premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
listlengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Eric, Felix, James are the only persons in the room. If “Eric enjoys spelunking” then “Felix does enjoy mountain biking”. If “Felix does enjoy mountain biking” then “it is not the case that “Frances and Felix hate each other””. If “Felix is a quiet person, is a calm tourist and is not tall” then “Annette and Felix hate each other”. If “Annette and Felix hate each other” then “James who is a calm european likes Frances”. If “James is a quiet european” then “James and Eric are respectively quiet and strong”. If “James and Eric are respectively quiet and strong” then “Felix has a piercing”. If “it is not the case that “Felix watches fantasy movies”” then “James is not hated by Raymon”. If “James is not hated by Raymon” then “someone who is not wise is a sibling of someone who hates Frances”. If “someone in the room enjoys watercolor painting” then “someone in the room enjoys kayaking” otherwise “Felix and Eric are respectively happy and strong”. It is not the case that “someone in the room designs and sews custom cosplay costumes for conventions”. James and Felix are not humble. Eric and James are respectively wise and patient. Eric and James are respectively happy and kind. Someone in the room watches fantasy movies. James is the least young outside the room. Eric and Annette hate each other. James and Bobby hate each other.
Eric is hated by Annette.
entailment
room(eric)&room(felix)&room(james)&(![X]:(room(X)=>(X='eric'|X='felix'|X='james')))& (((enjoys_spelunking(eric))=>(does_enjoy_mountain_biking(felix)))& ((does_enjoy_mountain_biking(felix))=>(~((hate(frances,felix) & hate(felix,frances))))))& (((((quiet(felix)&person(felix))&(calm(felix)&tourist(felix))&(~tall(felix))))=>((hate(annette,felix) & hate(felix,annette))))& (((hate(annette,felix) & hate(felix,annette)))=>((calm(james)&european(james))&(like(frances,james)))))& (((quiet(james)&european(james))=>((quiet(james))&(strong(eric))))& (((quiet(james))&(strong(eric)))=>(has_a_piercing(felix))))& (((~(watches_fantasy_movies(felix)))=>(~hate(james,raymon)))& ((~hate(james,raymon))=>(?[X,Y]:((~wise(X))&(hate(frances,Y))&(sibling(X,Y))))))& (((?[X]:(room(X)&(enjoys_watercolor_painting(X))))=>(?[X]:(room(X)&(enjoys_kayaking(X)))))&((~(?[X]:(room(X)&(enjoys_watercolor_painting(X)))))=>((happy(felix))&(strong(eric)))))& (~(?[X]:(room(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& (~humble(james)&~humble(felix))& ((wise(eric))&(patient(james)))& ((happy(eric))&(kind(james)))& (?[X]:(room(X)&(watches_fantasy_movies(X))))& (![X]:((~room(X)&(X!=james))=>younger(james,X)))& ((hate(eric,annette) & hate(annette,eric)))& ((hate(james,bobby) & hate(bobby,james)))
room(eric)&room(felix)&room(james)&(![X]:(room(X)=>(X='eric'|X='felix'|X='james')))& hate(eric,annette)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 5476807164030183004971687 % SZS output start Proof for 5476807164030183004971687 44. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X0] : (predm(X0) & room(X0)) & kind(fred) & happy(mary) & patient(fred) & wise(mary) & ~humble(paul) & ~humble(fred) & ~? [X0] : (predu(X0) & room(X0)) & (~? [X0] : (predv(X0) & room(X0)) => (strong(mary) & happy(paul))) & (? [X0] : (predv(X0) & room(X0)) => ? [X0] : (predk(X0) & room(X0))) & (~hate(fred,lucy) => ? [X0,X1] : (sibling(X0,X1) & hate(john,X1) & ~wise(X0))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(hate(mary,alice) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : (predm(X1) & room(X1)) & kind(fred) & happy(mary) & patient(fred) & wise(mary) & ~humble(paul) & ~humble(fred) & ~? [X2] : (predu(X2) & room(X2)) & (~? [X3] : (predv(X3) & room(X3)) => (strong(mary) & happy(paul))) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : (predk(X5) & room(X5))) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : (predm(X1) & room(X1)) & happy(mary) & patient(fred) & wise(mary) & ~humble(paul) & ~humble(fred) & ~? [X2] : (predu(X2) & room(X2)) & (~? [X3] : (predv(X3) & room(X3)) => (strong(mary) & happy(paul))) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : (predk(X5) & room(X5))) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : (predm(X1) & room(X1)) & happy(mary) & wise(mary) & ~humble(paul) & ~humble(fred) & ~? [X2] : (predu(X2) & room(X2)) & (~? [X3] : (predv(X3) & room(X3)) => (strong(mary) & happy(paul))) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : (predk(X5) & room(X5))) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : (predm(X1) & room(X1)) & happy(mary) & wise(mary) & ~? [X2] : (predu(X2) & room(X2)) & (~? [X3] : (predv(X3) & room(X3)) => (strong(mary) & happy(paul))) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : (predk(X5) & room(X5))) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : (predm(X1) & room(X1)) & happy(mary) & wise(mary) & (~? [X3] : (predv(X3) & room(X3)) => (strong(mary) & happy(paul))) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : (predk(X5) & room(X5))) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : (predm(X1) & room(X1)) & wise(mary) & (~? [X3] : (predv(X3) & room(X3)) => strong(mary)) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : (predk(X5) & room(X5))) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : (predm(X1) & room(X1)) & wise(mary) & (~? [X3] : (predv(X3) & room(X3)) => strong(mary)) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : room(X5)) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & (~predm(paul) => ~hate(fred,lucy)) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (~? [X3] : (predv(X3) & room(X3)) => strong(mary)) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : room(X5)) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((strong(mary) & quiet(fred)) => predb(paul)) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (~? [X3] : (predv(X3) & room(X3)) => strong(mary)) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : room(X5)) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((european(fred) & quiet(fred)) => (strong(mary) & quiet(fred))) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (? [X4] : (predv(X4) & room(X4)) => ? [X5] : room(X5)) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((european(fred) & quiet(fred)) => quiet(fred)) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((european(fred) & quiet(fred)) => quiet(fred)) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & ((~tall(paul) & tourist(paul) & calm(paul) & person(paul) & quiet(paul)) => (hate(paul,alice) & hate(alice,paul))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((european(fred) & quiet(fred)) => quiet(fred)) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred) & calm(fred))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 58. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((european(fred) & quiet(fred)) => quiet(fred)) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & (prede(mary) => predt(paul)) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 61. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((european(fred) & quiet(fred)) => quiet(fred)) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred))) & (predt(paul) => ~(hate(paul,john) & hate(john,paul))) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 58] 62. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : ((fred != X0 & ~room(X0)) => younger(fred,X0)) & ? [X1] : room(X1) & wise(mary) & (~hate(fred,lucy) => ? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6))) & ((european(fred) & quiet(fred)) => quiet(fred)) & ((hate(paul,alice) & hate(alice,paul)) => (like(john,fred) & european(fred))) & ! [X8] : (room(X8) => (fred = X8 | paul = X8 | mary = X8)) & room(fred) & room(paul) & room(mary) [pure predicate removal 61] 135. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : (younger(fred,X0) | (fred = X0 | room(X0))) & ? [X1] : room(X1) & wise(mary) & (? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6)) | hate(fred,lucy)) & (quiet(fred) | (~european(fred) | ~quiet(fred))) & ((like(john,fred) & european(fred)) | (~hate(paul,alice) | ~hate(alice,paul))) & ! [X8] : ((fred = X8 | paul = X8 | mary = X8) | ~room(X8)) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 136. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : (younger(fred,X0) | fred = X0 | room(X0)) & ? [X1] : room(X1) & wise(mary) & (? [X6,X7] : (sibling(X6,X7) & hate(john,X7) & ~wise(X6)) | hate(fred,lucy)) & (quiet(fred) | ~european(fred) | ~quiet(fred)) & ((like(john,fred) & european(fred)) | ~hate(paul,alice) | ~hate(alice,paul)) & ! [X8] : (fred = X8 | paul = X8 | mary = X8 | ~room(X8)) & room(fred) & room(paul) & room(mary) [flattening 135] 137. ~hate(mary,alice) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 138. ~hate(mary,alice) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 137] 140. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : (younger(fred,X0) | fred = X0 | room(X0)) & ? [X1] : room(X1) & wise(mary) & (? [X2,X3] : (sibling(X2,X3) & hate(john,X3) & ~wise(X2)) | hate(fred,lucy)) & (quiet(fred) | ~european(fred) | ~quiet(fred)) & ((like(john,fred) & european(fred)) | ~hate(paul,alice) | ~hate(alice,paul)) & ! [X4] : (fred = X4 | paul = X4 | mary = X4 | ~room(X4)) & room(fred) & room(paul) & room(mary) [rectify 136] 141. ? [X1] : room(X1) => room(sK0) [choice axiom] 142. ? [X2,X3] : (sibling(X2,X3) & hate(john,X3) & ~wise(X2)) => (sibling(sK1,sK2) & hate(john,sK2) & ~wise(sK1)) [choice axiom] 143. hate(susan,fred) & hate(fred,susan) & hate(alice,mary) & hate(mary,alice) & ! [X0] : (younger(fred,X0) | fred = X0 | room(X0)) & room(sK0) & wise(mary) & ((sibling(sK1,sK2) & hate(john,sK2) & ~wise(sK1)) | hate(fred,lucy)) & (quiet(fred) | ~european(fred) | ~quiet(fred)) & ((like(john,fred) & european(fred)) | ~hate(paul,alice) | ~hate(alice,paul)) & ! [X4] : (fred = X4 | paul = X4 | mary = X4 | ~room(X4)) & room(fred) & room(paul) & room(mary) [skolemisation 140,142,141] 144. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 145. ~hate(mary,alice) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 138,144] 228. room(mary) [cnf transformation 143] 229. room(paul) [cnf transformation 143] 230. room(fred) [cnf transformation 143] 231. ~room(X4) | paul = X4 | mary = X4 | fred = X4 [cnf transformation 143] 241. hate(mary,alice) [cnf transformation 143] 245. ~hate(mary,alice) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 145] 246. ~hate(mary,alice) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 145] 247. ~hate(mary,alice) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 145] 248. ~hate(mary,alice) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 145] 286. fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 248,241] 287. fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 286,230] 288. fred != sK3 | ~room(mary) [subsumption resolution 287,229] 289. fred != sK3 [subsumption resolution 288,228] 290. paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 247,241] 291. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 290,230] 292. paul != sK3 | ~room(mary) [subsumption resolution 291,229] 293. paul != sK3 [subsumption resolution 292,228] 294. mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 246,241] 295. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 294,230] 296. mary != sK3 | ~room(mary) [subsumption resolution 295,229] 297. mary != sK3 [subsumption resolution 296,228] 298. room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 245,241] 299. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 298,230] 300. room(sK3) | ~room(mary) [subsumption resolution 299,229] 301. room(sK3) [subsumption resolution 300,228] 408. paul = sK3 | mary = sK3 | fred = sK3 [resolution 231,301] 422. mary = sK3 | fred = sK3 [subsumption resolution 408,293] 423. fred = sK3 [subsumption resolution 422,297] 424. $false [subsumption resolution 423,289] % SZS output end Proof for 5476807164030183004971687 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.667658
David is the only person in the room. If “David either is a client of Costco or regularly contributes to tech forums and online communities but not both” then “at least one person in the room hosts a popular podcast about emerging technologies”. It is not the case that “someone in the room makes intricate hand-cut paper art for exhibitions”. David knows morse code or is a coffee connoisseur or both. David owns a telescope. David is a dedicated advocate for digital privacy and encryption. Someone in the room bakes bread at home. Everyone in the room who can play the harmonica has completed a triathlon. David can play the harmonica. David makes homemade pastries. It is not the case that “at least one person in the room is a client of Costco”. David who knows morse code neither develops open-source software projects in their free time nor does not host a popular podcast about emerging technologies. David either is a client of Costco or creates augmented reality experiences for mobile applications but not both. Everyone outside the room who enjoys origami is a culinary enthusiast who experiments with international cuisines.
David is an expert in identifying and foraging wild edible plants.
neutral
room(david)&(![X]:(room(X)=>(X='david')))& ((((is_a_client_of_Costco(david))<~>(regularly_contributes_to_tech_forums_and_online_communities(david))))=>(((?[X]:(room(X)&hosts_a_popular_podcast_about_emerging_technologies(X))))))& (~(?[X]:(room(X)&(makes_intricate_hand-cut_paper_art_for_exhibitions(X)))))& (((knows_morse_code(david))|(is_a_coffee_connoisseur(david))))& (owns_a_telescope(david))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(david))& (?[X]:(room(X)&(bakes_bread_at_home(X))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))=>(has_completed_a_triathlon(X))))))& (can_play_the_harmonica(david))& (makes_homemade_pastries(david))& (~(((?[X]:(room(X)&is_a_client_of_Costco(X))))))& ((knows_morse_code(david))&(~((develops_open-source_software_projects_in_their_free_time(david))|(does_not_host_a_popular_podcast_about_emerging_technologies(david)))))& (((is_a_client_of_Costco(david))<~>(creates_augmented_reality_experiences_for_mobile_applications(david))))& (![X]:(~room(X)=>(((enjoys_origami(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (?[X]:(~room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (?[X]:(room(X)&(regularly_contributes_to_tech_forums_and_online_communities(X))))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (~(~(has_completed_a_triathlon(david))))& (?[X]:(room(X)&(((owns_a_telescope(X))<~>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((((does_enjoy_mountain_biking(X))<~>(enjoys_rooftop_gardening(X))))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (((?[X]:(room(X)&enjoys_macrame(X)))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(david))& (![X]:(room(X)=>(((((bakes_bread_at_home(X))|(knows_morse_code(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))=>(((is_a_coffee_connoisseur(X))<~>(enjoys_salsa_dancing(X))))))))& ((![X]:((enjoys_salsa_dancing(X))<=>(((collects_vintage_vinyl_records(X))<~>(makes_homemade_pastries(X)))))))& (collects_rare_and_antique_scientific_instruments(david))
room(david)&(![X]:(room(X)=>(X='david')))& is_an_expert_in_identifying_and_foraging_wild_edible_plants(david)
[]
null
0.004255
Jerry is the only person in the room. If “Robert and Jerry hate each other” then “Jerry is younger than Tony”. “Jerry is a sibling of Gene” if “Jerry does not develop open-source software projects in their free time”. “Jerry does not own an Android phone” only if “more than one person in the room does not develop open-source software projects in their free time”. If “Jerry and Marvin like each other” then “Jerry is a client of Marvin”. Either “Jerry neither is a client of Robert nor is a sibling of Debbie” or “Jerry and Gene like each other” but not both. “Jerry neither is a sibling of Marvin nor is hated by Gene” only if “Jerry is older than Robert”. Gene and Jerry like each other. Jerry is a sibling of Marvin. Jerry is older than Robert. Someone in the room is not a night owl. Jerry is a sibling of Debbie. Jerry is richer than Tyrone. Jerry is not an active member of a local robotics club. Jerry is humble. Jerry is generous. Jerry does not design and sews custom cosplay costumes for conventions. All funny person is curious. Jerry is a client of Marvin.
Jerry is a sibling of Gene.
neutral
room(jerry)&(![X]:(room(X)=>(X='jerry')))& (((hate(robert,jerry) & hate(jerry,robert)))=>(younger(tony,jerry)))& ((does_not_develop_open-source_software_projects_in_their_free_time(jerry))=>(sibling(gene,jerry)))& ((does_not_own_an_Android_phone(jerry))=>((?[X,Y]:(room(X)&room(Y)&(does_not_develop_open-source_software_projects_in_their_free_time(X)&does_not_develop_open-source_software_projects_in_their_free_time(Y))&(X!=Y)))))& (((like(jerry,marvin) & like(marvin,jerry)))=>(client(marvin,jerry)))& ((~((client(robert,jerry))|(sibling(debbie,jerry))))<~>((like(jerry,gene) & like(gene,jerry))))& ((~((sibling(marvin,jerry))|(hate(jerry,gene))))=>(older(robert,jerry)))& ((like(gene,jerry) & like(jerry,gene)))& (sibling(marvin,jerry))& (older(robert,jerry))& (?[X]:(room(X)&(is_not_a_night_owl(X))))& (sibling(debbie,jerry))& (richer(tyrone,jerry))& (is_not_an_active_member_of_a_local_robotics_club(jerry))& (humble(jerry))& (generous(jerry))& (does_not_design_and_sews_custom_cosplay_costumes_for_conventions(jerry))& (![X]:(funny(X)=>curious(X)))& (client(marvin,jerry))
room(jerry)&(![X]:(room(X)=>(X='jerry')))& sibling(gene,jerry)
[]
null
0.479241
Daniel, Thomas are the only persons in the room. Daniel neither regularly contributes to tech forums and online communities nor is a craft beer aficionado. More than one person outside the room is a Linux enthusiast. Thomas is a craft beer aficionado or is a Linux enthusiast or both. Daniel is a Linux enthusiast. Everyone in the room who is a Linux enthusiast does not regularly contributes to tech forums and online communities.
Thomas is a craft beer aficionado.
neutral
room(daniel)&room(thomas)&(![X]:(room(X)=>(X='daniel'|X='thomas')))& (~((regularly_contributes_to_tech_forums_and_online_communities(daniel))|(is_a_craft_beer_aficionado(daniel))))& ((?[X,Y]:(~room(X)&~room(Y)&(is_a_Linux_enthusiast(X)&is_a_Linux_enthusiast(Y))&(X!=Y))))& (((is_a_craft_beer_aficionado(thomas))|(is_a_Linux_enthusiast(thomas))))& (is_a_Linux_enthusiast(daniel))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))
room(daniel)&room(thomas)&(![X]:(room(X)=>(X='daniel'|X='thomas')))& is_a_craft_beer_aficionado(thomas)
[]
null
0.180769
Lana, Robert are the only persons in the room. Someone anywhere is a funny person. Someone in the room either is older than Charles or is a calm person but not both. No tall person is calm. Not everyone anywhere who is older than Wally is a curious person. Someone in the room is richer than Charles. At least one person anywhere is older than Wally. Everyone outside the room is older than John if they is a humble person. Everyone in the room is quieter than Charles if they is older than John. Not everyone in the room who is a happy person is a generous person. Everyone in the room is a happy person if they is a generous person. Only one person in the room is quieter than Wally.
Robert is not happy.
neutral
room(lana)&room(robert)&(![X]:(room(X)=>(X='lana'|X='robert')))& (?[X]:(anywhere(X)&(funny(X)&person(X))))& (?[X]:(room(X)&(((older(charles,X))<~>(calm(X)&person(X))))))& (~?[X]:(tall(X)=>calm(X)))& (~![X]:(anywhere(X)=>(((older(wally,X))=>(curious(X)&person(X))))))& (?[X]:(room(X)&(richer(charles,X))))& (((?[X]:(anywhere(X)&older(wally,X)))))& (![X]:(~room(X)=>(((humble(X)&person(X))=>(older(john,X))))))& (![X]:(room(X)=>(((older(john,X))=>(quieter(charles,X))))))& (~![X]:(room(X)=>(((happy(X)&person(X))=>(generous(X)&person(X))))))& (![X]:(room(X)=>(((generous(X)&person(X))=>(happy(X)&person(X))))))& (((?[X]:(room(X)&quieter(wally,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(wally,X))&(quieter(wally,Y)))=>(X=Y)))))
room(lana)&room(robert)&(![X]:(room(X)=>(X='lana'|X='robert')))& ~happy(robert)
[]
null
0.709642
Dorothy, Tamara, Vera are the only persons in the room. Everyone in the room does not use an ios phone or creates large-scale murals for public art installations only if Dorothy enjoys cross-country skiing. Dorothy who practices archery collects first edition books if Dorothy either is dedicated to sustainable living and zero-waste practices or does not create YouTube content but not both. If Dorothy enjoys bird watching, does not practice urban gardening or works as a freelance web developer specializing in e-commerce sites then everyone in the room does not enjoy mountain biking or collects antique jewelry. Everyone in the room makes intricate hand-cut paper art for exhibitions if they collects first edition books and vice versa. Dorothy either practices urban gardening or collects first edition books but not both. Everyone in the room is dedicated to sustainable living and zero-waste practices, collects historical artifacts related to ancient civilizations and makes intricate hand-cut paper art for exhibitions. If someone collects first edition books then he/she does enjoy mountain biking.
Tamara collects antique jewelry.
entailment
room(dorothy)&room(tamara)&room(vera)&(![X]:(room(X)=>(X='dorothy'|X='tamara'|X='vera')))& ((![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))|(does_not_use_an_ios_phone(X))))))=>(enjoys_cross-country_skiing(dorothy)))& ((((is_dedicated_to_sustainable_living_and_zero-waste_practices(dorothy))<~>(does_not_create_YouTube_content(dorothy))))=>((practices_archery(dorothy))&(collects_first_edition_books(dorothy))))& ((enjoys_salsa_dancing(dorothy))=>(![X]:(room(X)=>(((practices_urban_gardening(X))=>(does_not_enjoy_skydiving(X)))))))& ((![X]:(room(X)=>(((is_a_client_of_LVMH(X))|(does_not_enjoy_bird_watching(X))))))=>(((?[X]:(room(X)&enjoys_skydiving(X))))))& ((((enjoys_bird_watching(dorothy))|(does_not_practice_urban_gardening(dorothy))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(dorothy))))=>(![X]:(room(X)=>(((collects_antique_jewelry(X))|(does_not_enjoy_mountain_biking(X)))))))& ((![X]:(~room(X)=>(((does_not_practice_pilates(X))|(enjoys_salsa_dancing(X))))))=>(is_a_client_of_LVMH(dorothy)))& ((~![X]:(room(X)=>(((is_not_a_client_of_LVMH(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))=>((?[X,Y]:(room(X)&room(Y)&(is_a_client_of_LVMH(X)&is_a_client_of_LVMH(Y))&(X!=Y)))))& ((![X]:(room(X)=>(((uses_an_ios_phone(X))|(does_not_practice_pilates(X))))))<~>(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))&(makes_intricate_hand-cut_paper_art_for_exhibitions(X)))))))& ((![X]:((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(creates_large-scale_murals_for_public_art_installations(X)))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))<=>(collects_first_edition_books(X))))))& (((practices_urban_gardening(dorothy))<~>(collects_first_edition_books(dorothy))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))|(does_not_enjoy_coding_in_Python(X))))))& (![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))=>(enjoys_cross-country_skiing(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))&(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (((?[X]:(room(X)&practices_pilates(X)))&(![X,Y]:((room(X)&room(Y)&(practices_pilates(X))&(practices_pilates(Y)))=>(X=Y)))))& ((![X]:((collects_first_edition_books(X))=>(does_enjoy_mountain_biking(X)))))& (![X]:(anywhere(X)=>(((((owns_an_Android_phone(X))<~>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))
room(dorothy)&room(tamara)&room(vera)&(![X]:(room(X)=>(X='dorothy'|X='tamara'|X='vera')))& collects_antique_jewelry(tamara)
[ "p0", "p5", "p10", "p11", "p14", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 2092339867796602654589505 % SZS output start Proof for 2092339867796602654589505 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 49. (predp(mary) | ~predk(mary) | predu(mary)) => ! [X0] : (room(X0) => (~predi(X0) | predx(X0))) [input p5] 54. ! [X0] : (room(X0) => (predz(X0) <=> predn(X0))) [input p10] 55. predk(mary) <~> predn(mary) [input p11] 58. ! [X0] : (room(X0) => (predz(X0) & predh(X0) & predq(X0))) [input p14] 60. ! [X0] : (predn(X0) => predi(X0)) [input p16] 62. ~(predx(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 67. (~predk(mary) | predu(mary)) => ! [X0] : (room(X0) => (~predi(X0) | predx(X0))) [pure predicate removal 49] 147. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147] 152. ! [X0] : ((~predi(X0) | predx(X0)) | ~room(X0)) | (predk(mary) & ~predu(mary)) [ennf transformation 67] 153. ! [X0] : (~predi(X0) | predx(X0) | ~room(X0)) | (predk(mary) & ~predu(mary)) [flattening 152] 159. ! [X0] : ((predz(X0) <=> predn(X0)) | ~room(X0)) [ennf transformation 54] 160. ! [X0] : ((predz(X0) & predh(X0) & predq(X0)) | ~room(X0)) [ennf transformation 58] 163. ! [X0] : (predi(X0) | ~predn(X0)) [ennf transformation 60] 166. ~predx(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 62] 167. ~predx(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 166] 189. ! [X0] : (((predz(X0) | ~predn(X0)) & (predn(X0) | ~predz(X0))) | ~room(X0)) [nnf transformation 159] 190. (~predn(mary) | ~predk(mary)) & (predn(mary) | predk(mary)) [nnf transformation 55] 194. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 195. ~predx(paul) | (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 167,194] 277. room(mary) [cnf transformation 148] 278. room(paul) [cnf transformation 148] 279. room(fred) [cnf transformation 148] 280. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 148] 287. ~predi(X0) | predx(X0) | ~room(X0) | predk(mary) [cnf transformation 153] 304. ~predz(X0) | predn(X0) | ~room(X0) [cnf transformation 189] 307. ~predn(mary) | ~predk(mary) [cnf transformation 190] 310. predz(X0) | ~room(X0) [cnf transformation 160] 314. ~predn(X0) | predi(X0) [cnf transformation 163] 317. ~predx(paul) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 318. ~predx(paul) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 319. ~predx(paul) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 320. ~predx(paul) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 331. 3 <=> predn(mary) [avatar definition] 356. 8 <=> predk(mary) [avatar definition] 360. 9 <=> ! [X0] : (~predi(X0) | ~room(X0) | predx(X0)) [avatar definition] 361. ~predi(X0) | ~room(X0) | predx(X0) <- (9) [avatar component clause 360] 362. 8 | 9 [avatar split clause 287,360,356] 452. 29 <=> ! [X1] : (predz(X1) | ~room(X1)) [avatar definition] 453. ~room(X1) | predz(X1) <- (29) [avatar component clause 452] 463. ~8 | ~3 [avatar split clause 307,331,356] 465. 29 [avatar split clause 310,452] 469. ~predx(paul) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 320,279] 470. ~predx(paul) | fred != sK9 | ~room(mary) [subsumption resolution 469,278] 471. ~predx(paul) | fred != sK9 [subsumption resolution 470,277] 473. 32 <=> fred = sK9 [avatar definition] 475. fred != sK9 <- (~32) [avatar component clause 473] 477. 33 <=> predx(paul) [avatar definition] 480. ~32 | ~33 [avatar split clause 471,477,473] 481. ~predx(paul) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 319,279] 482. ~predx(paul) | paul != sK9 | ~room(mary) [subsumption resolution 481,278] 483. ~predx(paul) | paul != sK9 [subsumption resolution 482,277] 485. 34 <=> paul = sK9 [avatar definition] 487. paul != sK9 <- (~34) [avatar component clause 485] 488. ~34 | ~33 [avatar split clause 483,477,485] 489. ~predx(paul) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 318,279] 490. ~predx(paul) | mary != sK9 | ~room(mary) [subsumption resolution 489,278] 491. ~predx(paul) | mary != sK9 [subsumption resolution 490,277] 493. 35 <=> mary = sK9 [avatar definition] 495. mary != sK9 <- (~35) [avatar component clause 493] 496. ~35 | ~33 [avatar split clause 491,477,493] 497. ~predx(paul) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 317,279] 498. ~predx(paul) | room(sK9) | ~room(mary) [subsumption resolution 497,278] 499. ~predx(paul) | room(sK9) [subsumption resolution 498,277] 501. 36 <=> room(sK9) [avatar definition] 503. room(sK9) <- (36) [avatar component clause 501] 504. 36 | ~33 [avatar split clause 499,477,501] 505. predz(mary) <- (29) [resolution 453,277] 506. predz(paul) <- (29) [resolution 453,278] 523. predn(mary) | ~room(mary) <- (29) [resolution 304,505] 524. predn(paul) | ~room(paul) <- (29) [resolution 304,506] 529. predn(paul) <- (29) [subsumption resolution 524,278] 531. predn(mary) <- (29) [subsumption resolution 523,277] 532. 3 | ~29 [avatar split clause 531,452,331] 544. predi(paul) <- (29) [resolution 529,314] 571. ~room(paul) | predx(paul) <- (9, 29) [resolution 544,361] 572. predx(paul) <- (9, 29) [subsumption resolution 571,278] 575. 33 | ~9 | ~29 [avatar split clause 572,452,360,477] 617. paul = sK9 | mary = sK9 | fred = sK9 <- (36) [resolution 280,503] 657. mary = sK9 | fred = sK9 <- (~34, 36) [subsumption resolution 617,487] 658. fred = sK9 <- (~34, ~35, 36) [subsumption resolution 657,495] 659. $false <- (~32, ~34, ~35, 36) [subsumption resolution 658,475] 660. 32 | 34 | 35 | ~36 [avatar contradiction clause 659] 661. $false [avatar sat refutation 362,463,465,480,488,496,504,532,575,660] % SZS output end Proof for 2092339867796602654589505 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0
Dwayne, Reva, James, Stacey, Deborah are the only persons in the room. 'Dwayne is not a funny person' only if 'at least one person in the room is not a strong person or is not creative or both'. If 'everyone in the room is not a quiet person' then 'Dwayne is brave' otherwise 'Dwayne is curious'. Dwayne is not a brave person. Everyone outside the room is quiet.
Not everyone in the room is not a old person, is quiet and is not quiet.
entailment
room(dwayne)&room(reva)&room(james)&room(stacey)&room(deborah)&(![X]:(room(X)=>(X='dwayne'|X='reva'|X='james'|X='stacey'|X='deborah')))& ((~(funny(dwayne)&person(dwayne)))=>(((?[X]:(room(X)&((~(strong(X)&person(X)))|(~creative(X))))))))& ((tall(dwayne)&person(dwayne))<=>(old(dwayne)&person(dwayne)))& (((![X]:(room(X)=>(~(quiet(X)&person(X)))))=>(brave(dwayne)))&((~(![X]:(room(X)=>(~(quiet(X)&person(X))))))=>(curious(dwayne))))& ((~(brave(dwayne)&person(dwayne)))=>(![X]:(room(X)=>(~strong(X)))))& (~![X]:(room(X)=>(((quiet(X)&person(X))|(creative(X)&person(X))))))& (~(brave(dwayne)&person(dwayne)))& (((~(old(dwayne)&person(dwayne)))|(~(quiet(dwayne)&person(dwayne)))))& (curious(dwayne))& (![X]:(~room(X)=>(quiet(X))))& (((?[X]:(anywhere(X)&~((wise(X)&person(X))|(~(brave(X)&person(X))))))))& (![X]:(room(X)=>(~kind(X))))& (~![X]:(anywhere(X)=>(~(old(X)&person(X)))))& (~(kind(dwayne)&person(dwayne)))
room(dwayne)&room(reva)&room(james)&room(stacey)&room(deborah)&(![X]:(room(X)=>(X='dwayne'|X='reva'|X='james'|X='stacey'|X='deborah')))& ~![X]:(room(X)=>(((~(old(X)&person(X)))&(quiet(X))&(~quiet(X)))))
[ "p0", "p1", "p3", "p6", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 3881332953666429171797666 % SZS output start Proof for 3881332953666429171797666 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(person(mary) & funny(mary)) => ? [X0] : ((~creative(X0) | ~(person(X0) & strong(X0))) & room(X0)) [input p1] 47. (~! [X0] : (room(X0) => ~(person(X0) & quiet(X0))) => curious(mary)) & (! [X0] : (room(X0) => ~(person(X0) & quiet(X0))) => brave(mary)) [input p3] 50. ~(person(mary) & brave(mary)) [input p6] 53. ! [X0] : (~room(X0) => quiet(X0)) [input p9] 58. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 59. (~! [X0] : (room(X0) => ~(person(X0) & quiet(X0))) => curious(mary)) & (! [X1] : (room(X1) => ~(person(X1) & quiet(X1))) => brave(mary)) [rectify 47] 60. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 58] 64. ! [X1] : (room(X1) => ~(person(X1) & quiet(X1))) => brave(mary) [pure predicate removal 59] 67. ~(person(mary) & funny(mary)) => ? [X0] : room(X0) [pure predicate removal 45] 69. ~person(mary) => ? [X0] : room(X0) [pure predicate removal 67] 144. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 145. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 144] 146. ? [X0] : room(X0) | person(mary) [ennf transformation 69] 147. brave(mary) | ? [X1] : ((person(X1) & quiet(X1)) & room(X1)) [ennf transformation 64] 148. brave(mary) | ? [X1] : (person(X1) & quiet(X1) & room(X1)) [flattening 147] 150. ~person(mary) | ~brave(mary) [ennf transformation 50] 153. ! [X0] : (quiet(X0) | room(X0)) [ennf transformation 53] 156. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 60] 157. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 156] 158. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 159. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 157,158] 161. ? [X0] : room(X0) => room(sK1) [choice axiom] 162. room(sK1) | person(mary) [skolemisation 146,161] 165. brave(mary) | ? [X0] : (person(X0) & quiet(X0) & room(X0)) [rectify 148] 166. ? [X0] : (person(X0) & quiet(X0) & room(X0)) => (person(sK2) & quiet(sK2) & room(sK2)) [choice axiom] 167. brave(mary) | (person(sK2) & quiet(sK2) & room(sK2)) [skolemisation 165,166] 174. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 158] 175. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 174] 176. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK6 & alice != sK6 & fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 177. (john != sK6 & alice != sK6 & fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) | ~sP0 [skolemisation 175,176] 258. room(mary) [cnf transformation 145] 259. room(paul) [cnf transformation 145] 260. room(fred) [cnf transformation 145] 261. room(alice) [cnf transformation 145] 262. room(john) [cnf transformation 145] 263. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 145] 264. room(sK1) | person(mary) [cnf transformation 162] 269. brave(mary) | room(sK2) [cnf transformation 167] 274. ~person(mary) | ~brave(mary) [cnf transformation 150] 276. room(X0) | quiet(X0) [cnf transformation 153] 281. room(sK6) | ~sP0 [cnf transformation 177] 282. mary != sK6 | ~sP0 [cnf transformation 177] 283. paul != sK6 | ~sP0 [cnf transformation 177] 284. fred != sK6 | ~sP0 [cnf transformation 177] 285. alice != sK6 | ~sP0 [cnf transformation 177] 286. john != sK6 | ~sP0 [cnf transformation 177] 288. quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 289. ~quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 292. 1 <=> person(mary) [avatar definition] 296. 2 <=> room(sK1) [avatar definition] 298. room(sK1) <- (2) [avatar component clause 296] 299. 1 | 2 [avatar split clause 264,296,292] 315. 6 <=> brave(mary) [avatar definition] 325. 8 <=> room(sK2) [avatar definition] 327. room(sK2) <- (8) [avatar component clause 325] 328. 8 | 6 [avatar split clause 269,315,325] 338. ~6 | ~1 [avatar split clause 274,292,315] 345. 12 <=> sP0 [avatar definition] 349. 13 <=> john = sK6 [avatar definition] 351. john != sK6 <- (~13) [avatar component clause 349] 352. ~12 | ~13 [avatar split clause 286,349,345] 354. 14 <=> alice = sK6 [avatar definition] 356. alice != sK6 <- (~14) [avatar component clause 354] 357. ~12 | ~14 [avatar split clause 285,354,345] 359. 15 <=> fred = sK6 [avatar definition] 361. fred != sK6 <- (~15) [avatar component clause 359] 362. ~12 | ~15 [avatar split clause 284,359,345] 364. 16 <=> paul = sK6 [avatar definition] 367. ~12 | ~16 [avatar split clause 283,364,345] 369. 17 <=> mary = sK6 [avatar definition] 371. mary != sK6 <- (~17) [avatar component clause 369] 372. ~12 | ~17 [avatar split clause 282,369,345] 374. 18 <=> room(sK6) [avatar definition] 376. room(sK6) <- (18) [avatar component clause 374] 377. ~12 | 18 [avatar split clause 281,374,345] 378. ~quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 289,262] 379. ~quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 378,261] 380. ~quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 379,260] 381. ~quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 380,259] 382. ~quiet(X0) | ~room(X0) | sP0 [subsumption resolution 381,258] 384. 19 <=> ! [X0] : (~quiet(X0) | ~room(X0)) [avatar definition] 385. ~quiet(X0) | ~room(X0) <- (19) [avatar component clause 384] 386. 12 | 19 [avatar split clause 382,384,345] 387. quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 288,262] 388. quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 387,261] 389. quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 388,260] 390. quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 389,259] 391. quiet(X0) | ~room(X0) | sP0 [subsumption resolution 390,258] 392. quiet(X0) | sP0 [subsumption resolution 391,276] 394. 20 <=> ! [X0] : quiet(X0) [avatar definition] 395. quiet(X0) <- (20) [avatar component clause 394] 396. 12 | 20 [avatar split clause 392,394,345] 450. alice = sK6 | fred = sK6 | paul = sK6 | mary = sK6 | john = sK6 <- (18) [resolution 263,376] 493. fred = sK6 | paul = sK6 | mary = sK6 | john = sK6 <- (~14, 18) [subsumption resolution 450,356] 494. paul = sK6 | mary = sK6 | john = sK6 <- (~14, ~15, 18) [subsumption resolution 493,361] 499. paul = sK6 | john = sK6 <- (~14, ~15, ~17, 18) [subsumption resolution 494,371] 500. paul = sK6 <- (~13, ~14, ~15, ~17, 18) [subsumption resolution 499,351] 501. 16 | 13 | 14 | 15 | 17 | ~18 [avatar split clause 500,374,369,359,354,349,364] 504. ~room(X0) <- (19, 20) [subsumption resolution 385,395] 509. $false <- (8, 19, 20) [subsumption resolution 327,504] 510. ~8 | ~19 | ~20 [avatar contradiction clause 509] 511. $false <- (2, 19, 20) [subsumption resolution 298,504] 512. ~2 | ~19 | ~20 [avatar contradiction clause 511] 513. $false [avatar sat refutation 299,328,338,352,357,362,367,372,377,386,396,501,510,512] % SZS output end Proof for 3881332953666429171797666 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.06341
Walter, Anastasia are the only persons in the room. 'Everyone in the room plays video games or does not create augmented reality experiences for mobile applications' only if 'Anastasia creates augmented reality experiences for mobile applications'. Either 'no one anywhere maintains a personal blog focused on cybersecurity tips' or 'everyone in the room maintains a personal blog focused on cybersecurity tips or is not a client of Costco' but not both. If 'someone in the room is a client of Costco' then 'everyone outside the room enjoys coding in Python if they hosts regular game nights featuring complex strategy games'. Walter does not create augmented reality experiences for mobile applications. Everyone anywhere who designs and sews custom cosplay costumes for conventions does not maintain a personal blog focused on cybersecurity tips. More than one person outside the room designs and sews custom cosplay costumes for conventions.
Anastasia collects historical artifacts related to ancient civilizations.
neutral
room(walter)&room(anastasia)&(![X]:(room(X)=>(X='walter'|X='anastasia')))& ((![X]:(room(X)=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))|(plays_video_games(X))))))=>(creates_augmented_reality_experiences_for_mobile_applications(anastasia)))& ((~?[X]:(anywhere(X)=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))<~>(![X]:(room(X)=>(((is_not_a_client_of_Costco(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))& ((?[X]:(room(X)&(is_a_client_of_Costco(X))))=>(![X]:(~room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(enjoys_coding_in_Python(X)))))))& (does_not_create_augmented_reality_experiences_for_mobile_applications(walter))& (![X]:(anywhere(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X)&designs_and_sews_custom_cosplay_costumes_for_conventions(Y))&(X!=Y))))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(walter))& (![X]:(room(X)=>(((does_not_play_video_games(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (?[X]:(room(X)&(collects_historical_artifacts_related_to_ancient_civilizations(X))))& (creates_augmented_reality_experiences_for_mobile_applications(anastasia))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (enjoys_coding_in_Python(anastasia))& (![X]:(anywhere(X)=>(((builds_model_airplanes(X))=>(enjoys_stargazing(X))))))& (![X]:(room(X)=>(((enjoys_stargazing(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))& (collects_luxury_watches(walter))& (~![X]:(room(X)=>(((((enjoys_stargazing(X))&(enjoys_coding_in_Python(X))))=>(does_not_collect_luxury_watches(X))))))& (is_a_client_of_Costco(walter))& (enjoys_stargazing(walter))& (![X]:(room(X)=>(((plays_video_games(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (is_not_a_client_of_Costco(anastasia))
room(walter)&room(anastasia)&(![X]:(room(X)=>(X='walter'|X='anastasia')))& collects_historical_artifacts_related_to_ancient_civilizations(anastasia)
[]
null
0.33691
Todd is the only person in the room. If 'everyone in the room practices tai chi or does not practice graffiti art' then 'Todd has lived in exactly three countries'. Either 'Todd practices tai chi and practices zumba' or 'Todd collects limited-edition art prints from contemporary artists' but not both. If 'Todd mentors a youth basketball team on weekends' then 'if someone practices graffiti art then he/she is a drone photographer'. 'Everyone in the room collects antique clocks or does not practice tai chi' if 'everyone in the room practices tai chi or does not mentor a youth basketball team on weekends' and vice versa. If 'Todd mentors a youth basketball team on weekends' then 'everyone in the room who is dedicated to sustainable living and zero-waste practices has a tattoo'. If 'everyone in the room practices graffiti art or does not mentor a youth basketball team on weekends' then 'Todd has a tattoo'. Everyone in the room who practices graffiti art collects limited-edition art prints from contemporary artists. Todd collects antique clocks. Everyone in the room who mentors a youth basketball team on weekends practices graffiti art. Todd frequently participates in hackathons and coding competitions. If someone frequently participates in hackathons and coding competitions then he/she practices tai chi. Everyone outside the room is a drone photographer or does not write a travel blog. Todd is allergic to anything. Todd is dedicated to sustainable living and zero-waste practices. Todd participates in citizen science projects related to wildlife monitoring. Everyone in the room is not a wine connoisseur with a private cellar of vintage wines if they neither collects limited-edition art prints from contemporary artists nor is a drone photographer. Todd is a wine connoisseur with a private cellar of vintage wines. Todd collects limited-edition art prints from contemporary artists. If someone practices graffiti art then he/she participates in citizen science projects related to wildlife monitoring. Todd practices tai chi. Todd has lived in exactly three countries.
Todd collects limited-edition art prints from contemporary artists.
entailment
room(todd)&(![X]:(room(X)=>(X='todd')))& ((![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(practices_tai_chi(X))))))=>(has_lived_in_exactly_three_countries(todd)))& ((((practices_tai_chi(todd))&(practices_zumba(todd))))<~>(collects_limited-edition_art_prints_from_contemporary_artists(todd)))& ((mentors_a_youth_basketball_team_on_weekends(todd))=>((![X]:((practices_graffiti_art(X))=>(is_a_drone_photographer(X))))))& ((![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(practices_tai_chi(X))))))<=>(![X]:(room(X)=>(((does_not_practice_tai_chi(X))|(collects_antique_clocks(X)))))))& ((mentors_a_youth_basketball_team_on_weekends(todd))=>(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(has_a_tattoo(X)))))))& ((![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(practices_graffiti_art(X))))))=>(has_a_tattoo(todd)))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (collects_antique_clocks(todd))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(practices_graffiti_art(X))))))& (frequently_participates_in_hackathons_and_coding_competitions(todd))& ((![X]:((frequently_participates_in_hackathons_and_coding_competitions(X))=>(practices_tai_chi(X)))))& (![X]:(~room(X)=>(((does_not_write_a_travel_blog(X))|(is_a_drone_photographer(X))))))& (is_allergic_to_anything(todd))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(todd))& (participates_in_citizen_science_projects_related_to_wildlife_monitoring(todd))& (![X]:(room(X)=>(((~((collects_limited-edition_art_prints_from_contemporary_artists(X))|(is_a_drone_photographer(X))))=>(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(todd))& (collects_limited-edition_art_prints_from_contemporary_artists(todd))& ((![X]:((practices_graffiti_art(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))& (practices_tai_chi(todd))& (has_lived_in_exactly_three_countries(todd))
room(todd)&(![X]:(room(X)=>(X='todd')))& collects_limited-edition_art_prints_from_contemporary_artists(todd)
[ "p0", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 8496232306848189441506282 % SZS output start Proof for 8496232306848189441506282 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 62. predc(mary) [input p18] 66. ~(predc(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 152. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 160. ~predc(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 66] 169. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 170. ~predc(mary) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 160,169] 251. room(mary) [cnf transformation 152] 252. ~room(X0) | mary = X0 [cnf transformation 152] 267. predc(mary) [cnf transformation 62] 269. ~predc(mary) | room(sK2) | ~room(mary) [cnf transformation 170] 270. ~predc(mary) | mary != sK2 | ~room(mary) [cnf transformation 170] 280. 3 <=> predc(mary) [avatar definition] 322. 3 [avatar split clause 267,280] 324. ~predc(mary) | mary != sK2 [subsumption resolution 270,251] 326. 12 <=> mary = sK2 [avatar definition] 328. mary != sK2 <- (~12) [avatar component clause 326] 329. ~12 | ~3 [avatar split clause 324,280,326] 330. ~predc(mary) | room(sK2) [subsumption resolution 269,251] 332. 13 <=> room(sK2) [avatar definition] 334. room(sK2) <- (13) [avatar component clause 332] 335. 13 | ~3 [avatar split clause 330,280,332] 338. mary = sK2 <- (13) [resolution 252,334] 339. $false <- (~12, 13) [subsumption resolution 338,328] 340. 12 | ~13 [avatar contradiction clause 339] 341. $false [avatar sat refutation 322,329,335,340] % SZS output end Proof for 8496232306848189441506282 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.452595
There is a room. Everyone in the room is a tall person. Someone who is a quiet person is richer than someone who is a humble person. Not everyone anywhere is a humble person. Everyone in the room is creative. If someone is not a quiet person then he/she is happy and vice versa. Everyone in the room is a kind person. Someone in the room is a humble person. Everyone in the room either is a humble person or is not a funny person but not both. Everyone in the room neither is a brave person nor is calm. Not everyone in the room is not a creative person and is a tall person. Everyone in the room is a funny person. Everyone anywhere is tall. If someone is a curious person then he/she is not a old person. Everyone in the room is funny. Everyone in the room is patient.
Not everyone in the room is a curious person.
neutral
(there_is_a_room)& (![X]:(room(X)=>(tall(X)&person(X))))& (?[X,Y]:((quiet(X)&person(X))&(humble(Y)&person(Y))&(richer(X,Y))))& (~![X]:(anywhere(X)=>(humble(X)&person(X))))& (![X]:(room(X)=>(creative(X))))& ((![X]:((~(quiet(X)&person(X)))<=>(happy(X)))))& (![X]:(room(X)=>(kind(X)&person(X))))& (?[X]:(room(X)&(humble(X)&person(X))))& (![X]:(room(X)=>(((humble(X)&person(X))<~>(~(funny(X)&person(X)))))))& (![X]:(room(X)=>(~((brave(X)&person(X))|(calm(X))))))& (~![X]:(room(X)=>(((~(creative(X)&person(X)))&(tall(X)&person(X))))))& (![X]:(room(X)=>(funny(X)&person(X))))& (![X]:(anywhere(X)=>(tall(X))))& ((![X]:((curious(X)&person(X))=>(~(old(X)&person(X))))))& (![X]:(room(X)=>(funny(X))))& (![X]:(room(X)=>(patient(X))))
(there_is_a_room)& ~![X]:(room(X)=>(curious(X)&person(X)))
[]
null
0.398624
Samuel is the only person in the room. If “Samuel uses contact lenses or writes in-depth travel guides for off-the-beaten-path destinations or both” then “Samuel plays as a goalkeeper for a local amateur soccer team”. If “Samuel is a client of Costco” then “everyone in the room who plays as a goalkeeper for a local amateur soccer team uses a Windows laptop”. “Samuel neither is a client of Meta nor plays the drums” only if “Samuel writes poetry”. Samuel is an expert in identifying and foraging wild edible plants. At least one person in the room writes poetry. Everyone in the room who has a saltwater aquarium either is a coffee connoisseur or owns a high-end gaming PC with custom-built components but not both. Samuel owns a high-end gaming PC with custom-built components. Samuel plays as a goalkeeper for a local amateur soccer team. At least one person in the room either owns an extensive assortment of vintage comic book memorabilia or does not have a saltwater aquarium but not both. Samuel neither is a client of Costco nor has a saltwater aquarium. Samuel collects comic books. Samuel plays the drums. Everyone in the room who plays as a goalkeeper for a local amateur soccer team neither is a client of Meta nor has a saltwater aquarium. Samuel either uses contact lenses or owns an extensive assortment of vintage comic book memorabilia but not both. Samuel is dedicated to sustainable living and zero-waste practices. Samuel does enjoy mountain biking.
It is not the case that “it is not the case that “Samuel is a client of Meta””.
contradiction
room(samuel)&(![X]:(room(X)=>(X='samuel')))& ((((uses_contact_lenses(samuel))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(samuel))))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(samuel)))& ((is_a_client_of_Costco(samuel))=>(![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(uses_a_Windows_laptop(X)))))))& ((~((is_a_client_of_Meta(samuel))|(plays_the_drums(samuel))))=>(writes_poetry(samuel)))& (is_an_expert_in_identifying_and_foraging_wild_edible_plants(samuel))& (((?[X]:(room(X)&writes_poetry(X)))))& (![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(((is_a_coffee_connoisseur(X))<~>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))& (owns_a_high-end_gaming_PC_with_custom-built_components(samuel))& (plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(samuel))& (((?[X]:(room(X)&((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<~>(does_not_have_a_saltwater_aquarium(X)))))))& (~((is_a_client_of_Costco(samuel))|(has_a_saltwater_aquarium(samuel))))& (collects_comic_books(samuel))& (plays_the_drums(samuel))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(~((is_a_client_of_Meta(X))|(has_a_saltwater_aquarium(X))))))))& (((uses_contact_lenses(samuel))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(samuel))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(samuel))& (does_enjoy_mountain_biking(samuel))
room(samuel)&(![X]:(room(X)=>(X='samuel')))& ~(~(is_a_client_of_Meta(samuel)))
[ "p0", "p8", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 7822635923171192483172603 % SZS output start Proof for 7822635923171192483172603 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 52. predc(mary) [input p8] 57. ! [X0] : (room(X0) => (predc(X0) => ~(preds(X0) | preda(X0)))) [input p13] 61. preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 144. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 149. ! [X0] : (((~preds(X0) & ~preda(X0)) | ~predc(X0)) | ~room(X0)) [ennf transformation 57] 150. ! [X0] : ((~preds(X0) & ~preda(X0)) | ~predc(X0) | ~room(X0)) [flattening 149] 151. preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 61] 241. room(mary) [cnf transformation 144] 248. predc(mary) [cnf transformation 52] 253. ~preda(X0) | ~predc(X0) | ~room(X0) [cnf transformation 150] 259. preda(mary) [cnf transformation 151] 265. 2 <=> predc(mary) [avatar definition] 267. predc(mary) <- (2) [avatar component clause 265] 269. 2 [avatar split clause 248,265] 296. ~predc(mary) | ~room(mary) [resolution 253,259] 297. ~room(mary) <- (2) [subsumption resolution 296,267] 298. $false <- (2) [subsumption resolution 297,241] 299. ~2 [avatar contradiction clause 298] 300. $false [avatar sat refutation 269,299] % SZS output end Proof for 7822635923171192483172603 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.020 s % ------------------------------ % ------------------------------
0.309676
Sherika, Carol, Timothy, Michael, Cecilia are the only persons in the room. If “Sherika is louder than Ryan” then “no one in the room who is poorer than Carroll, is louder than Carroll or is a client of Ryan does not enjoy skydiving”. If “at least one person in the room is a sibling of Ryan” then “Cecilia is hated by Carroll”. Everyone in the room who is a client of Ryan is quieter than Carroll. Everyone in the room who does not write poetry does not make homemade pastries. No tall person is generous. Carol is poorer than Carroll. Not everyone in the room who is richer than Ryan is a client of Carroll. Everyone anywhere is poorer than Ryan if they is a client of Carroll and vice versa. If someone is louder than Carroll then he/she is a sibling of Carroll.
Ryan is quieter than Sherika.
contradiction
room(sherika)&room(carol)&room(timothy)&room(michael)&room(cecilia)&(![X]:(room(X)=>(X='sherika'|X='carol'|X='timothy'|X='michael'|X='cecilia')))& ((louder(ryan,sherika))=>(~?[X]:(room(X)=>(((((poorer(carroll,X))|(louder(carroll,X))|(client(ryan,X))))=>(does_not_enjoy_skydiving(X)))))))& ((((?[X]:(room(X)&sibling(ryan,X)))))=>(hate(cecilia,carroll)))& (![X]:(room(X)=>(((client(ryan,X))=>(quieter(carroll,X))))))& (![X]:(room(X)=>(((does_not_write_poetry(X))=>(does_not_make_homemade_pastries(X))))))& (~?[X]:(tall(X)=>generous(X)))& (poorer(carroll,carol))& (~![X]:(room(X)=>(((richer(ryan,X))=>(client(carroll,X))))))& (![X]:(anywhere(X)=>(((poorer(ryan,X))<=>(client(carroll,X))))))& ((![X]:((louder(carroll,X))=>(sibling(carroll,X)))))
room(sherika)&room(carol)&room(timothy)&room(michael)&room(cecilia)&(![X]:(room(X)=>(X='sherika'|X='carol'|X='timothy'|X='michael'|X='cecilia')))& quieter(sherika,ryan)
[ "b16", "b42", "p0", "p1", "hypothesis" ]
% SZS status Unsatisfiable for 4694076996866411153143541 % SZS output start Proof for 4694076996866411153143541 17. ! [X0,X1] : (X0 != X1 => (quieter(X0,X1) => louder(X1,X0))) [input b16] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. louder(lucy,mary) => ~? [X0] : (room(X0) => ((client(lucy,X0) | louder(susan,X0) | poorer(susan,X0)) => ~predn(X0))) [input p1] 54. quieter(mary,lucy) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 58. louder(lucy,mary) => ~? [X0] : (room(X0) => ~(client(lucy,X0) | louder(susan,X0) | poorer(susan,X0))) [pure predicate removal 45] 84. ! [X0,X1] : ((louder(X1,X0) | ~quieter(X0,X1)) | X0 = X1) [ennf transformation 17] 85. ! [X0,X1] : (louder(X1,X0) | ~quieter(X0,X1) | X0 = X1) [flattening 84] 131. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 132. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 131] 133. ! [X0] : ((client(lucy,X0) | louder(susan,X0) | poorer(susan,X0)) & room(X0)) | ~louder(lucy,mary) [ennf transformation 58] 140. quieter(mary,lucy) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 54] 141. quieter(mary,lucy) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140] 159. ~quieter(X0,X1) | louder(X1,X0) | X0 = X1 [cnf transformation 85] 221. mary != lucy [cnf transformation 43] 222. paul != lucy [cnf transformation 43] 223. fred != lucy [cnf transformation 43] 224. alice != lucy [cnf transformation 43] 225. john != lucy [cnf transformation 43] 232. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 132] 233. room(X0) | ~louder(lucy,mary) [cnf transformation 133] 249. quieter(mary,lucy) [cnf transformation 141] 251. 1 <=> louder(lucy,mary) [avatar definition] 259. 3 <=> ! [X0] : room(X0) [avatar definition] 260. room(X0) <- (3) [avatar component clause 259] 261. ~1 | 3 [avatar split clause 233,259,251] 290. louder(lucy,mary) | mary = lucy [resolution 159,249] 294. louder(lucy,mary) [subsumption resolution 290,221] 295. 1 [avatar split clause 294,251] 452. john = X0 | fred = X0 | paul = X0 | mary = X0 | alice = X0 <- (3) [resolution 232,260] 637. john != john | fred = lucy | paul = lucy | mary = lucy | alice = lucy <- (3) [superposition 225,452] 668. fred = lucy | paul = lucy | mary = lucy | alice = lucy <- (3) [trivial inequality removal 637] 739. paul = lucy | mary = lucy | alice = lucy <- (3) [subsumption resolution 668,223] 740. mary = lucy | alice = lucy <- (3) [subsumption resolution 739,222] 741. alice = lucy <- (3) [subsumption resolution 740,221] 742. $false <- (3) [subsumption resolution 741,224] 743. ~3 [avatar contradiction clause 742] 856. $false [avatar sat refutation 261,295,743] % SZS output end Proof for 4694076996866411153143541 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.441904
Irene, Mel are the only persons in the room. If “Mel is old” then “everyone in the room who is a tall person is a quiet person”. “Irene is tall” if “Mel is a old quiet tall person” and vice versa. Mel is quiet. Mel who is old, is a quiet old person or is not a quiet person is not tall, is a old tall person or is a tall old person. All old persons are quiet. No quiet person is old. All tall persons are quiet. Irene is quiet.
Mel is quiet.
entailment
room(irene)&room(mel)&(![X]:(room(X)=>(X='irene'|X='mel')))& ((old(mel))=>(![X]:(room(X)=>(((tall(X)&person(X))=>(quiet(X)&person(X)))))))& ((old(mel)&quiet(mel)&tall(mel)&person(mel))<=>(tall(irene)))& (quiet(mel))& ((((old(mel))|(quiet(mel)&old(mel)&person(mel))|(~(quiet(mel)&person(mel)))))&(((~tall(mel))|(old(mel)&tall(mel)&person(mel))|(tall(mel)&old(mel)&person(mel)))))& (![X]:(old(X)=>quiet(X)))& (~?[X]:(quiet(X)=>old(X)))& (![X]:(tall(X)=>quiet(X)))& (quiet(irene))
room(irene)&room(mel)&(![X]:(room(X)=>(X='irene'|X='mel')))& quiet(mel)
[ "p0", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 7568766948986443675870193 % SZS output start Proof for 7568766948986443675870193 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 50. ~? [X0] : (quiet(X0) => old(X0)) [input p6] 53. ~(quiet(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 126. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 127. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 126] 133. ! [X0] : (~old(X0) & quiet(X0)) [ennf transformation 50] 135. ~quiet(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 53] 136. ~quiet(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 135] 143. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 144. ~quiet(paul) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 136,143] 225. room(mary) [cnf transformation 127] 226. room(paul) [cnf transformation 127] 227. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 127] 246. quiet(X0) [cnf transformation 133] 250. ~quiet(paul) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 144] 251. ~quiet(paul) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 144] 252. ~quiet(paul) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 144] 294. paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 252,246] 295. paul != sK1 | ~room(mary) [subsumption resolution 294,226] 296. paul != sK1 [subsumption resolution 295,225] 297. mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 251,246] 298. mary != sK1 | ~room(mary) [subsumption resolution 297,226] 299. mary != sK1 [subsumption resolution 298,225] 300. room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 250,246] 301. room(sK1) | ~room(mary) [subsumption resolution 300,226] 302. room(sK1) [subsumption resolution 301,225] 305. mary = sK1 | paul = sK1 [resolution 227,302] 306. paul = sK1 [subsumption resolution 305,299] 307. $false [subsumption resolution 306,296] % SZS output end Proof for 7568766948986443675870193 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.170213
There is a room. Everyone in the room who is quiet is a quiet tall person. Not everyone in the room is a quiet tall person if and only if they is quieter than Lyle. Everyone in the room who is tall is a old quiet person. All tall persons are old. All quiet persons are tall. At least one person anywhere is a old quiet person. All tall persons are quiet. Only one person in the room is older than Lyle. Everyone in the room is quieter than Lyle if they is old and vice versa. Everyone in the room who is richer than Lyle is tall. Everyone outside the room who is richer than Lyle is quiet. Everyone in the room is quiet if and only if they is not old, not quiet. It is not the case that “more than one person in the room is quiet”. Everyone in the room who is a quiet person is older than Lyle. Everyone in the room who is old is older than Lyle. All quiet persons are old.
More than one person anywhere is richer than Lyle and is quieter than Lyle.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((quiet(X))=>(quiet(X)&tall(X)&person(X))))))& (~![X]:(room(X)=>(((quiet(X)&tall(X)&person(X))<=>(quieter(lyle,X))))))& (![X]:(room(X)=>(((tall(X))=>(old(X)&quiet(X)&person(X))))))& (![X]:(tall(X)=>old(X)))& (![X]:(quiet(X)=>tall(X)))& (((?[X]:(anywhere(X)&old(X)&quiet(X)&person(X)))))& (![X]:(tall(X)=>quiet(X)))& (((?[X]:(room(X)&older(lyle,X)))&(![X,Y]:((room(X)&room(Y)&(older(lyle,X))&(older(lyle,Y)))=>(X=Y)))))& (![X]:(room(X)=>(((quieter(lyle,X))<=>(old(X))))))& (![X]:(room(X)=>(((richer(lyle,X))=>(tall(X))))))& (![X]:(~room(X)=>(((richer(lyle,X))=>(quiet(X))))))& (![X]:(room(X)=>(((quiet(X))<=>(~old(X)&~quiet(X))))))& (~((?[X,Y]:(room(X)&room(Y)&(quiet(X)&quiet(Y))&(X!=Y)))))& (![X]:(room(X)=>(((quiet(X)&person(X))=>(older(lyle,X))))))& (![X]:(room(X)=>(((old(X))=>(older(lyle,X))))))& (![X]:(quiet(X)=>old(X)))
(there_is_a_room)& (?[X,Y]:(anywhere(X)&anywhere(Y)&(((richer(lyle,X))&(quieter(lyle,X)))&((richer(lyle,Y))&(quieter(lyle,Y))))&(X!=Y)))
[]
null
0.373791
Joy, Laura, Brandon, Iris are the only persons in the room. “Marilyn and Iris hate each other” if “Joy does not own a 3D printer” and vice versa. If “Joy does not compete in national level swimming championships” then “if someone is not a patient quiet old tourist, is a curious brave person or is not hated by Marilyn then he/she is a brave creative curious european, is not old or is not a generous person and vice versa”. If “Iris and Brandon are respectively generous and tall” then “Joy is the least old in the room” otherwise “Iris and Brandon are respectively tall and strong”. “Clara and Laura hate each other” if “Brandon hates Clara” and vice versa. Either “Laura is a curious humble brave happy generous european” or “Brandon is not a quiet humble european” but not both. Joy who is a sibling of Clara is not tall, not patient, not calm. Brandon and Iris are respectively creative and strong.
Joy is patient.
contradiction
room(joy)&room(laura)&room(brandon)&room(iris)&(![X]:(room(X)=>(X='joy'|X='laura'|X='brandon'|X='iris')))& ((does_not_own_a_3D_printer(joy))<=>((hate(marilyn,iris) & hate(iris,marilyn))))& ((does_not_compete_in_national_level_swimming_championships(joy))=>((![X]:((((~(patient(X)&quiet(X)&old(X)&tourist(X)))|(curious(X)&brave(X)&person(X))|(~hate(X,marilyn))))<=>(((brave(X)&creative(X)&curious(X)&european(X))|(~old(X))|(~(generous(X)&person(X)))))))))& ((((generous(iris))&(tall(brandon)))=>(![X]:((room(X)&(X!=joy))=>older(joy,X))))&((~((generous(iris))&(tall(brandon))))=>((tall(iris))&(strong(brandon)))))& ((hate(clara,brandon))<=>((hate(clara,laura) & hate(laura,clara))))& ((curious(laura)&humble(laura)&brave(laura)&happy(laura)&generous(laura)&european(laura))<~>(~(quiet(brandon)&humble(brandon)&european(brandon))))& ((sibling(clara,joy))&(~tall(joy)&~patient(joy)&~calm(joy)))& ((creative(brandon))&(strong(iris)))& ((patient(iris))&(tall(brandon)))& (strong(brandon)&funny(brandon)&patient(brandon)&humble(brandon)&person(brandon))& ((hate(marilyn,iris) & hate(iris,marilyn)))& (~hate(laura,marilyn))& (~(quiet(brandon)&humble(brandon)&european(brandon)))& ((sibling(richard,iris))&(~like(iris,richard)))& ((client(richard,joy))&(~funny(joy)&~old(joy)))& ((![X]:((~hate(X,marilyn))<=>(~~old(X)))))& (client(joy,marilyn))& (![X]:(room(X)=>(((does_not_stream_on_Twitch(X))=>(client(clara,X))))))& (client(clara,joy))
room(joy)&room(laura)&room(brandon)&room(iris)&(![X]:(room(X)=>(X='joy'|X='laura'|X='brandon'|X='iris')))& patient(joy)
[ "p6", "hypothesis" ]
% SZS status Unsatisfiable for 7438074493266313205305789 % SZS output start Proof for 7438074493266313205305789 50. ~calm(mary) & ~patient(mary) & ~tall(mary) & sibling(john,mary) [input p6] 63. patient(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 68. ~patient(mary) & ~tall(mary) & sibling(john,mary) [pure predicate removal 50] 154. patient(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 155. patient(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 154] 275. ~patient(mary) [cnf transformation 68] 295. patient(mary) [cnf transformation 155] 400. $false [subsumption resolution 295,275] % SZS output end Proof for 7438074493266313205305789 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.218456
Adam, William, Peter, Ezra are the only persons in the room. If “everyone in the room does not have lived in exactly three countries or is a member of a local theater group specializing in improv” then “everyone in the room is a client of LVMH”. “Someone in the room makes homemade pastries, is a wine connoisseur with a private cellar of vintage wines or has lived in exactly three countries” only if “everyone in the room who enjoys stand-up paddleboarding collects classic novels”. “Everyone in the room does not practice pilates or creates bespoke furniture pieces from reclaimed wood” only if “someone in the room is a client of LVMH”. If “everyone outside the room does not use a Windows laptop or enjoys origami” then “it is not the case that “at least one person outside the room has a tattoo””. If “everyone in the room does not have lived in exactly three countries or enjoys stand-up paddleboarding” then “everyone outside the room who builds model airplanes collects luxury watches” otherwise “everyone in the room can play the harmonica”. Everyone in the room cannot play the harmonica if they collects luxury watches. Someone anywhere uses a Windows laptop. Everyone in the room either enjoys stand-up paddleboarding or practices digital art but not both if they collects vintage stamps. Everyone in the room can play the harmonica. Everyone in the room enjoys cross-country skiing if they can play the harmonica. Everyone in the room uses a Windows laptop if they enjoys cross-country skiing. Everyone in the room is an amateur astronomer who builds and uses custom telescopes only if they does not enjoy macrame.
