premise
stringlengths 12
3.12k
| hypothesis
stringlengths 10
236
| label
stringclasses 3
values | premise_tptp
stringlengths 51
8k
| hypothesis_tptp
stringlengths 41
352
| proof_inputs
listlengths 0
20
| proof
stringlengths 767
76.8k
⌀ | rule_concentration
float64 0
0.72
|
---|---|---|---|---|---|---|---|
Viola is the only person in the room.
If “Viola hosts themed dinner parties featuring gourmet home-cooked meals” then “Viola does practice yoga”.
If “Viola enjoys bird watching” then “Viola owns an extensive assortment of vintage comic book memorabilia”.
If “Viola does not collect rare sneakers” then “Viola collects first edition books”.
“If someone either is an expert in identifying and foraging wild edible plants or mentors a youth basketball team on weekends but not both then he/she hosts a YouTube channel dedicated to art tutorials and vice versa” if “Viola can play the guitar”.
If “Viola is a dedicated advocate for digital privacy and encryption” then “it is not the case that “Viola does practice yoga””.
Viola is a dedicated advocate for digital privacy and encryption.
|
Viola does practice yoga.
|
contradiction
|
room(viola)&(![X]:(room(X)=>(X='viola')))&
((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(viola))=>(does_practice_yoga(viola)))&
((enjoys_bird_watching(viola))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(viola)))&
((does_not_collect_rare_sneakers(viola))=>(collects_first_edition_books(viola)))&
((can_play_the_guitar(viola))=>((![X]:((((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<~>(mentors_a_youth_basketball_team_on_weekends(X))))<=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))&
((is_a_dedicated_advocate_for_digital_privacy_and_encryption(viola))=>(~(does_practice_yoga(viola))))&
((![X]:((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(practices_urban_gardening(X)))))&
(is_an_expert_in_identifying_and_foraging_wild_edible_plants(viola))&
(is_a_night_owl(viola))&
((![X]:((is_an_avid_hiker(X))=>(streams_on_Twitch(X)))))&
((![X]:((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(does_practice_yoga(X)))))&
(streams_on_Twitch(viola))&
(is_a_dedicated_volunteer_for_local_community_service_projects(viola))&
(~(is_an_avid_mountain_climber_who_has_scaled_several_peaks(viola)))&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(enjoys_rooftop_gardening(X)&enjoys_rooftop_gardening(Y))&(X!=Y))))&
(is_a_dedicated_advocate_for_digital_privacy_and_encryption(viola))&
((![X]:((can_play_the_guitar(X))<=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))&
(has_a_tattoo(viola))&
(practices_archery(viola))&
(collect_rare_sneakers(viola))&
((![X]:((practices_archery(X))<=>(practices_urban_gardening(X)))))&
(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(viola))&
((![X]:((mentors_a_youth_basketball_team_on_weekends(X))<=>(has_a_tattoo(X)))))&
((![X]:((does_practice_yoga(X))=>(practices_urban_gardening(X)))))&
((![X]:((has_a_tattoo(X))<=>(collects_first_edition_books(X)))))&
(mentors_a_youth_basketball_team_on_weekends(viola))&
(is_a_professional_photographer_specializing_in_portrait_photography(viola))&
((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))&
((![X]:((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X)))))
|
room(viola)&(![X]:(room(X)=>(X='viola')))&
does_practice_yoga(viola)
|
[
"p5",
"p15",
"hypothesis"
] |
% SZS status Unsatisfiable for 2782814507525911220658650
% SZS output start Proof for 2782814507525911220658650
49. predo(mary) => ~preda(mary) [input p5]
59. predo(mary) [input p15]
73. preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis]
167. ~preda(mary) | ~predo(mary) [ennf transformation 49]
170. preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 73]
264. ~preda(mary) | ~predo(mary) [cnf transformation 167]
269. predo(mary) [cnf transformation 59]
281. preda(mary) [cnf transformation 170]
303. 6 <=> predo(mary) [avatar definition]
307. 7 <=> preda(mary) [avatar definition]
310. ~6 | ~7 [avatar split clause 264,307,303]
311. 6 [avatar split clause 269,303]
312. 7 [avatar split clause 281,307]
313. $false [avatar sat refutation 310,311,312]
% SZS output end Proof for 2782814507525911220658650
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.612613 |
Callie, Sue, Patricia, William, Paul are the only persons in the room.
Everyone in the room does not train for and competes in international triathlons, does not compete in national level swimming championships and is not a client of LVMH.
Everyone in the room is not a client of LVMH.
Everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals.
William does not have a vast collection of first-edition science fiction novels.
Everyone in the room cannot play the harmonica, does not compete in national level swimming championships and does not travel domestically frequently.
Everyone in the room does not maintain a personal blog focused on cybersecurity tips.
Everyone in the room is not a dedicated volunteer for local community service projects.
Everyone in the room does not host a popular podcast about emerging technologies.
|
Callie is a client of LVMH.
|
contradiction
|
room(callie)&room(sue)&room(patricia)&room(william)&room(paul)&(![X]:(room(X)=>(X='callie'|X='sue'|X='patricia'|X='william'|X='paul')))&
(![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))&(does_not_compete_in_national_level_swimming_championships(X))&(is_not_a_client_of_LVMH(X))))))&
(![X]:(room(X)=>(is_not_a_client_of_LVMH(X))))&
(![X]:(room(X)=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))&
(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(william))&
(![X]:(room(X)=>(((cannot_play_the_harmonica(X))&(does_not_compete_in_national_level_swimming_championships(X))&(does_not_travel_domestically_frequently(X))))))&
(![X]:(room(X)=>(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))&
(![X]:(room(X)=>(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))&
(![X]:(room(X)=>(does_not_host_a_popular_podcast_about_emerging_technologies(X))))
|
room(callie)&room(sue)&room(patricia)&room(william)&room(paul)&(![X]:(room(X)=>(X='callie'|X='sue'|X='patricia'|X='william'|X='paul')))&
is_a_client_of_LVMH(callie)
|
[
"p0",
"p1",
"hypothesis"
] |
% SZS status Unsatisfiable for 2673623257591735306364310
% SZS output start Proof for 2673623257591735306364310
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. ! [X0] : (room(X0) => (~predn(X0) & ~predh(X0) & ~predm(X0))) [input p1]
53. predn(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
62. ! [X0] : (room(X0) => (~predn(X0) & ~predm(X0))) [pure predicate removal 45]
63. ! [X0] : (room(X0) => ~predn(X0)) [pure predicate removal 62]
136. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
137. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 136]
138. ! [X0] : (~predn(X0) | ~room(X0)) [ennf transformation 63]
140. predn(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53]
141. predn(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140]
223. room(mary) [cnf transformation 137]
229. ~predn(X0) | ~room(X0) [cnf transformation 138]
237. predn(mary) [cnf transformation 141]
238. ~room(mary) [resolution 229,237]
239. $false [subsumption resolution 238,223]
% SZS output end Proof for 2673623257591735306364310
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.020 s
% ------------------------------
% ------------------------------
| 0.564808 |
Alfred is the only person in the room.
If “Raul and Alfred hate each other” then “everyone in the room is a sibling of Raul only if they is a client of Amy”.
“Someone in the room is a client of Linda” if “someone in the room is a sibling of Brandon”.
If “someone in the room is a sibling of Edward” then “at least one person in the room is generous”.
Either “Linda and Alfred hate each other” or “someone in the room is a client of Amy” but not both.
“Edward is a client of Alfred” only if “all generous person is curious”.
Alfred is the least poor in the room.
All brave person is humble.
All quiet person is calm.
All calm person is curious.
Someone in the room is strong.
|
Alfred either is a client of Edward or is a client of Linda but not both.
|
neutral
|
room(albrandon)&(![X]:(room(X)=>(X='albrandon')))&
(((hate(raul,albrandon) & hate(albrandon,raul)))=>(![X]:(room(X)=>(((client(amy,X))<=(sibling(raul,X)))))))&
((?[X]:(room(X)&(sibling(brandon,X))))=>(?[X]:(room(X)&(client(linda,X)))))&
((?[X]:(room(X)&(sibling(edward,X))))=>(((?[X]:(room(X)&generous(X))))))&
(((hate(linda,albrandon) & hate(albrandon,linda)))<~>(?[X]:(room(X)&(client(amy,X)))))&
((client(albrandon,edward))=>(![X]:(generous(X)=>curious(X))))&
(![X]:((room(X)&(X!=albrandon))=>poorer(albrandon,X)))&
(![X]:(brave(X)=>humble(X)))&
(![X]:(quiet(X)=>calm(X)))&
(![X]:(calm(X)=>curious(X)))&
(?[X]:(room(X)&(strong(X))))
|
room(albrandon)&(![X]:(room(X)=>(X='albrandon')))&
((client(edward,albrandon))<~>(client(linda,albrandon)))
|
[] | null | 0.064293 |
Amber, Margaret, Jason are the only persons in the room.
At least one person in the room volunteers for local environmental conservation projects.
Everyone in the room is a night owl if they hosts regular workshops on creative writing, is a culinary enthusiast who experiments with international cuisines and enjoys fishing and vice versa.
Jason who does not create bespoke furniture pieces from reclaimed wood either is a client of LVMH or is not a tea enthusiast but not both.
Everyone in the room is a night owl only if they reads mystery novels.
Everyone in the room does not collect classic novels or practices calligraphy.
Everyone in the room does not practice kickboxing or does not collect classic novels.
Everyone in the room who enjoys fishing makes homemade pastries, does not enjoy stand-up paddleboarding and creates bespoke furniture pieces from reclaimed wood.
Everyone in the room makes homemade pastries, does not enjoy stand-up paddleboarding and creates bespoke furniture pieces from reclaimed wood only if they either makes homemade pastries or is a tea enthusiast but not both.
Everyone in the room either makes homemade pastries or is a tea enthusiast but not both only if they is a night owl.
Everyone in the room enjoys fishing, is a professional photographer specializing in portrait photography and mentors a youth basketball team on weekends only if they is a culinary enthusiast who experiments with international cuisines.
Everyone in the room who is a culinary enthusiast who experiments with international cuisines enjoys camping and organizing outdoor survival workshops.
Everyone in the room enjoys camping and organizing outdoor survival workshops only if they is a client of LVMH.
|
Jason creates bespoke furniture pieces from reclaimed wood.
|
contradiction
|
room(amber)&room(margaret)&room(jason)&(![X]:(room(X)=>(X='amber'|X='margaret'|X='jason')))&
(((?[X]:(room(X)&volunteers_for_local_environmental_conservation_projects(X)))))&
(![X]:(room(X)=>(((is_a_night_owl(X))<=>(((hosts_regular_workshops_on_creative_writing(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(enjoys_fishing(X))))))))&
((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(jason))&(((is_a_client_of_LVMH(jason))<~>(is_not_a_tea_enthusiast(jason)))))&
(![X]:(room(X)=>(((reads_mystery_novels(X))<=(is_a_night_owl(X))))))&
(![X]:(room(X)=>(((practices_calligraphy(X))|(does_not_collect_classic_novels(X))))))&
(![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(does_not_practice_kickboxing(X))))))&
(![X]:(room(X)=>(((enjoys_fishing(X))=>(((makes_homemade_pastries(X))&(does_not_enjoy_stand-up_paddleboarding(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))&
(![X]:(room(X)=>(((((makes_homemade_pastries(X))<~>(is_a_tea_enthusiast(X))))<=(((makes_homemade_pastries(X))&(does_not_enjoy_stand-up_paddleboarding(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))&
(![X]:(room(X)=>(((is_a_night_owl(X))<=(((makes_homemade_pastries(X))<~>(is_a_tea_enthusiast(X))))))))&
(![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=(((enjoys_fishing(X))&(is_a_professional_photographer_specializing_in_portrait_photography(X))&(mentors_a_youth_basketball_team_on_weekends(X))))))))&
(![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))&
(![X]:(room(X)=>(((is_a_client_of_LVMH(X))<=(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))
|
room(amber)&room(margaret)&room(jason)&(![X]:(room(X)=>(X='amber'|X='margaret'|X='jason')))&
creates_bespoke_furniture_pieces_from_reclaimed_wood(jason)
|
[
"p3",
"hypothesis"
] |
% SZS status Unsatisfiable for 757617720530189270881
% SZS output start Proof for 757617720530189270881
47. (predf(fred) <~> ~predk(fred)) & ~preda(fred) [input p3]
57. preda(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
148. preda(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 57]
149. preda(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 148]
155. ((predk(fred) | ~predf(fred)) & (~predk(fred) | predf(fred))) & ~preda(fred) [nnf transformation 47]
156. (predk(fred) | ~predf(fred)) & (~predk(fred) | predf(fred)) & ~preda(fred) [flattening 155]
248. ~preda(fred) [cnf transformation 156]
264. preda(fred) [cnf transformation 149]
276. $false [subsumption resolution 264,248]
% SZS output end Proof for 757617720530189270881
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.372059 |
Barbara, Eric are the only persons in the room.
If “Eric does not like Micheal or likes David or both” then “everyone anywhere does not like Micheal if they is not liked by Steven”.
If “Barbara does not like Micheal” then “everyone in the room who does not like Steven likes David”.
If “Barbara is liked by Micheal, does not like Micheal and is not liked by David” then “Eric does not like Steven”.
Not everyone in the room does not like David if they is liked by Micheal.
Barbara does not like Steven.
More than one person in the room likes Micheal.
Eric is liked by Micheal.
If someone is not liked by Micheal then he/she does not like David.
Eric does not like David.
Everyone in the room does not like Micheal only if they does not like David.
Barbara is not liked by Steven.
Everyone in the room likes Micheal if they is not liked by Micheal.
|
Barbara is liked by David.
|
neutral
|
room(barbara)&room(eric)&(![X]:(room(X)=>(X='barbara'|X='eric')))&
((((~like(micheal,eric))|(like(david,eric))))=>(![X]:(anywhere(X)=>(((~like(X,steven))=>(~like(micheal,X)))))))&
((~like(micheal,barbara))=>(![X]:(room(X)=>(((~like(steven,X))=>(like(david,X)))))))&
((((like(barbara,micheal))&(~like(micheal,barbara))&(~like(barbara,david))))=>(~like(steven,eric)))&
(~![X]:(room(X)=>(((like(X,micheal))=>(~like(david,X))))))&
(~like(steven,barbara))&
((?[X,Y]:(room(X)&room(Y)&(like(micheal,X)&like(micheal,Y))&(X!=Y))))&
(like(eric,micheal))&
((![X]:((~like(X,micheal))=>(~like(david,X)))))&
(~like(david,eric))&
(![X]:(room(X)=>(((~like(david,X))<=(~like(micheal,X))))))&
(~like(barbara,steven))&
(![X]:(room(X)=>(((~like(X,micheal))=>(like(micheal,X))))))
|
room(barbara)&room(eric)&(![X]:(room(X)=>(X='barbara'|X='eric')))&
like(barbara,david)
|
[] | null | 0.09871 |
Lora, Tammy, Megan, David, Cristina are the only persons in the room. Everyone in the room does not own an Android phone. Everyone in the room does not volunteer for local environmental conservation projects and does not own an Android phone. Everyone in the room does not volunteer for local environmental conservation projects.
|
Megan volunteers for local environmental conservation projects.
|
contradiction
|
room(lora)&room(tammy)&room(megan)&room(david)&room(cristina)&(![X]:(room(X)=>(X='lora'|X='tammy'|X='megan'|X='david'|X='cristina')))&
(![X]:(room(X)=>(does_not_own_an_Android_phone(X))))&
(![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))&(does_not_own_an_Android_phone(X))))))&
(![X]:(room(X)=>(does_not_volunteer_for_local_environmental_conservation_projects(X))))
|
room(lora)&room(tammy)&room(megan)&room(david)&room(cristina)&(![X]:(room(X)=>(X='lora'|X='tammy'|X='megan'|X='david'|X='cristina')))&
volunteers_for_local_environmental_conservation_projects(megan)
|
[
"p0",
"p2",
"hypothesis"
] |
% SZS status Unsatisfiable for 8414346876373939911326664
% SZS output start Proof for 8414346876373939911326664
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
46. ! [X0] : (room(X0) => (~preda(X0) & ~predc(X0))) [input p2]
48. predc(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
49. ! [X0] : (room(X0) => ~predc(X0)) [pure predicate removal 46]
123. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
124. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 123]
125. ! [X0] : (~predc(X0) | ~room(X0)) [ennf transformation 49]
127. predc(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 48]
128. predc(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 127]
212. room(fred) [cnf transformation 124]
216. ~predc(X0) | ~room(X0) [cnf transformation 125]
224. predc(fred) [cnf transformation 128]
225. ~room(fred) [resolution 216,224]
226. $false [subsumption resolution 225,212]
% SZS output end Proof for 8414346876373939911326664
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.130182 |
Joseph, Jorge, Tiffany are the only persons in the room.
Joseph enjoys writing detailed reviews of new and classic board games.
Everyone in the room who enjoys writing detailed reviews of new and classic board games does not own a 3D printer.
Everyone in the room enjoys coding in Python or owns a 3D printer or both.
Everyone in the room is a client of LVMH if they either enjoys coding in Python or owns a 3D printer but not both.
Only one person in the room does not enjoy coding in Python.
|
More than one person in the room is not a client of LVMH.
|
contradiction
|
room(joseph)&room(jorge)&room(tiffany)&(![X]:(room(X)=>(X='joseph'|X='jorge'|X='tiffany')))&
(is_not_allergic_to_anything(joseph))&
(is_a_certified_yoga_instructor_teaching_classes_weekly(joseph))&
((![X]:((participates_in_long-distance_cycling_events_across_the_country(X))=>(is_not_allergic_to_anything(X)))))&
(![X]:(anywhere(X)=>(((collects_luxury_watches(X))=>(enjoys_bird_watching(X))))))&
(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(joseph))&
(![X]:(~room(X)=>(((((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))&
(![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(does_not_own_a_3D_printer(X))))))&
(![X]:(room(X)=>(((enjoys_coding_in_Python(X))|(owns_a_3D_printer(X))))))&
(does_not_collect_luxury_watches(joseph))&
(![X]:(room(X)=>(((enjoys_bird_watching(X))|(is_not_allergic_to_anything(X))))))&
(has_completed_a_triathlon(joseph))&
(~(?[X]:(~room(X)&(collects_luxury_watches(X)))))&
(![X]:(room(X)=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))&
(![X]:(room(X)=>(((((enjoys_coding_in_Python(X))<~>(owns_a_3D_printer(X))))=>(is_a_client_of_LVMH(X))))))&
(participates_in_long-distance_cycling_events_across_the_country(joseph))&
(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(joseph))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(joseph))))&
(((?[X]:(room(X)&does_not_enjoy_coding_in_Python(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_enjoy_coding_in_Python(X))&(does_not_enjoy_coding_in_Python(Y)))=>(X=Y)))))&
(![X]:(anywhere(X)=>(((collects_luxury_watches(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
(![X]:(~room(X)=>(((is_allergic_to_anything(X))=>(has_completed_a_triathlon(X))))))&
(![X]:(room(X)=>(((~((is_allergic_to_anything(X))|(enjoys_coding_in_Python(X))))=>(has_completed_a_triathlon(X))))))&
(?[X]:(room(X)&(is_a_client_of_LVMH(X))))
|
room(joseph)&room(jorge)&room(tiffany)&(![X]:(room(X)=>(X='joseph'|X='jorge'|X='tiffany')))&
(?[X,Y]:(room(X)&room(Y)&(is_not_a_client_of_LVMH(X)&is_not_a_client_of_LVMH(Y))&(X!=Y)))
|
[
"p0",
"p5",
"p7",
"p8",
"p14",
"p17",
"hypothesis"
] |
% SZS status Unsatisfiable for 3895628706505446926582080
% SZS output start Proof for 3895628706505446926582080
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
49. predg(mary) [input p5]
51. ! [X0] : (room(X0) => (predg(X0) => ~predj(X0))) [input p7]
52. ! [X0] : (room(X0) => (predj(X0) | predh(X0))) [input p8]
58. ! [X0] : (room(X0) => ((predh(X0) <~> predj(X0)) => prede(X0))) [input p14]
61. ! [X0,X1] : ((~predh(X1) & ~predh(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predh(X0) & room(X0)) [input p17]
66. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
67. ! [X0,X1] : ((~predh(X1) & ~predh(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~predh(X2) & room(X2)) [rectify 61]
68. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (fred = X2 | paul = X2 | mary = X2)) & room(fred) & room(paul) & room(mary) [rectify 66]
156. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
157. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 156]
158. ! [X0] : ((~predj(X0) | ~predg(X0)) | ~room(X0)) [ennf transformation 51]
159. ! [X0] : (~predj(X0) | ~predg(X0) | ~room(X0)) [flattening 158]
160. ! [X0] : ((predj(X0) | predh(X0)) | ~room(X0)) [ennf transformation 52]
161. ! [X0] : (predj(X0) | predh(X0) | ~room(X0)) [flattening 160]
162. ! [X0] : ((prede(X0) | (predh(X0) <=> predj(X0))) | ~room(X0)) [ennf transformation 58]
163. ! [X0] : (prede(X0) | (predh(X0) <=> predj(X0)) | ~room(X0)) [flattening 162]
164. ! [X0,X1] : (X0 = X1 | (predh(X1) | predh(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~predh(X2) & room(X2)) [ennf transformation 67]
165. ! [X0,X1] : (X0 = X1 | predh(X1) | predh(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~predh(X2) & room(X2)) [flattening 164]
166. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : ((fred = X2 | paul = X2 | mary = X2) | ~room(X2)) & room(fred) & room(paul) & room(mary) [ennf transformation 68]
167. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [flattening 166]
169. ! [X0] : (prede(X0) | ((predh(X0) | ~predj(X0)) & (predj(X0) | ~predh(X0))) | ~room(X0)) [nnf transformation 163]
170. ? [X2] : (~predh(X2) & room(X2)) => (~predh(sK0) & room(sK0)) [choice axiom]
171. ! [X0,X1] : (X0 = X1 | predh(X1) | predh(X0) | ~room(X1) | ~room(X0)) & (~predh(sK0) & room(sK0)) [skolemisation 165,170]
174. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) => (sK2 != sK3 & ~prede(sK3) & ~prede(sK2) & room(sK3) & room(sK2)) [choice axiom]
175. (sK2 != sK3 & ~prede(sK3) & ~prede(sK2) & room(sK3) & room(sK2)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [skolemisation 167,174]
256. room(mary) [cnf transformation 157]
259. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 157]
260. predg(mary) [cnf transformation 49]
261. ~predj(X0) | ~predg(X0) | ~room(X0) [cnf transformation 159]
262. ~room(X0) | predh(X0) | predj(X0) [cnf transformation 161]
263. prede(X0) | predj(X0) | ~predh(X0) | ~room(X0) [cnf transformation 169]
264. prede(X0) | predh(X0) | ~predj(X0) | ~room(X0) [cnf transformation 169]
265. room(sK0) [cnf transformation 171]
266. ~predh(sK0) [cnf transformation 171]
274. room(sK2) [cnf transformation 175]
275. room(sK3) [cnf transformation 175]
276. ~prede(sK2) [cnf transformation 175]
277. ~prede(sK3) [cnf transformation 175]
278. sK2 != sK3 [cnf transformation 175]
279. ~room(X0) | predh(X0) | prede(X0) [subsumption resolution 264,262]
280. ~room(X0) | predj(X0) | prede(X0) [subsumption resolution 263,279]
284. predh(sK0) | predj(sK0) [resolution 262,265]
289. 1 <=> predj(mary) [avatar definition]
291. predj(mary) <- (1) [avatar component clause 289]
315. predj(sK0) [subsumption resolution 284,266]
346. predh(sK0) | prede(sK0) [resolution 279,265]
351. 13 <=> prede(paul) [avatar definition]
356. 14 <=> prede(fred) [avatar definition]
360. prede(sK0) [subsumption resolution 346,266]
365. predj(mary) | prede(mary) [resolution 280,256]
373. 15 <=> prede(mary) [avatar definition]
375. prede(mary) <- (15) [avatar component clause 373]
376. 15 | 1 [avatar split clause 365,289,373]
377. ~predg(mary) | ~room(mary) <- (1) [resolution 291,261]
378. ~room(mary) <- (1) [subsumption resolution 377,260]
379. $false <- (1) [subsumption resolution 378,256]
380. ~1 [avatar contradiction clause 379]
385. ~predg(sK0) | ~room(sK0) [resolution 315,261]
386. ~predg(sK0) [subsumption resolution 385,265]
432. paul = sK0 | mary = sK0 | fred = sK0 [resolution 259,265]
434. paul = sK2 | mary = sK2 | fred = sK2 [resolution 259,274]
435. paul = sK3 | mary = sK3 | fred = sK3 [resolution 259,275]
437. 16 <=> fred = sK0 [avatar definition]
439. fred = sK0 <- (16) [avatar component clause 437]
441. 17 <=> mary = sK0 [avatar definition]
443. mary = sK0 <- (17) [avatar component clause 441]
445. 18 <=> paul = sK0 [avatar definition]
447. paul = sK0 <- (18) [avatar component clause 445]
448. 16 | 17 | 18 [avatar split clause 432,445,441,437]
463. 22 <=> fred = sK2 [avatar definition]
465. fred = sK2 <- (22) [avatar component clause 463]
467. 23 <=> mary = sK2 [avatar definition]
469. mary = sK2 <- (23) [avatar component clause 467]
471. 24 <=> paul = sK2 [avatar definition]
473. paul = sK2 <- (24) [avatar component clause 471]
474. 22 | 23 | 24 [avatar split clause 434,471,467,463]
476. 25 <=> fred = sK3 [avatar definition]
478. fred = sK3 <- (25) [avatar component clause 476]
480. 26 <=> mary = sK3 [avatar definition]
482. mary = sK3 <- (26) [avatar component clause 480]
484. 27 <=> paul = sK3 [avatar definition]
486. paul = sK3 <- (27) [avatar component clause 484]
487. 25 | 26 | 27 [avatar split clause 435,484,480,476]
492. ~prede(fred) <- (25) [backward demodulation 277,478]
493. fred != sK2 <- (25) [backward demodulation 278,478]
494. ~14 | ~25 [avatar split clause 492,476,356]
495. ~22 | ~25 [avatar split clause 493,476,463]
519. ~prede(mary) <- (23) [backward demodulation 276,469]
524. $false <- (15, 23) [subsumption resolution 519,375]
525. ~15 | ~23 [avatar contradiction clause 524]
536. ~predg(mary) <- (17) [backward demodulation 386,443]
541. $false <- (17) [subsumption resolution 536,260]
542. ~17 [avatar contradiction clause 541]
555. ~prede(paul) <- (24) [backward demodulation 276,473]
557. ~13 | ~24 [avatar split clause 555,471,351]
575. ~prede(mary) <- (26) [backward demodulation 277,482]
580. $false <- (15, 26) [subsumption resolution 575,375]
581. ~15 | ~26 [avatar contradiction clause 580]
586. prede(fred) <- (16) [backward demodulation 360,439]
589. 14 | ~16 [avatar split clause 586,437,356]
591. ~prede(paul) <- (27) [backward demodulation 277,486]
592. paul != sK2 <- (27) [backward demodulation 278,486]
597. ~13 | ~27 [avatar split clause 591,484,351]
598. ~24 | ~27 [avatar split clause 592,484,471]
601. ~prede(fred) <- (22) [backward demodulation 276,465]
605. ~14 | ~22 [avatar split clause 601,463,356]
610. prede(paul) <- (18) [backward demodulation 360,447]
613. 13 | ~18 [avatar split clause 610,445,351]
615. $false [avatar sat refutation 376,380,448,474,487,494,495,525,542,557,581,589,597,598,605,613]
% SZS output end Proof for 3895628706505446926582080
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.034 s
% ------------------------------
% ------------------------------
| 0.179762 |
Jerry, Austin, Clinton are the only persons in the room. Everyone in the room volunteers for local environmental conservation projects and enjoys virtual reality gaming only if they either is an amateur astronomer who builds and uses custom telescopes or volunteers for local environmental conservation projects but not both. Everyone in the room collects first edition books or does not create large-scale murals for public art installations. Everyone in the room collects first edition books only if they composes and performs experimental electronic music and collects antique clocks. Someone in the room either is an active member of a local robotics club or plays video games but not both. Someone in the room either is an amateur astronomer who builds and uses custom telescopes or plays video games but not both. Everyone anywhere enjoys virtual reality gaming and is a client of Meta. Everyone in the room is not an amateur astronomer who builds and uses custom telescopes only if they neither is a client of Meta nor is a tea enthusiast. Everyone anywhere volunteers for local environmental conservation projects or does not collect first edition books.
|
Everyone anywhere creates large-scale murals for public art installations.
|
contradiction
|
room(jerry)&room(austin)&room(clinton)&(![X]:(room(X)=>(X='jerry'|X='austin'|X='clinton')))&
(![X]:(room(X)=>(((((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<~>(volunteers_for_local_environmental_conservation_projects(X))))<=(((volunteers_for_local_environmental_conservation_projects(X))&(enjoys_virtual_reality_gaming(X))))))))&
(![X]:(room(X)=>(((does_not_create_large-scale_murals_for_public_art_installations(X))|(collects_first_edition_books(X))))))&
(![X]:(room(X)=>(((((composes_and_performs_experimental_electronic_music(X))&(collects_antique_clocks(X))))<=(collects_first_edition_books(X))))))&
(?[X]:(room(X)&(((is_an_active_member_of_a_local_robotics_club(X))<~>(plays_video_games(X))))))&
(?[X]:(room(X)&(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<~>(plays_video_games(X))))))&
(![X]:(room(X)=>(((is_a_client_of_Costco(X))|(does_not_collect_action_figures(X))))))&
(![X]:(anywhere(X)=>(((does_not_collect_action_figures(X))=>(((is_a_client_of_Meta(X))<~>(collects_first_edition_books(X))))))))&
(![X]:(anywhere(X)=>(((((is_a_client_of_Meta(X))<~>(collects_first_edition_books(X))))<=>(~((owns_a_smartwatch(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))&
(![X]:(anywhere(X)=>(((enjoys_virtual_reality_gaming(X))&(is_a_client_of_Meta(X))))))&
(![X]:(room(X)=>(((~((is_a_client_of_Meta(X))|(is_a_tea_enthusiast(X))))<=(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(![X]:(room(X)=>(((((composes_and_performs_experimental_electronic_music(X))|(is_an_active_member_of_a_local_robotics_club(X))|(practices_urban_gardening(X))))<=(~((is_a_client_of_Meta(X))|(is_a_tea_enthusiast(X))))))))&
(![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(is_a_tea_enthusiast(X))))))&
(![X]:(anywhere(X)=>(((does_not_collect_first_edition_books(X))|(volunteers_for_local_environmental_conservation_projects(X))))))
|
room(jerry)&room(austin)&room(clinton)&(![X]:(room(X)=>(X='jerry'|X='austin'|X='clinton')))&
![X]:(anywhere(X)=>(creates_large-scale_murals_for_public_art_installations(X)))
|
[
"b4",
"p0",
"p1",
"p2",
"p9",
"p10",
"p13",
"hypothesis"
] |
% SZS status Unsatisfiable for 3792637710880094001346340
% SZS output start Proof for 3792637710880094001346340
5. ! [X0] : anywhere(X0) [input b4]
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. ! [X0] : (room(X0) => ((predp(X0) & predh(X0)) => (preda(X0) <~> predh(X0)))) [input p1]
46. ! [X0] : (room(X0) => (predo(X0) | ~predb(X0))) [input p2]
53. ! [X0] : (anywhere(X0) => (predn(X0) & predp(X0))) [input p9]
54. ! [X0] : (room(X0) => (~preda(X0) => ~(predj(X0) | predn(X0)))) [input p10]
57. ! [X0] : (anywhere(X0) => (predh(X0) | ~predo(X0))) [input p13]
58. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
59. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 58]
136. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
137. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 136]
138. ! [X0] : (((preda(X0) <~> predh(X0)) | (~predp(X0) | ~predh(X0))) | ~room(X0)) [ennf transformation 45]
139. ! [X0] : ((preda(X0) <~> predh(X0)) | ~predp(X0) | ~predh(X0) | ~room(X0)) [flattening 138]
140. ! [X0] : ((predo(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 46]
141. ! [X0] : (predo(X0) | ~predb(X0) | ~room(X0)) [flattening 140]
143. ! [X0] : ((predn(X0) & predp(X0)) | ~anywhere(X0)) [ennf transformation 53]
144. ! [X0] : (((~predj(X0) & ~predn(X0)) | preda(X0)) | ~room(X0)) [ennf transformation 54]
145. ! [X0] : ((~predj(X0) & ~predn(X0)) | preda(X0) | ~room(X0)) [flattening 144]
148. ! [X0] : ((predh(X0) | ~predo(X0)) | ~anywhere(X0)) [ennf transformation 57]
149. ! [X0] : (predh(X0) | ~predo(X0) | ~anywhere(X0)) [flattening 148]
150. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 59]
151. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 150]
153. ! [X0] : (((~predh(X0) | ~preda(X0)) & (predh(X0) | preda(X0))) | ~predp(X0) | ~predh(X0) | ~room(X0)) [nnf transformation 139]
164. anywhere(X0) [cnf transformation 5]
245. room(mary) [cnf transformation 137]
250. ~predh(X0) | ~preda(X0) | ~predp(X0) | ~predh(X0) | ~room(X0) [cnf transformation 153]
251. ~predb(X0) | predo(X0) | ~room(X0) [cnf transformation 141]
264. predp(X0) | ~anywhere(X0) [cnf transformation 143]
265. predn(X0) | ~anywhere(X0) [cnf transformation 143]
266. ~predn(X0) | preda(X0) | ~room(X0) [cnf transformation 145]
269. predh(X0) | ~predo(X0) | ~anywhere(X0) [cnf transformation 149]
274. predb(X0) | ~anywhere(X0) [cnf transformation 151]
275. ~predp(X0) | ~preda(X0) | ~predh(X0) | ~room(X0) [duplicate literal removal 250]
302. predn(X0) [subsumption resolution 265,164]
303. predp(X0) [subsumption resolution 264,164]
304. ~room(X0) | preda(X0) [subsumption resolution 266,302]
306. ~predo(X0) | predh(X0) [subsumption resolution 269,164]
307. predb(X0) [subsumption resolution 274,164]
318. ~room(X0) | predo(X0) [resolution 251,307]
324. ~preda(X0) | ~predh(X0) | ~room(X0) [resolution 275,303]
325. ~predh(X0) | ~room(X0) [subsumption resolution 324,304]
326. predo(mary) [resolution 318,245]
332. predh(mary) [resolution 326,306]
341. ~room(mary) [resolution 325,332]
346. $false [subsumption resolution 341,245]
% SZS output end Proof for 3792637710880094001346340
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.095459 |
Bonnie, Paulette, Jeffrey are the only persons in the room.
If “Bonnie and Jeffrey are respectively humble and happy” then “everyone in the room who is happy creates bespoke furniture pieces from reclaimed wood”.
|
Paulette is older than John.
|
entailment
|
room(bonnie)&room(pauletteette)&room(jeffrey)&(![X]:(room(X)=>(X='bonnie'|X='pauletteette'|X='jeffrey')))&
(((humble(bonnie))&(happy(jeffrey)))=>(![X]:(room(X)=>(((happy(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))&
((![X]:(anywhere(X)=>(((cannot_play_the_guitar(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))=>((humble(pauletteette))&(creative(bonnie))))&
((((strong(pauletteette))&(curious(jeffrey)))=>(![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(client(brunilda,X)))))))&
((![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(client(brunilda,X))))))=>(![X]:(creative(X)=>happy(X)))))&
((![X]:(room(X)=>(((older(brunilda,X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))<=>(![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(~hate(X,john)))))))&
((creates_bespoke_furniture_pieces_from_reclaimed_wood(pauletteette))=>(younger(brunilda,pauletteette)))&
(patient(jeffrey)&tourist(jeffrey))&
(~like(pauletteette,brunilda))&
((![X]:((curious(X)&brave(X)&wise(X)&european(X))=>(~hate(X,john)))))&
(![X]:(room(X)=>(((sibling(margaret,X))=>(louder(brunilda,X))))))&
(![X]:(room(X)=>(((practices_calligraphy(X))=>(~hate(X,brunilda))))))&
(![X]:(room(X)=>(((collects_action_figures(X))<=>(patient(X)&funny(X)&wise(X)&tourist(X))))))&
(?[X]:(room(X)&(hate(X,john))))&
((happy(pauletteette))&(((is_a_cybersecurity_expert(pauletteette))|(sibling(pauline,pauletteette)))))&
(![X]:((~room(X)&(X!=pauletteette))=>younger(pauletteette,X)))&
((hate(pauline,pauletteette) & hate(pauletteette,pauline)))&
(enjoys_making_ceramics(jeffrey))&
(younger(bonnie,pauline))&
(?[X,Y]:((mentors_a_youth_basketball_team_on_weekends(X))&(older(brunilda,Y))&(louder(X,Y))))
|
room(bonnie)&room(pauletteette)&room(jeffrey)&(![X]:(room(X)=>(X='bonnie'|X='pauletteette'|X='jeffrey')))&
older(john,pauletteette)
|
[
"b40",
"b42",
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 6716676716298320437187198
% SZS output start Proof for 6716676716298320437187198
41. ! [X0,X1] : (X0 != X1 => (younger(X0,X1) => older(X1,X0))) [input b40]
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ? [X0,X1] : (louder(X0,X1) & older(susan,X1) & predk(X0)) & younger(mary,lucy) & predb(fred) & hate(paul,lucy) & hate(lucy,paul) & ! [X0] : ((paul != X0 & ~room(X0)) => younger(paul,X0)) & (sibling(lucy,paul) | predx(paul)) & happy(paul) & ? [X0] : (hate(X0,john) & room(X0)) & ! [X0] : (room(X0) => (predy(X0) <=> (tourist(X0) & wise(X0) & funny(X0) & patient(X0)))) & ! [X0] : (room(X0) => (predf(X0) => ~hate(X0,susan))) & ! [X0] : (room(X0) => (sibling(alice,X0) => louder(susan,X0))) & ! [X0] : ((european(X0) & wise(X0) & brave(X0) & curious(X0)) => ~hate(X0,john)) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X0] : (room(X0) => (~predp(X0) | older(susan,X0))) <=> ! [X0] : (room(X0) => (~hate(X0,john) | ~predz(X0)))) & (! [X0] : (room(X0) => (client(susan,X0) | ~predw(X0))) => ! [X0] : (creative(X0) => happy(X0))) & ((curious(fred) & strong(paul)) => ! [X0] : (room(X0) => (client(susan,X0) | ~predw(X0)))) & (! [X0] : (anywhere(X0) => (predg(X0) | ~predt(X0))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X0] : (room(X0) => (happy(X0) => predu(X0)))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. ~(older(john,paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
46. ? [X0,X1] : (louder(X0,X1) & older(susan,X1) & predk(X0)) & younger(mary,lucy) & predb(fred) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & (sibling(lucy,paul) | predx(paul)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X5] : (room(X5) => (predf(X5) => ~hate(X5,susan))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ! [X7] : ((european(X7) & wise(X7) & brave(X7) & curious(X7)) => ~hate(X7,john)) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => (client(susan,X10) | ~predw(X10))) => ! [X11] : (creative(X11) => happy(X11))) & ((curious(fred) & strong(paul)) => ! [X12] : (room(X12) => (client(susan,X12) | ~predw(X12)))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [rectify 44]
47. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & predb(fred) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & (sibling(lucy,paul) | predx(paul)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X5] : (room(X5) => (predf(X5) => ~hate(X5,susan))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ! [X7] : ((european(X7) & wise(X7) & brave(X7) & curious(X7)) => ~hate(X7,john)) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => (client(susan,X10) | ~predw(X10))) => ! [X11] : (creative(X11) => happy(X11))) & ((curious(fred) & strong(paul)) => ! [X12] : (room(X12) => (client(susan,X12) | ~predw(X12)))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46]
48. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & (sibling(lucy,paul) | predx(paul)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X5] : (room(X5) => (predf(X5) => ~hate(X5,susan))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ! [X7] : ((european(X7) & wise(X7) & brave(X7) & curious(X7)) => ~hate(X7,john)) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => (client(susan,X10) | ~predw(X10))) => ! [X11] : (creative(X11) => happy(X11))) & ((curious(fred) & strong(paul)) => ! [X12] : (room(X12) => (client(susan,X12) | ~predw(X12)))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47]
49. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X5] : (room(X5) => (predf(X5) => ~hate(X5,susan))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ! [X7] : ((european(X7) & wise(X7) & brave(X7) & curious(X7)) => ~hate(X7,john)) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => (client(susan,X10) | ~predw(X10))) => ! [X11] : (creative(X11) => happy(X11))) & ((curious(fred) & strong(paul)) => ! [X12] : (room(X12) => (client(susan,X12) | ~predw(X12)))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48]
50. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ! [X7] : ((european(X7) & wise(X7) & brave(X7) & curious(X7)) => ~hate(X7,john)) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => (client(susan,X10) | ~predw(X10))) => ! [X11] : (creative(X11) => happy(X11))) & ((curious(fred) & strong(paul)) => ! [X12] : (room(X12) => (client(susan,X12) | ~predw(X12)))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49]
51. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => (client(susan,X10) | ~predw(X10))) => ! [X11] : (creative(X11) => happy(X11))) & ((curious(fred) & strong(paul)) => ! [X12] : (room(X12) => (client(susan,X12) | ~predw(X12)))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 50]
52. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => (client(susan,X10) | ~predw(X10))) => ! [X11] : (creative(X11) => happy(X11))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 51]
53. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : (room(X10) => ~predw(X10)) => ! [X11] : (creative(X11) => happy(X11))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 52]
54. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : ~room(X10) => ! [X11] : (creative(X11) => happy(X11))) & (! [X13] : (anywhere(X13) => (predg(X13) | ~predt(X13))) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 53]
55. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : ~room(X10) => ! [X11] : (creative(X11) => happy(X11))) & (! [X13] : (anywhere(X13) => ~predt(X13)) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 54]
56. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : ~room(X10) => ! [X11] : (creative(X11) => happy(X11))) & (! [X13] : ~anywhere(X13) => (creative(mary) & humble(paul))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 55]
57. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & (! [X10] : ~room(X10) => ! [X11] : (creative(X11) => happy(X11))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 56]
59. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & ((happy(fred) & humble(mary)) => ! [X14] : (room(X14) => (happy(X14) => predu(X14)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 57]
60. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (predu(paul) => younger(susan,paul)) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 59]
61. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & happy(paul) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 60]
62. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & ~like(paul,susan) & tourist(fred) & patient(fred) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 61]
67. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : ((paul != X2 & ~room(X2)) => younger(paul,X2)) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (room(X4) => (predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4)))) & ! [X6] : (room(X6) => (sibling(alice,X6) => louder(susan,X6))) & tourist(fred) & patient(fred) & (! [X8] : (room(X8) => (~predp(X8) | older(susan,X8))) <=> ! [X9] : (room(X9) => (~hate(X9,john) | ~predz(X9)))) & ! [X15] : (room(X15) => (fred = X15 | paul = X15 | mary = X15)) & room(fred) & room(paul) & room(mary) [pure predicate removal 62]
132. ! [X0,X1] : ((older(X1,X0) | ~younger(X0,X1)) | X0 = X1) [ennf transformation 41]
133. ! [X0,X1] : (older(X1,X0) | ~younger(X0,X1) | X0 = X1) [flattening 132]
135. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : (younger(paul,X2) | (paul = X2 | room(X2))) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : ((predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4))) | ~room(X4)) & ! [X6] : ((louder(susan,X6) | ~sibling(alice,X6)) | ~room(X6)) & tourist(fred) & patient(fred) & (! [X8] : ((~predp(X8) | older(susan,X8)) | ~room(X8)) <=> ! [X9] : ((~hate(X9,john) | ~predz(X9)) | ~room(X9))) & ! [X15] : ((fred = X15 | paul = X15 | mary = X15) | ~room(X15)) & room(fred) & room(paul) & room(mary) [ennf transformation 67]
136. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : (younger(paul,X2) | paul = X2 | room(X2)) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : ((predy(X4) <=> (tourist(X4) & wise(X4) & funny(X4) & patient(X4))) | ~room(X4)) & ! [X6] : (louder(susan,X6) | ~sibling(alice,X6) | ~room(X6)) & tourist(fred) & patient(fred) & (! [X8] : (~predp(X8) | older(susan,X8) | ~room(X8)) <=> ! [X9] : (~hate(X9,john) | ~predz(X9) | ~room(X9))) & ! [X15] : (fred = X15 | paul = X15 | mary = X15 | ~room(X15)) & room(fred) & room(paul) & room(mary) [flattening 135]
137. ~older(john,paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45]
138. ~older(john,paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 137]
140. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : (younger(paul,X2) | paul = X2 | room(X2)) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (((predy(X4) | (~tourist(X4) | ~wise(X4) | ~funny(X4) | ~patient(X4))) & ((tourist(X4) & wise(X4) & funny(X4) & patient(X4)) | ~predy(X4))) | ~room(X4)) & ! [X6] : (louder(susan,X6) | ~sibling(alice,X6) | ~room(X6)) & tourist(fred) & patient(fred) & ((! [X8] : (~predp(X8) | older(susan,X8) | ~room(X8)) | ? [X9] : (hate(X9,john) & predz(X9) & room(X9))) & (! [X9] : (~hate(X9,john) | ~predz(X9) | ~room(X9)) | ? [X8] : (predp(X8) & ~older(susan,X8) & room(X8)))) & ! [X15] : (fred = X15 | paul = X15 | mary = X15 | ~room(X15)) & room(fred) & room(paul) & room(mary) [nnf transformation 136]
141. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : (younger(paul,X2) | paul = X2 | room(X2)) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (((predy(X4) | ~tourist(X4) | ~wise(X4) | ~funny(X4) | ~patient(X4)) & ((tourist(X4) & wise(X4) & funny(X4) & patient(X4)) | ~predy(X4))) | ~room(X4)) & ! [X6] : (louder(susan,X6) | ~sibling(alice,X6) | ~room(X6)) & tourist(fred) & patient(fred) & (! [X8] : (~predp(X8) | older(susan,X8) | ~room(X8)) | ? [X9] : (hate(X9,john) & predz(X9) & room(X9))) & (! [X9] : (~hate(X9,john) | ~predz(X9) | ~room(X9)) | ? [X8] : (predp(X8) & ~older(susan,X8) & room(X8))) & ! [X15] : (fred = X15 | paul = X15 | mary = X15 | ~room(X15)) & room(fred) & room(paul) & room(mary) [flattening 140]
142. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : (younger(paul,X2) | paul = X2 | room(X2)) & ? [X3] : (hate(X3,john) & room(X3)) & ! [X4] : (((predy(X4) | ~tourist(X4) | ~wise(X4) | ~funny(X4) | ~patient(X4)) & ((tourist(X4) & wise(X4) & funny(X4) & patient(X4)) | ~predy(X4))) | ~room(X4)) & ! [X5] : (louder(susan,X5) | ~sibling(alice,X5) | ~room(X5)) & tourist(fred) & patient(fred) & (! [X6] : (~predp(X6) | older(susan,X6) | ~room(X6)) | ? [X7] : (hate(X7,john) & predz(X7) & room(X7))) & (! [X8] : (~hate(X8,john) | ~predz(X8) | ~room(X8)) | ? [X9] : (predp(X9) & ~older(susan,X9) & room(X9))) & ! [X10] : (fred = X10 | paul = X10 | mary = X10 | ~room(X10)) & room(fred) & room(paul) & room(mary) [rectify 141]
143. ? [X0,X1] : (louder(X0,X1) & older(susan,X1)) => (louder(sK0,sK1) & older(susan,sK1)) [choice axiom]
144. ? [X3] : (hate(X3,john) & room(X3)) => (hate(sK2,john) & room(sK2)) [choice axiom]
145. ? [X7] : (hate(X7,john) & predz(X7) & room(X7)) => (hate(sK3,john) & predz(sK3) & room(sK3)) [choice axiom]
146. ? [X9] : (predp(X9) & ~older(susan,X9) & room(X9)) => (predp(sK4) & ~older(susan,sK4) & room(sK4)) [choice axiom]
147. (louder(sK0,sK1) & older(susan,sK1)) & younger(mary,lucy) & hate(paul,lucy) & hate(lucy,paul) & ! [X2] : (younger(paul,X2) | paul = X2 | room(X2)) & (hate(sK2,john) & room(sK2)) & ! [X4] : (((predy(X4) | ~tourist(X4) | ~wise(X4) | ~funny(X4) | ~patient(X4)) & ((tourist(X4) & wise(X4) & funny(X4) & patient(X4)) | ~predy(X4))) | ~room(X4)) & ! [X5] : (louder(susan,X5) | ~sibling(alice,X5) | ~room(X5)) & tourist(fred) & patient(fred) & (! [X6] : (~predp(X6) | older(susan,X6) | ~room(X6)) | (hate(sK3,john) & predz(sK3) & room(sK3))) & (! [X8] : (~hate(X8,john) | ~predz(X8) | ~room(X8)) | (predp(sK4) & ~older(susan,sK4) & room(sK4))) & ! [X10] : (fred = X10 | paul = X10 | mary = X10 | ~room(X10)) & room(fred) & room(paul) & room(mary) [skolemisation 142,146,145,144,143]
148. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
149. ~older(john,paul) | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 138,148]
186. ~younger(X0,X1) | older(X1,X0) | X0 = X1 [cnf transformation 133]
212. mary != john [cnf transformation 43]
213. paul != john [cnf transformation 43]
214. fred != john [cnf transformation 43]
230. room(mary) [cnf transformation 147]
231. room(paul) [cnf transformation 147]
232. room(fred) [cnf transformation 147]
233. ~room(X10) | paul = X10 | mary = X10 | fred = X10 [cnf transformation 147]
250. younger(paul,X2) | paul = X2 | room(X2) [cnf transformation 147]
256. ~older(john,paul) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 149]
257. ~older(john,paul) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 149]
258. ~older(john,paul) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 149]
259. ~older(john,paul) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 149]
296. ~older(john,paul) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 259,232]
297. ~older(john,paul) | fred != sK5 | ~room(mary) [subsumption resolution 296,231]
298. ~older(john,paul) | fred != sK5 [subsumption resolution 297,230]
300. 9 <=> fred = sK5 [avatar definition]
302. fred != sK5 <- (~9) [avatar component clause 300]
304. 10 <=> older(john,paul) [avatar definition]
306. ~older(john,paul) <- (~10) [avatar component clause 304]
307. ~9 | ~10 [avatar split clause 298,304,300]
308. ~older(john,paul) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 258,232]
309. ~older(john,paul) | paul != sK5 | ~room(mary) [subsumption resolution 308,231]
310. ~older(john,paul) | paul != sK5 [subsumption resolution 309,230]
312. 11 <=> paul = sK5 [avatar definition]
314. paul != sK5 <- (~11) [avatar component clause 312]
315. ~11 | ~10 [avatar split clause 310,304,312]
316. ~older(john,paul) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 257,232]
317. ~older(john,paul) | mary != sK5 | ~room(mary) [subsumption resolution 316,231]
318. ~older(john,paul) | mary != sK5 [subsumption resolution 317,230]
320. 12 <=> mary = sK5 [avatar definition]
322. mary != sK5 <- (~12) [avatar component clause 320]
323. ~12 | ~10 [avatar split clause 318,304,320]
324. ~older(john,paul) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 256,232]
325. ~older(john,paul) | room(sK5) | ~room(mary) [subsumption resolution 324,231]
326. ~older(john,paul) | room(sK5) [subsumption resolution 325,230]
328. 13 <=> room(sK5) [avatar definition]
330. room(sK5) <- (13) [avatar component clause 328]
331. 13 | ~10 [avatar split clause 326,304,328]
409. older(X0,paul) | paul = X0 | paul = X0 | room(X0) [resolution 186,250]
410. older(X0,paul) | paul = X0 | room(X0) [duplicate literal removal 409]
572. paul = john | room(john) <- (~10) [resolution 410,306]
577. room(john) <- (~10) [subsumption resolution 572,213]
587. paul = john | mary = john | fred = john <- (~10) [resolution 577,233]
588. mary = john | fred = john <- (~10) [subsumption resolution 587,213]
589. fred = john <- (~10) [subsumption resolution 588,212]
590. $false <- (~10) [subsumption resolution 589,214]
591. 10 [avatar contradiction clause 590]
592. paul = sK5 | mary = sK5 | fred = sK5 <- (13) [resolution 330,233]
593. mary = sK5 | fred = sK5 <- (~11, 13) [subsumption resolution 592,314]
594. fred = sK5 <- (~11, ~12, 13) [subsumption resolution 593,322]
595. $false <- (~9, ~11, ~12, 13) [subsumption resolution 594,302]
596. 9 | 11 | 12 | ~13 [avatar contradiction clause 595]
597. $false [avatar sat refutation 307,315,323,331,591,596]
% SZS output end Proof for 6716676716298320437187198
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.041 s
% ------------------------------
% ------------------------------
| 0.080168 |
Eleanor is the only person in the room.
Either “everyone in the room makes homemade pastries or does not practice tai chi” or “everyone in the room does not enjoy rooftop gardening or is a drone photographer” but not both.
If “no one in the room is a Linux enthusiast or is not an avid collector of autographed memorabilia from famous musicians” then “someone in the room practices tai chi”.
Everyone in the room is a client of LVMH if they travels domestically frequently.
Everyone in the room plays the drums and plays video games if they is right-handed.
Everyone in the room plays the drums and plays video games only if they enjoys making ceramics.
Everyone in the room practices urban gardening if they enjoys making ceramics.
Someone in the room practices tai chi.
Eleanor is a client of LVMH.
Someone in the room enjoys rooftop gardening.
Everyone in the room neither plays video games nor travels domestically frequently only if they enjoys bird watching.
Everyone anywhere who enjoys bird watching plays the drums.
Eleanor is a drone photographer, makes homemade pastries or collects first edition books.
Eleanor does not play video games.
Everyone in the room enjoys coding in Python only if they is right-handed.
Eleanor enjoys bird watching.
|
Eleanor is a drone photographer.
|
neutral
|
room(eleanor)&(![X]:(room(X)=>(X='eleanor')))&
((![X]:(room(X)=>(((does_not_practice_tai_chi(X))|(makes_homemade_pastries(X))))))<~>(![X]:(room(X)=>(((is_a_drone_photographer(X))|(does_not_enjoy_rooftop_gardening(X)))))))&
((~?[X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(is_a_Linux_enthusiast(X))))))=>(?[X]:(room(X)&(practices_tai_chi(X)))))&
(![X]:(room(X)=>(((travels_domestically_frequently(X))=>(is_a_client_of_LVMH(X))))))&
(![X]:(room(X)=>(((is_right-handed(X))=>(((plays_the_drums(X))&(plays_video_games(X))))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))<=(((plays_the_drums(X))&(plays_video_games(X))))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(practices_urban_gardening(X))))))&
(?[X]:(room(X)&(practices_tai_chi(X))))&
(is_a_client_of_LVMH(eleanor))&
(?[X]:(room(X)&(enjoys_rooftop_gardening(X))))&
(![X]:(room(X)=>(((enjoys_bird_watching(X))<=(~((plays_video_games(X))|(travels_domestically_frequently(X))))))))&
(![X]:(anywhere(X)=>(((enjoys_bird_watching(X))=>(plays_the_drums(X))))))&
(((is_a_drone_photographer(eleanor))|(makes_homemade_pastries(eleanor))|(collects_first_edition_books(eleanor))))&
(does_not_play_video_games(eleanor))&
(![X]:(room(X)=>(((is_right-handed(X))<=(enjoys_coding_in_Python(X))))))&
(enjoys_bird_watching(eleanor))
|
room(eleanor)&(![X]:(room(X)=>(X='eleanor')))&
is_a_drone_photographer(eleanor)
|
[] | null | 0.033048 |
Helen, Melissa, Anthony, Kyle are the only persons in the room. “Everyone in the room is not a client of Costco” only if “Melissa who does not own a significant collection of rare gemstones and minerals is not a certified scuba diver with advanced underwater photography skills”. “Not everyone in the room does not host a popular podcast about emerging technologies” unless “Helen cannot play the piano and does not enjoy bird watching”. “Everyone in the room neither collects modern art nor does not host themed dinner parties featuring gourmet home-cooked meals” only if “more than one person outside the room cannot play the piano”. Helen is not a client of Costco or does not drive a hybrid car or both. Everyone anywhere does not practice zumba, does not collect modern art and does not enjoy virtual reality gaming. Everyone in the room is not a client of Costco. Melissa cannot play the piano, does not enjoy bird watching and is not a client of Costco. Everyone anywhere does not host a popular podcast about emerging technologies. Everyone in the room does not host regular workshops on creative writing. Everyone in the room who is not dedicated to sustainable living and zero-waste practices is a client of Costco. More than one person in the room does not host a popular podcast about emerging technologies or does not create augmented reality experiences for mobile applications or both. Only one person in the room does not own a significant collection of rare gemstones and minerals. Everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals. Everyone in the room does not own a significant collection of rare gemstones and minerals if they does not enjoy wildlife photography and vice versa. Everyone in the room does not enjoy bird watching. Everyone in the room does not create augmented reality experiences for mobile applications. More than one person in the room is not an expert in identifying and foraging wild edible plants or is not a client of LVMH or both. Helen does not enjoy virtual reality gaming. Everyone in the room is not dedicated to sustainable living and zero-waste practices if they does not compose and performs experimental electronic music and vice versa. Melissa does not regularly contributes to tech forums and online communities, is dedicated to sustainable living and zero-waste practices and does not enjoy kayaking. Everyone outside the room does not compose and performs experimental electronic music.
|
Kyle owns a significant collection of rare gemstones and minerals.
|
entailment
|
room(helen)&room(melissa)&room(anthony)&room(kyle)&(![X]:(room(X)=>(X='helen'|X='melissa'|X='anthony'|X='kyle')))&
((![X]:(room(X)=>(is_not_a_client_of_Costco(X))))=>((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(melissa))&(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(melissa))))&
(~(((cannot_play_the_piano(helen))&(does_not_enjoy_bird_watching(helen))))=>(~![X]:(room(X)=>(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))&
((![X]:(room(X)=>(~((collects_modern_art(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))=>((?[X,Y]:(~room(X)&~room(Y)&(cannot_play_the_piano(X)&cannot_play_the_piano(Y))&(X!=Y)))))&
(((is_not_a_client_of_Costco(helen))|(does_not_drive_a_hybrid_car(helen))))&
(![X]:(anywhere(X)=>(((does_not_practice_zumba(X))&(does_not_collect_modern_art(X))&(does_not_enjoy_virtual_reality_gaming(X))))))&
(![X]:(room(X)=>(is_not_a_client_of_Costco(X))))&
(((cannot_play_the_piano(melissa))&(does_not_enjoy_bird_watching(melissa))&(is_not_a_client_of_Costco(melissa))))&
(![X]:(anywhere(X)=>(does_not_host_a_popular_podcast_about_emerging_technologies(X))))&
(![X]:(room(X)=>(does_not_host_regular_workshops_on_creative_writing(X))))&
(![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(is_a_client_of_Costco(X))))))&
((?[X,Y]:(room(X)&room(Y)&(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X)))&((does_not_host_a_popular_podcast_about_emerging_technologies(Y))|(does_not_create_augmented_reality_experiences_for_mobile_applications(Y))))&(X!=Y))))&
(((?[X]:(room(X)&does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))&
(![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))<=>(does_not_enjoy_wildlife_photography(X))))))&
(![X]:(room(X)=>(does_not_enjoy_bird_watching(X))))&
(![X]:(room(X)=>(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))&
((?[X,Y]:(room(X)&room(Y)&(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(is_not_a_client_of_LVMH(X)))&((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(Y))|(is_not_a_client_of_LVMH(Y))))&(X!=Y))))&
(does_not_enjoy_virtual_reality_gaming(helen))&
(![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))<=>(does_not_compose_and_performs_experimental_electronic_music(X))))))&
(((does_not_regularly_contributes_to_tech_forums_and_online_communities(melissa))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(melissa))&(does_not_enjoy_kayaking(melissa))))&
(![X]:(~room(X)=>(does_not_compose_and_performs_experimental_electronic_music(X))))
|
room(helen)&room(melissa)&room(anthony)&room(kyle)&(![X]:(room(X)=>(X='helen'|X='melissa'|X='anthony'|X='kyle')))&
owns_a_significant_collection_of_rare_gemstones_and_minerals(kyle)
|
[
"b42",
"p0",
"p1",
"p6",
"p12",
"hypothesis"
] |
% SZS status Unsatisfiable for 2350093818942038984182606
% SZS output start Proof for 2350093818942038984182606
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. ! [X0] : (room(X0) => ~predw(X0)) => (~predc(paul) & ~predt(paul)) [input p1]
50. ! [X0] : (room(X0) => ~predw(X0)) [input p6]
56. ! [X0,X1] : ((~predt(X1) & ~predt(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predt(X0) & room(X0)) [input p12]
66. ~(predt(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
68. ! [X0,X1] : ((~predt(X1) & ~predt(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~predt(X2) & room(X2)) [rectify 56]
90. ! [X0] : (room(X0) => ~predw(X0)) => ~predt(paul) [pure predicate removal 45]
162. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
163. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 162]
164. ~predt(paul) | ? [X0] : (predw(X0) & room(X0)) [ennf transformation 90]
166. ! [X0] : (~predw(X0) | ~room(X0)) [ennf transformation 50]
169. ! [X0,X1] : (X0 = X1 | (predt(X1) | predt(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~predt(X2) & room(X2)) [ennf transformation 68]
170. ! [X0,X1] : (X0 = X1 | predt(X1) | predt(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~predt(X2) & room(X2)) [flattening 169]
174. ~predt(alice) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66]
175. ~predt(alice) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 174]
177. ? [X0] : (predw(X0) & room(X0)) => (predw(sK0) & room(sK0)) [choice axiom]
178. ~predt(paul) | (predw(sK0) & room(sK0)) [skolemisation 164,177]
185. ? [X2] : (~predt(X2) & room(X2)) => (~predt(sK6) & room(sK6)) [choice axiom]
186. ! [X0,X1] : (X0 = X1 | predt(X1) | predt(X0) | ~room(X1) | ~room(X0)) & (~predt(sK6) & room(sK6)) [skolemisation 170,185]
191. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom]
192. ~predt(alice) | (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 175,191]
250. paul != alice [cnf transformation 43]
273. room(mary) [cnf transformation 163]
274. room(paul) [cnf transformation 163]
275. room(fred) [cnf transformation 163]
276. room(alice) [cnf transformation 163]
277. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 163]
278. ~predt(paul) | room(sK0) [cnf transformation 178]
279. ~predt(paul) | predw(sK0) [cnf transformation 178]
283. ~predw(X0) | ~room(X0) [cnf transformation 166]
291. ~room(X1) | predt(X1) | predt(X0) | X0 = X1 | ~room(X0) [cnf transformation 186]
301. ~predt(alice) | room(sK9) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192]
302. ~predt(alice) | mary != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192]
303. ~predt(alice) | paul != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192]
304. ~predt(alice) | fred != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192]
305. ~predt(alice) | alice != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192]
307. 1 <=> predw(sK0) [avatar definition]
309. predw(sK0) <- (1) [avatar component clause 307]
311. 2 <=> predt(paul) [avatar definition]
313. ~predt(paul) <- (~2) [avatar component clause 311]
314. 1 | ~2 [avatar split clause 279,311,307]
316. 3 <=> room(sK0) [avatar definition]
318. room(sK0) <- (3) [avatar component clause 316]
319. 3 | ~2 [avatar split clause 278,311,316]
341. ~predt(alice) | alice != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 305,276]
342. ~predt(alice) | alice != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 341,275]
343. ~predt(alice) | alice != sK9 | ~room(mary) [subsumption resolution 342,274]
344. ~predt(alice) | alice != sK9 [subsumption resolution 343,273]
346. 8 <=> alice = sK9 [avatar definition]
348. alice != sK9 <- (~8) [avatar component clause 346]
350. 9 <=> predt(alice) [avatar definition]
353. ~8 | ~9 [avatar split clause 344,350,346]
354. ~predt(alice) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,276]
355. ~predt(alice) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 354,275]
356. ~predt(alice) | fred != sK9 | ~room(mary) [subsumption resolution 355,274]
357. ~predt(alice) | fred != sK9 [subsumption resolution 356,273]
359. 10 <=> fred = sK9 [avatar definition]
361. fred != sK9 <- (~10) [avatar component clause 359]
362. ~10 | ~9 [avatar split clause 357,350,359]
363. ~predt(alice) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,276]
364. ~predt(alice) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 363,275]
365. ~predt(alice) | paul != sK9 | ~room(mary) [subsumption resolution 364,274]
366. ~predt(alice) | paul != sK9 [subsumption resolution 365,273]
368. 11 <=> paul = sK9 [avatar definition]
371. ~11 | ~9 [avatar split clause 366,350,368]
372. ~predt(alice) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 302,276]
373. ~predt(alice) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 372,275]
374. ~predt(alice) | mary != sK9 | ~room(mary) [subsumption resolution 373,274]
375. ~predt(alice) | mary != sK9 [subsumption resolution 374,273]
377. 12 <=> mary = sK9 [avatar definition]
379. mary != sK9 <- (~12) [avatar component clause 377]
380. ~12 | ~9 [avatar split clause 375,350,377]
381. ~predt(alice) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 301,276]
382. ~predt(alice) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 381,275]
383. ~predt(alice) | room(sK9) | ~room(mary) [subsumption resolution 382,274]
384. ~predt(alice) | room(sK9) [subsumption resolution 383,273]
386. 13 <=> room(sK9) [avatar definition]
388. room(sK9) <- (13) [avatar component clause 386]
389. 13 | ~9 [avatar split clause 384,350,386]
454. predt(paul) | predt(X1) | paul = X1 | ~room(X1) [resolution 291,274]
470. ~room(X1) | paul = X1 | predt(X1) <- (~2) [subsumption resolution 454,313]
696. paul = alice | predt(alice) <- (~2) [resolution 470,276]
699. predt(alice) <- (~2) [subsumption resolution 696,250]
702. 9 | 2 [avatar split clause 699,311,350]
722. fred = sK9 | paul = sK9 | mary = sK9 | alice = sK9 <- (13) [resolution 388,277]
727. paul = sK9 | mary = sK9 | alice = sK9 <- (~10, 13) [subsumption resolution 722,361]
741. paul = sK9 | alice = sK9 <- (~10, ~12, 13) [subsumption resolution 727,379]
742. paul = sK9 <- (~8, ~10, ~12, 13) [subsumption resolution 741,348]
743. 11 | 8 | 10 | 12 | ~13 [avatar split clause 742,386,377,359,346,368]
755. ~room(sK0) <- (1) [resolution 309,283]
756. $false <- (1, 3) [subsumption resolution 755,318]
757. ~1 | ~3 [avatar contradiction clause 756]
758. $false [avatar sat refutation 314,319,353,362,371,380,389,702,743,757]
% SZS output end Proof for 2350093818942038984182606
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.028 s
% ------------------------------
% ------------------------------
| 0.010179 |
Joseph, Darin are the only persons in the room.
More than one person in the room does not develop open-source software projects in their free time.
Everyone in the room who owns a microscope creates bespoke furniture pieces from reclaimed wood and develops open-source software projects in their free time.
|
Joseph owns a microscope.
|
contradiction
|
room(joseph)&room(darin)&(![X]:(room(X)=>(X='joseph'|X='darin')))&
(![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(is_a_scotch_connoisseur(X))))))&
((?[X,Y]:(room(X)&room(Y)&(does_not_develop_open-source_software_projects_in_their_free_time(X)&does_not_develop_open-source_software_projects_in_their_free_time(Y))&(X!=Y))))&
(![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(((uses_an_ios_phone(X))|(enjoys_kayaking(X))))))))&
(![X]:(room(X)=>(((((uses_an_ios_phone(X))|(enjoys_kayaking(X))))=>(does_not_enjoy_stargazing(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_stargazing(X))<=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))&
(((?[X]:(anywhere(X)&((owns_a_smartwatch(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))&
(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(owns_a_microscope(X))))))&
(![X]:(room(X)=>(((owns_a_microscope(X))=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))&(develops_open-source_software_projects_in_their_free_time(X))))))))&
(![X]:(room(X)=>(((((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))&(develops_open-source_software_projects_in_their_free_time(X))))=>(builds_model_airplanes(X))))))&
(![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))<=>(builds_model_airplanes(X))))))&
(~![X]:(anywhere(X)=>(((builds_model_airplanes(X))<=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))&
(![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(~((?[X,Y]:(room(X)&room(Y)&(enjoys_stargazing(X)&enjoys_stargazing(Y))&(X!=Y)))))&
(![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(plays_video_games(X))))))&
(![X]:(room(X)=>(((enjoys_spelunking(X))=>(builds_model_airplanes(X))))))&
(![X]:(room(X)=>(is_a_client_of_LVMH(X))))
|
room(joseph)&room(darin)&(![X]:(room(X)=>(X='joseph'|X='darin')))&
owns_a_microscope(joseph)
|
[
"p0",
"p2",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 7940872168072119493516600
% SZS output start Proof for 7940872168072119493516600
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
46. ? [X0,X1] : (X0 != X1 & ~predi(X1) & ~predi(X0) & room(X1) & room(X0)) [input p2]
52. ! [X0] : (room(X0) => (predu(X0) => (predi(X0) & predg(X0)))) [input p8]
61. predu(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
146. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
147. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 146]
149. ! [X0] : (((predi(X0) & predg(X0)) | ~predu(X0)) | ~room(X0)) [ennf transformation 52]
150. ! [X0] : ((predi(X0) & predg(X0)) | ~predu(X0) | ~room(X0)) [flattening 149]
156. predu(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 61]
157. predu(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 156]
159. ? [X0,X1] : (X0 != X1 & ~predi(X1) & ~predi(X0) & room(X1) & room(X0)) => (sK0 != sK1 & ~predi(sK1) & ~predi(sK0) & room(sK1) & room(sK0)) [choice axiom]
160. sK0 != sK1 & ~predi(sK1) & ~predi(sK0) & room(sK1) & room(sK0) [skolemisation 46,159]
246. room(mary) [cnf transformation 147]
248. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 147]
249. room(sK0) [cnf transformation 160]
250. room(sK1) [cnf transformation 160]
251. ~predi(sK0) [cnf transformation 160]
252. ~predi(sK1) [cnf transformation 160]
253. sK0 != sK1 [cnf transformation 160]
257. ~predu(X0) | predi(X0) | ~room(X0) [cnf transformation 150]
267. predu(mary) [cnf transformation 157]
332. predi(mary) | ~room(mary) [resolution 257,267]
333. predi(mary) [subsumption resolution 332,246]
342. mary = sK0 | paul = sK0 [resolution 248,249]
343. mary = sK1 | paul = sK1 [resolution 248,250]
345. 13 <=> paul = sK0 [avatar definition]
349. 14 <=> mary = sK0 [avatar definition]
351. mary = sK0 <- (14) [avatar component clause 349]
352. 13 | 14 [avatar split clause 342,349,345]
354. 15 <=> paul = sK1 [avatar definition]
356. paul = sK1 <- (15) [avatar component clause 354]
358. 16 <=> mary = sK1 [avatar definition]
360. mary = sK1 <- (16) [avatar component clause 358]
361. 15 | 16 [avatar split clause 343,358,354]
365. paul != sK0 <- (15) [backward demodulation 253,356]
366. ~13 | ~15 [avatar split clause 365,354,345]
374. ~predi(mary) <- (14) [backward demodulation 251,351]
375. $false <- (14) [subsumption resolution 374,333]
376. ~14 [avatar contradiction clause 375]
380. ~predi(mary) <- (16) [backward demodulation 252,360]
382. $false <- (16) [subsumption resolution 380,333]
383. ~16 [avatar contradiction clause 382]
390. $false [avatar sat refutation 352,361,366,376,383]
% SZS output end Proof for 7940872168072119493516600
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.021 s
% ------------------------------
% ------------------------------
| 0.64706 |
Linda, Daniel are the only persons in the room. “Everyone in the room is a coffee connoisseur” unless “everyone in the room is not a coffee connoisseur or does enjoy trail running”. “Everyone in the room is not a coffee connoisseur” unless “everyone in the room neither does enjoy trail running nor does not enjoy trail running”. “Everyone in the room is not an avid hiker only if they is not a coffee connoisseur” if “everyone outside the room is not an avid hiker or does not enjoy trail running”. It is true that “everyone in the room is not an avid hiker”.
|
Only one person in the room does enjoy trail running.
|
neutral
|
room(linda)&room(daniel)&(![X]:(room(X)=>(X='linda'|X='daniel')))&
(~(![X]:(room(X)=>(((does_enjoy_trail_running(X))|(is_not_a_coffee_connoisseur(X))))))=>(![X]:(room(X)=>(is_a_coffee_connoisseur(X)))))&
(~(![X]:(room(X)=>(~((does_enjoy_trail_running(X))|(does_not_enjoy_trail_running(X))))))=>(![X]:(room(X)=>(is_not_a_coffee_connoisseur(X)))))&
((![X]:(~room(X)=>(((does_not_enjoy_trail_running(X))|(is_not_an_avid_hiker(X))))))=>(![X]:(room(X)=>(((is_not_a_coffee_connoisseur(X))<=(is_not_an_avid_hiker(X)))))))&
(![X]:(room(X)=>(is_not_an_avid_hiker(X))))
|
room(linda)&room(daniel)&(![X]:(room(X)=>(X='linda'|X='daniel')))&
((?[X]:(room(X)&does_enjoy_trail_running(X)))&(![X,Y]:((room(X)&room(Y)&(does_enjoy_trail_running(X))&(does_enjoy_trail_running(Y)))=>(X=Y))))
|
[] | null | 0.28803 |
Tracy, Linda, David are the only persons in the room. If “not everyone in the room does not write in-depth travel guides for off-the-beaten-path destinations or does not write and illustrates their own graphic novels” then “David has a saltwater aquarium and writes and illustrates their own graphic novels”. If “everyone in the room is dedicated to sustainable living and zero-waste practices or is not an avid collector of autographed memorabilia from famous musicians” then “David is not a drone photographer”. Everyone in the room is dedicated to sustainable living and zero-waste practices or is not an avid collector of autographed memorabilia from famous musicians.
|
David is a drone photographer.
|
contradiction
|
room(tracy)&room(linda)&room(david)&(![X]:(room(X)=>(X='tracy'|X='linda'|X='david')))&
((~![X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))=>(((has_a_saltwater_aquarium(david))&(writes_and_illustrates_their_own_graphic_novels(david)))))&
((![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))=>(is_not_a_drone_photographer(david)))&
((practices_urban_gardening(tracy))=>(~![X]:(anywhere(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(is_not_an_avid_hiker(X)))))))&
(![X]:(~room(X)=>(is_allergic_to_anything(X))))&
(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(david))&
(![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))&
(![X]:(room(X)=>(((~((is_a_drone_photographer(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))<=(practices_urban_gardening(X))))))&
((![X]:((is_a_dedicated_volunteer_for_local_community_service_projects(X))<=>(enjoys_fishing(X)))))&
(![X]:(room(X)=>(((has_a_tattoo(X))=>(is_a_wine_connoisseur(X))))))&
(is_an_avid_hiker(linda))&
(mentors_a_youth_basketball_team_on_weekends(tracy))&
(![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))<=(mentors_a_youth_basketball_team_on_weekends(X))))))&
(((?[X]:(room(X)&is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))&(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))&
(![X]:(room(X)=>(((works_on_fridays(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))&
(((does_not_have_a_saltwater_aquarium(tracy))<~>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(tracy))))&
(![X]:(room(X)=>(((is_not_an_avid_hiker(X))=>(has_a_saltwater_aquarium(X))))))&
(![X]:(room(X)=>(((works_on_fridays(X))=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_a_wine_connoisseur(X))))))))&
(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(linda))&
(![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(is_a_wine_connoisseur(X))))))&
(![X]:(room(X)=>(((~((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))
|
room(tracy)&room(linda)&room(david)&(![X]:(room(X)=>(X='tracy'|X='linda'|X='david')))&
is_a_drone_photographer(david)
|
[
"p2",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 7162948550825630451862469
% SZS output start Proof for 7162948550825630451862469
46. ! [X0] : (room(X0) => (preda(X0) | ~prede(X0))) => ~predc(fred) [input p2]
58. ! [X0] : (room(X0) => (preda(X0) | ~prede(X0))) [input p14]
67. predc(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
163. ~predc(fred) | ? [X0] : ((~preda(X0) & prede(X0)) & room(X0)) [ennf transformation 46]
164. ~predc(fred) | ? [X0] : (~preda(X0) & prede(X0) & room(X0)) [flattening 163]
167. ! [X0] : ((preda(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 58]
168. ! [X0] : (preda(X0) | ~prede(X0) | ~room(X0)) [flattening 167]
171. predc(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 67]
172. predc(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 171]
174. ? [X0] : (~preda(X0) & prede(X0) & room(X0)) => (~preda(sK0) & prede(sK0) & room(sK0)) [choice axiom]
175. ~predc(fred) | (~preda(sK0) & prede(sK0) & room(sK0)) [skolemisation 164,174]
263. ~predc(fred) | room(sK0) [cnf transformation 175]
264. ~predc(fred) | prede(sK0) [cnf transformation 175]
265. ~predc(fred) | ~preda(sK0) [cnf transformation 175]
270. ~prede(X0) | preda(X0) | ~room(X0) [cnf transformation 168]
278. predc(fred) [cnf transformation 172]
281. 1 <=> preda(sK0) [avatar definition]
283. ~preda(sK0) <- (~1) [avatar component clause 281]
285. 2 <=> predc(fred) [avatar definition]
288. ~1 | ~2 [avatar split clause 265,285,281]
290. 3 <=> prede(sK0) [avatar definition]
292. prede(sK0) <- (3) [avatar component clause 290]
293. 3 | ~2 [avatar split clause 264,285,290]
295. 4 <=> room(sK0) [avatar definition]
297. room(sK0) <- (4) [avatar component clause 295]
298. 4 | ~2 [avatar split clause 263,285,295]
309. 2 [avatar split clause 278,285]
310. preda(sK0) | ~room(sK0) <- (3) [resolution 270,292]
311. ~room(sK0) <- (~1, 3) [subsumption resolution 310,283]
312. $false <- (~1, 3, 4) [subsumption resolution 311,297]
313. 1 | ~3 | ~4 [avatar contradiction clause 312]
314. $false [avatar sat refutation 288,293,298,309,313]
% SZS output end Proof for 7162948550825630451862469
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.028146 |
Harvey is the only person in the room.
