi(X0) | predg(X0) [cnf transformation 184]
289. ~predd(X0) | ~predg(X0) | ~room(X0) [cnf transformation 172]
291. ~room(X0) | predc(X0) [cnf transformation 173]
315. ~predg(X0) | ~room(X0) [subsumption resolution 289,275]
316. predc(sK1) [resolution 291,276]
319. predd(sK1) | ~room(sK1) [resolution 274,316]
322. predd(sK1) [subsumption resolution 319,276]
325. predi(sK1) | ~room(sK1) [resolution 322,272]
326. predi(sK1) [subsumption resolution 325,276]
332. predg(sK1) [resolution 326,286]
342. ~room(sK1) [resolution 332,315]
344. $false [subsumption resolution 342,276]
% SZS output end Proof for 143166404019041116898002
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.214688 |
Barbara, Stephen are the only persons in the room. “Stephen hosts themed dinner parties featuring gourmet home-cooked meals” only if “no one in the room is an active member of a local robotics club if they hosts themed dinner parties featuring gourmet home-cooked meals and is an enthusiastic bird watcher who travels for rare sightings”. If “everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals” then “Barbara owns a 3D printer”. If “Stephen is an enthusiastic bird watcher who travels for rare sightings” then “everyone in the room neither hosts themed dinner parties featuring gourmet home-cooked meals nor practices archery”. Not everyone in the room does not own a 3D printer if they is an active member of a local robotics club. Someone outside the room hosts themed dinner parties featuring gourmet home-cooked meals. Barbara is an active member of a local robotics club. Someone in the room is an active member of a local robotics club. If someone is an active member of a local robotics club then he/she hosts themed dinner parties featuring gourmet home-cooked meals. Barbara hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals owns a 3D printer. Someone outside the room is an active member of a local robotics club, hosts themed dinner parties featuring gourmet home-cooked meals or is an enthusiastic bird watcher who travels for rare sightings. Everyone in the room practices archery if they neither practices archery nor hosts themed dinner parties featuring gourmet home-cooked meals. If someone is an active member of a local robotics club then he/she is an enthusiastic bird watcher who travels for rare sightings. Someone in the room practices archery. Stephen owns a 3D printer. Barbara hosts themed dinner parties featuring gourmet home-cooked meals and is an enthusiastic bird watcher who travels for rare sightings. More than one person in the room practices archery. Someone outside the room is an active member of a local robotics club. Stephen practices archery.
|
Only one person in the room is an active member of a local robotics club.
|
entailment
|
room(barbara)&room(stephen)&(![X]:(room(X)=>(X='barbara'|X='stephen')))&
((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(stephen))=>(~?[X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))=>(is_an_active_member_of_a_local_robotics_club(X)))))))&
((![X]:(room(X)=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(owns_a_3D_printer(barbara)))&
((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(stephen))=>(![X]:(room(X)=>(~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(practices_archery(X)))))))&
(~![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(does_not_own_a_3D_printer(X))))))&
(?[X]:(~room(X)&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))&
(is_an_active_member_of_a_local_robotics_club(barbara))&
(?[X]:(room(X)&(is_an_active_member_of_a_local_robotics_club(X))))&
((![X]:((is_an_active_member_of_a_local_robotics_club(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))&
(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(barbara))&
(![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(owns_a_3D_printer(X))))))&
(?[X]:(~room(X)&(((is_an_active_member_of_a_local_robotics_club(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))&
(![X]:(room(X)=>(((~((practices_archery(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(practices_archery(X))))))&
((![X]:((is_an_active_member_of_a_local_robotics_club(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))&
(?[X]:(room(X)&(practices_archery(X))))&
(owns_a_3D_printer(stephen))&
(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(barbara))&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(barbara))))&
((?[X,Y]:(room(X)&room(Y)&(practices_archery(X)&practices_archery(Y))&(X!=Y))))&
(?[X]:(~room(X)&(is_an_active_member_of_a_local_robotics_club(X))))&
(practices_archery(stephen))
|
room(barbara)&room(stephen)&(![X]:(room(X)=>(X='barbara'|X='stephen')))&
((?[X]:(room(X)&is_an_active_member_of_a_local_robotics_club(X)))&(![X,Y]:((room(X)&room(Y)&(is_an_active_member_of_a_local_robotics_club(X))&(is_an_active_member_of_a_local_robotics_club(Y)))=>(X=Y))))
|
[
"p0",
"p1",
"p6",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 1893062854958545047322292
% SZS output start Proof for 1893062854958545047322292
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. predd(paul) => ~? [X0] : (room(X0) => ((prede(X0) & predd(X0)) => predc(X0))) [input p1]
50. predc(mary) [input p6]
52. ! [X0] : (predc(X0) => predd(X0)) [input p8]
64. ~(! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predc(X0) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
65. ~(! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : (room(X3) => (paul = X3 | mary = X3)) & room(paul) & room(mary)) [rectify 64]
142. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
143. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 142]
144. ! [X0] : ((~predc(X0) & (prede(X0) & predd(X0))) & room(X0)) | ~predd(paul) [ennf transformation 45]
145. ! [X0] : (~predc(X0) & prede(X0) & predd(X0) & room(X0)) | ~predd(paul) [flattening 144]
148. ! [X0] : (predd(X0) | ~predc(X0)) [ennf transformation 52]
152. ? [X0,X1] : (X0 != X1 & (predc(X1) & predc(X0) & room(X1) & room(X0))) | ! [X2] : (~predc(X2) | ~room(X2)) | ? [X3] : ((paul != X3 & mary != X3) & room(X3)) | ~room(paul) | ~room(mary) [ennf transformation 65]
153. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) | ! [X2] : (~predc(X2) | ~room(X2)) | ? [X3] : (paul != X3 & mary != X3 & room(X3)) | ~room(paul) | ~room(mary) [flattening 152]
154. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) | ~sP0 [predicate definition introduction]
155. sP0 | ! [X2] : (~predc(X2) | ~room(X2)) | ? [X3] : (paul != X3 & mary != X3 & room(X3)) | ~room(paul) | ~room(mary) [definition folding 153,154]
171. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) | ~sP0 [nnf transformation 154]
172. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) => (sK9 != sK10 & predc(sK10) & predc(sK9) & room(sK10) & room(sK9)) [choice axiom]
173. (sK9 != sK10 & predc(sK10) & predc(sK9) & room(sK10) & room(sK9)) | ~sP0 [skolemisation 171,172]
174. sP0 | ! [X0] : (~predc(X0) | ~room(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [rectify 155]
175. ? [X1] : (paul != X1 & mary != X1 & room(X1)) => (paul != sK11 & mary != sK11 & room(sK11)) [choice axiom]
176. sP0 | ! [X0] : (~predc(X0) | ~room(X0)) | (paul != sK11 & mary != sK11 & room(sK11)) | ~room(paul) | ~room(mary) [skolemisation 174,175]
257. room(mary) [cnf transformation 143]
258. room(paul) [cnf transformation 143]
259. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 143]
263. ~predc(X0) | ~predd(paul) [cnf transformation 145]
270. predc(mary) [cnf transformation 50]
273. ~predc(X0) | predd(X0) [cnf transformation 148]
291. room(sK9) | ~sP0 [cnf transformation 173]
292. room(sK10) | ~sP0 [cnf transformation 173]
293. predc(sK9) | ~sP0 [cnf transformation 173]
294. predc(sK10) | ~sP0 [cnf transformation 173]
295. sK9 != sK10 | ~sP0 [cnf transformation 173]
296. sP0 | ~predc(X0) | ~room(X0) | room(sK11) | ~room(paul) | ~room(mary) [cnf transformation 176]
297. sP0 | ~predc(X0) | ~room(X0) | mary != sK11 | ~room(paul) | ~room(mary) [cnf transformation 176]
298. sP0 | ~predc(X0) | ~room(X0) | paul != sK11 | ~room(paul) | ~room(mary) [cnf transformation 176]
301. 1 <=> predd(paul) [avatar definition]
303. ~predd(paul) <- (~1) [avatar component clause 301]
305. 2 <=> ! [X0] : ~predc(X0) [avatar definition]
306. ~predc(X0) <- (2) [avatar component clause 305]
307. ~1 | 2 [avatar split clause 263,305,301]
343. 11 <=> sP0 [avatar definition]
347. 12 <=> sK9 = sK10 [avatar definition]
349. sK9 != sK10 <- (~12) [avatar component clause 347]
350. ~11 | ~12 [avatar split clause 295,347,343]
352. 13 <=> predc(sK10) [avatar definition]
354. predc(sK10) <- (13) [avatar component clause 352]
355. ~11 | 13 [avatar split clause 294,352,343]
357. 14 <=> predc(sK9) [avatar definition]
359. predc(sK9) <- (14) [avatar component clause 357]
360. ~11 | 14 [avatar split clause 293,357,343]
362. 15 <=> room(sK10) [avatar definition]
364. room(sK10) <- (15) [avatar component clause 362]
365. ~11 | 15 [avatar split clause 292,362,343]
367. 16 <=> room(sK9) [avatar definition]
369. room(sK9) <- (16) [avatar component clause 367]
370. ~11 | 16 [avatar split clause 291,367,343]
371. sP0 | ~predc(X0) | ~room(X0) | paul != sK11 | ~room(mary) [subsumption resolution 298,258]
372. sP0 | ~predc(X0) | ~room(X0) | paul != sK11 [subsumption resolution 371,257]
374. 17 <=> paul = sK11 [avatar definition]
376. paul != sK11 <- (~17) [avatar component clause 374]
378. 18 <=> ! [X0] : (~predc(X0) | ~room(X0)) [avatar definition]
379. ~predc(X0) | ~room(X0) <- (18) [avatar component clause 378]
380. ~17 | 18 | 11 [avatar split clause 372,343,378,374]
381. sP0 | ~predc(X0) | ~room(X0) | mary != sK11 | ~room(mary) [subsumption resolution 297,258]
382. sP0 | ~predc(X0) | ~room(X0) | mary != sK11 [subsumption resolution 381,257]
384. 19 <=> mary = sK11 [avatar definition]
386. mary != sK11 <- (~19) [avatar component clause 384]
387. ~19 | 18 | 11 [avatar split clause 382,343,378,384]
388. sP0 | ~predc(X0) | ~room(X0) | room(sK11) | ~room(mary) [subsumption resolution 296,258]
389. sP0 | ~predc(X0) | ~room(X0) | room(sK11) [subsumption resolution 388,257]
391. 20 <=> room(sK11) [avatar definition]
393. room(sK11) <- (20) [avatar component clause 391]
394. 20 | 18 | 11 [avatar split clause 389,343,378,391]
399. predd(sK9) <- (14) [resolution 273,359]
400. predd(sK10) <- (13) [resolution 273,354]
423. mary = sK9 | paul = sK9 <- (16) [resolution 259,369]
424. mary = sK10 | paul = sK10 <- (15) [resolution 259,364]
471. 31 <=> paul = sK9 [avatar definition]
473. paul = sK9 <- (31) [avatar component clause 471]
475. 32 <=> mary = sK9 [avatar definition]
477. mary = sK9 <- (32) [avatar component clause 475]
478. 31 | 32 | ~16 [avatar split clause 423,367,475,471]
480. 33 <=> paul = sK10 [avatar definition]
482. paul = sK10 <- (33) [avatar component clause 480]
484. 34 <=> mary = sK10 [avatar definition]
487. 33 | 34 | ~15 [avatar split clause 424,362,484,480]
525. ~room(mary) <- (18) [resolution 379,270]
529. $false <- (18) [subsumption resolution 525,257]
530. ~18 [avatar contradiction clause 529]
531. mary = sK11 | paul = sK11 <- (20) [resolution 393,259]
533. paul = sK11 <- (~19, 20) [subsumption resolution 531,386]
534. $false <- (~17, ~19, 20) [subsumption resolution 533,376]
535. 17 | 19 | ~20 [avatar contradiction clause 534]
555. predd(paul) <- (14, 31) [backward demodulation 399,473]
559. $false <- (~1, 14, 31) [subsumption resolution 555,303]
560. 1 | ~14 | ~31 [avatar contradiction clause 559]
575. mary != sK10 <- (~12, 32) [forward demodulation 349,477]
576. ~34 | 12 | ~32 [avatar split clause 575,475,347,484]
578. predd(paul) <- (13, 33) [backward demodulation 400,482]
582. 1 | ~13 | ~33 [avatar split clause 578,480,352,301]
585. $false <- (2) [resolution 306,270]
588. ~2 [avatar contradiction clause 585]
589. $false [avatar sat refutation 307,350,355,360,365,370,380,387,394,478,487,530,535,560,576,582,588]
% SZS output end Proof for 1893062854958545047322292
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0 |
Bonnie is the only person in the room.
If “Bonnie practices graffiti art” then “if someone plays video games, does not practice graffiti art or does not regularly contributes to tech forums and online communities then he/she plays video games or practices graffiti art or both”.
“No one anywhere does not enjoy landscape photography or regularly contributes to tech forums and online communities” if “Bonnie is a culinary enthusiast who experiments with international cuisines” and vice versa.
“Someone in the room uses an ios phone, enjoys landscape photography and regularly contributes to tech forums and online communities” unless “Bonnie uses an ios phone”.
“Bonnie uses an ios phone” only if “Bonnie is a culinary enthusiast who experiments with international cuisines”.
“Everyone in the room is not a culinary enthusiast who experiments with international cuisines” only if “everyone outside the room who uses an ios phone, practices graffiti art and regularly contributes to tech forums and online communities uses an ios phone”.
“Bonnie is a culinary enthusiast who experiments with international cuisines and does not play video games” if “everyone in the room does not enjoy landscape photography or does not use an ios phone” and vice versa.
Bonnie uses an ios phone.
Bonnie enjoys landscape photography.
Bonnie regularly contributes to tech forums and online communities, practices graffiti art or is a culinary enthusiast who experiments with international cuisines.
Everyone in the room plays video games if they enjoys landscape photography.
Everyone in the room regularly contributes to tech forums and online communities or does not regularly contributes to tech forums and online communities.
Everyone in the room uses an ios phone if they regularly contributes to tech forums and online communities.
Everyone outside the room uses an ios phone.
If someone practices graffiti art then he/she uses an ios phone.
|
Bonnie practices graffiti art.
|
neutral
|
room(bonnie)&(![X]:(room(X)=>(X='bonnie')))&
((practices_graffiti_art(bonnie))=>((![X]:((((plays_video_games(X))|(does_not_practice_graffiti_art(X))|(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))=>(((plays_video_games(X))|(practices_graffiti_art(X))))))))&
((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(bonnie))<=>(~?[X]:(anywhere(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_enjoy_landscape_photography(X)))))))&
(~(uses_an_ios_phone(bonnie))=>(?[X]:(room(X)&(((uses_an_ios_phone(X))&(enjoys_landscape_photography(X))&(regularly_contributes_to_tech_forums_and_online_communities(X)))))))&
((uses_an_ios_phone(bonnie))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(bonnie)))&
((![X]:(room(X)=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(![X]:(~room(X)=>(((((uses_an_ios_phone(X))&(practices_graffiti_art(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))))=>(uses_an_ios_phone(X)))))))&
((![X]:(room(X)=>(((does_not_use_an_ios_phone(X))|(does_not_enjoy_landscape_photography(X))))))<=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(bonnie))&(does_not_play_video_games(bonnie)))))&
(uses_an_ios_phone(bonnie))&
(enjoys_landscape_photography(bonnie))&
(((regularly_contributes_to_tech_forums_and_online_communities(bonnie))|(practices_graffiti_art(bonnie))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(bonnie))))&
(![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(plays_video_games(X))))))&
(![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))))&
(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(uses_an_ios_phone(X))))))&
(![X]:(~room(X)=>(uses_an_ios_phone(X))))&
((![X]:((practices_graffiti_art(X))=>(uses_an_ios_phone(X)))))
|
room(bonnie)&(![X]:(room(X)=>(X='bonnie')))&
practices_graffiti_art(bonnie)
|
[] | null | 0.085068 |
Veronique, Mark, Luther, Tiffany are the only persons in the room.
If “someone in the room is tall” then “if someone neither is not a kind person nor is quieter than Loraine then he/she is quieter than Loraine”.
“Only one person in the room is quieter than Loraine” unless “everyone in the room is quieter than Loraine”.
“Tiffany is tall” unless “Loraine is richer than Veronique”.
No wise person is funny.
Everyone in the room who is not a funny person is not a quiet kind person.
Veronique dreamt that “Mark and Luther either are not a old persons or are older than Loraine but not both”.
It is not the case that “more than one person anywhere is older than Loraine”.
Everyone in the room is a wise patient person and is a calm patient brave person.
Mark is not a quiet person.
Veronique is richer than Loraine.
Loraine is quieter than Mark.
At least one person in the room neither is not a brave strong tall person nor is quieter than Loraine.
Not everyone in the room who is richer than Loraine is quiet.
If someone is older than Loraine then he/she is quieter than Loraine and vice versa.
At least one person in the room is older than Loraine.
Mark is wise.
Tiffany is richer than Loraine.
|
Mark is funny.
|
contradiction
|
room(veronique)&room(mark)&room(luther)&room(tiffany)&(![X]:(room(X)=>(X='veronique'|X='mark'|X='luther'|X='tiffany')))&
((?[X]:(room(X)&(tall(X))))=>((![X]:((~((~(kind(X)&person(X)))|(quieter(loraine,X))))=>(quieter(loraine,X))))))&
(~(![X]:(room(X)=>(quieter(loraine,X))))=>(((?[X]:(room(X)&quieter(loraine,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(loraine,X))&(quieter(loraine,Y)))=>(X=Y))))))&
(~(richer(veronique,loraine))=>(tall(tiffany)))&
(~?[X]:(wise(X)=>funny(X)))&
(![X]:(room(X)=>(((~(funny(X)&person(X)))=>(~(quiet(X)&kind(X)&person(X)))))))&
((veronique_dream=>(((~(old(mark)&person(mark)))<~>(older(loraine,mark)))&((~(old(luther)&person(luther)))<~>(older(loraine,luther))))))&
(~((?[X,Y]:(anywhere(X)&anywhere(Y)&(older(loraine,X)&older(loraine,Y))&(X!=Y)))))&
(![X]:(room(X)=>(((wise(X)&patient(X)&person(X))&(calm(X)&patient(X)&brave(X)&person(X))))))&
(~(quiet(mark)&person(mark)))&
(richer(loraine,veronique))&
(quieter(mark,loraine))&
(((?[X]:(room(X)&~((~(brave(X)&strong(X)&tall(X)&person(X)))|(quieter(loraine,X)))))))&
(~![X]:(room(X)=>(((richer(loraine,X))=>(quiet(X))))))&
((![X]:((older(loraine,X))<=>(quieter(loraine,X)))))&
(((?[X]:(room(X)&older(loraine,X)))))&
(wise(mark))&
(richer(loraine,tiffany))
|
room(veronique)&room(mark)&room(luther)&room(tiffany)&(![X]:(room(X)=>(X='veronique'|X='mark'|X='luther'|X='tiffany')))&
funny(mark)
|
[
"p4",
"hypothesis"
] |
% SZS status Unsatisfiable for 5637140335546527731972933
% SZS output start Proof for 5637140335546527731972933
48. ~? [X0] : (wise(X0) => funny(X0)) [input p4]
62. funny(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
71. ~? [X0] : funny(X0) [pure predicate removal 48]
153. ! [X0] : ~funny(X0) [ennf transformation 71]
161. funny(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 62]
162. funny(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161]
263. ~funny(X0) [cnf transformation 153]
286. funny(paul) [cnf transformation 162]
315. $false [subsumption resolution 286,263]
% SZS output end Proof for 5637140335546527731972933
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.027 s
% ------------------------------
% ------------------------------
| 0 |
Vernon, Eduardo, Rachelle, Robert, John are the only persons in the room.
If "everyone in the room drives a hybrid car or is not allergic to anything" then "Robert mentors a youth basketball team on weekends".
If "Eduardo hosts themed dinner parties featuring gourmet home-cooked meals" then "not everyone anywhere enjoys writing detailed reviews of new and classic board games if they maintains a personal blog focused on cybersecurity tips".
If "John makes intricate hand-cut paper art for exhibitions" then "not everyone in the room does not practice calligraphy or hosts regular workshops on creative writing".
If "it is not the case that "Rachelle does not enjoy snowboarding, designs and sews custom cosplay costumes for conventions and maintains a personal blog focused on cybersecurity tips"" then "everyone in the room is allergic to anything or does not practice urban gardening".
Rachelle is a wine connoisseur with a private cellar of vintage wines.
Eduardo does not create bespoke furniture pieces from reclaimed wood.
Everyone in the room enjoys writing detailed reviews of new and classic board games only if they is a wine connoisseur with a private cellar of vintage wines.
Vernon does not have a specialized collection of handmade artisan pottery or enjoys deep-sea diving and exploring underwater caves or both.
Rachelle has a specialized collection of handmade artisan pottery.
Eduardo who is not allergic to anything does not mentor a youth basketball team on weekends and writes a travel blog.
Eduardo practices urban gardening, does not maintain a personal blog focused on cybersecurity tips and does not have a specialized collection of handmade artisan pottery.
Vernon hosts regular workshops on creative writing.
Everyone in the room builds model airplanes if they either is allergic to anything or writes a travel blog but not both.
|
Eduardo builds model airplanes.
|
entailment
|
room(vernon)&room(eduardo)&room(rachelle)&room(robert)&room(john)&(![X]:(room(X)=>(X='vernon'|X='eduardo'|X='rachelle'|X='robert'|X='john')))&
((![X]:(room(X)=>(((is_not_allergic_to_anything(X))|(drives_a_hybrid_car(X))))))=>(mentors_a_youth_basketball_team_on_weekends(robert)))&
((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(eduardo))=>(~![X]:(anywhere(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))&
((makes_intricate_hand-cut_paper_art_for_exhibitions(john))=>(~![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))|(does_not_practice_calligraphy(X)))))))&
((~(((does_not_enjoy_snowboarding(rachelle))&(designs_and_sews_custom_cosplay_costumes_for_conventions(rachelle))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(rachelle)))))=>(![X]:(room(X)=>(((does_not_practice_urban_gardening(X))|(is_allergic_to_anything(X)))))))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(rachelle))&
(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(eduardo))&
(![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(vernon))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(vernon))))&
(has_a_specialized_collection_of_handmade_artisan_pottery(rachelle))&
((is_not_allergic_to_anything(eduardo))&(((does_not_mentor_a_youth_basketball_team_on_weekends(eduardo))&(writes_a_travel_blog(eduardo)))))&
(((practices_urban_gardening(eduardo))&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(eduardo))&(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(eduardo))))&
(hosts_regular_workshops_on_creative_writing(vernon))&
((![X]:((does_not_enjoy_snowboarding(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))&
((regularly_contributes_to_tech_forums_and_online_communities(robert))&(writes_a_travel_blog(robert)))&
(?[X]:(room(X)&(does_not_collect_rare_minerals(X))))&
(is_not_allergic_to_anything(robert))&
(~![X]:(anywhere(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
(![X]:(room(X)=>(((((is_allergic_to_anything(X))<~>(writes_a_travel_blog(X))))=>(builds_model_airplanes(X))))))&
(mentors_a_youth_basketball_team_on_weekends(robert))&
(is_an_active_member_of_a_local_robotics_club(robert))&
((![X]:((regularly_contributes_to_tech_forums_and_online_communities(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))&
(~((plays_video_games(eduardo))|(mentors_a_youth_basketball_team_on_weekends(eduardo))))&
(~((makes_intricate_hand-cut_paper_art_for_exhibitions(john))|(collects_rare_minerals(john))))&
(regularly_contributes_to_tech_forums_and_online_communities(robert))&
(is_not_allergic_to_anything(vernon))&
(((?[X]:(room(X)&owns_a_microscope(X)))&(![X,Y]:((room(X)&room(Y)&(owns_a_microscope(X))&(owns_a_microscope(Y)))=>(X=Y)))))&
(~![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))|(does_not_practice_calligraphy(X))))))
|
room(vernon)&room(eduardo)&room(rachelle)&room(robert)&room(john)&(![X]:(room(X)=>(X='vernon'|X='eduardo'|X='rachelle'|X='robert'|X='john')))&
builds_model_airplanes(eduardo)
|
[
"p0",
"p10",
"p18",
"hypothesis"
] |
% SZS status Unsatisfiable for 6044726705242934238612084
% SZS output start Proof for 6044726705242934238612084
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
54. preda(paul) & ~predr(paul) & ~predh(paul) [input p10]
62. ! [X0] : (room(X0) => ((predh(X0) <~> preda(X0)) => preds(X0))) [input p18]
72. ~(preds(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
169. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
170. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 169]
175. ! [X0] : ((preds(X0) | (predh(X0) <=> preda(X0))) | ~room(X0)) [ennf transformation 62]
176. ! [X0] : (preds(X0) | (predh(X0) <=> preda(X0)) | ~room(X0)) [flattening 175]
181. ~preds(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 72]
182. ~preds(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 181]
190. ! [X0] : (preds(X0) | ((predh(X0) | ~preda(X0)) & (preda(X0) | ~predh(X0))) | ~room(X0)) [nnf transformation 176]
195. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
196. ~preds(paul) | (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 182,195]
277. room(mary) [cnf transformation 170]
278. room(paul) [cnf transformation 170]
279. room(fred) [cnf transformation 170]
280. room(alice) [cnf transformation 170]
281. room(john) [cnf transformation 170]
282. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 170]
287. ~predh(paul) [cnf transformation 54]
289. preda(paul) [cnf transformation 54]
299. ~preda(X0) | predh(X0) | preds(X0) | ~room(X0) [cnf transformation 190]
308. ~preds(paul) | room(sK5) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
309. ~preds(paul) | mary != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
310. ~preds(paul) | paul != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
311. ~preds(paul) | fred != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
312. ~preds(paul) | alice != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
313. ~preds(paul) | john != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
337. ~preds(paul) | john != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 313,281]
338. ~preds(paul) | john != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 337,280]
339. ~preds(paul) | john != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 338,279]
340. ~preds(paul) | john != sK5 | ~room(mary) [subsumption resolution 339,278]
341. ~preds(paul) | john != sK5 [subsumption resolution 340,277]
343. 6 <=> john = sK5 [avatar definition]
345. john != sK5 <- (~6) [avatar component clause 343]
347. 7 <=> preds(paul) [avatar definition]
350. ~6 | ~7 [avatar split clause 341,347,343]
351. ~preds(paul) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 312,281]
352. ~preds(paul) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 351,280]
353. ~preds(paul) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 352,279]
354. ~preds(paul) | alice != sK5 | ~room(mary) [subsumption resolution 353,278]
355. ~preds(paul) | alice != sK5 [subsumption resolution 354,277]
357. 8 <=> alice = sK5 [avatar definition]
359. alice != sK5 <- (~8) [avatar component clause 357]
360. ~8 | ~7 [avatar split clause 355,347,357]
361. ~preds(paul) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 311,281]
362. ~preds(paul) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 361,280]
363. ~preds(paul) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 362,279]
364. ~preds(paul) | fred != sK5 | ~room(mary) [subsumption resolution 363,278]
365. ~preds(paul) | fred != sK5 [subsumption resolution 364,277]
367. 9 <=> fred = sK5 [avatar definition]
369. fred != sK5 <- (~9) [avatar component clause 367]
370. ~9 | ~7 [avatar split clause 365,347,367]
371. ~preds(paul) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 310,281]
372. ~preds(paul) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 371,280]
373. ~preds(paul) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 372,279]
374. ~preds(paul) | paul != sK5 | ~room(mary) [subsumption resolution 373,278]
375. ~preds(paul) | paul != sK5 [subsumption resolution 374,277]
377. 10 <=> paul = sK5 [avatar definition]
379. paul != sK5 <- (~10) [avatar component clause 377]
380. ~10 | ~7 [avatar split clause 375,347,377]
381. ~preds(paul) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 309,281]
382. ~preds(paul) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 381,280]
383. ~preds(paul) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 382,279]
384. ~preds(paul) | mary != sK5 | ~room(mary) [subsumption resolution 383,278]
385. ~preds(paul) | mary != sK5 [subsumption resolution 384,277]
387. 11 <=> mary = sK5 [avatar definition]
389. mary != sK5 <- (~11) [avatar component clause 387]
390. ~11 | ~7 [avatar split clause 385,347,387]
391. ~preds(paul) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 308,281]
392. ~preds(paul) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 391,280]
393. ~preds(paul) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 392,279]
394. ~preds(paul) | room(sK5) | ~room(mary) [subsumption resolution 393,278]
395. ~preds(paul) | room(sK5) [subsumption resolution 394,277]
397. 12 <=> room(sK5) [avatar definition]
399. room(sK5) <- (12) [avatar component clause 397]
400. 12 | ~7 [avatar split clause 395,347,397]
401. predh(paul) | preds(paul) | ~room(paul) [resolution 299,289]
403. preds(paul) | ~room(paul) [subsumption resolution 401,287]
409. preds(paul) [subsumption resolution 403,278]
410. 7 [avatar split clause 409,347]
464. alice = sK5 | fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (12) [resolution 282,399]
528. fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (~8, 12) [subsumption resolution 464,359]
529. paul = sK5 | mary = sK5 | john = sK5 <- (~8, ~9, 12) [subsumption resolution 528,369]
530. mary = sK5 | john = sK5 <- (~8, ~9, ~10, 12) [subsumption resolution 529,379]
531. john = sK5 <- (~8, ~9, ~10, ~11, 12) [subsumption resolution 530,389]
532. $false <- (~6, ~8, ~9, ~10, ~11, 12) [subsumption resolution 531,345]
533. 6 | 8 | 9 | 10 | 11 | ~12 [avatar contradiction clause 532]
534. $false [avatar sat refutation 350,360,370,380,390,400,410,533]
% SZS output end Proof for 6044726705242934238612084
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.016605 |
David, Samuel, Joshua, Karen are the only persons in the room. If "everyone in the room collects rare and antique scientific instruments or does not enjoy windsurfing" then "everyone anywhere who collects rare and antique scientific instruments enjoys watercolor painting". "Joshua does not enjoy windsurfing" if "everyone anywhere does not participate in citizen science projects related to wildlife monitoring or maintains a personal blog focused on cybersecurity tips". If "Samuel enjoys rooftop gardening" then "everyone in the room who makes intricate hand-cut paper art for exhibitions is not a night owl". Either "everyone in the room does not enjoy salsa dancing or enjoys rooftop gardening" or "everyone in the room enjoys wildlife photography" but not both. If "everyone in the room enjoys salsa dancing or does not enjoy bird watching" then "David neither does not collect rare and antique scientific instruments nor enjoys bird watching" otherwise "not everyone in the room who does not practice yoga either is a night owl or enjoys watercolor painting but not both". "Joshua does not collect rare and antique scientific instruments" unless "David collects rare and antique scientific instruments". If "everyone in the room does not practice kickboxing or enjoys rooftop gardening" then "David who makes intricate hand-cut paper art for exhibitions writes a travel blog". "Everyone in the room who is a night owl practices tai chi" if "Karen enjoys salsa dancing". "Everyone in the room does not enjoy wildlife photography or does not practice yoga" if "everyone in the room does not enjoy snowboarding or enjoys bird watching" and vice versa. If "David writes a travel blog" then "everyone in the room writes poetry or is not a wine connoisseur". If "everyone in the room writes poetry or is not a wine connoisseur" then "everyone in the room who is allergic to anything is a night owl". Everyone in the room is a night owl only if they enjoys salsa dancing. Everyone in the room does not write a travel blog or enjoys salsa dancing. Everyone in the room who does not write a travel blog enjoys windsurfing. David collects rare and antique scientific instruments. Joshua enjoys watercolor painting. David enjoys bird watching. Everyone in the room who is allergic to anything is a night owl.
|
Karen makes intricate hand-cut paper art for exhibitions.