Adam enjoys cross-country skiing.
entailment
room(adam)&room(william)&room(peter)&room(ezra)&(![X]:(room(X)=>(X='adam'|X='william'|X='peter'|X='ezra')))& ((![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(does_not_have_lived_in_exactly_three_countries(X))))))=>(![X]:(room(X)=>(is_a_client_of_LVMH(X)))))& ((?[X]:(room(X)&(((makes_homemade_pastries(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(has_lived_in_exactly_three_countries(X))))))=>(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(collects_classic_novels(X)))))))& ((![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(does_not_practice_pilates(X))))))=>(?[X]:(room(X)&(is_a_client_of_LVMH(X)))))& ((![X]:(~room(X)=>(((enjoys_origami(X))|(does_not_use_a_Windows_laptop(X))))))=>(~(((?[X]:(~room(X)&has_a_tattoo(X)))))))& (((![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_have_lived_in_exactly_three_countries(X))))))=>(![X]:(~room(X)=>(((builds_model_airplanes(X))=>(collects_luxury_watches(X)))))))&((~(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_have_lived_in_exactly_three_countries(X)))))))=>(![X]:(room(X)=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(cannot_play_the_harmonica(X))))))& (?[X]:(anywhere(X)&(uses_a_Windows_laptop(X))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(((enjoys_stand-up_paddleboarding(X))<~>(practices_digital_art(X))))))))& (![X]:(room(X)=>(can_play_the_harmonica(X))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))=>(enjoys_cross-country_skiing(X))))))& (![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((does_not_enjoy_macrame(X))<=(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))
room(adam)&room(william)&room(peter)&room(ezra)&(![X]:(room(X)=>(X='adam'|X='william'|X='peter'|X='ezra')))& enjoys_cross-country_skiing(adam)
[ "p0", "p9", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 4862443113735923161609942 % SZS output start Proof for 4862443113735923161609942 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 53. ! [X0] : (room(X0) => predn(X0)) [input p9] 54. ! [X0] : (room(X0) => (predn(X0) => predq(X0))) [input p10] 57. ~(predq(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 150. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 150] 153. ! [X0] : (predn(X0) | ~room(X0)) [ennf transformation 53] 154. ! [X0] : ((predq(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 54] 155. ! [X0] : (predq(X0) | ~predn(X0) | ~room(X0)) [flattening 154] 156. ~predq(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 57] 157. ~predq(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 156] 163. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 164. ~predq(mary) | (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 157,163] 245. room(mary) [cnf transformation 151] 246. room(paul) [cnf transformation 151] 247. room(fred) [cnf transformation 151] 248. room(alice) [cnf transformation 151] 249. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 151] 251. ~room(X0) | predn(X0) [cnf transformation 153] 252. predq(X0) | ~predn(X0) | ~room(X0) [cnf transformation 155] 253. ~predq(mary) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 254. ~predq(mary) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 255. ~predq(mary) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 256. ~predq(mary) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 257. ~predq(mary) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 267. ~room(X0) | predq(X0) [subsumption resolution 252,251] 268. ~predq(mary) | alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 257,248] 269. ~predq(mary) | alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 268,247] 270. ~predq(mary) | alice != sK2 | ~room(mary) [subsumption resolution 269,246] 271. ~predq(mary) | alice != sK2 [subsumption resolution 270,245] 273. 3 <=> alice = sK2 [avatar definition] 275. alice != sK2 <- (~3) [avatar component clause 273] 277. 4 <=> predq(mary) [avatar definition] 280. ~3 | ~4 [avatar split clause 271,277,273] 281. ~predq(mary) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 256,248] 282. ~predq(mary) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 281,247] 283. ~predq(mary) | fred != sK2 | ~room(mary) [subsumption resolution 282,246] 284. ~predq(mary) | fred != sK2 [subsumption resolution 283,245] 286. 5 <=> fred = sK2 [avatar definition] 288. fred != sK2 <- (~5) [avatar component clause 286] 289. ~5 | ~4 [avatar split clause 284,277,286] 290. ~predq(mary) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 255,248] 291. ~predq(mary) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 290,247] 292. ~predq(mary) | paul != sK2 | ~room(mary) [subsumption resolution 291,246] 293. ~predq(mary) | paul != sK2 [subsumption resolution 292,245] 295. 6 <=> paul = sK2 [avatar definition] 297. paul != sK2 <- (~6) [avatar component clause 295] 298. ~6 | ~4 [avatar split clause 293,277,295] 299. ~predq(mary) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 254,248] 300. ~predq(mary) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 299,247] 301. ~predq(mary) | mary != sK2 | ~room(mary) [subsumption resolution 300,246] 302. ~predq(mary) | mary != sK2 [subsumption resolution 301,245] 304. 7 <=> mary = sK2 [avatar definition] 306. mary != sK2 <- (~7) [avatar component clause 304] 307. ~7 | ~4 [avatar split clause 302,277,304] 308. ~predq(mary) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 253,248] 309. ~predq(mary) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 308,247] 310. ~predq(mary) | room(sK2) | ~room(mary) [subsumption resolution 309,246] 311. ~predq(mary) | room(sK2) [subsumption resolution 310,245] 313. 8 <=> room(sK2) [avatar definition] 315. room(sK2) <- (8) [avatar component clause 313] 316. 8 | ~4 [avatar split clause 311,277,313] 322. predq(mary) [resolution 267,245] 329. 4 [avatar split clause 322,277] 379. fred = sK2 | paul = sK2 | mary = sK2 | alice = sK2 <- (8) [resolution 249,315] 397. paul = sK2 | mary = sK2 | alice = sK2 <- (~5, 8) [subsumption resolution 379,288] 398. mary = sK2 | alice = sK2 <- (~5, ~6, 8) [subsumption resolution 397,297] 399. alice = sK2 <- (~5, ~6, ~7, 8) [subsumption resolution 398,306] 400. $false <- (~3, ~5, ~6, ~7, 8) [subsumption resolution 399,275] 401. 3 | 5 | 6 | 7 | ~8 [avatar contradiction clause 400] 402. $false [avatar sat refutation 280,289,298,307,316,329,401] % SZS output end Proof for 4862443113735923161609942 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.059004
David, Sandra, Edward, Connie are the only persons in the room. If someone is an avid collector of autographed memorabilia from famous musicians then he/she composes and performs experimental electronic music. Everyone in the room is a skilled home brewer experimenting with craft beer recipes, does not write poetry and is not a wine connoisseur with a private cellar of vintage wines if they composes and performs experimental electronic music. Edward is a wine connoisseur with a private cellar of vintage wines.
Edward is an avid collector of autographed memorabilia from famous musicians.
contradiction
room(david)&room(sandra)&room(edward)&room(connie)&(![X]:(room(X)=>(X='david'|X='sandra'|X='edward'|X='connie')))& ((![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(competes_in_national_level_swimming_championships(X))))))=>(((knows_morse_code(connie))|(does_not_play_video_games(connie)))))& ((![X]:(room(X)=>(((own_a_television(X))|(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))<=>(![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(does_not_practice_calligraphy(X)))))))& ((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(sandra))<=>(![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(own_a_television(X)))))))& (~(![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(competes_in_national_level_swimming_championships(X))))))=>(![X]:(room(X)=>(((((participates_in_long-distance_cycling_events_across_the_country(X))&(does_not_enjoy_origami(X))))=>(own_a_television(X)))))))& ((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(connie))=>(?[X]:(room(X)&(collects_first_edition_books(X)))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<=(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(((competes_in_national_level_swimming_championships(X))&(own_a_television(X))))))))& (![X]:(room(X)=>(((((competes_in_national_level_swimming_championships(X))&(own_a_television(X))))=>(plays_video_games(X))))))& (?[X]:(room(X)&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))& (![X]:(room(X)=>(((((enjoys_origami(X))&(own_a_television(X))))=>(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(anywhere(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (collects_rare_and_antique_scientific_instruments(david))& (![X]:(room(X)=>(((((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(has_lived_in_exactly_three_countries(X))))<=(writes_poetry(X))))))& (is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(connie))& (((knows_morse_code(connie))|(does_not_play_video_games(connie))))& (![X]:(room(X)=>(((writes_poetry(X))=>(enjoys_rooftop_gardening(X))))))& (![X]:(room(X)=>(does_enjoy_trail_running(X))))& ((![X]:((has_a_curated_collection_of_mid-century_modern_furniture(X))<=>(frequently_participates_in_hackathons_and_coding_competitions(X)))))& ((![X]:((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(composes_and_performs_experimental_electronic_music(X)))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(knows_morse_code(X))))))& (((participates_in_long-distance_cycling_events_across_the_country(edward))&(does_not_enjoy_origami(edward))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(does_not_write_poetry(X))&(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(does_not_compose_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))<=>(enjoys_origami(X))))))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(edward))
room(david)&room(sandra)&room(edward)&room(connie)&(![X]:(room(X)=>(X='david'|X='sandra'|X='edward'|X='connie')))& is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(edward)
[ "p0", "p20", "p23", "p27", "hypothesis" ]
% SZS status Unsatisfiable for 7617563680302372628134543 % SZS output start Proof for 7617563680302372628134543 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 64. ! [X0] : (predx(X0) => predt(X0)) [input p20] 67. ! [X0] : (room(X0) => (predt(X0) => (~predn(X0) & ~predz(X0) & predd(X0)))) [input p23] 71. predn(fred) [input p27] 72. predx(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 80. ! [X0] : (room(X0) => (predt(X0) => (~predn(X0) & predd(X0)))) [pure predicate removal 67] 161. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 162. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161] 176. ! [X0] : (predt(X0) | ~predx(X0)) [ennf transformation 64] 177. ! [X0] : (((~predn(X0) & predd(X0)) | ~predt(X0)) | ~room(X0)) [ennf transformation 80] 178. ! [X0] : ((~predn(X0) & predd(X0)) | ~predt(X0) | ~room(X0)) [flattening 177] 180. predx(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 72] 181. predx(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 180] 280. room(fred) [cnf transformation 162] 304. ~predx(X0) | predt(X0) [cnf transformation 176] 308. ~predt(X0) | ~predn(X0) | ~room(X0) [cnf transformation 178] 311. predn(fred) [cnf transformation 71] 317. predx(fred) [cnf transformation 181] 389. predt(fred) [resolution 304,317] 468. ~predn(fred) | ~room(fred) [resolution 308,389] 470. ~room(fred) [subsumption resolution 468,311] 471. $false [subsumption resolution 470,280] % SZS output end Proof for 7617563680302372628134543 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0
Betty, Edna, Sylvia, Gudrun, Thomas are the only persons in the room. Gudrun and Sylvia are respectively generous and calm. Sylvia is not a patient person. More than one person in the room is a calm person. It is not the case that “it is not the case that “more than one person in the room is a quiet person””. If someone is a happy kind curious person then he/she is not a humble generous person. Gudrun and Betty are respectively patient and brave. Thomas and Sylvia are not a generous persons. No kind person is funny. Betty and Sylvia are humble. Edna and Betty either are generous persons or are not a generous persons but not both.
Everyone in the room is not a curious person.
neutral
room(betty)&room(edna)&room(sylvia)&room(gudrun)&room(thomas)&(![X]:(room(X)=>(X='betty'|X='edna'|X='sylvia'|X='gudrun'|X='thomas')))& ((generous(gudrun))&(calm(sylvia)))& (~(patient(sylvia)&person(sylvia)))& ((?[X,Y]:(room(X)&room(Y)&(calm(X)&person(X)&calm(Y)&person(Y))&(X!=Y))))& (~(~((?[X,Y]:(room(X)&room(Y)&(quiet(X)&person(X)&quiet(Y)&person(Y))&(X!=Y))))))& ((![X]:((happy(X)&kind(X)&curious(X)&person(X))=>(~(humble(X)&generous(X)&person(X))))))& ((patient(gudrun))&(brave(betty)))& (~(generous(thomas)&person(thomas))&~(generous(sylvia)&person(sylvia)))& (~?[X]:(kind(X)=>funny(X)))& (humble(betty)&humble(sylvia))& (((generous(edna)&person(edna))<~>(~(generous(edna)&person(edna))))&((generous(betty)&person(betty))<~>(~(generous(betty)&person(betty)))))
room(betty)&room(edna)&room(sylvia)&room(gudrun)&room(thomas)&(![X]:(room(X)=>(X='betty'|X='edna'|X='sylvia'|X='gudrun'|X='thomas')))& ![X]:(room(X)=>(~(curious(X)&person(X))))
[]
null
0.308874
There is a room. Everyone in the room collects rare minerals if they is an active member of a local robotics club. Not everyone outside the room either does not enjoy stand-up paddleboarding or collects rare and antique scientific instruments but not both if they collects rare minerals. Everyone anywhere who either does not enjoy stand-up paddleboarding or collects rare and antique scientific instruments but not both composes and performs experimental electronic music. Someone in the room practices pilates. Someone in the room collects limited-edition art prints from contemporary artists. Everyone outside the room who creates bespoke furniture pieces from reclaimed wood practices zumba. Someone in the room does not have a vast collection of first-edition science fiction novels. Everyone anywhere creates bespoke furniture pieces from reclaimed wood and is an active member of a local robotics club if they neither has a tattoo nor enjoys camping and organizing outdoor survival workshops. If someone enjoys windsurfing then he/she is an active member of a local robotics club and vice versa. Everyone in the room who plays the drums owns a smart tv. Everyone anywhere is a client of Costco if they owns a smart tv. Everyone anywhere is a client of Costco if they does not create bespoke furniture pieces from reclaimed wood and vice versa. Everyone in the room who does not create bespoke furniture pieces from reclaimed wood practices pilates. Everyone in the room is a chess master who participates in national tournaments and collects rare and antique scientific instruments if they practices pilates. Everyone in the room is a chess master who participates in national tournaments and collects rare and antique scientific instruments if they enjoys bird watching and vice versa. Everyone in the room enjoys bird watching if they plays the drums and vice versa.
Everyone in the room creates bespoke furniture pieces from reclaimed wood.
contradiction
(there_is_a_room)& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(collects_rare_minerals(X))))))& (~![X]:(~room(X)=>(((collects_rare_minerals(X))=>(((does_not_enjoy_stand-up_paddleboarding(X))<~>(collects_rare_and_antique_scientific_instruments(X))))))))& (![X]:(anywhere(X)=>(((((does_not_enjoy_stand-up_paddleboarding(X))<~>(collects_rare_and_antique_scientific_instruments(X))))=>(composes_and_performs_experimental_electronic_music(X))))))& (?[X]:(room(X)&(practices_pilates(X))))& (?[X]:(room(X)&(collects_limited-edition_art_prints_from_contemporary_artists(X))))& (![X]:(~room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(practices_zumba(X))))))& (?[X]:(room(X)&(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))& (![X]:(anywhere(X)=>(((~((has_a_tattoo(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))&(is_an_active_member_of_a_local_robotics_club(X))))))))& ((![X]:((enjoys_windsurfing(X))<=>(is_an_active_member_of_a_local_robotics_club(X)))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(owns_a_smart_tv(X))))))& (![X]:(anywhere(X)=>(((owns_a_smart_tv(X))=>(is_a_client_of_Costco(X))))))& (![X]:(anywhere(X)=>(((is_a_client_of_Costco(X))<=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(practices_pilates(X))))))& (![X]:(room(X)=>(((practices_pilates(X))=>(((is_a_chess_master_who_participates_in_national_tournaments(X))&(collects_rare_and_antique_scientific_instruments(X))))))))& (![X]:(room(X)=>(((((is_a_chess_master_who_participates_in_national_tournaments(X))&(collects_rare_and_antique_scientific_instruments(X))))<=>(enjoys_bird_watching(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))<=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(((is_not_a_cybersecurity_expert(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (![X]:(anywhere(X)=>(((((is_not_a_cybersecurity_expert(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))=>(practices_zumba(X))))))& (~![X]:(room(X)=>(((collects_action_figures(X))=>(does_not_practice_pilates(X))))))& ((![X]:((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(is_a_Linux_enthusiast(X)))))
(there_is_a_room)& ![X]:(room(X)=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))
[ "b4", "p4", "p10", "p11", "p12", "p14", "p15", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 131648416661163221301712 % SZS output start Proof for 131648416661163221301712 5. ! [X0] : anywhere(X0) [input b4] 48. ? [X0] : (predy(X0) & room(X0)) [input p4] 54. ! [X0] : (room(X0) => (preda(X0) => predw(X0))) [input p10] 55. ! [X0] : (anywhere(X0) => (predw(X0) => predg(X0))) [input p11] 56. ! [X0] : (anywhere(X0) => (predg(X0) <=> ~predc(X0))) [input p12] 58. ! [X0] : (room(X0) => (predy(X0) => (predm(X0) & predh(X0)))) [input p14] 59. ! [X0] : (room(X0) => ((predm(X0) & predh(X0)) <=> predi(X0))) [input p15] 60. ! [X0] : (room(X0) => (predi(X0) <=> preda(X0))) [input p16] 65. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 77. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 65] 151. ! [X0] : ((predw(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 54] 152. ! [X0] : (predw(X0) | ~preda(X0) | ~room(X0)) [flattening 151] 153. ! [X0] : ((predg(X0) | ~predw(X0)) | ~anywhere(X0)) [ennf transformation 55] 154. ! [X0] : (predg(X0) | ~predw(X0) | ~anywhere(X0)) [flattening 153] 155. ! [X0] : ((predg(X0) <=> ~predc(X0)) | ~anywhere(X0)) [ennf transformation 56] 158. ! [X0] : (((predm(X0) & predh(X0)) | ~predy(X0)) | ~room(X0)) [ennf transformation 58] 159. ! [X0] : ((predm(X0) & predh(X0)) | ~predy(X0) | ~room(X0)) [flattening 158] 160. ! [X0] : (((predm(X0) & predh(X0)) <=> predi(X0)) | ~room(X0)) [ennf transformation 59] 161. ! [X0] : ((predi(X0) <=> preda(X0)) | ~room(X0)) [ennf transformation 60] 163. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 77] 169. ? [X0] : (predy(X0) & room(X0)) => (predy(sK1) & room(sK1)) [choice axiom] 170. predy(sK1) & room(sK1) [skolemisation 48,169] 175. ! [X0] : (((predg(X0) | predc(X0)) & (~predc(X0) | ~predg(X0))) | ~anywhere(X0)) [nnf transformation 155] 176. ! [X0] : ((((predm(X0) & predh(X0)) | ~predi(X0)) & (predi(X0) | (~predm(X0) | ~predh(X0)))) | ~room(X0)) [nnf transformation 160] 177. ! [X0] : ((((predm(X0) & predh(X0)) | ~predi(X0)) & (predi(X0) | ~predm(X0) | ~predh(X0))) | ~room(X0)) [flattening 176] 178. ! [X0] : (((predi(X0) | ~preda(X0)) & (preda(X0) | ~predi(X0))) | ~room(X0)) [nnf transformation 161] 181. anywhere(X0) [cnf transformation 5] 265. room(sK1) [cnf transformation 170] 266. predy(sK1) [cnf transformation 170] 269. ~preda(X0) | predw(X0) | ~room(X0) [cnf transformation 152] 270. predg(X0) | ~predw(X0) | ~anywhere(X0) [cnf transformation 154] 271. ~predc(X0) | ~predg(X0) | ~anywhere(X0) [cnf transformation 175] 274. ~predy(X0) | predh(X0) | ~room(X0) [cnf transformation 159] 275. ~predy(X0) | predm(X0) | ~room(X0) [cnf transformation 159] 276. ~predh(X0) | ~predm(X0) | predi(X0) | ~room(X0) [cnf transformation 177] 279. ~predi(X0) | preda(X0) | ~room(X0) [cnf transformation 178] 283. ~room(X0) | predc(X0) [cnf transformation 163] 294. ~predw(X0) | predg(X0) [subsumption resolution 270,181] 296. ~predg(X0) | ~predc(X0) [subsumption resolution 271,181] 297. predc(sK1) [resolution 283,265] 306. predh(sK1) | ~room(sK1) [resolution 274,266] 308. predh(sK1) [subsumption resolution 306,265] 310. predm(sK1) | ~room(sK1) [resolution 275,266] 312. predm(sK1) [subsumption resolution 310,265] 314. ~predm(sK1) | predi(sK1) | ~room(sK1) [resolution 276,308] 316. predi(sK1) | ~room(sK1) [subsumption resolution 314,312] 317. predi(sK1) [subsumption resolution 316,265] 320. preda(sK1) | ~room(sK1) [resolution 317,279] 323. preda(sK1) [subsumption resolution 320,265] 329. predw(sK1) | ~room(sK1) [resolution 323,269] 330. predw(sK1) [subsumption resolution 329,265] 334. predg(sK1) [resolution 330,294] 336. ~predc(sK1) [resolution 334,296] 337. $false [subsumption resolution 336,297] % SZS output end Proof for 131648416661163221301712 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Barry, Darren are the only persons in the room. “Everyone in the room does not write poetry or does not collect classic novels” if “everyone outside the room does not collect classic novels or collects classic novels”. If “everyone outside the room does not collect action figures or does enjoy mountain biking” then “everyone in the room can play the flute and enjoys coding in Python if they does not collect action figures”. “Everyone in the room does not compose and performs experimental electronic music or does enjoy mountain biking” only if “everyone anywhere develops open-source software projects in their free time only if they does not play the violin”. Everyone outside the room does not play the violin only if they enjoys making ceramics. Everyone in the room who enjoys making ceramics writes poetry. Barry who is a Linux enthusiast does not collect foreign coins. Not everyone in the room collects antique jewelry if they develops open-source software projects in their free time. Barry who develops open-source software projects in their free time collects antique jewelry. Everyone in the room who writes poetry enjoys origami and enjoys coding in Python. Everyone in the room collects classic novels if they enjoys origami and enjoys coding in Python.
Darren writes poetry.
contradiction
room(barry)&room(darren)&(![X]:(room(X)=>(X='barry'|X='darren')))& ((![X]:(~room(X)=>(((collects_classic_novels(X))|(does_not_collect_classic_novels(X))))))=>(![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(does_not_write_poetry(X)))))))& ((![X]:(~room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_collect_action_figures(X))))))=>(![X]:(room(X)=>(((does_not_collect_action_figures(X))=>(((can_play_the_flute(X))&(enjoys_coding_in_Python(X)))))))))& ((![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_compose_and_performs_experimental_electronic_music(X))))))=>(![X]:(anywhere(X)=>(((does_not_play_the_violin(X))<=(develops_open-source_software_projects_in_their_free_time(X)))))))& (![X]:(~room(X)=>(((enjoys_making_ceramics(X))<=(does_not_play_the_violin(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(writes_poetry(X))))))& ((is_a_Linux_enthusiast(barry))&(does_not_collect_foreign_coins(barry)))& (~![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(collects_antique_jewelry(X))))))& ((develops_open-source_software_projects_in_their_free_time(barry))&(collects_antique_jewelry(barry)))& (![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))<=(((does_not_collect_foreign_coins(X))&(does_enjoy_mountain_biking(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))))& (![X]:(room(X)=>(((collects_classic_novels(X))=>(enjoys_making_ceramics(X))))))& (![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(enjoys_salsa_dancing(X))))))& (~![X]:(anywhere(X)=>(((enjoys_salsa_dancing(X))=>(does_not_drive_a_hybrid_car(X))))))& (![X]:(~room(X)=>(((does_not_drive_a_hybrid_car(X))=>(enjoys_coding_in_Python(X))))))& (![X]:(room(X)=>(is_a_Linux_enthusiast(X))))& (~![X]:(room(X)=>(((collects_antique_jewelry(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((writes_poetry(X))=>(((enjoys_origami(X))&(enjoys_coding_in_Python(X))))))))& (![X]:(room(X)=>(((((enjoys_origami(X))&(enjoys_coding_in_Python(X))))=>(collects_classic_novels(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(collects_antique_jewelry(X))))))& (![X]:(room(X)=>(creates_large-scale_murals_for_public_art_installations(X))))
room(barry)&room(darren)&(![X]:(room(X)=>(X='barry'|X='darren')))& writes_poetry(darren)
[ "p0", "p1", "p16", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 150212693627401248163493 % SZS output start Proof for 150212693627401248163493 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (~room(X0) => (~predk(X0) | predk(X0))) => ! [X0] : (room(X0) => (~predg(X0) | ~predk(X0))) [input p1] 60. ! [X0] : (room(X0) => (predg(X0) => (predz(X0) & predl(X0)))) [input p16] 61. ! [X0] : (room(X0) => ((predz(X0) & predl(X0)) => predk(X0))) [input p17] 64. predg(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 65. ! [X0] : (~room(X0) => (~predk(X0) | predk(X0))) => ! [X1] : (room(X1) => (~predg(X1) | ~predk(X1))) [rectify 45] 151. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 151] 153. ! [X1] : ((~predg(X1) | ~predk(X1)) | ~room(X1)) | ? [X0] : ((predk(X0) & ~predk(X0)) & ~room(X0)) [ennf transformation 65] 154. ! [X1] : (~predg(X1) | ~predk(X1) | ~room(X1)) | ? [X0] : (predk(X0) & ~predk(X0) & ~room(X0)) [flattening 153] 170. ! [X0] : (((predz(X0) & predl(X0)) | ~predg(X0)) | ~room(X0)) [ennf transformation 60] 171. ! [X0] : ((predz(X0) & predl(X0)) | ~predg(X0) | ~room(X0)) [flattening 170] 172. ! [X0] : ((predk(X0) | (~predz(X0) | ~predl(X0))) | ~room(X0)) [ennf transformation 61] 173. ! [X0] : (predk(X0) | ~predz(X0) | ~predl(X0) | ~room(X0)) [flattening 172] 174. predg(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 64] 175. predg(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 174] 177. ! [X0] : (~predg(X0) | ~predk(X0) | ~room(X0)) | ? [X1] : (predk(X1) & ~predk(X1) & ~room(X1)) [rectify 154] 178. ? [X1] : (predk(X1) & ~predk(X1) & ~room(X1)) => (predk(sK0) & ~predk(sK0) & ~room(sK0)) [choice axiom] 179. ! [X0] : (~predg(X0) | ~predk(X0) | ~room(X0)) | (predk(sK0) & ~predk(sK0) & ~room(sK0)) [skolemisation 177,178] 271. room(paul) [cnf transformation 152] 274. ~predg(X0) | ~predk(X0) | ~room(X0) | ~predk(sK0) [cnf transformation 179] 275. ~predg(X0) | ~predk(X0) | ~room(X0) | predk(sK0) [cnf transformation 179] 291. ~predg(X0) | predl(X0) | ~room(X0) [cnf transformation 171] 292. ~predg(X0) | predz(X0) | ~room(X0) [cnf transformation 171] 293. ~predl(X0) | ~predz(X0) | predk(X0) | ~room(X0) [cnf transformation 173] 297. predg(paul) [cnf transformation 175] 299. 1 <=> predk(sK0) [avatar definition] 303. 2 <=> ! [X0] : (~predg(X0) | ~room(X0) | ~predk(X0)) [avatar definition] 304. ~predg(X0) | ~room(X0) | ~predk(X0) <- (2) [avatar component clause 303] 305. 1 | 2 [avatar split clause 275,303,299] 306. ~1 | 2 [avatar split clause 274,303,299] 323. predl(paul) | ~room(paul) [resolution 291,297] 324. predl(paul) [subsumption resolution 323,271] 325. predz(paul) | ~room(paul) [resolution 292,297] 326. predz(paul) [subsumption resolution 325,271] 327. ~room(paul) | ~predk(paul) <- (2) [resolution 304,297] 328. ~predk(paul) <- (2) [subsumption resolution 327,271] 385. ~predz(paul) | predk(paul) | ~room(paul) [resolution 293,324] 386. predk(paul) | ~room(paul) [subsumption resolution 385,326] 387. ~room(paul) <- (2) [subsumption resolution 386,328] 388. $false <- (2) [subsumption resolution 387,271] 389. ~2 [avatar contradiction clause 388] 390. $false [avatar sat refutation 305,306,389] % SZS output end Proof for 150212693627401248163493 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.296866
Douglas, Wilbert are the only persons in the room. If “Douglas does not enjoy writing detailed reviews of new and classic board games” then “Wilbert either enjoys watercolor painting or is not a skilled home brewer experimenting with craft beer recipes but not both”. If “Wilbert either enjoys watercolor painting or is not a skilled home brewer experimenting with craft beer recipes but not both” then “if someone either practices calligraphy or does not compose and performs experimental electronic music but not both then he/she either does not enjoy watercolor painting or drives a hybrid car but not both”. “If someone enjoys skydiving, does not compose and performs experimental electronic music and does not practice tai chi then he/she has lived in exactly three countries” if “Douglas has a saltwater aquarium, designs and sews custom cosplay costumes for conventions and has a piercing”. If “Douglas does not own a significant collection of rare gemstones and minerals” then “everyone in the room does not own a significant collection of rare gemstones and minerals or does not enjoy skydiving”. If “everyone in the room does not own a significant collection of rare gemstones and minerals or does not enjoy skydiving” then “Douglas neither does not collect modern art nor has lived in exactly three countries”. If “Douglas practices tai chi” then “everyone in the room does not collect modern art only if they does not have a piercing”. “Only one person in the room participates in long-distance cycling events across the country” if “Wilbert enjoys making ceramics”. If “Wilbert neither does not practice tai chi nor practices tai chi” then “if someone drives a hybrid car, volunteers for local environmental conservation projects and is not a skilled home brewer experimenting with craft beer recipes then he/she regularly contributes to tech forums and online communities”.
Douglas plays the drums and is a skilled home brewer experimenting with craft beer recipes.
contradiction
room(douglas)&room(wilbert)&(![X]:(room(X)=>(X='douglas'|X='wilbert')))& (((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(douglas))=>(((enjoys_watercolor_painting(wilbert))<~>(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(wilbert)))))& ((((enjoys_watercolor_painting(wilbert))<~>(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(wilbert))))=>((![X]:((((practices_calligraphy(X))<~>(does_not_compose_and_performs_experimental_electronic_music(X))))=>(((does_not_enjoy_watercolor_painting(X))<~>(drives_a_hybrid_car(X)))))))))& ((((has_a_saltwater_aquarium(douglas))&(designs_and_sews_custom_cosplay_costumes_for_conventions(douglas))&(has_a_piercing(douglas))))=>((![X]:((((enjoys_skydiving(X))&(does_not_compose_and_performs_experimental_electronic_music(X))&(does_not_practice_tai_chi(X))))=>(has_lived_in_exactly_three_countries(X))))))& (((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(douglas))=>(![X]:(room(X)=>(((does_not_enjoy_skydiving(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_skydiving(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))=>(~((does_not_collect_modern_art(douglas))|(has_lived_in_exactly_three_countries(douglas))))))& ((practices_tai_chi(douglas))=>(![X]:(room(X)=>(((does_not_have_a_piercing(X))<=(does_not_collect_modern_art(X)))))))& ((enjoys_making_ceramics(wilbert))=>(((?[X]:(room(X)&participates_in_long-distance_cycling_events_across_the_country(X)))&(![X,Y]:((room(X)&room(Y)&(participates_in_long-distance_cycling_events_across_the_country(X))&(participates_in_long-distance_cycling_events_across_the_country(Y)))=>(X=Y))))))& ((~((does_not_practice_tai_chi(wilbert))|(practices_tai_chi(wilbert))))=>((![X]:((((drives_a_hybrid_car(X))&(volunteers_for_local_environmental_conservation_projects(X))&(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& ((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(wilbert))=>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(douglas)))& ((does_not_participate_in_long-distance_cycling_events_across_the_country(wilbert))=>(![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(does_not_have_a_saltwater_aquarium(X)))))))& ((plays_the_drums(douglas))=>((![X]:((enjoys_skydiving(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& ((~![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(practices_calligraphy(X))))))=>(plays_the_drums(douglas)))& (((((owns_a_significant_collection_of_rare_gemstones_and_minerals(douglas))<~>(does_not_have_a_saltwater_aquarium(douglas))))=>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(wilbert)))&((~(((owns_a_significant_collection_of_rare_gemstones_and_minerals(douglas))<~>(does_not_have_a_saltwater_aquarium(douglas)))))=>(has_a_saltwater_aquarium(wilbert))))& ((![X]:((((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))=>(((enjoys_watercolor_painting(X))|(volunteers_for_local_environmental_conservation_projects(X))|(does_not_play_the_drums(X)))))))& (![X]:(room(X)=>(((does_not_enjoy_skydiving(X))=>(enjoys_making_ceramics(X))))))& (![X]:(~room(X)=>(((((makes_intricate_hand-cut_paper_art_for_exhibitions(X))<~>(volunteers_for_local_environmental_conservation_projects(X))))<=(participates_in_long-distance_cycling_events_across_the_country(X))))))& (((?[X]:(room(X)&participates_in_long-distance_cycling_events_across_the_country(X)))&(![X,Y]:((room(X)&room(Y)&(participates_in_long-distance_cycling_events_across_the_country(X))&(participates_in_long-distance_cycling_events_across_the_country(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))=>(practices_tai_chi(X))))))& (((owns_a_significant_collection_of_rare_gemstones_and_minerals(douglas))&(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(douglas))&(designs_and_sews_custom_cosplay_costumes_for_conventions(douglas))))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(wilbert))& ((![X]:((does_not_collect_modern_art(X))=>(((has_lived_in_exactly_three_countries(X))<~>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))))& (enjoys_watercolor_painting(douglas))& ((douglas_dream=>(![X]:(room(X)=>(((((practices_calligraphy(X))<~>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))))& ((((plays_the_drums(wilbert))|(has_a_saltwater_aquarium(wilbert))))&(((participates_in_long-distance_cycling_events_across_the_country(wilbert))<~>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(wilbert)))))& (![X]:(~room(X)=>(((practices_calligraphy(X))=>(does_not_drive_a_hybrid_car(X))))))
room(douglas)&room(wilbert)&(![X]:(room(X)=>(X='douglas'|X='wilbert')))& ((plays_the_drums(douglas))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(douglas)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 3584900989124344055261069 % SZS output start Proof for 3584900989124344055261069 44. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & (mary_dream => ! [X0] : (room(X0) => ((predd(X0) <~> predt(X0)) => ~predi(X0)))) & predu(mary) & ! [X0] : (~predn(X0) => (predk(X0) <~> predj(X0))) & predi(paul) & predj(mary) & ~predb(mary) & predf(mary) & ! [X0] : (room(X0) => (~preds(X0) => predm(X0))) & ! [X0,X1] : ((predq(X1) & predq(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predq(X0) & room(X0)) & ! [X0] : (~room(X0) => (predq(X0) => (predc(X0) <~> preds(X0)))) & ! [X0] : (room(X0) => (~prede(X0) => preda(X0))) & ! [X0] : ((predf(X0) & ~predi(X0)) => (~predh(X0) | preds(X0) | predu(X0))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X0] : (room(X0) => (predd(X0) | ~predf(X0))) => predh(mary)) & (predh(mary) => ! [X0] : (prede(X0) => predq(X0))) & (~predq(paul) => ! [X0] : (room(X0) => (~predl(X0) | ~predo(X0)))) & (predb(paul) => ~predf(mary)) & (~(predm(paul) | ~predm(paul)) => ! [X0] : ((~predb(X0) & preds(X0) & predo(X0)) => predp(X0))) & (preda(paul) => (! [X0,X1] : ((predq(X1) & predq(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predq(X0) & room(X0)))) & (predm(mary) => ! [X0] : (room(X0) => (~predn(X0) => ~predr(X0)))) & (! [X0] : (room(X0) => (~predf(X0) | ~prede(X0))) => ~(predk(mary) | ~predn(mary))) & (~predf(mary) => ! [X0] : (room(X0) => (~predf(X0) | ~prede(X0)))) & ((predr(mary) & predj(mary) & predl(mary)) => ! [X0] : ((~predm(X0) & ~predg(X0) & prede(X0)) => predk(X0))) & ((predu(paul) <~> ~predb(paul)) => ! [X0] : ((predd(X0) <~> ~predg(X0)) => (~predu(X0) <~> predo(X0)))) & (~predt(mary) => (predu(paul) <~> ~predb(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predb(mary) & predh(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & (mary_dream => ! [X1] : (room(X1) => ((predd(X1) <~> predt(X1)) => ~predi(X1)))) & predu(mary) & ! [X2] : (~predn(X2) => (predk(X2) <~> predj(X2))) & predi(paul) & predj(mary) & ~predb(mary) & predf(mary) & ! [X3] : (room(X3) => (~preds(X3) => predm(X3))) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & ! [X9] : ((predf(X9) & ~predi(X9)) => (~predh(X9) | preds(X9) | predu(X9))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (~(predm(paul) | ~predm(paul)) => ! [X13] : ((~predb(X13) & preds(X13) & predo(X13)) => predp(X13))) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (predm(mary) => ! [X17] : (room(X17) => (~predn(X17) => ~predr(X17)))) & (! [X18] : (room(X18) => (~predf(X18) | ~prede(X18))) => ~(predk(mary) | ~predn(mary))) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predr(mary) & predj(mary) & predl(mary)) => ! [X20] : ((~predm(X20) & ~predg(X20) & prede(X20)) => predk(X20))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & (~predt(mary) => (predu(paul) <~> ~predb(paul))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & ! [X2] : (~predn(X2) => (predk(X2) <~> predj(X2))) & predi(paul) & predj(mary) & ~predb(mary) & predf(mary) & ! [X3] : (room(X3) => (~preds(X3) => predm(X3))) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & ! [X9] : ((predf(X9) & ~predi(X9)) => (~predh(X9) | preds(X9) | predu(X9))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (~(predm(paul) | ~predm(paul)) => ! [X13] : ((~predb(X13) & preds(X13) & predo(X13)) => predp(X13))) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (predm(mary) => ! [X17] : (room(X17) => (~predn(X17) => ~predr(X17)))) & (! [X18] : (room(X18) => (~predf(X18) | ~prede(X18))) => ~(predk(mary) | ~predn(mary))) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predr(mary) & predj(mary) & predl(mary)) => ! [X20] : ((~predm(X20) & ~predg(X20) & prede(X20)) => predk(X20))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & (~predt(mary) => (predu(paul) <~> ~predb(paul))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & ! [X2] : (~predn(X2) => (predk(X2) <~> predj(X2))) & predj(mary) & ~predb(mary) & predf(mary) & ! [X3] : (room(X3) => (~preds(X3) => predm(X3))) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (~(predm(paul) | ~predm(paul)) => ! [X13] : ((~predb(X13) & preds(X13) & predo(X13)) => predp(X13))) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (predm(mary) => ! [X17] : (room(X17) => (~predn(X17) => ~predr(X17)))) & (! [X18] : (room(X18) => (~predf(X18) | ~prede(X18))) => ~(predk(mary) | ~predn(mary))) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predr(mary) & predj(mary) & predl(mary)) => ! [X20] : ((~predm(X20) & ~predg(X20) & prede(X20)) => predk(X20))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & (~predt(mary) => (predu(paul) <~> ~predb(paul))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & ! [X2] : (~predn(X2) => (predk(X2) <~> predj(X2))) & predj(mary) & ~predb(mary) & predf(mary) & ! [X3] : (room(X3) => (~preds(X3) => predm(X3))) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (~(predm(paul) | ~predm(paul)) => ! [X13] : ((~predb(X13) & preds(X13) & predo(X13)) => predp(X13))) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (predm(mary) => ! [X17] : (room(X17) => (~predn(X17) => ~predr(X17)))) & (! [X18] : (room(X18) => (~predf(X18) | ~prede(X18))) => ~(predk(mary) | ~predn(mary))) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predr(mary) & predj(mary) & predl(mary)) => ! [X20] : ((~predm(X20) & ~predg(X20) & prede(X20)) => predk(X20))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & ! [X2] : (~predn(X2) => (predk(X2) <~> predj(X2))) & predj(mary) & ~predb(mary) & predf(mary) & ! [X3] : (room(X3) => (~preds(X3) => predm(X3))) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (predm(mary) => ! [X17] : (room(X17) => (~predn(X17) => ~predr(X17)))) & (! [X18] : (room(X18) => (~predf(X18) | ~prede(X18))) => ~(predk(mary) | ~predn(mary))) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predr(mary) & predj(mary) & predl(mary)) => ! [X20] : ((~predm(X20) & ~predg(X20) & prede(X20)) => predk(X20))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X3] : (room(X3) => (~preds(X3) => predm(X3))) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (! [X18] : (room(X18) => (~predf(X18) | ~prede(X18))) => ~predk(mary)) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predr(mary) & predj(mary) & predl(mary)) => ! [X20] : ((~predm(X20) & ~predg(X20) & prede(X20)) => predk(X20))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (! [X18] : (room(X18) => (~predf(X18) | ~prede(X18))) => ~predk(mary)) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X0] : (~room(X0) => (predd(X0) => ~predo(X0))) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X4,X5] : ((predq(X5) & predq(X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (~room(X7) => (predq(X7) => (predc(X7) <~> preds(X7)))) & ! [X8] : (room(X8) => (~prede(X8) => preda(X8))) & (~(predf(mary) <~> ~predl(mary)) => predl(paul)) & ((predf(mary) <~> ~predl(mary)) => ~predj(paul)) & (~! [X10] : (room(X10) => (predd(X10) | ~predf(X10))) => predh(mary)) & (predh(mary) => ! [X11] : (prede(X11) => predq(X11))) & (~predq(paul) => ! [X12] : (room(X12) => (~predl(X12) | ~predo(X12)))) & (predb(paul) => ~predf(mary)) & (preda(paul) => (! [X14,X15] : ((predq(X15) & predq(X14) & room(X15) & room(X14)) => X14 = X15) & ? [X16] : (predq(X16) & room(X16)))) & (~predf(mary) => ! [X19] : (room(X19) => (~predf(X19) | ~prede(X19)))) & ((predu(paul) <~> ~predb(paul)) => ! [X21] : ((predd(X21) <~> ~predg(X21)) => (~predu(X21) <~> predo(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 52] 126. ! [X0] : ((~predo(X0) | ~predd(X0)) | room(X0)) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X4,X5] : (X4 = X5 | (~predq(X5) | ~predq(X4) | ~room(X5) | ~room(X4))) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (((predc(X7) <~> preds(X7)) | ~predq(X7)) | room(X7)) & ! [X8] : ((preda(X8) | prede(X8)) | ~room(X8)) & (predl(paul) | (predf(mary) <~> ~predl(mary))) & (~predj(paul) | (predf(mary) <=> ~predl(mary))) & (predh(mary) | ! [X10] : ((predd(X10) | ~predf(X10)) | ~room(X10))) & (! [X11] : (predq(X11) | ~prede(X11)) | ~predh(mary)) & (! [X12] : ((~predl(X12) | ~predo(X12)) | ~room(X12)) | predq(paul)) & (~predf(mary) | ~predb(paul)) & ((! [X14,X15] : (X14 = X15 | (~predq(X15) | ~predq(X14) | ~room(X15) | ~room(X14))) & ? [X16] : (predq(X16) & room(X16))) | ~preda(paul)) & (! [X19] : ((~predf(X19) | ~prede(X19)) | ~room(X19)) | predf(mary)) & (! [X21] : ((~predu(X21) <~> predo(X21)) | (predd(X21) <=> ~predg(X21))) | (predu(paul) <=> ~predb(paul))) & ! [X22] : ((paul = X22 | mary = X22) | ~room(X22)) & room(paul) & room(mary) [ennf transformation 53] 127. ! [X0] : (~predo(X0) | ~predd(X0) | room(X0)) & (predq(paul) <~> ~predj(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X4,X5] : (X4 = X5 | ~predq(X5) | ~predq(X4) | ~room(X5) | ~room(X4)) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : ((predc(X7) <~> preds(X7)) | ~predq(X7) | room(X7)) & ! [X8] : (preda(X8) | prede(X8) | ~room(X8)) & (predl(paul) | (predf(mary) <~> ~predl(mary))) & (~predj(paul) | (predf(mary) <=> ~predl(mary))) & (predh(mary) | ! [X10] : (predd(X10) | ~predf(X10) | ~room(X10))) & (! [X11] : (predq(X11) | ~prede(X11)) | ~predh(mary)) & (! [X12] : (~predl(X12) | ~predo(X12) | ~room(X12)) | predq(paul)) & (~predf(mary) | ~predb(paul)) & ((! [X14,X15] : (X14 = X15 | ~predq(X15) | ~predq(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (predq(X16) & room(X16))) | ~preda(paul)) & (! [X19] : (~predf(X19) | ~prede(X19) | ~room(X19)) | predf(mary)) & (! [X21] : ((~predu(X21) <~> predo(X21)) | (predd(X21) <=> ~predg(X21))) | (predu(paul) <=> ~predb(paul))) & ! [X22] : (paul = X22 | mary = X22 | ~room(X22)) & room(paul) & room(mary) [flattening 126] 128. predb(mary) & predh(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 129. predb(mary) & predh(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 128] 131. ! [X0] : (~predo(X0) | ~predd(X0) | room(X0)) & ((predj(paul) | ~predq(paul)) & (~predj(paul) | predq(paul))) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X4,X5] : (X4 = X5 | ~predq(X5) | ~predq(X4) | ~room(X5) | ~room(X4)) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (((~preds(X7) | ~predc(X7)) & (preds(X7) | predc(X7))) | ~predq(X7) | room(X7)) & ! [X8] : (preda(X8) | prede(X8) | ~room(X8)) & (predl(paul) | ((predl(mary) | ~predf(mary)) & (~predl(mary) | predf(mary)))) & (~predj(paul) | ((predf(mary) | predl(mary)) & (~predl(mary) | ~predf(mary)))) & (predh(mary) | ! [X10] : (predd(X10) | ~predf(X10) | ~room(X10))) & (! [X11] : (predq(X11) | ~prede(X11)) | ~predh(mary)) & (! [X12] : (~predl(X12) | ~predo(X12) | ~room(X12)) | predq(paul)) & (~predf(mary) | ~predb(paul)) & ((! [X14,X15] : (X14 = X15 | ~predq(X15) | ~predq(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (predq(X16) & room(X16))) | ~preda(paul)) & (! [X19] : (~predf(X19) | ~prede(X19) | ~room(X19)) | predf(mary)) & (! [X21] : (((~predo(X21) | predu(X21)) & (predo(X21) | ~predu(X21))) | ((predd(X21) | predg(X21)) & (~predg(X21) | ~predd(X21)))) | ((predu(paul) | predb(paul)) & (~predb(paul) | ~predu(paul)))) & ! [X22] : (paul = X22 | mary = X22 | ~room(X22)) & room(paul) & room(mary) [nnf transformation 127] 132. ! [X0] : (~predo(X0) | ~predd(X0) | room(X0)) & (predj(paul) | ~predq(paul)) & (~predj(paul) | predq(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X4,X5] : (X4 = X5 | ~predq(X5) | ~predq(X4) | ~room(X5) | ~room(X4)) & ? [X6] : (predq(X6) & room(X6)) & ! [X7] : (((~preds(X7) | ~predc(X7)) & (preds(X7) | predc(X7))) | ~predq(X7) | room(X7)) & ! [X8] : (preda(X8) | prede(X8) | ~room(X8)) & (predl(paul) | ((predl(mary) | ~predf(mary)) & (~predl(mary) | predf(mary)))) & (~predj(paul) | ((predf(mary) | predl(mary)) & (~predl(mary) | ~predf(mary)))) & (predh(mary) | ! [X10] : (predd(X10) | ~predf(X10) | ~room(X10))) & (! [X11] : (predq(X11) | ~prede(X11)) | ~predh(mary)) & (! [X12] : (~predl(X12) | ~predo(X12) | ~room(X12)) | predq(paul)) & (~predf(mary) | ~predb(paul)) & ((! [X14,X15] : (X14 = X15 | ~predq(X15) | ~predq(X14) | ~room(X15) | ~room(X14)) & ? [X16] : (predq(X16) & room(X16))) | ~preda(paul)) & (! [X19] : (~predf(X19) | ~prede(X19) | ~room(X19)) | predf(mary)) & (! [X21] : (((~predo(X21) | predu(X21)) & (predo(X21) | ~predu(X21))) | ((predd(X21) | predg(X21)) & (~predg(X21) | ~predd(X21)))) | ((predu(paul) | predb(paul)) & (~predb(paul) | ~predu(paul)))) & ! [X22] : (paul = X22 | mary = X22 | ~room(X22)) & room(paul) & room(mary) [flattening 131] 133. ! [X0] : (~predo(X0) | ~predd(X0) | room(X0)) & (predj(paul) | ~predq(paul)) & (~predj(paul) | predq(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X1,X2] : (X1 = X2 | ~predq(X2) | ~predq(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (predq(X3) & room(X3)) & ! [X4] : (((~preds(X4) | ~predc(X4)) & (preds(X4) | predc(X4))) | ~predq(X4) | room(X4)) & ! [X5] : (preda(X5) | prede(X5) | ~room(X5)) & (predl(paul) | ((predl(mary) | ~predf(mary)) & (~predl(mary) | predf(mary)))) & (~predj(paul) | ((predf(mary) | predl(mary)) & (~predl(mary) | ~predf(mary)))) & (predh(mary) | ! [X6] : (predd(X6) | ~predf(X6) | ~room(X6))) & (! [X7] : (predq(X7) | ~prede(X7)) | ~predh(mary)) & (! [X8] : (~predl(X8) | ~predo(X8) | ~room(X8)) | predq(paul)) & (~predf(mary) | ~predb(paul)) & ((! [X9,X10] : (X9 = X10 | ~predq(X10) | ~predq(X9) | ~room(X10) | ~room(X9)) & ? [X11] : (predq(X11) & room(X11))) | ~preda(paul)) & (! [X12] : (~predf(X12) | ~prede(X12) | ~room(X12)) | predf(mary)) & (! [X13] : (((~predo(X13) | predu(X13)) & (predo(X13) | ~predu(X13))) | ((predd(X13) | predg(X13)) & (~predg(X13) | ~predd(X13)))) | ((predu(paul) | predb(paul)) & (~predb(paul) | ~predu(paul)))) & ! [X14] : (paul = X14 | mary = X14 | ~room(X14)) & room(paul) & room(mary) [rectify 132] 134. ? [X3] : (predq(X3) & room(X3)) => (predq(sK0) & room(sK0)) [choice axiom] 135. ? [X11] : (predq(X11) & room(X11)) => (predq(sK1) & room(sK1)) [choice axiom] 136. ! [X0] : (~predo(X0) | ~predd(X0) | room(X0)) & (predj(paul) | ~predq(paul)) & (~predj(paul) | predq(paul)) & (predl(paul) | predh(paul)) & predu(mary) & predj(mary) & ~predb(mary) & predf(mary) & ! [X1,X2] : (X1 = X2 | ~predq(X2) | ~predq(X1) | ~room(X2) | ~room(X1)) & (predq(sK0) & room(sK0)) & ! [X4] : (((~preds(X4) | ~predc(X4)) & (preds(X4) | predc(X4))) | ~predq(X4) | room(X4)) & ! [X5] : (preda(X5) | prede(X5) | ~room(X5)) & (predl(paul) | ((predl(mary) | ~predf(mary)) & (~predl(mary) | predf(mary)))) & (~predj(paul) | ((predf(mary) | predl(mary)) & (~predl(mary) | ~predf(mary)))) & (predh(mary) | ! [X6] : (predd(X6) | ~predf(X6) | ~room(X6))) & (! [X7] : (predq(X7) | ~prede(X7)) | ~predh(mary)) & (! [X8] : (~predl(X8) | ~predo(X8) | ~room(X8)) | predq(paul)) & (~predf(mary) | ~predb(paul)) & ((! [X9,X10] : (X9 = X10 | ~predq(X10) | ~predq(X9) | ~room(X10) | ~room(X9)) & (predq(sK1) & room(sK1))) | ~preda(paul)) & (! [X12] : (~predf(X12) | ~prede(X12) | ~room(X12)) | predf(mary)) & (! [X13] : (((~predo(X13) | predu(X13)) & (predo(X13) | ~predu(X13))) | ((predd(X13) | predg(X13)) & (~predg(X13) | ~predd(X13)))) | ((predu(paul) | predb(paul)) & (~predb(paul) | ~predu(paul)))) & ! [X14] : (paul = X14 | mary = X14 | ~room(X14)) & room(paul) & room(mary) [skolemisation 133,135,134] 247. ~predb(mary) [cnf transformation 136] 258. predb(mary) [cnf transformation 129] 341. $false [subsumption resolution 258,247] % SZS output end Proof for 3584900989124344055261069 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.238075
Ed is the only person in the room. If “everyone in the room does not host a YouTube channel dedicated to art tutorials or is an amateur astronomer who builds and uses custom telescopes” then “everyone in the room does not host a YouTube channel dedicated to art tutorials if and only if they develops open-source software projects in their free time”. “Everyone in the room owns a high-end gaming PC with custom-built components or is not an amateur astronomer who builds and uses custom telescopes” only if “everyone in the room who owns a high-end gaming PC with custom-built components is an avid hiker and is a client of LVMH”. If “everyone anywhere is not an amateur astronomer who builds and uses custom telescopes or is a professional photographer specializing in portrait photography” then “everyone in the room owns a microscope”. If “everyone outside the room cannot play the harmonica or plays as a goalkeeper for a local amateur soccer team” then “no one in the room owns a microscope and does not own a significant collection of rare gemstones and minerals”. Everyone outside the room who cannot play the harmonica is a drone photographer. Everyone in the room who is a drone photographer has a tattoo. Everyone in the room who owns a high-end gaming PC with custom-built components collects vintage vinyl records. Everyone outside the room is a wine connoisseur if they collects vintage vinyl records. Everyone in the room is a drone photographer and collects first edition books. Everyone in the room who enjoys deep-sea diving and exploring underwater caves and is a client of LVMH owns a significant collection of rare gemstones and minerals. Everyone in the room who owns a significant collection of rare gemstones and minerals has lived in exactly three countries. Everyone in the room who has lived in exactly three countries neither enjoys kayaking and exploring remote waterways nor is an avid hiker. Not everyone anywhere collects first edition books if they neither enjoys kayaking and exploring remote waterways nor is an avid hiker. Not everyone outside the room collects first edition books if and only if they collects vintage vinyl records. Everyone in the room collects rare and antique scientific instruments if they collects vintage vinyl records. Everyone in the room owns a microscope if they enjoys deep-sea diving and exploring underwater caves. Everyone outside the room does not own a significant collection of rare gemstones and minerals if they owns a microscope. Everyone in the room can play the harmonica if they has lived in exactly three countries. Everyone in the room is a drone photographer.
Ed has a tattoo.
entailment
room(ed)&(![X]:(room(X)=>(X='ed')))& ((![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))=>(![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(develops_open-source_software_projects_in_their_free_time(X)))))))& ((![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))=>(![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(((is_an_avid_hiker(X))&(is_a_client_of_LVMH(X)))))))))& ((![X]:(anywhere(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))=>(![X]:(room(X)=>(owns_a_microscope(X)))))& ((![X]:(~room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(cannot_play_the_harmonica(X))))))=>(~?[X]:(room(X)=>(((owns_a_microscope(X))&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))& (![X]:(~room(X)=>(((cannot_play_the_harmonica(X))=>(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(collects_vintage_vinyl_records(X))))))& (![X]:(~room(X)=>(((collects_vintage_vinyl_records(X))=>(is_a_wine_connoisseur(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))&(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(is_a_client_of_LVMH(X))))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(~((enjoys_kayaking_and_exploring_remote_waterways(X))|(is_an_avid_hiker(X))))))))& (~![X]:(anywhere(X)=>(((~((enjoys_kayaking_and_exploring_remote_waterways(X))|(is_an_avid_hiker(X))))=>(collects_first_edition_books(X))))))& (~![X]:(~room(X)=>(((collects_first_edition_books(X))<=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(owns_a_microscope(X))))))& (![X]:(~room(X)=>(((owns_a_microscope(X))=>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(is_a_drone_photographer(X))))
room(ed)&(![X]:(room(X)=>(X='ed')))& has_a_tattoo(ed)
[ "p0", "p6", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 8454173399335419647529751 % SZS output start Proof for 8454173399335419647529751 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 50. ! [X0] : (room(X0) => (predb(X0) => predj(X0))) [input p6] 53. ! [X0] : (room(X0) => (predf(X0) & predb(X0))) [input p9] 64. ~(predj(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 160. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 165. ! [X0] : ((predj(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 50] 166. ! [X0] : (predj(X0) | ~predb(X0) | ~room(X0)) [flattening 165] 167. ! [X0] : ((predf(X0) & predb(X0)) | ~room(X0)) [ennf transformation 53] 173. ~predj(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 64] 191. ? [X0] : (mary != X0 & room(X0)) => (mary != sK5 & room(sK5)) [choice axiom] 192. ~predj(mary) | (mary != sK5 & room(sK5)) | ~room(mary) [skolemisation 173,191] 273. room(mary) [cnf transformation 160] 274. ~room(X0) | mary = X0 [cnf transformation 160] 284. ~predb(X0) | predj(X0) | ~room(X0) [cnf transformation 166] 285. ~room(X0) | predb(X0) [cnf transformation 167] 293. ~predj(mary) | room(sK5) | ~room(mary) [cnf transformation 192] 294. ~predj(mary) | mary != sK5 | ~room(mary) [cnf transformation 192] 349. ~predj(mary) | mary != sK5 [subsumption resolution 294,273] 351. 13 <=> mary = sK5 [avatar definition] 353. mary != sK5 <- (~13) [avatar component clause 351] 355. 14 <=> predj(mary) [avatar definition] 358. ~13 | ~14 [avatar split clause 349,355,351] 359. ~predj(mary) | room(sK5) [subsumption resolution 293,273] 361. 15 <=> room(sK5) [avatar definition] 363. room(sK5) <- (15) [avatar component clause 361] 364. 15 | ~14 [avatar split clause 359,355,361] 365. predb(mary) [resolution 285,273] 368. predj(mary) | ~room(mary) [resolution 284,365] 372. predj(mary) [subsumption resolution 368,273] 373. 14 [avatar split clause 372,355] 374. mary = sK5 <- (15) [resolution 363,274] 377. $false <- (~13, 15) [subsumption resolution 374,353] 378. 13 | ~15 [avatar contradiction clause 377] 379. $false [avatar sat refutation 358,364,373,378] % SZS output end Proof for 8454173399335419647529751 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.527476
Douglas, Amber, Paula are the only persons in the room. “Douglas maintains a large, organic vegetable garden year-round” if “everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals or hosts regular workshops on creative writing”. “If someone has completed a triathlon then he/she is passionate about collecting and restoring classic cars and vice versa” unless “everyone outside the room enjoys watercolor painting or does not have completed a triathlon”.
Paula has completed a triathlon.
neutral
room(douglas)&room(amber)&room(paula)&(![X]:(room(X)=>(X='douglas'|X='amber'|X='paula')))& ((![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))=>(maintains_a_large,_organic_vegetable_garden_year-round(douglas)))& (~(![X]:(~room(X)=>(((does_not_have_completed_a_triathlon(X))|(enjoys_watercolor_painting(X))))))=>((![X]:((has_completed_a_triathlon(X))<=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (((?[X]:(room(X)&(~((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(hosts_regular_workshops_on_creative_writing(X))))))=>(has_completed_a_triathlon(paula)))&((~(?[X]:(room(X)&(~((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(hosts_regular_workshops_on_creative_writing(X)))))))=>(~((enjoys_spelunking(douglas))|(has_a_tattoo(douglas))))))& ((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(paula))=>(does_not_enjoy_spelunking(amber)))& ((~(does_enjoy_mountain_biking(douglas)))<~>(![X]:(~room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_enjoy_spelunking(X)))))))& ((?[X]:(anywhere(X)&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(?[X]:(room(X)&(collects_classic_novels(X)))))& ((creates_augmented_reality_experiences_for_mobile_applications(paula))=>(![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))& (hosts_regular_workshops_on_creative_writing(amber))& (practices_zumba(amber))& (![X]:(room(X)=>(((collects_classic_novels(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& ((collects_classic_novels(paula))&(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(paula)))& (collects_classic_novels(douglas))& (?[X]:(anywhere(X)&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (?[X]:(room(X)&(creates_augmented_reality_experiences_for_mobile_applications(X))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))
room(douglas)&room(amber)&room(paula)&(![X]:(room(X)=>(X='douglas'|X='amber'|X='paula')))& has_completed_a_triathlon(paula)
[]
null
0.003244
Jose, Harry are the only persons in the room. If someone is a client of Meta then he/she either enjoys windsurfing or is a client of Meta but not both and vice versa. If someone enjoys windsurfing then he/she is a client of Meta and vice versa. Everyone outside the room who is a client of Meta enjoys windsurfing. Everyone anywhere does not enjoy windsurfing or is a client of Meta. Not everyone in the room is a client of Meta if they does not enjoy windsurfing. Everyone in the room who enjoys windsurfing is a client of Meta. Jose does not enjoy windsurfing.
Harry enjoys windsurfing.
contradiction
room(jose)&room(harry)&(![X]:(room(X)=>(X='jose'|X='harry')))& ((![X]:((is_a_client_of_Meta(X))<=>(((enjoys_windsurfing(X))<~>(is_a_client_of_Meta(X)))))))& ((![X]:((enjoys_windsurfing(X))<=>(is_a_client_of_Meta(X)))))& (![X]:(~room(X)=>(((is_a_client_of_Meta(X))=>(enjoys_windsurfing(X))))))& (![X]:(anywhere(X)=>(((is_a_client_of_Meta(X))|(does_not_enjoy_windsurfing(X))))))& (~![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))=>(is_a_client_of_Meta(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(is_a_client_of_Meta(X))))))& (does_not_enjoy_windsurfing(jose))
room(jose)&room(harry)&(![X]:(room(X)=>(X='jose'|X='harry')))& enjoys_windsurfing(harry)
[ "p1", "hypothesis" ]
% SZS status Unsatisfiable for 782836544812039060427452 % SZS output start Proof for 782836544812039060427452 45. ! [X0] : (predq(X0) <=> (predc(X0) <~> predq(X0))) [input p1] 52. predc(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 134. predc(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 52] 135. predc(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 134] 137. ! [X0] : ((predq(X0) | ((predc(X0) | ~predq(X0)) & (predq(X0) | ~predc(X0)))) & (((~predq(X0) | ~predc(X0)) & (predq(X0) | predc(X0))) | ~predq(X0))) [nnf transformation 45] 226. ~predq(X0) | ~predc(X0) | ~predq(X0) [cnf transformation 137] 227. predq(X0) | predq(X0) | ~predc(X0) [cnf transformation 137] 241. predc(paul) [cnf transformation 135] 242. ~predq(X0) | ~predc(X0) [duplicate literal removal 226] 243. predq(X0) | ~predc(X0) [duplicate literal removal 227] 244. ~predc(X0) [subsumption resolution 242,243] 246. $false [subsumption resolution 241,244] % SZS output end Proof for 782836544812039060427452 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0
Eric, Ray, Thomas, Christy, Stacey are the only persons in the room. If “everyone in the room does not practice tai chi or does not enjoy skydiving” then “if someone hosts a YouTube channel dedicated to art tutorials then he/she practices zumba” otherwise “at least one person in the room does not host a YouTube channel dedicated to art tutorials”. Everyone in the room composes and performs experimental electronic music if they writes poetry. Everyone in the room who composes and performs experimental electronic music makes intricate hand-cut paper art for exhibitions. At least one person in the room hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room enjoys skydiving, collects modern art or cannot play the guitar if they practices tai chi. Everyone in the room enjoys skydiving, collects modern art or cannot play the guitar only if they makes intricate hand-cut paper art for exhibitions. Everyone anywhere uses a Windows laptop if they enjoys rooftop gardening and plays the drums and vice versa. Everyone in the room is a client of Costco or collects modern art or both if they either plays the drums or practices zumba but not both. Everyone in the room does not practice tai chi or does not enjoy skydiving. Someone anywhere writes poetry or is right-handed or both. Everyone in the room who practices tai chi has a piercing. Everyone outside the room can play the guitar. Everyone in the room does not play the drums or enjoys kayaking and exploring remote waterways. No one anywhere who does not play the drums either does not enjoy rooftop gardening or creates bespoke furniture pieces from reclaimed wood but not both. Everyone in the room either does not enjoy rooftop gardening or creates bespoke furniture pieces from reclaimed wood but not both if and only if they makes intricate hand-cut paper art for exhibitions. If someone hosts a YouTube channel dedicated to art tutorials then he/she practices zumba. Everyone in the room hosts a YouTube channel dedicated to art tutorials if they is not an avid collector of autographed memorabilia from famous musicians. Not everyone in the room hosts a YouTube channel dedicated to art tutorials only if they enjoys skydiving.