Everyone in the room who works as a freelance web developer specializing in e-commerce sites either collects comic books or does not work as a freelance web developer specializing in e-commerce sites but not both.
Harvey who bakes bread at home creates large-scale murals for public art installations.
Everyone in the room who competes in national level swimming championships collects luxury watches.
Everyone in the room who collects luxury watches does not design and sews custom cosplay costumes for conventions.
Everyone in the room who bakes bread at home streams on Twitch.
Harvey who collects luxury watches does not work as a freelance web developer specializing in e-commerce sites.
Everyone in the room collects luxury watches if and only if they collects antique clocks.
Not everyone in the room who collects antique clocks neither is a dedicated volunteer for local community service projects nor collects luxury watches.
Everyone in the room can play the piano if they neither is a dedicated volunteer for local community service projects nor collects luxury watches.
Harvey who is a Linux enthusiast owns a smart tv.
Someone in the room is an amateur astronomer who builds and uses custom telescopes.
Harvey is a dedicated volunteer for local community service projects.
Someone in the room collects comic books.
Everyone in the room collects modern art if they enjoys camping and organizing outdoor survival workshops.
Everyone in the room who collects modern art bakes bread at home.
Everyone in the room does not bake bread at home or competes in national level swimming championships.
Everyone in the room collects modern art or does not collect comic books.
Everyone in the room collects comic books.
|
Harvey collects modern art.
|
entailment
|
room(harvey)&(![X]:(room(X)=>(X='harvey')))&
(![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(((collects_comic_books(X))<~>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))&
((bakes_bread_at_home(harvey))&(creates_large-scale_murals_for_public_art_installations(harvey)))&
(![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(collects_luxury_watches(X))))))&
(![X]:(room(X)=>(((collects_luxury_watches(X))=>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))&
(![X]:(room(X)=>(((bakes_bread_at_home(X))=>(streams_on_Twitch(X))))))&
((collects_luxury_watches(harvey))&(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(harvey)))&
(![X]:(room(X)=>(((collects_luxury_watches(X))<=>(collects_antique_clocks(X))))))&
(~![X]:(room(X)=>(((collects_antique_clocks(X))=>(~((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(collects_luxury_watches(X))))))))&
(![X]:(room(X)=>(((~((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(collects_luxury_watches(X))))=>(can_play_the_piano(X))))))&
((is_a_Linux_enthusiast(harvey))&(owns_a_smart_tv(harvey)))&
(?[X]:(room(X)&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))&
(is_a_dedicated_volunteer_for_local_community_service_projects(harvey))&
(?[X]:(room(X)&(collects_comic_books(X))))&
(![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(collects_modern_art(X))))))&
(![X]:(room(X)=>(((collects_modern_art(X))=>(bakes_bread_at_home(X))))))&
(![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))|(does_not_bake_bread_at_home(X))))))&
(![X]:(room(X)=>(((does_not_bake_bread_at_home(X))=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))&(can_play_the_piano(X))&(bakes_bread_at_home(X))))))))&
(![X]:(room(X)=>(((does_not_collect_comic_books(X))|(collects_modern_art(X))))))&
(![X]:(~room(X)=>(((collects_modern_art(X))=>(((does_not_stream_on_Twitch(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))&
(?[X]:(room(X)&(competes_in_national_level_swimming_championships(X))))&
((competes_in_national_level_swimming_championships(harvey))&(((collects_luxury_watches(harvey))|(creates_large-scale_murals_for_public_art_installations(harvey))|(streams_on_Twitch(harvey)))))&
(![X]:(room(X)=>(collects_comic_books(X))))
|
room(harvey)&(![X]:(room(X)=>(X='harvey')))&
collects_modern_art(harvey)
|
[
"p0",
"p18",
"p22",
"hypothesis"
] |
% SZS status Unsatisfiable for 4459403431184009902610052
% SZS output start Proof for 4459403431184009902610052
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
62. ! [X0] : (room(X0) => (predo(X0) | ~preds(X0))) [input p18]
66. ! [X0] : (room(X0) => preds(X0)) [input p22]
67. ~(predo(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis]
152. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
167. ! [X0] : ((predo(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 62]
168. ! [X0] : (predo(X0) | ~preds(X0) | ~room(X0)) [flattening 167]
171. ! [X0] : (preds(X0) | ~room(X0)) [ennf transformation 66]
172. ~predo(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 67]
184. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom]
185. ~predo(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 172,184]
266. room(mary) [cnf transformation 152]
267. ~room(X0) | mary = X0 [cnf transformation 152]
285. ~preds(X0) | predo(X0) | ~room(X0) [cnf transformation 168]
291. ~room(X0) | preds(X0) [cnf transformation 171]
292. ~predo(mary) | room(sK4) | ~room(mary) [cnf transformation 185]
293. ~predo(mary) | mary != sK4 | ~room(mary) [cnf transformation 185]
296. ~predo(mary) | mary != sK4 [subsumption resolution 293,266]
298. 1 <=> mary = sK4 [avatar definition]
300. mary != sK4 <- (~1) [avatar component clause 298]
302. 2 <=> predo(mary) [avatar definition]
305. ~1 | ~2 [avatar split clause 296,302,298]
306. ~predo(mary) | room(sK4) [subsumption resolution 292,266]
308. 3 <=> room(sK4) [avatar definition]
310. room(sK4) <- (3) [avatar component clause 308]
311. 3 | ~2 [avatar split clause 306,302,308]
312. preds(mary) [resolution 291,266]
347. predo(mary) | ~room(mary) [resolution 285,312]
351. predo(mary) [subsumption resolution 347,266]
352. 2 [avatar split clause 351,302]
354. mary = sK4 <- (3) [resolution 310,267]
357. $false <- (~1, 3) [subsumption resolution 354,300]
358. 1 | ~3 [avatar contradiction clause 357]
359. $false [avatar sat refutation 305,311,352,358]
% SZS output end Proof for 4459403431184009902610052
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.674577 |
Theresa, Micheal, Timothy, Erma are the only persons in the room.
If 'Theresa neither is not a culinary enthusiast who experiments with international cuisines nor does not develop open-source software projects in their free time' then 'Micheal is not a scotch connoisseur and does not collect classic novels' otherwise 'everyone in the room does not have a specialized collection of handmade artisan pottery'.
'It is true that 'Micheal does not stream on Twitch or is not a member of a local theater group specializing in improv or both'' only if 'Micheal is not a scotch connoisseur and does not collect vintage vinyl records'.
Either 'everyone in the room does not own a microscope or does not collect classic novels' or 'Micheal does not enjoy skydiving and is not an amateur astronomer who builds and uses custom telescopes' but not both.
Theresa does not develop open-source software projects in their free time.
Micheal neither does not develop open-source software projects in their free time nor does not mentor a youth basketball team on weekends.
Micheal does not develop open-source software projects in their free time or does not stream on Twitch or both.
|
Micheal is a scotch connoisseur.
|
contradiction
|
room(theresa)&room(micheal)&room(timothy)&room(erma)&(![X]:(room(X)=>(X='theresa'|X='micheal'|X='timothy'|X='erma')))&
(((~((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(theresa))|(does_not_develop_open-source_software_projects_in_their_free_time(theresa))))=>(((is_not_a_scotch_connoisseur(micheal))&(does_not_collect_classic_novels(micheal)))))&((~(~((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(theresa))|(does_not_develop_open-source_software_projects_in_their_free_time(theresa)))))=>(![X]:(room(X)=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))&
((((does_not_stream_on_Twitch(micheal))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(micheal))))=>(((is_not_a_scotch_connoisseur(micheal))&(does_not_collect_vintage_vinyl_records(micheal)))))&
((![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(does_not_own_a_microscope(X))))))<~>(((does_not_enjoy_skydiving(micheal))&(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(micheal)))))&
(does_not_develop_open-source_software_projects_in_their_free_time(theresa))&
(~((does_not_drive_a_hybrid_car(micheal))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(micheal))))&
((![X]:((~((does_not_enjoy_kayaking(X))|(develops_open-source_software_projects_in_their_free_time(X))))=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(does_not_collect_vintage_vinyl_records(X)))))))&
(~((does_not_develop_open-source_software_projects_in_their_free_time(micheal))|(does_not_mentor_a_youth_basketball_team_on_weekends(micheal))))&
(((does_not_develop_open-source_software_projects_in_their_free_time(micheal))|(does_not_stream_on_Twitch(micheal))))&
((![X]:((((does_not_own_a_microscope(X))<~>(does_not_enjoy_making_ceramics(X))))=>(~((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))&
(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(theresa))<~>(is_not_a_member_of_a_local_theater_group_specializing_in_improv(theresa))))
|
room(theresa)&room(micheal)&room(timothy)&room(erma)&(![X]:(room(X)=>(X='theresa'|X='micheal'|X='timothy'|X='erma')))&
is_a_scotch_connoisseur(micheal)
|
[
"p2",
"p7",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 2375225552772797057675382
% SZS output start Proof for 2375225552772797057675382
46. (~prede(paul) | ~predg(paul)) => (~predd(paul) & ~predp(paul)) [input p2]
51. ~(~predl(paul) | ~predq(paul)) [input p7]
52. ~predg(paul) | ~predq(paul) [input p8]
55. predp(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
57. ~~predq(paul) [pure predicate removal 51]
60. (~prede(paul) | ~predg(paul)) => ~predp(paul) [pure predicate removal 46]
138. ~predp(paul) | (prede(paul) & predg(paul)) [ennf transformation 60]
141. predq(paul) [ennf transformation 57]
143. predp(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 55]
144. predp(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 143]
238. ~predp(paul) | predg(paul) [cnf transformation 138]
246. predq(paul) [cnf transformation 141]
247. ~predg(paul) | ~predq(paul) [cnf transformation 52]
259. predp(paul) [cnf transformation 144]
265. 2 <=> predp(paul) [avatar definition]
270. 3 <=> predg(paul) [avatar definition]
273. 3 | ~2 [avatar split clause 238,265,270]
302. ~predg(paul) [subsumption resolution 247,246]
303. ~3 [avatar split clause 302,270]
314. 2 [avatar split clause 259,265]
315. $false [avatar sat refutation 273,303,314]
% SZS output end Proof for 2375225552772797057675382
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.039954 |
Amber is the only person in the room.
Everyone anywhere is richer than Rosie only if they is old.
Everyone in the room is not a curious kind tall person if they is richer than Sylvia.
Everyone in the room who is not a curious kind tall person is richer than Sylvia.
It is not the case that 'it is not the case that 'Amber is wise''.
Amber is richer than Rosie.
It is not the case that 'Amber is not a calm patient tall person'.
Everyone in the room is older than Rosie if they is quieter than Sylvia.
Everyone in the room who is quieter than Sylvia is not a tall humble patient strong person.
Everyone anywhere is not a tall humble patient strong person if and only if they is not not kind.
Someone anywhere is richer than Rosie.
Amber is richer than Sylvia.
Everyone anywhere is richer than Rosie, is richer than Sylvia and is quieter than Sylvia only if they is older than Sylvia.
Someone in the room is older than Rosie.
Only one person in the room is tall.
If someone is richer than Rosie then he/she is quieter than Sylvia and vice versa.
Amber is older than Sylvia.
Amber is brave.
Everyone in the room who is not a brave funny person is richer than Rosie.
Amber who is generous is not a brave funny person.
Amber is old.
All kind person is patient.
Everyone anywhere who is a wise person is richer than Sylvia.
Everyone anywhere who is richer than Sylvia is a patient person.
|
Everyone anywhere is richer than Sylvia.
|
neutral
|
room(amber)&(![X]:(room(X)=>(X='amber')))&
(![X]:(anywhere(X)=>(((old(X))<=(richer(rosie,X))))))&
(![X]:(room(X)=>(((richer(sylvia,X))=>(~(curious(X)&kind(X)&tall(X)&person(X)))))))&
(![X]:(room(X)=>(((~(curious(X)&kind(X)&tall(X)&person(X)))=>(richer(sylvia,X))))))&
(~(~(wise(amber))))&
(richer(rosie,amber))&
(~(~(calm(amber)&patient(amber)&tall(amber)&person(amber))))&
(![X]:(room(X)=>(((quieter(sylvia,X))=>(older(rosie,X))))))&
(![X]:(room(X)=>(((quieter(sylvia,X))=>(~(tall(X)&humble(X)&patient(X)&strong(X)&person(X)))))))&
(![X]:(anywhere(X)=>(((~(tall(X)&humble(X)&patient(X)&strong(X)&person(X)))<=>(~~kind(X))))))&
(?[X]:(anywhere(X)&(richer(rosie,X))))&
(richer(sylvia,amber))&
(![X]:(anywhere(X)=>(((older(sylvia,X))<=(((richer(rosie,X))&(richer(sylvia,X))&(quieter(sylvia,X))))))))&
(?[X]:(room(X)&(older(rosie,X))))&
(((?[X]:(room(X)&tall(X)))&(![X,Y]:((room(X)&room(Y)&(tall(X))&(tall(Y)))=>(X=Y)))))&
((![X]:((richer(rosie,X))<=>(quieter(sylvia,X)))))&
(older(sylvia,amber))&
(brave(amber))&
(![X]:(room(X)=>(((~(brave(X)&funny(X)&person(X)))=>(richer(rosie,X))))))&
((generous(amber))&(~(brave(amber)&funny(amber)&person(amber))))&
(old(amber))&
(![X]:(kind(X)=>patient(X)))&
(![X]:(anywhere(X)=>(((wise(X)&person(X))=>(richer(sylvia,X))))))&
(![X]:(anywhere(X)=>(((richer(sylvia,X))=>(patient(X)&person(X))))))&
(humble(amber)&person(amber))&
(![X]:(room(X)=>(((~(generous(X)&person(X)))=>(quieter(rosie,X))))))&
(![X]:(wise(X)=>kind(X)))
|
room(amber)&(![X]:(room(X)=>(X='amber')))&
![X]:(anywhere(X)=>(richer(sylvia,X)))
|
[] | null | 0.471967 |
There is a room.
Either “everyone in the room works on fridays or does not enjoy wildlife photography” or “everyone outside the room collects limited-edition art prints from contemporary artists or does not collect limited-edition art prints from contemporary artists” but not both.
Either “everyone anywhere has a tattoo or does not own an extensive assortment of vintage comic book memorabilia” or “everyone in the room does not work on fridays or does not collect antique jewelry” but not both.
If “everyone in the room does not enjoy camping and organizing outdoor survival workshops or is not an avid hiker” then “everyone in the room who does not enjoy camping and organizing outdoor survival workshops collects antique jewelry”.
If “everyone in the room practices archery or does not drive a hybrid car” then “everyone anywhere is passionate about collecting and restoring classic cars or does not have a tattoo”.
If “everyone in the room enjoys cross-country skiing or does not collect limited-edition art prints from contemporary artists” then “if someone owns a telescope and is passionate about collecting and restoring classic cars then he/she is passionate about collecting and restoring classic cars and vice versa”.
Someone in the room makes homemade pastries.
Everyone in the room collects historical artifacts related to ancient civilizations or does not enjoy wildlife photography.
If someone is an avid hiker then he/she enjoys wildlife photography and vice versa.
Everyone in the room makes homemade pastries or does not collect historical artifacts related to ancient civilizations.
Not everyone in the room enjoys cross-country skiing or does not practice archery.
|
Everyone in the room does not own an extensive assortment of vintage comic book memorabilia or enjoys cross-country skiing.
|
neutral
|
(there_is_a_room)&
((![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(works_on_fridays(X))))))<~>(![X]:(~room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X)))))))&
((![X]:(anywhere(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(has_a_tattoo(X))))))<~>(![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))|(does_not_work_on_fridays(X)))))))&
((![X]:(room(X)=>(((is_not_an_avid_hiker(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(collects_antique_jewelry(X)))))))&
((![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(practices_archery(X))))))=>(![X]:(anywhere(X)=>(((does_not_have_a_tattoo(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X)))))))&
((![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(enjoys_cross-country_skiing(X))))))=>((![X]:((((owns_a_telescope(X))&(is_passionate_about_collecting_and_restoring_classic_cars(X))))<=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))&
(?[X]:(room(X)&(makes_homemade_pastries(X))))&
(![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))&
((![X]:((is_an_avid_hiker(X))<=>(enjoys_wildlife_photography(X)))))&
(![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(makes_homemade_pastries(X))))))&
(~![X]:(room(X)=>(((does_not_practice_archery(X))|(enjoys_cross-country_skiing(X))))))&
(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))&
(~![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(~((plays_the_drums(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))))&
((![X]:((does_practice_yoga(X))=>(enjoys_making_ceramics(X)))))&
(![X]:(room(X)=>(((((does_not_enjoy_wildlife_photography(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))))=>(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))&
(![X]:(room(X)=>(((~((enjoys_making_ceramics(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))<=(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))&
(~?[X]:(room(X)=>(((does_not_play_the_drums(X))|(has_a_tattoo(X))))))&
((?[X,Y]:(room(X)&room(Y)&(~((collects_antique_jewelry(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X)))&~((collects_antique_jewelry(Y))|(collects_historical_artifacts_related_to_ancient_civilizations(Y))))&(X!=Y))))&
(![X]:(room(X)=>(((~((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))=>(~((is_passionate_about_collecting_and_restoring_classic_cars(X))|(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))))&
(![X]:(room(X)=>(((~((is_passionate_about_collecting_and_restoring_classic_cars(X))|(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))=>(enjoys_making_ceramics(X))))))&
((![X]:((enjoys_cross-country_skiing(X))<=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))
|
(there_is_a_room)&
![X]:(room(X)=>(((enjoys_cross-country_skiing(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))
|
[] | null | 0.157238 |
Mark is the only person in the room.
Someone in the room trains for and competes in international triathlons.
Mark enjoys wildlife photography, trains for and competes in international triathlons or works on fridays.
Only one person in the room frequently participates in hackathons and coding competitions.
Mark frequently participates in hackathons and coding competitions.
Everyone in the room who neither mentors a youth basketball team on weekends nor works on fridays does not work on fridays.
Mark works on fridays.
Mark trains for and competes in international triathlons.
Everyone in the room who does not enjoy wildlife photography mentors a youth basketball team on weekends.
Mark enjoys wildlife photography.
|
Mark enjoys wildlife photography, frequently participates in hackathons and coding competitions and mentors a youth basketball team on weekends.
|
neutral
|
room(mark)&(![X]:(room(X)=>(X='mark')))&
(?[X]:(room(X)&(trains_for_and_competes_in_international_triathlons(X))))&
(((enjoys_wildlife_photography(mark))|(trains_for_and_competes_in_international_triathlons(mark))|(works_on_fridays(mark))))&
(((?[X]:(room(X)&frequently_participates_in_hackathons_and_coding_competitions(X)))&(![X,Y]:((room(X)&room(Y)&(frequently_participates_in_hackathons_and_coding_competitions(X))&(frequently_participates_in_hackathons_and_coding_competitions(Y)))=>(X=Y)))))&
(frequently_participates_in_hackathons_and_coding_competitions(mark))&
(![X]:(room(X)=>(((~((mentors_a_youth_basketball_team_on_weekends(X))|(works_on_fridays(X))))=>(does_not_work_on_fridays(X))))))&
(works_on_fridays(mark))&
(trains_for_and_competes_in_international_triathlons(mark))&
(![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))&
(enjoys_wildlife_photography(mark))
|
room(mark)&(![X]:(room(X)=>(X='mark')))&
((enjoys_wildlife_photography(mark))&(frequently_participates_in_hackathons_and_coding_competitions(mark))&(mentors_a_youth_basketball_team_on_weekends(mark)))
|
[] | null | 0.116811 |
There is a room.
Everyone in the room neither does not own a smart tv nor enjoys snowboarding if they hosts regular workshops on creative writing.
Everyone in the room who neither does not own a smart tv nor enjoys snowboarding owns a smart tv.
Everyone in the room does not host regular workshops on creative writing.
Everyone in the room who is a Linux enthusiast owns a smart tv.
Everyone in the room enjoys snowboarding or owns a smart tv or both if they owns a smart tv.
Everyone in the room neither is a Linux enthusiast nor hosts regular workshops on creative writing if they enjoys snowboarding or owns a smart tv or both.
Everyone outside the room either hosts regular workshops on creative writing or owns a smart tv but not both if they neither is a Linux enthusiast nor hosts regular workshops on creative writing.
Everyone in the room either hosts regular workshops on creative writing or owns a smart tv but not both only if they is a Linux enthusiast.
If someone owns a smart tv or is a Linux enthusiast or both then he/she enjoys snowboarding.
Everyone outside the room who is a Linux enthusiast hosts regular workshops on creative writing or is not a Linux enthusiast or both.
Everyone in the room either owns a smart tv or does not host regular workshops on creative writing but not both if they enjoys snowboarding.
More than one person in the room hosts regular workshops on creative writing or enjoys snowboarding or both.
|
Everyone in the room owns a smart tv.
|
contradiction
|
(there_is_a_room)&
(![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(~((does_not_own_a_smart_tv(X))|(enjoys_snowboarding(X))))))))&
(![X]:(room(X)=>(((~((does_not_own_a_smart_tv(X))|(enjoys_snowboarding(X))))=>(owns_a_smart_tv(X))))))&
(![X]:(room(X)=>(does_not_host_regular_workshops_on_creative_writing(X))))&
(![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(owns_a_smart_tv(X))))))&
(![X]:(room(X)=>(((owns_a_smart_tv(X))=>(((enjoys_snowboarding(X))|(owns_a_smart_tv(X))))))))&
(![X]:(room(X)=>(((((enjoys_snowboarding(X))|(owns_a_smart_tv(X))))=>(~((is_a_Linux_enthusiast(X))|(hosts_regular_workshops_on_creative_writing(X))))))))&
(![X]:(~room(X)=>(((~((is_a_Linux_enthusiast(X))|(hosts_regular_workshops_on_creative_writing(X))))=>(((hosts_regular_workshops_on_creative_writing(X))<~>(owns_a_smart_tv(X))))))))&
(![X]:(room(X)=>(((is_a_Linux_enthusiast(X))<=(((hosts_regular_workshops_on_creative_writing(X))<~>(owns_a_smart_tv(X))))))))&
((![X]:((((owns_a_smart_tv(X))|(is_a_Linux_enthusiast(X))))=>(enjoys_snowboarding(X)))))&
(![X]:(~room(X)=>(((is_a_Linux_enthusiast(X))=>(((hosts_regular_workshops_on_creative_writing(X))|(is_not_a_Linux_enthusiast(X))))))))&
(![X]:(room(X)=>(((enjoys_snowboarding(X))=>(((owns_a_smart_tv(X))<~>(does_not_host_regular_workshops_on_creative_writing(X))))))))&
((?[X,Y]:(room(X)&room(Y)&(((hosts_regular_workshops_on_creative_writing(X))|(enjoys_snowboarding(X)))&((hosts_regular_workshops_on_creative_writing(Y))|(enjoys_snowboarding(Y))))&(X!=Y))))
|
(there_is_a_room)&
![X]:(room(X)=>(owns_a_smart_tv(X)))
|
[
"p3",
"p4",
"p6",
"p8",
"p12",
"hypothesis"
] |
% SZS status Unsatisfiable for 4630831289872969119525748
% SZS output start Proof for 4630831289872969119525748
47. ! [X0] : (room(X0) => ~predb(X0)) [input p3]
48. ! [X0] : (room(X0) => (predd(X0) => predc(X0))) [input p4]
50. ! [X0] : (room(X0) => ((predc(X0) | preda(X0)) => ~(predb(X0) | predd(X0)))) [input p6]
52. ! [X0] : (room(X0) => ((predb(X0) <~> predc(X0)) => predd(X0))) [input p8]
56. ? [X0,X1] : (X0 != X1 & (preda(X1) | predb(X1)) & (preda(X0) | predb(X0)) & room(X1) & room(X0)) [input p12]
57. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis]
59. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 57]
136. ! [X0] : (~predb(X0) | ~room(X0)) [ennf transformation 47]
137. ! [X0] : ((predc(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 48]
138. ! [X0] : (predc(X0) | ~predd(X0) | ~room(X0)) [flattening 137]
141. ! [X0] : (((~predb(X0) & ~predd(X0)) | (~predc(X0) & ~preda(X0))) | ~room(X0)) [ennf transformation 50]
142. ! [X0] : ((~predb(X0) & ~predd(X0)) | (~predc(X0) & ~preda(X0)) | ~room(X0)) [flattening 141]
145. ! [X0] : ((predd(X0) | (predb(X0) <=> predc(X0))) | ~room(X0)) [ennf transformation 52]
146. ! [X0] : (predd(X0) | (predb(X0) <=> predc(X0)) | ~room(X0)) [flattening 145]
152. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 59]
155. ! [X0] : (predd(X0) | ((predb(X0) | ~predc(X0)) & (predc(X0) | ~predb(X0))) | ~room(X0)) [nnf transformation 146]
157. ? [X0,X1] : (X0 != X1 & (preda(X1) | predb(X1)) & (preda(X0) | predb(X0)) & room(X1) & room(X0)) => (sK0 != sK1 & (preda(sK1) | predb(sK1)) & (preda(sK0) | predb(sK0)) & room(sK1) & room(sK0)) [choice axiom]
158. sK0 != sK1 & (preda(sK1) | predb(sK1)) & (preda(sK0) | predb(sK0)) & room(sK1) & room(sK0) [skolemisation 56,157]
242. ~predb(X0) | ~room(X0) [cnf transformation 136]
243. predc(X0) | ~predd(X0) | ~room(X0) [cnf transformation 138]
246. ~predd(X0) | ~predc(X0) | ~room(X0) [cnf transformation 142]
252. predd(X0) | predb(X0) | ~predc(X0) | ~room(X0) [cnf transformation 155]
259. room(sK1) [cnf transformation 158]
263. predc(X0) | ~room(X0) [cnf transformation 152]
266. ~predd(X0) | ~room(X0) [subsumption resolution 246,243]
267. predd(X0) | ~predc(X0) | ~room(X0) [subsumption resolution 252,242]
268. ~predc(X0) | ~room(X0) [subsumption resolution 267,266]
288. ~room(X0) [subsumption resolution 263,268]
290. $false [resolution 288,259]
% SZS output end Proof for 4630831289872969119525748
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.540979 |
There is a room.
“At least one person in the room is a certified scuba diver with advanced underwater photography skills” only if “everyone anywhere drives a hybrid car if and only if they either collects vintage stamps or drives a hybrid car but not both”.
If “everyone in the room is a craft beer aficionado or does not travel domestically frequently” then “more than one person anywhere uses contact lenses and is a coffee connoisseur”.
If “not everyone in the room builds model airplanes or does not enjoy virtual reality gaming” then “everyone in the room builds model airplanes only if they either is a certified scuba diver with advanced underwater photography skills or practices archery but not both”.
“Everyone in the room has a piercing or does not develop open-source software projects in their free time” unless “everyone in the room is a coffee connoisseur or does not write a travel blog”.
Either “everyone in the room enjoys virtual reality gaming or does not build model airplanes” or “everyone in the room plays eSports competitively or does not play eSports competitively” but not both.
If “everyone outside the room is not a certified scuba diver with advanced underwater photography skills or is a certified scuba diver with advanced underwater photography skills” then “not everyone in the room who plays as a goalkeeper for a local amateur soccer team writes poetry”.
Everyone in the room who plays eSports competitively is an avid collector of autographed memorabilia from famous musicians.
Everyone in the room who is an avid collector of autographed memorabilia from famous musicians builds model airplanes.
Everyone in the room who builds model airplanes uses contact lenses.
No one in the room who drives a hybrid car writes poetry.
No one in the room plays eSports competitively only if they is an amateur astronomer who builds and uses custom telescopes.
|
Everyone in the room uses contact lenses.
|
entailment
|
(there_is_a_room)&
((((?[X]:(room(X)&is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))=>(![X]:(anywhere(X)=>(((drives_a_hybrid_car(X))<=>(((collects_vintage_stamps(X))<~>(drives_a_hybrid_car(X)))))))))&
((![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))|(is_a_craft_beer_aficionado(X))))))=>((?[X,Y]:(anywhere(X)&anywhere(Y)&(((uses_contact_lenses(X))&(is_a_coffee_connoisseur(X)))&((uses_contact_lenses(Y))&(is_a_coffee_connoisseur(Y))))&(X!=Y)))))&
((~![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(builds_model_airplanes(X))))))=>(![X]:(room(X)=>(((((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))<~>(practices_archery(X))))<=(builds_model_airplanes(X)))))))&
(~(![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(is_a_coffee_connoisseur(X))))))=>(![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(has_a_piercing(X)))))))&
((![X]:(room(X)=>(((does_not_build_model_airplanes(X))|(enjoys_virtual_reality_gaming(X))))))<~>(![X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(plays_eSports_competitively(X)))))))&
((![X]:(~room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))=>(~![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(writes_poetry(X)))))))&
((![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))))))=>(![X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))=>(collects_first_edition_books(X)))))))&
((![X]:(~room(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_travel_domestically_frequently(X))))))=>(![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))=>(collects_vintage_stamps(X)))))))&
(![X]:(anywhere(X)=>(((collects_vintage_stamps(X))=>(plays_eSports_competitively(X))))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))&
(![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(builds_model_airplanes(X))))))&
(![X]:(room(X)=>(((builds_model_airplanes(X))=>(uses_contact_lenses(X))))))&
(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(writes_a_travel_blog(X))))))&
(~?[X]:(room(X)=>(((drives_a_hybrid_car(X))=>(writes_poetry(X))))))&
(![X]:(room(X)=>(((is_a_coffee_connoisseur(X))<=(writes_poetry(X))))))&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(enjoys_windsurfing(X)&enjoys_windsurfing(Y))&(X!=Y))))&
(![X]:(~room(X)=>(((creates_YouTube_content(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))&
(![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))<=(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))&
(![X]:(~room(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_travel_domestically_frequently(X))))))&
(~?[X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<=(plays_eSports_competitively(X))))))&
((?[X,Y]:(room(X)&room(Y)&(develops_open-source_software_projects_in_their_free_time(X)&develops_open-source_software_projects_in_their_free_time(Y))&(X!=Y))))&
(![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(collects_vintage_stamps(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(uses_contact_lenses(X)))
|
[
"p0",
"p10",
"p11",
"p12",
"p14",
"p20",
"hypothesis"
] |
% SZS status Unsatisfiable for 1643424356666743184139912
% SZS output start Proof for 1643424356666743184139912
44. there_is_a_room [input p0]
54. ! [X0] : (room(X0) => (predj(X0) => predy(X0))) [input p10]
55. ! [X0] : (room(X0) => (predy(X0) => predu(X0))) [input p11]
56. ! [X0] : (room(X0) => (predu(X0) => predk(X0))) [input p12]
58. ~? [X0] : (room(X0) => (predq(X0) => predi(X0))) [input p14]
64. ~? [X0] : (room(X0) => (predj(X0) => predo(X0))) [input p20]
67. ~(! [X0] : (room(X0) => predk(X0)) & there_is_a_room) [input hypothesis]
76. ~? [X0] : (room(X0) => ~predj(X0)) [pure predicate removal 64]
80. ~? [X0] : (room(X0) => ~predq(X0)) [pure predicate removal 58]
172. ! [X0] : ((predy(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 54]
173. ! [X0] : (predy(X0) | ~predj(X0) | ~room(X0)) [flattening 172]
174. ! [X0] : ((predu(X0) | ~predy(X0)) | ~room(X0)) [ennf transformation 55]
175. ! [X0] : (predu(X0) | ~predy(X0) | ~room(X0)) [flattening 174]
176. ! [X0] : ((predk(X0) | ~predu(X0)) | ~room(X0)) [ennf transformation 56]
177. ! [X0] : (predk(X0) | ~predu(X0) | ~room(X0)) [flattening 176]
178. ! [X0] : (predq(X0) & room(X0)) [ennf transformation 80]
183. ! [X0] : (predj(X0) & room(X0)) [ennf transformation 76]
186. ? [X0] : (~predk(X0) & room(X0)) | ~there_is_a_room [ennf transformation 67]
216. ? [X0] : (~predk(X0) & room(X0)) => (~predk(sK13) & room(sK13)) [choice axiom]
217. (~predk(sK13) & room(sK13)) | ~there_is_a_room [skolemisation 186,216]
299. there_is_a_room [cnf transformation 44]
331. ~predj(X0) | predy(X0) | ~room(X0) [cnf transformation 173]
332. ~predy(X0) | predu(X0) | ~room(X0) [cnf transformation 175]
333. ~predu(X0) | predk(X0) | ~room(X0) [cnf transformation 177]
334. room(X0) [cnf transformation 178]
342. predj(X0) [cnf transformation 183]
348. ~predk(sK13) | ~there_is_a_room [cnf transformation 217]
474. ~predk(sK13) [subsumption resolution 348,299]
481. predy(X0) | ~room(X0) [resolution 331,342]
482. predy(X0) [subsumption resolution 481,334]
483. predu(X0) | ~room(X0) [resolution 482,332]
484. predu(X0) [subsumption resolution 483,334]
487. predk(X0) | ~room(X0) [resolution 484,333]
488. predk(X0) [subsumption resolution 487,334]
489. $false [resolution 488,474]
% SZS output end Proof for 1643424356666743184139912
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.137269 |
Melynda, Elizabeth are the only persons in the room. If “Elizabeth neither does not enjoy snowboarding nor owns a high-end gaming PC with custom-built components” then “everyone in the room does not play the violin”. If “everyone in the room does not collect rare minerals” then “everyone in the room own a television if they has a tattoo, own a television or is a tea enthusiast”. Melynda has a tattoo, own a television or is a tea enthusiast. Melynda collects comic books. It is true that “Elizabeth enjoys fishing”. Elizabeth does not collect comic books. Everyone in the room who does not enjoy fishing is not a dedicated volunteer for local community service projects. Elizabeth is a client of Meta. Elizabeth either is a dedicated volunteer for local community service projects or enjoys snowboarding but not both. Not everyone in the room does not own a high-end gaming PC with custom-built components if they practices digital art. Elizabeth enjoys cross-country skiing. Melynda is a dedicated volunteer for local community service projects. Everyone anywhere collect rare sneakers only if they is a skilled home brewer experimenting with craft beer recipes. Elizabeth does not stream on Twitch. Only one person in the room practices digital art. Everyone outside the room collects action figures if they collects comic books. Melynda enjoys snowboarding. Melynda practices digital art. It is true that “Melynda does not collect action figures”. Everyone outside the room who does not have a tattoo collects rare minerals. Elizabeth does not collect action figures.
|
It is true that “Melynda owns a high-end gaming PC with custom-built components”.
|
entailment
|
room(melynda)&room(elizabeth)&(![X]:(room(X)=>(X='melynda'|X='elizabeth')))&
((~((does_not_enjoy_snowboarding(elizabeth))|(owns_a_high-end_gaming_PC_with_custom-built_components(elizabeth))))=>(![X]:(room(X)=>(does_not_play_the_violin(X)))))&
((![X]:(room(X)=>(does_not_collect_rare_minerals(X))))=>(![X]:(room(X)=>(((((has_a_tattoo(X))|(own_a_television(X))|(is_a_tea_enthusiast(X))))=>(own_a_television(X)))))))&
(((has_a_tattoo(melynda))|(own_a_television(melynda))|(is_a_tea_enthusiast(melynda))))&
(collects_comic_books(melynda))&
(enjoys_fishing(elizabeth))&
(does_not_collect_comic_books(elizabeth))&
(![X]:(room(X)=>(((does_not_enjoy_fishing(X))=>(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(is_a_client_of_Meta(elizabeth))&
(((is_a_dedicated_volunteer_for_local_community_service_projects(elizabeth))<~>(enjoys_snowboarding(elizabeth))))&
(~![X]:(room(X)=>(((practices_digital_art(X))=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))&
(enjoys_cross-country_skiing(elizabeth))&
(is_a_dedicated_volunteer_for_local_community_service_projects(melynda))&
(![X]:(anywhere(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<=(collect_rare_sneakers(X))))))&
(does_not_stream_on_Twitch(elizabeth))&
(((?[X]:(room(X)&practices_digital_art(X)))&(![X,Y]:((room(X)&room(Y)&(practices_digital_art(X))&(practices_digital_art(Y)))=>(X=Y)))))&
(![X]:(~room(X)=>(((collects_comic_books(X))=>(collects_action_figures(X))))))&
(enjoys_snowboarding(melynda))&
(practices_digital_art(melynda))&
(does_not_collect_action_figures(melynda))&
(![X]:(~room(X)=>(((does_not_have_a_tattoo(X))=>(collects_rare_minerals(X))))))&
(does_not_collect_action_figures(elizabeth))&
(plays_the_violin(elizabeth))&
(~![X]:(room(X)=>(enjoys_snowboarding(X))))&
((![X]:((does_not_collect_comic_books(X))<=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))
|
room(melynda)&room(elizabeth)&(![X]:(room(X)=>(X='melynda'|X='elizabeth')))&
owns_a_high-end_gaming_PC_with_custom-built_components(melynda)
|
[
"b42",
"p0",
"p10",
"p15",
"p18",
"hypothesis"
] |
% SZS status Unsatisfiable for 6517111438925851168451883
% SZS output start Proof for 6517111438925851168451883
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
54. ~! [X0] : (room(X0) => (predk(X0) => ~predn(X0))) [input p10]
59. ! [X0,X1] : ((predk(X1) & predk(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predk(X0) & room(X0)) [input p15]
62. predk(mary) [input p18]
69. ~(predn(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
71. ! [X0,X1] : ((predk(X1) & predk(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predk(X2) & room(X2)) [rectify 59]
152. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
153. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 152]
158. ? [X0] : ((predn(X0) & predk(X0)) & room(X0)) [ennf transformation 54]
159. ? [X0] : (predn(X0) & predk(X0) & room(X0)) [flattening 158]
160. ! [X0,X1] : (X0 = X1 | (~predk(X1) | ~predk(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predk(X2) & room(X2)) [ennf transformation 71]
161. ! [X0,X1] : (X0 = X1 | ~predk(X1) | ~predk(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predk(X2) & room(X2)) [flattening 160]
165. ~predn(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 69]
166. ~predn(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 165]
172. ? [X0] : (predn(X0) & predk(X0) & room(X0)) => (predn(sK1) & predk(sK1) & room(sK1)) [choice axiom]
173. predn(sK1) & predk(sK1) & room(sK1) [skolemisation 159,172]
174. ? [X2] : (predk(X2) & room(X2)) => (predk(sK2) & room(sK2)) [choice axiom]
175. ! [X0,X1] : (X0 = X1 | ~predk(X1) | ~predk(X0) | ~room(X1) | ~room(X0)) & (predk(sK2) & room(sK2)) [skolemisation 161,174]
179. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK4 & mary != sK4 & room(sK4)) [choice axiom]
180. ~predn(mary) | (paul != sK4 & mary != sK4 & room(sK4)) | ~room(paul) | ~room(mary) [skolemisation 166,179]
225. mary != paul [cnf transformation 43]
261. room(mary) [cnf transformation 153]
262. room(paul) [cnf transformation 153]
263. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 153]
273. room(sK1) [cnf transformation 173]
274. predk(sK1) [cnf transformation 173]
275. predn(sK1) [cnf transformation 173]
279. ~predk(X1) | X0 = X1 | ~predk(X0) | ~room(X1) | ~room(X0) [cnf transformation 175]
282. predk(mary) [cnf transformation 62]
290. ~predn(mary) | room(sK4) | ~room(paul) | ~room(mary) [cnf transformation 180]
291. ~predn(mary) | mary != sK4 | ~room(paul) | ~room(mary) [cnf transformation 180]
292. ~predn(mary) | paul != sK4 | ~room(paul) | ~room(mary) [cnf transformation 180]
336. ~predn(mary) | paul != sK4 | ~room(mary) [subsumption resolution 292,262]
337. ~predn(mary) | paul != sK4 [subsumption resolution 336,261]
339. 11 <=> paul = sK4 [avatar definition]
341. paul != sK4 <- (~11) [avatar component clause 339]
343. 12 <=> predn(mary) [avatar definition]
346. ~11 | ~12 [avatar split clause 337,343,339]
347. ~predn(mary) | mary != sK4 | ~room(mary) [subsumption resolution 291,262]
348. ~predn(mary) | mary != sK4 [subsumption resolution 347,261]
350. 13 <=> mary = sK4 [avatar definition]
352. mary != sK4 <- (~13) [avatar component clause 350]
353. ~13 | ~12 [avatar split clause 348,343,350]
354. ~predn(mary) | room(sK4) | ~room(mary) [subsumption resolution 290,262]
355. ~predn(mary) | room(sK4) [subsumption resolution 354,261]
357. 14 <=> room(sK4) [avatar definition]
359. room(sK4) <- (14) [avatar component clause 357]
360. 14 | ~12 [avatar split clause 355,343,357]
367. mary = sK1 | paul = sK1 [resolution 263,273]
380. 17 <=> paul = sK1 [avatar definition]
382. paul = sK1 <- (17) [avatar component clause 380]
384. 18 <=> mary = sK1 [avatar definition]
386. mary = sK1 <- (18) [avatar component clause 384]
387. 17 | 18 [avatar split clause 367,384,380]
416. predn(mary) <- (18) [backward demodulation 275,386]
420. 12 | ~18 [avatar split clause 416,384,343]
421. mary = sK4 | paul = sK4 <- (14) [resolution 359,263]
422. paul = sK4 <- (~13, 14) [subsumption resolution 421,352]
423. $false <- (~11, ~13, 14) [subsumption resolution 422,341]
424. 11 | 13 | ~14 [avatar contradiction clause 423]
426. predk(paul) <- (17) [backward demodulation 274,382]
475. mary = X0 | ~predk(X0) | ~room(mary) | ~room(X0) [resolution 279,282]
477. ~predk(X0) | mary = X0 | ~room(X0) [subsumption resolution 475,261]
487. mary = paul | ~room(paul) <- (17) [resolution 426,477]
489. ~room(paul) <- (17) [subsumption resolution 487,225]
490. $false <- (17) [subsumption resolution 489,262]
491. ~17 [avatar contradiction clause 490]
493. $false [avatar sat refutation 346,353,360,387,420,424,491]
% SZS output end Proof for 6517111438925851168451883
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.097599 |
Jane, Darlene, Steven are the only persons in the room.
Someone anywhere is not funny, not wise, not old.
Jane is a funny tall wise person.
Everyone in the room is a kind happy person if they is a kind person.
More than one person in the room is a kind person.
Jane is a kind tall funny happy calm person.
Everyone in the room is humble only if they is generous.
Jane is a happy person.
Jane is the oldest anywhere.
|
It is not the case that “Darlene is a calm person”.
|
neutral
|
room(jane)&room(darlene)&room(steven)&(![X]:(room(X)=>(X='jane'|X='darlene'|X='steven')))&
(?[X]:(anywhere(X)&(~funny(X)&~wise(X)&~old(X))))&
(funny(jane)&tall(jane)&wise(jane)&person(jane))&
(![X]:(room(X)=>(((kind(X)&person(X))=>(kind(X)&happy(X)&person(X))))))&
((?[X,Y]:(room(X)&room(Y)&(kind(X)&person(X)&kind(Y)&person(Y))&(X!=Y))))&
(kind(jane)&tall(jane)&funny(jane)&happy(jane)&calm(jane)&person(jane))&
(![X]:(room(X)=>(((generous(X))<=(humble(X))))))&
(happy(jane)&person(jane))&
(![X]:((anywhere(X)&(X!=jane))=>older(X,jane)))
|
room(jane)&room(darlene)&room(steven)&(![X]:(room(X)=>(X='jane'|X='darlene'|X='steven')))&
~(calm(darlene)&person(darlene))
|
[] | null | 0.209966 |
There is a room.
More than one person in the room enjoys making ceramics.
Everyone in the room enjoys windsurfing if and only if they either can play the piano or practices tai chi but not both.
Only one person in the room has a pet dog.
Everyone in the room bakes bread at home and collects action figures only if they works on fridays.
Everyone in the room who works on fridays has a pet dog, works as a freelance web developer specializing in e-commerce sites or enjoys windsurfing.
No one in the room who has a pet dog, works as a freelance web developer specializing in e-commerce sites or enjoys windsurfing is a coffee connoisseur.
Everyone anywhere practices pilates or does not own a microscope.
|
Everyone in the room does not enjoy windsurfing or enjoys making ceramics.
|
neutral
|
(there_is_a_room)&
((?[X,Y]:(room(X)&room(Y)&(enjoys_making_ceramics(X)&enjoys_making_ceramics(Y))&(X!=Y))))&
(![X]:(room(X)=>(((enjoys_windsurfing(X))<=>(((can_play_the_piano(X))<~>(practices_tai_chi(X))))))))&
(((?[X]:(room(X)&has_a_pet_dog(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_pet_dog(X))&(has_a_pet_dog(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((works_on_fridays(X))<=(((bakes_bread_at_home(X))&(collects_action_figures(X))))))))&
(![X]:(room(X)=>(((works_on_fridays(X))=>(((has_a_pet_dog(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(enjoys_windsurfing(X))))))))&
(~?[X]:(room(X)=>(((((has_a_pet_dog(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(enjoys_windsurfing(X))))=>(is_a_coffee_connoisseur(X))))))&
(![X]:(anywhere(X)=>(((does_not_own_a_microscope(X))|(practices_pilates(X))))))&
(![X]:(room(X)=>(((practices_pilates(X))=>(collects_action_figures(X))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))<=(collects_action_figures(X))))))&
(![X]:(room(X)=>(((practices_tai_chi(X))=>(practices_pilates(X))))))&
(~![X]:(room(X)=>(((collects_action_figures(X))=>(has_a_pet_dog(X))))))&
(![X]:(~room(X)=>(((has_a_pet_dog(X))<=>(practices_pilates(X))))))&
(![X]:(room(X)=>(((practices_pilates(X))=>(owns_a_microscope(X))))))&
(![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))|(bakes_bread_at_home(X))))))&
(![X]:(room(X)=>(((bakes_bread_at_home(X))=>(enjoys_making_ceramics(X))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))|(does_not_practice_pilates(X))))))&
(((?[X]:(room(X)&enjoys_making_ceramics(X)))))&
((![X]:((makes_homemade_pastries(X))=>(((practices_tai_chi(X))&(watches_fantasy_movies(X))&(works_on_fridays(X)))))))&
(((?[X]:(room(X)&has_a_pet_dog(X)))))&
(?[X]:(room(X)&(((collects_action_figures(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))&
(((?[X]:(room(X)&watches_fantasy_movies(X)))&(![X,Y]:((room(X)&room(Y)&(watches_fantasy_movies(X))&(watches_fantasy_movies(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((practices_tai_chi(X))<=>(has_a_pet_dog(X))))))&
(![X]:(room(X)=>(((collects_rare_minerals(X))=>(((collects_rare_minerals(X))|(owns_a_microscope(X))|(makes_homemade_pastries(X))))))))&
(![X]:(anywhere(X)=>(((((collects_rare_minerals(X))|(owns_a_microscope(X))|(makes_homemade_pastries(X))))=>(enjoys_making_ceramics(X))))))&
(~![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(has_a_pet_dog(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((enjoys_making_ceramics(X))|(does_not_enjoy_windsurfing(X)))))
|
[] | null | 0.348487 |
Monica is the only person in the room. Everyone in the room does not practice digital art or practices digital art only if everyone in the room can play the piano if they does not practice digital art. Everyone in the room collects classic novels. Monica practices digital art. Everyone in the room is allergic to anything only if they collects classic novels. Everyone in the room practices digital art. Monica is allergic to anything.
|
Monica can play the piano.
|
neutral
|
room(monica)&(![X]:(room(X)=>(X='monica')))&
((![X]:(room(X)=>(((practices_digital_art(X))|(does_not_practice_digital_art(X))))))=>(![X]:(room(X)=>(((does_not_practice_digital_art(X))=>(can_play_the_piano(X)))))))&
(![X]:(room(X)=>(collects_classic_novels(X))))&
(practices_digital_art(monica))&
(![X]:(room(X)=>(((collects_classic_novels(X))<=(is_allergic_to_anything(X))))))&
(![X]:(room(X)=>(practices_digital_art(X))))&
(is_allergic_to_anything(monica))
|
room(monica)&(![X]:(room(X)=>(X='monica')))&
can_play_the_piano(monica)
|
[] | null | 0.043581 |
Charles, Helen are the only persons in the room. If 'everyone outside the room practices kickboxing or does not read mystery novels' then 'everyone in the room enjoys writing detailed reviews of new and classic board games if they practices kickboxing'. Helen streams on Twitch. Charles maintains a personal blog focused on cybersecurity tips or owns a telescope or both. If someone is a Linux enthusiast then he/she enjoys fishing. Not everyone in the room who either streams on Twitch or does not read mystery novels but not both practices kickboxing and writes a travel blog. Charles enjoys origami. Everyone anywhere who maintains a large, organic vegetable garden year-round enjoys fishing. Everyone outside the room who enjoys fishing owns a telescope. Everyone in the room who owns a telescope practices kickboxing. Everyone in the room practices kickboxing. Helen is a Linux enthusiast. Helen has completed a triathlon. If someone streams on Twitch then he/she enjoys writing detailed reviews of new and classic board games and vice versa. Everyone anywhere practices and performs acrobatic dance routines and reads mystery novels. Everyone anywhere does not have completed a triathlon if they enjoys kayaking and vice versa. Everyone in the room enjoys writing detailed reviews of new and classic board games if they practices kickboxing.
|
Everyone in the room does not have completed a triathlon or streams on Twitch.
|
entailment
|
room(charles)&room(helen)&(![X]:(room(X)=>(X='charles'|X='helen')))&
((![X]:(~room(X)=>(((does_not_read_mystery_novels(X))|(practices_kickboxing(X))))))=>(![X]:(room(X)=>(((practices_kickboxing(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))&
(streams_on_Twitch(helen))&
(((maintains_a_personal_blog_focused_on_cybersecurity_tips(charles))|(owns_a_telescope(charles))))&
((![X]:((is_a_Linux_enthusiast(X))=>(enjoys_fishing(X)))))&
(~![X]:(room(X)=>(((((streams_on_Twitch(X))<~>(does_not_read_mystery_novels(X))))=>(((practices_kickboxing(X))&(writes_a_travel_blog(X))))))))&
(enjoys_origami(charles))&
(![X]:(anywhere(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(enjoys_fishing(X))))))&
(![X]:(~room(X)=>(((enjoys_fishing(X))=>(owns_a_telescope(X))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))=>(practices_kickboxing(X))))))&
(![X]:(room(X)=>(practices_kickboxing(X))))&
(is_a_Linux_enthusiast(helen))&
(has_completed_a_triathlon(helen))&
((![X]:((streams_on_Twitch(X))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))&
(![X]:(anywhere(X)=>(((practices_and_performs_acrobatic_dance_routines(X))&(reads_mystery_novels(X))))))&
(![X]:(anywhere(X)=>(((does_not_have_completed_a_triathlon(X))<=>(enjoys_kayaking(X))))))&
(![X]:(room(X)=>(((practices_kickboxing(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))
|
room(charles)&room(helen)&(![X]:(room(X)=>(X='charles'|X='helen')))&
![X]:(room(X)=>(((streams_on_Twitch(X))|(does_not_have_completed_a_triathlon(X)))))
|
[
"p0",
"p2",
"p10",
"p13",
"p16",
"hypothesis"
] |
% SZS status Unsatisfiable for 9199130483463196832368864
% SZS output start Proof for 9199130483463196832368864
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
46. predd(paul) [input p2]
54. ! [X0] : (room(X0) => predh(X0)) [input p10]
57. ! [X0] : (predd(X0) <=> predn(X0)) [input p13]
60. ! [X0] : (room(X0) => (predh(X0) => predn(X0))) [input p16]
61. ~(! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
63. ~(! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 61]
140. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
141. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 140]
150. ! [X0] : (predh(X0) | ~room(X0)) [ennf transformation 54]
153. ! [X0] : ((predn(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 60]
154. ! [X0] : (predn(X0) | ~predh(X0) | ~room(X0)) [flattening 153]
155. ? [X0] : ((predg(X0) & ~predd(X0)) & room(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 63]
156. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 155]
157. ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction]
158. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) | sP0 | ~room(paul) | ~room(mary) [definition folding 156,157]
167. ! [X0] : ((predd(X0) | ~predn(X0)) & (predn(X0) | ~predd(X0))) [nnf transformation 57]
169. ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 157]
170. ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 169]
171. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
172. (paul != sK3 & mary != sK3 & room(sK3)) | ~sP0 [skolemisation 170,171]
173. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) => (predg(sK4) & ~predd(sK4) & room(sK4)) [choice axiom]
174. (predg(sK4) & ~predd(sK4) & room(sK4)) | sP0 | ~room(paul) | ~room(mary) [skolemisation 158,173]
256. room(mary) [cnf transformation 141]
257. room(paul) [cnf transformation 141]
258. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 141]
262. predd(paul) [cnf transformation 46]
269. ~room(X0) | predh(X0) [cnf transformation 150]
273. ~predn(X0) | predd(X0) [cnf transformation 167]
277. predn(X0) | ~predh(X0) | ~room(X0) [cnf transformation 154]
278. room(sK3) | ~sP0 [cnf transformation 172]
279. mary != sK3 | ~sP0 [cnf transformation 172]
280. paul != sK3 | ~sP0 [cnf transformation 172]
281. room(sK4) | sP0 | ~room(paul) | ~room(mary) [cnf transformation 174]
282. ~predd(sK4) | sP0 | ~room(paul) | ~room(mary) [cnf transformation 174]
315. ~room(X0) | predn(X0) [subsumption resolution 277,269]
317. 7 <=> sP0 [avatar definition]
321. 8 <=> paul = sK3 [avatar definition]
324. ~7 | ~8 [avatar split clause 280,321,317]
326. 9 <=> mary = sK3 [avatar definition]
328. mary != sK3 <- (~9) [avatar component clause 326]
329. ~7 | ~9 [avatar split clause 279,326,317]
331. 10 <=> room(sK3) [avatar definition]
333. room(sK3) <- (10) [avatar component clause 331]
334. ~7 | 10 [avatar split clause 278,331,317]
342. ~predd(sK4) | sP0 | ~room(mary) [subsumption resolution 282,257]
343. ~predd(sK4) | sP0 [subsumption resolution 342,256]
345. 12 <=> predd(sK4) [avatar definition]
347. ~predd(sK4) <- (~12) [avatar component clause 345]
348. 7 | ~12 [avatar split clause 343,345,317]
349. room(sK4) | sP0 | ~room(mary) [subsumption resolution 281,257]
350. room(sK4) | sP0 [subsumption resolution 349,256]
352. 13 <=> room(sK4) [avatar definition]
354. room(sK4) <- (13) [avatar component clause 352]
355. 7 | 13 [avatar split clause 350,352,317]
367. predn(mary) [resolution 315,256]
373. predd(mary) [resolution 367,273]
378. mary = sK3 | paul = sK3 <- (10) [resolution 258,333]
388. paul = sK3 <- (~9, 10) [subsumption resolution 378,328]
391. 8 | 9 | ~10 [avatar split clause 388,331,326,321]
400. mary = sK4 | paul = sK4 <- (13) [resolution 354,258]
404. 16 <=> paul = sK4 [avatar definition]
406. paul = sK4 <- (16) [avatar component clause 404]
408. 17 <=> mary = sK4 [avatar definition]
410. mary = sK4 <- (17) [avatar component clause 408]
411. 16 | 17 | ~13 [avatar split clause 400,352,408,404]
415. ~predd(paul) <- (~12, 16) [backward demodulation 347,406]
417. $false <- (~12, 16) [subsumption resolution 415,262]
418. 12 | ~16 [avatar contradiction clause 417]
422. ~predd(mary) <- (~12, 17) [backward demodulation 347,410]
424. $false <- (~12, 17) [subsumption resolution 422,373]
425. 12 | ~17 [avatar contradiction clause 424]
427. $false [avatar sat refutation 324,329,334,348,355,391,411,418,425]
% SZS output end Proof for 9199130483463196832368864
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0 |
Eugene, David, Donna are the only persons in the room. Not everyone in the room enjoys bird watching if they does not enjoy camping and organizing outdoor survival workshops. Eugene enjoys bird watching. Everyone in the room who is a chess master who participates in national tournaments, trains for and competes in international triathlons or can play the flute owns a high-end gaming PC with custom-built components, has lived in exactly three countries and enjoys camping and organizing outdoor survival workshops. Donna who has lived in exactly three countries enjoys bird watching.
|
David can play the flute.
|
contradiction
|
room(eugene)&room(david)&room(donna)&(![X]:(room(X)=>(X='eugene'|X='david'|X='donna')))&
((((?[X]:(room(X)&plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))=>((![X]:((does_not_have_lived_in_exactly_three_countries(X))=>(~((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(collects_antique_clocks(X))))))))&
((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(david))=>((?[X,Y]:(room(X)&room(Y)&(((does_not_play_eSports_competitively(X))|(trains_for_and_competes_in_international_triathlons(X)))&((does_not_play_eSports_competitively(Y))|(trains_for_and_competes_in_international_triathlons(Y))))&(X!=Y)))))&
(![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))<=(has_a_piercing(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(has_lived_in_exactly_three_countries(X))))))&
(~![X]:(room(X)=>(((enjoys_stargazing(X))<=(has_lived_in_exactly_three_countries(X))))))&
(cannot_play_the_flute(donna))&
(trains_for_and_competes_in_international_triathlons(donna))&
(does_not_practice_kickboxing(david))&
(![X]:(~room(X)=>(((((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<~>(is_right-handed(X))))<=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))&
(![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))&
(![X]:(room(X)=>(((((enjoys_stargazing(X))&(has_a_piercing(X))))=>(has_a_piercing(X))))))&
(![X]:(room(X)=>(((has_a_piercing(X))<=>(does_not_watche_fantasy_movies(X))))))&
(?[X]:(room(X)&(frequently_participates_in_hackathons_and_coding_competitions(X))))&
(frequently_participates_in_hackathons_and_coding_competitions(donna))&
(has_a_piercing(eugene))&
(~![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(enjoys_bird_watching(X))))))&
(![X]:(room(X)=>(((((collects_vintage_vinyl_records(X))&(enjoys_rooftop_gardening(X))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))&
(![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(enjoys_bird_watching(X))))))&
(enjoys_bird_watching(eugene))&
(![X]:(room(X)=>(((((is_a_chess_master_who_participates_in_national_tournaments(X))|(trains_for_and_competes_in_international_triathlons(X))|(can_play_the_flute(X))))=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))&(has_lived_in_exactly_three_countries(X))&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))))&
((?[X,Y]:(room(X)&room(Y)&(((does_not_play_eSports_competitively(X))|(trains_for_and_competes_in_international_triathlons(X)))&((does_not_play_eSports_competitively(Y))|(trains_for_and_competes_in_international_triathlons(Y))))&(X!=Y))))&
(![X]:(room(X)=>(((((plays_eSports_competitively(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(has_lived_in_exactly_three_countries(X))))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))&
((has_lived_in_exactly_three_countries(donna))&(enjoys_bird_watching(donna)))&
(has_a_tattoo(eugene))&
((![X]:((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<=>(has_lived_in_exactly_three_countries(X)))))&
(is_not_a_member_of_a_local_theater_group_specializing_in_improv(eugene))
|
room(eugene)&room(david)&room(donna)&(![X]:(room(X)=>(X='eugene'|X='david'|X='donna')))&
can_play_the_flute(david)
|
[
"p0",
"p16",
"p19",
"p20",
"p23",
"hypothesis"
] |
% SZS status Unsatisfiable for 3328560151141202666982448
% SZS output start Proof for 3328560151141202666982448
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
60. ~! [X0] : (room(X0) => (~predb(X0) => predx(X0))) [input p16]
63. predx(mary) [input p19]
64. ! [X0] : (room(X0) => ((predl(X0) | predz(X0) | predo(X0)) => (predb(X0) & predt(X0) & prede(X0)))) [input p20]
67. predx(fred) & predt(fred) [input p23]
71. predl(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
80. predx(fred) [pure predicate removal 67]
81. ! [X0] : (room(X0) => ((predl(X0) | predz(X0) | predo(X0)) => (predb(X0) & prede(X0)))) [pure predicate removal 64]
82. ! [X0] : (room(X0) => ((predl(X0) | predz(X0)) => (predb(X0) & prede(X0)))) [pure predicate removal 81]
163. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
164. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 163]
170. ? [X0] : ((~predx(X0) & ~predb(X0)) & room(X0)) [ennf transformation 60]
171. ? [X0] : (~predx(X0) & ~predb(X0) & room(X0)) [flattening 170]
174. ! [X0] : (((predb(X0) & prede(X0)) | (~predl(X0) & ~predz(X0))) | ~room(X0)) [ennf transformation 82]
175. ! [X0] : ((predb(X0) & prede(X0)) | (~predl(X0) & ~predz(X0)) | ~room(X0)) [flattening 174]
176. predl(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 71]
177. predl(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 176]
185. ? [X0] : (~predx(X0) & ~predb(X0) & room(X0)) => (~predx(sK2) & ~predb(sK2) & room(sK2)) [choice axiom]
186. ~predx(sK2) & ~predb(sK2) & room(sK2) [skolemisation 171,185]
270. room(paul) [cnf transformation 164]
272. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 164]
285. room(sK2) [cnf transformation 186]
286. ~predb(sK2) [cnf transformation 186]
287. ~predx(sK2) [cnf transformation 186]
289. predx(mary) [cnf transformation 63]
293. ~predl(X0) | predb(X0) | ~room(X0) [cnf transformation 175]
297. predx(fred) [cnf transformation 80]
302. predl(paul) [cnf transformation 177]
390. predb(paul) | ~room(paul) [resolution 293,302]
391. predb(paul) [subsumption resolution 390,270]
445. paul = sK2 | mary = sK2 | fred = sK2 [resolution 272,285]
475. 21 <=> fred = sK2 [avatar definition]
477. fred = sK2 <- (21) [avatar component clause 475]
479. 22 <=> mary = sK2 [avatar definition]
481. mary = sK2 <- (22) [avatar component clause 479]
483. 23 <=> paul = sK2 [avatar definition]
485. paul = sK2 <- (23) [avatar component clause 483]
486. 21 | 22 | 23 [avatar split clause 445,483,479,475]
532. ~predx(fred) <- (21) [backward demodulation 287,477]
537. $false <- (21) [subsumption resolution 532,297]
538. ~21 [avatar contradiction clause 537]
560. ~predx(mary) <- (22) [backward demodulation 287,481]
561. $false <- (22) [subsumption resolution 560,289]
562. ~22 [avatar contradiction clause 561]
572. ~predb(paul) <- (23) [backward demodulation 286,485]
577. $false <- (23) [subsumption resolution 572,391]
578. ~23 [avatar contradiction clause 577]
579. $false [avatar sat refutation 486,538,562,578]
% SZS output end Proof for 3328560151141202666982448
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.049265 |
Lupe, Lauren, Armando are the only persons in the room. If someone in the room builds model airplanes then no one in the room is a Linux enthusiast if they is not a scotch connoisseur or is a cybersecurity expert or both. If everyone in the room is a drone photographer or does not collect first edition books then everyone in the room enjoys rooftop gardening only if they does not build model airplanes. Either everyone in the room practices digital art or does not collect foreign coins or everyone in the room does enjoy trail running but not both. Lupe mentors a youth basketball team on weekends. If someone mentors a youth basketball team on weekends then he/she enjoys macrame. Lupe does not enjoy spelunking. Lauren does practice yoga. More than one person outside the room does not collect first edition books. Everyone outside the room who mentors a youth basketball team on weekends does enjoy trail running. Lauren collects foreign coins. Everyone in the room who collects foreign coins enjoys logic puzzles.
|
Lauren builds model airplanes.
|
contradiction
|
room(lupe)&room(lauren)&room(armando)&(![X]:(room(X)=>(X='lupe'|X='lauren'|X='armando')))&
((?[X]:(room(X)&(builds_model_airplanes(X))))=>(~?[X]:(room(X)=>(((((is_not_a_scotch_connoisseur(X))|(is_a_cybersecurity_expert(X))))=>(is_a_Linux_enthusiast(X)))))))&
((![X]:(room(X)=>(((does_not_collect_first_edition_books(X))|(is_a_drone_photographer(X))))))=>(![X]:(room(X)=>(((does_not_build_model_airplanes(X))<=(enjoys_rooftop_gardening(X)))))))&
((![X]:(room(X)=>(((does_not_collect_foreign_coins(X))|(practices_digital_art(X))))))<~>(![X]:(room(X)=>(does_enjoy_trail_running(X)))))&
(mentors_a_youth_basketball_team_on_weekends(lupe))&
((![X]:((mentors_a_youth_basketball_team_on_weekends(X))=>(enjoys_macrame(X)))))&
(does_not_enjoy_spelunking(lupe))&
(does_practice_yoga(lauren))&
((?[X,Y]:(~room(X)&~room(Y)&(does_not_collect_first_edition_books(X)&does_not_collect_first_edition_books(Y))&(X!=Y))))&
(![X]:(~room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(does_enjoy_trail_running(X))))))&
(collects_foreign_coins(lauren))&
(![X]:(room(X)=>(((collects_foreign_coins(X))=>(enjoys_logic_puzzles(X))))))
|
room(lupe)&room(lauren)&room(armando)&(![X]:(room(X)=>(X='lupe'|X='lauren'|X='armando')))&
builds_model_airplanes(lauren)
|
[
"p0",
"p1",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 2927156486301780149710315
% SZS output start Proof for 2927156486301780149710315
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. ? [X0] : (predl(X0) & room(X0)) => ~? [X0] : (room(X0) => ((predb(X0) | ~predh(X0)) => predi(X0))) [input p1]
52. ? [X0,X1] : (X0 != X1 & ~predm(X1) & ~predm(X0) & ~room(X1) & ~room(X0)) [input p8]
56. predl(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
57. ? [X0] : (predl(X0) & room(X0)) => ~? [X1] : (room(X1) => ((predb(X1) | ~predh(X1)) => predi(X1))) [rectify 45]
65. ? [X0,X1] : (X0 != X1 & ~room(X1) & ~room(X0)) [pure predicate removal 52]
66. ? [X0] : (predl(X0) & room(X0)) => ~? [X1] : (room(X1) => ~(predb(X1) | ~predh(X1))) [pure predicate removal 57]
67. ? [X0] : (predl(X0) & room(X0)) => ~? [X1] : ~room(X1) [pure predicate removal 66]
140. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
141. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 140]
142. ! [X1] : room(X1) | ! [X0] : (~predl(X0) | ~room(X0)) [ennf transformation 67]
147. predl(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 56]
148. predl(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147]
150. ! [X0] : room(X0) | ! [X1] : (~predl(X1) | ~room(X1)) [rectify 142]
156. ? [X0,X1] : (X0 != X1 & ~room(X1) & ~room(X0)) => (sK2 != sK3 & ~room(sK3) & ~room(sK2)) [choice axiom]
157. sK2 != sK3 & ~room(sK3) & ~room(sK2) [skolemisation 65,156]
239. room(paul) [cnf transformation 141]
242. room(X0) | ~predl(X1) | ~room(X1) [cnf transformation 150]
251. ~room(sK2) [cnf transformation 157]
260. predl(paul) [cnf transformation 148]
262. 1 <=> ! [X1] : (~predl(X1) | ~room(X1)) [avatar definition]
263. ~predl(X1) | ~room(X1) <- (1) [avatar component clause 262]
265. 2 <=> ! [X0] : room(X0) [avatar definition]
266. room(X0) <- (2) [avatar component clause 265]
267. 1 | 2 [avatar split clause 242,265,262]
301. $false <- (2) [resolution 266,251]
304. ~2 [avatar contradiction clause 301]
305. ~room(paul) <- (1) [resolution 263,260]
306. $false <- (1) [subsumption resolution 305,239]
307. ~1 [avatar contradiction clause 306]
308. $false [avatar sat refutation 267,304,307]
% SZS output end Proof for 2927156486301780149710315
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.115189 |
Kimberlya, Kimberly, Corazon are the only persons in the room.
If “not everyone anywhere is not a craft beer aficionado or is a tea enthusiast” then “no one in the room who is not a craft beer aficionado practices tai chi” otherwise “everyone in the room who practices tai chi competes in national level swimming championships”.
If “everyone in the room does not own an extensive assortment of vintage comic book memorabilia or is a skilled home brewer experimenting with craft beer recipes” then “everyone in the room who does not own an extensive assortment of vintage comic book memorabilia enjoys stand-up paddleboarding”.
If “everyone in the room is not allergic to anything or enjoys stand-up paddleboarding” then “everyone in the room who is not allergic to anything is a skilled home brewer experimenting with craft beer recipes” otherwise “no one in the room who is a skilled home brewer experimenting with craft beer recipes plays the drums”.
Everyone anywhere who owns an extensive assortment of vintage comic book memorabilia is a dedicated volunteer for local community service projects.
Everyone in the room is a dedicated volunteer for local community service projects if they practices tai chi and vice versa.
Everyone in the room who practices tai chi owns an extensive assortment of vintage comic book memorabilia or participates in long-distance cycling events across the country or both.
Everyone in the room who owns an extensive assortment of vintage comic book memorabilia or participates in long-distance cycling events across the country or both participates in long-distance cycling events across the country.
Everyone in the room who participates in long-distance cycling events across the country does not have a saltwater aquarium.
Not everyone in the room does not have a saltwater aquarium if they is allergic to anything and vice versa.
Everyone in the room competes in national level swimming championships or owns an extensive assortment of vintage comic book memorabilia or both if they has a saltwater aquarium and vice versa.