|
entailment
|
room(david)&room(samuel)&room(joshua)&room(karen)&(![X]:(room(X)=>(X='david'|X='samuel'|X='joshua'|X='karen')))&
((![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(collects_rare_and_antique_scientific_instruments(X))))))=>(![X]:(anywhere(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(enjoys_watercolor_painting(X)))))))&
((![X]:(anywhere(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))=>(does_not_enjoy_windsurfing(joshua)))&
((enjoys_rooftop_gardening(samuel))=>(![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(is_not_a_night_owl(X)))))))&
((![X]:(room(X)=>(((enjoys_rooftop_gardening(X))|(does_not_enjoy_salsa_dancing(X))))))<~>(![X]:(room(X)=>(enjoys_wildlife_photography(X)))))&
(((![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))|(enjoys_salsa_dancing(X))))))=>(~((does_not_collect_rare_and_antique_scientific_instruments(david))|(enjoys_bird_watching(david)))))&((~(![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))|(enjoys_salsa_dancing(X)))))))=>(~![X]:(room(X)=>(((does_not_practice_yoga(X))=>(((is_a_night_owl(X))<~>(enjoys_watercolor_painting(X))))))))))&
(~(collects_rare_and_antique_scientific_instruments(david))=>(does_not_collect_rare_and_antique_scientific_instruments(joshua)))&
((![X]:(room(X)=>(((enjoys_rooftop_gardening(X))|(does_not_practice_kickboxing(X))))))=>((makes_intricate_hand-cut_paper_art_for_exhibitions(david))&(writes_a_travel_blog(david))))&
((enjoys_salsa_dancing(karen))=>(![X]:(room(X)=>(((is_a_night_owl(X))=>(practices_tai_chi(X)))))))&
((![X]:(room(X)=>(((enjoys_bird_watching(X))|(does_not_enjoy_snowboarding(X))))))<=>(![X]:(room(X)=>(((does_not_practice_yoga(X))|(does_not_enjoy_wildlife_photography(X)))))))&
(((writes_a_travel_blog(david))=>(![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))|(writes_poetry(X)))))))&
((![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))|(writes_poetry(X))))))=>(![X]:(room(X)=>(((is_allergic_to_anything(X))=>(is_a_night_owl(X))))))))&
(![X]:(room(X)=>(((enjoys_salsa_dancing(X))<=(is_a_night_owl(X))))))&
(![X]:(room(X)=>(((enjoys_salsa_dancing(X))|(does_not_write_a_travel_blog(X))))))&
(![X]:(room(X)=>(((does_not_write_a_travel_blog(X))=>(enjoys_windsurfing(X))))))&
(collects_rare_and_antique_scientific_instruments(david))&
(enjoys_watercolor_painting(joshua))&
(enjoys_bird_watching(david))&
(![X]:(room(X)=>(((is_allergic_to_anything(X))=>(is_a_night_owl(X))))))&
(owns_a_smart_tv(david))&
(![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(collects_rare_and_antique_scientific_instruments(X))))))&
(~((enjoys_wildlife_photography(david))|(is_allergic_to_anything(david))))&
(makes_intricate_hand-cut_paper_art_for_exhibitions(karen))
|
room(david)&room(samuel)&room(joshua)&room(karen)&(![X]:(room(X)=>(X='david'|X='samuel'|X='joshua'|X='karen')))&
makes_intricate_hand-cut_paper_art_for_exhibitions(karen)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 2150663287854333459840559
% SZS output start Proof for 2150663287854333459840559
44. predf(alice) & ~(predt(mary) | predb(mary)) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predq(mary) & ! [X0] : (room(X0) => (predt(X0) => prede(X0))) & predg(mary) & predy(fred) & predc(mary) & ! [X0] : (room(X0) => (~predu(X0) => preda(X0))) & ! [X0] : (room(X0) => (~predu(X0) | predz(X0))) & ! [X0] : (room(X0) => (prede(X0) => predz(X0))) & (! [X0] : (room(X0) => (predi(X0) | ~predv(X0))) => ! [X0] : (room(X0) => (predt(X0) => prede(X0)))) & (predu(mary) => ! [X0] : (room(X0) => (predi(X0) | ~predv(X0)))) & (! [X0] : (room(X0) => (~predj(X0) | predg(X0))) <=> ! [X0] : (room(X0) => (~predb(X0) | ~predx(X0)))) & (predz(alice) => ! [X0] : (room(X0) => (prede(X0) => predm(X0)))) & (! [X0] : (room(X0) => (~predw(X0) | predl(X0))) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X0] : (room(X0) => (predz(X0) | ~predg(X0))) => ~! [X0] : (room(X0) => (~predx(X0) => (prede(X0) <~> predy(X0))))) & (! [X0] : (room(X0) => (predz(X0) | ~predg(X0))) => ~(predg(mary) | ~predc(mary))) & (! [X0] : (room(X0) => (~predz(X0) | predl(X0))) <~> ! [X0] : (room(X0) => predb(X0))) & (predl(paul) => ! [X0] : (room(X0) => (predf(X0) => ~prede(X0)))) & (! [X0] : (anywhere(X0) => (~preds(X0) | predr(X0))) => ~preda(fred)) & (! [X0] : (room(X0) => (predc(X0) | ~preda(X0))) => ! [X0] : (anywhere(X0) => (predc(X0) => predy(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. ~(predf(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
46. predf(alice) & ~(predt(mary) | predb(mary)) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predq(mary) & ! [X1] : (room(X1) => (predt(X1) => prede(X1))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (! [X5] : (room(X5) => (predi(X5) | ~predv(X5))) => ! [X6] : (room(X6) => (predt(X6) => prede(X6)))) & (predu(mary) => ! [X7] : (room(X7) => (predi(X7) | ~predv(X7)))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (predz(alice) => ! [X10] : (room(X10) => (prede(X10) => predm(X10)))) & (! [X11] : (room(X11) => (~predw(X11) | predl(X11))) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : (anywhere(X18) => (~preds(X18) | predr(X18))) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44]
47. predf(alice) & ~(predt(mary) | predb(mary)) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & ! [X1] : (room(X1) => (predt(X1) => prede(X1))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (! [X5] : (room(X5) => (predi(X5) | ~predv(X5))) => ! [X6] : (room(X6) => (predt(X6) => prede(X6)))) & (predu(mary) => ! [X7] : (room(X7) => (predi(X7) | ~predv(X7)))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (predz(alice) => ! [X10] : (room(X10) => (prede(X10) => predm(X10)))) & (! [X11] : (room(X11) => (~predw(X11) | predl(X11))) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : (anywhere(X18) => (~preds(X18) | predr(X18))) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46]
48. predf(alice) & ~predb(mary) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (predu(mary) => ! [X7] : (room(X7) => (predi(X7) | ~predv(X7)))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (predz(alice) => ! [X10] : (room(X10) => (prede(X10) => predm(X10)))) & (! [X11] : (room(X11) => (~predw(X11) | predl(X11))) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : (anywhere(X18) => (~preds(X18) | predr(X18))) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47]
49. predf(alice) & ~predb(mary) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (predz(alice) => ! [X10] : (room(X10) => (prede(X10) => predm(X10)))) & (! [X11] : (room(X11) => (~predw(X11) | predl(X11))) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : (anywhere(X18) => (~preds(X18) | predr(X18))) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48]
50. predf(alice) & ~predb(mary) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (! [X11] : (room(X11) => (~predw(X11) | predl(X11))) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : (anywhere(X18) => (~preds(X18) | predr(X18))) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49]
51. predf(alice) & ~predb(mary) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (! [X11] : (room(X11) => predl(X11)) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : (anywhere(X18) => (~preds(X18) | predr(X18))) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50]
52. predf(alice) & ~predb(mary) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (! [X11] : (room(X11) => predl(X11)) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : (anywhere(X18) => predr(X18)) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51]
53. predf(alice) & ~predb(mary) & ! [X0] : (room(X0) => (predc(X0) | ~predb(X0))) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (room(X2) => (~predu(X2) => preda(X2))) & ! [X3] : (room(X3) => (~predu(X3) | predz(X3))) & ! [X4] : (room(X4) => (prede(X4) => predz(X4))) & (! [X8] : (room(X8) => (~predj(X8) | predg(X8))) <=> ! [X9] : (room(X9) => (~predb(X9) | ~predx(X9)))) & (! [X11] : (room(X11) => predl(X11)) => (predu(mary) & predf(mary))) & (~predc(mary) => ~predc(fred)) & (~! [X12] : (room(X12) => (predz(X12) | ~predg(X12))) => ~! [X13] : (room(X13) => (~predx(X13) => (prede(X13) <~> predy(X13))))) & (! [X14] : (room(X14) => (predz(X14) | ~predg(X14))) => ~(predg(mary) | ~predc(mary))) & (! [X15] : (room(X15) => (~predz(X15) | predl(X15))) <~> ! [X16] : (room(X16) => predb(X16))) & (predl(paul) => ! [X17] : (room(X17) => (predf(X17) => ~prede(X17)))) & (! [X18] : ~anywhere(X18) => ~preda(fred)) & (! [X19] : (room(X19) => (predc(X19) | ~preda(X19))) => ! [X20] : (anywhere(X20) => (predc(X20) => predy(X20)))) & ! [X21] : (room(X21) => (alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52]
125. predf(alice) & ~predb(mary) & ! [X0] : ((predc(X0) | ~predb(X0)) | ~room(X0)) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : ((preda(X2) | predu(X2)) | ~room(X2)) & ! [X3] : ((~predu(X3) | predz(X3)) | ~room(X3)) & ! [X4] : ((predz(X4) | ~prede(X4)) | ~room(X4)) & (! [X8] : ((~predj(X8) | predg(X8)) | ~room(X8)) <=> ! [X9] : ((~predb(X9) | ~predx(X9)) | ~room(X9))) & ((predu(mary) & predf(mary)) | ? [X11] : (~predl(X11) & room(X11))) & (~predc(fred) | predc(mary)) & (? [X13] : (((prede(X13) <=> predy(X13)) & ~predx(X13)) & room(X13)) | ! [X12] : ((predz(X12) | ~predg(X12)) | ~room(X12))) & ((~predg(mary) & predc(mary)) | ? [X14] : ((~predz(X14) & predg(X14)) & room(X14))) & (! [X15] : ((~predz(X15) | predl(X15)) | ~room(X15)) <~> ! [X16] : (predb(X16) | ~room(X16))) & (! [X17] : ((~prede(X17) | ~predf(X17)) | ~room(X17)) | ~predl(paul)) & (~preda(fred) | ? [X18] : anywhere(X18)) & (! [X20] : ((predy(X20) | ~predc(X20)) | ~anywhere(X20)) | ? [X19] : ((~predc(X19) & preda(X19)) & room(X19))) & ! [X21] : ((alice = X21 | fred = X21 | paul = X21 | mary = X21) | ~room(X21)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53]
126. predf(alice) & ~predb(mary) & ! [X0] : (predc(X0) | ~predb(X0) | ~room(X0)) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (preda(X2) | predu(X2) | ~room(X2)) & ! [X3] : (~predu(X3) | predz(X3) | ~room(X3)) & ! [X4] : (predz(X4) | ~prede(X4) | ~room(X4)) & (! [X8] : (~predj(X8) | predg(X8) | ~room(X8)) <=> ! [X9] : (~predb(X9) | ~predx(X9) | ~room(X9))) & ((predu(mary) & predf(mary)) | ? [X11] : (~predl(X11) & room(X11))) & (~predc(fred) | predc(mary)) & (? [X13] : ((prede(X13) <=> predy(X13)) & ~predx(X13) & room(X13)) | ! [X12] : (predz(X12) | ~predg(X12) | ~room(X12))) & ((~predg(mary) & predc(mary)) | ? [X14] : (~predz(X14) & predg(X14) & room(X14))) & (! [X15] : (~predz(X15) | predl(X15) | ~room(X15)) <~> ! [X16] : (predb(X16) | ~room(X16))) & (! [X17] : (~prede(X17) | ~predf(X17) | ~room(X17)) | ~predl(paul)) & (~preda(fred) | ? [X18] : anywhere(X18)) & (! [X20] : (predy(X20) | ~predc(X20) | ~anywhere(X20)) | ? [X19] : (~predc(X19) & preda(X19) & room(X19))) & ! [X21] : (alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 125]
127. ~predf(alice) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45]
128. ~predf(alice) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 127]
130. predf(alice) & ~predb(mary) & ! [X0] : (predc(X0) | ~predb(X0) | ~room(X0)) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (preda(X2) | predu(X2) | ~room(X2)) & ! [X3] : (~predu(X3) | predz(X3) | ~room(X3)) & ! [X4] : (predz(X4) | ~prede(X4) | ~room(X4)) & ((! [X8] : (~predj(X8) | predg(X8) | ~room(X8)) | ? [X9] : (predb(X9) & predx(X9) & room(X9))) & (! [X9] : (~predb(X9) | ~predx(X9) | ~room(X9)) | ? [X8] : (predj(X8) & ~predg(X8) & room(X8)))) & ((predu(mary) & predf(mary)) | ? [X11] : (~predl(X11) & room(X11))) & (~predc(fred) | predc(mary)) & (? [X13] : (((prede(X13) | ~predy(X13)) & (predy(X13) | ~prede(X13))) & ~predx(X13) & room(X13)) | ! [X12] : (predz(X12) | ~predg(X12) | ~room(X12))) & ((~predg(mary) & predc(mary)) | ? [X14] : (~predz(X14) & predg(X14) & room(X14))) & ((? [X16] : (~predb(X16) & room(X16)) | ? [X15] : (predz(X15) & ~predl(X15) & room(X15))) & (! [X16] : (predb(X16) | ~room(X16)) | ! [X15] : (~predz(X15) | predl(X15) | ~room(X15)))) & (! [X17] : (~prede(X17) | ~predf(X17) | ~room(X17)) | ~predl(paul)) & (~preda(fred) | ? [X18] : anywhere(X18)) & (! [X20] : (predy(X20) | ~predc(X20) | ~anywhere(X20)) | ? [X19] : (~predc(X19) & preda(X19) & room(X19))) & ! [X21] : (alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 126]
131. predf(alice) & ~predb(mary) & ! [X0] : (predc(X0) | ~predb(X0) | ~room(X0)) & predg(mary) & predy(fred) & predc(mary) & ! [X2] : (preda(X2) | predu(X2) | ~room(X2)) & ! [X3] : (~predu(X3) | predz(X3) | ~room(X3)) & ! [X4] : (predz(X4) | ~prede(X4) | ~room(X4)) & (! [X8] : (~predj(X8) | predg(X8) | ~room(X8)) | ? [X9] : (predb(X9) & predx(X9) & room(X9))) & (! [X9] : (~predb(X9) | ~predx(X9) | ~room(X9)) | ? [X8] : (predj(X8) & ~predg(X8) & room(X8))) & ((predu(mary) & predf(mary)) | ? [X11] : (~predl(X11) & room(X11))) & (~predc(fred) | predc(mary)) & (? [X13] : ((prede(X13) | ~predy(X13)) & (predy(X13) | ~prede(X13)) & ~predx(X13) & room(X13)) | ! [X12] : (predz(X12) | ~predg(X12) | ~room(X12))) & ((~predg(mary) & predc(mary)) | ? [X14] : (~predz(X14) & predg(X14) & room(X14))) & (? [X16] : (~predb(X16) & room(X16)) | ? [X15] : (predz(X15) & ~predl(X15) & room(X15))) & (! [X16] : (predb(X16) | ~room(X16)) | ! [X15] : (~predz(X15) | predl(X15) | ~room(X15))) & (! [X17] : (~prede(X17) | ~predf(X17) | ~room(X17)) | ~predl(paul)) & (~preda(fred) | ? [X18] : anywhere(X18)) & (! [X20] : (predy(X20) | ~predc(X20) | ~anywhere(X20)) | ? [X19] : (~predc(X19) & preda(X19) & room(X19))) & ! [X21] : (alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130]
132. predf(alice) & ~predb(mary) & ! [X0] : (predc(X0) | ~predb(X0) | ~room(X0)) & predg(mary) & predy(fred) & predc(mary) & ! [X1] : (preda(X1) | predu(X1) | ~room(X1)) & ! [X2] : (~predu(X2) | predz(X2) | ~room(X2)) & ! [X3] : (predz(X3) | ~prede(X3) | ~room(X3)) & (! [X4] : (~predj(X4) | predg(X4) | ~room(X4)) | ? [X5] : (predb(X5) & predx(X5) & room(X5))) & (! [X6] : (~predb(X6) | ~predx(X6) | ~room(X6)) | ? [X7] : (predj(X7) & ~predg(X7) & room(X7))) & ((predu(mary) & predf(mary)) | ? [X8] : (~predl(X8) & room(X8))) & (~predc(fred) | predc(mary)) & (? [X9] : ((prede(X9) | ~predy(X9)) & (predy(X9) | ~prede(X9)) & ~predx(X9) & room(X9)) | ! [X10] : (predz(X10) | ~predg(X10) | ~room(X10))) & ((~predg(mary) & predc(mary)) | ? [X11] : (~predz(X11) & predg(X11) & room(X11))) & (? [X12] : (~predb(X12) & room(X12)) | ? [X13] : (predz(X13) & ~predl(X13) & room(X13))) & (! [X14] : (predb(X14) | ~room(X14)) | ! [X15] : (~predz(X15) | predl(X15) | ~room(X15))) & (! [X16] : (~prede(X16) | ~predf(X16) | ~room(X16)) | ~predl(paul)) & (~preda(fred) | ? [X17] : anywhere(X17)) & (! [X18] : (predy(X18) | ~predc(X18) | ~anywhere(X18)) | ? [X19] : (~predc(X19) & preda(X19) & room(X19))) & ! [X20] : (alice = X20 | fred = X20 | paul = X20 | mary = X20 | ~room(X20)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 131]
133. ? [X5] : (predb(X5) & predx(X5) & room(X5)) => (predb(sK0) & predx(sK0) & room(sK0)) [choice axiom]
134. ? [X7] : (predj(X7) & ~predg(X7) & room(X7)) => (predj(sK1) & ~predg(sK1) & room(sK1)) [choice axiom]
135. ? [X8] : (~predl(X8) & room(X8)) => (~predl(sK2) & room(sK2)) [choice axiom]
136. ? [X9] : ((prede(X9) | ~predy(X9)) & (predy(X9) | ~prede(X9)) & ~predx(X9) & room(X9)) => ((prede(sK3) | ~predy(sK3)) & (predy(sK3) | ~prede(sK3)) & ~predx(sK3) & room(sK3)) [choice axiom]
137. ? [X11] : (~predz(X11) & predg(X11) & room(X11)) => (~predz(sK4) & predg(sK4) & room(sK4)) [choice axiom]
138. ? [X12] : (~predb(X12) & room(X12)) => (~predb(sK5) & room(sK5)) [choice axiom]
139. ? [X13] : (predz(X13) & ~predl(X13) & room(X13)) => (predz(sK6) & ~predl(sK6) & room(sK6)) [choice axiom]
140. ? [X17] : anywhere(X17) => anywhere(sK7) [choice axiom]
141. ? [X19] : (~predc(X19) & preda(X19) & room(X19)) => (~predc(sK8) & preda(sK8) & room(sK8)) [choice axiom]
142. predf(alice) & ~predb(mary) & ! [X0] : (predc(X0) | ~predb(X0) | ~room(X0)) & predg(mary) & predy(fred) & predc(mary) & ! [X1] : (preda(X1) | predu(X1) | ~room(X1)) & ! [X2] : (~predu(X2) | predz(X2) | ~room(X2)) & ! [X3] : (predz(X3) | ~prede(X3) | ~room(X3)) & (! [X4] : (~predj(X4) | predg(X4) | ~room(X4)) | (predb(sK0) & predx(sK0) & room(sK0))) & (! [X6] : (~predb(X6) | ~predx(X6) | ~room(X6)) | (predj(sK1) & ~predg(sK1) & room(sK1))) & ((predu(mary) & predf(mary)) | (~predl(sK2) & room(sK2))) & (~predc(fred) | predc(mary)) & (((prede(sK3) | ~predy(sK3)) & (predy(sK3) | ~prede(sK3)) & ~predx(sK3) & room(sK3)) | ! [X10] : (predz(X10) | ~predg(X10) | ~room(X10))) & ((~predg(mary) & predc(mary)) | (~predz(sK4) & predg(sK4) & room(sK4))) & ((~predb(sK5) & room(sK5)) | (predz(sK6) & ~predl(sK6) & room(sK6))) & (! [X14] : (predb(X14) | ~room(X14)) | ! [X15] : (~predz(X15) | predl(X15) | ~room(X15))) & (! [X16] : (~prede(X16) | ~predf(X16) | ~room(X16)) | ~predl(paul)) & (~preda(fred) | anywhere(sK7)) & (! [X18] : (predy(X18) | ~predc(X18) | ~anywhere(X18)) | (~predc(sK8) & preda(sK8) & room(sK8))) & ! [X20] : (alice = X20 | fred = X20 | paul = X20 | mary = X20 | ~room(X20)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 132,141,140,139,138,137,136,135,134,133]
143. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom]
144. ~predf(alice) | (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 128,143]
226. room(mary) [cnf transformation 142]
227. room(paul) [cnf transformation 142]
228. room(fred) [cnf transformation 142]
229. room(alice) [cnf transformation 142]
230. ~room(X20) | fred = X20 | paul = X20 | mary = X20 | alice = X20 [cnf transformation 142]
272. predf(alice) [cnf transformation 142]
273. ~predf(alice) | room(sK9) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144]
274. ~predf(alice) | mary != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144]
275. ~predf(alice) | paul != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144]
276. ~predf(alice) | fred != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144]
277. ~predf(alice) | alice != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144]
422. alice != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,272]
423. alice != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 422,229]
424. alice != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 423,228]
425. alice != sK9 | ~room(mary) [subsumption resolution 424,227]
426. alice != sK9 [subsumption resolution 425,226]
427. fred != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 276,272]
428. fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 427,229]
429. fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 428,228]
430. fred != sK9 | ~room(mary) [subsumption resolution 429,227]
431. fred != sK9 [subsumption resolution 430,226]
432. paul != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 275,272]
433. paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 432,229]
434. paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 433,228]
435. paul != sK9 | ~room(mary) [subsumption resolution 434,227]
436. paul != sK9 [subsumption resolution 435,226]
437. mary != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,272]
438. mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 437,229]
439. mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 438,228]
440. mary != sK9 | ~room(mary) [subsumption resolution 439,227]
441. mary != sK9 [subsumption resolution 440,226]
442. room(sK9) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 273,272]
443. room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 442,229]
444. room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 443,228]
445. room(sK9) | ~room(mary) [subsumption resolution 444,227]
446. room(sK9) [subsumption resolution 445,226]
613. fred = sK9 | paul = sK9 | mary = sK9 | alice = sK9 [resolution 230,446]
682. paul = sK9 | mary = sK9 | alice = sK9 [subsumption resolution 613,431]
683. mary = sK9 | alice = sK9 [subsumption resolution 682,436]
684. alice = sK9 [subsumption resolution 683,441]
685. $false [subsumption resolution 684,426]
% SZS output end Proof for 2150663287854333459840559
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5500
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.057825 |
Valarie, Maria are the only persons in the room.
If “everyone in the room cannot play the guitar or practices and performs acrobatic dance routines” then “Valarie can play the guitar”.
If “at least one person in the room can play the guitar” then “if someone does not practice kickboxing then he/she does enjoy trail running”.
“Everyone outside the room has a tattoo” only if “everyone outside the room does not own a smartwatch if they enjoys kayaking”.
“Maria is not a dedicated advocate for digital privacy and encryption” if “Valarie makes intricate hand-cut paper art for exhibitions” and vice versa.
Valarie hosts regular game nights featuring complex strategy games.
Everyone in the room collects limited-edition art prints from contemporary artists or does not regularly goes on multi-day backpacking trips in national parks.
Everyone anywhere does not use a Windows laptop or regularly goes on multi-day backpacking trips in national parks.
Valarie practices calligraphy.
Everyone in the room does not practice and performs acrobatic dance routines or practices and performs acrobatic dance routines.
Valarie neither does practice yoga nor is a professional photographer specializing in portrait photography.
Valarie neither uses a Windows laptop nor owns a smart tv.
If someone does practice yoga then he/she practices kickboxing and does not own a smart tv and vice versa.
|
Valarie does enjoy trail running.
|
entailment
|
room(valarie)&room(maria)&(![X]:(room(X)=>(X='valarie'|X='maria')))&
((![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(cannot_play_the_guitar(X))))))=>(can_play_the_guitar(valarie)))&
((((?[X]:(room(X)&can_play_the_guitar(X)))))=>((![X]:((does_not_practice_kickboxing(X))=>(does_enjoy_trail_running(X))))))&
((![X]:(~room(X)=>(has_a_tattoo(X))))=>(![X]:(~room(X)=>(((enjoys_kayaking(X))=>(does_not_own_a_smartwatch(X)))))))&
((makes_intricate_hand-cut_paper_art_for_exhibitions(valarie))<=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(maria)))&
(hosts_regular_game_nights_featuring_complex_strategy_games(valarie))&
(![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))))))&
(![X]:(anywhere(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_use_a_Windows_laptop(X))))))&
(practices_calligraphy(valarie))&
(![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))&
(?[X]:(room(X)&(is_a_dedicated_volunteer_for_local_community_service_projects(X))))&
(~![X]:(room(X)=>(((has_a_tattoo(X))=>(((enjoys_kayaking(X))|(does_not_collect_vintage_vinyl_records(X))))))))&
(~((does_practice_yoga(valarie))|(is_a_professional_photographer_specializing_in_portrait_photography(valarie))))&
((hosts_regular_game_nights_featuring_complex_strategy_games(valarie))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(valarie)))&
(![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))&
(![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))&
(~((uses_a_Windows_laptop(valarie))|(owns_a_smart_tv(valarie))))&
((![X]:((does_practice_yoga(X))<=>(((practices_kickboxing(X))&(does_not_own_a_smart_tv(X)))))))&
(![X]:(room(X)=>(((practices_pilates(X))=>(does_enjoy_trail_running(X))))))
|
room(valarie)&room(maria)&(![X]:(room(X)=>(X='valarie'|X='maria')))&
does_enjoy_trail_running(valarie)
|
[
"p0",
"p1",
"p2",
"p12",
"p16",
"p17",
"hypothesis"
] |
% SZS status Unsatisfiable for 7614702365641374133272030
% SZS output start Proof for 7614702365641374133272030
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. ! [X0] : (room(X0) => (~predq(X0) | predv(X0))) => predq(mary) [input p1]
46. ? [X0] : (predq(X0) & room(X0)) => ! [X0] : (~preda(X0) => predg(X0)) [input p2]
56. ~(predr(mary) | predj(mary)) [input p12]
60. ~(predy(mary) | predw(mary)) [input p16]
61. ! [X0] : (predj(X0) <=> (~predy(X0) & preda(X0))) [input p17]
63. ~(predg(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
64. ? [X0] : (predq(X0) & room(X0)) => ! [X1] : (~preda(X1) => predg(X1)) [rectify 46]
66. ! [X0] : ((~predy(X0) & preda(X0)) => predj(X0)) [unused predicate definition removal 61]
71. ~predj(mary) [pure predicate removal 56]
75. ~predy(mary) [pure predicate removal 60]
155. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
156. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 155]
157. predq(mary) | ? [X0] : ((predq(X0) & ~predv(X0)) & room(X0)) [ennf transformation 45]
158. predq(mary) | ? [X0] : (predq(X0) & ~predv(X0) & room(X0)) [flattening 157]
159. ! [X1] : (predg(X1) | preda(X1)) | ! [X0] : (~predq(X0) | ~room(X0)) [ennf transformation 64]
163. ~predj(mary) [ennf transformation 71]
164. ~predy(mary) [ennf transformation 75]
165. ! [X0] : (predj(X0) | (predy(X0) | ~preda(X0))) [ennf transformation 66]
166. ! [X0] : (predj(X0) | predy(X0) | ~preda(X0)) [flattening 165]
167. ~predg(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 63]
168. ~predg(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 167]
170. ? [X0] : (predq(X0) & ~predv(X0) & room(X0)) => (predq(sK0) & ~predv(sK0) & room(sK0)) [choice axiom]
171. predq(mary) | (predq(sK0) & ~predv(sK0) & room(sK0)) [skolemisation 158,170]
172. ! [X0] : (predg(X0) | preda(X0)) | ! [X1] : (~predq(X1) | ~room(X1)) [rectify 159]
178. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
179. ~predg(mary) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 168,178]
260. room(mary) [cnf transformation 156]
261. room(paul) [cnf transformation 156]
262. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 156]
263. predq(mary) | room(sK0) [cnf transformation 171]
265. predq(mary) | predq(sK0) [cnf transformation 171]
266. predg(X0) | preda(X0) | ~predq(X1) | ~room(X1) [cnf transformation 172]
272. ~predj(mary) [cnf transformation 163]
273. ~predy(mary) [cnf transformation 164]
274. ~preda(X0) | predy(X0) | predj(X0) [cnf transformation 166]
275. ~predg(mary) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 179]
276. ~predg(mary) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 179]
277. ~predg(mary) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 179]
279. 1 <=> predq(sK0) [avatar definition]
281. predq(sK0) <- (1) [avatar component clause 279]
283. 2 <=> predq(mary) [avatar definition]
284. ~predq(mary) <- (~2) [avatar component clause 283]
285. predq(mary) <- (2) [avatar component clause 283]
286. 1 | 2 [avatar split clause 265,283,279]
293. 4 <=> room(sK0) [avatar definition]
295. room(sK0) <- (4) [avatar component clause 293]
296. 4 | 2 [avatar split clause 263,283,293]
298. 5 <=> ! [X1] : (~predq(X1) | ~room(X1)) [avatar definition]
299. ~predq(X1) | ~room(X1) <- (5) [avatar component clause 298]
301. 6 <=> ! [X0] : (predg(X0) | preda(X0)) [avatar definition]
302. predg(X0) | preda(X0) <- (6) [avatar component clause 301]
303. 5 | 6 [avatar split clause 266,301,298]
314. ~predg(mary) | paul != sK3 | ~room(mary) [subsumption resolution 277,261]
315. ~predg(mary) | paul != sK3 [subsumption resolution 314,260]
317. 9 <=> paul = sK3 [avatar definition]
321. 10 <=> predg(mary) [avatar definition]
323. ~predg(mary) <- (~10) [avatar component clause 321]
324. ~9 | ~10 [avatar split clause 315,321,317]
325. ~predg(mary) | mary != sK3 | ~room(mary) [subsumption resolution 276,261]
326. ~predg(mary) | mary != sK3 [subsumption resolution 325,260]
328. 11 <=> mary = sK3 [avatar definition]
330. mary != sK3 <- (~11) [avatar component clause 328]
331. ~11 | ~10 [avatar split clause 326,321,328]
332. ~predg(mary) | room(sK3) | ~room(mary) [subsumption resolution 275,261]
333. ~predg(mary) | room(sK3) [subsumption resolution 332,260]
335. 12 <=> room(sK3) [avatar definition]
337. room(sK3) <- (12) [avatar component clause 335]
338. 12 | ~10 [avatar split clause 333,321,335]
339. ~room(mary) <- (2, 5) [resolution 299,285]
340. $false <- (2, 5) [subsumption resolution 339,260]
341. ~2 | ~5 [avatar contradiction clause 340]
342. preda(mary) <- (6, ~10) [resolution 302,323]
343. predy(mary) | predj(mary) <- (6, ~10) [resolution 274,342]
344. predj(mary) <- (6, ~10) [subsumption resolution 343,273]
345. $false <- (6, ~10) [subsumption resolution 344,272]
346. ~6 | 10 [avatar contradiction clause 345]
351. mary = sK3 | paul = sK3 <- (12) [resolution 262,337]
370. paul = sK3 <- (~11, 12) [subsumption resolution 351,330]
373. 9 | 11 | ~12 [avatar split clause 370,335,328,317]
377. mary = sK0 | paul = sK0 <- (4) [resolution 295,262]
379. 17 <=> paul = sK0 [avatar definition]
381. paul = sK0 <- (17) [avatar component clause 379]
383. 18 <=> mary = sK0 [avatar definition]
385. mary = sK0 <- (18) [avatar component clause 383]
386. 17 | 18 | ~4 [avatar split clause 377,293,383,379]
387. predq(paul) <- (1, 17) [backward demodulation 281,381]
391. ~room(paul) <- (1, 5, 17) [resolution 299,387]
392. $false <- (1, 5, 17) [subsumption resolution 391,261]
393. ~1 | ~5 | ~17 [avatar contradiction clause 392]
394. predq(mary) <- (1, 18) [backward demodulation 281,385]
397. $false <- (1, ~2, 18) [subsumption resolution 394,284]
398. ~1 | 2 | ~18 [avatar contradiction clause 397]
400. $false [avatar sat refutation 286,296,303,324,331,338,341,346,373,386,393,398]
% SZS output end Proof for 7614702365641374133272030
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.022 s
% ------------------------------
% ------------------------------
| 0.000568 |
James, Jamie are the only persons in the room.
Jamie is a kind brave person only if Jamie is strong.
Someone anywhere is quieter than Sara.
Jamie is a kind brave person.
All wise persons are humble.
It is true that at least one person in the room is quieter than Sara.
Only one person in the room is calm or is not not happy or both.
James is a curious person.
James is happy.
Jamie and James are richer than Sara.
|
Jamie is old.
|
neutral
|
room(james)&room(jamie)&(![X]:(room(X)=>(X='james'|X='jamie')))&
((kind(jamie)&brave(jamie)&person(jamie))=>(strong(jamie)))&
(?[X]:(anywhere(X)&(quieter(sara,X))))&
(kind(jamie)&brave(jamie)&person(jamie))&
(![X]:(wise(X)=>humble(X)))&
(((?[X]:(room(X)&quieter(sara,X)))))&
(((?[X]:(room(X)&((calm(X))|(~~happy(X)))))&(![X,Y]:((room(X)&room(Y)&(((calm(X))|(~~happy(X))))&(((calm(Y))|(~~happy(Y)))))=>(X=Y)))))&
(curious(james)&person(james))&
(happy(james))&
(richer(sara,jamie)&richer(sara,james))&
(strong(jamie))&
((![X]:((richer(sara,X))=>(((older(sara,X))<~>(~calm(X)&~strong(X)&~creative(X)))))))&
(![X]:(calm(X)=>tall(X)))&
(older(sara,jamie))&
(![X]:(creative(X)=>generous(X)))&
(![X]:(old(X)=>tall(X)))&
(quieter(james,sara))&
(![X]:(patient(X)=>strong(X)))&
((creative(james))&(strong(jamie)))&
((older(sara,james))&(tall(james)&curious(james)&patient(james)&person(james)))
|
room(james)&room(jamie)&(![X]:(room(X)=>(X='james'|X='jamie')))&
old(jamie)
|
[] | null | 0.278285 |
There is a room.
“Everyone in the room who travels domestically frequently does not travel domestically frequently” if “not everyone in the room does not work on fridays or has a curated collection of mid-century modern furniture”.
If “everyone in the room travels domestically frequently or does not enjoy watercolor painting” then “everyone anywhere is not right-handed only if they collects rare minerals”.
If “someone in the room owns a smart tv” then “everyone in the room who enjoys logic puzzles collects action figures”.
If “everyone in the room does not enjoy watercolor painting or collects antique clocks” then “everyone in the room is not a dedicated volunteer for local community service projects or enjoys snowboarding”.
If “everyone in the room is not a dedicated volunteer for local community service projects or enjoys snowboarding” then “no one outside the room who is not a dedicated volunteer for local community service projects collects comic books”.
“Everyone in the room who is a drone photographer enjoys snowboarding” unless “everyone in the room does not compete in national level swimming championships or is a craft beer aficionado”.
If “someone in the room enjoys logic puzzles” then “everyone in the room does not mentor a youth basketball team on weekends or enjoys bird watching”.
Everyone in the room owns a microscope if they does not mentor a youth basketball team on weekends.
Everyone in the room is right-handed only if they owns a microscope.
Everyone in the room who hosts a popular podcast about emerging technologies enjoys watercolor painting.
No one in the room who works on fridays has a curated collection of mid-century modern furniture.
Everyone in the room enjoys snowboarding if they enjoys logic puzzles.
Everyone in the room enjoys watercolor painting if they is right-handed.
Everyone in the room enjoys windsurfing if they enjoys watercolor painting.
Someone in the room owns a microscope.
Everyone in the room who uses contact lenses either collects comic books or collects rare minerals but not both.
Not everyone in the room who either collects comic books or collects rare minerals but not both owns a smart tv.
Everyone outside the room who owns a smart tv is a dedicated volunteer for local community service projects.
Only one person anywhere collects antique clocks.
|
Everyone in the room owns a smart tv.
|
contradiction
|
(there_is_a_room)&
((~![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_work_on_fridays(X))))))=>(![X]:(room(X)=>(((travels_domestically_frequently(X))=>(does_not_travel_domestically_frequently(X)))))))&
((![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(travels_domestically_frequently(X))))))=>(![X]:(anywhere(X)=>(((collects_rare_minerals(X))<=(is_not_right-handed(X)))))))&
((?[X]:(room(X)&(owns_a_smart_tv(X))))=>(![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(collects_action_figures(X)))))))&
(((![X]:(room(X)=>(((collects_antique_clocks(X))|(does_not_enjoy_watercolor_painting(X))))))=>(![X]:(room(X)=>(((enjoys_snowboarding(X))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(X)))))))&
((![X]:(room(X)=>(((enjoys_snowboarding(X))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))))=>(~?[X]:(~room(X)=>(((is_not_a_dedicated_volunteer_for_local_community_service_projects(X))=>(collects_comic_books(X))))))))&
(~(![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))|(does_not_compete_in_national_level_swimming_championships(X))))))=>(![X]:(room(X)=>(((is_a_drone_photographer(X))=>(enjoys_snowboarding(X)))))))&
((?[X]:(room(X)&(enjoys_logic_puzzles(X))))=>(![X]:(room(X)=>(((enjoys_bird_watching(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X)))))))&
(![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))=>(owns_a_microscope(X))))))&
(![X]:(room(X)=>(((owns_a_microscope(X))<=(is_right-handed(X))))))&
(![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(enjoys_watercolor_painting(X))))))&
(~?[X]:(room(X)=>(((works_on_fridays(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))&
(![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(enjoys_snowboarding(X))))))&
(![X]:(room(X)=>(((is_right-handed(X))=>(enjoys_watercolor_painting(X))))))&
(![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(enjoys_windsurfing(X))))))&
(?[X]:(room(X)&(owns_a_microscope(X))))&
(![X]:(room(X)=>(((uses_contact_lenses(X))=>(((collects_comic_books(X))<~>(collects_rare_minerals(X))))))))&
(~![X]:(room(X)=>(((((collects_comic_books(X))<~>(collects_rare_minerals(X))))=>(owns_a_smart_tv(X))))))&
(![X]:(~room(X)=>(((owns_a_smart_tv(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(((?[X]:(anywhere(X)&collects_antique_clocks(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(collects_antique_clocks(X))&(collects_antique_clocks(Y)))=>(X=Y)))))
|
(there_is_a_room)&
![X]:(room(X)=>(owns_a_smart_tv(X)))
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 910878742199630075072496
% SZS output start Proof for 910878742199630075072496
44. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (predm(X0) & anywhere(X0)) & ! [X0] : (~room(X0) => (predc(X0) => predp(X0))) & ~! [X0] : (room(X0) => ((predf(X0) <~> predg(X0)) => predc(X0))) & ! [X0] : (room(X0) => (predi(X0) => (predf(X0) <~> predg(X0)))) & ? [X0] : (preds(X0) & room(X0)) & ! [X0] : (room(X0) => (predz(X0) => predu(X0))) & ! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X0] : (room(X0) => (predo(X0) => prede(X0))) & ~? [X0] : (room(X0) => (predv(X0) => predx(X0))) & ! [X0] : (room(X0) => (predw(X0) => predz(X0))) & ! [X0] : (room(X0) => (predy(X0) => preds(X0))) & ! [X0] : (room(X0) => (~predh(X0) => preds(X0))) & (? [X0] : (predo(X0) & room(X0)) => ! [X0] : (room(X0) => (~predh(X0) | predq(X0)))) & (~! [X0] : (room(X0) => (~predn(X0) | predj(X0))) => ! [X0] : (room(X0) => (predd(X0) => prede(X0)))) & (! [X0] : (room(X0) => (~predp(X0) | prede(X0))) => ~? [X0] : (~room(X0) => (~predp(X0) => predf(X0)))) & (! [X0] : (room(X0) => (~predz(X0) | predm(X0))) => ! [X0] : (room(X0) => (~predp(X0) | prede(X0)))) & (? [X0] : (predc(X0) & room(X0)) => ! [X0] : (room(X0) => (predo(X0) => predb(X0)))) & (! [X0] : (room(X0) => (predl(X0) | ~predz(X0))) => ! [X0] : (anywhere(X0) => (~predy(X0) => predg(X0)))) & (~! [X0] : (room(X0) => (~predv(X0) | predx(X0))) => ! [X0] : (room(X0) => (predl(X0) => ~predl(X0)))) & there_is_a_room [input p0]
45. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis]
46. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ! [X5] : (room(X5) => (predi(X5) => (predf(X5) <~> predg(X5)))) & ? [X6] : (preds(X6) & room(X6)) & ! [X7] : (room(X7) => (predz(X7) => predu(X7))) & ! [X8] : (room(X8) => (predy(X8) => predz(X8))) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & ! [X11] : (room(X11) => (predw(X11) => predz(X11))) & ! [X12] : (room(X12) => (predy(X12) => preds(X12))) & ! [X13] : (room(X13) => (~predh(X13) => preds(X13))) & (? [X14] : (predo(X14) & room(X14)) => ! [X15] : (room(X15) => (~predh(X15) | predq(X15)))) & (~! [X16] : (room(X16) => (~predn(X16) | predj(X16))) => ! [X17] : (room(X17) => (predd(X17) => prede(X17)))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => (~predz(X20) | predm(X20))) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (! [X24] : (room(X24) => (predl(X24) | ~predz(X24))) => ! [X25] : (anywhere(X25) => (~predy(X25) => predg(X25)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [rectify 44]
47. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : (preds(X6) & room(X6)) & ! [X7] : (room(X7) => (predz(X7) => predu(X7))) & ! [X8] : (room(X8) => (predy(X8) => predz(X8))) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & ! [X11] : (room(X11) => (predw(X11) => predz(X11))) & ! [X12] : (room(X12) => (predy(X12) => preds(X12))) & ! [X13] : (room(X13) => (~predh(X13) => preds(X13))) & (? [X14] : (predo(X14) & room(X14)) => ! [X15] : (room(X15) => (~predh(X15) | predq(X15)))) & (~! [X16] : (room(X16) => (~predn(X16) | predj(X16))) => ! [X17] : (room(X17) => (predd(X17) => prede(X17)))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => (~predz(X20) | predm(X20))) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (! [X24] : (room(X24) => (predl(X24) | ~predz(X24))) => ! [X25] : (anywhere(X25) => (~predy(X25) => predg(X25)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 46]
48. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : (preds(X6) & room(X6)) & ! [X8] : (room(X8) => (predy(X8) => predz(X8))) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & ! [X11] : (room(X11) => (predw(X11) => predz(X11))) & ! [X12] : (room(X12) => (predy(X12) => preds(X12))) & ! [X13] : (room(X13) => (~predh(X13) => preds(X13))) & (? [X14] : (predo(X14) & room(X14)) => ! [X15] : (room(X15) => (~predh(X15) | predq(X15)))) & (~! [X16] : (room(X16) => (~predn(X16) | predj(X16))) => ! [X17] : (room(X17) => (predd(X17) => prede(X17)))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => (~predz(X20) | predm(X20))) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (! [X24] : (room(X24) => (predl(X24) | ~predz(X24))) => ! [X25] : (anywhere(X25) => (~predy(X25) => predg(X25)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 47]
49. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : (preds(X6) & room(X6)) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & ! [X12] : (room(X12) => (predy(X12) => preds(X12))) & ! [X13] : (room(X13) => (~predh(X13) => preds(X13))) & (? [X14] : (predo(X14) & room(X14)) => ! [X15] : (room(X15) => (~predh(X15) | predq(X15)))) & (~! [X16] : (room(X16) => (~predn(X16) | predj(X16))) => ! [X17] : (room(X17) => (predd(X17) => prede(X17)))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (! [X24] : (room(X24) => predl(X24)) => ! [X25] : (anywhere(X25) => (~predy(X25) => predg(X25)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 48]
50. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & (? [X14] : (predo(X14) & room(X14)) => ! [X15] : (room(X15) => (~predh(X15) | predq(X15)))) & (~! [X16] : (room(X16) => (~predn(X16) | predj(X16))) => ! [X17] : (room(X17) => (predd(X17) => prede(X17)))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (! [X24] : (room(X24) => predl(X24)) => ! [X25] : (anywhere(X25) => (~predy(X25) => predg(X25)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 49]
51. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & (? [X14] : (predo(X14) & room(X14)) => ! [X15] : (room(X15) => (~predh(X15) | predq(X15)))) & (~! [X16] : (room(X16) => (~predn(X16) | predj(X16))) => ! [X17] : (room(X17) => (predd(X17) => prede(X17)))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 50]
52. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & (~! [X16] : (room(X16) => (~predn(X16) | predj(X16))) => ! [X17] : (room(X17) => (predd(X17) => prede(X17)))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 51]
53. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (? [X22] : (predc(X22) & room(X22)) => ! [X23] : (room(X23) => (predo(X23) => predb(X23)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 52]
54. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ! [X9] : (room(X9) => (predo(X9) => prede(X9))) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 53]
55. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & (~! [X26] : (room(X26) => (~predv(X26) | predx(X26))) => ! [X27] : (room(X27) => (predl(X27) => ~predl(X27)))) & there_is_a_room [pure predicate removal 54]
56. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ~? [X10] : (room(X10) => (predv(X10) => predx(X10))) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & there_is_a_room [pure predicate removal 55]
57. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ~? [X10] : (room(X10) => predx(X10)) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & there_is_a_room [pure predicate removal 56]
58. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ~? [X10] : ~room(X10) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) & there_is_a_room [pure predicate removal 57]
59. ! [X0,X1] : ((predm(X1) & predm(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (~room(X3) => (predc(X3) => predp(X3))) & ~! [X4] : (room(X4) => ((predf(X4) <~> predg(X4)) => predc(X4))) & ? [X6] : room(X6) & ~? [X10] : ~room(X10) & (! [X18] : (room(X18) => (~predp(X18) | prede(X18))) => ~? [X19] : (~room(X19) => (~predp(X19) => predf(X19)))) & (! [X20] : (room(X20) => predm(X20)) => ! [X21] : (room(X21) => (~predp(X21) | prede(X21)))) [pure predicate removal 58]
60. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 45]
132. ! [X0,X1] : (X0 = X1 | (~predm(X1) | ~predm(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : ((predp(X3) | ~predc(X3)) | room(X3)) & ? [X4] : ((~predc(X4) & (predf(X4) <~> predg(X4))) & room(X4)) & ? [X6] : room(X6) & ! [X10] : room(X10) & (! [X19] : ((~predf(X19) & ~predp(X19)) & ~room(X19)) | ? [X18] : ((predp(X18) & ~prede(X18)) & room(X18))) & (! [X21] : ((~predp(X21) | prede(X21)) | ~room(X21)) | ? [X20] : (~predm(X20) & room(X20))) [ennf transformation 59]
133. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (predp(X3) | ~predc(X3) | room(X3)) & ? [X4] : (~predc(X4) & (predf(X4) <~> predg(X4)) & room(X4)) & ? [X6] : room(X6) & ! [X10] : room(X10) & (! [X19] : (~predf(X19) & ~predp(X19) & ~room(X19)) | ? [X18] : (predp(X18) & ~prede(X18) & room(X18))) & (! [X21] : (~predp(X21) | prede(X21) | ~room(X21)) | ? [X20] : (~predm(X20) & room(X20))) [flattening 132]
134. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 60]
135. ? [X18] : (predp(X18) & ~prede(X18) & room(X18)) | ~sP0 [predicate definition introduction]
136. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (predp(X3) | ~predc(X3) | room(X3)) & ? [X4] : (~predc(X4) & (predf(X4) <~> predg(X4)) & room(X4)) & ? [X6] : room(X6) & ! [X10] : room(X10) & (! [X19] : (~predf(X19) & ~predp(X19) & ~room(X19)) | sP0) & (! [X21] : (~predp(X21) | prede(X21) | ~room(X21)) | ? [X20] : (~predm(X20) & room(X20))) [definition folding 133,135]
142. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (predp(X3) | ~predc(X3) | room(X3)) & ? [X4] : (~predc(X4) & ((~predg(X4) | ~predf(X4)) & (predg(X4) | predf(X4))) & room(X4)) & ? [X6] : room(X6) & ! [X10] : room(X10) & (! [X19] : (~predf(X19) & ~predp(X19) & ~room(X19)) | sP0) & (! [X21] : (~predp(X21) | prede(X21) | ~room(X21)) | ? [X20] : (~predm(X20) & room(X20))) [nnf transformation 136]
143. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (predp(X3) | ~predc(X3) | room(X3)) & ? [X4] : (~predc(X4) & (~predg(X4) | ~predf(X4)) & (predg(X4) | predf(X4)) & room(X4)) & ? [X6] : room(X6) & ! [X10] : room(X10) & (! [X19] : (~predf(X19) & ~predp(X19) & ~room(X19)) | sP0) & (! [X21] : (~predp(X21) | prede(X21) | ~room(X21)) | ? [X20] : (~predm(X20) & room(X20))) [flattening 142]
144. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predm(X2) & anywhere(X2)) & ! [X3] : (predp(X3) | ~predc(X3) | room(X3)) & ? [X4] : (~predc(X4) & (~predg(X4) | ~predf(X4)) & (predg(X4) | predf(X4)) & room(X4)) & ? [X5] : room(X5) & ! [X6] : room(X6) & (! [X7] : (~predf(X7) & ~predp(X7) & ~room(X7)) | sP0) & (! [X8] : (~predp(X8) | prede(X8) | ~room(X8)) | ? [X9] : (~predm(X9) & room(X9))) [rectify 143]
145. ? [X2] : (predm(X2) & anywhere(X2)) => (predm(sK2) & anywhere(sK2)) [choice axiom]
146. ? [X4] : (~predc(X4) & (~predg(X4) | ~predf(X4)) & (predg(X4) | predf(X4)) & room(X4)) => (~predc(sK3) & (~predg(sK3) | ~predf(sK3)) & (predg(sK3) | predf(sK3)) & room(sK3)) [choice axiom]
147. ? [X5] : room(X5) => room(sK4) [choice axiom]
148. ? [X9] : (~predm(X9) & room(X9)) => (~predm(sK5) & room(sK5)) [choice axiom]
149. ! [X0,X1] : (X0 = X1 | ~predm(X1) | ~predm(X0) | ~anywhere(X1) | ~anywhere(X0)) & (predm(sK2) & anywhere(sK2)) & ! [X3] : (predp(X3) | ~predc(X3) | room(X3)) & (~predc(sK3) & (~predg(sK3) | ~predf(sK3)) & (predg(sK3) | predf(sK3)) & room(sK3)) & room(sK4) & ! [X6] : room(X6) & (! [X7] : (~predf(X7) & ~predp(X7) & ~room(X7)) | sP0) & (! [X8] : (~predp(X8) | prede(X8) | ~room(X8)) | (~predm(sK5) & room(sK5))) [skolemisation 144,148,147,146,145]
239. room(X6) [cnf transformation 149]
244. ~predc(sK3) [cnf transformation 149]
249. predc(X0) | ~room(X0) [cnf transformation 134]
300. predc(X0) [subsumption resolution 249,239]
301. $false [resolution 300,244]
% SZS output end Proof for 910878742199630075072496
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.024 s
% ------------------------------
% ------------------------------
| 0.223476 |
There is a room. No one in the room who enjoys bird watching or enjoys fishing or both mentors a youth basketball team on weekends. Everyone anywhere practices pilates. Everyone in the room practices pilates if they hosts a YouTube channel dedicated to art tutorials or enjoys rooftop gardening or both. Everyone in the room practices pilates if they reads mystery novels and vice versa. Everyone in the room who reads mystery novels hosts a YouTube channel dedicated to art tutorials. Everyone in the room enjoys skydiving if they hosts a YouTube channel dedicated to art tutorials. At least one person in the room reads mystery novels. Everyone in the room does not use contact lenses if they hosts a YouTube channel dedicated to art tutorials or practices zumba or both. Everyone in the room uses contact lenses if they enjoys rooftop gardening.
|
Everyone in the room does not enjoy rooftop gardening or enjoys fishing.