Everyone in the room does not practice tai chi.
entailment
room(eric)&room(ray)&room(thomas)&room(christy)&room(stacey)&(![X]:(room(X)=>(X='eric'|X='ray'|X='thomas'|X='christy'|X='stacey')))& (((![X]:(room(X)=>(((does_not_enjoy_skydiving(X))|(does_not_practice_tai_chi(X))))))=>((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(practices_zumba(X))))))&((~(![X]:(room(X)=>(((does_not_enjoy_skydiving(X))|(does_not_practice_tai_chi(X)))))))=>(((?[X]:(room(X)&does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X)))))))& (![X]:(room(X)=>(((writes_poetry(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (((?[X]:(room(X)&hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(((enjoys_skydiving(X))|(collects_modern_art(X))|(cannot_play_the_guitar(X))))))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))<=(((enjoys_skydiving(X))|(collects_modern_art(X))|(cannot_play_the_guitar(X))))))))& (![X]:(anywhere(X)=>(((uses_a_Windows_laptop(X))<=>(((enjoys_rooftop_gardening(X))&(plays_the_drums(X))))))))& (![X]:(room(X)=>(((((plays_the_drums(X))<~>(practices_zumba(X))))=>(((is_a_client_of_Costco(X))|(collects_modern_art(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_skydiving(X))|(does_not_practice_tai_chi(X))))))& (?[X]:(anywhere(X)&(((writes_poetry(X))|(is_right-handed(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(has_a_piercing(X))))))& (![X]:(~room(X)=>(can_play_the_guitar(X))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_play_the_drums(X))))))& (~?[X]:(anywhere(X)=>(((does_not_play_the_drums(X))=>(((does_not_enjoy_rooftop_gardening(X))<~>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (![X]:(room(X)=>(((((does_not_enjoy_rooftop_gardening(X))<~>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))<=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& ((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(practices_zumba(X)))))& (![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (~![X]:(room(X)=>(((enjoys_skydiving(X))<=(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))
room(eric)&room(ray)&room(thomas)&room(christy)&room(stacey)&(![X]:(room(X)=>(X='eric'|X='ray'|X='thomas'|X='christy'|X='stacey')))& ![X]:(room(X)=>(does_not_practice_tai_chi(X)))
[ "p0", "p5", "p6", "p9", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 1061800109026321005450321 % SZS output start Proof for 1061800109026321005450321 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (predk(X0) => (~predh(X0) | predz(X0) | predt(X0)))) [input p5] 50. ! [X0] : (room(X0) => ((~predh(X0) | predz(X0) | predt(X0)) => predm(X0))) [input p6] 53. ! [X0] : (room(X0) => (~predk(X0) | ~predt(X0))) [input p9] 58. ~? [X0] : (anywhere(X0) => (~predc(X0) => (~predo(X0) <~> predd(X0)))) [input p14] 59. ! [X0] : (room(X0) => ((~predo(X0) <~> predd(X0)) <=> predm(X0))) [input p15] 63. ~(! [X0] : (room(X0) => ~predk(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 65. ~(! [X0] : (room(X0) => ~predk(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 63] 147. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 147] 151. ! [X0] : (((~predh(X0) | predz(X0) | predt(X0)) | ~predk(X0)) | ~room(X0)) [ennf transformation 49] 152. ! [X0] : (~predh(X0) | predz(X0) | predt(X0) | ~predk(X0) | ~room(X0)) [flattening 151] 153. ! [X0] : ((predm(X0) | (predh(X0) & ~predz(X0) & ~predt(X0))) | ~room(X0)) [ennf transformation 50] 154. ! [X0] : (predm(X0) | (predh(X0) & ~predz(X0) & ~predt(X0)) | ~room(X0)) [flattening 153] 156. ! [X0] : ((~predk(X0) | ~predt(X0)) | ~room(X0)) [ennf transformation 53] 157. ! [X0] : (~predk(X0) | ~predt(X0) | ~room(X0)) [flattening 156] 159. ! [X0] : (((~predo(X0) <=> predd(X0)) & ~predc(X0)) & anywhere(X0)) [ennf transformation 58] 160. ! [X0] : ((~predo(X0) <=> predd(X0)) & ~predc(X0) & anywhere(X0)) [flattening 159] 161. ! [X0] : (((~predo(X0) <~> predd(X0)) <=> predm(X0)) | ~room(X0)) [ennf transformation 59] 164. ? [X0] : (predk(X0) & room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 65] 165. ? [X0] : (predk(X0) & room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 164] 166. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 167. ? [X0] : (predk(X0) & room(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 165,166] 178. ! [X0] : (((~predo(X0) | ~predd(X0)) & (predd(X0) | predo(X0))) & ~predc(X0) & anywhere(X0)) [nnf transformation 160] 179. ! [X0] : ((~predo(X0) | ~predd(X0)) & (predd(X0) | predo(X0)) & ~predc(X0) & anywhere(X0)) [flattening 178] 180. ! [X0] : (((((~predd(X0) | predo(X0)) & (predd(X0) | ~predo(X0))) | ~predm(X0)) & (predm(X0) | ((~predo(X0) | ~predd(X0)) & (predd(X0) | predo(X0))))) | ~room(X0)) [nnf transformation 161] 183. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 166] 184. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 183] 185. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 186. (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~sP0 [skolemisation 184,185] 187. ? [X0] : (predk(X0) & room(X0)) => (predk(sK6) & room(sK6)) [choice axiom] 188. (predk(sK6) & room(sK6)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 167,187] 270. room(mary) [cnf transformation 148] 271. room(paul) [cnf transformation 148] 272. room(fred) [cnf transformation 148] 273. room(alice) [cnf transformation 148] 274. room(john) [cnf transformation 148] 275. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 148] 279. ~predh(X0) | predz(X0) | predt(X0) | ~predk(X0) | ~room(X0) [cnf transformation 152] 280. ~predt(X0) | predm(X0) | ~room(X0) [cnf transformation 154] 281. ~predz(X0) | predm(X0) | ~room(X0) [cnf transformation 154] 282. ~room(X0) | predh(X0) | predm(X0) [cnf transformation 154] 286. ~predk(X0) | ~predt(X0) | ~room(X0) [cnf transformation 157] 291. predd(X0) | predo(X0) [cnf transformation 179] 292. ~predd(X0) | ~predo(X0) [cnf transformation 179] 295. predd(X0) | ~predo(X0) | ~predm(X0) | ~room(X0) [cnf transformation 180] 296. ~predd(X0) | predo(X0) | ~predm(X0) | ~room(X0) [cnf transformation 180] 300. room(sK5) | ~sP0 [cnf transformation 186] 301. mary != sK5 | ~sP0 [cnf transformation 186] 302. paul != sK5 | ~sP0 [cnf transformation 186] 303. fred != sK5 | ~sP0 [cnf transformation 186] 304. alice != sK5 | ~sP0 [cnf transformation 186] 305. john != sK5 | ~sP0 [cnf transformation 186] 306. room(sK6) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 307. predk(sK6) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 309. 1 <=> ! [X1] : (~predk(X1) | ~room(X1) | ~predt(X1)) [avatar definition] 310. ~predk(X1) | ~room(X1) | ~predt(X1) <- (1) [avatar component clause 309] 324. 1 [avatar split clause 286,309] 325. ~predd(X0) | ~predm(X0) | ~room(X0) [subsumption resolution 296,292] 326. ~predo(X0) | ~predm(X0) | ~room(X0) [subsumption resolution 295,325] 328. 4 <=> sP0 [avatar definition] 332. 5 <=> john = sK5 [avatar definition] 334. john != sK5 <- (~5) [avatar component clause 332] 335. ~4 | ~5 [avatar split clause 305,332,328] 337. 6 <=> alice = sK5 [avatar definition] 339. alice != sK5 <- (~6) [avatar component clause 337] 340. ~4 | ~6 [avatar split clause 304,337,328] 342. 7 <=> fred = sK5 [avatar definition] 344. fred != sK5 <- (~7) [avatar component clause 342] 345. ~4 | ~7 [avatar split clause 303,342,328] 347. 8 <=> paul = sK5 [avatar definition] 349. paul != sK5 <- (~8) [avatar component clause 347] 350. ~4 | ~8 [avatar split clause 302,347,328] 352. 9 <=> mary = sK5 [avatar definition] 355. ~4 | ~9 [avatar split clause 301,352,328] 357. 10 <=> room(sK5) [avatar definition] 359. room(sK5) <- (10) [avatar component clause 357] 360. ~4 | 10 [avatar split clause 300,357,328] 361. predk(sK6) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 307,274] 362. predk(sK6) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 361,273] 363. predk(sK6) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 362,272] 364. predk(sK6) | sP0 | ~room(mary) [subsumption resolution 363,271] 365. predk(sK6) | sP0 [subsumption resolution 364,270] 367. 11 <=> predk(sK6) [avatar definition] 369. predk(sK6) <- (11) [avatar component clause 367] 370. 4 | 11 [avatar split clause 365,367,328] 371. room(sK6) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 306,274] 372. room(sK6) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 371,273] 373. room(sK6) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 372,272] 374. room(sK6) | sP0 | ~room(mary) [subsumption resolution 373,271] 375. room(sK6) | sP0 [subsumption resolution 374,270] 377. 12 <=> room(sK6) [avatar definition] 379. room(sK6) <- (12) [avatar component clause 377] 380. 4 | 12 [avatar split clause 375,377,328] 382. predh(mary) | predm(mary) [resolution 282,270] 383. predh(paul) | predm(paul) [resolution 282,271] 384. predh(fred) | predm(fred) [resolution 282,272] 385. predh(alice) | predm(alice) [resolution 282,273] 386. predh(john) | predm(john) [resolution 282,274] 391. 13 <=> predm(mary) [avatar definition] 392. ~predm(mary) <- (~13) [avatar component clause 391] 393. predm(mary) <- (13) [avatar component clause 391] 395. 14 <=> predh(mary) [avatar definition] 397. predh(mary) <- (14) [avatar component clause 395] 398. 13 | 14 [avatar split clause 382,395,391] 400. 15 <=> predm(paul) [avatar definition] 401. ~predm(paul) <- (~15) [avatar component clause 400] 402. predm(paul) <- (15) [avatar component clause 400] 404. 16 <=> predh(paul) [avatar definition] 406. predh(paul) <- (16) [avatar component clause 404] 407. 15 | 16 [avatar split clause 383,404,400] 409. 17 <=> predm(fred) [avatar definition] 410. ~predm(fred) <- (~17) [avatar component clause 409] 411. predm(fred) <- (17) [avatar component clause 409] 413. 18 <=> predh(fred) [avatar definition] 415. predh(fred) <- (18) [avatar component clause 413] 416. 17 | 18 [avatar split clause 384,413,409] 418. 19 <=> predm(alice) [avatar definition] 419. ~predm(alice) <- (~19) [avatar component clause 418] 420. predm(alice) <- (19) [avatar component clause 418] 422. 20 <=> predh(alice) [avatar definition] 424. predh(alice) <- (20) [avatar component clause 422] 425. 19 | 20 [avatar split clause 385,422,418] 427. 21 <=> predm(john) [avatar definition] 428. ~predm(john) <- (~21) [avatar component clause 427] 429. predm(john) <- (21) [avatar component clause 427] 431. 22 <=> predh(john) [avatar definition] 433. predh(john) <- (22) [avatar component clause 431] 434. 21 | 22 [avatar split clause 386,431,427] 473. ~room(sK6) | ~predt(sK6) <- (1, 11) [resolution 310,369] 474. ~predm(X0) | ~room(X0) | predo(X0) [resolution 325,291] 475. ~predm(X0) | ~room(X0) [subsumption resolution 474,326] 476. ~room(mary) <- (13) [resolution 475,393] 477. ~room(paul) <- (15) [resolution 475,402] 478. ~room(fred) <- (17) [resolution 475,411] 479. ~room(alice) <- (19) [resolution 475,420] 480. ~room(john) <- (21) [resolution 475,429] 484. $false <- (13) [subsumption resolution 476,270] 485. ~13 [avatar contradiction clause 484] 486. $false <- (15) [subsumption resolution 477,271] 487. ~15 [avatar contradiction clause 486] 488. $false <- (17) [subsumption resolution 478,272] 489. ~17 [avatar contradiction clause 488] 490. $false <- (19) [subsumption resolution 479,273] 491. ~19 [avatar contradiction clause 490] 492. $false <- (21) [subsumption resolution 480,274] 493. ~21 [avatar contradiction clause 492] 538. predz(mary) | predt(mary) | ~predk(mary) | ~room(mary) <- (14) [resolution 279,397] 539. predz(paul) | predt(paul) | ~predk(paul) | ~room(paul) <- (16) [resolution 279,406] 540. predz(fred) | predt(fred) | ~predk(fred) | ~room(fred) <- (18) [resolution 279,415] 541. predz(alice) | predt(alice) | ~predk(alice) | ~room(alice) <- (20) [resolution 279,424] 542. predz(john) | predt(john) | ~predk(john) | ~room(john) <- (22) [resolution 279,433] 546. predz(mary) | predt(mary) | ~predk(mary) <- (14) [subsumption resolution 538,270] 548. 31 <=> predk(mary) [avatar definition] 552. 32 <=> predt(mary) [avatar definition] 556. 33 <=> predz(mary) [avatar definition] 558. predz(mary) <- (33) [avatar component clause 556] 559. ~31 | 32 | 33 | ~14 [avatar split clause 546,395,556,552,548] 560. predz(paul) | predt(paul) | ~predk(paul) <- (16) [subsumption resolution 539,271] 562. 34 <=> predk(paul) [avatar definition] 566. 35 <=> predt(paul) [avatar definition] 568. predt(paul) <- (35) [avatar component clause 566] 570. 36 <=> predz(paul) [avatar definition] 572. predz(paul) <- (36) [avatar component clause 570] 573. ~34 | 35 | 36 | ~16 [avatar split clause 560,404,570,566,562] 574. predz(fred) | predt(fred) | ~predk(fred) <- (18) [subsumption resolution 540,272] 576. 37 <=> predk(fred) [avatar definition] 580. 38 <=> predt(fred) [avatar definition] 582. predt(fred) <- (38) [avatar component clause 580] 584. 39 <=> predz(fred) [avatar definition] 586. predz(fred) <- (39) [avatar component clause 584] 587. ~37 | 38 | 39 | ~18 [avatar split clause 574,413,584,580,576] 588. predz(alice) | predt(alice) | ~predk(alice) <- (20) [subsumption resolution 541,273] 590. 40 <=> predk(alice) [avatar definition] 594. 41 <=> predt(alice) [avatar definition] 598. 42 <=> predz(alice) [avatar definition] 600. predz(alice) <- (42) [avatar component clause 598] 601. ~40 | 41 | 42 | ~20 [avatar split clause 588,422,598,594,590] 602. predz(john) | predt(john) | ~predk(john) <- (22) [subsumption resolution 542,274] 604. 43 <=> predk(john) [avatar definition] 608. 44 <=> predt(john) [avatar definition] 612. 45 <=> predz(john) [avatar definition] 614. predz(john) <- (45) [avatar component clause 612] 615. ~43 | 44 | 45 | ~22 [avatar split clause 602,431,612,608,604] 662. alice = sK5 | fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (10) [resolution 275,359] 705. fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (~6, 10) [subsumption resolution 662,339] 706. paul = sK5 | mary = sK5 | john = sK5 <- (~6, ~7, 10) [subsumption resolution 705,344] 707. mary = sK5 | john = sK5 <- (~6, ~7, ~8, 10) [subsumption resolution 706,349] 711. mary = sK5 <- (~5, ~6, ~7, ~8, 10) [subsumption resolution 707,334] 712. 9 | 5 | 6 | 7 | 8 | ~10 [avatar split clause 711,357,347,342,337,332,352] 714. 64 <=> predt(sK6) [avatar definition] 716. ~predt(sK6) <- (~64) [avatar component clause 714] 717. ~64 | ~12 | ~1 | ~11 [avatar split clause 473,367,309,377,714] 737. alice = sK6 | fred = sK6 | paul = sK6 | mary = sK6 | john = sK6 <- (12) [resolution 379,275] 740. 65 <=> john = sK6 [avatar definition] 742. john = sK6 <- (65) [avatar component clause 740] 744. 66 <=> mary = sK6 [avatar definition] 746. mary = sK6 <- (66) [avatar component clause 744] 748. 67 <=> paul = sK6 [avatar definition] 750. paul = sK6 <- (67) [avatar component clause 748] 752. 68 <=> fred = sK6 [avatar definition] 754. fred = sK6 <- (68) [avatar component clause 752] 756. 69 <=> alice = sK6 [avatar definition] 758. alice = sK6 <- (69) [avatar component clause 756] 759. 65 | 66 | 67 | 68 | 69 | ~12 [avatar split clause 737,377,756,752,748,744,740] 763. predk(fred) <- (11, 68) [backward demodulation 369,754] 770. 37 | ~11 | ~68 [avatar split clause 763,752,367,576] 780. predm(fred) | ~room(fred) <- (39) [resolution 586,281] 781. ~room(fred) <- (~17, 39) [subsumption resolution 780,410] 782. $false <- (~17, 39) [subsumption resolution 781,272] 783. 17 | ~39 [avatar contradiction clause 782] 793. predk(paul) <- (11, 67) [backward demodulation 369,750] 801. 34 | ~11 | ~67 [avatar split clause 793,748,367,562] 809. predm(paul) | ~room(paul) <- (36) [resolution 572,281] 810. ~room(paul) <- (~15, 36) [subsumption resolution 809,401] 811. $false <- (~15, 36) [subsumption resolution 810,271] 812. 15 | ~36 [avatar contradiction clause 811] 813. predk(alice) <- (11, 69) [backward demodulation 369,758] 817. ~predt(alice) <- (~64, 69) [backward demodulation 716,758] 821. ~41 | 64 | ~69 [avatar split clause 817,756,714,594] 822. 40 | ~11 | ~69 [avatar split clause 813,756,367,590] 842. predm(alice) | ~room(alice) <- (42) [resolution 600,281] 843. ~room(alice) <- (~19, 42) [subsumption resolution 842,419] 844. $false <- (~19, 42) [subsumption resolution 843,273] 845. 19 | ~42 [avatar contradiction clause 844] 861. predk(john) <- (11, 65) [backward demodulation 369,742] 866. 43 | ~11 | ~65 [avatar split clause 861,740,367,604] 875. predk(mary) <- (11, 66) [backward demodulation 369,746] 883. 31 | ~11 | ~66 [avatar split clause 875,744,367,548] 904. ~predt(mary) <- (~64, 66) [backward demodulation 716,746] 908. ~32 | 64 | ~66 [avatar split clause 904,744,714,552] 914. predm(mary) | ~room(mary) <- (33) [resolution 558,281] 915. ~room(mary) <- (~13, 33) [subsumption resolution 914,392] 916. $false <- (~13, 33) [subsumption resolution 915,270] 917. 13 | ~33 [avatar contradiction clause 916] 923. ~predt(john) <- (~64, 65) [backward demodulation 716,742] 924. ~44 | 64 | ~65 [avatar split clause 923,740,714,608] 933. predm(paul) | ~room(paul) <- (35) [resolution 568,280] 934. ~room(paul) <- (~15, 35) [subsumption resolution 933,401] 935. $false <- (~15, 35) [subsumption resolution 934,271] 936. 15 | ~35 [avatar contradiction clause 935] 947. predm(fred) | ~room(fred) <- (38) [resolution 582,280] 948. ~room(fred) <- (~17, 38) [subsumption resolution 947,410] 949. $false <- (~17, 38) [subsumption resolution 948,272] 950. 17 | ~38 [avatar contradiction clause 949] 992. predm(john) | ~room(john) <- (45) [resolution 614,281] 993. ~room(john) <- (~21, 45) [subsumption resolution 992,428] 994. $false <- (~21, 45) [subsumption resolution 993,274] 995. 21 | ~45 [avatar contradiction clause 994] 996. $false [avatar sat refutation 324,335,340,345,350,355,360,370,380,398,407,416,425,434,485,487,489,491,493,559,573,587,601,615,712,717,759,770,783,801,812,821,822,845,866,883,908,917,924,936,950,995] % SZS output end Proof for 1061800109026321005450321 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.002084
Julie, Laura, Carol, Julia, Rhonda are the only persons in the room. If “it is not the case that “Carol owns a high-end gaming PC with custom-built components”” then “if someone enjoys rooftop gardening then he/she does not own a high-end gaming PC with custom-built components”. “Someone anywhere does not enjoy rooftop gardening” unless “everyone in the room owns a high-end gaming PC with custom-built components or does not own a high-end gaming PC with custom-built components”. “Carol does not own a high-end gaming PC with custom-built components” unless “Carol neither does not stream on Twitch nor has a pet dog”.
Carol streams on Twitch.
neutral
room(julie)&room(laura)&room(carol)&room(julia)&room(rhonda)&(![X]:(room(X)=>(X='julie'|X='laura'|X='carol'|X='julia'|X='rhonda')))& ((~(owns_a_high-end_gaming_PC_with_custom-built_components(carol)))=>((![X]:((enjoys_rooftop_gardening(X))=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))& (~(![X]:(room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))=>(?[X]:(anywhere(X)&(does_not_enjoy_rooftop_gardening(X)))))& (~(~((does_not_stream_on_Twitch(carol))|(has_a_pet_dog(carol))))=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(carol)))& (((owns_a_high-end_gaming_PC_with_custom-built_components(julia))=>(streams_on_Twitch(carol)))& ((streams_on_Twitch(carol))=>(does_not_have_a_pet_dog(rhonda))))& (((?[X]:(room(X)&streams_on_Twitch(X)))))& ((![X]:((has_a_pet_dog(X))=>(does_not_have_a_pet_dog(X)))))& (?[X]:(room(X)&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))& (does_not_have_a_pet_dog(rhonda))& (((?[X]:(room(X)&streams_on_Twitch(X)))&(![X,Y]:((room(X)&room(Y)&(streams_on_Twitch(X))&(streams_on_Twitch(Y)))=>(X=Y)))))& (((?[X]:(~room(X)&streams_on_Twitch(X)))))& (owns_a_high-end_gaming_PC_with_custom-built_components(laura))& (?[X]:(~room(X)&(streams_on_Twitch(X))))
room(julie)&room(laura)&room(carol)&room(julia)&room(rhonda)&(![X]:(room(X)=>(X='julie'|X='laura'|X='carol'|X='julia'|X='rhonda')))& streams_on_Twitch(carol)
[]
null
0.069216
Todd is the only person in the room. If “someone in the room designs and sews custom cosplay costumes for conventions” then “Todd who designs and sews custom cosplay costumes for conventions enjoys origami”. Everyone in the room hosts a popular podcast about emerging technologies. Someone anywhere regularly goes on multi-day backpacking trips in national parks, enjoys origami or is an avid mountain climber who has scaled several peaks. Everyone in the room who is not a wine connoisseur with a private cellar of vintage wines practices pilates. If someone either collects foreign coins or collect rare sneakers but not both then he/she is not an avid mountain climber who has scaled several peaks. Todd does not enjoy origami. Not everyone in the room does not collect foreign coins if they plays eSports competitively. Everyone in the room collect rare sneakers if they has a pet dog. Everyone in the room collects foreign coins if they collect rare sneakers. Todd who has a pet dog collects vintage stamps.
Todd collect rare sneakers.
entailment
room(todd)&(![X]:(room(X)=>(X='todd')))& ((?[X]:(room(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>((designs_and_sews_custom_cosplay_costumes_for_conventions(todd))&(enjoys_origami(todd))))& (![X]:(room(X)=>(hosts_a_popular_podcast_about_emerging_technologies(X))))& (?[X]:(anywhere(X)&(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(enjoys_origami(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(practices_pilates(X))))))& ((![X]:((((collects_foreign_coins(X))<~>(collect_rare_sneakers(X))))=>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))& (does_not_enjoy_origami(todd))& (~![X]:(room(X)=>(((plays_eSports_competitively(X))=>(does_not_collect_foreign_coins(X))))))& (![X]:(room(X)=>(((has_a_pet_dog(X))=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(collects_foreign_coins(X))))))& (~(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(todd)))& ((has_a_pet_dog(todd))&(collects_vintage_stamps(todd)))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (((is_a_dedicated_advocate_for_digital_privacy_and_encryption(todd))&(enjoys_skydiving(todd))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(practices_calligraphy(X))))))& (((practices_calligraphy(todd))<~>(does_not_have_a_pet_dog(todd))))& (?[X]:(room(X)&(practices_pilates(X))))& (![X]:(room(X)=>(((((does_not_collect_vintage_stamps(X))<~>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))<=(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(collects_vintage_stamps(X))))))& (collects_classic_novels(todd))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(todd))& (does_not_enjoy_stand-up_paddleboarding(todd))& (enjoys_skydiving(todd))& (![X]:(room(X)=>(((((collect_rare_sneakers(X))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))<~>(collects_classic_novels(X))))))))& (![X]:(room(X)=>(((((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))<~>(collects_classic_novels(X))))=>(enjoys_virtual_reality_gaming(X))))))& ((enjoys_watercolor_painting(todd))&(enjoys_macrame(todd)))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))
room(todd)&(![X]:(room(X)=>(X='todd')))& collect_rare_sneakers(todd)
[ "p0", "p8", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 4407428163252079442324480 % SZS output start Proof for 4407428163252079442324480 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 52. ! [X0] : (room(X0) => (predf(X0) => predx(X0))) [input p8] 55. predq(mary) & predf(mary) [input p11] 71. ~(predx(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 159. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 163. ! [X0] : ((predx(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 52] 164. ! [X0] : (predx(X0) | ~predf(X0) | ~room(X0)) [flattening 163] 175. ~predx(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 71] 186. ? [X0] : (mary != X0 & room(X0)) => (mary != sK3 & room(sK3)) [choice axiom] 187. ~predx(mary) | (mary != sK3 & room(sK3)) | ~room(mary) [skolemisation 175,186] 268. room(mary) [cnf transformation 159] 269. ~room(X0) | mary = X0 [cnf transformation 159] 278. ~predf(X0) | predx(X0) | ~room(X0) [cnf transformation 164] 281. predf(mary) [cnf transformation 55] 292. ~predx(mary) | room(sK3) | ~room(mary) [cnf transformation 187] 293. ~predx(mary) | mary != sK3 | ~room(mary) [cnf transformation 187] 322. ~predx(mary) | mary != sK3 [subsumption resolution 293,268] 324. 7 <=> mary = sK3 [avatar definition] 326. mary != sK3 <- (~7) [avatar component clause 324] 328. 8 <=> predx(mary) [avatar definition] 331. ~7 | ~8 [avatar split clause 322,328,324] 332. ~predx(mary) | room(sK3) [subsumption resolution 292,268] 334. 9 <=> room(sK3) [avatar definition] 336. room(sK3) <- (9) [avatar component clause 334] 337. 9 | ~8 [avatar split clause 332,328,334] 346. predx(mary) | ~room(mary) [resolution 278,281] 350. predx(mary) [subsumption resolution 346,268] 351. 8 [avatar split clause 350,328] 358. mary = sK3 <- (9) [resolution 336,269] 359. $false <- (~7, 9) [subsumption resolution 358,326] 360. 7 | ~9 [avatar contradiction clause 359] 361. $false [avatar sat refutation 331,337,351,360] % SZS output end Proof for 4407428163252079442324480 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.071863
There is a room. If everyone outside the room plays eSports competitively or does not collect historical artifacts related to ancient civilizations then everyone in the room plays eSports competitively if they collects historical artifacts related to ancient civilizations, is a chess master who participates in national tournaments or owns an extensive assortment of vintage comic book memorabilia and vice versa otherwise everyone in the room who collects historical artifacts related to ancient civilizations, is a chess master who participates in national tournaments or owns an extensive assortment of vintage comic book memorabilia creates bespoke furniture pieces from reclaimed wood. If everyone in the room hosts regular workshops on creative writing or does not enjoy watercolor painting then everyone in the room who hosts regular workshops on creative writing plays eSports competitively, is a chess master who participates in national tournaments or owns an extensive assortment of vintage comic book memorabilia. Everyone in the room collects historical artifacts related to ancient civilizations or does not collect historical artifacts related to ancient civilizations only if no one in the room who collects historical artifacts related to ancient civilizations hosts regular workshops on creative writing, collects action figures or drives a hybrid car. If everyone in the room collects modern art or does not own a telescope then everyone in the room who collects modern art owns a telescope otherwise everyone in the room who owns a telescope owns an extensive assortment of vintage comic book memorabilia. If everyone in the room plays eSports competitively or does not have a vast collection of first-edition science fiction novels then if someone enjoys bird watching then he/she participates in long-distance cycling events across the country and vice versa. If everyone in the room enjoys watercolor painting or does not collect action figures then everyone in the room who enjoys watercolor painting owns a telescope. Everyone in the room owns a telescope only if they enjoys bird watching. Everyone outside the room who enjoys bird watching drives a hybrid car. Everyone in the room who collects modern art bakes bread at home. Everyone in the room who bakes bread at home is passionate about collecting and restoring classic cars. Not everyone in the room who is a chess master who participates in national tournaments and collects modern art owns a telescope. Everyone in the room who either enjoys bird watching or owns a telescope but not both hosts regular workshops on creative writing. Everyone anywhere who collects modern art bakes bread at home.
Everyone in the room is not passionate about collecting and restoring classic cars or participates in long-distance cycling events across the country.
contradiction
(there_is_a_room)& (((![X]:(~room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(plays_eSports_competitively(X))))))=>(![X]:(room(X)=>(((plays_eSports_competitively(X))<=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))))&((~(![X]:(~room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(plays_eSports_competitively(X)))))))=>(![X]:(room(X)=>(((((collects_historical_artifacts_related_to_ancient_civilizations(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& ((![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(hosts_regular_workshops_on_creative_writing(X))))))=>(![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(((plays_eSports_competitively(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))))& ((![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))=>(~?[X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(((hosts_regular_workshops_on_creative_writing(X))|(collects_action_figures(X))|(drives_a_hybrid_car(X)))))))))& (((![X]:(room(X)=>(((does_not_own_a_telescope(X))|(collects_modern_art(X))))))=>(![X]:(room(X)=>(((collects_modern_art(X))=>(owns_a_telescope(X)))))))&((~(![X]:(room(X)=>(((does_not_own_a_telescope(X))|(collects_modern_art(X)))))))=>(![X]:(room(X)=>(((owns_a_telescope(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))))& ((![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(plays_eSports_competitively(X))))))=>((![X]:((enjoys_bird_watching(X))<=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& ((![X]:(room(X)=>(((does_not_collect_action_figures(X))|(enjoys_watercolor_painting(X))))))=>(![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(owns_a_telescope(X)))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))<=(owns_a_telescope(X))))))& (![X]:(~room(X)=>(((enjoys_bird_watching(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=>(((is_a_chess_master_who_participates_in_national_tournaments(X))&(collects_modern_art(X))))))))& (~![X]:(room(X)=>(((((is_a_chess_master_who_participates_in_national_tournaments(X))&(collects_modern_art(X))))=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((collects_action_figures(X))=>(((owns_a_telescope(X))|(plays_eSports_competitively(X))|(collects_action_figures(X))))))))& (![X]:(room(X)=>(((((enjoys_bird_watching(X))<~>(owns_a_telescope(X))))=>(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((((participates_in_long-distance_cycling_events_across_the_country(X))|(enjoys_stand-up_paddleboarding(X))|(collects_antique_clocks(X))))<=(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((((participates_in_long-distance_cycling_events_across_the_country(X))|(enjoys_stand-up_paddleboarding(X))|(collects_antique_clocks(X))))=>(is_a_client_of_Meta(X))))))& (![X]:(anywhere(X)=>(((collects_modern_art(X))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(is_a_Linux_enthusiast(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))
[ "b4", "p1", "p3", "p5", "p10", "p13", "p15", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 3604267062509186854442393 % SZS output start Proof for 3604267062509186854442393 5. ! [X0] : anywhere(X0) [input b4] 45. (~! [X0] : (~room(X0) => (predq(X0) | ~predg(X0))) => ! [X0] : (room(X0) => ((preda(X0) | predm(X0) | predg(X0)) => predl(X0)))) & (! [X0] : (~room(X0) => (predq(X0) | ~predg(X0))) => ! [X0] : (room(X0) => (predq(X0) <=> (preda(X0) | predm(X0) | predg(X0))))) [input p1] 47. ! [X0] : (room(X0) => (predg(X0) | ~predg(X0))) => ~? [X0] : (room(X0) => (predg(X0) => (predo(X0) | prede(X0) | predu(X0)))) [input p3] 49. ! [X0] : (room(X0) => (predq(X0) | ~predk(X0))) => ! [X0] : (predt(X0) <=> predj(X0)) [input p5] 54. ! [X0] : (room(X0) => (predc(X0) => predd(X0))) [input p10] 57. ~! [X0] : (room(X0) => ((predr(X0) & predm(X0)) => predi(X0))) [input p13] 59. ! [X0] : (room(X0) => ((predt(X0) <~> predi(X0)) => predu(X0))) [input p15] 62. ! [X0] : (anywhere(X0) => (predr(X0) => predc(X0))) [input p18] 64. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room [input hypothesis] 65. (~! [X0] : (~room(X0) => (predq(X0) | ~predg(X0))) => ! [X1] : (room(X1) => ((preda(X1) | predm(X1) | predg(X1)) => predl(X1)))) & (! [X2] : (~room(X2) => (predq(X2) | ~predg(X2))) => ! [X3] : (room(X3) => (predq(X3) <=> (preda(X3) | predm(X3) | predg(X3))))) [rectify 45] 67. ! [X0] : (room(X0) => (predg(X0) | ~predg(X0))) => ~? [X1] : (room(X1) => (predg(X1) => (predo(X1) | prede(X1) | predu(X1)))) [rectify 47] 69. ! [X0] : (room(X0) => (predq(X0) | ~predk(X0))) => ! [X1] : (predt(X1) <=> predj(X1)) [rectify 49] 74. ! [X0] : (room(X0) => predq(X0)) => ! [X1] : (predt(X1) <=> predj(X1)) [pure predicate removal 69] 76. ! [X0] : (room(X0) => (~predd(X0) | predj(X0))) [pure predicate removal 64] 148. (! [X1] : ((predl(X1) | (~preda(X1) & ~predm(X1) & ~predg(X1))) | ~room(X1)) | ! [X0] : ((predq(X0) | ~predg(X0)) | room(X0))) & (! [X3] : ((predq(X3) <=> (preda(X3) | predm(X3) | predg(X3))) | ~room(X3)) | ? [X2] : ((~predq(X2) & predg(X2)) & ~room(X2))) [ennf transformation 65] 149. (! [X1] : (predl(X1) | (~preda(X1) & ~predm(X1) & ~predg(X1)) | ~room(X1)) | ! [X0] : (predq(X0) | ~predg(X0) | room(X0))) & (! [X3] : ((predq(X3) <=> (preda(X3) | predm(X3) | predg(X3))) | ~room(X3)) | ? [X2] : (~predq(X2) & predg(X2) & ~room(X2))) [flattening 148] 152. ! [X1] : (((~predo(X1) & ~prede(X1) & ~predu(X1)) & predg(X1)) & room(X1)) | ? [X0] : ((~predg(X0) & predg(X0)) & room(X0)) [ennf transformation 67] 153. ! [X1] : (~predo(X1) & ~prede(X1) & ~predu(X1) & predg(X1) & room(X1)) | ? [X0] : (~predg(X0) & predg(X0) & room(X0)) [flattening 152] 156. ! [X1] : (predt(X1) <=> predj(X1)) | ? [X0] : (~predq(X0) & room(X0)) [ennf transformation 74] 165. ! [X0] : ((predd(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 54] 166. ! [X0] : (predd(X0) | ~predc(X0) | ~room(X0)) [flattening 165] 170. ? [X0] : ((~predi(X0) & (predr(X0) & predm(X0))) & room(X0)) [ennf transformation 57] 171. ? [X0] : (~predi(X0) & predr(X0) & predm(X0) & room(X0)) [flattening 170] 174. ! [X0] : ((predu(X0) | (predt(X0) <=> predi(X0))) | ~room(X0)) [ennf transformation 59] 175. ! [X0] : (predu(X0) | (predt(X0) <=> predi(X0)) | ~room(X0)) [flattening 174] 176. ! [X0] : ((predc(X0) | ~predr(X0)) | ~anywhere(X0)) [ennf transformation 62] 177. ! [X0] : (predc(X0) | ~predr(X0) | ~anywhere(X0)) [flattening 176] 178. ! [X0] : ((~predd(X0) | predj(X0)) | ~room(X0)) [ennf transformation 76] 179. ! [X0] : (~predd(X0) | predj(X0) | ~room(X0)) [flattening 178] 180. ! [X3] : ((predq(X3) <=> (preda(X3) | predm(X3) | predg(X3))) | ~room(X3)) | ~sP0 [predicate definition introduction] 181. (! [X1] : (predl(X1) | (~preda(X1) & ~predm(X1) & ~predg(X1)) | ~room(X1)) | ! [X0] : (predq(X0) | ~predg(X0) | room(X0))) & (sP0 | ? [X2] : (~predq(X2) & predg(X2) & ~room(X2))) [definition folding 149,180] 182. ! [X1] : (~predo(X1) & ~prede(X1) & ~predu(X1) & predg(X1) & room(X1)) | ~sP1 [predicate definition introduction] 183. sP1 | ? [X0] : (~predg(X0) & predg(X0) & room(X0)) [definition folding 153,182] 185. ! [X3] : (((predq(X3) | (~preda(X3) & ~predm(X3) & ~predg(X3))) & ((preda(X3) | predm(X3) | predg(X3)) | ~predq(X3))) | ~room(X3)) | ~sP0 [nnf transformation 180] 186. ! [X3] : (((predq(X3) | (~preda(X3) & ~predm(X3) & ~predg(X3))) & (preda(X3) | predm(X3) | predg(X3) | ~predq(X3))) | ~room(X3)) | ~sP0 [flattening 185] 187. ! [X0] : (((predq(X0) | (~preda(X0) & ~predm(X0) & ~predg(X0))) & (preda(X0) | predm(X0) | predg(X0) | ~predq(X0))) | ~room(X0)) | ~sP0 [rectify 186] 188. (! [X0] : (predl(X0) | (~preda(X0) & ~predm(X0) & ~predg(X0)) | ~room(X0)) | ! [X1] : (predq(X1) | ~predg(X1) | room(X1))) & (sP0 | ? [X2] : (~predq(X2) & predg(X2) & ~room(X2))) [rectify 181] 189. ? [X2] : (~predq(X2) & predg(X2) & ~room(X2)) => (~predq(sK2) & predg(sK2) & ~room(sK2)) [choice axiom] 190. (! [X0] : (predl(X0) | (~preda(X0) & ~predm(X0) & ~predg(X0)) | ~room(X0)) | ! [X1] : (predq(X1) | ~predg(X1) | room(X1))) & (sP0 | (~predq(sK2) & predg(sK2) & ~room(sK2))) [skolemisation 188,189] 194. ! [X1] : (~predo(X1) & ~prede(X1) & ~predu(X1) & predg(X1) & room(X1)) | ~sP1 [nnf transformation 182] 195. ! [X0] : (~predo(X0) & ~prede(X0) & ~predu(X0) & predg(X0) & room(X0)) | ~sP1 [rectify 194] 196. ? [X0] : (~predg(X0) & predg(X0) & room(X0)) => (~predg(sK4) & predg(sK4) & room(sK4)) [choice axiom] 197. sP1 | (~predg(sK4) & predg(sK4) & room(sK4)) [skolemisation 183,196] 201. ! [X1] : ((predt(X1) | ~predj(X1)) & (predj(X1) | ~predt(X1))) | ? [X0] : (~predq(X0) & room(X0)) [nnf transformation 156] 202. ! [X0] : ((predt(X0) | ~predj(X0)) & (predj(X0) | ~predt(X0))) | ? [X1] : (~predq(X1) & room(X1)) [rectify 201] 203. ? [X1] : (~predq(X1) & room(X1)) => (~predq(sK6) & room(sK6)) [choice axiom] 204. ! [X0] : ((predt(X0) | ~predj(X0)) & (predj(X0) | ~predt(X0))) | (~predq(sK6) & room(sK6)) [skolemisation 202,203] 210. ? [X0] : (~predi(X0) & predr(X0) & predm(X0) & room(X0)) => (~predi(sK8) & predr(sK8) & predm(sK8) & room(sK8)) [choice axiom] 211. ~predi(sK8) & predr(sK8) & predm(sK8) & room(sK8) [skolemisation 171,210] 212. ! [X0] : (predu(X0) | ((predt(X0) | ~predi(X0)) & (predi(X0) | ~predt(X0))) | ~room(X0)) [nnf transformation 175] 213. anywhere(X0) [cnf transformation 5] 295. predq(X0) | ~predg(X0) | ~room(X0) | ~sP0 [cnf transformation 187] 298. sP0 | ~room(sK2) [cnf transformation 190] 307. room(X0) | ~sP1 [cnf transformation 195] 308. predg(X0) | ~sP1 [cnf transformation 195] 309. ~predu(X0) | ~sP1 [cnf transformation 195] 313. sP1 | predg(sK4) [cnf transformation 197] 314. sP1 | ~predg(sK4) [cnf transformation 197] 322. predt(X0) | ~predj(X0) | ~predq(sK6) [cnf transformation 204] 329. ~predc(X0) | predd(X0) | ~room(X0) [cnf transformation 166] 334. room(sK8) [cnf transformation 211] 336. predr(sK8) [cnf transformation 211] 337. ~predi(sK8) [cnf transformation 211] 339. ~predt(X0) | predi(X0) | predu(X0) | ~room(X0) [cnf transformation 212] 341. predc(X0) | ~predr(X0) | ~anywhere(X0) [cnf transformation 177] 342. ~predd(X0) | predj(X0) | ~room(X0) [cnf transformation 179] 344. 1 <=> sP0 [avatar definition] 356. 4 <=> ! [X0] : (predq(X0) | ~room(X0) | ~predg(X0)) [avatar definition] 357. predq(X0) | ~room(X0) | ~predg(X0) <- (4) [avatar component clause 356] 358. ~1 | 4 [avatar split clause 295,356,344] 389. 12 <=> room(sK2) [avatar definition] 391. ~room(sK2) <- (~12) [avatar component clause 389] 392. ~12 | 1 [avatar split clause 298,344,389] 412. 17 <=> sP1 [avatar definition] 424. 20 <=> ! [X0] : ~predu(X0) [avatar definition] 425. ~predu(X0) <- (20) [avatar component clause 424] 426. ~17 | 20 [avatar split clause 309,424,412] 428. 21 <=> ! [X0] : predg(X0) [avatar definition] 429. predg(X0) <- (21) [avatar component clause 428] 430. ~17 | 21 [avatar split clause 308,428,412] 432. 22 <=> ! [X0] : room(X0) [avatar definition] 433. room(X0) <- (22) [avatar component clause 432] 434. ~17 | 22 [avatar split clause 307,432,412] 436. 23 <=> predg(sK4) [avatar definition] 439. ~23 | 17 [avatar split clause 314,412,436] 440. 23 | 17 [avatar split clause 313,412,436] 472. 31 <=> predq(sK6) [avatar definition] 474. ~predq(sK6) <- (~31) [avatar component clause 472] 476. 32 <=> ! [X0] : (predt(X0) | ~predj(X0)) [avatar definition] 477. ~predj(X0) | predt(X0) <- (32) [avatar component clause 476] 478. ~31 | 32 [avatar split clause 322,476,472] 507. ~predr(X0) | predc(X0) [subsumption resolution 341,213] 508. $false <- (~12, 22) [subsumption resolution 391,433] 509. 12 | ~22 [avatar contradiction clause 508] 510. predq(X0) | ~predg(X0) <- (4, 22) [subsumption resolution 357,433] 511. predq(X0) <- (4, 21, 22) [subsumption resolution 510,429] 513. $false <- (4, 21, 22, ~31) [resolution 511,474] 514. ~4 | ~21 | ~22 | 31 [avatar contradiction clause 513] 516. predc(sK8) [resolution 507,336] 518. predd(sK8) | ~room(sK8) [resolution 329,516] 519. predd(sK8) [subsumption resolution 518,334] 524. predj(sK8) | ~room(sK8) [resolution 342,519] 525. predj(sK8) [subsumption resolution 524,334] 526. predt(sK8) <- (32) [resolution 525,477] 545. predi(sK8) | predu(sK8) | ~room(sK8) <- (32) [resolution 339,526] 547. predu(sK8) | ~room(sK8) <- (32) [subsumption resolution 545,337] 548. ~room(sK8) <- (20, 32) [subsumption resolution 547,425] 549. $false <- (20, 32) [subsumption resolution 548,334] 550. ~20 | ~32 [avatar contradiction clause 549] 551. $false [avatar sat refutation 358,392,426,430,434,439,440,478,509,514,550] % SZS output end Proof for 3604267062509186854442393 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.267176
Cathy, Thelma are the only persons in the room. It is not the case that "Cathy is a quiet old person". Everyone in the room is a quiet old person if they is a quiet person. Cathy is quiet. If someone is not quiet, not old then he/she is a quiet person. Everyone in the room who is a old person is a quiet person. Everyone in the room is quiet if they is a quiet person. Someone who is a quiet person is quieter than someone who is a old person. Everyone in the room is old if they is quiet.
Thelma is quiet.
neutral
room(cathy)&room(thelma)&(![X]:(room(X)=>(X='cathy'|X='thelma')))& (~(quiet(cathy)&old(cathy)&person(cathy)))& (![X]:(room(X)=>(((quiet(X)&person(X))=>(quiet(X)&old(X)&person(X))))))& (quiet(cathy))& ((![X]:((~quiet(X)&~old(X))=>(quiet(X)&person(X)))))& (![X]:(room(X)=>(((old(X)&person(X))=>(quiet(X)&person(X))))))& (![X]:(room(X)=>(((quiet(X)&person(X))=>(quiet(X))))))& (?[X,Y]:((quiet(X)&person(X))&(old(Y)&person(Y))&(quieter(X,Y))))& (![X]:(room(X)=>(((quiet(X))=>(old(X))))))
room(cathy)&room(thelma)&(![X]:(room(X)=>(X='cathy'|X='thelma')))& quiet(thelma)
[]
null
0.125371
Either 'Gina does not participate in long-distance cycling events across the country' or 'Ellen does not enjoy wildlife photography' but not both. 'Gina is not a culinary enthusiast who experiments with international cuisines' if 'Anna does not compose and performs experimental electronic music' and vice versa. Gina is not a culinary enthusiast who experiments with international cuisines. Gina does not compose and performs experimental electronic music. William does not participate in long-distance cycling events across the country or does not enjoy wildlife photography or both. William neither does not enjoy wildlife photography nor is not a culinary enthusiast who experiments with international cuisines. Gina does not enjoy wildlife photography. Ellen does not compose and performs experimental electronic music. Ellen neither does not participate in long-distance cycling events across the country nor is not a culinary enthusiast who experiments with international cuisines. Gina does not participate in long-distance cycling events across the country. Anna is not a culinary enthusiast who experiments with international cuisines. William neither is not a culinary enthusiast who experiments with international cuisines nor does not enjoy wildlife photography.
Anna participates in long-distance cycling events across the country.
neutral
room(ellen)&room(gina)&room(anna)&room(william)&(![X]:(room(X)=>(X='ellen'|X='gina'|X='anna'|X='william')))& ((does_not_participate_in_long-distance_cycling_events_across_the_country(gina))<~>(does_not_enjoy_wildlife_photography(ellen)))& ((does_not_compose_and_performs_experimental_electronic_music(anna))<=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(gina)))& (is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(gina))& (does_not_compose_and_performs_experimental_electronic_music(gina))& (((does_not_participate_in_long-distance_cycling_events_across_the_country(william))|(does_not_enjoy_wildlife_photography(william))))& (~((does_not_enjoy_wildlife_photography(william))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(william))))& (does_not_enjoy_wildlife_photography(gina))& (does_not_compose_and_performs_experimental_electronic_music(ellen))& (~((does_not_participate_in_long-distance_cycling_events_across_the_country(ellen))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(ellen))))& (does_not_participate_in_long-distance_cycling_events_across_the_country(gina))& (is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(anna))& (~((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(william))|(does_not_enjoy_wildlife_photography(william))))
room(ellen)&room(gina)&room(anna)&room(william)&(![X]:(room(X)=>(X='ellen'|X='gina'|X='anna'|X='william')))& participates_in_long-distance_cycling_events_across_the_country(anna)
[]
null
0.70674
Aurelia, Jean are the only persons in the room. “No one in the room does not have a pet dog or enjoys skydiving” if “it is true that “Aurelia does not write and illustrates their own graphic novels, is a client of Meta and collects rare minerals”” and vice versa. If “no one in the room is not a dedicated volunteer for local community service projects” then “everyone anywhere neither cannot play the piano nor does not enjoy writing detailed reviews of new and classic board games” otherwise “everyone anywhere is not a tea enthusiast, does not enjoy writing detailed reviews of new and classic board games and is not a professional photographer specializing in portrait photography”. Either “everyone in the room cannot play the piano or does not collect modern art” or “Aurelia has a saltwater aquarium or is not a client of Meta or both” but not both. “Everyone in the room can play the guitar” if “everyone in the room neither own a television nor trains for and competes in international triathlons” and vice versa. Either “Aurelia neither is not an enthusiastic bird watcher who travels for rare sightings nor practices zumba” or “everyone in the room does not have a curated collection of mid-century modern furniture” but not both. Aurelia does not enjoy skydiving. Aurelia does not practice zumba. Everyone in the room can play the guitar. If someone is not a client of Meta, own a television and has a pet dog then he/she collects rare minerals, does not have a curated collection of mid-century modern furniture and is not a client of Meta and vice versa. Aurelia has a saltwater aquarium or is a tea enthusiast or both. Everyone in the room does not have a curated collection of mid-century modern furniture. Everyone anywhere neither works on fridays nor cannot play the piano if they does not collect rare minerals. Everyone in the room does not collect luxury watches.
Aurelia practices zumba.
contradiction
room(aurelia)&room(jean)&(![X]:(room(X)=>(X='aurelia'|X='jean')))& ((((does_not_write_and_illustrates_their_own_graphic_novels(aurelia))&(is_a_client_of_Meta(aurelia))&(collects_rare_minerals(aurelia))))<=>(~?[X]:(room(X)=>(((enjoys_skydiving(X))|(does_not_have_a_pet_dog(X)))))))& (((~?[X]:(room(X)=>(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))=>(![X]:(anywhere(X)=>(~((cannot_play_the_piano(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))&((~(~?[X]:(room(X)=>(is_not_a_dedicated_volunteer_for_local_community_service_projects(X)))))=>(![X]:(anywhere(X)=>(((is_not_a_tea_enthusiast(X))&(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))&(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))))))& ((![X]:(room(X)=>(((does_not_collect_modern_art(X))|(cannot_play_the_piano(X))))))<~>(((has_a_saltwater_aquarium(aurelia))|(is_not_a_client_of_Meta(aurelia)))))& ((![X]:(room(X)=>(~((own_a_television(X))|(trains_for_and_competes_in_international_triathlons(X))))))<=>(![X]:(room(X)=>(can_play_the_guitar(X)))))& ((~((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(aurelia))|(practices_zumba(aurelia))))<~>(![X]:(room(X)=>(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X)))))& (does_not_enjoy_skydiving(aurelia))& (does_not_practice_zumba(aurelia))& (![X]:(room(X)=>(can_play_the_guitar(X))))& ((![X]:((((is_not_a_client_of_Meta(X))&(own_a_television(X))&(has_a_pet_dog(X))))<=>(((collects_rare_minerals(X))&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))&(is_not_a_client_of_Meta(X)))))))& (((has_a_saltwater_aquarium(aurelia))|(is_a_tea_enthusiast(aurelia))))& (![X]:(room(X)=>(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))& (![X]:(anywhere(X)=>(((does_not_collect_rare_minerals(X))=>(~((works_on_fridays(X))|(cannot_play_the_piano(X))))))))& (![X]:(room(X)=>(does_not_collect_luxury_watches(X))))
room(aurelia)&room(jean)&(![X]:(room(X)=>(X='aurelia'|X='jean')))& practices_zumba(aurelia)
[ "p7", "hypothesis" ]
% SZS status Unsatisfiable for 7247963748859947251500698 % SZS output start Proof for 7247963748859947251500698 51. ~predo(mary) [input p7] 58. predo(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 149. predo(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 58] 150. predo(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 149] 291. ~predo(mary) [cnf transformation 51] 305. predo(mary) [cnf transformation 150] 446. 31 <=> predo(mary) [avatar definition] 464. ~31 [avatar split clause 291,446] 473. 31 [avatar split clause 305,446] 474. $false [avatar sat refutation 464,473] % SZS output end Proof for 7247963748859947251500698 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.159093
There is a room. If "no one in the room practices and performs acrobatic dance routines or does not practice pilates" then "if someone writes in-depth travel guides for off-the-beaten-path destinations then he/she hosts a YouTube channel dedicated to art tutorials or writes in-depth travel guides for off-the-beaten-path destinations or both and vice versa". "Everyone outside the room own a television or is not a member of a local theater group specializing in improv" only if "everyone in the room who own a television is an enthusiastic bird watcher who travels for rare sightings". "Everyone in the room is not a member of a local theater group specializing in improv or practices and performs acrobatic dance routines" if "everyone in the room does not practice and performs acrobatic dance routines or composes and performs experimental electronic music" and vice versa. "Everyone in the room does enjoy mountain biking or does not enjoy mountain biking" if "everyone in the room practices and performs acrobatic dance routines or does not practice pilates" and vice versa. If "everyone in the room practices pilates or does not practice zumba" then "everyone in the room own a television if they is a member of a local theater group specializing in improv and vice versa". Everyone in the room who is a member of a local theater group specializing in improv enjoys salsa dancing. Everyone in the room who enjoys salsa dancing does not compose and performs experimental electronic music. Everyone in the room who does not compose and performs experimental electronic music builds model airplanes. Everyone in the room who builds model airplanes is not a certified yoga instructor teaching classes weekly. Everyone in the room who hosts a YouTube channel dedicated to art tutorials hosts a popular podcast about emerging technologies. Everyone in the room who hosts a popular podcast about emerging technologies writes poetry. Not everyone in the room who writes in-depth travel guides for off-the-beaten-path destinations practices zumba. Everyone in the room hosts a popular podcast about emerging technologies if they practices zumba. Everyone in the room who hosts a popular podcast about emerging technologies is a certified yoga instructor teaching classes weekly. Everyone in the room composes and performs experimental electronic music if and only if they uses contact lenses. Everyone in the room practices and performs acrobatic dance routines or does not practice pilates. Not everyone in the room hosts a popular podcast about emerging technologies.
Everyone in the room is not a certified yoga instructor teaching classes weekly.
neutral
(there_is_a_room)& ((~?[X]:(room(X)=>(((does_not_practice_pilates(X))|(practices_and_performs_acrobatic_dance_routines(X))))))=>((![X]:((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))& ((![X]:(~room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(own_a_television(X))))))=>(![X]:(room(X)=>(((own_a_television(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& ((![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))<=>(![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))& ((![X]:(room(X)=>(((does_not_practice_pilates(X))|(practices_and_performs_acrobatic_dance_routines(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(does_enjoy_mountain_biking(X)))))))& ((![X]:(room(X)=>(((does_not_practice_zumba(X))|(practices_pilates(X))))))=>(![X]:(room(X)=>(((own_a_television(X))<=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(does_not_compose_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))=>(builds_model_airplanes(X))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(writes_poetry(X))))))& (~![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(practices_zumba(X))))))& (![X]:(room(X)=>(((practices_zumba(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))<=>(uses_contact_lenses(X))))))& (![X]:(room(X)=>(((does_not_practice_pilates(X))|(practices_and_performs_acrobatic_dance_routines(X))))))& (~![X]:(room(X)=>(hosts_a_popular_podcast_about_emerging_technologies(X))))
(there_is_a_room)& ![X]:(room(X)=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X)))
[]
null
0.001196
Victor is the only person in the room. If “no one outside the room does not practice archery or trains for and competes in international triathlons” then “everyone in the room who does not practice archery practices and performs acrobatic dance routines”. “Everyone outside the room does not enjoy wildlife photography or enjoys wildlife photography” only if “if someone does enjoy mountain biking then he/she designs and sews custom cosplay costumes for conventions and vice versa”. If “Victor enjoys skydiving” then “everyone outside the room is not an expert in identifying and foraging wild edible plants or does enjoy mountain biking”. If “everyone outside the room is not a skilled home brewer experimenting with craft beer recipes or practices and performs acrobatic dance routines” then “Victor practices and performs acrobatic dance routines”. If “it is not the case that “Victor trains for and competes in international triathlons”” then “Victor can play the harmonica” otherwise “everyone in the room who enjoys skydiving enjoys wildlife photography”. Everyone in the room who enjoys wildlife photography is an avid collector of autographed memorabilia from famous musicians. Victor who is allergic to anything composes and performs experimental electronic music, practices calligraphy or trains for and competes in international triathlons.
Victor can play the harmonica.
neutral
room(victor)&(![X]:(room(X)=>(X='victor')))& ((~?[X]:(~room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(does_not_practice_archery(X))))))=>(![X]:(room(X)=>(((does_not_practice_archery(X))=>(practices_and_performs_acrobatic_dance_routines(X)))))))& ((![X]:(~room(X)=>(((enjoys_wildlife_photography(X))|(does_not_enjoy_wildlife_photography(X))))))=>((![X]:((does_enjoy_mountain_biking(X))<=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& ((enjoys_skydiving(victor))=>(![X]:(~room(X)=>(((does_enjoy_mountain_biking(X))|(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))))& ((![X]:(~room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))=>(practices_and_performs_acrobatic_dance_routines(victor)))& (((~(trains_for_and_competes_in_international_triathlons(victor)))=>(can_play_the_harmonica(victor)))&((~(~(trains_for_and_competes_in_international_triathlons(victor))))=>(![X]:(room(X)=>(((enjoys_skydiving(X))=>(enjoys_wildlife_photography(X))))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& ((is_allergic_to_anything(victor))&(((composes_and_performs_experimental_electronic_music(victor))|(practices_calligraphy(victor))|(trains_for_and_competes_in_international_triathlons(victor)))))& (frequently_participates_in_hackathons_and_coding_competitions(victor))& (does_enjoy_mountain_biking(victor))& ((enjoys_skydiving(victor))&(is_an_expert_in_identifying_and_foraging_wild_edible_plants(victor)))& (![X]:(~room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& (enjoys_skydiving(victor))& (practices_archery(victor))
room(victor)&(![X]:(room(X)=>(X='victor')))& can_play_the_harmonica(victor)
[]
null
0.060539
Jinny, Jana, Gary, Jennifer are the only persons in the room. “Jana is passionate about collecting and restoring classic cars” if “everyone in the room is passionate about collecting and restoring classic cars or is not passionate about collecting and restoring classic cars” and vice versa. If “Jennifer is a Linux enthusiast” then “everyone in the room is a Linux enthusiast only if they is passionate about collecting and restoring classic cars”. If “everyone in the room does not work on fridays or is not an enthusiastic bird watcher who travels for rare sightings” then “at least one person in the room is an enthusiastic bird watcher who travels for rare sightings”. If someone is a Linux enthusiast then he/she is an enthusiastic bird watcher who travels for rare sightings and vice versa. Only one person in the room works on fridays. Jennifer works on fridays. Jana is a Linux enthusiast. Everyone in the room enjoys wildlife photography if they works on fridays. Jana is passionate about collecting and restoring classic cars.
Jennifer is a Linux enthusiast.
neutral
room(jinny)&room(jana)&room(gary)&room(jennifer)&(![X]:(room(X)=>(X='jinny'|X='jana'|X='gary'|X='jennifer')))& ((![X]:(room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))<=>(is_passionate_about_collecting_and_restoring_classic_cars(jana)))& ((is_a_Linux_enthusiast(jennifer))=>(![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))<=(is_a_Linux_enthusiast(X)))))))& ((![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(does_not_work_on_fridays(X))))))=>(((?[X]:(room(X)&is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& ((![X]:((is_a_Linux_enthusiast(X))<=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))& (((?[X]:(room(X)&works_on_fridays(X)))&(![X,Y]:((room(X)&room(Y)&(works_on_fridays(X))&(works_on_fridays(Y)))=>(X=Y)))))& (works_on_fridays(jennifer))& (is_a_Linux_enthusiast(jana))& (![X]:(room(X)=>(((works_on_fridays(X))=>(enjoys_wildlife_photography(X))))))& (is_passionate_about_collecting_and_restoring_classic_cars(jana))
room(jinny)&room(jana)&room(gary)&room(jennifer)&(![X]:(room(X)=>(X='jinny'|X='jana'|X='gary'|X='jennifer')))& is_a_Linux_enthusiast(jennifer)
[]
null
0.491077
Laura, Sidney are the only persons in the room. Everyone in the room is old. Everyone in the room is a calm person. Laura owns a microscope. Everyone in the room enjoys virtual reality gaming. Laura is a cybersecurity expert. Laura collects first edition books. Everyone in the room is a generous european. Not everyone in the room is not passionate about collecting and restoring classic cars. Everyone in the room is a strong person. Everyone in the room develops open-source software projects in their free time. Everyone in the room practices digital art. Sidney and Laura are respectively quiet and strong. More than one person in the room collects vintage stamps. Sidney owns a microscope. All tall persons are wise. Laura collects vintage stamps. Sidney practices and performs acrobatic dance routines. All kind persons are generous. Everyone in the room frequently participates in hackathons and coding competitions. Everyone outside the room is funny and is a wise tourist.
It is not the case that “it is not the case that “it is not the case that “more than one person in the room is not tall, is a kind person and is a old person”””.
neutral
room(laura)&room(sidney)&(![X]:(room(X)=>(X='laura'|X='sidney')))& (![X]:(room(X)=>(old(X))))& (![X]:(room(X)=>(calm(X)&person(X))))& (owns_a_microscope(laura))& (![X]:(room(X)=>(enjoys_virtual_reality_gaming(X))))& (is_a_cybersecurity_expert(laura))& (collects_first_edition_books(laura))& (![X]:(room(X)=>(generous(X)&european(X))))& (~![X]:(room(X)=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))& (![X]:(room(X)=>(strong(X)&person(X))))& (![X]:(room(X)=>(develops_open-source_software_projects_in_their_free_time(X))))& (![X]:(room(X)=>(practices_digital_art(X))))& ((quiet(sidney))&(strong(laura)))& ((?[X,Y]:(room(X)&room(Y)&(collects_vintage_stamps(X)&collects_vintage_stamps(Y))&(X!=Y))))& (owns_a_microscope(sidney))& (![X]:(tall(X)=>wise(X)))& (collects_vintage_stamps(laura))& (practices_and_performs_acrobatic_dance_routines(sidney))& (![X]:(kind(X)=>generous(X)))& (![X]:(room(X)=>(frequently_participates_in_hackathons_and_coding_competitions(X))))& (![X]:(~room(X)=>(((funny(X))&(wise(X)&tourist(X))))))
room(laura)&room(sidney)&(![X]:(room(X)=>(X='laura'|X='sidney')))& ~(~(~((?[X,Y]:(room(X)&room(Y)&(((~tall(X))&(kind(X)&person(X))&(old(X)&person(X)))&((~tall(Y))&(kind(Y)&person(Y))&(old(Y)&person(Y))))&(X!=Y))))))
[]
null
0.678027
Maria, James, Robert, Rodney, Gerald are the only persons in the room. "Not everyone in the room designs and sews custom cosplay costumes for conventions if they has a pet dog" if "everyone in the room has a pet dog or does not travel domestically frequently". If "everyone in the room enjoys spelunking or does not have a pet dog" then "everyone in the room who enjoys spelunking travels domestically frequently". Everyone in the room does practice yoga if they travels domestically frequently. Everyone in the room who bakes bread at home maintains a large, organic vegetable garden year-round. Everyone anywhere who maintains a large, organic vegetable garden year-round has a curated collection of mid-century modern furniture. Everyone in the room does not enjoy spelunking if they has a curated collection of mid-century modern furniture. Everyone in the room who does not enjoy spelunking enjoys spelunking.
Maria bakes bread at home.
contradiction
room(maria)&room(james)&room(robert)&room(rodney)&room(gerald)&(![X]:(room(X)=>(X='maria'|X='james'|X='robert'|X='rodney'|X='gerald')))& ((![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))|(has_a_pet_dog(X))))))=>(~![X]:(room(X)=>(((has_a_pet_dog(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))))& ((![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(enjoys_spelunking(X))))))=>(![X]:(room(X)=>(((enjoys_spelunking(X))=>(travels_domestically_frequently(X)))))))& (![X]:(room(X)=>(((travels_domestically_frequently(X))=>(does_practice_yoga(X))))))& (~![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(anywhere(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(does_not_enjoy_spelunking(X))))))& (![X]:(room(X)=>(((does_not_enjoy_spelunking(X))=>(enjoys_spelunking(X))))))
room(maria)&room(james)&room(robert)&room(rodney)&room(gerald)&(![X]:(room(X)=>(X='maria'|X='james'|X='robert'|X='rodney'|X='gerald')))& bakes_bread_at_home(maria)
[ "b4", "p0", "p5", "p6", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 8819028859252312889336497 % SZS output start Proof for 8819028859252312889336497 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (predm(X0) => predr(X0))) [input p5] 50. ! [X0] : (anywhere(X0) => (predr(X0) => predd(X0))) [input p6] 51. ! [X0] : (room(X0) => (predd(X0) => ~predl(X0))) [input p7] 52. ! [X0] : (room(X0) => (~predl(X0) => predl(X0))) [input p8] 53. predm(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 132. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132] 136. ! [X0] : ((predr(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 49] 137. ! [X0] : (predr(X0) | ~predm(X0) | ~room(X0)) [flattening 136] 138. ! [X0] : ((predd(X0) | ~predr(X0)) | ~anywhere(X0)) [ennf transformation 50] 139. ! [X0] : (predd(X0) | ~predr(X0) | ~anywhere(X0)) [flattening 138] 140. ! [X0] : ((~predl(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 51] 141. ! [X0] : (~predl(X0) | ~predd(X0) | ~room(X0)) [flattening 140] 142. ! [X0] : ((predl(X0) | predl(X0)) | ~room(X0)) [ennf transformation 52] 143. ! [X0] : (predl(X0) | predl(X0) | ~room(X0)) [flattening 142] 144. predm(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53] 145. predm(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 144] 153. anywhere(X0) [cnf transformation 5] 234. room(mary) [cnf transformation 133] 246. ~predm(X0) | predr(X0) | ~room(X0) [cnf transformation 137] 247. predd(X0) | ~predr(X0) | ~anywhere(X0) [cnf transformation 139] 248. ~predd(X0) | ~predl(X0) | ~room(X0) [cnf transformation 141] 249. predl(X0) | predl(X0) | ~room(X0) [cnf transformation 143] 256. predm(mary) [cnf transformation 145] 257. ~room(X0) | predl(X0) [duplicate literal removal 249] 278. ~predr(X0) | predd(X0) [subsumption resolution 247,153] 279. predl(mary) [resolution 257,234] 286. predr(mary) | ~room(mary) [resolution 246,256] 287. predr(mary) [subsumption resolution 286,234] 288. predd(mary) [resolution 287,278] 289. ~predl(mary) | ~room(mary) [resolution 288,248] 290. ~room(mary) [subsumption resolution 289,279] 291. $false [subsumption resolution 290,234] % SZS output end Proof for 8819028859252312889336497 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.16798
Stanley, Charlotte, Evelyn are the only persons in the room. If “Stanley neither does not write in-depth travel guides for off-the-beaten-path destinations nor is allergic to anything” then “Evelyn collects comic books”. If “no one in the room drives a hybrid car or does not make homemade pastries” then “if someone hosts regular game nights featuring complex strategy games then he/she is passionate about collecting and restoring classic cars”. “Charlotte does not collect comic books” only if “Stanley is a member of a local theater group specializing in improv”. If “Evelyn is not a drone photographer” then “everyone in the room does not have a specialized collection of handmade artisan pottery if they writes and illustrates their own graphic novels”. “At least one person in the room collects comic books” only if “Charlotte who enjoys windsurfing can play the piano”. Either “Charlotte is a member of a local theater group specializing in improv or collects comic books or both” or “everyone outside the room has a pet dog or does not host regular game nights featuring complex strategy games” but not both. “Charlotte has a specialized collection of handmade artisan pottery” if “Evelyn cannot play the piano” and vice versa. It is true that “Evelyn writes and illustrates their own graphic novels”. At least one person in the room is passionate about collecting and restoring classic cars. More than one person anywhere neither hosts a YouTube channel dedicated to art tutorials nor drives a hybrid car. Someone in the room hosts a popular podcast about emerging technologies. Charlotte is not allergic to anything or collects rare and antique scientific instruments or both. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they collects comic books. It is true that “if someone is not passionate about collecting and restoring classic cars then he/she collects antique jewelry”. Everyone in the room is a night owl or does not write in-depth travel guides for off-the-beaten-path destinations. Stanley neither does not write in-depth travel guides for off-the-beaten-path destinations nor is allergic to anything.