Everyone in the room owns an extensive assortment of vintage comic book memorabilia if they is a dedicated volunteer for local community service projects and vice versa.
|
Corazon practices tai chi.
|
contradiction
|
room(kimberlya)&room(kimberly)&room(corazon)&(![X]:(room(X)=>(X='kimberlya'|X='kimberly'|X='corazon')))&
(((~![X]:(anywhere(X)=>(((is_a_tea_enthusiast(X))|(is_not_a_craft_beer_aficionado(X))))))=>(~?[X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))=>(practices_tai_chi(X)))))))&((~(~![X]:(anywhere(X)=>(((is_a_tea_enthusiast(X))|(is_not_a_craft_beer_aficionado(X)))))))=>(![X]:(room(X)=>(((practices_tai_chi(X))=>(competes_in_national_level_swimming_championships(X))))))))&
((![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(enjoys_stand-up_paddleboarding(X)))))))&
(((![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(is_not_allergic_to_anything(X))))))=>(![X]:(room(X)=>(((is_not_allergic_to_anything(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))&((~(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(is_not_allergic_to_anything(X)))))))=>(~?[X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(plays_the_drums(X))))))))&
(![X]:(anywhere(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))<=>(practices_tai_chi(X))))))&
(![X]:(room(X)=>(((practices_tai_chi(X))=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(participates_in_long-distance_cycling_events_across_the_country(X))))))))&
(![X]:(room(X)=>(((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(participates_in_long-distance_cycling_events_across_the_country(X))))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))&
(![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(does_not_have_a_saltwater_aquarium(X))))))&
(~![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))<=>(is_allergic_to_anything(X))))))&
(![X]:(room(X)=>(((((competes_in_national_level_swimming_championships(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))<=>(has_a_saltwater_aquarium(X))))))&
(![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=(has_a_saltwater_aquarium(X))))))&
(![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))<=(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))&
(![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))&
(![X]:(room(X)=>(((collect_rare_sneakers(X))=>(enjoys_stand-up_paddleboarding(X))))))&
(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))<=>(collect_rare_sneakers(X))))))&
((![X]:((collects_rare_and_antique_scientific_instruments(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X)))))&
(![X]:(room(X)=>(((practices_tai_chi(X))=>(competes_in_national_level_swimming_championships(X))))))&
(~![X]:(room(X)=>(((((plays_the_drums(X))|(competes_in_national_level_swimming_championships(X))))=>(is_a_tea_enthusiast(X))))))&
(~(?[X]:(room(X)&(does_not_develop_open-source_software_projects_in_their_free_time(X)))))&
(![X]:(room(X)=>(((((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(enjoys_stand-up_paddleboarding(X))))<=(has_a_saltwater_aquarium(X))))))
|
room(kimberlya)&room(kimberly)&room(corazon)&(![X]:(room(X)=>(X='kimberlya'|X='kimberly'|X='corazon')))&
practices_tai_chi(corazon)
|
[
"p0",
"p5",
"p7",
"p8",
"p10",
"p12",
"hypothesis"
] |
% SZS status Unsatisfiable for 3999362835588290802176104
% SZS output start Proof for 3999362835588290802176104
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
49. ! [X0] : (room(X0) => (predb(X0) <=> predw(X0))) [input p5]
51. ! [X0] : (room(X0) => ((predr(X0) | predq(X0)) => predr(X0))) [input p7]
52. ! [X0] : (room(X0) => (predr(X0) => ~predd(X0))) [input p8]
54. ! [X0] : (room(X0) => ((predq(X0) | predp(X0)) <=> predd(X0))) [input p10]
56. ! [X0] : (room(X0) => (predq(X0) <=> predb(X0))) [input p12]
66. predw(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
147. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
148. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147]
157. ! [X0] : ((predb(X0) <=> predw(X0)) | ~room(X0)) [ennf transformation 49]
160. ! [X0] : ((predr(X0) | (~predr(X0) & ~predq(X0))) | ~room(X0)) [ennf transformation 51]
161. ! [X0] : (predr(X0) | (~predr(X0) & ~predq(X0)) | ~room(X0)) [flattening 160]
162. ! [X0] : ((~predd(X0) | ~predr(X0)) | ~room(X0)) [ennf transformation 52]
163. ! [X0] : (~predd(X0) | ~predr(X0) | ~room(X0)) [flattening 162]
165. ! [X0] : (((predq(X0) | predp(X0)) <=> predd(X0)) | ~room(X0)) [ennf transformation 54]
168. ! [X0] : ((predq(X0) <=> predb(X0)) | ~room(X0)) [ennf transformation 56]
176. predw(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 66]
177. predw(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 176]
188. ! [X0] : (((predb(X0) | ~predw(X0)) & (predw(X0) | ~predb(X0))) | ~room(X0)) [nnf transformation 157]
193. ! [X0] : ((((predq(X0) | predp(X0)) | ~predd(X0)) & (predd(X0) | (~predq(X0) & ~predp(X0)))) | ~room(X0)) [nnf transformation 165]
194. ! [X0] : (((predq(X0) | predp(X0) | ~predd(X0)) & (predd(X0) | (~predq(X0) & ~predp(X0)))) | ~room(X0)) [flattening 193]
195. ! [X0] : (((predq(X0) | ~predb(X0)) & (predb(X0) | ~predq(X0))) | ~room(X0)) [nnf transformation 168]
282. room(fred) [cnf transformation 148]
301. ~predw(X0) | predb(X0) | ~room(X0) [cnf transformation 188]
303. ~predq(X0) | predr(X0) | ~room(X0) [cnf transformation 161]
305. ~predd(X0) | ~predr(X0) | ~room(X0) [cnf transformation 163]
310. ~predq(X0) | predd(X0) | ~room(X0) [cnf transformation 194]
314. ~predb(X0) | predq(X0) | ~room(X0) [cnf transformation 195]
326. predw(fred) [cnf transformation 177]
427. predb(fred) | ~room(fred) [resolution 301,326]
428. predb(fred) [subsumption resolution 427,282]
430. predq(fred) | ~room(fred) [resolution 314,428]
431. predq(fred) [subsumption resolution 430,282]
432. predd(fred) | ~room(fred) [resolution 431,310]
433. predr(fred) | ~room(fred) [resolution 431,303]
435. predd(fred) [subsumption resolution 432,282]
436. predr(fred) [subsumption resolution 433,282]
438. ~predr(fred) | ~room(fred) [resolution 435,305]
439. ~room(fred) [subsumption resolution 438,436]
440. $false [subsumption resolution 439,282]
% SZS output end Proof for 3999362835588290802176104
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.668993 |
Barbara is the only person in the room.
If Barbara practices graffiti art then if someone neither collects limited-edition art prints from contemporary artists nor collects historical artifacts related to ancient civilizations then he/she is not an amateur astronomer who builds and uses custom telescopes.
If Barbara either makes intricate hand-cut paper art for exhibitions or travels domestically frequently but not both then Barbara is allergic to anything.
If Barbara is allergic to anything then it is not the case that Barbara enjoys salsa dancing.
If Barbara owns an extensive assortment of vintage comic book memorabilia and has completed a triathlon then Barbara enjoys skydiving.
|
Barbara enjoys skydiving.
|
neutral
|
room(barbara)&(![X]:(room(X)=>(X='barbara')))&
((practices_graffiti_art(barbara))=>((![X]:((~((collects_limited-edition_art_prints_from_contemporary_artists(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(((((makes_intricate_hand-cut_paper_art_for_exhibitions(barbara))<~>(travels_domestically_frequently(barbara))))=>(is_allergic_to_anything(barbara)))&
((is_allergic_to_anything(barbara))=>(~(enjoys_salsa_dancing(barbara)))))&
(((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(barbara))&(has_completed_a_triathlon(barbara))))=>(enjoys_skydiving(barbara)))&
((enjoys_skydiving(barbara))=>(is_not_allergic_to_anything(barbara))))&
(is_a_scotch_connoisseur(barbara))&
(enjoys_salsa_dancing(barbara))&
(((does_not_collect_rare_sneakers(barbara))<~>(practices_graffiti_art(barbara))))&
(practices_graffiti_art(barbara))&
((travels_domestically_frequently(barbara))&(collects_antique_clocks(barbara)))
|
room(barbara)&(![X]:(room(X)=>(X='barbara')))&
enjoys_skydiving(barbara)
|
[] | null | 0.25948 |
David, Monica, Dale, Thomas, Margo are the only persons in the room. Either “everyone in the room does not practice yoga” or “everyone in the room collects first edition books” but not both. “Everyone in the room does not collect action figures, does not collect rare and antique scientific instruments or does not volunteer for local environmental conservation projects” only if “everyone in the room either is not an enthusiastic bird watcher who travels for rare sightings or does not enjoy salsa dancing but not both”. If “everyone in the room does not write a travel blog or does not have a pet dog or both” then “everyone in the room either does not write a travel blog or owns a 3D printer but not both”. If “everyone in the room either does not write a travel blog or owns a 3D printer but not both” then “everyone outside the room does not use a Windows laptop”. “No one outside the room is not passionate about collecting and restoring classic cars” if “everyone in the room does not create YouTube content, does not collect first edition books or does not volunteer for local environmental conservation projects” and vice versa. “Everyone in the room does not create YouTube content” if “everyone in the room does not enjoy salsa dancing” and vice versa. “At least one person in the room does not have a pet dog” only if “everyone in the room does not enjoy kayaking”. If “not everyone in the room does not use a Windows laptop” then “everyone in the room does not have a pet dog, does not collect first edition books or does not enjoy deep-sea diving and exploring underwater caves”. If “everyone in the room does not have a pet dog, does not collect first edition books or does not enjoy deep-sea diving and exploring underwater caves” then “everyone anywhere does not enjoy camping and organizing outdoor survival workshops”. David dreamt that “more than one person in the room does not write a travel blog”. Everyone in the room either is not a wine connoisseur with a private cellar of vintage wines or does not practice yoga but not both.
|
Dale enjoys deep-sea diving and exploring underwater caves.
|
contradiction
|
room(david)&room(monica)&room(dale)&room(thomas)&room(margo)&(![X]:(room(X)=>(X='david'|X='monica'|X='dale'|X='thomas'|X='margo')))&
((![X]:(room(X)=>(does_not_practice_yoga(X))))<~>(![X]:(room(X)=>(collects_first_edition_books(X)))))&
((![X]:(room(X)=>(((does_not_collect_action_figures(X))|(does_not_collect_rare_and_antique_scientific_instruments(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))=>(![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<~>(does_not_enjoy_salsa_dancing(X)))))))&
(((![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(does_not_have_a_pet_dog(X))))))=>(![X]:(room(X)=>(((does_not_write_a_travel_blog(X))<~>(owns_a_3D_printer(X)))))))&
((![X]:(room(X)=>(((does_not_write_a_travel_blog(X))<~>(owns_a_3D_printer(X))))))=>(![X]:(~room(X)=>(does_not_use_a_Windows_laptop(X))))))&
((![X]:(room(X)=>(((does_not_create_YouTube_content(X))|(does_not_collect_first_edition_books(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))<=>(~?[X]:(~room(X)=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))&
((![X]:(room(X)=>(does_not_enjoy_salsa_dancing(X))))<=>(![X]:(room(X)=>(does_not_create_YouTube_content(X)))))&
((((?[X]:(room(X)&does_not_have_a_pet_dog(X)))))=>(![X]:(room(X)=>(does_not_enjoy_kayaking(X)))))&
(((~![X]:(room(X)=>(does_not_use_a_Windows_laptop(X))))=>(![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(does_not_collect_first_edition_books(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X)))))))&
((![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(does_not_collect_first_edition_books(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))=>(![X]:(anywhere(X)=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))&
((david_dream=>((?[X,Y]:(room(X)&room(Y)&(does_not_write_a_travel_blog(X)&does_not_write_a_travel_blog(Y))&(X!=Y))))))&
(![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<~>(does_not_practice_yoga(X))))))&
(((?[X]:(room(X)&is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))&
(![X]:(anywhere(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(does_not_have_a_pet_dog(X))))))&
(![X]:(room(X)=>(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))&
(![X]:(room(X)=>(does_not_use_a_Windows_laptop(X))))&
((![X]:((collects_rare_and_antique_scientific_instruments(X))=>(((does_not_enjoy_kayaking(X))&(does_not_enjoy_salsa_dancing(X)))))))&
(![X]:(anywhere(X)=>(does_not_read_mystery_novels(X))))&
(![X]:(room(X)=>(((((does_not_own_a_microscope(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))|(does_not_have_a_pet_dog(X))))=>(((does_not_write_a_travel_blog(X))<~>(does_not_bake_bread_at_home(X))))))))&
(((?[X]:(room(X)&does_not_own_a_3D_printer(X)))))&
(![X]:(room(X)=>(((((does_not_use_a_Windows_laptop(X))&(does_not_practice_yoga(X))&(does_not_enjoy_salsa_dancing(X))))=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))
|
room(david)&room(monica)&room(dale)&room(thomas)&room(margo)&(![X]:(room(X)=>(X='david'|X='monica'|X='dale'|X='thomas'|X='margo')))&
enjoys_deep-sea_diving_and_exploring_underwater_caves(dale)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 6659025635717067288252371
% SZS output start Proof for 6659025635717067288252371
44. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X0] : (~predg(X0) & room(X0)) & ! [X0] : (room(X0) => ((~preda(X0) | ~preds(X0) | ~predy(X0)) => (~predd(X0) <~> ~predb(X0)))) & ! [X0] : (anywhere(X0) => ~predl(X0)) & ! [X0] : (predn(X0) => (~predq(X0) & ~predj(X0))) & ! [X0] : (room(X0) => ~predw(X0)) & ! [X0] : (room(X0) => ~predi(X0)) & ! [X0] : (anywhere(X0) => (~preda(X0) | ~predi(X0))) & ? [X0] : (~predo(X0) & room(X0)) & ! [X0] : (room(X0) => (~predh(X0) <~> ~predx(X0))) & (mary_dream => ? [X0,X1] : (X0 != X1 & ~predd(X1) & ~predd(X0) & room(X1) & room(X0))) & (! [X0] : (room(X0) => (~predi(X0) | ~predv(X0) | ~preda(X0))) => ! [X0] : (anywhere(X0) => ~predm(X0))) & (~! [X0] : (room(X0) => ~predw(X0)) => ! [X0] : (room(X0) => (~predi(X0) | ~predv(X0) | ~preda(X0)))) & (? [X0] : (~preda(X0) & room(X0)) => ! [X0] : (room(X0) => ~predj(X0))) & (! [X0] : (room(X0) => ~predq(X0)) <=> ! [X0] : (room(X0) => ~predp(X0))) & (! [X0] : (room(X0) => (~preds(X0) | ~predv(X0) | ~predp(X0))) <=> ~? [X0] : (~room(X0) => ~predt(X0))) & (! [X0] : (room(X0) => (~predd(X0) <~> predg(X0))) => ! [X0] : (~room(X0) => ~predw(X0))) & (! [X0] : (room(X0) => (~preda(X0) | ~predd(X0))) => ! [X0] : (room(X0) => (~predd(X0) <~> predg(X0)))) & (! [X0] : (room(X0) => (~preds(X0) | ~predn(X0) | ~predf(X0))) => ! [X0] : (room(X0) => (~predo(X0) <~> ~predq(X0)))) & (! [X0] : (room(X0) => ~predx(X0)) <~> ! [X0] : (room(X0) => predv(X0))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. predi(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
46. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (room(X2) => ((~preda(X2) | ~preds(X2) | ~predy(X2)) => (~predd(X2) <~> ~predb(X2)))) & ! [X3] : (anywhere(X3) => ~predl(X3)) & ! [X4] : (predn(X4) => (~predq(X4) & ~predj(X4))) & ! [X5] : (room(X5) => ~predw(X5)) & ! [X6] : (room(X6) => ~predi(X6)) & ! [X7] : (anywhere(X7) => (~preda(X7) | ~predi(X7))) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (room(X9) => (~predh(X9) <~> ~predx(X9))) & (mary_dream => ? [X10,X11] : (X10 != X11 & ~predd(X11) & ~predd(X10) & room(X11) & room(X10))) & (! [X12] : (room(X12) => (~predi(X12) | ~predv(X12) | ~preda(X12))) => ! [X13] : (anywhere(X13) => ~predm(X13))) & (~! [X14] : (room(X14) => ~predw(X14)) => ! [X15] : (room(X15) => (~predi(X15) | ~predv(X15) | ~preda(X15)))) & (? [X16] : (~preda(X16) & room(X16)) => ! [X17] : (room(X17) => ~predj(X17))) & (! [X18] : (room(X18) => ~predq(X18)) <=> ! [X19] : (room(X19) => ~predp(X19))) & (! [X20] : (room(X20) => (~preds(X20) | ~predv(X20) | ~predp(X20))) <=> ~? [X21] : (~room(X21) => ~predt(X21))) & (! [X22] : (room(X22) => (~predd(X22) <~> predg(X22))) => ! [X23] : (~room(X23) => ~predw(X23))) & (! [X24] : (room(X24) => (~preda(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predd(X25) <~> predg(X25)))) & (! [X26] : (room(X26) => (~preds(X26) | ~predn(X26) | ~predf(X26))) => ! [X27] : (room(X27) => (~predo(X27) <~> ~predq(X27)))) & (! [X28] : (room(X28) => ~predx(X28)) <~> ! [X29] : (room(X29) => predv(X29))) & ! [X30] : (room(X30) => (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44]
47. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (room(X2) => ((~preda(X2) | ~preds(X2)) => (~predd(X2) <~> ~predb(X2)))) & ! [X3] : (anywhere(X3) => ~predl(X3)) & ! [X4] : (predn(X4) => (~predq(X4) & ~predj(X4))) & ! [X5] : (room(X5) => ~predw(X5)) & ! [X6] : (room(X6) => ~predi(X6)) & ! [X7] : (anywhere(X7) => (~preda(X7) | ~predi(X7))) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (room(X9) => (~predh(X9) <~> ~predx(X9))) & (mary_dream => ? [X10,X11] : (X10 != X11 & ~predd(X11) & ~predd(X10) & room(X11) & room(X10))) & (! [X12] : (room(X12) => (~predi(X12) | ~predv(X12) | ~preda(X12))) => ! [X13] : (anywhere(X13) => ~predm(X13))) & (~! [X14] : (room(X14) => ~predw(X14)) => ! [X15] : (room(X15) => (~predi(X15) | ~predv(X15) | ~preda(X15)))) & (? [X16] : (~preda(X16) & room(X16)) => ! [X17] : (room(X17) => ~predj(X17))) & (! [X18] : (room(X18) => ~predq(X18)) <=> ! [X19] : (room(X19) => ~predp(X19))) & (! [X20] : (room(X20) => (~preds(X20) | ~predv(X20) | ~predp(X20))) <=> ~? [X21] : (~room(X21) => ~predt(X21))) & (! [X22] : (room(X22) => (~predd(X22) <~> predg(X22))) => ! [X23] : (~room(X23) => ~predw(X23))) & (! [X24] : (room(X24) => (~preda(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predd(X25) <~> predg(X25)))) & (! [X26] : (room(X26) => (~preds(X26) | ~predn(X26) | ~predf(X26))) => ! [X27] : (room(X27) => (~predo(X27) <~> ~predq(X27)))) & (! [X28] : (room(X28) => ~predx(X28)) <~> ! [X29] : (room(X29) => predv(X29))) & ! [X30] : (room(X30) => (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46]
48. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (room(X2) => ((~preda(X2) | ~preds(X2)) => (~predd(X2) <~> ~predb(X2)))) & ! [X4] : (predn(X4) => (~predq(X4) & ~predj(X4))) & ! [X5] : (room(X5) => ~predw(X5)) & ! [X6] : (room(X6) => ~predi(X6)) & ! [X7] : (anywhere(X7) => (~preda(X7) | ~predi(X7))) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (room(X9) => (~predh(X9) <~> ~predx(X9))) & (mary_dream => ? [X10,X11] : (X10 != X11 & ~predd(X11) & ~predd(X10) & room(X11) & room(X10))) & (! [X12] : (room(X12) => (~predi(X12) | ~predv(X12) | ~preda(X12))) => ! [X13] : (anywhere(X13) => ~predm(X13))) & (~! [X14] : (room(X14) => ~predw(X14)) => ! [X15] : (room(X15) => (~predi(X15) | ~predv(X15) | ~preda(X15)))) & (? [X16] : (~preda(X16) & room(X16)) => ! [X17] : (room(X17) => ~predj(X17))) & (! [X18] : (room(X18) => ~predq(X18)) <=> ! [X19] : (room(X19) => ~predp(X19))) & (! [X20] : (room(X20) => (~preds(X20) | ~predv(X20) | ~predp(X20))) <=> ~? [X21] : (~room(X21) => ~predt(X21))) & (! [X22] : (room(X22) => (~predd(X22) <~> predg(X22))) => ! [X23] : (~room(X23) => ~predw(X23))) & (! [X24] : (room(X24) => (~preda(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predd(X25) <~> predg(X25)))) & (! [X26] : (room(X26) => (~preds(X26) | ~predn(X26) | ~predf(X26))) => ! [X27] : (room(X27) => (~predo(X27) <~> ~predq(X27)))) & (! [X28] : (room(X28) => ~predx(X28)) <~> ! [X29] : (room(X29) => predv(X29))) & ! [X30] : (room(X30) => (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47]
49. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (room(X2) => ((~preda(X2) | ~preds(X2)) => (~predd(X2) <~> ~predb(X2)))) & ! [X4] : (predn(X4) => (~predq(X4) & ~predj(X4))) & ! [X5] : (room(X5) => ~predw(X5)) & ! [X6] : (room(X6) => ~predi(X6)) & ! [X7] : (anywhere(X7) => (~preda(X7) | ~predi(X7))) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (room(X9) => (~predh(X9) <~> ~predx(X9))) & (! [X12] : (room(X12) => (~predi(X12) | ~predv(X12) | ~preda(X12))) => ! [X13] : (anywhere(X13) => ~predm(X13))) & (~! [X14] : (room(X14) => ~predw(X14)) => ! [X15] : (room(X15) => (~predi(X15) | ~predv(X15) | ~preda(X15)))) & (? [X16] : (~preda(X16) & room(X16)) => ! [X17] : (room(X17) => ~predj(X17))) & (! [X18] : (room(X18) => ~predq(X18)) <=> ! [X19] : (room(X19) => ~predp(X19))) & (! [X20] : (room(X20) => (~preds(X20) | ~predv(X20) | ~predp(X20))) <=> ~? [X21] : (~room(X21) => ~predt(X21))) & (! [X22] : (room(X22) => (~predd(X22) <~> predg(X22))) => ! [X23] : (~room(X23) => ~predw(X23))) & (! [X24] : (room(X24) => (~preda(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predd(X25) <~> predg(X25)))) & (! [X26] : (room(X26) => (~preds(X26) | ~predn(X26) | ~predf(X26))) => ! [X27] : (room(X27) => (~predo(X27) <~> ~predq(X27)))) & (! [X28] : (room(X28) => ~predx(X28)) <~> ! [X29] : (room(X29) => predv(X29))) & ! [X30] : (room(X30) => (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48]
50. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (room(X2) => ((~preda(X2) | ~preds(X2)) => (~predd(X2) <~> ~predb(X2)))) & ! [X4] : (predn(X4) => (~predq(X4) & ~predj(X4))) & ! [X5] : (room(X5) => ~predw(X5)) & ! [X6] : (room(X6) => ~predi(X6)) & ! [X7] : (anywhere(X7) => (~preda(X7) | ~predi(X7))) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (room(X9) => (~predh(X9) <~> ~predx(X9))) & (~! [X14] : (room(X14) => ~predw(X14)) => ! [X15] : (room(X15) => (~predi(X15) | ~predv(X15) | ~preda(X15)))) & (? [X16] : (~preda(X16) & room(X16)) => ! [X17] : (room(X17) => ~predj(X17))) & (! [X18] : (room(X18) => ~predq(X18)) <=> ! [X19] : (room(X19) => ~predp(X19))) & (! [X20] : (room(X20) => (~preds(X20) | ~predv(X20) | ~predp(X20))) <=> ~? [X21] : (~room(X21) => ~predt(X21))) & (! [X22] : (room(X22) => (~predd(X22) <~> predg(X22))) => ! [X23] : (~room(X23) => ~predw(X23))) & (! [X24] : (room(X24) => (~preda(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predd(X25) <~> predg(X25)))) & (! [X26] : (room(X26) => (~preds(X26) | ~predn(X26) | ~predf(X26))) => ! [X27] : (room(X27) => (~predo(X27) <~> ~predq(X27)))) & (! [X28] : (room(X28) => ~predx(X28)) <~> ! [X29] : (room(X29) => predv(X29))) & ! [X30] : (room(X30) => (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49]
51. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (room(X2) => ((~preda(X2) | ~preds(X2)) => (~predd(X2) <~> ~predb(X2)))) & ! [X4] : (predn(X4) => ~predq(X4)) & ! [X5] : (room(X5) => ~predw(X5)) & ! [X6] : (room(X6) => ~predi(X6)) & ! [X7] : (anywhere(X7) => (~preda(X7) | ~predi(X7))) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (room(X9) => (~predh(X9) <~> ~predx(X9))) & (~! [X14] : (room(X14) => ~predw(X14)) => ! [X15] : (room(X15) => (~predi(X15) | ~predv(X15) | ~preda(X15)))) & (! [X18] : (room(X18) => ~predq(X18)) <=> ! [X19] : (room(X19) => ~predp(X19))) & (! [X20] : (room(X20) => (~preds(X20) | ~predv(X20) | ~predp(X20))) <=> ~? [X21] : (~room(X21) => ~predt(X21))) & (! [X22] : (room(X22) => (~predd(X22) <~> predg(X22))) => ! [X23] : (~room(X23) => ~predw(X23))) & (! [X24] : (room(X24) => (~preda(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predd(X25) <~> predg(X25)))) & (! [X26] : (room(X26) => (~preds(X26) | ~predn(X26) | ~predf(X26))) => ! [X27] : (room(X27) => (~predo(X27) <~> ~predq(X27)))) & (! [X28] : (room(X28) => ~predx(X28)) <~> ! [X29] : (room(X29) => predv(X29))) & ! [X30] : (room(X30) => (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50]
52. ! [X0] : (room(X0) => ((~predq(X0) & ~predx(X0) & ~predw(X0)) => ~predt(X0))) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (room(X2) => ((~preda(X2) | ~preds(X2)) => (~predd(X2) <~> ~predb(X2)))) & ! [X4] : (predn(X4) => ~predq(X4)) & ! [X5] : (room(X5) => ~predw(X5)) & ! [X6] : (room(X6) => ~predi(X6)) & ! [X7] : (anywhere(X7) => (~preda(X7) | ~predi(X7))) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (room(X9) => (~predh(X9) <~> ~predx(X9))) & (~! [X14] : (room(X14) => ~predw(X14)) => ! [X15] : (room(X15) => (~predi(X15) | ~predv(X15) | ~preda(X15)))) & (! [X18] : (room(X18) => ~predq(X18)) <=> ! [X19] : (room(X19) => ~predp(X19))) & (! [X20] : (room(X20) => (~preds(X20) | ~predv(X20) | ~predp(X20))) <=> ~? [X21] : (~room(X21) => ~predt(X21))) & (! [X22] : (room(X22) => (~predd(X22) <~> predg(X22))) => ! [X23] : (~room(X23) => ~predw(X23))) & (! [X24] : (room(X24) => (~preda(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predd(X25) <~> predg(X25)))) & (! [X26] : (room(X26) => (~preds(X26) | ~predn(X26))) => ! [X27] : (room(X27) => (~predo(X27) <~> ~predq(X27)))) & (! [X28] : (room(X28) => ~predx(X28)) <~> ! [X29] : (room(X29) => predv(X29))) & ! [X30] : (room(X30) => (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51]
124. ! [X0] : ((~predt(X0) | (predq(X0) | predx(X0) | predw(X0))) | ~room(X0)) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (((~predd(X2) <~> ~predb(X2)) | (preda(X2) & preds(X2))) | ~room(X2)) & ! [X4] : (~predq(X4) | ~predn(X4)) & ! [X5] : (~predw(X5) | ~room(X5)) & ! [X6] : (~predi(X6) | ~room(X6)) & ! [X7] : ((~preda(X7) | ~predi(X7)) | ~anywhere(X7)) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : ((~predh(X9) <~> ~predx(X9)) | ~room(X9)) & (! [X15] : ((~predi(X15) | ~predv(X15) | ~preda(X15)) | ~room(X15)) | ! [X14] : (~predw(X14) | ~room(X14))) & (! [X18] : (~predq(X18) | ~room(X18)) <=> ! [X19] : (~predp(X19) | ~room(X19))) & (! [X20] : ((~preds(X20) | ~predv(X20) | ~predp(X20)) | ~room(X20)) <=> ! [X21] : (predt(X21) & ~room(X21))) & (! [X23] : (~predw(X23) | room(X23)) | ? [X22] : ((~predd(X22) <=> predg(X22)) & room(X22))) & (! [X25] : ((~predd(X25) <~> predg(X25)) | ~room(X25)) | ? [X24] : ((preda(X24) & predd(X24)) & room(X24))) & (! [X27] : ((~predo(X27) <~> ~predq(X27)) | ~room(X27)) | ? [X26] : ((preds(X26) & predn(X26)) & room(X26))) & (! [X28] : (~predx(X28) | ~room(X28)) <~> ! [X29] : (predv(X29) | ~room(X29))) & ! [X30] : ((john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30) | ~room(X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 52]
125. ! [X0] : (~predt(X0) | predq(X0) | predx(X0) | predw(X0) | ~room(X0)) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : ((~predd(X2) <~> ~predb(X2)) | (preda(X2) & preds(X2)) | ~room(X2)) & ! [X4] : (~predq(X4) | ~predn(X4)) & ! [X5] : (~predw(X5) | ~room(X5)) & ! [X6] : (~predi(X6) | ~room(X6)) & ! [X7] : (~preda(X7) | ~predi(X7) | ~anywhere(X7)) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : ((~predh(X9) <~> ~predx(X9)) | ~room(X9)) & (! [X15] : (~predi(X15) | ~predv(X15) | ~preda(X15) | ~room(X15)) | ! [X14] : (~predw(X14) | ~room(X14))) & (! [X18] : (~predq(X18) | ~room(X18)) <=> ! [X19] : (~predp(X19) | ~room(X19))) & (! [X20] : (~preds(X20) | ~predv(X20) | ~predp(X20) | ~room(X20)) <=> ! [X21] : (predt(X21) & ~room(X21))) & (! [X23] : (~predw(X23) | room(X23)) | ? [X22] : ((~predd(X22) <=> predg(X22)) & room(X22))) & (! [X25] : ((~predd(X25) <~> predg(X25)) | ~room(X25)) | ? [X24] : (preda(X24) & predd(X24) & room(X24))) & (! [X27] : ((~predo(X27) <~> ~predq(X27)) | ~room(X27)) | ? [X26] : (preds(X26) & predn(X26) & room(X26))) & (! [X28] : (~predx(X28) | ~room(X28)) <~> ! [X29] : (predv(X29) | ~room(X29))) & ! [X30] : (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 124]
126. predi(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45]
127. predi(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 126]
128. sP0 <=> ! [X20] : (~preds(X20) | ~predv(X20) | ~predp(X20) | ~room(X20)) [predicate definition introduction]
129. ! [X0] : (~predt(X0) | predq(X0) | predx(X0) | predw(X0) | ~room(X0)) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : ((~predd(X2) <~> ~predb(X2)) | (preda(X2) & preds(X2)) | ~room(X2)) & ! [X4] : (~predq(X4) | ~predn(X4)) & ! [X5] : (~predw(X5) | ~room(X5)) & ! [X6] : (~predi(X6) | ~room(X6)) & ! [X7] : (~preda(X7) | ~predi(X7) | ~anywhere(X7)) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : ((~predh(X9) <~> ~predx(X9)) | ~room(X9)) & (! [X15] : (~predi(X15) | ~predv(X15) | ~preda(X15) | ~room(X15)) | ! [X14] : (~predw(X14) | ~room(X14))) & (! [X18] : (~predq(X18) | ~room(X18)) <=> ! [X19] : (~predp(X19) | ~room(X19))) & (sP0 <=> ! [X21] : (predt(X21) & ~room(X21))) & (! [X23] : (~predw(X23) | room(X23)) | ? [X22] : ((~predd(X22) <=> predg(X22)) & room(X22))) & (! [X25] : ((~predd(X25) <~> predg(X25)) | ~room(X25)) | ? [X24] : (preda(X24) & predd(X24) & room(X24))) & (! [X27] : ((~predo(X27) <~> ~predq(X27)) | ~room(X27)) | ? [X26] : (preds(X26) & predn(X26) & room(X26))) & (! [X28] : (~predx(X28) | ~room(X28)) <~> ! [X29] : (predv(X29) | ~room(X29))) & ! [X30] : (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [definition folding 125,128]
135. ! [X0] : (~predt(X0) | predq(X0) | predx(X0) | predw(X0) | ~room(X0)) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (((predb(X2) | predd(X2)) & (~predb(X2) | ~predd(X2))) | (preda(X2) & preds(X2)) | ~room(X2)) & ! [X4] : (~predq(X4) | ~predn(X4)) & ! [X5] : (~predw(X5) | ~room(X5)) & ! [X6] : (~predi(X6) | ~room(X6)) & ! [X7] : (~preda(X7) | ~predi(X7) | ~anywhere(X7)) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (((predx(X9) | predh(X9)) & (~predx(X9) | ~predh(X9))) | ~room(X9)) & (! [X15] : (~predi(X15) | ~predv(X15) | ~preda(X15) | ~room(X15)) | ! [X14] : (~predw(X14) | ~room(X14))) & ((! [X18] : (~predq(X18) | ~room(X18)) | ? [X19] : (predp(X19) & room(X19))) & (! [X19] : (~predp(X19) | ~room(X19)) | ? [X18] : (predq(X18) & room(X18)))) & ((sP0 | ? [X21] : (~predt(X21) | room(X21))) & (! [X21] : (predt(X21) & ~room(X21)) | ~sP0)) & (! [X23] : (~predw(X23) | room(X23)) | ? [X22] : (((~predd(X22) | ~predg(X22)) & (predg(X22) | predd(X22))) & room(X22))) & (! [X25] : (((~predg(X25) | predd(X25)) & (predg(X25) | ~predd(X25))) | ~room(X25)) | ? [X24] : (preda(X24) & predd(X24) & room(X24))) & (! [X27] : (((predq(X27) | predo(X27)) & (~predq(X27) | ~predo(X27))) | ~room(X27)) | ? [X26] : (preds(X26) & predn(X26) & room(X26))) & ((? [X29] : (~predv(X29) & room(X29)) | ? [X28] : (predx(X28) & room(X28))) & (! [X29] : (predv(X29) | ~room(X29)) | ! [X28] : (~predx(X28) | ~room(X28)))) & ! [X30] : (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 129]
136. ! [X0] : (~predt(X0) | predq(X0) | predx(X0) | predw(X0) | ~room(X0)) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (((predb(X2) | predd(X2)) & (~predb(X2) | ~predd(X2))) | (preda(X2) & preds(X2)) | ~room(X2)) & ! [X4] : (~predq(X4) | ~predn(X4)) & ! [X5] : (~predw(X5) | ~room(X5)) & ! [X6] : (~predi(X6) | ~room(X6)) & ! [X7] : (~preda(X7) | ~predi(X7) | ~anywhere(X7)) & ? [X8] : (~predo(X8) & room(X8)) & ! [X9] : (((predx(X9) | predh(X9)) & (~predx(X9) | ~predh(X9))) | ~room(X9)) & (! [X15] : (~predi(X15) | ~predv(X15) | ~preda(X15) | ~room(X15)) | ! [X14] : (~predw(X14) | ~room(X14))) & (! [X18] : (~predq(X18) | ~room(X18)) | ? [X19] : (predp(X19) & room(X19))) & (! [X19] : (~predp(X19) | ~room(X19)) | ? [X18] : (predq(X18) & room(X18))) & (sP0 | ? [X21] : (~predt(X21) | room(X21))) & (! [X21] : (predt(X21) & ~room(X21)) | ~sP0) & (! [X23] : (~predw(X23) | room(X23)) | ? [X22] : ((~predd(X22) | ~predg(X22)) & (predg(X22) | predd(X22)) & room(X22))) & (! [X25] : (((~predg(X25) | predd(X25)) & (predg(X25) | ~predd(X25))) | ~room(X25)) | ? [X24] : (preda(X24) & predd(X24) & room(X24))) & (! [X27] : (((predq(X27) | predo(X27)) & (~predq(X27) | ~predo(X27))) | ~room(X27)) | ? [X26] : (preds(X26) & predn(X26) & room(X26))) & (? [X29] : (~predv(X29) & room(X29)) | ? [X28] : (predx(X28) & room(X28))) & (! [X29] : (predv(X29) | ~room(X29)) | ! [X28] : (~predx(X28) | ~room(X28))) & ! [X30] : (john = X30 | alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135]
137. ! [X0] : (~predt(X0) | predq(X0) | predx(X0) | predw(X0) | ~room(X0)) & ? [X1] : (~predg(X1) & room(X1)) & ! [X2] : (((predb(X2) | predd(X2)) & (~predb(X2) | ~predd(X2))) | (preda(X2) & preds(X2)) | ~room(X2)) & ! [X3] : (~predq(X3) | ~predn(X3)) & ! [X4] : (~predw(X4) | ~room(X4)) & ! [X5] : (~predi(X5) | ~room(X5)) & ! [X6] : (~preda(X6) | ~predi(X6) | ~anywhere(X6)) & ? [X7] : (~predo(X7) & room(X7)) & ! [X8] : (((predx(X8) | predh(X8)) & (~predx(X8) | ~predh(X8))) | ~room(X8)) & (! [X9] : (~predi(X9) | ~predv(X9) | ~preda(X9) | ~room(X9)) | ! [X10] : (~predw(X10) | ~room(X10))) & (! [X11] : (~predq(X11) | ~room(X11)) | ? [X12] : (predp(X12) & room(X12))) & (! [X13] : (~predp(X13) | ~room(X13)) | ? [X14] : (predq(X14) & room(X14))) & (sP0 | ? [X15] : (~predt(X15) | room(X15))) & (! [X16] : (predt(X16) & ~room(X16)) | ~sP0) & (! [X17] : (~predw(X17) | room(X17)) | ? [X18] : ((~predd(X18) | ~predg(X18)) & (predg(X18) | predd(X18)) & room(X18))) & (! [X19] : (((~predg(X19) | predd(X19)) & (predg(X19) | ~predd(X19))) | ~room(X19)) | ? [X20] : (preda(X20) & predd(X20) & room(X20))) & (! [X21] : (((predq(X21) | predo(X21)) & (~predq(X21) | ~predo(X21))) | ~room(X21)) | ? [X22] : (preds(X22) & predn(X22) & room(X22))) & (? [X23] : (~predv(X23) & room(X23)) | ? [X24] : (predx(X24) & room(X24))) & (! [X25] : (predv(X25) | ~room(X25)) | ! [X26] : (~predx(X26) | ~room(X26))) & ! [X27] : (john = X27 | alice = X27 | fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 136]
138. ? [X1] : (~predg(X1) & room(X1)) => (~predg(sK2) & room(sK2)) [choice axiom]
139. ? [X7] : (~predo(X7) & room(X7)) => (~predo(sK3) & room(sK3)) [choice axiom]
140. ? [X12] : (predp(X12) & room(X12)) => (predp(sK4) & room(sK4)) [choice axiom]
141. ? [X14] : (predq(X14) & room(X14)) => (predq(sK5) & room(sK5)) [choice axiom]
142. ? [X15] : (~predt(X15) | room(X15)) => (~predt(sK6) | room(sK6)) [choice axiom]
143. ? [X18] : ((~predd(X18) | ~predg(X18)) & (predg(X18) | predd(X18)) & room(X18)) => ((~predd(sK7) | ~predg(sK7)) & (predg(sK7) | predd(sK7)) & room(sK7)) [choice axiom]
144. ? [X20] : (preda(X20) & predd(X20) & room(X20)) => (preda(sK8) & predd(sK8) & room(sK8)) [choice axiom]
145. ? [X22] : (preds(X22) & predn(X22) & room(X22)) => (preds(sK9) & predn(sK9) & room(sK9)) [choice axiom]
146. ? [X23] : (~predv(X23) & room(X23)) => (~predv(sK10) & room(sK10)) [choice axiom]
147. ? [X24] : (predx(X24) & room(X24)) => (predx(sK11) & room(sK11)) [choice axiom]
148. ! [X0] : (~predt(X0) | predq(X0) | predx(X0) | predw(X0) | ~room(X0)) & (~predg(sK2) & room(sK2)) & ! [X2] : (((predb(X2) | predd(X2)) & (~predb(X2) | ~predd(X2))) | (preda(X2) & preds(X2)) | ~room(X2)) & ! [X3] : (~predq(X3) | ~predn(X3)) & ! [X4] : (~predw(X4) | ~room(X4)) & ! [X5] : (~predi(X5) | ~room(X5)) & ! [X6] : (~preda(X6) | ~predi(X6) | ~anywhere(X6)) & (~predo(sK3) & room(sK3)) & ! [X8] : (((predx(X8) | predh(X8)) & (~predx(X8) | ~predh(X8))) | ~room(X8)) & (! [X9] : (~predi(X9) | ~predv(X9) | ~preda(X9) | ~room(X9)) | ! [X10] : (~predw(X10) | ~room(X10))) & (! [X11] : (~predq(X11) | ~room(X11)) | (predp(sK4) & room(sK4))) & (! [X13] : (~predp(X13) | ~room(X13)) | (predq(sK5) & room(sK5))) & (sP0 | (~predt(sK6) | room(sK6))) & (! [X16] : (predt(X16) & ~room(X16)) | ~sP0) & (! [X17] : (~predw(X17) | room(X17)) | ((~predd(sK7) | ~predg(sK7)) & (predg(sK7) | predd(sK7)) & room(sK7))) & (! [X19] : (((~predg(X19) | predd(X19)) & (predg(X19) | ~predd(X19))) | ~room(X19)) | (preda(sK8) & predd(sK8) & room(sK8))) & (! [X21] : (((predq(X21) | predo(X21)) & (~predq(X21) | ~predo(X21))) | ~room(X21)) | (preds(sK9) & predn(sK9) & room(sK9))) & ((~predv(sK10) & room(sK10)) | (predx(sK11) & room(sK11))) & (! [X25] : (predv(X25) | ~room(X25)) | ! [X26] : (~predx(X26) | ~room(X26))) & ! [X27] : (john = X27 | alice = X27 | fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 137,147,146,145,144,143,142,141,140,139,138]
237. room(fred) [cnf transformation 148]
274. ~predi(X5) | ~room(X5) [cnf transformation 148]
290. predi(fred) [cnf transformation 127]
475. ~room(fred) [resolution 274,290]
476. $false [subsumption resolution 475,237]
% SZS output end Proof for 6659025635717067288252371
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.646476 |
Lee, Vanessa are the only persons in the room.
If Vanessa is a sibling of Fred then Lee is a calm creative tourist.
If everyone in the room does not like Lea then Vanessa does not bake bread at home.
Everyone in the room is a calm tourist or is not a member of a local theater group specializing in improv only if everyone outside the room does not like Fred.
Everyone in the room is a sibling of Dean.
Vanessa is not a member of a local theater group specializing in improv.
Vanessa is a sibling of Fred.
Vanessa is a sibling of Fred or is older than Lorraine or both.
Everyone in the room does not play eSports competitively if they does not like Luciana.
Lee is a tall european.
Lee does not like Lorraine.
No kind person is patient.
Vanessa does not like Luciana.
Luciana is a client of Vanessa.
No tall person is brave.
Everyone in the room is a happy strong european if they neither does not enjoy deep-sea diving and exploring underwater caves nor is a happy kind european.
Luciana is a sibling of Lee.
No tall person is patient.
No tall person is wise.
|
Vanessa is a sibling of Dean.
|
entailment
|
room(lee)&room(vanessa)&(![X]:(room(X)=>(X='lee'|X='vanessa')))&
((sibling(fred,vanessa))=>(calm(lee)&creative(lee)&tourist(lee)))&
((![X]:(room(X)=>(~like(lea,X))))=>(does_not_bake_bread_at_home(vanessa)))&
((![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(calm(X)&tourist(X))))))=>(![X]:(~room(X)=>(~like(fred,X)))))&
(![X]:(room(X)=>(sibling(dean,X))))&
(is_not_a_member_of_a_local_theater_group_specializing_in_improv(vanessa))&
(sibling(fred,vanessa))&
(((sibling(fred,vanessa))|(older(lorraine,vanessa))))&
(![X]:(room(X)=>(((~like(luciana,X))=>(does_not_play_eSports_competitively(X))))))&
(tall(lee)&european(lee))&
(~like(lorraine,lee))&
(~?[X]:(kind(X)=>patient(X)))&
(~like(luciana,vanessa))&
(client(vanessa,luciana))&
(~?[X]:(tall(X)=>brave(X)))&
(![X]:(room(X)=>(((~((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(happy(X)&kind(X)&european(X))))=>(happy(X)&strong(X)&european(X))))))&
(sibling(lee,luciana))&
(~?[X]:(tall(X)=>patient(X)))&
(~?[X]:(tall(X)=>wise(X)))&
(~(client(dean,vanessa)))&
(![X]:(room(X)=>(((client(luciana,X))<=>(~hate(luciana,X))))))&
(~like(lorraine,vanessa))&
(sibling(vanessa,fred))&
(![X]:(kind(X)=>calm(X)))&
(![X]:(room(X)=>(((funny(X)&tourist(X))=>(client(fred,X))))))&
(![X]:(room(X)=>(((kind(X)&curious(X)&tourist(X))=>(does_not_enjoy_logic_puzzles(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))=>(client(lorraine,X))))))
|
room(lee)&room(vanessa)&(![X]:(room(X)=>(X='lee'|X='vanessa')))&
sibling(dean,vanessa)
|
[
"p0",
"p4",
"hypothesis"
] |
% SZS status Unsatisfiable for 4636572891866186568314981
% SZS output start Proof for 4636572891866186568314981
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
48. ! [X0] : (room(X0) => sibling(john,X0)) [input p4]
71. ~(sibling(john,paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
172. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
173. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 172]
174. ! [X0] : (sibling(john,X0) | ~room(X0)) [ennf transformation 48]
176. ~sibling(john,paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 71]
177. ~sibling(john,paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 176]
180. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK0 & mary != sK0 & room(sK0)) [choice axiom]
181. ~sibling(john,paul) | (paul != sK0 & mary != sK0 & room(sK0)) | ~room(paul) | ~room(mary) [skolemisation 177,180]
262. room(mary) [cnf transformation 173]
263. room(paul) [cnf transformation 173]
264. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 173]
265. sibling(john,X0) | ~room(X0) [cnf transformation 174]
274. ~sibling(john,paul) | room(sK0) | ~room(paul) | ~room(mary) [cnf transformation 181]
275. ~sibling(john,paul) | mary != sK0 | ~room(paul) | ~room(mary) [cnf transformation 181]
276. ~sibling(john,paul) | paul != sK0 | ~room(paul) | ~room(mary) [cnf transformation 181]
277. ~sibling(john,paul) | paul != sK0 | ~room(mary) [subsumption resolution 276,263]
278. ~sibling(john,paul) | paul != sK0 [subsumption resolution 277,262]
280. 1 <=> paul = sK0 [avatar definition]
282. paul != sK0 <- (~1) [avatar component clause 280]
284. 2 <=> sibling(john,paul) [avatar definition]
286. ~sibling(john,paul) <- (~2) [avatar component clause 284]
287. ~1 | ~2 [avatar split clause 278,284,280]
288. ~sibling(john,paul) | mary != sK0 | ~room(mary) [subsumption resolution 275,263]
289. ~sibling(john,paul) | mary != sK0 [subsumption resolution 288,262]
291. 3 <=> mary = sK0 [avatar definition]
293. mary != sK0 <- (~3) [avatar component clause 291]
294. ~3 | ~2 [avatar split clause 289,284,291]
295. ~sibling(john,paul) | room(sK0) | ~room(mary) [subsumption resolution 274,263]
296. ~sibling(john,paul) | room(sK0) [subsumption resolution 295,262]
298. 4 <=> room(sK0) [avatar definition]
300. room(sK0) <- (4) [avatar component clause 298]
301. 4 | ~2 [avatar split clause 296,284,298]
302. ~room(paul) <- (~2) [resolution 265,286]
303. $false <- (~2) [subsumption resolution 302,263]
304. 2 [avatar contradiction clause 303]
307. mary = sK0 | paul = sK0 <- (4) [resolution 264,300]
308. paul = sK0 <- (~3, 4) [subsumption resolution 307,293]
309. $false <- (~1, ~3, 4) [subsumption resolution 308,282]
310. 1 | 3 | ~4 [avatar contradiction clause 309]
311. $false [avatar sat refutation 287,294,301,304,310]
% SZS output end Proof for 4636572891866186568314981
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.029433 |
Larry, Herschel, Wendy, Clarence, Catherine are the only persons in the room. 'Everyone in the room is not old' only if 'not everyone anywhere is tall'.
|
Herschel and Wendy are respectively old and quiet.
|
neutral
|
room(larry)&room(herschel)&room(wendy)&room(clarence)&room(catherine)&(![X]:(room(X)=>(X='larry'|X='herschel'|X='wendy'|X='clarence'|X='catherine')))&
((![X]:(room(X)=>(~old(X))))=>(~![X]:(anywhere(X)=>(tall(X)))))&
(~(![X]:(room(X)=>(old(X))))=>(![X]:(room(X)=>(((old(X)&person(X))<=>(quiet(X)&person(X)))))))&
(~(((old(herschel)&person(herschel))<~>(old(herschel))))=>(![X]:(room(X)=>(old(X)))))&
((((tall(larry))<~>(quiet(larry)&person(larry))))<=>(~?[X]:(room(X)=>(~(tall(X)&person(X))))))&
(?[X,Y]:((((tall(X)&person(X))|(quiet(X)&person(X))))&(((old(Y)&person(Y))|(quiet(Y)&person(Y))))&(quieter(X,Y))))&
(![X]:(room(X)=>(((quiet(X))<~>(old(X)&person(X))))))&
((old(larry)&person(larry))&(~(tall(larry)&person(larry))))&
(![X]:(room(X)=>(~(tall(X)&person(X)))))&
(![X]:(room(X)=>(~tall(X))))&
(?[X,Y]:((~old(X))&(tall(Y))&(older(X,Y))))
|
room(larry)&room(herschel)&room(wendy)&room(clarence)&room(catherine)&(![X]:(room(X)=>(X='larry'|X='herschel'|X='wendy'|X='clarence'|X='catherine')))&
(old(herschel))&(quiet(wendy))
|
[] | null | 0.522014 |
Monica, Elizabeth are the only persons in the room.
“Everyone in the room either does not enjoy trail running or does not write in-depth travel guides for off-the-beaten-path destinations but not both” if “everyone in the room does not have a vast collection of first-edition science fiction novels or does not use contact lenses” and vice versa.
“Everyone in the room does not host a YouTube channel dedicated to art tutorials or does not host regular workshops on creative writing” if “everyone in the room does not host a YouTube channel dedicated to art tutorials or is not a client of LVMH” and vice versa.
“Everyone in the room is not a coffee connoisseur” if “everyone in the room is a coffee connoisseur or can play the piano or both”.
“Everyone outside the room either does not regularly goes on multi-day backpacking trips in national parks or does not stream on Twitch but not both” if “everyone in the room does not host a YouTube channel dedicated to art tutorials”.
Everyone in the room either does not write poetry or is not a cybersecurity expert but not both.
Everyone in the room does not write poetry.
|
Monica is a cybersecurity expert.
|
entailment
|
room(monica)&room(elizabeth)&(![X]:(room(X)=>(X='monica'|X='elizabeth')))&
((![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_trail_running(X))<~>(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))))&
((![X]:(room(X)=>(((is_not_a_client_of_LVMH(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))<=>(![X]:(room(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X)))))))&
((![X]:(room(X)=>(((is_a_coffee_connoisseur(X))|(can_play_the_piano(X))))))=>(![X]:(room(X)=>(is_not_a_coffee_connoisseur(X)))))&
((![X]:(room(X)=>(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(![X]:(~room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(does_not_stream_on_Twitch(X)))))))&
(![X]:(room(X)=>(does_not_practice_calligraphy(X))))&
(![X]:(room(X)=>(does_not_enjoy_skydiving(X))))&
(![X]:(room(X)=>(does_not_have_a_tattoo(X))))&
(![X]:(anywhere(X)=>(((does_not_use_contact_lenses(X))<~>(does_not_practice_calligraphy(X))))))&
(~![X]:(room(X)=>(is_not_a_client_of_LVMH(X))))&
(![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))<=(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))&
(![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))=>(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))&
(![X]:(~room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<~>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))&
((![X]:((is_a_chess_master_who_participates_in_national_tournaments(X))<=>(((does_not_stream_on_Twitch(X))|(is_not_a_client_of_LVMH(X)))))))&
(![X]:(room(X)=>(((does_not_write_poetry(X))<~>(is_not_a_cybersecurity_expert(X))))))&
(![X]:(~room(X)=>(uses_contact_lenses(X))))&
(![X]:(~room(X)=>(((does_not_enjoy_trail_running(X))<=(is_not_a_client_of_LVMH(X))))))&
(![X]:(room(X)=>(does_not_write_poetry(X))))&
(![X]:(room(X)=>(((((does_not_practice_calligraphy(X))<~>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))<=>(is_a_wine_connoisseur(X))))))&
(![X]:(room(X)=>(does_not_enjoy_fishing(X))))&
(![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))=>(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))&
(![X]:(anywhere(X)=>(((does_not_enjoy_fishing(X))<~>(does_not_enjoy_mountain_biking(X))))))&
(![X]:(anywhere(X)=>(((cannot_play_the_piano(X))<~>(does_not_enjoy_mountain_biking(X))))))
|
room(monica)&room(elizabeth)&(![X]:(room(X)=>(X='monica'|X='elizabeth')))&
is_a_cybersecurity_expert(monica)
|
[
"p0",
"p14",
"p17",
"hypothesis"
] |
% SZS status Unsatisfiable for 364544436251028295439303
% SZS output start Proof for 364544436251028295439303
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
58. ! [X0] : (room(X0) => (~predr(X0) <~> ~predg(X0))) [input p14]
61. ! [X0] : (room(X0) => ~predr(X0)) [input p17]
67. ~(predg(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
147. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
148. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 147]
163. ! [X0] : ((~predr(X0) <~> ~predg(X0)) | ~room(X0)) [ennf transformation 58]
167. ! [X0] : (~predr(X0) | ~room(X0)) [ennf transformation 61]
174. ~predg(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 67]
175. ~predg(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 174]
201. ! [X0] : (((predg(X0) | predr(X0)) & (~predg(X0) | ~predr(X0))) | ~room(X0)) [nnf transformation 163]
205. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK7 & mary != sK7 & room(sK7)) [choice axiom]
206. ~predg(mary) | (paul != sK7 & mary != sK7 & room(sK7)) | ~room(paul) | ~room(mary) [skolemisation 175,205]
288. room(mary) [cnf transformation 148]
289. room(paul) [cnf transformation 148]
290. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 148]
322. ~room(X0) | predr(X0) | predg(X0) [cnf transformation 201]
325. ~predr(X0) | ~room(X0) [cnf transformation 167]
336. ~predg(mary) | room(sK7) | ~room(paul) | ~room(mary) [cnf transformation 206]
337. ~predg(mary) | mary != sK7 | ~room(paul) | ~room(mary) [cnf transformation 206]
338. ~predg(mary) | paul != sK7 | ~room(paul) | ~room(mary) [cnf transformation 206]
447. ~predg(mary) | paul != sK7 | ~room(mary) [subsumption resolution 338,289]
448. ~predg(mary) | paul != sK7 [subsumption resolution 447,288]
450. 23 <=> paul = sK7 [avatar definition]
452. paul != sK7 <- (~23) [avatar component clause 450]
454. 24 <=> predg(mary) [avatar definition]
456. ~predg(mary) <- (~24) [avatar component clause 454]
457. ~23 | ~24 [avatar split clause 448,454,450]
458. ~predg(mary) | mary != sK7 | ~room(mary) [subsumption resolution 337,289]
459. ~predg(mary) | mary != sK7 [subsumption resolution 458,288]
461. 25 <=> mary = sK7 [avatar definition]
463. mary != sK7 <- (~25) [avatar component clause 461]
464. ~25 | ~24 [avatar split clause 459,454,461]
465. ~predg(mary) | room(sK7) | ~room(mary) [subsumption resolution 336,289]
466. ~predg(mary) | room(sK7) [subsumption resolution 465,288]
468. 26 <=> room(sK7) [avatar definition]
470. room(sK7) <- (26) [avatar component clause 468]
471. 26 | ~24 [avatar split clause 466,454,468]
483. predr(mary) | predg(mary) [resolution 322,288]
487. predr(mary) <- (~24) [subsumption resolution 483,456]
515. ~room(mary) <- (~24) [resolution 487,325]
516. $false <- (~24) [subsumption resolution 515,288]
517. 24 [avatar contradiction clause 516]
619. mary = sK7 | paul = sK7 <- (26) [resolution 290,470]
629. paul = sK7 <- (~25, 26) [subsumption resolution 619,463]
630. $false <- (~23, ~25, 26) [subsumption resolution 629,452]
631. 23 | 25 | ~26 [avatar contradiction clause 630]
632. $false [avatar sat refutation 457,464,471,517,631]
% SZS output end Proof for 364544436251028295439303
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.032 s
% ------------------------------
% ------------------------------
| 0.100074 |
There is a room. No one in the room who makes intricate hand-cut paper art for exhibitions is a Linux enthusiast.
|
Everyone outside the room participates in long-distance cycling events across the country.
|
entailment
|
(there_is_a_room)&
((![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))<~>(![X]:(room(X)=>(((does_not_practice_digital_art(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(((plays_eSports_competitively(X))&(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))&(writes_a_travel_blog(X))))))))&
(![X]:(room(X)=>(((((plays_eSports_competitively(X))&(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))&(writes_a_travel_blog(X))))=>(writes_a_travel_blog(X))))))&
(![X]:(room(X)=>(((does_not_practice_digital_art(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))&
(~?[X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(is_a_Linux_enthusiast(X))))))&
((![X]:((makes_intricate_hand-cut_paper_art_for_exhibitions(X))<=>(practices_graffiti_art(X)))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))&
(![X]:(room(X)=>(((((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))&(is_a_client_of_Costco(X))&(is_a_craft_beer_aficionado(X))))=>(plays_eSports_competitively(X))))))&
(![X]:(anywhere(X)=>(((enjoys_stargazing(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))&
(~![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(is_an_active_member_of_a_local_robotics_club(X))))))&
(![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))&
((![X]:((collects_antique_jewelry(X))<=>(plays_eSports_competitively(X)))))&
(![X]:(~room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(is_right-handed(X))))))&
(![X]:(anywhere(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(is_right-handed(X))))))&
(![X]:(room(X)=>(((is_right-handed(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))
|
(there_is_a_room)&
![X]:(~room(X)=>(participates_in_long-distance_cycling_events_across_the_country(X)))
|
[
"p0",
"p5",
"hypothesis"
] |
% SZS status Unsatisfiable for 8793922566505011687861745
% SZS output start Proof for 8793922566505011687861745
44. there_is_a_room [input p0]
49. ~? [X0] : (room(X0) => (predj(X0) => predt(X0))) [input p5]
60. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis]
64. ~? [X0] : (room(X0) => predt(X0)) [pure predicate removal 49]
73. ~? [X0] : ~room(X0) [pure predicate removal 64]
153. ! [X0] : room(X0) [ennf transformation 73]
155. ? [X0] : (~predc(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 60]
166. ? [X0] : (~predc(X0) & ~room(X0)) => (~predc(sK3) & ~room(sK3)) [choice axiom]
167. (~predc(sK3) & ~room(sK3)) | ~there_is_a_room [skolemisation 155,166]
248. there_is_a_room [cnf transformation 44]
264. room(X0) [cnf transformation 153]
268. ~room(sK3) | ~there_is_a_room [cnf transformation 167]
322. ~there_is_a_room [subsumption resolution 268,264]
323. $false [subsumption resolution 322,248]
% SZS output end Proof for 8793922566505011687861745
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.335251 |
There is a room. If “someone in the room enjoys logic puzzles or can play the guitar or both” then “it is not the case that “someone in the room collects vintage vinyl records””. If “someone in the room travels domestically frequently” then “if someone practices pilates then he/she hosts a YouTube channel dedicated to art tutorials”.
|
Everyone in the room uses an ios phone.
|
neutral
|
(there_is_a_room)&
((?[X]:(room(X)&(((enjoys_logic_puzzles(X))|(can_play_the_guitar(X))))))=>(~(?[X]:(room(X)&(collects_vintage_vinyl_records(X))))))&
((?[X]:(room(X)&(travels_domestically_frequently(X))))=>((![X]:((practices_pilates(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))&
(~(?[X]:(room(X)&(knows_morse_code(X))))=>(~(?[X]:(room(X)&(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))&
((?[X]:(~room(X)&(has_completed_a_triathlon(X))))=>(~(?[X]:(~room(X)&(((own_a_television(X))&(has_completed_a_triathlon(X))&(practices_digital_art(X))))))))&
((~(~(~(?[X]:(room(X)&(((owns_a_smart_tv(X))|(writes_and_illustrates_their_own_graphic_novels(X)))))))))=>(?[X]:(room(X)&(practices_digital_art(X)))))&
(?[X]:(room(X)&(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(enjoys_logic_puzzles(X))))))&
((![X]:((is_a_tea_enthusiast(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))))&
((?[X,Y]:(~room(X)&~room(Y)&(has_completed_a_triathlon(X)&has_completed_a_triathlon(Y))&(X!=Y))))&
(~(?[X]:(room(X)&(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))&
((![X]:((practices_pilates(X))=>(plays_video_games(X)))))&
(?[X]:(room(X)&(knows_morse_code(X))))&
((?[X,Y]:(room(X)&room(Y)&(owns_a_high-end_gaming_PC_with_custom-built_components(X)&owns_a_high-end_gaming_PC_with_custom-built_components(Y))&(X!=Y))))&
((![X]:((knows_morse_code(X))=>(is_a_tea_enthusiast(X)))))&
((![X]:((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(uses_an_ios_phone(X)))))&
(~(?[X]:(anywhere(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))&
((?[X,Y]:(room(X)&room(Y)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)&hosts_a_YouTube_channel_dedicated_to_art_tutorials(Y))&(X!=Y))))&
(?[X]:(room(X)&(writes_and_illustrates_their_own_graphic_novels(X))))&
(?[X]:(room(X)&(travels_domestically_frequently(X))))&
((![X]:((((plays_video_games(X))|(collects_vintage_vinyl_records(X))))=>(((collects_vintage_vinyl_records(X))&(practices_digital_art(X))&(writes_and_illustrates_their_own_graphic_novels(X)))))))&
(?[X]:(~room(X)&(is_a_tea_enthusiast(X))))&
((![X]:((practices_pilates(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X)))))&
(?[X]:(room(X)&(practices_digital_art(X))))&
((![X]:((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(competes_in_national_level_swimming_championships(X)))))&
(~(?[X]:(anywhere(X)&(can_play_the_harmonica(X)))))&
(?[X]:(anywhere(X)&(((has_completed_a_triathlon(X))&(can_play_the_guitar(X))&(collects_modern_art(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(uses_an_ios_phone(X)))
|
[] | null | 0.495028 |
Julio, Joseph are the only persons in the room. If “everyone in the room is a tea enthusiast or is not a certified scuba diver with advanced underwater photography skills” then “Julio has a saltwater aquarium or bakes bread at home or both”. “Not everyone in the room mentors a youth basketball team on weekends, owns a smartwatch and is a night owl if they enjoys writing detailed reviews of new and classic board games and vice versa” unless “everyone in the room is a client of Meta or does not bake bread at home”. “Everyone in the room is an amateur astronomer who builds and uses custom telescopes or is not a certified scuba diver with advanced underwater photography skills” if “everyone in the room frequently participates in hackathons and coding competitions or does not create YouTube content” and vice versa. “Everyone in the room who is a tea enthusiast or has a pet dog or both either owns a smartwatch or owns a 3D printer but not both” unless “everyone in the room does not practice zumba”. If “everyone in the room does not frequently participates in hackathons and coding competitions or is a certified scuba diver with advanced underwater photography skills” then “everyone in the room who does not frequently participates in hackathons and coding competitions writes poetry” otherwise “Joseph mentors a youth basketball team on weekends”. Everyone in the room enjoys spelunking. Everyone in the room who writes poetry is an amateur astronomer who builds and uses custom telescopes. Julio writes poetry.
|
Julio is an amateur astronomer who builds and uses custom telescopes.
|
entailment
|
room(julio)&room(joseph)&(![X]:(room(X)=>(X='julio'|X='joseph')))&
((![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_a_tea_enthusiast(X))))))=>(((has_a_saltwater_aquarium(julio))|(bakes_bread_at_home(julio)))))&
(~(![X]:(room(X)=>(((does_not_bake_bread_at_home(X))|(is_a_client_of_Meta(X))))))=>(~![X]:(room(X)=>(((((mentors_a_youth_basketball_team_on_weekends(X))&(owns_a_smartwatch(X))&(is_a_night_owl(X))))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))&
((![X]:(room(X)=>(((does_not_create_YouTube_content(X))|(frequently_participates_in_hackathons_and_coding_competitions(X))))))<=>(![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))))&
(~(![X]:(room(X)=>(does_not_practice_zumba(X))))=>(![X]:(room(X)=>(((((is_a_tea_enthusiast(X))|(has_a_pet_dog(X))))=>(((owns_a_smartwatch(X))<~>(owns_a_3D_printer(X)))))))))&
(((![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))=>(![X]:(room(X)=>(((does_not_frequently_participates_in_hackathons_and_coding_competitions(X))=>(writes_poetry(X)))))))&((~(![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X)))))))=>(mentors_a_youth_basketball_team_on_weekends(joseph))))&
(![X]:(room(X)=>(enjoys_spelunking(X))))&
(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(joseph))&
(![X]:(room(X)=>(((writes_poetry(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))<=(((owns_a_3D_printer(X))<~>(writes_and_illustrates_their_own_graphic_novels(X))))))))&
(writes_poetry(julio))&
((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(joseph))&(enjoys_cross-country_skiing(joseph)))&
(![X]:(~room(X)=>(((enjoys_spelunking(X))=>(~((practices_zumba(X))|(uses_contact_lenses(X))))))))&
(![X]:(~room(X)=>(((~((practices_zumba(X))|(uses_contact_lenses(X))))=>(writes_and_illustrates_their_own_graphic_novels(X))))))&
(![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_a_tea_enthusiast(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_spelunking(X))<=>(practices_zumba(X))))))&
(~(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(joseph)))&
(![X]:(room(X)=>(((writes_poetry(X))=>(does_not_bake_bread_at_home(X))))))&
(![X]:(~room(X)=>(((is_a_night_owl(X))<=(does_not_bake_bread_at_home(X))))))&
(![X]:(room(X)=>(does_enjoy_mountain_biking(X))))&
(![X]:(room(X)=>(((((practices_urban_gardening(X))|(practices_zumba(X))))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))
|
room(julio)&room(joseph)&(![X]:(room(X)=>(X='julio'|X='joseph')))&
is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(julio)
|
[
"p0",
"p8",
"p10",
"hypothesis"
] |
% SZS status Unsatisfiable for 5629424535480563072818828
% SZS output start Proof for 5629424535480563072818828
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
52. ! [X0] : (room(X0) => (predb(X0) => predm(X0))) [input p8]
54. predb(mary) [input p10]
65. ~(predm(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
155. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
156. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 155]
164. ! [X0] : ((predm(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 52]
165. ! [X0] : (predm(X0) | ~predb(X0) | ~room(X0)) [flattening 164]
171. ~predm(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 65]
172. ~predm(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 171]
185. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
186. ~predm(mary) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 172,185]
267. room(mary) [cnf transformation 156]
268. room(paul) [cnf transformation 156]
269. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 156]
283. ~predb(X0) | predm(X0) | ~room(X0) [cnf transformation 165]
284. predb(mary) [cnf transformation 54]
291. ~predm(mary) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 186]
292. ~predm(mary) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 186]
293. ~predm(mary) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 186]
361. ~predm(mary) | paul != sK3 | ~room(mary) [subsumption resolution 293,268]
362. ~predm(mary) | paul != sK3 [subsumption resolution 361,267]
364. 16 <=> paul = sK3 [avatar definition]
366. paul != sK3 <- (~16) [avatar component clause 364]
368. 17 <=> predm(mary) [avatar definition]
371. ~16 | ~17 [avatar split clause 362,368,364]
372. ~predm(mary) | mary != sK3 | ~room(mary) [subsumption resolution 292,268]
373. ~predm(mary) | mary != sK3 [subsumption resolution 372,267]
375. 18 <=> mary = sK3 [avatar definition]
377. mary != sK3 <- (~18) [avatar component clause 375]
378. ~18 | ~17 [avatar split clause 373,368,375]
379. ~predm(mary) | room(sK3) | ~room(mary) [subsumption resolution 291,268]
380. ~predm(mary) | room(sK3) [subsumption resolution 379,267]
382. 19 <=> room(sK3) [avatar definition]
384. room(sK3) <- (19) [avatar component clause 382]
385. 19 | ~17 [avatar split clause 380,368,382]
388. predm(mary) | ~room(mary) [resolution 283,284]
392. predm(mary) [subsumption resolution 388,267]
393. 17 [avatar split clause 392,368]
424. mary = sK3 | paul = sK3 <- (19) [resolution 269,384]
434. paul = sK3 <- (~18, 19) [subsumption resolution 424,377]
435. $false <- (~16, ~18, 19) [subsumption resolution 434,366]
436. 16 | 18 | ~19 [avatar contradiction clause 435]
437. $false [avatar sat refutation 371,378,385,393,436]
% SZS output end Proof for 5629424535480563072818828
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.208968 |
Lara, Stephen, Clair, Kelly are the only persons in the room.
If someone owns a microscope then he/she collects antique clocks and vice versa.
Everyone in the room hosts regular game nights featuring complex strategy games or does not play the violin.
Everyone in the room who hosts regular game nights featuring complex strategy games either plays the violin or collects classic novels but not both.
Kelly develops open-source software projects in their free time or plays eSports competitively or both.
If someone collects antique clocks then he/she hosts regular game nights featuring complex strategy games and vice versa.
Lara does not practice kickboxing.
Everyone in the room who plays eSports competitively enjoys spelunking.
Everyone in the room neither owns a high-end gaming PC with custom-built components nor plays the violin if they enjoys spelunking.
Kelly has a pet dog.
Everyone in the room plays eSports competitively if they is a cybersecurity expert.
Everyone in the room who plays eSports competitively is a craft beer aficionado.
Stephen is a craft beer aficionado.
At least one person anywhere neither writes and illustrates their own graphic novels nor practices pilates.
No one anywhere who owns a high-end gaming PC with custom-built components collects historical artifacts related to ancient civilizations.
Stephen owns a microscope.
Everyone outside the room who neither is a cybersecurity expert nor practices kickboxing enjoys spelunking.
Everyone in the room who enjoys spelunking has completed a triathlon.
Everyone in the room practices pilates if they does not enjoy making ceramics and vice versa.
Everyone outside the room owns a microscope.
Everyone anywhere enjoys writing detailed reviews of new and classic board games or does not collect classic novels.
More than one person anywhere enjoys spelunking.
|
Stephen plays eSports competitively.
|
contradiction
|
room(lara)&room(stephen)&room(clair)&room(kelly)&(![X]:(room(X)=>(X='lara'|X='stephen'|X='clair'|X='kelly')))&
((![X]:((owns_a_microscope(X))<=>(collects_antique_clocks(X)))))&
(![X]:(room(X)=>(((does_not_play_the_violin(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))&
(![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(((plays_the_violin(X))<~>(collects_classic_novels(X))))))))&
(((develops_open-source_software_projects_in_their_free_time(kelly))|(plays_eSports_competitively(kelly))))&
((![X]:((collects_antique_clocks(X))<=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))&
(does_not_practice_kickboxing(lara))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(enjoys_spelunking(X))))))&
(![X]:(room(X)=>(((enjoys_spelunking(X))=>(~((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(plays_the_violin(X))))))))&
(has_a_pet_dog(kelly))&
(![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(plays_eSports_competitively(X))))))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(is_a_craft_beer_aficionado(X))))))&
(is_a_craft_beer_aficionado(stephen))&
(((?[X]:(anywhere(X)&~((writes_and_illustrates_their_own_graphic_novels(X))|(practices_pilates(X)))))))&
(~?[X]:(anywhere(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))&
(owns_a_microscope(stephen))&
(![X]:(~room(X)=>(((~((is_a_cybersecurity_expert(X))|(practices_kickboxing(X))))=>(enjoys_spelunking(X))))))&
(![X]:(room(X)=>(((enjoys_spelunking(X))=>(has_completed_a_triathlon(X))))))&
(![X]:(room(X)=>(((practices_pilates(X))<=>(does_not_enjoy_making_ceramics(X))))))&
(![X]:(~room(X)=>(owns_a_microscope(X))))&
(![X]:(anywhere(X)=>(((does_not_collect_classic_novels(X))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(enjoys_spelunking(X)&enjoys_spelunking(Y))&(X!=Y))))&
(?[X]:(room(X)&(has_a_specialized_collection_of_handmade_artisan_pottery(X))))&
(![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(does_not_own_a_microscope(X))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))&
(~![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))&
(![X]:(room(X)=>(((((enjoys_stand-up_paddleboarding(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))&(collects_classic_novels(X))))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))&
(![X]:(room(X)=>(((enjoys_spelunking(X))=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(enjoys_stand-up_paddleboarding(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))
|
room(lara)&room(stephen)&room(clair)&room(kelly)&(![X]:(room(X)=>(X='lara'|X='stephen'|X='clair'|X='kelly')))&
plays_eSports_competitively(stephen)
|
[
"p0",
"p7",
"p8",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 9185051303380282538141181
% SZS output start Proof for 9185051303380282538141181
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
51. ! [X0] : (room(X0) => (predm(X0) => preda(X0))) [input p7]
52. ! [X0] : (room(X0) => (preda(X0) => ~(predx(X0) | predn(X0)))) [input p8]
58. ~? [X0] : (anywhere(X0) => (predn(X0) => preds(X0))) [input p14]
72. predm(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
81. ~? [X0] : (predn(X0) => preds(X0)) [pure predicate removal 58]
85. ~? [X0] : ~predn(X0) [pure predicate removal 81]
164. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
165. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 164]
172. ! [X0] : ((preda(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 51]
173. ! [X0] : (preda(X0) | ~predm(X0) | ~room(X0)) [flattening 172]
174. ! [X0] : (((~predx(X0) & ~predn(X0)) | ~preda(X0)) | ~room(X0)) [ennf transformation 52]
175. ! [X0] : ((~predx(X0) & ~predn(X0)) | ~preda(X0) | ~room(X0)) [flattening 174]
179. ! [X0] : predn(X0) [ennf transformation 85]
185. predm(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 72]
186. predm(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 185]
279. room(paul) [cnf transformation 165]
289. ~predm(X0) | preda(X0) | ~room(X0) [cnf transformation 173]
290. ~predn(X0) | ~preda(X0) | ~room(X0) [cnf transformation 175]
294. predn(X0) [cnf transformation 179]
311. predm(paul) [cnf transformation 186]
318. preda(paul) | ~room(paul) [resolution 289,311]
319. preda(paul) [subsumption resolution 318,279]
320. ~preda(X0) | ~room(X0) [resolution 290,294]
323. ~room(paul) [resolution 320,319]
324. $false [subsumption resolution 323,279]
% SZS output end Proof for 9185051303380282538141181
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0 |
Viola, Howard, Kelly are the only persons in the room.
Everyone in the room who is brave can play the harmonica.
If someone enjoys making ceramics then he/she owns a significant collection of rare gemstones and minerals.
Everyone anywhere enjoys making ceramics, is not a brave person or is a brave person if they is a brave person.
Everyone in the room can play the harmonica if they enjoys making ceramics, is not a brave person or is a brave person.