|
entailment
|
(there_is_a_room)&
(~?[X]:(room(X)=>(((((enjoys_bird_watching(X))|(enjoys_fishing(X))))=>(mentors_a_youth_basketball_team_on_weekends(X))))))&
(![X]:(anywhere(X)=>(practices_pilates(X))))&
(![X]:(room(X)=>(((((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(enjoys_rooftop_gardening(X))))=>(practices_pilates(X))))))&
(![X]:(room(X)=>(((practices_pilates(X))<=>(reads_mystery_novels(X))))))&
(![X]:(room(X)=>(((reads_mystery_novels(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))&
(![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(enjoys_skydiving(X))))))&
(((?[X]:(room(X)&reads_mystery_novels(X)))))&
(![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(practices_zumba(X))))))))&
(![X]:(room(X)=>(((((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(practices_zumba(X))))=>(does_not_use_contact_lenses(X))))))&
(![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(does_not_enjoy_bird_watching(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))=>(has_a_pet_dog(X))))))&
(~?[X]:(room(X)=>(((practices_pilates(X))=>(creates_YouTube_content(X))))))&
(![X]:(room(X)=>(((creates_YouTube_content(X))=>(practices_pilates(X))))))&
(![X]:(room(X)=>(((~((collects_action_figures(X))|(practices_zumba(X))))=>(does_not_enjoy_rooftop_gardening(X))))))&
((![X]:((is_a_tea_enthusiast(X))<=>(does_not_create_YouTube_content(X)))))&
(![X]:(room(X)=>(((does_not_have_a_pet_dog(X))=>(enjoys_rooftop_gardening(X))))))&
(![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(uses_contact_lenses(X))))))&
((![X]:((practices_zumba(X))<=>(does_not_collect_action_figures(X)))))&
(![X]:(room(X)=>(((((uses_contact_lenses(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(mentors_a_youth_basketball_team_on_weekends(X))))))&
(![X]:(~room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(collects_action_figures(X))))))&
(?[X]:(room(X)&(practices_zumba(X))))&
(~?[X]:(room(X)=>(((does_not_own_an_Android_phone(X))=>(~((is_a_tea_enthusiast(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))&
(![X]:(room(X)=>(((~((is_a_tea_enthusiast(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(((is_a_tea_enthusiast(X))|(enjoys_rooftop_gardening(X))))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((enjoys_fishing(X))|(does_not_enjoy_rooftop_gardening(X)))))
|
[
"b4",
"p0",
"p1",
"p2",
"p4",
"p5",
"p9",
"p17",
"hypothesis"
] |
% SZS status Unsatisfiable for 6043782879592245272217268
% SZS output start Proof for 6043782879592245272217268
5. ! [X0] : anywhere(X0) [input b4]
44. there_is_a_room [input p0]
45. ~? [X0] : (room(X0) => ((predj(X0) | predp(X0)) => predf(X0))) [input p1]
46. ! [X0] : (anywhere(X0) => preda(X0)) [input p2]
48. ! [X0] : (room(X0) => (preda(X0) <=> prede(X0))) [input p4]
49. ! [X0] : (room(X0) => (prede(X0) => predl(X0))) [input p5]
53. ! [X0] : (room(X0) => ((predb(X0) | predl(X0)) => ~predn(X0))) [input p9]
61. ! [X0] : (room(X0) => (predd(X0) => predn(X0))) [input p17]
68. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis]
150. ! [X0] : ((~predf(X0) & (predj(X0) | predp(X0))) & room(X0)) [ennf transformation 45]
151. ! [X0] : (~predf(X0) & (predj(X0) | predp(X0)) & room(X0)) [flattening 150]
152. ! [X0] : (preda(X0) | ~anywhere(X0)) [ennf transformation 46]
155. ! [X0] : ((preda(X0) <=> prede(X0)) | ~room(X0)) [ennf transformation 48]
156. ! [X0] : ((predl(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 49]
157. ! [X0] : (predl(X0) | ~prede(X0) | ~room(X0)) [flattening 156]
160. ! [X0] : ((~predn(X0) | (~predb(X0) & ~predl(X0))) | ~room(X0)) [ennf transformation 53]
161. ! [X0] : (~predn(X0) | (~predb(X0) & ~predl(X0)) | ~room(X0)) [flattening 160]
167. ! [X0] : ((predn(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 61]
168. ! [X0] : (predn(X0) | ~predd(X0) | ~room(X0)) [flattening 167]
174. ? [X0] : ((predd(X0) & ~predj(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 68]
175. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) | ~there_is_a_room [flattening 174]
177. ! [X0] : (((preda(X0) | ~prede(X0)) & (prede(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 155]
183. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) => (predd(sK2) & ~predj(sK2) & room(sK2)) [choice axiom]
184. (predd(sK2) & ~predj(sK2) & room(sK2)) | ~there_is_a_room [skolemisation 175,183]
185. anywhere(X0) [cnf transformation 5]
266. there_is_a_room [cnf transformation 44]
267. room(X0) [cnf transformation 151]
270. preda(X0) | ~anywhere(X0) [cnf transformation 152]
273. prede(X0) | ~preda(X0) | ~room(X0) [cnf transformation 177]
275. predl(X0) | ~prede(X0) | ~room(X0) [cnf transformation 157]
279. ~predn(X0) | ~predl(X0) | ~room(X0) [cnf transformation 161]
285. predn(X0) | ~predd(X0) | ~room(X0) [cnf transformation 168]
296. predd(sK2) | ~there_is_a_room [cnf transformation 184]
297. preda(X0) [subsumption resolution 270,185]
298. prede(X0) | ~room(X0) [subsumption resolution 273,297]
299. prede(X0) [subsumption resolution 298,267]
300. predl(X0) | ~room(X0) [subsumption resolution 275,299]
301. predl(X0) [subsumption resolution 300,267]
303. ~predn(X0) | ~room(X0) [subsumption resolution 279,301]
304. ~predn(X0) [subsumption resolution 303,267]
306. ~predd(X0) | ~room(X0) [subsumption resolution 285,304]
307. ~predd(X0) [subsumption resolution 306,267]
308. ~there_is_a_room [subsumption resolution 296,307]
309. $false [subsumption resolution 308,266]
% SZS output end Proof for 6043782879592245272217268
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.498563 |
There is a room. Either “everyone in the room is not a craft beer aficionado or own a television” or “not everyone in the room does not practice yoga or does not create large-scale murals for public art installations” but not both. If “everyone in the room is an avid hiker or does not use an ios phone or both” then “more than one person in the room uses an ios phone”. Everyone in the room neither enjoys kayaking nor enjoys making ceramics if they does not enjoy deep-sea diving and exploring underwater caves.
|
Everyone in the room does not enjoy making ceramics or is a client of LVMH.
|
neutral
|
(there_is_a_room)&
((![X]:(room(X)=>(((own_a_television(X))|(is_not_a_craft_beer_aficionado(X))))))<~>(~![X]:(room(X)=>(((does_not_create_large-scale_murals_for_public_art_installations(X))|(does_not_practice_yoga(X)))))))&
((![X]:(room(X)=>(((is_an_avid_hiker(X))|(does_not_use_an_ios_phone(X))))))=>((?[X,Y]:(room(X)&room(Y)&(uses_an_ios_phone(X)&uses_an_ios_phone(Y))&(X!=Y)))))&
(![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))=>(~((enjoys_kayaking(X))|(enjoys_making_ceramics(X))))))))&
((?[X,Y]:(room(X)&room(Y)&(uses_an_ios_phone(X)&uses_an_ios_phone(Y))&(X!=Y))))&
(![X]:(room(X)=>(((can_play_the_piano(X))|(is_a_client_of_LVMH(X))|(writes_poetry(X))))))&
(![X]:(room(X)=>(is_an_avid_hiker(X))))&
(![X]:(room(X)=>(((is_a_client_of_Costco(X))<=>(does_not_enjoy_making_ceramics(X))))))&
(((?[X]:(~room(X)&is_an_avid_hiker(X)))&(![X,Y]:((~room(X)&~room(Y)&(is_an_avid_hiker(X))&(is_an_avid_hiker(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(is_not_a_client_of_Costco(X))))))&
(![X]:(room(X)=>(((is_not_a_client_of_Costco(X))<=>(uses_an_ios_phone(X))))))&
(![X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))=>(is_not_a_client_of_LVMH(X))))))&
(![X]:(room(X)=>(((((enjoys_making_ceramics(X))|(can_play_the_piano(X))))=>(((enjoys_kayaking(X))|(does_not_create_large-scale_murals_for_public_art_installations(X))))))))&
((?[X,Y]:(room(X)&room(Y)&(own_a_television(X)&own_a_television(Y))&(X!=Y))))&
(![X]:(room(X)=>(((is_not_an_avid_hiker(X))=>(~((does_practice_yoga(X))|(is_a_craft_beer_aficionado(X))))))))&
(![X]:(room(X)=>(((~((is_a_client_of_Costco(X))|(does_practice_yoga(X))))=>(~((is_a_wine_connoisseur(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))))&
(![X]:(room(X)=>(((is_not_a_client_of_LVMH(X))|(is_a_client_of_Costco(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((is_a_client_of_LVMH(X))|(does_not_enjoy_making_ceramics(X)))))
|
[] | null | 0.0238 |
Joseph, Jeffrey, Christopher, Brett are the only persons in the room.
If everyone in the room is not a scotch connoisseur or enjoys landscape photography then not everyone in the room cannot play the piano if they is not a scotch connoisseur.
If Jeffrey enjoys landscape photography then if someone has completed a triathlon then he/she is an active member of a local robotics club otherwise if someone enjoys origami then he/she does enjoy trail running.
Everyone in the room uses contact lenses if Christopher either does not volunteer for local environmental conservation projects or uses a Windows laptop but not both.
If it is true that everyone in the room cannot play the piano or uses contact lenses then everyone in the room who cannot play the piano does enjoy trail running.
If everyone in the room collects vintage vinyl records or is not a coffee connoisseur then Jeffrey is not a coffee connoisseur.
If Jeffrey enjoys origami then Christopher practices and performs acrobatic dance routines.
If everyone in the room does not play as a goalkeeper for a local amateur soccer team or volunteers for local environmental conservation projects then everyone in the room neither volunteers for local environmental conservation projects nor does not use contact lenses.
If Jeffrey maintains a large, organic vegetable garden year-round then everyone in the room is a client of Meta.
Everyone in the room does not enjoy landscape photography or does not practice and performs acrobatic dance routines if Christopher does enjoy trail running and vice versa.
Joseph is a scotch connoisseur or does not enjoy landscape photography or both if Jeffrey collects vintage vinyl records.
Someone in the room has completed a triathlon.
Everyone in the room enjoys origami only if they uses a Windows laptop.
Everyone in the room who uses a Windows laptop does not maintain a large, organic vegetable garden year-round.
Everyone in the room enjoys landscape photography.
Jeffrey enjoys origami.
Everyone in the room has completed a triathlon if they does not enjoy trail running.
Only one person in the room uses a Windows laptop.
Jeffrey volunteers for local environmental conservation projects.
Joseph uses contact lenses.
Everyone in the room who practices and performs acrobatic dance routines maintains a large, organic vegetable garden year-round.
Everyone in the room can play the piano if they does not enjoy trail running.
Jeffrey is not a coffee connoisseur.
Everyone in the room enjoys origami or is not a client of Meta.
Christopher volunteers for local environmental conservation projects.
|
Christopher can play the piano.
|
entailment
|
room(joseph)&room(jeffrey)&room(christopher)&room(brett)&(![X]:(room(X)=>(X='joseph'|X='jeffrey'|X='christopher'|X='brett')))&
((![X]:(room(X)=>(((enjoys_landscape_photography(X))|(is_not_a_scotch_connoisseur(X))))))=>(~![X]:(room(X)=>(((is_not_a_scotch_connoisseur(X))=>(cannot_play_the_piano(X)))))))&
(((enjoys_landscape_photography(jeffrey))=>((![X]:((has_completed_a_triathlon(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))&((~(enjoys_landscape_photography(jeffrey)))=>((![X]:((enjoys_origami(X))=>(does_enjoy_trail_running(X)))))))&
((((does_not_volunteer_for_local_environmental_conservation_projects(christopher))<~>(uses_a_Windows_laptop(christopher))))=>(![X]:(room(X)=>(uses_contact_lenses(X)))))&
((![X]:(room(X)=>(((uses_contact_lenses(X))|(cannot_play_the_piano(X))))))=>(![X]:(room(X)=>(((cannot_play_the_piano(X))=>(does_enjoy_trail_running(X)))))))&
((![X]:(room(X)=>(((is_not_a_coffee_connoisseur(X))|(collects_vintage_vinyl_records(X))))))=>(is_not_a_coffee_connoisseur(jeffrey)))&
((enjoys_origami(jeffrey))=>(practices_and_performs_acrobatic_dance_routines(christopher)))&
((![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(![X]:(room(X)=>(~((volunteers_for_local_environmental_conservation_projects(X))|(does_not_use_contact_lenses(X)))))))&
((maintains_a_large,_organic_vegetable_garden_year-round(jeffrey))=>(![X]:(room(X)=>(is_a_client_of_Meta(X)))))&
((does_enjoy_trail_running(christopher))<=>(![X]:(room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))|(does_not_enjoy_landscape_photography(X)))))))&
((collects_vintage_vinyl_records(jeffrey))=>(((is_a_scotch_connoisseur(joseph))|(does_not_enjoy_landscape_photography(joseph)))))&
(?[X]:(room(X)&(has_completed_a_triathlon(X))))&
(![X]:(room(X)=>(((uses_a_Windows_laptop(X))<=(enjoys_origami(X))))))&
(![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))&
(![X]:(room(X)=>(enjoys_landscape_photography(X))))&
(enjoys_origami(jeffrey))&
(![X]:(room(X)=>(((does_not_enjoy_trail_running(X))=>(has_completed_a_triathlon(X))))))&
(((?[X]:(room(X)&uses_a_Windows_laptop(X)))&(![X,Y]:((room(X)&room(Y)&(uses_a_Windows_laptop(X))&(uses_a_Windows_laptop(Y)))=>(X=Y)))))&
(volunteers_for_local_environmental_conservation_projects(jeffrey))&
(uses_contact_lenses(joseph))&
(![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_trail_running(X))=>(can_play_the_piano(X))))))&
(is_not_a_coffee_connoisseur(jeffrey))&
(![X]:(room(X)=>(((is_not_a_client_of_Meta(X))|(enjoys_origami(X))))))&
(volunteers_for_local_environmental_conservation_projects(christopher))
|
room(joseph)&room(jeffrey)&room(christopher)&room(brett)&(![X]:(room(X)=>(X='joseph'|X='jeffrey'|X='christopher'|X='brett')))&
can_play_the_piano(christopher)
|
[
"p0",
"p6",
"p9",
"p14",
"p15",
"p21",
"hypothesis"
] |
% SZS status Unsatisfiable for 1918775960623201532125892
% SZS output start Proof for 1918775960623201532125892
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
50. predg(paul) => predh(fred) [input p6]
53. predo(fred) <=> ! [X0] : (room(X0) => (~predm(X0) | ~predh(X0))) [input p9]
58. ! [X0] : (room(X0) => predm(X0)) [input p14]
59. predg(paul) [input p15]
65. ! [X0] : (room(X0) => (~predo(X0) => predl(X0))) [input p21]
69. ~(predl(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
153. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
154. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 153]
162. predh(fred) | ~predg(paul) [ennf transformation 50]
165. predo(fred) <=> ! [X0] : ((~predm(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 53]
166. predo(fred) <=> ! [X0] : (~predm(X0) | ~predh(X0) | ~room(X0)) [flattening 165]
171. ! [X0] : (predm(X0) | ~room(X0)) [ennf transformation 58]
176. ! [X0] : ((predl(X0) | predo(X0)) | ~room(X0)) [ennf transformation 65]
177. ! [X0] : (predl(X0) | predo(X0) | ~room(X0)) [flattening 176]
180. ~predl(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 69]
181. ~predl(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 180]
200. (predo(fred) | ? [X0] : (predm(X0) & predh(X0) & room(X0))) & (! [X0] : (~predm(X0) | ~predh(X0) | ~room(X0)) | ~predo(fred)) [nnf transformation 166]
201. (predo(fred) | ? [X0] : (predm(X0) & predh(X0) & room(X0))) & (! [X1] : (~predm(X1) | ~predh(X1) | ~room(X1)) | ~predo(fred)) [rectify 200]
202. ? [X0] : (predm(X0) & predh(X0) & room(X0)) => (predm(sK6) & predh(sK6) & room(sK6)) [choice axiom]
203. (predo(fred) | (predm(sK6) & predh(sK6) & room(sK6))) & (! [X1] : (~predm(X1) | ~predh(X1) | ~room(X1)) | ~predo(fred)) [skolemisation 201,202]
208. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom]
209. ~predl(fred) | (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 181,208]
290. room(mary) [cnf transformation 154]
291. room(paul) [cnf transformation 154]
292. room(fred) [cnf transformation 154]
293. room(alice) [cnf transformation 154]
294. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 154]
309. predh(fred) | ~predg(paul) [cnf transformation 162]
315. ~predm(X1) | ~predh(X1) | ~room(X1) | ~predo(fred) [cnf transformation 203]
322. ~room(X0) | predm(X0) [cnf transformation 171]
323. predg(paul) [cnf transformation 59]
330. predl(X0) | predo(X0) | ~room(X0) [cnf transformation 177]
334. ~predl(fred) | room(sK9) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209]
335. ~predl(fred) | mary != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209]
336. ~predl(fred) | paul != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209]
337. ~predl(fred) | fred != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209]
338. ~predl(fred) | alice != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 209]
399. 14 <=> ! [X0] : (predo(X0) | ~room(X0) | predl(X0)) [avatar definition]
400. ~room(X0) | predo(X0) | predl(X0) <- (14) [avatar component clause 399]
427. 20 <=> predg(paul) [avatar definition]
431. 21 <=> predh(fred) [avatar definition]
433. predh(fred) <- (21) [avatar component clause 431]
434. ~20 | 21 [avatar split clause 309,431,427]
463. 28 <=> predo(fred) [avatar definition]
478. 31 <=> ! [X1] : (~predm(X1) | ~room(X1) | ~predh(X1)) [avatar definition]
479. ~predm(X1) | ~room(X1) | ~predh(X1) <- (31) [avatar component clause 478]
480. ~28 | 31 [avatar split clause 315,478,463]
481. 20 [avatar split clause 323,427]
482. 14 [avatar split clause 330,399]
485. ~predl(fred) | alice != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,293]
486. ~predl(fred) | alice != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 485,292]
487. ~predl(fred) | alice != sK9 | ~room(mary) [subsumption resolution 486,291]
488. ~predl(fred) | alice != sK9 [subsumption resolution 487,290]
490. 32 <=> alice = sK9 [avatar definition]
492. alice != sK9 <- (~32) [avatar component clause 490]
494. 33 <=> predl(fred) [avatar definition]
497. ~32 | ~33 [avatar split clause 488,494,490]
498. ~predl(fred) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 337,293]
499. ~predl(fred) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 498,292]
500. ~predl(fred) | fred != sK9 | ~room(mary) [subsumption resolution 499,291]
501. ~predl(fred) | fred != sK9 [subsumption resolution 500,290]
503. 34 <=> fred = sK9 [avatar definition]
505. fred != sK9 <- (~34) [avatar component clause 503]
506. ~34 | ~33 [avatar split clause 501,494,503]
507. ~predl(fred) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 336,293]
508. ~predl(fred) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 507,292]
509. ~predl(fred) | paul != sK9 | ~room(mary) [subsumption resolution 508,291]
510. ~predl(fred) | paul != sK9 [subsumption resolution 509,290]
512. 35 <=> paul = sK9 [avatar definition]
514. paul != sK9 <- (~35) [avatar component clause 512]
515. ~35 | ~33 [avatar split clause 510,494,512]
516. ~predl(fred) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 335,293]
517. ~predl(fred) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 516,292]
518. ~predl(fred) | mary != sK9 | ~room(mary) [subsumption resolution 517,291]
519. ~predl(fred) | mary != sK9 [subsumption resolution 518,290]
521. 36 <=> mary = sK9 [avatar definition]
523. mary != sK9 <- (~36) [avatar component clause 521]
524. ~36 | ~33 [avatar split clause 519,494,521]
525. ~predl(fred) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 334,293]
526. ~predl(fred) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 525,292]
527. ~predl(fred) | room(sK9) | ~room(mary) [subsumption resolution 526,291]
528. ~predl(fred) | room(sK9) [subsumption resolution 527,290]
530. 37 <=> room(sK9) [avatar definition]
532. room(sK9) <- (37) [avatar component clause 530]
533. 37 | ~33 [avatar split clause 528,494,530]
551. predo(fred) | predl(fred) <- (14) [resolution 400,292]
631. ~predh(X1) | ~room(X1) <- (31) [subsumption resolution 479,322]
648. ~room(fred) <- (21, 31) [resolution 631,433]
650. $false <- (21, 31) [subsumption resolution 648,292]
651. ~21 | ~31 [avatar contradiction clause 650]
652. 33 | 28 | ~14 [avatar split clause 551,399,463,494]
728. fred = sK9 | paul = sK9 | mary = sK9 | alice = sK9 <- (37) [resolution 294,532]
797. paul = sK9 | mary = sK9 | alice = sK9 <- (~34, 37) [subsumption resolution 728,505]
798. mary = sK9 | alice = sK9 <- (~34, ~35, 37) [subsumption resolution 797,514]
799. alice = sK9 <- (~34, ~35, ~36, 37) [subsumption resolution 798,523]
800. $false <- (~32, ~34, ~35, ~36, 37) [subsumption resolution 799,492]
801. 32 | 34 | 35 | 36 | ~37 [avatar contradiction clause 800]
802. $false [avatar sat refutation 434,480,481,482,497,506,515,524,533,651,652,801]
% SZS output end Proof for 1918775960623201532125892
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5500
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.019723 |
Melvin is the only person in the room.
“Everyone in the room who either works on fridays or watches fantasy movies but not both enjoys camping and organizing outdoor survival workshops” if “everyone in the room is not a certified yoga instructor teaching classes weekly or is a skilled home brewer experimenting with craft beer recipes”.
If “Melvin does not watche fantasy movies, does not practice pilates or is passionate about collecting and restoring classic cars” then “everyone outside the room works on fridays if they enjoys skydiving and vice versa”.
Either “everyone in the room practices pilates or is not a client of LVMH” or “everyone in the room is not a skilled home brewer experimenting with craft beer recipes or is not a certified yoga instructor teaching classes weekly” but not both.
|
Melvin has completed a triathlon.
|
neutral
|
room(melvin)&(![X]:(room(X)=>(X='melvin')))&
((![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>(![X]:(room(X)=>(((((works_on_fridays(X))<~>(watches_fantasy_movies(X))))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))))&
((((does_not_watche_fantasy_movies(melvin))|(does_not_practice_pilates(melvin))|(is_passionate_about_collecting_and_restoring_classic_cars(melvin))))=>(![X]:(~room(X)=>(((works_on_fridays(X))<=>(enjoys_skydiving(X)))))))&
((![X]:(room(X)=>(((is_not_a_client_of_LVMH(X))|(practices_pilates(X))))))<~>(![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))&
((uses_an_ios_phone(melvin))=>(collects_historical_artifacts_related_to_ancient_civilizations(melvin)))&
(~(![X]:(anywhere(X)=>(((does_not_work_on_fridays(X))|(creates_large-scale_murals_for_public_art_installations(X))))))=>(collects_vintage_stamps(melvin)))&
((![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_practice_pilates(X))))))<=>(![X]:(room(X)=>(((writes_a_travel_blog(X))|(is_not_a_client_of_LVMH(X)))))))&
((works_on_fridays(melvin))=>(has_completed_a_triathlon(melvin)))&
((uses_an_ios_phone(melvin))=>(~?[X]:(room(X)=>(((((has_completed_a_triathlon(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(collects_vintage_stamps(X))))=>(uses_an_ios_phone(X)))))))&
(![X]:(anywhere(X)=>(((uses_an_ios_phone(X))=>(can_play_the_piano(X))))))&
(![X]:(room(X)=>(((enjoys_skydiving(X))=>(is_not_allergic_to_anything(X))))))&
(does_not_compose_and_performs_experimental_electronic_music(melvin))&
(![X]:(room(X)=>(((is_allergic_to_anything(X))|(does_not_enjoy_coding_in_Python(X))))))&
((![X]:((is_not_allergic_to_anything(X))=>(is_not_a_client_of_LVMH(X)))))&
(![X]:(room(X)=>(((works_on_fridays(X))=>(((writes_a_travel_blog(X))|(can_play_the_piano(X))))))))&
(![X]:(room(X)=>(collects_vintage_stamps(X))))&
(![X]:(room(X)=>(((((does_not_practice_pilates(X))|(enjoys_landscape_photography(X))|(writes_a_travel_blog(X))))=>(creates_large-scale_murals_for_public_art_installations(X))))))&
(enjoys_landscape_photography(melvin))
|
room(melvin)&(![X]:(room(X)=>(X='melvin')))&
has_completed_a_triathlon(melvin)
|
[] | null | 0.277702 |
Lora, Linda are the only persons in the room.
It is not the case that “someone in the room is wise or is a tall person or both”.
All patient persons are humble.
All calm persons are quiet.
If someone is strong, is not a funny person or is calm then he/she is tall.
Linda and Lora are creative.
Linda and Lora are not tall.
It is not the case that “Linda and Lora are old”.
Linda and Lora are patient persons.
Lora and Linda are respectively funny and old.
Everyone in the room is a kind person.
Someone anywhere is not patient.
If someone is a old person then he/she is not a curious person and vice versa.
Someone anywhere is quiet or is funny or both.
All brave persons are patient.
Someone outside the room either is not a tall person or is a old person but not both.
|
All patient persons are humble.
|
entailment
|
room(lora)&room(linda)&(![X]:(room(X)=>(X='lora'|X='linda')))&
(~(?[X]:(room(X)&(((wise(X))|(tall(X)&person(X)))))))&
(![X]:(patient(X)=>humble(X)))&
(![X]:(calm(X)=>quiet(X)))&
((![X]:((((strong(X))|(~(funny(X)&person(X)))|(calm(X))))=>(tall(X)))))&
(creative(linda)&creative(lora))&
(~tall(linda)&~tall(lora))&
(~(old(linda)&old(lora)))&
(patient(linda)&person(linda)&patient(lora)&person(lora))&
((funny(lora))&(old(linda)))&
(![X]:(room(X)=>(kind(X)&person(X))))&
(?[X]:(anywhere(X)&(~patient(X))))&
((![X]:((old(X)&person(X))<=>(~(curious(X)&person(X))))))&
(?[X]:(anywhere(X)&(((quiet(X))|(funny(X))))))&
(![X]:(brave(X)=>patient(X)))&
(?[X]:(~room(X)&(((~(tall(X)&person(X)))<~>(old(X)&person(X))))))
|
room(lora)&room(linda)&(![X]:(room(X)=>(X='lora'|X='linda')))&
![X]:(patient(X)=>humble(X))
|
[
"p0",
"p2",
"hypothesis"
] |
% SZS status Unsatisfiable for 6714813779428092013610924
% SZS output start Proof for 6714813779428092013610924
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
46. ! [X0] : (patient(X0) => humble(X0)) [input p2]
60. ~(! [X0] : (patient(X0) => humble(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
61. ~(! [X0] : (patient(X0) => humble(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 60]
146. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
147. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 146]
149. ! [X0] : (humble(X0) | ~patient(X0)) [ennf transformation 46]
155. ? [X0] : (~humble(X0) & patient(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 61]
156. ? [X0] : (~humble(X0) & patient(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 155]
166. ? [X0] : (~humble(X0) & patient(X0)) => (~humble(sK2) & patient(sK2)) [choice axiom]
167. ? [X1] : (paul != X1 & mary != X1 & room(X1)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
168. (~humble(sK2) & patient(sK2)) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 156,167,166]
249. room(mary) [cnf transformation 147]
250. room(paul) [cnf transformation 147]
251. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 147]
253. ~patient(X0) | humble(X0) [cnf transformation 149]
275. patient(sK2) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 168]
276. patient(sK2) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 168]
277. patient(sK2) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 168]
278. ~humble(sK2) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 168]
279. ~humble(sK2) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 168]
280. ~humble(sK2) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 168]
306. ~humble(sK2) | paul != sK3 | ~room(mary) [subsumption resolution 280,250]
307. ~humble(sK2) | paul != sK3 [subsumption resolution 306,249]
309. 5 <=> paul = sK3 [avatar definition]
313. 6 <=> humble(sK2) [avatar definition]
315. ~humble(sK2) <- (~6) [avatar component clause 313]
316. ~5 | ~6 [avatar split clause 307,313,309]
317. ~humble(sK2) | mary != sK3 | ~room(mary) [subsumption resolution 279,250]
318. ~humble(sK2) | mary != sK3 [subsumption resolution 317,249]
320. 7 <=> mary = sK3 [avatar definition]
322. mary != sK3 <- (~7) [avatar component clause 320]
323. ~7 | ~6 [avatar split clause 318,313,320]
324. ~humble(sK2) | room(sK3) | ~room(mary) [subsumption resolution 278,250]
325. ~humble(sK2) | room(sK3) [subsumption resolution 324,249]
327. 8 <=> room(sK3) [avatar definition]
329. room(sK3) <- (8) [avatar component clause 327]
330. 8 | ~6 [avatar split clause 325,313,327]
331. patient(sK2) | paul != sK3 | ~room(mary) [subsumption resolution 277,250]
332. patient(sK2) | paul != sK3 [subsumption resolution 331,249]
334. 9 <=> patient(sK2) [avatar definition]
336. patient(sK2) <- (9) [avatar component clause 334]
337. ~5 | 9 [avatar split clause 332,334,309]
338. patient(sK2) | mary != sK3 | ~room(mary) [subsumption resolution 276,250]
339. patient(sK2) | mary != sK3 [subsumption resolution 338,249]
340. ~7 | 9 [avatar split clause 339,334,320]
341. patient(sK2) | room(sK3) | ~room(mary) [subsumption resolution 275,250]
342. patient(sK2) | room(sK3) [subsumption resolution 341,249]
343. 8 | 9 [avatar split clause 342,334,327]
356. mary = sK3 | paul = sK3 <- (8) [resolution 251,329]
357. paul = sK3 <- (~7, 8) [subsumption resolution 356,322]
360. 5 | 7 | ~8 [avatar split clause 357,327,320,309]
362. humble(sK2) <- (9) [resolution 336,253]
363. $false <- (~6, 9) [subsumption resolution 362,315]
364. 6 | ~9 [avatar contradiction clause 363]
365. $false [avatar sat refutation 316,323,330,337,340,343,360,364]
% SZS output end Proof for 6714813779428092013610924
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.161391 |
Debra, Gary, Katherine, Kimna, Kim are the only persons in the room.
Only one person in the room is a old person.
Kimna is quiet.
Kimna is tall.
Everyone in the room is a tall person.
Everyone in the room is quiet.
Everyone in the room is tall.
Kimna is old.
All tall persons are quiet.
|
Gary and Katherine are respectively old and quiet.
|
contradiction
|
room(debra)&room(gary)&room(katherine)&room(kimna)&room(kim)&(![X]:(room(X)=>(X='debra'|X='gary'|X='katherine'|X='kimna'|X='kim')))&
(((?[X]:(room(X)&old(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(old(X)&person(X))&(old(Y)&person(Y)))=>(X=Y)))))&
(quiet(kimna))&
(tall(kimna))&
(![X]:(room(X)=>(tall(X)&person(X))))&
(![X]:(room(X)=>(quiet(X))))&
(![X]:(room(X)=>(tall(X))))&
(old(kimna))&
(![X]:(tall(X)=>quiet(X)))&
(![X]:(room(X)=>(quiet(X)&person(X))))&
(![X]:((room(X)&(X!=katherine))=>richer(X,katherine)))&
(![X]:(old(X)=>tall(X)))&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(quiet(X)&person(X)&quiet(Y)&person(Y))&(X!=Y))))
|
room(debra)&room(gary)&room(katherine)&room(kimna)&room(kim)&(![X]:(room(X)=>(X='debra'|X='gary'|X='katherine'|X='kimna'|X='kim')))&
(old(gary))&(quiet(katherine))
|
[
"b42",
"p0",
"p1",
"p4",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 5914756895214898458639931
% SZS output start Proof for 5914756895214898458639931
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. ! [X0,X1] : ((person(X1) & old(X1) & person(X0) & old(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (person(X0) & old(X0) & room(X0)) [input p1]
48. ! [X0] : (room(X0) => (person(X0) & tall(X0))) [input p4]
51. old(alice) [input p7]
57. quiet(fred) & old(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
58. ! [X0,X1] : ((person(X1) & old(X1) & person(X0) & old(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (person(X2) & old(X2) & room(X2)) [rectify 45]
132. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
133. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132]
134. ! [X0,X1] : (X0 = X1 | (~person(X1) | ~old(X1) | ~person(X0) | ~old(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (person(X2) & old(X2) & room(X2)) [ennf transformation 58]
135. ! [X0,X1] : (X0 = X1 | ~person(X1) | ~old(X1) | ~person(X0) | ~old(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (person(X2) & old(X2) & room(X2)) [flattening 134]
136. ! [X0] : ((person(X0) & tall(X0)) | ~room(X0)) [ennf transformation 48]
144. quiet(fred) & old(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 57]
145. quiet(fred) & old(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 144]
147. ? [X2] : (person(X2) & old(X2) & room(X2)) => (person(sK0) & old(sK0) & room(sK0)) [choice axiom]
148. ! [X0,X1] : (X0 = X1 | ~person(X1) | ~old(X1) | ~person(X0) | ~old(X0) | ~room(X1) | ~room(X0)) & (person(sK0) & old(sK0) & room(sK0)) [skolemisation 135,147]
208. paul != alice [cnf transformation 43]
232. room(paul) [cnf transformation 133]
234. room(alice) [cnf transformation 133]
240. ~room(X1) | ~person(X1) | ~old(X1) | ~person(X0) | ~old(X0) | X0 = X1 | ~room(X0) [cnf transformation 148]
244. ~room(X0) | person(X0) [cnf transformation 136]
247. old(alice) [cnf transformation 51]
264. old(paul) [cnf transformation 145]
273. person(paul) [resolution 244,232]
385. ~person(paul) | ~old(paul) | ~person(X1) | ~old(X1) | paul = X1 | ~room(X1) [resolution 240,232]
400. ~old(paul) | ~person(X1) | ~old(X1) | paul = X1 | ~room(X1) [subsumption resolution 385,273]
401. ~person(X1) | ~old(X1) | paul = X1 | ~room(X1) [subsumption resolution 400,264]
402. ~room(X1) | paul = X1 | ~old(X1) [subsumption resolution 401,244]
480. paul = alice | ~old(alice) [resolution 402,234]
485. ~old(alice) [subsumption resolution 480,208]
486. $false [subsumption resolution 485,247]
% SZS output end Proof for 5914756895214898458639931
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.250122 |
Warren is the only person in the room. Warren who enjoys bird watching neither does enjoy mountain biking nor creates bespoke furniture pieces from reclaimed wood. Everyone in the room neither participates in long-distance cycling events across the country nor does enjoy mountain biking if they is a certified yoga instructor teaching classes weekly and vice versa. Everyone in the room who practices and performs acrobatic dance routines practices graffiti art. Warren is a night owl or collects first edition books or both. Not everyone in the room who collects first edition books plays video games. Warren is a Linux enthusiast. Warren writes and illustrates their own graphic novels. Warren practices digital art. Warren is a craft beer aficionado. At least one person in the room hosts themed dinner parties featuring gourmet home-cooked meals. Warren enjoys spelunking. Everyone in the room who frequently participates in hackathons and coding competitions hosts themed dinner parties featuring gourmet home-cooked meals. Everyone anywhere is not a client of Meta if and only if they is a cybersecurity expert. Warren enjoys bird watching. Everyone in the room who is a craft beer aficionado does not practice kickboxing. Warren practices and performs acrobatic dance routines. Everyone in the room creates bespoke furniture pieces from reclaimed wood or is not a client of Meta. Warren frequently participates in hackathons and coding competitions. At least one person in the room is a certified yoga instructor teaching classes weekly. Warren reads mystery novels.
|
Warren is a night owl.
|
neutral
|
room(warren)&(![X]:(room(X)=>(X='warren')))&
((enjoys_bird_watching(warren))&(~((does_enjoy_mountain_biking(warren))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(warren)))))&
(![X]:(room(X)=>(((~((participates_in_long-distance_cycling_events_across_the_country(X))|(does_enjoy_mountain_biking(X))))<=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))&
(![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(practices_graffiti_art(X))))))&
(((is_a_night_owl(warren))|(collects_first_edition_books(warren))))&
(~![X]:(room(X)=>(((collects_first_edition_books(X))=>(plays_video_games(X))))))&
(is_a_Linux_enthusiast(warren))&
(writes_and_illustrates_their_own_graphic_novels(warren))&
(practices_digital_art(warren))&
(is_a_craft_beer_aficionado(warren))&
(((?[X]:(room(X)&hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))&
(enjoys_spelunking(warren))&
(![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))&
(![X]:(anywhere(X)=>(((is_not_a_client_of_Meta(X))<=>(is_a_cybersecurity_expert(X))))))&
(enjoys_bird_watching(warren))&
(![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(does_not_practice_kickboxing(X))))))&
(practices_and_performs_acrobatic_dance_routines(warren))&
(![X]:(room(X)=>(((is_not_a_client_of_Meta(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))&
(frequently_participates_in_hackathons_and_coding_competitions(warren))&
(((?[X]:(room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))&
(reads_mystery_novels(warren))
|
room(warren)&(![X]:(room(X)=>(X='warren')))&
is_a_night_owl(warren)
|
[] | null | 0.334676 |
Theodore, Douglas, Roberto, Tiffany, Allen are the only persons in the room.
"Everyone in the room is not an avid mountain climber who has scaled several peaks" only if "everyone in the room does not write poetry".
"No one in the room does not collect limited-edition art prints from contemporary artists" only if "everyone in the room does not practice graffiti art".
It is true that "everyone in the room is not an avid mountain climber who has scaled several peaks and is not an enthusiastic bird watcher who travels for rare sightings".
Everyone outside the room is not an enthusiastic bird watcher who travels for rare sightings.
Everyone in the room does not practice graffiti art.
If someone does not write poetry and is not an amateur astronomer who builds and uses custom telescopes then he/she does not write poetry.
Everyone in the room is not an enthusiastic bird watcher who travels for rare sightings.
Everyone in the room does not collect limited-edition art prints from contemporary artists.
If someone does not practice graffiti art then he/she is not an enthusiastic bird watcher who travels for rare sightings.
Everyone in the room is not an avid mountain climber who has scaled several peaks.
Everyone in the room does not practice graffiti art and is not an avid mountain climber who has scaled several peaks.
Everyone anywhere does not collect limited-edition art prints from contemporary artists.
Not everyone in the room is not an amateur astronomer who builds and uses custom telescopes.
|
Douglas is an amateur astronomer who builds and uses custom telescopes.
|
neutral
|
room(theodore)&room(douglas)&room(roberto)&room(tiffany)&room(allen)&(![X]:(room(X)=>(X='theodore'|X='douglas'|X='roberto'|X='tiffany'|X='allen')))&
((![X]:(room(X)=>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))=>(![X]:(room(X)=>(does_not_write_poetry(X)))))&
((~?[X]:(room(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))=>(![X]:(room(X)=>(does_not_practice_graffiti_art(X)))))&
(![X]:(room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))&
(![X]:(~room(X)=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))&
(![X]:(room(X)=>(does_not_practice_graffiti_art(X))))&
((![X]:((((does_not_write_poetry(X))&(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(does_not_write_poetry(X)))))&
(![X]:(room(X)=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))&
(![X]:(room(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))&
((![X]:((does_not_practice_graffiti_art(X))=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))&
(![X]:(room(X)=>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))&
(![X]:(room(X)=>(((does_not_practice_graffiti_art(X))&(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))&
(![X]:(anywhere(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))&
(~![X]:(room(X)=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))
|
room(theodore)&room(douglas)&room(roberto)&room(tiffany)&room(allen)&(![X]:(room(X)=>(X='theodore'|X='douglas'|X='roberto'|X='tiffany'|X='allen')))&
is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(douglas)
|
[] | null | 0.632627 |
Twanna, Lisa, Thelma are the only persons in the room.
If 'Thelma is richer than George' then 'it is not the case that 'Twanna is a kind calm funny person''.
Lisa is quieter than Roseann.
At least one person outside the room is quieter than George.
Twanna neither is richer than Roseann nor is not old, not humble.
Lisa is wise.
Thelma is quieter than Roseann.
It is not the case that 'Lisa is richer than Roseann'.
Everyone outside the room is quieter than Roseann if they is a happy person.
Everyone in the room who is quieter than George is a strong tall kind person.
Twanna and Thelma are respectively humble and kind.
Roseann is older than Lisa.
Thelma is richer than George.
Thelma is richer than Roseann.
Twanna is richer than George.
George is quieter than Twanna.
If someone is not a patient person then he/she is richer than George.
It is not the case that 'Thelma is a tall person'.
Thelma and Lisa are respectively funny and calm.
Roseann is quieter than Twanna.
Thelma is older than Roseann.
|
Lisa is older than Roseann.
|
contradiction
|
room(twanna)&room(lisa)&room(thelma)&(![X]:(room(X)=>(X='twanna'|X='lisa'|X='thelma')))&
((richer(george,thelma))=>(~(kind(twanna)&calm(twanna)&funny(twanna)&person(twanna))))&
(quieter(roseann,lisa))&
(((?[X]:(~room(X)&quieter(george,X)))))&
(~((richer(roseann,twanna))|(~old(twanna)&~humble(twanna))))&
(wise(lisa))&
(quieter(roseann,thelma))&
(~(richer(roseann,lisa)))&
(![X]:(~room(X)=>(((happy(X)&person(X))=>(quieter(roseann,X))))))&
(![X]:(room(X)=>(((quieter(george,X))=>(strong(X)&tall(X)&kind(X)&person(X))))))&
((humble(twanna))&(kind(thelma)))&
(older(lisa,roseann))&
(richer(george,thelma))&
(richer(roseann,thelma))&
(richer(george,twanna))&
(quieter(twanna,george))&
((![X]:((~(patient(X)&person(X)))=>(richer(george,X)))))&
(~(tall(thelma)&person(thelma)))&
((funny(thelma))&(calm(lisa)))&
(quieter(twanna,roseann))&
(older(roseann,thelma))&
(older(lisa,george))
|
room(twanna)&room(lisa)&room(thelma)&(![X]:(room(X)=>(X='twanna'|X='lisa'|X='thelma')))&
older(roseann,lisa)
|
[
"b19",
"b42",
"p11",
"hypothesis"
] |
% SZS status Unsatisfiable for 708473727415830286737500
% SZS output start Proof for 708473727415830286737500
20. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => ~older(X1,X0))) [input b19]
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
55. older(paul,alice) [input p11]
66. older(alice,paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
103. ! [X0,X1] : ((~older(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 20]
104. ! [X0,X1] : (~older(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 103]
154. older(alice,paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 66]
155. older(alice,paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 154]
174. ~older(X1,X0) | ~older(X0,X1) | X0 = X1 [cnf transformation 104]
216. paul != alice [cnf transformation 43]
254. older(paul,alice) [cnf transformation 55]
270. older(alice,paul) [cnf transformation 155]
362. ~older(alice,paul) | paul = alice [resolution 174,254]
366. paul = alice [subsumption resolution 362,270]
367. $false [subsumption resolution 366,216]
% SZS output end Proof for 708473727415830286737500
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.025 s
% ------------------------------
% ------------------------------
| 0.015157 |
Amber, Chester, Dana, Yoko, Yoko are the only persons in the room.