Evelyn is a night owl.
entailment
room(stanley)&room(charlotte)&room(evelyn)&(![X]:(room(X)=>(X='stanley'|X='charlotte'|X='evelyn')))& ((~((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(stanley))|(is_allergic_to_anything(stanley))))=>(collects_comic_books(evelyn)))& ((~?[X]:(room(X)=>(((does_not_make_homemade_pastries(X))|(drives_a_hybrid_car(X))))))=>((![X]:((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& ((does_not_collect_comic_books(charlotte))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(stanley)))& ((is_not_a_drone_photographer(evelyn))=>(![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X)))))))& ((((?[X]:(room(X)&collects_comic_books(X)))))=>((enjoys_windsurfing(charlotte))&(can_play_the_piano(charlotte))))& ((((is_a_member_of_a_local_theater_group_specializing_in_improv(charlotte))|(collects_comic_books(charlotte))))<~>(![X]:(~room(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))|(has_a_pet_dog(X)))))))& ((cannot_play_the_piano(evelyn))<=>(has_a_specialized_collection_of_handmade_artisan_pottery(charlotte)))& (writes_and_illustrates_their_own_graphic_novels(evelyn))& (((?[X]:(room(X)&is_passionate_about_collecting_and_restoring_classic_cars(X)))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(~((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(drives_a_hybrid_car(X)))&~((hosts_a_YouTube_channel_dedicated_to_art_tutorials(Y))|(drives_a_hybrid_car(Y))))&(X!=Y))))& (?[X]:(room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))& (((is_not_allergic_to_anything(charlotte))|(collects_rare_and_antique_scientific_instruments(charlotte))))& (![X]:(room(X)=>(((collects_comic_books(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& ((![X]:((is_not_passionate_about_collecting_and_restoring_classic_cars(X))=>(collects_antique_jewelry(X)))))& ((![X]:((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(collects_comic_books(X)))))& (((hosts_a_YouTube_channel_dedicated_to_art_tutorials(charlotte))<~>(hosts_a_popular_podcast_about_emerging_technologies(charlotte))))& (watches_fantasy_movies(evelyn))& (has_a_specialized_collection_of_handmade_artisan_pottery(charlotte))& (hosts_regular_game_nights_featuring_complex_strategy_games(charlotte))& ((![X]:((collects_antique_jewelry(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))& (((enjoys_making_ceramics(stanley))&(is_not_allergic_to_anything(stanley))))& (does_not_collect_comic_books(charlotte))& (has_a_vast_collection_of_first-edition_science_fiction_novels(stanley))& (![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(is_a_night_owl(X))))))& (~((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(stanley))|(is_allergic_to_anything(stanley))))
room(stanley)&room(charlotte)&room(evelyn)&(![X]:(room(X)=>(X='stanley'|X='charlotte'|X='evelyn')))& is_a_night_owl(evelyn)
[ "p0", "p1", "p13", "p24", "p25", "hypothesis" ]
% SZS status Unsatisfiable for 1257505020641067536637544 % SZS output start Proof for 1257505020641067536637544 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predh(mary) | ~predj(mary)) => predi(fred) [input p1] 57. ! [X0] : (room(X0) => (predi(X0) => predj(X0))) [input p13] 68. ! [X0] : (room(X0) => (predd(X0) | ~predj(X0))) [input p24] 69. ~(predh(mary) | ~predj(mary)) [input p25] 70. ~(predd(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 157. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 158. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 157] 159. predi(fred) | (predh(mary) | ~predj(mary)) [ennf transformation 45] 160. predi(fred) | predh(mary) | ~predj(mary) [flattening 159] 166. ! [X0] : ((predj(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 57] 167. ! [X0] : (predj(X0) | ~predi(X0) | ~room(X0)) [flattening 166] 169. ! [X0] : ((predd(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 68] 170. ! [X0] : (predd(X0) | ~predj(X0) | ~room(X0)) [flattening 169] 171. ~predh(mary) & predj(mary) [ennf transformation 69] 172. ~predd(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 70] 173. ~predd(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 172] 188. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 189. ~predd(fred) | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 173,188] 270. room(mary) [cnf transformation 158] 271. room(paul) [cnf transformation 158] 272. room(fred) [cnf transformation 158] 273. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 158] 274. predi(fred) | predh(mary) | ~predj(mary) [cnf transformation 160] 292. ~predi(X0) | predj(X0) | ~room(X0) [cnf transformation 167] 300. ~predj(X0) | predd(X0) | ~room(X0) [cnf transformation 170] 301. predj(mary) [cnf transformation 171] 302. ~predh(mary) [cnf transformation 171] 303. ~predd(fred) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189] 304. ~predd(fred) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189] 305. ~predd(fred) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189] 306. ~predd(fred) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 189] 308. 1 <=> predj(mary) [avatar definition] 312. 2 <=> predh(mary) [avatar definition] 316. 3 <=> predi(fred) [avatar definition] 318. predi(fred) <- (3) [avatar component clause 316] 319. ~1 | 2 | 3 [avatar split clause 274,316,312,308] 386. ~2 [avatar split clause 302,312] 387. 1 [avatar split clause 301,308] 388. ~predd(fred) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 306,272] 389. ~predd(fred) | fred != sK5 | ~room(mary) [subsumption resolution 388,271] 390. ~predd(fred) | fred != sK5 [subsumption resolution 389,270] 392. 17 <=> fred = sK5 [avatar definition] 394. fred != sK5 <- (~17) [avatar component clause 392] 396. 18 <=> predd(fred) [avatar definition] 399. ~17 | ~18 [avatar split clause 390,396,392] 400. ~predd(fred) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 305,272] 401. ~predd(fred) | paul != sK5 | ~room(mary) [subsumption resolution 400,271] 402. ~predd(fred) | paul != sK5 [subsumption resolution 401,270] 404. 19 <=> paul = sK5 [avatar definition] 406. paul != sK5 <- (~19) [avatar component clause 404] 407. ~19 | ~18 [avatar split clause 402,396,404] 408. ~predd(fred) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 304,272] 409. ~predd(fred) | mary != sK5 | ~room(mary) [subsumption resolution 408,271] 410. ~predd(fred) | mary != sK5 [subsumption resolution 409,270] 412. 20 <=> mary = sK5 [avatar definition] 414. mary != sK5 <- (~20) [avatar component clause 412] 415. ~20 | ~18 [avatar split clause 410,396,412] 416. ~predd(fred) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 303,272] 417. ~predd(fred) | room(sK5) | ~room(mary) [subsumption resolution 416,271] 418. ~predd(fred) | room(sK5) [subsumption resolution 417,270] 420. 21 <=> room(sK5) [avatar definition] 422. room(sK5) <- (21) [avatar component clause 420] 423. 21 | ~18 [avatar split clause 418,396,420] 425. predj(fred) | ~room(fred) <- (3) [resolution 292,318] 428. predj(fred) <- (3) [subsumption resolution 425,272] 431. predd(fred) | ~room(fred) <- (3) [resolution 300,428] 437. predd(fred) <- (3) [subsumption resolution 431,272] 438. 18 | ~3 [avatar split clause 437,316,396] 492. paul = sK5 | mary = sK5 | fred = sK5 <- (21) [resolution 273,422] 519. mary = sK5 | fred = sK5 <- (~19, 21) [subsumption resolution 492,406] 520. fred = sK5 <- (~19, ~20, 21) [subsumption resolution 519,414] 521. $false <- (~17, ~19, ~20, 21) [subsumption resolution 520,394] 522. 17 | 19 | 20 | ~21 [avatar contradiction clause 521] 523. $false [avatar sat refutation 319,386,387,399,407,415,423,438,522] % SZS output end Proof for 1257505020641067536637544 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0.534636
There is a room. Everyone in the room who owns a high-end gaming PC with custom-built components does not own a telescope. Not everyone anywhere does not own a telescope only if they owns a high-end gaming PC with custom-built components or practices urban gardening or both. Everyone in the room either owns a telescope or does not practice urban gardening but not both if they owns a high-end gaming PC with custom-built components or practices urban gardening or both. Everyone in the room either owns a telescope or does not own a high-end gaming PC with custom-built components but not both if they either owns a telescope or does not practice urban gardening but not both. Everyone in the room owns a high-end gaming PC with custom-built components if they practices urban gardening. Everyone anywhere who owns a high-end gaming PC with custom-built components practices urban gardening. Everyone in the room practices urban gardening. Everyone in the room either owns a high-end gaming PC with custom-built components or practices urban gardening but not both if they owns a high-end gaming PC with custom-built components. Everyone in the room who neither owns a telescope nor collects antique jewelry owns a telescope. It is true that “everyone in the room who collects antique jewelry or owns a high-end gaming PC with custom-built components or both practices urban gardening”. Everyone in the room owns a high-end gaming PC with custom-built components. If someone owns a high-end gaming PC with custom-built components then he/she collects antique jewelry and vice versa. Everyone in the room owns a telescope and practices urban gardening if and only if they owns a telescope. Everyone in the room collects antique jewelry and practices urban gardening if they owns a telescope.
Everyone outside the room practices urban gardening.
contradiction
(there_is_a_room)& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(does_not_own_a_telescope(X))))))& (~![X]:(anywhere(X)=>(((((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(practices_urban_gardening(X))))<=(does_not_own_a_telescope(X))))))& (![X]:(room(X)=>(((((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(practices_urban_gardening(X))))=>(((owns_a_telescope(X))<~>(does_not_practice_urban_gardening(X))))))))& (![X]:(room(X)=>(((((owns_a_telescope(X))<~>(does_not_practice_urban_gardening(X))))=>(((owns_a_telescope(X))<~>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(anywhere(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(practices_urban_gardening(X))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))<~>(practices_urban_gardening(X))))))))& (![X]:(room(X)=>(((~((owns_a_telescope(X))|(collects_antique_jewelry(X))))=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((((collects_antique_jewelry(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))& ((![X]:((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=>(collects_antique_jewelry(X)))))& (![X]:(room(X)=>(((((owns_a_telescope(X))&(practices_urban_gardening(X))))<=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(((collects_antique_jewelry(X))&(practices_urban_gardening(X))))))))
(there_is_a_room)& ![X]:(~room(X)=>(practices_urban_gardening(X)))
[ "p1", "p2", "p3", "p4", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 7414645255711384060314904 % SZS output start Proof for 7414645255711384060314904 45. ! [X0] : (room(X0) => (predb(X0) => ~predd(X0))) [input p1] 46. ~! [X0] : (anywhere(X0) => (~predd(X0) => (predc(X0) | predb(X0)))) [input p2] 47. ! [X0] : (room(X0) => ((predc(X0) | predb(X0)) => (predd(X0) <~> ~predc(X0)))) [input p3] 48. ! [X0] : (room(X0) => ((predd(X0) <~> ~predc(X0)) => (predd(X0) <~> ~predb(X0)))) [input p4] 51. ! [X0] : (room(X0) => predc(X0)) [input p7] 59. ! [X0] : (~room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 60. ! [X0] : (~room(X0) => predc(X0)) [pure predicate removal 59] 133. ! [X0] : ((~predd(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 45] 134. ! [X0] : (~predd(X0) | ~predb(X0) | ~room(X0)) [flattening 133] 135. ? [X0] : (((~predc(X0) & ~predb(X0)) & ~predd(X0)) & anywhere(X0)) [ennf transformation 46] 136. ? [X0] : (~predc(X0) & ~predb(X0) & ~predd(X0) & anywhere(X0)) [flattening 135] 137. ! [X0] : (((predd(X0) <~> ~predc(X0)) | (~predc(X0) & ~predb(X0))) | ~room(X0)) [ennf transformation 47] 138. ! [X0] : ((predd(X0) <~> ~predc(X0)) | (~predc(X0) & ~predb(X0)) | ~room(X0)) [flattening 137] 139. ! [X0] : (((predd(X0) <~> ~predb(X0)) | (predd(X0) <=> ~predc(X0))) | ~room(X0)) [ennf transformation 48] 140. ! [X0] : ((predd(X0) <~> ~predb(X0)) | (predd(X0) <=> ~predc(X0)) | ~room(X0)) [flattening 139] 145. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 51] 156. ! [X0] : (predc(X0) | room(X0)) [ennf transformation 60] 158. ? [X0] : (~predc(X0) & ~predb(X0) & ~predd(X0) & anywhere(X0)) => (~predc(sK0) & ~predb(sK0) & ~predd(sK0) & anywhere(sK0)) [choice axiom] 159. ~predc(sK0) & ~predb(sK0) & ~predd(sK0) & anywhere(sK0) [skolemisation 136,158] 160. ! [X0] : (((predc(X0) | ~predd(X0)) & (~predc(X0) | predd(X0))) | (~predc(X0) & ~predb(X0)) | ~room(X0)) [nnf transformation 138] 161. ! [X0] : (((predb(X0) | ~predd(X0)) & (~predb(X0) | predd(X0))) | ((predd(X0) | predc(X0)) & (~predc(X0) | ~predd(X0))) | ~room(X0)) [nnf transformation 140] 247. ~predd(X0) | ~predb(X0) | ~room(X0) [cnf transformation 134] 251. ~predc(sK0) [cnf transformation 159] 253. ~predc(X0) | predd(X0) | ~predc(X0) | ~room(X0) [cnf transformation 160] 258. predb(X0) | ~predd(X0) | ~predc(X0) | ~predd(X0) | ~room(X0) [cnf transformation 161] 262. predc(X0) | ~room(X0) [cnf transformation 145] 276. predc(X0) | room(X0) [cnf transformation 156] 280. predb(X0) | ~predd(X0) | ~predc(X0) | ~room(X0) [duplicate literal removal 258] 281. ~predc(X0) | predd(X0) | ~room(X0) [duplicate literal removal 253] 282. ~predd(X0) | ~predc(X0) | ~room(X0) [subsumption resolution 280,247] 283. ~predc(X0) | ~room(X0) [subsumption resolution 282,281] 287. ~room(X0) [subsumption resolution 262,283] 288. predc(X0) [subsumption resolution 276,287] 289. $false [resolution 288,251] % SZS output end Proof for 7414645255711384060314904 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.147901
If Laura plays as a goalkeeper for a local amateur soccer team then Laura neither enjoys virtual reality gaming nor mentors a youth basketball team on weekends. If Laura neither mentors a youth basketball team on weekends nor enjoys virtual reality gaming then Laura is a dedicated advocate for digital privacy and encryption. Laura is a Linux enthusiast unless Laura practices kickboxing. Laura practices kickboxing unless Laura plays as a goalkeeper for a local amateur soccer team. Laura enjoys bird watching. Laura is a cybersecurity expert. Laura mentors a youth basketball team on weekends. Laura composes and performs experimental electronic music. It is not the case that Laura is a client of Costco. Laura practices kickboxing.
Laura is a Linux enthusiast.
neutral
room(laura)&(![X]:(room(X)=>(X='laura')))& ((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(laura))=>(~((enjoys_virtual_reality_gaming(laura))|(mentors_a_youth_basketball_team_on_weekends(laura)))))& ((~((mentors_a_youth_basketball_team_on_weekends(laura))|(enjoys_virtual_reality_gaming(laura))))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(laura)))& (~(practices_kickboxing(laura))=>(is_a_Linux_enthusiast(laura)))& (~(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(laura))=>(practices_kickboxing(laura)))& (enjoys_bird_watching(laura))& (is_a_cybersecurity_expert(laura))& (mentors_a_youth_basketball_team_on_weekends(laura))& (composes_and_performs_experimental_electronic_music(laura))& (~(is_a_client_of_Costco(laura)))& (practices_kickboxing(laura))
room(laura)&(![X]:(room(X)=>(X='laura')))& is_a_Linux_enthusiast(laura)
[]
null
0.133231
Jerry, Micheal, Brandon, Christopher, William are the only persons in the room. Everyone in the room does not collect antique clocks or owns a smartwatch if Brandon is a scotch connoisseur and vice versa. Micheal is a scotch connoisseur if no one in the room does not enjoy salsa dancing or collects antique clocks and vice versa. Only one person anywhere is not a scotch connoisseur. Only one person in the room owns a smartwatch. Brandon owns a smartwatch.
Jerry collects antique clocks.
contradiction
room(jerry)&room(micheal)&room(brandon)&room(christopher)&room(william)&(![X]:(room(X)=>(X='jerry'|X='micheal'|X='brandon'|X='christopher'|X='william')))& ((![X]:(room(X)=>(((does_not_collect_antique_clocks(X))|(enjoys_salsa_dancing(X))))))=>(drives_a_hybrid_car(jerry)))& (~(((collects_luxury_watches(jerry))|(plays_the_violin(jerry))))=>(develops_open-source_software_projects_in_their_free_time(brandon)))& ((is_a_scotch_connoisseur(brandon))<=>(![X]:(room(X)=>(((owns_a_smartwatch(X))|(does_not_collect_antique_clocks(X)))))))& ((![X]:(room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))|(enjoys_salsa_dancing(X))))))<=>(collects_luxury_watches(micheal)))& ((![X]:(room(X)=>(((is_not_a_scotch_connoisseur(X))|(collects_comic_books(X))))))=>(![X]:(room(X)=>(((does_not_own_a_3D_printer(X))|(does_not_enjoy_skydiving(X)))))))& ((![X]:(anywhere(X)=>(((cannot_play_the_guitar(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))=>(![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& ((~![X]:(anywhere(X)=>(((does_not_collect_antique_clocks(X))|(collects_luxury_watches(X))))))=>(?[X]:(room(X)&(hosts_regular_workshops_on_creative_writing(X)))))& ((~?[X]:(room(X)=>(((collects_antique_clocks(X))|(does_not_enjoy_salsa_dancing(X))))))<=>(is_a_scotch_connoisseur(micheal)))& ((![X]:(anywhere(X)=>(((develops_open-source_software_projects_in_their_free_time(X))|(is_not_a_Linux_enthusiast(X))))))<=>(is_a_tea_enthusiast(brandon)))& (((~?[X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(drives_a_hybrid_car(X))))))=>(enjoys_salsa_dancing(brandon)))&((~(~?[X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(drives_a_hybrid_car(X)))))))=>(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))<=>(does_not_volunteer_for_local_environmental_conservation_projects(X))))))))& ((~?[X]:(~room(X)=>(((does_not_collect_comic_books(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))=>(works_on_fridays(brandon)))& ((![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))=>(collects_comic_books(jerry)))& (does_not_make_intricate_hand-cut_paper_art_for_exhibitions(micheal))& (((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(jerry))<~>(does_not_enjoy_bird_watching(jerry))))& (collects_comic_books(micheal))& (does_not_collect_antique_clocks(brandon))& (((?[X]:(anywhere(X)&is_not_a_scotch_connoisseur(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(is_not_a_scotch_connoisseur(X))&(is_not_a_scotch_connoisseur(Y)))=>(X=Y)))))& (![X]:(anywhere(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(plays_the_violin(X))))))& (collects_comic_books(jerry))& (works_on_fridays(jerry))& (((?[X]:(room(X)&owns_a_smartwatch(X)))&(![X,Y]:((room(X)&room(Y)&(owns_a_smartwatch(X))&(owns_a_smartwatch(Y)))=>(X=Y)))))& (![X]:(anywhere(X)=>(((((does_not_build_model_airplanes(X))&(cannot_play_the_guitar(X))))<=(is_a_tea_enthusiast(X))))))& (owns_a_smartwatch(brandon))& (![X]:(anywhere(X)=>(((is_a_Linux_enthusiast(X))=>(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(collects_comic_books(X))))))& ((![X]:((can_play_the_guitar(X))=>(works_on_fridays(X)))))
room(jerry)&room(micheal)&room(brandon)&room(christopher)&room(william)&(![X]:(room(X)=>(X='jerry'|X='micheal'|X='brandon'|X='christopher'|X='william')))& collects_antique_clocks(jerry)
[ "b4", "b42", "p0", "p3", "p8", "p17", "p21", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 7136423861729436855235477 % SZS output start Proof for 7136423861729436855235477 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. predr(fred) <=> ! [X0] : (room(X0) => (~predy(X0) | predw(X0))) [input p3] 52. ~? [X0] : (room(X0) => (~predh(X0) | predy(X0))) <=> predr(paul) [input p8] 61. ! [X0,X1] : ((~predr(X1) & ~predr(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (~predr(X0) & anywhere(X0)) [input p17] 65. ! [X0,X1] : ((predw(X1) & predw(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predw(X0) & room(X0)) [input p21] 67. predw(fred) [input p23] 71. predy(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 77. ! [X0,X1] : ((~predr(X1) & ~predr(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (~predr(X2) & anywhere(X2)) [rectify 61] 78. ! [X0,X1] : ((predw(X1) & predw(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predw(X2) & room(X2)) [rectify 65] 164. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 165. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 164] 168. predr(fred) <=> ! [X0] : ((~predy(X0) | predw(X0)) | ~room(X0)) [ennf transformation 47] 169. predr(fred) <=> ! [X0] : (~predy(X0) | predw(X0) | ~room(X0)) [flattening 168] 176. ! [X0] : ((predh(X0) & ~predy(X0)) & room(X0)) <=> predr(paul) [ennf transformation 52] 177. ! [X0] : (predh(X0) & ~predy(X0) & room(X0)) <=> predr(paul) [flattening 176] 182. ! [X0,X1] : (X0 = X1 | (predr(X1) | predr(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (~predr(X2) & anywhere(X2)) [ennf transformation 77] 183. ! [X0,X1] : (X0 = X1 | predr(X1) | predr(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (~predr(X2) & anywhere(X2)) [flattening 182] 184. ! [X0,X1] : (X0 = X1 | (~predw(X1) | ~predw(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predw(X2) & room(X2)) [ennf transformation 78] 185. ! [X0,X1] : (X0 = X1 | ~predw(X1) | ~predw(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predw(X2) & room(X2)) [flattening 184] 188. predy(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 71] 189. predy(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 188] 193. (predr(fred) | ? [X0] : (predy(X0) & ~predw(X0) & room(X0))) & (! [X0] : (~predy(X0) | predw(X0) | ~room(X0)) | ~predr(fred)) [nnf transformation 169] 194. (predr(fred) | ? [X0] : (predy(X0) & ~predw(X0) & room(X0))) & (! [X1] : (~predy(X1) | predw(X1) | ~room(X1)) | ~predr(fred)) [rectify 193] 195. ? [X0] : (predy(X0) & ~predw(X0) & room(X0)) => (predy(sK1) & ~predw(sK1) & room(sK1)) [choice axiom] 196. (predr(fred) | (predy(sK1) & ~predw(sK1) & room(sK1))) & (! [X1] : (~predy(X1) | predw(X1) | ~room(X1)) | ~predr(fred)) [skolemisation 194,195] 207. (! [X0] : (predh(X0) & ~predy(X0) & room(X0)) | ~predr(paul)) & (predr(paul) | ? [X0] : (~predh(X0) | predy(X0) | ~room(X0))) [nnf transformation 177] 208. (! [X0] : (predh(X0) & ~predy(X0) & room(X0)) | ~predr(paul)) & (predr(paul) | ? [X1] : (~predh(X1) | predy(X1) | ~room(X1))) [rectify 207] 209. ? [X1] : (~predh(X1) | predy(X1) | ~room(X1)) => (~predh(sK5) | predy(sK5) | ~room(sK5)) [choice axiom] 210. (! [X0] : (predh(X0) & ~predy(X0) & room(X0)) | ~predr(paul)) & (predr(paul) | (~predh(sK5) | predy(sK5) | ~room(sK5))) [skolemisation 208,209] 220. ? [X2] : (~predr(X2) & anywhere(X2)) => (~predr(sK8) & anywhere(sK8)) [choice axiom] 221. ! [X0,X1] : (X0 = X1 | predr(X1) | predr(X0) | ~anywhere(X1) | ~anywhere(X0)) & (~predr(sK8) & anywhere(sK8)) [skolemisation 183,220] 222. ? [X2] : (predw(X2) & room(X2)) => (predw(sK9) & room(sK9)) [choice axiom] 223. ! [X0,X1] : (X0 = X1 | ~predw(X1) | ~predw(X0) | ~room(X1) | ~room(X0)) & (predw(sK9) & room(sK9)) [skolemisation 185,222] 224. anywhere(X0) [cnf transformation 5] 275. mary != fred [cnf transformation 43] 276. paul != fred [cnf transformation 43] 305. room(mary) [cnf transformation 165] 307. room(fred) [cnf transformation 165] 314. ~predy(X1) | predw(X1) | ~room(X1) | ~predr(fred) [cnf transformation 196] 317. predr(fred) | predy(sK1) [cnf transformation 196] 328. ~predy(X0) | ~predr(paul) [cnf transformation 210] 346. ~predr(sK8) [cnf transformation 221] 347. X0 = X1 | predr(X1) | predr(X0) | ~anywhere(X1) | ~anywhere(X0) [cnf transformation 221] 350. ~predw(X1) | X0 = X1 | ~predw(X0) | ~room(X1) | ~room(X0) [cnf transformation 223] 352. predw(fred) [cnf transformation 67] 359. predy(mary) [cnf transformation 189] 380. 5 <=> predy(sK1) [avatar definition] 382. predy(sK1) <- (5) [avatar component clause 380] 384. 6 <=> predr(fred) [avatar definition] 385. ~predr(fred) <- (~6) [avatar component clause 384] 387. 5 | 6 [avatar split clause 317,384,380] 399. 9 <=> ! [X1] : (~predy(X1) | ~room(X1) | predw(X1)) [avatar definition] 400. ~predy(X1) | ~room(X1) | predw(X1) <- (9) [avatar component clause 399] 401. ~6 | 9 [avatar split clause 314,399,384] 435. 17 <=> predr(paul) [avatar definition] 437. ~predr(paul) <- (~17) [avatar component clause 435] 443. 19 <=> ! [X0] : ~predy(X0) [avatar definition] 444. ~predy(X0) <- (19) [avatar component clause 443] 445. ~17 | 19 [avatar split clause 328,443,435] 527. X0 = X1 | predr(X1) | predr(X0) | ~anywhere(X0) [subsumption resolution 347,224] 528. predr(X1) | predr(X0) | X0 = X1 [subsumption resolution 527,224] 541. predr(X0) | sK8 = X0 [resolution 528,346] 550. fred = sK8 <- (~6) [resolution 541,385] 551. paul = sK8 <- (~17) [resolution 541,437] 554. paul = fred <- (~6, ~17) [backward demodulation 550,551] 555. $false <- (~6, ~17) [subsumption resolution 554,276] 556. 6 | 17 [avatar contradiction clause 555] 602. fred = X1 | ~predw(X1) | ~room(fred) | ~room(X1) [resolution 350,352] 606. ~predw(X1) | fred = X1 | ~room(X1) [subsumption resolution 602,307] 619. $false <- (5, 19) [subsumption resolution 382,444] 620. ~5 | ~19 [avatar contradiction clause 619] 629. ~room(mary) | predw(mary) <- (9) [resolution 400,359] 631. predw(mary) <- (9) [subsumption resolution 629,305] 713. mary = fred | ~room(mary) <- (9) [resolution 606,631] 717. ~room(mary) <- (9) [subsumption resolution 713,275] 718. $false <- (9) [subsumption resolution 717,305] 719. ~9 [avatar contradiction clause 718] 723. $false [avatar sat refutation 387,401,445,556,620,719] % SZS output end Proof for 7136423861729436855235477 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.124064
Jean is the only person in the room. "Everyone anywhere enjoys stargazing" only if "everyone in the room who enjoys virtual reality gaming enjoys windsurfing". If "everyone in the room is not a Linux enthusiast or owns an extensive assortment of vintage comic book memorabilia" then "everyone outside the room competes in national level swimming championships if they is not a Linux enthusiast". If "everyone in the room does not own an extensive assortment of vintage comic book memorabilia or is a certified scuba diver with advanced underwater photography skills" then "everyone in the room who does not own an extensive assortment of vintage comic book memorabilia owns an extensive assortment of vintage comic book memorabilia". Everyone in the room own a television if they enjoys logic puzzles and vice versa. Everyone in the room who enjoys logic puzzles either enjoys virtual reality gaming or is a member of a local theater group specializing in improv but not both. Everyone anywhere who either enjoys virtual reality gaming or is a member of a local theater group specializing in improv but not both can play the harmonica. Jean who own a television is a client of Costco. It is not the case that "at least one person anywhere has a tattoo". Everyone in the room can play the harmonica if they is not a certified scuba diver with advanced underwater photography skills. Everyone in the room does not regularly goes on multi-day backpacking trips in national parks or can play the harmonica. If someone collects rare minerals, is a craft beer aficionado and enjoys virtual reality gaming then he/she does not use a Windows laptop and vice versa. Someone in the room does not participate in citizen science projects related to wildlife monitoring. Not everyone in the room has a tattoo if and only if they is a craft beer aficionado. If someone enjoys stargazing then he/she frequently participates in hackathons and coding competitions and vice versa.
Jean can play the harmonica.
entailment
room(jean)&(![X]:(room(X)=>(X='jean')))& ((![X]:(anywhere(X)=>(enjoys_stargazing(X))))=>(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(enjoys_windsurfing(X)))))))& ((![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_not_a_Linux_enthusiast(X))))))=>(![X]:(~room(X)=>(((is_not_a_Linux_enthusiast(X))=>(competes_in_national_level_swimming_championships(X)))))))& ((![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))=>(![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))& (![X]:(room(X)=>(((own_a_television(X))<=>(enjoys_logic_puzzles(X))))))& (![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(((enjoys_virtual_reality_gaming(X))<~>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))))& (![X]:(anywhere(X)=>(((((enjoys_virtual_reality_gaming(X))<~>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))=>(can_play_the_harmonica(X))))))& ((own_a_television(jean))&(is_a_client_of_Costco(jean)))& (~(((?[X]:(anywhere(X)&has_a_tattoo(X))))))& (![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((can_play_the_harmonica(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& ((![X]:((((collects_rare_minerals(X))&(is_a_craft_beer_aficionado(X))&(enjoys_virtual_reality_gaming(X))))<=>(does_not_use_a_Windows_laptop(X)))))& (?[X]:(room(X)&(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& (~![X]:(room(X)=>(((has_a_tattoo(X))<=>(is_a_craft_beer_aficionado(X))))))& ((![X]:((enjoys_stargazing(X))<=>(frequently_participates_in_hackathons_and_coding_competitions(X)))))
room(jean)&(![X]:(room(X)=>(X='jean')))& can_play_the_harmonica(jean)
[ "b4", "p0", "p4", "p5", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 675752406825207064737276 % SZS output start Proof for 675752406825207064737276 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (predf(X0) <=> predw(X0))) [input p4] 49. ! [X0] : (room(X0) => (predw(X0) => (predc(X0) <~> predr(X0)))) [input p5] 50. ! [X0] : (anywhere(X0) => ((predc(X0) <~> predr(X0)) => predo(X0))) [input p6] 51. predp(mary) & predf(mary) [input p7] 59. ~(predo(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 68. predf(mary) [pure predicate removal 51] 144. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 145. ! [X0] : ((predf(X0) <=> predw(X0)) | ~room(X0)) [ennf transformation 48] 146. ! [X0] : (((predc(X0) <~> predr(X0)) | ~predw(X0)) | ~room(X0)) [ennf transformation 49] 147. ! [X0] : ((predc(X0) <~> predr(X0)) | ~predw(X0) | ~room(X0)) [flattening 146] 148. ! [X0] : ((predo(X0) | (predc(X0) <=> predr(X0))) | ~anywhere(X0)) [ennf transformation 50] 149. ! [X0] : (predo(X0) | (predc(X0) <=> predr(X0)) | ~anywhere(X0)) [flattening 148] 152. ~predo(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 59] 154. ! [X0] : (((predf(X0) | ~predw(X0)) & (predw(X0) | ~predf(X0))) | ~room(X0)) [nnf transformation 145] 155. ! [X0] : (((~predr(X0) | ~predc(X0)) & (predr(X0) | predc(X0))) | ~predw(X0) | ~room(X0)) [nnf transformation 147] 156. ! [X0] : (predo(X0) | ((predc(X0) | ~predr(X0)) & (predr(X0) | ~predc(X0))) | ~anywhere(X0)) [nnf transformation 149] 163. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 164. ~predo(mary) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 152,163] 165. anywhere(X0) [cnf transformation 5] 246. room(mary) [cnf transformation 144] 247. ~room(X0) | mary = X0 [cnf transformation 144] 248. ~predf(X0) | predw(X0) | ~room(X0) [cnf transformation 154] 250. ~predw(X0) | predc(X0) | predr(X0) | ~room(X0) [cnf transformation 155] 251. ~predr(X0) | ~predc(X0) | ~predw(X0) | ~room(X0) [cnf transformation 155] 252. predo(X0) | predr(X0) | ~predc(X0) | ~anywhere(X0) [cnf transformation 156] 253. predo(X0) | predc(X0) | ~predr(X0) | ~anywhere(X0) [cnf transformation 156] 254. predf(mary) [cnf transformation 68] 260. ~predo(mary) | room(sK2) | ~room(mary) [cnf transformation 164] 261. ~predo(mary) | mary != sK2 | ~room(mary) [cnf transformation 164] 262. ~predr(X0) | predc(X0) | predo(X0) [subsumption resolution 253,165] 263. ~predc(X0) | predr(X0) | predo(X0) [subsumption resolution 252,165] 266. ~predo(mary) | mary != sK2 [subsumption resolution 261,246] 268. 1 <=> mary = sK2 [avatar definition] 270. mary != sK2 <- (~1) [avatar component clause 268] 272. 2 <=> predo(mary) [avatar definition] 274. ~predo(mary) <- (~2) [avatar component clause 272] 275. ~1 | ~2 [avatar split clause 266,272,268] 276. ~predo(mary) | room(sK2) [subsumption resolution 260,246] 278. 3 <=> room(sK2) [avatar definition] 280. room(sK2) <- (3) [avatar component clause 278] 281. 3 | ~2 [avatar split clause 276,272,278] 288. predw(mary) | ~room(mary) [resolution 248,254] 289. predw(mary) [subsumption resolution 288,246] 291. predc(mary) | predr(mary) | ~room(mary) [resolution 250,289] 292. predc(mary) | predr(mary) [subsumption resolution 291,246] 294. 4 <=> predr(mary) [avatar definition] 295. ~predr(mary) <- (~4) [avatar component clause 294] 296. predr(mary) <- (4) [avatar component clause 294] 298. 5 <=> predc(mary) [avatar definition] 300. predc(mary) <- (5) [avatar component clause 298] 301. 4 | 5 [avatar split clause 292,298,294] 302. predc(mary) | predo(mary) <- (4) [resolution 296,262] 305. ~predc(mary) | ~predw(mary) | ~room(mary) <- (4) [resolution 251,296] 310. 2 | 5 | ~4 [avatar split clause 302,294,298,272] 311. ~predc(mary) | ~room(mary) <- (4) [subsumption resolution 305,289] 312. ~predc(mary) <- (4) [subsumption resolution 311,246] 313. ~5 | ~4 [avatar split clause 312,294,298] 314. mary = sK2 <- (3) [resolution 280,247] 315. $false <- (~1, 3) [subsumption resolution 314,270] 316. 1 | ~3 [avatar contradiction clause 315] 317. predr(mary) | predo(mary) <- (5) [resolution 300,263] 318. predo(mary) <- (~4, 5) [subsumption resolution 317,295] 319. $false <- (~2, ~4, 5) [subsumption resolution 318,274] 320. 2 | 4 | ~5 [avatar contradiction clause 319] 321. $false [avatar sat refutation 275,281,301,310,313,316,320] % SZS output end Proof for 675752406825207064737276 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.023 s % ------------------------------ % ------------------------------
0.155435
Elizabeth, Georgine, Berry are the only persons in the room. “Everyone in the room writes a travel blog” unless “everyone outside the room does not enjoy watercolor painting or is not a coffee connoisseur”. “More than one person outside the room either practices graffiti art or is not a certified yoga instructor teaching classes weekly but not both” unless “everyone in the room neither does not know morse code nor is not a member of a local theater group specializing in improv”. At least one person in the room either does not practice pilates or does not enjoy bird watching but not both. Everyone in the room either does not read mystery novels or is a coffee connoisseur but not both only if they either does not read mystery novels or does not practice pilates but not both. Everyone in the room does not have a piercing only if they either does not collect limited-edition art prints from contemporary artists or cannot play the piano but not both. It is true that “Georgine owns a smart tv”. Georgine who does not have a piercing, is not an active member of a local robotics club and enjoys bird watching either does not read mystery novels or is a coffee connoisseur but not both. Everyone in the room does not collect antique clocks, does not write a travel blog and does not read mystery novels if they is not an active member of a local robotics club, cannot play the piano and enjoys bird watching. Elizabeth does not practice pilates. Elizabeth does not have a piercing. Georgine who does not enjoy wildlife photography either does not enjoy watercolor painting or does not have a piercing but not both. Georgine either practices pilates or enjoys watercolor painting but not both.
Georgine is a coffee connoisseur.
entailment
room(elizabeth)&room(georgine)&room(berry)&(![X]:(room(X)=>(X='elizabeth'|X='georgine'|X='berry')))& (~(![X]:(~room(X)=>(((is_not_a_coffee_connoisseur(X))|(does_not_enjoy_watercolor_painting(X))))))=>(![X]:(room(X)=>(writes_a_travel_blog(X)))))& (~(![X]:(room(X)=>(~((does_not_know_morse_code(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))))=>((?[X,Y]:(~room(X)&~room(Y)&(((practices_graffiti_art(X))<~>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X)))&((practices_graffiti_art(Y))<~>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(Y))))&(X!=Y)))))& (((?[X]:(room(X)&((does_not_practice_pilates(X))<~>(does_not_enjoy_bird_watching(X)))))))& (![X]:(room(X)=>(((((does_not_read_mystery_novels(X))<~>(does_not_practice_pilates(X))))<=(((does_not_read_mystery_novels(X))<~>(is_a_coffee_connoisseur(X))))))))& (![X]:(room(X)=>(((((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))<~>(cannot_play_the_piano(X))))<=(does_not_have_a_piercing(X))))))& (owns_a_smart_tv(georgine))& ((((does_not_have_a_piercing(georgine))&(is_not_an_active_member_of_a_local_robotics_club(georgine))&(enjoys_bird_watching(georgine))))&(((does_not_read_mystery_novels(georgine))<~>(is_a_coffee_connoisseur(georgine)))))& (![X]:(room(X)=>(((((is_not_an_active_member_of_a_local_robotics_club(X))&(cannot_play_the_piano(X))&(enjoys_bird_watching(X))))=>(((does_not_collect_antique_clocks(X))&(does_not_write_a_travel_blog(X))&(does_not_read_mystery_novels(X))))))))& (does_not_practice_pilates(elizabeth))& (does_not_have_a_piercing(elizabeth))& (((?[X]:(room(X)&((enjoys_wildlife_photography(X))<~>(does_not_collect_modern_art(X)))))))& ((writes_a_travel_blog(georgine))&(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(georgine))<~>(does_not_collect_modern_art(georgine)))))& ((does_not_enjoy_wildlife_photography(georgine))&(((does_not_enjoy_watercolor_painting(georgine))<~>(does_not_have_a_piercing(georgine)))))& (?[X]:(room(X)&(((does_not_practice_graffiti_art(X))<~>(does_not_read_mystery_novels(X))))))& ((((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(georgine))&(is_not_a_certified_yoga_instructor_teaching_classes_weekly(georgine))&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(georgine))))&(((does_not_know_morse_code(georgine))<~>(practices_graffiti_art(georgine)))))& (((does_not_collect_antique_clocks(georgine))<~>(cannot_play_the_piano(georgine))))& (![X]:(~room(X)=>(((cannot_play_the_harmonica(X))<~>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& ((?[X,Y]:(room(X)&room(Y)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)&hosts_a_YouTube_channel_dedicated_to_art_tutorials(Y))&(X!=Y))))& (is_not_a_coffee_connoisseur(elizabeth))& (enjoys_watercolor_painting(elizabeth))& (((practices_pilates(georgine))<~>(enjoys_watercolor_painting(georgine))))
room(elizabeth)&room(georgine)&room(berry)&(![X]:(room(X)=>(X='elizabeth'|X='georgine'|X='berry')))& is_a_coffee_connoisseur(georgine)
[ "p0", "p4", "p7", "p13", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 2991884516223208598238713 % SZS output start Proof for 2991884516223208598238713 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => ((~predq(X0) <~> preds(X0)) => (~predq(X0) <~> ~predu(X0)))) [input p4] 51. (~predq(paul) <~> preds(paul)) & predo(paul) & ~predn(paul) & ~predb(paul) [input p7] 57. (~predm(paul) <~> ~predb(paul)) & ~preda(paul) [input p13] 65. predu(paul) <~> predm(paul) [input p21] 66. ~(preds(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 144. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 145. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 144] 149. ! [X0] : (((~predq(X0) <~> ~predu(X0)) | (~predq(X0) <=> preds(X0))) | ~room(X0)) [ennf transformation 48] 150. ! [X0] : ((~predq(X0) <~> ~predu(X0)) | (~predq(X0) <=> preds(X0)) | ~room(X0)) [flattening 149] 156. ~preds(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 157. ~preds(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 156] 169. ! [X0] : (((predu(X0) | predq(X0)) & (~predu(X0) | ~predq(X0))) | ((~predq(X0) | ~preds(X0)) & (preds(X0) | predq(X0))) | ~room(X0)) [nnf transformation 150] 171. ((~preds(paul) | predq(paul)) & (preds(paul) | ~predq(paul))) & predo(paul) & ~predn(paul) & ~predb(paul) [nnf transformation 51] 172. (~preds(paul) | predq(paul)) & (preds(paul) | ~predq(paul)) & predo(paul) & ~predn(paul) & ~predb(paul) [flattening 171] 179. ((predb(paul) | predm(paul)) & (~predb(paul) | ~predm(paul))) & ~preda(paul) [nnf transformation 57] 180. (predb(paul) | predm(paul)) & (~predb(paul) | ~predm(paul)) & ~preda(paul) [flattening 179] 191. (~predm(paul) | ~predu(paul)) & (predm(paul) | predu(paul)) [nnf transformation 65] 192. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 193. ~preds(paul) | (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 157,192] 274. room(mary) [cnf transformation 145] 275. room(paul) [cnf transformation 145] 276. room(fred) [cnf transformation 145] 277. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 145] 291. predu(X0) | predq(X0) | preds(X0) | predq(X0) | ~room(X0) [cnf transformation 169] 295. ~predb(paul) [cnf transformation 172] 298. preds(paul) | ~predq(paul) [cnf transformation 172] 313. predb(paul) | predm(paul) [cnf transformation 180] 333. ~predm(paul) | ~predu(paul) [cnf transformation 191] 334. ~preds(paul) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 335. ~preds(paul) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 336. ~preds(paul) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 337. ~preds(paul) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 339. ~room(X0) | predq(X0) | preds(X0) | predu(X0) [duplicate literal removal 291] 396. 13 <=> predq(paul) [avatar definition] 400. 14 <=> preds(paul) [avatar definition] 404. ~13 | 14 [avatar split clause 298,400,396] 425. predm(paul) [subsumption resolution 313,295] 456. ~predu(paul) [subsumption resolution 333,425] 457. ~preds(paul) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 337,276] 458. ~preds(paul) | fred != sK7 | ~room(mary) [subsumption resolution 457,275] 459. ~preds(paul) | fred != sK7 [subsumption resolution 458,274] 461. 25 <=> fred = sK7 [avatar definition] 463. fred != sK7 <- (~25) [avatar component clause 461] 464. ~25 | ~14 [avatar split clause 459,400,461] 465. ~preds(paul) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 336,276] 466. ~preds(paul) | paul != sK7 | ~room(mary) [subsumption resolution 465,275] 467. ~preds(paul) | paul != sK7 [subsumption resolution 466,274] 469. 26 <=> paul = sK7 [avatar definition] 471. paul != sK7 <- (~26) [avatar component clause 469] 472. ~26 | ~14 [avatar split clause 467,400,469] 473. ~preds(paul) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 335,276] 474. ~preds(paul) | mary != sK7 | ~room(mary) [subsumption resolution 473,275] 475. ~preds(paul) | mary != sK7 [subsumption resolution 474,274] 477. 27 <=> mary = sK7 [avatar definition] 479. mary != sK7 <- (~27) [avatar component clause 477] 480. ~27 | ~14 [avatar split clause 475,400,477] 481. ~preds(paul) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 334,276] 482. ~preds(paul) | room(sK7) | ~room(mary) [subsumption resolution 481,275] 483. ~preds(paul) | room(sK7) [subsumption resolution 482,274] 485. 28 <=> room(sK7) [avatar definition] 487. room(sK7) <- (28) [avatar component clause 485] 488. 28 | ~14 [avatar split clause 483,400,485] 602. predq(paul) | preds(paul) | predu(paul) [resolution 339,275] 677. predq(paul) | preds(paul) [subsumption resolution 602,456] 678. 14 | 13 [avatar split clause 677,396,400] 787. paul = sK7 | mary = sK7 | fred = sK7 <- (28) [resolution 277,487] 853. mary = sK7 | fred = sK7 <- (~26, 28) [subsumption resolution 787,471] 854. fred = sK7 <- (~26, ~27, 28) [subsumption resolution 853,479] 855. $false <- (~25, ~26, ~27, 28) [subsumption resolution 854,463] 856. 25 | 26 | 27 | ~28 [avatar contradiction clause 855] 857. $false [avatar sat refutation 404,464,472,480,488,678,856] % SZS output end Proof for 2991884516223208598238713 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.115093
Nora, David, Patrick are the only persons in the room. Patrick owns a smart tv. At least one person anywhere neither owns a smart tv nor maintains a large, organic vegetable garden year-round. Nora practices digital art, owns a smart tv and enjoys kayaking and exploring remote waterways. Everyone in the room owns a smart tv and maintains a large, organic vegetable garden year-round if they does not enjoy kayaking and exploring remote waterways. Everyone in the room enjoys kayaking and exploring remote waterways if they practices digital art and vice versa. Nora writes poetry. Everyone in the room who enjoys kayaking and exploring remote waterways maintains a large, organic vegetable garden year-round. Not everyone in the room practices digital art if they maintains a large, organic vegetable garden year-round. Everyone in the room who practices digital art maintains a large, organic vegetable garden year-round. Everyone in the room writes poetry. It is true that David does not own a smart tv. Not everyone in the room enjoys kayaking and exploring remote waterways if and only if they maintains a large, organic vegetable garden year-round. Everyone in the room writes poetry or does not enjoy kayaking and exploring remote waterways or both if they maintains a large, organic vegetable garden year-round. Everyone in the room maintains a large, organic vegetable garden year-round, does not enjoy kayaking and exploring remote waterways and owns a smart tv if they does not enjoy kayaking and exploring remote waterways.
Patrick enjoys kayaking and exploring remote waterways.
contradiction
room(nora)&room(david)&room(patrick)&(![X]:(room(X)=>(X='nora'|X='david'|X='patrick')))& (owns_a_smart_tv(patrick))& (((?[X]:(anywhere(X)&~((owns_a_smart_tv(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X)))))))& (((practices_digital_art(nora))&(owns_a_smart_tv(nora))&(enjoys_kayaking_and_exploring_remote_waterways(nora))))& (![X]:(room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))=>(((owns_a_smart_tv(X))&(maintains_a_large,_organic_vegetable_garden_year-round(X))))))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))<=>(practices_digital_art(X))))))& (writes_poetry(nora))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (~![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(practices_digital_art(X))))))& (![X]:(room(X)=>(((practices_digital_art(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(writes_poetry(X))))& (does_not_own_a_smart_tv(david))& (~![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))<=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(((writes_poetry(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))&(owns_a_smart_tv(X))))))))
room(nora)&room(david)&room(patrick)&(![X]:(room(X)=>(X='nora'|X='david'|X='patrick')))& enjoys_kayaking_and_exploring_remote_waterways(patrick)
[ "p0", "p3", "p4", "p5", "p8", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 976221741312401288289515 % SZS output start Proof for 976221741312401288289515 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 47. predc(mary) & predd(mary) & preda(mary) [input p3] 48. ! [X0] : (room(X0) => (~predc(X0) => (predb(X0) & predd(X0)))) [input p4] 49. ! [X0] : (room(X0) => (predc(X0) <=> preda(X0))) [input p5] 52. ~! [X0] : (room(X0) => (predb(X0) => preda(X0))) [input p8] 55. ~predd(paul) [input p11] 59. predc(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 136. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 137. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 136] 139. ! [X0] : (((predb(X0) & predd(X0)) | predc(X0)) | ~room(X0)) [ennf transformation 48] 140. ! [X0] : ((predb(X0) & predd(X0)) | predc(X0) | ~room(X0)) [flattening 139] 141. ! [X0] : ((predc(X0) <=> preda(X0)) | ~room(X0)) [ennf transformation 49] 144. ? [X0] : ((~preda(X0) & predb(X0)) & room(X0)) [ennf transformation 52] 145. ? [X0] : (~preda(X0) & predb(X0) & room(X0)) [flattening 144] 151. predc(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 59] 152. predc(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 151] 156. ! [X0] : (((predc(X0) | ~preda(X0)) & (preda(X0) | ~predc(X0))) | ~room(X0)) [nnf transformation 141] 157. ? [X0] : (~preda(X0) & predb(X0) & room(X0)) => (~preda(sK1) & predb(sK1) & room(sK1)) [choice axiom] 158. ~preda(sK1) & predb(sK1) & room(sK1) [skolemisation 145,157] 244. room(paul) [cnf transformation 137] 245. room(fred) [cnf transformation 137] 246. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 137] 250. preda(mary) [cnf transformation 47] 253. ~room(X0) | predc(X0) | predd(X0) [cnf transformation 140] 255. ~predc(X0) | preda(X0) | ~room(X0) [cnf transformation 156] 258. room(sK1) [cnf transformation 158] 260. ~preda(sK1) [cnf transformation 158] 262. ~predd(paul) [cnf transformation 55] 273. predc(fred) [cnf transformation 152] 291. predc(paul) | predd(paul) [resolution 253,244] 295. predc(paul) [subsumption resolution 291,262] 312. preda(fred) | ~room(fred) [resolution 255,273] 313. preda(fred) [subsumption resolution 312,245] 314. preda(paul) | ~room(paul) [resolution 295,255] 315. preda(paul) [subsumption resolution 314,244] 358. paul = sK1 | mary = sK1 | fred = sK1 [resolution 246,258] 361. 5 <=> fred = sK1 [avatar definition] 363. fred = sK1 <- (5) [avatar component clause 361] 365. 6 <=> mary = sK1 [avatar definition] 367. mary = sK1 <- (6) [avatar component clause 365] 369. 7 <=> paul = sK1 [avatar definition] 371. paul = sK1 <- (7) [avatar component clause 369] 372. 5 | 6 | 7 [avatar split clause 358,369,365,361] 395. ~preda(fred) <- (5) [backward demodulation 260,363] 396. $false <- (5) [subsumption resolution 395,313] 397. ~5 [avatar contradiction clause 396] 408. ~preda(mary) <- (6) [backward demodulation 260,367] 409. $false <- (6) [subsumption resolution 408,250] 410. ~6 [avatar contradiction clause 409] 424. ~preda(paul) <- (7) [backward demodulation 260,371] 428. $false <- (7) [subsumption resolution 424,315] 429. ~7 [avatar contradiction clause 428] 430. $false [avatar sat refutation 372,397,410,429] % SZS output end Proof for 976221741312401288289515 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.002003
Charles, Lorena, Timothy, Delora, James are the only persons in the room. If “Charles is a wine connoisseur with a private cellar of vintage wines” then “Timothy is a certified yoga instructor teaching classes weekly” otherwise “it is not the case that “Charles participates in long-distance cycling events across the country and enjoys landscape photography””. Charles travels domestically frequently. Charles has a pet dog. It is true that “Timothy is a certified yoga instructor teaching classes weekly”. It is not the case that “more than one person in the room practices digital art”. Timothy enjoys kayaking. Charles travels domestically frequently and practices digital art. Someone in the room enjoys kayaking.
Timothy does not enjoy kayaking.
contradiction
room(charles)&room(lorena)&room(timothy)&room(delora)&room(james)&(![X]:(room(X)=>(X='charles'|X='lorena'|X='timothy'|X='delora'|X='james')))& (((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(charles))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(timothy)))&((~(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(charles)))=>(~(((participates_in_long-distance_cycling_events_across_the_country(charles))&(enjoys_landscape_photography(charles)))))))& (travels_domestically_frequently(charles))& (has_a_pet_dog(charles))& (is_a_certified_yoga_instructor_teaching_classes_weekly(timothy))& (~((?[X,Y]:(room(X)&room(Y)&(practices_digital_art(X)&practices_digital_art(Y))&(X!=Y)))))& (enjoys_kayaking(timothy))& (((travels_domestically_frequently(charles))&(practices_digital_art(charles))))& (?[X]:(room(X)&(enjoys_kayaking(X))))
room(charles)&room(lorena)&room(timothy)&room(delora)&room(james)&(![X]:(room(X)=>(X='charles'|X='lorena'|X='timothy'|X='delora'|X='james')))& does_not_enjoy_kayaking(timothy)
[ "p6", "hypothesis" ]
% SZS status Unsatisfiable for 7044100550515237712187476 % SZS output start Proof for 7044100550515237712187476 50. predc(fred) [input p6] 53. ~predc(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 135. ~predc(fred) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53] 136. ~predc(fred) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135] 227. predc(fred) [cnf transformation 50] 237. ~predc(fred) [cnf transformation 136] 238. $false [subsumption resolution 237,227] % SZS output end Proof for 7044100550515237712187476 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.247563
Barbara, Joseph are the only persons in the room. Either 'everyone anywhere is a old person' or 'everyone outside the room is a old person' but not both. 'Everyone in the room is a tall person' unless 'everyone in the room is quiet and is tall'. If 'everyone outside the room is tall' then 'everyone in the room is a tall person' otherwise 'everyone in the room is a quiet person'. All old persons are quiet. Someone in the room is a tall person. Everyone in the room is a tall person or is not a quiet person or both. Everyone outside the room is tall.
Barbara is quiet.
neutral
room(barbara)&room(joseph)&(![X]:(room(X)=>(X='barbara'|X='joseph')))& ((![X]:(anywhere(X)=>(old(X)&person(X))))<~>(![X]:(~room(X)=>(old(X)&person(X)))))& (~(![X]:(room(X)=>(((quiet(X))&(tall(X))))))=>(![X]:(room(X)=>(tall(X)&person(X)))))& (((![X]:(~room(X)=>(tall(X))))=>(![X]:(room(X)=>(tall(X)&person(X)))))&((~(![X]:(~room(X)=>(tall(X)))))=>(![X]:(room(X)=>(quiet(X)&person(X))))))& (![X]:(old(X)=>quiet(X)))& (?[X]:(room(X)&(tall(X)&person(X))))& (![X]:(room(X)=>(((tall(X)&person(X))|(~(quiet(X)&person(X)))))))& (![X]:(~room(X)=>(tall(X))))
room(barbara)&room(joseph)&(![X]:(room(X)=>(X='barbara'|X='joseph')))& quiet(barbara)
[]
null
0.093674
Bridget, Daniel, Roger, Joyce are the only persons in the room. No one anywhere who writes a travel blog or hosts themed dinner parties featuring gourmet home-cooked meals or both regularly goes on multi-day backpacking trips in national parks. Roger collects classic novels, collects luxury watches or practices pilates. Everyone in the room has a specialized collection of handmade artisan pottery or does not regularly goes on multi-day backpacking trips in national parks. Everyone anywhere watches fantasy movies or hosts regular game nights featuring complex strategy games or both if they has a specialized collection of handmade artisan pottery. Everyone in the room who watches fantasy movies or hosts regular game nights featuring complex strategy games or both neither watches fantasy movies nor reads mystery novels. Joyce collects classic novels. Everyone in the room who watches fantasy movies, practices pilates or does not host regular game nights featuring complex strategy games neither hosts themed dinner parties featuring gourmet home-cooked meals nor regularly goes on multi-day backpacking trips in national parks. Everyone in the room who collects vintage vinyl records drives a hybrid car. Everyone anywhere who drives a hybrid car, collects luxury watches or regularly goes on multi-day backpacking trips in national parks watches fantasy movies.
Daniel collects vintage vinyl records.
contradiction
room(bridget)&room(daniel)&room(roger)&room(joyce)&(![X]:(room(X)=>(X='bridget'|X='daniel'|X='roger'|X='joyce')))& (~?[X]:(anywhere(X)=>(((((writes_a_travel_blog(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (((collects_classic_novels(roger))|(collects_luxury_watches(roger))|(practices_pilates(roger))))& (![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(anywhere(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(((watches_fantasy_movies(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))))& (![X]:(room(X)=>(((((watches_fantasy_movies(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))=>(~((watches_fantasy_movies(X))|(reads_mystery_novels(X))))))))& (collects_classic_novels(joyce))& (![X]:(room(X)=>(((((watches_fantasy_movies(X))|(practices_pilates(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))=>(~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))))& (reads_mystery_novels(bridget))& (![X]:(room(X)=>(((((is_not_a_tea_enthusiast(X))|(enjoys_rooftop_gardening(X))))=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((~((enjoys_rooftop_gardening(X))|(is_a_tea_enthusiast(X))))=>(does_not_collect_classic_novels(X))))))& (?[X]:(anywhere(X)&(collects_vintage_vinyl_records(X))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(~((watches_fantasy_movies(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))))& (![X]:(~room(X)=>(((~((watches_fantasy_movies(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))=>(collects_vintage_vinyl_records(X))))))& (~((watches_fantasy_movies(joyce))|(drives_a_hybrid_car(joyce))))& (![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<=>(watches_fantasy_movies(X))))))& ((![X]:((((practices_tai_chi(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))<=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& (practices_pilates(bridget))& (((collects_classic_novels(daniel))|(does_not_drive_a_hybrid_car(daniel))|(collects_luxury_watches(daniel))))& (~![X]:(anywhere(X)=>(((reads_mystery_novels(X))=>(practices_tai_chi(X))))))& (~![X]:(room(X)=>(((practices_tai_chi(X))<=>(((drives_a_hybrid_car(X))|(collects_luxury_watches(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))))& (![X]:(anywhere(X)=>(((((drives_a_hybrid_car(X))|(collects_luxury_watches(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))=>(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((does_not_collect_luxury_watches(X))|(is_a_tea_enthusiast(X))))))& (![X]:(~room(X)=>(((practices_tai_chi(X))<=>(has_completed_a_triathlon(X))))))
room(bridget)&room(daniel)&room(roger)&room(joyce)&(![X]:(room(X)=>(X='bridget'|X='daniel'|X='roger'|X='joyce')))& collects_vintage_vinyl_records(daniel)
[ "b4", "p0", "p5", "p10", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 1865972324546812708402270 % SZS output start Proof for 1865972324546812708402270 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => ((prede(X0) | predl(X0)) => ~(predg(X0) | predl(X0)))) [input p5] 54. ! [X0] : (room(X0) => (predc(X0) => predj(X0))) [input p10] 66. ! [X0] : (anywhere(X0) => ((predf(X0) | predd(X0) | predj(X0)) => predl(X0))) [input p22] 70. predc(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 151. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151] 158. ! [X0] : (((~predg(X0) & ~predl(X0)) | (~prede(X0) & ~predl(X0))) | ~room(X0)) [ennf transformation 49] 159. ! [X0] : ((~predg(X0) & ~predl(X0)) | (~prede(X0) & ~predl(X0)) | ~room(X0)) [flattening 158] 162. ! [X0] : ((predj(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 54] 163. ! [X0] : (predj(X0) | ~predc(X0) | ~room(X0)) [flattening 162] 174. ! [X0] : ((predl(X0) | (~predf(X0) & ~predd(X0) & ~predj(X0))) | ~anywhere(X0)) [ennf transformation 66] 175. ! [X0] : (predl(X0) | (~predf(X0) & ~predd(X0) & ~predj(X0)) | ~anywhere(X0)) [flattening 174] 179. predc(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 180. predc(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 179] 192. anywhere(X0) [cnf transformation 5] 274. room(paul) [cnf transformation 152] 282. ~predl(X0) | ~predl(X0) | ~room(X0) [cnf transformation 159] 293. ~predc(X0) | predj(X0) | ~room(X0) [cnf transformation 163] 314. predl(X0) | ~predj(X0) | ~anywhere(X0) [cnf transformation 175] 325. predc(paul) [cnf transformation 180] 326. ~predl(X0) | ~room(X0) [duplicate literal removal 282] 345. ~predj(X0) | predl(X0) [subsumption resolution 314,192] 374. predj(paul) | ~room(paul) [resolution 293,325] 384. predj(paul) [subsumption resolution 374,274] 388. predl(paul) [resolution 384,345] 392. ~room(paul) [resolution 388,326] 393. $false [subsumption resolution 392,274] % SZS output end Proof for 1865972324546812708402270 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.203073
Darcy, Bob are the only persons in the room. Darcy who trains for and competes in international triathlons does not regularly contributes to tech forums and online communities. Darcy does not enjoy bird watching, plays the drums and is not an avid collector of autographed memorabilia from famous musicians. Bob does not play the drums, does not play video games and does not enjoy macrame. Darcy is not a certified scuba diver with advanced underwater photography skills. Darcy does not collect modern art. Bob enjoys spelunking. Bob does not enjoy bird watching, cannot play the flute and does not create YouTube content. Darcy who does not practice digital art and does not regularly contributes to tech forums and online communities does not participate in citizen science projects related to wildlife monitoring, does not regularly contributes to tech forums and online communities and is not dedicated to sustainable living and zero-waste practices. Everyone in the room neither is dedicated to sustainable living and zero-waste practices nor does not train for and competes in international triathlons. Darcy cannot play the flute, does not practice digital art and does not host a popular podcast about emerging technologies. Darcy enjoys coding in Python.
More than one person in the room participates in citizen science projects related to wildlife monitoring.
contradiction
room(darcy)&room(bob)&(![X]:(room(X)=>(X='darcy'|X='bob')))& ((trains_for_and_competes_in_international_triathlons(darcy))&(does_not_regularly_contributes_to_tech_forums_and_online_communities(darcy)))& (((does_not_enjoy_bird_watching(darcy))&(plays_the_drums(darcy))&(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(darcy))))& (((does_not_play_the_drums(bob))&(does_not_play_video_games(bob))&(does_not_enjoy_macrame(bob))))& (is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(darcy))& (does_not_collect_modern_art(darcy))& (enjoys_spelunking(bob))& (((does_not_enjoy_bird_watching(bob))&(cannot_play_the_flute(bob))&(does_not_create_YouTube_content(bob))))& ((((does_not_practice_digital_art(darcy))&(does_not_regularly_contributes_to_tech_forums_and_online_communities(darcy))))&(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(darcy))&(does_not_regularly_contributes_to_tech_forums_and_online_communities(darcy))&(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(darcy)))))& (![X]:(room(X)=>(~((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))& (((cannot_play_the_flute(darcy))&(does_not_practice_digital_art(darcy))&(does_not_host_a_popular_podcast_about_emerging_technologies(darcy))))& (enjoys_coding_in_Python(darcy))
room(darcy)&room(bob)&(![X]:(room(X)=>(X='darcy'|X='bob')))& (?[X,Y]:(room(X)&room(Y)&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)&participates_in_citizen_science_projects_related_to_wildlife_monitoring(Y))&(X!=Y)))
[ "p0", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 5891781993851799610155126 % SZS output start Proof for 5891781993851799610155126 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 52. ~predd(mary) & ~predm(mary) & ~predf(mary) & ~predm(mary) & ~predk(mary) [input p8] 56. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 57. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [rectify 56] 60. ~predm(mary) & ~predf(mary) & ~predm(mary) & ~predk(mary) [pure predicate removal 52] 63. ~predm(mary) & ~predf(mary) & ~predm(mary) [pure predicate removal 60] 76. ~predf(mary) [pure predicate removal 63] 151. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 151] 153. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : ((paul = X2 | mary = X2) | ~room(X2)) & room(paul) & room(mary) [ennf transformation 57] 154. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [flattening 153] 156. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) => (sK0 != sK1 & predf(sK1) & predf(sK0) & room(sK1) & room(sK0)) [choice axiom] 157. (sK0 != sK1 & predf(sK1) & predf(sK0) & room(sK1) & room(sK0)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [skolemisation 154,156] 240. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 152] 243. ~predf(mary) [cnf transformation 76] 247. room(sK0) [cnf transformation 157] 248. room(sK1) [cnf transformation 157] 249. predf(sK0) [cnf transformation 157] 250. predf(sK1) [cnf transformation 157] 251. sK0 != sK1 [cnf transformation 157] 254. mary = sK0 | paul = sK0 [resolution 240,247] 255. mary = sK1 | paul = sK1 [resolution 240,248] 257. 1 <=> paul = sK0 [avatar definition] 261. 2 <=> mary = sK0 [avatar definition] 263. mary = sK0 <- (2) [avatar component clause 261] 264. 1 | 2 [avatar split clause 254,261,257] 266. 3 <=> paul = sK1 [avatar definition] 268. paul = sK1 <- (3) [avatar component clause 266] 270. 4 <=> mary = sK1 [avatar definition] 272. mary = sK1 <- (4) [avatar component clause 270] 273. 3 | 4 [avatar split clause 255,270,266] 276. paul != sK0 <- (3) [backward demodulation 251,268] 277. ~1 | ~3 [avatar split clause 276,266,257] 279. predf(mary) <- (2) [backward demodulation 249,263] 280. $false <- (2) [subsumption resolution 279,243] 281. ~2 [avatar contradiction clause 280] 283. predf(mary) <- (4) [backward demodulation 250,272] 285. $false <- (4) [subsumption resolution 283,243] 286. ~4 [avatar contradiction clause 285] 291. $false [avatar sat refutation 264,273,277,281,286] % SZS output end Proof for 5891781993851799610155126 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.608934
Carol, Kenneth, Edward, Paula are the only persons in the room. “Kenneth who is not a quiet person bakes bread at home” if “everyone in the room bakes bread at home or does not bake bread at home”. “Everyone in the room does not write and illustrates their own graphic novels or is a curious quiet person” only if “not everyone outside the room who is not not not wise bakes bread at home”. If someone writes and illustrates their own graphic novels then he/she is curious. Edward bakes bread at home. Edward who either bakes bread at home or is not a curious wise person but not both is not not wise. At least one person in the room is a wise person.