Everyone in the room is not not brave if and only if they works on fridays.
|
Everyone in the room can play the harmonica.
|
entailment
|
room(viola)&room(howard)&room(kelly)&(![X]:(room(X)=>(X='viola'|X='howard'|X='kelly')))&
(![X]:(room(X)=>(((brave(X))=>(can_play_the_harmonica(X))))))&
((![X]:((enjoys_making_ceramics(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))&
(![X]:(anywhere(X)=>(((brave(X)&person(X))=>(((enjoys_making_ceramics(X))|(~(brave(X)&person(X)))|(brave(X)&person(X))))))))&
(![X]:(room(X)=>(((((enjoys_making_ceramics(X))|(~(brave(X)&person(X)))|(brave(X)&person(X))))=>(can_play_the_harmonica(X))))))&
(![X]:(room(X)=>(((~~brave(X))<=>(works_on_fridays(X))))))&
((?[X,Y]:(~room(X)&~room(Y)&(((cannot_play_the_harmonica(X))<~>(brave(X)&person(X)))&((cannot_play_the_harmonica(Y))<~>(brave(Y)&person(Y))))&(X!=Y))))&
((((enjoys_making_ceramics(viola))|(~(brave(viola)&person(viola)))|(brave(viola)&person(viola))))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(viola)))&
((works_on_fridays(kelly))&(can_play_the_harmonica(kelly)))&
(enjoys_making_ceramics(viola))&
(~![X]:(room(X)=>(((works_on_fridays(X))=>(enjoys_making_ceramics(X))))))&
(?[X]:(room(X)&(~(brave(X)&person(X)))))
|
room(viola)&room(howard)&room(kelly)&(![X]:(room(X)=>(X='viola'|X='howard'|X='kelly')))&
![X]:(room(X)=>(can_play_the_harmonica(X)))
|
[
"p0",
"p1",
"p4",
"hypothesis"
] |
% SZS status Unsatisfiable for 3565725036650158093172761
% SZS output start Proof for 3565725036650158093172761
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. ! [X0] : (room(X0) => (brave(X0) => predd(X0))) [input p1]
48. ! [X0] : (room(X0) => (((person(X0) & brave(X0)) | ~(person(X0) & brave(X0)) | predr(X0)) => predd(X0))) [input p4]
56. ~(! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
57. ~(! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary)) [rectify 56]
131. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
132. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 131]
133. ! [X0] : ((predd(X0) | ~brave(X0)) | ~room(X0)) [ennf transformation 45]
134. ! [X0] : (predd(X0) | ~brave(X0) | ~room(X0)) [flattening 133]
137. ! [X0] : ((predd(X0) | ((~person(X0) | ~brave(X0)) & (person(X0) & brave(X0)) & ~predr(X0))) | ~room(X0)) [ennf transformation 48]
138. ! [X0] : (predd(X0) | ((~person(X0) | ~brave(X0)) & person(X0) & brave(X0) & ~predr(X0)) | ~room(X0)) [flattening 137]
145. ? [X0] : (~predd(X0) & room(X0)) | ? [X1] : ((fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 57]
146. ? [X0] : (~predd(X0) & room(X0)) | ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 145]
157. ? [X0] : (~predd(X0) & room(X0)) => (~predd(sK4) & room(sK4)) [choice axiom]
158. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
159. (~predd(sK4) & room(sK4)) | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 146,158,157]
241. room(mary) [cnf transformation 132]
242. room(paul) [cnf transformation 132]
243. room(fred) [cnf transformation 132]
244. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 132]
245. ~brave(X0) | predd(X0) | ~room(X0) [cnf transformation 134]
249. predd(X0) | brave(X0) | ~room(X0) [cnf transformation 138]
273. room(sK4) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
274. room(sK4) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
275. room(sK4) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
276. room(sK4) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
277. ~predd(sK4) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
278. ~predd(sK4) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
279. ~predd(sK4) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
280. ~predd(sK4) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159]
283. ~room(X0) | predd(X0) [subsumption resolution 249,245]
323. ~predd(sK4) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 280,243]
324. ~predd(sK4) | fred != sK5 | ~room(mary) [subsumption resolution 323,242]
325. ~predd(sK4) | fred != sK5 [subsumption resolution 324,241]
327. 9 <=> fred = sK5 [avatar definition]
329. fred != sK5 <- (~9) [avatar component clause 327]
331. 10 <=> predd(sK4) [avatar definition]
333. ~predd(sK4) <- (~10) [avatar component clause 331]
334. ~9 | ~10 [avatar split clause 325,331,327]
335. ~predd(sK4) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 279,243]
336. ~predd(sK4) | paul != sK5 | ~room(mary) [subsumption resolution 335,242]
337. ~predd(sK4) | paul != sK5 [subsumption resolution 336,241]
339. 11 <=> paul = sK5 [avatar definition]
341. paul != sK5 <- (~11) [avatar component clause 339]
342. ~11 | ~10 [avatar split clause 337,331,339]
343. ~predd(sK4) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 278,243]
344. ~predd(sK4) | mary != sK5 | ~room(mary) [subsumption resolution 343,242]
345. ~predd(sK4) | mary != sK5 [subsumption resolution 344,241]
347. 12 <=> mary = sK5 [avatar definition]
350. ~12 | ~10 [avatar split clause 345,331,347]
351. ~predd(sK4) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 277,243]
352. ~predd(sK4) | room(sK5) | ~room(mary) [subsumption resolution 351,242]
353. ~predd(sK4) | room(sK5) [subsumption resolution 352,241]
355. 13 <=> room(sK5) [avatar definition]
357. room(sK5) <- (13) [avatar component clause 355]
358. 13 | ~10 [avatar split clause 353,331,355]
359. room(sK4) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 276,243]
360. room(sK4) | fred != sK5 | ~room(mary) [subsumption resolution 359,242]
361. room(sK4) | fred != sK5 [subsumption resolution 360,241]
363. 14 <=> room(sK4) [avatar definition]
365. room(sK4) <- (14) [avatar component clause 363]
366. ~9 | 14 [avatar split clause 361,363,327]
367. room(sK4) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 275,243]
368. room(sK4) | paul != sK5 | ~room(mary) [subsumption resolution 367,242]
369. room(sK4) | paul != sK5 [subsumption resolution 368,241]
370. ~11 | 14 [avatar split clause 369,363,339]
371. room(sK4) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 274,243]
372. room(sK4) | mary != sK5 | ~room(mary) [subsumption resolution 371,242]
373. room(sK4) | mary != sK5 [subsumption resolution 372,241]
374. ~12 | 14 [avatar split clause 373,363,347]
375. room(sK4) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 273,243]
376. room(sK4) | room(sK5) | ~room(mary) [subsumption resolution 375,242]
377. room(sK4) | room(sK5) [subsumption resolution 376,241]
378. 13 | 14 [avatar split clause 377,363,355]
440. paul = sK5 | mary = sK5 | fred = sK5 <- (13) [resolution 244,357]
467. mary = sK5 | fred = sK5 <- (~11, 13) [subsumption resolution 440,341]
471. mary = sK5 <- (~9, ~11, 13) [subsumption resolution 467,329]
472. 12 | 9 | 11 | ~13 [avatar split clause 471,355,339,327,347]
487. predd(sK4) <- (14) [resolution 365,283]
502. $false <- (~10, 14) [subsumption resolution 487,333]
503. 10 | ~14 [avatar contradiction clause 502]
504. $false [avatar sat refutation 334,342,350,358,366,370,374,378,472,503]
% SZS output end Proof for 3565725036650158093172761
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0 |
Lisa, Tiffany, Stephany, Margaret, Rhonda are the only persons in the room.
Everyone in the room is a patient european.
Everyone in the room does not enjoy writing detailed reviews of new and classic board games.
Everyone in the room is a generous tourist.
Stephany is not a strong person or is not a funny european or both.
Margaret is a old european.
If someone is calm then he/she is a happy tourist.
Everyone in the room is a patient person.
Not everyone in the room is a old tourist, is a happy tourist and is a calm european.
Everyone in the room is a curious european.
|
Everyone in the room is not a curious person.
|
contradiction
|
room(lisa)&room(tiffany)&room(stephany)&room(margaret)&room(rhonda)&(![X]:(room(X)=>(X='lisa'|X='tiffany'|X='stephany'|X='margaret'|X='rhonda')))&
(![X]:(room(X)=>(patient(X)&european(X))))&
(![X]:(room(X)=>(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))&
(![X]:(room(X)=>(generous(X)&tourist(X))))&
(((~(strong(stephany)&person(stephany)))|(~(funny(stephany)&european(stephany)))))&
(old(margaret)&european(margaret))&
((![X]:((calm(X))=>(happy(X)&tourist(X)))))&
(![X]:(room(X)=>(patient(X)&person(X))))&
(![X]:(room(X)=>(~(strong(X)&tourist(X)))))&
(~![X]:(room(X)=>(((old(X)&tourist(X))&(happy(X)&tourist(X))&(calm(X)&european(X))))))&
(![X]:(~room(X)=>(~(generous(X)&person(X)))))&
(![X]:(room(X)=>(brave(X)&tourist(X))))&
(![X]:(room(X)=>(curious(X)&european(X))))&
((![X]:((calm(X)&tourist(X))=>(brave(X)))))&
(![X]:(room(X)=>(does_not_collect_action_figures(X))))&
(![X]:(room(X)=>(humble(X)&person(X))))&
((![X]:((funny(X)&european(X))=>(patient(X)&tourist(X)))))
|
room(lisa)&room(tiffany)&room(stephany)&room(margaret)&room(rhonda)&(![X]:(room(X)=>(X='lisa'|X='tiffany'|X='stephany'|X='margaret'|X='rhonda')))&
![X]:(room(X)=>(~(curious(X)&person(X))))
|
[
"p7",
"p9",
"p12",
"hypothesis"
] |
% SZS status Unsatisfiable for 6357417952920458179901986
% SZS output start Proof for 6357417952920458179901986
51. ! [X0] : (room(X0) => (person(X0) & patient(X0))) [input p7]
53. ~! [X0] : (room(X0) => (european(X0) & calm(X0) & tourist(X0) & happy(X0) & tourist(X0) & old(X0))) [input p9]
56. ! [X0] : (room(X0) => (european(X0) & curious(X0))) [input p12]
61. ! [X0] : (room(X0) => ~(person(X0) & curious(X0))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
62. ! [X0] : (room(X0) => ~(person(X0) & curious(X0))) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 61]
68. ~! [X0] : ~room(X0) [pure predicate removal 53]
73. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 51]
151. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 73]
152. ? [X0] : room(X0) [ennf transformation 68]
156. ! [X0] : ((european(X0) & curious(X0)) | ~room(X0)) [ennf transformation 56]
158. ! [X0] : ((~person(X0) | ~curious(X0)) | ~room(X0)) & ! [X1] : ((john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 62]
159. ! [X0] : (~person(X0) | ~curious(X0) | ~room(X0)) & ! [X1] : (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 158]
161. ? [X0] : room(X0) => room(sK0) [choice axiom]
162. room(sK0) [skolemisation 152,161]
256. person(X0) | ~room(X0) [cnf transformation 151]
257. room(sK0) [cnf transformation 162]
260. curious(X0) | ~room(X0) [cnf transformation 156]
269. ~person(X0) | ~curious(X0) | ~room(X0) [cnf transformation 159]
270. ~curious(X0) | ~room(X0) [subsumption resolution 269,256]
271. ~room(X0) [subsumption resolution 270,260]
277. $false [resolution 271,257]
% SZS output end Proof for 6357417952920458179901986
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.447985 |
Victor, Kathleen, Maria, Kenneth, Julie are the only persons in the room. Maria is not a happy tourist. More than one person in the room enjoys spelunking. Kathleen and Devin hate each other. Everyone in the room is humble only if they is curious. Kenneth and Richard hate each other. “A clock does not measure time in various colors.” or “A frog does not sing opera in the swamp at night.” but not both. No strong person is calm. “A pizza does not exist that tastes like ice cream.” and “A door randomly teleports those who pass through it.”. Only one person in the room is tall. More than one person in the room is a funny person, is brave and is a client of Richard. Someone who hosts regular workshops on creative writing is a sibling of someone who is liked by Richard. If someone is a client of Devin or is brave or both then he/she is happy.
|
Kenneth is strong.
|
entailment
|
room(victor)&room(kathleen)&room(maria)&room(kenneth)&room(julie)&(![X]:(room(X)=>(X='victor'|X='kathleen'|X='maria'|X='kenneth'|X='julie')))&
(~(happy(maria)&tourist(maria)))&
((?[X,Y]:(room(X)&room(Y)&(enjoys_spelunking(X)&enjoys_spelunking(Y))&(X!=Y))))&
((hate(kathleen,devin) & hate(devin,kathleen)))&
(![X]:(room(X)=>(((curious(X))<=(humble(X))))))&
((hate(kenneth,richard) & hate(richard,kenneth)))&
(((A_clock_does_not_measure_time_in_various_colors.)<~>(A_frog_does_not_sing_opera_in_the_swamp_at_night.)))&
(~?[X]:(strong(X)=>calm(X)))&
(((A_pizza_does_not_exist_that_tastes_like_ice_cream.)&(A_door_randomly_teleports_those_who_pass_through_it.)))&
(((?[X]:(room(X)&tall(X)))&(![X,Y]:((room(X)&room(Y)&(tall(X))&(tall(Y)))=>(X=Y)))))&
((?[X,Y]:(room(X)&room(Y)&(((funny(X)&person(X))&(brave(X))&(client(richard,X)))&((funny(Y)&person(Y))&(brave(Y))&(client(richard,Y))))&(X!=Y))))&
(?[X,Y]:((hosts_regular_workshops_on_creative_writing(X))&(like(Y,richard))&(sibling(X,Y))))&
((![X]:((((client(devin,X))|(brave(X))))=>(happy(X)))))&
((like(kenneth,devin) & like(devin,kenneth)))&
(~((?[X,Y]:(anywhere(X)&anywhere(Y)&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)&is_a_dedicated_advocate_for_digital_privacy_and_encryption(Y))&(X!=Y)))))
|
room(victor)&room(kathleen)&room(maria)&room(kenneth)&room(julie)&(![X]:(room(X)=>(X='victor'|X='kathleen'|X='maria'|X='kenneth'|X='julie')))&
strong(kenneth)
|
[
"p0",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 9215773248304692559184463
% SZS output start Proof for 9215773248304692559184463
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
51. ~? [X0] : (strong(X0) => calm(X0)) [input p7]
59. ~(strong(alice) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
67. ~? [X0] : ~strong(X0) [pure predicate removal 51]
148. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
149. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148]
150. ! [X0] : strong(X0) [ennf transformation 67]
153. ~strong(alice) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 59]
154. ~strong(alice) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 153]
165. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom]
166. ~strong(alice) | (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 154,165]
249. room(mary) [cnf transformation 149]
250. room(paul) [cnf transformation 149]
251. room(fred) [cnf transformation 149]
252. room(alice) [cnf transformation 149]
253. room(john) [cnf transformation 149]
254. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 149]
264. strong(X0) [cnf transformation 150]
275. ~strong(alice) | room(sK7) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 166]
276. ~strong(alice) | mary != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 166]
277. ~strong(alice) | paul != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 166]
278. ~strong(alice) | fred != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 166]
279. ~strong(alice) | alice != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 166]
280. ~strong(alice) | john != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 166]
291. john != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,264]
292. john != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 291,253]
293. john != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 292,252]
294. john != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 293,251]
295. john != sK7 | ~room(mary) [subsumption resolution 294,250]
296. john != sK7 [subsumption resolution 295,249]
297. alice != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,264]
298. alice != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,253]
299. alice != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,252]
300. alice != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 299,251]
301. alice != sK7 | ~room(mary) [subsumption resolution 300,250]
302. alice != sK7 [subsumption resolution 301,249]
303. fred != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,264]
304. fred != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,253]
305. fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,252]
306. fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 305,251]
307. fred != sK7 | ~room(mary) [subsumption resolution 306,250]
308. fred != sK7 [subsumption resolution 307,249]
309. paul != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,264]
310. paul != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 309,253]
311. paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 310,252]
312. paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 311,251]
313. paul != sK7 | ~room(mary) [subsumption resolution 312,250]
314. paul != sK7 [subsumption resolution 313,249]
315. mary != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 276,264]
316. mary != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 315,253]
317. mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 316,252]
318. mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 317,251]
319. mary != sK7 | ~room(mary) [subsumption resolution 318,250]
320. mary != sK7 [subsumption resolution 319,249]
321. room(sK7) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 275,264]
322. room(sK7) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 321,253]
323. room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 322,252]
324. room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 323,251]
325. room(sK7) | ~room(mary) [subsumption resolution 324,250]
326. room(sK7) [subsumption resolution 325,249]
397. alice = sK7 | fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 [resolution 254,326]
503. fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 [subsumption resolution 397,302]
504. paul = sK7 | mary = sK7 | john = sK7 [subsumption resolution 503,308]
505. mary = sK7 | john = sK7 [subsumption resolution 504,314]
506. john = sK7 [subsumption resolution 505,320]
507. $false [subsumption resolution 506,296]
% SZS output end Proof for 9215773248304692559184463
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.042 s
% ------------------------------
% ------------------------------
| 0.023692 |
There is a room.
“No one in the room does not have lived in exactly three countries or practices and performs acrobatic dance routines” if “at least one person in the room does not have lived in exactly three countries” and vice versa.
“Everyone in the room does not have lived in exactly three countries or does not enjoy mountain biking” if “everyone in the room does not enjoy mountain biking or practices graffiti art”.
“Everyone outside the room who has a vast collection of first-edition science fiction novels has lived in exactly three countries” if “someone in the room practices graffiti art”.
If “everyone in the room does not enjoy mountain biking or practices archery” then “everyone in the room who is a dedicated volunteer for local community service projects collects comic books”.
“Everyone in the room who practices archery either can play the guitar or uses a Windows laptop but not both” unless “everyone anywhere does not use a Windows laptop or enjoys kayaking”.
“Everyone outside the room can play the guitar if they does not collect comic books” if “everyone in the room does not collect comic books or collects comic books”.
If “everyone in the room does not collect comic books or is a dedicated volunteer for local community service projects” then “no one anywhere who collects comic books enjoys kayaking”.
If “everyone outside the room cannot play the guitar or practices archery” then “not everyone outside the room develops open-source software projects in their free time if they owns a smart tv”.
“Everyone in the room who collects historical artifacts related to ancient civilizations develops open-source software projects in their free time” unless “everyone in the room does not practice archery or practices archery”.
If someone practices graffiti art then he/she has lived in exactly three countries and vice versa.
Someone in the room owns a smart tv.
Not everyone anywhere practices graffiti art.
Everyone outside the room cannot play the guitar or practices archery.
Everyone in the room does not collect comic books or collects comic books.
Everyone outside the room who practices graffiti art does enjoy mountain biking.
Everyone in the room who practices and performs acrobatic dance routines collects comic books.
Everyone in the room who collects comic books collects historical artifacts related to ancient civilizations.
|
Everyone in the room does not own a smart tv or practices archery.
|
neutral
|
(there_is_a_room)&
((((?[X]:(room(X)&does_not_have_lived_in_exactly_three_countries(X)))))<=>(~?[X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(does_not_have_lived_in_exactly_three_countries(X)))))))&
((![X]:(room(X)=>(((practices_graffiti_art(X))|(does_not_enjoy_mountain_biking(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(does_not_have_lived_in_exactly_three_countries(X)))))))&
((?[X]:(room(X)&(practices_graffiti_art(X))))=>(![X]:(~room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(has_lived_in_exactly_three_countries(X)))))))&
((![X]:(room(X)=>(((practices_archery(X))|(does_not_enjoy_mountain_biking(X))))))=>(![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(collects_comic_books(X)))))))&
(~(![X]:(anywhere(X)=>(((enjoys_kayaking(X))|(does_not_use_a_Windows_laptop(X))))))=>(![X]:(room(X)=>(((practices_archery(X))=>(((can_play_the_guitar(X))<~>(uses_a_Windows_laptop(X)))))))))&
((![X]:(room(X)=>(((collects_comic_books(X))|(does_not_collect_comic_books(X))))))=>(![X]:(~room(X)=>(((does_not_collect_comic_books(X))=>(can_play_the_guitar(X)))))))&
((![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(does_not_collect_comic_books(X))))))=>(~?[X]:(anywhere(X)=>(((collects_comic_books(X))=>(enjoys_kayaking(X)))))))&
((![X]:(~room(X)=>(((practices_archery(X))|(cannot_play_the_guitar(X))))))=>(~![X]:(~room(X)=>(((owns_a_smart_tv(X))=>(develops_open-source_software_projects_in_their_free_time(X)))))))&
(~(![X]:(room(X)=>(((practices_archery(X))|(does_not_practice_archery(X))))))=>(![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(develops_open-source_software_projects_in_their_free_time(X)))))))&
((![X]:((practices_graffiti_art(X))<=>(has_lived_in_exactly_three_countries(X)))))&
(?[X]:(room(X)&(owns_a_smart_tv(X))))&
(~![X]:(anywhere(X)=>(practices_graffiti_art(X))))&
(![X]:(~room(X)=>(((practices_archery(X))|(cannot_play_the_guitar(X))))))&
(![X]:(room(X)=>(((collects_comic_books(X))|(does_not_collect_comic_books(X))))))&
(![X]:(~room(X)=>(((practices_graffiti_art(X))=>(does_enjoy_mountain_biking(X))))))&
(![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(collects_comic_books(X))))))&
(![X]:(room(X)=>(((collects_comic_books(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((practices_archery(X))|(does_not_own_a_smart_tv(X)))))
|
[] | null | 0.498374 |
Juan, Helen, Tiffany, Bernard are the only persons in the room. If “everyone outside the room does not bake bread at home or is a client of Meta” then “everyone in the room who does not bake bread at home travels domestically frequently”. If “everyone in the room is a client of Meta or does not bake bread at home” then “everyone in the room who owns a smart tv travels domestically frequently”. If someone travels domestically frequently then he/she bakes bread at home. Someone in the room owns a smart tv. Everyone in the room owns a smart tv if they is a client of Meta. Everyone in the room who owns a smart tv bakes bread at home. Someone in the room bakes bread at home.
|
Everyone outside the room does not travel domestically frequently or bakes bread at home.
|
entailment
|
room(juan)&room(helen)&room(tiffany)&room(bernard)&(![X]:(room(X)=>(X='juan'|X='helen'|X='tiffany'|X='bernard')))&
((![X]:(~room(X)=>(((is_a_client_of_Meta(X))|(does_not_bake_bread_at_home(X))))))=>(![X]:(room(X)=>(((does_not_bake_bread_at_home(X))=>(travels_domestically_frequently(X)))))))&
((![X]:(room(X)=>(((does_not_bake_bread_at_home(X))|(is_a_client_of_Meta(X))))))=>(![X]:(room(X)=>(((owns_a_smart_tv(X))=>(travels_domestically_frequently(X)))))))&
((![X]:((travels_domestically_frequently(X))=>(bakes_bread_at_home(X)))))&
(?[X]:(room(X)&(owns_a_smart_tv(X))))&
(![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(owns_a_smart_tv(X))))))&
(![X]:(room(X)=>(((owns_a_smart_tv(X))=>(bakes_bread_at_home(X))))))&
(?[X]:(room(X)&(bakes_bread_at_home(X))))
|
room(juan)&room(helen)&room(tiffany)&room(bernard)&(![X]:(room(X)=>(X='juan'|X='helen'|X='tiffany'|X='bernard')))&
![X]:(~room(X)=>(((bakes_bread_at_home(X))|(does_not_travel_domestically_frequently(X)))))
|
[
"p0",
"p3",
"hypothesis"
] |
% SZS status Unsatisfiable for 4563233353209993474372268
% SZS output start Proof for 4563233353209993474372268
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
47. ! [X0] : (predc(X0) => preda(X0)) [input p3]
52. ~(! [X0] : (~room(X0) => (~predc(X0) | preda(X0))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
55. ~(! [X0] : (~room(X0) => (~predc(X0) | preda(X0))) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 52]
131. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
132. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 131]
137. ! [X0] : (preda(X0) | ~predc(X0)) [ennf transformation 47]
140. ? [X0] : ((predc(X0) & ~preda(X0)) & ~room(X0)) | ? [X1] : ((alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 55]
141. ? [X0] : (predc(X0) & ~preda(X0) & ~room(X0)) | ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 140]
142. ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction]
143. ? [X0] : (predc(X0) & ~preda(X0) & ~room(X0)) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 141,142]
155. ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 142]
156. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 155]
157. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
158. (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~sP0 [skolemisation 156,157]
159. ? [X0] : (predc(X0) & ~preda(X0) & ~room(X0)) => (predc(sK6) & ~preda(sK6) & ~room(sK6)) [choice axiom]
160. (predc(sK6) & ~preda(sK6) & ~room(sK6)) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 143,159]
241. room(mary) [cnf transformation 132]
242. room(paul) [cnf transformation 132]
243. room(fred) [cnf transformation 132]
244. room(alice) [cnf transformation 132]
245. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 132]
250. ~predc(X0) | preda(X0) [cnf transformation 137]
256. room(sK5) | ~sP0 [cnf transformation 158]
257. mary != sK5 | ~sP0 [cnf transformation 158]
258. paul != sK5 | ~sP0 [cnf transformation 158]
259. fred != sK5 | ~sP0 [cnf transformation 158]
260. alice != sK5 | ~sP0 [cnf transformation 158]
262. ~preda(sK6) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160]
263. predc(sK6) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160]
291. 7 <=> sP0 [avatar definition]
295. 8 <=> alice = sK5 [avatar definition]
298. ~7 | ~8 [avatar split clause 260,295,291]
300. 9 <=> fred = sK5 [avatar definition]
302. fred != sK5 <- (~9) [avatar component clause 300]
303. ~7 | ~9 [avatar split clause 259,300,291]
305. 10 <=> paul = sK5 [avatar definition]
307. paul != sK5 <- (~10) [avatar component clause 305]
308. ~7 | ~10 [avatar split clause 258,305,291]
310. 11 <=> mary = sK5 [avatar definition]
312. mary != sK5 <- (~11) [avatar component clause 310]
313. ~7 | ~11 [avatar split clause 257,310,291]
315. 12 <=> room(sK5) [avatar definition]
317. room(sK5) <- (12) [avatar component clause 315]
318. ~7 | 12 [avatar split clause 256,315,291]
319. predc(sK6) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,244]
320. predc(sK6) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 319,243]
321. predc(sK6) | sP0 | ~room(mary) [subsumption resolution 320,242]
322. predc(sK6) | sP0 [subsumption resolution 321,241]
324. 13 <=> predc(sK6) [avatar definition]
326. predc(sK6) <- (13) [avatar component clause 324]
327. 7 | 13 [avatar split clause 322,324,291]
328. ~preda(sK6) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,244]
329. ~preda(sK6) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 328,243]
330. ~preda(sK6) | sP0 | ~room(mary) [subsumption resolution 329,242]
331. ~preda(sK6) | sP0 [subsumption resolution 330,241]
333. 14 <=> preda(sK6) [avatar definition]
335. ~preda(sK6) <- (~14) [avatar component clause 333]
336. 7 | ~14 [avatar split clause 331,333,291]
406. fred = sK5 | paul = sK5 | mary = sK5 | alice = sK5 <- (12) [resolution 245,317]
441. paul = sK5 | mary = sK5 | alice = sK5 <- (~9, 12) [subsumption resolution 406,302]
442. mary = sK5 | alice = sK5 <- (~9, ~10, 12) [subsumption resolution 441,307]
443. alice = sK5 <- (~9, ~10, ~11, 12) [subsumption resolution 442,312]
446. 8 | 9 | 10 | 11 | ~12 [avatar split clause 443,315,310,305,300,295]
455. preda(sK6) <- (13) [resolution 326,250]
456. $false <- (13, ~14) [subsumption resolution 455,335]
457. ~13 | 14 [avatar contradiction clause 456]
458. $false [avatar sat refutation 298,303,308,313,318,327,336,446,457]
% SZS output end Proof for 4563233353209993474372268
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.2753 |
There is a room.
Everyone in the room is a night owl if they can play the harmonica and vice versa.
Everyone in the room who can play the harmonica either does not practice kickboxing or can play the harmonica but not both.
If someone does not practice kickboxing then he/she is an active member of a local robotics club and vice versa.
Everyone in the room is an active member of a local robotics club.
Everyone outside the room who can play the harmonica is an active member of a local robotics club.
Everyone in the room who can play the harmonica or is an active member of a local robotics club or both is a night owl.
If someone can play the harmonica then he/she does not practice kickboxing.
Everyone anywhere is an active member of a local robotics club and practices kickboxing only if they can play the harmonica.
Everyone in the room is not an active member of a local robotics club if they is a night owl, is an active member of a local robotics club and cannot play the harmonica and vice versa.
Only one person anywhere can play the harmonica.
At least one person anywhere is a night owl.
Not everyone anywhere is a night owl or is not an active member of a local robotics club.
Everyone anywhere is an active member of a local robotics club if they is a night owl.
|
Everyone in the room is a night owl.
|
entailment
|
(there_is_a_room)&
(![X]:(room(X)=>(((is_a_night_owl(X))<=>(can_play_the_harmonica(X))))))&
(![X]:(room(X)=>(((can_play_the_harmonica(X))=>(((does_not_practice_kickboxing(X))<~>(can_play_the_harmonica(X))))))))&
((![X]:((does_not_practice_kickboxing(X))<=>(is_an_active_member_of_a_local_robotics_club(X)))))&
(![X]:(room(X)=>(is_an_active_member_of_a_local_robotics_club(X))))&
(![X]:(~room(X)=>(((can_play_the_harmonica(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))&
(![X]:(room(X)=>(((((can_play_the_harmonica(X))|(is_an_active_member_of_a_local_robotics_club(X))))=>(is_a_night_owl(X))))))&
((![X]:((can_play_the_harmonica(X))=>(does_not_practice_kickboxing(X)))))&
(![X]:(anywhere(X)=>(((can_play_the_harmonica(X))<=(((is_an_active_member_of_a_local_robotics_club(X))&(practices_kickboxing(X))))))))&
(![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))<=>(((is_a_night_owl(X))&(is_an_active_member_of_a_local_robotics_club(X))&(cannot_play_the_harmonica(X))))))))&
(((?[X]:(anywhere(X)&can_play_the_harmonica(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(can_play_the_harmonica(X))&(can_play_the_harmonica(Y)))=>(X=Y)))))&
(((?[X]:(anywhere(X)&is_a_night_owl(X)))))&
(~![X]:(anywhere(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(is_a_night_owl(X))))))&
(![X]:(anywhere(X)=>(((is_a_night_owl(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(is_a_night_owl(X)))
|
[
"p0",
"p4",
"p6",
"hypothesis"
] |
% SZS status Unsatisfiable for 6331514378152319973778584
% SZS output start Proof for 6331514378152319973778584
44. there_is_a_room [input p0]
48. ! [X0] : (room(X0) => predb(X0)) [input p4]
50. ! [X0] : (room(X0) => ((predb(X0) | preda(X0)) => predc(X0))) [input p6]
58. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis]
134. ! [X0] : (predb(X0) | ~room(X0)) [ennf transformation 48]
137. ! [X0] : ((predc(X0) | (~predb(X0) & ~preda(X0))) | ~room(X0)) [ennf transformation 50]
138. ! [X0] : (predc(X0) | (~predb(X0) & ~preda(X0)) | ~room(X0)) [flattening 137]
149. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 58]
162. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK3) & room(sK3)) [choice axiom]
163. (~predc(sK3) & room(sK3)) | ~there_is_a_room [skolemisation 149,162]
245. there_is_a_room [cnf transformation 44]
252. ~room(X0) | predb(X0) [cnf transformation 134]
255. predc(X0) | ~predb(X0) | ~room(X0) [cnf transformation 138]
271. room(sK3) | ~there_is_a_room [cnf transformation 163]
272. ~predc(sK3) | ~there_is_a_room [cnf transformation 163]
277. ~room(X0) | predc(X0) [subsumption resolution 255,252]
281. ~predc(sK3) [subsumption resolution 272,245]
282. room(sK3) [subsumption resolution 271,245]
289. predc(sK3) [resolution 277,282]
290. $false [subsumption resolution 289,281]
% SZS output end Proof for 6331514378152319973778584
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.034 s
% ------------------------------
% ------------------------------
| 0 |
There is a room.
“Everyone in the room does not enjoy stand-up paddleboarding or owns a telescope” if “everyone in the room collects action figures or does not own a telescope” and vice versa.
“Everyone in the room does not collect action figures or does not collect classic novels” if “everyone outside the room does not collect classic novels or collects classic novels”.
Everyone anywhere does not collect action figures only if they owns a telescope.
Only one person in the room does not own a telescope.
|
Everyone in the room owns a telescope.
|
contradiction
|
(there_is_a_room)&
((![X]:(room(X)=>(((does_not_own_a_telescope(X))|(collects_action_figures(X))))))<=>(![X]:(room(X)=>(((owns_a_telescope(X))|(does_not_enjoy_stand-up_paddleboarding(X)))))))&
((![X]:(~room(X)=>(((collects_classic_novels(X))|(does_not_collect_classic_novels(X))))))=>(![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(does_not_collect_action_figures(X)))))))&
(![X]:(anywhere(X)=>(((owns_a_telescope(X))<=(does_not_collect_action_figures(X))))))&
(![X]:(room(X)=>(((((collects_first_edition_books(X))&(owns_a_telescope(X))&(enjoys_stand-up_paddleboarding(X))))=>(collects_classic_novels(X))))))&
(![X]:(room(X)=>(((collects_classic_novels(X))|(does_not_own_a_telescope(X))))))&
((![X]:((owns_a_telescope(X))=>(((collects_first_edition_books(X))|(collects_action_figures(X)))))))&
(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_collect_first_edition_books(X))))))&
(((?[X]:(room(X)&does_not_own_a_telescope(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_own_a_telescope(X))&(does_not_own_a_telescope(Y)))=>(X=Y)))))&
(((?[X]:(room(X)&((collects_action_figures(X))&(does_not_enjoy_stand-up_paddleboarding(X))&(knows_morse_code(X)))))&(![X,Y]:((room(X)&room(Y)&(((collects_action_figures(X))&(does_not_enjoy_stand-up_paddleboarding(X))&(knows_morse_code(X))))&(((collects_action_figures(Y))&(does_not_enjoy_stand-up_paddleboarding(Y))&(knows_morse_code(Y)))))=>(X=Y)))))
|
(there_is_a_room)&
![X]:(room(X)=>(owns_a_telescope(X)))
|
[
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 1621491586522935997442610
% SZS output start Proof for 1621491586522935997442610
52. ! [X0,X1] : ((~predc(X1) & ~predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predc(X0) & room(X0)) [input p8]
54. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis]
57. ! [X0,X1] : ((~predc(X1) & ~predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~predc(X2) & room(X2)) [rectify 52]
59. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 54]
146. ! [X0,X1] : (X0 = X1 | (predc(X1) | predc(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~predc(X2) & room(X2)) [ennf transformation 57]
147. ! [X0,X1] : (X0 = X1 | predc(X1) | predc(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~predc(X2) & room(X2)) [flattening 146]
150. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 59]
160. ? [X2] : (~predc(X2) & room(X2)) => (~predc(sK3) & room(sK3)) [choice axiom]
161. ! [X0,X1] : (X0 = X1 | predc(X1) | predc(X0) | ~room(X1) | ~room(X0)) & (~predc(sK3) & room(sK3)) [skolemisation 147,160]
259. room(sK3) [cnf transformation 161]
260. ~predc(sK3) [cnf transformation 161]
267. ~room(X0) | predc(X0) [cnf transformation 150]
321. predc(sK3) [resolution 267,259]
323. $false [subsumption resolution 321,260]
% SZS output end Proof for 1621491586522935997442610
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.033 s
% ------------------------------
% ------------------------------
| 0.317595 |
Barbara, Mildred are the only persons in the room.
“If someone knows morse code then he/she practices and performs acrobatic dance routines” if “someone outside the room is not an active member of a local robotics club”.
Barbara plays eSports competitively.
Everyone in the room who plays the drums writes poetry.
Everyone in the room plays the violin if they writes poetry.
Someone outside the room is not an active member of a local robotics club.
Barbara does not play the violin.
Everyone in the room who regularly contributes to tech forums and online communities is passionate about collecting and restoring classic cars.
It is not the case that “Barbara has a saltwater aquarium”.
Barbara can play the piano.
Everyone in the room plays eSports competitively if and only if they is an active member of a local robotics club, volunteers for local environmental conservation projects or can play the piano.
Everyone in the room knows morse code if they enjoys macrame.
Everyone in the room who regularly goes on multi-day backpacking trips in national parks creates bespoke furniture pieces from reclaimed wood.
If someone regularly goes on multi-day backpacking trips in national parks then he/she creates bespoke furniture pieces from reclaimed wood.
Barbara is an active member of a local robotics club.
|
Barbara plays the drums.
|
contradiction
|
room(barbara)&room(mildred)&(![X]:(room(X)=>(X='barbara'|X='mildred')))&
((?[X]:(~room(X)&(is_not_an_active_member_of_a_local_robotics_club(X))))=>((![X]:((knows_morse_code(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))&
(plays_eSports_competitively(barbara))&
(![X]:(room(X)=>(((plays_the_drums(X))=>(writes_poetry(X))))))&
(![X]:(room(X)=>(((writes_poetry(X))=>(plays_the_violin(X))))))&
(?[X]:(~room(X)&(is_not_an_active_member_of_a_local_robotics_club(X))))&
(does_not_play_the_violin(barbara))&
(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))&
(~(has_a_saltwater_aquarium(barbara)))&
(can_play_the_piano(barbara))&
(![X]:(room(X)=>(((plays_eSports_competitively(X))<=>(((is_an_active_member_of_a_local_robotics_club(X))|(volunteers_for_local_environmental_conservation_projects(X))|(can_play_the_piano(X))))))))&
(![X]:(room(X)=>(((enjoys_macrame(X))=>(knows_morse_code(X))))))&
(![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))&
((![X]:((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))&
(is_an_active_member_of_a_local_robotics_club(barbara))
|
room(barbara)&room(mildred)&(![X]:(room(X)=>(X='barbara'|X='mildred')))&
plays_the_drums(barbara)
|
[
"p0",
"p3",
"p4",
"p6",
"hypothesis"
] |
% SZS status Unsatisfiable for 603831045105001548567533
% SZS output start Proof for 603831045105001548567533
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
47. ! [X0] : (room(X0) => (preds(X0) => predq(X0))) [input p3]
48. ! [X0] : (room(X0) => (predq(X0) => predj(X0))) [input p4]
50. ~predj(mary) [input p6]
59. preds(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
139. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
140. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 139]
141. ! [X0] : ((predq(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 47]
142. ! [X0] : (predq(X0) | ~preds(X0) | ~room(X0)) [flattening 141]
143. ! [X0] : ((predj(X0) | ~predq(X0)) | ~room(X0)) [ennf transformation 48]
144. ! [X0] : (predj(X0) | ~predq(X0) | ~room(X0)) [flattening 143]
146. preds(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 59]
147. preds(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 146]
233. room(mary) [cnf transformation 140]
237. ~preds(X0) | predq(X0) | ~room(X0) [cnf transformation 142]
238. ~predq(X0) | predj(X0) | ~room(X0) [cnf transformation 144]
241. ~predj(mary) [cnf transformation 50]
251. preds(mary) [cnf transformation 147]
252. predq(mary) | ~room(mary) [resolution 237,251]
253. predq(mary) [subsumption resolution 252,233]
254. predj(mary) | ~room(mary) [resolution 238,253]
255. ~room(mary) [subsumption resolution 254,241]
256. $false [subsumption resolution 255,233]
% SZS output end Proof for 603831045105001548567533
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.071048 |
Larry, Timothy are the only persons in the room. If "Larry is a calm tourist" then "someone who does not mentor a youth basketball team on weekends is a client of someone who likes Marvin" otherwise "all funny persons are humble". "Teresa and Larry hate each other" if "Larry neither does not like Marvin nor is a humble european" and vice versa. If "Larry and Marvin hate each other" then "someone in the room is not hated by Teresa". If "someone in the room is not hated by Teresa" then "Larry participates in citizen science projects related to wildlife monitoring". "Someone in the room is strong" unless "Marvin and Timothy hate each other". If someone writes in-depth travel guides for off-the-beaten-path destinations then he/she is not a chess master who participates in national tournaments and vice versa. Timothy enjoys snowboarding. No tall person is patient. Larry hates Patricia. Timothy drives a hybrid car. If someone has a pet dog then he/she is wise.
|
Timothy drives a hybrid car.
|
entailment
|
room(larry)&room(timothy)&(![X]:(room(X)=>(X='larry'|X='timothy')))&
(((calm(larry)&tourist(larry))=>(?[X,Y]:((does_not_mentor_a_youth_basketball_team_on_weekends(X))&(like(marvin,Y))&(client(X,Y)))))&((~(calm(larry)&tourist(larry)))=>(![X]:(funny(X)=>humble(X)))))&
((~((~like(marvin,larry))|(humble(larry)&european(larry))))<=>((hate(teresa,larry) & hate(larry,teresa))))&
((((hate(larry,marvin) & hate(marvin,larry)))=>(?[X]:(room(X)&(~hate(X,teresa)))))&
((?[X]:(room(X)&(~hate(X,teresa))))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(larry))))&
(~((hate(marvin,timothy) & hate(timothy,marvin)))=>(?[X]:(room(X)&(strong(X)))))&
((![X]:((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=>(is_not_a_chess_master_who_participates_in_national_tournaments(X)))))&
(enjoys_snowboarding(timothy))&
(~?[X]:(tall(X)=>patient(X)))&
(hate(patricia,larry))&
(drives_a_hybrid_car(timothy))&
((![X]:((has_a_pet_dog(X))=>(wise(X)))))&
(![X]:(quiet(X)=>kind(X)))&
(hate(christina,timothy))&
((![X]:((does_not_mentor_a_youth_basketball_team_on_weekends(X))=>(tall(X)))))&
(~(happy(larry)&person(larry)))&
((![X]:((like(X,dennis))<=>(tall(X)))))&
(?[X]:(room(X)&(~hate(X,teresa))))&
(((?[X]:(~room(X)&is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))&
((quiet(larry))&(~(humble(larry)&person(larry))))&
(is_dedicated_to_sustainable_living_and_zero-waste_practices(timothy))&
((like(larry,marvin) & like(marvin,larry)))&
(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(timothy))&
(![X]:(generous(X)=>quiet(X)))
|
room(larry)&room(timothy)&(![X]:(room(X)=>(X='larry'|X='timothy')))&
drives_a_hybrid_car(timothy)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 7270518579796551283654413
% SZS output start Proof for 7270518579796551283654413
44. ! [X0] : (generous(X0) => quiet(X0)) & predo(paul) & like(lucy,mary) & like(mary,lucy) & predm(paul) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X0] : (predn(X0) & ~room(X0)) & ? [X0] : (~hate(X0,fred) & room(X0)) & ! [X0] : (like(X0,susan) <=> tall(X0)) & ~(person(mary) & happy(mary)) & ! [X0] : (~predy(X0) => tall(X0)) & hate(alice,paul) & ! [X0] : (quiet(X0) => kind(X0)) & ! [X0] : (predp(X0) => wise(X0)) & predl(paul) & hate(john,mary) & ~? [X0] : (tall(X0) => patient(X0)) & predj(paul) & ! [X0] : (predo(X0) <=> ~predf(X0)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X0] : (strong(X0) & room(X0))) & (? [X0] : (~hate(X0,fred) & room(X0)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X0] : (~hate(X0,fred) & room(X0))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X0] : (funny(X0) => humble(X0))) & ((tourist(mary) & calm(mary)) => ? [X0,X1] : (client(X0,X1) & like(lucy,X1) & ~predy(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. ~(predl(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
46. ! [X0] : (generous(X0) => quiet(X0)) & predo(paul) & like(lucy,mary) & like(mary,lucy) & predm(paul) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : (predn(X1) & ~room(X1)) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ~(person(mary) & happy(mary)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & ! [X5] : (quiet(X5) => kind(X5)) & ! [X6] : (predp(X6) => wise(X6)) & predl(paul) & hate(john,mary) & ~? [X7] : (tall(X7) => patient(X7)) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [rectify 44]
47. predo(paul) & like(lucy,mary) & like(mary,lucy) & predm(paul) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : (predn(X1) & ~room(X1)) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ~(person(mary) & happy(mary)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & ! [X5] : (quiet(X5) => kind(X5)) & ! [X6] : (predp(X6) => wise(X6)) & predl(paul) & hate(john,mary) & ~? [X7] : (tall(X7) => patient(X7)) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 46]
48. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : (predn(X1) & ~room(X1)) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ~(person(mary) & happy(mary)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & ! [X5] : (quiet(X5) => kind(X5)) & ! [X6] : (predp(X6) => wise(X6)) & predl(paul) & hate(john,mary) & ~? [X7] : (tall(X7) => patient(X7)) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 47]
49. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ~(person(mary) & happy(mary)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & ! [X5] : (quiet(X5) => kind(X5)) & ! [X6] : (predp(X6) => wise(X6)) & predl(paul) & hate(john,mary) & ~? [X7] : (tall(X7) => patient(X7)) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 48]
50. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & ! [X5] : (quiet(X5) => kind(X5)) & ! [X6] : (predp(X6) => wise(X6)) & predl(paul) & hate(john,mary) & ~? [X7] : (tall(X7) => patient(X7)) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 49]
51. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & ! [X6] : (predp(X6) => wise(X6)) & predl(paul) & hate(john,mary) & ~? [X7] : (tall(X7) => patient(X7)) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 50]
52. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : (tall(X7) => patient(X7)) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 51]
53. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : ~tall(X7) & predj(paul) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 52]
54. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : ~tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : (strong(X9) & room(X9))) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 53]
55. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : ~tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : room(X9)) & (? [X10] : (~hate(X10,fred) & room(X10)) => predv(mary)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 54]
56. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : ~tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : room(X9)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & (~(tourist(mary) & calm(mary)) => ! [X12] : (funny(X12) => humble(X12))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 55]
57. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : ~tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : room(X9)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & ((tourist(mary) & calm(mary)) => ? [X13,X14] : (client(X13,X14) & like(lucy,X14) & ~predy(X13))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 56]
58. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & ! [X4] : (~predy(X4) => tall(X4)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : ~tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : room(X9)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 57]
60. predo(paul) & like(lucy,mary) & like(mary,lucy) & ~(person(mary) & humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ~? [X7] : ~tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (~(hate(paul,lucy) & hate(lucy,paul)) => ? [X9] : room(X9)) & ((hate(lucy,mary) & hate(mary,lucy)) => ? [X11] : (~hate(X11,fred) & room(X11))) & (~((european(mary) & humble(mary)) | ~like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & ! [X15] : (room(X15) => (paul = X15 | mary = X15)) & room(paul) & room(mary) [pure predicate removal 58]
134. predo(paul) & like(lucy,mary) & like(mary,lucy) & (~person(mary) | ~humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ! [X7] : tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (? [X9] : room(X9) | (hate(paul,lucy) & hate(lucy,paul))) & (? [X11] : (~hate(X11,fred) & room(X11)) | (~hate(lucy,mary) | ~hate(mary,lucy))) & (((~european(mary) | ~humble(mary)) & like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & ! [X15] : ((paul = X15 | mary = X15) | ~room(X15)) & room(paul) & room(mary) [ennf transformation 60]
135. predo(paul) & like(lucy,mary) & like(mary,lucy) & (~person(mary) | ~humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : (like(X3,susan) <=> tall(X3)) & hate(alice,paul) & predl(paul) & hate(john,mary) & ! [X7] : tall(X7) & ! [X8] : (predo(X8) <=> ~predf(X8)) & (? [X9] : room(X9) | (hate(paul,lucy) & hate(lucy,paul))) & (? [X11] : (~hate(X11,fred) & room(X11)) | ~hate(lucy,mary) | ~hate(mary,lucy)) & (((~european(mary) | ~humble(mary)) & like(lucy,mary)) <=> (hate(mary,fred) & hate(fred,mary))) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [flattening 134]
136. ~predl(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45]
137. ~predl(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 136]
139. predo(paul) & like(lucy,mary) & like(mary,lucy) & (~person(mary) | ~humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : ((like(X3,susan) | ~tall(X3)) & (tall(X3) | ~like(X3,susan))) & hate(alice,paul) & predl(paul) & hate(john,mary) & ! [X7] : tall(X7) & ! [X8] : ((predo(X8) | predf(X8)) & (~predf(X8) | ~predo(X8))) & (? [X9] : room(X9) | (hate(paul,lucy) & hate(lucy,paul))) & (? [X11] : (~hate(X11,fred) & room(X11)) | ~hate(lucy,mary) | ~hate(mary,lucy)) & ((((~european(mary) | ~humble(mary)) & like(lucy,mary)) | (~hate(mary,fred) | ~hate(fred,mary))) & ((hate(mary,fred) & hate(fred,mary)) | ((european(mary) & humble(mary)) | ~like(lucy,mary)))) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [nnf transformation 135]
140. predo(paul) & like(lucy,mary) & like(mary,lucy) & (~person(mary) | ~humble(mary)) & quiet(mary) & ? [X1] : ~room(X1) & ? [X2] : (~hate(X2,fred) & room(X2)) & ! [X3] : ((like(X3,susan) | ~tall(X3)) & (tall(X3) | ~like(X3,susan))) & hate(alice,paul) & predl(paul) & hate(john,mary) & ! [X7] : tall(X7) & ! [X8] : ((predo(X8) | predf(X8)) & (~predf(X8) | ~predo(X8))) & (? [X9] : room(X9) | (hate(paul,lucy) & hate(lucy,paul))) & (? [X11] : (~hate(X11,fred) & room(X11)) | ~hate(lucy,mary) | ~hate(mary,lucy)) & (((~european(mary) | ~humble(mary)) & like(lucy,mary)) | ~hate(mary,fred) | ~hate(fred,mary)) & ((hate(mary,fred) & hate(fred,mary)) | (european(mary) & humble(mary)) | ~like(lucy,mary)) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [flattening 139]
141. predo(paul) & like(lucy,mary) & like(mary,lucy) & (~person(mary) | ~humble(mary)) & quiet(mary) & ? [X0] : ~room(X0) & ? [X1] : (~hate(X1,fred) & room(X1)) & ! [X2] : ((like(X2,susan) | ~tall(X2)) & (tall(X2) | ~like(X2,susan))) & hate(alice,paul) & predl(paul) & hate(john,mary) & ! [X3] : tall(X3) & ! [X4] : ((predo(X4) | predf(X4)) & (~predf(X4) | ~predo(X4))) & (? [X5] : room(X5) | (hate(paul,lucy) & hate(lucy,paul))) & (? [X6] : (~hate(X6,fred) & room(X6)) | ~hate(lucy,mary) | ~hate(mary,lucy)) & (((~european(mary) | ~humble(mary)) & like(lucy,mary)) | ~hate(mary,fred) | ~hate(fred,mary)) & ((hate(mary,fred) & hate(fred,mary)) | (european(mary) & humble(mary)) | ~like(lucy,mary)) & ! [X7] : (paul = X7 | mary = X7 | ~room(X7)) & room(paul) & room(mary) [rectify 140]
142. ? [X0] : ~room(X0) => ~room(sK0) [choice axiom]
143. ? [X1] : (~hate(X1,fred) & room(X1)) => (~hate(sK1,fred) & room(sK1)) [choice axiom]
144. ? [X5] : room(X5) => room(sK2) [choice axiom]
145. ? [X6] : (~hate(X6,fred) & room(X6)) => (~hate(sK3,fred) & room(sK3)) [choice axiom]
146. predo(paul) & like(lucy,mary) & like(mary,lucy) & (~person(mary) | ~humble(mary)) & quiet(mary) & ~room(sK0) & (~hate(sK1,fred) & room(sK1)) & ! [X2] : ((like(X2,susan) | ~tall(X2)) & (tall(X2) | ~like(X2,susan))) & hate(alice,paul) & predl(paul) & hate(john,mary) & ! [X3] : tall(X3) & ! [X4] : ((predo(X4) | predf(X4)) & (~predf(X4) | ~predo(X4))) & (room(sK2) | (hate(paul,lucy) & hate(lucy,paul))) & ((~hate(sK3,fred) & room(sK3)) | ~hate(lucy,mary) | ~hate(mary,lucy)) & (((~european(mary) | ~humble(mary)) & like(lucy,mary)) | ~hate(mary,fred) | ~hate(fred,mary)) & ((hate(mary,fred) & hate(fred,mary)) | (european(mary) & humble(mary)) | ~like(lucy,mary)) & ! [X7] : (paul = X7 | mary = X7 | ~room(X7)) & room(paul) & room(mary) [skolemisation 141,145,144,143,142]
147. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK4 & mary != sK4 & room(sK4)) [choice axiom]
148. ~predl(paul) | (paul != sK4 & mary != sK4 & room(sK4)) | ~room(paul) | ~room(mary) [skolemisation 137,147]
232. room(mary) [cnf transformation 146]
233. room(paul) [cnf transformation 146]
234. ~room(X7) | mary = X7 | paul = X7 [cnf transformation 146]
249. predl(paul) [cnf transformation 146]
261. ~predl(paul) | room(sK4) | ~room(paul) | ~room(mary) [cnf transformation 148]
262. ~predl(paul) | mary != sK4 | ~room(paul) | ~room(mary) [cnf transformation 148]
263. ~predl(paul) | paul != sK4 | ~room(paul) | ~room(mary) [cnf transformation 148]
326. paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 263,249]
327. paul != sK4 | ~room(mary) [subsumption resolution 326,233]
328. paul != sK4 [subsumption resolution 327,232]
329. mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 262,249]
330. mary != sK4 | ~room(mary) [subsumption resolution 329,233]
331. mary != sK4 [subsumption resolution 330,232]
332. room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 261,249]
333. room(sK4) | ~room(mary) [subsumption resolution 332,233]
334. room(sK4) [subsumption resolution 333,232]
341. mary = sK4 | paul = sK4 [resolution 234,334]
360. paul = sK4 [subsumption resolution 341,331]
361. $false [subsumption resolution 360,328]
% SZS output end Proof for 7270518579796551283654413
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.034 s
% ------------------------------
% ------------------------------
| 0.055789 |
There is a room. Everyone in the room volunteers for local environmental conservation projects. If someone owns a significant collection of rare gemstones and minerals then he/she owns an extensive assortment of vintage comic book memorabilia. If someone neither enjoys kayaking and exploring remote waterways nor is dedicated to sustainable living and zero-waste practices then he/she does not collect action figures or owns a significant collection of rare gemstones and minerals or both. No one in the room creates large-scale murals for public art installations.
|
Everyone outside the room enjoys kayaking and exploring remote waterways.
|
entailment
|
(there_is_a_room)&
(![X]:(room(X)=>(volunteers_for_local_environmental_conservation_projects(X))))&
((![X]:((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))&
((![X]:((~((enjoys_kayaking_and_exploring_remote_waterways(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))=>(((does_not_collect_action_figures(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))&
(~?[X]:(room(X)=>(creates_large-scale_murals_for_public_art_installations(X))))&
((![X]:((collects_action_figures(X))=>(does_not_regularly_contributes_to_tech_forums_and_online_communities(X)))))&
(![X]:(room(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))&(enjoys_landscape_photography(X))))=>(enjoys_landscape_photography(X))))))&
((?[X,Y]:(room(X)&room(Y)&(regularly_contributes_to_tech_forums_and_online_communities(X)®ularly_contributes_to_tech_forums_and_online_communities(Y))&(X!=Y))))&
(![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))<=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<~>(uses_a_Windows_laptop(X))))))))
|
(there_is_a_room)&
![X]:(~room(X)=>(enjoys_kayaking_and_exploring_remote_waterways(X)))
|
[
"p0",
"p4",
"hypothesis"
] |
% SZS status Unsatisfiable for 7818027279007048044450686
% SZS output start Proof for 7818027279007048044450686
44. there_is_a_room [input p0]
48. ~? [X0] : (room(X0) => predb(X0)) [input p4]
53. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis]
55. ~? [X0] : ~room(X0) [pure predicate removal 48]
133. ! [X0] : room(X0) [ennf transformation 55]
135. ? [X0] : (~predc(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 53]
140. ? [X0] : (~predc(X0) & ~room(X0)) => (~predc(sK2) & ~room(sK2)) [choice axiom]
141. (~predc(sK2) & ~room(sK2)) | ~there_is_a_room [skolemisation 135,140]
222. there_is_a_room [cnf transformation 44]
223. room(X0) [cnf transformation 133]
231. ~room(sK2) | ~there_is_a_room [cnf transformation 141]
238. ~there_is_a_room [subsumption resolution 231,223]
239. $false [subsumption resolution 238,222]
% SZS output end Proof for 7818027279007048044450686
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.251351 |
Diane, Melanie, Gloria, April, Clarice are the only persons in the room. If “everyone in the room does not own an extensive assortment of vintage comic book memorabilia or is brave” then “everyone in the room does not own an extensive assortment of vintage comic book memorabilia if they is a brave person”. If “it is not the case that “April does not compete in national level swimming championships”” then “only one person in the room is brave”. Everyone anywhere competes in national level swimming championships if they owns an extensive assortment of vintage comic book memorabilia. Someone anywhere is brave. Someone in the room is a brave person or owns an extensive assortment of vintage comic book memorabilia or both. Diane competes in national level swimming championships. Everyone in the room is brave if and only if they is not brave, competes in national level swimming championships or is brave. Diane does not own an extensive assortment of vintage comic book memorabilia. Everyone in the room does not own an extensive assortment of vintage comic book memorabilia or is brave. More than one person in the room owns an extensive assortment of vintage comic book memorabilia.
|
April owns an extensive assortment of vintage comic book memorabilia.
|
contradiction
|
room(diane)&room(melanie)&room(gloria)&room(april)&room(clarice)&(![X]:(room(X)=>(X='diane'|X='melanie'|X='gloria'|X='april'|X='clarice')))&
((![X]:(room(X)=>(((brave(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(![X]:(room(X)=>(((brave(X)&person(X))=>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))&
((~(does_not_compete_in_national_level_swimming_championships(april)))=>(((?[X]:(room(X)&brave(X)))&(![X,Y]:((room(X)&room(Y)&(brave(X))&(brave(Y)))=>(X=Y))))))&
(![X]:(anywhere(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(competes_in_national_level_swimming_championships(X))))))&
(?[X]:(anywhere(X)&(brave(X))))&
(?[X]:(room(X)&(((brave(X)&person(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))&
(competes_in_national_level_swimming_championships(diane))&
(![X]:(room(X)=>(((brave(X))<=>(((~brave(X))|(competes_in_national_level_swimming_championships(X))|(brave(X))))))))&
(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(diane))&
(![X]:(room(X)=>(((brave(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))&
((?[X,Y]:(room(X)&room(Y)&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)&owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(Y))&(X!=Y))))
|
room(diane)&room(melanie)&room(gloria)&room(april)&room(clarice)&(![X]:(room(X)=>(X='diane'|X='melanie'|X='gloria'|X='april'|X='clarice')))&
owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(april)
|
[
"b4",
"p0",
"p2",
"p3",
"p7",
"p10",
"hypothesis"
] |
% SZS status Unsatisfiable for 978671046080878856324889
% SZS output start Proof for 978671046080878856324889
5. ! [X0] : anywhere(X0) [input b4]
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
46. predo(alice) => (! [X0,X1] : ((brave(X1) & brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (brave(X0) & room(X0))) [input p2]
47. ! [X0] : (anywhere(X0) => (predg(X0) => predo(X0))) [input p3]
51. ! [X0] : (room(X0) => (brave(X0) <=> (brave(X0) | predo(X0) | ~brave(X0)))) [input p7]
54. ? [X0,X1] : (X0 != X1 & predg(X1) & predg(X0) & room(X1) & room(X0)) [input p10]
55. predg(alice) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
57. predo(alice) => (! [X0,X1] : ((brave(X1) & brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (brave(X2) & room(X2))) [rectify 46]
129. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
130. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 129]
133. (! [X0,X1] : (X0 = X1 | (~brave(X1) | ~brave(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (brave(X2) & room(X2))) | ~predo(alice) [ennf transformation 57]
134. (! [X0,X1] : (X0 = X1 | ~brave(X1) | ~brave(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (brave(X2) & room(X2))) | ~predo(alice) [flattening 133]
135. ! [X0] : ((predo(X0) | ~predg(X0)) | ~anywhere(X0)) [ennf transformation 47]
136. ! [X0] : (predo(X0) | ~predg(X0) | ~anywhere(X0)) [flattening 135]
137. ! [X0] : ((brave(X0) <=> (brave(X0) | predo(X0) | ~brave(X0))) | ~room(X0)) [ennf transformation 51]
140. predg(alice) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 55]
141. predg(alice) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140]
146. ? [X2] : (brave(X2) & room(X2)) => (brave(sK1) & room(sK1)) [choice axiom]
147. (! [X0,X1] : (X0 = X1 | ~brave(X1) | ~brave(X0) | ~room(X1) | ~room(X0)) & (brave(sK1) & room(sK1))) | ~predo(alice) [skolemisation 134,146]
152. ! [X0] : (((brave(X0) | (~brave(X0) & ~predo(X0) & brave(X0))) & ((brave(X0) | predo(X0) | ~brave(X0)) | ~brave(X0))) | ~room(X0)) [nnf transformation 137]
153. ! [X0] : (((brave(X0) | (~brave(X0) & ~predo(X0) & brave(X0))) & (brave(X0) | predo(X0) | ~brave(X0) | ~brave(X0))) | ~room(X0)) [flattening 152]
154. ? [X0,X1] : (X0 != X1 & predg(X1) & predg(X0) & room(X1) & room(X0)) => (sK4 != sK5 & predg(sK5) & predg(sK4) & room(sK5) & room(sK4)) [choice axiom]
155. sK4 != sK5 & predg(sK5) & predg(sK4) & room(sK5) & room(sK4) [skolemisation 54,154]
156. anywhere(X0) [cnf transformation 5]
237. room(mary) [cnf transformation 130]
248. X0 = X1 | ~brave(X1) | ~brave(X0) | ~room(X1) | ~room(X0) | ~predo(alice) [cnf transformation 147]
249. predo(X0) | ~predg(X0) | ~anywhere(X0) [cnf transformation 136]
257. brave(X0) | brave(X0) | ~room(X0) [cnf transformation 153]
262. room(sK4) [cnf transformation 155]
263. room(sK5) [cnf transformation 155]
266. sK4 != sK5 [cnf transformation 155]
273. predg(alice) [cnf transformation 141]
275. ~room(X0) | brave(X0) [duplicate literal removal 257]
295. 5 <=> predo(alice) [avatar definition]
299. 6 <=> ! [X0,X1] : (X0 = X1 | ~room(X0) | ~room(X1) | ~brave(X0) | ~brave(X1)) [avatar definition]
300. X0 = X1 | ~room(X0) | ~room(X1) | ~brave(X0) | ~brave(X1) <- (6) [avatar component clause 299]
301. ~5 | 6 [avatar split clause 248,299,295]
312. ~predg(X0) | predo(X0) [subsumption resolution 249,156]
337. predo(alice) [resolution 312,273]
343. 5 [avatar split clause 337,295]
344. X0 = X1 | ~room(X0) | ~room(X1) | ~brave(X1) <- (6) [subsumption resolution 300,275]
345. ~room(X1) | ~room(X0) | X0 = X1 <- (6) [subsumption resolution 344,275]
358. ~room(X0) | mary = X0 <- (6) [resolution 345,237]
377. mary = sK4 <- (6) [resolution 358,262]
378. mary = sK5 <- (6) [resolution 358,263]
400. mary != sK5 <- (6) [backward demodulation 266,377]
407. $false <- (6) [subsumption resolution 378,400]
408. ~6 [avatar contradiction clause 407]
409. $false [avatar sat refutation 301,343,408]
% SZS output end Proof for 978671046080878856324889
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.540232 |
Serena, Stanley are the only persons in the room.
Not everyone in the room is not tall.
Everyone anywhere does not collect rare minerals.
Everyone in the room is a quiet person.
Not everyone in the room is a brave person.
No tall person is brave.
|
Serena is quiet.
|
entailment
|
room(serena)&room(stanley)&(![X]:(room(X)=>(X='serena'|X='stanley')))&
(~![X]:(room(X)=>(~tall(X))))&
(![X]:(anywhere(X)=>(does_not_collect_rare_minerals(X))))&
(![X]:(room(X)=>(quiet(X)&person(X))))&
(~![X]:(room(X)=>(brave(X)&person(X))))&
(~?[X]:(tall(X)=>brave(X)))
|
room(serena)&room(stanley)&(![X]:(room(X)=>(X='serena'|X='stanley')))&
quiet(serena)
|
[
"p0",
"p3",
"hypothesis"
] |
% SZS status Unsatisfiable for 3257875279373696944703495
% SZS output start Proof for 3257875279373696944703495
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
47. ! [X0] : (room(X0) => (person(X0) & quiet(X0))) [input p3]
50. ~(quiet(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
54. ! [X0] : (room(X0) => quiet(X0)) [pure predicate removal 47]
129. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
130. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 129]
132. ! [X0] : (quiet(X0) | ~room(X0)) [ennf transformation 54]
134. ~quiet(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 50]
135. ~quiet(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 134]
141. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom]
142. ~quiet(mary) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 135,141]
223. room(mary) [cnf transformation 130]
224. room(paul) [cnf transformation 130]
225. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 130]
227. ~room(X0) | quiet(X0) [cnf transformation 132]
229. ~quiet(mary) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 142]
230. ~quiet(mary) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 142]
231. ~quiet(mary) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 142]
232. ~quiet(mary) | paul != sK2 | ~room(mary) [subsumption resolution 231,224]
233. ~quiet(mary) | paul != sK2 [subsumption resolution 232,223]
235. 1 <=> paul = sK2 [avatar definition]
237. paul != sK2 <- (~1) [avatar component clause 235]
239. 2 <=> quiet(mary) [avatar definition]
242. ~1 | ~2 [avatar split clause 233,239,235]
243. ~quiet(mary) | mary != sK2 | ~room(mary) [subsumption resolution 230,224]
244. ~quiet(mary) | mary != sK2 [subsumption resolution 243,223]
246. 3 <=> mary = sK2 [avatar definition]
248. mary != sK2 <- (~3) [avatar component clause 246]
249. ~3 | ~2 [avatar split clause 244,239,246]
250. ~quiet(mary) | room(sK2) | ~room(mary) [subsumption resolution 229,224]
251. ~quiet(mary) | room(sK2) [subsumption resolution 250,223]
253. 4 <=> room(sK2) [avatar definition]
255. room(sK2) <- (4) [avatar component clause 253]
256. 4 | ~2 [avatar split clause 251,239,253]
257. quiet(mary) [resolution 227,223]
263. 2 [avatar split clause 257,239]
269. mary = sK2 | paul = sK2 <- (4) [resolution 225,255]
288. paul = sK2 <- (~3, 4) [subsumption resolution 269,248]
289. $false <- (~1, ~3, 4) [subsumption resolution 288,237]
290. 1 | 3 | ~4 [avatar contradiction clause 289]
291. $false [avatar sat refutation 242,249,256,263,290]
% SZS output end Proof for 3257875279373696944703495
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.030 s
% ------------------------------
% ------------------------------
| 0.456735 |
Christopher, James, Lee, Jimmie are the only persons in the room.
“Someone outside the room is funny” if “James is not a humble person”.
Either “everyone outside the room is not a quiet person” or “not everyone in the room is kind” but not both.
Everyone in the room is tall.
Lee is not a calm person.
James is not a curious person.
Christopher is not a patient person.
Everyone in the room is patient.
Everyone outside the room is brave.
It is true that “someone outside the room neither is not humble nor is generous”.
Everyone anywhere is not a patient person.
Someone outside the room is a calm person, is tall or is not a brave person.
It is not the case that “Jimmie is not kind”.
Jimmie is not a brave person, is not a old person or is brave.
All kind persons are generous.
Jimmie is generous.
If someone is a funny person then he/she is happy.
Christopher is humble.
Everyone in the room is not a generous person.
|
James is a quiet old person.
|
contradiction
|
room(christopher)&room(james)&room(lee)&room(jimmie)&(![X]:(room(X)=>(X='christopher'|X='james'|X='lee'|X='jimmie')))&
((~(humble(james)&person(james)))=>(?[X]:(~room(X)&(funny(X)))))&
((![X]:(~room(X)=>(~(quiet(X)&person(X)))))<~>(~![X]:(room(X)=>(kind(X)))))&
(![X]:(room(X)=>(tall(X))))&
(~(calm(lee)&person(lee)))&
(~(curious(james)&person(james)))&
(~(patient(christopher)&person(christopher)))&
(![X]:(room(X)=>(patient(X))))&
(![X]:(~room(X)=>(brave(X))))&
(?[X]:(~room(X)&(~((~humble(X))|(generous(X))))))&
(![X]:(anywhere(X)=>(~(patient(X)&person(X)))))&
(?[X]:(~room(X)&(((calm(X)&person(X))|(tall(X))|(~(brave(X)&person(X)))))))&
(~(~kind(jimmie)))&
(((~(brave(jimmie)&person(jimmie)))|(~(old(jimmie)&person(jimmie)))|(brave(jimmie))))&
(![X]:(kind(X)=>generous(X)))&
(generous(jimmie))&
((![X]:((funny(X)&person(X))=>(happy(X)))))&
(humble(christopher))&
(![X]:(room(X)=>(~(generous(X)&person(X)))))
|
room(christopher)&room(james)&room(lee)&room(jimmie)&(![X]:(room(X)=>(X='christopher'|X='james'|X='lee'|X='jimmie')))&
quiet(james)&old(james)&person(james)
|
[
"b4",
"p0",
"p7",
"p10",
"hypothesis"
] |
% SZS status Unsatisfiable for 4880897746218365712242786
% SZS output start Proof for 4880897746218365712242786
5. ! [X0] : anywhere(X0) [input b4]
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
51. ! [X0] : (room(X0) => patient(X0)) [input p7]
54. ! [X0] : (anywhere(X0) => ~(person(X0) & patient(X0))) [input p10]
63. person(paul) & old(paul) & quiet(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
145. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
146. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 145]
151. ! [X0] : (patient(X0) | ~room(X0)) [ennf transformation 51]
154. ! [X0] : ((~person(X0) | ~patient(X0)) | ~anywhere(X0)) [ennf transformation 54]
155. ! [X0] : (~person(X0) | ~patient(X0) | ~anywhere(X0)) [flattening 154]
161. person(paul) & old(paul) & quiet(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 63]
162. person(paul) & old(paul) & quiet(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161]
175. anywhere(X0) [cnf transformation 5]
257. room(paul) [cnf transformation 146]
268. ~room(X0) | patient(X0) [cnf transformation 151]
272. ~person(X0) | ~patient(X0) | ~anywhere(X0) [cnf transformation 155]
286. person(paul) [cnf transformation 162]
289. 1 <=> person(paul) [avatar definition]
291. person(paul) <- (1) [avatar component clause 289]
337. ~patient(X0) | ~person(X0) [subsumption resolution 272,175]
338. 1 [avatar split clause 286,289]
340. patient(paul) [resolution 268,257]
352. ~person(paul) [resolution 337,340]
355. $false <- (1) [subsumption resolution 352,291]
356. ~1 [avatar contradiction clause 355]
357. $false [avatar sat refutation 338,356]
% SZS output end Proof for 4880897746218365712242786
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.154976 |
Helen is the only person in the room.
If “everyone in the room practices tai chi or does not enjoy kayaking” then “everyone in the room does not compose and performs experimental electronic music or practices tai chi or both if they practices tai chi”.
If “Helen enjoys logic puzzles” then “only one person outside the room plays as a goalkeeper for a local amateur soccer team”.
If someone uses a Windows laptop then he/she does not enjoy kayaking, practices graffiti art and uses a Windows laptop.
Everyone in the room trains for and competes in international triathlons if they owns a high-end gaming PC with custom-built components.
Everyone in the room who practices tai chi practices graffiti art or practices archery or both.
Helen practices graffiti art.
Everyone in the room who bakes bread at home and enjoys logic puzzles practices graffiti art.
Someone in the room enjoys kayaking.
Helen plays as a goalkeeper for a local amateur soccer team.
At least one person anywhere does not enjoy kayaking.
Everyone in the room practices tai chi or does not enjoy kayaking.
Only one person in the room plays as a goalkeeper for a local amateur soccer team, practices pilates or enjoys deep-sea diving and exploring underwater caves.
Everyone in the room who practices pilates creates bespoke furniture pieces from reclaimed wood.
Everyone in the room creates bespoke furniture pieces from reclaimed wood if and only if they practices tai chi.
Everyone in the room neither collects luxury watches nor can play the guitar if and only if they trains for and competes in international triathlons.
If someone is a certified yoga instructor teaching classes weekly then he/she does not own a high-end gaming PC with custom-built components and vice versa.
|
Helen creates bespoke furniture pieces from reclaimed wood.
|
entailment
|
room(helen)&(![X]:(room(X)=>(X='helen')))&
((![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(practices_tai_chi(X))))))=>(![X]:(room(X)=>(((practices_tai_chi(X))=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(practices_tai_chi(X)))))))))&
((enjoys_logic_puzzles(helen))=>(((?[X]:(~room(X)&plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))&(![X,Y]:((~room(X)&~room(Y)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y)))=>(X=Y))))))&
((![X]:((uses_a_Windows_laptop(X))=>(((does_not_enjoy_kayaking(X))&(practices_graffiti_art(X))&(uses_a_Windows_laptop(X)))))))&
(![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(trains_for_and_competes_in_international_triathlons(X))))))&
(![X]:(room(X)=>(((practices_tai_chi(X))=>(((practices_graffiti_art(X))|(practices_archery(X))))))))&
(practices_graffiti_art(helen))&
(![X]:(room(X)=>(((((bakes_bread_at_home(X))&(enjoys_logic_puzzles(X))))=>(practices_graffiti_art(X))))))&
(?[X]:(room(X)&(enjoys_kayaking(X))))&
(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(helen))&
(((?[X]:(anywhere(X)&does_not_enjoy_kayaking(X)))))&
(![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(practices_tai_chi(X))))))&
(((?[X]:(room(X)&((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(practices_pilates(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))&(![X,Y]:((room(X)&room(Y)&(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(practices_pilates(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))&(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))|(practices_pilates(Y))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(Y)))))=>(X=Y)))))&
(![X]:(room(X)=>(((practices_pilates(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))&
(![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=>(practices_tai_chi(X))))))&
(![X]:(room(X)=>(((~((collects_luxury_watches(X))|(can_play_the_guitar(X))))<=>(trains_for_and_competes_in_international_triathlons(X))))))&
((![X]:((is_a_certified_yoga_instructor_teaching_classes_weekly(X))<=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X)))))
|
room(helen)&(![X]:(room(X)=>(X='helen')))&
creates_bespoke_furniture_pieces_from_reclaimed_wood(helen)
|
[
"p0",
"p8",
"p11",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 468491506442951496858108
% SZS output start Proof for 468491506442951496858108
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
52. ? [X0] : (predo(X0) & room(X0)) [input p8]
55. ! [X0] : (room(X0) => (preda(X0) | ~predo(X0))) [input p11]
58. ! [X0] : (room(X0) => (predn(X0) <=> preda(X0))) [input p14]
61. ~(predn(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis]
145. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
147. ! [X0] : ((preda(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 55]
148. ! [X0] : (preda(X0) | ~predo(X0) | ~room(X0)) [flattening 147]
153. ! [X0] : ((predn(X0) <=> preda(X0)) | ~room(X0)) [ennf transformation 58]
155. ~predn(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 61]
159. ? [X0] : (predo(X0) & room(X0)) => (predo(sK1) & room(sK1)) [choice axiom]
160. predo(sK1) & room(sK1) [skolemisation 52,159]
166. ! [X0] : (((predn(X0) | ~preda(X0)) & (preda(X0) | ~predn(X0))) | ~room(X0)) [nnf transformation 153]
169. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom]
170. ~predn(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 155,169]
251. room(mary) [cnf transformation 145]
252. ~room(X0) | mary = X0 [cnf transformation 145]
255. room(sK1) [cnf transformation 160]
256. predo(sK1) [cnf transformation 160]
259. ~predo(X0) | preda(X0) | ~room(X0) [cnf transformation 148]
270. ~preda(X0) | predn(X0) | ~room(X0) [cnf transformation 166]
274. ~predn(mary) | room(sK4) | ~room(mary) [cnf transformation 170]
275. ~predn(mary) | mary != sK4 | ~room(mary) [cnf transformation 170]
289. ~predn(mary) | mary != sK4 [subsumption resolution 275,251]
291. 4 <=> mary = sK4 [avatar definition]
295. 5 <=> predn(mary) [avatar definition]
297. ~predn(mary) <- (~5) [avatar component clause 295]
298. ~4 | ~5 [avatar split clause 289,295,291]
299. ~predn(mary) | room(sK4) [subsumption resolution 274,251]
301. 6 <=> room(sK4) [avatar definition]
303. room(sK4) <- (6) [avatar component clause 301]
304. 6 | ~5 [avatar split clause 299,295,301]
306. mary = sK1 [resolution 252,255]
309. predo(mary) [backward demodulation 256,306]
312. preda(mary) | ~room(mary) [resolution 259,309]
313. preda(mary) [subsumption resolution 312,251]
320. mary = sK4 <- (6) [resolution 303,252]
323. 4 | ~6 [avatar split clause 320,301,291]
327. predn(mary) | ~room(mary) [resolution 270,313]
328. ~room(mary) <- (~5) [subsumption resolution 327,297]
329. $false <- (~5) [subsumption resolution 328,251]
330. 5 [avatar contradiction clause 329]
331. $false [avatar sat refutation 298,304,323,330]
% SZS output end Proof for 468491506442951496858108
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0 |
Mark, David, Kiana are the only persons in the room.