Either 'everyone in the room does not enjoy making ceramics' or 'everyone in the room is not a night owl or is an active member of a local robotics club or both' but not both.
If 'everyone in the room does not write in-depth travel guides for off-the-beaten-path destinations, collects limited-edition art prints from contemporary artists or does not travel domestically frequently' then 'not everyone anywhere does not practice graffiti art'.
If 'not everyone anywhere does not practice graffiti art' then 'everyone in the room does not collect limited-edition art prints from contemporary artists if they does not enjoy bird watching'.
If 'Chester does not regularly goes on multi-day backpacking trips in national parks' then 'someone in the room is allergic to anything' otherwise 'everyone in the room does not train for and competes in international triathlons or is not a client of LVMH or both'.
If 'everyone in the room does not collect limited-edition art prints from contemporary artists or does not develop open-source software projects in their free time' then 'everyone in the room practices zumba or does not enjoy making ceramics or both' otherwise 'no one in the room does not practice graffiti art'.
'Everyone anywhere does not collect limited-edition art prints from contemporary artists' if 'Amber does not enjoy windsurfing' and vice versa.
If 'Dana is a drone photographer' then 'everyone in the room neither is not allergic to anything nor practices zumba'.
If 'everyone in the room neither is not allergic to anything nor practices zumba' then 'everyone in the room collects limited-edition art prints from contemporary artists'.
If 'everyone in the room does not enjoy windsurfing' then 'Amber does not write in-depth travel guides for off-the-beaten-path destinations'.
If 'Amber does not write in-depth travel guides for off-the-beaten-path destinations' then 'everyone in the room is not an active member of a local robotics club'.
If 'everyone in the room is a client of LVMH' then 'Yoko does not practice zumba and does not enjoy windsurfing'.
|
Yoko plays as a goalkeeper for a local amateur soccer team.
|
contradiction
|
room(amber)&room(chester)&room(dana)&room(yoko)&room(yoko)&(![X]:(room(X)=>(X='amber'|X='chester'|X='dana'|X='yoko'|X='yoko')))&
((![X]:(room(X)=>(does_not_enjoy_making_ceramics(X))))<~>(![X]:(room(X)=>(((is_not_a_night_owl(X))|(is_an_active_member_of_a_local_robotics_club(X)))))))&
(((![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_travel_domestically_frequently(X))))))=>(~![X]:(anywhere(X)=>(does_not_practice_graffiti_art(X)))))&
((~![X]:(anywhere(X)=>(does_not_practice_graffiti_art(X))))=>(![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))))&
(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(chester))=>(?[X]:(room(X)&(is_allergic_to_anything(X)))))&((~(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(chester)))=>(![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))|(is_not_a_client_of_LVMH(X))))))))&
(((![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))=>(![X]:(room(X)=>(((practices_zumba(X))|(does_not_enjoy_making_ceramics(X)))))))&((~(![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))))=>(~?[X]:(room(X)=>(does_not_practice_graffiti_art(X))))))&
((does_not_enjoy_windsurfing(amber))<=>(![X]:(anywhere(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))&
(((is_a_drone_photographer(dana))=>(![X]:(room(X)=>(~((is_not_allergic_to_anything(X))|(practices_zumba(X)))))))&
((![X]:(room(X)=>(~((is_not_allergic_to_anything(X))|(practices_zumba(X))))))=>(![X]:(room(X)=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))&
(((![X]:(room(X)=>(does_not_enjoy_windsurfing(X))))=>(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(amber)))&
((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(amber))=>(![X]:(room(X)=>(is_not_an_active_member_of_a_local_robotics_club(X))))))&
(((![X]:(room(X)=>(is_a_client_of_LVMH(X))))=>(((does_not_practice_zumba(yoko))&(does_not_enjoy_windsurfing(yoko)))))&
((((does_not_practice_zumba(yoko))&(does_not_enjoy_windsurfing(yoko))))=>(enjoys_windsurfing(chester))))&
((![X]:(room(X)=>(does_not_develop_open-source_software_projects_in_their_free_time(X))))=>(is_not_an_active_member_of_a_local_robotics_club(chester)))&
(((![X]:(anywhere(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(chester)))&((~(![X]:(anywhere(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))=>(![X]:(room(X)=>(can_play_the_harmonica(X))))))&
(is_not_a_drone_photographer(amber))&
(((does_not_enjoy_bird_watching(dana))|(is_not_a_client_of_LVMH(dana))|(is_not_an_active_member_of_a_local_robotics_club(dana))))&
(((does_not_develop_open-source_software_projects_in_their_free_time(yoko))<~>(does_not_enjoy_bird_watching(yoko))))&
(~![X]:(room(X)=>(((((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))=>(is_not_allergic_to_anything(X))))))&
(![X]:(room(X)=>(does_not_develop_open-source_software_projects_in_their_free_time(X))))&
(![X]:(room(X)=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))&
((?[X,Y]:(room(X)&room(Y)&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)&does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(Y))&(X!=Y))))&
(((does_not_travel_domestically_frequently(chester))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(chester))))&
(![X]:(room(X)=>(can_play_the_harmonica(X))))&
(![X]:(room(X)=>(((is_not_a_client_of_LVMH(X))=>(((is_a_wine_connoisseur(X))|(does_not_enjoy_windsurfing(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))&
(![X]:(room(X)=>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))&
(![X]:(room(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))&
(?[X]:(room(X)&(((does_not_enjoy_bird_watching(X))<~>(cannot_play_the_harmonica(X))))))&
(![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_practice_graffiti_art(X))))))
|
room(amber)&room(chester)&room(dana)&room(yoko)&room(yoko)&(![X]:(room(X)=>(X='amber'|X='chester'|X='dana'|X='yoko'|X='yoko')))&
plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(yoko)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 5775695105610909620462977
% SZS output start Proof for 5775695105610909620462977
44. ! [X0] : (room(X0) => (~predu(X0) | ~prede(X0) | ~predg(X0))) & ? [X0] : ((~predr(X0) <~> ~predf(X0)) & room(X0)) & ! [X0] : (room(X0) => ~predg(X0)) & ! [X0] : (room(X0) => ~predb(X0)) & ! [X0] : (room(X0) => (~predp(X0) => (~predq(X0) | ~predn(X0) | predl(X0)))) & ! [X0] : (room(X0) => predf(X0)) & (~predq(paul) | ~predh(paul)) & ? [X0,X1] : (X0 != X1 & ~predb(X1) & ~predb(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => ~predc(X0)) & ! [X0] : (room(X0) => ~predo(X0)) & ~! [X0] : (room(X0) => ((~predg(X0) | ~predi(X0)) => ~predm(X0))) & (~predo(alice) <~> ~predr(alice)) & (~predk(fred) | ~predp(fred) | ~predr(fred)) & ~predj(mary) & (~! [X0] : (anywhere(X0) => (~predb(X0) | ~predg(X0))) => ! [X0] : (room(X0) => predf(X0))) & (! [X0] : (anywhere(X0) => (~predb(X0) | ~predg(X0))) => ~predg(paul)) & (! [X0] : (room(X0) => ~predo(X0)) => ~predk(paul)) & ((~predn(alice) & ~preda(alice)) => predn(paul)) & (! [X0] : (room(X0) => predp(X0)) => (~predn(alice) & ~preda(alice))) & (~predq(mary) => ! [X0] : (room(X0) => ~predk(X0))) & (! [X0] : (room(X0) => ~predn(X0)) => ~predq(mary)) & (! [X0] : (room(X0) => ~(preda(X0) | ~predm(X0))) => ! [X0] : (room(X0) => predg(X0))) & (predj(fred) => ! [X0] : (room(X0) => ~(preda(X0) | ~predm(X0)))) & (~predn(mary) <=> ! [X0] : (anywhere(X0) => ~predg(X0))) & (~! [X0] : (room(X0) => (~predg(X0) | ~predo(X0))) => ~? [X0] : (room(X0) => ~predu(X0))) & (! [X0] : (room(X0) => (~predg(X0) | ~predo(X0))) => ! [X0] : (room(X0) => (~preds(X0) | preda(X0)))) & (prede(paul) => ! [X0] : (room(X0) => (~predp(X0) | ~predd(X0)))) & (~prede(paul) => ? [X0] : (predm(X0) & room(X0))) & (~! [X0] : (anywhere(X0) => ~predu(X0)) => ! [X0] : (room(X0) => (~predr(X0) => ~predg(X0)))) & (! [X0] : (room(X0) => (~predh(X0) | predg(X0) | ~predq(X0))) => ~! [X0] : (anywhere(X0) => ~predu(X0))) & (! [X0] : (room(X0) => ~preds(X0)) <~> ! [X0] : (room(X0) => (predk(X0) | ~predt(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. predc(john) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
46. ! [X0] : (room(X0) => (~predu(X0) | ~prede(X0) | ~predg(X0))) & ? [X1] : ((~predr(X1) <~> ~predf(X1)) & room(X1)) & ! [X2] : (room(X2) => ~predg(X2)) & ! [X3] : (room(X3) => ~predb(X3)) & ! [X4] : (room(X4) => (~predp(X4) => (~predq(X4) | ~predn(X4) | predl(X4)))) & ! [X5] : (room(X5) => predf(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (room(X8) => ~predc(X8)) & ! [X9] : (room(X9) => ~predo(X9)) & ~! [X10] : (room(X10) => ((~predg(X10) | ~predi(X10)) => ~predm(X10))) & (~predo(alice) <~> ~predr(alice)) & (~predk(fred) | ~predp(fred) | ~predr(fred)) & ~predj(mary) & (~! [X11] : (anywhere(X11) => (~predb(X11) | ~predg(X11))) => ! [X12] : (room(X12) => predf(X12))) & (! [X13] : (anywhere(X13) => (~predb(X13) | ~predg(X13))) => ~predg(paul)) & (! [X14] : (room(X14) => ~predo(X14)) => ~predk(paul)) & ((~predn(alice) & ~preda(alice)) => predn(paul)) & (! [X15] : (room(X15) => predp(X15)) => (~predn(alice) & ~preda(alice))) & (~predq(mary) => ! [X16] : (room(X16) => ~predk(X16))) & (! [X17] : (room(X17) => ~predn(X17)) => ~predq(mary)) & (! [X18] : (room(X18) => ~(preda(X18) | ~predm(X18))) => ! [X19] : (room(X19) => predg(X19))) & (predj(fred) => ! [X20] : (room(X20) => ~(preda(X20) | ~predm(X20)))) & (~predn(mary) <=> ! [X21] : (anywhere(X21) => ~predg(X21))) & (~! [X22] : (room(X22) => (~predg(X22) | ~predo(X22))) => ~? [X23] : (room(X23) => ~predu(X23))) & (! [X24] : (room(X24) => (~predg(X24) | ~predo(X24))) => ! [X25] : (room(X25) => (~preds(X25) | preda(X25)))) & (prede(paul) => ! [X26] : (room(X26) => (~predp(X26) | ~predd(X26)))) & (~prede(paul) => ? [X27] : (predm(X27) & room(X27))) & (~! [X28] : (anywhere(X28) => ~predu(X28)) => ! [X29] : (room(X29) => (~predr(X29) => ~predg(X29)))) & (! [X30] : (room(X30) => (~predh(X30) | predg(X30) | ~predq(X30))) => ~! [X31] : (anywhere(X31) => ~predu(X31))) & (! [X32] : (room(X32) => ~preds(X32)) <~> ! [X33] : (room(X33) => (predk(X33) | ~predt(X33)))) & ! [X34] : (room(X34) => (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44]
47. ! [X0] : (room(X0) => (~predu(X0) | ~prede(X0) | ~predg(X0))) & ? [X1] : ((~predr(X1) <~> ~predf(X1)) & room(X1)) & ! [X2] : (room(X2) => ~predg(X2)) & ! [X3] : (room(X3) => ~predb(X3)) & ! [X5] : (room(X5) => predf(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (room(X8) => ~predc(X8)) & ! [X9] : (room(X9) => ~predo(X9)) & ~! [X10] : (room(X10) => ((~predg(X10) | ~predi(X10)) => ~predm(X10))) & (~predo(alice) <~> ~predr(alice)) & (~predk(fred) | ~predp(fred) | ~predr(fred)) & ~predj(mary) & (~! [X11] : (anywhere(X11) => (~predb(X11) | ~predg(X11))) => ! [X12] : (room(X12) => predf(X12))) & (! [X13] : (anywhere(X13) => (~predb(X13) | ~predg(X13))) => ~predg(paul)) & (! [X14] : (room(X14) => ~predo(X14)) => ~predk(paul)) & ((~predn(alice) & ~preda(alice)) => predn(paul)) & (! [X15] : (room(X15) => predp(X15)) => (~predn(alice) & ~preda(alice))) & (~predq(mary) => ! [X16] : (room(X16) => ~predk(X16))) & (! [X17] : (room(X17) => ~predn(X17)) => ~predq(mary)) & (! [X18] : (room(X18) => ~(preda(X18) | ~predm(X18))) => ! [X19] : (room(X19) => predg(X19))) & (predj(fred) => ! [X20] : (room(X20) => ~(preda(X20) | ~predm(X20)))) & (~predn(mary) <=> ! [X21] : (anywhere(X21) => ~predg(X21))) & (~! [X22] : (room(X22) => (~predg(X22) | ~predo(X22))) => ~? [X23] : (room(X23) => ~predu(X23))) & (! [X24] : (room(X24) => (~predg(X24) | ~predo(X24))) => ! [X25] : (room(X25) => (~preds(X25) | preda(X25)))) & (prede(paul) => ! [X26] : (room(X26) => (~predp(X26) | ~predd(X26)))) & (~prede(paul) => ? [X27] : (predm(X27) & room(X27))) & (~! [X28] : (anywhere(X28) => ~predu(X28)) => ! [X29] : (room(X29) => (~predr(X29) => ~predg(X29)))) & (! [X30] : (room(X30) => (~predh(X30) | predg(X30) | ~predq(X30))) => ~! [X31] : (anywhere(X31) => ~predu(X31))) & (! [X32] : (room(X32) => ~preds(X32)) <~> ! [X33] : (room(X33) => (predk(X33) | ~predt(X33)))) & ! [X34] : (room(X34) => (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46]
48. ! [X0] : (room(X0) => (~predu(X0) | ~prede(X0) | ~predg(X0))) & ? [X1] : ((~predr(X1) <~> ~predf(X1)) & room(X1)) & ! [X2] : (room(X2) => ~predg(X2)) & ! [X3] : (room(X3) => ~predb(X3)) & ! [X5] : (room(X5) => predf(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (room(X8) => ~predc(X8)) & ! [X9] : (room(X9) => ~predo(X9)) & ~! [X10] : (room(X10) => ((~predg(X10) | ~predi(X10)) => ~predm(X10))) & (~predo(alice) <~> ~predr(alice)) & ~predj(mary) & (~! [X11] : (anywhere(X11) => (~predb(X11) | ~predg(X11))) => ! [X12] : (room(X12) => predf(X12))) & (! [X13] : (anywhere(X13) => (~predb(X13) | ~predg(X13))) => ~predg(paul)) & (! [X14] : (room(X14) => ~predo(X14)) => ~predk(paul)) & ((~predn(alice) & ~preda(alice)) => predn(paul)) & (! [X15] : ~room(X15) => (~predn(alice) & ~preda(alice))) & (~predq(mary) => ! [X16] : (room(X16) => ~predk(X16))) & (! [X17] : (room(X17) => ~predn(X17)) => ~predq(mary)) & (! [X18] : (room(X18) => ~(preda(X18) | ~predm(X18))) => ! [X19] : (room(X19) => predg(X19))) & (predj(fred) => ! [X20] : (room(X20) => ~(preda(X20) | ~predm(X20)))) & (~predn(mary) <=> ! [X21] : (anywhere(X21) => ~predg(X21))) & (~! [X22] : (room(X22) => (~predg(X22) | ~predo(X22))) => ~? [X23] : (room(X23) => ~predu(X23))) & (! [X24] : (room(X24) => (~predg(X24) | ~predo(X24))) => ! [X25] : (room(X25) => (~preds(X25) | preda(X25)))) & (~prede(paul) => ? [X27] : (predm(X27) & room(X27))) & (~! [X28] : (anywhere(X28) => ~predu(X28)) => ! [X29] : (room(X29) => (~predr(X29) => ~predg(X29)))) & (! [X30] : (room(X30) => (~predh(X30) | predg(X30) | ~predq(X30))) => ~! [X31] : (anywhere(X31) => ~predu(X31))) & (! [X32] : (room(X32) => ~preds(X32)) <~> ! [X33] : (room(X33) => (predk(X33) | ~predt(X33)))) & ! [X34] : (room(X34) => (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47]
49. ! [X0] : (room(X0) => (~predu(X0) | ~prede(X0) | ~predg(X0))) & ? [X1] : ((~predr(X1) <~> ~predf(X1)) & room(X1)) & ! [X2] : (room(X2) => ~predg(X2)) & ! [X3] : (room(X3) => ~predb(X3)) & ! [X5] : (room(X5) => predf(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (room(X8) => ~predc(X8)) & ! [X9] : (room(X9) => ~predo(X9)) & ~! [X10] : (room(X10) => ~predm(X10)) & (~predo(alice) <~> ~predr(alice)) & ~predj(mary) & (~! [X11] : (anywhere(X11) => (~predb(X11) | ~predg(X11))) => ! [X12] : (room(X12) => predf(X12))) & (! [X13] : (anywhere(X13) => (~predb(X13) | ~predg(X13))) => ~predg(paul)) & (! [X14] : (room(X14) => ~predo(X14)) => ~predk(paul)) & ((~predn(alice) & ~preda(alice)) => predn(paul)) & (! [X15] : ~room(X15) => (~predn(alice) & ~preda(alice))) & (~predq(mary) => ! [X16] : (room(X16) => ~predk(X16))) & (! [X17] : (room(X17) => ~predn(X17)) => ~predq(mary)) & (! [X18] : (room(X18) => ~(preda(X18) | ~predm(X18))) => ! [X19] : (room(X19) => predg(X19))) & (predj(fred) => ! [X20] : (room(X20) => ~(preda(X20) | ~predm(X20)))) & (~predn(mary) <=> ! [X21] : (anywhere(X21) => ~predg(X21))) & (~! [X22] : (room(X22) => (~predg(X22) | ~predo(X22))) => ~? [X23] : (room(X23) => ~predu(X23))) & (! [X24] : (room(X24) => (~predg(X24) | ~predo(X24))) => ! [X25] : (room(X25) => (~preds(X25) | preda(X25)))) & (~prede(paul) => ? [X27] : (predm(X27) & room(X27))) & (~! [X28] : (anywhere(X28) => ~predu(X28)) => ! [X29] : (room(X29) => (~predr(X29) => ~predg(X29)))) & (! [X30] : (room(X30) => (~predh(X30) | predg(X30) | ~predq(X30))) => ~! [X31] : (anywhere(X31) => ~predu(X31))) & (! [X32] : (room(X32) => ~preds(X32)) <~> ! [X33] : (room(X33) => (predk(X33) | ~predt(X33)))) & ! [X34] : (room(X34) => (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48]
50. ! [X0] : (room(X0) => (~predu(X0) | ~prede(X0) | ~predg(X0))) & ? [X1] : ((~predr(X1) <~> ~predf(X1)) & room(X1)) & ! [X2] : (room(X2) => ~predg(X2)) & ! [X3] : (room(X3) => ~predb(X3)) & ! [X5] : (room(X5) => predf(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (room(X8) => ~predc(X8)) & ! [X9] : (room(X9) => ~predo(X9)) & ~! [X10] : (room(X10) => ~predm(X10)) & (~predo(alice) <~> ~predr(alice)) & (~! [X11] : (anywhere(X11) => (~predb(X11) | ~predg(X11))) => ! [X12] : (room(X12) => predf(X12))) & (! [X13] : (anywhere(X13) => (~predb(X13) | ~predg(X13))) => ~predg(paul)) & (! [X14] : (room(X14) => ~predo(X14)) => ~predk(paul)) & ((~predn(alice) & ~preda(alice)) => predn(paul)) & (! [X15] : ~room(X15) => (~predn(alice) & ~preda(alice))) & (~predq(mary) => ! [X16] : (room(X16) => ~predk(X16))) & (! [X17] : (room(X17) => ~predn(X17)) => ~predq(mary)) & (! [X18] : (room(X18) => ~(preda(X18) | ~predm(X18))) => ! [X19] : (room(X19) => predg(X19))) & (~predn(mary) <=> ! [X21] : (anywhere(X21) => ~predg(X21))) & (~! [X22] : (room(X22) => (~predg(X22) | ~predo(X22))) => ~? [X23] : (room(X23) => ~predu(X23))) & (! [X24] : (room(X24) => (~predg(X24) | ~predo(X24))) => ! [X25] : (room(X25) => (~preds(X25) | preda(X25)))) & (~prede(paul) => ? [X27] : (predm(X27) & room(X27))) & (~! [X28] : (anywhere(X28) => ~predu(X28)) => ! [X29] : (room(X29) => (~predr(X29) => ~predg(X29)))) & (! [X30] : (room(X30) => (~predh(X30) | predg(X30) | ~predq(X30))) => ~! [X31] : (anywhere(X31) => ~predu(X31))) & (! [X32] : (room(X32) => ~preds(X32)) <~> ! [X33] : (room(X33) => (predk(X33) | ~predt(X33)))) & ! [X34] : (room(X34) => (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49]
122. ! [X0] : ((~predu(X0) | ~prede(X0) | ~predg(X0)) | ~room(X0)) & ? [X1] : ((~predr(X1) <~> ~predf(X1)) & room(X1)) & ! [X2] : (~predg(X2) | ~room(X2)) & ! [X3] : (~predb(X3) | ~room(X3)) & ! [X5] : (predf(X5) | ~room(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (~predc(X8) | ~room(X8)) & ! [X9] : (~predo(X9) | ~room(X9)) & ? [X10] : (predm(X10) & room(X10)) & (~predo(alice) <~> ~predr(alice)) & (! [X12] : (predf(X12) | ~room(X12)) | ! [X11] : ((~predb(X11) | ~predg(X11)) | ~anywhere(X11))) & (~predg(paul) | ? [X13] : ((predb(X13) & predg(X13)) & anywhere(X13))) & (~predk(paul) | ? [X14] : (predo(X14) & room(X14))) & (predn(paul) | (predn(alice) | preda(alice))) & ((~predn(alice) & ~preda(alice)) | ? [X15] : room(X15)) & (! [X16] : (~predk(X16) | ~room(X16)) | predq(mary)) & (~predq(mary) | ? [X17] : (predn(X17) & room(X17))) & (! [X19] : (predg(X19) | ~room(X19)) | ? [X18] : ((preda(X18) | ~predm(X18)) & room(X18))) & (~predn(mary) <=> ! [X21] : (~predg(X21) | ~anywhere(X21))) & (! [X23] : (predu(X23) & room(X23)) | ! [X22] : ((~predg(X22) | ~predo(X22)) | ~room(X22))) & (! [X25] : ((~preds(X25) | preda(X25)) | ~room(X25)) | ? [X24] : ((predg(X24) & predo(X24)) & room(X24))) & (? [X27] : (predm(X27) & room(X27)) | prede(paul)) & (! [X29] : ((~predg(X29) | predr(X29)) | ~room(X29)) | ! [X28] : (~predu(X28) | ~anywhere(X28))) & (? [X31] : (predu(X31) & anywhere(X31)) | ? [X30] : ((predh(X30) & ~predg(X30) & predq(X30)) & room(X30))) & (! [X32] : (~preds(X32) | ~room(X32)) <~> ! [X33] : ((predk(X33) | ~predt(X33)) | ~room(X33))) & ! [X34] : ((john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34) | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 50]
123. ! [X0] : (~predu(X0) | ~prede(X0) | ~predg(X0) | ~room(X0)) & ? [X1] : ((~predr(X1) <~> ~predf(X1)) & room(X1)) & ! [X2] : (~predg(X2) | ~room(X2)) & ! [X3] : (~predb(X3) | ~room(X3)) & ! [X5] : (predf(X5) | ~room(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (~predc(X8) | ~room(X8)) & ! [X9] : (~predo(X9) | ~room(X9)) & ? [X10] : (predm(X10) & room(X10)) & (~predo(alice) <~> ~predr(alice)) & (! [X12] : (predf(X12) | ~room(X12)) | ! [X11] : (~predb(X11) | ~predg(X11) | ~anywhere(X11))) & (~predg(paul) | ? [X13] : (predb(X13) & predg(X13) & anywhere(X13))) & (~predk(paul) | ? [X14] : (predo(X14) & room(X14))) & (predn(paul) | predn(alice) | preda(alice)) & ((~predn(alice) & ~preda(alice)) | ? [X15] : room(X15)) & (! [X16] : (~predk(X16) | ~room(X16)) | predq(mary)) & (~predq(mary) | ? [X17] : (predn(X17) & room(X17))) & (! [X19] : (predg(X19) | ~room(X19)) | ? [X18] : ((preda(X18) | ~predm(X18)) & room(X18))) & (~predn(mary) <=> ! [X21] : (~predg(X21) | ~anywhere(X21))) & (! [X23] : (predu(X23) & room(X23)) | ! [X22] : (~predg(X22) | ~predo(X22) | ~room(X22))) & (! [X25] : (~preds(X25) | preda(X25) | ~room(X25)) | ? [X24] : (predg(X24) & predo(X24) & room(X24))) & (? [X27] : (predm(X27) & room(X27)) | prede(paul)) & (! [X29] : (~predg(X29) | predr(X29) | ~room(X29)) | ! [X28] : (~predu(X28) | ~anywhere(X28))) & (? [X31] : (predu(X31) & anywhere(X31)) | ? [X30] : (predh(X30) & ~predg(X30) & predq(X30) & room(X30))) & (! [X32] : (~preds(X32) | ~room(X32)) <~> ! [X33] : (predk(X33) | ~predt(X33) | ~room(X33))) & ! [X34] : (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34 | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 122]
124. predc(john) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45]
125. predc(john) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 124]
127. ! [X0] : (~predu(X0) | ~prede(X0) | ~predg(X0) | ~room(X0)) & ? [X1] : (((predf(X1) | predr(X1)) & (~predf(X1) | ~predr(X1))) & room(X1)) & ! [X2] : (~predg(X2) | ~room(X2)) & ! [X3] : (~predb(X3) | ~room(X3)) & ! [X5] : (predf(X5) | ~room(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (~predc(X8) | ~room(X8)) & ! [X9] : (~predo(X9) | ~room(X9)) & ? [X10] : (predm(X10) & room(X10)) & ((predr(alice) | predo(alice)) & (~predr(alice) | ~predo(alice))) & (! [X12] : (predf(X12) | ~room(X12)) | ! [X11] : (~predb(X11) | ~predg(X11) | ~anywhere(X11))) & (~predg(paul) | ? [X13] : (predb(X13) & predg(X13) & anywhere(X13))) & (~predk(paul) | ? [X14] : (predo(X14) & room(X14))) & (predn(paul) | predn(alice) | preda(alice)) & ((~predn(alice) & ~preda(alice)) | ? [X15] : room(X15)) & (! [X16] : (~predk(X16) | ~room(X16)) | predq(mary)) & (~predq(mary) | ? [X17] : (predn(X17) & room(X17))) & (! [X19] : (predg(X19) | ~room(X19)) | ? [X18] : ((preda(X18) | ~predm(X18)) & room(X18))) & ((~predn(mary) | ? [X21] : (predg(X21) & anywhere(X21))) & (! [X21] : (~predg(X21) | ~anywhere(X21)) | predn(mary))) & (! [X23] : (predu(X23) & room(X23)) | ! [X22] : (~predg(X22) | ~predo(X22) | ~room(X22))) & (! [X25] : (~preds(X25) | preda(X25) | ~room(X25)) | ? [X24] : (predg(X24) & predo(X24) & room(X24))) & (? [X27] : (predm(X27) & room(X27)) | prede(paul)) & (! [X29] : (~predg(X29) | predr(X29) | ~room(X29)) | ! [X28] : (~predu(X28) | ~anywhere(X28))) & (? [X31] : (predu(X31) & anywhere(X31)) | ? [X30] : (predh(X30) & ~predg(X30) & predq(X30) & room(X30))) & ((? [X33] : (~predk(X33) & predt(X33) & room(X33)) | ? [X32] : (preds(X32) & room(X32))) & (! [X33] : (predk(X33) | ~predt(X33) | ~room(X33)) | ! [X32] : (~preds(X32) | ~room(X32)))) & ! [X34] : (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34 | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 123]
128. ! [X0] : (~predu(X0) | ~prede(X0) | ~predg(X0) | ~room(X0)) & ? [X1] : ((predf(X1) | predr(X1)) & (~predf(X1) | ~predr(X1)) & room(X1)) & ! [X2] : (~predg(X2) | ~room(X2)) & ! [X3] : (~predb(X3) | ~room(X3)) & ! [X5] : (predf(X5) | ~room(X5)) & (~predq(paul) | ~predh(paul)) & ? [X6,X7] : (X6 != X7 & ~predb(X7) & ~predb(X6) & room(X7) & room(X6)) & ! [X8] : (~predc(X8) | ~room(X8)) & ! [X9] : (~predo(X9) | ~room(X9)) & ? [X10] : (predm(X10) & room(X10)) & (predr(alice) | predo(alice)) & (~predr(alice) | ~predo(alice)) & (! [X12] : (predf(X12) | ~room(X12)) | ! [X11] : (~predb(X11) | ~predg(X11) | ~anywhere(X11))) & (~predg(paul) | ? [X13] : (predb(X13) & predg(X13) & anywhere(X13))) & (~predk(paul) | ? [X14] : (predo(X14) & room(X14))) & (predn(paul) | predn(alice) | preda(alice)) & ((~predn(alice) & ~preda(alice)) | ? [X15] : room(X15)) & (! [X16] : (~predk(X16) | ~room(X16)) | predq(mary)) & (~predq(mary) | ? [X17] : (predn(X17) & room(X17))) & (! [X19] : (predg(X19) | ~room(X19)) | ? [X18] : ((preda(X18) | ~predm(X18)) & room(X18))) & (~predn(mary) | ? [X21] : (predg(X21) & anywhere(X21))) & (! [X21] : (~predg(X21) | ~anywhere(X21)) | predn(mary)) & (! [X23] : (predu(X23) & room(X23)) | ! [X22] : (~predg(X22) | ~predo(X22) | ~room(X22))) & (! [X25] : (~preds(X25) | preda(X25) | ~room(X25)) | ? [X24] : (predg(X24) & predo(X24) & room(X24))) & (? [X27] : (predm(X27) & room(X27)) | prede(paul)) & (! [X29] : (~predg(X29) | predr(X29) | ~room(X29)) | ! [X28] : (~predu(X28) | ~anywhere(X28))) & (? [X31] : (predu(X31) & anywhere(X31)) | ? [X30] : (predh(X30) & ~predg(X30) & predq(X30) & room(X30))) & (? [X33] : (~predk(X33) & predt(X33) & room(X33)) | ? [X32] : (preds(X32) & room(X32))) & (! [X33] : (predk(X33) | ~predt(X33) | ~room(X33)) | ! [X32] : (~preds(X32) | ~room(X32))) & ! [X34] : (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34 | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 127]
129. ! [X0] : (~predu(X0) | ~prede(X0) | ~predg(X0) | ~room(X0)) & ? [X1] : ((predf(X1) | predr(X1)) & (~predf(X1) | ~predr(X1)) & room(X1)) & ! [X2] : (~predg(X2) | ~room(X2)) & ! [X3] : (~predb(X3) | ~room(X3)) & ! [X4] : (predf(X4) | ~room(X4)) & (~predq(paul) | ~predh(paul)) & ? [X5,X6] : (X5 != X6 & ~predb(X6) & ~predb(X5) & room(X6) & room(X5)) & ! [X7] : (~predc(X7) | ~room(X7)) & ! [X8] : (~predo(X8) | ~room(X8)) & ? [X9] : (predm(X9) & room(X9)) & (predr(alice) | predo(alice)) & (~predr(alice) | ~predo(alice)) & (! [X10] : (predf(X10) | ~room(X10)) | ! [X11] : (~predb(X11) | ~predg(X11) | ~anywhere(X11))) & (~predg(paul) | ? [X12] : (predb(X12) & predg(X12) & anywhere(X12))) & (~predk(paul) | ? [X13] : (predo(X13) & room(X13))) & (predn(paul) | predn(alice) | preda(alice)) & ((~predn(alice) & ~preda(alice)) | ? [X14] : room(X14)) & (! [X15] : (~predk(X15) | ~room(X15)) | predq(mary)) & (~predq(mary) | ? [X16] : (predn(X16) & room(X16))) & (! [X17] : (predg(X17) | ~room(X17)) | ? [X18] : ((preda(X18) | ~predm(X18)) & room(X18))) & (~predn(mary) | ? [X19] : (predg(X19) & anywhere(X19))) & (! [X20] : (~predg(X20) | ~anywhere(X20)) | predn(mary)) & (! [X21] : (predu(X21) & room(X21)) | ! [X22] : (~predg(X22) | ~predo(X22) | ~room(X22))) & (! [X23] : (~preds(X23) | preda(X23) | ~room(X23)) | ? [X24] : (predg(X24) & predo(X24) & room(X24))) & (? [X25] : (predm(X25) & room(X25)) | prede(paul)) & (! [X26] : (~predg(X26) | predr(X26) | ~room(X26)) | ! [X27] : (~predu(X27) | ~anywhere(X27))) & (? [X28] : (predu(X28) & anywhere(X28)) | ? [X29] : (predh(X29) & ~predg(X29) & predq(X29) & room(X29))) & (? [X30] : (~predk(X30) & predt(X30) & room(X30)) | ? [X31] : (preds(X31) & room(X31))) & (! [X32] : (predk(X32) | ~predt(X32) | ~room(X32)) | ! [X33] : (~preds(X33) | ~room(X33))) & ! [X34] : (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34 | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 128]
130. ? [X1] : ((predf(X1) | predr(X1)) & (~predf(X1) | ~predr(X1)) & room(X1)) => ((predf(sK0) | predr(sK0)) & (~predf(sK0) | ~predr(sK0)) & room(sK0)) [choice axiom]
131. ? [X5,X6] : (X5 != X6 & ~predb(X6) & ~predb(X5) & room(X6) & room(X5)) => (sK1 != sK2 & ~predb(sK2) & ~predb(sK1) & room(sK2) & room(sK1)) [choice axiom]
132. ? [X9] : (predm(X9) & room(X9)) => (predm(sK3) & room(sK3)) [choice axiom]
133. ? [X12] : (predb(X12) & predg(X12) & anywhere(X12)) => (predb(sK4) & predg(sK4) & anywhere(sK4)) [choice axiom]
134. ? [X13] : (predo(X13) & room(X13)) => (predo(sK5) & room(sK5)) [choice axiom]
135. ? [X14] : room(X14) => room(sK6) [choice axiom]
136. ? [X16] : (predn(X16) & room(X16)) => (predn(sK7) & room(sK7)) [choice axiom]
137. ? [X18] : ((preda(X18) | ~predm(X18)) & room(X18)) => ((preda(sK8) | ~predm(sK8)) & room(sK8)) [choice axiom]
138. ? [X19] : (predg(X19) & anywhere(X19)) => (predg(sK9) & anywhere(sK9)) [choice axiom]
139. ? [X24] : (predg(X24) & predo(X24) & room(X24)) => (predg(sK10) & predo(sK10) & room(sK10)) [choice axiom]
140. ? [X25] : (predm(X25) & room(X25)) => (predm(sK11) & room(sK11)) [choice axiom]
141. ? [X28] : (predu(X28) & anywhere(X28)) => (predu(sK12) & anywhere(sK12)) [choice axiom]
142. ? [X29] : (predh(X29) & ~predg(X29) & predq(X29) & room(X29)) => (predh(sK13) & ~predg(sK13) & predq(sK13) & room(sK13)) [choice axiom]
143. ? [X30] : (~predk(X30) & predt(X30) & room(X30)) => (~predk(sK14) & predt(sK14) & room(sK14)) [choice axiom]
144. ? [X31] : (preds(X31) & room(X31)) => (preds(sK15) & room(sK15)) [choice axiom]
145. ! [X0] : (~predu(X0) | ~prede(X0) | ~predg(X0) | ~room(X0)) & ((predf(sK0) | predr(sK0)) & (~predf(sK0) | ~predr(sK0)) & room(sK0)) & ! [X2] : (~predg(X2) | ~room(X2)) & ! [X3] : (~predb(X3) | ~room(X3)) & ! [X4] : (predf(X4) | ~room(X4)) & (~predq(paul) | ~predh(paul)) & (sK1 != sK2 & ~predb(sK2) & ~predb(sK1) & room(sK2) & room(sK1)) & ! [X7] : (~predc(X7) | ~room(X7)) & ! [X8] : (~predo(X8) | ~room(X8)) & (predm(sK3) & room(sK3)) & (predr(alice) | predo(alice)) & (~predr(alice) | ~predo(alice)) & (! [X10] : (predf(X10) | ~room(X10)) | ! [X11] : (~predb(X11) | ~predg(X11) | ~anywhere(X11))) & (~predg(paul) | (predb(sK4) & predg(sK4) & anywhere(sK4))) & (~predk(paul) | (predo(sK5) & room(sK5))) & (predn(paul) | predn(alice) | preda(alice)) & ((~predn(alice) & ~preda(alice)) | room(sK6)) & (! [X15] : (~predk(X15) | ~room(X15)) | predq(mary)) & (~predq(mary) | (predn(sK7) & room(sK7))) & (! [X17] : (predg(X17) | ~room(X17)) | ((preda(sK8) | ~predm(sK8)) & room(sK8))) & (~predn(mary) | (predg(sK9) & anywhere(sK9))) & (! [X20] : (~predg(X20) | ~anywhere(X20)) | predn(mary)) & (! [X21] : (predu(X21) & room(X21)) | ! [X22] : (~predg(X22) | ~predo(X22) | ~room(X22))) & (! [X23] : (~preds(X23) | preda(X23) | ~room(X23)) | (predg(sK10) & predo(sK10) & room(sK10))) & ((predm(sK11) & room(sK11)) | prede(paul)) & (! [X26] : (~predg(X26) | predr(X26) | ~room(X26)) | ! [X27] : (~predu(X27) | ~anywhere(X27))) & ((predu(sK12) & anywhere(sK12)) | (predh(sK13) & ~predg(sK13) & predq(sK13) & room(sK13))) & ((~predk(sK14) & predt(sK14) & room(sK14)) | (preds(sK15) & room(sK15))) & (! [X32] : (predk(X32) | ~predt(X32) | ~room(X32)) | ! [X33] : (~preds(X33) | ~room(X33))) & ! [X34] : (john = X34 | alice = X34 | fred = X34 | paul = X34 | mary = X34 | ~room(X34)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 129,144,143,142,141,140,139,138,137,136,135,134,133,132,131,130]
231. room(john) [cnf transformation 145]
278. ~predc(X7) | ~room(X7) [cnf transformation 145]
298. predc(john) [cnf transformation 125]
536. ~room(john) [resolution 278,298]
537. $false [subsumption resolution 536,231]
% SZS output end Proof for 5775695105610909620462977
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.548434 |
Douglas, Jonas are the only persons in the room.
Everyone in the room who does not play as a goalkeeper for a local amateur soccer team, plays as a goalkeeper for a local amateur soccer team or collects foreign coins uses an ios phone.
Everyone in the room is a craft beer aficionado and does not enjoy wildlife photography if they plays eSports competitively.
Everyone in the room who is a craft beer aficionado and does not enjoy wildlife photography enjoys skydiving.
Everyone in the room plays eSports competitively.
Everyone outside the room who has a saltwater aquarium writes in-depth travel guides for off-the-beaten-path destinations.
Everyone in the room collects foreign coins only if they is an active member of a local robotics club.
Someone in the room frequently participates in hackathons and coding competitions.
Everyone in the room has a saltwater aquarium if they is a craft beer aficionado.
Someone in the room collects foreign coins.
Everyone in the room who is not a certified scuba diver with advanced underwater photography skills enjoys origami.
Everyone anywhere owns a 3D printer or does not have a specialized collection of handmade artisan pottery.
Someone in the room is not a certified scuba diver with advanced underwater photography skills.
Everyone in the room does not have a pet dog or is an active member of a local robotics club.
Everyone in the room works on fridays if they enjoys skydiving.