Kenneth bakes bread at home.
entailment
room(carol)&room(kenneth)&room(edward)&room(paula)&(![X]:(room(X)=>(X='carol'|X='kenneth'|X='edward'|X='paula')))& ((![X]:(room(X)=>(((does_not_bake_bread_at_home(X))|(bakes_bread_at_home(X))))))=>((~(quiet(kenneth)&person(kenneth)))&(bakes_bread_at_home(kenneth))))& ((![X]:(room(X)=>(((curious(X)&quiet(X)&person(X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))))))=>(~![X]:(~room(X)=>(((~~~wise(X))=>(bakes_bread_at_home(X)))))))& ((![X]:((writes_and_illustrates_their_own_graphic_novels(X))=>(curious(X)))))& (bakes_bread_at_home(edward))& ((((bakes_bread_at_home(edward))<~>(~(curious(edward)&wise(edward)&person(edward)))))&(~~wise(edward)))& (((?[X]:(room(X)&wise(X)&person(X)))))
room(carol)&room(kenneth)&room(edward)&room(paula)&(![X]:(room(X)=>(X='carol'|X='kenneth'|X='edward'|X='paula')))& bakes_bread_at_home(kenneth)
[ "p0", "p1", "hypothesis" ]
% SZS status Unsatisfiable for 8625934701519646814894209 % SZS output start Proof for 8625934701519646814894209 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (predj(X0) | ~predj(X0))) => (predj(paul) & ~(person(paul) & quiet(paul))) [input p1] 51. ~(predj(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 125. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 126. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 125] 127. (predj(paul) & (~person(paul) | ~quiet(paul))) | ? [X0] : ((~predj(X0) & predj(X0)) & room(X0)) [ennf transformation 45] 128. (predj(paul) & (~person(paul) | ~quiet(paul))) | ? [X0] : (~predj(X0) & predj(X0) & room(X0)) [flattening 127] 133. ~predj(paul) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 51] 134. ~predj(paul) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 133] 138. ? [X0] : (~predj(X0) & predj(X0) & room(X0)) => (~predj(sK1) & predj(sK1) & room(sK1)) [choice axiom] 139. (predj(paul) & (~person(paul) | ~quiet(paul))) | (~predj(sK1) & predj(sK1) & room(sK1)) [skolemisation 128,138] 150. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 151. ~predj(paul) | (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 134,150] 232. room(mary) [cnf transformation 126] 233. room(paul) [cnf transformation 126] 234. room(fred) [cnf transformation 126] 235. room(alice) [cnf transformation 126] 236. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 126] 241. predj(paul) | predj(sK1) [cnf transformation 139] 242. predj(paul) | ~predj(sK1) [cnf transformation 139] 259. ~predj(paul) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 151] 260. ~predj(paul) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 151] 261. ~predj(paul) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 151] 262. ~predj(paul) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 151] 263. ~predj(paul) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 151] 265. 1 <=> predj(sK1) [avatar definition] 269. 2 <=> predj(paul) [avatar definition] 272. ~1 | 2 [avatar split clause 242,269,265] 273. 1 | 2 [avatar split clause 241,269,265] 334. ~predj(paul) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,235] 335. ~predj(paul) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 334,234] 336. ~predj(paul) | alice != sK5 | ~room(mary) [subsumption resolution 335,233] 337. ~predj(paul) | alice != sK5 [subsumption resolution 336,232] 339. 15 <=> alice = sK5 [avatar definition] 341. alice != sK5 <- (~15) [avatar component clause 339] 342. ~15 | ~2 [avatar split clause 337,269,339] 343. ~predj(paul) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,235] 344. ~predj(paul) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 343,234] 345. ~predj(paul) | fred != sK5 | ~room(mary) [subsumption resolution 344,233] 346. ~predj(paul) | fred != sK5 [subsumption resolution 345,232] 348. 16 <=> fred = sK5 [avatar definition] 350. fred != sK5 <- (~16) [avatar component clause 348] 351. ~16 | ~2 [avatar split clause 346,269,348] 352. ~predj(paul) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 261,235] 353. ~predj(paul) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 352,234] 354. ~predj(paul) | paul != sK5 | ~room(mary) [subsumption resolution 353,233] 355. ~predj(paul) | paul != sK5 [subsumption resolution 354,232] 357. 17 <=> paul = sK5 [avatar definition] 359. paul != sK5 <- (~17) [avatar component clause 357] 360. ~17 | ~2 [avatar split clause 355,269,357] 361. ~predj(paul) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,235] 362. ~predj(paul) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 361,234] 363. ~predj(paul) | mary != sK5 | ~room(mary) [subsumption resolution 362,233] 364. ~predj(paul) | mary != sK5 [subsumption resolution 363,232] 366. 18 <=> mary = sK5 [avatar definition] 368. mary != sK5 <- (~18) [avatar component clause 366] 369. ~18 | ~2 [avatar split clause 364,269,366] 370. ~predj(paul) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 259,235] 371. ~predj(paul) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 370,234] 372. ~predj(paul) | room(sK5) | ~room(mary) [subsumption resolution 371,233] 373. ~predj(paul) | room(sK5) [subsumption resolution 372,232] 375. 19 <=> room(sK5) [avatar definition] 377. room(sK5) <- (19) [avatar component clause 375] 378. 19 | ~2 [avatar split clause 373,269,375] 426. fred = sK5 | paul = sK5 | mary = sK5 | alice = sK5 <- (19) [resolution 236,377] 444. paul = sK5 | mary = sK5 | alice = sK5 <- (~16, 19) [subsumption resolution 426,350] 445. mary = sK5 | alice = sK5 <- (~16, ~17, 19) [subsumption resolution 444,359] 446. alice = sK5 <- (~16, ~17, ~18, 19) [subsumption resolution 445,368] 447. $false <- (~15, ~16, ~17, ~18, 19) [subsumption resolution 446,341] 448. 15 | 16 | 17 | 18 | ~19 [avatar contradiction clause 447] 449. $false [avatar sat refutation 272,273,342,351,360,369,378,448] % SZS output end Proof for 8625934701519646814894209 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0.206127
There is a room. Someone who is not a kind person is quieter than someone who is old. Everyone in the room is quieter than Paula. Everyone in the room is richer than Daniel if they is tall, is not a tall quiet person or is a quiet person. Everyone in the room who is richer than Daniel is quieter than Paula. Everyone in the room who is quieter than Paula is a kind old quiet tall person. Everyone in the room is not a old kind tall person if they is a tall person. Everyone in the room is not a old person if they is kind. Everyone in the room who is quieter than Jean is a quiet tall kind person. Someone who is quieter than Daniel is older than someone who is a kind person. Everyone in the room who is richer than Jean, is older than Jean or is old is quieter than Paula. Everyone in the room who is quieter than Jean is richer than Paula. Everyone in the room who is richer than Paula is older than Paula. If someone is not a quiet person then he/she is old. Everyone outside the room who either is older than Paula or is richer than Daniel but not both is quieter than Paula. Not everyone anywhere is quieter than Paula only if they is older than Paula. Everyone in the room is richer than Daniel if they is older than Paula. Everyone in the room is quieter than Paula only if they is richer than Daniel and is not a old person. No quiet person is tall. Everyone in the room who is tall is a kind quiet tall old person. Everyone in the room who is a kind quiet tall old person is richer than Jean. Everyone in the room who is richer than Jean is quiet.
More than one person anywhere is richer than Jean and is quieter than Jean.
neutral
(there_is_a_room)& (?[X,Y]:((~(kind(X)&person(X)))&(old(Y))&(quieter(X,Y))))& (![X]:(room(X)=>(quieter(paula,X))))& (![X]:(room(X)=>(((((tall(X))|(~(tall(X)&quiet(X)&person(X)))|(quiet(X)&person(X))))=>(richer(daniel,X))))))& (![X]:(room(X)=>(((richer(daniel,X))=>(quieter(paula,X))))))& (![X]:(room(X)=>(((quieter(paula,X))=>(kind(X)&old(X)&quiet(X)&tall(X)&person(X))))))& (![X]:(room(X)=>(((tall(X)&person(X))=>(~(old(X)&kind(X)&tall(X)&person(X)))))))& (![X]:(room(X)=>(((kind(X))=>(~(old(X)&person(X)))))))& (![X]:(room(X)=>(((quieter(jean,X))=>(quiet(X)&tall(X)&kind(X)&person(X))))))& (?[X,Y]:((quieter(daniel,X))&(kind(Y)&person(Y))&(older(X,Y))))& (![X]:(room(X)=>(((((richer(jean,X))|(older(jean,X))|(old(X))))=>(quieter(paula,X))))))& (![X]:(room(X)=>(((quieter(jean,X))=>(richer(paula,X))))))& (![X]:(room(X)=>(((richer(paula,X))=>(older(paula,X))))))& ((![X]:((~(quiet(X)&person(X)))=>(old(X)))))& (![X]:(~room(X)=>(((((older(paula,X))<~>(richer(daniel,X))))=>(quieter(paula,X))))))& (~![X]:(anywhere(X)=>(((older(paula,X))<=(quieter(paula,X))))))& (![X]:(room(X)=>(((older(paula,X))=>(richer(daniel,X))))))& (![X]:(room(X)=>(((((richer(daniel,X))&(~(old(X)&person(X)))))<=(quieter(paula,X))))))& (~?[X]:(quiet(X)=>tall(X)))& (![X]:(room(X)=>(((tall(X))=>(kind(X)&quiet(X)&tall(X)&old(X)&person(X))))))& (![X]:(room(X)=>(((kind(X)&quiet(X)&tall(X)&old(X)&person(X))=>(richer(jean,X))))))& (![X]:(room(X)=>(((richer(jean,X))=>(quiet(X))))))& (![X]:(room(X)=>(((quiet(X))=>(quieter(jean,X))))))
(there_is_a_room)& (?[X,Y]:(anywhere(X)&anywhere(Y)&(((richer(jean,X))&(quieter(jean,X)))&((richer(jean,Y))&(quieter(jean,Y))))&(X!=Y)))
[]
null
0.005972
Barbara, Georgia are the only persons in the room. If “Barbara is a client of Meta” then “Georgia collects antique clocks” otherwise “Barbara who practices urban gardening is a culinary enthusiast who experiments with international cuisines and is a Linux enthusiast”. Either “Georgia has a saltwater aquarium” or “it is not the case that “Barbara does not collect luxury watches”” but not both. “Barbara is a tea enthusiast” only if “Barbara who is a tea enthusiast collects antique clocks”. “Barbara enjoys wildlife photography” unless “it is not the case that “Barbara watches fantasy movies””. Either “Georgia is a Linux enthusiast” or “it is not the case that “Barbara has a pet dog”” but not both. Either “Georgia collects luxury watches” or “Georgia is a culinary enthusiast who experiments with international cuisines” but not both. If someone watches fantasy movies then he/she owns a telescope. Georgia regularly goes on multi-day backpacking trips in national parks. Georgia has a saltwater aquarium. Georgia enjoys wildlife photography. Barbara who volunteers for local environmental conservation projects collects foreign coins. Georgia is a culinary enthusiast who experiments with international cuisines. Barbara has a curated collection of mid-century modern furniture. It is not the case that “Georgia hosts themed dinner parties featuring gourmet home-cooked meals”. Georgia builds model airplanes.
Barbara has a pet dog.
neutral
room(barbara)&room(georgia)&(![X]:(room(X)=>(X='barbara'|X='georgia')))& (((is_a_client_of_Meta(barbara))=>(collects_antique_clocks(georgia)))&((~(is_a_client_of_Meta(barbara)))=>((practices_urban_gardening(barbara))&(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(barbara))&(is_a_Linux_enthusiast(barbara)))))))& ((has_a_saltwater_aquarium(georgia))<~>(~(does_not_collect_luxury_watches(barbara))))& ((is_a_tea_enthusiast(barbara))=>((is_a_tea_enthusiast(barbara))&(collects_antique_clocks(barbara))))& (~(~(watches_fantasy_movies(barbara)))=>(enjoys_wildlife_photography(barbara)))& ((is_a_Linux_enthusiast(georgia))<~>(~(has_a_pet_dog(barbara))))& ((collects_luxury_watches(georgia))<~>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(georgia)))& ((![X]:((watches_fantasy_movies(X))=>(owns_a_telescope(X)))))& (regularly_goes_on_multi-day_backpacking_trips_in_national_parks(georgia))& (has_a_saltwater_aquarium(georgia))& (enjoys_wildlife_photography(georgia))& ((volunteers_for_local_environmental_conservation_projects(barbara))&(collects_foreign_coins(barbara)))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(georgia))& (has_a_curated_collection_of_mid-century_modern_furniture(barbara))& (~(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(georgia)))& (builds_model_airplanes(georgia))
room(barbara)&room(georgia)&(![X]:(room(X)=>(X='barbara'|X='georgia')))& has_a_pet_dog(barbara)
[]
null
0.385311
There is a room. If “at least one person in the room enjoys macrame” then “everyone in the room who hosts a popular podcast about emerging technologies uses contact lenses, is an enthusiastic bird watcher who travels for rare sightings or enjoys making ceramics”. If “not everyone in the room does not own an Android phone or does not practice graffiti art” then “everyone in the room is a wine connoisseur with a private cellar of vintage wines”. Everyone in the room is allergic to anything if they enjoys macrame. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they enjoys salsa dancing. Everyone in the room collects antique jewelry. Only one person in the room watches fantasy movies. Everyone in the room who enjoys making ceramics enjoys macrame. Everyone in the room watches fantasy movies if they enjoys macrame. Everyone in the room enjoys macrame if they watches fantasy movies. Everyone in the room enjoys making ceramics if they enjoys macrame. Everyone in the room collects antique jewelry if they enjoys making ceramics. Only one person in the room collect rare sneakers. Everyone in the room who maintains a personal blog focused on cybersecurity tips does not collect rare sneakers. At least one person in the room enjoys salsa dancing. Everyone in the room who does not collect rare sneakers is a wine connoisseur with a private cellar of vintage wines. Everyone in the room collect rare sneakers only if they does not watche fantasy movies. Everyone in the room uses contact lenses if they collect rare sneakers. Everyone in the room who collect rare sneakers is an enthusiastic bird watcher who travels for rare sightings.
Everyone in the room uses contact lenses.
neutral
(there_is_a_room)& ((((?[X]:(room(X)&enjoys_macrame(X)))))=>(![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(((uses_contact_lenses(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(enjoys_making_ceramics(X)))))))))& ((~![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(does_not_own_an_Android_phone(X))))))=>(![X]:(room(X)=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(is_allergic_to_anything(X))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (![X]:(room(X)=>(collects_antique_jewelry(X))))& (((?[X]:(room(X)&watches_fantasy_movies(X)))&(![X,Y]:((room(X)&room(Y)&(watches_fantasy_movies(X))&(watches_fantasy_movies(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((watches_fantasy_movies(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(enjoys_making_ceramics(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(collects_antique_jewelry(X))))))& (((?[X]:(room(X)&collect_rare_sneakers(X)))&(![X,Y]:((room(X)&room(Y)&(collect_rare_sneakers(X))&(collect_rare_sneakers(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(does_not_collect_rare_sneakers(X))))))& (((?[X]:(room(X)&enjoys_salsa_dancing(X)))))& (![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))<=(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(uses_contact_lenses(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))
(there_is_a_room)& ![X]:(room(X)=>(uses_contact_lenses(X)))
[]
null
0.464533
Vernon, Asuncion, Jeffrey, Christopher, Jean are the only persons in the room. “Everyone in the room does not enjoy coding in Python or is not an avid hiker” only if “everyone anywhere does not enjoy coding in Python only if they enjoys macrame, is an avid hiker or collects rare minerals”. More than one person in the room enjoys camping and organizing outdoor survival workshops or works on fridays or both. Vernon hosts regular game nights featuring complex strategy games and watches fantasy movies. Someone in the room uses a Windows laptop. Not everyone in the room designs and sews custom cosplay costumes for conventions. Everyone anywhere does not enjoy coding in Python only if they enjoys macrame, is an avid hiker or collects rare minerals. If someone enjoys macrame then he/she owns a significant collection of rare gemstones and minerals. Asuncion who neither practices digital art nor is right-handed is not an avid hiker. Everyone in the room designs and sews custom cosplay costumes for conventions if they does not write in-depth travel guides for off-the-beaten-path destinations. Asuncion does not enjoy stargazing. Not everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they is a client of LVMH. Vernon enjoys coding in Python. Vernon enjoys camping and organizing outdoor survival workshops, does not enjoy macrame or is right-handed.
Asuncion is an avid hiker.
contradiction
room(vernon)&room(asuncion)&room(jeffrey)&room(christopher)&room(jean)&(![X]:(room(X)=>(X='vernon'|X='asuncion'|X='jeffrey'|X='christopher'|X='jean')))& ((![X]:(room(X)=>(((is_not_an_avid_hiker(X))|(does_not_enjoy_coding_in_Python(X))))))=>(![X]:(anywhere(X)=>(((((enjoys_macrame(X))|(is_an_avid_hiker(X))|(collects_rare_minerals(X))))<=(does_not_enjoy_coding_in_Python(X)))))))& ((?[X,Y]:(room(X)&room(Y)&(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(works_on_fridays(X)))&((enjoys_camping_and_organizing_outdoor_survival_workshops(Y))|(works_on_fridays(Y))))&(X!=Y))))& (((hosts_regular_game_nights_featuring_complex_strategy_games(vernon))&(watches_fantasy_movies(vernon))))& (?[X]:(room(X)&(uses_a_Windows_laptop(X))))& (~![X]:(room(X)=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))& (![X]:(anywhere(X)=>(((((enjoys_macrame(X))|(is_an_avid_hiker(X))|(collects_rare_minerals(X))))<=(does_not_enjoy_coding_in_Python(X))))))& ((![X]:((enjoys_macrame(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))& ((~((practices_digital_art(asuncion))|(is_right-handed(asuncion))))&(is_not_an_avid_hiker(asuncion)))& (![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (does_not_enjoy_stargazing(asuncion))& (~![X]:(room(X)=>(((is_a_client_of_LVMH(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (enjoys_coding_in_Python(vernon))& (((enjoys_camping_and_organizing_outdoor_survival_workshops(vernon))|(does_not_enjoy_macrame(vernon))|(is_right-handed(vernon))))
room(vernon)&room(asuncion)&room(jeffrey)&room(christopher)&room(jean)&(![X]:(room(X)=>(X='vernon'|X='asuncion'|X='jeffrey'|X='christopher'|X='jean')))& is_an_avid_hiker(asuncion)
[ "p8", "hypothesis" ]
% SZS status Unsatisfiable for 778423306991565208873750 % SZS output start Proof for 778423306991565208873750 52. ~predo(paul) & ~(preda(paul) | predr(paul)) [input p8] 58. predo(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 62. ~predo(paul) & ~preda(paul) [pure predicate removal 52] 69. ~predo(paul) [pure predicate removal 62] 151. predo(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 152. predo(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151] 254. ~predo(paul) [cnf transformation 69] 264. predo(paul) [cnf transformation 152] 265. $false [subsumption resolution 264,254] % SZS output end Proof for 778423306991565208873750 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.19249
Stanley, Hugh are the only persons in the room. If “Stanley collects first edition books” then “Hugh collects luxury watches”. “Stanley writes in-depth travel guides for off-the-beaten-path destinations” only if “only one person outside the room collects vintage vinyl records”. “Everyone in the room does not compete in national level swimming championships or plays video games” only if “everyone in the room who collects first edition books, enjoys windsurfing and competes in national level swimming championships collects first edition books”. “Stanley owns a telescope” only if “Stanley own a television”. If “at least one person in the room is a coffee connoisseur” then “Hugh enjoys cross-country skiing”. Hugh plays video games. At least one person outside the room collects first edition books. Everyone anywhere is an avid hiker if and only if they does not make homemade pastries. More than one person in the room collects vintage vinyl records. Stanley is a client of Meta. Hugh competes in national level swimming championships. Everyone in the room is a client of Meta if they does not collect first edition books. Hugh plays video games and enjoys cross-country skiing. It is not the case that “at least one person outside the room own a television, practices digital art and enjoys camping and organizing outdoor survival workshops”. It is not the case that “Hugh is an avid hiker and collects first edition books”. Hugh either is not an avid hiker or plays video games but not both. Hugh enjoys windsurfing. Stanley collects vintage vinyl records. If someone mentors a youth basketball team on weekends then he/she enjoys cross-country skiing.
Stanley owns a telescope.
neutral
room(stanley)&room(hugh)&(![X]:(room(X)=>(X='stanley'|X='hugh')))& ((collects_first_edition_books(stanley))=>(collects_luxury_watches(hugh)))& ((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(stanley))=>(((?[X]:(~room(X)&collects_vintage_vinyl_records(X)))&(![X,Y]:((~room(X)&~room(Y)&(collects_vintage_vinyl_records(X))&(collects_vintage_vinyl_records(Y)))=>(X=Y))))))& ((![X]:(room(X)=>(((plays_video_games(X))|(does_not_compete_in_national_level_swimming_championships(X))))))=>(![X]:(room(X)=>(((((collects_first_edition_books(X))&(enjoys_windsurfing(X))&(competes_in_national_level_swimming_championships(X))))=>(collects_first_edition_books(X)))))))& ((owns_a_telescope(stanley))=>(own_a_television(stanley)))& ((((?[X]:(room(X)&is_a_coffee_connoisseur(X)))))=>(enjoys_cross-country_skiing(hugh)))& (plays_video_games(hugh))& (((?[X]:(~room(X)&collects_first_edition_books(X)))))& (![X]:(anywhere(X)=>(((is_an_avid_hiker(X))<=>(does_not_make_homemade_pastries(X))))))& ((?[X,Y]:(room(X)&room(Y)&(collects_vintage_vinyl_records(X)&collects_vintage_vinyl_records(Y))&(X!=Y))))& (is_a_client_of_Meta(stanley))& (competes_in_national_level_swimming_championships(hugh))& (![X]:(room(X)=>(((does_not_collect_first_edition_books(X))=>(is_a_client_of_Meta(X))))))& (((plays_video_games(hugh))&(enjoys_cross-country_skiing(hugh))))& (~(((?[X]:(~room(X)&((own_a_television(X))&(practices_digital_art(X))&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))))& (~(((is_an_avid_hiker(hugh))&(collects_first_edition_books(hugh)))))& (((is_not_an_avid_hiker(hugh))<~>(plays_video_games(hugh))))& (enjoys_windsurfing(hugh))& (collects_vintage_vinyl_records(stanley))& ((![X]:((mentors_a_youth_basketball_team_on_weekends(X))=>(enjoys_cross-country_skiing(X)))))& (((?[X]:(room(X)&mentors_a_youth_basketball_team_on_weekends(X)))))
room(stanley)&room(hugh)&(![X]:(room(X)=>(X='stanley'|X='hugh')))& owns_a_telescope(stanley)
[]
null
0.541711
Keith, Margaret, Mathew, Yanira are the only persons in the room. If “everyone in the room is an expert in identifying and foraging wild edible plants or does not practice kickboxing” then ““A book can be opened only at midnight.” and “A shadow appears only at noon.”” otherwise “everyone in the room who enjoys making ceramics practices digital art”. If “everyone in the room is not a drone photographer or is a sibling of Billy” then “Lucia and Mathew hate each other”. “At least one person in the room is a client of John” if “everyone in the room does not enjoy making ceramics or watches fantasy movies” and vice versa. No tall person is old. Mathew who is an expert in identifying and foraging wild edible plants has a curated collection of mid-century modern furniture. Only one person outside the room neither uses contact lenses nor is not liked by John. Everyone in the room is a client of Billy if they is not liked by Lucia. Someone in the room hosts a YouTube channel dedicated to art tutorials. Everyone outside the room who is not kind, not creative, not generous, not funny, not calm is a drone photographer. Everyone in the room is quiet only if they practices digital art. All wise persons are calm.
Keith and Mathew are respectively old and quiet.
contradiction
room(keith)&room(margaret)&room(mathew)&room(yanira)&(![X]:(room(X)=>(X='keith'|X='margaret'|X='mathew'|X='yanira')))& (((![X]:(room(X)=>(((does_not_practice_kickboxing(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))=>(((A_book_can_be_opened_only_at_midnight.)&(A_shadow_appears_only_at_noon.))))&((~(![X]:(room(X)=>(((does_not_practice_kickboxing(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))))=>(![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(practices_digital_art(X))))))))& ((![X]:(room(X)=>(((sibling(billy,X))|(is_not_a_drone_photographer(X))))))=>((hate(lucia,mathew) & hate(mathew,lucia))))& ((![X]:(room(X)=>(((watches_fantasy_movies(X))|(does_not_enjoy_making_ceramics(X))))))<=>(((?[X]:(room(X)&client(john,X))))))& (~?[X]:(tall(X)=>old(X)))& ((is_an_expert_in_identifying_and_foraging_wild_edible_plants(mathew))&(has_a_curated_collection_of_mid-century_modern_furniture(mathew)))& (((?[X]:(~room(X)&~((uses_contact_lenses(X))|(~like(X,john)))))&(![X,Y]:((~room(X)&~room(Y)&(~((uses_contact_lenses(X))|(~like(X,john))))&(~((uses_contact_lenses(Y))|(~like(Y,john)))))=>(X=Y)))))& (![X]:(room(X)=>(((~like(X,lucia))=>(client(billy,X))))))& (?[X]:(room(X)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))& (![X]:(~room(X)=>(((~kind(X)&~creative(X)&~generous(X)&~funny(X)&~calm(X))=>(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((practices_digital_art(X))<=(quiet(X))))))& (![X]:(wise(X)=>calm(X)))& (![X]:(room(X)=>(((poorer(billy,X))=>(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(sibling(billy,X))))))& ((![X]:((can_play_the_piano(X))=>(is_a_client_of_Costco(X)))))& (sibling(yanira,lucia))& (![X]:(room(X)=>(((can_play_the_piano(X))=>(sibling(lucia,X))))))& (![X]:(room(X)=>(((is_right-handed(X))<=(poorer(lucia,X))))))& (![X]:(room(X)=>(((((has_a_specialized_collection_of_handmade_artisan_pottery(X))<~>(own_a_television(X))))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& ((hosts_a_YouTube_channel_dedicated_to_art_tutorials(keith))&(((~(creative(keith)&wise(keith)&tall(keith)&happy(keith)&person(keith)))<~>(collects_vintage_vinyl_records(keith)))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(practices_digital_art(X))))))& (((?[X]:(anywhere(X)&plays_the_violin(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(plays_the_violin(X))&(plays_the_violin(Y)))=>(X=Y)))))& (((?[X]:(room(X)&builds_model_airplanes(X)))))& (![X]:(room(X)=>(((sibling(john,X))=>(is_right-handed(X))))))
room(keith)&room(margaret)&room(mathew)&room(yanira)&(![X]:(room(X)=>(X='keith'|X='margaret'|X='mathew'|X='yanira')))& (old(keith))&(quiet(mathew))
[ "p4", "hypothesis" ]
% SZS status Unsatisfiable for 6819105419125246255948428 % SZS output start Proof for 6819105419125246255948428 48. ~? [X0] : (tall(X0) => old(X0)) [input p4] 68. quiet(fred) & old(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 170. ! [X0] : (~old(X0) & tall(X0)) [ennf transformation 48] 182. quiet(fred) & old(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 183. quiet(fred) & old(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 182] 302. ~old(X0) [cnf transformation 170] 327. old(mary) [cnf transformation 183] 410. $false [subsumption resolution 327,302] % SZS output end Proof for 6819105419125246255948428 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.275417
Nelson, Arlene, Sheena, Judy are the only persons in the room. “Everyone in the room designs and sews custom cosplay costumes for conventions or is not an expert in identifying and foraging wild edible plants” only if “if someone is a coffee connoisseur then he/she is a night owl and vice versa”. “Nelson own a television” only if “everyone in the room who plays eSports competitively neither makes homemade pastries nor enjoys macrame”. “Someone in the room develops open-source software projects in their free time” only if “Arlene own a television”. “Judy does not play the drums” unless “everyone in the room enjoys fishing or is not an expert in identifying and foraging wild edible plants”. If “no one outside the room does not enjoy macrame or own a television” then “Arlene makes homemade pastries” otherwise “Arlene does practice yoga”. If “everyone in the room does not play the drums or does not design and sews custom cosplay costumes for conventions” then “more than one person in the room is not an expert in identifying and foraging wild edible plants”. Everyone outside the room who does not play the drums plays the drums. If someone plays the drums then he/she makes homemade pastries and vice versa. Everyone in the room participates in citizen science projects related to wildlife monitoring only if they does not develop open-source software projects in their free time. Nelson plays eSports competitively. Everyone in the room who travels domestically frequently does not collect foreign coins. Judy is not an expert in identifying and foraging wild edible plants. Sheena who is passionate about collecting and restoring classic cars plays the drums.
Sheena makes homemade pastries.
entailment
room(nelson)&room(arlene)&room(sheena)&room(judy)&(![X]:(room(X)=>(X='nelson'|X='arlene'|X='sheena'|X='judy')))& ((![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>((![X]:((is_a_coffee_connoisseur(X))<=>(is_a_night_owl(X))))))& ((own_a_television(nelson))=>(![X]:(room(X)=>(((plays_eSports_competitively(X))=>(~((makes_homemade_pastries(X))|(enjoys_macrame(X)))))))))& ((?[X]:(room(X)&(develops_open-source_software_projects_in_their_free_time(X))))=>(own_a_television(arlene)))& (~(![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(enjoys_fishing(X))))))=>(does_not_play_the_drums(judy)))& (((~?[X]:(~room(X)=>(((own_a_television(X))|(does_not_enjoy_macrame(X))))))=>(makes_homemade_pastries(arlene)))&((~(~?[X]:(~room(X)=>(((own_a_television(X))|(does_not_enjoy_macrame(X)))))))=>(does_practice_yoga(arlene))))& ((![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_play_the_drums(X))))))=>((?[X,Y]:(room(X)&room(Y)&(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X)&is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(Y))&(X!=Y)))))& (![X]:(~room(X)=>(((does_not_play_the_drums(X))=>(plays_the_drums(X))))))& ((![X]:((plays_the_drums(X))<=>(makes_homemade_pastries(X)))))& (![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))<=(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (plays_eSports_competitively(nelson))& (![X]:(room(X)=>(((travels_domestically_frequently(X))=>(does_not_collect_foreign_coins(X))))))& (is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(judy))& (is_a_coffee_connoisseur(arlene))& (((?[X]:(room(X)&participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))& (does_practice_yoga(judy))& (((?[X]:(anywhere(X)&does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))&(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_enjoy_landscape_photography(X))=>(enjoys_rooftop_gardening(X))))))& (does_not_enjoy_spelunking(sheena))& (![X]:(anywhere(X)=>(((((travels_domestically_frequently(X))|(enjoys_spelunking(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))<=(enjoys_spelunking(X))))))& (owns_a_high-end_gaming_PC_with_custom-built_components(arlene))& ((![X]:((collects_comic_books(X))=>(travels_domestically_frequently(X)))))& (does_not_play_the_drums(judy))& ((is_passionate_about_collecting_and_restoring_classic_cars(sheena))&(plays_the_drums(sheena)))& (~((enjoys_macrame(judy))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(judy))))& (((?[X]:(room(X)&develops_open-source_software_projects_in_their_free_time(X)))))& (![X]:(room(X)=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))& (own_a_television(sheena))& (enjoys_landscape_photography(arlene))& (![X]:(room(X)=>(((travels_domestically_frequently(X))=>(((does_not_play_eSports_competitively(X))&(does_not_practice_yoga(X))))))))
room(nelson)&room(arlene)&room(sheena)&room(judy)&(![X]:(room(X)=>(X='nelson'|X='arlene'|X='sheena'|X='judy')))& makes_homemade_pastries(sheena)
[ "p0", "p8", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 2068686458195215572147392 % SZS output start Proof for 2068686458195215572147392 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 52. ! [X0] : (predp(X0) <=> predd(X0)) [input p8] 67. predp(fred) & predn(fred) [input p23] 74. ~(predd(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 80. predp(fred) [pure predicate removal 67] 159. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 160. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 159] 181. ~predd(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 74] 182. ~predd(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 181] 198. ! [X0] : ((predp(X0) | ~predd(X0)) & (predd(X0) | ~predp(X0))) [nnf transformation 52] 205. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 206. ~predd(fred) | (alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 182,205] 288. room(mary) [cnf transformation 160] 289. room(paul) [cnf transformation 160] 290. room(fred) [cnf transformation 160] 291. room(alice) [cnf transformation 160] 292. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 160] 315. ~predp(X0) | predd(X0) [cnf transformation 198] 330. predp(fred) [cnf transformation 80] 338. ~predd(fred) | room(sK9) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 339. ~predd(fred) | mary != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 340. ~predd(fred) | paul != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 341. ~predd(fred) | fred != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 342. ~predd(fred) | alice != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 467. ~predd(fred) | alice != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 342,291] 468. ~predd(fred) | alice != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 467,290] 469. ~predd(fred) | alice != sK9 | ~room(mary) [subsumption resolution 468,289] 470. ~predd(fred) | alice != sK9 [subsumption resolution 469,288] 472. 28 <=> alice = sK9 [avatar definition] 474. alice != sK9 <- (~28) [avatar component clause 472] 476. 29 <=> predd(fred) [avatar definition] 479. ~28 | ~29 [avatar split clause 470,476,472] 480. ~predd(fred) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 341,291] 481. ~predd(fred) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 480,290] 482. ~predd(fred) | fred != sK9 | ~room(mary) [subsumption resolution 481,289] 483. ~predd(fred) | fred != sK9 [subsumption resolution 482,288] 485. 30 <=> fred = sK9 [avatar definition] 487. fred != sK9 <- (~30) [avatar component clause 485] 488. ~30 | ~29 [avatar split clause 483,476,485] 489. ~predd(fred) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 340,291] 490. ~predd(fred) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 489,290] 491. ~predd(fred) | paul != sK9 | ~room(mary) [subsumption resolution 490,289] 492. ~predd(fred) | paul != sK9 [subsumption resolution 491,288] 494. 31 <=> paul = sK9 [avatar definition] 496. paul != sK9 <- (~31) [avatar component clause 494] 497. ~31 | ~29 [avatar split clause 492,476,494] 498. ~predd(fred) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 339,291] 499. ~predd(fred) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 498,290] 500. ~predd(fred) | mary != sK9 | ~room(mary) [subsumption resolution 499,289] 501. ~predd(fred) | mary != sK9 [subsumption resolution 500,288] 503. 32 <=> mary = sK9 [avatar definition] 505. mary != sK9 <- (~32) [avatar component clause 503] 506. ~32 | ~29 [avatar split clause 501,476,503] 507. ~predd(fred) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,291] 508. ~predd(fred) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 507,290] 509. ~predd(fred) | room(sK9) | ~room(mary) [subsumption resolution 508,289] 510. ~predd(fred) | room(sK9) [subsumption resolution 509,288] 512. 33 <=> room(sK9) [avatar definition] 514. room(sK9) <- (33) [avatar component clause 512] 515. 33 | ~29 [avatar split clause 510,476,512] 516. predd(fred) [resolution 315,330] 519. 29 [avatar split clause 516,476] 586. fred = sK9 | paul = sK9 | mary = sK9 | alice = sK9 <- (33) [resolution 292,514] 672. paul = sK9 | mary = sK9 | alice = sK9 <- (~30, 33) [subsumption resolution 586,487] 673. mary = sK9 | alice = sK9 <- (~30, ~31, 33) [subsumption resolution 672,496] 674. alice = sK9 <- (~30, ~31, ~32, 33) [subsumption resolution 673,505] 675. $false <- (~28, ~30, ~31, ~32, 33) [subsumption resolution 674,474] 676. 28 | 30 | 31 | 32 | ~33 [avatar contradiction clause 675] 677. $false [avatar sat refutation 479,488,497,506,515,519,676] % SZS output end Proof for 2068686458195215572147392 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0
Ron is the only person in the room. Either “everyone in the room writes in-depth travel guides for off-the-beaten-path destinations or is not right-handed” or “not everyone in the room does not practice digital art or does not collect classic novels” but not both. Ron does not compete in national level swimming championships. Everyone outside the room practices tai chi and competes in national level swimming championships if they can play the harmonica. Ron is not right-handed. Ron owns a smart tv. If someone designs and sews custom cosplay costumes for conventions then he/she is passionate about collecting and restoring classic cars and vice versa. Everyone in the room enjoys watercolor painting if they own a television. Everyone in the room who owns a smart tv collects limited-edition art prints from contemporary artists. Ron can play the harmonica. Everyone in the room who drives a hybrid car does not know morse code. Ron does not enjoy origami. Only one person in the room plays the violin.
Ron collects limited-edition art prints from contemporary artists.
entailment
room(ron)&(![X]:(room(X)=>(X='ron')))& ((![X]:(room(X)=>(((is_not_right-handed(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))<~>(~![X]:(room(X)=>(((does_not_collect_classic_novels(X))|(does_not_practice_digital_art(X)))))))& (does_not_compete_in_national_level_swimming_championships(ron))& (![X]:(~room(X)=>(((can_play_the_harmonica(X))=>(((practices_tai_chi(X))&(competes_in_national_level_swimming_championships(X))))))))& (is_not_right-handed(ron))& (owns_a_smart_tv(ron))& ((![X]:((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(is_passionate_about_collecting_and_restoring_classic_cars(X)))))& (![X]:(room(X)=>(((own_a_television(X))=>(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(((owns_a_smart_tv(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (can_play_the_harmonica(ron))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(does_not_know_morse_code(X))))))& (does_not_enjoy_origami(ron))& (((?[X]:(room(X)&plays_the_violin(X)))&(![X,Y]:((room(X)&room(Y)&(plays_the_violin(X))&(plays_the_violin(Y)))=>(X=Y)))))
room(ron)&(![X]:(room(X)=>(X='ron')))& collects_limited-edition_art_prints_from_contemporary_artists(ron)
[ "p0", "p5", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 2552633346289242640827481 % SZS output start Proof for 2552633346289242640827481 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 49. predk(mary) [input p5] 52. ! [X0] : (room(X0) => (predk(X0) => predf(X0))) [input p8] 57. ~(predf(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 136. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 141. ! [X0] : ((predf(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 52] 142. ! [X0] : (predf(X0) | ~predk(X0) | ~room(X0)) [flattening 141] 145. ~predf(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 57] 159. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom] 160. ~predf(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 145,159] 241. room(mary) [cnf transformation 136] 242. ~room(X0) | mary = X0 [cnf transformation 136] 254. predk(mary) [cnf transformation 49] 255. ~predk(X0) | predf(X0) | ~room(X0) [cnf transformation 142] 260. ~predf(mary) | room(sK4) | ~room(mary) [cnf transformation 160] 261. ~predf(mary) | mary != sK4 | ~room(mary) [cnf transformation 160] 304. ~predf(mary) | mary != sK4 [subsumption resolution 261,241] 306. 10 <=> mary = sK4 [avatar definition] 308. mary != sK4 <- (~10) [avatar component clause 306] 310. 11 <=> predf(mary) [avatar definition] 313. ~10 | ~11 [avatar split clause 304,310,306] 314. ~predf(mary) | room(sK4) [subsumption resolution 260,241] 316. 12 <=> room(sK4) [avatar definition] 318. room(sK4) <- (12) [avatar component clause 316] 319. 12 | ~11 [avatar split clause 314,310,316] 325. predf(mary) | ~room(mary) [resolution 255,254] 329. predf(mary) [subsumption resolution 325,241] 330. 11 [avatar split clause 329,310] 331. mary = sK4 <- (12) [resolution 318,242] 332. $false <- (~10, 12) [subsumption resolution 331,308] 333. 10 | ~12 [avatar contradiction clause 332] 334. $false [avatar sat refutation 313,319,330,333] % SZS output end Proof for 2552633346289242640827481 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.162562
Linda, Alecia are the only persons in the room. If “at least one person in the room is richer than Carol” then “more than one person in the room is older than Carol”. “Linda is quieter than Carol” if “it is not the case that “Linda neither is quiet nor is richer than Carol”” and vice versa. If someone is not tall then he/she is quieter than Carol. Linda is quieter than Carol. If someone is richer than Carol then he/she is older than Carol. All old persons are tall. Linda is not a tall old quiet person. Carol is richer than Linda. Carol is richer than Alecia. If someone is richer than Carol then he/she is older than Carol and vice versa. Carol is older than Alecia. Someone who is quiet is older than someone who is richer than Carol. Alecia and Linda are not a quiet persons. Carol is quieter than Alecia.
Linda is tall.
neutral
room(linda)&room(alecia)&(![X]:(room(X)=>(X='linda'|X='alecia')))& ((((?[X]:(room(X)&richer(carol,X)))))=>((?[X,Y]:(room(X)&room(Y)&(older(carol,X)&older(carol,Y))&(X!=Y)))))& ((~(~((quiet(linda))|(richer(carol,linda)))))<=>(quieter(carol,linda)))& ((![X]:((~tall(X))=>(quieter(carol,X)))))& (quieter(carol,linda))& ((![X]:((richer(carol,X))=>(older(carol,X)))))& (![X]:(old(X)=>tall(X)))& (~(tall(linda)&old(linda)&quiet(linda)&person(linda)))& (richer(linda,carol))& (richer(alecia,carol))& ((![X]:((richer(carol,X))<=>(older(carol,X)))))& (older(alecia,carol))& (?[X,Y]:((quiet(X))&(richer(carol,Y))&(older(X,Y))))& (~(quiet(alecia)&person(alecia))&~(quiet(linda)&person(linda)))& (quieter(alecia,carol))
room(linda)&room(alecia)&(![X]:(room(X)=>(X='linda'|X='alecia')))& tall(linda)
[]
null
0.093545
There is a room. “Everyone in the room neither does not collect foreign coins nor is not an avid hiker” only if “not everyone in the room collects foreign coins if they neither is a coffee connoisseur nor is a client of Costco”. “Not everyone in the room is not a culinary enthusiast who experiments with international cuisines” if “everyone in the room does not enjoy camping and organizing outdoor survival workshops” and vice versa. “Everyone in the room who does not have a pet dog is a chess master who participates in national tournaments” if “everyone in the room does not have a pet dog or does not maintain a large, organic vegetable garden year-round”. Not everyone in the room plays the drums if they is a chess master who participates in national tournaments. Everyone in the room who plays the drums is a culinary enthusiast who experiments with international cuisines. Everyone in the room does not enjoy camping and organizing outdoor survival workshops. Everyone in the room neither practices urban gardening nor does not play video games if they is not a chess master who participates in national tournaments. No one in the room neither practices urban gardening nor does not play video games if they does not enjoy cross-country skiing and vice versa. Everyone in the room does not enjoy cross-country skiing if and only if they neither collects classic novels nor plays the drums. Everyone in the room does not practice urban gardening, has a piercing and does not enjoy cross-country skiing.
Everyone in the room is not an avid hiker or is a chess master who participates in national tournaments.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(~((does_not_collect_foreign_coins(X))|(is_not_an_avid_hiker(X))))))=>(~![X]:(room(X)=>(((~((is_a_coffee_connoisseur(X))|(is_a_client_of_Costco(X))))=>(collects_foreign_coins(X)))))))& ((![X]:(room(X)=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))<=>(~![X]:(room(X)=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))& ((![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(does_not_have_a_pet_dog(X))))))=>(![X]:(room(X)=>(((does_not_have_a_pet_dog(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X)))))))& (~![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (![X]:(room(X)=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))& (![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))=>(~((practices_urban_gardening(X))|(does_not_play_video_games(X))))))))& (~?[X]:(room(X)=>(((~((practices_urban_gardening(X))|(does_not_play_video_games(X))))<=>(does_not_enjoy_cross-country_skiing(X))))))& (![X]:(room(X)=>(((does_not_enjoy_cross-country_skiing(X))<=>(~((collects_classic_novels(X))|(plays_the_drums(X))))))))& (![X]:(room(X)=>(((does_not_practice_urban_gardening(X))&(has_a_piercing(X))&(does_not_enjoy_cross-country_skiing(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))|(is_not_an_avid_hiker(X)))))
[ "p0", "p7", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 929484498841096113637264 % SZS output start Proof for 929484498841096113637264 44. there_is_a_room [input p0] 51. ! [X0] : (room(X0) => (~predj(X0) => ~(~preda(X0) | predm(X0)))) [input p7] 52. ~? [X0] : (room(X0) => (~(~preda(X0) | predm(X0)) <=> ~predc(X0))) [input p8] 54. ! [X0] : (room(X0) => (~predc(X0) & predi(X0) & ~predm(X0))) [input p10] 55. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis] 59. ! [X0] : (room(X0) => (~predc(X0) & ~predm(X0))) [pure predicate removal 54] 64. ~(! [X0] : (room(X0) => predj(X0)) & there_is_a_room) [pure predicate removal 55] 144. ! [X0] : (((preda(X0) & ~predm(X0)) | predj(X0)) | ~room(X0)) [ennf transformation 51] 145. ! [X0] : ((preda(X0) & ~predm(X0)) | predj(X0) | ~room(X0)) [flattening 144] 146. ! [X0] : (((preda(X0) & ~predm(X0)) <~> ~predc(X0)) & room(X0)) [ennf transformation 52] 148. ! [X0] : ((~predc(X0) & ~predm(X0)) | ~room(X0)) [ennf transformation 59] 149. ? [X0] : (~predj(X0) & room(X0)) | ~there_is_a_room [ennf transformation 64] 162. ! [X0] : (((predc(X0) | (~preda(X0) | predm(X0))) & (~predc(X0) | (preda(X0) & ~predm(X0)))) & room(X0)) [nnf transformation 146] 163. ! [X0] : ((predc(X0) | ~preda(X0) | predm(X0)) & (~predc(X0) | (preda(X0) & ~predm(X0))) & room(X0)) [flattening 162] 166. ? [X0] : (~predj(X0) & room(X0)) => (~predj(sK5) & room(sK5)) [choice axiom] 167. (~predj(sK5) & room(sK5)) | ~there_is_a_room [skolemisation 149,166] 248. there_is_a_room [cnf transformation 44] 261. ~room(X0) | predj(X0) | preda(X0) [cnf transformation 145] 262. room(X0) [cnf transformation 163] 265. ~preda(X0) | predc(X0) | predm(X0) [cnf transformation 163] 269. ~predm(X0) | ~room(X0) [cnf transformation 148] 270. ~predc(X0) | ~room(X0) [cnf transformation 148] 272. ~predj(sK5) | ~there_is_a_room [cnf transformation 167] 313. ~predc(X0) [subsumption resolution 270,262] 314. ~predm(X0) [subsumption resolution 269,262] 315. ~predj(sK5) [subsumption resolution 272,248] 320. preda(X0) | predj(X0) [resolution 261,262] 321. predc(X0) | predm(X0) | predj(X0) [resolution 265,320] 322. predm(X0) | predj(X0) [subsumption resolution 321,313] 323. predj(X0) [subsumption resolution 322,314] 324. $false [resolution 323,315] % SZS output end Proof for 929484498841096113637264 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.023 s % ------------------------------ % ------------------------------
0.184953
Amber, Amber are the only persons in the room. If “everyone outside the room is not a wine connoisseur with a private cellar of vintage wines or is a curious european” then “Amber is a client of Dorothy”. If “everyone outside the room does not use an ios phone or is a client of Rhonda” then “Amber and Rhonda hate each other”. If “no one in the room is a client of Mae, is richer than Mae or is a calm tourist” then “everyone in the room does not bake bread at home or is a client of Herman”.
Amber is an avid hiker.
contradiction
room(amber)&room(amber)&(![X]:(room(X)=>(X='amber'|X='amber')))& ((![X]:(~room(X)=>(((curious(X)&european(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))=>(client(dorothy,amber)))& ((![X]:(~room(X)=>(((client(rhonda,X))|(does_not_use_an_ios_phone(X))))))=>((hate(amber,rhonda) & hate(rhonda,amber))))& (((~?[X]:(room(X)=>(((client(mae,X))|(richer(mae,X))|(calm(X)&tourist(X))))))=>(![X]:(room(X)=>(((client(herman,X))|(does_not_bake_bread_at_home(X)))))))& ((![X]:(room(X)=>(((client(herman,X))|(does_not_bake_bread_at_home(X))))))=>(client(dorothy,amber))))& ((![X]:(room(X)=>(((cannot_play_the_piano(X))|(is_not_a_cybersecurity_expert(X))))))=>(![X]:(room(X)=>(((older(herman,X))=>(sibling(mae,X)))))))& ((![X]:(room(X)=>(younger(mae,X))))=>(![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))=>(((humble(X)&person(X))|(sibling(dorothy,X))|(client(marvin,X)))))))))& (((old(amber)&brave(amber)&curious(amber)&wise(amber)&person(amber))=>(![X]:(~room(X)=>(((~hate(X,rhonda))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))& ((![X]:(~room(X)=>(((~hate(X,rhonda))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))=>(does_not_enjoy_rooftop_gardening(amber))))& ((~like(amber,mae))=>(~?[X]:(room(X)=>(((patient(X)&european(X))=>(client(rhonda,X)))))))& ((![X]:(room(X)=>(((client(marvin,X))|(does_not_compete_in_national_level_swimming_championships(X))))))=>(richer(marvin,amber)))& (((![X]:(room(X)=>(((hate(herman,X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))=>(funny(amber)&european(amber)))& ((funny(amber)&european(amber))=>((![X]:((richer(dorothy,X))<=>(((quieter(herman,X))&(strong(X)&european(X)))))))))& (((older(amber,mae))=>(sibling(herman,amber)))&((~(older(amber,mae)))=>(![X]:(room(X)=>(((strong(X)&curious(X)&european(X))=>(is_not_an_avid_hiker(X))))))))& (~(![X]:(room(X)=>(((quieter(marvin,X))|(does_not_host_regular_workshops_on_creative_writing(X))))))=>((![X]:((younger(mae,X))=>(((patient(X)&funny(X)&european(X))|(~hate(dorothy,X))|(creative(X)&person(X))))))))& (![X]:(room(X)=>(((client(dorothy,X))|(does_not_use_a_Windows_laptop(X))))))& (((?[X]:(room(X)&richer(mae,X)))&(![X,Y]:((room(X)&room(Y)&(richer(mae,X))&(richer(mae,Y)))=>(X=Y)))))& ((![X]:((client(marvin,X))=>(does_not_practice_tai_chi(X)))))& ((hate(amber,dorothy) & hate(dorothy,amber)))& (![X]:(~room(X)=>(((happy(X)&funny(X)&old(X)&european(X))=>(creative(X)&european(X))))))& (poorer(marvin,amber))& (older(amber,herman))& (older(mae,amber))& ((like(amber,rhonda) & like(rhonda,amber)))& (is_not_an_avid_hiker(amber))& (sibling(marvin,amber))& (![X]:(room(X)=>(((((younger(dorothy,X))&(richer(herman,X))))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))
room(amber)&room(amber)&(![X]:(room(X)=>(X='amber'|X='amber')))& is_an_avid_hiker(amber)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 8480245222017017429426635 % SZS output start Proof for 8480245222017017429426635 44. ! [X0] : (room(X0) => ((richer(alice,X0) & younger(fred,X0)) => ~predx(X0))) & sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & ! [X0] : (~room(X0) => ((european(X0) & old(X0) & funny(X0) & happy(X0)) => (european(X0) & creative(X0)))) & hate(fred,mary) & hate(mary,fred) & ! [X0] : (client(lucy,X0) => ~predh(X0)) & ! [X0,X1] : ((richer(john,X1) & richer(john,X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (richer(john,X0) & room(X0)) & ! [X0] : (room(X0) => (~predi(X0) | client(fred,X0))) & (~! [X0] : (room(X0) => (~predo(X0) | quieter(lucy,X0))) => ! [X0] : (younger(john,X0) => ((person(X0) & creative(X0)) | ~hate(fred,X0) | (european(X0) & funny(X0) & patient(X0))))) & (~older(paul,john) => ! [X0] : (room(X0) => ((european(X0) & curious(X0) & strong(X0)) => ~predv(X0)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X0] : (richer(fred,X0) <=> (european(X0) & strong(X0) & quieter(alice,X0)))) & (! [X0] : (room(X0) => (~predy(X0) | hate(alice,X0))) => (european(paul) & funny(paul))) & (! [X0] : (room(X0) => (~predb(X0) | client(lucy,X0))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X0] : (room(X0) => ((european(X0) & patient(X0)) => client(susan,X0)))) & (! [X0] : (~room(X0) => (~predp(X0) | ~hate(X0,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X0] : (~room(X0) => (~predp(X0) | ~hate(X0,susan)))) & (! [X0] : (room(X0) => younger(john,X0)) => ! [X0] : (room(X0) => (~predi(X0) => (client(lucy,X0) | sibling(fred,X0) | (person(X0) & humble(X0)))))) & (! [X0] : (room(X0) => (~predl(X0) | ~preds(X0))) => ! [X0] : (room(X0) => (older(alice,X0) => sibling(john,X0)))) & (! [X0] : (room(X0) => (~predu(X0) | client(alice,X0))) => client(fred,mary)) & (~? [X0] : (room(X0) => ((tourist(X0) & calm(X0)) | richer(john,X0) | client(john,X0))) => ! [X0] : (room(X0) => (~predu(X0) | client(alice,X0)))) & (! [X0] : (~room(X0) => (~predj(X0) | client(susan,X0))) => (hate(susan,paul) & hate(paul,susan))) & (! [X0] : (~room(X0) => (~prede(X0) | (european(X0) & curious(X0)))) => client(fred,mary)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predv(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (room(X0) => ((richer(alice,X0) & younger(fred,X0)) => ~predx(X0))) & sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & ! [X1] : (~room(X1) => ((european(X1) & old(X1) & funny(X1) & happy(X1)) => (european(X1) & creative(X1)))) & hate(fred,mary) & hate(mary,fred) & ! [X2] : (client(lucy,X2) => ~predh(X2)) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~! [X7] : (room(X7) => (~predo(X7) | quieter(lucy,X7))) => ! [X8] : (younger(john,X8) => ((person(X8) & creative(X8)) | ~hate(fred,X8) | (european(X8) & funny(X8) & patient(X8))))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => (~predy(X11) | hate(alice,X11))) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => (~predb(X12) | client(lucy,X12))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [rectify 44] 47. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & ! [X1] : (~room(X1) => ((european(X1) & old(X1) & funny(X1) & happy(X1)) => (european(X1) & creative(X1)))) & hate(fred,mary) & hate(mary,fred) & ! [X2] : (client(lucy,X2) => ~predh(X2)) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~! [X7] : (room(X7) => (~predo(X7) | quieter(lucy,X7))) => ! [X8] : (younger(john,X8) => ((person(X8) & creative(X8)) | ~hate(fred,X8) | (european(X8) & funny(X8) & patient(X8))))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => (~predy(X11) | hate(alice,X11))) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => (~predb(X12) | client(lucy,X12))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 46] 48. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X2] : (client(lucy,X2) => ~predh(X2)) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~! [X7] : (room(X7) => (~predo(X7) | quieter(lucy,X7))) => ! [X8] : (younger(john,X8) => ((person(X8) & creative(X8)) | ~hate(fred,X8) | (european(X8) & funny(X8) & patient(X8))))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => (~predy(X11) | hate(alice,X11))) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => (~predb(X12) | client(lucy,X12))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 47] 49. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~! [X7] : (room(X7) => (~predo(X7) | quieter(lucy,X7))) => ! [X8] : (younger(john,X8) => ((person(X8) & creative(X8)) | ~hate(fred,X8) | (european(X8) & funny(X8) & patient(X8))))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => (~predy(X11) | hate(alice,X11))) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => (~predb(X12) | client(lucy,X12))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 48] 50. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~! [X7] : (room(X7) => (~predo(X7) | quieter(lucy,X7))) => ! [X8] : (younger(john,X8) => (person(X8) | ~hate(fred,X8) | (european(X8) & funny(X8) & patient(X8))))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => (~predy(X11) | hate(alice,X11))) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => (~predb(X12) | client(lucy,X12))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 49] 51. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => (~predy(X11) | hate(alice,X11))) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => (~predb(X12) | client(lucy,X12))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 50] 52. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => (~predb(X12) | client(lucy,X12))) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 51] 53. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => ((european(X13) & patient(X13)) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 52] 54. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X14] : (~room(X14) => (~predp(X14) | ~hate(X14,susan))) => ~predd(mary)) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 53] 55. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & ((person(mary) & wise(mary) & curious(mary) & brave(mary) & old(mary)) => ! [X15] : (~room(X15) => (~predp(X15) | ~hate(X15,susan)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 54] 56. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | (person(X17) & humble(X17)))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 55] 58. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | humble(X17))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => ((tourist(X21) & calm(X21)) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 56] 60. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X16] : (room(X16) => younger(john,X16)) => ! [X17] : (room(X17) => (~predi(X17) => (client(lucy,X17) | sibling(fred,X17) | humble(X17))))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => (calm(X21) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 58] 61. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & ! [X6] : (room(X6) => (~predi(X6) | client(fred,X6))) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => (calm(X21) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 60] 62. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : (room(X18) => (~predl(X18) | ~preds(X18))) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => (calm(X21) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 61] 63. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : (room(X18) => ~preds(X18)) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => (calm(X21) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 62] 64. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : ~room(X18) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (~? [X21] : (room(X21) => (calm(X21) | richer(john,X21) | client(john,X21))) => ! [X22] : (room(X22) => (~predu(X22) | client(alice,X22)))) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 63] 65. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : ~room(X18) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => (~predu(X20) | client(alice,X20))) => client(fred,mary)) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 64] 66. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : ~room(X18) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => client(alice,X20)) => client(fred,mary)) & (! [X23] : (~room(X23) => (~predj(X23) | client(susan,X23))) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 65] 67. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : ~room(X18) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => client(alice,X20)) => client(fred,mary)) & (! [X23] : (~room(X23) => client(susan,X23)) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (~prede(X24) | (european(X24) & curious(X24)))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 66] 68. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (~older(paul,john) => ! [X9] : (room(X9) => ((european(X9) & curious(X9) & strong(X9)) => ~predv(X9)))) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : ~room(X18) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => client(alice,X20)) => client(fred,mary)) & (! [X23] : (~room(X23) => client(susan,X23)) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : (~room(X24) => (european(X24) & curious(X24))) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 67] 69. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : ((richer(john,X4) & richer(john,X3) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (richer(john,X5) & room(X5)) & (older(paul,john) => sibling(alice,mary)) & ((european(paul) & funny(paul)) => ! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10)))) & (! [X11] : (room(X11) => hate(alice,X11)) => (european(paul) & funny(paul))) & (! [X12] : (room(X12) => client(lucy,X12)) => richer(lucy,mary)) & (~like(paul,john) => ~? [X13] : (room(X13) => (european(X13) => client(susan,X13)))) & (! [X18] : ~room(X18) => ! [X19] : (room(X19) => (older(alice,X19) => sibling(john,X19)))) & (! [X20] : (room(X20) => client(alice,X20)) => client(fred,mary)) & (! [X23] : (~room(X23) => client(susan,X23)) => (hate(susan,paul) & hate(paul,susan))) & (! [X24] : ~~room(X24) => client(fred,mary)) & ! [X25] : (room(X25) => (paul = X25 | mary = X25)) & room(paul) & room(mary) [pure predicate removal 68] 142. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : (X3 = X4 | (~richer(john,X4) | ~richer(john,X3) | ~room(X4) | ~room(X3))) & ? [X5] : (richer(john,X5) & room(X5)) & (sibling(alice,mary) | ~older(paul,john)) & (! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10))) | (~european(paul) | ~funny(paul))) & ((european(paul) & funny(paul)) | ? [X11] : (~hate(alice,X11) & room(X11))) & (richer(lucy,mary) | ? [X12] : (~client(lucy,X12) & room(X12))) & (! [X13] : ((~client(susan,X13) & european(X13)) & room(X13)) | like(paul,john)) & (! [X19] : ((sibling(john,X19) | ~older(alice,X19)) | ~room(X19)) | ? [X18] : room(X18)) & (client(fred,mary) | ? [X20] : (~client(alice,X20) & room(X20))) & ((hate(susan,paul) & hate(paul,susan)) | ? [X23] : (~client(susan,X23) & ~room(X23))) & (client(fred,mary) | ? [X24] : ~room(X24)) & ! [X25] : ((paul = X25 | mary = X25) | ~room(X25)) & room(paul) & room(mary) [ennf transformation 69] 143. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : (X3 = X4 | ~richer(john,X4) | ~richer(john,X3) | ~room(X4) | ~room(X3)) & ? [X5] : (richer(john,X5) & room(X5)) & (sibling(alice,mary) | ~older(paul,john)) & (! [X10] : (richer(fred,X10) <=> (european(X10) & strong(X10) & quieter(alice,X10))) | ~european(paul) | ~funny(paul)) & ((european(paul) & funny(paul)) | ? [X11] : (~hate(alice,X11) & room(X11))) & (richer(lucy,mary) | ? [X12] : (~client(lucy,X12) & room(X12))) & (! [X13] : (~client(susan,X13) & european(X13) & room(X13)) | like(paul,john)) & (! [X19] : (sibling(john,X19) | ~older(alice,X19) | ~room(X19)) | ? [X18] : room(X18)) & (client(fred,mary) | ? [X20] : (~client(alice,X20) & room(X20))) & ((hate(susan,paul) & hate(paul,susan)) | ? [X23] : (~client(susan,X23) & ~room(X23))) & (client(fred,mary) | ? [X24] : ~room(X24)) & ! [X25] : (paul = X25 | mary = X25 | ~room(X25)) & room(paul) & room(mary) [flattening 142] 144. predv(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 145. predv(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 144] 147. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : (X3 = X4 | ~richer(john,X4) | ~richer(john,X3) | ~room(X4) | ~room(X3)) & ? [X5] : (richer(john,X5) & room(X5)) & (sibling(alice,mary) | ~older(paul,john)) & (! [X10] : ((richer(fred,X10) | (~european(X10) | ~strong(X10) | ~quieter(alice,X10))) & ((european(X10) & strong(X10) & quieter(alice,X10)) | ~richer(fred,X10))) | ~european(paul) | ~funny(paul)) & ((european(paul) & funny(paul)) | ? [X11] : (~hate(alice,X11) & room(X11))) & (richer(lucy,mary) | ? [X12] : (~client(lucy,X12) & room(X12))) & (! [X13] : (~client(susan,X13) & european(X13) & room(X13)) | like(paul,john)) & (! [X19] : (sibling(john,X19) | ~older(alice,X19) | ~room(X19)) | ? [X18] : room(X18)) & (client(fred,mary) | ? [X20] : (~client(alice,X20) & room(X20))) & ((hate(susan,paul) & hate(paul,susan)) | ? [X23] : (~client(susan,X23) & ~room(X23))) & (client(fred,mary) | ? [X24] : ~room(X24)) & ! [X25] : (paul = X25 | mary = X25 | ~room(X25)) & room(paul) & room(mary) [nnf transformation 143] 148. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X3,X4] : (X3 = X4 | ~richer(john,X4) | ~richer(john,X3) | ~room(X4) | ~room(X3)) & ? [X5] : (richer(john,X5) & room(X5)) & (sibling(alice,mary) | ~older(paul,john)) & (! [X10] : ((richer(fred,X10) | ~european(X10) | ~strong(X10) | ~quieter(alice,X10)) & ((european(X10) & strong(X10) & quieter(alice,X10)) | ~richer(fred,X10))) | ~european(paul) | ~funny(paul)) & ((european(paul) & funny(paul)) | ? [X11] : (~hate(alice,X11) & room(X11))) & (richer(lucy,mary) | ? [X12] : (~client(lucy,X12) & room(X12))) & (! [X13] : (~client(susan,X13) & european(X13) & room(X13)) | like(paul,john)) & (! [X19] : (sibling(john,X19) | ~older(alice,X19) | ~room(X19)) | ? [X18] : room(X18)) & (client(fred,mary) | ? [X20] : (~client(alice,X20) & room(X20))) & ((hate(susan,paul) & hate(paul,susan)) | ? [X23] : (~client(susan,X23) & ~room(X23))) & (client(fred,mary) | ? [X24] : ~room(X24)) & ! [X25] : (paul = X25 | mary = X25 | ~room(X25)) & room(paul) & room(mary) [flattening 147] 149. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X0,X1] : (X0 = X1 | ~richer(john,X1) | ~richer(john,X0) | ~room(X1) | ~room(X0)) & ? [X2] : (richer(john,X2) & room(X2)) & (sibling(alice,mary) | ~older(paul,john)) & (! [X3] : ((richer(fred,X3) | ~european(X3) | ~strong(X3) | ~quieter(alice,X3)) & ((european(X3) & strong(X3) & quieter(alice,X3)) | ~richer(fred,X3))) | ~european(paul) | ~funny(paul)) & ((european(paul) & funny(paul)) | ? [X4] : (~hate(alice,X4) & room(X4))) & (richer(lucy,mary) | ? [X5] : (~client(lucy,X5) & room(X5))) & (! [X6] : (~client(susan,X6) & european(X6) & room(X6)) | like(paul,john)) & (! [X7] : (sibling(john,X7) | ~older(alice,X7) | ~room(X7)) | ? [X8] : room(X8)) & (client(fred,mary) | ? [X9] : (~client(alice,X9) & room(X9))) & ((hate(susan,paul) & hate(paul,susan)) | ? [X10] : (~client(susan,X10) & ~room(X10))) & (client(fred,mary) | ? [X11] : ~room(X11)) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [rectify 148] 150. ? [X2] : (richer(john,X2) & room(X2)) => (richer(john,sK0) & room(sK0)) [choice axiom] 151. ? [X4] : (~hate(alice,X4) & room(X4)) => (~hate(alice,sK1) & room(sK1)) [choice axiom] 152. ? [X5] : (~client(lucy,X5) & room(X5)) => (~client(lucy,sK2) & room(sK2)) [choice axiom] 153. ? [X8] : room(X8) => room(sK3) [choice axiom] 154. ? [X9] : (~client(alice,X9) & room(X9)) => (~client(alice,sK4) & room(sK4)) [choice axiom] 155. ? [X10] : (~client(susan,X10) & ~room(X10)) => (~client(susan,sK5) & ~room(sK5)) [choice axiom] 156. ? [X11] : ~room(X11) => ~room(sK6) [choice axiom] 157. sibling(lucy,mary) & ~predv(paul) & like(susan,mary) & like(mary,susan) & older(john,paul) & older(mary,alice) & poorer(lucy,mary) & hate(fred,mary) & hate(mary,fred) & ! [X0,X1] : (X0 = X1 | ~richer(john,X1) | ~richer(john,X0) | ~room(X1) | ~room(X0)) & (richer(john,sK0) & room(sK0)) & (sibling(alice,mary) | ~older(paul,john)) & (! [X3] : ((richer(fred,X3) | ~european(X3) | ~strong(X3) | ~quieter(alice,X3)) & ((european(X3) & strong(X3) & quieter(alice,X3)) | ~richer(fred,X3))) | ~european(paul) | ~funny(paul)) & ((european(paul) & funny(paul)) | (~hate(alice,sK1) & room(sK1))) & (richer(lucy,mary) | (~client(lucy,sK2) & room(sK2))) & (! [X6] : (~client(susan,X6) & european(X6) & room(X6)) | like(paul,john)) & (! [X7] : (sibling(john,X7) | ~older(alice,X7) | ~room(X7)) | room(sK3)) & (client(fred,mary) | (~client(alice,sK4) & room(sK4))) & ((hate(susan,paul) & hate(paul,susan)) | (~client(susan,sK5) & ~room(sK5))) & (client(fred,mary) | ~room(sK6)) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [skolemisation 149,156,155,154,153,152,151,150] 275. ~predv(paul) [cnf transformation 157] 280. predv(paul) [cnf transformation 145] 403. $false [subsumption resolution 280,275] % SZS output end Proof for 8480245222017017429426635 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.528508
Addie, Maria, Lynda, Milton are the only persons in the room. Everyone in the room practices calligraphy only if they is an enthusiastic bird watcher who travels for rare sightings. Maria has a tattoo. Everyone in the room who is a member of a local theater group specializing in improv collects rare and antique scientific instruments. Addie who has a tattoo has completed a triathlon. Everyone in the room practices calligraphy if they practices urban gardening. Everyone in the room practices calligraphy if and only if they does not bake bread at home or has lived in exactly three countries or both. Addie bakes bread at home, hosts regular workshops on creative writing and is an enthusiastic bird watcher who travels for rare sightings. Everyone in the room bakes bread at home. If someone practices urban gardening then he/she collects rare and antique scientific instruments and vice versa. Maria hosts regular workshops on creative writing. Not everyone anywhere has lived in exactly three countries if they is a client of Meta. Maria who is a member of a local theater group specializing in improv has lived in exactly three countries. Everyone in the room uses a Windows laptop if they is not a member of a local theater group specializing in improv. Everyone in the room does not use a Windows laptop if they uses a Windows laptop. Addie either does not practice calligraphy or practices urban gardening but not both. Maria does not have a piercing. Everyone in the room bakes bread at home or has lived in exactly three countries or both if they is a member of a local theater group specializing in improv. Everyone in the room practices archery. Maria practices archery.