Mark does not enjoy fishing if everyone in the room does not collect limited-edition art prints from contemporary artists.
At least one person outside the room does not collect first edition books if Mark does not collect limited-edition art prints from contemporary artists and vice versa.
Mark does not enjoy fishing if not everyone in the room does not collect first edition books or does not enjoy fishing and vice versa.
More than one person in the room does not enjoy fishing.
Everyone in the room does not collect first edition books only if they does not collect limited-edition art prints from contemporary artists.
Everyone anywhere does not collect limited-edition art prints from contemporary artists or collects limited-edition art prints from contemporary artists or both if they does not collect first edition books.
Someone in the room does not collect first edition books.
Everyone outside the room enjoys fishing or does not collect first edition books or both.
Mark does not collect first edition books.
Not everyone anywhere does not collect first edition books or does not collect limited-edition art prints from contemporary artists or both.
Everyone in the room does not enjoy fishing if they does not collect limited-edition art prints from contemporary artists, does not collect first edition books and does not enjoy fishing.
Everyone outside the room collects limited-edition art prints from contemporary artists or does not enjoy fishing or both.
Everyone in the room does not collect limited-edition art prints from contemporary artists.
Everyone outside the room does not collect first edition books if they does not collect limited-edition art prints from contemporary artists.
Only one person outside the room does not enjoy fishing.
|
David enjoys fishing.
|
neutral
|
room(mark)&room(david)&room(kiana)&(![X]:(room(X)=>(X='mark'|X='david'|X='kiana')))&
((![X]:(room(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))=>(does_not_enjoy_fishing(mark)))&
((does_not_collect_limited-edition_art_prints_from_contemporary_artists(mark))<=>(((?[X]:(~room(X)&does_not_collect_first_edition_books(X))))))&
((~![X]:(room(X)=>(((does_not_enjoy_fishing(X))|(does_not_collect_first_edition_books(X))))))<=>(does_not_enjoy_fishing(mark)))&
((?[X,Y]:(room(X)&room(Y)&(does_not_enjoy_fishing(X)&does_not_enjoy_fishing(Y))&(X!=Y))))&
(![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))<=(does_not_collect_first_edition_books(X))))))&
(![X]:(anywhere(X)=>(((does_not_collect_first_edition_books(X))=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))))))))&
(?[X]:(room(X)&(does_not_collect_first_edition_books(X))))&
(![X]:(~room(X)=>(((enjoys_fishing(X))|(does_not_collect_first_edition_books(X))))))&
(does_not_collect_first_edition_books(mark))&
(~![X]:(anywhere(X)=>(((does_not_collect_first_edition_books(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))&
(![X]:(room(X)=>(((((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))&(does_not_collect_first_edition_books(X))&(does_not_enjoy_fishing(X))))=>(does_not_enjoy_fishing(X))))))&
(![X]:(~room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_enjoy_fishing(X))))))&
(![X]:(room(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))&
(![X]:(~room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))=>(does_not_collect_first_edition_books(X))))))&
(((?[X]:(~room(X)&does_not_enjoy_fishing(X)))&(![X,Y]:((~room(X)&~room(Y)&(does_not_enjoy_fishing(X))&(does_not_enjoy_fishing(Y)))=>(X=Y)))))
|
room(mark)&room(david)&room(kiana)&(![X]:(room(X)=>(X='mark'|X='david'|X='kiana')))&
enjoys_fishing(david)
|
[] | null | 0.274013 |
There is a room.
Someone in the room is hated by Stella.
Everyone in the room who does not hate Maria or is not liked by Ivan or both is not hated by Maria, does not like Stella and does not hate Maria.
Only one person anywhere either is liked by Stella or likes Maria but not both.
If someone neither does not hate Ivan nor is not hated by Stella then he/she is liked by Stella, is hated by Ivan or does not like Ivan and vice versa.
Everyone outside the room either is liked by Stella or hates Ivan but not both if they is liked by Stella.
If someone does not like Stella or is hated by Ivan or both then he/she is not hated by Stella and vice versa.
Someone in the room does not like Ivan.
Everyone in the room either does not hate Maria or is not liked by Maria but not both if and only if they is not liked by Stella or does not hate Stella or both.
If someone either is hated by Stella or is not liked by Stella but not both then he/she either is not liked by Stella or does not like Maria but not both and vice versa.
Everyone in the room is liked by Ivan if they either is liked by Maria or is liked by Ivan but not both.
|
Everyone in the room hates Maria.
|
entailment
|
(there_is_a_room)&
(?[X]:(room(X)&(hate(X,stella))))&
(![X]:(room(X)=>(((((~hate(maria,X))|(~like(X,ivan))))=>(((~hate(X,maria))&(~like(stella,X))&(~hate(maria,X))))))))&
(((?[X]:(anywhere(X)&((like(X,stella))<~>(like(maria,X)))))&(![X,Y]:((anywhere(X)&anywhere(Y)&(((like(X,stella))<~>(like(maria,X))))&(((like(Y,stella))<~>(like(maria,Y)))))=>(X=Y)))))&
((![X]:((~((~hate(ivan,X))|(~hate(X,stella))))<=>(((like(X,stella))|(hate(X,ivan))|(~like(ivan,X)))))))&
(![X]:(~room(X)=>(((like(X,stella))=>(((like(X,stella))<~>(hate(ivan,X))))))))&
((![X]:((((~like(stella,X))|(hate(X,ivan))))<=>(~hate(X,stella)))))&
(?[X]:(room(X)&(~like(ivan,X))))&
(![X]:(room(X)=>(((((~hate(maria,X))<~>(~like(X,maria))))<=>(((~like(X,stella))|(~hate(stella,X))))))))&
((![X]:((((hate(X,stella))<~>(~like(X,stella))))<=>(((~like(X,stella))<~>(~like(maria,X)))))))&
(![X]:(room(X)=>(((((like(X,maria))<~>(like(X,ivan))))=>(like(X,ivan))))))
|
(there_is_a_room)&
![X]:(room(X)=>(hate(maria,X)))
|
[
"b4",
"p0",
"p2",
"p3",
"p4",
"p5",
"p6",
"p8",
"p9",
"hypothesis"
] |
% SZS status Unsatisfiable for 2970644309620972807916713
% SZS output start Proof for 2970644309620972807916713
5. ! [X0] : anywhere(X0) [input b4]
44. there_is_a_room [input p0]
46. ! [X0] : (room(X0) => ((~like(X0,mary) | ~hate(paul,X0)) => (~hate(paul,X0) & ~like(fred,X0) & ~hate(X0,paul)))) [input p2]
47. ! [X0,X1] : (((like(X1,fred) <~> like(paul,X1)) & (like(X0,fred) <~> like(paul,X0)) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : ((like(X0,fred) <~> like(paul,X0)) & anywhere(X0)) [input p3]
48. ! [X0] : (~(~hate(X0,fred) | ~hate(mary,X0)) <=> (~like(mary,X0) | hate(X0,mary) | like(X0,fred))) [input p4]
49. ! [X0] : (~room(X0) => (like(X0,fred) => (like(X0,fred) <~> hate(mary,X0)))) [input p5]
50. ! [X0] : ((hate(X0,mary) | ~like(fred,X0)) <=> ~hate(X0,fred)) [input p6]
52. ! [X0] : (room(X0) => ((~hate(paul,X0) <~> ~like(X0,paul)) <=> (~hate(fred,X0) | ~like(X0,fred)))) [input p8]
53. ! [X0] : ((hate(X0,fred) <~> ~like(X0,fred)) <=> (~like(X0,fred) <~> ~like(paul,X0))) [input p9]
55. ~(! [X0] : (room(X0) => hate(paul,X0)) & there_is_a_room) [input hypothesis]
56. ! [X0,X1] : (((like(X1,fred) <~> like(paul,X1)) & (like(X0,fred) <~> like(paul,X0)) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : ((like(X2,fred) <~> like(paul,X2)) & anywhere(X2)) [rectify 47]
130. ! [X0] : (((~hate(paul,X0) & ~like(fred,X0) & ~hate(X0,paul)) | (like(X0,mary) & hate(paul,X0))) | ~room(X0)) [ennf transformation 46]
131. ! [X0] : ((~hate(paul,X0) & ~like(fred,X0) & ~hate(X0,paul)) | (like(X0,mary) & hate(paul,X0)) | ~room(X0)) [flattening 130]
132. ! [X0,X1] : (X0 = X1 | ((like(X1,fred) <=> like(paul,X1)) | (like(X0,fred) <=> like(paul,X0)) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : ((like(X2,fred) <~> like(paul,X2)) & anywhere(X2)) [ennf transformation 56]
133. ! [X0,X1] : (X0 = X1 | (like(X1,fred) <=> like(paul,X1)) | (like(X0,fred) <=> like(paul,X0)) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : ((like(X2,fred) <~> like(paul,X2)) & anywhere(X2)) [flattening 132]
134. ! [X0] : ((hate(X0,fred) & hate(mary,X0)) <=> (~like(mary,X0) | hate(X0,mary) | like(X0,fred))) [ennf transformation 48]
135. ! [X0] : (((like(X0,fred) <~> hate(mary,X0)) | ~like(X0,fred)) | room(X0)) [ennf transformation 49]
136. ! [X0] : ((like(X0,fred) <~> hate(mary,X0)) | ~like(X0,fred) | room(X0)) [flattening 135]
137. ! [X0] : (((~hate(paul,X0) <~> ~like(X0,paul)) <=> (~hate(fred,X0) | ~like(X0,fred))) | ~room(X0)) [ennf transformation 52]
140. ? [X0] : (~hate(paul,X0) & room(X0)) | ~there_is_a_room [ennf transformation 55]
144. ! [X0,X1] : (X0 = X1 | ((like(X1,fred) | ~like(paul,X1)) & (like(paul,X1) | ~like(X1,fred))) | ((like(X0,fred) | ~like(paul,X0)) & (like(paul,X0) | ~like(X0,fred))) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (((~like(paul,X2) | ~like(X2,fred)) & (like(paul,X2) | like(X2,fred))) & anywhere(X2)) [nnf transformation 133]
145. ! [X0,X1] : (X0 = X1 | ((like(X1,fred) | ~like(paul,X1)) & (like(paul,X1) | ~like(X1,fred))) | ((like(X0,fred) | ~like(paul,X0)) & (like(paul,X0) | ~like(X0,fred))) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : ((~like(paul,X2) | ~like(X2,fred)) & (like(paul,X2) | like(X2,fred)) & anywhere(X2)) [flattening 144]
146. ? [X2] : ((~like(paul,X2) | ~like(X2,fred)) & (like(paul,X2) | like(X2,fred)) & anywhere(X2)) => ((~like(paul,sK1) | ~like(sK1,fred)) & (like(paul,sK1) | like(sK1,fred)) & anywhere(sK1)) [choice axiom]
147. ! [X0,X1] : (X0 = X1 | ((like(X1,fred) | ~like(paul,X1)) & (like(paul,X1) | ~like(X1,fred))) | ((like(X0,fred) | ~like(paul,X0)) & (like(paul,X0) | ~like(X0,fred))) | ~anywhere(X1) | ~anywhere(X0)) & ((~like(paul,sK1) | ~like(sK1,fred)) & (like(paul,sK1) | like(sK1,fred)) & anywhere(sK1)) [skolemisation 145,146]
148. ! [X0] : (((hate(X0,fred) & hate(mary,X0)) | (like(mary,X0) & ~hate(X0,mary) & ~like(X0,fred))) & ((~like(mary,X0) | hate(X0,mary) | like(X0,fred)) | (~hate(X0,fred) | ~hate(mary,X0)))) [nnf transformation 134]
149. ! [X0] : (((hate(X0,fred) & hate(mary,X0)) | (like(mary,X0) & ~hate(X0,mary) & ~like(X0,fred))) & (~like(mary,X0) | hate(X0,mary) | like(X0,fred) | ~hate(X0,fred) | ~hate(mary,X0))) [flattening 148]
150. ! [X0] : (((~hate(mary,X0) | ~like(X0,fred)) & (hate(mary,X0) | like(X0,fred))) | ~like(X0,fred) | room(X0)) [nnf transformation 136]
151. ! [X0] : (((hate(X0,mary) | ~like(fred,X0)) | hate(X0,fred)) & (~hate(X0,fred) | (~hate(X0,mary) & like(fred,X0)))) [nnf transformation 50]
152. ! [X0] : ((hate(X0,mary) | ~like(fred,X0) | hate(X0,fred)) & (~hate(X0,fred) | (~hate(X0,mary) & like(fred,X0)))) [flattening 151]
155. ! [X0] : (((((like(X0,paul) | hate(paul,X0)) & (~like(X0,paul) | ~hate(paul,X0))) | (hate(fred,X0) & like(X0,fred))) & ((~hate(fred,X0) | ~like(X0,fred)) | ((~hate(paul,X0) | like(X0,paul)) & (~like(X0,paul) | hate(paul,X0))))) | ~room(X0)) [nnf transformation 137]
156. ! [X0] : (((((like(X0,paul) | hate(paul,X0)) & (~like(X0,paul) | ~hate(paul,X0))) | (hate(fred,X0) & like(X0,fred))) & (~hate(fred,X0) | ~like(X0,fred) | ((~hate(paul,X0) | like(X0,paul)) & (~like(X0,paul) | hate(paul,X0))))) | ~room(X0)) [flattening 155]
157. ! [X0] : ((((like(X0,fred) | ~hate(X0,fred)) & (~like(X0,fred) | hate(X0,fred))) | ((~like(X0,fred) | like(paul,X0)) & (~like(paul,X0) | like(X0,fred)))) & (((like(paul,X0) | like(X0,fred)) & (~like(paul,X0) | ~like(X0,fred))) | ((hate(X0,fred) | like(X0,fred)) & (~like(X0,fred) | ~hate(X0,fred))))) [nnf transformation 53]
159. ? [X0] : (~hate(paul,X0) & room(X0)) => (~hate(paul,sK3) & room(sK3)) [choice axiom]
160. (~hate(paul,sK3) & room(sK3)) | ~there_is_a_room [skolemisation 140,159]
163. anywhere(X0) [cnf transformation 5]
244. there_is_a_room [cnf transformation 44]
249. ~like(fred,X0) | hate(paul,X0) | ~room(X0) [cnf transformation 131]
258. X0 = X1 | like(X1,fred) | ~like(paul,X1) | like(paul,X0) | ~like(X0,fred) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 147]
259. X0 = X1 | like(X1,fred) | ~like(paul,X1) | like(X0,fred) | ~like(paul,X0) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 147]
261. ~like(X0,fred) | hate(mary,X0) [cnf transformation 149]
264. ~like(X0,fred) | hate(X0,fred) [cnf transformation 149]
265. ~hate(X0,mary) | hate(X0,fred) [cnf transformation 149]
266. hate(X0,fred) | like(mary,X0) [cnf transformation 149]
268. ~hate(mary,X0) | ~like(X0,fred) | ~like(X0,fred) | room(X0) [cnf transformation 150]
269. ~hate(X0,fred) | like(fred,X0) [cnf transformation 152]
270. ~hate(X0,fred) | ~hate(X0,mary) [cnf transformation 152]
271. hate(X0,mary) | ~like(fred,X0) | hate(X0,fred) [cnf transformation 152]
276. ~hate(paul,X0) | ~like(X0,paul) | like(X0,fred) | ~room(X0) [cnf transformation 156]
280. ~like(paul,X0) | ~like(X0,fred) | ~like(X0,fred) | ~hate(X0,fred) [cnf transformation 157]
283. like(paul,X0) | like(X0,fred) | hate(X0,fred) | like(X0,fred) [cnf transformation 157]
290. room(sK3) | ~there_is_a_room [cnf transformation 160]
291. ~hate(paul,sK3) | ~there_is_a_room [cnf transformation 160]
293. ~like(paul,X0) | ~like(X0,fred) | ~hate(X0,fred) [duplicate literal removal 280]
294. like(paul,X0) | like(X0,fred) | hate(X0,fred) [duplicate literal removal 283]
297. ~hate(mary,X0) | ~like(X0,fred) | room(X0) [duplicate literal removal 268]
298. X0 = X1 | like(X1,fred) | ~like(paul,X1) | like(X0,fred) | ~like(paul,X0) | ~anywhere(X0) [subsumption resolution 259,163]
299. ~like(paul,X1) | like(X1,fred) | X0 = X1 | like(X0,fred) | ~like(paul,X0) [subsumption resolution 298,163]
300. X0 = X1 | like(X1,fred) | ~like(paul,X1) | like(paul,X0) | ~like(X0,fred) | ~anywhere(X0) [subsumption resolution 258,163]
301. ~like(paul,X1) | like(X1,fred) | X0 = X1 | like(paul,X0) | ~like(X0,fred) [subsumption resolution 300,163]
314. ~like(X0,fred) | room(X0) [subsumption resolution 297,261]
315. ~like(fred,X0) | hate(X0,fred) [subsumption resolution 271,265]
316. ~hate(X0,mary) [subsumption resolution 270,265]
319. hate(X0,fred) | like(paul,X0) [subsumption resolution 294,264]
320. ~like(paul,X0) | ~like(X0,fred) [subsumption resolution 293,264]
321. ~hate(paul,sK3) [subsumption resolution 291,244]
322. room(sK3) [subsumption resolution 290,244]
328. like(fred,X0) | like(mary,X0) [resolution 269,266]
330. 3 <=> like(mary,fred) [avatar definition]
331. ~like(mary,fred) <- (~3) [avatar component clause 330]
332. like(mary,fred) <- (3) [avatar component clause 330]
340. hate(mary,mary) <- (3) [resolution 332,261]
342. $false <- (3) [subsumption resolution 340,316]
343. ~3 [avatar contradiction clause 342]
344. like(fred,X0) | like(paul,X0) [resolution 319,269]
370. hate(paul,X1) | like(mary,X1) | ~room(X1) [resolution 328,249]
374. like(mary,fred) | room(fred) [resolution 328,314]
375. room(fred) <- (~3) [subsumption resolution 374,331]
394. hate(paul,X1) | like(paul,X1) | ~room(X1) [resolution 344,249]
423. like(mary,fred) | ~room(fred) | like(fred,paul) [resolution 370,269]
428. ~room(fred) | like(fred,paul) <- (~3) [subsumption resolution 423,331]
429. like(fred,paul) <- (~3) [subsumption resolution 428,375]
432. hate(paul,fred) <- (~3) [resolution 429,315]
468. like(paul,sK3) | ~room(sK3) [resolution 394,321]
480. like(paul,sK3) [subsumption resolution 468,322]
481. ~like(sK3,fred) [resolution 480,320]
546. ~like(fred,paul) | like(fred,fred) | ~room(fred) <- (~3) [resolution 276,432]
561. like(fred,fred) | ~room(fred) <- (~3) [subsumption resolution 546,429]
562. like(fred,fred) <- (~3) [subsumption resolution 561,375]
650. like(sK3,fred) | sK3 = X3 | like(X3,fred) | ~like(paul,X3) [resolution 299,480]
656. sK3 = X3 | like(X3,fred) | ~like(paul,X3) [subsumption resolution 650,481]
657. ~like(paul,X3) | sK3 = X3 [subsumption resolution 656,320]
742. like(sK3,fred) | sK3 = X0 | like(paul,X0) | ~like(X0,fred) [resolution 480,301]
746. sK3 = X0 | like(paul,X0) | ~like(X0,fred) [subsumption resolution 742,481]
747. ~like(X0,fred) | sK3 = X0 [subsumption resolution 746,657]
773. fred = sK3 <- (~3) [resolution 747,562]
780. ~like(fred,fred) <- (~3) [backward demodulation 481,773]
790. $false <- (~3) [subsumption resolution 780,562]
791. 3 [avatar contradiction clause 790]
792. $false [avatar sat refutation 343,791]
% SZS output end Proof for 2970644309620972807916713
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.042 s
% ------------------------------
% ------------------------------
| 0.029079 |
Emma, Eric, David, Sarah, Dan are the only persons in the room.
Emma uses a Windows laptop.
Emma does not own a 3D printer, is a client of LVMH and is an amateur astronomer who builds and uses custom telescopes.
Emma can play the piano.
Emma writes and illustrates their own graphic novels, collects first edition books and does not practice kickboxing.
It is not the case that 'Emma enjoys kayaking'.
More than one person in the room can play the piano and practices archery.
Everyone in the room is an amateur astronomer who builds and uses custom telescopes only if they does not enjoy mountain biking.
Everyone in the room who does not enjoy mountain biking does not play video games or collects first edition books or both.
Emma either frequently participates in hackathons and coding competitions or is a client of LVMH but not both.
Emma is a scotch connoisseur.
Everyone in the room does not enjoy kayaking or is a client of LVMH.
Everyone in the room plays video games if they does not enjoy kayaking.
Everyone in the room cannot play the guitar if they collects vintage vinyl records.
|
It is not the case that 'Emma does enjoy mountain biking'.
|
entailment
|
room(emma)&room(eric)&room(david)&room(sarah)&room(dan)&(![X]:(room(X)=>(X='emma'|X='eric'|X='david'|X='sarah'|X='dan')))&
(uses_a_Windows_laptop(emma))&
(((does_not_own_a_3D_printer(emma))&(is_a_client_of_LVMH(emma))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(emma))))&
(can_play_the_piano(emma))&
(((writes_and_illustrates_their_own_graphic_novels(emma))&(collects_first_edition_books(emma))&(does_not_practice_kickboxing(emma))))&
(~(enjoys_kayaking(emma)))&
((?[X,Y]:(room(X)&room(Y)&(((can_play_the_piano(X))&(practices_archery(X)))&((can_play_the_piano(Y))&(practices_archery(Y))))&(X!=Y))))&
(![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))<=(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))=>(((does_not_play_video_games(X))|(collects_first_edition_books(X))))))))&
(((frequently_participates_in_hackathons_and_coding_competitions(emma))<~>(is_a_client_of_LVMH(emma))))&
(is_a_scotch_connoisseur(emma))&
(![X]:(room(X)=>(((is_a_client_of_LVMH(X))|(does_not_enjoy_kayaking(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_kayaking(X))=>(plays_video_games(X))))))&
(![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(cannot_play_the_guitar(X))))))
|
room(emma)&room(eric)&room(david)&room(sarah)&room(dan)&(![X]:(room(X)=>(X='emma'|X='eric'|X='david'|X='sarah'|X='dan')))&
~(does_enjoy_mountain_biking(emma))
|
[
"p0",
"p2",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 7642683111955144319798030
% SZS output start Proof for 7642683111955144319798030
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
46. predv(mary) & predo(mary) & ~preda(mary) [input p2]
51. ! [X0] : (room(X0) => (predv(X0) => ~predl(X0))) [input p7]
58. ~(~predl(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
71. predv(mary) & predo(mary) [pure predicate removal 46]
145. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
146. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 145]
147. ! [X0] : ((~predl(X0) | ~predv(X0)) | ~room(X0)) [ennf transformation 51]
148. ! [X0] : (~predl(X0) | ~predv(X0) | ~room(X0)) [flattening 147]
149. predl(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 58]
150. predl(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 149]
155. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom]
156. predl(mary) | (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 150,155]
237. room(mary) [cnf transformation 146]
238. room(paul) [cnf transformation 146]
239. room(fred) [cnf transformation 146]
240. room(alice) [cnf transformation 146]
241. room(john) [cnf transformation 146]
242. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 146]
244. predv(mary) [cnf transformation 71]
248. ~predl(X0) | ~predv(X0) | ~room(X0) [cnf transformation 148]
251. predl(mary) | room(sK2) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156]
252. predl(mary) | mary != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156]
253. predl(mary) | paul != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156]
254. predl(mary) | fred != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156]
255. predl(mary) | alice != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156]
256. predl(mary) | john != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 156]
258. predl(mary) | john != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 256,241]
259. predl(mary) | john != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 258,240]
260. predl(mary) | john != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 259,239]
261. predl(mary) | john != sK2 | ~room(mary) [subsumption resolution 260,238]
262. predl(mary) | john != sK2 [subsumption resolution 261,237]
264. 1 <=> john = sK2 [avatar definition]
266. john != sK2 <- (~1) [avatar component clause 264]
268. 2 <=> predl(mary) [avatar definition]
270. predl(mary) <- (2) [avatar component clause 268]
271. ~1 | 2 [avatar split clause 262,268,264]
272. predl(mary) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 255,241]
273. predl(mary) | alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 272,240]
274. predl(mary) | alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 273,239]
275. predl(mary) | alice != sK2 | ~room(mary) [subsumption resolution 274,238]
276. predl(mary) | alice != sK2 [subsumption resolution 275,237]
278. 3 <=> alice = sK2 [avatar definition]
280. alice != sK2 <- (~3) [avatar component clause 278]
281. ~3 | 2 [avatar split clause 276,268,278]
282. predl(mary) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 254,241]
283. predl(mary) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,240]
284. predl(mary) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 283,239]
285. predl(mary) | fred != sK2 | ~room(mary) [subsumption resolution 284,238]
286. predl(mary) | fred != sK2 [subsumption resolution 285,237]
288. 4 <=> fred = sK2 [avatar definition]
290. fred != sK2 <- (~4) [avatar component clause 288]
291. ~4 | 2 [avatar split clause 286,268,288]
292. predl(mary) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 253,241]
293. predl(mary) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 292,240]
294. predl(mary) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 293,239]
295. predl(mary) | paul != sK2 | ~room(mary) [subsumption resolution 294,238]
296. predl(mary) | paul != sK2 [subsumption resolution 295,237]
298. 5 <=> paul = sK2 [avatar definition]
300. paul != sK2 <- (~5) [avatar component clause 298]
301. ~5 | 2 [avatar split clause 296,268,298]
302. predl(mary) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 252,241]
303. predl(mary) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 302,240]
304. predl(mary) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 303,239]
305. predl(mary) | mary != sK2 | ~room(mary) [subsumption resolution 304,238]
306. predl(mary) | mary != sK2 [subsumption resolution 305,237]
308. 6 <=> mary = sK2 [avatar definition]
310. mary != sK2 <- (~6) [avatar component clause 308]
311. ~6 | 2 [avatar split clause 306,268,308]
312. predl(mary) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 251,241]
313. predl(mary) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 312,240]
314. predl(mary) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 313,239]
315. predl(mary) | room(sK2) | ~room(mary) [subsumption resolution 314,238]
316. predl(mary) | room(sK2) [subsumption resolution 315,237]
318. 7 <=> room(sK2) [avatar definition]
320. room(sK2) <- (7) [avatar component clause 318]
321. 7 | 2 [avatar split clause 316,268,318]
322. ~predv(mary) | ~room(mary) <- (2) [resolution 248,270]
323. ~room(mary) <- (2) [subsumption resolution 322,244]
324. $false <- (2) [subsumption resolution 323,237]
325. ~2 [avatar contradiction clause 324]
369. alice = sK2 | fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (7) [resolution 242,320]
412. fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (~3, 7) [subsumption resolution 369,280]
413. paul = sK2 | mary = sK2 | john = sK2 <- (~3, ~4, 7) [subsumption resolution 412,290]
414. mary = sK2 | john = sK2 <- (~3, ~4, ~5, 7) [subsumption resolution 413,300]
415. john = sK2 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 414,310]
416. $false <- (~1, ~3, ~4, ~5, ~6, 7) [subsumption resolution 415,266]
417. 1 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 416]
418. $false [avatar sat refutation 271,281,291,301,311,321,325,417]
% SZS output end Proof for 7642683111955144319798030
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.177022 |
Eva, Harold are the only persons in the room.
'Everyone in the room is not old' unless 'everyone in the room is a kind tall person'.
Everyone in the room is not a quiet person.
Eva is not a quiet person.
It is true that 'Harold is a kind person'.
All old persons are tall.
Everyone in the room is a kind tall person.
Everyone in the room is a old person.
All quiet persons are tall.
Everyone anywhere is tall if they is a quiet person.
If someone is a quiet person then he/she is not kind and vice versa.
Everyone in the room is kind.
|
Eva is kind.
|
entailment
|
room(eva)&room(harold)&(![X]:(room(X)=>(X='eva'|X='harold')))&
(~(![X]:(room(X)=>(kind(X)&tall(X)&person(X))))=>(![X]:(room(X)=>(~old(X)))))&
(![X]:(room(X)=>(~(quiet(X)&person(X)))))&
(~(quiet(eva)&person(eva)))&
(kind(harold)&person(harold))&
(![X]:(old(X)=>tall(X)))&
(![X]:(room(X)=>(kind(X)&tall(X)&person(X))))&
(![X]:(room(X)=>(old(X)&person(X))))&
(![X]:(quiet(X)=>tall(X)))&
(![X]:(anywhere(X)=>(((quiet(X)&person(X))=>(tall(X))))))&
((![X]:((quiet(X)&person(X))<=>(~kind(X)))))&
(![X]:(room(X)=>(kind(X))))
|
room(eva)&room(harold)&(![X]:(room(X)=>(X='eva'|X='harold')))&
kind(eva)
|
[
"p0",
"p3",
"p7",
"p10",
"hypothesis"
] |
% SZS status Unsatisfiable for 9081600621753963997375360
% SZS output start Proof for 9081600621753963997375360
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
47. ~(person(mary) & quiet(mary)) [input p3]
51. ! [X0] : (room(X0) => (person(X0) & old(X0))) [input p7]
54. ! [X0] : ((person(X0) & quiet(X0)) <=> ~kind(X0)) [input p10]
56. ~(kind(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
135. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
136. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 135]
140. ~person(mary) | ~quiet(mary) [ennf transformation 47]
142. ! [X0] : ((person(X0) & old(X0)) | ~room(X0)) [ennf transformation 51]
144. ~kind(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 56]
145. ~kind(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 144]
148. ! [X0] : (((person(X0) & quiet(X0)) | kind(X0)) & (~kind(X0) | (~person(X0) | ~quiet(X0)))) [nnf transformation 54]
149. ! [X0] : (((person(X0) & quiet(X0)) | kind(X0)) & (~kind(X0) | ~person(X0) | ~quiet(X0))) [flattening 148]
150. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK0 & mary != sK0 & room(sK0)) [choice axiom]
151. ~kind(mary) | (paul != sK0 & mary != sK0 & room(sK0)) | ~room(paul) | ~room(mary) [skolemisation 145,150]
232. room(mary) [cnf transformation 136]
233. room(paul) [cnf transformation 136]
234. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 136]
238. ~person(mary) | ~quiet(mary) [cnf transformation 140]
244. person(X0) | ~room(X0) [cnf transformation 142]
246. kind(X0) | quiet(X0) [cnf transformation 149]
249. ~kind(mary) | room(sK0) | ~room(paul) | ~room(mary) [cnf transformation 151]
250. ~kind(mary) | mary != sK0 | ~room(paul) | ~room(mary) [cnf transformation 151]
251. ~kind(mary) | paul != sK0 | ~room(paul) | ~room(mary) [cnf transformation 151]
253. 1 <=> ! [X1] : (person(X1) | ~room(X1)) [avatar definition]
254. ~room(X1) | person(X1) <- (1) [avatar component clause 253]
264. 4 <=> quiet(mary) [avatar definition]
266. ~quiet(mary) <- (~4) [avatar component clause 264]
268. 5 <=> person(mary) [avatar definition]
271. ~4 | ~5 [avatar split clause 238,268,264]
274. 1 [avatar split clause 244,253]
276. ~kind(mary) | paul != sK0 | ~room(mary) [subsumption resolution 251,233]
277. ~kind(mary) | paul != sK0 [subsumption resolution 276,232]
279. 6 <=> paul = sK0 [avatar definition]
281. paul != sK0 <- (~6) [avatar component clause 279]
283. 7 <=> kind(mary) [avatar definition]
285. ~kind(mary) <- (~7) [avatar component clause 283]
286. ~6 | ~7 [avatar split clause 277,283,279]
287. ~kind(mary) | mary != sK0 | ~room(mary) [subsumption resolution 250,233]
288. ~kind(mary) | mary != sK0 [subsumption resolution 287,232]
290. 8 <=> mary = sK0 [avatar definition]
292. mary != sK0 <- (~8) [avatar component clause 290]
293. ~8 | ~7 [avatar split clause 288,283,290]
294. ~kind(mary) | room(sK0) | ~room(mary) [subsumption resolution 249,233]
295. ~kind(mary) | room(sK0) [subsumption resolution 294,232]
297. 9 <=> room(sK0) [avatar definition]
299. room(sK0) <- (9) [avatar component clause 297]
300. 9 | ~7 [avatar split clause 295,283,297]
303. quiet(mary) <- (~7) [resolution 246,285]
304. $false <- (~4, ~7) [subsumption resolution 303,266]
305. 4 | 7 [avatar contradiction clause 304]
307. person(mary) <- (1) [resolution 254,232]
310. 5 | ~1 [avatar split clause 307,253,268]
326. mary = sK0 | paul = sK0 <- (9) [resolution 234,299]
327. paul = sK0 <- (~8, 9) [subsumption resolution 326,292]
328. $false <- (~6, ~8, 9) [subsumption resolution 327,281]
329. 6 | 8 | ~9 [avatar contradiction clause 328]
330. $false [avatar sat refutation 271,274,286,293,300,305,310,329]
% SZS output end Proof for 9081600621753963997375360
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.031 s
% ------------------------------
% ------------------------------
| 0.168632 |
Steven, Howard, Peter are the only persons in the room.
If “everyone anywhere cannot play the guitar or participates in citizen science projects related to wildlife monitoring” then “everyone in the room who is a client of Costco neither is a professional photographer specializing in portrait photography nor is a tea enthusiast”.
If “everyone in the room does not collect action figures or is a client of Costco” then “more than one person in the room owns a smartwatch”.
If “not everyone outside the room is not a tea enthusiast or is a wine connoisseur with a private cellar of vintage wines” then “Howard is a tea enthusiast”.
“Everyone in the room owns a smartwatch or does not own a smartwatch” if “everyone in the room cannot play the guitar or creates YouTube content” and vice versa.
If “not everyone in the room cannot play the guitar or is a client of Costco” then “everyone anywhere creates YouTube content if they cannot play the guitar”.
If “everyone in the room is a professional photographer specializing in portrait photography or is not a tea enthusiast” then “no one in the room who cannot play the guitar creates YouTube content”.
If “no one anywhere can play the guitar or does not create YouTube content” then “everyone in the room can play the guitar if and only if they does not own a smartwatch”.
“Everyone in the room owns a smartwatch or is not an expert in identifying and foraging wild edible plants” if “everyone anywhere does not participate in citizen science projects related to wildlife monitoring or is not a professional photographer specializing in portrait photography”.
“Howard participates in citizen science projects related to wildlife monitoring” if “everyone in the room is a tea enthusiast or is not an expert in identifying and foraging wild edible plants” and vice versa.
Howard participates in citizen science projects related to wildlife monitoring.
Everyone in the room can play the guitar if and only if they does not own a smartwatch.
|
Everyone outside the room participates in citizen science projects related to wildlife monitoring.
|
neutral
|
room(steven)&room(howard)&room(peter)&(![X]:(room(X)=>(X='steven'|X='howard'|X='peter')))&
((![X]:(anywhere(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(cannot_play_the_guitar(X))))))=>(![X]:(room(X)=>(((is_a_client_of_Costco(X))=>(~((is_a_professional_photographer_specializing_in_portrait_photography(X))|(is_a_tea_enthusiast(X)))))))))&
((![X]:(room(X)=>(((is_a_client_of_Costco(X))|(does_not_collect_action_figures(X))))))=>((?[X,Y]:(room(X)&room(Y)&(owns_a_smartwatch(X)&owns_a_smartwatch(Y))&(X!=Y)))))&
((~![X]:(~room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(is_not_a_tea_enthusiast(X))))))=>(is_a_tea_enthusiast(howard)))&
((![X]:(room(X)=>(((creates_YouTube_content(X))|(cannot_play_the_guitar(X))))))<=>(![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(owns_a_smartwatch(X)))))))&
((~![X]:(room(X)=>(((is_a_client_of_Costco(X))|(cannot_play_the_guitar(X))))))=>(![X]:(anywhere(X)=>(((cannot_play_the_guitar(X))=>(creates_YouTube_content(X)))))))&
((![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))))=>(~?[X]:(room(X)=>(((cannot_play_the_guitar(X))=>(creates_YouTube_content(X)))))))&
((~?[X]:(anywhere(X)=>(((does_not_create_YouTube_content(X))|(can_play_the_guitar(X))))))=>(![X]:(room(X)=>(((can_play_the_guitar(X))<=>(does_not_own_a_smartwatch(X)))))))&
((![X]:(anywhere(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))=>(![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(owns_a_smartwatch(X)))))))&
((![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(is_a_tea_enthusiast(X))))))<=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(howard)))&
(participates_in_citizen_science_projects_related_to_wildlife_monitoring(howard))&
(![X]:(room(X)=>(((can_play_the_guitar(X))<=>(does_not_own_a_smartwatch(X))))))&
(~(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(peter)))&
(is_an_expert_in_identifying_and_foraging_wild_edible_plants(peter))&
(collects_action_figures(howard))&
((steven_dream=>(![X]:(room(X)=>(((creates_YouTube_content(X))<=(is_a_tea_enthusiast(X))))))))&
(~![X]:(room(X)=>(((creates_YouTube_content(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))&
(is_a_tea_enthusiast(steven))&
(is_a_tea_enthusiast(peter))&
(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(steven))&
(creates_YouTube_content(steven))&
(![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(is_an_avid_hiker(X))))))&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(is_a_client_of_Costco(X)&is_a_client_of_Costco(Y))&(X!=Y))))&
(![X]:(~room(X)=>(((owns_a_smartwatch(X))|(does_not_collect_action_figures(X))))))&
((steven_dream=>(?[X]:(anywhere(X)&(((is_not_an_avid_hiker(X))&(collects_action_figures(X))))))))&
(?[X]:(room(X)&(is_a_professional_photographer_specializing_in_portrait_photography(X))))&
(![X]:(room(X)=>(((((owns_a_smartwatch(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(owns_a_smartwatch(X))))))&
(~![X]:(~room(X)=>(((owns_a_smartwatch(X))=>(~((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))
|
room(steven)&room(howard)&room(peter)&(![X]:(room(X)=>(X='steven'|X='howard'|X='peter')))&
![X]:(~room(X)=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))
|
[] | null | 0 |
Viola, Mildred, Donna, Vicki are the only persons in the room.
If "everyone in the room does not collect classic novels or collects classic novels" then "someone in the room has a pet dog".
"Everyone anywhere does not know morse code or regularly contributes to tech forums and online communities" if "Mildred collects classic novels" and vice versa.
If "everyone in the room does not collect classic novels or collects classic novels" then "Vicki knows morse code".
Vicki knows morse code.
Donna who collects classic novels knows morse code.
Mildred regularly contributes to tech forums and online communities.
Viola has a pet dog.
Everyone in the room who regularly contributes to tech forums and online communities has a pet dog.
Donna collects classic novels.
Vicki collects classic novels.
Mildred collects classic novels.
Someone in the room knows morse code.
Everyone anywhere collects classic novels or regularly contributes to tech forums and online communities or both if they collects classic novels and vice versa.
|
Donna has a pet dog.
|
entailment
|
room(viola)&room(mildred)&room(donna)&room(vicki)&(![X]:(room(X)=>(X='viola'|X='mildred'|X='donna'|X='vicki')))&
((![X]:(room(X)=>(((collects_classic_novels(X))|(does_not_collect_classic_novels(X))))))=>(?[X]:(room(X)&(has_a_pet_dog(X)))))&
((collects_classic_novels(mildred))<=>(![X]:(anywhere(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_know_morse_code(X)))))))&
((![X]:(room(X)=>(((collects_classic_novels(X))|(does_not_collect_classic_novels(X))))))=>(knows_morse_code(vicki)))&
(knows_morse_code(vicki))&
((collects_classic_novels(donna))&(knows_morse_code(donna)))&
(regularly_contributes_to_tech_forums_and_online_communities(mildred))&
(has_a_pet_dog(viola))&
(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(has_a_pet_dog(X))))))&
(collects_classic_novels(donna))&
(collects_classic_novels(vicki))&
(collects_classic_novels(mildred))&
(?[X]:(room(X)&(knows_morse_code(X))))&
(![X]:(anywhere(X)=>(((((collects_classic_novels(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))<=>(collects_classic_novels(X))))))&
(((collects_classic_novels(viola))|(regularly_contributes_to_tech_forums_and_online_communities(viola))))&
(![X]:(room(X)=>(((knows_morse_code(X))<=>(collects_classic_novels(X))))))&
(knows_morse_code(donna))&
(collects_classic_novels(viola))&
(knows_morse_code(mildred))&
(![X]:(room(X)=>(((knows_morse_code(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))&
(has_a_pet_dog(mildred))&
(![X]:(room(X)=>(((knows_morse_code(X))=>(collects_classic_novels(X))))))&
(knows_morse_code(viola))&
(regularly_contributes_to_tech_forums_and_online_communities(viola))
|
room(viola)&room(mildred)&room(donna)&room(vicki)&(![X]:(room(X)=>(X='viola'|X='mildred'|X='donna'|X='vicki')))&
has_a_pet_dog(donna)
|
[
"b4",
"p0",
"p2",
"p5",
"p8",
"p11",
"hypothesis"
] |
% SZS status Unsatisfiable for 2143236392152667770123246
% SZS output start Proof for 2143236392152667770123246
5. ! [X0] : anywhere(X0) [input b4]
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
46. predd(paul) <=> ! [X0] : (anywhere(X0) => (~preda(X0) | predc(X0))) [input p2]
49. preda(fred) & predd(fred) [input p5]
52. ! [X0] : (room(X0) => (predc(X0) => predb(X0))) [input p8]
55. predd(paul) [input p11]
68. ~(predb(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
141. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
142. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141]
145. predd(paul) <=> ! [X0] : ((~preda(X0) | predc(X0)) | ~anywhere(X0)) [ennf transformation 46]
146. predd(paul) <=> ! [X0] : (~preda(X0) | predc(X0) | ~anywhere(X0)) [flattening 145]
149. ! [X0] : ((predb(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 52]
150. ! [X0] : (predb(X0) | ~predc(X0) | ~room(X0)) [flattening 149]
157. ~predb(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68]
158. ~predb(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 157]
164. (predd(paul) | ? [X0] : (preda(X0) & ~predc(X0) & anywhere(X0))) & (! [X0] : (~preda(X0) | predc(X0) | ~anywhere(X0)) | ~predd(paul)) [nnf transformation 146]
165. (predd(paul) | ? [X0] : (preda(X0) & ~predc(X0) & anywhere(X0))) & (! [X1] : (~preda(X1) | predc(X1) | ~anywhere(X1)) | ~predd(paul)) [rectify 164]
166. ? [X0] : (preda(X0) & ~predc(X0) & anywhere(X0)) => (preda(sK2) & ~predc(sK2) & anywhere(sK2)) [choice axiom]
167. (predd(paul) | (preda(sK2) & ~predc(sK2) & anywhere(sK2))) & (! [X1] : (~preda(X1) | predc(X1) | ~anywhere(X1)) | ~predd(paul)) [skolemisation 165,166]
175. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
176. ~predb(fred) | (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 158,175]
177. anywhere(X0) [cnf transformation 5]
258. room(mary) [cnf transformation 142]
259. room(paul) [cnf transformation 142]
260. room(fred) [cnf transformation 142]
261. room(alice) [cnf transformation 142]
262. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 142]
269. ~preda(X1) | predc(X1) | ~anywhere(X1) | ~predd(paul) [cnf transformation 167]
278. preda(fred) [cnf transformation 49]
281. ~predc(X0) | predb(X0) | ~room(X0) [cnf transformation 150]
284. predd(paul) [cnf transformation 55]
301. ~predb(fred) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 176]
302. ~predb(fred) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 176]
303. ~predb(fred) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 176]
304. ~predb(fred) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 176]
305. ~predb(fred) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 176]
333. 6 <=> predd(paul) [avatar definition]
342. ~preda(X1) | predc(X1) | ~predd(paul) [subsumption resolution 269,177]
344. 8 <=> ! [X1] : (~preda(X1) | predc(X1)) [avatar definition]
345. ~preda(X1) | predc(X1) <- (8) [avatar component clause 344]
346. ~6 | 8 [avatar split clause 342,344,333]
363. 6 [avatar split clause 284,333]
366. ~predb(fred) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 305,261]
367. ~predb(fred) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 366,260]
368. ~predb(fred) | alice != sK5 | ~room(mary) [subsumption resolution 367,259]
369. ~predb(fred) | alice != sK5 [subsumption resolution 368,258]
371. 12 <=> alice = sK5 [avatar definition]
373. alice != sK5 <- (~12) [avatar component clause 371]
375. 13 <=> predb(fred) [avatar definition]
378. ~12 | ~13 [avatar split clause 369,375,371]
379. ~predb(fred) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,261]
380. ~predb(fred) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 379,260]
381. ~predb(fred) | fred != sK5 | ~room(mary) [subsumption resolution 380,259]
382. ~predb(fred) | fred != sK5 [subsumption resolution 381,258]
384. 14 <=> fred = sK5 [avatar definition]
386. fred != sK5 <- (~14) [avatar component clause 384]
387. ~14 | ~13 [avatar split clause 382,375,384]
388. ~predb(fred) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,261]
389. ~predb(fred) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 388,260]
390. ~predb(fred) | paul != sK5 | ~room(mary) [subsumption resolution 389,259]
391. ~predb(fred) | paul != sK5 [subsumption resolution 390,258]
393. 15 <=> paul = sK5 [avatar definition]
395. paul != sK5 <- (~15) [avatar component clause 393]
396. ~15 | ~13 [avatar split clause 391,375,393]
397. ~predb(fred) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 302,261]
398. ~predb(fred) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 397,260]
399. ~predb(fred) | mary != sK5 | ~room(mary) [subsumption resolution 398,259]
400. ~predb(fred) | mary != sK5 [subsumption resolution 399,258]
402. 16 <=> mary = sK5 [avatar definition]
404. mary != sK5 <- (~16) [avatar component clause 402]
405. ~16 | ~13 [avatar split clause 400,375,402]
406. ~predb(fred) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 301,261]
407. ~predb(fred) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 406,260]
408. ~predb(fred) | room(sK5) | ~room(mary) [subsumption resolution 407,259]
409. ~predb(fred) | room(sK5) [subsumption resolution 408,258]
411. 17 <=> room(sK5) [avatar definition]
413. room(sK5) <- (17) [avatar component clause 411]
414. 17 | ~13 [avatar split clause 409,375,411]
417. predc(fred) <- (8) [resolution 345,278]
425. predb(fred) | ~room(fred) <- (8) [resolution 281,417]
429. predb(fred) <- (8) [subsumption resolution 425,260]
430. 13 | ~8 [avatar split clause 429,344,375]
494. fred = sK5 | paul = sK5 | mary = sK5 | alice = sK5 <- (17) [resolution 262,413]
529. paul = sK5 | mary = sK5 | alice = sK5 <- (~14, 17) [subsumption resolution 494,386]
530. mary = sK5 | alice = sK5 <- (~14, ~15, 17) [subsumption resolution 529,395]
531. alice = sK5 <- (~14, ~15, ~16, 17) [subsumption resolution 530,404]
532. $false <- (~12, ~14, ~15, ~16, 17) [subsumption resolution 531,373]
533. 12 | 14 | 15 | 16 | ~17 [avatar contradiction clause 532]
534. $false [avatar sat refutation 346,363,378,387,396,405,414,430,533]
% SZS output end Proof for 2143236392152667770123246
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.650593 |
Jean is the only person in the room.
If “someone anywhere enjoys windsurfing” then “Jean enjoys writing detailed reviews of new and classic board games”.
“Jean collects vintage stamps” only if “more than one person in the room builds model airplanes”.
If “at least one person in the room builds model airplanes” then “Jean maintains a large, organic vegetable garden year-round”.
If “Jean owns a 3D printer” then “Jean maintains a large, organic vegetable garden year-round”.
If “Jean collects antique jewelry” then “someone in the room collects antique jewelry”.
If “Jean enjoys windsurfing” then “Jean collects vintage stamps”.
If “Jean is an avid mountain climber who has scaled several peaks and collects vintage stamps” then “Jean is an avid mountain climber who has scaled several peaks”.
“Jean plays eSports competitively” only if “Jean can play the guitar”.
If someone owns a 3D printer and collects rare minerals then he/she is an avid mountain climber who has scaled several peaks.
If someone is a certified yoga instructor teaching classes weekly then he/she is a professional photographer specializing in portrait photography.
It is not the case that “Jean is an avid mountain climber who has scaled several peaks”.
Someone in the room plays eSports competitively.
Jean practices kickboxing.
It is not the case that “more than one person in the room enjoys writing detailed reviews of new and classic board games”.
If someone owns a 3D printer then he/she does enjoy trail running.
Jean collects rare minerals.
Jean does enjoy trail running and collects antique jewelry.
|
Jean builds model airplanes.
|
neutral
|
room(jean)&(![X]:(room(X)=>(X='jean')))&
((?[X]:(anywhere(X)&(enjoys_windsurfing(X))))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(jean)))&
((collects_vintage_stamps(jean))=>((?[X,Y]:(room(X)&room(Y)&(builds_model_airplanes(X)&builds_model_airplanes(Y))&(X!=Y)))))&
((((?[X]:(room(X)&builds_model_airplanes(X)))))=>(maintains_a_large,_organic_vegetable_garden_year-round(jean)))&
((owns_a_3D_printer(jean))=>(maintains_a_large,_organic_vegetable_garden_year-round(jean)))&
((collects_antique_jewelry(jean))=>(?[X]:(room(X)&(collects_antique_jewelry(X)))))&
((enjoys_windsurfing(jean))=>(collects_vintage_stamps(jean)))&
((((is_an_avid_mountain_climber_who_has_scaled_several_peaks(jean))&(collects_vintage_stamps(jean))))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(jean)))&
((plays_eSports_competitively(jean))=>(can_play_the_guitar(jean)))&
((![X]:((((owns_a_3D_printer(X))&(collects_rare_minerals(X))))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))&
((![X]:((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X)))))&
(~(is_an_avid_mountain_climber_who_has_scaled_several_peaks(jean)))&
(?[X]:(room(X)&(plays_eSports_competitively(X))))&
(practices_kickboxing(jean))&
(~((?[X,Y]:(room(X)&room(Y)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)&enjoys_writing_detailed_reviews_of_new_and_classic_board_games(Y))&(X!=Y)))))&
((![X]:((owns_a_3D_printer(X))=>(does_enjoy_trail_running(X)))))&
(collects_rare_minerals(jean))&
(((does_enjoy_trail_running(jean))&(collects_antique_jewelry(jean))))&
(((can_play_the_guitar(jean))&(collects_antique_jewelry(jean))&(plays_eSports_competitively(jean))))&
(~(mentors_a_youth_basketball_team_on_weekends(jean)))
|
room(jean)&(![X]:(room(X)=>(X='jean')))&
builds_model_airplanes(jean)
|
[] | null | 0.249552 |
There is a room.
“If someone writes poetry then he/she bakes bread at home” if “no one in the room practices urban gardening or is not a craft beer aficionado”.
If someone enjoys spelunking then he/she volunteers for local environmental conservation projects and vice versa.
Someone in the room neither practices urban gardening nor hosts a popular podcast about emerging technologies.
|
Everyone in the room does not bake bread at home or hosts a popular podcast about emerging technologies.
|
neutral
|
(there_is_a_room)&
((~?[X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))|(practices_urban_gardening(X))))))=>((![X]:((writes_poetry(X))=>(bakes_bread_at_home(X))))))&
((![X]:((enjoys_spelunking(X))<=>(volunteers_for_local_environmental_conservation_projects(X)))))&
(?[X]:(room(X)&(~((practices_urban_gardening(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))&
(?[X]:(room(X)&(bakes_bread_at_home(X))))&
(![X]:(room(X)=>(((does_not_enjoy_origami(X))|(practices_urban_gardening(X))))))&
(?[X]:(room(X)&(volunteers_for_local_environmental_conservation_projects(X))))&
(![X]:(room(X)=>(((owns_a_telescope(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))&
((![X]:((writes_poetry(X))=>(volunteers_for_local_environmental_conservation_projects(X)))))&
(![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(has_a_piercing(X))))))&
(![X]:(~room(X)=>(((enjoys_origami(X))=>(((volunteers_for_local_environmental_conservation_projects(X))|(has_a_piercing(X))|(enjoys_spelunking(X))))))))&
((?[X,Y]:(room(X)&room(Y)&(is_not_a_craft_beer_aficionado(X)&is_not_a_craft_beer_aficionado(Y))&(X!=Y))))&
(![X]:(room(X)=>(((does_not_enjoy_cross-country_skiing(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))&
(![X]:(~room(X)=>(((((bakes_bread_at_home(X))|(has_a_tattoo(X))|(enjoys_cross-country_skiing(X))))<=(hosts_a_popular_podcast_about_emerging_technologies(X))))))&
(![X]:(room(X)=>(((enjoys_spelunking(X))=>(is_a_client_of_Meta(X))))))&
(![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(((hosts_a_popular_podcast_about_emerging_technologies(X))|(is_a_craft_beer_aficionado(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))&
(![X]:(~room(X)=>(((((hosts_a_popular_podcast_about_emerging_technologies(X))|(is_a_craft_beer_aficionado(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(enjoys_cross-country_skiing(X))))))&
(![X]:(~room(X)=>(((enjoys_cross-country_skiing(X))=>(has_a_tattoo(X))))))&
(![X]:(~room(X)=>(((has_a_tattoo(X))=>(enjoys_origami(X))))))&
((![X]:((practices_urban_gardening(X))<=>(hosts_a_popular_podcast_about_emerging_technologies(X)))))
|
(there_is_a_room)&
![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))|(does_not_bake_bread_at_home(X)))))
|
[] | null | 0.017276 |
Henry is the only person in the room.
Only one person in the room is quieter than Orlando.
Everyone in the room is richer than Orlando.
Henry is a kind old person.
Everyone in the room is old if they is a quiet person.
Everyone in the room is kind if they is old.
Everyone in the room is a tall old quiet person.
Everyone in the room who is a old quiet tall person is quieter than Asha.
Someone who is a kind person is older than someone who is not tall.
Everyone in the room who is richer than Orlando, is a kind person or is richer than Asha is tall.
Everyone in the room who is tall is older than Asha.
Everyone outside the room is old if they is older than Asha.
Everyone anywhere is old if and only if they is a tall quiet person.
Henry is quieter than Orlando, is kind or is quiet.
|
Henry is quieter than Asha.
|
entailment
|
room(henry)&(![X]:(room(X)=>(X='henry')))&
(((?[X]:(room(X)&quieter(orlando,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(orlando,X))&(quieter(orlando,Y)))=>(X=Y)))))&
(![X]:(room(X)=>(richer(orlando,X))))&
(kind(henry)&old(henry)&person(henry))&
(![X]:(room(X)=>(((quiet(X)&person(X))=>(old(X))))))&
(![X]:(room(X)=>(((old(X))=>(kind(X))))))&
(![X]:(room(X)=>(tall(X)&old(X)&quiet(X)&person(X))))&
(![X]:(room(X)=>(((old(X)&quiet(X)&tall(X)&person(X))=>(quieter(asha,X))))))&
(?[X,Y]:((kind(X)&person(X))&(~tall(Y))&(older(X,Y))))&
(![X]:(room(X)=>(((((richer(orlando,X))|(kind(X)&person(X))|(richer(asha,X))))=>(tall(X))))))&
(![X]:(room(X)=>(((tall(X))=>(older(asha,X))))))&
(![X]:(~room(X)=>(((older(asha,X))=>(old(X))))))&
(![X]:(anywhere(X)=>(((old(X))<=>(tall(X)&quiet(X)&person(X))))))&
(((quieter(orlando,henry))|(kind(henry))|(quiet(henry))))
|
room(henry)&(![X]:(room(X)=>(X='henry')))&
quieter(asha,henry)
|
[
"p0",
"p6",
"p7",
"hypothesis"
] |
% SZS status Unsatisfiable for 8372848791709076529750460
% SZS output start Proof for 8372848791709076529750460
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
50. ! [X0] : (room(X0) => (person(X0) & quiet(X0) & old(X0) & tall(X0))) [input p6]
51. ! [X0] : (room(X0) => ((person(X0) & tall(X0) & quiet(X0) & old(X0)) => quieter(fred,X0))) [input p7]
58. ~(quieter(fred,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis]
131. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
139. ! [X0] : ((person(X0) & quiet(X0) & old(X0) & tall(X0)) | ~room(X0)) [ennf transformation 50]
140. ! [X0] : ((quieter(fred,X0) | (~person(X0) | ~tall(X0) | ~quiet(X0) | ~old(X0))) | ~room(X0)) [ennf transformation 51]
141. ! [X0] : (quieter(fred,X0) | ~person(X0) | ~tall(X0) | ~quiet(X0) | ~old(X0) | ~room(X0)) [flattening 140]
149. ~quieter(fred,mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 58]
157. ? [X0] : (mary != X0 & room(X0)) => (mary != sK3 & room(sK3)) [choice axiom]
158. ~quieter(fred,mary) | (mary != sK3 & room(sK3)) | ~room(mary) [skolemisation 149,157]
240. room(mary) [cnf transformation 131]
241. ~room(X0) | mary = X0 [cnf transformation 131]
251. ~room(X0) | tall(X0) [cnf transformation 139]
252. ~room(X0) | old(X0) [cnf transformation 139]
253. ~room(X0) | quiet(X0) [cnf transformation 139]
254. ~room(X0) | person(X0) [cnf transformation 139]
255. quieter(fred,X0) | ~person(X0) | ~tall(X0) | ~quiet(X0) | ~old(X0) | ~room(X0) [cnf transformation 141]
270. ~quieter(fred,mary) | room(sK3) | ~room(mary) [cnf transformation 158]
271. ~quieter(fred,mary) | mary != sK3 | ~room(mary) [cnf transformation 158]
272. quieter(fred,X0) | ~tall(X0) | ~quiet(X0) | ~old(X0) | ~room(X0) [subsumption resolution 255,254]
273. quieter(fred,X0) | ~tall(X0) | ~old(X0) | ~room(X0) [subsumption resolution 272,253]
274. quieter(fred,X0) | ~tall(X0) | ~room(X0) [subsumption resolution 273,252]
275. quieter(fred,X0) | ~room(X0) [subsumption resolution 274,251]
282. ~quieter(fred,mary) | mary != sK3 [subsumption resolution 271,240]
284. 1 <=> mary = sK3 [avatar definition]
286. mary != sK3 <- (~1) [avatar component clause 284]
288. 2 <=> quieter(fred,mary) [avatar definition]
290. ~quieter(fred,mary) <- (~2) [avatar component clause 288]
291. ~1 | ~2 [avatar split clause 282,288,284]
292. ~quieter(fred,mary) | room(sK3) [subsumption resolution 270,240]
294. 3 <=> room(sK3) [avatar definition]
296. room(sK3) <- (3) [avatar component clause 294]
297. 3 | ~2 [avatar split clause 292,288,294]
320. ~room(mary) <- (~2) [resolution 275,290]
321. $false <- (~2) [subsumption resolution 320,240]
322. 2 [avatar contradiction clause 321]
323. mary = sK3 <- (3) [resolution 296,241]
328. $false <- (~1, 3) [subsumption resolution 323,286]
329. 1 | ~3 [avatar contradiction clause 328]
330. $false [avatar sat refutation 291,297,322,329]
% SZS output end Proof for 8372848791709076529750460
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.06663 |
Tracy, Kyong are the only persons in the room.
“No creative person is funny” if “Tracy is not quiet”.
““There is no planet where the oceans are in the sky.” or “A desert does not bloom with snowdrops every year.” but not both” if ““A desert does not bloom with snowdrops every year.” or “A car does not run solely on saltwater.” but not both”.
Kyong is not quiet.
At least one person anywhere is a quiet person, is not quiet or is a creative person.
Kyong and Tracy are respectively funny and quiet.
Kyong is a creative person.
If someone is a funny person then he/she is not a quiet person and vice versa.
Kyong is the least young in the room.
|
A car runs solely on saltwater.
|
neutral
|
room(tracy)&room(kyong)&(![X]:(room(X)=>(X='tracy'|X='kyong')))&
((~quiet(tracy))=>(~?[X]:(creative(X)=>funny(X))))&
((((A_desert_does_not_bloom_with_snowdrops_every_year.)<~>(A_car_does_not_run_solely_on_saltwater.)))=>(((There_is_no_planet_where_the_oceans_are_in_the_sky.)<~>(A_desert_does_not_bloom_with_snowdrops_every_year.))))&
(~quiet(kyong))&
(((?[X]:(anywhere(X)&((quiet(X)&person(X))|(~quiet(X))|(creative(X)&person(X)))))))&
((funny(kyong))&(quiet(tracy)))&
(creative(kyong)&person(kyong))&
((![X]:((funny(X)&person(X))<=>(~(quiet(X)&person(X))))))&
(![X]:((room(X)&(X!=kyong))=>younger(kyong,X)))
|
room(tracy)&room(kyong)&(![X]:(room(X)=>(X='tracy'|X='kyong')))&
A_car_runs_solely_on_saltwater.
|
[] | null | 0.656741 |
Dorothy, Alfred are the only persons in the room.
If "Dorothy is a dedicated advocate for digital privacy and encryption" then "everyone in the room owns a smart tv if and only if they collects first edition books".
"Someone outside the room owns a telescope" only if "Dorothy does not travel domestically frequently".
If "Dorothy owns a smartwatch" then "it is not the case that "Dorothy is a client of LVMH"".
If "it is not the case that "it is not the case that "Dorothy owns a telescope""" then "not everyone in the room travels domestically frequently or does not collect modern art".
More than one person in the room collects modern art.
If someone bakes bread at home then he/she uses an ios phone and vice versa.
Everyone anywhere enjoys fishing if they competes in national level swimming championships.
Everyone in the room volunteers for local environmental conservation projects only if they uses an ios phone.
Dorothy plays the violin.
It is not the case that "it is not the case that "Dorothy develops open-source software projects in their free time"".
If someone enjoys fishing then he/she owns a microscope and vice versa.
It is not the case that "it is not the case that "it is not the case that "someone outside the room owns a microscope""".
Someone in the room bakes bread at home.
Someone in the room owns a telescope.
Everyone in the room who uses an ios phone designs and sews custom cosplay costumes for conventions.
Dorothy owns a smart tv.
Everyone in the room collects first edition books only if they owns a smartwatch.
Dorothy is a client of LVMH.
Everyone in the room who travels domestically frequently competes in national level swimming championships.
Everyone in the room who collects comic books is a client of LVMH.
Dorothy hosts regular workshops on creative writing.
If someone is a drone photographer and plays the violin then he/she volunteers for local environmental conservation projects and vice versa.
Someone in the room collects modern art.
Everyone in the room who collects first edition books uses an ios phone.
|
Dorothy is a dedicated advocate for digital privacy and encryption and uses an ios phone.
|
contradiction
|
room(dorothy)&room(alwilliam)&(![X]:(room(X)=>(X='dorothy'|X='alwilliam')))&
((is_a_dedicated_advocate_for_digital_privacy_and_encryption(dorothy))=>(![X]:(room(X)=>(((owns_a_smart_tv(X))<=>(collects_first_edition_books(X)))))))&
((?[X]:(~room(X)&(owns_a_telescope(X))))=>(does_not_travel_domestically_frequently(dorothy)))&
((owns_a_smartwatch(dorothy))=>(~(is_a_client_of_LVMH(dorothy))))&
((~(~(owns_a_telescope(dorothy))))=>(~![X]:(room(X)=>(((does_not_collect_modern_art(X))|(travels_domestically_frequently(X)))))))&
((?[X,Y]:(room(X)&room(Y)&(collects_modern_art(X)&collects_modern_art(Y))&(X!=Y))))&
((![X]:((bakes_bread_at_home(X))<=>(uses_an_ios_phone(X)))))&
(![X]:(anywhere(X)=>(((competes_in_national_level_swimming_championships(X))=>(enjoys_fishing(X))))))&
(![X]:(room(X)=>(((uses_an_ios_phone(X))<=(volunteers_for_local_environmental_conservation_projects(X))))))&
(plays_the_violin(dorothy))&
(~(~(develops_open-source_software_projects_in_their_free_time(dorothy))))&
((![X]:((enjoys_fishing(X))<=>(owns_a_microscope(X)))))&
(~(~(~(?[X]:(~room(X)&(owns_a_microscope(X)))))))&
(?[X]:(room(X)&(bakes_bread_at_home(X))))&
(?[X]:(room(X)&(owns_a_telescope(X))))&
(![X]:(room(X)=>(((uses_an_ios_phone(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))&
(owns_a_smart_tv(dorothy))&
(![X]:(room(X)=>(((owns_a_smartwatch(X))<=(collects_first_edition_books(X))))))&
(is_a_client_of_LVMH(dorothy))&
(![X]:(room(X)=>(((travels_domestically_frequently(X))=>(competes_in_national_level_swimming_championships(X))))))&
(![X]:(room(X)=>(((collects_comic_books(X))=>(is_a_client_of_LVMH(X))))))&
(hosts_regular_workshops_on_creative_writing(dorothy))&
((![X]:((((is_a_drone_photographer(X))&(plays_the_violin(X))))<=>(volunteers_for_local_environmental_conservation_projects(X)))))&
(?[X]:(room(X)&(collects_modern_art(X))))&
(![X]:(room(X)=>(((collects_first_edition_books(X))=>(uses_an_ios_phone(X))))))
|
room(dorothy)&room(alwilliam)&(![X]:(room(X)=>(X='dorothy'|X='alwilliam')))&
((is_a_dedicated_advocate_for_digital_privacy_and_encryption(dorothy))&(uses_an_ios_phone(dorothy)))
|
[
"p0",
"p1",
"p3",
"p16",
"p17",
"p18",
"hypothesis"
] |
% SZS status Unsatisfiable for 3137067460760642211175118
% SZS output start Proof for 3137067460760642211175118
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. predh(mary) => ! [X0] : (room(X0) => (predr(X0) <=> predm(X0))) [input p1]
47. predk(mary) => ~predd(mary) [input p3]
60. predr(mary) [input p16]
61. ! [X0] : (room(X0) => (predm(X0) => predk(X0))) [input p17]
62. predd(mary) [input p18]
69. predb(mary) & predh(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
82. predh(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [pure predicate removal 69]
166. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
167. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 166]
168. ! [X0] : ((predr(X0) <=> predm(X0)) | ~room(X0)) | ~predh(mary) [ennf transformation 45]
169. ~predd(mary) | ~predk(mary) [ennf transformation 47]
171. ! [X0] : ((predk(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 61]
172. ! [X0] : (predk(X0) | ~predm(X0) | ~room(X0)) [flattening 171]
173. predh(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 82]
174. predh(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 173]
176. ! [X0] : (((predr(X0) | ~predm(X0)) & (predm(X0) | ~predr(X0))) | ~room(X0)) | ~predh(mary) [nnf transformation 168]
267. room(mary) [cnf transformation 167]
270. predm(X0) | ~predr(X0) | ~room(X0) | ~predh(mary) [cnf transformation 176]
272. ~predd(mary) | ~predk(mary) [cnf transformation 169]
280. predr(mary) [cnf transformation 60]
281. ~predm(X0) | predk(X0) | ~room(X0) [cnf transformation 172]
282. predd(mary) [cnf transformation 62]
287. predh(mary) [cnf transformation 174]
289. 1 <=> predh(mary) [avatar definition]
297. 3 <=> ! [X0] : (predm(X0) | ~room(X0) | ~predr(X0)) [avatar definition]
298. ~predr(X0) | ~room(X0) | predm(X0) <- (3) [avatar component clause 297]
299. ~1 | 3 [avatar split clause 270,297,289]
301. 4 <=> predk(mary) [avatar definition]
303. ~predk(mary) <- (~4) [avatar component clause 301]
305. 5 <=> predd(mary) [avatar definition]
308. ~4 | ~5 [avatar split clause 272,305,301]
318. 5 [avatar split clause 282,305]
319. 1 [avatar split clause 287,289]
320. ~room(mary) | predm(mary) <- (3) [resolution 298,280]
321. predm(mary) <- (3) [subsumption resolution 320,267]
387. predk(mary) | ~room(mary) <- (3) [resolution 321,281]
388. ~room(mary) <- (3, ~4) [subsumption resolution 387,303]
389. $false <- (3, ~4) [subsumption resolution 388,267]
390. ~3 | 4 [avatar contradiction clause 389]
391. $false [avatar sat refutation 299,308,318,319,390]
% SZS output end Proof for 3137067460760642211175118
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.592094 |
Ana, Joseph are the only persons in the room. “Everyone in the room does not enjoy fishing or plays as a goalkeeper for a local amateur soccer team” if “everyone in the room is a tea enthusiast or does not enjoy trail running” and vice versa. “Everyone in the room writes a travel blog or does not collect rare and antique scientific instruments” only if “everyone in the room enjoys writing detailed reviews of new and classic board games”. If “at least one person in the room enjoys writing detailed reviews of new and classic board games and hosts themed dinner parties featuring gourmet home-cooked meals” then “everyone in the room has a piercing and enjoys stand-up paddleboarding”. Everyone anywhere enjoys watercolor painting if they is a tea enthusiast. Everyone in the room collect rare sneakers if they enjoys watercolor painting. Everyone in the room hosts a YouTube channel dedicated to art tutorials if they does not have completed a triathlon. No one anywhere enjoys writing detailed reviews of new and classic board games if they hosts a YouTube channel dedicated to art tutorials. Everyone in the room does not collect rare sneakers. Everyone in the room who does not have a saltwater aquarium enjoys skydiving and does not enjoy skydiving. Everyone in the room makes intricate hand-cut paper art for exhibitions.
|
Ana is a tea enthusiast.
|
contradiction
|
room(ana)&room(joseph)&(![X]:(room(X)=>(X='ana'|X='joseph')))&
((![X]:(room(X)=>(((does_not_enjoy_trail_running(X))|(is_a_tea_enthusiast(X))))))<=>(![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_enjoy_fishing(X)))))))&
((![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(writes_a_travel_blog(X))))))=>(![X]:(room(X)=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))&
((((?[X]:(room(X)&((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))=>(![X]:(room(X)=>(((has_a_piercing(X))&(enjoys_stand-up_paddleboarding(X)))))))&
(![X]:(anywhere(X)=>(((is_a_tea_enthusiast(X))=>(enjoys_watercolor_painting(X))))))&
(![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(collect_rare_sneakers(X))))))&
(![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))&
(~?[X]:(anywhere(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))&
(![X]:(room(X)=>(does_not_collect_rare_sneakers(X))))&
(![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))=>(((enjoys_skydiving(X))&(does_not_enjoy_skydiving(X))))))))&
(![X]:(room(X)=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))
|
room(ana)&room(joseph)&(![X]:(room(X)=>(X='ana'|X='joseph')))&
is_a_tea_enthusiast(ana)
|
[
"b4",
"p0",
"p4",
"p5",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 4339839729526021188367646
% SZS output start Proof for 4339839729526021188367646
5. ! [X0] : anywhere(X0) [input b4]
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
48. ! [X0] : (anywhere(X0) => (predf(X0) => predw(X0))) [input p4]
49. ! [X0] : (room(X0) => (predw(X0) => predi(X0))) [input p5]
52. ! [X0] : (room(X0) => ~predi(X0)) [input p8]
55. predf(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
138. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
139. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 138]
143. ! [X0] : ((predw(X0) | ~predf(X0)) | ~anywhere(X0)) [ennf transformation 48]
144. ! [X0] : (predw(X0) | ~predf(X0) | ~anywhere(X0)) [flattening 143]
145. ! [X0] : ((predi(X0) | ~predw(X0)) | ~room(X0)) [ennf transformation 49]
146. ! [X0] : (predi(X0) | ~predw(X0) | ~room(X0)) [flattening 145]
148. ! [X0] : (~predi(X0) | ~room(X0)) [ennf transformation 52]
149. predf(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 55]
150. predf(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 149]
160. anywhere(X0) [cnf transformation 5]
241. room(mary) [cnf transformation 139]
251. predw(X0) | ~predf(X0) | ~anywhere(X0) [cnf transformation 144]
252. ~predw(X0) | predi(X0) | ~room(X0) [cnf transformation 146]
255. ~predi(X0) | ~room(X0) [cnf transformation 148]
259. predf(mary) [cnf transformation 150]
304. ~predf(X0) | predw(X0) [subsumption resolution 251,160]
305. predw(mary) [resolution 304,259]
306. predi(mary) | ~room(mary) [resolution 252,305]
307. predi(mary) [subsumption resolution 306,241]
308. ~room(mary) [resolution 307,255]
309. $false [subsumption resolution 308,241]
% SZS output end Proof for 4339839729526021188367646
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.038 s
% ------------------------------
% ------------------------------
| 0.685475 |
Larry is the only person in the room. Everyone anywhere participates in long-distance cycling events across the country if they owns a telescope. Everyone in the room who is allergic to anything enjoys rooftop gardening. It is true that “Larry is allergic to anything”. Everyone in the room has a specialized collection of handmade artisan pottery, enjoys rooftop gardening and participates in long-distance cycling events across the country if they collects foreign coins. Larry collects foreign coins.
|
Larry has a specialized collection of handmade artisan pottery.
|
entailment
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
(![X]:(anywhere(X)=>(((owns_a_telescope(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))&
(![X]:(room(X)=>(((is_allergic_to_anything(X))=>(enjoys_rooftop_gardening(X))))))&
(is_allergic_to_anything(larry))&
((composes_and_performs_experimental_electronic_music(larry))&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(larry)))&
((?[X,Y]:(~room(X)&~room(Y)&(practices_zumba(X)&practices_zumba(Y))&(X!=Y))))&
(owns_a_telescope(larry))&
(~![X]:(anywhere(X)=>(((enjoys_kayaking(X))=>(practices_zumba(X))))))&
(![X]:(room(X)=>(((practices_zumba(X))<=>(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))&
(~![X]:(~room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))=>(practices_pilates(X))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))=>(practices_pilates(X))))))&
(![X]:(room(X)=>(((collects_foreign_coins(X))=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))&(enjoys_rooftop_gardening(X))&(participates_in_long-distance_cycling_events_across_the_country(X))))))))&
(is_dedicated_to_sustainable_living_and_zero-waste_practices(larry))&
(![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(does_not_enjoy_kayaking(X))))))&
(collects_foreign_coins(larry))&
(![X]:(room(X)=>(((((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(knows_morse_code(X))))<=(((works_on_fridays(X))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))))))))&
(![X]:(room(X)=>(((((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(knows_morse_code(X))))=>(is_allergic_to_anything(X))))))&
(participates_in_citizen_science_projects_related_to_wildlife_monitoring(larry))&
(![X]:(room(X)=>(((does_not_enjoy_rooftop_gardening(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
has_a_specialized_collection_of_handmade_artisan_pottery(larry)
|
[
"p0",
"p11",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 224338057184483799626331
% SZS output start Proof for 224338057184483799626331
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
55. ! [X0] : (room(X0) => (predd(X0) => (predw(X0) & predk(X0) & predl(X0)))) [input p11]
58. predd(mary) [input p14]
63. ~(predl(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis]
70. ! [X0] : (room(X0) => (predd(X0) => (predw(X0) & predl(X0)))) [pure predicate removal 55]
147. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
157. ! [X0] : (((predw(X0) & predl(X0)) | ~predd(X0)) | ~room(X0)) [ennf transformation 70]
158. ! [X0] : ((predw(X0) & predl(X0)) | ~predd(X0) | ~room(X0)) [flattening 157]
161. ~predl(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 63]
170. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom]
171. ~predl(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 161,170]
253. room(mary) [cnf transformation 147]
254. ~room(X0) | mary = X0 [cnf transformation 147]
271. ~predd(X0) | predl(X0) | ~room(X0) [cnf transformation 158]
274. predd(mary) [cnf transformation 58]
275. ~predl(mary) | room(sK4) | ~room(mary) [cnf transformation 171]
276. ~predl(mary) | mary != sK4 | ~room(mary) [cnf transformation 171]
278. ~predl(mary) | mary != sK4 [subsumption resolution 276,253]
280. 1 <=> mary = sK4 [avatar definition]
282. mary != sK4 <- (~1) [avatar component clause 280]
284. 2 <=> predl(mary) [avatar definition]
287. ~1 | ~2 [avatar split clause 278,284,280]
288. ~predl(mary) | room(sK4) [subsumption resolution 275,253]
290. 3 <=> room(sK4) [avatar definition]
292. room(sK4) <- (3) [avatar component clause 290]
293. 3 | ~2 [avatar split clause 288,284,290]
301. predl(mary) | ~room(mary) [resolution 271,274]
305. predl(mary) [subsumption resolution 301,253]
306. 2 [avatar split clause 305,284]
308. mary = sK4 <- (3) [resolution 292,254]
318. $false <- (~1, 3) [subsumption resolution 308,282]
319. 1 | ~3 [avatar contradiction clause 318]
320. $false [avatar sat refutation 287,293,306,319]
% SZS output end Proof for 224338057184483799626331
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0 |
There is a room.