No one anywhere is not an active member of a local robotics club or practices zumba.
|
Douglas enjoys skydiving.
|
entailment
|
room(douglas)&room(jonas)&(![X]:(room(X)=>(X='douglas'|X='jonas')))&
(![X]:(room(X)=>(((((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(collects_foreign_coins(X))))=>(uses_an_ios_phone(X))))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(((is_a_craft_beer_aficionado(X))&(does_not_enjoy_wildlife_photography(X))))))))&
(![X]:(room(X)=>(((((is_a_craft_beer_aficionado(X))&(does_not_enjoy_wildlife_photography(X))))=>(enjoys_skydiving(X))))))&
(![X]:(room(X)=>(plays_eSports_competitively(X))))&
(![X]:(~room(X)=>(((has_a_saltwater_aquarium(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))&
(![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))<=(collects_foreign_coins(X))))))&
(?[X]:(room(X)&(frequently_participates_in_hackathons_and_coding_competitions(X))))&
(![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(has_a_saltwater_aquarium(X))))))&
(?[X]:(room(X)&(collects_foreign_coins(X))))&
(![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(enjoys_origami(X))))))&
(![X]:(anywhere(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))|(owns_a_3D_printer(X))))))&
(?[X]:(room(X)&(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))&
(![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_have_a_pet_dog(X))))))&
(![X]:(room(X)=>(((enjoys_skydiving(X))=>(works_on_fridays(X))))))&
(~?[X]:(anywhere(X)=>(((practices_zumba(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))
|
room(douglas)&room(jonas)&(![X]:(room(X)=>(X='douglas'|X='jonas')))&
enjoys_skydiving(douglas)
|
[
"p0",
"p2",
"p3",
"p4",
"hypothesis"
] |
% SZS status Unsatisfiable for 4996890195908547858740794
% SZS output start Proof for 4996890195908547858740794
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
46. ! [X0] : (room(X0) => (predk(X0) => (~predr(X0) & predd(X0)))) [input p2]
47. ! [X0] : (room(X0) => ((~predr(X0) & predd(X0)) => predv(X0))) [input p3]
48. ! [X0] : (room(X0) => predk(X0)) [input p4]
60. ~(predv(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
147. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
148. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 147]
149. ! [X0] : (((~predr(X0) & predd(X0)) | ~predk(X0)) | ~room(X0)) [ennf transformation 46]
150. ! [X0] : ((~predr(X0) & predd(X0)) | ~predk(X0) | ~room(X0)) [flattening 149]
151. ! [X0] : ((predv(X0) | (predr(X0) | ~predd(X0))) | ~room(X0)) [ennf transformation 47]
152. ! [X0] : (predv(X0) | predr(X0) | ~predd(X0) | ~room(X0)) [flattening 151]
153. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 48]
154. ~predv(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 60]
155. ~predv(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 154]
163. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
164. ~predv(mary) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 155,163]
245. room(mary) [cnf transformation 148]
246. room(paul) [cnf transformation 148]
247. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 148]
248. ~predk(X0) | predd(X0) | ~room(X0) [cnf transformation 150]
249. ~predr(X0) | ~predk(X0) | ~room(X0) [cnf transformation 150]
250. ~predd(X0) | predr(X0) | predv(X0) | ~room(X0) [cnf transformation 152]
251. ~room(X0) | predk(X0) [cnf transformation 153]
255. ~predv(mary) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 164]
256. ~predv(mary) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 164]
257. ~predv(mary) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 164]
258. ~predv(mary) | paul != sK3 | ~room(mary) [subsumption resolution 257,246]
259. ~predv(mary) | paul != sK3 [subsumption resolution 258,245]
261. 1 <=> paul = sK3 [avatar definition]
263. paul != sK3 <- (~1) [avatar component clause 261]
265. 2 <=> predv(mary) [avatar definition]
267. ~predv(mary) <- (~2) [avatar component clause 265]
268. ~1 | ~2 [avatar split clause 259,265,261]
269. ~predv(mary) | mary != sK3 | ~room(mary) [subsumption resolution 256,246]
270. ~predv(mary) | mary != sK3 [subsumption resolution 269,245]
272. 3 <=> mary = sK3 [avatar definition]
274. mary != sK3 <- (~3) [avatar component clause 272]
275. ~3 | ~2 [avatar split clause 270,265,272]
276. ~predv(mary) | room(sK3) | ~room(mary) [subsumption resolution 255,246]
277. ~predv(mary) | room(sK3) [subsumption resolution 276,245]
279. 4 <=> room(sK3) [avatar definition]
281. room(sK3) <- (4) [avatar component clause 279]
282. 4 | ~2 [avatar split clause 277,265,279]
283. predk(mary) [resolution 251,245]
288. predd(mary) | ~room(mary) [resolution 283,248]
289. predd(mary) [subsumption resolution 288,245]
330. predr(mary) | predv(mary) | ~room(mary) [resolution 250,289]
331. predr(mary) | ~room(mary) <- (~2) [subsumption resolution 330,267]
332. predr(mary) <- (~2) [subsumption resolution 331,245]
344. ~predk(mary) | ~room(mary) <- (~2) [resolution 332,249]
345. ~room(mary) <- (~2) [subsumption resolution 344,283]
346. $false <- (~2) [subsumption resolution 345,245]
347. 2 [avatar contradiction clause 346]
354. mary = sK3 | paul = sK3 <- (4) [resolution 281,247]
356. paul = sK3 <- (~3, 4) [subsumption resolution 354,274]
357. $false <- (~1, ~3, 4) [subsumption resolution 356,263]
358. 1 | 3 | ~4 [avatar contradiction clause 357]
359. $false [avatar sat refutation 268,275,282,347,358]
% SZS output end Proof for 4996890195908547858740794
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.229041 |
Scottie, Mark are the only persons in the room. It is true that Scottie neither does not practice kickboxing nor does not collect limited-edition art prints from contemporary artists. Mark does not practice archery. Mark is not a wine connoisseur with a private cellar of vintage wines, does not practice urban gardening and does not practice kickboxing. Mark collects limited-edition art prints from contemporary artists. Scottie can play the flute or does not enjoy trail running or both. Mark cannot play the flute. Scottie cannot play the flute. Mark travels domestically frequently. Scottie neither does not read mystery novels nor makes intricate hand-cut paper art for exhibitions. Scottie does not make intricate hand-cut paper art for exhibitions. Scottie does not travel domestically frequently, does not frequently participates in hackathons and coding competitions and does not practice tai chi. Mark does not frequently participates in hackathons and coding competitions. Scottie either does not practice urban gardening or builds model airplanes but not both. Only one person in the room is not a wine connoisseur with a private cellar of vintage wines.
|
Only one person in the room can play the flute.
|
contradiction
|
room(scottie)&room(mark)&(![X]:(room(X)=>(X='scottie'|X='mark')))&
(~((does_not_practice_kickboxing(scottie))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(scottie))))&
(does_not_practice_archery(mark))&
(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(mark))&(does_not_practice_urban_gardening(mark))&(does_not_practice_kickboxing(mark))))&
(collects_limited-edition_art_prints_from_contemporary_artists(mark))&
(((can_play_the_flute(scottie))|(does_not_enjoy_trail_running(scottie))))&
(cannot_play_the_flute(mark))&
(cannot_play_the_flute(scottie))&
(travels_domestically_frequently(mark))&
(~((does_not_read_mystery_novels(scottie))|(makes_intricate_hand-cut_paper_art_for_exhibitions(scottie))))&
(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(scottie))&
(((does_not_travel_domestically_frequently(scottie))&(does_not_frequently_participates_in_hackathons_and_coding_competitions(scottie))&(does_not_practice_tai_chi(scottie))))&
(does_not_frequently_participates_in_hackathons_and_coding_competitions(mark))&
(((does_not_practice_urban_gardening(scottie))<~>(builds_model_airplanes(scottie))))&
(((?[X]:(room(X)&is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(Y)))=>(X=Y)))))
|
room(scottie)&room(mark)&(![X]:(room(X)=>(X='scottie'|X='mark')))&
((?[X]:(room(X)&can_play_the_flute(X)))&(![X,Y]:((room(X)&room(Y)&(can_play_the_flute(X))&(can_play_the_flute(Y)))=>(X=Y))))
|
[
"p0",
"p6",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 4417004451584548736638560
% SZS output start Proof for 4417004451584548736638560
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
50. ~predc(paul) [input p6]
51. ~predc(mary) [input p7]
59. ! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predc(X0) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
61. ! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : (room(X3) => (paul = X3 | mary = X3)) & room(paul) & room(mary) [rectify 59]
144. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
145. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 144]
149. ! [X0,X1] : (X0 = X1 | (~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : ((paul = X3 | mary = X3) | ~room(X3)) & room(paul) & room(mary) [ennf transformation 61]
150. ! [X0,X1] : (X0 = X1 | ~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [flattening 149]
155. ? [X2] : (predc(X2) & room(X2)) => (predc(sK1) & room(sK1)) [choice axiom]
156. ! [X0,X1] : (X0 = X1 | ~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0)) & (predc(sK1) & room(sK1)) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [skolemisation 150,155]
239. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 145]
244. ~predc(paul) [cnf transformation 50]
245. ~predc(mary) [cnf transformation 51]
256. room(sK1) [cnf transformation 156]
257. predc(sK1) [cnf transformation 156]
272. mary = sK1 | paul = sK1 [resolution 239,256]
283. 5 <=> paul = sK1 [avatar definition]
285. paul = sK1 <- (5) [avatar component clause 283]
287. 6 <=> mary = sK1 [avatar definition]
289. mary = sK1 <- (6) [avatar component clause 287]
290. 5 | 6 [avatar split clause 272,287,283]
292. predc(paul) <- (5) [backward demodulation 257,285]
293. $false <- (5) [subsumption resolution 292,244]
294. ~5 [avatar contradiction clause 293]
298. predc(mary) <- (6) [backward demodulation 257,289]
299. $false <- (6) [subsumption resolution 298,245]
300. ~6 [avatar contradiction clause 299]
302. $false [avatar sat refutation 290,294,300]
% SZS output end Proof for 4417004451584548736638560
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.422314 |
Larry, Rogelio, Joseph, Melissa are the only persons in the room. Everyone in the room enjoys writing detailed reviews of new and classic board games if they is an expert in identifying and foraging wild edible plants. Everyone outside the room who enjoys writing detailed reviews of new and classic board games is an expert in identifying and foraging wild edible plants. If someone is a drone photographer then he/she is not an expert in identifying and foraging wild edible plants. Everyone in the room creates augmented reality experiences for mobile applications or is not a drone photographer or both if they neither is a drone photographer nor is not a craft beer aficionado and vice versa. Everyone in the room is a drone photographer. If someone enjoys writing detailed reviews of new and classic board games then he/she either is a drone photographer or is not a craft beer aficionado but not both. Everyone in the room is an expert in identifying and foraging wild edible plants only if they is not a drone photographer. Everyone in the room is a craft beer aficionado. Not everyone in the room neither is not an expert in identifying and foraging wild edible plants nor is an expert in identifying and foraging wild edible plants. More than one person in the room enjoys writing detailed reviews of new and classic board games or does not enjoy writing detailed reviews of new and classic board games or both. Everyone in the room either creates augmented reality experiences for mobile applications or is a craft beer aficionado but not both if they creates augmented reality experiences for mobile applications. Everyone in the room either is a drone photographer or is not a craft beer aficionado but not both if they either creates augmented reality experiences for mobile applications or is a craft beer aficionado but not both. Everyone anywhere does not create augmented reality experiences for mobile applications, is not a drone photographer or is not a craft beer aficionado if they either is a drone photographer or is not a craft beer aficionado but not both.
|
Rogelio enjoys writing detailed reviews of new and classic board games.
|
neutral
|
room(larry)&room(rogelio)&room(joseph)&room(melissa)&(![X]:(room(X)=>(X='larry'|X='rogelio'|X='joseph'|X='melissa')))&
(![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
(![X]:(~room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))&
((![X]:((is_a_drone_photographer(X))=>(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))&
(![X]:(room(X)=>(((((creates_augmented_reality_experiences_for_mobile_applications(X))|(is_not_a_drone_photographer(X))))<=>(~((is_a_drone_photographer(X))|(is_not_a_craft_beer_aficionado(X))))))))&
(![X]:(room(X)=>(is_a_drone_photographer(X))))&
((![X]:((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(((is_a_drone_photographer(X))<~>(is_not_a_craft_beer_aficionado(X)))))))&
(![X]:(room(X)=>(((is_not_a_drone_photographer(X))<=(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))&
(![X]:(room(X)=>(is_a_craft_beer_aficionado(X))))&
(~![X]:(room(X)=>(~((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))&
((?[X,Y]:(room(X)&room(Y)&(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))&((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(Y))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(Y))))&(X!=Y))))&
(![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<~>(is_a_craft_beer_aficionado(X))))))))&
(![X]:(room(X)=>(((((creates_augmented_reality_experiences_for_mobile_applications(X))<~>(is_a_craft_beer_aficionado(X))))=>(((is_a_drone_photographer(X))<~>(is_not_a_craft_beer_aficionado(X))))))))&
(![X]:(anywhere(X)=>(((((is_a_drone_photographer(X))<~>(is_not_a_craft_beer_aficionado(X))))=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))|(is_not_a_drone_photographer(X))|(is_not_a_craft_beer_aficionado(X))))))))
|
room(larry)&room(rogelio)&room(joseph)&room(melissa)&(![X]:(room(X)=>(X='larry'|X='rogelio'|X='joseph'|X='melissa')))&
enjoys_writing_detailed_reviews_of_new_and_classic_board_games(rogelio)
|
[] | null | 0.206456 |
Michale is the only person in the room.
Not everyone in the room who is not a night owl does not compete in national level swimming championships.
|
It is not the case that “it is not the case that “Michale enjoys origami””.
|
neutral
|
room(michale)&(![X]:(room(X)=>(X='michale')))&
(~![X]:(room(X)=>(((is_not_a_night_owl(X))=>(does_not_compete_in_national_level_swimming_championships(X))))))&
(is_not_a_night_owl(michale))&
(![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=>(is_a_night_owl(X))))))&
((is_not_a_night_owl(michale))&(designs_and_sews_custom_cosplay_costumes_for_conventions(michale)))&
(designs_and_sews_custom_cosplay_costumes_for_conventions(michale))&
(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(michale))&
(![X]:(room(X)=>(((enjoys_origami(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))&
(competes_in_national_level_swimming_championships(michale))&
(![X]:(room(X)=>(((((designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(competes_in_national_level_swimming_championships(X))))<=(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))&
(![X]:(room(X)=>(competes_in_national_level_swimming_championships(X))))&
(![X]:(room(X)=>(((((designs_and_sews_custom_cosplay_costumes_for_conventions(X))&(enjoys_origami(X))&(competes_in_national_level_swimming_championships(X))))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))
|
room(michale)&(![X]:(room(X)=>(X='michale')))&
~(~(enjoys_origami(michale)))
|
[] | null | 0.221492 |
""A bird does not tweet using morse code." and "A shadow does not appear only at noon." and "All swans in one park are blue."" if "neither "A river does not flow uphill on Tuesdays." nor "A shadow appears only at noon."". ""A river does not flow uphill on Tuesdays." or "A river flows uphill only on Tuesdays." but not both" unless ""A river flows uphill only on Tuesdays." and "A tower leans significantly but never falls." and "Not all swans in one park are blue."". ""A bird does not tweet using morse code." or "A tower leans significantly but never falls." but not both" if ""All swans in one park are blue." and "A river flows uphill only on Tuesdays." and "A tower does not lean significantly without falling."". If "neither "A tower leans significantly but never falls." nor "A shadow appears only at noon."" then ""Not all swans in one park are blue." or "A shadow does not appear only at noon." but not both". ""A tower leans significantly but never falls." and "A bird tweets using morse code."" if ""A tower does not lean significantly without falling." or "A river does not flow uphill on Tuesdays." but not both" and vice versa. Either ""A shadow appears only at noon." or "A shadow does not appear only at noon." but not both" or ""A tower does not lean significantly without falling." and "All swans in one park are blue." and "A river does not flow uphill on Tuesdays."" but not both. "A river flows uphill only on Tuesdays." or "All swans in one park are blue." but not both. "A shadow does not appear only at noon." or "A tower does not lean significantly without falling." but not both. "A tower leans significantly but never falls." or "A tower does not lean significantly without falling." but not both.
|
A tower leans significantly but never falls.
|
entailment
|
room(david)&room(michael)&room(sara)&(![X]:(room(X)=>(X='david'|X='michael'|X='sara')))&
((~((A_river_does_not_flow_uphill_on_Tuesdays.)|(A_shadow_appears_only_at_noon.)))=>(((A_bird_does_not_tweet_using_morse_code.)&(A_shadow_does_not_appear_only_at_noon.)&(All_swans_in_one_park_are_blue.))))&
(~(((A_river_flows_uphill_only_on_Tuesdays.)&(A_tower_leans_significantly_but_never_falls.)&(Not_all_swans_in_one_park_are_blue.)))=>(((A_river_does_not_flow_uphill_on_Tuesdays.)<~>(A_river_flows_uphill_only_on_Tuesdays.))))&
((((All_swans_in_one_park_are_blue.)&(A_river_flows_uphill_only_on_Tuesdays.)&(A_tower_does_not_lean_significantly_without_falling.)))=>(((A_bird_does_not_tweet_using_morse_code.)<~>(A_tower_leans_significantly_but_never_falls.))))&
((~((A_tower_leans_significantly_but_never_falls.)|(A_shadow_appears_only_at_noon.)))=>(((Not_all_swans_in_one_park_are_blue.)<~>(A_shadow_does_not_appear_only_at_noon.))))&
((((A_tower_does_not_lean_significantly_without_falling.)<~>(A_river_does_not_flow_uphill_on_Tuesdays.)))<=>(((A_tower_leans_significantly_but_never_falls.)&(A_bird_tweets_using_morse_code.))))&
((((A_shadow_appears_only_at_noon.)<~>(A_shadow_does_not_appear_only_at_noon.)))<~>(((A_tower_does_not_lean_significantly_without_falling.)&(All_swans_in_one_park_are_blue.)&(A_river_does_not_flow_uphill_on_Tuesdays.))))&
(((A_river_flows_uphill_only_on_Tuesdays.)<~>(All_swans_in_one_park_are_blue.)))&
(((A_shadow_does_not_appear_only_at_noon.)<~>(A_tower_does_not_lean_significantly_without_falling.)))&
(((A_tower_leans_significantly_but_never_falls.)<~>(A_tower_does_not_lean_significantly_without_falling.)))
|
room(david)&room(michael)&room(sara)&(![X]:(room(X)=>(X='david'|X='michael'|X='sara')))&
A_tower_leans_significantly_but_never_falls.
|
[
"p0",
"p5",
"p6",
"p7",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 249983336671120301687967
% SZS output start Proof for 249983336671120301687967
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
49. (~propositionc <~> ~propositionb) <=> (propositiona & propositionc) [input p5]
50. (propositiond <~> ~propositiond) <~> (~propositionb & propositione & ~propositionc) [input p6]
51. propositionb <~> propositione [input p7]
52. ~propositiond <~> ~propositionc [input p8]
54. ~(propositionc & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
127. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
128. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 127]
136. ~propositionc | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 54]
137. ~propositionc | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 136]
142. (((propositionb | propositionc) & (~propositionb | ~propositionc)) | (~propositiona | ~propositionc)) & ((propositiona & propositionc) | ((~propositionc | propositionb) & (~propositionb | propositionc))) [nnf transformation 49]
143. (((propositionb | propositionc) & (~propositionb | ~propositionc)) | ~propositiona | ~propositionc) & ((propositiona & propositionc) | ((~propositionc | propositionb) & (~propositionb | propositionc))) [flattening 142]
144. ((propositionb | ~propositione | propositionc) | ((propositiond | propositiond) & (~propositiond | ~propositiond))) & ((~propositionb & propositione & ~propositionc) | ((propositiond | ~propositiond) & (~propositiond | propositiond))) [nnf transformation 50]
145. (propositionb | ~propositione | propositionc | ((propositiond | propositiond) & (~propositiond | ~propositiond))) & ((~propositionb & propositione & ~propositionc) | ((propositiond | ~propositiond) & (~propositiond | propositiond))) [flattening 144]
146. (~propositione | ~propositionb) & (propositione | propositionb) [nnf transformation 51]
147. (propositionc | propositiond) & (~propositionc | ~propositiond) [nnf transformation 52]
149. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) [choice axiom]
150. ~propositionc | (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 137,149]
231. room(mary) [cnf transformation 128]
232. room(paul) [cnf transformation 128]
233. room(fred) [cnf transformation 128]
234. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 128]
248. propositionc | ~propositionb | propositionc [cnf transformation 143]
260. propositionb | ~propositione | propositionc | ~propositiond | ~propositiond [cnf transformation 145]
262. propositione | propositionb [cnf transformation 146]
265. propositionc | propositiond [cnf transformation 147]
268. ~propositionc | room(sK0) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 150]
269. ~propositionc | mary != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 150]
270. ~propositionc | paul != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 150]
271. ~propositionc | fred != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 150]
272. propositionb | ~propositione | propositionc | ~propositiond [duplicate literal removal 260]
274. propositionc | ~propositionb [duplicate literal removal 248]
281. 1 <=> propositionb [avatar definition]
285. 2 <=> propositiond [avatar definition]
289. 3 <=> propositione [avatar definition]
299. 5 <=> propositionc [avatar definition]
307. ~1 | 5 [avatar split clause 274,299,281]
309. ~2 | 5 | ~3 | 1 [avatar split clause 272,281,289,299,285]
311. 1 | 3 [avatar split clause 262,289,281]
312. 2 | 5 [avatar split clause 265,299,285]
314. ~propositionc | fred != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 271,233]
315. ~propositionc | fred != sK0 | ~room(mary) [subsumption resolution 314,232]
316. ~propositionc | fred != sK0 [subsumption resolution 315,231]
318. 6 <=> fred = sK0 [avatar definition]
320. fred != sK0 <- (~6) [avatar component clause 318]
321. ~6 | ~5 [avatar split clause 316,299,318]
322. ~propositionc | paul != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 270,233]
323. ~propositionc | paul != sK0 | ~room(mary) [subsumption resolution 322,232]
324. ~propositionc | paul != sK0 [subsumption resolution 323,231]
326. 7 <=> paul = sK0 [avatar definition]
328. paul != sK0 <- (~7) [avatar component clause 326]
329. ~7 | ~5 [avatar split clause 324,299,326]
330. ~propositionc | mary != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 269,233]
331. ~propositionc | mary != sK0 | ~room(mary) [subsumption resolution 330,232]
332. ~propositionc | mary != sK0 [subsumption resolution 331,231]
334. 8 <=> mary = sK0 [avatar definition]
336. mary != sK0 <- (~8) [avatar component clause 334]
337. ~8 | ~5 [avatar split clause 332,299,334]
338. ~propositionc | room(sK0) | ~room(paul) | ~room(mary) [subsumption resolution 268,233]
339. ~propositionc | room(sK0) | ~room(mary) [subsumption resolution 338,232]
340. ~propositionc | room(sK0) [subsumption resolution 339,231]
342. 9 <=> room(sK0) [avatar definition]
344. room(sK0) <- (9) [avatar component clause 342]
345. 9 | ~5 [avatar split clause 340,299,342]
385. paul = sK0 | mary = sK0 | fred = sK0 <- (9) [resolution 234,344]
386. mary = sK0 | fred = sK0 <- (~7, 9) [subsumption resolution 385,328]
387. fred = sK0 <- (~7, ~8, 9) [subsumption resolution 386,336]
388. $false <- (~6, ~7, ~8, 9) [subsumption resolution 387,320]
389. 6 | 7 | 8 | ~9 [avatar contradiction clause 388]
390. $false [avatar sat refutation 307,309,311,312,321,329,337,345,389]
% SZS output end Proof for 249983336671120301687967
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.383153 |
There is a room.
“Everyone in the room does not enjoy virtual reality gaming” if “someone in the room does not use an ios phone” and vice versa.
If “everyone in the room hosts a YouTube channel dedicated to art tutorials or is not a scotch connoisseur” then “everyone outside the room collects limited-edition art prints from contemporary artists”.
“Everyone in the room does not host a YouTube channel dedicated to art tutorials or does not collect vintage vinyl records” if “everyone in the room neither works on fridays nor regularly goes on multi-day backpacking trips in national parks” and vice versa.
If “everyone outside the room does not play as a goalkeeper for a local amateur soccer team or does not own a high-end gaming PC with custom-built components” then “everyone anywhere does not use an ios phone or plays as a goalkeeper for a local amateur soccer team”.
If “everyone anywhere does not use an ios phone or plays as a goalkeeper for a local amateur soccer team” then “everyone in the room does not collect comic books”.
Everyone in the room does not collect comic books if they does not use an ios phone.
Everyone in the room who does not collect vintage vinyl records hosts a YouTube channel dedicated to art tutorials.
Everyone anywhere does not use an ios phone or plays as a goalkeeper for a local amateur soccer team.
Everyone in the room who does not host a YouTube channel dedicated to art tutorials is a scotch connoisseur.
Everyone in the room who is a scotch connoisseur collects action figures.
Not everyone in the room who collects action figures collects comic books.
Everyone anywhere enjoys virtual reality gaming if they does not collect vintage vinyl records.
Everyone in the room who enjoys virtual reality gaming has a saltwater aquarium.
No one in the room is a wine connoisseur with a private cellar of vintage wines if they has a saltwater aquarium.
Everyone in the room does not collect comic books.
Everyone in the room regularly goes on multi-day backpacking trips in national parks if they designs and sews custom cosplay costumes for conventions.
Everyone in the room regularly goes on multi-day backpacking trips in national parks only if they regularly contributes to tech forums and online communities.
|
Everyone in the room is a wine connoisseur with a private cellar of vintage wines.
|
contradiction
|
(there_is_a_room)&
((?[X]:(room(X)&(does_not_use_an_ios_phone(X))))<=>(![X]:(room(X)=>(does_not_enjoy_virtual_reality_gaming(X)))))&
((![X]:(room(X)=>(((is_not_a_scotch_connoisseur(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))=>(![X]:(~room(X)=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))&
((![X]:(room(X)=>(~((works_on_fridays(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))<=>(![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X)))))))&
(((![X]:(~room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(![X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_use_an_ios_phone(X)))))))&
((![X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_use_an_ios_phone(X))))))=>(![X]:(room(X)=>(does_not_collect_comic_books(X))))))&
(![X]:(room(X)=>(((does_not_use_an_ios_phone(X))=>(does_not_collect_comic_books(X))))))&
(![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))&
(![X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_use_an_ios_phone(X))))))&
(![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(is_a_scotch_connoisseur(X))))))&
(![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(collects_action_figures(X))))))&
(~![X]:(room(X)=>(((collects_action_figures(X))=>(collects_comic_books(X))))))&
(![X]:(anywhere(X)=>(((does_not_collect_vintage_vinyl_records(X))=>(enjoys_virtual_reality_gaming(X))))))&
(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(has_a_saltwater_aquarium(X))))))&
(~?[X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))&
(![X]:(room(X)=>(does_not_collect_comic_books(X))))&
(![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))&
(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))<=(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 1056927076713209878593354
% SZS output start Proof for 1056927076713209878593354
44. ! [X0] : (room(X0) => (predy(X0) => predu(X0))) & ! [X0] : (room(X0) => (predq(X0) => predy(X0))) & ! [X0] : (room(X0) => ~preda(X0)) & ~? [X0] : (room(X0) => (predx(X0) => predk(X0))) & ! [X0] : (room(X0) => (predc(X0) => predx(X0))) & ! [X0] : (anywhere(X0) => (~predg(X0) => predc(X0))) & ~! [X0] : (room(X0) => (predm(X0) => preda(X0))) & ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X0] : (room(X0) => (~predb(X0) => predw(X0))) & ! [X0] : (anywhere(X0) => (~predv(X0) | predp(X0))) & ! [X0] : (room(X0) => (~predg(X0) => predb(X0))) & ! [X0] : (room(X0) => (~predv(X0) => ~preda(X0))) & (! [X0] : (anywhere(X0) => (~predv(X0) | predp(X0))) => ! [X0] : (room(X0) => ~preda(X0))) & (! [X0] : (~room(X0) => (~predp(X0) | ~predj(X0))) => ! [X0] : (anywhere(X0) => (~predv(X0) | predp(X0)))) & (! [X0] : (room(X0) => ~(predy(X0) | predz(X0))) <=> ! [X0] : (room(X0) => (~predb(X0) | ~predg(X0)))) & (! [X0] : (room(X0) => (predb(X0) | ~predw(X0))) => ! [X0] : (~room(X0) => prede(X0))) & (? [X0] : (~predv(X0) & room(X0)) <=> ! [X0] : (room(X0) => ~predc(X0))) & there_is_a_room [input p0]
45. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis]
46. ! [X0] : (room(X0) => (predy(X0) => predu(X0))) & ! [X1] : (room(X1) => (predq(X1) => predy(X1))) & ! [X2] : (room(X2) => ~preda(X2)) & ~? [X3] : (room(X3) => (predx(X3) => predk(X3))) & ! [X4] : (room(X4) => (predc(X4) => predx(X4))) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : (room(X6) => (predm(X6) => preda(X6))) & ! [X7] : (room(X7) => (predw(X7) => predm(X7))) & ! [X8] : (room(X8) => (~predb(X8) => predw(X8))) & ! [X9] : (anywhere(X9) => (~predv(X9) | predp(X9))) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & ! [X11] : (room(X11) => (~predv(X11) => ~preda(X11))) & (! [X12] : (anywhere(X12) => (~predv(X12) | predp(X12))) => ! [X13] : (room(X13) => ~preda(X13))) & (! [X14] : (~room(X14) => (~predp(X14) | ~predj(X14))) => ! [X15] : (anywhere(X15) => (~predv(X15) | predp(X15)))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => (predb(X18) | ~predw(X18))) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [rectify 44]
47. ! [X1] : (room(X1) => (predq(X1) => predy(X1))) & ! [X2] : (room(X2) => ~preda(X2)) & ~? [X3] : (room(X3) => (predx(X3) => predk(X3))) & ! [X4] : (room(X4) => (predc(X4) => predx(X4))) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : (room(X6) => (predm(X6) => preda(X6))) & ! [X7] : (room(X7) => (predw(X7) => predm(X7))) & ! [X8] : (room(X8) => (~predb(X8) => predw(X8))) & ! [X9] : (anywhere(X9) => (~predv(X9) | predp(X9))) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & ! [X11] : (room(X11) => (~predv(X11) => ~preda(X11))) & (! [X12] : (anywhere(X12) => (~predv(X12) | predp(X12))) => ! [X13] : (room(X13) => ~preda(X13))) & (! [X14] : (~room(X14) => (~predp(X14) | ~predj(X14))) => ! [X15] : (anywhere(X15) => (~predv(X15) | predp(X15)))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => (predb(X18) | ~predw(X18))) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 46]
48. ! [X2] : (room(X2) => ~preda(X2)) & ~? [X3] : (room(X3) => (predx(X3) => predk(X3))) & ! [X4] : (room(X4) => (predc(X4) => predx(X4))) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : (room(X6) => (predm(X6) => preda(X6))) & ! [X7] : (room(X7) => (predw(X7) => predm(X7))) & ! [X8] : (room(X8) => (~predb(X8) => predw(X8))) & ! [X9] : (anywhere(X9) => (~predv(X9) | predp(X9))) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & ! [X11] : (room(X11) => (~predv(X11) => ~preda(X11))) & (! [X12] : (anywhere(X12) => (~predv(X12) | predp(X12))) => ! [X13] : (room(X13) => ~preda(X13))) & (! [X14] : (~room(X14) => (~predp(X14) | ~predj(X14))) => ! [X15] : (anywhere(X15) => (~predv(X15) | predp(X15)))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => (predb(X18) | ~predw(X18))) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 47]
49. ! [X2] : (room(X2) => ~preda(X2)) & ~? [X3] : (room(X3) => predk(X3)) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : (room(X6) => (predm(X6) => preda(X6))) & ! [X7] : (room(X7) => (predw(X7) => predm(X7))) & ! [X8] : (room(X8) => (~predb(X8) => predw(X8))) & ! [X9] : (anywhere(X9) => (~predv(X9) | predp(X9))) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & ! [X11] : (room(X11) => (~predv(X11) => ~preda(X11))) & (! [X12] : (anywhere(X12) => (~predv(X12) | predp(X12))) => ! [X13] : (room(X13) => ~preda(X13))) & (! [X14] : (~room(X14) => (~predp(X14) | ~predj(X14))) => ! [X15] : (anywhere(X15) => (~predv(X15) | predp(X15)))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => (predb(X18) | ~predw(X18))) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 48]
50. ! [X2] : (room(X2) => ~preda(X2)) & ~? [X3] : (room(X3) => predk(X3)) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : (room(X6) => preda(X6)) & ! [X8] : (room(X8) => (~predb(X8) => predw(X8))) & ! [X9] : (anywhere(X9) => (~predv(X9) | predp(X9))) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & ! [X11] : (room(X11) => (~predv(X11) => ~preda(X11))) & (! [X12] : (anywhere(X12) => (~predv(X12) | predp(X12))) => ! [X13] : (room(X13) => ~preda(X13))) & (! [X14] : (~room(X14) => (~predp(X14) | ~predj(X14))) => ! [X15] : (anywhere(X15) => (~predv(X15) | predp(X15)))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => (predb(X18) | ~predw(X18))) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 49]
51. ! [X2] : (room(X2) => ~preda(X2)) & ~? [X3] : (room(X3) => predk(X3)) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : (room(X6) => preda(X6)) & ! [X9] : (anywhere(X9) => (~predv(X9) | predp(X9))) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & ! [X11] : (room(X11) => (~predv(X11) => ~preda(X11))) & (! [X12] : (anywhere(X12) => (~predv(X12) | predp(X12))) => ! [X13] : (room(X13) => ~preda(X13))) & (! [X14] : (~room(X14) => (~predp(X14) | ~predj(X14))) => ! [X15] : (anywhere(X15) => (~predv(X15) | predp(X15)))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => predb(X18)) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 50]
52. ~? [X3] : (room(X3) => predk(X3)) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : ~room(X6) & ! [X9] : (anywhere(X9) => (~predv(X9) | predp(X9))) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & (! [X14] : (~room(X14) => (~predp(X14) | ~predj(X14))) => ! [X15] : (anywhere(X15) => (~predv(X15) | predp(X15)))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => predb(X18)) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 51]
53. ~? [X3] : (room(X3) => predk(X3)) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : ~room(X6) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (! [X18] : (room(X18) => predb(X18)) => ! [X19] : (~room(X19) => prede(X19))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 52]
54. ~? [X3] : (room(X3) => predk(X3)) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : ~room(X6) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) & there_is_a_room [pure predicate removal 53]
55. ~? [X3] : (room(X3) => predk(X3)) & ! [X5] : (anywhere(X5) => (~predg(X5) => predc(X5))) & ~! [X6] : ~room(X6) & ! [X10] : (room(X10) => (~predg(X10) => predb(X10))) & (! [X16] : (room(X16) => ~(predy(X16) | predz(X16))) <=> ! [X17] : (room(X17) => (~predb(X17) | ~predg(X17)))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (room(X21) => ~predc(X21))) [pure predicate removal 54]
56. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 45]
128. ! [X3] : (~predk(X3) & room(X3)) & ! [X5] : ((predc(X5) | predg(X5)) | ~anywhere(X5)) & ? [X6] : room(X6) & ! [X10] : ((predb(X10) | predg(X10)) | ~room(X10)) & (! [X16] : ((~predy(X16) & ~predz(X16)) | ~room(X16)) <=> ! [X17] : ((~predb(X17) | ~predg(X17)) | ~room(X17))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (~predc(X21) | ~room(X21))) [ennf transformation 55]
129. ! [X3] : (~predk(X3) & room(X3)) & ! [X5] : (predc(X5) | predg(X5) | ~anywhere(X5)) & ? [X6] : room(X6) & ! [X10] : (predb(X10) | predg(X10) | ~room(X10)) & (! [X16] : ((~predy(X16) & ~predz(X16)) | ~room(X16)) <=> ! [X17] : (~predb(X17) | ~predg(X17) | ~room(X17))) & (? [X20] : (~predv(X20) & room(X20)) <=> ! [X21] : (~predc(X21) | ~room(X21))) [flattening 128]
130. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 56]
132. ! [X3] : (~predk(X3) & room(X3)) & ! [X5] : (predc(X5) | predg(X5) | ~anywhere(X5)) & ? [X6] : room(X6) & ! [X10] : (predb(X10) | predg(X10) | ~room(X10)) & ((! [X16] : ((~predy(X16) & ~predz(X16)) | ~room(X16)) | ? [X17] : (predb(X17) & predg(X17) & room(X17))) & (! [X17] : (~predb(X17) | ~predg(X17) | ~room(X17)) | ? [X16] : ((predy(X16) | predz(X16)) & room(X16)))) & ((? [X20] : (~predv(X20) & room(X20)) | ? [X21] : (predc(X21) & room(X21))) & (! [X21] : (~predc(X21) | ~room(X21)) | ! [X20] : (predv(X20) | ~room(X20)))) [nnf transformation 129]
133. ! [X3] : (~predk(X3) & room(X3)) & ! [X5] : (predc(X5) | predg(X5) | ~anywhere(X5)) & ? [X6] : room(X6) & ! [X10] : (predb(X10) | predg(X10) | ~room(X10)) & (! [X16] : ((~predy(X16) & ~predz(X16)) | ~room(X16)) | ? [X17] : (predb(X17) & predg(X17) & room(X17))) & (! [X17] : (~predb(X17) | ~predg(X17) | ~room(X17)) | ? [X16] : ((predy(X16) | predz(X16)) & room(X16))) & (? [X20] : (~predv(X20) & room(X20)) | ? [X21] : (predc(X21) & room(X21))) & (! [X21] : (~predc(X21) | ~room(X21)) | ! [X20] : (predv(X20) | ~room(X20))) [flattening 132]
134. ! [X0] : (~predk(X0) & room(X0)) & ! [X1] : (predc(X1) | predg(X1) | ~anywhere(X1)) & ? [X2] : room(X2) & ! [X3] : (predb(X3) | predg(X3) | ~room(X3)) & (! [X4] : ((~predy(X4) & ~predz(X4)) | ~room(X4)) | ? [X5] : (predb(X5) & predg(X5) & room(X5))) & (! [X6] : (~predb(X6) | ~predg(X6) | ~room(X6)) | ? [X7] : ((predy(X7) | predz(X7)) & room(X7))) & (? [X8] : (~predv(X8) & room(X8)) | ? [X9] : (predc(X9) & room(X9))) & (! [X10] : (~predc(X10) | ~room(X10)) | ! [X11] : (predv(X11) | ~room(X11))) [rectify 133]
135. ? [X2] : room(X2) => room(sK0) [choice axiom]
136. ? [X5] : (predb(X5) & predg(X5) & room(X5)) => (predb(sK1) & predg(sK1) & room(sK1)) [choice axiom]
137. ? [X7] : ((predy(X7) | predz(X7)) & room(X7)) => ((predy(sK2) | predz(sK2)) & room(sK2)) [choice axiom]
138. ? [X8] : (~predv(X8) & room(X8)) => (~predv(sK3) & room(sK3)) [choice axiom]
139. ? [X9] : (predc(X9) & room(X9)) => (predc(sK4) & room(sK4)) [choice axiom]
140. ! [X0] : (~predk(X0) & room(X0)) & ! [X1] : (predc(X1) | predg(X1) | ~anywhere(X1)) & room(sK0) & ! [X3] : (predb(X3) | predg(X3) | ~room(X3)) & (! [X4] : ((~predy(X4) & ~predz(X4)) | ~room(X4)) | (predb(sK1) & predg(sK1) & room(sK1))) & (! [X6] : (~predb(X6) | ~predg(X6) | ~room(X6)) | ((predy(sK2) | predz(sK2)) & room(sK2))) & ((~predv(sK3) & room(sK3)) | (predc(sK4) & room(sK4))) & (! [X10] : (~predc(X10) | ~room(X10)) | ! [X11] : (predv(X11) | ~room(X11))) [skolemisation 134,139,138,137,136,135]
238. room(X0) [cnf transformation 140]
239. ~predk(X0) [cnf transformation 140]
240. predk(X0) | ~room(X0) [cnf transformation 130]
296. ~room(X0) [subsumption resolution 240,239]
297. $false [subsumption resolution 296,238]
% SZS output end Proof for 1056927076713209878593354
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.572798 |
Barbara, Gary, Arturo are the only persons in the room. Someone in the room neither enjoys deep-sea diving and exploring underwater caves nor enjoys rooftop gardening. Gary who owns an Android phone enjoys deep-sea diving and exploring underwater caves. Arturo is a scotch connoisseur. Gary is a scotch connoisseur. Not everyone in the room plays the violin, is an active member of a local robotics club or enjoys deep-sea diving and exploring underwater caves if they works as a freelance web developer specializing in e-commerce sites. Everyone anywhere who is a scotch connoisseur either does not own an Android phone or plays the violin but not both. Everyone in the room who either does not own an Android phone or plays the violin but not both enjoys rooftop gardening.
|
Barbara enjoys deep-sea diving and exploring underwater caves.