Addie collects rare and antique scientific instruments.
entailment
room(addie)&room(maria)&room(lynda)&room(milton)&(![X]:(room(X)=>(X='addie'|X='maria'|X='lynda'|X='milton')))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<=(practices_calligraphy(X))))))& (has_a_tattoo(maria))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& ((has_a_tattoo(addie))&(has_completed_a_triathlon(addie)))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(practices_calligraphy(X))))))& (![X]:(room(X)=>(((practices_calligraphy(X))<=>(((does_not_bake_bread_at_home(X))|(has_lived_in_exactly_three_countries(X))))))))& (((bakes_bread_at_home(addie))&(hosts_regular_workshops_on_creative_writing(addie))&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(addie))))& (![X]:(room(X)=>(bakes_bread_at_home(X))))& ((![X]:((practices_urban_gardening(X))<=>(collects_rare_and_antique_scientific_instruments(X)))))& (hosts_regular_workshops_on_creative_writing(maria))& (~![X]:(anywhere(X)=>(((is_a_client_of_Meta(X))=>(has_lived_in_exactly_three_countries(X))))))& ((is_a_member_of_a_local_theater_group_specializing_in_improv(maria))&(has_lived_in_exactly_three_countries(maria)))& (![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(does_not_use_a_Windows_laptop(X))))))& (((does_not_practice_calligraphy(addie))<~>(practices_urban_gardening(addie))))& (does_not_have_a_piercing(maria))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(((bakes_bread_at_home(X))|(has_lived_in_exactly_three_countries(X))))))))& (![X]:(room(X)=>(practices_archery(X))))& (practices_archery(maria))
room(addie)&room(maria)&room(lynda)&room(milton)&(![X]:(room(X)=>(X='addie'|X='maria'|X='lynda'|X='milton')))& collects_rare_and_antique_scientific_instruments(addie)
[ "p0", "p3", "p13", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 1039037299712576726584634 % SZS output start Proof for 1039037299712576726584634 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (room(X0) => (predi(X0) => predo(X0))) [input p3] 57. ! [X0] : (room(X0) => (~predi(X0) => predj(X0))) [input p13] 58. ! [X0] : (room(X0) => (predj(X0) => ~predj(X0))) [input p14] 64. ~(predo(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 149. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 151. ! [X0] : ((predo(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 47] 152. ! [X0] : (predo(X0) | ~predi(X0) | ~room(X0)) [flattening 151] 158. ! [X0] : ((predj(X0) | predi(X0)) | ~room(X0)) [ennf transformation 57] 159. ! [X0] : (predj(X0) | predi(X0) | ~room(X0)) [flattening 158] 160. ! [X0] : ((~predj(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 58] 161. ! [X0] : (~predj(X0) | ~predj(X0) | ~room(X0)) [flattening 160] 164. ~predo(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 64] 165. ~predo(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 164] 173. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 174. ~predo(mary) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 165,173] 255. room(mary) [cnf transformation 150] 256. room(paul) [cnf transformation 150] 257. room(fred) [cnf transformation 150] 258. room(alice) [cnf transformation 150] 259. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 150] 260. ~predi(X0) | predo(X0) | ~room(X0) [cnf transformation 152] 272. ~room(X0) | predi(X0) | predj(X0) [cnf transformation 159] 273. ~predj(X0) | ~predj(X0) | ~room(X0) [cnf transformation 161] 277. ~predo(mary) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 278. ~predo(mary) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 279. ~predo(mary) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 280. ~predo(mary) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 281. ~predo(mary) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 282. ~predj(X0) | ~room(X0) [duplicate literal removal 273] 293. ~predo(mary) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,258] 294. ~predo(mary) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 293,257] 295. ~predo(mary) | alice != sK1 | ~room(mary) [subsumption resolution 294,256] 296. ~predo(mary) | alice != sK1 [subsumption resolution 295,255] 298. 3 <=> alice = sK1 [avatar definition] 300. alice != sK1 <- (~3) [avatar component clause 298] 302. 4 <=> predo(mary) [avatar definition] 305. ~3 | ~4 [avatar split clause 296,302,298] 306. ~predo(mary) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,258] 307. ~predo(mary) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 306,257] 308. ~predo(mary) | fred != sK1 | ~room(mary) [subsumption resolution 307,256] 309. ~predo(mary) | fred != sK1 [subsumption resolution 308,255] 311. 5 <=> fred = sK1 [avatar definition] 313. fred != sK1 <- (~5) [avatar component clause 311] 314. ~5 | ~4 [avatar split clause 309,302,311] 315. ~predo(mary) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,258] 316. ~predo(mary) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 315,257] 317. ~predo(mary) | paul != sK1 | ~room(mary) [subsumption resolution 316,256] 318. ~predo(mary) | paul != sK1 [subsumption resolution 317,255] 320. 6 <=> paul = sK1 [avatar definition] 322. paul != sK1 <- (~6) [avatar component clause 320] 323. ~6 | ~4 [avatar split clause 318,302,320] 324. ~predo(mary) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,258] 325. ~predo(mary) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 324,257] 326. ~predo(mary) | mary != sK1 | ~room(mary) [subsumption resolution 325,256] 327. ~predo(mary) | mary != sK1 [subsumption resolution 326,255] 329. 7 <=> mary = sK1 [avatar definition] 331. mary != sK1 <- (~7) [avatar component clause 329] 332. ~7 | ~4 [avatar split clause 327,302,329] 333. ~predo(mary) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,258] 334. ~predo(mary) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 333,257] 335. ~predo(mary) | room(sK1) | ~room(mary) [subsumption resolution 334,256] 336. ~predo(mary) | room(sK1) [subsumption resolution 335,255] 338. 8 <=> room(sK1) [avatar definition] 340. room(sK1) <- (8) [avatar component clause 338] 341. 8 | ~4 [avatar split clause 336,302,338] 357. predi(mary) | predj(mary) [resolution 272,255] 362. 9 <=> predj(mary) [avatar definition] 364. predj(mary) <- (9) [avatar component clause 362] 366. 10 <=> predi(mary) [avatar definition] 368. predi(mary) <- (10) [avatar component clause 366] 369. 9 | 10 [avatar split clause 357,366,362] 388. ~room(mary) <- (9) [resolution 364,282] 389. $false <- (9) [subsumption resolution 388,255] 390. ~9 [avatar contradiction clause 389] 415. predo(mary) | ~room(mary) <- (10) [resolution 368,260] 419. predo(mary) <- (10) [subsumption resolution 415,255] 420. 4 | ~10 [avatar split clause 419,366,302] 545. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (8) [resolution 259,340] 546. paul = sK1 | mary = sK1 | alice = sK1 <- (~5, 8) [subsumption resolution 545,313] 547. mary = sK1 | alice = sK1 <- (~5, ~6, 8) [subsumption resolution 546,322] 548. alice = sK1 <- (~5, ~6, ~7, 8) [subsumption resolution 547,331] 549. $false <- (~3, ~5, ~6, ~7, 8) [subsumption resolution 548,300] 550. 3 | 5 | 6 | 7 | ~8 [avatar contradiction clause 549] 551. $false [avatar sat refutation 305,314,323,332,341,369,390,420,550] % SZS output end Proof for 1039037299712576726584634 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0
Sue, Debra are the only persons in the room. Debra and Sue are brave. Everyone in the room is not a old person if they is a wise person. At least one person in the room is a humble person. More than one person in the room is a curious person. At least one person in the room is creative, is a old person and is a brave quiet person. Preston is older than Sue. Debra and Sue are brave persons. Everyone in the room is quieter than Gloria, is a happy person or is a calm tall person if and only if they is a patient person, is happy and is richer than Preston.
It is not the case that “it is not the case that “it is not the case that “more than one person in the room is not tall, is a kind person and is a old person”””.
neutral
room(sue)&room(debra)&(![X]:(room(X)=>(X='sue'|X='debra')))& (brave(debra)&brave(sue))& (![X]:(room(X)=>(((wise(X)&person(X))=>(~(old(X)&person(X)))))))& (((?[X]:(room(X)&humble(X)&person(X)))))& ((?[X,Y]:(room(X)&room(Y)&(curious(X)&person(X)&curious(Y)&person(Y))&(X!=Y))))& (((?[X]:(room(X)&((creative(X))&(old(X)&person(X))&(brave(X)&quiet(X)&person(X)))))))& (older(sue,preston))& (brave(debra)&person(debra)&brave(sue)&person(sue))& (![X]:(room(X)=>(((((quieter(gloria,X))|(happy(X)&person(X))|(calm(X)&tall(X)&person(X))))<=>(((patient(X)&person(X))&(happy(X))&(richer(preston,X))))))))& (![X]:(old(X)=>calm(X)))& (~![X]:(anywhere(X)=>(brave(X)&tall(X)&person(X))))& ((creative(sue))&(brave(debra)))& (![X]:(room(X)=>(patient(X)&person(X))))& (richer(preston,debra)&richer(preston,sue))& (funny(debra)&person(debra)&funny(sue)&person(sue))& (![X]:((anywhere(X)&(X!=debra))=>older(debra,X)))& (((?[X]:(room(X)&quiet(X)&person(X)))))& (?[X,Y]:((~(patient(X)&person(X)))&(((tall(Y))&(quiet(Y))&(humble(Y))))&(quieter(X,Y))))& ((generous(sue))&(curious(debra)))& ((![X]:((creative(X))<=>(((old(X)&person(X))&(kind(X)&generous(X)&person(X))&(funny(X)&person(X)))))))& (![X]:(anywhere(X)=>(quiet(X)&person(X))))& (funny(sue)&funny(debra))& (~(~((?[X,Y]:(room(X)&room(Y)&(quieter(gloria,X)&quieter(gloria,Y))&(X!=Y))))))& (![X]:(room(X)=>(((richer(preston,X))=>(generous(X)&person(X))))))
room(sue)&room(debra)&(![X]:(room(X)=>(X='sue'|X='debra')))& ~(~(~((?[X,Y]:(room(X)&room(Y)&(((~tall(X))&(kind(X)&person(X))&(old(X)&person(X)))&((~tall(Y))&(kind(Y)&person(Y))&(old(Y)&person(Y))))&(X!=Y))))))
[]
null
0.24813
Rose is the only person in the room. Rose enjoys virtual reality gaming. Rose enjoys virtual reality gaming, is not a certified scuba diver with advanced underwater photography skills or is a certified scuba diver with advanced underwater photography skills. Everyone in the room does not enjoy virtual reality gaming if they is older than Jose. Not everyone in the room does not enjoy virtual reality gaming or is older than Cindy. Rose is a creative person. Everyone in the room hates Jacob. Everyone in the room is not a certified scuba diver with advanced underwater photography skills only if they is a old quiet calm person. Everyone in the room is quieter than Jose. No one anywhere who is louder than Jacob is quieter than Jacob. If someone is older than Jose then he/she is not hated by Jose. Cindy and Rose hate each other. Rose is a certified scuba diver with advanced underwater photography skills. Rose is not a quiet old creative person. Rose is not hated by Jose. Everyone in the room is a calm person. Everyone in the room is quieter than Cindy. Not everyone in the room does not enjoy virtual reality gaming or is a quiet creative old person. No calm person is quiet. Everyone in the room who is old is quieter than Jose. Everyone in the room who does not enjoy virtual reality gaming is a certified scuba diver with advanced underwater photography skills.
Jose is older than Rose.
neutral
room(rose)&(![X]:(room(X)=>(X='rose')))& (enjoys_virtual_reality_gaming(rose))& (((enjoys_virtual_reality_gaming(rose))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(rose))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(rose))))& (![X]:(room(X)=>(((older(jose,X))=>(does_not_enjoy_virtual_reality_gaming(X))))))& (~![X]:(room(X)=>(((older(cindy,X))|(does_not_enjoy_virtual_reality_gaming(X))))))& (creative(rose)&person(rose))& (![X]:(room(X)=>(hate(jacob,X))))& (![X]:(room(X)=>(((old(X)&quiet(X)&calm(X)&person(X))<=(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(quieter(jose,X))))& (~?[X]:(anywhere(X)=>(((louder(jacob,X))=>(quieter(jacob,X))))))& ((![X]:((older(jose,X))=>(~hate(X,jose)))))& ((hate(cindy,rose) & hate(rose,cindy)))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(rose))& (~(quiet(rose)&old(rose)&creative(rose)&person(rose)))& (~hate(rose,jose))& (![X]:(room(X)=>(calm(X)&person(X))))& (![X]:(room(X)=>(quieter(cindy,X))))& (~![X]:(room(X)=>(((quiet(X)&creative(X)&old(X)&person(X))|(does_not_enjoy_virtual_reality_gaming(X))))))& (~?[X]:(calm(X)=>quiet(X)))& (![X]:(room(X)=>(((old(X))=>(quieter(jose,X))))))& (![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))
room(rose)&(![X]:(room(X)=>(X='rose')))& older(rose,jose)
[]
null
0.536558
Jim is the only person in the room. If 'Jim neither is not hated by Beatrice nor does not hate Dorothy' then 'it is not the case that 'it is not the case that 'Jim does not like Dorothy'''. 'If someone likes Becky then he/she is hated by Michael' if 'Jim does not like Dorothy'. Jim does not hate Becky. It is not the case that 'Jim does not hate Beatrice'. If someone likes Becky then he/she is hated by Michael. If someone does not like Becky and is not hated by Becky then he/she does not hate Beatrice.
Jim is liked by Dorothy.
neutral
room(jim)&(![X]:(room(X)=>(X='jim')))& ((~((~hate(jim,beatrice))|(~hate(dorothy,jim))))=>(~(~(~like(dorothy,jim)))))& ((~like(dorothy,jim))=>((![X]:((like(becky,X))=>(hate(X,michael))))))& (~hate(becky,jim))& (~(~hate(beatrice,jim)))& ((![X]:((like(becky,X))=>(hate(X,michael)))))& ((![X]:((((~like(becky,X))&(~hate(X,becky))))=>(~hate(beatrice,X)))))& (~like(michael,jim))& (~like(dorothy,jim))& (~hate(jim,michael))& (~hate(michael,jim))& (~hate(jim,beatrice))& (~hate(jim,dorothy))& (~like(beatrice,jim))& (~hate(dorothy,jim))& (![X]:(room(X)=>(((((~hate(michael,X))|(~hate(X,becky))))=>(~hate(becky,X))))))
room(jim)&(![X]:(room(X)=>(X='jim')))& like(jim,dorothy)
[]
null
0.195197
Jeanne is the only person in the room. If “Jeanne is a professional photographer specializing in portrait photography” then “if someone does not enjoy bird watching and is not a professional photographer specializing in portrait photography then he/she neither enjoys bird watching nor streams on Twitch and vice versa”. If “Jeanne reads mystery novels” then “Jeanne who hosts regular workshops on creative writing, drives a hybrid car and is a wine connoisseur with a private cellar of vintage wines owns a smartwatch”. “Jeanne develops open-source software projects in their free time” if “Jeanne either does not compete in national level swimming championships or can play the guitar but not both”. Either “Jeanne mentors a youth basketball team on weekends, collects antique jewelry and reads mystery novels” or “someone in the room hosts regular workshops on creative writing or does not own a smartwatch or both” but not both. Everyone in the room who either can play the guitar or owns an extensive assortment of vintage comic book memorabilia but not both owns an extensive assortment of vintage comic book memorabilia or competes in national level swimming championships or both. It is true that “everyone outside the room does not write poetry if they is a wine connoisseur with a private cellar of vintage wines and vice versa”. Everyone in the room is a wine connoisseur with a private cellar of vintage wines only if they either maintains a large, organic vegetable garden year-round or owns an extensive assortment of vintage comic book memorabilia but not both. Jeanne reads mystery novels. Everyone in the room enjoys bird watching. Jeanne has completed a triathlon. Jeanne who hosts regular workshops on creative writing, drives a hybrid car and is a wine connoisseur with a private cellar of vintage wines owns a smartwatch. If someone owns an extensive assortment of vintage comic book memorabilia then he/she competes in national level swimming championships. Everyone in the room is a wine connoisseur with a private cellar of vintage wines if they does not collect antique jewelry. Everyone in the room cannot play the harmonica if they collects antique jewelry. Everyone in the room who can play the guitar mentors a youth basketball team on weekends. Jeanne writes poetry. Everyone in the room is a professional photographer specializing in portrait photography if and only if they enjoys bird watching. Everyone in the room enjoys bird watching if and only if they does not collect comic books.
Jeanne can play the guitar.
neutral
room(jeanne)&(![X]:(room(X)=>(X='jeanne')))& ((is_a_professional_photographer_specializing_in_portrait_photography(jeanne))=>((![X]:((((does_not_enjoy_bird_watching(X))&(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))<=>(~((enjoys_bird_watching(X))|(streams_on_Twitch(X))))))))& ((reads_mystery_novels(jeanne))=>((((hosts_regular_workshops_on_creative_writing(jeanne))&(drives_a_hybrid_car(jeanne))&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(jeanne))))&(owns_a_smartwatch(jeanne))))& ((((does_not_compete_in_national_level_swimming_championships(jeanne))<~>(can_play_the_guitar(jeanne))))=>(develops_open-source_software_projects_in_their_free_time(jeanne)))& ((((mentors_a_youth_basketball_team_on_weekends(jeanne))&(collects_antique_jewelry(jeanne))&(reads_mystery_novels(jeanne))))<~>(?[X]:(room(X)&(((hosts_regular_workshops_on_creative_writing(X))|(does_not_own_a_smartwatch(X)))))))& (![X]:(room(X)=>(((((can_play_the_guitar(X))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(competes_in_national_level_swimming_championships(X))))))))& (![X]:(~room(X)=>(((does_not_write_poetry(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))<=(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (reads_mystery_novels(jeanne))& (![X]:(room(X)=>(enjoys_bird_watching(X))))& (has_completed_a_triathlon(jeanne))& ((((hosts_regular_workshops_on_creative_writing(jeanne))&(drives_a_hybrid_car(jeanne))&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(jeanne))))&(owns_a_smartwatch(jeanne)))& ((![X]:((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(competes_in_national_level_swimming_championships(X)))))& (![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(room(X)=>(((collects_antique_jewelry(X))=>(cannot_play_the_harmonica(X))))))& (![X]:(room(X)=>(((can_play_the_guitar(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (writes_poetry(jeanne))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))<=>(enjoys_bird_watching(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))<=>(does_not_collect_comic_books(X))))))
room(jeanne)&(![X]:(room(X)=>(X='jeanne')))& can_play_the_guitar(jeanne)
[]
null
0
Joseph is the only person in the room. If “someone in the room practices archery” then “at least one person in the room is a client of Meta”. If “not everyone anywhere writes poetry or is not a client of Meta” then “Joseph plays the violin”. If “at least one person in the room practices archery” then “everyone in the room enjoys landscape photography if they is a client of Meta”. “Someone in the room is a client of Meta” if “Joseph writes poetry” and vice versa. If “Joseph is a client of Meta” then “everyone in the room enjoys landscape photography if they plays the violin”. If “Joseph writes poetry” then “it is not the case that “it is not the case that “at least one person in the room enjoys stargazing”””. Everyone anywhere who practices archery enjoys stargazing. It is true that “Joseph enjoys landscape photography”. Joseph does not play the violin. Joseph enjoys stargazing. Someone in the room practices archery. Everyone in the room enjoys landscape photography if they enjoys stargazing. Everyone in the room who enjoys stargazing and is a client of Meta enjoys stargazing. Someone in the room practices archery and enjoys landscape photography.
Joseph plays the violin.
contradiction
room(joseph)&(![X]:(room(X)=>(X='joseph')))& ((?[X]:(room(X)&(practices_archery(X))))=>(((?[X]:(room(X)&is_a_client_of_Meta(X))))))& ((~![X]:(anywhere(X)=>(((is_not_a_client_of_Meta(X))|(writes_poetry(X))))))=>(plays_the_violin(joseph)))& ((((?[X]:(room(X)&practices_archery(X)))))=>(![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(enjoys_landscape_photography(X)))))))& ((writes_poetry(joseph))<=>(?[X]:(room(X)&(is_a_client_of_Meta(X)))))& ((is_a_client_of_Meta(joseph))=>(![X]:(room(X)=>(((plays_the_violin(X))=>(enjoys_landscape_photography(X)))))))& ((writes_poetry(joseph))=>(~(~(((?[X]:(room(X)&enjoys_stargazing(X))))))))& (![X]:(anywhere(X)=>(((practices_archery(X))=>(enjoys_stargazing(X))))))& (enjoys_landscape_photography(joseph))& (does_not_play_the_violin(joseph))& (enjoys_stargazing(joseph))& (?[X]:(room(X)&(practices_archery(X))))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(enjoys_landscape_photography(X))))))& (![X]:(room(X)=>(((((enjoys_stargazing(X))&(is_a_client_of_Meta(X))))=>(enjoys_stargazing(X))))))& (?[X]:(room(X)&(((practices_archery(X))&(enjoys_landscape_photography(X))))))& (~(~(enjoys_landscape_photography(joseph))))& (((?[X]:(~room(X)&enjoys_landscape_photography(X)))))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& plays_the_violin(joseph)
[ "p9", "hypothesis" ]
% SZS status Unsatisfiable for 4562757650605032024232944 % SZS output start Proof for 4562757650605032024232944 53. ~predd(mary) [input p9] 61. predd(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 152. predd(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 61] 261. ~predd(mary) [cnf transformation 53] 271. predd(mary) [cnf transformation 152] 290. 5 <=> predd(mary) [avatar definition] 323. ~5 [avatar split clause 261,290] 324. 5 [avatar split clause 271,290] 325. $false [avatar sat refutation 323,324] % SZS output end Proof for 4562757650605032024232944 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.07567
Joseph, Phyllis, Arlene, Nicole are the only persons in the room. Joseph makes intricate hand-cut paper art for exhibitions. Everyone in the room is an avid mountain climber who has scaled several peaks if they maintains a personal blog focused on cybersecurity tips, collect rare sneakers or hosts themed dinner parties featuring gourmet home-cooked meals. Phyllis who does not practice urban gardening does not work on fridays or practices urban gardening or both. Joseph who maintains a personal blog focused on cybersecurity tips, collect rare sneakers or hosts themed dinner parties featuring gourmet home-cooked meals hosts regular workshops on creative writing. Not everyone in the room maintains a personal blog focused on cybersecurity tips if they uses an ios phone. Phyllis who does not have a piercing uses an ios phone. Everyone in the room who mentors a youth basketball team on weekends either is an avid mountain climber who has scaled several peaks or mentors a youth basketball team on weekends but not both. At least one person in the room practices urban gardening. Everyone in the room does not enjoy macrame or hosts regular workshops on creative writing.
Phyllis works on fridays.
contradiction
room(joseph)&room(phyllis)&room(arlene)&room(nicole)&(![X]:(room(X)=>(X='joseph'|X='phyllis'|X='arlene'|X='nicole')))& (makes_intricate_hand-cut_paper_art_for_exhibitions(joseph))& (![X]:(room(X)=>(((((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(collect_rare_sneakers(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& ((does_not_practice_urban_gardening(phyllis))&(((does_not_work_on_fridays(phyllis))|(practices_urban_gardening(phyllis)))))& ((((maintains_a_personal_blog_focused_on_cybersecurity_tips(joseph))|(collect_rare_sneakers(joseph))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(joseph))))&(hosts_regular_workshops_on_creative_writing(joseph)))& (~![X]:(room(X)=>(((uses_an_ios_phone(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((does_not_have_a_piercing(phyllis))&(uses_an_ios_phone(phyllis)))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))<~>(mentors_a_youth_basketball_team_on_weekends(X))))))))& (((?[X]:(room(X)&practices_urban_gardening(X)))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))|(does_not_enjoy_macrame(X))))))
room(joseph)&room(phyllis)&room(arlene)&room(nicole)&(![X]:(room(X)=>(X='joseph'|X='phyllis'|X='arlene'|X='nicole')))& works_on_fridays(phyllis)
[ "p3", "hypothesis" ]
% SZS status Unsatisfiable for 8709087479295349826151336 % SZS output start Proof for 8709087479295349826151336 47. (predd(paul) | ~predh(paul)) & ~predd(paul) [input p3] 54. predh(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 140. predh(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 54] 141. predh(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140] 236. ~predd(paul) [cnf transformation 47] 237. predd(paul) | ~predh(paul) [cnf transformation 47] 250. predh(paul) [cnf transformation 141] 253. 1 <=> predh(paul) [avatar definition] 257. 2 <=> predd(paul) [avatar definition] 260. ~1 | 2 [avatar split clause 237,257,253] 261. ~2 [avatar split clause 236,257] 275. 1 [avatar split clause 250,253] 276. $false [avatar sat refutation 260,261,275] % SZS output end Proof for 8709087479295349826151336 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0
Linda, Lisa, Tiffany are the only persons in the room. Linda owns a 3D printer. Linda is a client of Meta. Everyone in the room is a client of Meta if they does not collect rare sneakers. Everyone anywhere who is a client of Meta or owns a 3D printer or both owns a 3D printer. If someone practices archery or own a television or both then he/she owns a microscope. Everyone in the room is an avid hiker if they is a client of Meta or does not collect vintage vinyl records or both. At least one person outside the room owns a microscope. Everyone in the room practices archery or does not enjoy skydiving. Linda collect rare sneakers. It is true that "at least one person in the room has a curated collection of mid-century modern furniture". If someone owns a high-end gaming PC with custom-built components then he/she is an avid hiker. Everyone in the room own a television if and only if they collect rare sneakers and collects vintage vinyl records. Everyone in the room who collects historical artifacts related to ancient civilizations has a curated collection of mid-century modern furniture. Everyone in the room collects historical artifacts related to ancient civilizations, practices archery and practices urban gardening if they has a curated collection of mid-century modern furniture. Everyone in the room who collects historical artifacts related to ancient civilizations, practices archery and practices urban gardening does not own a 3D printer.
Linda has a curated collection of mid-century modern furniture.
contradiction
room(linda)&room(lisa)&room(tiffany)&(![X]:(room(X)=>(X='linda'|X='lisa'|X='tiffany')))& (owns_a_3D_printer(linda))& (is_a_client_of_Meta(linda))& (![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))=>(is_a_client_of_Meta(X))))))& (![X]:(anywhere(X)=>(((((is_a_client_of_Meta(X))|(owns_a_3D_printer(X))))=>(owns_a_3D_printer(X))))))& ((![X]:((((practices_archery(X))|(own_a_television(X))))=>(owns_a_microscope(X)))))& (![X]:(room(X)=>(((((is_a_client_of_Meta(X))|(does_not_collect_vintage_vinyl_records(X))))=>(is_an_avid_hiker(X))))))& (((?[X]:(~room(X)&owns_a_microscope(X)))))& (![X]:(room(X)=>(((does_not_enjoy_skydiving(X))|(practices_archery(X))))))& (collect_rare_sneakers(linda))& (((?[X]:(room(X)&has_a_curated_collection_of_mid-century_modern_furniture(X)))))& ((![X]:((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(is_an_avid_hiker(X)))))& (![X]:(room(X)=>(((own_a_television(X))<=>(((collect_rare_sneakers(X))&(collects_vintage_vinyl_records(X))))))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(owns_a_microscope(X))))))& (~![X]:(room(X)=>(((owns_a_microscope(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))&(practices_archery(X))&(practices_urban_gardening(X))))))))& (![X]:(room(X)=>(((((collects_historical_artifacts_related_to_ancient_civilizations(X))&(practices_archery(X))&(practices_urban_gardening(X))))=>(does_not_own_a_3D_printer(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_enjoy_skydiving(X))))))& (((is_a_client_of_Meta(lisa))|(does_not_collect_vintage_vinyl_records(lisa))))& (owns_a_microscope(linda))
room(linda)&room(lisa)&room(tiffany)&(![X]:(room(X)=>(X='linda'|X='lisa'|X='tiffany')))& has_a_curated_collection_of_mid-century_modern_furniture(linda)
[ "p0", "p1", "p16", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 4299720978991010364931404 % SZS output start Proof for 4299720978991010364931404 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. predp(mary) [input p1] 60. ! [X0] : (room(X0) => (predc(X0) => (predo(X0) & predf(X0) & predk(X0)))) [input p16] 61. ! [X0] : (room(X0) => ((predo(X0) & predf(X0) & predk(X0)) => ~predp(X0))) [input p17] 65. predc(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 147. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147] 157. ! [X0] : (((predo(X0) & predf(X0) & predk(X0)) | ~predc(X0)) | ~room(X0)) [ennf transformation 60] 158. ! [X0] : ((predo(X0) & predf(X0) & predk(X0)) | ~predc(X0) | ~room(X0)) [flattening 157] 159. ! [X0] : ((~predp(X0) | (~predo(X0) | ~predf(X0) | ~predk(X0))) | ~room(X0)) [ennf transformation 61] 160. ! [X0] : (~predp(X0) | ~predo(X0) | ~predf(X0) | ~predk(X0) | ~room(X0)) [flattening 159] 161. predc(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 162. predc(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 161] 253. room(mary) [cnf transformation 148] 257. predp(mary) [cnf transformation 45] 271. ~predc(X0) | predk(X0) | ~room(X0) [cnf transformation 158] 272. ~predc(X0) | predf(X0) | ~room(X0) [cnf transformation 158] 273. ~predc(X0) | predo(X0) | ~room(X0) [cnf transformation 158] 274. ~predo(X0) | ~predp(X0) | ~predf(X0) | ~predk(X0) | ~room(X0) [cnf transformation 160] 280. predc(mary) [cnf transformation 162] 334. predk(mary) | ~room(mary) [resolution 271,280] 336. predk(mary) [subsumption resolution 334,253] 339. predf(mary) | ~room(mary) [resolution 272,280] 341. predf(mary) [subsumption resolution 339,253] 344. predo(mary) | ~room(mary) [resolution 273,280] 346. predo(mary) [subsumption resolution 344,253] 384. ~predp(mary) | ~predf(mary) | ~predk(mary) | ~room(mary) [resolution 274,346] 390. ~predf(mary) | ~predk(mary) | ~room(mary) [subsumption resolution 384,257] 391. ~predk(mary) | ~room(mary) [subsumption resolution 390,341] 392. ~room(mary) [subsumption resolution 391,336] 393. $false [subsumption resolution 392,253] % SZS output end Proof for 4299720978991010364931404 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.076987
Daniel, Lawrence, Debora, Kenny are the only persons in the room. If everyone in the room regularly contributes to tech forums and online communities or does not enjoy trail running then everyone in the room is a certified yoga instructor teaching classes weekly if they regularly contributes to tech forums and online communities. If Kenny collects vintage stamps then everyone in the room enjoys writing detailed reviews of new and classic board games if they is a certified yoga instructor teaching classes weekly. If everyone in the room does not own a smart tv or can play the flute then no one in the room writes and illustrates their own graphic novels or is not a certified yoga instructor teaching classes weekly.
Lawrence is a certified yoga instructor teaching classes weekly.
entailment
room(daniel)&room(lawrence)&room(debora)&room(kenny)&(![X]:(room(X)=>(X='daniel'|X='lawrence'|X='debora'|X='kenny')))& ((![X]:(room(X)=>(((does_not_enjoy_trail_running(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))))=>(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))& ((collects_vintage_stamps(kenny))=>(![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))& (((![X]:(room(X)=>(((can_play_the_flute(X))|(does_not_own_a_smart_tv(X))))))=>(~?[X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(writes_and_illustrates_their_own_graphic_novels(X)))))))& ((~?[X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(writes_and_illustrates_their_own_graphic_novels(X))))))=>(?[X]:(anywhere(X)&(does_not_enjoy_coding_in_Python(X))))))& (((maintains_a_personal_blog_focused_on_cybersecurity_tips(lawrence))=>(can_play_the_flute(kenny)))&((~(maintains_a_personal_blog_focused_on_cybersecurity_tips(lawrence)))=>(![X]:(anywhere(X)=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (((((?[X]:(room(X)&is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))=>(![X]:(~room(X)=>(((enjoys_windsurfing(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& ((![X]:(~room(X)=>(((enjoys_windsurfing(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))=>(~![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(owns_a_smart_tv(X))))))))& ((?[X]:(room(X)&(enjoys_salsa_dancing(X))))<=>(![X]:(room(X)=>(((does_not_own_a_smart_tv(X))|(enjoys_salsa_dancing(X)))))))& ((((?[X]:(room(X)&enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))=>((![X]:((practices_zumba(X))=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(can_play_the_flute(X))&(enjoys_coding_in_Python(X))))))))& (![X]:(anywhere(X)=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))& (![X]:(room(X)=>(((writes_poetry(X))<=(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (((is_a_cybersecurity_expert(daniel))|(does_enjoy_trail_running(daniel))|(can_play_the_flute(daniel))))& (does_not_enjoy_trail_running(debora))& (regularly_goes_on_multi-day_backpacking_trips_in_national_parks(kenny))& (![X]:(~room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(cannot_play_the_piano(X))))))& (![X]:(room(X)=>(((cannot_play_the_piano(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (((?[X]:(room(X)&does_enjoy_trail_running(X)))&(![X,Y]:((room(X)&room(Y)&(does_enjoy_trail_running(X))&(does_enjoy_trail_running(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((writes_poetry(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(is_an_avid_hiker(X))))))& (![X]:(room(X)=>(((does_not_own_a_smart_tv(X))=>(does_not_collect_action_figures(X))))))& (![X]:(room(X)=>(((does_not_collect_action_figures(X))=>(is_right-handed(X))))))& (is_not_an_avid_hiker(debora))& (?[X]:(~room(X)&(is_a_cybersecurity_expert(X))))& (is_a_certified_yoga_instructor_teaching_classes_weekly(lawrence))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (![X]:(anywhere(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(writes_and_illustrates_their_own_graphic_novels(X))))))))& (regularly_goes_on_multi-day_backpacking_trips_in_national_parks(daniel))& (develops_open-source_software_projects_in_their_free_time(debora))& (can_play_the_flute(kenny))
room(daniel)&room(lawrence)&room(debora)&room(kenny)&(![X]:(room(X)=>(X='daniel'|X='lawrence'|X='debora'|X='kenny')))& is_a_certified_yoga_instructor_teaching_classes_weekly(lawrence)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7659176221810641303711523 % SZS output start Proof for 7659176221810641303711523 44. predc(alice) & predt(fred) & predj(mary) & ! [X0] : (anywhere(X0) => (predv(X0) => (predb(X0) | ~prede(X0)))) & ! [X0] : (room(X0) => (predp(X0) => predv(X0))) & preda(paul) & ? [X0] : (predq(X0) & ~room(X0)) & ~predo(fred) & ! [X0] : (room(X0) => (~predd(X0) => predz(X0))) & ! [X0] : (room(X0) => (~preds(X0) => ~predd(X0))) & ! [X0] : (room(X0) => (predn(X0) => predo(X0))) & ! [X0] : (room(X0) => (predu(X0) => predn(X0))) & ! [X0,X1] : ((predh(X1) & predh(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predh(X0) & room(X0)) & ! [X0] : (room(X0) => (~predm(X0) => predp(X0))) & ! [X0] : (~room(X0) => (preda(X0) => ~predm(X0))) & predj(alice) & ~predh(fred) & (predc(mary) | predh(mary) | predq(mary)) & ! [X0] : (room(X0) => (predk(X0) => predu(X0))) & ! [X0] : (anywhere(X0) => predr(X0)) & (? [X0] : (predn(X0) & room(X0)) => ! [X0] : (predy(X0) => (predw(X0) & predc(X0) & predr(X0)))) & (? [X0] : (predg(X0) & room(X0)) <=> ! [X0] : (room(X0) => (predg(X0) | ~preds(X0)))) & (! [X0] : (~room(X0) => (~predr(X0) | predx(X0))) => ~! [X0] : (room(X0) => (~predr(X0) => preds(X0)))) & (? [X0] : (predf(X0) & room(X0)) => ! [X0] : (~room(X0) => (~predr(X0) | predx(X0)))) & (~predv(paul) => ! [X0] : (anywhere(X0) => preda(X0))) & (predv(paul) => predc(alice)) & (~? [X0] : (room(X0) => (predb(X0) | ~preda(X0))) => ? [X0] : (~predw(X0) & anywhere(X0))) & (! [X0] : (room(X0) => (~preds(X0) | predc(X0))) => ~? [X0] : (room(X0) => (predb(X0) | ~preda(X0)))) & (predi(alice) => ! [X0] : (room(X0) => (preda(X0) => predn(X0)))) & (! [X0] : (room(X0) => (predk(X0) | ~predh(X0))) => ! [X0] : (room(X0) => (predk(X0) => preda(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(preda(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. predc(alice) & predt(fred) & predj(mary) & ! [X0] : (anywhere(X0) => (predv(X0) => (predb(X0) | ~prede(X0)))) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : (predq(X2) & ~room(X2)) & ~predo(fred) & ! [X3] : (room(X3) => (~predd(X3) => predz(X3))) & ! [X4] : (room(X4) => (~preds(X4) => ~predd(X4))) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & predj(alice) & ~predh(fred) & (predc(mary) | predh(mary) | predq(mary)) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X14] : (predn(X14) & room(X14)) => ! [X15] : (predy(X15) => (predw(X15) & predc(X15) & predr(X15)))) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. predc(alice) & predj(mary) & ! [X0] : (anywhere(X0) => (predv(X0) => (predb(X0) | ~prede(X0)))) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : (predq(X2) & ~room(X2)) & ~predo(fred) & ! [X3] : (room(X3) => (~predd(X3) => predz(X3))) & ! [X4] : (room(X4) => (~preds(X4) => ~predd(X4))) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & predj(alice) & ~predh(fred) & (predc(mary) | predh(mary) | predq(mary)) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X14] : (predn(X14) & room(X14)) => ! [X15] : (predy(X15) => (predw(X15) & predc(X15) & predr(X15)))) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. predc(alice) & predj(mary) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : (predq(X2) & ~room(X2)) & ~predo(fred) & ! [X3] : (room(X3) => (~predd(X3) => predz(X3))) & ! [X4] : (room(X4) => (~preds(X4) => ~predd(X4))) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & predj(alice) & ~predh(fred) & (predc(mary) | predh(mary) | predq(mary)) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X14] : (predn(X14) & room(X14)) => ! [X15] : (predy(X15) => (predw(X15) & predc(X15) & predr(X15)))) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. predc(alice) & predj(mary) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : (predq(X2) & ~room(X2)) & ~predo(fred) & ! [X4] : (room(X4) => (~preds(X4) => ~predd(X4))) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & predj(alice) & ~predh(fred) & (predc(mary) | predh(mary) | predq(mary)) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X14] : (predn(X14) & room(X14)) => ! [X15] : (predy(X15) => (predw(X15) & predc(X15) & predr(X15)))) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. predc(alice) & predj(mary) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : (predq(X2) & ~room(X2)) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & predj(alice) & ~predh(fred) & (predc(mary) | predh(mary) | predq(mary)) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X14] : (predn(X14) & room(X14)) => ! [X15] : (predy(X15) => (predw(X15) & predc(X15) & predr(X15)))) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : (predq(X2) & ~room(X2)) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & (predc(mary) | predh(mary) | predq(mary)) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X14] : (predn(X14) & room(X14)) => ! [X15] : (predy(X15) => (predw(X15) & predc(X15) & predr(X15)))) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X14] : (predn(X14) & room(X14)) => ! [X15] : (predy(X15) => (predw(X15) & predc(X15) & predr(X15)))) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : (~predw(X24) & anywhere(X24))) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (? [X20] : (predf(X20) & room(X20)) => ! [X21] : (~room(X21) => (~predr(X21) | predx(X21)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => (~predr(X18) | predx(X18))) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => ~predr(X18)) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (predi(alice) => ! [X27] : (room(X27) => (preda(X27) => predn(X27)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X12] : (room(X12) => (predk(X12) => predu(X12))) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => ~predr(X18)) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & (! [X28] : (room(X28) => (predk(X28) | ~predh(X28))) => ! [X29] : (room(X29) => (predk(X29) => preda(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 58. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X6] : (room(X6) => (predu(X6) => predn(X6))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => ~predr(X18)) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 59. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X5] : (room(X5) => (predn(X5) => predo(X5))) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => ~predr(X18)) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 58] 60. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ~predo(fred) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => ~predr(X18)) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 59] 61. predc(alice) & ! [X1] : (room(X1) => (predp(X1) => predv(X1))) & preda(paul) & ? [X2] : ~room(X2) & ! [X7,X8] : ((predh(X8) & predh(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (room(X10) => (~predm(X10) => predp(X10))) & ! [X11] : (~room(X11) => (preda(X11) => ~predm(X11))) & ~predh(fred) & ! [X13] : (anywhere(X13) => predr(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (room(X17) => (predg(X17) | ~preds(X17)))) & (! [X18] : (~room(X18) => ~predr(X18)) => ~! [X19] : (room(X19) => (~predr(X19) => preds(X19)))) & (~predv(paul) => ! [X22] : (anywhere(X22) => preda(X22))) & (predv(paul) => predc(alice)) & (~? [X23] : (room(X23) => (predb(X23) | ~preda(X23))) => ? [X24] : anywhere(X24)) & (! [X25] : (room(X25) => (~preds(X25) | predc(X25))) => ~? [X26] : (room(X26) => (predb(X26) | ~preda(X26)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 60] 133. predc(alice) & ! [X1] : ((predv(X1) | ~predp(X1)) | ~room(X1)) & preda(paul) & ? [X2] : ~room(X2) & ! [X7,X8] : (X7 = X8 | (~predh(X8) | ~predh(X7) | ~room(X8) | ~room(X7))) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : ((predp(X10) | predm(X10)) | ~room(X10)) & ! [X11] : ((~predm(X11) | ~preda(X11)) | room(X11)) & ~predh(fred) & ! [X13] : (predr(X13) | ~anywhere(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : ((predg(X17) | ~preds(X17)) | ~room(X17))) & (? [X19] : ((~preds(X19) & ~predr(X19)) & room(X19)) | ? [X18] : (predr(X18) & ~room(X18))) & (! [X22] : (preda(X22) | ~anywhere(X22)) | predv(paul)) & (predc(alice) | ~predv(paul)) & (? [X24] : anywhere(X24) | ? [X23] : ((predb(X23) | ~preda(X23)) | ~room(X23))) & (! [X26] : ((~predb(X26) & preda(X26)) & room(X26)) | ? [X25] : ((preds(X25) & ~predc(X25)) & room(X25))) & ! [X30] : ((alice = X30 | fred = X30 | paul = X30 | mary = X30) | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 134. predc(alice) & ! [X1] : (predv(X1) | ~predp(X1) | ~room(X1)) & preda(paul) & ? [X2] : ~room(X2) & ! [X7,X8] : (X7 = X8 | ~predh(X8) | ~predh(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (predp(X10) | predm(X10) | ~room(X10)) & ! [X11] : (~predm(X11) | ~preda(X11) | room(X11)) & ~predh(fred) & ! [X13] : (predr(X13) | ~anywhere(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (predg(X17) | ~preds(X17) | ~room(X17))) & (? [X19] : (~preds(X19) & ~predr(X19) & room(X19)) | ? [X18] : (predr(X18) & ~room(X18))) & (! [X22] : (preda(X22) | ~anywhere(X22)) | predv(paul)) & (predc(alice) | ~predv(paul)) & (? [X24] : anywhere(X24) | ? [X23] : (predb(X23) | ~preda(X23) | ~room(X23))) & (! [X26] : (~predb(X26) & preda(X26) & room(X26)) | ? [X25] : (preds(X25) & ~predc(X25) & room(X25))) & ! [X30] : (alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 133] 135. ~preda(paul) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 136. ~preda(paul) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 135] 137. ? [X25] : (preds(X25) & ~predc(X25) & room(X25)) | ~sP0 [predicate definition introduction] 138. predc(alice) & ! [X1] : (predv(X1) | ~predp(X1) | ~room(X1)) & preda(paul) & ? [X2] : ~room(X2) & ! [X7,X8] : (X7 = X8 | ~predh(X8) | ~predh(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (predp(X10) | predm(X10) | ~room(X10)) & ! [X11] : (~predm(X11) | ~preda(X11) | room(X11)) & ~predh(fred) & ! [X13] : (predr(X13) | ~anywhere(X13)) & (? [X16] : (predg(X16) & room(X16)) <=> ! [X17] : (predg(X17) | ~preds(X17) | ~room(X17))) & (? [X19] : (~preds(X19) & ~predr(X19) & room(X19)) | ? [X18] : (predr(X18) & ~room(X18))) & (! [X22] : (preda(X22) | ~anywhere(X22)) | predv(paul)) & (predc(alice) | ~predv(paul)) & (? [X24] : anywhere(X24) | ? [X23] : (predb(X23) | ~preda(X23) | ~room(X23))) & (! [X26] : (~predb(X26) & preda(X26) & room(X26)) | sP0) & ! [X30] : (alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [definition folding 134,137] 144. predc(alice) & ! [X1] : (predv(X1) | ~predp(X1) | ~room(X1)) & preda(paul) & ? [X2] : ~room(X2) & ! [X7,X8] : (X7 = X8 | ~predh(X8) | ~predh(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (predp(X10) | predm(X10) | ~room(X10)) & ! [X11] : (~predm(X11) | ~preda(X11) | room(X11)) & ~predh(fred) & ! [X13] : (predr(X13) | ~anywhere(X13)) & ((? [X16] : (predg(X16) & room(X16)) | ? [X17] : (~predg(X17) & preds(X17) & room(X17))) & (! [X17] : (predg(X17) | ~preds(X17) | ~room(X17)) | ! [X16] : (~predg(X16) | ~room(X16)))) & (? [X19] : (~preds(X19) & ~predr(X19) & room(X19)) | ? [X18] : (predr(X18) & ~room(X18))) & (! [X22] : (preda(X22) | ~anywhere(X22)) | predv(paul)) & (predc(alice) | ~predv(paul)) & (? [X24] : anywhere(X24) | ? [X23] : (predb(X23) | ~preda(X23) | ~room(X23))) & (! [X26] : (~predb(X26) & preda(X26) & room(X26)) | sP0) & ! [X30] : (alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 138] 145. predc(alice) & ! [X1] : (predv(X1) | ~predp(X1) | ~room(X1)) & preda(paul) & ? [X2] : ~room(X2) & ! [X7,X8] : (X7 = X8 | ~predh(X8) | ~predh(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predh(X9) & room(X9)) & ! [X10] : (predp(X10) | predm(X10) | ~room(X10)) & ! [X11] : (~predm(X11) | ~preda(X11) | room(X11)) & ~predh(fred) & ! [X13] : (predr(X13) | ~anywhere(X13)) & (? [X16] : (predg(X16) & room(X16)) | ? [X17] : (~predg(X17) & preds(X17) & room(X17))) & (! [X17] : (predg(X17) | ~preds(X17) | ~room(X17)) | ! [X16] : (~predg(X16) | ~room(X16))) & (? [X19] : (~preds(X19) & ~predr(X19) & room(X19)) | ? [X18] : (predr(X18) & ~room(X18))) & (! [X22] : (preda(X22) | ~anywhere(X22)) | predv(paul)) & (predc(alice) | ~predv(paul)) & (? [X24] : anywhere(X24) | ? [X23] : (predb(X23) | ~preda(X23) | ~room(X23))) & (! [X26] : (~predb(X26) & preda(X26) & room(X26)) | sP0) & ! [X30] : (alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 144] 146. predc(alice) & ! [X0] : (predv(X0) | ~predp(X0) | ~room(X0)) & preda(paul) & ? [X1] : ~room(X1) & ! [X2,X3] : (X2 = X3 | ~predh(X3) | ~predh(X2) | ~room(X3) | ~room(X2)) & ? [X4] : (predh(X4) & room(X4)) & ! [X5] : (predp(X5) | predm(X5) | ~room(X5)) & ! [X6] : (~predm(X6) | ~preda(X6) | room(X6)) & ~predh(fred) & ! [X7] : (predr(X7) | ~anywhere(X7)) & (? [X8] : (predg(X8) & room(X8)) | ? [X9] : (~predg(X9) & preds(X9) & room(X9))) & (! [X10] : (predg(X10) | ~preds(X10) | ~room(X10)) | ! [X11] : (~predg(X11) | ~room(X11))) & (? [X12] : (~preds(X12) & ~predr(X12) & room(X12)) | ? [X13] : (predr(X13) & ~room(X13))) & (! [X14] : (preda(X14) | ~anywhere(X14)) | predv(paul)) & (predc(alice) | ~predv(paul)) & (? [X15] : anywhere(X15) | ? [X16] : (predb(X16) | ~preda(X16) | ~room(X16))) & (! [X17] : (~predb(X17) & preda(X17) & room(X17)) | sP0) & ! [X18] : (alice = X18 | fred = X18 | paul = X18 | mary = X18 | ~room(X18)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 145] 147. ? [X1] : ~room(X1) => ~room(sK2) [choice axiom] 148. ? [X4] : (predh(X4) & room(X4)) => (predh(sK3) & room(sK3)) [choice axiom] 149. ? [X8] : (predg(X8) & room(X8)) => (predg(sK4) & room(sK4)) [choice axiom] 150. ? [X9] : (~predg(X9) & preds(X9) & room(X9)) => (~predg(sK5) & preds(sK5) & room(sK5)) [choice axiom] 151. ? [X12] : (~preds(X12) & ~predr(X12) & room(X12)) => (~preds(sK6) & ~predr(sK6) & room(sK6)) [choice axiom] 152. ? [X13] : (predr(X13) & ~room(X13)) => (predr(sK7) & ~room(sK7)) [choice axiom] 153. ? [X15] : anywhere(X15) => anywhere(sK8) [choice axiom] 154. ? [X16] : (predb(X16) | ~preda(X16) | ~room(X16)) => (predb(sK9) | ~preda(sK9) | ~room(sK9)) [choice axiom] 155. predc(alice) & ! [X0] : (predv(X0) | ~predp(X0) | ~room(X0)) & preda(paul) & ~room(sK2) & ! [X2,X3] : (X2 = X3 | ~predh(X3) | ~predh(X2) | ~room(X3) | ~room(X2)) & (predh(sK3) & room(sK3)) & ! [X5] : (predp(X5) | predm(X5) | ~room(X5)) & ! [X6] : (~predm(X6) | ~preda(X6) | room(X6)) & ~predh(fred) & ! [X7] : (predr(X7) | ~anywhere(X7)) & ((predg(sK4) & room(sK4)) | (~predg(sK5) & preds(sK5) & room(sK5))) & (! [X10] : (predg(X10) | ~preds(X10) | ~room(X10)) | ! [X11] : (~predg(X11) | ~room(X11))) & ((~preds(sK6) & ~predr(sK6) & room(sK6)) | (predr(sK7) & ~room(sK7))) & (! [X14] : (preda(X14) | ~anywhere(X14)) | predv(paul)) & (predc(alice) | ~predv(paul)) & (anywhere(sK8) | (predb(sK9) | ~preda(sK9) | ~room(sK9))) & (! [X17] : (~predb(X17) & preda(X17) & room(X17)) | sP0) & ! [X18] : (alice = X18 | fred = X18 | paul = X18 | mary = X18 | ~room(X18)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 146,154,153,152,151,150,149,148,147] 156. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) [choice axiom] 157. ~preda(paul) | (alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 136,156] 242. room(mary) [cnf transformation 155] 243. room(paul) [cnf transformation 155] 244. room(fred) [cnf transformation 155] 245. room(alice) [cnf transformation 155] 246. ~room(X18) | fred = X18 | paul = X18 | mary = X18 | alice = X18 [cnf transformation 155] 274. preda(paul) [cnf transformation 155] 277. ~preda(paul) | room(sK10) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 278. ~preda(paul) | mary != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 279. ~preda(paul) | paul != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 280. ~preda(paul) | fred != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 281. ~preda(paul) | alice != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 369. alice != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,274] 370. alice != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 369,245] 371. alice != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 370,244] 372. alice != sK10 | ~room(mary) [subsumption resolution 371,243] 373. alice != sK10 [subsumption resolution 372,242] 374. fred != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,274] 375. fred != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 374,245] 376. fred != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 375,244] 377. fred != sK10 | ~room(mary) [subsumption resolution 376,243] 378. fred != sK10 [subsumption resolution 377,242] 379. paul != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,274] 380. paul != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 379,245] 381. paul != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 380,244] 382. paul != sK10 | ~room(mary) [subsumption resolution 381,243] 383. paul != sK10 [subsumption resolution 382,242] 384. mary != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,274] 385. mary != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 384,245] 386. mary != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 385,244] 387. mary != sK10 | ~room(mary) [subsumption resolution 386,243] 388. mary != sK10 [subsumption resolution 387,242] 389. room(sK10) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,274] 390. room(sK10) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 389,245] 391. room(sK10) | ~room(paul) | ~room(mary) [subsumption resolution 390,244] 392. room(sK10) | ~room(mary) [subsumption resolution 391,243] 393. room(sK10) [subsumption resolution 392,242] 568. fred = sK10 | paul = sK10 | mary = sK10 | alice = sK10 [resolution 246,393] 620. paul = sK10 | mary = sK10 | alice = sK10 [subsumption resolution 568,378] 621. mary = sK10 | alice = sK10 [subsumption resolution 620,383] 622. alice = sK10 [subsumption resolution 621,388] 623. $false [subsumption resolution 622,373] % SZS output end Proof for 7659176221810641303711523 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0
Daisy, Jeanne, Christopher, Mathew, Stephanie are the only persons in the room. Everyone in the room enjoys skydiving if they enjoys cross-country skiing. Not everyone in the room enjoys skydiving if they does not regularly goes on multi-day backpacking trips in national parks. If someone is a cybersecurity expert then he/she creates bespoke furniture pieces from reclaimed wood. Christopher enjoys cross-country skiing.
Christopher enjoys skydiving.
entailment
room(daisy)&room(jeanne)&room(christopher)&room(mathew)&room(stephanie)&(![X]:(room(X)=>(X='daisy'|X='jeanne'|X='christopher'|X='mathew'|X='stephanie')))& (![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(enjoys_skydiving(X))))))& (~![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(enjoys_skydiving(X))))))& ((![X]:((is_a_cybersecurity_expert(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))& ((![X]:((does_not_collect_modern_art(X))=>(is_a_night_owl(X)))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)&does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(Y))&(X!=Y))))& (~![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (?[X]:(room(X)&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& (![X]:(anywhere(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(enjoys_skydiving(X))))))& ((![X]:((participates_in_long-distance_cycling_events_across_the_country(X))=>(does_not_use_an_ios_phone(X)))))& ((![X]:((enjoys_snowboarding(X))=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))))& (enjoys_cross-country_skiing(christopher))& ((![X]:((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(~room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (~![X]:(anywhere(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(can_play_the_flute(X))))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& ((![X]:((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(collects_modern_art(X)))))& ((![X]:((enjoys_snowboarding(X))=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))))& (((?[X]:(room(X)&hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_snowboarding(X)&enjoys_snowboarding(Y))&(X!=Y))))& (![X]:(~room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((cannot_play_the_flute(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))& (?[X]:(room(X)&(is_a_night_owl(X))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (is_an_avid_mountain_climber_who_has_scaled_several_peaks(mathew))& ((![X]:((((enjoys_cross-country_skiing(X))<~>(can_play_the_flute(X))))<=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))& (?[X]:(room(X)&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))
room(daisy)&room(jeanne)&room(christopher)&room(mathew)&room(stephanie)&(![X]:(room(X)=>(X='daisy'|X='jeanne'|X='christopher'|X='mathew'|X='stephanie')))& enjoys_skydiving(christopher)
[ "p0", "p1", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 8640030694863237285382105 % SZS output start Proof for 8640030694863237285382105 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (predv(X0) => prede(X0))) [input p1] 55. predv(fred) [input p11] 73. ~(prede(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 155. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 156. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 155] 157. ! [X0] : ((prede(X0) | ~predv(X0)) | ~room(X0)) [ennf transformation 45] 158. ! [X0] : (prede(X0) | ~predv(X0) | ~room(X0)) [flattening 157] 177. ~prede(fred) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 73] 178. ~prede(fred) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 177] 198. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK11 & alice != sK11 & fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) [choice axiom] 199. ~prede(fred) | (john != sK11 & alice != sK11 & fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 178,198] 281. room(mary) [cnf transformation 156] 282. room(paul) [cnf transformation 156] 283. room(fred) [cnf transformation 156] 284. room(alice) [cnf transformation 156] 285. room(john) [cnf transformation 156] 286. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 156] 287. ~predv(X0) | prede(X0) | ~room(X0) [cnf transformation 158] 302. predv(fred) [cnf transformation 55] 322. ~prede(fred) | room(sK11) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 323. ~prede(fred) | mary != sK11 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 324. ~prede(fred) | paul != sK11 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 325. ~prede(fred) | fred != sK11 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 326. ~prede(fred) | alice != sK11 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 327. ~prede(fred) | john != sK11 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 329. ~prede(fred) | john != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 327,285] 330. ~prede(fred) | john != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 329,284] 331. ~prede(fred) | john != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 330,283] 332. ~prede(fred) | john != sK11 | ~room(mary) [subsumption resolution 331,282] 333. ~prede(fred) | john != sK11 [subsumption resolution 332,281] 335. 1 <=> john = sK11 [avatar definition] 337. john != sK11 <- (~1) [avatar component clause 335] 339. 2 <=> prede(fred) [avatar definition] 342. ~1 | ~2 [avatar split clause 333,339,335] 343. ~prede(fred) | alice != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 326,285] 344. ~prede(fred) | alice != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 343,284] 345. ~prede(fred) | alice != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 344,283] 346. ~prede(fred) | alice != sK11 | ~room(mary) [subsumption resolution 345,282] 347. ~prede(fred) | alice != sK11 [subsumption resolution 346,281] 349. 3 <=> alice = sK11 [avatar definition] 351. alice != sK11 <- (~3) [avatar component clause 349] 352. ~3 | ~2 [avatar split clause 347,339,349] 353. ~prede(fred) | fred != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 325,285] 354. ~prede(fred) | fred != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 353,284] 355. ~prede(fred) | fred != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 354,283] 356. ~prede(fred) | fred != sK11 | ~room(mary) [subsumption resolution 355,282] 357. ~prede(fred) | fred != sK11 [subsumption resolution 356,281] 359. 4 <=> fred = sK11 [avatar definition] 361. fred != sK11 <- (~4) [avatar component clause 359] 362. ~4 | ~2 [avatar split clause 357,339,359] 363. ~prede(fred) | paul != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 324,285] 364. ~prede(fred) | paul != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 363,284] 365. ~prede(fred) | paul != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 364,283] 366. ~prede(fred) | paul != sK11 | ~room(mary) [subsumption resolution 365,282] 367. ~prede(fred) | paul != sK11 [subsumption resolution 366,281] 369. 5 <=> paul = sK11 [avatar definition] 371. paul != sK11 <- (~5) [avatar component clause 369] 372. ~5 | ~2 [avatar split clause 367,339,369] 373. ~prede(fred) | mary != sK11 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 323,285] 374. ~prede(fred) | mary != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 373,284] 375. ~prede(fred) | mary != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 374,283] 376. ~prede(fred) | mary != sK11 | ~room(mary) [subsumption resolution 375,282] 377. ~prede(fred) | mary != sK11 [subsumption resolution 376,281] 379. 6 <=> mary = sK11 [avatar definition] 381. mary != sK11 <- (~6) [avatar component clause 379] 382. ~6 | ~2 [avatar split clause 377,339,379] 383. ~prede(fred) | room(sK11) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 322,285] 384. ~prede(fred) | room(sK11) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 383,284] 385. ~prede(fred) | room(sK11) | ~room(paul) | ~room(mary) [subsumption resolution 384,283] 386. ~prede(fred) | room(sK11) | ~room(mary) [subsumption resolution 385,282] 387. ~prede(fred) | room(sK11) [subsumption resolution 386,281] 389. 7 <=> room(sK11) [avatar definition] 391. room(sK11) <- (7) [avatar component clause 389] 392. 7 | ~2 [avatar split clause 387,339,389] 394. prede(fred) | ~room(fred) [resolution 287,302] 398. prede(fred) [subsumption resolution 394,283] 399. 2 [avatar split clause 398,339] 475. alice = sK11 | fred = sK11 | paul = sK11 | mary = sK11 | john = sK11 <- (7) [resolution 286,391] 686. fred = sK11 | paul = sK11 | mary = sK11 | john = sK11 <- (~3, 7) [subsumption resolution 475,351] 687. paul = sK11 | mary = sK11 | john = sK11 <- (~3, ~4, 7) [subsumption resolution 686,361] 688. mary = sK11 | john = sK11 <- (~3, ~4, ~5, 7) [subsumption resolution 687,371] 689. john = sK11 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 688,381] 690. $false <- (~1, ~3, ~4, ~5, ~6, 7) [subsumption resolution 689,337] 691. 1 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 690] 692. $false [avatar sat refutation 342,352,362,372,382,392,399,691] % SZS output end Proof for 8640030694863237285382105 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.36147
Roberto, Beatriz, Edwin, Robert, Esmeralda are the only persons in the room. If “everyone in the room enjoys stargazing or does not collect modern art” then “everyone in the room collects modern art if they enjoys stargazing”. “Roberto owns an Android phone” if “no one in the room enjoys skydiving”. If “it is true that “everyone in the room enjoys macrame”” then “everyone in the room maintains a personal blog focused on cybersecurity tips” otherwise “everyone outside the room enjoys kayaking and enjoys skydiving if they practices and performs acrobatic dance routines”. If “everyone anywhere enjoys virtual reality gaming or is not passionate about collecting and restoring classic cars” then “no one in the room enjoys virtual reality gaming only if they does not enjoy stargazing” otherwise “if someone either practices and performs acrobatic dance routines or enjoys skydiving but not both then he/she enjoys virtual reality gaming and vice versa”. “Everyone in the room enjoys virtual reality gaming or does not maintain a personal blog focused on cybersecurity tips” if “Roberto is not passionate about collecting and restoring classic cars” and vice versa. “Everyone anywhere practices and performs acrobatic dance routines or does not maintain a personal blog focused on cybersecurity tips” if “everyone in the room owns an Android phone or does not collect modern art” and vice versa. “Roberto enjoys spelunking” only if “everyone in the room collects modern art if they does not enjoy spelunking”. “Roberto collects modern art” only if “Roberto either does not maintain a personal blog focused on cybersecurity tips or enjoys kayaking but not both”. If “it is true that “everyone in the room maintains a personal blog focused on cybersecurity tips or does not own an Android phone”” then “Beatriz does not enjoy stargazing and collects modern art”. More than one person in the room enjoys spelunking. Beatriz neither enjoys stargazing nor enjoys kayaking. Everyone in the room enjoys kayaking if they enjoys skydiving and vice versa. If someone either enjoys kayaking or maintains a personal blog focused on cybersecurity tips but not both then he/she does not practice and performs acrobatic dance routines. Beatriz is passionate about collecting and restoring classic cars. Beatriz either does not enjoy stargazing or enjoys virtual reality gaming but not both. Everyone in the room who maintains a personal blog focused on cybersecurity tips enjoys spelunking.