Everyone in the room does not have completed a triathlon.
Everyone in the room is not a dedicated volunteer for local community service projects.
Everyone in the room does not collect modern art.
Everyone in the room does not own an extensive assortment of vintage comic book memorabilia.
Everyone outside the room does not bake bread at home, does not own an extensive assortment of vintage comic book memorabilia and is not an active member of a local robotics club.
Everyone in the room is not an active member of a local robotics club, does not collect action figures and does not own an extensive assortment of vintage comic book memorabilia.
Everyone in the room does not enjoy kayaking.
Everyone anywhere is not a culinary enthusiast who experiments with international cuisines.
Everyone in the room does not bake bread at home.
Everyone outside the room does not own an extensive assortment of vintage comic book memorabilia.
Everyone in the room is not a culinary enthusiast who experiments with international cuisines.
Everyone outside the room is not a culinary enthusiast who experiments with international cuisines.
|
Everyone in the room collects modern art.
|
neutral
|
(there_is_a_room)&
(![X]:(room(X)=>(does_not_have_completed_a_triathlon(X))))&
(![X]:(room(X)=>(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))&
(![X]:(room(X)=>(does_not_collect_modern_art(X))))&
(![X]:(room(X)=>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))&
(![X]:(~room(X)=>(((does_not_bake_bread_at_home(X))&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(is_not_an_active_member_of_a_local_robotics_club(X))))))&
(![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))&(does_not_collect_action_figures(X))&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))&
(![X]:(room(X)=>(does_not_enjoy_kayaking(X))))&
(![X]:(anywhere(X)=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))&
(![X]:(room(X)=>(does_not_bake_bread_at_home(X))))&
(![X]:(~room(X)=>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))&
(![X]:(room(X)=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))&
(![X]:(~room(X)=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))
|
(there_is_a_room)&
![X]:(room(X)=>(collects_modern_art(X)))
|
[] | null | 0.418422 |
There is a room.
Everyone in the room does not enjoy making ceramics if they enjoys kayaking and exploring remote waterways.
Everyone in the room who does not enjoy making ceramics develops open-source software projects in their free time.
Everyone in the room is a member of a local theater group specializing in improv if they does not mentor a youth basketball team on weekends.
Everyone in the room does not develop open-source software projects in their free time only if they composes and performs experimental electronic music, mentors a youth basketball team on weekends and plays video games.
Not everyone in the room either enjoys cross-country skiing or enjoys making ceramics but not both if they does not make intricate hand-cut paper art for exhibitions.
Everyone in the room does not enjoy making ceramics or either enjoys cross-country skiing or enjoys making ceramics but not both.
Everyone outside the room is not an amateur astronomer who builds and uses custom telescopes.
Everyone in the room who does not compose and performs experimental electronic music enjoys making ceramics.
Everyone in the room who enjoys making ceramics frequently participates in hackathons and coding competitions.
|
Everyone in the room is not a member of a local theater group specializing in improv or makes intricate hand-cut paper art for exhibitions.
|
neutral
|
(there_is_a_room)&
(![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(does_not_enjoy_making_ceramics(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_making_ceramics(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))&
(![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))&
(![X]:(room(X)=>(((((composes_and_performs_experimental_electronic_music(X))&(mentors_a_youth_basketball_team_on_weekends(X))&(plays_video_games(X))))<=(does_not_develop_open-source_software_projects_in_their_free_time(X))))))&
(~![X]:(room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))=>(((enjoys_cross-country_skiing(X))<~>(enjoys_making_ceramics(X))))))))&
(![X]:(room(X)=>(((((enjoys_cross-country_skiing(X))<~>(enjoys_making_ceramics(X))))|(does_not_enjoy_making_ceramics(X))))))&
(![X]:(~room(X)=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))&
(![X]:(room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))=>(enjoys_making_ceramics(X))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))&
(![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(is_a_coffee_connoisseur(X))))))&
(~?[X]:(room(X)=>(((does_not_play_video_games(X))&(has_completed_a_triathlon(X))))))&
((![X]:((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))<=>(enjoys_kayaking_and_exploring_remote_waterways(X)))))&
((![X]:((develops_open-source_software_projects_in_their_free_time(X))<=>(does_not_own_an_Android_phone(X)))))&
(~![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))<=(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))&
(~![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))<=(is_a_cybersecurity_expert(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X)))))
|
[] | null | 0.289393 |
Either Toby is not a cybersecurity expert or Toby neither does not watche fantasy movies nor does not own a television but not both.
If Toby does not write and illustrates their own graphic novels or does not host regular workshops on creative writing or both then it is true that Toby does not own a television.
If it is true that Toby does not own a television then Toby does not write and illustrates their own graphic novels.
Toby does not enjoy mountain biking.
Toby does not own a 3D printer.
Linda is not right-handed.
Linda does not host a YouTube channel dedicated to art tutorials.
Linda does not own a 3D printer.
Linda does not own a television or does not host regular workshops on creative writing or both.
Linda does not collect limited-edition art prints from contemporary artists.
Linda does not use an ios phone.
Linda does not enjoy mountain biking.
|
Linda owns a 3D printer.
|
contradiction
|
room(linda)&room(toby)&(![X]:(room(X)=>(X='linda'|X='toby')))&
((is_not_a_cybersecurity_expert(toby))<~>(~((does_not_watche_fantasy_movies(toby))|(does_not_own_a_television(toby)))))&
(((((does_not_write_and_illustrates_their_own_graphic_novels(toby))|(does_not_host_regular_workshops_on_creative_writing(toby))))=>(does_not_own_a_television(toby)))&
((does_not_own_a_television(toby))=>(does_not_write_and_illustrates_their_own_graphic_novels(toby))))&
(does_not_enjoy_mountain_biking(toby))&
(does_not_own_a_3D_printer(toby))&
(is_not_right-handed(linda))&
(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(linda))&
(does_not_own_a_3D_printer(linda))&
(((does_not_own_a_television(linda))|(does_not_host_regular_workshops_on_creative_writing(linda))))&
(does_not_collect_limited-edition_art_prints_from_contemporary_artists(linda))&
(does_not_use_an_ios_phone(linda))&
(does_not_enjoy_mountain_biking(linda))
|
room(linda)&room(toby)&(![X]:(room(X)=>(X='linda'|X='toby')))&
owns_a_3D_printer(linda)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 523898393210664674737240
% SZS output start Proof for 523898393210664674737240
44. ~predp(mary) & ~predt(mary) & ~predv(mary) & (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predq(mary) & ~predg(mary) & ~predc(paul) & ~predp(paul) & (~predd(paul) => ~predj(paul)) & ((~predx(paul) | ~predj(paul)) => ~predd(paul)) & (~predy(paul) <~> ~(~predd(paul) | ~predf(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
45. predc(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis]
46. ~predp(mary) & ~predv(mary) & (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predq(mary) & ~predg(mary) & ~predc(paul) & ~predp(paul) & (~predd(paul) => ~predj(paul)) & ((~predx(paul) | ~predj(paul)) => ~predd(paul)) & (~predy(paul) <~> ~(~predd(paul) | ~predf(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [pure predicate removal 44]
47. ~predp(mary) & (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predq(mary) & ~predg(mary) & ~predc(paul) & ~predp(paul) & (~predd(paul) => ~predj(paul)) & ((~predx(paul) | ~predj(paul)) => ~predd(paul)) & (~predy(paul) <~> ~(~predd(paul) | ~predf(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [pure predicate removal 46]
48. ~predp(mary) & (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predg(mary) & ~predc(paul) & ~predp(paul) & (~predd(paul) => ~predj(paul)) & ((~predx(paul) | ~predj(paul)) => ~predd(paul)) & (~predy(paul) <~> ~(~predd(paul) | ~predf(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [pure predicate removal 47]
49. ~predp(mary) & (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predc(paul) & ~predp(paul) & (~predd(paul) => ~predj(paul)) & ((~predx(paul) | ~predj(paul)) => ~predd(paul)) & (~predy(paul) <~> ~(~predd(paul) | ~predf(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [pure predicate removal 48]
50. (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predc(paul) & (~predd(paul) => ~predj(paul)) & ((~predx(paul) | ~predj(paul)) => ~predd(paul)) & (~predy(paul) <~> ~(~predd(paul) | ~predf(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [pure predicate removal 49]
123. (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predc(paul) & (~predj(paul) | predd(paul)) & (~predd(paul) | (predx(paul) & predj(paul))) & (~predy(paul) <~> (predd(paul) & predf(paul))) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 50]
124. (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predc(paul) & (~predj(paul) | predd(paul)) & (~predd(paul) | (predx(paul) & predj(paul))) & (~predy(paul) <~> (predd(paul) & predf(paul))) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 123]
125. predc(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45]
126. predc(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 125]
128. (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predc(paul) & (~predj(paul) | predd(paul)) & (~predd(paul) | (predx(paul) & predj(paul))) & (((~predd(paul) | ~predf(paul)) | predy(paul)) & ((predd(paul) & predf(paul)) | ~predy(paul))) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [nnf transformation 124]
129. (~predx(mary) | ~predd(mary)) & ~predc(mary) & ~predc(paul) & (~predj(paul) | predd(paul)) & (~predd(paul) | (predx(paul) & predj(paul))) & (~predd(paul) | ~predf(paul) | predy(paul)) & ((predd(paul) & predf(paul)) | ~predy(paul)) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 128]
220. ~predc(mary) [cnf transformation 129]
225. predc(mary) [cnf transformation 126]
261. $false [subsumption resolution 225,220]
% SZS output end Proof for 523898393210664674737240
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.701945 |
Maryann, Stanley, Donna, Harry, Roger are the only persons in the room. If Donna is not a wine connoisseur then Maryann is calm. If Maryann is calm then if someone is a wise tourist then he/she is liked by Ernest. Stanley and Harry are respectively patient and old only if Donna is not calm. Donna does not collect luxury watches if at least one person in the room is a happy tourist and vice versa. If everyone in the room does not enjoy mountain biking or is a wise person then Roger is not calm, not quiet. If Roger is not calm, not quiet then it is not the case that at least one person in the room is a sibling of Ernest. Either at least one person in the room is a funny european or Roger is not a strong tourist but not both. Donna and Maryann are happy tourists. Maryann who is curious is tall and is a sibling of Ethel. Everyone anywhere is not liked by Ethel. Ernest and Roger hate each other. Only one person in the room does not have a pet dog. Harry is a sibling of Ernest.
|
Not everyone in the room is not a old person, is quiet and is not quiet.
|
entailment
|
room(maryannann)&room(stanley)&room(donna)&room(harry)&room(roger)&(![X]:(room(X)=>(X='maryannann'|X='stanley'|X='donna'|X='harry'|X='roger')))&
(((is_not_a_wine_connoisseur(donna))=>(calm(maryannann)))&
((calm(maryannann))=>((![X]:((wise(X)&tourist(X))=>(like(X,ernest)))))))&
(((patient(stanley))&(old(harry)))=>(~calm(donna)))&
((((?[X]:(room(X)&happy(X)&tourist(X)))))<=>(does_not_collect_luxury_watches(donna)))&
(((![X]:(room(X)=>(((wise(X)&person(X))|(does_not_enjoy_mountain_biking(X))))))=>(~calm(roger)&~quiet(roger)))&
((~calm(roger)&~quiet(roger))=>(~(((?[X]:(room(X)&sibling(ernest,X))))))))&
((((?[X]:(room(X)&funny(X)&european(X)))))<~>(~(strong(roger)&tourist(roger))))&
(happy(donna)&tourist(donna)&happy(maryannann)&tourist(maryannann))&
((curious(maryannann))&(((tall(maryannann))&(sibling(ethel,maryannann)))))&
(![X]:(anywhere(X)=>(~like(X,ethel))))&
((hate(ernest,roger) & hate(roger,ernest)))&
(((?[X]:(room(X)&does_not_have_a_pet_dog(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_have_a_pet_dog(X))&(does_not_have_a_pet_dog(Y)))=>(X=Y)))))&
(sibling(ernest,harry))
|
room(maryannann)&room(stanley)&room(donna)&room(harry)&room(roger)&(![X]:(room(X)=>(X='maryannann'|X='stanley'|X='donna'|X='harry'|X='roger')))&
~![X]:(room(X)=>(((~(old(X)&person(X)))&(quiet(X))&(~quiet(X)))))
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 632872271781370915275680
% SZS output start Proof for 632872271781370915275680
44. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~preda(X0) & room(X0)) & hate(john,lucy) & hate(lucy,john) & ! [X0] : (anywhere(X0) => ~like(X0,susan)) & sibling(susan,mary) & tall(mary) & curious(mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X0] : (european(X0) & funny(X0) & room(X0)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X0] : (sibling(lucy,X0) & room(X0))) & (! [X0] : (room(X0) => (~predj(X0) | (person(X0) & wise(X0)))) => (~quiet(john) & ~calm(john))) & (? [X0] : (tourist(X0) & happy(X0) & room(X0)) <=> ~predp(fred)) & ((old(alice) & patient(paul)) => ~calm(fred)) & (calm(mary) => ! [X0] : ((tourist(X0) & wise(X0)) => like(X0,lucy))) & (~predh(fred) => calm(mary)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
46. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & hate(john,lucy) & hate(lucy,john) & ! [X3] : (anywhere(X3) => ~like(X3,susan)) & sibling(susan,mary) & tall(mary) & curious(mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : (room(X6) => (~predj(X6) | (person(X6) & wise(X6)))) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & ((old(alice) & patient(paul)) => ~calm(fred)) & (calm(mary) => ! [X8] : ((tourist(X8) & wise(X8)) => like(X8,lucy))) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44]
47. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 45]
48. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & hate(john,lucy) & hate(lucy,john) & ! [X3] : (anywhere(X3) => ~like(X3,susan)) & sibling(susan,mary) & curious(mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : (room(X6) => (~predj(X6) | (person(X6) & wise(X6)))) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & ((old(alice) & patient(paul)) => ~calm(fred)) & (calm(mary) => ! [X8] : ((tourist(X8) & wise(X8)) => like(X8,lucy))) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46]
49. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & hate(john,lucy) & hate(lucy,john) & ! [X3] : (anywhere(X3) => ~like(X3,susan)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : (room(X6) => (~predj(X6) | (person(X6) & wise(X6)))) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & ((old(alice) & patient(paul)) => ~calm(fred)) & (calm(mary) => ! [X8] : ((tourist(X8) & wise(X8)) => like(X8,lucy))) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48]
50. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & hate(john,lucy) & hate(lucy,john) & ! [X3] : (anywhere(X3) => ~like(X3,susan)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : (room(X6) => (person(X6) & wise(X6))) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & ((old(alice) & patient(paul)) => ~calm(fred)) & (calm(mary) => ! [X8] : ((tourist(X8) & wise(X8)) => like(X8,lucy))) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49]
51. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & hate(john,lucy) & hate(lucy,john) & ! [X3] : (anywhere(X3) => ~like(X3,susan)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : (room(X6) => (person(X6) & wise(X6))) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & (calm(mary) => ! [X8] : ((tourist(X8) & wise(X8)) => like(X8,lucy))) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50]
52. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & hate(john,lucy) & hate(lucy,john) & ! [X3] : (anywhere(X3) => ~like(X3,susan)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : ~room(X6) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51]
55. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & hate(john,lucy) & hate(lucy,john) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : ~room(X6) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52]
57. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : ~room(X6) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & (~predh(fred) => calm(mary)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55]
58. sibling(lucy,alice) & ! [X0,X1] : ((~preda(X1) & ~preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~preda(X2) & room(X2)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> ~(tourist(john) & strong(john))) & ((~quiet(john) & ~calm(john)) => ~? [X5] : (sibling(lucy,X5) & room(X5))) & (! [X6] : ~room(X6) => (~quiet(john) & ~calm(john))) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & ! [X9] : (room(X9) => (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57]
128. sibling(lucy,alice) & ! [X0,X1] : (X0 = X1 | (preda(X1) | preda(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~preda(X2) & room(X2)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> (~tourist(john) | ~strong(john))) & (! [X5] : (~sibling(lucy,X5) | ~room(X5)) | (quiet(john) | calm(john))) & ((~quiet(john) & ~calm(john)) | ? [X6] : room(X6)) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & ! [X9] : ((john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9) | ~room(X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58]
129. sibling(lucy,alice) & ! [X0,X1] : (X0 = X1 | preda(X1) | preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~preda(X2) & room(X2)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (? [X4] : (european(X4) & funny(X4) & room(X4)) <~> (~tourist(john) | ~strong(john))) & (! [X5] : (~sibling(lucy,X5) | ~room(X5)) | quiet(john) | calm(john)) & ((~quiet(john) & ~calm(john)) | ? [X6] : room(X6)) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) <=> ~predp(fred)) & ! [X9] : (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9 | ~room(X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128]
130. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 47]
131. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 130]
132. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction]
133. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 131,132]
135. sibling(lucy,alice) & ! [X0,X1] : (X0 = X1 | preda(X1) | preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~preda(X2) & room(X2)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & (((tourist(john) & strong(john)) | ! [X4] : (~european(X4) | ~funny(X4) | ~room(X4))) & ((~tourist(john) | ~strong(john)) | ? [X4] : (european(X4) & funny(X4) & room(X4)))) & (! [X5] : (~sibling(lucy,X5) | ~room(X5)) | quiet(john) | calm(john)) & ((~quiet(john) & ~calm(john)) | ? [X6] : room(X6)) & ((? [X7] : (tourist(X7) & happy(X7) & room(X7)) | predp(fred)) & (~predp(fred) | ! [X7] : (~tourist(X7) | ~happy(X7) | ~room(X7)))) & ! [X9] : (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9 | ~room(X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 129]
136. sibling(lucy,alice) & ! [X0,X1] : (X0 = X1 | preda(X1) | preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~preda(X2) & room(X2)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & ((tourist(john) & strong(john)) | ! [X4] : (~european(X4) | ~funny(X4) | ~room(X4))) & (~tourist(john) | ~strong(john) | ? [X4] : (european(X4) & funny(X4) & room(X4))) & (! [X5] : (~sibling(lucy,X5) | ~room(X5)) | quiet(john) | calm(john)) & ((~quiet(john) & ~calm(john)) | ? [X6] : room(X6)) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) | predp(fred)) & (~predp(fred) | ! [X7] : (~tourist(X7) | ~happy(X7) | ~room(X7))) & ! [X9] : (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9 | ~room(X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135]
137. sibling(lucy,alice) & ! [X0,X1] : (X0 = X1 | preda(X1) | preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~preda(X2) & room(X2)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & ((tourist(john) & strong(john)) | ! [X3] : (~european(X3) | ~funny(X3) | ~room(X3))) & (~tourist(john) | ~strong(john) | ? [X4] : (european(X4) & funny(X4) & room(X4))) & (! [X5] : (~sibling(lucy,X5) | ~room(X5)) | quiet(john) | calm(john)) & ((~quiet(john) & ~calm(john)) | ? [X6] : room(X6)) & (? [X7] : (tourist(X7) & happy(X7) & room(X7)) | predp(fred)) & (~predp(fred) | ! [X8] : (~tourist(X8) | ~happy(X8) | ~room(X8))) & ! [X9] : (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9 | ~room(X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 136]
138. ? [X2] : (~preda(X2) & room(X2)) => (~preda(sK1) & room(sK1)) [choice axiom]
139. ? [X4] : (european(X4) & funny(X4) & room(X4)) => (european(sK2) & funny(sK2) & room(sK2)) [choice axiom]
140. ? [X6] : room(X6) => room(sK3) [choice axiom]
141. ? [X7] : (tourist(X7) & happy(X7) & room(X7)) => (tourist(sK4) & happy(sK4) & room(sK4)) [choice axiom]
142. sibling(lucy,alice) & ! [X0,X1] : (X0 = X1 | preda(X1) | preda(X0) | ~room(X1) | ~room(X0)) & (~preda(sK1) & room(sK1)) & sibling(susan,mary) & tourist(mary) & happy(mary) & tourist(fred) & happy(fred) & ((tourist(john) & strong(john)) | ! [X3] : (~european(X3) | ~funny(X3) | ~room(X3))) & (~tourist(john) | ~strong(john) | (european(sK2) & funny(sK2) & room(sK2))) & (! [X5] : (~sibling(lucy,X5) | ~room(X5)) | quiet(john) | calm(john)) & ((~quiet(john) & ~calm(john)) | room(sK3)) & ((tourist(sK4) & happy(sK4) & room(sK4)) | predp(fred)) & (~predp(fred) | ! [X8] : (~tourist(X8) | ~happy(X8) | ~room(X8))) & ! [X9] : (john = X9 | alice = X9 | fred = X9 | paul = X9 | mary = X9 | ~room(X9)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 137,141,140,139,138]
143. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 132]
144. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 143]
145. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom]
146. (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~sP0 [skolemisation 144,145]
229. room(mary) [cnf transformation 142]
230. room(paul) [cnf transformation 142]
231. room(fred) [cnf transformation 142]
232. room(alice) [cnf transformation 142]
233. room(john) [cnf transformation 142]
234. ~room(X9) | alice = X9 | fred = X9 | paul = X9 | mary = X9 | john = X9 [cnf transformation 142]
256. room(sK5) | ~sP0 [cnf transformation 146]
257. mary != sK5 | ~sP0 [cnf transformation 146]
258. paul != sK5 | ~sP0 [cnf transformation 146]
259. fred != sK5 | ~sP0 [cnf transformation 146]
260. alice != sK5 | ~sP0 [cnf transformation 146]
261. john != sK5 | ~sP0 [cnf transformation 146]
263. quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 133]
264. ~quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 133]
335. 16 <=> sP0 [avatar definition]
339. 17 <=> john = sK5 [avatar definition]
341. john != sK5 <- (~17) [avatar component clause 339]
342. ~16 | ~17 [avatar split clause 261,339,335]
344. 18 <=> alice = sK5 [avatar definition]
346. alice != sK5 <- (~18) [avatar component clause 344]
347. ~16 | ~18 [avatar split clause 260,344,335]
349. 19 <=> fred = sK5 [avatar definition]
352. ~16 | ~19 [avatar split clause 259,349,335]
354. 20 <=> paul = sK5 [avatar definition]
356. paul != sK5 <- (~20) [avatar component clause 354]
357. ~16 | ~20 [avatar split clause 258,354,335]
359. 21 <=> mary = sK5 [avatar definition]
361. mary != sK5 <- (~21) [avatar component clause 359]
362. ~16 | ~21 [avatar split clause 257,359,335]
364. 22 <=> room(sK5) [avatar definition]
366. room(sK5) <- (22) [avatar component clause 364]
367. ~16 | 22 [avatar split clause 256,364,335]
368. ~quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,233]
369. ~quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 368,232]
370. ~quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 369,231]
371. ~quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 370,230]
372. ~quiet(X0) | ~room(X0) | sP0 [subsumption resolution 371,229]
374. 23 <=> ! [X0] : (~quiet(X0) | ~room(X0)) [avatar definition]
375. ~quiet(X0) | ~room(X0) <- (23) [avatar component clause 374]
376. 16 | 23 [avatar split clause 372,374,335]
377. quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,233]
378. quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 377,232]
379. quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 378,231]
380. quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 379,230]
381. quiet(X0) | ~room(X0) | sP0 [subsumption resolution 380,229]
383. 24 <=> ! [X0] : (quiet(X0) | ~room(X0)) [avatar definition]
384. quiet(X0) | ~room(X0) <- (24) [avatar component clause 383]
385. 16 | 24 [avatar split clause 381,383,335]
553. alice = sK5 | fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (22) [resolution 234,366]
617. fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (~18, 22) [subsumption resolution 553,346]
623. fred = sK5 | mary = sK5 | john = sK5 <- (~18, ~20, 22) [subsumption resolution 617,356]
624. fred = sK5 | john = sK5 <- (~18, ~20, ~21, 22) [subsumption resolution 623,361]
625. fred = sK5 <- (~17, ~18, ~20, ~21, 22) [subsumption resolution 624,341]
626. 19 | 17 | 18 | 20 | 21 | ~22 [avatar split clause 625,364,359,354,344,339,349]
638. ~room(X0) <- (23, 24) [subsumption resolution 375,384]
645. $false <- (23, 24) [resolution 638,229]
654. ~23 | ~24 [avatar contradiction clause 645]
655. $false [avatar sat refutation 342,347,352,357,362,367,376,385,626,654]
% SZS output end Proof for 632872271781370915275680
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.022 s
% ------------------------------
% ------------------------------
| 0.276358 |
Brian is the only person in the room.
Either “it is not the case that “Brian does enjoy trail running, volunteers for local environmental conservation projects or enjoys fishing”” or “everyone in the room enjoys deep-sea diving and exploring underwater caves or does not compose and performs experimental electronic music” but not both.
If “everyone in the room is a Linux enthusiast or does not own a television” then “everyone in the room does not collect antique jewelry if they is a Linux enthusiast”.
If “not everyone in the room volunteers for local environmental conservation projects or does not own a television” then “Brian does not compose and performs experimental electronic music”.
If “everyone in the room owns a 3D printer or does not collect antique jewelry” then “everyone in the room neither own a television nor develops open-source software projects in their free time if they does not enjoy watercolor painting, is an expert in identifying and foraging wild edible plants or composes and performs experimental electronic music”.
Brian does not create bespoke furniture pieces from reclaimed wood.
Brian does enjoy trail running.
If someone is a professional photographer specializing in portrait photography then he/she enjoys watercolor painting and vice versa.
Brian own a television.
Brian collects antique jewelry.
Brian enjoys deep-sea diving and exploring underwater caves.
Brian makes homemade pastries.
Everyone in the room practices urban gardening if they composes and performs experimental electronic music, hosts regular game nights featuring complex strategy games or mentors a youth basketball team on weekends.
Everyone in the room volunteers for local environmental conservation projects.
If someone is not a professional photographer specializing in portrait photography then he/she collects antique jewelry and vice versa.
Brian regularly goes on multi-day backpacking trips in national parks.
Brian is not a professional photographer specializing in portrait photography.
If someone is an expert in identifying and foraging wild edible plants then he/she develops open-source software projects in their free time and vice versa.
|
Brian develops open-source software projects in their free time.
|
neutral
|
room(brian)&(![X]:(room(X)=>(X='brian')))&
((~(((does_enjoy_trail_running(brian))|(volunteers_for_local_environmental_conservation_projects(brian))|(enjoys_fishing(brian)))))<~>(![X]:(room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))&
((![X]:(room(X)=>(((does_not_own_a_television(X))|(is_a_Linux_enthusiast(X))))))=>(![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(does_not_collect_antique_jewelry(X)))))))&
((~![X]:(room(X)=>(((does_not_own_a_television(X))|(volunteers_for_local_environmental_conservation_projects(X))))))=>(does_not_compose_and_performs_experimental_electronic_music(brian)))&
((![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))|(owns_a_3D_printer(X))))))=>(![X]:(room(X)=>(((((does_not_enjoy_watercolor_painting(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(composes_and_performs_experimental_electronic_music(X))))=>(~((own_a_television(X))|(develops_open-source_software_projects_in_their_free_time(X)))))))))&
(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(brian))&
(does_enjoy_trail_running(brian))&
((![X]:((is_a_professional_photographer_specializing_in_portrait_photography(X))<=>(enjoys_watercolor_painting(X)))))&
(own_a_television(brian))&
(collects_antique_jewelry(brian))&
(enjoys_deep-sea_diving_and_exploring_underwater_caves(brian))&
(makes_homemade_pastries(brian))&
(![X]:(room(X)=>(((((composes_and_performs_experimental_electronic_music(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))|(mentors_a_youth_basketball_team_on_weekends(X))))=>(practices_urban_gardening(X))))))&
(![X]:(room(X)=>(volunteers_for_local_environmental_conservation_projects(X))))&
((![X]:((is_not_a_professional_photographer_specializing_in_portrait_photography(X))<=>(collects_antique_jewelry(X)))))&
(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(brian))&
(is_not_a_professional_photographer_specializing_in_portrait_photography(brian))&
((![X]:((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<=>(develops_open-source_software_projects_in_their_free_time(X)))))
|
room(brian)&(![X]:(room(X)=>(X='brian')))&
develops_open-source_software_projects_in_their_free_time(brian)
|
[] | null | 0.267285 |
Harvey, Christopher, Tisha are the only persons in the room. If “everyone in the room does not play the violin or does not use an ios phone” then “more than one person in the room does not use an ios phone”. Everyone in the room who does not play the violin does not collect foreign coins. Christopher enjoys snowboarding. Christopher enjoys skydiving. If someone uses an ios phone then he/she does not use an ios phone. If someone plays as a goalkeeper for a local amateur soccer team then he/she plays video games, plays the violin and has a tattoo. If someone plays the violin, plays video games or develops open-source software projects in their free time then he/she does not collect foreign coins. Everyone in the room collects classic novels if they either enjoys logic puzzles or enjoys snowboarding but not both. Christopher mentors a youth basketball team on weekends. Christopher collects classic novels. Everyone in the room who uses an ios phone is a client of Meta. It is not the case that “it is not the case that “Christopher uses an ios phone, creates large-scale murals for public art installations or plays the violin””. Harvey volunteers for local environmental conservation projects. Everyone in the room is a cybersecurity expert if they either maintains a large, organic vegetable garden year-round or collects classic novels but not both and vice versa. Harvey does not play the violin. More than one person in the room maintains a large, organic vegetable garden year-round. If someone mentors a youth basketball team on weekends and has a tattoo then he/she does not develop open-source software projects in their free time and vice versa. Harvey who writes in-depth travel guides for off-the-beaten-path destinations either enjoys logic puzzles or enjoys snowboarding but not both. Everyone in the room does not mentor a youth basketball team on weekends if they writes and illustrates their own graphic novels and enjoys logic puzzles. Christopher does not use an ios phone. Christopher has a tattoo. Christopher writes and illustrates their own graphic novels. Everyone in the room enjoys snowboarding or does not have a pet dog.
|
Tisha uses an ios phone.
|
contradiction
|
room(harvey)&room(christopher)&room(tisha)&(![X]:(room(X)=>(X='harvey'|X='christopher'|X='tisha')))&
((![X]:(room(X)=>(((does_not_use_an_ios_phone(X))|(does_not_play_the_violin(X))))))=>((?[X,Y]:(room(X)&room(Y)&(does_not_use_an_ios_phone(X)&does_not_use_an_ios_phone(Y))&(X!=Y)))))&
(![X]:(room(X)=>(((does_not_play_the_violin(X))=>(does_not_collect_foreign_coins(X))))))&
(enjoys_snowboarding(christopher))&
(enjoys_skydiving(christopher))&
((![X]:((uses_an_ios_phone(X))=>(does_not_use_an_ios_phone(X)))))&
((![X]:((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(((plays_video_games(X))&(plays_the_violin(X))&(has_a_tattoo(X)))))))&
((![X]:((((plays_the_violin(X))|(plays_video_games(X))|(develops_open-source_software_projects_in_their_free_time(X))))=>(does_not_collect_foreign_coins(X)))))&
(![X]:(room(X)=>(((((enjoys_logic_puzzles(X))<~>(enjoys_snowboarding(X))))=>(collects_classic_novels(X))))))&
(mentors_a_youth_basketball_team_on_weekends(christopher))&
(collects_classic_novels(christopher))&
(![X]:(room(X)=>(((uses_an_ios_phone(X))=>(is_a_client_of_Meta(X))))))&
(~(~(((uses_an_ios_phone(christopher))|(creates_large-scale_murals_for_public_art_installations(christopher))|(plays_the_violin(christopher))))))&
(volunteers_for_local_environmental_conservation_projects(harvey))&
(![X]:(room(X)=>(((is_a_cybersecurity_expert(X))<=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))<~>(collects_classic_novels(X))))))))&
(does_not_play_the_violin(harvey))&
((?[X,Y]:(room(X)&room(Y)&(maintains_a_large,_organic_vegetable_garden_year-round(X)&maintains_a_large,_organic_vegetable_garden_year-round(Y))&(X!=Y))))&
((![X]:((((mentors_a_youth_basketball_team_on_weekends(X))&(has_a_tattoo(X))))<=>(does_not_develop_open-source_software_projects_in_their_free_time(X)))))&
((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(harvey))&(((enjoys_logic_puzzles(harvey))<~>(enjoys_snowboarding(harvey)))))&
(![X]:(room(X)=>(((((writes_and_illustrates_their_own_graphic_novels(X))&(enjoys_logic_puzzles(X))))=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))&
(does_not_use_an_ios_phone(christopher))&
(has_a_tattoo(christopher))&
(writes_and_illustrates_their_own_graphic_novels(christopher))&
(![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(enjoys_snowboarding(X))))))
|
room(harvey)&room(christopher)&room(tisha)&(![X]:(room(X)=>(X='harvey'|X='christopher'|X='tisha')))&
uses_an_ios_phone(tisha)
|
[
"p5",
"hypothesis"
] |
% SZS status Unsatisfiable for 7111447405155256293574095
% SZS output start Proof for 7111447405155256293574095
49. ! [X0] : (predn(X0) => ~predn(X0)) [input p5]
68. predn(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis]
162. ! [X0] : (~predn(X0) | ~predn(X0)) [ennf transformation 49]
168. predn(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 68]
169. predn(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 168]
277. ~predn(X0) | ~predn(X0) [cnf transformation 162]
301. predn(fred) [cnf transformation 169]
302. ~predn(X0) [duplicate literal removal 277]
357. $false [subsumption resolution 301,302]
% SZS output end Proof for 7111447405155256293574095
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.026 s
% ------------------------------
% ------------------------------
| 0.069924 |
There is a room.
If “everyone in the room cannot play the flute or does not maintain a large, organic vegetable garden year-round” then “everyone in the room collects limited-edition art prints from contemporary artists” otherwise “everyone in the room enjoys windsurfing if they writes in-depth travel guides for off-the-beaten-path destinations”.
If “everyone in the room does not use an ios phone or is a night owl” then “everyone in the room who does not use an ios phone is a Linux enthusiast”.
If “not everyone in the room does not enjoy rooftop gardening or does not design and sews custom cosplay costumes for conventions” then “only one person in the room does enjoy trail running” otherwise “everyone in the room cannot play the flute if they does not own a television or collects vintage stamps or both”.
“Everyone in the room does not enjoy watercolor painting or is not a tea enthusiast” if “everyone in the room does not own a television or does not design and sews custom cosplay costumes for conventions” and vice versa.
If “everyone in the room is not allergic to anything or is a tea enthusiast” then “everyone in the room enjoys rooftop gardening or does not enjoy watercolor painting”.
If “everyone in the room enjoys rooftop gardening or does not enjoy watercolor painting” then “only one person in the room collects limited-edition art prints from contemporary artists”.
Everyone in the room who enjoys rooftop gardening can play the flute or does enjoy trail running or both.
Everyone in the room who can play the flute or does enjoy trail running or both enjoys virtual reality gaming.
Only one person in the room collects limited-edition art prints from contemporary artists.
|
Everyone in the room cannot play the flute.
|
contradiction
|
(there_is_a_room)&
(((![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(cannot_play_the_flute(X))))))=>(![X]:(room(X)=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))&((~(![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(cannot_play_the_flute(X)))))))=>(![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(enjoys_windsurfing(X))))))))&
((![X]:(room(X)=>(((is_a_night_owl(X))|(does_not_use_an_ios_phone(X))))))=>(![X]:(room(X)=>(((does_not_use_an_ios_phone(X))=>(is_a_Linux_enthusiast(X)))))))&
(((~![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_enjoy_rooftop_gardening(X))))))=>(((?[X]:(room(X)&does_enjoy_trail_running(X)))&(![X,Y]:((room(X)&room(Y)&(does_enjoy_trail_running(X))&(does_enjoy_trail_running(Y)))=>(X=Y))))))&((~(~![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_enjoy_rooftop_gardening(X)))))))=>(![X]:(room(X)=>(((((does_not_own_a_television(X))|(collects_vintage_stamps(X))))=>(cannot_play_the_flute(X))))))))&
((![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_own_a_television(X))))))<=>(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(does_not_enjoy_watercolor_painting(X)))))))&
(((![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(is_not_allergic_to_anything(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(enjoys_rooftop_gardening(X)))))))&
((![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(enjoys_rooftop_gardening(X))))))=>(((?[X]:(room(X)&collects_limited-edition_art_prints_from_contemporary_artists(X)))&(![X,Y]:((room(X)&room(Y)&(collects_limited-edition_art_prints_from_contemporary_artists(X))&(collects_limited-edition_art_prints_from_contemporary_artists(Y)))=>(X=Y)))))))&
(![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(((can_play_the_flute(X))|(does_enjoy_trail_running(X))))))))&
(![X]:(room(X)=>(((((can_play_the_flute(X))|(does_enjoy_trail_running(X))))=>(enjoys_virtual_reality_gaming(X))))))&
(((?[X]:(room(X)&collects_limited-edition_art_prints_from_contemporary_artists(X)))&(![X,Y]:((room(X)&room(Y)&(collects_limited-edition_art_prints_from_contemporary_artists(X))&(collects_limited-edition_art_prints_from_contemporary_artists(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(owns_a_microscope(X))))&
(![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(((is_allergic_to_anything(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))))&
(![X]:(room(X)=>(((((does_not_own_a_television(X))|(collects_vintage_stamps(X))))=>(cannot_play_the_flute(X))))))&
(![X]:(anywhere(X)=>(((is_a_craft_beer_aficionado(X))<=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_allergic_to_anything(X))))))))&
(![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(enjoys_rooftop_gardening(X))))))&
(![X]:(anywhere(X)=>(((does_not_use_an_ios_phone(X))|(mentors_a_youth_basketball_team_on_weekends(X))|(collects_vintage_stamps(X))))))&
(![X]:(~room(X)=>(((((enjoys_rooftop_gardening(X))|(enjoys_cross-country_skiing(X))|(is_a_tea_enthusiast(X))))<=>(((is_not_a_craft_beer_aficionado(X))|(enjoys_virtual_reality_gaming(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))))&
(![X]:(room(X)=>(((((designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_use_an_ios_phone(X))|(collects_vintage_stamps(X))))=>(is_a_craft_beer_aficionado(X))))))&
(![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))<=>(enjoys_cross-country_skiing(X))))))&
(![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=>(is_allergic_to_anything(X))))))&
(![X]:(room(X)=>(can_play_the_flute(X))))
|
(there_is_a_room)&
![X]:(room(X)=>(cannot_play_the_flute(X)))
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 4147690550768751776488269
% SZS output start Proof for 4147690550768751776488269
44. ! [X0] : (room(X0) => predm(X0)) & ! [X0] : (room(X0) => (predk(X0) <=> predp(X0))) & ! [X0] : (room(X0) => (predq(X0) <=> predl(X0))) & ! [X0] : (room(X0) => ((predj(X0) | ~predc(X0) | predd(X0)) => predq(X0))) & ! [X0] : (~room(X0) => ((predf(X0) | predl(X0) | prede(X0)) <=> (~predg(X0) | predx(X0) | ~predq(X0)))) & ! [X0] : (anywhere(X0) => (predj(X0) | predt(X0) | ~predc(X0))) & ! [X0] : (room(X0) => (prede(X0) | ~predb(X0))) & ! [X0] : (anywhere(X0) => (predq(X0) <=> (predp(X0) | predu(X0) | predv(X0)))) & ! [X0] : (room(X0) => ((predj(X0) | ~predr(X0)) => ~predm(X0))) & ! [X0] : (room(X0) => (predg(X0) => (predu(X0) | predv(X0) | predp(X0)))) & ! [X0] : (room(X0) => predn(X0)) & ! [X0,X1] : ((predw(X1) & predw(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predw(X0) & room(X0)) & ! [X0] : (room(X0) => ((preda(X0) | predm(X0)) => predx(X0))) & ! [X0] : (room(X0) => (prede(X0) => (preda(X0) | predm(X0)))) & (! [X0] : (room(X0) => (prede(X0) | ~predb(X0))) => (! [X0,X1] : ((predw(X1) & predw(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predw(X0) & room(X0)))) & (! [X0] : (room(X0) => (~predp(X0) | predf(X0))) => ! [X0] : (room(X0) => (prede(X0) | ~predb(X0)))) & (! [X0] : (room(X0) => (~predr(X0) | ~predd(X0))) <=> ! [X0] : (room(X0) => (~predb(X0) | ~predf(X0)))) & (~~! [X0] : (room(X0) => (~prede(X0) | ~predd(X0))) => ! [X0] : (room(X0) => ((predj(X0) | ~predr(X0)) => ~predm(X0)))) & (~! [X0] : (room(X0) => (~prede(X0) | ~predd(X0))) => (! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preda(X0) & room(X0)))) & (! [X0] : (room(X0) => (~predc(X0) | preds(X0))) => ! [X0] : (room(X0) => (~predc(X0) => predi(X0)))) & (~! [X0] : (room(X0) => (~predm(X0) | ~predg(X0))) => ! [X0] : (room(X0) => (predk(X0) => predh(X0)))) & (! [X0] : (room(X0) => (~predm(X0) | ~predg(X0))) => ! [X0] : (room(X0) => predw(X0))) & there_is_a_room [input p0]
45. ! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room [input hypothesis]
46. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => ((predj(X3) | ~predc(X3) | predd(X3)) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X5] : (anywhere(X5) => (predj(X5) | predt(X5) | ~predc(X5))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => ((predj(X8) | ~predr(X8)) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X10] : (room(X10) => predn(X10)) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (~~! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => ((predj(X25) | ~predr(X25)) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (! [X30] : (room(X30) => (~predc(X30) | preds(X30))) => ! [X31] : (room(X31) => (~predc(X31) => predi(X31)))) & (~! [X32] : (room(X32) => (~predm(X32) | ~predg(X32))) => ! [X33] : (room(X33) => (predk(X33) => predh(X33)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) & there_is_a_room [rectify 44]
47. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => ((predj(X3) | ~predc(X3) | predd(X3)) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X5] : (anywhere(X5) => (predj(X5) | predt(X5) | ~predc(X5))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => ((predj(X8) | ~predr(X8)) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X10] : (room(X10) => predn(X10)) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => ((predj(X25) | ~predr(X25)) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (! [X30] : (room(X30) => (~predc(X30) | preds(X30))) => ! [X31] : (room(X31) => (~predc(X31) => predi(X31)))) & (~! [X32] : (room(X32) => (~predm(X32) | ~predg(X32))) => ! [X33] : (room(X33) => (predk(X33) => predh(X33)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) & there_is_a_room [flattening 46]
48. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => ((predj(X3) | ~predc(X3) | predd(X3)) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => ((predj(X8) | ~predr(X8)) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X10] : (room(X10) => predn(X10)) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => ((predj(X25) | ~predr(X25)) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (! [X30] : (room(X30) => (~predc(X30) | preds(X30))) => ! [X31] : (room(X31) => (~predc(X31) => predi(X31)))) & (~! [X32] : (room(X32) => (~predm(X32) | ~predg(X32))) => ! [X33] : (room(X33) => (predk(X33) => predh(X33)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) & there_is_a_room [pure predicate removal 47]
49. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => ((~predc(X3) | predd(X3)) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => (~predr(X8) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X10] : (room(X10) => predn(X10)) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predr(X25) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (! [X30] : (room(X30) => (~predc(X30) | preds(X30))) => ! [X31] : (room(X31) => (~predc(X31) => predi(X31)))) & (~! [X32] : (room(X32) => (~predm(X32) | ~predg(X32))) => ! [X33] : (room(X33) => (predk(X33) => predh(X33)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) & there_is_a_room [pure predicate removal 48]
50. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => (predd(X3) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => (~predr(X8) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X10] : (room(X10) => predn(X10)) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predr(X25) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (~! [X32] : (room(X32) => (~predm(X32) | ~predg(X32))) => ! [X33] : (room(X33) => (predk(X33) => predh(X33)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) & there_is_a_room [pure predicate removal 49]
51. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => (predd(X3) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => (~predr(X8) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predr(X25) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (~! [X32] : (room(X32) => (~predm(X32) | ~predg(X32))) => ! [X33] : (room(X33) => (predk(X33) => predh(X33)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) & there_is_a_room [pure predicate removal 50]
52. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => (predd(X3) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => (~predr(X8) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predr(X25) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) & there_is_a_room [pure predicate removal 51]
53. ! [X0] : (room(X0) => ~predm(X0)) [pure predicate removal 45]
54. ! [X0] : (room(X0) => predm(X0)) & ! [X1] : (room(X1) => (predk(X1) <=> predp(X1))) & ! [X2] : (room(X2) => (predq(X2) <=> predl(X2))) & ! [X3] : (room(X3) => (predd(X3) => predq(X3))) & ! [X4] : (~room(X4) => ((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4)))) & ! [X6] : (room(X6) => (prede(X6) | ~predb(X6))) & ! [X7] : (anywhere(X7) => (predq(X7) <=> (predp(X7) | predu(X7) | predv(X7)))) & ! [X8] : (room(X8) => (~predr(X8) => ~predm(X8))) & ! [X9] : (room(X9) => (predg(X9) => (predu(X9) | predv(X9) | predp(X9)))) & ! [X11,X12] : ((predw(X12) & predw(X11) & room(X12) & room(X11)) => X11 = X12) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (room(X14) => ((preda(X14) | predm(X14)) => predx(X14))) & ! [X15] : (room(X15) => (prede(X15) => (preda(X15) | predm(X15)))) & (! [X16] : (room(X16) => (prede(X16) | ~predb(X16))) => (! [X17,X18] : ((predw(X18) & predw(X17) & room(X18) & room(X17)) => X17 = X18) & ? [X19] : (predw(X19) & room(X19)))) & (! [X20] : (room(X20) => (~predp(X20) | predf(X20))) => ! [X21] : (room(X21) => (prede(X21) | ~predb(X21)))) & (! [X22] : (room(X22) => (~predr(X22) | ~predd(X22))) <=> ! [X23] : (room(X23) => (~predb(X23) | ~predf(X23)))) & (! [X24] : (room(X24) => (~prede(X24) | ~predd(X24))) => ! [X25] : (room(X25) => (~predr(X25) => ~predm(X25)))) & (~! [X26] : (room(X26) => (~prede(X26) | ~predd(X26))) => (! [X27,X28] : ((preda(X28) & preda(X27) & room(X28) & room(X27)) => X27 = X28) & ? [X29] : (preda(X29) & room(X29)))) & (! [X34] : (room(X34) => (~predm(X34) | ~predg(X34))) => ! [X35] : (room(X35) => predw(X35))) [pure predicate removal 52]
126. ! [X0] : (predm(X0) | ~room(X0)) & ! [X1] : ((predk(X1) <=> predp(X1)) | ~room(X1)) & ! [X2] : ((predq(X2) <=> predl(X2)) | ~room(X2)) & ! [X3] : ((predq(X3) | ~predd(X3)) | ~room(X3)) & ! [X4] : (((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4))) | room(X4)) & ! [X6] : ((prede(X6) | ~predb(X6)) | ~room(X6)) & ! [X7] : ((predq(X7) <=> (predp(X7) | predu(X7) | predv(X7))) | ~anywhere(X7)) & ! [X8] : ((~predm(X8) | predr(X8)) | ~room(X8)) & ! [X9] : (((predu(X9) | predv(X9) | predp(X9)) | ~predg(X9)) | ~room(X9)) & ! [X11,X12] : (X11 = X12 | (~predw(X12) | ~predw(X11) | ~room(X12) | ~room(X11))) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : ((predx(X14) | (~preda(X14) & ~predm(X14))) | ~room(X14)) & ! [X15] : (((preda(X15) | predm(X15)) | ~prede(X15)) | ~room(X15)) & ((! [X17,X18] : (X17 = X18 | (~predw(X18) | ~predw(X17) | ~room(X18) | ~room(X17))) & ? [X19] : (predw(X19) & room(X19))) | ? [X16] : ((~prede(X16) & predb(X16)) & room(X16))) & (! [X21] : ((prede(X21) | ~predb(X21)) | ~room(X21)) | ? [X20] : ((predp(X20) & ~predf(X20)) & room(X20))) & (! [X22] : ((~predr(X22) | ~predd(X22)) | ~room(X22)) <=> ! [X23] : ((~predb(X23) | ~predf(X23)) | ~room(X23))) & (! [X25] : ((~predm(X25) | predr(X25)) | ~room(X25)) | ? [X24] : ((prede(X24) & predd(X24)) & room(X24))) & ((! [X27,X28] : (X27 = X28 | (~preda(X28) | ~preda(X27) | ~room(X28) | ~room(X27))) & ? [X29] : (preda(X29) & room(X29))) | ! [X26] : ((~prede(X26) | ~predd(X26)) | ~room(X26))) & (! [X35] : (predw(X35) | ~room(X35)) | ? [X34] : ((predm(X34) & predg(X34)) & room(X34))) [ennf transformation 54]
127. ! [X0] : (predm(X0) | ~room(X0)) & ! [X1] : ((predk(X1) <=> predp(X1)) | ~room(X1)) & ! [X2] : ((predq(X2) <=> predl(X2)) | ~room(X2)) & ! [X3] : (predq(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4))) | room(X4)) & ! [X6] : (prede(X6) | ~predb(X6) | ~room(X6)) & ! [X7] : ((predq(X7) <=> (predp(X7) | predu(X7) | predv(X7))) | ~anywhere(X7)) & ! [X8] : (~predm(X8) | predr(X8) | ~room(X8)) & ! [X9] : (predu(X9) | predv(X9) | predp(X9) | ~predg(X9) | ~room(X9)) & ! [X11,X12] : (X11 = X12 | ~predw(X12) | ~predw(X11) | ~room(X12) | ~room(X11)) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (predx(X14) | (~preda(X14) & ~predm(X14)) | ~room(X14)) & ! [X15] : (preda(X15) | predm(X15) | ~prede(X15) | ~room(X15)) & ((! [X17,X18] : (X17 = X18 | ~predw(X18) | ~predw(X17) | ~room(X18) | ~room(X17)) & ? [X19] : (predw(X19) & room(X19))) | ? [X16] : (~prede(X16) & predb(X16) & room(X16))) & (! [X21] : (prede(X21) | ~predb(X21) | ~room(X21)) | ? [X20] : (predp(X20) & ~predf(X20) & room(X20))) & (! [X22] : (~predr(X22) | ~predd(X22) | ~room(X22)) <=> ! [X23] : (~predb(X23) | ~predf(X23) | ~room(X23))) & (! [X25] : (~predm(X25) | predr(X25) | ~room(X25)) | ? [X24] : (prede(X24) & predd(X24) & room(X24))) & ((! [X27,X28] : (X27 = X28 | ~preda(X28) | ~preda(X27) | ~room(X28) | ~room(X27)) & ? [X29] : (preda(X29) & room(X29))) | ! [X26] : (~prede(X26) | ~predd(X26) | ~room(X26))) & (! [X35] : (predw(X35) | ~room(X35)) | ? [X34] : (predm(X34) & predg(X34) & room(X34))) [flattening 126]
128. ! [X0] : (~predm(X0) | ~room(X0)) [ennf transformation 53]
129. ? [X16] : (~prede(X16) & predb(X16) & room(X16)) | ~sP0 [predicate definition introduction]
130. ! [X0] : (predm(X0) | ~room(X0)) & ! [X1] : ((predk(X1) <=> predp(X1)) | ~room(X1)) & ! [X2] : ((predq(X2) <=> predl(X2)) | ~room(X2)) & ! [X3] : (predq(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (((predf(X4) | predl(X4) | prede(X4)) <=> (~predg(X4) | predx(X4) | ~predq(X4))) | room(X4)) & ! [X6] : (prede(X6) | ~predb(X6) | ~room(X6)) & ! [X7] : ((predq(X7) <=> (predp(X7) | predu(X7) | predv(X7))) | ~anywhere(X7)) & ! [X8] : (~predm(X8) | predr(X8) | ~room(X8)) & ! [X9] : (predu(X9) | predv(X9) | predp(X9) | ~predg(X9) | ~room(X9)) & ! [X11,X12] : (X11 = X12 | ~predw(X12) | ~predw(X11) | ~room(X12) | ~room(X11)) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (predx(X14) | (~preda(X14) & ~predm(X14)) | ~room(X14)) & ! [X15] : (preda(X15) | predm(X15) | ~prede(X15) | ~room(X15)) & ((! [X17,X18] : (X17 = X18 | ~predw(X18) | ~predw(X17) | ~room(X18) | ~room(X17)) & ? [X19] : (predw(X19) & room(X19))) | sP0) & (! [X21] : (prede(X21) | ~predb(X21) | ~room(X21)) | ? [X20] : (predp(X20) & ~predf(X20) & room(X20))) & (! [X22] : (~predr(X22) | ~predd(X22) | ~room(X22)) <=> ! [X23] : (~predb(X23) | ~predf(X23) | ~room(X23))) & (! [X25] : (~predm(X25) | predr(X25) | ~room(X25)) | ? [X24] : (prede(X24) & predd(X24) & room(X24))) & ((! [X27,X28] : (X27 = X28 | ~preda(X28) | ~preda(X27) | ~room(X28) | ~room(X27)) & ? [X29] : (preda(X29) & room(X29))) | ! [X26] : (~prede(X26) | ~predd(X26) | ~room(X26))) & (! [X35] : (predw(X35) | ~room(X35)) | ? [X34] : (predm(X34) & predg(X34) & room(X34))) [definition folding 127,129]
132. ? [X16] : (~prede(X16) & predb(X16) & room(X16)) | ~sP0 [nnf transformation 129]
133. ? [X0] : (~prede(X0) & predb(X0) & room(X0)) | ~sP0 [rectify 132]
134. ? [X0] : (~prede(X0) & predb(X0) & room(X0)) => (~prede(sK1) & predb(sK1) & room(sK1)) [choice axiom]
135. (~prede(sK1) & predb(sK1) & room(sK1)) | ~sP0 [skolemisation 133,134]
136. ! [X0] : (predm(X0) | ~room(X0)) & ! [X1] : (((predk(X1) | ~predp(X1)) & (predp(X1) | ~predk(X1))) | ~room(X1)) & ! [X2] : (((predq(X2) | ~predl(X2)) & (predl(X2) | ~predq(X2))) | ~room(X2)) & ! [X3] : (predq(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : ((((predf(X4) | predl(X4) | prede(X4)) | (predg(X4) & ~predx(X4) & predq(X4))) & ((~predg(X4) | predx(X4) | ~predq(X4)) | (~predf(X4) & ~predl(X4) & ~prede(X4)))) | room(X4)) & ! [X6] : (prede(X6) | ~predb(X6) | ~room(X6)) & ! [X7] : (((predq(X7) | (~predp(X7) & ~predu(X7) & ~predv(X7))) & ((predp(X7) | predu(X7) | predv(X7)) | ~predq(X7))) | ~anywhere(X7)) & ! [X8] : (~predm(X8) | predr(X8) | ~room(X8)) & ! [X9] : (predu(X9) | predv(X9) | predp(X9) | ~predg(X9) | ~room(X9)) & ! [X11,X12] : (X11 = X12 | ~predw(X12) | ~predw(X11) | ~room(X12) | ~room(X11)) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (predx(X14) | (~preda(X14) & ~predm(X14)) | ~room(X14)) & ! [X15] : (preda(X15) | predm(X15) | ~prede(X15) | ~room(X15)) & ((! [X17,X18] : (X17 = X18 | ~predw(X18) | ~predw(X17) | ~room(X18) | ~room(X17)) & ? [X19] : (predw(X19) & room(X19))) | sP0) & (! [X21] : (prede(X21) | ~predb(X21) | ~room(X21)) | ? [X20] : (predp(X20) & ~predf(X20) & room(X20))) & ((! [X22] : (~predr(X22) | ~predd(X22) | ~room(X22)) | ? [X23] : (predb(X23) & predf(X23) & room(X23))) & (! [X23] : (~predb(X23) | ~predf(X23) | ~room(X23)) | ? [X22] : (predr(X22) & predd(X22) & room(X22)))) & (! [X25] : (~predm(X25) | predr(X25) | ~room(X25)) | ? [X24] : (prede(X24) & predd(X24) & room(X24))) & ((! [X27,X28] : (X27 = X28 | ~preda(X28) | ~preda(X27) | ~room(X28) | ~room(X27)) & ? [X29] : (preda(X29) & room(X29))) | ! [X26] : (~prede(X26) | ~predd(X26) | ~room(X26))) & (! [X35] : (predw(X35) | ~room(X35)) | ? [X34] : (predm(X34) & predg(X34) & room(X34))) [nnf transformation 130]
137. ! [X0] : (predm(X0) | ~room(X0)) & ! [X1] : (((predk(X1) | ~predp(X1)) & (predp(X1) | ~predk(X1))) | ~room(X1)) & ! [X2] : (((predq(X2) | ~predl(X2)) & (predl(X2) | ~predq(X2))) | ~room(X2)) & ! [X3] : (predq(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (((predf(X4) | predl(X4) | prede(X4) | (predg(X4) & ~predx(X4) & predq(X4))) & (~predg(X4) | predx(X4) | ~predq(X4) | (~predf(X4) & ~predl(X4) & ~prede(X4)))) | room(X4)) & ! [X6] : (prede(X6) | ~predb(X6) | ~room(X6)) & ! [X7] : (((predq(X7) | (~predp(X7) & ~predu(X7) & ~predv(X7))) & (predp(X7) | predu(X7) | predv(X7) | ~predq(X7))) | ~anywhere(X7)) & ! [X8] : (~predm(X8) | predr(X8) | ~room(X8)) & ! [X9] : (predu(X9) | predv(X9) | predp(X9) | ~predg(X9) | ~room(X9)) & ! [X11,X12] : (X11 = X12 | ~predw(X12) | ~predw(X11) | ~room(X12) | ~room(X11)) & ? [X13] : (predw(X13) & room(X13)) & ! [X14] : (predx(X14) | (~preda(X14) & ~predm(X14)) | ~room(X14)) & ! [X15] : (preda(X15) | predm(X15) | ~prede(X15) | ~room(X15)) & ((! [X17,X18] : (X17 = X18 | ~predw(X18) | ~predw(X17) | ~room(X18) | ~room(X17)) & ? [X19] : (predw(X19) & room(X19))) | sP0) & (! [X21] : (prede(X21) | ~predb(X21) | ~room(X21)) | ? [X20] : (predp(X20) & ~predf(X20) & room(X20))) & (! [X22] : (~predr(X22) | ~predd(X22) | ~room(X22)) | ? [X23] : (predb(X23) & predf(X23) & room(X23))) & (! [X23] : (~predb(X23) | ~predf(X23) | ~room(X23)) | ? [X22] : (predr(X22) & predd(X22) & room(X22))) & (! [X25] : (~predm(X25) | predr(X25) | ~room(X25)) | ? [X24] : (prede(X24) & predd(X24) & room(X24))) & ((! [X27,X28] : (X27 = X28 | ~preda(X28) | ~preda(X27) | ~room(X28) | ~room(X27)) & ? [X29] : (preda(X29) & room(X29))) | ! [X26] : (~prede(X26) | ~predd(X26) | ~room(X26))) & (! [X35] : (predw(X35) | ~room(X35)) | ? [X34] : (predm(X34) & predg(X34) & room(X34))) [flattening 136]
138. ! [X0] : (predm(X0) | ~room(X0)) & ! [X1] : (((predk(X1) | ~predp(X1)) & (predp(X1) | ~predk(X1))) | ~room(X1)) & ! [X2] : (((predq(X2) | ~predl(X2)) & (predl(X2) | ~predq(X2))) | ~room(X2)) & ! [X3] : (predq(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (((predf(X4) | predl(X4) | prede(X4) | (predg(X4) & ~predx(X4) & predq(X4))) & (~predg(X4) | predx(X4) | ~predq(X4) | (~predf(X4) & ~predl(X4) & ~prede(X4)))) | room(X4)) & ! [X5] : (prede(X5) | ~predb(X5) | ~room(X5)) & ! [X6] : (((predq(X6) | (~predp(X6) & ~predu(X6) & ~predv(X6))) & (predp(X6) | predu(X6) | predv(X6) | ~predq(X6))) | ~anywhere(X6)) & ! [X7] : (~predm(X7) | predr(X7) | ~room(X7)) & ! [X8] : (predu(X8) | predv(X8) | predp(X8) | ~predg(X8) | ~room(X8)) & ! [X9,X10] : (X9 = X10 | ~predw(X10) | ~predw(X9) | ~room(X10) | ~room(X9)) & ? [X11] : (predw(X11) & room(X11)) & ! [X12] : (predx(X12) | (~preda(X12) & ~predm(X12)) | ~room(X12)) & ! [X13] : (preda(X13) | predm(X13) | ~prede(X13) | ~room(X13)) & ((! [X14,X15] : (X14 = X15 | ~predw(X15) | ~predw(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (predw(X16) & room(X16))) | sP0) & (! [X17] : (prede(X17) | ~predb(X17) | ~room(X17)) | ? [X18] : (predp(X18) & ~predf(X18) & room(X18))) & (! [X19] : (~predr(X19) | ~predd(X19) | ~room(X19)) | ? [X20] : (predb(X20) & predf(X20) & room(X20))) & (! [X21] : (~predb(X21) | ~predf(X21) | ~room(X21)) | ? [X22] : (predr(X22) & predd(X22) & room(X22))) & (! [X23] : (~predm(X23) | predr(X23) | ~room(X23)) | ? [X24] : (prede(X24) & predd(X24) & room(X24))) & ((! [X25,X26] : (X25 = X26 | ~preda(X26) | ~preda(X25) | ~room(X26) | ~room(X25)) & ? [X27] : (preda(X27) & room(X27))) | ! [X28] : (~prede(X28) | ~predd(X28) | ~room(X28))) & (! [X29] : (predw(X29) | ~room(X29)) | ? [X30] : (predm(X30) & predg(X30) & room(X30))) [rectify 137]
139. ? [X11] : (predw(X11) & room(X11)) => (predw(sK2) & room(sK2)) [choice axiom]
140. ? [X16] : (predw(X16) & room(X16)) => (predw(sK3) & room(sK3)) [choice axiom]
141. ? [X18] : (predp(X18) & ~predf(X18) & room(X18)) => (predp(sK4) & ~predf(sK4) & room(sK4)) [choice axiom]
142. ? [X20] : (predb(X20) & predf(X20) & room(X20)) => (predb(sK5) & predf(sK5) & room(sK5)) [choice axiom]
143. ? [X22] : (predr(X22) & predd(X22) & room(X22)) => (predr(sK6) & predd(sK6) & room(sK6)) [choice axiom]
144. ? [X24] : (prede(X24) & predd(X24) & room(X24)) => (prede(sK7) & predd(sK7) & room(sK7)) [choice axiom]
145. ? [X27] : (preda(X27) & room(X27)) => (preda(sK8) & room(sK8)) [choice axiom]
146. ? [X30] : (predm(X30) & predg(X30) & room(X30)) => (predm(sK9) & predg(sK9) & room(sK9)) [choice axiom]
147. ! [X0] : (predm(X0) | ~room(X0)) & ! [X1] : (((predk(X1) | ~predp(X1)) & (predp(X1) | ~predk(X1))) | ~room(X1)) & ! [X2] : (((predq(X2) | ~predl(X2)) & (predl(X2) | ~predq(X2))) | ~room(X2)) & ! [X3] : (predq(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (((predf(X4) | predl(X4) | prede(X4) | (predg(X4) & ~predx(X4) & predq(X4))) & (~predg(X4) | predx(X4) | ~predq(X4) | (~predf(X4) & ~predl(X4) & ~prede(X4)))) | room(X4)) & ! [X5] : (prede(X5) | ~predb(X5) | ~room(X5)) & ! [X6] : (((predq(X6) | (~predp(X6) & ~predu(X6) & ~predv(X6))) & (predp(X6) | predu(X6) | predv(X6) | ~predq(X6))) | ~anywhere(X6)) & ! [X7] : (~predm(X7) | predr(X7) | ~room(X7)) & ! [X8] : (predu(X8) | predv(X8) | predp(X8) | ~predg(X8) | ~room(X8)) & ! [X9,X10] : (X9 = X10 | ~predw(X10) | ~predw(X9) | ~room(X10) | ~room(X9)) & (predw(sK2) & room(sK2)) & ! [X12] : (predx(X12) | (~preda(X12) & ~predm(X12)) | ~room(X12)) & ! [X13] : (preda(X13) | predm(X13) | ~prede(X13) | ~room(X13)) & ((! [X14,X15] : (X14 = X15 | ~predw(X15) | ~predw(X14) | ~room(X15) | ~room(X14)) & (predw(sK3) & room(sK3))) | sP0) & (! [X17] : (prede(X17) | ~predb(X17) | ~room(X17)) | (predp(sK4) & ~predf(sK4) & room(sK4))) & (! [X19] : (~predr(X19) | ~predd(X19) | ~room(X19)) | (predb(sK5) & predf(sK5) & room(sK5))) & (! [X21] : (~predb(X21) | ~predf(X21) | ~room(X21)) | (predr(sK6) & predd(sK6) & room(sK6))) & (! [X23] : (~predm(X23) | predr(X23) | ~room(X23)) | (prede(sK7) & predd(sK7) & room(sK7))) & ((! [X25,X26] : (X25 = X26 | ~preda(X26) | ~preda(X25) | ~room(X26) | ~room(X25)) & (preda(sK8) & room(sK8))) | ! [X28] : (~prede(X28) | ~predd(X28) | ~room(X28))) & (! [X29] : (predw(X29) | ~room(X29)) | (predm(sK9) & predg(sK9) & room(sK9))) [skolemisation 138,146,145,144,143,142,141,140,139]
229. room(sK1) | ~sP0 [cnf transformation 135]
250. room(sK3) | sP0 [cnf transformation 147]
277. predm(X0) | ~room(X0) [cnf transformation 147]
278. ~predm(X0) | ~room(X0) [cnf transformation 128]
280. 1 <=> sP0 [avatar definition]
294. 4 <=> room(sK1) [avatar definition]
296. room(sK1) <- (4) [avatar component clause 294]
297. ~1 | 4 [avatar split clause 229,294,280]
310. 6 <=> room(sK3) [avatar definition]
312. room(sK3) <- (6) [avatar component clause 310]
313. 1 | 6 [avatar split clause 250,310,280]
388. ~room(X0) [subsumption resolution 278,277]
389. $false <- (6) [subsumption resolution 312,388]
390. ~6 [avatar contradiction clause 389]
391. $false <- (4) [subsumption resolution 296,388]
392. ~4 [avatar contradiction clause 391]
393. $false [avatar sat refutation 297,313,390,392]
% SZS output end Proof for 4147690550768751776488269
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.041 s
% ------------------------------
% ------------------------------
| 0.18316 |
Francis, Earnest are the only persons in the room.
“It is not the case that “Francis owns a telescope”” only if “everyone in the room is passionate about collecting and restoring classic cars or does not collect classic novels”.
If “someone in the room owns a telescope” then “at least one person in the room enjoys snowboarding”.
If “at least one person in the room enjoys snowboarding” then “Francis either uses an ios phone or collects vintage vinyl records but not both”.
If “Francis works as a freelance web developer specializing in e-commerce sites” then “if someone does not frequently participates in hackathons and coding competitions then he/she watches fantasy movies and vice versa”.
If “everyone in the room practices graffiti art or does not host a popular podcast about emerging technologies” then “at least one person in the room enjoys snowboarding”.
“Francis who either hosts a popular podcast about emerging technologies or enjoys wildlife photography but not both collects vintage vinyl records” unless “no one outside the room enjoys making ceramics or does not enjoy snowboarding”.
“Earnest neither does not practice calligraphy nor does not host a popular podcast about emerging technologies” if “everyone in the room does not play eSports competitively or enjoys making ceramics” and vice versa.
Everyone in the room who does not play eSports competitively enjoys wildlife photography.
Earnest is an avid collector of autographed memorabilia from famous musicians.
If someone owns a telescope then he/she does not collect vintage vinyl records.
Everyone in the room who practices calligraphy, hosts a popular podcast about emerging technologies or does not create bespoke furniture pieces from reclaimed wood enjoys wildlife photography.
Everyone in the room plays eSports competitively if they enjoys wildlife photography.
Francis enjoys snowboarding and watches fantasy movies.
Everyone anywhere writes a travel blog if they enjoys stand-up paddleboarding and vice versa.
Earnest who enjoys wildlife photography plays as a goalkeeper for a local amateur soccer team.
Everyone outside the room who collects vintage vinyl records watches fantasy movies.
Francis has completed a triathlon.
Francis enjoys deep-sea diving and exploring underwater caves.
|
Francis works as a freelance web developer specializing in e-commerce sites.
|
neutral
|
room(francis)&room(earnest)&(![X]:(room(X)=>(X='francis'|X='earnest')))&
((~(owns_a_telescope(francis)))=>(![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X)))))))&
(((?[X]:(room(X)&(owns_a_telescope(X))))=>(((?[X]:(room(X)&enjoys_snowboarding(X))))))&
((((?[X]:(room(X)&enjoys_snowboarding(X)))))=>(((uses_an_ios_phone(francis))<~>(collects_vintage_vinyl_records(francis))))))&
((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(francis))=>((![X]:((does_not_frequently_participates_in_hackathons_and_coding_competitions(X))<=>(watches_fantasy_movies(X))))))&
((![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(practices_graffiti_art(X))))))=>(((?[X]:(room(X)&enjoys_snowboarding(X))))))&
(~(~?[X]:(~room(X)=>(((does_not_enjoy_snowboarding(X))|(enjoys_making_ceramics(X))))))=>((((hosts_a_popular_podcast_about_emerging_technologies(francis))<~>(enjoys_wildlife_photography(francis))))&(collects_vintage_vinyl_records(francis))))&
((![X]:(room(X)=>(((enjoys_making_ceramics(X))|(does_not_play_eSports_competitively(X))))))<=>(~((does_not_practice_calligraphy(earnest))|(does_not_host_a_popular_podcast_about_emerging_technologies(earnest)))))&
(![X]:(room(X)=>(((does_not_play_eSports_competitively(X))=>(enjoys_wildlife_photography(X))))))&
(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(earnest))&
((![X]:((owns_a_telescope(X))=>(does_not_collect_vintage_vinyl_records(X)))))&
(![X]:(room(X)=>(((((practices_calligraphy(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))|(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))=>(enjoys_wildlife_photography(X))))))&
(![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(plays_eSports_competitively(X))))))&
(((enjoys_snowboarding(francis))&(watches_fantasy_movies(francis))))&
(![X]:(anywhere(X)=>(((writes_a_travel_blog(X))<=>(enjoys_stand-up_paddleboarding(X))))))&
((enjoys_wildlife_photography(earnest))&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(earnest)))&
(![X]:(~room(X)=>(((collects_vintage_vinyl_records(X))=>(watches_fantasy_movies(X))))))&
(has_completed_a_triathlon(francis))&
(enjoys_deep-sea_diving_and_exploring_underwater_caves(francis))&
(((?[X]:(room(X)&enjoys_snowboarding(X)))))&
(![X]:(room(X)=>(((((does_not_watche_fantasy_movies(X))&(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))=>(does_not_play_eSports_competitively(X))))))&
(creates_bespoke_furniture_pieces_from_reclaimed_wood(earnest))&
(((enjoys_making_ceramics(francis))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(francis))|(enjoys_stand-up_paddleboarding(francis))))
|
room(francis)&room(earnest)&(![X]:(room(X)=>(X='francis'|X='earnest')))&
works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(francis)
|
[] | null | 0 |
There is a room. Someone in the room practices digital art. Everyone in the room is an amateur astronomer who builds and uses custom telescopes if they is a client of Costco or is a Linux enthusiast or both. Not everyone in the room enjoys rooftop gardening if they is an amateur astronomer who builds and uses custom telescopes. More than one person in the room is an amateur astronomer who builds and uses custom telescopes. Everyone in the room is an amateur astronomer who builds and uses custom telescopes if they enjoys fishing. Everyone in the room collects rare and antique scientific instruments only if they enjoys bird watching. Everyone in the room is not a Linux enthusiast or can play the piano. Everyone in the room who practices digital art neither can play the piano nor collects first edition books.
|
Everyone in the room is not a Linux enthusiast.
|
neutral
|
(there_is_a_room)&
(?[X]:(room(X)&(practices_digital_art(X))))&
(![X]:(room(X)=>(((((is_a_client_of_Costco(X))|(is_a_Linux_enthusiast(X))))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(~![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(enjoys_rooftop_gardening(X))))))&
((?[X,Y]:(room(X)&room(Y)&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)&is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(Y))&(X!=Y))))&
(![X]:(room(X)=>(((enjoys_fishing(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(![X]:(room(X)=>(((enjoys_bird_watching(X))<=(collects_rare_and_antique_scientific_instruments(X))))))&
(![X]:(room(X)=>(((can_play_the_piano(X))|(is_not_a_Linux_enthusiast(X))))))&
(![X]:(room(X)=>(((practices_digital_art(X))=>(~((can_play_the_piano(X))|(collects_first_edition_books(X))))))))
|
(there_is_a_room)&
![X]:(room(X)=>(is_not_a_Linux_enthusiast(X)))
|
[] | null | 0.359956 |
There is a room.