|
contradiction
|
room(barbara)&room(gary)&room(arturo)&(![X]:(room(X)=>(X='barbara'|X='gary'|X='arturo')))&
((((practices_graffiti_art(arturo))|(enjoys_stargazing(arturo))))&(practices_urban_gardening(arturo)))&
(~![X]:(room(X)=>(((does_not_enjoy_stargazing(X))|(practices_graffiti_art(X))))))&
(![X]:(room(X)=>(((practices_graffiti_art(X))=>(enjoys_kayaking(X))))))&
(~![X]:(room(X)=>(((enjoys_kayaking(X))<=>(writes_poetry(X))))))&
(((writes_a_travel_blog(gary))&(is_allergic_to_anything(gary))))&
(![X]:(~room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))<=>(owns_an_Android_phone(X))))))&
(?[X]:(room(X)&(~((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(enjoys_rooftop_gardening(X))))))&
((owns_an_Android_phone(gary))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(gary)))&
(makes_intricate_hand-cut_paper_art_for_exhibitions(gary))&
(![X]:(room(X)=>(((is_a_scotch_connoisseur(X))<=>(is_an_avid_hiker(X))))))&
(is_a_scotch_connoisseur(arturo))&
((owns_an_Android_phone(gary))&(writes_poetry(gary)))&
(reads_mystery_novels(barbara))&
(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(gary))&
(![X]:(anywhere(X)=>(((practices_archery(X))=>(practices_urban_gardening(X))))))&
(is_a_scotch_connoisseur(gary))&
(is_an_active_member_of_a_local_robotics_club(gary))&
(~![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(((plays_the_violin(X))|(is_an_active_member_of_a_local_robotics_club(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))))&
(is_a_night_owl(barbara))&
(enjoys_stargazing(barbara))&
(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(barbara))&
(![X]:(room(X)=>(((practices_zumba(X))=>(practices_archery(X))))))&
(![X]:(anywhere(X)=>(((practices_archery(X))=>(is_a_scotch_connoisseur(X))))))&
(![X]:(anywhere(X)=>(((is_a_scotch_connoisseur(X))=>(((does_not_own_an_Android_phone(X))<~>(plays_the_violin(X))))))))&
(![X]:(room(X)=>(((((does_not_own_an_Android_phone(X))<~>(plays_the_violin(X))))=>(enjoys_rooftop_gardening(X))))))&
(((?[X]:(anywhere(X)&is_not_allergic_to_anything(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(is_not_allergic_to_anything(X))&(is_not_allergic_to_anything(Y)))=>(X=Y)))))
|
room(barbara)&room(gary)&room(arturo)&(![X]:(room(X)=>(X='barbara'|X='gary'|X='arturo')))&
enjoys_deep-sea_diving_and_exploring_underwater_caves(barbara)
|
[
"b4",
"p0",
"p7",
"p8",
"p11",
"p16",
"p18",
"p24",
"p25",
"hypothesis"
] |
% SZS status Unsatisfiable for 7987709336269562962494141
% SZS output start Proof for 7987709336269562962494141
5. ! [X0] : anywhere(X0) [input b4]
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
51. ? [X0] : (~(preds(X0) | predl(X0)) & room(X0)) [input p7]
52. predl(paul) & predw(paul) [input p8]
55. preda(fred) [input p11]
60. preda(paul) [input p16]
62. ~! [X0] : (room(X0) => (predn(X0) => (predl(X0) | predk(X0) | predh(X0)))) [input p18]
68. ! [X0] : (anywhere(X0) => (preda(X0) => (~predw(X0) <~> predh(X0)))) [input p24]
69. ! [X0] : (room(X0) => ((~predw(X0) <~> predh(X0)) => preds(X0))) [input p25]
71. predl(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
158. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
159. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 158]
163. ? [X0] : ((~preds(X0) & ~predl(X0)) & room(X0)) [ennf transformation 51]
164. ? [X0] : (~preds(X0) & ~predl(X0) & room(X0)) [flattening 163]
166. ? [X0] : (((~predl(X0) & ~predk(X0) & ~predh(X0)) & predn(X0)) & room(X0)) [ennf transformation 62]
167. ? [X0] : (~predl(X0) & ~predk(X0) & ~predh(X0) & predn(X0) & room(X0)) [flattening 166]
168. ! [X0] : (((~predw(X0) <~> predh(X0)) | ~preda(X0)) | ~anywhere(X0)) [ennf transformation 68]
169. ! [X0] : ((~predw(X0) <~> predh(X0)) | ~preda(X0) | ~anywhere(X0)) [flattening 168]
170. ! [X0] : ((preds(X0) | (~predw(X0) <=> predh(X0))) | ~room(X0)) [ennf transformation 69]
171. ! [X0] : (preds(X0) | (~predw(X0) <=> predh(X0)) | ~room(X0)) [flattening 170]
174. predl(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 71]
175. predl(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 174]
184. ? [X0] : (~preds(X0) & ~predl(X0) & room(X0)) => (~preds(sK2) & ~predl(sK2) & room(sK2)) [choice axiom]
185. ~preds(sK2) & ~predl(sK2) & room(sK2) [skolemisation 164,184]
187. ? [X0] : (~predl(X0) & ~predk(X0) & ~predh(X0) & predn(X0) & room(X0)) => (~predl(sK3) & ~predk(sK3) & ~predh(sK3) & predn(sK3) & room(sK3)) [choice axiom]
188. ~predl(sK3) & ~predk(sK3) & ~predh(sK3) & predn(sK3) & room(sK3) [skolemisation 167,187]
189. ! [X0] : (((~predh(X0) | predw(X0)) & (predh(X0) | ~predw(X0))) | ~preda(X0) | ~anywhere(X0)) [nnf transformation 169]
190. ! [X0] : (preds(X0) | ((~predw(X0) | ~predh(X0)) & (predh(X0) | predw(X0))) | ~room(X0)) [nnf transformation 171]
193. anywhere(X0) [cnf transformation 5]
275. room(paul) [cnf transformation 159]
277. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 159]
285. room(sK2) [cnf transformation 185]
286. ~predl(sK2) [cnf transformation 185]
287. ~preds(sK2) [cnf transformation 185]
288. predw(paul) [cnf transformation 52]
289. predl(paul) [cnf transformation 52]
292. preda(fred) [cnf transformation 55]
296. preda(paul) [cnf transformation 60]
298. room(sK3) [cnf transformation 188]
300. ~predh(sK3) [cnf transformation 188]
302. ~predl(sK3) [cnf transformation 188]
303. predh(X0) | ~predw(X0) | ~preda(X0) | ~anywhere(X0) [cnf transformation 189]
305. ~room(X0) | predh(X0) | predw(X0) | preds(X0) [cnf transformation 190]
306. ~predh(X0) | ~predw(X0) | preds(X0) | ~room(X0) [cnf transformation 190]
314. predl(mary) [cnf transformation 175]
326. ~preda(X0) | ~predw(X0) | predh(X0) [subsumption resolution 303,193]
338. ~predw(fred) | predh(fred) [resolution 326,292]
339. ~predw(paul) | predh(paul) [resolution 326,296]
341. 3 <=> predh(fred) [avatar definition]
345. 4 <=> predw(fred) [avatar definition]
347. ~predw(fred) <- (~4) [avatar component clause 345]
348. 3 | ~4 [avatar split clause 338,345,341]
349. predh(paul) [subsumption resolution 339,288]
359. predh(sK2) | predw(sK2) | preds(sK2) [resolution 305,285]
406. predh(sK2) | predw(sK2) [subsumption resolution 359,287]
408. 15 <=> predw(sK2) [avatar definition]
410. predw(sK2) <- (15) [avatar component clause 408]
412. 16 <=> predh(sK2) [avatar definition]
414. predh(sK2) <- (16) [avatar component clause 412]
415. 15 | 16 [avatar split clause 406,412,408]
426. ~predw(paul) | preds(paul) | ~room(paul) [resolution 306,349]
427. preds(paul) | ~room(paul) [subsumption resolution 426,288]
428. preds(paul) [subsumption resolution 427,275]
478. paul = sK2 | mary = sK2 | fred = sK2 [resolution 277,285]
479. paul = sK3 | mary = sK3 | fred = sK3 [resolution 277,298]
507. 25 <=> fred = sK2 [avatar definition]
509. fred = sK2 <- (25) [avatar component clause 507]
511. 26 <=> mary = sK2 [avatar definition]
513. mary = sK2 <- (26) [avatar component clause 511]
515. 27 <=> paul = sK2 [avatar definition]
517. paul = sK2 <- (27) [avatar component clause 515]
518. 25 | 26 | 27 [avatar split clause 478,515,511,507]
520. 28 <=> fred = sK3 [avatar definition]
522. fred = sK3 <- (28) [avatar component clause 520]
524. 29 <=> mary = sK3 [avatar definition]
526. mary = sK3 <- (29) [avatar component clause 524]
528. 30 <=> paul = sK3 [avatar definition]
530. paul = sK3 <- (30) [avatar component clause 528]
531. 28 | 29 | 30 [avatar split clause 479,528,524,520]
535. ~predh(fred) <- (28) [backward demodulation 300,522]
538. ~3 | ~28 [avatar split clause 535,520,341]
539. predw(fred) <- (15, 25) [backward demodulation 410,509]
543. $false <- (~4, 15, 25) [subsumption resolution 539,347]
544. 4 | ~15 | ~25 [avatar contradiction clause 543]
555. ~predl(mary) <- (26) [backward demodulation 286,513]
558. $false <- (26) [subsumption resolution 555,314]
559. ~26 [avatar contradiction clause 558]
566. ~preds(paul) <- (27) [backward demodulation 287,517]
570. $false <- (27) [subsumption resolution 566,428]
571. ~27 [avatar contradiction clause 570]
579. ~predl(mary) <- (29) [backward demodulation 302,526]
581. $false <- (29) [subsumption resolution 579,314]
582. ~29 [avatar contradiction clause 581]
588. predh(fred) <- (16, 25) [forward demodulation 414,509]
589. 3 | ~16 | ~25 [avatar split clause 588,507,412,341]
595. ~predl(paul) <- (30) [backward demodulation 302,530]
602. $false <- (30) [subsumption resolution 595,289]
603. ~30 [avatar contradiction clause 602]
612. $false [avatar sat refutation 348,415,518,531,538,544,559,571,582,589,603]
% SZS output end Proof for 7987709336269562962494141
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.026 s
% ------------------------------
% ------------------------------
| 0.025565 |
Dorothy, Keith, Stella, William are the only persons in the room.
Someone in the room plays as a goalkeeper for a local amateur soccer team.
It is not the case that “someone in the room collects limited-edition art prints from contemporary artists”.
It is not the case that “it is not the case that “someone in the room is an active member of a local robotics club””.
It is not the case that “it is true that “someone in the room hosts regular game nights featuring complex strategy games””.
Someone in the room has a piercing.
It is not the case that “it is not the case that “someone in the room practices urban gardening””.
It is not the case that “someone in the room enjoys stargazing”.
Dorothy who does not enjoy origami, writes a travel blog and composes and performs experimental electronic music is an active member of a local robotics club.
Someone in the room is a cybersecurity expert, can play the harmonica and practices urban gardening.
Dorothy who practices and performs acrobatic dance routines has a piercing.
If someone owns an extensive assortment of vintage comic book memorabilia, composes and performs experimental electronic music and is a dedicated advocate for digital privacy and encryption then he/she writes poetry.
It is not the case that “someone anywhere has a piercing, plays as a goalkeeper for a local amateur soccer team and does not enjoy stargazing”.
Dorothy who does not own an extensive assortment of vintage comic book memorabilia can play the harmonica.
It is not the case that “it is not the case that “it is not the case that “someone in the room collects foreign coins”””.
Someone anywhere uses contact lenses.
|
Stella collects foreign coins.
|
contradiction
|
room(dorothy)&room(keith)&room(stella)&room(william)&(![X]:(room(X)=>(X='dorothy'|X='keith'|X='stella'|X='william')))&
(?[X]:(room(X)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))&
(~(?[X]:(room(X)&(collects_limited-edition_art_prints_from_contemporary_artists(X)))))&
(~(~(?[X]:(room(X)&(is_an_active_member_of_a_local_robotics_club(X))))))&
(~(?[X]:(room(X)&(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))&
(?[X]:(room(X)&(has_a_piercing(X))))&
(~(~(?[X]:(room(X)&(practices_urban_gardening(X))))))&
(~(?[X]:(room(X)&(enjoys_stargazing(X)))))&
((((does_not_enjoy_origami(dorothy))&(writes_a_travel_blog(dorothy))&(composes_and_performs_experimental_electronic_music(dorothy))))&(is_an_active_member_of_a_local_robotics_club(dorothy)))&
(?[X]:(room(X)&(((is_a_cybersecurity_expert(X))&(can_play_the_harmonica(X))&(practices_urban_gardening(X))))))&
((practices_and_performs_acrobatic_dance_routines(dorothy))&(has_a_piercing(dorothy)))&
((![X]:((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(composes_and_performs_experimental_electronic_music(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))=>(writes_poetry(X)))))&
(~(?[X]:(anywhere(X)&(((has_a_piercing(X))&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(does_not_enjoy_stargazing(X)))))))&
((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(dorothy))&(can_play_the_harmonica(dorothy)))&
(~(~(~(?[X]:(room(X)&(collects_foreign_coins(X)))))))&
(?[X]:(anywhere(X)&(uses_contact_lenses(X))))
|
room(dorothy)&room(keith)&room(stella)&room(william)&(![X]:(room(X)=>(X='dorothy'|X='keith'|X='stella'|X='william')))&
collects_foreign_coins(stella)
|
[
"p0",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 1555169066225087263902938
% SZS output start Proof for 1555169066225087263902938
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
58. ~~~? [X0] : (predq(X0) & room(X0)) [input p14]
60. predq(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
63. ~? [X0] : (predq(X0) & room(X0)) [flattening 58]
151. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
152. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151]
155. ! [X0] : (~predq(X0) | ~room(X0)) [ennf transformation 63]
156. predq(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 60]
157. predq(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156]
254. room(fred) [cnf transformation 152]
267. ~predq(X0) | ~room(X0) [cnf transformation 155]
274. predq(fred) [cnf transformation 157]
276. ~room(fred) [resolution 267,274]
277. $false [subsumption resolution 276,254]
% SZS output end Proof for 1555169066225087263902938
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.433604 |
Brendan, Pasquale, Karen, Robert are the only persons in the room. “Brendan is not a quiet tall funny person” if “Karen is not a humble happy brave strong person” and vice versa. “Brendan neither is not a happy person nor is not a old person” if “Robert neither is not quiet, not humble nor is not a tall person” and vice versa. Karen neither is not a wise kind curious person nor is not funny. It is true that “if someone is not a old patient person then he/she is not wise”.
|
Karen is old.
|
entailment
|
room(brendan)&room(pasquale)&room(karen)&room(robert)&(![X]:(room(X)=>(X='brendan'|X='pasquale'|X='karen'|X='robert')))&
((~(humble(karen)&happy(karen)&brave(karen)&strong(karen)&person(karen)))<=>(~(quiet(brendan)&tall(brendan)&funny(brendan)&person(brendan))))&
((~((~quiet(robert)&~humble(robert))|(~(tall(robert)&person(robert)))))<=>(~((~(happy(brendan)&person(brendan)))|(~(old(brendan)&person(brendan))))))&
((~(old(pasquale)&tall(pasquale)&person(pasquale)))<=>(~(brave(karen)&person(karen))))&
((?[X]:(room(X)&(~(creative(X)&person(X)))))=>(~(calm(karen)&wise(karen)&person(karen))))&
((~(generous(brendan)&person(brendan)))<=>(~(old(brendan)&creative(brendan)&person(brendan))))&
((~(humble(karen)&person(karen)))<=>(~(curious(karen)&calm(karen)&strong(karen)&creative(karen)&person(karen))))&
((?[X]:(room(X)&(~((~wise(X)&~strong(X))|(~happy(X)&~strong(X)&~quiet(X))))))<=>(~(generous(robert)&strong(robert)&person(robert))))&
((~((~funny(robert))|(~(patient(robert)&calm(robert)&person(robert)))))=>(~quiet(karen)))&
((~((~happy(brendan)&~humble(brendan))|(~creative(brendan))))<=>(~patient(pasquale)&~humble(pasquale)))&
((~(old(brendan)&tall(brendan)&funny(brendan)&person(brendan)))=>(~((~(curious(pasquale)&person(pasquale)))|(~(calm(pasquale)&quiet(pasquale)&humble(pasquale)&strong(pasquale)&tall(pasquale)&person(pasquale))))))&
(~((~(brave(robert)&tall(robert)&person(robert)))|(~tall(robert))))&
((?[X,Y]:(room(X)&room(Y)&(~(wise(X)&humble(X)&person(X))&~(wise(Y)&humble(Y)&person(Y)))&(X!=Y))))&
(~(curious(karen)&happy(karen)&calm(karen)&funny(karen)&person(karen)))&
(~((~(wise(karen)&kind(karen)&curious(karen)&person(karen)))|(~funny(karen))))&
(~((~generous(brendan)&~quiet(brendan)&~wise(brendan)&~funny(brendan)&~kind(brendan))|(~(curious(brendan)&old(brendan)&person(brendan)))))&
(~(humble(karen)&person(karen)))&
((?[X,Y]:(room(X)&room(Y)&(~(funny(X)&person(X))&~(funny(Y)&person(Y)))&(X!=Y))))&
(~(strong(pasquale)&happy(pasquale)&wise(pasquale)&person(pasquale)))&
(~((~(curious(pasquale)&generous(pasquale)&person(pasquale)))|(~(strong(pasquale)&person(pasquale)))))&
((?[X,Y]:(room(X)&room(Y)&(~(tall(X)&person(X))&~(tall(Y)&person(Y)))&(X!=Y))))&
(((?[X]:(room(X)&~(creative(X)&person(X))))))&
((![X]:((~(old(X)&patient(X)&person(X)))=>(~wise(X)))))&
(~humble(pasquale))&
(~(strong(pasquale)&tall(pasquale)&person(pasquale)))&
(~((~creative(pasquale))|(~patient(pasquale)&~funny(pasquale)&~kind(pasquale)&~humble(pasquale))))&
((?[X,Y]:(room(X)&room(Y)&(~wise(X)&~wise(Y))&(X!=Y))))&
(~(generous(pasquale)&happy(pasquale)&person(pasquale)))
|
room(brendan)&room(pasquale)&room(karen)&room(robert)&(![X]:(room(X)=>(X='brendan'|X='pasquale'|X='karen'|X='robert')))&
old(karen)
|
[
"p0",
"p14",
"p22",
"hypothesis"
] |
% SZS status Unsatisfiable for 4481427296464795390828999
% SZS output start Proof for 4481427296464795390828999
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
58. ~(~funny(fred) | ~(person(fred) & curious(fred) & kind(fred) & wise(fred))) [input p14]
66. ! [X0] : (~(person(X0) & patient(X0) & old(X0)) => ~wise(X0)) [input p22]
72. ~(old(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
73. ~(~funny(fred) | ~(person(fred) & curious(fred) & wise(fred))) [pure predicate removal 58]
148. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
149. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148]
169. funny(fred) & (person(fred) & curious(fred) & wise(fred)) [ennf transformation 73]
170. funny(fred) & person(fred) & curious(fred) & wise(fred) [flattening 169]
179. ! [X0] : (~wise(X0) | (person(X0) & patient(X0) & old(X0))) [ennf transformation 66]
183. ~old(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 72]
184. ~old(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 183]
223. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK13 & fred != sK13 & paul != sK13 & mary != sK13 & room(sK13)) [choice axiom]
224. ~old(fred) | (alice != sK13 & fred != sK13 & paul != sK13 & mary != sK13 & room(sK13)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 184,223]
305. room(mary) [cnf transformation 149]
306. room(paul) [cnf transformation 149]
307. room(fred) [cnf transformation 149]
308. room(alice) [cnf transformation 149]
309. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 149]
390. wise(fred) [cnf transformation 170]
416. ~wise(X0) | old(X0) [cnf transformation 179]
428. ~old(fred) | room(sK13) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 224]
429. ~old(fred) | mary != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 224]
430. ~old(fred) | paul != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 224]
431. ~old(fred) | fred != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 224]
432. ~old(fred) | alice != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 224]
543. 22 <=> wise(fred) [avatar definition]
544. wise(fred) <- (22) [avatar component clause 543]
742. 22 [avatar split clause 390,543]
808. ~old(fred) | alice != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 432,308]
809. ~old(fred) | alice != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 808,307]
810. ~old(fred) | alice != sK13 | ~room(mary) [subsumption resolution 809,306]
811. ~old(fred) | alice != sK13 [subsumption resolution 810,305]
813. 73 <=> alice = sK13 [avatar definition]
815. alice != sK13 <- (~73) [avatar component clause 813]
817. 74 <=> old(fred) [avatar definition]
820. ~73 | ~74 [avatar split clause 811,817,813]
821. ~old(fred) | fred != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 431,308]
822. ~old(fred) | fred != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 821,307]
823. ~old(fred) | fred != sK13 | ~room(mary) [subsumption resolution 822,306]
824. ~old(fred) | fred != sK13 [subsumption resolution 823,305]
826. 75 <=> fred = sK13 [avatar definition]
828. fred != sK13 <- (~75) [avatar component clause 826]
829. ~75 | ~74 [avatar split clause 824,817,826]
830. ~old(fred) | paul != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 430,308]
831. ~old(fred) | paul != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 830,307]
832. ~old(fred) | paul != sK13 | ~room(mary) [subsumption resolution 831,306]
833. ~old(fred) | paul != sK13 [subsumption resolution 832,305]
835. 76 <=> paul = sK13 [avatar definition]
837. paul != sK13 <- (~76) [avatar component clause 835]
838. ~76 | ~74 [avatar split clause 833,817,835]
839. ~old(fred) | mary != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 429,308]
840. ~old(fred) | mary != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 839,307]
841. ~old(fred) | mary != sK13 | ~room(mary) [subsumption resolution 840,306]
842. ~old(fred) | mary != sK13 [subsumption resolution 841,305]
844. 77 <=> mary = sK13 [avatar definition]
846. mary != sK13 <- (~77) [avatar component clause 844]
847. ~77 | ~74 [avatar split clause 842,817,844]
848. ~old(fred) | room(sK13) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 428,308]
849. ~old(fred) | room(sK13) | ~room(paul) | ~room(mary) [subsumption resolution 848,307]
850. ~old(fred) | room(sK13) | ~room(mary) [subsumption resolution 849,306]
851. ~old(fred) | room(sK13) [subsumption resolution 850,305]
853. 78 <=> room(sK13) [avatar definition]
855. room(sK13) <- (78) [avatar component clause 853]
856. 78 | ~74 [avatar split clause 851,817,853]
857. old(fred) <- (22) [resolution 416,544]
860. 74 | ~22 [avatar split clause 857,543,817]
919. fred = sK13 | paul = sK13 | mary = sK13 | alice = sK13 <- (78) [resolution 309,855]
1090. paul = sK13 | mary = sK13 | alice = sK13 <- (~75, 78) [subsumption resolution 919,828]
1091. mary = sK13 | alice = sK13 <- (~75, ~76, 78) [subsumption resolution 1090,837]
1092. alice = sK13 <- (~75, ~76, ~77, 78) [subsumption resolution 1091,846]
1093. $false <- (~73, ~75, ~76, ~77, 78) [subsumption resolution 1092,815]
1094. 73 | 75 | 76 | 77 | ~78 [avatar contradiction clause 1093]
1095. $false [avatar sat refutation 742,820,829,838,847,856,860,1094]
% SZS output end Proof for 4481427296464795390828999
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5628
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.652985 |
Larry is the only person in the room. “Larry hosts themed dinner parties featuring gourmet home-cooked meals” if “Larry plays as a goalkeeper for a local amateur soccer team or does not create bespoke furniture pieces from reclaimed wood or both”. If “Larry enjoys watercolor painting” then “Larry either enjoys origami or is not a member of a local theater group specializing in improv but not both” otherwise “everyone in the room creates augmented reality experiences for mobile applications”. Either “Larry is a drone photographer” or “Larry uses contact lenses” but not both. Either “everyone in the room collects historical artifacts related to ancient civilizations or does not collect luxury watches” or “Larry is a tea enthusiast, practices zumba or builds model airplanes” but not both. If “not everyone in the room does not play as a goalkeeper for a local amateur soccer team or is a coffee connoisseur” then “Larry uses contact lenses”. Larry knows morse code. Only one person in the room knows morse code. Everyone in the room who neither creates bespoke furniture pieces from reclaimed wood nor is a tea enthusiast collects luxury watches. Someone in the room creates bespoke furniture pieces from reclaimed wood. It is not the case that “Larry is a coffee connoisseur, is a dedicated volunteer for local community service projects and watches fantasy movies”.
|
It is not the case that “Larry trains for and competes in international triathlons”.
|
neutral
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
((((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(larry))|(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(larry))))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(larry)))&
(((enjoys_watercolor_painting(larry))=>(((enjoys_origami(larry))<~>(is_not_a_member_of_a_local_theater_group_specializing_in_improv(larry)))))&((~(enjoys_watercolor_painting(larry)))=>(![X]:(room(X)=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))&
((is_a_drone_photographer(larry))<~>(uses_contact_lenses(larry)))&
((![X]:(room(X)=>(((does_not_collect_luxury_watches(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))<~>(((is_a_tea_enthusiast(larry))|(practices_zumba(larry))|(builds_model_airplanes(larry)))))&
((~![X]:(room(X)=>(((is_a_coffee_connoisseur(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(uses_contact_lenses(larry)))&
(knows_morse_code(larry))&
(((?[X]:(room(X)&knows_morse_code(X)))&(![X,Y]:((room(X)&room(Y)&(knows_morse_code(X))&(knows_morse_code(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((~((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(is_a_tea_enthusiast(X))))=>(collects_luxury_watches(X))))))&
(?[X]:(room(X)&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))&
(~(((is_a_coffee_connoisseur(larry))&(is_a_dedicated_volunteer_for_local_community_service_projects(larry))&(watches_fantasy_movies(larry)))))&
(![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))&
(![X]:(room(X)=>(((does_not_know_morse_code(X))|(is_a_coffee_connoisseur(X))))))&
(is_a_tea_enthusiast(larry))&
(mentors_a_youth_basketball_team_on_weekends(larry))&
(![X]:(anywhere(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(does_not_build_model_airplanes(X))))))&
(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(larry))&
(~(enjoys_watercolor_painting(larry)))&
(?[X]:(room(X)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))&
(![X]:(~room(X)=>(((((watches_fantasy_movies(X))|(knows_morse_code(X))|(enjoys_kayaking(X))))<=(~((watches_fantasy_movies(X))|(enjoys_kayaking(X))))))))&
(?[X]:(room(X)&(knows_morse_code(X))))&
(![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(larry))&
((![X]:((uses_contact_lenses(X))=>(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
~(trains_for_and_competes_in_international_triathlons(larry))
|
[] | null | 0.01381 |
There is a room. Either “everyone anywhere is not humble” or “everyone in the room is not quiet” but not both. Either “someone in the room is a calm person” or “everyone outside the room neither is curious nor is a humble person” but not both. “No one in the room is creative” if “everyone in the room is a strong person”. “Everyone in the room is tall” unless “no one outside the room is a happy person”. If “everyone outside the room is funny” then “no one outside the room is a strong person” otherwise “everyone in the room neither is calm nor is not curious”. Everyone in the room is not a humble person. Everyone in the room is a brave person. All happy persons are calm. Everyone in the room is tall.
|
Not everyone in the room is humble.
|
entailment
|
(there_is_a_room)&
((![X]:(anywhere(X)=>(~humble(X))))<~>(![X]:(room(X)=>(~quiet(X)))))&
((?[X]:(room(X)&(calm(X)&person(X))))<~>(![X]:(~room(X)=>(~((curious(X))|(humble(X)&person(X)))))))&
((![X]:(room(X)=>(strong(X)&person(X))))=>(~?[X]:(room(X)=>(creative(X)))))&
(~(~?[X]:(~room(X)=>(happy(X)&person(X))))=>(![X]:(room(X)=>(tall(X)))))&
(((![X]:(~room(X)=>(funny(X))))=>(~?[X]:(~room(X)=>(strong(X)&person(X)))))&((~(![X]:(~room(X)=>(funny(X)))))=>(![X]:(room(X)=>(~((calm(X))|(~curious(X))))))))&
(![X]:(room(X)=>(~(humble(X)&person(X)))))&
(![X]:(room(X)=>(brave(X)&person(X))))&
(![X]:(happy(X)=>calm(X)))&
(![X]:(room(X)=>(tall(X))))
|
(there_is_a_room)&
~![X]:(room(X)=>(humble(X)))
|
[
"p0",
"p2",
"p3",
"p6",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 8081766390736976363519450
% SZS output start Proof for 8081766390736976363519450
44. there_is_a_room [input p0]
46. ? [X0] : (person(X0) & calm(X0) & room(X0)) <~> ! [X0] : (~room(X0) => ~((person(X0) & humble(X0)) | curious(X0))) [input p2]
47. ! [X0] : (room(X0) => (person(X0) & strong(X0))) => ~? [X0] : (room(X0) => creative(X0)) [input p3]
50. ! [X0] : (room(X0) => ~(person(X0) & humble(X0))) [input p6]
51. ! [X0] : (room(X0) => (person(X0) & brave(X0))) [input p7]
54. ~(~! [X0] : (room(X0) => humble(X0)) & there_is_a_room) [input hypothesis]
56. ? [X0] : (person(X0) & calm(X0) & room(X0)) <~> ! [X1] : (~room(X1) => ~((person(X1) & humble(X1)) | curious(X1))) [rectify 46]
57. ! [X0] : (room(X0) => (person(X0) & strong(X0))) => ~? [X1] : (room(X1) => creative(X1)) [rectify 47]
61. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 51]
65. ! [X0] : (room(X0) => (person(X0) & strong(X0))) => ~? [X1] : ~room(X1) [pure predicate removal 57]
66. ! [X0] : ~room(X0) => ~? [X1] : ~room(X1) [pure predicate removal 65]
140. ? [X0] : (person(X0) & calm(X0) & room(X0)) <~> ! [X1] : (((~person(X1) | ~humble(X1)) & ~curious(X1)) | room(X1)) [ennf transformation 56]
141. ! [X1] : room(X1) | ? [X0] : room(X0) [ennf transformation 66]
143. ! [X0] : ((~person(X0) | ~humble(X0)) | ~room(X0)) [ennf transformation 50]
144. ! [X0] : (~person(X0) | ~humble(X0) | ~room(X0)) [flattening 143]
145. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 61]
146. ! [X0] : (humble(X0) | ~room(X0)) | ~there_is_a_room [ennf transformation 54]
147. sP0 <=> ? [X0] : (person(X0) & calm(X0) & room(X0)) [predicate definition introduction]
148. sP0 <~> ! [X1] : (((~person(X1) | ~humble(X1)) & ~curious(X1)) | room(X1)) [definition folding 140,147]
155. (sP0 | ! [X0] : (~person(X0) | ~calm(X0) | ~room(X0))) & (? [X0] : (person(X0) & calm(X0) & room(X0)) | ~sP0) [nnf transformation 147]
156. (sP0 | ! [X0] : (~person(X0) | ~calm(X0) | ~room(X0))) & (? [X1] : (person(X1) & calm(X1) & room(X1)) | ~sP0) [rectify 155]
157. ? [X1] : (person(X1) & calm(X1) & room(X1)) => (person(sK3) & calm(sK3) & room(sK3)) [choice axiom]
158. (sP0 | ! [X0] : (~person(X0) | ~calm(X0) | ~room(X0))) & ((person(sK3) & calm(sK3) & room(sK3)) | ~sP0) [skolemisation 156,157]
159. (? [X1] : (((person(X1) & humble(X1)) | curious(X1)) & ~room(X1)) | ~sP0) & (! [X1] : (((~person(X1) | ~humble(X1)) & ~curious(X1)) | room(X1)) | sP0) [nnf transformation 148]
160. (? [X0] : (((person(X0) & humble(X0)) | curious(X0)) & ~room(X0)) | ~sP0) & (! [X1] : (((~person(X1) | ~humble(X1)) & ~curious(X1)) | room(X1)) | sP0) [rectify 159]
161. ? [X0] : (((person(X0) & humble(X0)) | curious(X0)) & ~room(X0)) => (((person(sK4) & humble(sK4)) | curious(sK4)) & ~room(sK4)) [choice axiom]
162. ((((person(sK4) & humble(sK4)) | curious(sK4)) & ~room(sK4)) | ~sP0) & (! [X1] : (((~person(X1) | ~humble(X1)) & ~curious(X1)) | room(X1)) | sP0) [skolemisation 160,161]
163. ! [X0] : room(X0) | ? [X1] : room(X1) [rectify 141]
164. ? [X1] : room(X1) => room(sK5) [choice axiom]
165. ! [X0] : room(X0) | room(sK5) [skolemisation 163,164]
250. there_is_a_room [cnf transformation 44]
256. room(sK3) | ~sP0 [cnf transformation 158]
261. ~person(X1) | ~humble(X1) | room(X1) | sP0 [cnf transformation 162]
265. room(X0) | room(sK5) [cnf transformation 165]
270. ~room(X0) | ~humble(X0) | ~person(X0) [cnf transformation 144]
271. ~room(X0) | person(X0) [cnf transformation 145]
272. humble(X0) | ~room(X0) | ~there_is_a_room [cnf transformation 146]
299. 7 <=> sP0 [avatar definition]
304. 8 <=> person(sK3) [avatar definition]
306. person(sK3) <- (8) [avatar component clause 304]
314. 10 <=> room(sK3) [avatar definition]
316. room(sK3) <- (10) [avatar component clause 314]
317. ~7 | 10 [avatar split clause 256,314,299]
338. 15 <=> ! [X1] : (~person(X1) | room(X1) | ~humble(X1)) [avatar definition]
339. ~person(X1) | room(X1) | ~humble(X1) <- (15) [avatar component clause 338]
340. 7 | 15 [avatar split clause 261,338,299]
346. 17 <=> room(sK5) [avatar definition]
347. ~room(sK5) <- (~17) [avatar component clause 346]
348. room(sK5) <- (17) [avatar component clause 346]
350. 18 <=> ! [X0] : room(X0) [avatar definition]
351. room(X0) <- (18) [avatar component clause 350]
352. 17 | 18 [avatar split clause 265,350,346]
377. ~room(X0) | humble(X0) [subsumption resolution 272,250]
379. person(sK3) <- (10) [resolution 271,316]
380. person(sK5) <- (17) [resolution 271,348]
402. humble(sK5) <- (17) [resolution 377,348]
412. ~humble(X1) | ~person(X1) <- (15) [subsumption resolution 339,270]
431. 8 | ~10 [avatar split clause 379,314,304]
432. ~person(sK5) <- (15, 17) [resolution 402,412]
433. $false <- (15, 17) [subsumption resolution 432,380]
434. ~15 | ~17 [avatar contradiction clause 433]
435. $false <- (~17, 18) [subsumption resolution 347,351]
436. 17 | ~18 [avatar contradiction clause 435]
440. ~humble(sK3) | ~person(sK3) <- (10) [resolution 316,270]
442. humble(sK3) <- (10) [resolution 316,377]
445. ~humble(sK3) <- (8, 10) [subsumption resolution 440,306]
446. $false <- (8, 10) [subsumption resolution 442,445]
447. ~8 | ~10 [avatar contradiction clause 446]
448. $false [avatar sat refutation 317,340,352,431,434,436,447]
% SZS output end Proof for 8081766390736976363519450
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.210187 |
Bernice, Vera, Carmen, Cliffordnie, Clifford are the only persons in the room.
If 'everyone in the room is wise or does not enjoy mountain biking' then 'everyone anywhere does not own an Android phone or is a generous tourist'.
If 'everyone anywhere does not own an Android phone or is a generous tourist' then 'everyone outside the room does not frequently participates in hackathons and coding competitions or is not a patient funny wise old european'.
At least one person in the room is a skilled home brewer experimenting with craft beer recipes.
|
Clifford collects classic novels.