Beatriz practices and performs acrobatic dance routines.
contradiction
room(roberto)&room(beatriz)&room(edwin)&room(robert)&room(esmeralda)&(![X]:(room(X)=>(X='roberto'|X='beatriz'|X='edwin'|X='robert'|X='esmeralda')))& ((![X]:(room(X)=>(((does_not_collect_modern_art(X))|(enjoys_stargazing(X))))))=>(![X]:(room(X)=>(((enjoys_stargazing(X))=>(collects_modern_art(X)))))))& ((~?[X]:(room(X)=>(enjoys_skydiving(X))))=>(owns_an_Android_phone(roberto)))& (((![X]:(room(X)=>(enjoys_macrame(X))))=>(![X]:(room(X)=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))&((~(![X]:(room(X)=>(enjoys_macrame(X)))))=>(![X]:(~room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(((enjoys_kayaking(X))&(enjoys_skydiving(X))))))))))& (((![X]:(anywhere(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))|(enjoys_virtual_reality_gaming(X))))))=>(~?[X]:(room(X)=>(((does_not_enjoy_stargazing(X))<=(enjoys_virtual_reality_gaming(X)))))))&((~(![X]:(anywhere(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))|(enjoys_virtual_reality_gaming(X)))))))=>((![X]:((((practices_and_performs_acrobatic_dance_routines(X))<~>(enjoys_skydiving(X))))<=>(enjoys_virtual_reality_gaming(X)))))))& ((is_not_passionate_about_collecting_and_restoring_classic_cars(roberto))<=>(![X]:(room(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(enjoys_virtual_reality_gaming(X)))))))& ((![X]:(room(X)=>(((does_not_collect_modern_art(X))|(owns_an_Android_phone(X))))))<=>(![X]:(anywhere(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(practices_and_performs_acrobatic_dance_routines(X)))))))& ((enjoys_spelunking(roberto))=>(![X]:(room(X)=>(((does_not_enjoy_spelunking(X))=>(collects_modern_art(X)))))))& ((collects_modern_art(roberto))=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(roberto))<~>(enjoys_kayaking(roberto)))))& ((![X]:(room(X)=>(((does_not_own_an_Android_phone(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))=>(((does_not_enjoy_stargazing(beatriz))&(collects_modern_art(beatriz)))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_spelunking(X)&enjoys_spelunking(Y))&(X!=Y))))& (~((enjoys_stargazing(beatriz))|(enjoys_kayaking(beatriz))))& (![X]:(room(X)=>(((enjoys_kayaking(X))<=>(enjoys_skydiving(X))))))& ((![X]:((((enjoys_kayaking(X))<~>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))=>(does_not_practice_and_performs_acrobatic_dance_routines(X)))))& (is_passionate_about_collecting_and_restoring_classic_cars(beatriz))& (((does_not_enjoy_stargazing(beatriz))<~>(enjoys_virtual_reality_gaming(beatriz))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(enjoys_spelunking(X))))))& (![X]:(room(X)=>(((((enjoys_macrame(X))|(enjoys_kayaking(X))|(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))=>(enjoys_spelunking(X))))))
room(roberto)&room(beatriz)&room(edwin)&room(robert)&room(esmeralda)&(![X]:(room(X)=>(X='roberto'|X='beatriz'|X='edwin'|X='robert'|X='esmeralda')))& practices_and_performs_acrobatic_dance_routines(beatriz)
[ "b4", "p0", "p4", "p11", "p12", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 5854962671642489779432743 % SZS output start Proof for 5854962671642489779432743 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. (~! [X0] : (anywhere(X0) => (predk(X0) | ~predf(X0))) => ! [X0] : ((preda(X0) <~> predb(X0)) <=> predk(X0))) & (! [X0] : (anywhere(X0) => (predk(X0) | ~predf(X0))) => ~? [X0] : (room(X0) => (predk(X0) => ~predc(X0)))) [input p4] 55. ~(predj(paul) | predc(paul)) [input p11] 56. ! [X0] : (room(X0) => (predj(X0) <=> predb(X0))) [input p12] 58. predf(paul) [input p14] 59. ~predc(paul) <~> predk(paul) [input p15] 62. preda(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 65. (~! [X0] : (anywhere(X0) => (predk(X0) | ~predf(X0))) => ! [X1] : ((preda(X1) <~> predb(X1)) <=> predk(X1))) & (! [X2] : (anywhere(X2) => (predk(X2) | ~predf(X2))) => ~? [X3] : (room(X3) => (predk(X3) => ~predc(X3)))) [rectify 48] 138. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 138] 145. (! [X1] : ((preda(X1) <~> predb(X1)) <=> predk(X1)) | ! [X0] : ((predk(X0) | ~predf(X0)) | ~anywhere(X0))) & (! [X3] : ((predc(X3) & predk(X3)) & room(X3)) | ? [X2] : ((~predk(X2) & predf(X2)) & anywhere(X2))) [ennf transformation 65] 146. (! [X1] : ((preda(X1) <~> predb(X1)) <=> predk(X1)) | ! [X0] : (predk(X0) | ~predf(X0) | ~anywhere(X0))) & (! [X3] : (predc(X3) & predk(X3) & room(X3)) | ? [X2] : (~predk(X2) & predf(X2) & anywhere(X2))) [flattening 145] 156. ~predj(paul) & ~predc(paul) [ennf transformation 55] 157. ! [X0] : ((predj(X0) <=> predb(X0)) | ~room(X0)) [ennf transformation 56] 163. preda(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 164. preda(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 163] 165. ? [X2] : (~predk(X2) & predf(X2) & anywhere(X2)) | ~sP0 [predicate definition introduction] 166. (! [X1] : ((preda(X1) <~> predb(X1)) <=> predk(X1)) | ! [X0] : (predk(X0) | ~predf(X0) | ~anywhere(X0))) & (! [X3] : (predc(X3) & predk(X3) & room(X3)) | sP0) [definition folding 146,165] 180. (! [X1] : ((((~predb(X1) | ~preda(X1)) & (predb(X1) | preda(X1))) | ~predk(X1)) & (predk(X1) | ((preda(X1) | ~predb(X1)) & (predb(X1) | ~preda(X1))))) | ! [X0] : (predk(X0) | ~predf(X0) | ~anywhere(X0))) & (! [X3] : (predc(X3) & predk(X3) & room(X3)) | sP0) [nnf transformation 166] 181. (! [X0] : ((((~predb(X0) | ~preda(X0)) & (predb(X0) | preda(X0))) | ~predk(X0)) & (predk(X0) | ((preda(X0) | ~predb(X0)) & (predb(X0) | ~preda(X0))))) | ! [X1] : (predk(X1) | ~predf(X1) | ~anywhere(X1))) & (! [X2] : (predc(X2) & predk(X2) & room(X2)) | sP0) [rectify 180] 196. ! [X0] : (((predj(X0) | ~predb(X0)) & (predb(X0) | ~predj(X0))) | ~room(X0)) [nnf transformation 157] 198. (~predk(paul) | predc(paul)) & (predk(paul) | ~predc(paul)) [nnf transformation 59] 199. anywhere(X0) [cnf transformation 5] 281. room(paul) [cnf transformation 139] 300. predk(X0) | predb(X0) | ~preda(X0) | predk(X1) | ~predf(X1) | ~anywhere(X1) [cnf transformation 181] 328. ~predc(paul) [cnf transformation 156] 329. ~predj(paul) [cnf transformation 156] 331. ~predb(X0) | predj(X0) | ~room(X0) [cnf transformation 196] 334. predf(paul) [cnf transformation 58] 336. ~predk(paul) | predc(paul) [cnf transformation 198] 347. preda(paul) [cnf transformation 164] 419. 17 <=> ! [X1] : (predk(X1) | ~predf(X1)) [avatar definition] 420. ~predf(X1) | predk(X1) <- (17) [avatar component clause 419] 435. predk(X0) | predb(X0) | ~preda(X0) | predk(X1) | ~predf(X1) [subsumption resolution 300,199] 437. 21 <=> ! [X0] : (predk(X0) | ~preda(X0) | predb(X0)) [avatar definition] 438. ~preda(X0) | predk(X0) | predb(X0) <- (21) [avatar component clause 437] 439. 17 | 21 [avatar split clause 435,437,419] 551. 46 <=> predc(paul) [avatar definition] 557. ~46 [avatar split clause 328,551] 559. 47 <=> predk(paul) [avatar definition] 561. ~predk(paul) <- (~47) [avatar component clause 559] 562. 46 | ~47 [avatar split clause 336,559,551] 585. predk(paul) <- (17) [resolution 420,334] 588. $false <- (17, ~47) [subsumption resolution 585,561] 589. ~17 | 47 [avatar contradiction clause 588] 619. predk(paul) | predb(paul) <- (21) [resolution 438,347] 621. predb(paul) <- (21, ~47) [subsumption resolution 619,561] 623. predj(paul) | ~room(paul) <- (21, ~47) [resolution 621,331] 624. ~room(paul) <- (21, ~47) [subsumption resolution 623,329] 625. $false <- (21, ~47) [subsumption resolution 624,281] 626. ~21 | 47 [avatar contradiction clause 625] 627. $false [avatar sat refutation 439,557,562,589,626] % SZS output end Proof for 5854962671642489779432743 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.052969
Betty, William, Anna are the only persons in the room. If “William is a old person and is not a old person” then “William is a quiet person and is quiet” otherwise “everyone in the room is not a quiet person”. “William is not a quiet person and is quiet” only if “not everyone in the room is not a old person”. Betty neither is quiet nor is old. William is not a quiet person.
Anna and William are quiet.
contradiction
room(betty)&room(william)&room(anna)&(![X]:(room(X)=>(X='betty'|X='william'|X='anna')))& (((((old(william)&person(william))&(~(old(william)&person(william)))))=>(((quiet(william)&person(william))&(quiet(william)))))&((~(((old(william)&person(william))&(~(old(william)&person(william))))))=>(![X]:(room(X)=>(~(quiet(X)&person(X)))))))& ((~(quiet(william)&person(william)))<~>(![X]:(~room(X)=>(~(quiet(X)&person(X))))))& ((((~(quiet(william)&person(william)))&(quiet(william))))=>(~![X]:(room(X)=>(~(old(X)&person(X))))))& (~(~(old(william)&person(william)))=>(quiet(betty)))& (~(old(william)&person(william)))& (~(quiet(betty)&person(betty)))& (?[X]:(room(X)&(~(old(X)&person(X)))))& (?[X]:(room(X)&(old(X))))& (((?[X]:(anywhere(X)&quiet(X)))))& (~((quiet(betty))|(old(betty))))& (old(william))& (~(quiet(william)&person(william)))& (?[X]:(room(X)&(quiet(X))))& (![X]:((room(X)&(X!=betty))=>richer(betty,X)))
room(betty)&room(william)&room(anna)&(![X]:(room(X)=>(X='betty'|X='william'|X='anna')))& quiet(anna)&quiet(william)
[ "p0", "p1", "p3", "p10", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 4729347467217665260536736 % SZS output start Proof for 4729347467217665260536736 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. (~(~(person(paul) & old(paul)) & person(paul) & old(paul)) => ! [X0] : (room(X0) => ~(person(X0) & quiet(X0)))) & ((~(person(paul) & old(paul)) & person(paul) & old(paul)) => (quiet(paul) & person(paul) & quiet(paul))) [input p1] 47. (quiet(paul) & ~(person(paul) & quiet(paul))) => ~! [X0] : (room(X0) => ~(person(X0) & old(X0))) [input p3] 54. ~(old(mary) | quiet(mary)) [input p10] 56. ~(person(paul) & quiet(paul)) [input p12] 59. quiet(paul) & quiet(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 134. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 135. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 134] 136. (! [X0] : ((~person(X0) | ~quiet(X0)) | ~room(X0)) | ((~person(paul) | ~old(paul)) & person(paul) & old(paul))) & ((quiet(paul) & person(paul) & quiet(paul)) | ((person(paul) & old(paul)) | ~person(paul) | ~old(paul))) [ennf transformation 45] 137. (! [X0] : (~person(X0) | ~quiet(X0) | ~room(X0)) | ((~person(paul) | ~old(paul)) & person(paul) & old(paul))) & ((quiet(paul) & person(paul) & quiet(paul)) | (person(paul) & old(paul)) | ~person(paul) | ~old(paul)) [flattening 136] 140. ? [X0] : ((person(X0) & old(X0)) & room(X0)) | (~quiet(paul) | (person(paul) & quiet(paul))) [ennf transformation 47] 141. ? [X0] : (person(X0) & old(X0) & room(X0)) | ~quiet(paul) | (person(paul) & quiet(paul)) [flattening 140] 147. ~old(mary) & ~quiet(mary) [ennf transformation 54] 148. ~person(paul) | ~quiet(paul) [ennf transformation 56] 151. quiet(paul) & quiet(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 59] 152. quiet(paul) & quiet(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 151] 159. ? [X0] : (person(X0) & old(X0) & room(X0)) => (person(sK1) & old(sK1) & room(sK1)) [choice axiom] 160. (person(sK1) & old(sK1) & room(sK1)) | ~quiet(paul) | (person(paul) & quiet(paul)) [skolemisation 141,159] 251. room(fred) [cnf transformation 135] 252. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 135] 260. ~person(X0) | ~quiet(X0) | ~room(X0) | person(paul) [cnf transformation 137] 270. room(sK1) | ~quiet(paul) | person(paul) [cnf transformation 160] 272. old(sK1) | ~quiet(paul) | person(paul) [cnf transformation 160] 274. person(sK1) | ~quiet(paul) | person(paul) [cnf transformation 160] 284. ~old(mary) [cnf transformation 147] 286. ~person(paul) | ~quiet(paul) [cnf transformation 148] 294. quiet(fred) [cnf transformation 152] 295. quiet(paul) [cnf transformation 152] 302. 2 <=> person(paul) [avatar definition] 304. ~person(paul) <- (~2) [avatar component clause 302] 306. 3 <=> ! [X0] : (~person(X0) | ~room(X0) | ~quiet(X0)) [avatar definition] 307. ~room(X0) | ~person(X0) | ~quiet(X0) <- (3) [avatar component clause 306] 309. 2 | 3 [avatar split clause 260,306,302] 317. 5 <=> quiet(paul) [avatar definition] 338. 9 <=> person(sK1) [avatar definition] 340. person(sK1) <- (9) [avatar component clause 338] 341. 2 | ~5 | 9 [avatar split clause 274,338,317,302] 343. 10 <=> old(sK1) [avatar definition] 345. old(sK1) <- (10) [avatar component clause 343] 346. 2 | ~5 | 10 [avatar split clause 272,343,317,302] 348. 11 <=> room(sK1) [avatar definition] 350. room(sK1) <- (11) [avatar component clause 348] 351. 2 | ~5 | 11 [avatar split clause 270,348,317,302] 374. ~5 | ~2 [avatar split clause 286,302,317] 375. 5 [avatar split clause 295,317] 378. ~person(fred) | ~quiet(fred) <- (3) [resolution 307,251] 383. ~person(fred) <- (3) [subsumption resolution 378,294] 476. paul = sK1 | mary = sK1 | fred = sK1 <- (11) [resolution 252,350] 481. 23 <=> fred = sK1 [avatar definition] 483. fred = sK1 <- (23) [avatar component clause 481] 485. 24 <=> mary = sK1 [avatar definition] 487. mary = sK1 <- (24) [avatar component clause 485] 489. 25 <=> paul = sK1 [avatar definition] 491. paul = sK1 <- (25) [avatar component clause 489] 492. 23 | 24 | 25 | ~11 [avatar split clause 476,348,489,485,481] 544. person(fred) <- (9, 23) [backward demodulation 340,483] 549. $false <- (3, 9, 23) [subsumption resolution 544,383] 550. ~3 | ~9 | ~23 [avatar contradiction clause 549] 553. old(mary) <- (10, 24) [backward demodulation 345,487] 556. $false <- (10, 24) [subsumption resolution 553,284] 557. ~10 | ~24 [avatar contradiction clause 556] 561. person(paul) <- (9, 25) [backward demodulation 340,491] 567. $false <- (~2, 9, 25) [subsumption resolution 561,304] 568. 2 | ~9 | ~25 [avatar contradiction clause 567] 569. $false [avatar sat refutation 309,341,346,351,374,375,492,550,557,568] % SZS output end Proof for 4729347467217665260536736 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.594478
Jane, Barbara are the only persons in the room. If "someone in the room is a client of Meta" then "Jane is a client of Meta". "Jane enjoys virtual reality gaming" if "Jane neither is not right-handed nor collects foreign coins". "Someone outside the room is right-handed" unless "someone in the room enjoys virtual reality gaming, owns a telescope or has a piercing". Someone outside the room is right-handed. It is not the case that "Jane is not right-handed". At least one person in the room is a client of Meta. Someone in the room enjoys virtual reality gaming.
Only one person in the room collects foreign coins.
neutral
room(jane)&room(barbara)&(![X]:(room(X)=>(X='jane'|X='barbara')))& ((?[X]:(room(X)&(is_a_client_of_Meta(X))))=>(is_a_client_of_Meta(jane)))& ((~((is_not_right-handed(jane))|(collects_foreign_coins(jane))))=>(enjoys_virtual_reality_gaming(jane)))& (~(?[X]:(room(X)&(((enjoys_virtual_reality_gaming(X))|(owns_a_telescope(X))|(has_a_piercing(X))))))=>(?[X]:(~room(X)&(is_right-handed(X)))))& (?[X]:(~room(X)&(is_right-handed(X))))& (~(is_not_right-handed(jane)))& (((?[X]:(room(X)&is_a_client_of_Meta(X)))))& (?[X]:(room(X)&(enjoys_virtual_reality_gaming(X))))
room(jane)&room(barbara)&(![X]:(room(X)=>(X='jane'|X='barbara')))& ((?[X]:(room(X)&collects_foreign_coins(X)))&(![X,Y]:((room(X)&room(Y)&(collects_foreign_coins(X))&(collects_foreign_coins(Y)))=>(X=Y))))
[]
null
0.223649
There is a room. If “everyone outside the room collects rare minerals or does not bake bread at home” then “everyone in the room is a professional photographer specializing in portrait photography if they collects rare minerals”.
Everyone in the room does not enjoy stargazing or builds model airplanes.
neutral
(there_is_a_room)& ((![X]:(~room(X)=>(((does_not_bake_bread_at_home(X))|(collects_rare_minerals(X))))))=>(![X]:(room(X)=>(((collects_rare_minerals(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X)))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(enjoys_stargazing(X))))))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(does_not_compose_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))<=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(anywhere(X)=>(((plays_the_drums(X))=>(creates_YouTube_content(X))))))& ((![X]:((composes_and_performs_experimental_electronic_music(X))=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(practices_graffiti_art(X))|(has_a_tattoo(X)))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))<=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(does_not_enjoy_stargazing(X))))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (((?[X]:(~room(X)&collects_rare_minerals(X)))))& (![X]:(~room(X)=>(((has_a_tattoo(X))<=(builds_model_airplanes(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((builds_model_airplanes(X))|(does_not_enjoy_stargazing(X)))))
[]
null
0
Candelaria, David are the only persons in the room. Candelaria reads mystery novels. David writes and illustrates their own graphic novels. Everyone in the room who has a curated collection of mid-century modern furniture designs and sews custom cosplay costumes for conventions. David has a curated collection of mid-century modern furniture. David collects rare and antique scientific instruments. Everyone in the room designs and sews custom cosplay costumes for conventions if they writes and illustrates their own graphic novels. Candelaria writes and illustrates their own graphic novels. Everyone in the room is not an avid hiker or collects rare and antique scientific instruments. Everyone in the room who is an amateur astronomer who builds and uses custom telescopes is a certified yoga instructor teaching classes weekly. Someone outside the room designs and sews custom cosplay costumes for conventions. If someone writes and illustrates their own graphic novels then he/she enjoys rooftop gardening. Everyone in the room who enjoys camping and organizing outdoor survival workshops, is an amateur astronomer who builds and uses custom telescopes and reads mystery novels is a certified yoga instructor teaching classes weekly. Everyone in the room who is an avid hiker is a certified yoga instructor teaching classes weekly. Candelaria has a curated collection of mid-century modern furniture. Someone in the room is not an avid hiker. David is a certified yoga instructor teaching classes weekly. Everyone in the room who has a curated collection of mid-century modern furniture does not enjoy camping and organizing outdoor survival workshops. Everyone in the room does not enjoy camping and organizing outdoor survival workshops only if they is a certified yoga instructor teaching classes weekly. Everyone in the room writes and illustrates their own graphic novels if they collects rare and antique scientific instruments. Someone in the room reads mystery novels. It is not the case that Candelaria is an amateur astronomer who builds and uses custom telescopes. Everyone anywhere is an amateur astronomer who builds and uses custom telescopes only if they designs and sews custom cosplay costumes for conventions. Everyone outside the room who reads mystery novels designs and sews custom cosplay costumes for conventions.
Only one person in the room is a certified yoga instructor teaching classes weekly.
contradiction
room(candelaria)&room(david)&(![X]:(room(X)=>(X='candelaria'|X='david')))& (reads_mystery_novels(candelaria))& (writes_and_illustrates_their_own_graphic_novels(david))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (has_a_curated_collection_of_mid-century_modern_furniture(david))& (collects_rare_and_antique_scientific_instruments(david))& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (writes_and_illustrates_their_own_graphic_novels(candelaria))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))|(is_not_an_avid_hiker(X))))))& (![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (?[X]:(~room(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))& ((![X]:((writes_and_illustrates_their_own_graphic_novels(X))=>(enjoys_rooftop_gardening(X)))))& (![X]:(room(X)=>(((((enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))&(reads_mystery_novels(X))))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((is_an_avid_hiker(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (has_a_curated_collection_of_mid-century_modern_furniture(candelaria))& (?[X]:(room(X)&(is_not_an_avid_hiker(X))))& (is_a_certified_yoga_instructor_teaching_classes_weekly(david))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))<=(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& (?[X]:(room(X)&(reads_mystery_novels(X))))& (~(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(candelaria)))& (![X]:(anywhere(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(~room(X)=>(((reads_mystery_novels(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& ((candelaria_dream=>(~![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))))
room(candelaria)&room(david)&(![X]:(room(X)=>(X='candelaria'|X='david')))& ((?[X]:(room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(Y)))=>(X=Y))))
[ "b42", "p0", "p14", "p16", "p17", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 7634656562014300561800418 % SZS output start Proof for 7634656562014300561800418 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 58. predb(mary) [input p14] 60. predc(paul) [input p16] 61. ! [X0] : (room(X0) => (predb(X0) => ~predk(X0))) [input p17] 62. ! [X0] : (room(X0) => (~predk(X0) => predc(X0))) [input p18] 69. ! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predc(X0) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 70. ! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : (room(X3) => (paul = X3 | mary = X3)) & room(paul) & room(mary) [rectify 69] 162. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 163. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 162] 164. ! [X0] : ((~predk(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 61] 165. ! [X0] : (~predk(X0) | ~predb(X0) | ~room(X0)) [flattening 164] 166. ! [X0] : ((predc(X0) | predk(X0)) | ~room(X0)) [ennf transformation 62] 167. ! [X0] : (predc(X0) | predk(X0) | ~room(X0)) [flattening 166] 168. ! [X0,X1] : (X0 = X1 | (~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : ((paul = X3 | mary = X3) | ~room(X3)) & room(paul) & room(mary) [ennf transformation 70] 169. ! [X0,X1] : (X0 = X1 | ~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [flattening 168] 177. ? [X2] : (predc(X2) & room(X2)) => (predc(sK3) & room(sK3)) [choice axiom] 178. ! [X0,X1] : (X0 = X1 | ~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0)) & (predc(sK3) & room(sK3)) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [skolemisation 169,177] 223. mary != paul [cnf transformation 43] 259. room(mary) [cnf transformation 163] 260. room(paul) [cnf transformation 163] 264. predb(mary) [cnf transformation 58] 266. predc(paul) [cnf transformation 60] 267. ~predk(X0) | ~predb(X0) | ~room(X0) [cnf transformation 165] 268. ~room(X0) | predk(X0) | predc(X0) [cnf transformation 167] 275. ~predc(X1) | X0 = X1 | ~predc(X0) | ~room(X1) | ~room(X0) [cnf transformation 178] 276. predk(mary) | predc(mary) [resolution 268,259] 282. 1 <=> predc(mary) [avatar definition] 284. predc(mary) <- (1) [avatar component clause 282] 286. 2 <=> predk(mary) [avatar definition] 288. predk(mary) <- (2) [avatar component clause 286] 289. 1 | 2 [avatar split clause 276,286,282] 308. ~predb(mary) | ~room(mary) <- (2) [resolution 288,267] 309. ~room(mary) <- (2) [subsumption resolution 308,264] 310. $false <- (2) [subsumption resolution 309,259] 311. ~2 [avatar contradiction clause 310] 392. paul = X0 | ~predc(X0) | ~room(paul) | ~room(X0) [resolution 275,266] 394. ~predc(X0) | paul = X0 | ~room(X0) [subsumption resolution 392,260] 397. mary = paul | ~room(mary) <- (1) [resolution 394,284] 398. ~room(mary) <- (1) [subsumption resolution 397,223] 399. $false <- (1) [subsumption resolution 398,259] 400. ~1 [avatar contradiction clause 399] 401. $false [avatar sat refutation 289,311,400] % SZS output end Proof for 7634656562014300561800418 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.208198
Henry is the only person in the room. Henry hosts regular game nights featuring complex strategy games and maintains a large, organic vegetable garden year-round. Henry does not volunteer for local environmental conservation projects. Henry enjoys origami. Henry maintains a large, organic vegetable garden year-round. It is not the case that "Henry does not enjoy windsurfing". Only one person in the room enjoys watercolor painting. At least one person outside the room hosts regular game nights featuring complex strategy games. Henry is allergic to anything. It is not the case that "Henry is not a coffee connoisseur". At least one person outside the room practices calligraphy. If someone is a coffee connoisseur then he/she does practice yoga. Everyone in the room is not a client of LVMH if they writes in-depth travel guides for off-the-beaten-path destinations. Henry is a chess master who participates in national tournaments. Henry enjoys windsurfing. Henry is a client of LVMH. Everyone in the room who enjoys writing detailed reviews of new and classic board games is a certified yoga instructor teaching classes weekly.
Henry practices calligraphy.
neutral
room(henry)&(![X]:(room(X)=>(X='henry')))& (((hosts_regular_game_nights_featuring_complex_strategy_games(henry))&(maintains_a_large,_organic_vegetable_garden_year-round(henry))))& (does_not_volunteer_for_local_environmental_conservation_projects(henry))& (enjoys_origami(henry))& (maintains_a_large,_organic_vegetable_garden_year-round(henry))& (~(does_not_enjoy_windsurfing(henry)))& (((?[X]:(room(X)&enjoys_watercolor_painting(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_watercolor_painting(X))&(enjoys_watercolor_painting(Y)))=>(X=Y)))))& (((?[X]:(~room(X)&hosts_regular_game_nights_featuring_complex_strategy_games(X)))))& (is_allergic_to_anything(henry))& (~(is_not_a_coffee_connoisseur(henry)))& (((?[X]:(~room(X)&practices_calligraphy(X)))))& ((![X]:((is_a_coffee_connoisseur(X))=>(does_practice_yoga(X)))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(is_not_a_client_of_LVMH(X))))))& (is_a_chess_master_who_participates_in_national_tournaments(henry))& (enjoys_windsurfing(henry))& (is_a_client_of_LVMH(henry))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (((?[X]:(~room(X)&enjoys_watercolor_painting(X)))&(![X,Y]:((~room(X)&~room(Y)&(enjoys_watercolor_painting(X))&(enjoys_watercolor_painting(Y)))=>(X=Y)))))& (practices_archery(henry))& (((?[X]:(anywhere(X)&creates_augmented_reality_experiences_for_mobile_applications(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(creates_augmented_reality_experiences_for_mobile_applications(X))&(creates_augmented_reality_experiences_for_mobile_applications(Y)))=>(X=Y)))))& (((?[X]:(room(X)&enjoys_windsurfing(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_windsurfing(X))&(enjoys_windsurfing(Y)))=>(X=Y)))))& (is_a_coffee_connoisseur(henry))& (~(collects_luxury_watches(henry)))
room(henry)&(![X]:(room(X)=>(X='henry')))& practices_calligraphy(henry)
[]
null
0.004277
There is a room. If “everyone in the room cannot play the flute or drives a hybrid car” then “everyone in the room is allergic to anything if they cannot play the flute” otherwise “everyone in the room own a television if they is allergic to anything”. “Everyone in the room enjoys macrame or does not have completed a triathlon” if “everyone anywhere cannot play the flute or can play the flute” and vice versa. If “everyone in the room practices digital art or is not a tea enthusiast” then “everyone in the room does not enjoy making ceramics or enjoys stand-up paddleboarding”. If “someone in the room enjoys fishing” then “everyone outside the room hosts themed dinner parties featuring gourmet home-cooked meals if they collects rare and antique scientific instruments”. If “everyone in the room does not own a television or enjoys snowboarding” then “everyone in the room who enjoys stand-up paddleboarding does not drive a hybrid car”. Someone in the room enjoys cross-country skiing, is allergic to anything or does not enjoy snowboarding. No one in the room who writes and illustrates their own graphic novels can play the flute, trains for and competes in international triathlons or hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who enjoys cross-country skiing trains for and competes in international triathlons. If someone enjoys fishing then he/she collects rare and antique scientific instruments. Everyone in the room who collects rare and antique scientific instruments or enjoys snowboarding or both writes and illustrates their own graphic novels. Everyone in the room who writes and illustrates their own graphic novels enjoys stand-up paddleboarding. Barbara dreamt that “if someone is a night owl then he/she drives a hybrid car, owns a telescope or has completed a triathlon”. Everyone in the room enjoys making ceramics. If someone has completed a triathlon, is a culinary enthusiast who experiments with international cuisines or enjoys fishing then he/she trains for and competes in international triathlons. No one in the room who writes and illustrates their own graphic novels enjoys macrame or is not a night owl or both. If someone enjoys snowboarding then he/she can play the flute. Everyone in the room enjoys macrame if they drives a hybrid car. Everyone in the room does not enjoy fishing or enjoys macrame. Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals or drives a hybrid car or both can play the flute. Everyone in the room drives a hybrid car if they can play the flute.
Everyone in the room enjoys making ceramics.
entailment
(there_is_a_room)& (((![X]:(room(X)=>(((drives_a_hybrid_car(X))|(cannot_play_the_flute(X))))))=>(![X]:(room(X)=>(((cannot_play_the_flute(X))=>(is_allergic_to_anything(X)))))))&((~(![X]:(room(X)=>(((drives_a_hybrid_car(X))|(cannot_play_the_flute(X)))))))=>(![X]:(room(X)=>(((is_allergic_to_anything(X))=>(own_a_television(X))))))))& ((![X]:(anywhere(X)=>(((can_play_the_flute(X))|(cannot_play_the_flute(X))))))<=>(![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))|(enjoys_macrame(X)))))))& ((![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(practices_digital_art(X))))))=>(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_making_ceramics(X)))))))& ((?[X]:(room(X)&(enjoys_fishing(X))))=>(![X]:(~room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))& ((![X]:(room(X)=>(((enjoys_snowboarding(X))|(does_not_own_a_television(X))))))=>(![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(does_not_drive_a_hybrid_car(X)))))))& (?[X]:(room(X)&(((enjoys_cross-country_skiing(X))|(is_allergic_to_anything(X))|(does_not_enjoy_snowboarding(X))))))& (~?[X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(((can_play_the_flute(X))|(trains_for_and_competes_in_international_triathlons(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))))& (![X]:(room(X)=>(((enjoys_cross-country_skiing(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& ((![X]:((enjoys_fishing(X))=>(collects_rare_and_antique_scientific_instruments(X)))))& (![X]:(room(X)=>(((((collects_rare_and_antique_scientific_instruments(X))|(enjoys_snowboarding(X))))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(enjoys_stand-up_paddleboarding(X))))))& ((barbara_dream=>((![X]:((is_a_night_owl(X))=>(((drives_a_hybrid_car(X))|(owns_a_telescope(X))|(has_completed_a_triathlon(X)))))))))& (![X]:(room(X)=>(enjoys_making_ceramics(X))))& ((![X]:((((has_completed_a_triathlon(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(enjoys_fishing(X))))=>(trains_for_and_competes_in_international_triathlons(X)))))& (~?[X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(((enjoys_macrame(X))|(is_not_a_night_owl(X))))))))& ((![X]:((enjoys_snowboarding(X))=>(can_play_the_flute(X)))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))|(does_not_enjoy_fishing(X))))))& (![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(drives_a_hybrid_car(X))))=>(can_play_the_flute(X))))))& (![X]:(room(X)=>(((can_play_the_flute(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(has_completed_a_triathlon(X))))))& (![X]:(~room(X)=>(((own_a_television(X))|(does_not_own_a_telescope(X))))))& (~?[X]:(room(X)=>(((does_not_own_a_telescope(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(anywhere(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(does_not_enjoy_macrame(X))))))& ((![X]:((writes_and_illustrates_their_own_graphic_novels(X))=>(((does_not_own_a_telescope(X))|(does_not_practice_digital_art(X))|(owns_a_telescope(X)))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(does_not_own_a_telescope(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_making_ceramics(X)))
[ "p0", "p7", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 8590910347871003522917940 % SZS output start Proof for 8590910347871003522917940 44. there_is_a_room [input p0] 51. ~? [X0] : (room(X0) => (prede(X0) => (preda(X0) | predg(X0) | predb(X0)))) [input p7] 57. ! [X0] : (room(X0) => predc(X0)) [input p13] 72. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 93. ~? [X0] : (room(X0) => (prede(X0) => (predg(X0) | predb(X0)))) [pure predicate removal 51] 182. ! [X0] : (((~predg(X0) & ~predb(X0)) & prede(X0)) & room(X0)) [ennf transformation 93] 183. ! [X0] : (~predg(X0) & ~predb(X0) & prede(X0) & room(X0)) [flattening 182] 186. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 57] 199. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 72] 214. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK5) & room(sK5)) [choice axiom] 215. (~predc(sK5) & room(sK5)) | ~there_is_a_room [skolemisation 199,214] 297. there_is_a_room [cnf transformation 44] 307. room(X0) [cnf transformation 183] 312. predc(X0) | ~room(X0) [cnf transformation 186] 323. ~predc(sK5) | ~there_is_a_room [cnf transformation 215] 351. predc(X0) [subsumption resolution 312,307] 355. ~there_is_a_room [subsumption resolution 323,351] 356. $false [subsumption resolution 355,297] % SZS output end Proof for 8590910347871003522917940 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.058511
Crissy, Edwin, William, Roberta, Dean are the only persons in the room. Crissy who enjoys kayaking makes intricate hand-cut paper art for exhibitions. Dean owns a telescope and owns an extensive assortment of vintage comic book memorabilia. If someone does not enjoy kayaking then he/she participates in citizen science projects related to wildlife monitoring, does not enjoy kayaking and does not write a travel blog and vice versa. Everyone in the room owns a smart tv, maintains a personal blog focused on cybersecurity tips and enjoys deep-sea diving and exploring underwater caves if and only if they practices tai chi, enjoys deep-sea diving and exploring underwater caves or does not practice zumba. If someone enjoys deep-sea diving and exploring underwater caves and owns a telescope then he/she practices tai chi, cannot play the piano or owns an extensive assortment of vintage comic book memorabilia and vice versa. Everyone in the room does not practice yoga if and only if they owns a microscope. Everyone outside the room does not practice zumba if they owns a microscope. If someone enjoys kayaking then he/she owns a microscope and vice versa. Everyone in the room who does practice yoga, cannot play the piano and is a culinary enthusiast who experiments with international cuisines enjoys kayaking. At least one person in the room is a culinary enthusiast who experiments with international cuisines. Crissy practices tai chi. Crissy participates in citizen science projects related to wildlife monitoring and is a culinary enthusiast who experiments with international cuisines. Everyone in the room who composes and performs experimental electronic music or is an avid hiker or both does not maintain a personal blog focused on cybersecurity tips. Edwin hosts a popular podcast about emerging technologies. Everyone in the room hosts a popular podcast about emerging technologies if and only if they neither can play the piano nor owns an extensive assortment of vintage comic book memorabilia.
Edwin owns a smart tv.
entailment
room(crissy)&room(edwin)&room(william)&room(roberta)&room(dean)&(![X]:(room(X)=>(X='crissy'|X='edwin'|X='william'|X='roberta'|X='dean')))& ((enjoys_kayaking(crissy))&(makes_intricate_hand-cut_paper_art_for_exhibitions(crissy)))& (((owns_a_telescope(dean))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(dean))))& ((![X]:((does_not_enjoy_kayaking(X))<=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))&(does_not_enjoy_kayaking(X))&(does_not_write_a_travel_blog(X)))))))& (![X]:(room(X)=>(((((owns_a_smart_tv(X))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))<=>(((practices_tai_chi(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(does_not_practice_zumba(X))))))))& ((![X]:((((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(owns_a_telescope(X))))<=>(((practices_tai_chi(X))|(cannot_play_the_piano(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))& (![X]:(room(X)=>(((does_not_practice_yoga(X))<=>(owns_a_microscope(X))))))& (![X]:(~room(X)=>(((owns_a_microscope(X))=>(does_not_practice_zumba(X))))))& ((![X]:((enjoys_kayaking(X))<=>(owns_a_microscope(X)))))& (![X]:(room(X)=>(((((does_practice_yoga(X))&(cannot_play_the_piano(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(enjoys_kayaking(X))))))& (((?[X]:(room(X)&is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))& (practices_tai_chi(crissy))& (((participates_in_citizen_science_projects_related_to_wildlife_monitoring(crissy))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(crissy))))& (![X]:(room(X)=>(((((composes_and_performs_experimental_electronic_music(X))|(is_an_avid_hiker(X))))=>(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (hosts_a_popular_podcast_about_emerging_technologies(edwin))& (![X]:(~room(X)=>(((~((does_not_practice_zumba(X))|(owns_a_telescope(X))))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(~((can_play_the_piano(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))))& (participates_in_citizen_science_projects_related_to_wildlife_monitoring(roberta))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))<=(((practices_zumba(X))<~>(practices_tai_chi(X))))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))<=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_write_a_travel_blog(X))))))& (![X]:(~room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))
room(crissy)&room(edwin)&room(william)&room(roberta)&room(dean)&(![X]:(room(X)=>(X='crissy'|X='edwin'|X='william'|X='roberta'|X='dean')))& owns_a_smart_tv(edwin)
[ "p0", "p4", "p5", "p14", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 147036854854248388115969 % SZS output start Proof for 147036854854248388115969 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => ((predi(X0) & predu(X0) & predp(X0)) <=> (~predo(X0) | predi(X0) | predd(X0)))) [input p4] 49. ! [X0] : ((predr(X0) & predi(X0)) <=> (preda(X0) | ~predg(X0) | predd(X0))) [input p5] 58. predt(paul) [input p14] 60. ! [X0] : (room(X0) => (predt(X0) <=> ~(preda(X0) | predg(X0)))) [input p16] 67. ~(predp(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 143. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 143] 145. ! [X0] : (((predi(X0) & predu(X0) & predp(X0)) <=> (~predo(X0) | predi(X0) | predd(X0))) | ~room(X0)) [ennf transformation 48] 155. ! [X0] : ((predt(X0) <=> (~preda(X0) & ~predg(X0))) | ~room(X0)) [ennf transformation 60] 163. ~predp(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 164. ~predp(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 163] 165. ! [X0] : (sP0(X0) <=> (predi(X0) & predu(X0) & predp(X0))) [predicate definition introduction] 166. ! [X0] : ((sP0(X0) <=> (~predo(X0) | predi(X0) | predd(X0))) | ~room(X0)) [definition folding 145,165] 170. ! [X0] : ((sP0(X0) | (~predi(X0) | ~predu(X0) | ~predp(X0))) & ((predi(X0) & predu(X0) & predp(X0)) | ~sP0(X0))) [nnf transformation 165] 171. ! [X0] : ((sP0(X0) | ~predi(X0) | ~predu(X0) | ~predp(X0)) & ((predi(X0) & predu(X0) & predp(X0)) | ~sP0(X0))) [flattening 170] 172. ! [X0] : (((sP0(X0) | (predo(X0) & ~predi(X0) & ~predd(X0))) & ((~predo(X0) | predi(X0) | predd(X0)) | ~sP0(X0))) | ~room(X0)) [nnf transformation 166] 173. ! [X0] : (((sP0(X0) | (predo(X0) & ~predi(X0) & ~predd(X0))) & (~predo(X0) | predi(X0) | predd(X0) | ~sP0(X0))) | ~room(X0)) [flattening 172] 174. ! [X0] : (((predr(X0) & predi(X0)) | (~preda(X0) & predg(X0) & ~predd(X0))) & ((preda(X0) | ~predg(X0) | predd(X0)) | (~predr(X0) | ~predi(X0)))) [nnf transformation 49] 175. ! [X0] : (((predr(X0) & predi(X0)) | (~preda(X0) & predg(X0) & ~predd(X0))) & (preda(X0) | ~predg(X0) | predd(X0) | ~predr(X0) | ~predi(X0))) [flattening 174] 180. ! [X0] : (((predt(X0) | (preda(X0) | predg(X0))) & ((~preda(X0) & ~predg(X0)) | ~predt(X0))) | ~room(X0)) [nnf transformation 155] 181. ! [X0] : (((predt(X0) | preda(X0) | predg(X0)) & ((~preda(X0) & ~predg(X0)) | ~predt(X0))) | ~room(X0)) [flattening 180] 184. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 185. ~predp(paul) | (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 164,184] 266. room(mary) [cnf transformation 144] 267. room(paul) [cnf transformation 144] 268. room(fred) [cnf transformation 144] 269. room(alice) [cnf transformation 144] 270. room(john) [cnf transformation 144] 271. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 144] 279. ~sP0(X0) | predp(X0) [cnf transformation 171] 285. ~predi(X0) | sP0(X0) | ~room(X0) [cnf transformation 173] 289. predg(X0) | predi(X0) [cnf transformation 175] 306. predt(paul) [cnf transformation 58] 308. ~predt(X0) | ~predg(X0) | ~room(X0) [cnf transformation 181] 318. ~predp(paul) | room(sK2) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 319. ~predp(paul) | mary != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 320. ~predp(paul) | paul != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 321. ~predp(paul) | fred != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 322. ~predp(paul) | alice != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 323. ~predp(paul) | john != sK2 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 185] 324. ~predp(paul) | john != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 323,270] 325. ~predp(paul) | john != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 324,269] 326. ~predp(paul) | john != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 325,268] 327. ~predp(paul) | john != sK2 | ~room(mary) [subsumption resolution 326,267] 328. ~predp(paul) | john != sK2 [subsumption resolution 327,266] 330. 1 <=> john = sK2 [avatar definition] 332. john != sK2 <- (~1) [avatar component clause 330] 334. 2 <=> predp(paul) [avatar definition] 337. ~1 | ~2 [avatar split clause 328,334,330] 338. ~predp(paul) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 322,270] 339. ~predp(paul) | alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,269] 340. ~predp(paul) | alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 339,268] 341. ~predp(paul) | alice != sK2 | ~room(mary) [subsumption resolution 340,267] 342. ~predp(paul) | alice != sK2 [subsumption resolution 341,266] 344. 3 <=> alice = sK2 [avatar definition] 346. alice != sK2 <- (~3) [avatar component clause 344] 347. ~3 | ~2 [avatar split clause 342,334,344] 348. ~predp(paul) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 321,270] 349. ~predp(paul) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 348,269] 350. ~predp(paul) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 349,268] 351. ~predp(paul) | fred != sK2 | ~room(mary) [subsumption resolution 350,267] 352. ~predp(paul) | fred != sK2 [subsumption resolution 351,266] 354. 4 <=> fred = sK2 [avatar definition] 356. fred != sK2 <- (~4) [avatar component clause 354] 357. ~4 | ~2 [avatar split clause 352,334,354] 358. ~predp(paul) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 320,270] 359. ~predp(paul) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 358,269] 360. ~predp(paul) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 359,268] 361. ~predp(paul) | paul != sK2 | ~room(mary) [subsumption resolution 360,267] 362. ~predp(paul) | paul != sK2 [subsumption resolution 361,266] 364. 5 <=> paul = sK2 [avatar definition] 366. paul != sK2 <- (~5) [avatar component clause 364] 367. ~5 | ~2 [avatar split clause 362,334,364] 368. ~predp(paul) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 319,270] 369. ~predp(paul) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 368,269] 370. ~predp(paul) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 369,268] 371. ~predp(paul) | mary != sK2 | ~room(mary) [subsumption resolution 370,267] 372. ~predp(paul) | mary != sK2 [subsumption resolution 371,266] 374. 6 <=> mary = sK2 [avatar definition] 376. mary != sK2 <- (~6) [avatar component clause 374] 377. ~6 | ~2 [avatar split clause 372,334,374] 378. ~predp(paul) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 318,270] 379. ~predp(paul) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 378,269] 380. ~predp(paul) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 379,268] 381. ~predp(paul) | room(sK2) | ~room(mary) [subsumption resolution 380,267] 382. ~predp(paul) | room(sK2) [subsumption resolution 381,266] 384. 7 <=> room(sK2) [avatar definition] 386. room(sK2) <- (7) [avatar component clause 384] 387. 7 | ~2 [avatar split clause 382,334,384] 409. 8 <=> sP0(paul) [avatar definition] 411. sP0(paul) <- (8) [avatar component clause 409] 446. predp(paul) <- (8) [resolution 411,279] 449. 2 | ~8 [avatar split clause 446,409,334] 533. ~predg(paul) | ~room(paul) [resolution 308,306] 534. ~predg(paul) [subsumption resolution 533,267] 562. predi(paul) [resolution 534,289] 842. sP0(paul) | ~room(paul) [resolution 562,285] 851. sP0(paul) [subsumption resolution 842,267] 852. 8 [avatar split clause 851,409] 854. alice = sK2 | fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (7) [resolution 386,271] 858. fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (~3, 7) [subsumption resolution 854,346] 859. paul = sK2 | mary = sK2 | john = sK2 <- (~3, ~4, 7) [subsumption resolution 858,356] 860. mary = sK2 | john = sK2 <- (~3, ~4, ~5, 7) [subsumption resolution 859,366] 861. john = sK2 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 860,376] 862. $false <- (~1, ~3, ~4, ~5, ~6, 7) [subsumption resolution 861,332] 863. 1 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 862] 864. $false [avatar sat refutation 337,347,357,367,377,387,449,852,863] % SZS output end Proof for 147036854854248388115969 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.043 s % ------------------------------ % ------------------------------
0.422076
Felix, Kristian, Clyde, Robert, Alice are the only persons in the room. 'Everyone in the room does not have lived in exactly three countries or collects vintage stamps' if 'everyone in the room does not practice digital art or collects rare minerals' and vice versa. 'Everyone in the room collects rare minerals or is not a cybersecurity expert' if 'no one in the room does not enjoy deep-sea diving and exploring underwater caves or enjoys logic puzzles' and vice versa. If someone regularly goes on multi-day backpacking trips in national parks then he/she enjoys logic puzzles. Everyone outside the room collects rare minerals only if they trains for and competes in international triathlons. Kristian is a cybersecurity expert or does enjoy trail running or both. Felix does not bake bread at home. Robert owns a high-end gaming PC with custom-built components. Everyone in the room who has lived in exactly three countries is a cybersecurity expert. More than one person in the room trains for and competes in international triathlons. Everyone in the room who enjoys logic puzzles or trains for and competes in international triathlons or both enjoys logic puzzles. Only one person in the room owns a high-end gaming PC with custom-built components, is a cybersecurity expert or enjoys deep-sea diving and exploring underwater caves.
Kristian owns a high-end gaming PC with custom-built components.
contradiction
room(felix)&room(kristian)&room(clyde)&room(robert)&room(alice)&(![X]:(room(X)=>(X='felix'|X='kristian'|X='clyde'|X='robert'|X='alice')))& ((![X]:(room(X)=>(((collects_rare_minerals(X))|(does_not_practice_digital_art(X))))))<=>(![X]:(room(X)=>(((collects_vintage_stamps(X))|(does_not_have_lived_in_exactly_three_countries(X)))))))& ((~?[X]:(room(X)=>(((enjoys_logic_puzzles(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))<=>(![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))|(collects_rare_minerals(X)))))))& ((![X]:((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(enjoys_logic_puzzles(X)))))& (![X]:(~room(X)=>(((trains_for_and_competes_in_international_triathlons(X))<=(collects_rare_minerals(X))))))& (((is_a_cybersecurity_expert(kristian))|(does_enjoy_trail_running(kristian))))& (does_not_bake_bread_at_home(felix))& (owns_a_high-end_gaming_PC_with_custom-built_components(robert))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(is_a_cybersecurity_expert(X))))))& ((?[X,Y]:(room(X)&room(Y)&(trains_for_and_competes_in_international_triathlons(X)&trains_for_and_competes_in_international_triathlons(Y))&(X!=Y))))& (![X]:(room(X)=>(((((enjoys_logic_puzzles(X))|(trains_for_and_competes_in_international_triathlons(X))))=>(enjoys_logic_puzzles(X))))))& (((?[X]:(room(X)&((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(is_a_cybersecurity_expert(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))&(![X,Y]:((room(X)&room(Y)&(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(is_a_cybersecurity_expert(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))&(((owns_a_high-end_gaming_PC_with_custom-built_components(Y))|(is_a_cybersecurity_expert(Y))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(Y)))))=>(X=Y)))))
room(felix)&room(kristian)&room(clyde)&room(robert)&room(alice)&(![X]:(room(X)=>(X='felix'|X='kristian'|X='clyde'|X='robert'|X='alice')))& owns_a_high-end_gaming_PC_with_custom-built_components(kristian)
[ "b42", "p0", "p7", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 385937391617628286370420 % SZS output start Proof for 385937391617628286370420 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 51. prede(alice) [input p7] 55. ! [X0,X1] : (((predn(X1) | predb(X1) | prede(X1)) & (predn(X0) | predb(X0) | prede(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : ((predn(X0) | predb(X0) | prede(X0)) & room(X0)) [input p11] 56. prede(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 59. ! [X0,X1] : (((predn(X1) | predb(X1) | prede(X1)) & (predn(X0) | predb(X0) | prede(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : ((predn(X2) | predb(X2) | prede(X2)) & room(X2)) [rectify 55] 135. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 136. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135] 147. ! [X0,X1] : (X0 = X1 | ((~predn(X1) & ~predb(X1) & ~prede(X1)) | (~predn(X0) & ~predb(X0) & ~prede(X0)) | ~room(X1) | ~room(X0))) & ? [X2] : ((predn(X2) | predb(X2) | prede(X2)) & room(X2)) [ennf transformation 59] 148. ! [X0,X1] : (X0 = X1 | (~predn(X1) & ~predb(X1) & ~prede(X1)) | (~predn(X0) & ~predb(X0) & ~prede(X0)) | ~room(X1) | ~room(X0)) & ? [X2] : ((predn(X2) | predb(X2) | prede(X2)) & room(X2)) [flattening 147] 149. prede(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 150. prede(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 153. ! [X0] : ((~predn(X0) & ~predb(X0) & ~prede(X0)) | ~sP1(X0)) [predicate definition introduction] 154. ! [X0,X1] : (X0 = X1 | (~predn(X1) & ~predb(X1) & ~prede(X1)) | sP1(X0) | ~room(X1) | ~room(X0)) & ? [X2] : ((predn(X2) | predb(X2) | prede(X2)) & room(X2)) [definition folding 148,153] 171. ! [X0] : ((~predn(X0) & ~predb(X0) & ~prede(X0)) | ~sP1(X0)) [nnf transformation 153] 172. ? [X2] : ((predn(X2) | predb(X2) | prede(X2)) & room(X2)) => ((predn(sK8) | predb(sK8) | prede(sK8)) & room(sK8)) [choice axiom] 173. ! [X0,X1] : (X0 = X1 | (~predn(X1) & ~predb(X1) & ~prede(X1)) | sP1(X0) | ~room(X1) | ~room(X0)) & ((predn(sK8) | predb(sK8) | prede(sK8)) & room(sK8)) [skolemisation 154,172] 231. paul != alice [cnf transformation 43] 255. room(paul) [cnf transformation 136] 257. room(alice) [cnf transformation 136] 275. prede(alice) [cnf transformation 51] 284. ~sP1(X0) | ~prede(X0) [cnf transformation 171] 289. ~prede(X1) | X0 = X1 | sP1(X0) | ~room(X1) | ~room(X0) [cnf transformation 173] 298. prede(paul) [cnf transformation 150] 442. alice = X0 | sP1(X0) | ~room(alice) | ~room(X0) [resolution 289,275] 445. ~room(X0) | sP1(X0) | alice = X0 [subsumption resolution 442,257] 449. sP1(paul) | paul = alice [resolution 445,255] 458. sP1(paul) [subsumption resolution 449,231] 537. ~prede(paul) [resolution 458,284] 538. $false [subsumption resolution 537,298] % SZS output end Proof for 385937391617628286370420 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0
Janie, Carol, Christopher, Robert are the only persons in the room. Everyone in the room does not train for and competes in international triathlons, does not own an extensive assortment of vintage comic book memorabilia or enjoys bird watching only if they does not enjoy bird watching. Everyone in the room who does not enjoy bird watching trains for and competes in international triathlons or does not enjoy kayaking and exploring remote waterways or both. Everyone in the room who trains for and competes in international triathlons or does not enjoy kayaking and exploring remote waterways or both uses an ios phone. Everyone in the room who uses an ios phone does not have a specialized collection of handmade artisan pottery.
Carol has a specialized collection of handmade artisan pottery.
contradiction
room(janie)&room(carol)&room(christopher)&room(robert)&(![X]:(room(X)=>(X='janie'|X='carol'|X='christopher'|X='robert')))& ((![X]:((is_a_tea_enthusiast(X))<=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& (~![X]:(room(X)=>(((((enjoys_fishing(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X))))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(((is_right-handed(X))<~>(collects_modern_art(X))))))))& (![X]:(room(X)=>(((((is_right-handed(X))<~>(collects_modern_art(X))))=>(((does_not_train_for_and_competes_in_international_triathlons(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(enjoys_bird_watching(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))<=(((does_not_train_for_and_competes_in_international_triathlons(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(enjoys_bird_watching(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))=>(((trains_for_and_competes_in_international_triathlons(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))))& (![X]:(room(X)=>(((((trains_for_and_competes_in_international_triathlons(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))=>(uses_an_ios_phone(X))))))& (![X]:(room(X)=>(((is_not_right-handed(X))<=(uses_an_ios_phone(X))))))& (![X]:(room(X)=>(((is_not_right-handed(X))<=>(((develops_open-source_software_projects_in_their_free_time(X))|(is_a_tea_enthusiast(X))))))))& (?[X]:(room(X)&(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(enjoys_macrame(X))))))& ((![X]:((((enjoys_bird_watching(X))|(trains_for_and_competes_in_international_triathlons(X))))=>(enjoys_macrame(X)))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<~>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))))& ((has_completed_a_triathlon(robert))&(((is_right-handed(robert))<~>(collects_modern_art(robert)))))& (![X]:(room(X)=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(((is_a_tea_enthusiast(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(collects_modern_art(X))))))))& (![X]:(room(X)=>(((((is_a_tea_enthusiast(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(collects_modern_art(X))))<=>(collects_modern_art(X))))))& (![X]:(room(X)=>(((collects_modern_art(X))<=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(anywhere(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))=>(((does_not_collect_antique_clocks(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))))))& (?[X]:(room(X)&(does_not_have_completed_a_triathlon(X))))& (![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))
room(janie)&room(carol)&room(christopher)&room(robert)&(![X]:(room(X)=>(X='janie'|X='carol'|X='christopher'|X='robert')))& has_a_specialized_collection_of_handmade_artisan_pottery(carol)
[ "p0", "p5", "p6", "p7", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 8227349569749852817884798 % SZS output start Proof for 8227349569749852817884798 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => ((predb(X0) | ~predm(X0) | ~predf(X0)) => ~predb(X0))) [input p5] 50. ! [X0] : (room(X0) => (~predb(X0) => (~predh(X0) | predf(X0)))) [input p6] 51. ! [X0] : (room(X0) => ((~predh(X0) | predf(X0)) => predy(X0))) [input p7] 63. ! [X0] : (room(X0) => (predy(X0) => ~predw(X0))) [input p19] 67. predw(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 147. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 147] 154. ! [X0] : ((~predb(X0) | (~predb(X0) & predm(X0) & predf(X0))) | ~room(X0)) [ennf transformation 49] 155. ! [X0] : (~predb(X0) | (~predb(X0) & predm(X0) & predf(X0)) | ~room(X0)) [flattening 154] 156. ! [X0] : (((~predh(X0) | predf(X0)) | predb(X0)) | ~room(X0)) [ennf transformation 50] 157. ! [X0] : (~predh(X0) | predf(X0) | predb(X0) | ~room(X0)) [flattening 156] 158. ! [X0] : ((predy(X0) | (predh(X0) & ~predf(X0))) | ~room(X0)) [ennf transformation 51] 159. ! [X0] : (predy(X0) | (predh(X0) & ~predf(X0)) | ~room(X0)) [flattening 158] 169. ! [X0] : ((~predw(X0) | ~predy(X0)) | ~room(X0)) [ennf transformation 63] 170. ! [X0] : (~predw(X0) | ~predy(X0) | ~room(X0)) [flattening 169] 171. predw(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 67] 172. predw(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 171] 272. room(paul) [cnf transformation 148] 286. ~predb(X0) | ~predb(X0) | ~room(X0) [cnf transformation 155] 287. ~predh(X0) | predf(X0) | predb(X0) | ~room(X0) [cnf transformation 157] 288. ~predf(X0) | predy(X0) | ~room(X0) [cnf transformation 159] 289. ~room(X0) | predh(X0) | predy(X0) [cnf transformation 159] 307. ~predw(X0) | ~predy(X0) | ~room(X0) [cnf transformation 170] 315. predw(paul) [cnf transformation 172] 317. ~predb(X0) | ~room(X0) [duplicate literal removal 286] 320. ~predh(X0) | predf(X0) | ~room(X0) [subsumption resolution 287,317] 332. predh(paul) | predy(paul) [resolution 289,272] 348. 5 <=> predy(paul) [avatar definition] 349. ~predy(paul) <- (~5) [avatar component clause 348] 352. 6 <=> predh(paul) [avatar definition] 354. predh(paul) <- (6) [avatar component clause 352] 355. 5 | 6 [avatar split clause 332,352,348] 417. ~predy(paul) | ~room(paul) [resolution 307,315] 421. ~predy(paul) [subsumption resolution 417,272] 422. ~5 [avatar split clause 421,348] 423. predf(paul) | ~room(paul) <- (6) [resolution 320,354] 424. predf(paul) <- (6) [subsumption resolution 423,272] 567. predy(paul) | ~room(paul) <- (6) [resolution 424,288] 568. ~room(paul) <- (~5, 6) [subsumption resolution 567,349] 569. $false <- (~5, 6) [subsumption resolution 568,272] 570. 5 | ~6 [avatar contradiction clause 569] 571. $false [avatar sat refutation 355,422,570] % SZS output end Proof for 8227349569749852817884798 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.031 s % ------------------------------ % ------------------------------
0.424278
Russell, Delana, Desiree, Toni are the only persons in the room. Delana who practices kickboxing is louder than Michel. Everyone in the room is louder than Michel or does not practice tai chi. Everyone anywhere who practices kickboxing practices tai chi. At least one person anywhere is creative. Everyone in the room who practices kickboxing practices tai chi. Russell practices kickboxing. Everyone in the room who is louder than Michel practices tai chi. Delana knows morse code. Delana and Russell are respectively wise and creative. All creative persons are wise. All wise persons are creative. Not everyone outside the room who is louder than Michel practices tai chi. If someone is louder than Michel then he/she knows morse code and vice versa. Everyone in the room who is louder than Michel practices kickboxing.
Russell practices tai chi.
entailment
room(russell)&room(delana)&room(desiree)&room(toni)&(![X]:(room(X)=>(X='russell'|X='delana'|X='desiree'|X='toni')))& ((practices_kickboxing(delana))&(louder(michel,delana)))& (![X]:(room(X)=>(((does_not_practice_tai_chi(X))|(louder(michel,X))))))& (![X]:(anywhere(X)=>(((practices_kickboxing(X))=>(practices_tai_chi(X))))))& (((?[X]:(anywhere(X)&creative(X)))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(practices_tai_chi(X))))))& (practices_kickboxing(russell))& (![X]:(room(X)=>(((louder(michel,X))=>(practices_tai_chi(X))))))& (knows_morse_code(delana))& ((wise(delana))&(creative(russell)))& (![X]:(creative(X)=>wise(X)))& (![X]:(wise(X)=>creative(X)))& (~![X]:(~room(X)=>(((louder(michel,X))=>(practices_tai_chi(X))))))& ((![X]:((louder(michel,X))<=>(knows_morse_code(X)))))& (![X]:(room(X)=>(((louder(michel,X))=>(practices_kickboxing(X))))))
room(russell)&room(delana)&room(desiree)&room(toni)&(![X]:(room(X)=>(X='russell'|X='delana'|X='desiree'|X='toni')))& practices_tai_chi(russell)
[ "b4", "p0", "p3", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 7169171532393918371867428 % SZS output start Proof for 7169171532393918371867428 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (anywhere(X0) => (predd(X0) => predt(X0))) [input p3] 50. predd(mary) [input p6] 59. ~(predt(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 132. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132] 136. ! [X0] : ((predt(X0) | ~predd(X0)) | ~anywhere(X0)) [ennf transformation 47] 137. ! [X0] : (predt(X0) | ~predd(X0) | ~anywhere(X0)) [flattening 136] 149. ~predt(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 59] 150. ~predt(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 149] 156. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 157. ~predt(mary) | (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 150,156] 158. anywhere(X0) [cnf transformation 5] 239. room(mary) [cnf transformation 133] 240. room(paul) [cnf transformation 133] 241. room(fred) [cnf transformation 133] 242. room(alice) [cnf transformation 133] 243. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 133] 247. predt(X0) | ~predd(X0) | ~anywhere(X0) [cnf transformation 137] 251. predd(mary) [cnf transformation 50] 263. ~predt(mary) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 264. ~predt(mary) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 265. ~predt(mary) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 266. ~predt(mary) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 267. ~predt(mary) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 268. ~predd(X0) | predt(X0) [subsumption resolution 247,158] 269. ~predt(mary) | alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 267,242] 270. ~predt(mary) | alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 269,241] 271. ~predt(mary) | alice != sK2 | ~room(mary) [subsumption resolution 270,240] 272. ~predt(mary) | alice != sK2 [subsumption resolution 271,239] 274. 1 <=> alice = sK2 [avatar definition] 276. alice != sK2 <- (~1) [avatar component clause 274] 278. 2 <=> predt(mary) [avatar definition] 281. ~1 | ~2 [avatar split clause 272,278,274] 282. ~predt(mary) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 266,242] 283. ~predt(mary) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 282,241] 284. ~predt(mary) | fred != sK2 | ~room(mary) [subsumption resolution 283,240] 285. ~predt(mary) | fred != sK2 [subsumption resolution 284,239] 287. 3 <=> fred = sK2 [avatar definition] 289. fred != sK2 <- (~3) [avatar component clause 287] 290. ~3 | ~2 [avatar split clause 285,278,287] 291. ~predt(mary) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 265,242] 292. ~predt(mary) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 291,241] 293. ~predt(mary) | paul != sK2 | ~room(mary) [subsumption resolution 292,240] 294. ~predt(mary) | paul != sK2 [subsumption resolution 293,239] 296. 4 <=> paul = sK2 [avatar definition] 298. paul != sK2 <- (~4) [avatar component clause 296] 299. ~4 | ~2 [avatar split clause 294,278,296] 300. ~predt(mary) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,242] 301. ~predt(mary) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 300,241] 302. ~predt(mary) | mary != sK2 | ~room(mary) [subsumption resolution 301,240] 303. ~predt(mary) | mary != sK2 [subsumption resolution 302,239] 305. 5 <=> mary = sK2 [avatar definition] 307. mary != sK2 <- (~5) [avatar component clause 305] 308. ~5 | ~2 [avatar split clause 303,278,305] 309. ~predt(mary) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,242] 310. ~predt(mary) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 309,241] 311. ~predt(mary) | room(sK2) | ~room(mary) [subsumption resolution 310,240] 312. ~predt(mary) | room(sK2) [subsumption resolution 311,239] 314. 6 <=> room(sK2) [avatar definition] 316. room(sK2) <- (6) [avatar component clause 314] 317. 6 | ~2 [avatar split clause 312,278,314] 323. predt(mary) [resolution 268,251] 326. 2 [avatar split clause 323,278] 519. fred = sK2 | paul = sK2 | mary = sK2 | alice = sK2 <- (6) [resolution 243,316] 520. paul = sK2 | mary = sK2 | alice = sK2 <- (~3, 6) [subsumption resolution 519,289] 521. mary = sK2 | alice = sK2 <- (~3, ~4, 6) [subsumption resolution 520,298] 522. alice = sK2 <- (~3, ~4, ~5, 6) [subsumption resolution 521,307] 523. $false <- (~1, ~3, ~4, ~5, 6) [subsumption resolution 522,276] 524. 1 | 3 | 4 | 5 | ~6 [avatar contradiction clause 523] 525. $false [avatar sat refutation 281,290,299,308,317,326,524] % SZS output end Proof for 7169171532393918371867428 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.526106
Henry, Kenneth, Ashley, Bradley are the only persons in the room. “Everyone in the room is not an avid mountain climber who has scaled several peaks or streams on Twitch” if “everyone in the room does not have a vast collection of first-edition science fiction novels or enjoys coding in Python” and vice versa. If “everyone in the room does not compete in national level swimming championships or enjoys windsurfing” then “everyone in the room who has a specialized collection of handmade artisan pottery and enjoys camping and organizing outdoor survival workshops enjoys camping and organizing outdoor survival workshops”. Everyone in the room who owns a telescope enjoys coding in Python. Everyone in the room who enjoys coding in Python streams on Twitch. Everyone in the room does not have a vast collection of first-edition science fiction novels or enjoys coding in Python. Everyone in the room enjoys landscape photography if they collects action figures and vice versa. More than one person in the room collects action figures. More than one person in the room has a vast collection of first-edition science fiction novels. Everyone anywhere does not have a vast collection of first-edition science fiction novels or does not collect action figures. If someone enjoys landscape photography then he/she owns a telescope and vice versa.