If “everyone in the room does not own a smartwatch or is a wine connoisseur” then “everyone in the room does not participate in citizen science projects related to wildlife monitoring, creates YouTube content and regularly goes on multi-day backpacking trips in national parks if they does not own a smartwatch” otherwise “everyone in the room develops open-source software projects in their free time”.
“Everyone in the room streams on Twitch” if “everyone in the room does not enjoy cross-country skiing or owns an extensive assortment of vintage comic book memorabilia” and vice versa.
No one in the room owns a smartwatch.
Everyone in the room is a wine connoisseur if they regularly goes on multi-day backpacking trips in national parks.
|
Everyone in the room is a wine connoisseur.
|
entailment
|
(there_is_a_room)&
(((![X]:(room(X)=>(((is_a_wine_connoisseur(X))|(does_not_own_a_smartwatch(X))))))=>(![X]:(room(X)=>(((does_not_own_a_smartwatch(X))=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))&(creates_YouTube_content(X))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))))))&((~(![X]:(room(X)=>(((is_a_wine_connoisseur(X))|(does_not_own_a_smartwatch(X)))))))=>(![X]:(room(X)=>(develops_open-source_software_projects_in_their_free_time(X))))))&
((![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_not_enjoy_cross-country_skiing(X))))))<=>(![X]:(room(X)=>(streams_on_Twitch(X)))))&
(~?[X]:(room(X)=>(owns_a_smartwatch(X))))&
(![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))<=(streams_on_Twitch(X))))))&
(![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))=>(practices_calligraphy(X))))))&
(![X]:(room(X)=>(((owns_a_smartwatch(X))|(trains_for_and_competes_in_international_triathlons(X))))))&
(?[X]:(room(X)&(enjoys_cross-country_skiing(X))))&
(![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(is_a_wine_connoisseur(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(is_a_wine_connoisseur(X)))
|
[
"p0",
"p1",
"p3",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 902606013670468372798506
% SZS output start Proof for 902606013670468372798506
44. there_is_a_room [input p0]
45. (~! [X0] : (room(X0) => (~prede(X0) | predk(X0))) => ! [X0] : (room(X0) => preds(X0))) & (! [X0] : (room(X0) => (~prede(X0) | predk(X0))) => ! [X0] : (room(X0) => (~prede(X0) => (predu(X0) & predq(X0) & ~predn(X0))))) [input p1]
47. ~? [X0] : (room(X0) => prede(X0)) [input p3]
52. ! [X0] : (room(X0) => (predu(X0) => predk(X0))) [input p8]
53. ~(! [X0] : (room(X0) => predk(X0)) & there_is_a_room) [input hypothesis]
54. (~! [X0] : (room(X0) => (~prede(X0) | predk(X0))) => ! [X1] : (room(X1) => preds(X1))) & (! [X2] : (room(X2) => (~prede(X2) | predk(X2))) => ! [X3] : (room(X3) => (~prede(X3) => (predu(X3) & predq(X3) & ~predn(X3))))) [rectify 45]
58. ! [X2] : (room(X2) => (~prede(X2) | predk(X2))) => ! [X3] : (room(X3) => (~prede(X3) => (predu(X3) & predq(X3) & ~predn(X3)))) [pure predicate removal 54]
59. ! [X2] : (room(X2) => (~prede(X2) | predk(X2))) => ! [X3] : (room(X3) => (~prede(X3) => (predu(X3) & ~predn(X3)))) [pure predicate removal 58]
60. ! [X2] : (room(X2) => (~prede(X2) | predk(X2))) => ! [X3] : (room(X3) => (~prede(X3) => predu(X3))) [pure predicate removal 59]
133. ! [X3] : ((predu(X3) | prede(X3)) | ~room(X3)) | ? [X2] : ((prede(X2) & ~predk(X2)) & room(X2)) [ennf transformation 60]
134. ! [X3] : (predu(X3) | prede(X3) | ~room(X3)) | ? [X2] : (prede(X2) & ~predk(X2) & room(X2)) [flattening 133]
137. ! [X0] : (~prede(X0) & room(X0)) [ennf transformation 47]
140. ! [X0] : ((predk(X0) | ~predu(X0)) | ~room(X0)) [ennf transformation 52]
141. ! [X0] : (predk(X0) | ~predu(X0) | ~room(X0)) [flattening 140]
142. ? [X0] : (~predk(X0) & room(X0)) | ~there_is_a_room [ennf transformation 53]
144. ! [X0] : (predu(X0) | prede(X0) | ~room(X0)) | ? [X1] : (prede(X1) & ~predk(X1) & room(X1)) [rectify 134]
145. ? [X1] : (prede(X1) & ~predk(X1) & room(X1)) => (prede(sK0) & ~predk(sK0) & room(sK0)) [choice axiom]
146. ! [X0] : (predu(X0) | prede(X0) | ~room(X0)) | (prede(sK0) & ~predk(sK0) & room(sK0)) [skolemisation 144,145]
154. ? [X0] : (~predk(X0) & room(X0)) => (~predk(sK4) & room(sK4)) [choice axiom]
155. (~predk(sK4) & room(sK4)) | ~there_is_a_room [skolemisation 142,154]
236. there_is_a_room [cnf transformation 44]
239. predu(X0) | prede(X0) | ~room(X0) | prede(sK0) [cnf transformation 146]
245. room(X0) [cnf transformation 137]
246. ~prede(X0) [cnf transformation 137]
250. predk(X0) | ~predu(X0) | ~room(X0) [cnf transformation 141]
252. ~predk(sK4) | ~there_is_a_room [cnf transformation 155]
254. 1 <=> prede(sK0) [avatar definition]
256. prede(sK0) <- (1) [avatar component clause 254]
258. 2 <=> ! [X0] : (predu(X0) | ~room(X0) | prede(X0)) [avatar definition]
259. predu(X0) | ~room(X0) | prede(X0) <- (2) [avatar component clause 258]
260. 1 | 2 [avatar split clause 239,258,254]
303. ~predu(X0) | predk(X0) [subsumption resolution 250,245]
304. ~predk(sK4) [subsumption resolution 252,236]
307. predu(X0) | prede(X0) <- (2) [subsumption resolution 259,245]
308. predu(X0) <- (2) [subsumption resolution 307,246]
310. predk(X0) <- (2) [resolution 303,308]
313. $false <- (2) [resolution 310,304]
314. ~2 [avatar contradiction clause 313]
315. $false <- (1) [subsumption resolution 256,246]
316. ~1 [avatar contradiction clause 315]
317. $false [avatar sat refutation 260,314,316]
% SZS output end Proof for 902606013670468372798506
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.244356 |
Christi is the only person in the room.
If 'Christi has a pet dog, is a tea enthusiast and is an amateur astronomer who builds and uses custom telescopes' then 'Christi is an amateur astronomer who builds and uses custom telescopes'.
Christi hosts regular workshops on creative writing, does enjoy trail running or owns a significant collection of rare gemstones and minerals.
Christi who is a tea enthusiast has a specialized collection of handmade artisan pottery.
Christi owns a 3D printer.
Christi hosts a popular podcast about emerging technologies.
Christi collects antique clocks.
Christi drives a hybrid car.
Christi has a pet dog, is a tea enthusiast and is an amateur astronomer who builds and uses custom telescopes.
Someone in the room enjoys salsa dancing.
If someone mentors a youth basketball team on weekends then he/she hosts a popular podcast about emerging technologies and vice versa.
At least one person in the room does enjoy trail running.
If someone enjoys kayaking and exploring remote waterways then he/she does not drive a hybrid car and vice versa.
If someone mentors a youth basketball team on weekends then he/she collects antique clocks and vice versa.
Christi plays eSports competitively.
Someone anywhere hosts a popular podcast about emerging technologies.
Someone in the room does enjoy trail running, has a specialized collection of handmade artisan pottery and does not use contact lenses.
If someone mentors a youth basketball team on weekends then he/she plays the violin and vice versa.
Christi frequently participates in hackathons and coding competitions.
It is not the case that 'Christi uses contact lenses'.
Christi who drives a hybrid car mentors a youth basketball team on weekends.
If someone mentors a youth basketball team on weekends then he/she plays eSports competitively.
Christi is a tea enthusiast.
Christi is a professional photographer specializing in portrait photography.
At least one person in the room enjoys macrame.
|
Christi hosts regular workshops on creative writing.
|
neutral
|
room(christi)&(![X]:(room(X)=>(X='christi')))&
((((has_a_pet_dog(christi))&(is_a_tea_enthusiast(christi))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(christi))))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(christi)))&
(((hosts_regular_workshops_on_creative_writing(christi))|(does_enjoy_trail_running(christi))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(christi))))&
((is_a_tea_enthusiast(christi))&(has_a_specialized_collection_of_handmade_artisan_pottery(christi)))&
(owns_a_3D_printer(christi))&
(hosts_a_popular_podcast_about_emerging_technologies(christi))&
(collects_antique_clocks(christi))&
(drives_a_hybrid_car(christi))&
(((has_a_pet_dog(christi))&(is_a_tea_enthusiast(christi))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(christi))))&
(?[X]:(room(X)&(enjoys_salsa_dancing(X))))&
((![X]:((mentors_a_youth_basketball_team_on_weekends(X))<=>(hosts_a_popular_podcast_about_emerging_technologies(X)))))&
(((?[X]:(room(X)&does_enjoy_trail_running(X)))))&
((![X]:((enjoys_kayaking_and_exploring_remote_waterways(X))<=>(does_not_drive_a_hybrid_car(X)))))&
((![X]:((mentors_a_youth_basketball_team_on_weekends(X))<=>(collects_antique_clocks(X)))))&
(plays_eSports_competitively(christi))&
(?[X]:(anywhere(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))&
(?[X]:(room(X)&(((does_enjoy_trail_running(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(X))&(does_not_use_contact_lenses(X))))))&
((![X]:((mentors_a_youth_basketball_team_on_weekends(X))<=>(plays_the_violin(X)))))&
(frequently_participates_in_hackathons_and_coding_competitions(christi))&
(~(uses_contact_lenses(christi)))&
((drives_a_hybrid_car(christi))&(mentors_a_youth_basketball_team_on_weekends(christi)))&
((![X]:((mentors_a_youth_basketball_team_on_weekends(X))=>(plays_eSports_competitively(X)))))&
(is_a_tea_enthusiast(christi))&
(is_a_professional_photographer_specializing_in_portrait_photography(christi))&
(((?[X]:(room(X)&enjoys_macrame(X)))))
|
room(christi)&(![X]:(room(X)=>(X='christi')))&
hosts_regular_workshops_on_creative_writing(christi)
|
[] | null | 0.001663 |
Eric, Adam, Thomas, Carmen are the only persons in the room.
“It is not the case that “Adam and Eric are respectively humble and strong”” if “Thomas is tall”.
“Adam neither is not a funny person nor is a quiet person” if “Adam is curious” and vice versa.
Thomas is strong.
Eric is a curious person.
Eric is strong.
Adam is not a strong person.
Adam is the least quiet in the room.
Adam is not creative.
Adam is not a old person.
Eric dreamt that “everyone in the room is a tall curious person”.
Eric is not generous.
Thomas is a strong tall person.
Adam is a quiet person.
Everyone in the room is a brave kind patient happy person.
Everyone in the room is a funny person and is not humble only if they is humble.
If someone is not a brave person then he/she is a brave person.
If someone is not humble then he/she is not a strong calm person.
More than one person in the room is a creative person.
Thomas is not a wise person.
Not everyone in the room is not a patient person if they is not tall.
|
Adam is not patient.
|
contradiction
|
room(eric)&room(adam)&room(thomas)&room(carmen)&(![X]:(room(X)=>(X='eric'|X='adam'|X='thomas'|X='carmen')))&
((tall(thomas))=>(~((humble(adam))&(strong(eric)))))&
((curious(adam))<=>(~((~(funny(adam)&person(adam)))|(quiet(adam)&person(adam)))))&
(strong(thomas))&
(curious(eric)&person(eric))&
(strong(eric))&
(~(strong(adam)&person(adam)))&
(![X]:((room(X)&(X!=adam))=>quieter(adam,X)))&
(~creative(adam))&
(~(old(adam)&person(adam)))&
((eric_dream=>(![X]:(room(X)=>(tall(X)&curious(X)&person(X))))))&
(~generous(eric))&
(strong(thomas)&tall(thomas)&person(thomas))&
(quiet(adam)&person(adam))&
(![X]:(room(X)=>(brave(X)&kind(X)&patient(X)&happy(X)&person(X))))&
(![X]:(room(X)=>(((humble(X))<=(((funny(X)&person(X))&(~humble(X))))))))&
((![X]:((~(brave(X)&person(X)))=>(brave(X)&person(X)))))&
((![X]:((~humble(X))=>(~(strong(X)&calm(X)&person(X))))))&
((?[X,Y]:(room(X)&room(Y)&(creative(X)&person(X)&creative(Y)&person(Y))&(X!=Y))))&
(~(wise(thomas)&person(thomas)))&
(~![X]:(room(X)=>(((~tall(X))=>(~(patient(X)&person(X)))))))
|
room(eric)&room(adam)&room(thomas)&room(carmen)&(![X]:(room(X)=>(X='eric'|X='adam'|X='thomas'|X='carmen')))&
~patient(adam)
|
[
"p0",
"p14",
"hypothesis"
] |
% SZS status Unsatisfiable for 43907210993912901789799
% SZS output start Proof for 43907210993912901789799
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
58. ! [X0] : (room(X0) => (person(X0) & happy(X0) & patient(X0) & kind(X0) & brave(X0))) [input p14]
65. ~patient(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
68. ! [X0] : (room(X0) => (person(X0) & patient(X0) & kind(X0) & brave(X0))) [pure predicate removal 58]
69. ! [X0] : (room(X0) => (person(X0) & patient(X0) & brave(X0))) [pure predicate removal 68]
70. ! [X0] : (room(X0) => (person(X0) & patient(X0))) [pure predicate removal 69]
146. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
147. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146]
156. ! [X0] : ((person(X0) & patient(X0)) | ~room(X0)) [ennf transformation 70]
162. ~patient(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 65]
163. ~patient(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 162]
252. room(paul) [cnf transformation 147]
275. ~room(X0) | patient(X0) [cnf transformation 156]
295. ~patient(paul) [cnf transformation 163]
347. patient(paul) [resolution 275,252]
353. $false [subsumption resolution 347,295]
% SZS output end Proof for 43907210993912901789799
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0.382816 |
Steve, Kenneth, Robert are the only persons in the room.
Robert who enjoys logic puzzles hosts a YouTube channel dedicated to art tutorials.
Everyone in the room owns an extensive assortment of vintage comic book memorabilia if they does not practice zumba.
If someone owns an extensive assortment of vintage comic book memorabilia then he/she does not host a YouTube channel dedicated to art tutorials and vice versa.
|
Robert practices zumba.
|
entailment
|
room(steve)&room(kenneth)&room(robert)&(![X]:(room(X)=>(X='steve'|X='kenneth'|X='robert')))&
((enjoys_logic_puzzles(robert))&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(robert)))&
((![X]:((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(practices_calligraphy(X)))))&
(![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))&
(![X]:(room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))=>(((enjoys_skydiving(X))&(practices_digital_art(X))))))))&
(![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(does_not_practice_digital_art(X))))))&
(plays_the_drums(kenneth))&
(does_not_enjoy_kayaking_and_exploring_remote_waterways(kenneth))&
(((is_a_professional_photographer_specializing_in_portrait_photography(steve))|(plays_video_games(steve))))&
(?[X]:(~room(X)&(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))&
(~(plays_video_games(kenneth)))&
(![X]:(room(X)=>(((enjoys_snowboarding(X))=>(does_enjoy_mountain_biking(X))))))&
(![X]:(room(X)=>(does_not_train_for_and_competes_in_international_triathlons(X))))&
(![X]:(anywhere(X)=>(((((writes_and_illustrates_their_own_graphic_novels(X))<~>(can_play_the_guitar(X))))=>(((plays_the_drums(X))|(enjoys_kayaking(X))))))))&
(![X]:(room(X)=>(((((plays_the_drums(X))|(enjoys_kayaking(X))))=>(((plays_the_drums(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))&
(![X]:(room(X)=>(((does_not_practice_zumba(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))&
(?[X]:(room(X)&(~((has_a_saltwater_aquarium(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))&
((![X]:((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=>(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X)))))&
((steve_dream=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(kenneth))))&
(![X]:(~room(X)=>(((enjoys_kayaking(X))=>(((does_not_enjoy_logic_puzzles(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))))&
(((?[X]:(room(X)&does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(Y)))=>(X=Y)))))&
(practices_calligraphy(kenneth))&
(![X]:(room(X)=>(((plays_the_drums(X))=>(is_an_avid_hiker(X))))))&
(![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(((enjoys_snowboarding(X))&(can_play_the_guitar(X))))))))&
((((does_not_enjoy_snowboarding(kenneth))&(enjoys_kayaking(kenneth))&(does_not_host_regular_game_nights_featuring_complex_strategy_games(kenneth))))&(has_a_specialized_collection_of_handmade_artisan_pottery(kenneth)))&
(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(robert))&
(![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=(practices_digital_art(X))))))&
(![X]:(~room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(owns_a_microscope(X))))))&
(![X]:(room(X)=>(((~((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(owns_a_microscope(X))))))&
(maintains_a_personal_blog_focused_on_cybersecurity_tips(kenneth))
|
room(steve)&room(kenneth)&room(robert)&(![X]:(room(X)=>(X='steve'|X='kenneth'|X='robert')))&
practices_zumba(robert)
|
[
"p0",
"p1",
"p15",
"p17",
"hypothesis"
] |
% SZS status Unsatisfiable for 1205298548098967652474192
% SZS output start Proof for 1205298548098967652474192
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
45. predr(fred) & prede(fred) [input p1]
59. ! [X0] : (room(X0) => (~predg(X0) => predx(X0))) [input p15]
61. ! [X0] : (predx(X0) <=> ~predr(X0)) [input p17]
74. ~(predg(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
76. ! [X0] : (predx(X0) => ~predr(X0)) [unused predicate definition removal 61]
166. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
167. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 166]
174. ! [X0] : ((predx(X0) | predg(X0)) | ~room(X0)) [ennf transformation 59]
175. ! [X0] : (predx(X0) | predg(X0) | ~room(X0)) [flattening 174]
177. ! [X0] : (~predr(X0) | ~predx(X0)) [ennf transformation 76]
184. ~predg(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 74]
185. ~predg(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 184]
195. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
196. ~predg(fred) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 185,195]
278. room(mary) [cnf transformation 167]
279. room(paul) [cnf transformation 167]
280. room(fred) [cnf transformation 167]
281. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 167]
283. predr(fred) [cnf transformation 45]
294. ~room(X0) | predg(X0) | predx(X0) [cnf transformation 175]
297. ~predx(X0) | ~predr(X0) [cnf transformation 177]
308. ~predg(fred) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
309. ~predg(fred) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
310. ~predg(fred) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
311. ~predg(fred) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196]
315. ~predg(fred) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 311,280]
316. ~predg(fred) | fred != sK3 | ~room(mary) [subsumption resolution 315,279]
317. ~predg(fred) | fred != sK3 [subsumption resolution 316,278]
319. 1 <=> fred = sK3 [avatar definition]
321. fred != sK3 <- (~1) [avatar component clause 319]
323. 2 <=> predg(fred) [avatar definition]
325. ~predg(fred) <- (~2) [avatar component clause 323]
326. ~1 | ~2 [avatar split clause 317,323,319]
327. ~predg(fred) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 310,280]
328. ~predg(fred) | paul != sK3 | ~room(mary) [subsumption resolution 327,279]
329. ~predg(fred) | paul != sK3 [subsumption resolution 328,278]
331. 3 <=> paul = sK3 [avatar definition]
333. paul != sK3 <- (~3) [avatar component clause 331]
334. ~3 | ~2 [avatar split clause 329,323,331]
335. ~predg(fred) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 309,280]
336. ~predg(fred) | mary != sK3 | ~room(mary) [subsumption resolution 335,279]
337. ~predg(fred) | mary != sK3 [subsumption resolution 336,278]
339. 4 <=> mary = sK3 [avatar definition]
341. mary != sK3 <- (~4) [avatar component clause 339]
342. ~4 | ~2 [avatar split clause 337,323,339]
343. ~predg(fred) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 308,280]
344. ~predg(fred) | room(sK3) | ~room(mary) [subsumption resolution 343,279]
345. ~predg(fred) | room(sK3) [subsumption resolution 344,278]
347. 5 <=> room(sK3) [avatar definition]
349. room(sK3) <- (5) [avatar component clause 347]
350. 5 | ~2 [avatar split clause 345,323,347]
353. predg(fred) | predx(fred) [resolution 294,280]
374. predx(fred) <- (~2) [subsumption resolution 353,325]
400. ~predr(fred) <- (~2) [resolution 374,297]
401. $false <- (~2) [subsumption resolution 400,283]
402. 2 [avatar contradiction clause 401]
482. paul = sK3 | mary = sK3 | fred = sK3 <- (5) [resolution 281,349]
509. mary = sK3 | fred = sK3 <- (~3, 5) [subsumption resolution 482,333]
510. fred = sK3 <- (~3, ~4, 5) [subsumption resolution 509,341]
511. $false <- (~1, ~3, ~4, 5) [subsumption resolution 510,321]
512. 1 | 3 | 4 | ~5 [avatar contradiction clause 511]
513. $false [avatar sat refutation 326,334,342,350,402,512]
% SZS output end Proof for 1205298548098967652474192
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0 |
Bonnie, Alexis, Isabel are the only persons in the room. “Alexis is quieter than George” only if “Alexis is richer than George”. If “Bonnie is quieter than George” then “no tall person is quiet”. If “Bonnie is richer than George” then “Bonnie is quieter than George”. “Alexis is quieter than George” unless “Bonnie is richer than George”. If “Alexis is quieter than George” then “Isabel is quieter than George”. If “Alexis is quieter than George” then “Isabel is richer than George”. Alexis neither is quieter than George nor is richer than George. It is true that “Bonnie is richer than George”.
|
Bonnie is tall.
|
entailment
|
room(bonnie)&room(alexis)&room(isabel)&(![X]:(room(X)=>(X='bonnie'|X='alexis'|X='isabel')))&
((quieter(george,alexis))=>(richer(george,alexis)))&
((quieter(george,bonnie))=>(~?[X]:(tall(X)=>quiet(X))))&
((richer(george,bonnie))=>(quieter(george,bonnie)))&
(~(richer(george,bonnie))=>(quieter(george,alexis)))&
((quieter(george,alexis))=>(quieter(george,isabel)))&
((quieter(george,alexis))=>(richer(george,isabel)))&
(~((quieter(george,alexis))|(richer(george,alexis))))&
(richer(george,bonnie))&
(~(old(alexis)&person(alexis)))&
(older(george,isabel))&
(richer(george,isabel))&
(~~~~~~~old(alexis))&
(((old(bonnie))<~>(richer(george,bonnie))))&
(older(george,alexis))&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(((older(george,X))<~>(quieter(george,X)))&((older(george,Y))<~>(quieter(george,Y))))&(X!=Y))))
|
room(bonnie)&room(alexis)&room(isabel)&(![X]:(room(X)=>(X='bonnie'|X='alexis'|X='isabel')))&
tall(bonnie)
|
[
"p0",
"p2",
"p3",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 4573174357885529100231589
% SZS output start Proof for 4573174357885529100231589
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
46. quieter(alice,mary) => ~? [X0] : (tall(X0) => quiet(X0)) [input p2]
47. richer(alice,mary) => quieter(alice,mary) [input p3]
52. richer(alice,mary) [input p8]
60. ~(tall(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
135. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
136. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 135]
138. ! [X0] : (~quiet(X0) & tall(X0)) | ~quieter(alice,mary) [ennf transformation 46]
139. quieter(alice,mary) | ~richer(alice,mary) [ennf transformation 47]
144. ~tall(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 60]
145. ~tall(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 144]
152. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom]
153. ~tall(mary) | (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 145,152]
234. room(mary) [cnf transformation 136]
235. room(paul) [cnf transformation 136]
236. room(fred) [cnf transformation 136]
237. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 136]
239. tall(X0) | ~quieter(alice,mary) [cnf transformation 138]
241. quieter(alice,mary) | ~richer(alice,mary) [cnf transformation 139]
247. richer(alice,mary) [cnf transformation 52]
259. ~tall(mary) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
260. ~tall(mary) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
261. ~tall(mary) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
262. ~tall(mary) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
273. 3 <=> quieter(alice,mary) [avatar definition]
281. 5 <=> ! [X0] : tall(X0) [avatar definition]
282. tall(X0) <- (5) [avatar component clause 281]
283. ~3 | 5 [avatar split clause 239,281,273]
285. 6 <=> richer(alice,mary) [avatar definition]
288. ~6 | 3 [avatar split clause 241,273,285]
302. 6 [avatar split clause 247,285]
330. ~tall(mary) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 262,236]
331. ~tall(mary) | fred != sK2 | ~room(mary) [subsumption resolution 330,235]
332. ~tall(mary) | fred != sK2 [subsumption resolution 331,234]
334. 14 <=> fred = sK2 [avatar definition]
336. fred != sK2 <- (~14) [avatar component clause 334]
338. 15 <=> tall(mary) [avatar definition]
340. ~tall(mary) <- (~15) [avatar component clause 338]
341. ~14 | ~15 [avatar split clause 332,338,334]
342. ~tall(mary) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 261,236]
343. ~tall(mary) | paul != sK2 | ~room(mary) [subsumption resolution 342,235]
344. ~tall(mary) | paul != sK2 [subsumption resolution 343,234]
346. 16 <=> paul = sK2 [avatar definition]
348. paul != sK2 <- (~16) [avatar component clause 346]
349. ~16 | ~15 [avatar split clause 344,338,346]
350. ~tall(mary) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 260,236]
351. ~tall(mary) | mary != sK2 | ~room(mary) [subsumption resolution 350,235]
352. ~tall(mary) | mary != sK2 [subsumption resolution 351,234]
354. 17 <=> mary = sK2 [avatar definition]
356. mary != sK2 <- (~17) [avatar component clause 354]
357. ~17 | ~15 [avatar split clause 352,338,354]
358. ~tall(mary) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 259,236]
359. ~tall(mary) | room(sK2) | ~room(mary) [subsumption resolution 358,235]
360. ~tall(mary) | room(sK2) [subsumption resolution 359,234]
362. 18 <=> room(sK2) [avatar definition]
364. room(sK2) <- (18) [avatar component clause 362]
365. 18 | ~15 [avatar split clause 360,338,362]
366. $false <- (5, ~15) [resolution 340,282]
367. ~5 | 15 [avatar contradiction clause 366]
584. paul = sK2 | mary = sK2 | fred = sK2 <- (18) [resolution 237,364]
585. mary = sK2 | fred = sK2 <- (~16, 18) [subsumption resolution 584,348]
586. fred = sK2 <- (~16, ~17, 18) [subsumption resolution 585,356]
587. $false <- (~14, ~16, ~17, 18) [subsumption resolution 586,336]
588. 14 | 16 | 17 | ~18 [avatar contradiction clause 587]
589. $false [avatar sat refutation 283,288,302,341,349,357,365,367,588]
% SZS output end Proof for 4573174357885529100231589
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0.003233 |
Vernon, Brett, Louise are the only persons in the room. “Vernon drives a hybrid car” if “Louise practices digital art”. “Everyone in the room does not drive a hybrid car or practices digital art” if “Brett practices digital art” and vice versa. “Everyone in the room practices digital art if they mentors a youth basketball team on weekends” unless “no one in the room does not mentor a youth basketball team on weekends or practices digital art”. Everyone in the room does not drive a hybrid car or practices digital art. It is true that “Louise who drives a hybrid car or mentors a youth basketball team on weekends or both drives a hybrid car”. Vernon drives a hybrid car. Louise drives a hybrid car. Brett who practices digital art drives a hybrid car. Someone anywhere practices digital art.
|
Everyone in the room drives a hybrid car.
|
entailment
|
room(vernon)&room(brett)&room(louise)&(![X]:(room(X)=>(X='vernon'|X='brett'|X='louise')))&
((practices_digital_art(louise))=>(drives_a_hybrid_car(vernon)))&
((practices_digital_art(brett))<=>(![X]:(room(X)=>(((practices_digital_art(X))|(does_not_drive_a_hybrid_car(X)))))))&
(~(~?[X]:(room(X)=>(((practices_digital_art(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))=>(![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(practices_digital_art(X)))))))&
(![X]:(room(X)=>(((practices_digital_art(X))|(does_not_drive_a_hybrid_car(X))))))&
((((drives_a_hybrid_car(louise))|(mentors_a_youth_basketball_team_on_weekends(louise))))&(drives_a_hybrid_car(louise)))&
(drives_a_hybrid_car(vernon))&
(drives_a_hybrid_car(louise))&
((practices_digital_art(brett))&(drives_a_hybrid_car(brett)))&
(?[X]:(anywhere(X)&(practices_digital_art(X))))
|
room(vernon)&room(brett)&room(louise)&(![X]:(room(X)=>(X='vernon'|X='brett'|X='louise')))&
![X]:(room(X)=>(drives_a_hybrid_car(X)))
|
[
"p0",
"p5",
"p6",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 26893161935599305923346
% SZS output start Proof for 26893161935599305923346
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
49. preda(fred) & (predc(fred) | preda(fred)) [input p5]
50. preda(mary) [input p6]
52. preda(paul) & predb(paul) [input p8]
54. ~(! [X0] : (room(X0) => preda(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
57. ~(! [X0] : (room(X0) => preda(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary)) [rectify 54]
131. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
132. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 131]
140. ? [X0] : (~preda(X0) & room(X0)) | ? [X1] : ((fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 57]
141. ? [X0] : (~preda(X0) & room(X0)) | ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 140]
150. ? [X0] : (~preda(X0) & room(X0)) => (~preda(sK2) & room(sK2)) [choice axiom]
151. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom]
152. (~preda(sK2) & room(sK2)) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 141,151,150]
233. room(mary) [cnf transformation 132]
234. room(paul) [cnf transformation 132]
235. room(fred) [cnf transformation 132]
236. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 132]
247. preda(fred) [cnf transformation 49]
248. preda(mary) [cnf transformation 50]
251. preda(paul) [cnf transformation 52]
253. room(sK2) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
254. room(sK2) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
255. room(sK2) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
256. room(sK2) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
257. ~preda(sK2) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
258. ~preda(sK2) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
259. ~preda(sK2) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
260. ~preda(sK2) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 152]
266. 2 <=> preda(mary) [avatar definition]
268. preda(mary) <- (2) [avatar component clause 266]
309. 2 [avatar split clause 248,266]
311. ~preda(sK2) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 260,235]
312. ~preda(sK2) | fred != sK3 | ~room(mary) [subsumption resolution 311,234]
313. ~preda(sK2) | fred != sK3 [subsumption resolution 312,233]
315. 12 <=> fred = sK3 [avatar definition]
317. fred != sK3 <- (~12) [avatar component clause 315]
319. 13 <=> preda(sK2) [avatar definition]
321. ~preda(sK2) <- (~13) [avatar component clause 319]
322. ~12 | ~13 [avatar split clause 313,319,315]
323. ~preda(sK2) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 259,235]
324. ~preda(sK2) | paul != sK3 | ~room(mary) [subsumption resolution 323,234]
325. ~preda(sK2) | paul != sK3 [subsumption resolution 324,233]
327. 14 <=> paul = sK3 [avatar definition]
329. paul != sK3 <- (~14) [avatar component clause 327]
330. ~14 | ~13 [avatar split clause 325,319,327]
331. ~preda(sK2) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 258,235]
332. ~preda(sK2) | mary != sK3 | ~room(mary) [subsumption resolution 331,234]
333. ~preda(sK2) | mary != sK3 [subsumption resolution 332,233]
335. 15 <=> mary = sK3 [avatar definition]
338. ~15 | ~13 [avatar split clause 333,319,335]
339. ~preda(sK2) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 257,235]
340. ~preda(sK2) | room(sK3) | ~room(mary) [subsumption resolution 339,234]
341. ~preda(sK2) | room(sK3) [subsumption resolution 340,233]
343. 16 <=> room(sK3) [avatar definition]
345. room(sK3) <- (16) [avatar component clause 343]
346. 16 | ~13 [avatar split clause 341,319,343]
347. room(sK2) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 256,235]
348. room(sK2) | fred != sK3 | ~room(mary) [subsumption resolution 347,234]
349. room(sK2) | fred != sK3 [subsumption resolution 348,233]
351. 17 <=> room(sK2) [avatar definition]
353. room(sK2) <- (17) [avatar component clause 351]
354. ~12 | 17 [avatar split clause 349,351,315]
355. room(sK2) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 255,235]
356. room(sK2) | paul != sK3 | ~room(mary) [subsumption resolution 355,234]
357. room(sK2) | paul != sK3 [subsumption resolution 356,233]
358. ~14 | 17 [avatar split clause 357,351,327]
359. room(sK2) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 254,235]
360. room(sK2) | mary != sK3 | ~room(mary) [subsumption resolution 359,234]
361. room(sK2) | mary != sK3 [subsumption resolution 360,233]
362. ~15 | 17 [avatar split clause 361,351,335]
363. room(sK2) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 253,235]
364. room(sK2) | room(sK3) | ~room(mary) [subsumption resolution 363,234]
365. room(sK2) | room(sK3) [subsumption resolution 364,233]
366. 16 | 17 [avatar split clause 365,351,343]
418. paul = sK3 | mary = sK3 | fred = sK3 <- (16) [resolution 236,345]
419. mary = sK3 | fred = sK3 <- (~14, 16) [subsumption resolution 418,329]
423. mary = sK3 <- (~12, ~14, 16) [subsumption resolution 419,317]
424. 15 | 12 | 14 | ~16 [avatar split clause 423,343,327,315,335]
428. paul = sK2 | mary = sK2 | fred = sK2 <- (17) [resolution 353,236]
430. 18 <=> fred = sK2 [avatar definition]
432. fred = sK2 <- (18) [avatar component clause 430]
434. 19 <=> mary = sK2 [avatar definition]
436. mary = sK2 <- (19) [avatar component clause 434]
438. 20 <=> paul = sK2 [avatar definition]
440. paul = sK2 <- (20) [avatar component clause 438]
441. 18 | 19 | 20 | ~17 [avatar split clause 428,351,438,434,430]
443. ~preda(mary) <- (~13, 19) [backward demodulation 321,436]
444. $false <- (2, ~13, 19) [subsumption resolution 443,268]
445. ~2 | 13 | ~19 [avatar contradiction clause 444]
447. ~preda(paul) <- (~13, 20) [backward demodulation 321,440]
448. $false <- (~13, 20) [subsumption resolution 447,251]
449. 13 | ~20 [avatar contradiction clause 448]
451. ~preda(fred) <- (~13, 18) [backward demodulation 321,432]
452. $false <- (~13, 18) [subsumption resolution 451,247]
453. 13 | ~18 [avatar contradiction clause 452]
454. $false [avatar sat refutation 309,322,330,338,346,354,358,362,366,424,441,445,449,453]
% SZS output end Proof for 26893161935599305923346
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.035 s
% ------------------------------
% ------------------------------
| 0 |
Horace, Virgil are the only persons in the room.
“Everyone in the room either does not enjoy bird watching or does not play the violin but not both” unless “everyone in the room does not play video games”.
Everyone in the room is not dedicated to sustainable living and zero-waste practices.
Everyone anywhere is not a professional photographer specializing in portrait photography.
Everyone in the room does not have a curated collection of mid-century modern furniture.
Someone in the room does not enjoy bird watching.
Everyone in the room either does not enjoy bird watching or does not play the violin but not both.
If someone does not own a 3D printer then he/she either does not play video games or does not have lived in exactly three countries but not both.
Everyone in the room either does not play eSports competitively or is not dedicated to sustainable living and zero-waste practices but not both.
|
Virgil plays eSports competitively.
|
entailment
|
room(horace)&room(virgil)&(![X]:(room(X)=>(X='horace'|X='virgil')))&
(~(![X]:(room(X)=>(does_not_play_video_games(X))))=>(![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))<~>(does_not_play_the_violin(X)))))))&
(![X]:(room(X)=>(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))&
(![X]:(anywhere(X)=>(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))&
(![X]:(room(X)=>(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))&
(?[X]:(room(X)&(does_not_enjoy_bird_watching(X))))&
(![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))<~>(does_not_play_the_violin(X))))))&
((![X]:((does_not_own_a_3D_printer(X))=>(((does_not_play_video_games(X))<~>(does_not_have_lived_in_exactly_three_countries(X)))))))&
(![X]:(room(X)=>(((does_not_play_eSports_competitively(X))<~>(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))
|
room(horace)&room(virgil)&(![X]:(room(X)=>(X='horace'|X='virgil')))&
plays_eSports_competitively(virgil)
|
[
"p0",
"p2",
"p8",
"hypothesis"
] |
% SZS status Unsatisfiable for 2331210483760021814938513
% SZS output start Proof for 2331210483760021814938513
44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0]
46. ! [X0] : (room(X0) => ~predu(X0)) [input p2]
52. ! [X0] : (room(X0) => (~predm(X0) <~> ~predu(X0))) [input p8]
53. ~(predm(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis]
131. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44]
132. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 131]
133. ! [X0] : (~predu(X0) | ~room(X0)) [ennf transformation 46]
135. ! [X0] : ((~predm(X0) <~> ~predu(X0)) | ~room(X0)) [ennf transformation 52]
136. ~predm(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 53]
137. ~predm(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 136]
142. ! [X0] : (((predu(X0) | predm(X0)) & (~predu(X0) | ~predm(X0))) | ~room(X0)) [nnf transformation 135]
143. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom]
144. ~predm(paul) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 137,143]
225. room(mary) [cnf transformation 132]
226. room(paul) [cnf transformation 132]
227. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 132]
228. ~predu(X0) | ~room(X0) [cnf transformation 133]
234. predu(X0) | predm(X0) | ~room(X0) [cnf transformation 142]
235. ~predm(paul) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 144]
236. ~predm(paul) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 144]
237. ~predm(paul) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 144]
238. ~room(X0) | predm(X0) [subsumption resolution 234,228]
239. ~predm(paul) | paul != sK1 | ~room(mary) [subsumption resolution 237,226]
240. ~predm(paul) | paul != sK1 [subsumption resolution 239,225]
242. 1 <=> paul = sK1 [avatar definition]
244. paul != sK1 <- (~1) [avatar component clause 242]
246. 2 <=> predm(paul) [avatar definition]
249. ~1 | ~2 [avatar split clause 240,246,242]
250. ~predm(paul) | mary != sK1 | ~room(mary) [subsumption resolution 236,226]
251. ~predm(paul) | mary != sK1 [subsumption resolution 250,225]
253. 3 <=> mary = sK1 [avatar definition]
255. mary != sK1 <- (~3) [avatar component clause 253]
256. ~3 | ~2 [avatar split clause 251,246,253]
257. ~predm(paul) | room(sK1) | ~room(mary) [subsumption resolution 235,226]
258. ~predm(paul) | room(sK1) [subsumption resolution 257,225]
260. 4 <=> room(sK1) [avatar definition]
262. room(sK1) <- (4) [avatar component clause 260]
263. 4 | ~2 [avatar split clause 258,246,260]
265. predm(paul) [resolution 238,226]
269. 2 [avatar split clause 265,246]
306. mary = sK1 | paul = sK1 <- (4) [resolution 227,262]
316. paul = sK1 <- (~3, 4) [subsumption resolution 306,255]
317. $false <- (~1, ~3, 4) [subsumption resolution 316,244]
318. 1 | 3 | ~4 [avatar contradiction clause 317]
319. $false [avatar sat refutation 249,256,263,269,318]
% SZS output end Proof for 2331210483760021814938513
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.032 s
% ------------------------------
% ------------------------------
| 0.138366 |
There is a room.
Everyone in the room practices calligraphy if they makes homemade pastries.
Everyone in the room does not play as a goalkeeper for a local amateur soccer team or practices calligraphy.
If someone hosts regular workshops on creative writing then he/she can play the harmonica or is right-handed or both and vice versa.
Everyone in the room does not collect rare minerals or does not build model airplanes.
Everyone in the room who does not collect rare minerals is not right-handed.
If someone builds model airplanes then he/she is a wine connoisseur and vice versa.
Everyone in the room who does not enjoy mountain biking enjoys camping and organizing outdoor survival workshops and knows morse code.
Everyone in the room owns an extensive assortment of vintage comic book memorabilia, collects rare minerals and does not design and sews custom cosplay costumes for conventions if they enjoys camping and organizing outdoor survival workshops and knows morse code.
Everyone in the room is a wine connoisseur if they does not work as a freelance web developer specializing in e-commerce sites.
Everyone in the room collects rare minerals if they is a wine connoisseur.
Everyone anywhere collects rare minerals only if they works as a freelance web developer specializing in e-commerce sites.
If someone makes homemade pastries then he/she plays as a goalkeeper for a local amateur soccer team and vice versa.
Not everyone in the room who maintains a large, organic vegetable garden year-round is an amateur astronomer who builds and uses custom telescopes.
Everyone in the room does not play as a goalkeeper for a local amateur soccer team or is an amateur astronomer who builds and uses custom telescopes.
Only one person in the room is not a wine connoisseur.
Everyone in the room makes homemade pastries if they plays as a goalkeeper for a local amateur soccer team.
Everyone in the room does not enjoy wildlife photography if they makes homemade pastries.
|
Everyone in the room does not play as a goalkeeper for a local amateur soccer team.
|
entailment
|
(there_is_a_room)&
(![X]:(room(X)=>(((makes_homemade_pastries(X))=>(practices_calligraphy(X))))))&
(![X]:(room(X)=>(((practices_calligraphy(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))&
((![X]:((hosts_regular_workshops_on_creative_writing(X))<=>(((can_play_the_harmonica(X))|(is_right-handed(X)))))))&
(![X]:(room(X)=>(((does_not_build_model_airplanes(X))|(does_not_collect_rare_minerals(X))))))&
(![X]:(room(X)=>(((does_not_collect_rare_minerals(X))=>(is_not_right-handed(X))))))&
((![X]:((builds_model_airplanes(X))<=>(is_a_wine_connoisseur(X)))))&
(![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(knows_morse_code(X))))))))&
(![X]:(room(X)=>(((((enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(knows_morse_code(X))))=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(collects_rare_minerals(X))&(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))))&
(![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(is_a_wine_connoisseur(X))))))&
(![X]:(room(X)=>(((is_a_wine_connoisseur(X))=>(collects_rare_minerals(X))))))&
(![X]:(anywhere(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))<=(collects_rare_minerals(X))))))&
((![X]:((makes_homemade_pastries(X))<=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))&
(~![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))&
(![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))&
(((?[X]:(room(X)&is_not_a_wine_connoisseur(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_a_wine_connoisseur(X))&(is_not_a_wine_connoisseur(Y)))=>(X=Y)))))&
(![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(makes_homemade_pastries(X))))))&
(![X]:(room(X)=>(((makes_homemade_pastries(X))=>(does_not_enjoy_wildlife_photography(X))))))&
(((?[X]:(anywhere(X)&((has_a_specialized_collection_of_handmade_artisan_pottery(X))<~>(collects_rare_minerals(X)))))&(![X,Y]:((anywhere(X)&anywhere(Y)&(((has_a_specialized_collection_of_handmade_artisan_pottery(X))<~>(collects_rare_minerals(X))))&(((has_a_specialized_collection_of_handmade_artisan_pottery(Y))<~>(collects_rare_minerals(Y)))))=>(X=Y)))))&
(![X]:(~room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_host_regular_workshops_on_creative_writing(X))))))
|
(there_is_a_room)&
![X]:(room(X)=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))
|
[
"p0",
"p4",
"p6",
"p10",
"p13",
"p14",
"p15",
"hypothesis"
] |
% SZS status Unsatisfiable for 617615419823861998650611
% SZS output start Proof for 617615419823861998650611
44. there_is_a_room [input p0]
48. ! [X0] : (room(X0) => (~predq(X0) | ~predg(X0))) [input p4]
50. ! [X0] : (predg(X0) <=> predd(X0)) [input p6]
54. ! [X0] : (room(X0) => (predd(X0) => predq(X0))) [input p10]
57. ~! [X0] : (room(X0) => (preds(X0) => predi(X0))) [input p13]
58. ! [X0] : (room(X0) => (~predm(X0) | predi(X0))) [input p14]
59. ! [X0,X1] : ((~predd(X1) & ~predd(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predd(X0) & room(X0)) [input p15]
64. ~(! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room) [input hypothesis]
65. ! [X0,X1] : ((~predd(X1) & ~predd(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~predd(X2) & room(X2)) [rectify 59]
67. ! [X0] : (predd(X0) => predg(X0)) [unused predicate definition removal 50]
74. ~! [X0] : (room(X0) => predi(X0)) [pure predicate removal 57]
155. ! [X0] : ((~predq(X0) | ~predg(X0)) | ~room(X0)) [ennf transformation 48]
156. ! [X0] : (~predq(X0) | ~predg(X0) | ~room(X0)) [flattening 155]
157. ! [X0] : (predg(X0) | ~predd(X0)) [ennf transformation 67]
158. ! [X0] : ((predq(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 54]
159. ! [X0] : (predq(X0) | ~predd(X0) | ~room(X0)) [flattening 158]
161. ? [X0] : (~predi(X0) & room(X0)) [ennf transformation 74]
162. ! [X0] : ((~predm(X0) | predi(X0)) | ~room(X0)) [ennf transformation 58]
163. ! [X0] : (~predm(X0) | predi(X0) | ~room(X0)) [flattening 162]
164. ! [X0,X1] : (X0 = X1 | (predd(X1) | predd(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~predd(X2) & room(X2)) [ennf transformation 65]
165. ! [X0,X1] : (X0 = X1 | predd(X1) | predd(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~predd(X2) & room(X2)) [flattening 164]
170. ? [X0] : (predm(X0) & room(X0)) | ~there_is_a_room [ennf transformation 64]
172. ? [X0] : (~predi(X0) & room(X0)) => (~predi(sK0) & room(sK0)) [choice axiom]
173. ~predi(sK0) & room(sK0) [skolemisation 161,172]
174. ? [X2] : (~predd(X2) & room(X2)) => (~predd(sK1) & room(sK1)) [choice axiom]
175. ! [X0,X1] : (X0 = X1 | predd(X1) | predd(X0) | ~room(X1) | ~room(X0)) & (~predd(sK1) & room(sK1)) [skolemisation 165,174]
180. ? [X0] : (predm(X0) & room(X0)) => (predm(sK3) & room(sK3)) [choice axiom]
181. (predm(sK3) & room(sK3)) | ~there_is_a_room [skolemisation 170,180]
263. there_is_a_room [cnf transformation 44]
264. ~predq(X0) | ~predg(X0) | ~room(X0) [cnf transformation 156]
265. ~predd(X0) | predg(X0) [cnf transformation 157]
266. ~predd(X0) | predq(X0) | ~room(X0) [cnf transformation 159]
268. room(sK0) [cnf transformation 173]
269. ~predi(sK0) [cnf transformation 173]
270. ~predm(X0) | predi(X0) | ~room(X0) [cnf transformation 163]
273. ~room(X1) | predd(X1) | predd(X0) | X0 = X1 | ~room(X0) [cnf transformation 175]
282. room(sK3) | ~there_is_a_room [cnf transformation 181]
283. predm(sK3) | ~there_is_a_room [cnf transformation 181]
300. predm(sK3) [subsumption resolution 283,263]
301. room(sK3) [subsumption resolution 282,263]
312. predi(sK3) | ~room(sK3) [resolution 270,300]
313. predi(sK3) [subsumption resolution 312,301]
359. predd(sK0) | predd(X0) | sK0 = X0 | ~room(X0) [resolution 273,268]
363. 5 <=> ! [X0] : (predd(X0) | ~room(X0) | sK0 = X0) [avatar definition]
364. ~room(X0) | predd(X0) | sK0 = X0 <- (5) [avatar component clause 363]
366. 6 <=> predd(sK0) [avatar definition]
368. predd(sK0) <- (6) [avatar component clause 366]
369. 5 | 6 [avatar split clause 359,366,363]
375. 8 <=> predd(sK3) [avatar definition]
377. predd(sK3) <- (8) [avatar component clause 375]
381. predd(sK3) | sK0 = sK3 <- (5) [resolution 364,301]
388. 9 <=> sK0 = sK3 [avatar definition]
390. sK0 = sK3 <- (9) [avatar component clause 388]
391. 9 | 8 | ~5 [avatar split clause 381,363,375,388]
395. predq(sK0) | ~room(sK0) <- (6) [resolution 368,266]
396. predg(sK0) <- (6) [resolution 368,265]
397. predq(sK0) <- (6) [subsumption resolution 395,268]
399. ~predg(sK0) | ~room(sK0) <- (6) [resolution 397,264]
408. ~room(sK0) <- (6) [subsumption resolution 399,396]
409. $false <- (6) [subsumption resolution 408,268]
410. ~6 [avatar contradiction clause 409]
415. predq(sK3) | ~room(sK3) <- (8) [resolution 377,266]
416. predg(sK3) <- (8) [resolution 377,265]
417. predq(sK3) <- (8) [subsumption resolution 415,301]
425. ~predg(sK3) | ~room(sK3) <- (8) [resolution 417,264]
434. ~room(sK3) <- (8) [subsumption resolution 425,416]
435. $false <- (8) [subsumption resolution 434,301]
436. ~8 [avatar contradiction clause 435]
439. predi(sK0) <- (9) [backward demodulation 313,390]
442. $false <- (9) [subsumption resolution 439,269]
443. ~9 [avatar contradiction clause 442]
445. $false [avatar sat refutation 369,391,410,436,443]
% SZS output end Proof for 617615419823861998650611
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.146645 |
Nanette, Daniel, Melissa, Dennis are the only persons in the room.
It is not the case that Daniel enjoys stargazing unless Melissa is a client of Meta.
Either Nanette enjoys stargazing or it is not the case that it is not the case that Melissa is a client of Meta but not both.
If Daniel is an avid mountain climber who has scaled several peaks then Daniel enjoys stargazing.
If Nanette is a client of Meta then only one person outside the room is a client of Meta.
Melissa is an avid mountain climber who has scaled several peaks.
Daniel practices urban gardening.
Melissa enjoys stargazing.
Only one person outside the room is a client of Meta.
Daniel is a client of Meta.
|
Daniel is an avid mountain climber who has scaled several peaks.
|
neutral
|
room(nanette)&room(daniel)&room(melissa)&room(dennis)&(![X]:(room(X)=>(X='nanette'|X='daniel'|X='melissa'|X='dennis')))&
(~(is_a_client_of_Meta(melissa))=>(~(enjoys_stargazing(daniel))))&
((enjoys_stargazing(nanette))<~>(~(~(is_a_client_of_Meta(melissa)))))&
((is_an_avid_mountain_climber_who_has_scaled_several_peaks(daniel))=>(enjoys_stargazing(daniel)))&
((is_a_client_of_Meta(nanette))=>(((?[X]:(~room(X)&is_a_client_of_Meta(X)))&(![X,Y]:((~room(X)&~room(Y)&(is_a_client_of_Meta(X))&(is_a_client_of_Meta(Y)))=>(X=Y))))))&
(is_an_avid_mountain_climber_who_has_scaled_several_peaks(melissa))&
(practices_urban_gardening(daniel))&
(enjoys_stargazing(melissa))&
(((?[X]:(~room(X)&is_a_client_of_Meta(X)))&(![X,Y]:((~room(X)&~room(Y)&(is_a_client_of_Meta(X))&(is_a_client_of_Meta(Y)))=>(X=Y)))))&
(is_a_client_of_Meta(daniel))&
(enjoys_stargazing(daniel))
|
room(nanette)&room(daniel)&room(melissa)&room(dennis)&(![X]:(room(X)=>(X='nanette'|X='daniel'|X='melissa'|X='dennis')))&
is_an_avid_mountain_climber_who_has_scaled_several_peaks(daniel)
|
[] | null | 0.091331 |
Irene collects vintage vinyl records.
Mabelle enjoys watercolor painting.
Candace is dedicated to sustainable living and zero-waste practices or enjoys making ceramics or both.
William composes and performs experimental electronic music or is dedicated to sustainable living and zero-waste practices or both.
Irene reads mystery novels.
|
William composes and performs experimental electronic music.
|
neutral
|
room(mabelle)&room(candace)&room(irene)&room(william)&(![X]:(room(X)=>(X='mabelle'|X='candace'|X='irene'|X='william')))&
(collects_vintage_vinyl_records(irene))&
(enjoys_watercolor_painting(mabelle))&
(((is_dedicated_to_sustainable_living_and_zero-waste_practices(candace))|(enjoys_making_ceramics(candace))))&
(((composes_and_performs_experimental_electronic_music(william))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(william))))&
(reads_mystery_novels(irene))
|
room(mabelle)&room(candace)&room(irene)&room(william)&(![X]:(room(X)=>(X='mabelle'|X='candace'|X='irene'|X='william')))&
composes_and_performs_experimental_electronic_music(william)
|
[] | null | 0.401445 |
Ray is the only person in the room.
No one in the room does not enjoy watercolor painting or does not maintain a personal blog focused on cybersecurity tips if everyone in the room does not maintain a personal blog focused on cybersecurity tips or enjoys cross-country skiing.
If someone in the room works on fridays then everyone in the room who enjoys cross-country skiing is a dedicated advocate for digital privacy and encryption.
At least one person in the room travels domestically frequently, is a dedicated advocate for digital privacy and encryption and uses contact lenses.
Everyone in the room maintains a personal blog focused on cybersecurity tips or does not enjoy wildlife photography.
Ray does not enjoy wildlife photography.
|
Ray enjoys watercolor painting.
|
neutral
|
room(ray)&(![X]:(room(X)=>(X='ray')))&
((![X]:(room(X)=>(((enjoys_cross-country_skiing(X))|(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))))=>(~?[X]:(room(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_enjoy_watercolor_painting(X)))))))&
((?[X]:(room(X)&(works_on_fridays(X))))=>(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))&
(((?[X]:(room(X)&((travels_domestically_frequently(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(uses_contact_lenses(X)))))))&
(![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))&
(does_not_enjoy_wildlife_photography(ray))&
(![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))&
(makes_homemade_pastries(ray))&
(?[X]:(room(X)&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))&
(![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(~((works_on_fridays(X))|(enjoys_watercolor_painting(X))))))))&
(![X]:(~room(X)=>(((~((works_on_fridays(X))|(enjoys_watercolor_painting(X))))=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))&
(~![X]:(~room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(enjoys_macrame(X))))))&
(~(((does_not_enjoy_macrame(ray))<~>(enjoys_watercolor_painting(ray)))))&
(((has_a_pet_dog(ray))<~>(owns_an_Android_phone(ray))))&
(![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(has_a_pet_dog(X))))))&
(maintains_a_personal_blog_focused_on_cybersecurity_tips(ray))&
(~![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(((does_not_work_on_fridays(X))<~>(does_not_enjoy_macrame(X))))))))&
(![X]:(room(X)=>(((owns_an_Android_phone(X))=>(((has_a_pet_dog(X))|(enjoys_watercolor_painting(X))))))))
|
room(ray)&(![X]:(room(X)=>(X='ray')))&
enjoys_watercolor_painting(ray)
|
[] | null | 0 |
Larry is the only person in the room. If 'Larry is a client of Costco' then 'if someone works as a freelance web developer specializing in e-commerce sites then he/she does not practice digital art'. Larry who practices digital art has completed a triathlon. Larry has completed a triathlon. Larry who practices zumba can play the guitar. If someone practices graffiti art then he/she enjoys camping and organizing outdoor survival workshops and vice versa. Larry who practices graffiti art creates augmented reality experiences for mobile applications. If someone has completed a triathlon then he/she practices graffiti art. Larry is an expert in identifying and foraging wild edible plants. If someone neither enjoys kayaking and exploring remote waterways nor practices digital art then he/she collects first edition books.
|
Larry works as a freelance web developer specializing in e-commerce sites.
|
neutral
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
((is_a_client_of_Costco(larry))=>((![X]:((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(does_not_practice_digital_art(X))))))&
((practices_digital_art(larry))&(has_completed_a_triathlon(larry)))&
(has_completed_a_triathlon(larry))&
((practices_zumba(larry))&(can_play_the_guitar(larry)))&
((![X]:((practices_graffiti_art(X))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))&
((practices_graffiti_art(larry))&(creates_augmented_reality_experiences_for_mobile_applications(larry)))&
((![X]:((has_completed_a_triathlon(X))=>(practices_graffiti_art(X)))))&
(is_an_expert_in_identifying_and_foraging_wild_edible_plants(larry))&
((![X]:((~((enjoys_kayaking_and_exploring_remote_waterways(X))|(practices_digital_art(X))))=>(collects_first_edition_books(X)))))&
(has_a_curated_collection_of_mid-century_modern_furniture(larry))&
(is_a_member_of_a_local_theater_group_specializing_in_improv(larry))&
((practices_graffiti_art(larry))&(streams_on_Twitch(larry)))&
(~(does_not_stream_on_Twitch(larry)))&
(?[X]:(anywhere(X)&(practices_graffiti_art(X))))&
((![X]:((practices_zumba(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))&
(collects_first_edition_books(larry))&
(practices_zumba(larry))&
(enjoys_kayaking_and_exploring_remote_waterways(larry))&
(~![X]:(room(X)=>(((practices_digital_art(X))=>(does_not_enjoy_rooftop_gardening(X))))))&
(enjoys_camping_and_organizing_outdoor_survival_workshops(larry))&
(collects_action_figures(larry))&
(drives_a_hybrid_car(larry))&
((practices_digital_art(larry))&(enjoys_kayaking_and_exploring_remote_waterways(larry)))&
(enjoys_kayaking(larry))&
(creates_augmented_reality_experiences_for_mobile_applications(larry))&
(~((?[X,Y]:(anywhere(X)&anywhere(Y)&(streams_on_Twitch(X)&streams_on_Twitch(Y))&(X!=Y)))))&
(~(does_not_drive_a_hybrid_car(larry)))
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(larry)
|
[] | null | 0.684711 |
Genia is the only person in the room.
If 'everyone outside the room hosts regular game nights featuring complex strategy games' then 'everyone in the room writes and illustrates their own graphic novels if they knows morse code'.
'Genia has a tattoo' unless 'everyone in the room has a specialized collection of handmade artisan pottery or does not enjoy watercolor painting'.
'Someone in the room enjoys watercolor painting' only if 'it is true that 'Genia neither collects vintage vinyl records nor is a culinary enthusiast who experiments with international cuisines''.
If 'Genia regularly goes on multi-day backpacking trips in national parks' then 'someone anywhere enjoys stand-up paddleboarding'.
Everyone in the room who can play the flute enjoys snowboarding.
If someone has a specialized collection of handmade artisan pottery then he/she has a tattoo.
Genia uses an ios phone.
Genia does not know morse code.
Everyone anywhere is passionate about collecting and restoring classic cars if they uses contact lenses.
Everyone anywhere enjoys watercolor painting if they is passionate about collecting and restoring classic cars.
Everyone in the room does not host regular workshops on creative writing if they enjoys watercolor painting.
Genia hosts regular workshops on creative writing.
Everyone outside the room knows morse code or does not enjoy coding in Python.
If someone regularly goes on multi-day backpacking trips in national parks then he/she regularly contributes to tech forums and online communities.
Someone anywhere enjoys stand-up paddleboarding.
Everyone in the room who is passionate about collecting and restoring classic cars works as a freelance web developer specializing in e-commerce sites and is a culinary enthusiast who experiments with international cuisines.
Everyone in the room hosts regular game nights featuring complex strategy games if they works as a freelance web developer specializing in e-commerce sites and is a culinary enthusiast who experiments with international cuisines.
Everyone in the room does not make homemade pastries if they collects modern art.
Genia enjoys stand-up paddleboarding.
|
Genia has a tattoo.
|
neutral
|
room(genia)&(![X]:(room(X)=>(X='genia')))&
((![X]:(~room(X)=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))=>(![X]:(room(X)=>(((knows_morse_code(X))=>(writes_and_illustrates_their_own_graphic_novels(X)))))))&
(~(![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))=>(has_a_tattoo(genia)))&
((?[X]:(room(X)&(enjoys_watercolor_painting(X))))=>(~((collects_vintage_vinyl_records(genia))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(genia)))))&
((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(genia))=>(?[X]:(anywhere(X)&(enjoys_stand-up_paddleboarding(X)))))&
(![X]:(room(X)=>(((can_play_the_flute(X))=>(enjoys_snowboarding(X))))))&
((![X]:((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(has_a_tattoo(X)))))&
(uses_an_ios_phone(genia))&
(does_not_know_morse_code(genia))&
(![X]:(anywhere(X)=>(((uses_contact_lenses(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))&
(![X]:(anywhere(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(enjoys_watercolor_painting(X))))))&
(![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(does_not_host_regular_workshops_on_creative_writing(X))))))&
(hosts_regular_workshops_on_creative_writing(genia))&
(![X]:(~room(X)=>(((does_not_enjoy_coding_in_Python(X))|(knows_morse_code(X))))))&
((![X]:((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X)))))&
(?[X]:(anywhere(X)&(enjoys_stand-up_paddleboarding(X))))&
(![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))))&
(![X]:(room(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))&
(![X]:(room(X)=>(((collects_modern_art(X))=>(does_not_make_homemade_pastries(X))))))&
(enjoys_stand-up_paddleboarding(genia))
|
room(genia)&(![X]:(room(X)=>(X='genia')))&
has_a_tattoo(genia)
|
[] | null | 0.000948 |
There is a room.
More than one person anywhere is a quiet old person.
Only one person outside the room is a tall quiet old person.
Someone who is a old tall quiet person is richer than someone who is not old, not quiet.
Someone who is a tall person is older than someone who is quieter than Prince.
Someone in the room is not quiet.
If someone is a quiet person then he/she is older than Prince.
Someone in the room is not not old.
Someone who is older than Prince and is quieter than Robert is richer than someone who is tall.
|
Everyone in the room is a old person or is quieter than Prince or both.
|
neutral
|
(there_is_a_room)&
((?[X,Y]:(anywhere(X)&anywhere(Y)&(quiet(X)&old(X)&person(X)&quiet(Y)&old(Y)&person(Y))&(X!=Y))))&
(((?[X]:(~room(X)&tall(X)&quiet(X)&old(X)&person(X)))&(![X,Y]:((~room(X)&~room(Y)&(tall(X)&quiet(X)&old(X)&person(X))&(tall(Y)&quiet(Y)&old(Y)&person(Y)))=>(X=Y)))))&
(?[X,Y]:((old(X)&tall(X)&quiet(X)&person(X))&(~old(Y)&~quiet(Y))&(richer(X,Y))))&
(?[X,Y]:((tall(X)&person(X))&(quieter(prince,Y))&(older(X,Y))))&
(?[X]:(room(X)&(~quiet(X))))&
((![X]:((quiet(X)&person(X))=>(older(prince,X)))))&
(?[X]:(room(X)&(~~old(X))))&
(?[X,Y]:((((older(prince,X))&(quieter(robert,X))))&(tall(Y))&(richer(X,Y))))&
(?[X,Y]:((((richer(robert,X))&(quiet(X)&person(X))&(richer(prince,X))))&(quiet(Y)&old(Y)&person(Y))&(richer(X,Y))))&
((![X]:((richer(prince,X))=>(quieter(robert,X)))))&
(?[X,Y]:((quieter(robert,X))&(old(Y)&person(Y))&(richer(X,Y))))
|
(there_is_a_room)&
![X]:(room(X)=>(((old(X)&person(X))|(quieter(prince,X)))))
|
[] | null | 0.326885 |
Milford, Lynn, Maria, Loren, Hugh are the only persons in the room.
Everyone in the room who owns a 3D printer enjoys virtual reality gaming unless everyone in the room owns a 3D printer or does not practice archery.
If someone owns a 3D printer then he/she has a vast collection of first-edition science fiction novels if Milford does not own a telescope.
Milford enjoys virtual reality gaming, is a professional photographer specializing in portrait photography and does not drive a hybrid car.
Someone in the room is a client of Costco.
Everyone in the room is a client of Costco if they is a night owl and vice versa.
Milford owns a 3D printer.
At least one person in the room is a night owl.
Everyone in the room is a client of Costco or is not a cybersecurity expert.
Everyone in the room is a client of Costco only if they neither has a vast collection of first-edition science fiction novels nor plays eSports competitively.
Milford collects rare minerals or creates large-scale murals for public art installations or both.
Everyone outside the room owns a microscope if they owns a microscope, creates large-scale murals for public art installations or is a cybersecurity expert and vice versa.
Milford plays eSports competitively.
|
Milford is a client of Costco.
|
contradiction
|
room(milford)&room(lynn)&room(maria)&room(loren)&room(hugh)&(![X]:(room(X)=>(X='milford'|X='lynn'|X='maria'|X='loren'|X='hugh')))&
(~(![X]:(room(X)=>(((does_not_practice_archery(X))|(owns_a_3D_printer(X))))))=>(![X]:(room(X)=>(((owns_a_3D_printer(X))=>(enjoys_virtual_reality_gaming(X)))))))&
((does_not_own_a_telescope(milford))=>((![X]:((owns_a_3D_printer(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))&
(((enjoys_virtual_reality_gaming(milford))&(is_a_professional_photographer_specializing_in_portrait_photography(milford))&(does_not_drive_a_hybrid_car(milford))))&
(?[X]:(room(X)&(is_a_client_of_Costco(X))))&
(![X]:(room(X)=>(((is_a_client_of_Costco(X))<=>(is_a_night_owl(X))))))&
(owns_a_3D_printer(milford))&
(((?[X]:(room(X)&is_a_night_owl(X)))))&
(![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(is_a_client_of_Costco(X))))))&
(![X]:(room(X)=>(((~((has_a_vast_collection_of_first-edition_science_fiction_novels(X))|(plays_eSports_competitively(X))))<=(is_a_client_of_Costco(X))))))&
(((collects_rare_minerals(milford))|(creates_large-scale_murals_for_public_art_installations(milford))))&
(![X]:(~room(X)=>(((owns_a_microscope(X))<=>(((owns_a_microscope(X))|(creates_large-scale_murals_for_public_art_installations(X))|(is_a_cybersecurity_expert(X))))))))&
(enjoys_bird_watching(milford))&
(![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(((does_not_practice_pilates(X))|(is_a_client_of_Costco(X))))))))&
(owns_a_telescope(milford))&
(collects_rare_minerals(milford))&
(plays_eSports_competitively(milford))&
(![X]:(room(X)=>(((owns_a_3D_printer(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))&
(enjoys_virtual_reality_gaming(milford))&
(is_dedicated_to_sustainable_living_and_zero-waste_practices(milford))&
(![X]:(anywhere(X)=>(((((owns_a_microscope(X))&(enjoys_bird_watching(X))))=>(is_a_client_of_Costco(X))))))&
(![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(owns_a_3D_printer(X))))))&
(![X]:(room(X)=>(((~((plays_eSports_competitively(X))|(owns_a_telescope(X))))=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))&
(((?[X]:(room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(Y)))=>(X=Y)))))&
(((?[X]:(room(X)&is_a_professional_photographer_specializing_in_portrait_photography(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_professional_photographer_specializing_in_portrait_photography(X))&(is_a_professional_photographer_specializing_in_portrait_photography(Y)))=>(X=Y)))))&
(is_not_a_cybersecurity_expert(milford))&
(~![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_enjoy_bird_watching(X))))))
|
room(milford)&room(lynn)&room(maria)&room(loren)&room(hugh)&(![X]:(room(X)=>(X='milford'|X='lynn'|X='maria'|X='loren'|X='hugh')))&
is_a_client_of_Costco(milford)
|
[
"p0",
"p9",
"p16",
"hypothesis"
] |
% SZS status Unsatisfiable for 774676061462406616445629
% SZS output start Proof for 774676061462406616445629
44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
53. ! [X0] : (room(X0) => (predj(X0) => ~(predn(X0) | predh(X0)))) [input p9]
60. predn(mary) [input p16]
71. predj(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
84. ! [X0] : (room(X0) => (predj(X0) => ~predn(X0))) [pure predicate removal 53]
157. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
158. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 157]
162. ! [X0] : ((~predn(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 84]
163. ! [X0] : (~predn(X0) | ~predj(X0) | ~room(X0)) [flattening 162]
175. predj(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 71]
176. predj(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 175]
272. room(mary) [cnf transformation 158]
288. ~predn(X0) | ~predj(X0) | ~room(X0) [cnf transformation 163]
294. predn(mary) [cnf transformation 60]
314. predj(mary) [cnf transformation 176]
324. ~predj(mary) | ~room(mary) [resolution 288,294]
325. ~room(mary) [subsumption resolution 324,314]
326. $false [subsumption resolution 325,272]
% SZS output end Proof for 774676061462406616445629
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.041 s
% ------------------------------
% ------------------------------
| 0 |
There is a room.
If someone is liked by Maria then he/she does not like Karen and vice versa.
Everyone in the room who does not like Donald is not liked by Karen or does not like Maria or both.
Everyone outside the room who is not liked by Karen or does not like Maria or both is not liked by Karen, does not like Maria and likes Donald.
Everyone outside the room is not liked by Karen, does not like Maria and likes Donald if they does not like James and vice versa.
Everyone in the room does not like James only if they does not like Donald.
Everyone in the room who does not like Donald is liked by Donald.
If someone is not liked by Maria and is liked by James then he/she does not like Donald or likes Karen or both and vice versa.
Someone in the room does not like James.
Everyone in the room is liked by Maria, is liked by Donald and likes Donald if they is not liked by Karen.
Not everyone in the room who is liked by Maria, is liked by Donald and likes Donald likes Karen.
Everyone outside the room who either is not liked by Maria or is liked by Karen but not both is not liked by Karen and is not liked by Donald.