|
contradiction
|
room(bernice)&room(vera)&room(carmen)&room(cliffordnie)&room(clifford)&(![X]:(room(X)=>(X='bernice'|X='vera'|X='carmen'|X='cliffordnie'|X='clifford')))&
(((![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(wise(X))))))=>(![X]:(anywhere(X)=>(((generous(X)&tourist(X))|(does_not_own_an_Android_phone(X)))))))&
((![X]:(anywhere(X)=>(((generous(X)&tourist(X))|(does_not_own_an_Android_phone(X))))))=>(![X]:(~room(X)=>(((~(patient(X)&funny(X)&wise(X)&old(X)&european(X)))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))))&
(((?[X]:(room(X)&is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))&
(![X]:(room(X)=>(((sibling(jacqueline,X))=>(~(funny(X)&tall(X)&person(X)))))))&
(![X]:(anywhere(X)=>(((~(funny(X)&tall(X)&person(X)))=>(sibling(paul,X))))))&
(![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(~humble(X))))))&
(![X]:(room(X)=>(((~humble(X))=>(enjoys_virtual_reality_gaming(X))))))&
(sibling(jacqueline,bernice)&sibling(jacqueline,carmen))&
(![X]:(room(X)=>(((curious(X))=>(client(jacqueline,X))))))&
(~![X]:(anywhere(X)=>(((client(jacqueline,X))=>(sibling(jacqueline,X))))))&
(![X]:(anywhere(X)=>(((sibling(jacqueline,X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))&
(![X]:(room(X)=>(((((has_a_pet_dog(X))<~>(curious(X))))<=(maintains_a_large,_organic_vegetable_garden_year-round(X))))))&
(~?[X]:(funny(X)=>curious(X)))&
(A_pen_exists_that_only_writes_secrets.)&
(((A_tower_does_not_lean_significantly_without_falling.)|(A_tower_leans_significantly_but_never_falls.)))&
(![X]:(room(X)=>(((collects_classic_novels(X))=>(client(paul,X))))))&
(![X]:(room(X)=>(client(jacqueline,X))))&
(![X]:(~room(X)=>(((~(patient(X)&funny(X)&wise(X)&old(X)&european(X)))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))&
(![X]:(strong(X)=>funny(X)))&
(?[X,Y]:((maintains_a_large,_organic_vegetable_garden_year-round(X))&(~like(Y,paul))&(hate(X,Y))))&
(((A_tower_leans_significantly_but_never_falls.)|(A_pen_does_not_exist_that_only_writes_secrets.)))&
(~?[X]:(old(X)=>tall(X)))&
(![X]:(calm(X)=>generous(X)))&
(~![X]:(room(X)=>(((owns_an_Android_phone(X))<=(~(strong(X)&wise(X)&european(X)))))))&
(![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(~tall(X)&~patient(X)&~calm(X))))))&
((sibling(jacqueline,carmen))&(younger(jacqueline,carmen)))&
(![X]:(room(X)=>(((~(wise(X)&quiet(X)&brave(X)&humble(X)&tourist(X)))<=>(humble(X)&curious(X)&european(X))))))
|
room(bernice)&room(vera)&room(carmen)&room(cliffordnie)&room(clifford)&(![X]:(room(X)=>(X='bernice'|X='vera'|X='carmen'|X='cliffordnie'|X='clifford')))&
collects_classic_novels(clifford)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 1480082851106505520833366
% SZS output start Proof for 1480082851106505520833366
44. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ! [X0] : (room(X0) => ((~calm(X0) & ~patient(X0) & ~tall(X0)) | ~predu(X0))) & ~! [X0] : (room(X0) => (~(european(X0) & wise(X0) & strong(X0)) => predg(X0))) & ! [X0] : (calm(X0) => generous(X0)) & ~? [X0] : (old(X0) => tall(X0)) & (~propositione | propositiond) & ? [X0,X1] : (hate(X0,X1) & ~like(X1,lucy) & predl(X0)) & ! [X0] : (strong(X0) => funny(X0)) & ! [X0] : (~room(X0) => (~predd(X0) | ~(european(X0) & old(X0) & wise(X0) & funny(X0) & patient(X0)))) & ! [X0] : (room(X0) => client(susan,X0)) & ! [X0] : (room(X0) => (predq(X0) => client(lucy,X0))) & (propositiond | ~propositiond) & propositione & ~? [X0] : (funny(X0) => curious(X0)) & ! [X0] : (room(X0) => (predl(X0) => (predf(X0) <~> curious(X0)))) & ! [X0] : (anywhere(X0) => (sibling(susan,X0) => predl(X0))) & ~! [X0] : (anywhere(X0) => (client(susan,X0) => sibling(susan,X0))) & ! [X0] : (room(X0) => (curious(X0) => client(susan,X0))) & sibling(susan,fred) & sibling(susan,mary) & ! [X0] : (room(X0) => (~humble(X0) => preda(X0))) & ! [X0] : (room(X0) => (~humble(X0) | ~predq(X0))) & ! [X0] : (anywhere(X0) => (~(person(X0) & tall(X0) & funny(X0)) => sibling(lucy,X0))) & ! [X0] : (room(X0) => (sibling(susan,X0) => ~(person(X0) & tall(X0) & funny(X0)))) & ? [X0] : (predh(X0) & room(X0)) & (! [X0] : (anywhere(X0) => (~predg(X0) | (tourist(X0) & generous(X0)))) => ! [X0] : (~room(X0) => (~predd(X0) | ~(european(X0) & old(X0) & wise(X0) & funny(X0) & patient(X0))))) & (! [X0] : (room(X0) => (wise(X0) | ~predm(X0))) => ! [X0] : (anywhere(X0) => (~predg(X0) | (tourist(X0) & generous(X0))))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. predq(john) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
46. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ! [X1] : (room(X1) => ((~calm(X1) & ~patient(X1) & ~tall(X1)) | ~predu(X1))) & ~! [X2] : (room(X2) => (~(european(X2) & wise(X2) & strong(X2)) => predg(X2))) & ! [X3] : (calm(X3) => generous(X3)) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & ! [X7] : (strong(X7) => funny(X7)) & ! [X8] : (~room(X8) => (~predd(X8) | ~(european(X8) & old(X8) & wise(X8) & funny(X8) & patient(X8)))) & ! [X9] : (room(X9) => client(susan,X9)) & ! [X10] : (room(X10) => (predq(X10) => client(lucy,X10))) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => (client(susan,X14) => sibling(susan,X14))) & ! [X15] : (room(X15) => (curious(X15) => client(susan,X15))) & sibling(susan,fred) & sibling(susan,mary) & ! [X16] : (room(X16) => (~humble(X16) => preda(X16))) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : (predh(X20) & room(X20)) & (! [X21] : (anywhere(X21) => (~predg(X21) | (tourist(X21) & generous(X21)))) => ! [X22] : (~room(X22) => (~predd(X22) | ~(european(X22) & old(X22) & wise(X22) & funny(X22) & patient(X22))))) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44]
47. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : (room(X2) => (~(european(X2) & wise(X2) & strong(X2)) => predg(X2))) & ! [X3] : (calm(X3) => generous(X3)) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & ! [X7] : (strong(X7) => funny(X7)) & ! [X8] : (~room(X8) => (~predd(X8) | ~(european(X8) & old(X8) & wise(X8) & funny(X8) & patient(X8)))) & ! [X9] : (room(X9) => client(susan,X9)) & ! [X10] : (room(X10) => (predq(X10) => client(lucy,X10))) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => (client(susan,X14) => sibling(susan,X14))) & ! [X15] : (room(X15) => (curious(X15) => client(susan,X15))) & sibling(susan,fred) & sibling(susan,mary) & ! [X16] : (room(X16) => (~humble(X16) => preda(X16))) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : (predh(X20) & room(X20)) & (! [X21] : (anywhere(X21) => (~predg(X21) | (tourist(X21) & generous(X21)))) => ! [X22] : (~room(X22) => (~predd(X22) | ~(european(X22) & old(X22) & wise(X22) & funny(X22) & patient(X22))))) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46]
48. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : (room(X2) => (~(european(X2) & wise(X2) & strong(X2)) => predg(X2))) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & ! [X7] : (strong(X7) => funny(X7)) & ! [X8] : (~room(X8) => (~predd(X8) | ~(european(X8) & old(X8) & wise(X8) & funny(X8) & patient(X8)))) & ! [X9] : (room(X9) => client(susan,X9)) & ! [X10] : (room(X10) => (predq(X10) => client(lucy,X10))) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => (client(susan,X14) => sibling(susan,X14))) & ! [X15] : (room(X15) => (curious(X15) => client(susan,X15))) & sibling(susan,fred) & sibling(susan,mary) & ! [X16] : (room(X16) => (~humble(X16) => preda(X16))) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : (predh(X20) & room(X20)) & (! [X21] : (anywhere(X21) => (~predg(X21) | (tourist(X21) & generous(X21)))) => ! [X22] : (~room(X22) => (~predd(X22) | ~(european(X22) & old(X22) & wise(X22) & funny(X22) & patient(X22))))) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47]
49. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : (room(X2) => predg(X2)) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & ! [X8] : (~room(X8) => (~predd(X8) | ~(european(X8) & old(X8) & wise(X8) & funny(X8) & patient(X8)))) & ! [X9] : (room(X9) => client(susan,X9)) & ! [X10] : (room(X10) => (predq(X10) => client(lucy,X10))) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => (client(susan,X14) => sibling(susan,X14))) & ! [X15] : (room(X15) => (curious(X15) => client(susan,X15))) & sibling(susan,fred) & sibling(susan,mary) & ! [X16] : (room(X16) => (~humble(X16) => preda(X16))) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : (predh(X20) & room(X20)) & (! [X21] : (anywhere(X21) => (~predg(X21) | (tourist(X21) & generous(X21)))) => ! [X22] : (~room(X22) => (~predd(X22) | ~(european(X22) & old(X22) & wise(X22) & funny(X22) & patient(X22))))) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48]
50. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : (room(X2) => predg(X2)) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & ! [X8] : (~room(X8) => (~predd(X8) | ~(european(X8) & old(X8) & wise(X8) & funny(X8) & patient(X8)))) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => sibling(susan,X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X16] : (room(X16) => (~humble(X16) => preda(X16))) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : (predh(X20) & room(X20)) & (! [X21] : (anywhere(X21) => (~predg(X21) | (tourist(X21) & generous(X21)))) => ! [X22] : (~room(X22) => (~predd(X22) | ~(european(X22) & old(X22) & wise(X22) & funny(X22) & patient(X22))))) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49]
51. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : (room(X2) => predg(X2)) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & ! [X8] : (~room(X8) => (~predd(X8) | ~(european(X8) & old(X8) & wise(X8) & funny(X8) & patient(X8)))) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => sibling(susan,X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : (predh(X20) & room(X20)) & (! [X21] : (anywhere(X21) => (~predg(X21) | (tourist(X21) & generous(X21)))) => ! [X22] : (~room(X22) => (~predd(X22) | ~(european(X22) & old(X22) & wise(X22) & funny(X22) & patient(X22))))) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50]
52. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : (room(X2) => predg(X2)) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & ! [X8] : (~room(X8) => (~predd(X8) | ~(european(X8) & old(X8) & wise(X8) & funny(X8) & patient(X8)))) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => sibling(susan,X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : room(X20) & (! [X21] : (anywhere(X21) => (~predg(X21) | (tourist(X21) & generous(X21)))) => ! [X22] : (~room(X22) => (~predd(X22) | ~(european(X22) & old(X22) & wise(X22) & funny(X22) & patient(X22))))) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51]
53. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : (room(X2) => predg(X2)) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => sibling(susan,X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : room(X20) & (! [X23] : (room(X23) => (wise(X23) | ~predm(X23))) => ! [X24] : (anywhere(X24) => (~predg(X24) | (tourist(X24) & generous(X24))))) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52]
54. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : ~room(X2) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & ~like(X6,lucy) & predl(X5)) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => sibling(susan,X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : room(X20) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53]
57. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : ~room(X2) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : (hate(X5,X6) & predl(X5)) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => sibling(susan,X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : room(X20) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54]
58. ! [X0] : (room(X0) => (~(tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0)) <=> (european(X0) & curious(X0) & humble(X0)))) & younger(susan,fred) & sibling(susan,fred) & ~! [X2] : ~room(X2) & ~? [X4] : (old(X4) => tall(X4)) & (~propositione | propositiond) & ? [X5,X6] : predl(X5) & (propositiond | ~propositiond) & propositione & ~? [X11] : (funny(X11) => curious(X11)) & ! [X12] : (room(X12) => (predl(X12) => (predf(X12) <~> curious(X12)))) & ! [X13] : (anywhere(X13) => (sibling(susan,X13) => predl(X13))) & ~! [X14] : (anywhere(X14) => sibling(susan,X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (room(X17) => (~humble(X17) | ~predq(X17))) & ! [X18] : (anywhere(X18) => (~(person(X18) & tall(X18) & funny(X18)) => sibling(lucy,X18))) & ! [X19] : (room(X19) => (sibling(susan,X19) => ~(person(X19) & tall(X19) & funny(X19)))) & ? [X20] : room(X20) & ! [X25] : (room(X25) => (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57]
128. ! [X0] : (((~tourist(X0) | ~humble(X0) | ~brave(X0) | ~quiet(X0) | ~wise(X0)) <=> (european(X0) & curious(X0) & humble(X0))) | ~room(X0)) & younger(susan,fred) & sibling(susan,fred) & ? [X2] : room(X2) & ! [X4] : (~tall(X4) & old(X4)) & (~propositione | propositiond) & ? [X5,X6] : predl(X5) & (propositiond | ~propositiond) & propositione & ! [X11] : (~curious(X11) & funny(X11)) & ! [X12] : (((predf(X12) <~> curious(X12)) | ~predl(X12)) | ~room(X12)) & ! [X13] : ((predl(X13) | ~sibling(susan,X13)) | ~anywhere(X13)) & ? [X14] : (~sibling(susan,X14) & anywhere(X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : ((~humble(X17) | ~predq(X17)) | ~room(X17)) & ! [X18] : ((sibling(lucy,X18) | (person(X18) & tall(X18) & funny(X18))) | ~anywhere(X18)) & ! [X19] : (((~person(X19) | ~tall(X19) | ~funny(X19)) | ~sibling(susan,X19)) | ~room(X19)) & ? [X20] : room(X20) & ! [X25] : ((john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25) | ~room(X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58]
129. ! [X0] : (((~tourist(X0) | ~humble(X0) | ~brave(X0) | ~quiet(X0) | ~wise(X0)) <=> (european(X0) & curious(X0) & humble(X0))) | ~room(X0)) & younger(susan,fred) & sibling(susan,fred) & ? [X2] : room(X2) & ! [X4] : (~tall(X4) & old(X4)) & (~propositione | propositiond) & ? [X5,X6] : predl(X5) & (propositiond | ~propositiond) & propositione & ! [X11] : (~curious(X11) & funny(X11)) & ! [X12] : ((predf(X12) <~> curious(X12)) | ~predl(X12) | ~room(X12)) & ! [X13] : (predl(X13) | ~sibling(susan,X13) | ~anywhere(X13)) & ? [X14] : (~sibling(susan,X14) & anywhere(X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (~humble(X17) | ~predq(X17) | ~room(X17)) & ! [X18] : (sibling(lucy,X18) | (person(X18) & tall(X18) & funny(X18)) | ~anywhere(X18)) & ! [X19] : (~person(X19) | ~tall(X19) | ~funny(X19) | ~sibling(susan,X19) | ~room(X19)) & ? [X20] : room(X20) & ! [X25] : (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25 | ~room(X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128]
130. predq(john) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45]
131. predq(john) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130]
132. ! [X0] : (sP0(X0) <=> (~tourist(X0) | ~humble(X0) | ~brave(X0) | ~quiet(X0) | ~wise(X0))) [predicate definition introduction]
133. ! [X0] : ((sP0(X0) <=> (european(X0) & curious(X0) & humble(X0))) | ~room(X0)) & younger(susan,fred) & sibling(susan,fred) & ? [X2] : room(X2) & ! [X4] : (~tall(X4) & old(X4)) & (~propositione | propositiond) & ? [X5,X6] : predl(X5) & (propositiond | ~propositiond) & propositione & ! [X11] : (~curious(X11) & funny(X11)) & ! [X12] : ((predf(X12) <~> curious(X12)) | ~predl(X12) | ~room(X12)) & ! [X13] : (predl(X13) | ~sibling(susan,X13) | ~anywhere(X13)) & ? [X14] : (~sibling(susan,X14) & anywhere(X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (~humble(X17) | ~predq(X17) | ~room(X17)) & ! [X18] : (sibling(lucy,X18) | (person(X18) & tall(X18) & funny(X18)) | ~anywhere(X18)) & ! [X19] : (~person(X19) | ~tall(X19) | ~funny(X19) | ~sibling(susan,X19) | ~room(X19)) & ? [X20] : room(X20) & ! [X25] : (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25 | ~room(X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [definition folding 129,132]
135. ! [X0] : ((sP0(X0) | (tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0))) & ((~tourist(X0) | ~humble(X0) | ~brave(X0) | ~quiet(X0) | ~wise(X0)) | ~sP0(X0))) [nnf transformation 132]
136. ! [X0] : ((sP0(X0) | (tourist(X0) & humble(X0) & brave(X0) & quiet(X0) & wise(X0))) & (~tourist(X0) | ~humble(X0) | ~brave(X0) | ~quiet(X0) | ~wise(X0) | ~sP0(X0))) [flattening 135]
137. ! [X0] : (((sP0(X0) | (~european(X0) | ~curious(X0) | ~humble(X0))) & ((european(X0) & curious(X0) & humble(X0)) | ~sP0(X0))) | ~room(X0)) & younger(susan,fred) & sibling(susan,fred) & ? [X2] : room(X2) & ! [X4] : (~tall(X4) & old(X4)) & (~propositione | propositiond) & ? [X5,X6] : predl(X5) & (propositiond | ~propositiond) & propositione & ! [X11] : (~curious(X11) & funny(X11)) & ! [X12] : (((~curious(X12) | ~predf(X12)) & (curious(X12) | predf(X12))) | ~predl(X12) | ~room(X12)) & ! [X13] : (predl(X13) | ~sibling(susan,X13) | ~anywhere(X13)) & ? [X14] : (~sibling(susan,X14) & anywhere(X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (~humble(X17) | ~predq(X17) | ~room(X17)) & ! [X18] : (sibling(lucy,X18) | (person(X18) & tall(X18) & funny(X18)) | ~anywhere(X18)) & ! [X19] : (~person(X19) | ~tall(X19) | ~funny(X19) | ~sibling(susan,X19) | ~room(X19)) & ? [X20] : room(X20) & ! [X25] : (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25 | ~room(X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 133]
138. ! [X0] : (((sP0(X0) | ~european(X0) | ~curious(X0) | ~humble(X0)) & ((european(X0) & curious(X0) & humble(X0)) | ~sP0(X0))) | ~room(X0)) & younger(susan,fred) & sibling(susan,fred) & ? [X2] : room(X2) & ! [X4] : (~tall(X4) & old(X4)) & (~propositione | propositiond) & ? [X5,X6] : predl(X5) & (propositiond | ~propositiond) & propositione & ! [X11] : (~curious(X11) & funny(X11)) & ! [X12] : (((~curious(X12) | ~predf(X12)) & (curious(X12) | predf(X12))) | ~predl(X12) | ~room(X12)) & ! [X13] : (predl(X13) | ~sibling(susan,X13) | ~anywhere(X13)) & ? [X14] : (~sibling(susan,X14) & anywhere(X14)) & sibling(susan,fred) & sibling(susan,mary) & ! [X17] : (~humble(X17) | ~predq(X17) | ~room(X17)) & ! [X18] : (sibling(lucy,X18) | (person(X18) & tall(X18) & funny(X18)) | ~anywhere(X18)) & ! [X19] : (~person(X19) | ~tall(X19) | ~funny(X19) | ~sibling(susan,X19) | ~room(X19)) & ? [X20] : room(X20) & ! [X25] : (john = X25 | alice = X25 | fred = X25 | paul = X25 | mary = X25 | ~room(X25)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 137]
139. ! [X0] : (((sP0(X0) | ~european(X0) | ~curious(X0) | ~humble(X0)) & ((european(X0) & curious(X0) & humble(X0)) | ~sP0(X0))) | ~room(X0)) & younger(susan,fred) & sibling(susan,fred) & ? [X1] : room(X1) & ! [X2] : (~tall(X2) & old(X2)) & (~propositione | propositiond) & ? [X3] : predl(X3) & (propositiond | ~propositiond) & propositione & ! [X5] : (~curious(X5) & funny(X5)) & ! [X6] : (((~curious(X6) | ~predf(X6)) & (curious(X6) | predf(X6))) | ~predl(X6) | ~room(X6)) & ! [X7] : (predl(X7) | ~sibling(susan,X7) | ~anywhere(X7)) & ? [X8] : (~sibling(susan,X8) & anywhere(X8)) & sibling(susan,fred) & sibling(susan,mary) & ! [X9] : (~humble(X9) | ~predq(X9) | ~room(X9)) & ! [X10] : (sibling(lucy,X10) | (person(X10) & tall(X10) & funny(X10)) | ~anywhere(X10)) & ! [X11] : (~person(X11) | ~tall(X11) | ~funny(X11) | ~sibling(susan,X11) | ~room(X11)) & ? [X12] : room(X12) & ! [X13] : (john = X13 | alice = X13 | fred = X13 | paul = X13 | mary = X13 | ~room(X13)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 138]
140. ? [X1] : room(X1) => room(sK1) [choice axiom]
141. ? [X3] : predl(X3) => predl(sK2) [choice axiom]
142. ? [X8] : (~sibling(susan,X8) & anywhere(X8)) => (~sibling(susan,sK3) & anywhere(sK3)) [choice axiom]
143. ? [X12] : room(X12) => room(sK4) [choice axiom]
144. ! [X0] : (((sP0(X0) | ~european(X0) | ~curious(X0) | ~humble(X0)) & ((european(X0) & curious(X0) & humble(X0)) | ~sP0(X0))) | ~room(X0)) & younger(susan,fred) & sibling(susan,fred) & room(sK1) & ! [X2] : (~tall(X2) & old(X2)) & (~propositione | propositiond) & predl(sK2) & (propositiond | ~propositiond) & propositione & ! [X5] : (~curious(X5) & funny(X5)) & ! [X6] : (((~curious(X6) | ~predf(X6)) & (curious(X6) | predf(X6))) | ~predl(X6) | ~room(X6)) & ! [X7] : (predl(X7) | ~sibling(susan,X7) | ~anywhere(X7)) & (~sibling(susan,sK3) & anywhere(sK3)) & sibling(susan,fred) & sibling(susan,mary) & ! [X9] : (~humble(X9) | ~predq(X9) | ~room(X9)) & ! [X10] : (sibling(lucy,X10) | (person(X10) & tall(X10) & funny(X10)) | ~anywhere(X10)) & ! [X11] : (~person(X11) | ~tall(X11) | ~funny(X11) | ~sibling(susan,X11) | ~room(X11)) & room(sK4) & ! [X13] : (john = X13 | alice = X13 | fred = X13 | paul = X13 | mary = X13 | ~room(X13)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 139,143,142,141,140]
232. sP0(X0) | humble(X0) [cnf transformation 136]
238. room(john) [cnf transformation 144]
245. ~humble(X9) | ~predq(X9) | ~room(X9) [cnf transformation 144]
264. humble(X0) | ~sP0(X0) | ~room(X0) [cnf transformation 144]
274. predq(john) [cnf transformation 131]
276. ~room(X0) | humble(X0) [subsumption resolution 264,232]
289. ~predq(X9) | ~room(X9) [subsumption resolution 245,276]
300. ~room(john) [resolution 289,274]
301. $false [subsumption resolution 300,238]
% SZS output end Proof for 1480082851106505520833366
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.48384 |
Mildred, Raul, Anton are the only persons in the room.
Raul does not play as a goalkeeper for a local amateur soccer team.
If someone does not enjoy snowboarding then he/she does not play as a goalkeeper for a local amateur soccer team.
Mildred does not enjoy snowboarding.
|
More than one person in the room plays as a goalkeeper for a local amateur soccer team.
|
contradiction
|
room(mildred)&room(raul)&room(anton)&(![X]:(room(X)=>(X='mildred'|X='raul'|X='anton')))&
(((does_not_practice_zumba(raul))<~>(practices_zumba(raul))))&
(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(raul))&
(![X]:(room(X)=>(((does_not_collect_first_edition_books(X))=>(does_not_practice_digital_art(X))))))&
(![X]:(room(X)=>(((does_not_practice_digital_art(X))<=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))&(writes_poetry(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))))&
((![X]:((does_not_enjoy_snowboarding(X))=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))&
(does_not_collect_first_edition_books(raul))&
(~![X]:(~room(X)=>(does_not_practice_zumba(X))))&
(collects_foreign_coins(raul))&
(![X]:(~room(X)=>(cannot_play_the_flute(X))))&
(does_not_collect_limited-edition_art_prints_from_contemporary_artists(mildred))&
(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(raul))&
((![X]:((can_play_the_harmonica(X))=>(~((does_not_know_morse_code(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))&
(![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(enjoys_making_ceramics(X))))))&
(does_not_practice_digital_art(raul))&
(does_not_collect_first_edition_books(mildred))&
(((cannot_play_the_flute(raul))|(does_not_practice_zumba(raul))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(raul))))&
(does_not_enjoy_snowboarding(mildred))&
(develops_open-source_software_projects_in_their_free_time(mildred))&
(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(mildred))&(cannot_play_the_flute(mildred))&(can_play_the_piano(mildred))))&
(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(raul))|(practices_digital_art(raul))|(does_not_enjoy_making_ceramics(raul))))&
(![X]:(~room(X)=>(((((collects_antique_jewelry(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_enjoy_bird_watching(X))))=>(does_not_develop_open-source_software_projects_in_their_free_time(X))))))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(raul))&
(practices_urban_gardening(raul))&
(((collects_antique_jewelry(mildred))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(mildred))|(does_not_collect_antique_jewelry(mildred))))&
(((collects_antique_jewelry(mildred))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(mildred))|(does_not_enjoy_bird_watching(mildred))))
|
room(mildred)&room(raul)&room(anton)&(![X]:(room(X)=>(X='mildred'|X='raul'|X='anton')))&
(?[X,Y]:(room(X)&room(Y)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)&plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))&(X!=Y)))
|
[
"p0",
"p2",
"p5",
"p17",
"hypothesis"
] |
% SZS status Unsatisfiable for 1051131455472748509752156
% SZS output start Proof for 1051131455472748509752156
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
46. ~predr(paul) [input p2]
49. ! [X0] : (~predg(X0) => ~predr(X0)) [input p5]
61. ~predg(mary) [input p17]
70. ? [X0,X1] : (X0 != X1 & predr(X1) & predr(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
71. ? [X0,X1] : (X0 != X1 & predr(X1) & predr(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (fred = X2 | paul = X2 | mary = X2)) & room(fred) & room(paul) & room(mary) [rectify 70]
157. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
158. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 157]
162. ! [X0] : (~predr(X0) | predg(X0)) [ennf transformation 49]
168. ? [X0,X1] : (X0 != X1 & predr(X1) & predr(X0) & room(X1) & room(X0)) & ! [X2] : ((fred = X2 | paul = X2 | mary = X2) | ~room(X2)) & room(fred) & room(paul) & room(mary) [ennf transformation 71]
169. ? [X0,X1] : (X0 != X1 & predr(X1) & predr(X0) & room(X1) & room(X0)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [flattening 168]
176. ? [X0,X1] : (X0 != X1 & predr(X1) & predr(X0) & room(X1) & room(X0)) => (sK1 != sK2 & predr(sK2) & predr(sK1) & room(sK2) & room(sK1)) [choice axiom]
177. (sK1 != sK2 & predr(sK2) & predr(sK1) & room(sK2) & room(sK1)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [skolemisation 169,176]
261. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 158]
264. ~predr(paul) [cnf transformation 46]
270. ~predr(X0) | predg(X0) [cnf transformation 162]
277. ~predg(mary) [cnf transformation 61]
288. room(sK1) [cnf transformation 177]
289. room(sK2) [cnf transformation 177]
290. predr(sK1) [cnf transformation 177]
291. predr(sK2) [cnf transformation 177]
292. sK1 != sK2 [cnf transformation 177]
316. predg(sK1) [resolution 270,290]
317. predg(sK2) [resolution 270,291]
459. paul = sK1 | mary = sK1 | fred = sK1 [resolution 261,288]
460. paul = sK2 | mary = sK2 | fred = sK2 [resolution 261,289]
462. 21 <=> fred = sK1 [avatar definition]
466. 22 <=> mary = sK1 [avatar definition]
468. mary = sK1 <- (22) [avatar component clause 466]
470. 23 <=> paul = sK1 [avatar definition]
472. paul = sK1 <- (23) [avatar component clause 470]
473. 21 | 22 | 23 [avatar split clause 459,470,466,462]
475. 24 <=> fred = sK2 [avatar definition]
477. fred = sK2 <- (24) [avatar component clause 475]
479. 25 <=> mary = sK2 [avatar definition]
481. mary = sK2 <- (25) [avatar component clause 479]
483. 26 <=> paul = sK2 [avatar definition]
485. paul = sK2 <- (26) [avatar component clause 483]
486. 24 | 25 | 26 [avatar split clause 460,483,479,475]
489. fred != sK1 <- (24) [backward demodulation 292,477]
494. ~21 | ~24 [avatar split clause 489,475,462]
505. predg(mary) <- (22) [backward demodulation 316,468]
509. $false <- (22) [subsumption resolution 505,277]
510. ~22 [avatar contradiction clause 509]
517. predr(paul) <- (23) [backward demodulation 290,472]
523. $false <- (23) [subsumption resolution 517,264]
524. ~23 [avatar contradiction clause 523]
532. predg(mary) <- (25) [backward demodulation 317,481]
536. $false <- (25) [subsumption resolution 532,277]
537. ~25 [avatar contradiction clause 536]
551. predr(paul) <- (26) [backward demodulation 291,485]
557. $false <- (26) [subsumption resolution 551,264]
558. ~26 [avatar contradiction clause 557]
563. $false [avatar sat refutation 473,486,494,510,524,537,558]
% SZS output end Proof for 1051131455472748509752156
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.030 s
% ------------------------------
% ------------------------------
| 0.072794 |
Joseph, Jeremiah, Chong are the only persons in the room.
Chong who either writes poetry or owns a 3D printer but not both regularly goes on multi-day backpacking trips in national parks.
Jeremiah regularly goes on multi-day backpacking trips in national parks.
If someone does not write poetry then he/she owns a 3D printer and has a curated collection of mid-century modern furniture and vice versa.
If someone does not regularly goes on multi-day backpacking trips in national parks then he/she owns a 3D printer and vice versa.
At least one person in the room owns a 3D printer.
Joseph has a curated collection of mid-century modern furniture.
|
Joseph writes poetry.
|
contradiction
|
room(joseph)&room(jeremiah)&room(chong)&(![X]:(room(X)=>(X='joseph'|X='jeremiah'|X='chong')))&
(((owns_a_3D_printer(joseph))=>((((writes_poetry(chong))<~>(owns_a_3D_printer(chong))))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(chong))))&((~(owns_a_3D_printer(joseph)))=>(has_a_curated_collection_of_mid-century_modern_furniture(chong))))&
((![X]:((~strong(X))<=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))&
((((writes_poetry(chong))<~>(owns_a_3D_printer(chong))))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(chong)))&
(((?[X]:(~room(X)&~strong(X)))&(![X,Y]:((~room(X)&~room(Y)&(~strong(X))&(~strong(Y)))=>(X=Y)))))&
((![X]:((writes_poetry(X))=>(strong(X)&person(X)))))&
(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(jeremiah))&
((![X]:((does_not_write_poetry(X))<=>(((owns_a_3D_printer(X))&(has_a_curated_collection_of_mid-century_modern_furniture(X)))))))&
((![X]:((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<=>(owns_a_3D_printer(X)))))&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)®ularly_goes_on_multi-day_backpacking_trips_in_national_parks(Y))&(X!=Y))))&
(((?[X]:(room(X)&owns_a_3D_printer(X)))))&
(has_a_curated_collection_of_mid-century_modern_furniture(joseph))&
(((?[X]:(~room(X)&has_a_curated_collection_of_mid-century_modern_furniture(X)))))
|
room(joseph)&room(jeremiah)&room(chong)&(![X]:(room(X)=>(X='joseph'|X='jeremiah'|X='chong')))&
writes_poetry(joseph)
|
[
"p0",
"p3",
"p6",
"p7",
"p8",
"p10",
"p11",
"hypothesis"
] |
% SZS status Unsatisfiable for 470923404765003548945936
% SZS output start Proof for 470923404765003548945936
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
47. predv(fred) & (predt(fred) <~> predg(fred)) [input p3]
50. predv(paul) [input p6]
51. ! [X0] : (~predt(X0) <=> (predi(X0) & predg(X0))) [input p7]
52. ! [X0] : (~predv(X0) <=> predg(X0)) [input p8]
54. ? [X0] : (predg(X0) & room(X0)) [input p10]
55. predi(mary) [input p11]
57. predt(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
133. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
134. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 133]
139. predt(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 57]
140. predt(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 139]
145. predv(fred) & ((~predg(fred) | ~predt(fred)) & (predg(fred) | predt(fred))) [nnf transformation 47]
146. predv(fred) & (~predg(fred) | ~predt(fred)) & (predg(fred) | predt(fred)) [flattening 145]
149. ! [X0] : ((~predt(X0) | (~predi(X0) | ~predg(X0))) & ((predi(X0) & predg(X0)) | predt(X0))) [nnf transformation 51]
150. ! [X0] : ((~predt(X0) | ~predi(X0) | ~predg(X0)) & ((predi(X0) & predg(X0)) | predt(X0))) [flattening 149]
151. ! [X0] : ((~predv(X0) | ~predg(X0)) & (predg(X0) | predv(X0))) [nnf transformation 52]
154. ? [X0] : (predg(X0) & room(X0)) => (predg(sK3) & room(sK3)) [choice axiom]
155. predg(sK3) & room(sK3) [skolemisation 54,154]
241. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 134]
250. predv(fred) [cnf transformation 146]
255. predv(paul) [cnf transformation 50]
258. ~predi(X0) | ~predt(X0) | ~predg(X0) [cnf transformation 150]
260. ~predv(X0) | ~predg(X0) [cnf transformation 151]
264. room(sK3) [cnf transformation 155]
265. predg(sK3) [cnf transformation 155]
266. predi(mary) [cnf transformation 55]
273. predt(mary) [cnf transformation 140]
275. 1 <=> predg(mary) [avatar definition]
284. 3 <=> predv(fred) [avatar definition]
286. predv(fred) <- (3) [avatar component clause 284]
293. 5 <=> predg(fred) [avatar definition]
298. 3 [avatar split clause 250,284]
315. ~predg(paul) [resolution 260,255]
316. ~predg(fred) <- (3) [resolution 260,286]
320. ~predt(mary) | ~predg(mary) [resolution 258,266]
375. paul = sK3 | mary = sK3 | fred = sK3 [resolution 241,264]
377. 8 <=> fred = sK3 [avatar definition]
379. fred = sK3 <- (8) [avatar component clause 377]
381. 9 <=> mary = sK3 [avatar definition]
383. mary = sK3 <- (9) [avatar component clause 381]
385. 10 <=> paul = sK3 [avatar definition]
387. paul = sK3 <- (10) [avatar component clause 385]
388. 8 | 9 | 10 [avatar split clause 375,385,381,377]
390. predg(fred) <- (8) [backward demodulation 265,379]
393. 5 | ~8 [avatar split clause 390,377,293]
395. ~5 | ~3 [avatar split clause 316,284,293]
402. predg(paul) <- (10) [backward demodulation 265,387]
404. $false <- (10) [subsumption resolution 402,315]
405. ~10 [avatar contradiction clause 404]
407. ~predg(mary) [subsumption resolution 320,273]
408. ~1 [avatar split clause 407,275]
411. predg(mary) <- (9) [backward demodulation 265,383]
413. 1 | ~9 [avatar split clause 411,381,275]
414. $false [avatar sat refutation 298,388,393,395,405,408,413]
% SZS output end Proof for 470923404765003548945936
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.565356 |
Maxine, Mark, Andy, Willie are the only persons in the room.
Someone in the room is a generous person.
Everyone in the room is not tall if they is generous.
Mark is a creative person and is not a generous person.
At least one person in the room is not a creative generous person.
Andy who is not a tall person or does not collect rare and antique scientific instruments or both is a tall person.
Mark does not build model airplanes.
Willie is a creative person.
Maxine is tall.
Everyone in the room neither does not build model airplanes nor is not not generous if they is a tall generous person and vice versa.
Everyone in the room who is a tall generous person is tall.
If someone is a generous person then he/she is not generous, is not a tall generous person or is a creative person.
|
Maxine builds model airplanes.
|
contradiction
|
room(maxine)&room(mark)&room(andy)&room(willie)&(![X]:(room(X)=>(X='maxine'|X='mark'|X='andy'|X='willie')))&
(?[X]:(room(X)&(generous(X)&person(X))))&
(![X]:(room(X)=>(((generous(X))=>(~tall(X))))))&
(((creative(mark)&person(mark))&(~(generous(mark)&person(mark)))))&
(((?[X]:(room(X)&~(creative(X)&generous(X)&person(X))))))&
((((~(tall(andy)&person(andy)))|(does_not_collect_rare_and_antique_scientific_instruments(andy))))&(tall(andy)&person(andy)))&
(does_not_build_model_airplanes(mark))&
(creative(willie)&person(willie))&
(tall(maxine))&
(![X]:(room(X)=>(((~((does_not_build_model_airplanes(X))|(~~generous(X))))<=>(tall(X)&generous(X)&person(X))))))&
(![X]:(room(X)=>(((tall(X)&generous(X)&person(X))=>(tall(X))))))&
((![X]:((generous(X)&person(X))=>(((~generous(X))|(~(tall(X)&generous(X)&person(X)))|(creative(X)&person(X)))))))
|
room(maxine)&room(mark)&room(andy)&room(willie)&(![X]:(room(X)=>(X='maxine'|X='mark'|X='andy'|X='willie')))&
builds_model_airplanes(maxine)
|
[
"p0",
"p2",
"p8",
"p9",
"hypothesis"
] |
% SZS status Unsatisfiable for 6529124032838787690165775
% SZS output start Proof for 6529124032838787690165775
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
46. ! [X0] : (room(X0) => (generous(X0) => ~tall(X0))) [input p2]
52. tall(mary) [input p8]
53. ! [X0] : (room(X0) => (~(generous(X0) | ~predo(X0)) <=> (person(X0) & generous(X0) & tall(X0)))) [input p9]
56. predo(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
130. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
131. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130]
132. ! [X0] : ((~tall(X0) | ~generous(X0)) | ~room(X0)) [ennf transformation 46]
133. ! [X0] : (~tall(X0) | ~generous(X0) | ~room(X0)) [flattening 132]
136. ! [X0] : (((~generous(X0) & predo(X0)) <=> (person(X0) & generous(X0) & tall(X0))) | ~room(X0)) [ennf transformation 53]
141. predo(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 56]
142. predo(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141]
148. ! [X0] : ((((~generous(X0) & predo(X0)) | (~person(X0) | ~generous(X0) | ~tall(X0))) & ((person(X0) & generous(X0) & tall(X0)) | (generous(X0) | ~predo(X0)))) | ~room(X0)) [nnf transformation 136]
149. ! [X0] : ((((~generous(X0) & predo(X0)) | ~person(X0) | ~generous(X0) | ~tall(X0)) & ((person(X0) & generous(X0) & tall(X0)) | generous(X0) | ~predo(X0))) | ~room(X0)) [flattening 148]
230. room(mary) [cnf transformation 131]
238. ~tall(X0) | ~generous(X0) | ~room(X0) [cnf transformation 133]
249. tall(mary) [cnf transformation 52]
251. generous(X0) | generous(X0) | ~predo(X0) | ~room(X0) [cnf transformation 149]
263. predo(mary) [cnf transformation 142]
266. ~predo(X0) | generous(X0) | ~room(X0) [duplicate literal removal 251]
292. ~generous(mary) | ~room(mary) [resolution 238,249]
294. ~generous(mary) [subsumption resolution 292,230]
295. generous(mary) | ~room(mary) [resolution 266,263]
296. ~room(mary) [subsumption resolution 295,294]
297. $false [subsumption resolution 296,230]
% SZS output end Proof for 6529124032838787690165775
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.182724 |
Charles, Margarita, Mae are the only persons in the room. If someone enjoys coding in Python then he/she makes homemade pastries. Everyone outside the room who is a client of Meta plays eSports competitively. Everyone outside the room does not play eSports competitively or drives a hybrid car. Margarita who plays eSports competitively enjoys coding in Python or plays eSports competitively or both. More than one person in the room creates YouTube content. Everyone in the room is not a client of Meta or plays eSports competitively. Someone in the room enjoys coding in Python. Everyone in the room who plays eSports competitively is a client of Meta. If someone is a client of Meta then he/she creates YouTube content. Everyone in the room who plays eSports competitively makes homemade pastries. If someone drives a hybrid car or enjoys coding in Python or both then he/she makes homemade pastries. At least one person in the room creates YouTube content. Everyone in the room who plays eSports competitively enjoys coding in Python. If someone plays eSports competitively then he/she drives a hybrid car.
|
Margarita makes homemade pastries.
|
entailment
|
room(charles)&room(margarita)&room(mae)&(![X]:(room(X)=>(X='charles'|X='margarita'|X='mae')))&
((![X]:((enjoys_coding_in_Python(X))=>(makes_homemade_pastries(X)))))&
(![X]:(~room(X)=>(((is_a_client_of_Meta(X))=>(plays_eSports_competitively(X))))))&
(![X]:(~room(X)=>(((drives_a_hybrid_car(X))|(does_not_play_eSports_competitively(X))))))&
((plays_eSports_competitively(margarita))&(((enjoys_coding_in_Python(margarita))|(plays_eSports_competitively(margarita)))))&
((?[X,Y]:(room(X)&room(Y)&(creates_YouTube_content(X)&creates_YouTube_content(Y))&(X!=Y))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))|(is_not_a_client_of_Meta(X))))))&
(?[X]:(room(X)&(enjoys_coding_in_Python(X))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(is_a_client_of_Meta(X))))))&
((![X]:((is_a_client_of_Meta(X))=>(creates_YouTube_content(X)))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(makes_homemade_pastries(X))))))&
((![X]:((((drives_a_hybrid_car(X))|(enjoys_coding_in_Python(X))))=>(makes_homemade_pastries(X)))))&
(((?[X]:(room(X)&creates_YouTube_content(X)))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(enjoys_coding_in_Python(X))))))&
(![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(creates_YouTube_content(X))))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(creates_YouTube_content(X))))))&
(![X]:(room(X)=>(((makes_homemade_pastries(X))<=(creates_YouTube_content(X))))))&
((![X]:((plays_eSports_competitively(X))=>(drives_a_hybrid_car(X)))))&
(~![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(plays_eSports_competitively(X))))))&
(((?[X]:(room(X)&is_a_client_of_Meta(X)))))&
(?[X]:(anywhere(X)&(is_a_client_of_Meta(X))))
|
room(charles)&room(margarita)&room(mae)&(![X]:(room(X)=>(X='charles'|X='margarita'|X='mae')))&
makes_homemade_pastries(margarita)
|
[
"p0",
"p4",
"p11",
"p17",
"hypothesis"
] |
% SZS status Unsatisfiable for 5535783020784818375374194
% SZS output start Proof for 5535783020784818375374194
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
48. (preda(paul) | predb(paul)) & preda(paul) [input p4]
55. ! [X0] : ((predb(X0) | predd(X0)) => predf(X0)) [input p11]
61. ! [X0] : (preda(X0) => predd(X0)) [input p17]
65. ~(predf(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
139. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
140. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 139]
153. ! [X0] : (predf(X0) | (~predb(X0) & ~predd(X0))) [ennf transformation 55]
162. ! [X0] : (predd(X0) | ~preda(X0)) [ennf transformation 61]
165. ~predf(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 65]
166. ~predf(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 165]
180. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom]
181. ~predf(paul) | (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 166,180]
262. room(mary) [cnf transformation 140]
263. room(paul) [cnf transformation 140]
264. room(fred) [cnf transformation 140]
265. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 140]
269. preda(paul) [cnf transformation 48]
282. ~predd(X0) | predf(X0) [cnf transformation 153]
290. ~preda(X0) | predd(X0) [cnf transformation 162]
297. ~predf(paul) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
298. ~predf(paul) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
299. ~predf(paul) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
300. ~predf(paul) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181]
306. 2 <=> preda(paul) [avatar definition]
308. preda(paul) <- (2) [avatar component clause 306]
310. 2 [avatar split clause 269,306]
312. ~predf(paul) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 300,264]
313. ~predf(paul) | fred != sK7 | ~room(mary) [subsumption resolution 312,263]
314. ~predf(paul) | fred != sK7 [subsumption resolution 313,262]
316. 3 <=> fred = sK7 [avatar definition]
318. fred != sK7 <- (~3) [avatar component clause 316]
320. 4 <=> predf(paul) [avatar definition]
323. ~3 | ~4 [avatar split clause 314,320,316]
324. ~predf(paul) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 299,264]
325. ~predf(paul) | paul != sK7 | ~room(mary) [subsumption resolution 324,263]
326. ~predf(paul) | paul != sK7 [subsumption resolution 325,262]
328. 5 <=> paul = sK7 [avatar definition]
330. paul != sK7 <- (~5) [avatar component clause 328]
331. ~5 | ~4 [avatar split clause 326,320,328]
332. ~predf(paul) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 298,264]
333. ~predf(paul) | mary != sK7 | ~room(mary) [subsumption resolution 332,263]
334. ~predf(paul) | mary != sK7 [subsumption resolution 333,262]
336. 6 <=> mary = sK7 [avatar definition]
338. mary != sK7 <- (~6) [avatar component clause 336]
339. ~6 | ~4 [avatar split clause 334,320,336]
340. ~predf(paul) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 297,264]
341. ~predf(paul) | room(sK7) | ~room(mary) [subsumption resolution 340,263]
342. ~predf(paul) | room(sK7) [subsumption resolution 341,262]
344. 7 <=> room(sK7) [avatar definition]
346. room(sK7) <- (7) [avatar component clause 344]
347. 7 | ~4 [avatar split clause 342,320,344]
352. predd(paul) <- (2) [resolution 290,308]
357. predf(paul) <- (2) [resolution 352,282]
360. 4 | ~2 [avatar split clause 357,306,320]
466. paul = sK7 | mary = sK7 | fred = sK7 <- (7) [resolution 265,346]
545. mary = sK7 | fred = sK7 <- (~5, 7) [subsumption resolution 466,330]
546. fred = sK7 <- (~5, ~6, 7) [subsumption resolution 545,338]
547. $false <- (~3, ~5, ~6, 7) [subsumption resolution 546,318]
548. 3 | 5 | 6 | ~7 [avatar contradiction clause 547]
549. $false [avatar sat refutation 310,323,331,339,347,360,548]
% SZS output end Proof for 5535783020784818375374194
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.471427 |
Renee, Casandra are the only persons in the room.
Everyone in the room is a creative person.
Everyone in the room is a wise person.
Everyone anywhere is a tall person.
Everyone in the room is a kind person.
Everyone in the room is strong.
Someone in the room is a generous person.
Someone who is a quiet person is older than someone who is a calm person.
Renee and Casandra are happy persons.
Everyone in the room is a curious person.
|
Renee is not happy, not wise.
|
contradiction
|
room(renee)&room(casandra)&(![X]:(room(X)=>(X='renee'|X='casandra')))&
(![X]:(room(X)=>(creative(X)&person(X))))&
(![X]:(room(X)=>(wise(X)&person(X))))&
(![X]:(anywhere(X)=>(tall(X)&person(X))))&
(![X]:(room(X)=>(kind(X)&person(X))))&
(![X]:(room(X)=>(strong(X))))&
(?[X]:(room(X)&(generous(X)&person(X))))&
(?[X,Y]:((quiet(X)&person(X))&(calm(Y)&person(Y))&(older(X,Y))))&
(happy(renee)&person(renee)&happy(casandra)&person(casandra))&
(![X]:(room(X)=>(curious(X)&person(X))))&
(![X]:(room(X)=>(old(X)&person(X))))&
(![X]:(room(X)=>(brave(X)&person(X))))&
((![X]:((humble(X)&person(X))=>(strong(X)&person(X)))))&
(?[X,Y]:((strong(X)&person(X))&(((brave(Y)&person(Y))&(curious(Y)&person(Y))))&(richer(X,Y))))&
(~(humble(renee)&person(renee)&humble(casandra)&person(casandra)))&
(?[X,Y]:((happy(X)&person(X))&(((quiet(Y)&person(Y))|(happy(Y)&person(Y))|(kind(Y)&person(Y))))&(quieter(X,Y))))&
(?[X,Y]:((((creative(X)&person(X))&(quiet(X)&person(X))))&(((funny(Y))|(funny(Y)&person(Y))|(curious(Y)&person(Y))))&(quieter(X,Y))))&
(quiet(renee)&person(renee)&quiet(casandra)&person(casandra))
|
room(renee)&room(casandra)&(![X]:(room(X)=>(X='renee'|X='casandra')))&
~happy(renee)&~wise(renee)
|
[
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 1108214198479332141824955
% SZS output start Proof for 1108214198479332141824955
52. person(paul) & happy(paul) & person(mary) & happy(mary) [input p8]
62. ~wise(mary) & ~happy(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
76. happy(paul) & happy(mary) [pure predicate removal 52]
169. ~wise(mary) & ~happy(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 62]
170. ~wise(mary) & ~happy(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 169]
269. happy(mary) [cnf transformation 76]
282. ~happy(mary) [cnf transformation 170]
284. $false [subsumption resolution 282,269]
% SZS output end Proof for 1108214198479332141824955
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.029 s
% ------------------------------
% ------------------------------
| 0.389088 |
Patrick, Nancy are the only persons in the room.
If “Nancy is not a strong person” then “only one person in the room is quieter than Steven” otherwise “everyone outside the room is not a humble strong person if they either is not patient or is brave but not both”.
If “Steven is richer than Patrick” then “everyone in the room is quieter than Steven if they is richer than Steven”.
“If someone is quieter than Steven then he/she is richer than Steven and vice versa” unless “Nancy is a strong person, is curious and is not a calm person”.
Everyone anywhere who is humble is quieter than Steven.
Someone who is a tall happy person, is richer than Steven or is a quiet brave wise person is quieter than someone who is calm.
|
It is not the case that “it is not the case that “it is not the case that “more than one person in the room is not tall, is a kind person and is a old person”””.
|
neutral
|
room(patrick)&room(nancy)&(![X]:(room(X)=>(X='patrick'|X='nancy')))&
(((~(strong(nancy)&person(nancy)))=>(((?[X]:(room(X)&quieter(steven,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(steven,X))&(quieter(steven,Y)))=>(X=Y))))))&((~(~(strong(nancy)&person(nancy))))=>(![X]:(~room(X)=>(((((~patient(X))<~>(brave(X))))=>(~(humble(X)&strong(X)&person(X)))))))))&
((richer(patrick,steven))=>(![X]:(room(X)=>(((richer(steven,X))=>(quieter(steven,X)))))))&
(~(((strong(nancy)&person(nancy))&(curious(nancy))&(~(calm(nancy)&person(nancy)))))=>((![X]:((quieter(steven,X))<=>(richer(steven,X))))))&
(![X]:(anywhere(X)=>(((humble(X))=>(quieter(steven,X))))))&
(?[X,Y]:((((tall(X)&happy(X)&person(X))|(richer(steven,X))|(quiet(X)&brave(X)&wise(X)&person(X))))&(calm(Y))&(quieter(X,Y))))&
(![X]:(patient(X)=>quiet(X)))&
(![X]:(room(X)=>(((~~~~~humble(X))=>(humble(X))))))&
(strong(nancy)&strong(patrick))&
((creative(nancy))&(strong(patrick)))&
(~(generous(patrick)&quiet(patrick)&curious(patrick)&person(patrick)))&
(?[X]:(room(X)&(patient(X))))&
(~(happy(patrick)&strong(patrick)&person(patrick)))&
(kind(patrick)&person(patrick))&
(![X]:(room(X)=>(((~tall(X)&~wise(X)&~humble(X))|(brave(X)&strong(X)&person(X))|(patient(X)&person(X))))))&
(![X]:(room(X)=>(((old(X))=>(quiet(X))))))
|
room(patrick)&room(nancy)&(![X]:(room(X)=>(X='patrick'|X='nancy')))&
~(~(~((?[X,Y]:(room(X)&room(Y)&(((~tall(X))&(kind(X)&person(X))&(old(X)&person(X)))&((~tall(Y))&(kind(Y)&person(Y))&(old(Y)&person(Y))))&(X!=Y))))))
|
[] | null | 0 |
Betty, Brenda, Nancy are the only persons in the room. “Betty is wise” if “not everyone in the room is liked by Kyle” and vice versa. If someone is not wise then he/she does practice yoga, is a wise person and is a generous person and vice versa. Brenda is not a wise person. Someone who is a generous tourist is a sibling of someone who is generous. Everyone outside the room is not a generous person. Nancy is a wise tourist. Not everyone in the room is a wise person.
|
It is true that “Betty is liked by Kyle”.
|
neutral
|
room(betty)&room(brenda)&room(nancy)&(![X]:(room(X)=>(X='betty'|X='brenda'|X='nancy')))&
((~![X]:(room(X)=>(like(X,kyle))))<=>(wise(betty)))&
((![X]:((~wise(X))<=>(((does_practice_yoga(X))&(wise(X)&person(X))&(generous(X)&person(X)))))))&
(~(wise(brenda)&person(brenda)))&
(?[X,Y]:((generous(X)&tourist(X))&(generous(Y))&(sibling(X,Y))))&
(![X]:(~room(X)=>(~(generous(X)&person(X)))))&
(wise(nancy)&tourist(nancy))&
(~![X]:(room(X)=>(wise(X)&person(X))))&
(![X]:(~room(X)=>(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))&
(~(generous(brenda)&person(brenda)))&
(![X]:(room(X)=>(wise(X))))&
(wise(betty))&
(((?[X]:(room(X)&generous(X)&tourist(X)))&(![X,Y]:((room(X)&room(Y)&(generous(X)&tourist(X))&(generous(Y)&tourist(Y)))=>(X=Y)))))&
(wise(nancy)&person(nancy))&
(~(is_an_avid_mountain_climber_who_has_scaled_several_peaks(betty)))&
((![X]:((~(wise(X)&person(X)))=>(~(wise(X)&tourist(X))))))&
(![X]:(room(X)=>(generous(X))))
|
room(betty)&room(brenda)&room(nancy)&(![X]:(room(X)=>(X='betty'|X='brenda'|X='nancy')))&
like(betty,kyle)
|
[] | null | 0.282158 |
Ernesto is the only person in the room.
None of the following is true:.
-Everyone in the room enjoys bird watching if and only if they plays the drums.
-Everyone in the room who plays the drums enjoys logic puzzles.
|
Not everyone in the room enjoys logic puzzles.
|
entailment
|
room(ernesto)&(![X]:(room(X)=>(X='ernesto')))&
~((![X]:(room(X)=>(((enjoys_bird_watching(X))<=>(plays_the_drums(X))))))|(![X]:(room(X)=>(((plays_the_drums(X))=>(enjoys_logic_puzzles(X)))))))
|
room(ernesto)&(![X]:(room(X)=>(X='ernesto')))&
~![X]:(room(X)=>(enjoys_logic_puzzles(X)))
|
[
"p0",
"p1",
"hypothesis"
] |
% SZS status Unsatisfiable for 1185593242330023293311100
% SZS output start Proof for 1185593242330023293311100
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
45. ~(! [X0] : (room(X0) => (predb(X0) => predd(X0))) | ! [X0] : (room(X0) => (preda(X0) <=> predb(X0)))) [input p1]
46. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis]
47. ~(! [X0] : (room(X0) => (predb(X0) => predd(X0))) | ! [X1] : (room(X1) => (preda(X1) <=> predb(X1)))) [rectify 45]
48. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary)) [rectify 46]
121. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
122. ? [X0] : ((~predd(X0) & predb(X0)) & room(X0)) & ? [X1] : ((preda(X1) <~> predb(X1)) & room(X1)) [ennf transformation 47]
123. ? [X0] : (~predd(X0) & predb(X0) & room(X0)) & ? [X1] : ((preda(X1) <~> predb(X1)) & room(X1)) [flattening 122]
124. ! [X0] : (predd(X0) | ~room(X0)) | ? [X1] : (mary != X1 & room(X1)) | ~room(mary) [ennf transformation 48]
126. ? [X0] : (~predd(X0) & predb(X0) & room(X0)) & ? [X1] : (((~predb(X1) | ~preda(X1)) & (predb(X1) | preda(X1))) & room(X1)) [nnf transformation 123]
127. ? [X0] : (~predd(X0) & predb(X0) & room(X0)) & ? [X1] : ((~predb(X1) | ~preda(X1)) & (predb(X1) | preda(X1)) & room(X1)) [flattening 126]
128. ? [X0] : (~predd(X0) & predb(X0) & room(X0)) => (~predd(sK0) & predb(sK0) & room(sK0)) [choice axiom]
129. ? [X1] : ((~predb(X1) | ~preda(X1)) & (predb(X1) | preda(X1)) & room(X1)) => ((~predb(sK1) | ~preda(sK1)) & (predb(sK1) | preda(sK1)) & room(sK1)) [choice axiom]
130. (~predd(sK0) & predb(sK0) & room(sK0)) & ((~predb(sK1) | ~preda(sK1)) & (predb(sK1) | preda(sK1)) & room(sK1)) [skolemisation 127,129,128]
131. ? [X1] : (mary != X1 & room(X1)) => (mary != sK2 & room(sK2)) [choice axiom]
132. ! [X0] : (predd(X0) | ~room(X0)) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 124,131]
213. room(mary) [cnf transformation 121]
214. ~room(X0) | mary = X0 [cnf transformation 121]
218. room(sK0) [cnf transformation 130]
220. ~predd(sK0) [cnf transformation 130]
221. predd(X0) | ~room(X0) | room(sK2) | ~room(mary) [cnf transformation 132]
222. predd(X0) | ~room(X0) | mary != sK2 | ~room(mary) [cnf transformation 132]
233. predd(X0) | ~room(X0) | mary != sK2 [subsumption resolution 222,213]
235. 3 <=> mary = sK2 [avatar definition]
237. mary != sK2 <- (~3) [avatar component clause 235]
239. 4 <=> ! [X0] : (predd(X0) | ~room(X0)) [avatar definition]
240. ~room(X0) | predd(X0) <- (4) [avatar component clause 239]
241. ~3 | 4 [avatar split clause 233,239,235]
242. predd(X0) | ~room(X0) | room(sK2) [subsumption resolution 221,213]
244. 5 <=> room(sK2) [avatar definition]
246. room(sK2) <- (5) [avatar component clause 244]
247. 5 | 4 [avatar split clause 242,239,244]
250. predd(sK0) <- (4) [resolution 240,218]
251. $false <- (4) [subsumption resolution 250,220]
252. ~4 [avatar contradiction clause 251]
256. mary = sK2 <- (5) [resolution 214,246]
263. $false <- (~3, 5) [subsumption resolution 256,237]
264. 3 | ~5 [avatar contradiction clause 263]
265. $false [avatar sat refutation 241,247,252,264]
% SZS output end Proof for 1185593242330023293311100
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.322243 |
Gustavo, Arlene, Jorge are the only persons in the room.
Gustavo owns an extensive assortment of vintage comic book memorabilia.
If someone enjoys cross-country skiing then he/she is a drone photographer and vice versa.
Everyone in the room who enjoys cross-country skiing streams on Twitch.
Everyone in the room who streams on Twitch collects historical artifacts related to ancient civilizations.
Arlene who enjoys cross-country skiing practices digital art.
|
Arlene collects historical artifacts related to ancient civilizations.
|
entailment
|
room(gustavo)&room(arlene)&room(jorge)&(![X]:(room(X)=>(X='gustavo'|X='arlene'|X='jorge')))&
(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(gustavo))&
((![X]:((enjoys_cross-country_skiing(X))<=>(is_a_drone_photographer(X)))))&
(enjoys_stand-up_paddleboarding(gustavo))&
(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(streams_on_Twitch(X))))))&
(![X]:(room(X)=>(((streams_on_Twitch(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))&
(![X]:(anywhere(X)=>(((plays_eSports_competitively(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))&
(enjoys_cross-country_skiing(gustavo))&
((enjoys_cross-country_skiing(arlene))&(practices_digital_art(arlene)))&
(![X]:(room(X)=>(((has_a_tattoo(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))&
((practices_and_performs_acrobatic_dance_routines(arlene))&(is_a_dedicated_volunteer_for_local_community_service_projects(arlene)))&
(?[X]:(room(X)&(enjoys_rooftop_gardening(X))))&
(has_a_tattoo(gustavo))&
(![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(does_not_collect_vintage_vinyl_records(X))))))&
((works_on_fridays(gustavo))&(enjoys_rooftop_gardening(gustavo)))&
(?[X]:(room(X)&(((has_a_tattoo(X))<~>(streams_on_Twitch(X))))))&
((((enjoys_rooftop_gardening(arlene))&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(arlene))&(does_enjoy_trail_running(arlene))))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(arlene)))&
((![X]:((plays_eSports_competitively(X))<=>(works_on_fridays(X)))))&
(((?[X]:(room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(Y)))=>(X=Y)))))&
(~(is_a_dedicated_volunteer_for_local_community_service_projects(gustavo)))&
(((can_play_the_guitar(gustavo))&(is_allergic_to_anything(gustavo))&(creates_YouTube_content(gustavo))))&
((![X]:((enjoys_stand-up_paddleboarding(X))<=>(is_a_craft_beer_aficionado(X)))))&
(((enjoys_cross-country_skiing(arlene))<~>(works_on_fridays(arlene))))&
(![X]:(anywhere(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
((![X]:((creates_YouTube_content(X))<=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))&
(~![X]:(anywhere(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))&
(((?[X]:(room(X)&collects_vintage_vinyl_records(X)))&(![X,Y]:((room(X)&room(Y)&(collects_vintage_vinyl_records(X))&(collects_vintage_vinyl_records(Y)))=>(X=Y)))))
|
room(gustavo)&room(arlene)&room(jorge)&(![X]:(room(X)=>(X='gustavo'|X='arlene'|X='jorge')))&
collects_historical_artifacts_related_to_ancient_civilizations(arlene)
|
[
"p0",
"p4",
"p5",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 9194478294617992214779237
% SZS output start Proof for 9194478294617992214779237
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
48. ! [X0] : (room(X0) => (predm(X0) => predo(X0))) [input p4]
49. ! [X0] : (room(X0) => (predo(X0) => predi(X0))) [input p5]
52. predx(paul) & predm(paul) [input p8]
71. ~(predi(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
86. predm(paul) [pure predicate removal 52]
163. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
164. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 163]
165. ! [X0] : ((predo(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 48]
166. ! [X0] : (predo(X0) | ~predm(X0) | ~room(X0)) [flattening 165]
167. ! [X0] : ((predi(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 49]
168. ! [X0] : (predi(X0) | ~predo(X0) | ~room(X0)) [flattening 167]
179. ~predi(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 71]
180. ~predi(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 179]
197. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
198. ~predi(paul) | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 180,197]
280. room(mary) [cnf transformation 164]
281. room(paul) [cnf transformation 164]
282. room(fred) [cnf transformation 164]
283. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 164]
287. ~predm(X0) | predo(X0) | ~room(X0) [cnf transformation 166]
288. ~predo(X0) | predi(X0) | ~room(X0) [cnf transformation 168]
290. predm(paul) [cnf transformation 86]
314. ~predi(paul) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198]
315. ~predi(paul) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198]
316. ~predi(paul) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198]
317. ~predi(paul) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198]
330. ~predi(paul) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 317,282]
331. ~predi(paul) | fred != sK5 | ~room(mary) [subsumption resolution 330,281]
332. ~predi(paul) | fred != sK5 [subsumption resolution 331,280]
334. 3 <=> fred = sK5 [avatar definition]
336. fred != sK5 <- (~3) [avatar component clause 334]
338. 4 <=> predi(paul) [avatar definition]
341. ~3 | ~4 [avatar split clause 332,338,334]
342. ~predi(paul) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 316,282]
343. ~predi(paul) | paul != sK5 | ~room(mary) [subsumption resolution 342,281]
344. ~predi(paul) | paul != sK5 [subsumption resolution 343,280]
346. 5 <=> paul = sK5 [avatar definition]
348. paul != sK5 <- (~5) [avatar component clause 346]
349. ~5 | ~4 [avatar split clause 344,338,346]
350. ~predi(paul) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 315,282]
351. ~predi(paul) | mary != sK5 | ~room(mary) [subsumption resolution 350,281]
352. ~predi(paul) | mary != sK5 [subsumption resolution 351,280]
354. 6 <=> mary = sK5 [avatar definition]
356. mary != sK5 <- (~6) [avatar component clause 354]
357. ~6 | ~4 [avatar split clause 352,338,354]
358. ~predi(paul) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 314,282]
359. ~predi(paul) | room(sK5) | ~room(mary) [subsumption resolution 358,281]
360. ~predi(paul) | room(sK5) [subsumption resolution 359,280]
362. 7 <=> room(sK5) [avatar definition]
364. room(sK5) <- (7) [avatar component clause 362]
365. 7 | ~4 [avatar split clause 360,338,362]
376. predo(paul) | ~room(paul) [resolution 287,290]
378. predo(paul) [subsumption resolution 376,281]
383. predi(paul) | ~room(paul) [resolution 378,288]
387. predi(paul) [subsumption resolution 383,281]
388. 4 [avatar split clause 387,338]
434. paul = sK5 | mary = sK5 | fred = sK5 <- (7) [resolution 283,364]
487. mary = sK5 | fred = sK5 <- (~5, 7) [subsumption resolution 434,348]
488. fred = sK5 <- (~5, ~6, 7) [subsumption resolution 487,356]
489. $false <- (~3, ~5, ~6, 7) [subsumption resolution 488,336]
490. 3 | 5 | 6 | ~7 [avatar contradiction clause 489]
491. $false [avatar sat refutation 341,349,357,365,388,490]
% SZS output end Proof for 9194478294617992214779237
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.305771 |
Barbara, Latonya are the only persons in the room.
If "everyone anywhere does not collect vintage stamps or is not a dedicated advocate for digital privacy and encryption" then "everyone in the room who does not collect vintage stamps is a coffee connoisseur".
"Everyone in the room collects vintage stamps if they is not a dedicated advocate for digital privacy and encryption" if "everyone in the room is not a dedicated advocate for digital privacy and encryption or is not allergic to anything".
Everyone in the room does not collect rare minerals if they is an amateur astronomer who builds and uses custom telescopes.
Everyone in the room owns a high-end gaming PC with custom-built components if they does not collect rare minerals.
Everyone outside the room who enjoys cross-country skiing own a television.
Everyone outside the room is a dedicated advocate for digital privacy and encryption, does not enjoy making ceramics and collects vintage stamps if they own a television.
Everyone in the room who is a dedicated advocate for digital privacy and encryption, does not enjoy making ceramics and collects vintage stamps is not allergic to anything.
Everyone in the room who is not allergic to anything does not own a television.
If someone is a coffee connoisseur then he/she is not a coffee connoisseur, owns a smart tv and has completed a triathlon and vice versa.
Everyone in the room does not enjoy salsa dancing if they does not enjoy cross-country skiing.
Everyone in the room does not collect rare minerals.
Everyone in the room enjoys coding in Python if they enjoys cross-country skiing.
No one anywhere is a coffee connoisseur if they is not an avid hiker.
Everyone outside the room is a coffee connoisseur if and only if they is not a dedicated advocate for digital privacy and encryption.
Everyone in the room owns a high-end gaming PC with custom-built components if they enjoys making ceramics.
Everyone in the room does not have completed a triathlon.
Everyone in the room who does not enjoy cross-country skiing does not own a television.
Everyone in the room who does not own a television is not a dedicated advocate for digital privacy and encryption.
|
More than one person in the room is an amateur astronomer who builds and uses custom telescopes.
|
neutral
|
room(barbara)&room(latonya)&(![X]:(room(X)=>(X='barbara'|X='latonya')))&
((![X]:(anywhere(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_collect_vintage_stamps(X))))))=>(![X]:(room(X)=>(((does_not_collect_vintage_stamps(X))=>(is_a_coffee_connoisseur(X)))))))&
((![X]:(room(X)=>(((is_not_allergic_to_anything(X))|(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))=>(![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(collects_vintage_stamps(X)))))))&
(![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(does_not_collect_rare_minerals(X))))))&
(![X]:(room(X)=>(((does_not_collect_rare_minerals(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))&
(![X]:(~room(X)=>(((enjoys_cross-country_skiing(X))=>(own_a_television(X))))))&
(![X]:(~room(X)=>(((own_a_television(X))=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_enjoy_making_ceramics(X))&(collects_vintage_stamps(X))))))))&
(![X]:(room(X)=>(((((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_enjoy_making_ceramics(X))&(collects_vintage_stamps(X))))=>(is_not_allergic_to_anything(X))))))&
(![X]:(room(X)=>(((is_not_allergic_to_anything(X))=>(does_not_own_a_television(X))))))&
((![X]:((is_a_coffee_connoisseur(X))<=>(((is_not_a_coffee_connoisseur(X))&(owns_a_smart_tv(X))&(has_completed_a_triathlon(X)))))))&
(![X]:(room(X)=>(((does_not_enjoy_cross-country_skiing(X))=>(does_not_enjoy_salsa_dancing(X))))))&
(![X]:(room(X)=>(does_not_collect_rare_minerals(X))))&
(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(enjoys_coding_in_Python(X))))))&
(~?[X]:(anywhere(X)=>(((is_not_an_avid_hiker(X))=>(is_a_coffee_connoisseur(X))))))&
(![X]:(~room(X)=>(((is_a_coffee_connoisseur(X))<=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))&
(![X]:(room(X)=>(does_not_have_completed_a_triathlon(X))))&
(![X]:(room(X)=>(((does_not_enjoy_cross-country_skiing(X))=>(does_not_own_a_television(X))))))&
(![X]:(room(X)=>(((does_not_own_a_television(X))=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))
|
room(barbara)&room(latonya)&(![X]:(room(X)=>(X='barbara'|X='latonya')))&
(?[X,Y]:(room(X)&room(Y)&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)&is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(Y))&(X!=Y)))
|
[] | null | 0.069511 |
Christine is the only person in the room. "Christine regularly goes on multi-day backpacking trips in national parks or is a dedicated advocate for digital privacy and encryption or both" if "Christine regularly goes on multi-day backpacking trips in national parks". "Christine is an avid collector of autographed memorabilia from famous musicians, is a Linux enthusiast and has completed a triathlon" if "Christine owns a smartwatch" and vice versa. "Christine collects vintage vinyl records" if "Christine knows morse code" and vice versa. If "Christine does not regularly goes on multi-day backpacking trips in national parks" then "if someone is a chess master who participates in national tournaments then he/she owns a 3D printer, is a chess master who participates in national tournaments or writes a travel blog". Christine owns a smartwatch. Christine does not regularly goes on multi-day backpacking trips in national parks. Christine enjoys deep-sea diving and exploring underwater caves. Christine is a Linux enthusiast. Christine who owns a smartwatch collects vintage vinyl records. If someone hosts a popular podcast about emerging technologies then he/she knows morse code and vice versa.
|
Christine hosts a popular podcast about emerging technologies.
|
entailment
|
room(christine)&(![X]:(room(X)=>(X='christine')))&
((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(christine))=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(christine))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(christine)))))&
((owns_a_smartwatch(christine))<=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(christine))&(is_a_Linux_enthusiast(christine))&(has_completed_a_triathlon(christine)))))&
((knows_morse_code(christine))<=>(collects_vintage_vinyl_records(christine)))&
((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(christine))=>((![X]:((is_a_chess_master_who_participates_in_national_tournaments(X))=>(((owns_a_3D_printer(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))|(writes_a_travel_blog(X))))))))&
(owns_a_smartwatch(christine))&
(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(christine))&
(enjoys_deep-sea_diving_and_exploring_underwater_caves(christine))&
(is_a_Linux_enthusiast(christine))&
((owns_a_smartwatch(christine))&(collects_vintage_vinyl_records(christine)))&
((![X]:((is_a_chess_master_who_participates_in_national_tournaments(X))=>(((owns_a_3D_printer(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))|(writes_a_travel_blog(X)))))))&
(is_a_professional_photographer_specializing_in_portrait_photography(christine))&
(does_not_host_regular_game_nights_featuring_complex_strategy_games(christine))&
(((is_not_a_professional_photographer_specializing_in_portrait_photography(christine))|(travels_domestically_frequently(christine))|(collects_vintage_vinyl_records(christine))))&
((![X]:((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(knows_morse_code(X)))))&
(![X]:(room(X)=>(((((does_not_enjoy_stargazing(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))))&
(enjoys_camping_and_organizing_outdoor_survival_workshops(christine))&
(((hosts_regular_game_nights_featuring_complex_strategy_games(christine))<~>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(christine))))&
(is_a_chess_master_who_participates_in_national_tournaments(christine))&
(has_completed_a_triathlon(christine))&
(![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(competes_in_national_level_swimming_championships(christine))&
(owns_a_3D_printer(christine))&
(maintains_a_large,_organic_vegetable_garden_year-round(christine))&
(does_not_enjoy_stargazing(christine))&
(((enjoys_camping_and_organizing_outdoor_survival_workshops(christine))|(travels_domestically_frequently(christine))))&
(travels_domestically_frequently(christine))
|
room(christine)&(![X]:(room(X)=>(X='christine')))&
hosts_a_popular_podcast_about_emerging_technologies(christine)
|
[
"p0",
"p3",
"p9",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 8730040079206501949341249
% SZS output start Proof for 8730040079206501949341249
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
47. preds(mary) <=> predg(mary) [input p3]
53. predg(mary) & predi(mary) [input p9]
58. ! [X0] : (preda(X0) <=> preds(X0)) [input p14]
71. ~(preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis]
72. ! [X0] : (preds(X0) => preda(X0)) [unused predicate definition removal 58]
162. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
163. ! [X0] : (preda(X0) | ~preds(X0)) [ennf transformation 72]
164. ~preda(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 71]
168. (preds(mary) | ~predg(mary)) & (predg(mary) | ~preds(mary)) [nnf transformation 47]
170. ? [X0] : (mary != X0 & room(X0)) => (mary != sK0 & room(sK0)) [choice axiom]
171. ~preda(mary) | (mary != sK0 & room(sK0)) | ~room(mary) [skolemisation 164,170]
252. room(mary) [cnf transformation 162]
253. ~room(X0) | mary = X0 [cnf transformation 162]
259. preds(mary) | ~predg(mary) [cnf transformation 168]
263. predg(mary) [cnf transformation 53]
265. ~preds(X0) | preda(X0) [cnf transformation 163]
269. ~preda(mary) | room(sK0) | ~room(mary) [cnf transformation 171]
270. ~preda(mary) | mary != sK0 | ~room(mary) [cnf transformation 171]
292. 5 <=> predg(mary) [avatar definition]
296. 6 <=> preds(mary) [avatar definition]
298. preds(mary) <- (6) [avatar component clause 296]
299. ~5 | 6 [avatar split clause 259,296,292]
303. 5 [avatar split clause 263,292]
308. ~preda(mary) | mary != sK0 [subsumption resolution 270,252]
310. 7 <=> mary = sK0 [avatar definition]
312. mary != sK0 <- (~7) [avatar component clause 310]
314. 8 <=> preda(mary) [avatar definition]
317. ~7 | ~8 [avatar split clause 308,314,310]
318. ~preda(mary) | room(sK0) [subsumption resolution 269,252]
320. 9 <=> room(sK0) [avatar definition]
322. room(sK0) <- (9) [avatar component clause 320]
323. 9 | ~8 [avatar split clause 318,314,320]
324. preda(mary) <- (6) [resolution 265,298]
327. 8 | ~6 [avatar split clause 324,296,314]
329. mary = sK0 <- (9) [resolution 253,322]
330. $false <- (~7, 9) [subsumption resolution 329,312]
331. 7 | ~9 [avatar contradiction clause 330]
332. $false [avatar sat refutation 299,303,317,323,327,331]
% SZS output end Proof for 8730040079206501949341249
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.024535 |
Tasha, Sarah, Oliver, William, Jennifer are the only persons in the room.
Oliver is an active member of a local robotics club.
Everyone in the room is not an active member of a local robotics club or is a certified scuba diver with advanced underwater photography skills.
Everyone in the room is a certified scuba diver with advanced underwater photography skills only if they either is a scotch connoisseur or collects vintage stamps but not both.
Oliver is a scotch connoisseur and enjoys origami.
|
Oliver collects vintage stamps.
|
contradiction
|
room(tasha)&room(sarah)&room(oliver)&room(william)&room(jennifer)&(![X]:(room(X)=>(X='tasha'|X='sarah'|X='oliver'|X='william'|X='jennifer')))&
(enjoys_origami(sarah))&
(![X]:(~room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))&
(collects_luxury_watches(oliver))&
(makes_intricate_hand-cut_paper_art_for_exhibitions(sarah))&
(is_an_active_member_of_a_local_robotics_club(oliver))&
(![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))&
(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(sarah))&
(![X]:(room(X)=>(((((is_a_scotch_connoisseur(X))<~>(collects_vintage_stamps(X))))<=(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))&
(((is_a_scotch_connoisseur(oliver))&(enjoys_origami(oliver))))&
(![X]:(room(X)=>(((is_not_a_client_of_Costco(X))<=(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))&
(~(makes_intricate_hand-cut_paper_art_for_exhibitions(tasha)))&
(is_a_scotch_connoisseur(sarah))
|
room(tasha)&room(sarah)&room(oliver)&room(william)&room(jennifer)&(![X]:(room(X)=>(X='tasha'|X='sarah'|X='oliver'|X='william'|X='jennifer')))&
collects_vintage_stamps(oliver)
|
[
"p0",
"p5",
"p6",
"p8",
"p9",
"hypothesis"
] |
% SZS status Unsatisfiable for 4683154764311662511675835
% SZS output start Proof for 4683154764311662511675835
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
49. predn(fred) [input p5]
50. ! [X0] : (room(X0) => (~predn(X0) | predi(X0))) [input p6]
52. ! [X0] : (room(X0) => (predi(X0) => (predo(X0) <~> predc(X0)))) [input p8]
53. predl(fred) & predo(fred) [input p9]
57. predc(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
62. predo(fred) [pure predicate removal 53]
135. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
136. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135]
137. ! [X0] : ((~predn(X0) | predi(X0)) | ~room(X0)) [ennf transformation 50]
138. ! [X0] : (~predn(X0) | predi(X0) | ~room(X0)) [flattening 137]
139. ! [X0] : (((predo(X0) <~> predc(X0)) | ~predi(X0)) | ~room(X0)) [ennf transformation 52]
140. ! [X0] : ((predo(X0) <~> predc(X0)) | ~predi(X0) | ~room(X0)) [flattening 139]
141. predc(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 57]
142. predc(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141]
144. ! [X0] : (((~predc(X0) | ~predo(X0)) & (predc(X0) | predo(X0))) | ~predi(X0) | ~room(X0)) [nnf transformation 140]
227. room(fred) [cnf transformation 136]
232. predn(fred) [cnf transformation 49]
233. ~predn(X0) | predi(X0) | ~room(X0) [cnf transformation 138]
236. ~predc(X0) | ~predo(X0) | ~predi(X0) | ~room(X0) [cnf transformation 144]
237. predo(fred) [cnf transformation 62]
246. predc(fred) [cnf transformation 142]
247. predi(fred) | ~room(fred) [resolution 233,232]
248. predi(fred) [subsumption resolution 247,227]
251. ~predo(fred) | ~predi(fred) | ~room(fred) [resolution 236,246]
252. ~predi(fred) | ~room(fred) [subsumption resolution 251,237]
253. ~room(fred) [subsumption resolution 252,248]
254. $false [subsumption resolution 253,227]
% SZS output end Proof for 4683154764311662511675835
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.009305 |
David, Maria are the only persons in the room.
Either “someone anywhere either is not hated by Timothy or is not liked by Timothy but not both” or “Maria and Timothy hate each other” but not both.
Only one person in the room does not hate Timothy.
David either does not hate Timothy or is not liked by Timothy but not both.
It is not the case that “Maria is not hated by Timothy”.
Everyone in the room does not like Timothy or does not hate Timothy or both if they either is not hated by Timothy or is not liked by Timothy but not both.
|
David is not liked by Timothy.
|
entailment
|
room(david)&room(maria)&(![X]:(room(X)=>(X='david'|X='maria')))&
((?[X]:(anywhere(X)&(((~hate(X,timothy))<~>(~like(X,timothy))))))<~>((hate(maria,timothy) & hate(timothy,maria))))&
(((?[X]:(room(X)&~hate(timothy,X)))&(![X,Y]:((room(X)&room(Y)&(~hate(timothy,X))&(~hate(timothy,Y)))=>(X=Y)))))&
(((~hate(timothy,david))<~>(~like(david,timothy))))&
(~(~hate(maria,timothy)))&
(![X]:(room(X)=>(((((~hate(X,timothy))<~>(~like(X,timothy))))=>(((~like(timothy,X))|(~hate(timothy,X))))))))
|
room(david)&room(maria)&(![X]:(room(X)=>(X='david'|X='maria')))&
~like(david,timothy)
|
[
"b0",
"b4",
"b42",
"p0",
"p1",
"p2",
"p3",
"p4",
"hypothesis"
] |
% SZS status Unsatisfiable for 4431018904609147056799030
% SZS output start Proof for 4431018904609147056799030
1. ! [X0,X1] : (X0 != X1 => (like(X0,X1) => ~hate(X0,X1))) [input b0]
5. ! [X0] : anywhere(X0) [input b4]
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. ? [X0] : ((~hate(X0,fred) <~> ~like(X0,fred)) & anywhere(X0)) <~> (hate(fred,paul) & hate(paul,fred)) [input p1]
46. ! [X0,X1] : ((~hate(fred,X1) & ~hate(fred,X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~hate(fred,X0) & room(X0)) [input p2]
47. ~hate(fred,mary) <~> ~like(mary,fred) [input p3]
48. hate(paul,fred) [input p4]
50. ~(~like(mary,fred) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
51. ! [X0,X1] : ((~hate(fred,X1) & ~hate(fred,X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~hate(fred,X2) & room(X2)) [rectify 46]
54. ! [X0,X1] : ((~hate(X0,X1) | ~like(X0,X1)) | X0 = X1) [ennf transformation 1]
55. ! [X0,X1] : (~hate(X0,X1) | ~like(X0,X1) | X0 = X1) [flattening 54]
125. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
126. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 125]
127. ! [X0,X1] : (X0 = X1 | (hate(fred,X1) | hate(fred,X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~hate(fred,X2) & room(X2)) [ennf transformation 51]
128. ! [X0,X1] : (X0 = X1 | hate(fred,X1) | hate(fred,X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~hate(fred,X2) & room(X2)) [flattening 127]
131. like(mary,fred) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 50]
132. like(mary,fred) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 131]
134. ((~hate(fred,paul) | ~hate(paul,fred)) | ! [X0] : (((~hate(X0,fred) | like(X0,fred)) & (~like(X0,fred) | hate(X0,fred))) | ~anywhere(X0))) & ((hate(fred,paul) & hate(paul,fred)) | ? [X0] : (((like(X0,fred) | hate(X0,fred)) & (~like(X0,fred) | ~hate(X0,fred))) & anywhere(X0))) [nnf transformation 45]
135. (~hate(fred,paul) | ~hate(paul,fred) | ! [X0] : (((~hate(X0,fred) | like(X0,fred)) & (~like(X0,fred) | hate(X0,fred))) | ~anywhere(X0))) & ((hate(fred,paul) & hate(paul,fred)) | ? [X0] : ((like(X0,fred) | hate(X0,fred)) & (~like(X0,fred) | ~hate(X0,fred)) & anywhere(X0))) [flattening 134]
136. (~hate(fred,paul) | ~hate(paul,fred) | ! [X0] : (((~hate(X0,fred) | like(X0,fred)) & (~like(X0,fred) | hate(X0,fred))) | ~anywhere(X0))) & ((hate(fred,paul) & hate(paul,fred)) | ? [X1] : ((like(X1,fred) | hate(X1,fred)) & (~like(X1,fred) | ~hate(X1,fred)) & anywhere(X1))) [rectify 135]
137. ? [X1] : ((like(X1,fred) | hate(X1,fred)) & (~like(X1,fred) | ~hate(X1,fred)) & anywhere(X1)) => ((like(sK0,fred) | hate(sK0,fred)) & (~like(sK0,fred) | ~hate(sK0,fred)) & anywhere(sK0)) [choice axiom]
138. (~hate(fred,paul) | ~hate(paul,fred) | ! [X0] : (((~hate(X0,fred) | like(X0,fred)) & (~like(X0,fred) | hate(X0,fred))) | ~anywhere(X0))) & ((hate(fred,paul) & hate(paul,fred)) | ((like(sK0,fred) | hate(sK0,fred)) & (~like(sK0,fred) | ~hate(sK0,fred)) & anywhere(sK0))) [skolemisation 136,137]
139. ? [X2] : (~hate(fred,X2) & room(X2)) => (~hate(fred,sK1) & room(sK1)) [choice axiom]
140. ! [X0,X1] : (X0 = X1 | hate(fred,X1) | hate(fred,X0) | ~room(X1) | ~room(X0)) & (~hate(fred,sK1) & room(sK1)) [skolemisation 128,139]
141. (like(mary,fred) | hate(fred,mary)) & (~like(mary,fred) | ~hate(fred,mary)) [nnf transformation 47]
143. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom]
144. like(mary,fred) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 132,143]
145. ~hate(X0,X1) | ~like(X0,X1) | X0 = X1 [cnf transformation 55]
147. anywhere(X0) [cnf transformation 5]
192. mary != paul [cnf transformation 43]
199. paul != fred [cnf transformation 43]
228. room(mary) [cnf transformation 126]
229. room(paul) [cnf transformation 126]
230. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 126]
238. ~hate(fred,paul) | ~hate(paul,fred) | ~hate(X0,fred) | like(X0,fred) | ~anywhere(X0) [cnf transformation 138]
241. hate(fred,X1) | hate(fred,X0) | X0 = X1 | ~room(X1) | ~room(X0) [cnf transformation 140]
242. ~like(mary,fred) | ~hate(fred,mary) [cnf transformation 141]
244. hate(paul,fred) [cnf transformation 48]
247. like(mary,fred) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 144]
248. like(mary,fred) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 144]
249. like(mary,fred) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 144]
250. ~hate(fred,paul) | ~hate(paul,fred) | ~hate(X0,fred) | like(X0,fred) [subsumption resolution 238,147]
252. 1 <=> ! [X0] : (~hate(X0,fred) | like(X0,fred)) [avatar definition]
253. ~hate(X0,fred) | like(X0,fred) <- (1) [avatar component clause 252]
255. 2 <=> hate(paul,fred) [avatar definition]
256. hate(paul,fred) <- (2) [avatar component clause 255]
259. 3 <=> hate(fred,paul) [avatar definition]
261. ~hate(fred,paul) <- (~3) [avatar component clause 259]
262. 1 | ~2 | ~3 [avatar split clause 250,259,255,252]
281. 7 <=> hate(fred,mary) [avatar definition]
282. ~hate(fred,mary) <- (~7) [avatar component clause 281]
285. 8 <=> like(mary,fred) [avatar definition]
289. ~7 | ~8 [avatar split clause 242,285,281]
290. 2 [avatar split clause 244,255]
291. like(mary,fred) | paul != sK2 | ~room(mary) [subsumption resolution 249,229]
292. like(mary,fred) | paul != sK2 [subsumption resolution 291,228]
294. 9 <=> paul = sK2 [avatar definition]
297. ~9 | 8 [avatar split clause 292,285,294]
298. like(mary,fred) | mary != sK2 | ~room(mary) [subsumption resolution 248,229]
299. like(mary,fred) | mary != sK2 [subsumption resolution 298,228]
301. 10 <=> mary = sK2 [avatar definition]
303. mary != sK2 <- (~10) [avatar component clause 301]
304. ~10 | 8 [avatar split clause 299,285,301]
305. like(mary,fred) | room(sK2) | ~room(mary) [subsumption resolution 247,229]
306. like(mary,fred) | room(sK2) [subsumption resolution 305,228]
308. 11 <=> room(sK2) [avatar definition]
310. room(sK2) <- (11) [avatar component clause 308]
311. 11 | 8 [avatar split clause 306,285,308]
326. ~like(paul,fred) | paul = fred <- (2) [resolution 145,256]
328. ~like(paul,fred) <- (2) [subsumption resolution 326,199]
371. hate(fred,X0) | mary = X0 | ~room(mary) | ~room(X0) <- (~7) [resolution 241,282]
379. hate(fred,X0) | mary = X0 | ~room(X0) <- (~7) [subsumption resolution 371,228]
382. mary = paul | ~room(paul) <- (~3, ~7) [resolution 379,261]
384. ~room(paul) <- (~3, ~7) [subsumption resolution 382,192]
385. $false <- (~3, ~7) [subsumption resolution 384,229]
386. 3 | 7 [avatar contradiction clause 385]
387. mary = sK2 | paul = sK2 <- (11) [resolution 310,230]
388. paul = sK2 <- (~10, 11) [subsumption resolution 387,303]
392. 9 | 10 | ~11 [avatar split clause 388,308,301,294]
403. like(paul,fred) <- (1, 2) [resolution 253,256]
407. $false <- (1, 2) [subsumption resolution 403,328]
408. ~1 | ~2 [avatar contradiction clause 407]
424. $false [avatar sat refutation 262,289,290,297,304,311,386,392,408]
% SZS output end Proof for 4431018904609147056799030
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.073358 |
Cory is the only person in the room. "Everyone in the room drives a hybrid car or does not enjoy cross-country skiing" only if "Cory drives a hybrid car". If "everyone in the room is not a chess master who participates in national tournaments or does not maintain a large, organic vegetable garden year-round" then "Cory who maintains a large, organic vegetable garden year-round is not a chess master who participates in national tournaments". Either "not everyone outside the room does not drive a hybrid car or maintains a large, organic vegetable garden year-round" or "Cory does not own an Android phone" but not both. Cory does not own an Android phone. Only one person in the room drives a hybrid car, enjoys cross-country skiing or owns an Android phone. At least one person in the room does not own an Android phone. Cory drives a hybrid car. Everyone in the room who does not enjoy cross-country skiing is a chess master who participates in national tournaments. Cory maintains a large, organic vegetable garden year-round, drives a hybrid car or owns an Android phone. Everyone outside the room maintains a large, organic vegetable garden year-round.
|
Cory enjoys cross-country skiing.
|
neutral
|
room(cory)&(![X]:(room(X)=>(X='cory')))&
((![X]:(room(X)=>(((does_not_enjoy_cross-country_skiing(X))|(drives_a_hybrid_car(X))))))=>(drives_a_hybrid_car(cory)))&
((![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))=>((maintains_a_large,_organic_vegetable_garden_year-round(cory))&(is_not_a_chess_master_who_participates_in_national_tournaments(cory))))&
((~![X]:(~room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_drive_a_hybrid_car(X))))))<~>(does_not_own_an_Android_phone(cory)))&
(does_not_own_an_Android_phone(cory))&
(((?[X]:(room(X)&((drives_a_hybrid_car(X))|(enjoys_cross-country_skiing(X))|(owns_an_Android_phone(X)))))&(![X,Y]:((room(X)&room(Y)&(((drives_a_hybrid_car(X))|(enjoys_cross-country_skiing(X))|(owns_an_Android_phone(X))))&(((drives_a_hybrid_car(Y))|(enjoys_cross-country_skiing(Y))|(owns_an_Android_phone(Y)))))=>(X=Y)))))&
(((?[X]:(room(X)&does_not_own_an_Android_phone(X)))))&
(drives_a_hybrid_car(cory))&
(![X]:(room(X)=>(((does_not_enjoy_cross-country_skiing(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))&
(((maintains_a_large,_organic_vegetable_garden_year-round(cory))|(drives_a_hybrid_car(cory))|(owns_an_Android_phone(cory))))&
(![X]:(~room(X)=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))&
(((?[X]:(room(X)&drives_a_hybrid_car(X)))&(![X,Y]:((room(X)&room(Y)&(drives_a_hybrid_car(X))&(drives_a_hybrid_car(Y)))=>(X=Y)))))
|
room(cory)&(![X]:(room(X)=>(X='cory')))&
enjoys_cross-country_skiing(cory)
|
[] | null | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.