Everyone in the room likes Karen or is liked by Irma or both if they is not liked by Karen and is not liked by Donald.
|
Everyone in the room likes Maria.
|
contradiction
|
(there_is_a_room)&
((![X]:((like(X,maria))<=>(~like(karen,X)))))&
(![X]:(room(X)=>(((~like(donald,X))=>(((~like(X,karen))|(~like(maria,X))))))))&
(![X]:(~room(X)=>(((((~like(X,karen))|(~like(maria,X))))=>(((~like(X,karen))&(~like(maria,X))&(like(donald,X))))))))&
(![X]:(~room(X)=>(((((~like(X,karen))&(~like(maria,X))&(like(donald,X))))<=>(~like(james,X))))))&
(![X]:(room(X)=>(((~like(donald,X))<=(~like(james,X))))))&
(![X]:(room(X)=>(((~like(donald,X))=>(like(X,donald))))))&
((![X]:((((~like(X,maria))&(like(X,james))))<=>(((~like(donald,X))|(like(karen,X)))))))&
(?[X]:(room(X)&(~like(james,X))))&
(![X]:(room(X)=>(((~like(X,karen))=>(((like(X,maria))&(like(X,donald))&(like(donald,X))))))))&
(~![X]:(room(X)=>(((((like(X,maria))&(like(X,donald))&(like(donald,X))))=>(like(karen,X))))))&
(![X]:(~room(X)=>(((((~like(X,maria))<~>(like(X,karen))))=>(((~like(X,karen))&(~like(X,donald))))))))&
(![X]:(room(X)=>(((((~like(X,karen))&(~like(X,donald))))=>(((like(karen,X))|(like(X,irma))))))))
|
(there_is_a_room)&
![X]:(room(X)=>(like(maria,X)))
|
[
"p1",
"p3",
"p4",
"p5",
"p7",
"p9",
"hypothesis"
] |
% SZS status Unsatisfiable for 5826844158213993566257686
% SZS output start Proof for 5826844158213993566257686
45. ! [X0] : (like(X0,paul) <=> ~like(alice,X0)) [input p1]
47. ! [X0] : (~room(X0) => ((~like(paul,X0) | ~like(X0,alice)) => (like(fred,X0) & ~like(paul,X0) & ~like(X0,alice)))) [input p3]
48. ! [X0] : (~room(X0) => ((like(fred,X0) & ~like(paul,X0) & ~like(X0,alice)) <=> ~like(john,X0))) [input p4]
49. ! [X0] : (room(X0) => (~like(john,X0) => ~like(fred,X0))) [input p5]
51. ! [X0] : ((like(X0,john) & ~like(X0,paul)) <=> (like(alice,X0) | ~like(fred,X0))) [input p7]
53. ! [X0] : (room(X0) => (~like(X0,alice) => (like(fred,X0) & like(X0,fred) & like(X0,paul)))) [input p9]
57. ! [X0] : (room(X0) => like(paul,X0)) & there_is_a_room [input hypothesis]
59. ! [X0] : (room(X0) => like(paul,X0)) [pure predicate removal 57]
134. ! [X0] : (((like(fred,X0) & ~like(paul,X0) & ~like(X0,alice)) | (like(paul,X0) & like(X0,alice))) | room(X0)) [ennf transformation 47]
135. ! [X0] : ((like(fred,X0) & ~like(paul,X0) & ~like(X0,alice)) | (like(paul,X0) & like(X0,alice)) | room(X0)) [flattening 134]
136. ! [X0] : (((like(fred,X0) & ~like(paul,X0) & ~like(X0,alice)) <=> ~like(john,X0)) | room(X0)) [ennf transformation 48]
137. ! [X0] : ((~like(fred,X0) | like(john,X0)) | ~room(X0)) [ennf transformation 49]
138. ! [X0] : (~like(fred,X0) | like(john,X0) | ~room(X0)) [flattening 137]
141. ! [X0] : (((like(fred,X0) & like(X0,fred) & like(X0,paul)) | like(X0,alice)) | ~room(X0)) [ennf transformation 53]
142. ! [X0] : ((like(fred,X0) & like(X0,fred) & like(X0,paul)) | like(X0,alice) | ~room(X0)) [flattening 141]
149. ! [X0] : (like(paul,X0) | ~room(X0)) [ennf transformation 59]
151. ! [X0] : ((like(X0,paul) | like(alice,X0)) & (~like(alice,X0) | ~like(X0,paul))) [nnf transformation 45]
152. ! [X0] : ((((like(fred,X0) & ~like(paul,X0) & ~like(X0,alice)) | like(john,X0)) & (~like(john,X0) | (~like(fred,X0) | like(paul,X0) | like(X0,alice)))) | room(X0)) [nnf transformation 136]
153. ! [X0] : ((((like(fred,X0) & ~like(paul,X0) & ~like(X0,alice)) | like(john,X0)) & (~like(john,X0) | ~like(fred,X0) | like(paul,X0) | like(X0,alice))) | room(X0)) [flattening 152]
154. ! [X0] : (((like(X0,john) & ~like(X0,paul)) | (~like(alice,X0) & like(fred,X0))) & ((like(alice,X0) | ~like(fred,X0)) | (~like(X0,john) | like(X0,paul)))) [nnf transformation 51]
155. ! [X0] : (((like(X0,john) & ~like(X0,paul)) | (~like(alice,X0) & like(fred,X0))) & (like(alice,X0) | ~like(fred,X0) | ~like(X0,john) | like(X0,paul))) [flattening 154]
241. ~like(alice,X0) | ~like(X0,paul) [cnf transformation 151]
242. like(X0,paul) | like(alice,X0) [cnf transformation 151]
245. ~like(X0,alice) | like(paul,X0) | room(X0) [cnf transformation 135]
246. ~like(paul,X0) | like(X0,alice) | room(X0) [cnf transformation 135]
248. like(fred,X0) | like(X0,alice) | room(X0) [cnf transformation 135]
250. ~like(john,X0) | ~like(fred,X0) | like(paul,X0) | like(X0,alice) | room(X0) [cnf transformation 153]
252. ~like(paul,X0) | like(john,X0) | room(X0) [cnf transformation 153]
254. ~like(fred,X0) | like(john,X0) | ~room(X0) [cnf transformation 138]
257. ~like(X0,paul) | like(fred,X0) [cnf transformation 155]
260. ~like(alice,X0) | like(X0,john) [cnf transformation 155]
263. like(X0,alice) | like(X0,paul) | ~room(X0) [cnf transformation 142]
276. like(paul,X0) | ~room(X0) [cnf transformation 149]
278. ~like(john,X0) | like(paul,X0) | like(X0,alice) | room(X0) [subsumption resolution 250,248]
279. ~like(john,X0) | like(paul,X0) | room(X0) [subsumption resolution 278,245]
282. like(alice,alice) | ~like(paul,paul) [resolution 242,241]
286. 1 <=> like(paul,paul) [avatar definition]
287. like(paul,paul) <- (1) [avatar component clause 286]
288. ~like(paul,paul) <- (~1) [avatar component clause 286]
290. 2 <=> like(alice,alice) [avatar definition]
292. like(alice,alice) <- (2) [avatar component clause 290]
293. ~1 | 2 [avatar split clause 282,290,286]
294. ~room(paul) <- (~1) [resolution 288,276]
297. like(fred,paul) | ~room(paul) [resolution 257,276]
308. 4 <=> like(paul,john) [avatar definition]
310. like(paul,john) <- (4) [avatar component clause 308]
313. like(paul,john) | like(alice,alice) [resolution 260,242]
315. 2 | 4 [avatar split clause 313,308,290]
320. like(paul,paul) | room(paul) | ~room(alice) [resolution 245,276]
325. room(paul) | ~room(alice) <- (~1) [subsumption resolution 320,288]
326. ~room(alice) <- (~1) [subsumption resolution 325,294]
329. like(john,alice) | room(john) <- (4) [resolution 246,310]
334. 5 <=> room(john) [avatar definition]
336. room(john) <- (5) [avatar component clause 334]
338. 6 <=> like(john,alice) [avatar definition]
340. like(john,alice) <- (6) [avatar component clause 338]
341. 5 | 6 | ~4 [avatar split clause 329,308,338,334]
343. 7 <=> like(fred,paul) [avatar definition]
345. like(fred,paul) <- (7) [avatar component clause 343]
391. 10 <=> like(paul,alice) [avatar definition]
392. ~like(paul,alice) <- (~10) [avatar component clause 391]
393. like(paul,alice) <- (10) [avatar component clause 391]
401. 11 <=> like(alice,john) [avatar definition]
402. ~like(alice,john) <- (~11) [avatar component clause 401]
403. like(alice,john) <- (11) [avatar component clause 401]
407. like(john,paul) | room(paul) | like(alice,paul) [resolution 252,242]
423. like(john,paul) | ~room(paul) <- (7) [resolution 254,345]
503. like(paul,paul) | room(paul) | like(alice,john) [resolution 279,242]
506. like(paul,alice) | room(alice) | like(john,paul) | ~room(john) [resolution 279,263]
511. room(paul) | like(alice,john) <- (~1) [subsumption resolution 503,288]
512. like(alice,john) <- (~1) [subsumption resolution 511,294]
513. 11 | 1 [avatar split clause 512,286,401]
514. like(paul,alice) | like(john,paul) | ~room(john) <- (~1) [subsumption resolution 506,326]
515. like(paul,alice) | like(john,paul) <- (~1, 5) [subsumption resolution 514,336]
517. 13 <=> like(john,paul) [avatar definition]
518. ~like(john,paul) <- (~13) [avatar component clause 517]
520. 13 | 10 | 1 | ~5 [avatar split clause 515,334,286,391,517]
528. ~like(john,paul) <- (11) [resolution 403,241]
532. ~13 | ~11 [avatar split clause 528,401,517]
537. like(paul,paul) | room(paul) <- (10) [resolution 393,245]
546. room(paul) <- (~1, 10) [subsumption resolution 537,288]
547. $false <- (~1, 10) [subsumption resolution 546,294]
548. 1 | ~10 [avatar contradiction clause 547]
560. like(paul,alice) | room(alice) <- (6) [resolution 340,279]
564. room(alice) <- (6, ~10) [subsumption resolution 560,392]
565. $false <- (~1, 6, ~10) [subsumption resolution 564,326]
566. 1 | ~6 | 10 [avatar contradiction clause 565]
568. 15 <=> room(paul) [avatar definition]
590. ~room(paul) <- (7, ~13) [subsumption resolution 423,518]
591. ~15 | ~7 | 13 [avatar split clause 590,517,343,568]
592. room(paul) | like(alice,paul) <- (~13) [subsumption resolution 407,518]
594. 18 <=> like(alice,paul) [avatar definition]
596. like(alice,paul) <- (18) [avatar component clause 594]
597. 18 | 15 | 13 [avatar split clause 592,517,568,594]
615. like(john,paul) | room(paul) <- (1) [resolution 287,252]
618. room(paul) <- (1, ~13) [subsumption resolution 615,518]
625. ~15 | 7 [avatar split clause 297,343,568]
631. 15 | ~1 | 13 [avatar split clause 618,517,286,568]
636. like(alice,john) <- (2) [resolution 292,260]
637. ~like(alice,paul) <- (2) [resolution 292,241]
641. $false <- (2, ~11) [subsumption resolution 636,402]
642. ~2 | 11 [avatar contradiction clause 641]
643. $false <- (2, 18) [subsumption resolution 637,596]
644. ~2 | ~18 [avatar contradiction clause 643]
651. $false [avatar sat refutation 293,315,341,513,520,532,548,566,591,597,625,631,642,644]
% SZS output end Proof for 5826844158213993566257686
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.039 s
% ------------------------------
% ------------------------------
| 0.103321 |
Dolores, Bertie, Bradley, Stella are the only persons in the room.
“Stella either enjoys kayaking and exploring remote waterways or owns an extensive assortment of vintage comic book memorabilia but not both” only if “no one in the room who enjoys making ceramics collects foreign coins”.
If “everyone anywhere does not play the drums or collects action figures” then “Bertie either enjoys skydiving or can play the piano but not both”.
Either “Dolores practices archery” or “everyone in the room does not play the drums or has a saltwater aquarium” but not both.
Either “everyone in the room neither practices archery nor has a saltwater aquarium” or “everyone anywhere does not own an extensive assortment of vintage comic book memorabilia or enjoys stand-up paddleboarding” but not both.
If “Bradley enjoys making ceramics, does not have a curated collection of mid-century modern furniture or is a member of a local theater group specializing in improv” then “everyone in the room enjoys skydiving, enjoys stand-up paddleboarding or does not enjoy kayaking and exploring remote waterways if they does not train for and competes in international triathlons”.
It is not the case that “someone in the room enjoys kayaking and exploring remote waterways”.
|
Dolores enjoys kayaking and exploring remote waterways.
|
contradiction
|
room(dolores)&room(bertie)&room(bradley)&room(stella)&(![X]:(room(X)=>(X='dolores'|X='bertie'|X='bradley'|X='stella')))&
((((enjoys_kayaking_and_exploring_remote_waterways(stella))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(stella))))=>(~?[X]:(room(X)=>(((enjoys_making_ceramics(X))=>(collects_foreign_coins(X)))))))&
((![X]:(anywhere(X)=>(((collects_action_figures(X))|(does_not_play_the_drums(X))))))=>(((enjoys_skydiving(bertie))<~>(can_play_the_piano(bertie)))))&
((practices_archery(dolores))<~>(![X]:(room(X)=>(((has_a_saltwater_aquarium(X))|(does_not_play_the_drums(X)))))))&
((![X]:(room(X)=>(~((practices_archery(X))|(has_a_saltwater_aquarium(X))))))<~>(![X]:(anywhere(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))&
((((enjoys_making_ceramics(bradley))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(bradley))|(is_a_member_of_a_local_theater_group_specializing_in_improv(bradley))))=>(![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))=>(((enjoys_skydiving(X))|(enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))))))&
(![X]:(room(X)=>(((((enjoys_skydiving(X))|(enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))&
(![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))=>(((enjoys_skydiving(X))|(enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))))&
(~![X]:(anywhere(X)=>(((does_not_have_a_piercing(X))<=>(enjoys_making_ceramics(X))))))&
((![X]:((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_not_a_client_of_Meta(X)))))&
((![X]:((trains_for_and_competes_in_international_triathlons(X))<=>(has_a_piercing(X)))))&
(![X]:(anywhere(X)=>(((((is_a_member_of_a_local_theater_group_specializing_in_improv(X))&(collects_action_figures(X))&(develops_open-source_software_projects_in_their_free_time(X))))=>(((does_not_use_contact_lenses(X))|(uses_contact_lenses(X))))))))&
(((?[X]:(room(X)&trains_for_and_competes_in_international_triathlons(X)))&(![X,Y]:((room(X)&room(Y)&(trains_for_and_competes_in_international_triathlons(X))&(trains_for_and_competes_in_international_triathlons(Y)))=>(X=Y)))))&
(develops_open-source_software_projects_in_their_free_time(stella))&
(enjoys_making_ceramics(bertie))&
(~(?[X]:(room(X)&(enjoys_kayaking_and_exploring_remote_waterways(X)))))&
(![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(cannot_play_the_piano(X))))))&
(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(bradley))&
(?[X]:(room(X)&(practices_archery(X))))&
(?[X]:(room(X)&(has_a_curated_collection_of_mid-century_modern_furniture(X))))&
(enjoys_stand-up_paddleboarding(stella))&
(does_not_enjoy_stand-up_paddleboarding(dolores))&
(![X]:(room(X)=>(((collects_foreign_coins(X))<=(does_not_use_contact_lenses(X))))))&
(((?[X]:(~room(X)&((enjoys_skydiving(X))|(enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))&(![X,Y]:((~room(X)&~room(Y)&(((enjoys_skydiving(X))|(enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))&(((enjoys_skydiving(Y))|(enjoys_stand-up_paddleboarding(Y))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(Y)))))=>(X=Y)))))&
(![X]:(room(X)=>(((((develops_open-source_software_projects_in_their_free_time(X))&(enjoys_making_ceramics(X))&(does_not_enjoy_stand-up_paddleboarding(X))))=>(((does_not_play_the_drums(X))|(practices_archery(X))|(trains_for_and_competes_in_international_triathlons(X))))))))&
(![X]:(anywhere(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(uses_contact_lenses(X))))))
|
room(dolores)&room(bertie)&room(bradley)&room(stella)&(![X]:(room(X)=>(X='dolores'|X='bertie'|X='bradley'|X='stella')))&
enjoys_kayaking_and_exploring_remote_waterways(dolores)
|
[
"p0",
"p15",
"hypothesis"
] |
% SZS status Unsatisfiable for 3329093508620696706139424
% SZS output start Proof for 3329093508620696706139424
44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
59. ~? [X0] : (predb(X0) & room(X0)) [input p15]
70. predb(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis]
154. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
155. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 154]
171. ! [X0] : (~predb(X0) | ~room(X0)) [ennf transformation 59]
178. predb(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 70]
179. predb(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 178]
291. room(mary) [cnf transformation 155]
329. ~predb(X0) | ~room(X0) [cnf transformation 171]
351. predb(mary) [cnf transformation 179]
478. ~room(mary) [resolution 329,351]
479. $false [subsumption resolution 478,291]
% SZS output end Proof for 3329093508620696706139424
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.062089 |
Ana, Patricia, Jennifer, Marion are the only persons in the room.
If “everyone in the room does not travel domestically frequently or enjoys skydiving” then “everyone in the room who does not travel domestically frequently collects classic novels”.
“Everyone in the room collects classic novels or does not write in-depth travel guides for off-the-beaten-path destinations” only if “Patricia is a dedicated volunteer for local community service projects”.
If “Jennifer has a tattoo” then “someone in the room collects classic novels and travels domestically frequently”.
If “everyone in the room does not enjoy virtual reality gaming or regularly goes on multi-day backpacking trips in national parks” then “no one in the room does not collect classic novels or does not enjoy stargazing”.
If “no one in the room does not collect classic novels or does not enjoy stargazing” then “Ana enjoys coding in Python”.
“Patricia does not have a tattoo” unless “everyone in the room does not enjoy coding in Python or enjoys skydiving”.
Either “no one in the room hosts regular game nights featuring complex strategy games or does not participate in citizen science projects related to wildlife monitoring” or “everyone outside the room does not travel domestically frequently or does not regularly goes on multi-day backpacking trips in national parks” but not both.
“Not everyone in the room does not collect classic novels or travels domestically frequently” only if “everyone in the room does not collect classic novels only if they enjoys watercolor painting”.
If “everyone in the room does not regularly goes on multi-day backpacking trips in national parks or does not write in-depth travel guides for off-the-beaten-path destinations” then “everyone in the room travels domestically frequently if they reads mystery novels”.
“Everyone in the room does not enjoy origami or enjoys virtual reality gaming” only if “if someone travels domestically frequently then he/she writes poetry and vice versa”.
If someone enjoys skydiving then he/she practices urban gardening.
Everyone in the room enjoys skydiving if they writes and illustrates their own graphic novels.
If someone enjoys virtual reality gaming, is not a night owl or is a night owl then he/she collects classic novels.
Not everyone anywhere writes poetry if they enjoys origami.
Everyone outside the room writes poetry if and only if they practices urban gardening, travels domestically frequently and has a tattoo.
Patricia regularly goes on multi-day backpacking trips in national parks.
Jennifer regularly goes on multi-day backpacking trips in national parks.
|
Patricia collects classic novels.
|
entailment
|
room(ana)&room(patricia)&room(jennifer)&room(marion)&(![X]:(room(X)=>(X='ana'|X='patricia'|X='jennifer'|X='marion')))&
((![X]:(room(X)=>(((enjoys_skydiving(X))|(does_not_travel_domestically_frequently(X))))))=>(![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))=>(collects_classic_novels(X)))))))&
((![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(collects_classic_novels(X))))))=>(is_a_dedicated_volunteer_for_local_community_service_projects(patricia)))&
((has_a_tattoo(jennifer))=>(?[X]:(room(X)&(((collects_classic_novels(X))&(travels_domestically_frequently(X)))))))&
(((![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_enjoy_virtual_reality_gaming(X))))))=>(~?[X]:(room(X)=>(((does_not_enjoy_stargazing(X))|(does_not_collect_classic_novels(X)))))))&
((~?[X]:(room(X)=>(((does_not_enjoy_stargazing(X))|(does_not_collect_classic_novels(X))))))=>(enjoys_coding_in_Python(ana))))&
(~(![X]:(room(X)=>(((enjoys_skydiving(X))|(does_not_enjoy_coding_in_Python(X))))))=>(does_not_have_a_tattoo(patricia)))&
((~?[X]:(room(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))<~>(![X]:(~room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_travel_domestically_frequently(X)))))))&
((~![X]:(room(X)=>(((travels_domestically_frequently(X))|(does_not_collect_classic_novels(X))))))=>(![X]:(room(X)=>(((enjoys_watercolor_painting(X))<=(does_not_collect_classic_novels(X)))))))&
((![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(![X]:(room(X)=>(((reads_mystery_novels(X))=>(travels_domestically_frequently(X)))))))&
((![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_enjoy_origami(X))))))=>((![X]:((travels_domestically_frequently(X))<=>(writes_poetry(X))))))&
((![X]:((enjoys_skydiving(X))=>(practices_urban_gardening(X)))))&
(![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(enjoys_skydiving(X))))))&
((![X]:((((enjoys_virtual_reality_gaming(X))|(is_not_a_night_owl(X))|(is_a_night_owl(X))))=>(collects_classic_novels(X)))))&
(~![X]:(anywhere(X)=>(((enjoys_origami(X))=>(writes_poetry(X))))))&
(![X]:(~room(X)=>(((writes_poetry(X))<=>(((practices_urban_gardening(X))&(travels_domestically_frequently(X))&(has_a_tattoo(X))))))))&
(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(patricia))&
(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(jennifer))&
(![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))<=>(writes_poetry(X))))))&
(does_not_have_a_tattoo(patricia))&
(![X]:(~room(X)=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))&
((enjoys_origami(jennifer))&(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(jennifer)))&
((![X]:((has_a_tattoo(X))=>(travels_domestically_frequently(X)))))
|
room(ana)&room(patricia)&room(jennifer)&room(marion)&(![X]:(room(X)=>(X='ana'|X='patricia'|X='jennifer'|X='marion')))&
collects_classic_novels(patricia)
|
[
"p0",
"hypothesis"
] |
% SZS status Unsatisfiable for 866314077683704633572352
% SZS output start Proof for 866314077683704633572352
44. ! [X0] : (predg(X0) => predc(X0)) & ~predt(fred) & preda(fred) & ! [X0] : (~room(X0) => predi(X0)) & ~predg(paul) & ! [X0] : (room(X0) => (predq(X0) <=> predn(X0))) & predi(fred) & predi(paul) & ! [X0] : (~room(X0) => (predn(X0) <=> (predg(X0) & predc(X0) & predd(X0)))) & ~! [X0] : (anywhere(X0) => (preda(X0) => predn(X0))) & ! [X0] : ((predp(X0) | ~predp(X0) | preds(X0)) => predm(X0)) & ! [X0] : (room(X0) => (predu(X0) => predr(X0))) & ! [X0] : (predr(X0) => predd(X0)) & (! [X0] : (room(X0) => (~preda(X0) | preds(X0))) => ! [X0] : (predc(X0) <=> predn(X0))) & (! [X0] : (room(X0) => (~predi(X0) | ~predt(X0))) => ! [X0] : (room(X0) => (predb(X0) => predc(X0)))) & (~! [X0] : (room(X0) => (~predm(X0) | predc(X0))) => ! [X0] : (room(X0) => (~predm(X0) => predo(X0)))) & (~? [X0] : (room(X0) => (predf(X0) | ~predj(X0))) <~> ! [X0] : (~room(X0) => (~predc(X0) | ~predi(X0)))) & (~! [X0] : (room(X0) => (~predk(X0) | predr(X0))) => ~predg(paul)) & (~? [X0] : (room(X0) => (~predm(X0) | ~prede(X0))) => predk(mary)) & (! [X0] : (room(X0) => (~preds(X0) | predi(X0))) => ~? [X0] : (room(X0) => (~predm(X0) | ~prede(X0)))) & (predg(fred) => ? [X0] : (predc(X0) & predm(X0) & room(X0))) & (! [X0] : (room(X0) => (predm(X0) | ~predt(X0))) => predh(paul)) & (! [X0] : (room(X0) => (~predc(X0) | predr(X0))) => ! [X0] : (room(X0) => (~predc(X0) => predm(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0]
45. ~(predm(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis]
46. ! [X0] : (predg(X0) => predc(X0)) & ~predt(fred) & preda(fred) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : (anywhere(X4) => (preda(X4) => predn(X4))) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X6] : (room(X6) => (predu(X6) => predr(X6))) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => (~preda(X8) | preds(X8))) => ! [X9] : (predc(X9) <=> predn(X9))) & (! [X10] : (room(X10) => (~predi(X10) | ~predt(X10))) => ! [X11] : (room(X11) => (predb(X11) => predc(X11)))) & (~! [X12] : (room(X12) => (~predm(X12) | predc(X12))) => ! [X13] : (room(X13) => (~predm(X13) => predo(X13)))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X21] : (room(X21) => (predm(X21) | ~predt(X21))) => predh(paul)) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44]
47. ! [X0] : (predg(X0) => predc(X0)) & ~predt(fred) & preda(fred) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : (anywhere(X4) => (preda(X4) => predn(X4))) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => (~preda(X8) | preds(X8))) => ! [X9] : (predc(X9) <=> predn(X9))) & (! [X10] : (room(X10) => (~predi(X10) | ~predt(X10))) => ! [X11] : (room(X11) => (predb(X11) => predc(X11)))) & (~! [X12] : (room(X12) => (~predm(X12) | predc(X12))) => ! [X13] : (room(X13) => (~predm(X13) => predo(X13)))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X21] : (room(X21) => (predm(X21) | ~predt(X21))) => predh(paul)) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46]
48. ! [X0] : (predg(X0) => predc(X0)) & ~predt(fred) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : (anywhere(X4) => predn(X4)) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => preds(X8)) => ! [X9] : (predc(X9) <=> predn(X9))) & (! [X10] : (room(X10) => (~predi(X10) | ~predt(X10))) => ! [X11] : (room(X11) => (predb(X11) => predc(X11)))) & (~! [X12] : (room(X12) => (~predm(X12) | predc(X12))) => ! [X13] : (room(X13) => (~predm(X13) => predo(X13)))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X21] : (room(X21) => (predm(X21) | ~predt(X21))) => predh(paul)) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47]
49. ! [X0] : (predg(X0) => predc(X0)) & ~predt(fred) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : (anywhere(X4) => predn(X4)) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => preds(X8)) => ! [X9] : (predc(X9) <=> predn(X9))) & (~! [X12] : (room(X12) => (~predm(X12) | predc(X12))) => ! [X13] : (room(X13) => (~predm(X13) => predo(X13)))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X21] : (room(X21) => (predm(X21) | ~predt(X21))) => predh(paul)) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48]
50. ! [X0] : (predg(X0) => predc(X0)) & ~predt(fred) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : (anywhere(X4) => predn(X4)) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => preds(X8)) => ! [X9] : (predc(X9) <=> predn(X9))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X21] : (room(X21) => (predm(X21) | ~predt(X21))) => predh(paul)) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49]
51. ! [X0] : (predg(X0) => predc(X0)) & ~predt(fred) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : (anywhere(X4) => predn(X4)) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => preds(X8)) => ! [X9] : (predc(X9) <=> predn(X9))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50]
52. ! [X0] : (predg(X0) => predc(X0)) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : (anywhere(X4) => predn(X4)) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => preds(X8)) => ! [X9] : (predc(X9) <=> predn(X9))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51]
53. ! [X0] : (predg(X0) => predc(X0)) & ! [X1] : (~room(X1) => predi(X1)) & ~predg(paul) & ! [X2] : (room(X2) => (predq(X2) <=> predn(X2))) & predi(fred) & predi(paul) & ! [X3] : (~room(X3) => (predn(X3) <=> (predg(X3) & predc(X3) & predd(X3)))) & ~! [X4] : predn(X4) & ! [X5] : ((predp(X5) | ~predp(X5) | preds(X5)) => predm(X5)) & ! [X7] : (predr(X7) => predd(X7)) & (! [X8] : (room(X8) => preds(X8)) => ! [X9] : (predc(X9) <=> predn(X9))) & (~? [X14] : (room(X14) => (predf(X14) | ~predj(X14))) <~> ! [X15] : (~room(X15) => (~predc(X15) | ~predi(X15)))) & (~! [X16] : (room(X16) => (~predk(X16) | predr(X16))) => ~predg(paul)) & (~? [X17] : (room(X17) => (~predm(X17) | ~prede(X17))) => predk(mary)) & (! [X18] : (room(X18) => (~preds(X18) | predi(X18))) => ~? [X19] : (room(X19) => (~predm(X19) | ~prede(X19)))) & (predg(fred) => ? [X20] : (predc(X20) & predm(X20) & room(X20))) & (! [X22] : (room(X22) => (~predc(X22) | predr(X22))) => ! [X23] : (room(X23) => (~predc(X23) => predm(X23)))) & ! [X24] : (room(X24) => (alice = X24 | fred = X24 | paul = X24 | mary = X24)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52]
126. ! [X0] : (predc(X0) | ~predg(X0)) & ! [X1] : (predi(X1) | room(X1)) & ~predg(paul) & ! [X2] : ((predq(X2) <=> predn(X2)) | ~room(X2)) & predi(fred) & predi(paul) & ! [X3] : ((predn(X3) <=> (predg(X3) & predc(X3) & predd(X3))) | room(X3)) & ? [X4] : ~predn(X4) & ! [X5] : (predm(X5) | (~predp(X5) & predp(X5) & ~preds(X5))) & ! [X7] : (predd(X7) | ~predr(X7)) & (! [X9] : (predc(X9) <=> predn(X9)) | ? [X8] : (~preds(X8) & room(X8))) & (! [X14] : ((~predf(X14) & predj(X14)) & room(X14)) <~> ! [X15] : ((~predc(X15) | ~predi(X15)) | room(X15))) & (~predg(paul) | ! [X16] : ((~predk(X16) | predr(X16)) | ~room(X16))) & (predk(mary) | ? [X17] : ((~predm(X17) | ~prede(X17)) | ~room(X17))) & (! [X19] : ((predm(X19) & prede(X19)) & room(X19)) | ? [X18] : ((preds(X18) & ~predi(X18)) & room(X18))) & (? [X20] : (predc(X20) & predm(X20) & room(X20)) | ~predg(fred)) & (! [X23] : ((predm(X23) | predc(X23)) | ~room(X23)) | ? [X22] : ((predc(X22) & ~predr(X22)) & room(X22))) & ! [X24] : ((alice = X24 | fred = X24 | paul = X24 | mary = X24) | ~room(X24)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53]
127. ! [X0] : (predc(X0) | ~predg(X0)) & ! [X1] : (predi(X1) | room(X1)) & ~predg(paul) & ! [X2] : ((predq(X2) <=> predn(X2)) | ~room(X2)) & predi(fred) & predi(paul) & ! [X3] : ((predn(X3) <=> (predg(X3) & predc(X3) & predd(X3))) | room(X3)) & ? [X4] : ~predn(X4) & ! [X5] : (predm(X5) | (~predp(X5) & predp(X5) & ~preds(X5))) & ! [X7] : (predd(X7) | ~predr(X7)) & (! [X9] : (predc(X9) <=> predn(X9)) | ? [X8] : (~preds(X8) & room(X8))) & (! [X14] : (~predf(X14) & predj(X14) & room(X14)) <~> ! [X15] : (~predc(X15) | ~predi(X15) | room(X15))) & (~predg(paul) | ! [X16] : (~predk(X16) | predr(X16) | ~room(X16))) & (predk(mary) | ? [X17] : (~predm(X17) | ~prede(X17) | ~room(X17))) & (! [X19] : (predm(X19) & prede(X19) & room(X19)) | ? [X18] : (preds(X18) & ~predi(X18) & room(X18))) & (? [X20] : (predc(X20) & predm(X20) & room(X20)) | ~predg(fred)) & (! [X23] : (predm(X23) | predc(X23) | ~room(X23)) | ? [X22] : (predc(X22) & ~predr(X22) & room(X22))) & ! [X24] : (alice = X24 | fred = X24 | paul = X24 | mary = X24 | ~room(X24)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 126]
128. ~predm(paul) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45]
129. ~predm(paul) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 128]
130. ? [X18] : (preds(X18) & ~predi(X18) & room(X18)) | ~sP0 [predicate definition introduction]
131. sP1 <=> ! [X14] : (~predf(X14) & predj(X14) & room(X14)) [predicate definition introduction]
132. ! [X0] : (predc(X0) | ~predg(X0)) & ! [X1] : (predi(X1) | room(X1)) & ~predg(paul) & ! [X2] : ((predq(X2) <=> predn(X2)) | ~room(X2)) & predi(fred) & predi(paul) & ! [X3] : ((predn(X3) <=> (predg(X3) & predc(X3) & predd(X3))) | room(X3)) & ? [X4] : ~predn(X4) & ! [X5] : (predm(X5) | (~predp(X5) & predp(X5) & ~preds(X5))) & ! [X7] : (predd(X7) | ~predr(X7)) & (! [X9] : (predc(X9) <=> predn(X9)) | ? [X8] : (~preds(X8) & room(X8))) & (sP1 <~> ! [X15] : (~predc(X15) | ~predi(X15) | room(X15))) & (~predg(paul) | ! [X16] : (~predk(X16) | predr(X16) | ~room(X16))) & (predk(mary) | ? [X17] : (~predm(X17) | ~prede(X17) | ~room(X17))) & (! [X19] : (predm(X19) & prede(X19) & room(X19)) | sP0) & (? [X20] : (predc(X20) & predm(X20) & room(X20)) | ~predg(fred)) & (! [X23] : (predm(X23) | predc(X23) | ~room(X23)) | ? [X22] : (predc(X22) & ~predr(X22) & room(X22))) & ! [X24] : (alice = X24 | fred = X24 | paul = X24 | mary = X24 | ~room(X24)) & room(alice) & room(fred) & room(paul) & room(mary) [definition folding 127,131,130]
142. ! [X0] : (predc(X0) | ~predg(X0)) & ! [X1] : (predi(X1) | room(X1)) & ~predg(paul) & ! [X2] : (((predq(X2) | ~predn(X2)) & (predn(X2) | ~predq(X2))) | ~room(X2)) & predi(fred) & predi(paul) & ! [X3] : (((predn(X3) | (~predg(X3) | ~predc(X3) | ~predd(X3))) & ((predg(X3) & predc(X3) & predd(X3)) | ~predn(X3))) | room(X3)) & ? [X4] : ~predn(X4) & ! [X5] : (predm(X5) | (~predp(X5) & predp(X5) & ~preds(X5))) & ! [X7] : (predd(X7) | ~predr(X7)) & (! [X9] : ((predc(X9) | ~predn(X9)) & (predn(X9) | ~predc(X9))) | ? [X8] : (~preds(X8) & room(X8))) & ((? [X15] : (predc(X15) & predi(X15) & ~room(X15)) | ~sP1) & (! [X15] : (~predc(X15) | ~predi(X15) | room(X15)) | sP1)) & (~predg(paul) | ! [X16] : (~predk(X16) | predr(X16) | ~room(X16))) & (predk(mary) | ? [X17] : (~predm(X17) | ~prede(X17) | ~room(X17))) & (! [X19] : (predm(X19) & prede(X19) & room(X19)) | sP0) & (? [X20] : (predc(X20) & predm(X20) & room(X20)) | ~predg(fred)) & (! [X23] : (predm(X23) | predc(X23) | ~room(X23)) | ? [X22] : (predc(X22) & ~predr(X22) & room(X22))) & ! [X24] : (alice = X24 | fred = X24 | paul = X24 | mary = X24 | ~room(X24)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 132]
143. ! [X0] : (predc(X0) | ~predg(X0)) & ! [X1] : (predi(X1) | room(X1)) & ~predg(paul) & ! [X2] : (((predq(X2) | ~predn(X2)) & (predn(X2) | ~predq(X2))) | ~room(X2)) & predi(fred) & predi(paul) & ! [X3] : (((predn(X3) | ~predg(X3) | ~predc(X3) | ~predd(X3)) & ((predg(X3) & predc(X3) & predd(X3)) | ~predn(X3))) | room(X3)) & ? [X4] : ~predn(X4) & ! [X5] : (predm(X5) | (~predp(X5) & predp(X5) & ~preds(X5))) & ! [X7] : (predd(X7) | ~predr(X7)) & (! [X9] : ((predc(X9) | ~predn(X9)) & (predn(X9) | ~predc(X9))) | ? [X8] : (~preds(X8) & room(X8))) & (? [X15] : (predc(X15) & predi(X15) & ~room(X15)) | ~sP1) & (! [X15] : (~predc(X15) | ~predi(X15) | room(X15)) | sP1) & (~predg(paul) | ! [X16] : (~predk(X16) | predr(X16) | ~room(X16))) & (predk(mary) | ? [X17] : (~predm(X17) | ~prede(X17) | ~room(X17))) & (! [X19] : (predm(X19) & prede(X19) & room(X19)) | sP0) & (? [X20] : (predc(X20) & predm(X20) & room(X20)) | ~predg(fred)) & (! [X23] : (predm(X23) | predc(X23) | ~room(X23)) | ? [X22] : (predc(X22) & ~predr(X22) & room(X22))) & ! [X24] : (alice = X24 | fred = X24 | paul = X24 | mary = X24 | ~room(X24)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142]
144. ! [X0] : (predc(X0) | ~predg(X0)) & ! [X1] : (predi(X1) | room(X1)) & ~predg(paul) & ! [X2] : (((predq(X2) | ~predn(X2)) & (predn(X2) | ~predq(X2))) | ~room(X2)) & predi(fred) & predi(paul) & ! [X3] : (((predn(X3) | ~predg(X3) | ~predc(X3) | ~predd(X3)) & ((predg(X3) & predc(X3) & predd(X3)) | ~predn(X3))) | room(X3)) & ? [X4] : ~predn(X4) & ! [X5] : (predm(X5) | (~predp(X5) & predp(X5) & ~preds(X5))) & ! [X6] : (predd(X6) | ~predr(X6)) & (! [X7] : ((predc(X7) | ~predn(X7)) & (predn(X7) | ~predc(X7))) | ? [X8] : (~preds(X8) & room(X8))) & (? [X9] : (predc(X9) & predi(X9) & ~room(X9)) | ~sP1) & (! [X10] : (~predc(X10) | ~predi(X10) | room(X10)) | sP1) & (~predg(paul) | ! [X11] : (~predk(X11) | predr(X11) | ~room(X11))) & (predk(mary) | ? [X12] : (~predm(X12) | ~prede(X12) | ~room(X12))) & (! [X13] : (predm(X13) & prede(X13) & room(X13)) | sP0) & (? [X14] : (predc(X14) & predm(X14) & room(X14)) | ~predg(fred)) & (! [X15] : (predm(X15) | predc(X15) | ~room(X15)) | ? [X16] : (predc(X16) & ~predr(X16) & room(X16))) & ! [X17] : (alice = X17 | fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 143]
145. ? [X4] : ~predn(X4) => ~predn(sK4) [choice axiom]
146. ? [X8] : (~preds(X8) & room(X8)) => (~preds(sK5) & room(sK5)) [choice axiom]
147. ? [X9] : (predc(X9) & predi(X9) & ~room(X9)) => (predc(sK6) & predi(sK6) & ~room(sK6)) [choice axiom]
148. ? [X12] : (~predm(X12) | ~prede(X12) | ~room(X12)) => (~predm(sK7) | ~prede(sK7) | ~room(sK7)) [choice axiom]
149. ? [X14] : (predc(X14) & predm(X14) & room(X14)) => (predc(sK8) & predm(sK8) & room(sK8)) [choice axiom]
150. ? [X16] : (predc(X16) & ~predr(X16) & room(X16)) => (predc(sK9) & ~predr(sK9) & room(sK9)) [choice axiom]
151. ! [X0] : (predc(X0) | ~predg(X0)) & ! [X1] : (predi(X1) | room(X1)) & ~predg(paul) & ! [X2] : (((predq(X2) | ~predn(X2)) & (predn(X2) | ~predq(X2))) | ~room(X2)) & predi(fred) & predi(paul) & ! [X3] : (((predn(X3) | ~predg(X3) | ~predc(X3) | ~predd(X3)) & ((predg(X3) & predc(X3) & predd(X3)) | ~predn(X3))) | room(X3)) & ~predn(sK4) & ! [X5] : (predm(X5) | (~predp(X5) & predp(X5) & ~preds(X5))) & ! [X6] : (predd(X6) | ~predr(X6)) & (! [X7] : ((predc(X7) | ~predn(X7)) & (predn(X7) | ~predc(X7))) | (~preds(sK5) & room(sK5))) & ((predc(sK6) & predi(sK6) & ~room(sK6)) | ~sP1) & (! [X10] : (~predc(X10) | ~predi(X10) | room(X10)) | sP1) & (~predg(paul) | ! [X11] : (~predk(X11) | predr(X11) | ~room(X11))) & (predk(mary) | (~predm(sK7) | ~prede(sK7) | ~room(sK7))) & (! [X13] : (predm(X13) & prede(X13) & room(X13)) | sP0) & ((predc(sK8) & predm(sK8) & room(sK8)) | ~predg(fred)) & (! [X15] : (predm(X15) | predc(X15) | ~room(X15)) | (predc(sK9) & ~predr(sK9) & room(sK9))) & ! [X17] : (alice = X17 | fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 144,150,149,148,147,146,145]
152. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) [choice axiom]
153. ~predm(paul) | (alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 129,152]
241. room(mary) [cnf transformation 151]
242. room(paul) [cnf transformation 151]
243. room(fred) [cnf transformation 151]
244. room(alice) [cnf transformation 151]
245. ~room(X17) | fred = X17 | paul = X17 | mary = X17 | alice = X17 [cnf transformation 151]
267. predm(X5) | predp(X5) [cnf transformation 151]
268. ~predp(X5) | predm(X5) [cnf transformation 151]
281. ~predm(paul) | room(sK10) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
282. ~predm(paul) | mary != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
283. ~predm(paul) | paul != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
284. ~predm(paul) | fred != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
285. ~predm(paul) | alice != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 153]
335. predm(X5) [subsumption resolution 267,268]
407. alice != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 285,335]
408. alice != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 407,244]
409. alice != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 408,243]
410. alice != sK10 | ~room(mary) [subsumption resolution 409,242]
411. alice != sK10 [subsumption resolution 410,241]
412. fred != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 284,335]
413. fred != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 412,244]
414. fred != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 413,243]
415. fred != sK10 | ~room(mary) [subsumption resolution 414,242]
416. fred != sK10 [subsumption resolution 415,241]
417. paul != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,335]
418. paul != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 417,244]
419. paul != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 418,243]
420. paul != sK10 | ~room(mary) [subsumption resolution 419,242]
421. paul != sK10 [subsumption resolution 420,241]
422. mary != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,335]
423. mary != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 422,244]
424. mary != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 423,243]
425. mary != sK10 | ~room(mary) [subsumption resolution 424,242]
426. mary != sK10 [subsumption resolution 425,241]
427. room(sK10) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,335]
428. room(sK10) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 427,244]
429. room(sK10) | ~room(paul) | ~room(mary) [subsumption resolution 428,243]
430. room(sK10) | ~room(mary) [subsumption resolution 429,242]
431. room(sK10) [subsumption resolution 430,241]
486. fred = sK10 | paul = sK10 | mary = sK10 | alice = sK10 [resolution 245,431]
521. paul = sK10 | mary = sK10 | alice = sK10 [subsumption resolution 486,416]
522. mary = sK10 | alice = sK10 [subsumption resolution 521,421]
523. alice = sK10 [subsumption resolution 522,426]
524. $false [subsumption resolution 523,411]
% SZS output end Proof for 866314077683704633572352
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5373
% Time elapsed: 0.036 s
% ------------------------------
% ------------------------------
| 0 |
Laura, Stanley are the only persons in the room.
If “it is not the case that “Stanley is not happy”” then “Laura is the least rich in the room”.
“Everyone in the room is not a old person or is a tall person or both” if “Stanley is a brave person, is not brave or is kind” and vice versa.
“Stanley is a strong person and is not old” if “Laura is a generous person” and vice versa.
Everyone in the room is wise if they neither is not creative, not funny, not happy nor is not brave, not creative.
All calm persons are wise.
Laura and Stanley are respectively kind and brave.
Not everyone in the room is patient if they is a tall person and vice versa.
Stanley is a strong person.
All wise persons are humble.
If someone is a tall person or is not generous or both then he/she is not a brave person and vice versa.
Stanley is a strong person and is not old.
Stanley and Laura are respectively kind and strong.
At least one person outside the room is a creative person.
Laura who is a wise person is humble.
Laura neither is a patient person nor is not funny.
|
Stanley is not happy.
|
neutral
|
room(laura)&room(stanley)&(![X]:(room(X)=>(X='laura'|X='stanley')))&
((~(~happy(stanley)))=>(![X]:((room(X)&(X!=laura))=>richer(laura,X))))&
((((brave(stanley)&person(stanley))|(~brave(stanley))|(kind(stanley))))<=>(![X]:(room(X)=>(((~(old(X)&person(X)))|(tall(X)&person(X)))))))&
((generous(laura)&person(laura))<=>(((strong(stanley)&person(stanley))&(~old(stanley)))))&
(![X]:(room(X)=>(((~((~creative(X)&~funny(X)&~happy(X))|(~brave(X)&~creative(X))))=>(wise(X))))))&
(![X]:(calm(X)=>wise(X)))&
((kind(laura))&(brave(stanley)))&
(~![X]:(room(X)=>(((patient(X))<=>(tall(X)&person(X))))))&
(strong(stanley)&person(stanley))&
(![X]:(wise(X)=>humble(X)))&
((![X]:((((tall(X)&person(X))|(~generous(X))))<=>(~(brave(X)&person(X))))))&
(((strong(stanley)&person(stanley))&(~old(stanley))))&
((kind(stanley))&(strong(laura)))&
(((?[X]:(~room(X)&creative(X)&person(X)))))&
((wise(laura)&person(laura))&(humble(laura)))&
(~((patient(laura)&person(laura))|(~funny(laura))))
|
room(laura)&room(stanley)&(![X]:(room(X)=>(X='laura'|X='stanley')))&
~happy(stanley)
|
[] | null | 0.030391 |
Carol, Ashley, Antonio are the only persons in the room.
If someone is a dedicated advocate for digital privacy and encryption then he/she enjoys deep-sea diving and exploring underwater caves.
If someone enjoys deep-sea diving and exploring underwater caves then he/she collects luxury watches.
If someone own a television then he/she is a dedicated advocate for digital privacy and encryption, is a tea enthusiast and designs and sews custom cosplay costumes for conventions.
Ashley own a television.
|
Ashley collects luxury watches.
|
entailment
|
room(carol)&room(ashley)&room(antonio)&(![X]:(room(X)=>(X='carol'|X='ashley'|X='antonio')))&
((enjoys_making_ceramics(carol))<~>(enjoys_coding_in_Python(ashley)))&
((~(((?[X]:(room(X)&enjoys_coding_in_Python(X))))))=>(((?[X]:(room(X)&is_a_tea_enthusiast(X))))))&
((~(((?[X]:(anywhere(X)&enjoys_landscape_photography(X))))))=>(~(enjoys_stargazing(carol))))&
((((is_a_dedicated_advocate_for_digital_privacy_and_encryption(carol))&(own_a_television(carol))&(does_not_enjoy_stargazing(carol))))=>(~(~((?[X,Y]:(room(X)&room(Y)&(own_a_television(X)&own_a_television(Y))&(X!=Y)))))))&
((((?[X]:(room(X)&enjoys_rooftop_gardening(X)))))=>(((enjoys_coding_in_Python(carol))&(enjoys_making_ceramics(carol))&(owns_a_high-end_gaming_PC_with_custom-built_components(carol)))))&
(~(~(owns_a_high-end_gaming_PC_with_custom-built_components(ashley))))&
((![X]:((collects_luxury_watches(X))=>(enjoys_making_ceramics(X)))))&
(?[X]:(room(X)&(owns_a_smartwatch(X))))&
((![X]:((regularly_contributes_to_tech_forums_and_online_communities(X))<=>(enjoys_rooftop_gardening(X)))))&
(((?[X]:(~room(X)&enjoys_making_ceramics(X)))))&
(enjoys_landscape_photography(ashley))&
(?[X]:(room(X)&(enjoys_coding_in_Python(X))))&
(designs_and_sews_custom_cosplay_costumes_for_conventions(ashley))&
(does_not_enjoy_landscape_photography(carol))&
(?[X]:(room(X)&(own_a_television(X))))&
(?[X]:(room(X)&(((is_a_scotch_connoisseur(X))&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))&
(((?[X]:(anywhere(X)&((owns_a_smartwatch(X))&(collects_luxury_watches(X)))))))&
(?[X]:(room(X)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))&
((![X]:((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))&
(~(~(~(is_not_a_client_of_Costco(carol)))))&
((![X]:((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(collects_luxury_watches(X)))))&
(?[X]:(room(X)&(enjoys_landscape_photography(X))))&
(owns_a_smartwatch(ashley))&
(own_a_television(carol))&
((![X]:((own_a_television(X))=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(is_a_tea_enthusiast(X))&(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))))&
(own_a_television(ashley))
|
room(carol)&room(ashley)&room(antonio)&(![X]:(room(X)=>(X='carol'|X='ashley'|X='antonio')))&
collects_luxury_watches(ashley)
|
[
"p0",
"p19",
"p21",
"p25",
"p26",
"hypothesis"
] |
% SZS status Unsatisfiable for 6947950323845034178204605
% SZS output start Proof for 6947950323845034178204605
44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0]
63. ! [X0] : (predp(X0) => predc(X0)) [input p19]
65. ! [X0] : (predc(X0) => predg(X0)) [input p21]
69. ! [X0] : (predm(X0) => (predi(X0) & prede(X0) & predp(X0))) [input p25]
70. predm(paul) [input p26]
71. ~(predg(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis]
78. ! [X0] : (predm(X0) => (prede(X0) & predp(X0))) [pure predicate removal 69]
86. ! [X0] : (predm(X0) => predp(X0)) [pure predicate removal 78]
161. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44]
162. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 161]
168. ! [X0] : (predc(X0) | ~predp(X0)) [ennf transformation 63]
169. ! [X0] : (predg(X0) | ~predc(X0)) [ennf transformation 65]
170. ! [X0] : (predp(X0) | ~predm(X0)) [ennf transformation 86]
171. ~predg(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 71]
172. ~predg(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 171]
199. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK13 & paul != sK13 & mary != sK13 & room(sK13)) [choice axiom]
200. ~predg(paul) | (fred != sK13 & paul != sK13 & mary != sK13 & room(sK13)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 172,199]
281. room(mary) [cnf transformation 162]
282. room(paul) [cnf transformation 162]
283. room(fred) [cnf transformation 162]
284. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 162]
309. ~predp(X0) | predc(X0) [cnf transformation 168]
310. ~predc(X0) | predg(X0) [cnf transformation 169]
314. ~predm(X0) | predp(X0) [cnf transformation 170]
315. predm(paul) [cnf transformation 70]
316. ~predg(paul) | room(sK13) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 200]
317. ~predg(paul) | mary != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 200]
318. ~predg(paul) | paul != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 200]
319. ~predg(paul) | fred != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 200]
387. ~predg(paul) | fred != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 319,283]
388. ~predg(paul) | fred != sK13 | ~room(mary) [subsumption resolution 387,282]
389. ~predg(paul) | fred != sK13 [subsumption resolution 388,281]
391. 15 <=> fred = sK13 [avatar definition]
393. fred != sK13 <- (~15) [avatar component clause 391]
395. 16 <=> predg(paul) [avatar definition]
398. ~15 | ~16 [avatar split clause 389,395,391]
399. ~predg(paul) | paul != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 318,283]
400. ~predg(paul) | paul != sK13 | ~room(mary) [subsumption resolution 399,282]
401. ~predg(paul) | paul != sK13 [subsumption resolution 400,281]
403. 17 <=> paul = sK13 [avatar definition]
405. paul != sK13 <- (~17) [avatar component clause 403]
406. ~17 | ~16 [avatar split clause 401,395,403]
407. ~predg(paul) | mary != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 317,283]
408. ~predg(paul) | mary != sK13 | ~room(mary) [subsumption resolution 407,282]
409. ~predg(paul) | mary != sK13 [subsumption resolution 408,281]
411. 18 <=> mary = sK13 [avatar definition]
413. mary != sK13 <- (~18) [avatar component clause 411]
414. ~18 | ~16 [avatar split clause 409,395,411]
415. ~predg(paul) | room(sK13) | ~room(paul) | ~room(mary) [subsumption resolution 316,283]
416. ~predg(paul) | room(sK13) | ~room(mary) [subsumption resolution 415,282]
417. ~predg(paul) | room(sK13) [subsumption resolution 416,281]
419. 19 <=> room(sK13) [avatar definition]
421. room(sK13) <- (19) [avatar component clause 419]
422. 19 | ~16 [avatar split clause 417,395,419]
427. predp(paul) [resolution 314,315]
434. predc(paul) [resolution 427,309]
437. predg(paul) [resolution 434,310]
440. 16 [avatar split clause 437,395]
493. paul = sK13 | mary = sK13 | fred = sK13 <- (19) [resolution 284,421]
585. mary = sK13 | fred = sK13 <- (~17, 19) [subsumption resolution 493,405]
586. fred = sK13 <- (~17, ~18, 19) [subsumption resolution 585,413]
587. $false <- (~15, ~17, ~18, 19) [subsumption resolution 586,393]
588. 15 | 17 | 18 | ~19 [avatar contradiction clause 587]
589. $false [avatar sat refutation 398,406,414,422,440,588]
% SZS output end Proof for 6947950323845034178204605
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5245
% Time elapsed: 0.030 s
% ------------------------------
% ------------------------------
| 0.004352 |
Tanya is the only person in the room. Someone in the room does not hate Misty. Everyone in the room who either is not hated by Misty or is not liked by Margaret but not both does not like Amy. Everyone in the room does not like Amy only if they is not hated by Margaret. Someone who is hated by Amy, does not hate Misty and does not like Misty like someone who is liked by Misty or is not liked by Joy or both. Tanya dreamt that “only one person in the room likes Amy”. If someone likes Margaret then he/she either is liked by Margaret or hates Amy but not both. Everyone in the room who does not hate Misty, hates Joy and is not liked by Misty is not hated by Amy and is not liked by Amy. Everyone in the room who is not hated by Amy and is not liked by Amy is not liked by Joy. Tanya either is not liked by Amy or does not hate Misty but not both. Tanya does not like Misty. Tanya does not hate Misty and likes Joy. It is not the case that “someone outside the room is not hated by Amy”. Tanya and Amy like each other. Someone who is not hated by Margaret like someone who is not hated by Misty or does not like Joy or both. Everyone in the room is hated by Margaret if they does not like Margaret. Not everyone anywhere who is not hated by Misty, is hated by Joy and likes Misty is not hated by Joy.
|
Tanya is liked by Joy.
|
neutral
|
room(tanya)&(![X]:(room(X)=>(X='tanya')))&
(?[X]:(room(X)&(~hate(misty,X))))&
(![X]:(room(X)=>(((((~hate(X,misty))<~>(~like(X,margaret))))=>(~like(amy,X))))))&
(![X]:(room(X)=>(((~hate(X,margaret))<=(~like(amy,X))))))&
(?[X,Y]:((((hate(X,amy))&(~hate(misty,X))&(~like(misty,X))))&(((like(Y,misty))|(~like(Y,joy))))&(like(X,Y))))&
((tanya_dream=>(((?[X]:(room(X)&like(amy,X)))&(![X,Y]:((room(X)&room(Y)&(like(amy,X))&(like(amy,Y)))=>(X=Y)))))))&
((![X]:((like(margaret,X))=>(((like(X,margaret))<~>(hate(amy,X)))))))&
(![X]:(room(X)=>(((((~hate(misty,X))&(hate(joy,X))&(~like(X,misty))))=>(((~hate(X,amy))&(~like(X,amy))))))))&
(![X]:(room(X)=>(((((~hate(X,amy))&(~like(X,amy))))=>(~like(X,joy))))))&
(((~like(tanya,amy))<~>(~hate(misty,tanya))))&
(~like(misty,tanya))&
(((~hate(misty,tanya))&(like(joy,tanya))))&
(~(?[X]:(~room(X)&(~hate(X,amy)))))&
((like(tanya,amy) & like(amy,tanya)))&
(?[X,Y]:((~hate(X,margaret))&(((~hate(Y,misty))|(~like(joy,Y))))&(like(X,Y))))&
(![X]:(room(X)=>(((~like(margaret,X))=>(hate(X,margaret))))))&
(~![X]:(anywhere(X)=>(((((~hate(X,misty))&(hate(X,joy))&(like(misty,X))))=>(~hate(X,joy))))))&
(?[X]:(~room(X)&(((~hate(X,amy))<~>(~like(X,joy))))))
|
room(tanya)&(![X]:(room(X)=>(X='tanya')))&
like(tanya,joy)
|
[] | null | 0.012801 |
Larry is the only person in the room.
If “Larry neither writes in-depth travel guides for off-the-beaten-path destinations nor enjoys salsa dancing” then “Larry enjoys kayaking”.
“Everyone in the room is right-handed” only if “everyone in the room who is a coffee connoisseur enjoys kayaking”.
If “everyone in the room does not practice and performs acrobatic dance routines or is right-handed” then “everyone in the room who does not practice and performs acrobatic dance routines hosts regular game nights featuring complex strategy games”.
If “Larry is not dedicated to sustainable living and zero-waste practices” then “Larry does practice yoga, does not practice yoga and is a member of a local theater group specializing in improv”.
“Everyone anywhere makes intricate hand-cut paper art for exhibitions or does not host regular game nights featuring complex strategy games” if “everyone in the room is a coffee connoisseur or does not collect historical artifacts related to ancient civilizations” and vice versa.
If “Larry hosts a YouTube channel dedicated to art tutorials” then “Larry can play the flute” otherwise “Larry is a coffee connoisseur”.
“Not everyone in the room creates augmented reality experiences for mobile applications or does not own a telescope” only if “more than one person in the room plays the violin and is right-handed”.
Everyone in the room is not right-handed.
Larry hosts regular game nights featuring complex strategy games and volunteers for local environmental conservation projects.
Larry does not practice and performs acrobatic dance routines.
|
Larry frequently participates in hackathons and coding competitions.
|
neutral
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
((~((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(larry))|(enjoys_salsa_dancing(larry))))=>(enjoys_kayaking(larry)))&
((![X]:(room(X)=>(is_right-handed(X))))=>(![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(enjoys_kayaking(X)))))))&
((![X]:(room(X)=>(((is_right-handed(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))=>(![X]:(room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))&
((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(larry))=>(((does_practice_yoga(larry))&(does_not_practice_yoga(larry))&(is_a_member_of_a_local_theater_group_specializing_in_improv(larry)))))&
((![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(is_a_coffee_connoisseur(X))))))<=>(![X]:(anywhere(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X)))))))&
(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(larry))=>(can_play_the_flute(larry)))&((~(hosts_a_YouTube_channel_dedicated_to_art_tutorials(larry)))=>(is_a_coffee_connoisseur(larry))))&
((~![X]:(room(X)=>(((does_not_own_a_telescope(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))=>((?[X,Y]:(room(X)&room(Y)&(((plays_the_violin(X))&(is_right-handed(X)))&((plays_the_violin(Y))&(is_right-handed(Y))))&(X!=Y)))))&
(![X]:(room(X)=>(is_not_right-handed(X))))&
(((hosts_regular_game_nights_featuring_complex_strategy_games(larry))&(volunteers_for_local_environmental_conservation_projects(larry))))&
(does_not_practice_and_performs_acrobatic_dance_routines(larry))&
(![X]:(room(X)=>(((practices_tai_chi(X))=>(((has_a_tattoo(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))&
(![X]:(room(X)=>(((((has_a_tattoo(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))=>(((practices_and_performs_acrobatic_dance_routines(X))<~>(can_play_the_flute(X))))))))&
(![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))&
(practices_tai_chi(larry))&
(![X]:(room(X)=>(((cannot_play_the_flute(X))<=(((is_a_client_of_Meta(X))&(is_right-handed(X))&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))&
(((frequently_participates_in_hackathons_and_coding_competitions(larry))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(larry))|(is_not_right-handed(larry))))&
(does_practice_yoga(larry))
|
room(larry)&(![X]:(room(X)=>(X='larry')))&
frequently_participates_in_hackathons_and_coding_competitions(larry)
|
[] | null | 0.0195 |
Carin, Jason are the only persons in the room. If “no one in the room collects classic novels or is not a cybersecurity expert” then “Jason is not a cybersecurity expert” otherwise “if someone writes poetry then he/she owns a microscope”. Jason creates YouTube content, works as a freelance web developer specializing in e-commerce sites and owns a microscope. Everyone in the room uses an ios phone. Jason creates YouTube content. It is not the case that “more than one person in the room practices digital art”. Jason does not have a piercing.
|
Everyone in the room does not own a microscope or is a Linux enthusiast.
|
neutral
|
room(carin)&room(jason)&(![X]:(room(X)=>(X='carin'|X='jason')))&
(((~?[X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(collects_classic_novels(X))))))=>(is_not_a_cybersecurity_expert(jason)))&((~(~?[X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(collects_classic_novels(X)))))))=>((![X]:((writes_poetry(X))=>(owns_a_microscope(X)))))))&
(((creates_YouTube_content(jason))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(jason))&(owns_a_microscope(jason))))&
(![X]:(room(X)=>(uses_an_ios_phone(X))))&
(creates_YouTube_content(jason))&
(~((?[X,Y]:(room(X)&room(Y)&(practices_digital_art(X)&practices_digital_art(Y))&(X!=Y)))))&
(does_not_have_a_piercing(jason))&
((![X]:((is_a_Linux_enthusiast(X))<=>(writes_poetry(X)))))&
(is_not_a_cybersecurity_expert(jason))&
(![X]:(room(X)=>(((creates_YouTube_content(X))|(is_a_cybersecurity_expert(X))|(owns_a_microscope(X))))))&
(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(jason))&
(practices_digital_art(carin))&
(((?[X]:(room(X)&is_not_a_cybersecurity_expert(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_a_cybersecurity_expert(X))&(is_not_a_cybersecurity_expert(Y)))=>(X=Y)))))&
(![X]:(~room(X)=>(((((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))&(practices_digital_art(X))))=>(((is_a_cybersecurity_expert(X))<~>(uses_an_ios_phone(X))))))))
|
room(carin)&room(jason)&(![X]:(room(X)=>(X='carin'|X='jason')))&
![X]:(room(X)=>(((is_a_Linux_enthusiast(X))|(does_not_own_a_microscope(X)))))
|
[] | null | 0 |
Savannah is the only person in the room.
Savannah is the least rich in the room.
Savannah is quieter than Patrick.
All tall person is old.
Savannah is old.
Savannah is richer than Carol.
Everyone anywhere is older than Patrick if they either is older than Ashley or is richer than Carol but not both.
Someone in the room either is a old person or is older than Patrick but not both.
Savannah is a tall person.
|
Ashley is older than Savannah.
|
contradiction
|
room(savannah)&(![X]:(room(X)=>(X='savannah')))&
(![X]:((room(X)&(X!=savannah))=>richer(savannah,X)))&
(quieter(patrick,savannah))&
(![X]:(tall(X)=>old(X)))&
(quieter(carol,savannah))&
(older(carol,savannah))&
(![X]:(quiet(X)=>old(X)))&
(old(savannah))&
(richer(carol,savannah))&
(![X]:(anywhere(X)=>(((((older(ashley,X))<~>(richer(carol,X))))=>(older(patrick,X))))))&
(?[X]:(room(X)&(((old(X)&person(X))<~>(older(patrick,X))))))&
(~![X]:(room(X)=>(((old(X)&tall(X)&person(X))=>(quieter(cedric,X))))))&
(?[X]:(room(X)&(quieter(patrick,X))))&
(tall(savannah)&person(savannah))&
(quiet(savannah))&
(tall(savannah))&
(older(savannah,cedric))&
(((?[X]:(room(X)&quieter(ashley,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(ashley,X))&(quieter(ashley,Y)))=>(X=Y)))))&
(![X]:(old(X)=>quiet(X)))&
(older(savannah,patrick))&
(quiet(savannah)&person(savannah))&
(![X]:(room(X)=>(((old(X))<=(quiet(X))))))&
(old(savannah)&tall(savannah)&person(savannah))
|
room(savannah)&(![X]:(room(X)=>(X='savannah')))&
older(savannah,ashley)
|
[
"b4",
"b19",
"b42",
"p0",
"p7",
"p8",
"p9",
"p10",
"p13",
"hypothesis"
] |
% SZS status Unsatisfiable for 6123851427222103623925370
% SZS output start Proof for 6123851427222103623925370
5. ! [X0] : anywhere(X0) [input b4]
20. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => ~older(X1,X0))) [input b19]
43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42]
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
51. old(mary) [input p7]
52. richer(paul,mary) [input p8]
53. ! [X0] : (anywhere(X0) => ((older(alice,X0) <~> richer(paul,X0)) => older(fred,X0))) [input p9]
54. ? [X0] : (((person(X0) & old(X0)) <~> older(fred,X0)) & room(X0)) [input p10]
57. person(mary) & tall(mary) [input p13]
67. older(mary,alice) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis]
98. ! [X0,X1] : ((~older(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 20]
99. ! [X0,X1] : (~older(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 98]
140. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
145. ! [X0] : ((older(fred,X0) | (older(alice,X0) <=> richer(paul,X0))) | ~anywhere(X0)) [ennf transformation 53]
146. ! [X0] : (older(fred,X0) | (older(alice,X0) <=> richer(paul,X0)) | ~anywhere(X0)) [flattening 145]
154. older(mary,alice) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 67]
156. ! [X0] : (older(fred,X0) | ((older(alice,X0) | ~richer(paul,X0)) & (richer(paul,X0) | ~older(alice,X0))) | ~anywhere(X0)) [nnf transformation 146]
157. ? [X0] : (((~older(fred,X0) | (~person(X0) | ~old(X0))) & (older(fred,X0) | (person(X0) & old(X0)))) & room(X0)) [nnf transformation 54]
158. ? [X0] : ((~older(fred,X0) | ~person(X0) | ~old(X0)) & (older(fred,X0) | (person(X0) & old(X0))) & room(X0)) [flattening 157]
159. ? [X0] : ((~older(fred,X0) | ~person(X0) | ~old(X0)) & (older(fred,X0) | (person(X0) & old(X0))) & room(X0)) => ((~older(fred,sK0) | ~person(sK0) | ~old(sK0)) & (older(fred,sK0) | (person(sK0) & old(sK0))) & room(sK0)) [choice axiom]
160. (~older(fred,sK0) | ~person(sK0) | ~old(sK0)) & (older(fred,sK0) | (person(sK0) & old(sK0))) & room(sK0) [skolemisation 158,159]
167. anywhere(X0) [cnf transformation 5]
183. ~older(X1,X0) | ~older(X0,X1) | X0 = X1 [cnf transformation 99]
224. mary != alice [cnf transformation 43]
249. ~room(X0) | mary = X0 [cnf transformation 140]
256. old(mary) [cnf transformation 51]
257. richer(paul,mary) [cnf transformation 52]
259. older(fred,X0) | older(alice,X0) | ~richer(paul,X0) | ~anywhere(X0) [cnf transformation 156]
260. room(sK0) [cnf transformation 160]
263. ~older(fred,sK0) | ~person(sK0) | ~old(sK0) [cnf transformation 160]
272. person(mary) [cnf transformation 57]
289. older(mary,alice) [cnf transformation 154]
290. ~richer(paul,X0) | older(alice,X0) | older(fred,X0) [subsumption resolution 259,167]
293. 1 <=> old(sK0) [avatar definition]
295. ~old(sK0) <- (~1) [avatar component clause 293]
297. 2 <=> person(sK0) [avatar definition]
299. ~person(sK0) <- (~2) [avatar component clause 297]
301. 3 <=> older(fred,sK0) [avatar definition]
303. ~older(fred,sK0) <- (~3) [avatar component clause 301]
304. ~1 | ~2 | ~3 [avatar split clause 263,301,297,293]
314. mary = sK0 [resolution 249,260]
318. ~old(mary) <- (~1) [backward demodulation 295,314]
321. $false <- (~1) [subsumption resolution 318,256]
322. 1 [avatar contradiction clause 321]
333. ~person(mary) <- (~2) [forward demodulation 299,314]
334. $false <- (~2) [subsumption resolution 333,272]
335. 2 [avatar contradiction clause 334]
337. ~older(fred,mary) <- (~3) [forward demodulation 303,314]
358. ~older(alice,mary) | mary = alice [resolution 183,289]
361. ~older(alice,mary) [subsumption resolution 358,224]
382. older(alice,mary) | older(fred,mary) [resolution 290,257]
383. older(fred,mary) [subsumption resolution 382,361]
384. $false <- (~3) [subsumption resolution 383,337]
385. 3 [avatar contradiction clause 384]
386. $false [avatar sat refutation 304,322,335,385]
% SZS output end Proof for 6123851427222103623925370
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.040 s
% ------------------------------
% ------------------------------
| 0.48918 |
Sylvia is the only person in the room.
Either it is not the case that Sylvia is not a kind calm person or at least one person in the room is quieter than Frank but not both.
If Sylvia is not a humble creative person, is richer than Frank and is a curious person then Frank is older than Sylvia.
Someone in the room is richer than Frank only if Sylvia is richer than Frank.
If Sylvia is quieter than Frank then all curious person is calm.
Someone who is not a humble person is quieter than someone who is creative.
Sylvia is quieter than Frank.
Sylvia is richer than Frank.
Sylvia is a patient person.
No humble person is old.
|
Sylvia is quieter than Frank.
|
entailment
|
room(sylvia)&(![X]:(room(X)=>(X='sylvia')))&
((~(~(kind(sylvia)&calm(sylvia)&person(sylvia))))<~>(((?[X]:(room(X)&quieter(frank,X))))))&
((((~(humble(sylvia)&creative(sylvia)&person(sylvia)))&(richer(frank,sylvia))&(curious(sylvia)&person(sylvia))))=>(older(sylvia,frank)))&
((?[X]:(room(X)&(richer(frank,X))))=>(richer(frank,sylvia)))&
((quieter(frank,sylvia))=>(![X]:(curious(X)=>calm(X))))&
(?[X,Y]:((~(humble(X)&person(X)))&(creative(Y))&(quieter(X,Y))))&
(quieter(frank,sylvia))&
(richer(frank,sylvia))&
(patient(sylvia)&person(sylvia))&
(~?[X]:(humble(X)=>old(X)))
|
room(sylvia)&(![X]:(room(X)=>(X='sylvia')))&
quieter(frank,sylvia)
|
[
"p0",
"p6",
"hypothesis"
] |
% SZS status Unsatisfiable for 8670331045416014426784472
% SZS output start Proof for 8670331045416014426784472
44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0]
50. quieter(paul,mary) [input p6]
54. ~(quieter(paul,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis]
132. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44]
136. ~quieter(paul,mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 54]
145. ? [X0] : (mary != X0 & room(X0)) => (mary != sK3 & room(sK3)) [choice axiom]
146. ~quieter(paul,mary) | (mary != sK3 & room(sK3)) | ~room(mary) [skolemisation 136,145]
227. room(mary) [cnf transformation 132]
228. ~room(X0) | mary = X0 [cnf transformation 132]
239. quieter(paul,mary) [cnf transformation 50]
244. ~quieter(paul,mary) | room(sK3) | ~room(mary) [cnf transformation 146]
245. ~quieter(paul,mary) | mary != sK3 | ~room(mary) [cnf transformation 146]
295. mary != sK3 | ~room(mary) [subsumption resolution 245,239]
296. mary != sK3 [subsumption resolution 295,227]
297. room(sK3) | ~room(mary) [subsumption resolution 244,239]
298. room(sK3) [subsumption resolution 297,227]
303. mary = sK3 [resolution 228,298]
306. $false [subsumption resolution 303,296]
% SZS output end Proof for 8670331045416014426784472
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.115625 |
There is a room.
Everyone in the room who practices digital art owns a telescope.
Everyone in the room collects comic books if they maintains a large, organic vegetable garden year-round.
Everyone in the room who collects comic books either has lived in exactly three countries or practices digital art but not both.
Everyone anywhere who either has lived in exactly three countries or practices digital art but not both owns a telescope.
Everyone in the room who does not maintain a large, organic vegetable garden year-round collects comic books.
|
Everyone in the room owns a telescope.
|
entailment
|
(there_is_a_room)&
(![X]:(room(X)=>(((practices_digital_art(X))=>(owns_a_telescope(X))))))&
(((?[X]:(room(X)&is_not_a_night_owl(X)))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(owns_a_telescope(X))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))=>(((collects_comic_books(X))&(mentors_a_youth_basketball_team_on_weekends(X))))))))&
(![X]:(room(X)=>(((((collects_comic_books(X))&(mentors_a_youth_basketball_team_on_weekends(X))))=>(enjoys_making_ceramics(X))))))&
(![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))&
(![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(collects_comic_books(X))))))&
(![X]:(room(X)=>(((collects_comic_books(X))=>(((has_lived_in_exactly_three_countries(X))<~>(practices_digital_art(X))))))))&
(![X]:(anywhere(X)=>(((((has_lived_in_exactly_three_countries(X))<~>(practices_digital_art(X))))=>(owns_a_telescope(X))))))&
(![X]:(room(X)=>(((owns_a_telescope(X))=>(((has_lived_in_exactly_three_countries(X))&(collects_rare_minerals(X))))))))&
(![X]:(~room(X)=>(((((has_lived_in_exactly_three_countries(X))&(collects_rare_minerals(X))))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))&
(![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))=>(collects_comic_books(X))))))&
(((?[X]:(room(X)&((enjoys_making_ceramics(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))|(is_a_night_owl(X)))))))
|
(there_is_a_room)&
![X]:(room(X)=>(owns_a_telescope(X)))
|
[
"b4",
"p0",
"p1",
"p7",
"p8",
"p9",
"p12",
"hypothesis"
] |
% SZS status Unsatisfiable for 2471206104725106446613480
% SZS output start Proof for 2471206104725106446613480
5. ! [X0] : anywhere(X0) [input b4]
44. there_is_a_room [input p0]
45. ! [X0] : (room(X0) => (prede(X0) => predc(X0))) [input p1]
51. ! [X0] : (room(X0) => (predj(X0) => preda(X0))) [input p7]
52. ! [X0] : (room(X0) => (preda(X0) => (predi(X0) <~> prede(X0)))) [input p8]
53. ! [X0] : (anywhere(X0) => ((predi(X0) <~> prede(X0)) => predc(X0))) [input p9]
56. ! [X0] : (room(X0) => (~predj(X0) => preda(X0))) [input p12]
58. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis]
132. ! [X0] : ((predc(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 45]
133. ! [X0] : (predc(X0) | ~prede(X0) | ~room(X0)) [flattening 132]
142. ! [X0] : ((preda(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 51]
143. ! [X0] : (preda(X0) | ~predj(X0) | ~room(X0)) [flattening 142]
144. ! [X0] : (((predi(X0) <~> prede(X0)) | ~preda(X0)) | ~room(X0)) [ennf transformation 52]
145. ! [X0] : ((predi(X0) <~> prede(X0)) | ~preda(X0) | ~room(X0)) [flattening 144]
146. ! [X0] : ((predc(X0) | (predi(X0) <=> prede(X0))) | ~anywhere(X0)) [ennf transformation 53]
147. ! [X0] : (predc(X0) | (predi(X0) <=> prede(X0)) | ~anywhere(X0)) [flattening 146]
152. ! [X0] : ((preda(X0) | predj(X0)) | ~room(X0)) [ennf transformation 56]
153. ! [X0] : (preda(X0) | predj(X0) | ~room(X0)) [flattening 152]
154. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 58]
158. ! [X0] : (((~prede(X0) | ~predi(X0)) & (prede(X0) | predi(X0))) | ~preda(X0) | ~room(X0)) [nnf transformation 145]
159. ! [X0] : (predc(X0) | ((predi(X0) | ~prede(X0)) & (prede(X0) | ~predi(X0))) | ~anywhere(X0)) [nnf transformation 147]
162. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK2) & room(sK2)) [choice axiom]
163. (~predc(sK2) & room(sK2)) | ~there_is_a_room [skolemisation 154,162]
164. anywhere(X0) [cnf transformation 5]
245. there_is_a_room [cnf transformation 44]
246. ~prede(X0) | predc(X0) | ~room(X0) [cnf transformation 133]
254. ~predj(X0) | preda(X0) | ~room(X0) [cnf transformation 143]
255. ~preda(X0) | predi(X0) | prede(X0) | ~room(X0) [cnf transformation 158]
257. predc(X0) | prede(X0) | ~predi(X0) | ~anywhere(X0) [cnf transformation 159]
261. preda(X0) | predj(X0) | ~room(X0) [cnf transformation 153]
264. room(sK2) | ~there_is_a_room [cnf transformation 163]
265. ~predc(sK2) | ~there_is_a_room [cnf transformation 163]
267. ~predi(X0) | prede(X0) | predc(X0) [subsumption resolution 257,164]
268. ~room(X0) | preda(X0) [subsumption resolution 261,254]
282. ~predc(sK2) [subsumption resolution 265,245]
283. room(sK2) [subsumption resolution 264,245]
286. preda(sK2) [resolution 268,283]
291. predi(sK2) | prede(sK2) | ~room(sK2) [resolution 255,286]
312. predi(sK2) | prede(sK2) [subsumption resolution 291,283]
314. 8 <=> prede(sK2) [avatar definition]
315. ~prede(sK2) <- (~8) [avatar component clause 314]
316. prede(sK2) <- (8) [avatar component clause 314]
318. 9 <=> predi(sK2) [avatar definition]
320. predi(sK2) <- (9) [avatar component clause 318]
321. 8 | 9 [avatar split clause 312,318,314]
345. predc(sK2) | ~room(sK2) <- (8) [resolution 316,246]
348. ~room(sK2) <- (8) [subsumption resolution 345,282]
349. $false <- (8) [subsumption resolution 348,283]
350. ~8 [avatar contradiction clause 349]
352. prede(sK2) | predc(sK2) <- (9) [resolution 320,267]
353. predc(sK2) <- (~8, 9) [subsumption resolution 352,315]
354. $false <- (~8, 9) [subsumption resolution 353,282]
355. 8 | ~9 [avatar contradiction clause 354]
356. $false [avatar sat refutation 321,350,355]
% SZS output end Proof for 2471206104725106446613480
% ------------------------------
% Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000)
% Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% Termination reason: Refutation
% Memory used [KB]: 5117
% Time elapsed: 0.037 s
% ------------------------------
% ------------------------------
| 0.482233 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.