Kenneth does not stream on Twitch.
contradiction
room(henry)&room(kenneth)&room(ashley)&room(bradley)&(![X]:(room(X)=>(X='henry'|X='kenneth'|X='ashley'|X='bradley')))& ((![X]:(room(X)=>(((enjoys_coding_in_Python(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))<=>(![X]:(room(X)=>(((streams_on_Twitch(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))& ((![X]:(room(X)=>(((enjoys_windsurfing(X))|(does_not_compete_in_national_level_swimming_championships(X))))))=>(![X]:(room(X)=>(((((has_a_specialized_collection_of_handmade_artisan_pottery(X))&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))))& ((![X]:(room(X)=>(((is_a_wine_connoisseur(X))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))=>(~![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))<=>(enjoys_windsurfing(X)))))))& ((![X]:(room(X)=>(((owns_a_telescope(X))|(does_not_collect_action_figures(X))))))=>(![X]:(anywhere(X)=>(((does_not_collect_action_figures(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& (![X]:(~room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))|(does_not_enjoy_coding_in_Python(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_coding_in_Python(X))=>(((collects_action_figures(X))|(watches_fantasy_movies(X))))))))& (![X]:(room(X)=>(((((collects_action_figures(X))|(watches_fantasy_movies(X))))=>(((enjoys_windsurfing(X))|(enjoys_landscape_photography(X))))))))& (![X]:(~room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))<=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(enjoys_coding_in_Python(X))))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(streams_on_Twitch(X))))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))<=>(enjoys_landscape_photography(X))))))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))<=>(collects_action_figures(X))))))& ((?[X,Y]:(room(X)&room(Y)&(collects_action_figures(X)&collects_action_figures(Y))&(X!=Y))))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))|(does_not_enjoy_windsurfing(X))))))& ((?[X,Y]:(room(X)&room(Y)&(has_a_vast_collection_of_first-edition_science_fiction_novels(X)&has_a_vast_collection_of_first-edition_science_fiction_novels(Y))&(X!=Y))))& (![X]:(anywhere(X)=>(((does_not_collect_action_figures(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(collects_action_figures(X)&collects_action_figures(Y))&(X!=Y))))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))|(does_not_collect_action_figures(X))))))& (![X]:(room(X)=>(((does_not_collect_action_figures(X))=>(is_a_night_owl(X))))))& ((![X]:((enjoys_landscape_photography(X))<=>(owns_a_telescope(X)))))
room(henry)&room(kenneth)&room(ashley)&room(bradley)&(![X]:(room(X)=>(X='henry'|X='kenneth'|X='ashley'|X='bradley')))& does_not_stream_on_Twitch(kenneth)
[ "b4", "p0", "p10", "p11", "p12", "p15", "p16", "p19", "p20", "p24", "hypothesis" ]
% SZS status Unsatisfiable for 5760488998236488599421856 % SZS output start Proof for 5760488998236488599421856 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (room(X0) => (predg(X0) => predd(X0))) [input p10] 55. ! [X0] : (room(X0) => (predd(X0) => predm(X0))) [input p11] 56. ! [X0] : (room(X0) => (~prede(X0) | predd(X0))) [input p12] 59. ! [X0] : (room(X0) => (predf(X0) <=> predp(X0))) [input p15] 60. ? [X0,X1] : (X0 != X1 & predp(X1) & predp(X0) & room(X1) & room(X0)) [input p16] 63. ? [X0,X1] : (X0 != X1 & prede(X1) & prede(X0) & room(X1) & room(X0)) [input p19] 64. ! [X0] : (anywhere(X0) => (~prede(X0) | ~predp(X0))) [input p20] 68. ! [X0] : (predf(X0) <=> predg(X0)) [input p24] 69. ~predm(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 148. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 166. ! [X0] : ((predd(X0) | ~predg(X0)) | ~room(X0)) [ennf transformation 54] 167. ! [X0] : (predd(X0) | ~predg(X0) | ~room(X0)) [flattening 166] 168. ! [X0] : ((predm(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 55] 169. ! [X0] : (predm(X0) | ~predd(X0) | ~room(X0)) [flattening 168] 170. ! [X0] : ((~prede(X0) | predd(X0)) | ~room(X0)) [ennf transformation 56] 171. ! [X0] : (~prede(X0) | predd(X0) | ~room(X0)) [flattening 170] 174. ! [X0] : ((predf(X0) <=> predp(X0)) | ~room(X0)) [ennf transformation 59] 179. ! [X0] : ((~prede(X0) | ~predp(X0)) | ~anywhere(X0)) [ennf transformation 64] 180. ! [X0] : (~prede(X0) | ~predp(X0) | ~anywhere(X0)) [flattening 179] 183. ~predm(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 184. ~predm(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 183] 206. ! [X0] : (((predf(X0) | ~predp(X0)) & (predp(X0) | ~predf(X0))) | ~room(X0)) [nnf transformation 174] 207. ? [X0,X1] : (X0 != X1 & predp(X1) & predp(X0) & room(X1) & room(X0)) => (sK6 != sK7 & predp(sK7) & predp(sK6) & room(sK7) & room(sK6)) [choice axiom] 208. sK6 != sK7 & predp(sK7) & predp(sK6) & room(sK7) & room(sK6) [skolemisation 60,207] 209. ? [X0,X1] : (X0 != X1 & prede(X1) & prede(X0) & room(X1) & room(X0)) => (sK8 != sK9 & prede(sK9) & prede(sK8) & room(sK9) & room(sK8)) [choice axiom] 210. sK8 != sK9 & prede(sK9) & prede(sK8) & room(sK9) & room(sK8) [skolemisation 63,209] 213. ! [X0] : ((predf(X0) | ~predg(X0)) & (predg(X0) | ~predf(X0))) [nnf transformation 68] 214. anywhere(X0) [cnf transformation 5] 299. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 149] 324. ~predg(X0) | predd(X0) | ~room(X0) [cnf transformation 167] 325. ~predd(X0) | predm(X0) | ~room(X0) [cnf transformation 169] 326. ~prede(X0) | predd(X0) | ~room(X0) [cnf transformation 171] 332. ~predp(X0) | predf(X0) | ~room(X0) [cnf transformation 206] 333. room(sK6) [cnf transformation 208] 334. room(sK7) [cnf transformation 208] 335. predp(sK6) [cnf transformation 208] 336. predp(sK7) [cnf transformation 208] 337. sK6 != sK7 [cnf transformation 208] 340. room(sK8) [cnf transformation 210] 341. room(sK9) [cnf transformation 210] 342. prede(sK8) [cnf transformation 210] 343. prede(sK9) [cnf transformation 210] 344. sK8 != sK9 [cnf transformation 210] 345. ~prede(X0) | ~predp(X0) | ~anywhere(X0) [cnf transformation 180] 352. ~predf(X0) | predg(X0) [cnf transformation 213] 359. ~predm(paul) [cnf transformation 184] 365. 2 <=> ! [X0] : (~prede(X0) | ~room(X0) | predd(X0)) [avatar definition] 366. ~prede(X0) | ~room(X0) | predd(X0) <- (2) [avatar component clause 365] 428. 15 <=> ! [X0] : (~prede(X0) | ~predp(X0)) [avatar definition] 429. ~predp(X0) | ~prede(X0) <- (15) [avatar component clause 428] 443. 2 [avatar split clause 326,365] 444. ~prede(X0) | ~predp(X0) [subsumption resolution 345,214] 445. 15 [avatar split clause 444,428] 446. ~prede(sK6) <- (15) [resolution 429,335] 447. ~prede(sK7) <- (15) [resolution 429,336] 450. predf(sK6) | ~room(sK6) [resolution 332,335] 451. predf(sK7) | ~room(sK7) [resolution 332,336] 454. predf(sK6) [subsumption resolution 450,333] 455. predf(sK7) [subsumption resolution 451,334] 477. predg(sK6) [resolution 454,352] 480. ~room(sK8) | predd(sK8) <- (2) [resolution 366,342] 481. ~room(sK9) | predd(sK9) <- (2) [resolution 366,343] 482. predd(sK8) <- (2) [subsumption resolution 480,340] 483. predd(sK9) <- (2) [subsumption resolution 481,341] 487. predg(sK7) [resolution 455,352] 494. predm(sK8) | ~room(sK8) <- (2) [resolution 482,325] 495. predm(sK8) <- (2) [subsumption resolution 494,340] 497. predm(sK9) | ~room(sK9) <- (2) [resolution 483,325] 498. predm(sK9) <- (2) [subsumption resolution 497,341] 499. predd(sK6) | ~room(sK6) [resolution 477,324] 502. predd(sK6) [subsumption resolution 499,333] 506. predd(sK7) | ~room(sK7) [resolution 487,324] 509. predd(sK7) [subsumption resolution 506,334] 513. predm(sK6) | ~room(sK6) [resolution 502,325] 514. predm(sK6) [subsumption resolution 513,333] 518. predm(sK7) | ~room(sK7) [resolution 509,325] 519. predm(sK7) [subsumption resolution 518,334] 570. fred = sK6 | paul = sK6 | mary = sK6 | alice = sK6 [resolution 299,333] 571. fred = sK7 | paul = sK7 | mary = sK7 | alice = sK7 [resolution 299,334] 572. fred = sK8 | paul = sK8 | mary = sK8 | alice = sK8 [resolution 299,340] 573. fred = sK9 | paul = sK9 | mary = sK9 | alice = sK9 [resolution 299,341] 592. 26 <=> alice = sK6 [avatar definition] 594. alice = sK6 <- (26) [avatar component clause 592] 596. 27 <=> mary = sK6 [avatar definition] 598. mary = sK6 <- (27) [avatar component clause 596] 600. 28 <=> paul = sK6 [avatar definition] 602. paul = sK6 <- (28) [avatar component clause 600] 604. 29 <=> fred = sK6 [avatar definition] 606. fred = sK6 <- (29) [avatar component clause 604] 607. 26 | 27 | 28 | 29 [avatar split clause 570,604,600,596,592] 609. 30 <=> alice = sK7 [avatar definition] 611. alice = sK7 <- (30) [avatar component clause 609] 613. 31 <=> mary = sK7 [avatar definition] 615. mary = sK7 <- (31) [avatar component clause 613] 617. 32 <=> paul = sK7 [avatar definition] 619. paul = sK7 <- (32) [avatar component clause 617] 621. 33 <=> fred = sK7 [avatar definition] 623. fred = sK7 <- (33) [avatar component clause 621] 624. 30 | 31 | 32 | 33 [avatar split clause 571,621,617,613,609] 626. 34 <=> alice = sK8 [avatar definition] 628. alice = sK8 <- (34) [avatar component clause 626] 630. 35 <=> mary = sK8 [avatar definition] 632. mary = sK8 <- (35) [avatar component clause 630] 634. 36 <=> paul = sK8 [avatar definition] 636. paul = sK8 <- (36) [avatar component clause 634] 638. 37 <=> fred = sK8 [avatar definition] 640. fred = sK8 <- (37) [avatar component clause 638] 641. 34 | 35 | 36 | 37 [avatar split clause 572,638,634,630,626] 643. 38 <=> alice = sK9 [avatar definition] 645. alice = sK9 <- (38) [avatar component clause 643] 647. 39 <=> mary = sK9 [avatar definition] 649. mary = sK9 <- (39) [avatar component clause 647] 651. 40 <=> paul = sK9 [avatar definition] 653. paul = sK9 <- (40) [avatar component clause 651] 655. 41 <=> fred = sK9 [avatar definition] 657. fred = sK9 <- (41) [avatar component clause 655] 658. 38 | 39 | 40 | 41 [avatar split clause 573,655,651,647,643] 662. prede(alice) <- (38) [backward demodulation 343,645] 663. alice != sK8 <- (38) [backward demodulation 344,645] 664. ~34 | ~38 [avatar split clause 663,643,626] 672. ~prede(alice) <- (15, 30) [backward demodulation 447,611] 681. $false <- (15, 30, 38) [subsumption resolution 672,662] 682. ~15 | ~30 | ~38 [avatar contradiction clause 681] 685. ~prede(alice) <- (15, 26) [backward demodulation 446,594] 693. $false <- (15, 26, 38) [subsumption resolution 685,662] 694. ~15 | ~26 | ~38 [avatar contradiction clause 693] 698. prede(mary) <- (35) [backward demodulation 342,632] 703. ~prede(mary) <- (15, 31) [backward demodulation 447,615] 712. $false <- (15, 31, 35) [subsumption resolution 703,698] 713. ~15 | ~31 | ~35 [avatar contradiction clause 712] 717. ~prede(mary) <- (15, 27) [backward demodulation 446,598] 725. $false <- (15, 27, 35) [subsumption resolution 717,698] 726. ~15 | ~27 | ~35 [avatar contradiction clause 725] 738. predm(paul) <- (32) [backward demodulation 519,619] 741. $false <- (32) [subsumption resolution 738,359] 742. ~32 [avatar contradiction clause 741] 752. predm(paul) <- (28) [backward demodulation 514,602] 754. $false <- (28) [subsumption resolution 752,359] 755. ~28 [avatar contradiction clause 754] 771. ~prede(fred) <- (15, 29) [backward demodulation 446,606] 780. fred != sK7 <- (29) [forward demodulation 337,606] 781. ~33 | ~29 [avatar split clause 780,604,621] 785. prede(fred) <- (37) [backward demodulation 342,640] 787. $false <- (15, 29, 37) [subsumption resolution 785,771] 788. ~15 | ~29 | ~37 [avatar contradiction clause 787] 791. ~prede(mary) <- (15, 31) [backward demodulation 447,615] 805. predm(paul) <- (2, 36) [backward demodulation 495,636] 808. $false <- (2, 36) [subsumption resolution 805,359] 809. ~2 | ~36 [avatar contradiction clause 808] 810. predm(paul) <- (2, 40) [backward demodulation 498,653] 815. $false <- (2, 40) [subsumption resolution 810,359] 816. ~2 | ~40 [avatar contradiction clause 815] 820. prede(alice) <- (34) [backward demodulation 342,628] 828. prede(mary) <- (39) [backward demodulation 343,649] 830. $false <- (15, 31, 39) [subsumption resolution 828,791] 831. ~15 | ~31 | ~39 [avatar contradiction clause 830] 835. prede(fred) <- (41) [backward demodulation 343,657] 837. $false <- (15, 29, 41) [subsumption resolution 835,771] 838. ~15 | ~29 | ~41 [avatar contradiction clause 837] 842. ~prede(alice) <- (15, 26) [backward demodulation 446,594] 850. $false <- (15, 26, 34) [subsumption resolution 842,820] 851. ~15 | ~26 | ~34 [avatar contradiction clause 850] 855. ~prede(alice) <- (15, 30) [backward demodulation 447,611] 864. $false <- (15, 30, 34) [subsumption resolution 855,820] 865. ~15 | ~30 | ~34 [avatar contradiction clause 864] 882. ~prede(fred) <- (15, 33) [backward demodulation 447,623] 890. $false <- (15, 33, 41) [subsumption resolution 882,835] 891. ~15 | ~33 | ~41 [avatar contradiction clause 890] 893. fred != sK8 <- (41) [forward demodulation 344,657] 894. ~37 | ~41 [avatar split clause 893,655,638] 902. mary != sK6 <- (31) [backward demodulation 337,615] 914. ~27 | ~31 [avatar split clause 902,613,596] 927. prede(mary) <- (39) [backward demodulation 343,649] 928. mary != sK8 <- (39) [backward demodulation 344,649] 934. ~35 | ~39 [avatar split clause 928,647,630] 943. ~prede(fred) <- (15, 33) [backward demodulation 447,623] 953. prede(fred) <- (37) [backward demodulation 342,640] 957. $false <- (15, 33, 37) [subsumption resolution 953,943] 958. ~15 | ~33 | ~37 [avatar contradiction clause 957] 961. alice != sK6 <- (30) [backward demodulation 337,611] 970. ~26 | ~30 [avatar split clause 961,609,592] 973. ~prede(mary) <- (15, 27) [backward demodulation 446,598] 983. $false <- (15, 27, 39) [subsumption resolution 973,927] 984. ~15 | ~27 | ~39 [avatar contradiction clause 983] 986. $false [avatar sat refutation 443,445,607,624,641,658,664,682,694,713,726,742,755,781,788,809,816,831,838,851,865,891,894,914,934,958,970,984] % SZS output end Proof for 5760488998236488599421856 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.042 s % ------------------------------ % ------------------------------
0.421435
Cherish, Rhonda, Christopher, Katherine, Michele are the only persons in the room. At least one person in the room either practices archery or does not enjoy bird watching but not both only if Rhonda is a client of Meta and frequently participates in hackathons and coding competitions. Only one person in the room watches fantasy movies and is not allergic to anything if Cherish either does not practice kickboxing or is a cybersecurity expert but not both. Everyone in the room who does not write in-depth travel guides for off-the-beaten-path destinations writes in-depth travel guides for off-the-beaten-path destinations. Only one person in the room practices tai chi, practices archery or collect rare sneakers. Cherish collects luxury watches. At least one person in the room uses an ios phone or collect rare sneakers or both. Rhonda does not enjoy bird watching. Rhonda does not practice tai chi and designs and sews custom cosplay costumes for conventions. Only one person in the room watches fantasy movies and is not allergic to anything. Rhonda does not collect luxury watches or is a client of Meta or both. Cherish is a cybersecurity expert. Cherish either does not design and sews custom cosplay costumes for conventions or collects classic novels but not both. Rhonda watches fantasy movies. Cherish neither watches fantasy movies nor practices archery. Everyone in the room who either is not a client of Meta or does not watche fantasy movies but not both does not collect rare sneakers. If someone does not practice archery then he/she maintains a personal blog focused on cybersecurity tips, does not collect modern art or collects classic novels and vice versa.
Christopher writes in-depth travel guides for off-the-beaten-path destinations.
entailment
room(cherish)&room(rhonda)&room(christopher)&room(katherine)&room(michele)&(![X]:(room(X)=>(X='cherish'|X='rhonda'|X='christopher'|X='katherine'|X='michele')))& ((((?[X]:(room(X)&((practices_archery(X))<~>(does_not_enjoy_bird_watching(X)))))))=>(((is_a_client_of_Meta(rhonda))&(frequently_participates_in_hackathons_and_coding_competitions(rhonda)))))& ((((does_not_practice_kickboxing(cherish))<~>(is_a_cybersecurity_expert(cherish))))=>(((?[X]:(room(X)&((watches_fantasy_movies(X))&(is_not_allergic_to_anything(X)))))&(![X,Y]:((room(X)&room(Y)&(((watches_fantasy_movies(X))&(is_not_allergic_to_anything(X))))&(((watches_fantasy_movies(Y))&(is_not_allergic_to_anything(Y)))))=>(X=Y))))))& (![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (((?[X]:(room(X)&((practices_tai_chi(X))|(practices_archery(X))|(collect_rare_sneakers(X)))))&(![X,Y]:((room(X)&room(Y)&(((practices_tai_chi(X))|(practices_archery(X))|(collect_rare_sneakers(X))))&(((practices_tai_chi(Y))|(practices_archery(Y))|(collect_rare_sneakers(Y)))))=>(X=Y)))))& (collects_luxury_watches(cherish))& (((?[X]:(room(X)&((uses_an_ios_phone(X))|(collect_rare_sneakers(X)))))))& (does_not_enjoy_bird_watching(rhonda))& (((does_not_practice_tai_chi(rhonda))&(designs_and_sews_custom_cosplay_costumes_for_conventions(rhonda))))& (((?[X]:(room(X)&((watches_fantasy_movies(X))&(is_not_allergic_to_anything(X)))))&(![X,Y]:((room(X)&room(Y)&(((watches_fantasy_movies(X))&(is_not_allergic_to_anything(X))))&(((watches_fantasy_movies(Y))&(is_not_allergic_to_anything(Y)))))=>(X=Y)))))& (((does_not_collect_luxury_watches(rhonda))|(is_a_client_of_Meta(rhonda))))& (is_a_cybersecurity_expert(cherish))& (((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(cherish))<~>(collects_classic_novels(cherish))))& (watches_fantasy_movies(rhonda))& (~((watches_fantasy_movies(cherish))|(practices_archery(cherish))))& (![X]:(room(X)=>(((((is_not_a_client_of_Meta(X))<~>(does_not_watche_fantasy_movies(X))))=>(does_not_collect_rare_sneakers(X))))))& ((![X]:((does_not_practice_archery(X))<=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_collect_modern_art(X))|(collects_classic_novels(X)))))))
room(cherish)&room(rhonda)&room(christopher)&room(katherine)&room(michele)&(![X]:(room(X)=>(X='cherish'|X='rhonda'|X='christopher'|X='katherine'|X='michele')))& writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(christopher)
[ "p0", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 836357346442312065898791 % SZS output start Proof for 836357346442312065898791 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (room(X0) => (~predr(X0) => predr(X0))) [input p3] 61. ~(predr(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 139. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 139] 144. ! [X0] : ((predr(X0) | predr(X0)) | ~room(X0)) [ennf transformation 47] 145. ! [X0] : (predr(X0) | predr(X0) | ~room(X0)) [flattening 144] 153. ~predr(fred) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 154. ~predr(fred) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 153] 173. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 174. ~predr(fred) | (john != sK5 & alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 154,173] 255. room(mary) [cnf transformation 140] 256. room(paul) [cnf transformation 140] 257. room(fred) [cnf transformation 140] 258. room(alice) [cnf transformation 140] 259. room(john) [cnf transformation 140] 260. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 140] 271. predr(X0) | predr(X0) | ~room(X0) [cnf transformation 145] 302. ~predr(fred) | room(sK5) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 303. ~predr(fred) | mary != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 304. ~predr(fred) | paul != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 305. ~predr(fred) | fred != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 306. ~predr(fred) | alice != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 307. ~predr(fred) | john != sK5 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 174] 308. ~room(X0) | predr(X0) [duplicate literal removal 271] 382. ~predr(fred) | john != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 307,259] 383. ~predr(fred) | john != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 382,258] 384. ~predr(fred) | john != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 383,257] 385. ~predr(fred) | john != sK5 | ~room(mary) [subsumption resolution 384,256] 386. ~predr(fred) | john != sK5 [subsumption resolution 385,255] 388. 16 <=> john = sK5 [avatar definition] 390. john != sK5 <- (~16) [avatar component clause 388] 392. 17 <=> predr(fred) [avatar definition] 395. ~16 | ~17 [avatar split clause 386,392,388] 396. ~predr(fred) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 306,259] 397. ~predr(fred) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 396,258] 398. ~predr(fred) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 397,257] 399. ~predr(fred) | alice != sK5 | ~room(mary) [subsumption resolution 398,256] 400. ~predr(fred) | alice != sK5 [subsumption resolution 399,255] 402. 18 <=> alice = sK5 [avatar definition] 404. alice != sK5 <- (~18) [avatar component clause 402] 405. ~18 | ~17 [avatar split clause 400,392,402] 406. ~predr(fred) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 305,259] 407. ~predr(fred) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 406,258] 408. ~predr(fred) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 407,257] 409. ~predr(fred) | fred != sK5 | ~room(mary) [subsumption resolution 408,256] 410. ~predr(fred) | fred != sK5 [subsumption resolution 409,255] 412. 19 <=> fred = sK5 [avatar definition] 414. fred != sK5 <- (~19) [avatar component clause 412] 415. ~19 | ~17 [avatar split clause 410,392,412] 416. ~predr(fred) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,259] 417. ~predr(fred) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 416,258] 418. ~predr(fred) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 417,257] 419. ~predr(fred) | paul != sK5 | ~room(mary) [subsumption resolution 418,256] 420. ~predr(fred) | paul != sK5 [subsumption resolution 419,255] 422. 20 <=> paul = sK5 [avatar definition] 424. paul != sK5 <- (~20) [avatar component clause 422] 425. ~20 | ~17 [avatar split clause 420,392,422] 426. ~predr(fred) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,259] 427. ~predr(fred) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 426,258] 428. ~predr(fred) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 427,257] 429. ~predr(fred) | mary != sK5 | ~room(mary) [subsumption resolution 428,256] 430. ~predr(fred) | mary != sK5 [subsumption resolution 429,255] 432. 21 <=> mary = sK5 [avatar definition] 434. mary != sK5 <- (~21) [avatar component clause 432] 435. ~21 | ~17 [avatar split clause 430,392,432] 436. ~predr(fred) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 302,259] 437. ~predr(fred) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 436,258] 438. ~predr(fred) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 437,257] 439. ~predr(fred) | room(sK5) | ~room(mary) [subsumption resolution 438,256] 440. ~predr(fred) | room(sK5) [subsumption resolution 439,255] 442. 22 <=> room(sK5) [avatar definition] 444. room(sK5) <- (22) [avatar component clause 442] 445. 22 | ~17 [avatar split clause 440,392,442] 448. predr(fred) [resolution 308,257] 456. 17 [avatar split clause 448,392] 641. alice = sK5 | fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (22) [resolution 260,444] 685. fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (~18, 22) [subsumption resolution 641,404] 686. paul = sK5 | mary = sK5 | john = sK5 <- (~18, ~19, 22) [subsumption resolution 685,414] 687. mary = sK5 | john = sK5 <- (~18, ~19, ~20, 22) [subsumption resolution 686,424] 688. john = sK5 <- (~18, ~19, ~20, ~21, 22) [subsumption resolution 687,434] 689. $false <- (~16, ~18, ~19, ~20, ~21, 22) [subsumption resolution 688,390] 690. 16 | 18 | 19 | 20 | 21 | ~22 [avatar contradiction clause 689] 691. $false [avatar sat refutation 395,405,415,425,435,445,456,690] % SZS output end Proof for 836357346442312065898791 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.028 s % ------------------------------ % ------------------------------
0.018853
Jeffrey is the only person in the room. “Everyone in the room does not create large-scale murals for public art installations or can play the guitar” if “everyone in the room does not enjoy landscape photography or enjoys landscape photography” and vice versa. It is not the case that “someone outside the room competes in national level swimming championships”. Everyone in the room competes in national level swimming championships if they is a dedicated volunteer for local community service projects. Everyone in the room is a skilled home brewer experimenting with craft beer recipes if they competes in national level swimming championships. Everyone in the room who is a skilled home brewer experimenting with craft beer recipes has a vast collection of first-edition science fiction novels. It is true that “Jeffrey who does not own a telescope is a dedicated volunteer for local community service projects”.
Jeffrey has a vast collection of first-edition science fiction novels.
entailment
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))& ((![X]:(room(X)=>(((enjoys_landscape_photography(X))|(does_not_enjoy_landscape_photography(X))))))<=>(![X]:(room(X)=>(((can_play_the_guitar(X))|(does_not_create_large-scale_murals_for_public_art_installations(X)))))))& ((![X]:(~room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))<=>(((collects_modern_art(jeffrey))|(does_not_collect_rare_sneakers(jeffrey)))))& ((![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))=>(?[X]:(anywhere(X)&(practices_and_performs_acrobatic_dance_routines(X)))))& (((![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_enjoy_stargazing(X))))))=>(![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(is_allergic_to_anything(X)))))))&((~(![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_enjoy_stargazing(X)))))))=>(?[X]:(anywhere(X)&(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))& (~(plays_the_drums(jeffrey)))& (~(?[X]:(~room(X)&(competes_in_national_level_swimming_championships(X)))))& (?[X]:(room(X)&(((enjoys_landscape_photography(X))&(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (?[X]:(anywhere(X)&(does_not_mentor_a_youth_basketball_team_on_weekends(X))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (((collects_modern_art(jeffrey))|(does_not_collect_rare_sneakers(jeffrey))))& (does_not_own_a_telescope(jeffrey))& (((hosts_a_YouTube_channel_dedicated_to_art_tutorials(jeffrey))&(does_not_own_a_telescope(jeffrey))))& ((does_not_own_a_telescope(jeffrey))&(is_a_dedicated_volunteer_for_local_community_service_projects(jeffrey)))& (![X]:(room(X)=>(((((plays_the_drums(X))&(knows_morse_code(X))))=>(~((collects_comic_books(X))|(does_not_host_a_popular_podcast_about_emerging_technologies(X))))))))& (?[X]:(room(X)&(is_not_a_drone_photographer(X))))& (![X]:(anywhere(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(is_not_allergic_to_anything(X))))))& (![X]:(room(X)=>(((collects_comic_books(X))=>(is_allergic_to_anything(X))))))
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))& has_a_vast_collection_of_first-edition_science_fiction_novels(jeffrey)
[ "p0", "p6", "p9", "p10", "p11", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 8942781578940520811447265 % SZS output start Proof for 8942781578940520811447265 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 50. ~? [X0] : (predo(X0) & ~room(X0)) [input p6] 53. ! [X0] : (room(X0) => (preds(X0) => predo(X0))) [input p9] 54. ! [X0] : (room(X0) => (predo(X0) => predf(X0))) [input p10] 55. ! [X0] : (room(X0) => (predf(X0) => predp(X0))) [input p11] 59. preds(mary) & ~predn(mary) [input p15] 64. ~(predp(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 73. preds(mary) [pure predicate removal 59] 157. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 162. ! [X0] : (~predo(X0) | room(X0)) [ennf transformation 50] 163. ! [X0] : ((predo(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 53] 164. ! [X0] : (predo(X0) | ~preds(X0) | ~room(X0)) [flattening 163] 165. ! [X0] : ((predf(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 54] 166. ! [X0] : (predf(X0) | ~predo(X0) | ~room(X0)) [flattening 165] 167. ! [X0] : ((predp(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 55] 168. ! [X0] : (predp(X0) | ~predf(X0) | ~room(X0)) [flattening 167] 169. ~predp(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 64] 185. ? [X0] : (mary != X0 & room(X0)) => (mary != sK5 & room(sK5)) [choice axiom] 186. ~predp(mary) | (mary != sK5 & room(sK5)) | ~room(mary) [skolemisation 169,185] 267. room(mary) [cnf transformation 157] 268. ~room(X0) | mary = X0 [cnf transformation 157] 280. ~predo(X0) | room(X0) [cnf transformation 162] 284. ~preds(X0) | predo(X0) | ~room(X0) [cnf transformation 164] 285. predf(X0) | ~predo(X0) | ~room(X0) [cnf transformation 166] 286. ~predf(X0) | predp(X0) | ~room(X0) [cnf transformation 168] 288. preds(mary) [cnf transformation 73] 290. ~predp(mary) | room(sK5) | ~room(mary) [cnf transformation 186] 291. ~predp(mary) | mary != sK5 | ~room(mary) [cnf transformation 186] 334. ~predo(X0) | predf(X0) [subsumption resolution 285,280] 336. ~predp(mary) | mary != sK5 [subsumption resolution 291,267] 338. 10 <=> mary = sK5 [avatar definition] 340. mary != sK5 <- (~10) [avatar component clause 338] 342. 11 <=> predp(mary) [avatar definition] 345. ~10 | ~11 [avatar split clause 336,342,338] 346. ~predp(mary) | room(sK5) [subsumption resolution 290,267] 348. 12 <=> room(sK5) [avatar definition] 350. room(sK5) <- (12) [avatar component clause 348] 351. 12 | ~11 [avatar split clause 346,342,348] 359. predo(mary) | ~room(mary) [resolution 284,288] 360. predo(mary) [subsumption resolution 359,267] 361. predf(mary) [resolution 360,334] 363. predp(mary) | ~room(mary) [resolution 361,286] 367. predp(mary) [subsumption resolution 363,267] 368. 11 [avatar split clause 367,342] 369. mary = sK5 <- (12) [resolution 350,268] 370. $false <- (~10, 12) [subsumption resolution 369,340] 371. 10 | ~12 [avatar contradiction clause 370] 372. $false [avatar sat refutation 345,351,368,371] % SZS output end Proof for 8942781578940520811447265 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.004395
Carol, Jay, Daniel, Robin are the only persons in the room. If someone does not enjoy coding in Python then he/she enjoys coding in Python. If someone volunteers for local environmental conservation projects then he/she has a specialized collection of handmade artisan pottery. Jay can play the piano. Everyone outside the room does not practice tai chi or has lived in exactly three countries. Everyone in the room does not have a specialized collection of handmade artisan pottery or does not participate in long-distance cycling events across the country. Everyone in the room has lived in exactly three countries if they does not have a specialized collection of handmade artisan pottery. Jay does not have lived in exactly three countries.
Jay participates in long-distance cycling events across the country.
contradiction
room(carol)&room(jay)&room(daniel)&room(robin)&(![X]:(room(X)=>(X='carol'|X='jay'|X='daniel'|X='robin')))& ((![X]:((does_not_enjoy_coding_in_Python(X))=>(enjoys_coding_in_Python(X)))))& ((![X]:((volunteers_for_local_environmental_conservation_projects(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))& (can_play_the_piano(jay))& (![X]:(~room(X)=>(((has_lived_in_exactly_three_countries(X))|(does_not_practice_tai_chi(X))))))& (![X]:(room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(((cannot_play_the_piano(X))|(can_play_the_piano(X))))))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& ((![X]:((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))<=>(does_not_practice_tai_chi(X)))))& (does_not_have_lived_in_exactly_three_countries(jay))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(((collects_vintage_stamps(X))<~>(volunteers_for_local_environmental_conservation_projects(X))))))))& (~![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(~((has_lived_in_exactly_three_countries(X))|(enjoys_coding_in_Python(X))))))))
room(carol)&room(jay)&room(daniel)&room(robin)&(![X]:(room(X)=>(X='carol'|X='jay'|X='daniel'|X='robin')))& participates_in_long-distance_cycling_events_across_the_country(jay)
[ "p0", "p5", "p6", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 7830039365190217223448308 % SZS output start Proof for 7830039365190217223448308 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (~preda(X0) | ~predj(X0))) [input p5] 50. ! [X0] : (room(X0) => (~preda(X0) => predb(X0))) [input p6] 54. ~predb(paul) [input p10] 57. predj(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 133. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 134. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 133] 137. ! [X0] : ((~preda(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 49] 138. ! [X0] : (~preda(X0) | ~predj(X0) | ~room(X0)) [flattening 137] 139. ! [X0] : ((predb(X0) | preda(X0)) | ~room(X0)) [ennf transformation 50] 140. ! [X0] : (predb(X0) | preda(X0) | ~room(X0)) [flattening 139] 146. predj(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 57] 147. predj(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146] 233. room(paul) [cnf transformation 134] 240. ~predj(X0) | ~preda(X0) | ~room(X0) [cnf transformation 138] 241. ~room(X0) | preda(X0) | predb(X0) [cnf transformation 140] 243. ~predb(paul) [cnf transformation 54] 253. predj(paul) [cnf transformation 147] 257. ~preda(paul) | ~room(paul) [resolution 240,253] 258. ~preda(paul) [subsumption resolution 257,233] 260. preda(paul) | predb(paul) [resolution 241,233] 273. predb(paul) [subsumption resolution 260,258] 274. $false [subsumption resolution 273,243] % SZS output end Proof for 7830039365190217223448308 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Linda, Eilene are the only persons in the room. Everyone in the room is not a cybersecurity expert or does not make intricate hand-cut paper art for exhibitions. Linda is not a cybersecurity expert. Not everyone in the room who is a cybersecurity expert is a Linux enthusiast.
Eilene makes intricate hand-cut paper art for exhibitions.
contradiction
room(linda)&room(eilene)&(![X]:(room(X)=>(X='linda'|X='eilene')))& ((![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(is_a_Linux_enthusiast(X))))))=>(is_a_Linux_enthusiast(linda)))& ((is_not_a_cybersecurity_expert(linda))<~>(~?[X]:(room(X)=>(((practices_graffiti_art(X))|(is_not_a_Linux_enthusiast(X)))))))& ((~(((?[X]:(room(X)&((practices_graffiti_art(X))<~>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))))=>(((practices_graffiti_art(linda))<~>(is_a_cybersecurity_expert(linda)))))& ((![X]:(room(X)=>(((is_a_cybersecurity_expert(X))|(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))))<=>(is_a_cybersecurity_expert(linda)))& (![X]:(room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))|(is_not_a_cybersecurity_expert(X))))))& (is_not_a_cybersecurity_expert(linda))& (![X]:(room(X)=>(((practices_graffiti_art(X))<=>(is_a_cybersecurity_expert(X))))))& (~![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(is_a_Linux_enthusiast(X))))))& (makes_intricate_hand-cut_paper_art_for_exhibitions(linda))
room(linda)&room(eilene)&(![X]:(room(X)=>(X='linda'|X='eilene')))& makes_intricate_hand-cut_paper_art_for_exhibitions(eilene)
[ "p0", "p5", "p6", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 219757619639024215291738 % SZS output start Proof for 219757619639024215291738 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (~predi(X0) | ~predo(X0))) [input p5] 50. ~predi(mary) [input p6] 52. ~! [X0] : (room(X0) => (predi(X0) => predq(X0))) [input p8] 54. predo(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 127. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 127] 136. ! [X0] : ((~predi(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 49] 137. ! [X0] : (~predi(X0) | ~predo(X0) | ~room(X0)) [flattening 136] 139. ? [X0] : ((~predq(X0) & predi(X0)) & room(X0)) [ennf transformation 52] 140. ? [X0] : (~predq(X0) & predi(X0) & room(X0)) [flattening 139] 141. predo(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 54] 142. predo(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 141] 159. ? [X0] : (~predq(X0) & predi(X0) & room(X0)) => (~predq(sK4) & predi(sK4) & room(sK4)) [choice axiom] 160. ~predq(sK4) & predi(sK4) & room(sK4) [skolemisation 140,159] 242. room(paul) [cnf transformation 128] 243. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 128] 261. ~predo(X0) | ~predi(X0) | ~room(X0) [cnf transformation 137] 262. ~predi(mary) [cnf transformation 50] 265. room(sK4) [cnf transformation 160] 266. predi(sK4) [cnf transformation 160] 272. predo(paul) [cnf transformation 142] 293. 5 <=> predi(mary) [avatar definition] 294. ~predi(mary) <- (~5) [avatar component clause 293] 362. ~5 [avatar split clause 262,293] 364. ~predi(paul) | ~room(paul) [resolution 261,272] 366. ~predi(paul) [subsumption resolution 364,242] 380. mary = sK4 | paul = sK4 [resolution 243,265] 400. 24 <=> paul = sK4 [avatar definition] 402. paul = sK4 <- (24) [avatar component clause 400] 404. 25 <=> mary = sK4 [avatar definition] 406. mary = sK4 <- (25) [avatar component clause 404] 407. 24 | 25 [avatar split clause 380,404,400] 410. predi(paul) <- (24) [backward demodulation 266,402] 412. $false <- (24) [subsumption resolution 410,366] 413. ~24 [avatar contradiction clause 412] 427. predi(mary) <- (25) [backward demodulation 266,406] 431. $false <- (~5, 25) [subsumption resolution 427,294] 432. 5 | ~25 [avatar contradiction clause 431] 438. $false [avatar sat refutation 362,407,413,432] % SZS output end Proof for 219757619639024215291738 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Trevor, Felix are the only persons in the room. If “Felix knows morse code” then “Felix does not know morse code, collects vintage vinyl records and works on fridays”. If “not everyone in the room does not collect vintage vinyl records or enjoys stargazing” then “not everyone in the room either collects vintage vinyl records or knows morse code but not both” otherwise “if someone works on fridays and knows morse code then he/she works on fridays and vice versa”. If “Trevor works on fridays” then “Trevor does not know morse code”. If “everyone outside the room does not work on fridays or knows morse code” then “Felix enjoys stargazing”. If “Trevor does not collect vintage vinyl records, knows morse code or owns a significant collection of rare gemstones and minerals” then “everyone in the room who enjoys stargazing knows morse code, owns a significant collection of rare gemstones and minerals and works on fridays”. “Everyone anywhere does not enjoy stargazing or collects vintage vinyl records” only if “everyone in the room enjoys stargazing if they does not enjoy stargazing”. Either “no one anywhere owns a significant collection of rare gemstones and minerals or does not enjoy stargazing” or “everyone in the room does not know morse code or does not enjoy stargazing” but not both. Trevor owns a significant collection of rare gemstones and minerals. Trevor collects vintage vinyl records. If someone does not enjoy stargazing then he/she works on fridays and vice versa. Everyone anywhere knows morse code if they enjoys stargazing. Someone in the room does not own a significant collection of rare gemstones and minerals. Everyone outside the room knows morse code if they knows morse code, owns a significant collection of rare gemstones and minerals and enjoys stargazing and vice versa.
It is true that “Trevor collects vintage vinyl records”.
entailment
room(trevor)&room(felix)&(![X]:(room(X)=>(X='trevor'|X='felix')))& ((knows_morse_code(felix))=>(((does_not_know_morse_code(felix))&(collects_vintage_vinyl_records(felix))&(works_on_fridays(felix)))))& (((~![X]:(room(X)=>(((enjoys_stargazing(X))|(does_not_collect_vintage_vinyl_records(X))))))=>(~![X]:(room(X)=>(((collects_vintage_vinyl_records(X))<~>(knows_morse_code(X)))))))&((~(~![X]:(room(X)=>(((enjoys_stargazing(X))|(does_not_collect_vintage_vinyl_records(X)))))))=>((![X]:((((works_on_fridays(X))&(knows_morse_code(X))))<=>(works_on_fridays(X)))))))& ((works_on_fridays(trevor))=>(does_not_know_morse_code(trevor)))& ((![X]:(~room(X)=>(((knows_morse_code(X))|(does_not_work_on_fridays(X))))))=>(enjoys_stargazing(felix)))& ((((does_not_collect_vintage_vinyl_records(trevor))|(knows_morse_code(trevor))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(trevor))))=>(![X]:(room(X)=>(((enjoys_stargazing(X))=>(((knows_morse_code(X))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))&(works_on_fridays(X)))))))))& ((![X]:(anywhere(X)=>(((collects_vintage_vinyl_records(X))|(does_not_enjoy_stargazing(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_stargazing(X))=>(enjoys_stargazing(X)))))))& ((~?[X]:(anywhere(X)=>(((does_not_enjoy_stargazing(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))<~>(![X]:(room(X)=>(((does_not_enjoy_stargazing(X))|(does_not_know_morse_code(X)))))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(trevor))& (collects_vintage_vinyl_records(trevor))& ((![X]:((does_not_enjoy_stargazing(X))<=>(works_on_fridays(X)))))& (![X]:(anywhere(X)=>(((enjoys_stargazing(X))=>(knows_morse_code(X))))))& (?[X]:(room(X)&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))& (![X]:(~room(X)=>(((knows_morse_code(X))<=>(((knows_morse_code(X))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))&(enjoys_stargazing(X))))))))
room(trevor)&room(felix)&(![X]:(room(X)=>(X='trevor'|X='felix')))& collects_vintage_vinyl_records(trevor)
[ "p0", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 8069376602780665867962136 % SZS output start Proof for 8069376602780665867962136 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 53. prede(mary) [input p9] 58. ~(prede(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 134. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 135. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 134] 151. ~prede(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 58] 152. ~prede(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 151] 187. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK10 & mary != sK10 & room(sK10)) [choice axiom] 188. ~prede(mary) | (paul != sK10 & mary != sK10 & room(sK10)) | ~room(paul) | ~room(mary) [skolemisation 152,187] 270. room(mary) [cnf transformation 135] 271. room(paul) [cnf transformation 135] 272. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 135] 307. prede(mary) [cnf transformation 53] 317. ~prede(mary) | room(sK10) | ~room(paul) | ~room(mary) [cnf transformation 188] 318. ~prede(mary) | mary != sK10 | ~room(paul) | ~room(mary) [cnf transformation 188] 319. ~prede(mary) | paul != sK10 | ~room(paul) | ~room(mary) [cnf transformation 188] 419. 21 <=> prede(mary) [avatar definition] 490. 21 [avatar split clause 307,419] 492. ~prede(mary) | paul != sK10 | ~room(mary) [subsumption resolution 319,271] 493. ~prede(mary) | paul != sK10 [subsumption resolution 492,270] 495. 37 <=> paul = sK10 [avatar definition] 497. paul != sK10 <- (~37) [avatar component clause 495] 498. ~37 | ~21 [avatar split clause 493,419,495] 499. ~prede(mary) | mary != sK10 | ~room(mary) [subsumption resolution 318,271] 500. ~prede(mary) | mary != sK10 [subsumption resolution 499,270] 502. 38 <=> mary = sK10 [avatar definition] 504. mary != sK10 <- (~38) [avatar component clause 502] 505. ~38 | ~21 [avatar split clause 500,419,502] 506. ~prede(mary) | room(sK10) | ~room(mary) [subsumption resolution 317,271] 507. ~prede(mary) | room(sK10) [subsumption resolution 506,270] 509. 39 <=> room(sK10) [avatar definition] 511. room(sK10) <- (39) [avatar component clause 509] 512. 39 | ~21 [avatar split clause 507,419,509] 609. mary = sK10 | paul = sK10 <- (39) [resolution 272,511] 646. paul = sK10 <- (~38, 39) [subsumption resolution 609,504] 647. $false <- (~37, ~38, 39) [subsumption resolution 646,497] 648. 37 | 38 | ~39 [avatar contradiction clause 647] 649. $false [avatar sat refutation 490,498,505,512,648] % SZS output end Proof for 8069376602780665867962136 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.004866
Ruben, Robert, Mae, Esther, William are the only persons in the room. Either 'Esther has a tattoo' or 'Robert bakes bread at home' but not both. If 'Esther has a piercing' then 'William owns a 3D printer'. Ruben does not collect rare and antique scientific instruments. Mae collects rare and antique scientific instruments. Esther is a wine connoisseur. Mae is a chess master who participates in national tournaments. Mae does practice yoga. Only one person in the room collects limited-edition art prints from contemporary artists and does not own a 3D printer. Esther enjoys windsurfing. Mae has a pet dog. Esther is a wine connoisseur and uses a Windows laptop. William is a night owl, collects modern art or owns a 3D printer. Robert is a certified scuba diver with advanced underwater photography skills. Esther does not build model airplanes. Robert knows morse code. Ruben does not collect historical artifacts related to ancient civilizations. Esther is a certified scuba diver with advanced underwater photography skills, knows morse code or does not collect modern art. Esther owns a microscope. William owns a 3D printer, has a specialized collection of handmade artisan pottery or is a certified scuba diver with advanced underwater photography skills. Mae collects modern art and collects historical artifacts related to ancient civilizations. If someone regularly contributes to tech forums and online communities, does practice yoga or collects modern art then he/she enjoys windsurfing and vice versa.
More than one person in the room enjoys windsurfing.
entailment
room(ruben)&room(robert)&room(mae)&room(esther)&room(william)&(![X]:(room(X)=>(X='ruben'|X='robert'|X='mae'|X='esther'|X='william')))& ((has_a_tattoo(esther))<~>(bakes_bread_at_home(robert)))& ((has_a_piercing(esther))=>(owns_a_3D_printer(william)))& (does_not_collect_rare_and_antique_scientific_instruments(ruben))& (collects_rare_and_antique_scientific_instruments(mae))& (is_a_wine_connoisseur(esther))& (is_a_chess_master_who_participates_in_national_tournaments(mae))& (does_practice_yoga(mae))& (((?[X]:(room(X)&((collects_limited-edition_art_prints_from_contemporary_artists(X))&(does_not_own_a_3D_printer(X)))))&(![X,Y]:((room(X)&room(Y)&(((collects_limited-edition_art_prints_from_contemporary_artists(X))&(does_not_own_a_3D_printer(X))))&(((collects_limited-edition_art_prints_from_contemporary_artists(Y))&(does_not_own_a_3D_printer(Y)))))=>(X=Y)))))& (enjoys_windsurfing(esther))& (has_a_pet_dog(mae))& (((is_a_wine_connoisseur(esther))&(uses_a_Windows_laptop(esther))))& (((is_a_night_owl(william))|(collects_modern_art(william))|(owns_a_3D_printer(william))))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(robert))& (does_not_build_model_airplanes(esther))& (knows_morse_code(robert))& (does_not_collect_historical_artifacts_related_to_ancient_civilizations(ruben))& (((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(esther))|(knows_morse_code(esther))|(does_not_collect_modern_art(esther))))& (owns_a_microscope(esther))& (((owns_a_3D_printer(william))|(has_a_specialized_collection_of_handmade_artisan_pottery(william))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(william))))& (((collects_modern_art(mae))&(collects_historical_artifacts_related_to_ancient_civilizations(mae))))& ((![X]:((((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_practice_yoga(X))|(collects_modern_art(X))))<=>(enjoys_windsurfing(X)))))& (builds_model_airplanes(ruben))& (is_a_chess_master_who_participates_in_national_tournaments(robert))& (collects_limited-edition_art_prints_from_contemporary_artists(esther))& (~(owns_a_microscope(robert)))
room(ruben)&room(robert)&room(mae)&room(esther)&room(william)&(![X]:(room(X)=>(X='ruben'|X='robert'|X='mae'|X='esther'|X='william')))& (?[X,Y]:(room(X)&room(Y)&(enjoys_windsurfing(X)&enjoys_windsurfing(Y))&(X!=Y)))
[ "b42", "p0", "p7", "p9", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 9213168343691254919297611 % SZS output start Proof for 9213168343691254919297611 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 51. predg(fred) [input p7] 53. predo(alice) [input p9] 65. ! [X0] : ((predp(X0) | predg(X0) | predm(X0)) <=> predo(X0)) [input p21] 70. ~(? [X0,X1] : (X0 != X1 & predo(X1) & predo(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 72. ~(? [X0,X1] : (X0 != X1 & predo(X1) & predo(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (john = X2 | alice = X2 | fred = X2 | paul = X2 | mary = X2)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 70] 157. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 158. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 157] 161. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) | ? [X2] : ((john != X2 & alice != X2 & fred != X2 & paul != X2 & mary != X2) & room(X2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 72] 162. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) | ? [X2] : (john != X2 & alice != X2 & fred != X2 & paul != X2 & mary != X2 & room(X2)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 161] 167. ! [X0] : (((predp(X0) | predg(X0) | predm(X0)) | ~predo(X0)) & (predo(X0) | (~predp(X0) & ~predg(X0) & ~predm(X0)))) [nnf transformation 65] 168. ! [X0] : ((predp(X0) | predg(X0) | predm(X0) | ~predo(X0)) & (predo(X0) | (~predp(X0) & ~predg(X0) & ~predm(X0)))) [flattening 167] 169. ? [X2] : (john != X2 & alice != X2 & fred != X2 & paul != X2 & mary != X2 & room(X2)) => (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 170. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) | (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 162,169] 229. fred != alice [cnf transformation 43] 251. room(mary) [cnf transformation 158] 252. room(paul) [cnf transformation 158] 253. room(fred) [cnf transformation 158] 254. room(alice) [cnf transformation 158] 255. room(john) [cnf transformation 158] 256. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 158] 261. predg(fred) [cnf transformation 51] 266. predo(alice) [cnf transformation 53] 273. ~predg(X0) | predo(X0) [cnf transformation 168] 279. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 280. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 281. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 282. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 283. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 284. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 295. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 284,255] 296. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,254] 297. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 296,253] 298. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 | ~room(mary) [subsumption resolution 297,252] 299. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | john != sK1 [subsumption resolution 298,251] 301. 3 <=> john = sK1 [avatar definition] 303. john != sK1 <- (~3) [avatar component clause 301] 305. 4 <=> ! [X0,X1] : (X0 = X1 | ~room(X0) | ~room(X1) | ~predo(X0) | ~predo(X1)) [avatar definition] 306. ~predo(X1) | ~room(X0) | ~room(X1) | ~predo(X0) | X0 = X1 <- (4) [avatar component clause 305] 307. ~3 | 4 [avatar split clause 299,305,301] 308. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,255] 309. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 308,254] 310. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 309,253] 311. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 | ~room(mary) [subsumption resolution 310,252] 312. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | alice != sK1 [subsumption resolution 311,251] 314. 5 <=> alice = sK1 [avatar definition] 316. alice != sK1 <- (~5) [avatar component clause 314] 317. ~5 | 4 [avatar split clause 312,305,314] 318. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,255] 319. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 318,254] 320. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 319,253] 321. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 | ~room(mary) [subsumption resolution 320,252] 322. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | fred != sK1 [subsumption resolution 321,251] 324. 6 <=> fred = sK1 [avatar definition] 326. fred != sK1 <- (~6) [avatar component clause 324] 327. ~6 | 4 [avatar split clause 322,305,324] 328. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,255] 329. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,254] 330. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 329,253] 331. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 | ~room(mary) [subsumption resolution 330,252] 332. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | paul != sK1 [subsumption resolution 331,251] 334. 7 <=> paul = sK1 [avatar definition] 336. paul != sK1 <- (~7) [avatar component clause 334] 337. ~7 | 4 [avatar split clause 332,305,334] 338. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,255] 339. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,254] 340. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 339,253] 341. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 | ~room(mary) [subsumption resolution 340,252] 342. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | mary != sK1 [subsumption resolution 341,251] 344. 8 <=> mary = sK1 [avatar definition] 346. mary != sK1 <- (~8) [avatar component clause 344] 347. ~8 | 4 [avatar split clause 342,305,344] 348. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,255] 349. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 348,254] 350. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 349,253] 351. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) | ~room(mary) [subsumption resolution 350,252] 352. X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0) | room(sK1) [subsumption resolution 351,251] 354. 9 <=> room(sK1) [avatar definition] 356. room(sK1) <- (9) [avatar component clause 354] 357. 9 | 4 [avatar split clause 352,305,354] 358. predo(fred) [resolution 273,261] 412. ~room(X0) | ~room(alice) | ~predo(X0) | alice = X0 <- (4) [resolution 306,266] 414. ~predo(X0) | ~room(X0) | alice = X0 <- (4) [subsumption resolution 412,254] 417. ~room(fred) | fred = alice <- (4) [resolution 414,358] 418. fred = alice <- (4) [subsumption resolution 417,253] 419. $false <- (4) [subsumption resolution 418,229] 420. ~4 [avatar contradiction clause 419] 448. alice = sK1 | fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (9) [resolution 256,356] 466. fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (~5, 9) [subsumption resolution 448,316] 467. paul = sK1 | mary = sK1 | john = sK1 <- (~5, ~6, 9) [subsumption resolution 466,326] 468. mary = sK1 | john = sK1 <- (~5, ~6, ~7, 9) [subsumption resolution 467,336] 469. john = sK1 <- (~5, ~6, ~7, ~8, 9) [subsumption resolution 468,346] 470. $false <- (~3, ~5, ~6, ~7, ~8, 9) [subsumption resolution 469,303] 471. 3 | 5 | 6 | 7 | 8 | ~9 [avatar contradiction clause 470] 472. $false [avatar sat refutation 307,317,327,337,347,357,420,471] % SZS output end Proof for 9213168343691254919297611 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.00232
James, Kenneth, Nancy, Kevin are the only persons in the room. "Everyone outside the room hosts regular workshops on creative writing or does not collect rare and antique scientific instruments" only if "everyone in the room collects rare and antique scientific instruments or owns a 3D printer or both if they does not participate in long-distance cycling events across the country". If "everyone in the room collects rare and antique scientific instruments" then "Nancy does not participate in long-distance cycling events across the country". Everyone outside the room collects foreign coins or does not own a 3D printer. Everyone in the room who hosts regular workshops on creative writing collects rare and antique scientific instruments. If someone hosts regular workshops on creative writing then he/she collects rare and antique scientific instruments. Only one person in the room collects rare and antique scientific instruments. Kevin participates in long-distance cycling events across the country.
James does not collect foreign coins or participates in long-distance cycling events across the country or both.
neutral
room(james)&room(kenneth)&room(nancy)&room(kevin)&(![X]:(room(X)=>(X='james'|X='kenneth'|X='nancy'|X='kevin')))& ((![X]:(~room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(hosts_regular_workshops_on_creative_writing(X))))))=>(![X]:(room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))=>(((collects_rare_and_antique_scientific_instruments(X))|(owns_a_3D_printer(X)))))))))& ((![X]:(room(X)=>(collects_rare_and_antique_scientific_instruments(X))))=>(does_not_participate_in_long-distance_cycling_events_across_the_country(nancy)))& (![X]:(~room(X)=>(((does_not_own_a_3D_printer(X))|(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& ((![X]:((hosts_regular_workshops_on_creative_writing(X))=>(collects_rare_and_antique_scientific_instruments(X)))))& (((?[X]:(room(X)&collects_rare_and_antique_scientific_instruments(X)))&(![X,Y]:((room(X)&room(Y)&(collects_rare_and_antique_scientific_instruments(X))&(collects_rare_and_antique_scientific_instruments(Y)))=>(X=Y)))))& (participates_in_long-distance_cycling_events_across_the_country(kevin))
room(james)&room(kenneth)&room(nancy)&room(kevin)&(![X]:(room(X)=>(X='james'|X='kenneth'|X='nancy'|X='kevin')))& ((does_not_collect_foreign_coins(james))|(participates_in_long-distance_cycling_events_across_the_country(james)))
[]
null
0
There is a room. If someone is hated by David then he/she is liked by Raymond and does not like David. If someone hates David then he/she neither hates Raymond nor likes Raymond. If someone does not hate David then he/she likes Raymond, hates David or likes David. If someone hates David then he/she neither is hated by Raymond nor is liked by Raymond. Someone in the room is hated by Raymond. More than one person in the room is not liked by David.
Everyone in the room likes Raymond.
neutral
(there_is_a_room)& ((![X]:((hate(X,david))=>(((like(X,raymond))&(~like(david,X)))))))& ((![X]:((hate(david,X))=>(~((hate(raymond,X))|(like(raymond,X)))))))& ((![X]:((~hate(david,X))=>(((like(raymond,X))|(hate(david,X))|(like(david,X)))))))& ((![X]:((hate(david,X))=>(~((hate(X,raymond))|(like(X,raymond)))))))& (?[X]:(room(X)&(hate(X,raymond))))& ((?[X,Y]:(room(X)&room(Y)&(~like(X,david)&~like(Y,david))&(X!=Y))))& (?[X,Y]:((((hate(X,raymond))&(hate(raymond,X))))&(like(Y,raymond))&(like(X,Y))))& (((?[X]:(room(X)&~like(X,david)))))& ((?[X,Y]:(room(X)&room(Y)&(((hate(X,raymond))<~>(like(X,david)))&((hate(Y,raymond))<~>(like(Y,david))))&(X!=Y))))& ((![X]:((hate(X,david))<=>(((like(X,raymond))&(hate(X,raymond))&(~like(david,X)))))))& (?[X,Y]:((((hate(X,raymond))<~>(like(X,david))))&(((hate(Y,raymond))<~>(~hate(raymond,Y))))&(like(X,Y))))& (?[X]:(room(X)&(~hate(raymond,X))))& (?[X]:(room(X)&(hate(X,david))))
(there_is_a_room)& ![X]:(room(X)=>(like(raymond,X)))
[]
null
0.224255
Rick, Gloria, Raymond, Kim are the only persons in the room. 'Everyone in the room does not volunteer for local environmental conservation projects or is poorer than Alice' only if 'if someone is louder than Edward then he/she is generous and vice versa'. 'Neither 'A desert does not bloom with snowdrops every year.' nor 'Mirrors do not fog permanently in one particular house.'' only if 'Edward and Kim like each other'. If 'Kim is not a creative generous wise person or does not volunteer for local environmental conservation projects or both' then 'all generous persons are wise'. If 'Gloria is creative' then 'everyone in the room who is a wise person is louder than Edward'. If 'Rick is a wise creative generous person and volunteers for local environmental conservation projects' then ''Glass rain falls on a distant planet.' and 'Glass rain does not fall on a distant planet.''. 'Neither 'A tower does not lean significantly without falling.' nor 'Glass rain falls on a distant planet.'' unless 'Gloria is generous'. Rick is poorer than Edward. Raymond is not a creative wise person. Someone in the room is wise. It is not the case that 'Rick volunteers for local environmental conservation projects'. Everyone anywhere who is generous is a generous person. Alice and Gloria like each other. At least one person in the room is louder than Edward. Everyone outside the room is a creative generous person only if they volunteers for local environmental conservation projects. Everyone in the room is not a generous person only if they volunteers for local environmental conservation projects. If someone is louder than Edward then he/she is generous and vice versa. Gloria and Kim are louder than Edward. If someone is a creative generous person then he/she is not generous, not wise and vice versa. Raymond is poorer than Edward. Everyone in the room who is louder than Alice volunteers for local environmental conservation projects.
Rick is creative.
contradiction
room(rick)&room(gloria)&room(raymond)&room(kim)&(![X]:(room(X)=>(X='rick'|X='gloria'|X='raymond'|X='kim')))& ((![X]:(room(X)=>(((poorer(alice,X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))=>((![X]:((louder(edward,X))<=>(generous(X))))))& ((~((A_desert_does_not_bloom_with_snowdrops_every_year.)|(Mirrors_do_not_fog_permanently_in_one_particular_house.)))=>((like(edward,kim) & like(kim,edward))))& ((((~(creative(kim)&generous(kim)&wise(kim)&person(kim)))|(does_not_volunteer_for_local_environmental_conservation_projects(kim))))=>(![X]:(generous(X)=>wise(X))))& ((creative(gloria))=>(![X]:(room(X)=>(((wise(X)&person(X))=>(louder(edward,X)))))))& ((((wise(rick)&creative(rick)&generous(rick)&person(rick))&(volunteers_for_local_environmental_conservation_projects(rick))))=>(((Glass_rain_falls_on_a_distant_planet.)&(Glass_rain_does_not_fall_on_a_distant_planet.))))& (~(generous(gloria))=>(~((A_tower_does_not_lean_significantly_without_falling.)|(Glass_rain_falls_on_a_distant_planet.))))& (poorer(edward,rick))& (~(creative(raymond)&wise(raymond)&person(raymond)))& (?[X]:(room(X)&(wise(X))))& (~(volunteers_for_local_environmental_conservation_projects(rick)))& (![X]:(anywhere(X)=>(((generous(X))=>(generous(X)&person(X))))))& ((like(alice,gloria) & like(gloria,alice)))& (((?[X]:(room(X)&louder(edward,X)))))& (![X]:(~room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))<=(creative(X)&generous(X)&person(X))))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))<=(~(generous(X)&person(X)))))))& ((![X]:((louder(edward,X))<=>(generous(X)))))& (louder(edward,gloria)&louder(edward,kim))& ((![X]:((creative(X)&generous(X)&person(X))<=>(~generous(X)&~wise(X)))))& (poorer(edward,raymond))& (![X]:(room(X)=>(((louder(alice,X))=>(volunteers_for_local_environmental_conservation_projects(X))))))
room(rick)&room(gloria)&room(raymond)&room(kim)&(![X]:(room(X)=>(X='rick'|X='gloria'|X='raymond'|X='kim')))& creative(rick)
[ "b4", "p0", "p10", "p11", "p15", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 5096967526008555544404086 % SZS output start Proof for 5096967526008555544404086 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 54. ~predk(mary) [input p10] 55. ! [X0] : (anywhere(X0) => (generous(X0) => (person(X0) & generous(X0)))) [input p11] 59. ! [X0] : (room(X0) => (~(person(X0) & generous(X0)) => predk(X0))) [input p15] 62. ! [X0] : ((person(X0) & generous(X0) & creative(X0)) <=> (~wise(X0) & ~generous(X0))) [input p18] 65. creative(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 141. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 153. ! [X0] : (((person(X0) & generous(X0)) | ~generous(X0)) | ~anywhere(X0)) [ennf transformation 55] 154. ! [X0] : ((person(X0) & generous(X0)) | ~generous(X0) | ~anywhere(X0)) [flattening 153] 157. ! [X0] : ((predk(X0) | (person(X0) & generous(X0))) | ~room(X0)) [ennf transformation 59] 158. ! [X0] : (predk(X0) | (person(X0) & generous(X0)) | ~room(X0)) [flattening 157] 161. creative(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 162. creative(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161] 173. ! [X0] : (((person(X0) & generous(X0) & creative(X0)) | (wise(X0) | generous(X0))) & ((~wise(X0) & ~generous(X0)) | (~person(X0) | ~generous(X0) | ~creative(X0)))) [nnf transformation 62] 174. ! [X0] : (((person(X0) & generous(X0) & creative(X0)) | wise(X0) | generous(X0)) & ((~wise(X0) & ~generous(X0)) | ~person(X0) | ~generous(X0) | ~creative(X0))) [flattening 173] 175. anywhere(X0) [cnf transformation 5] 256. room(mary) [cnf transformation 142] 280. ~predk(mary) [cnf transformation 54] 282. person(X0) | ~generous(X0) | ~anywhere(X0) [cnf transformation 154] 286. ~room(X0) | generous(X0) | predk(X0) [cnf transformation 158] 292. ~generous(X0) | ~person(X0) | ~generous(X0) | ~creative(X0) [cnf transformation 174] 304. creative(mary) [cnf transformation 162] 305. ~generous(X0) | ~person(X0) | ~creative(X0) [duplicate literal removal 292] 372. 15 <=> creative(mary) [avatar definition] 373. creative(mary) <- (15) [avatar component clause 372] 376. 16 <=> generous(mary) [avatar definition] 378. ~generous(mary) <- (~16) [avatar component clause 376] 384. 18 <=> predk(mary) [avatar definition] 386. ~predk(mary) <- (~18) [avatar component clause 384] 411. ~18 [avatar split clause 280,384] 412. ~generous(X0) | person(X0) [subsumption resolution 282,175] 418. ~creative(X0) | ~generous(X0) [subsumption resolution 305,412] 419. 15 [avatar split clause 304,372] 421. ~generous(mary) <- (15) [resolution 418,373] 422. ~16 | ~15 [avatar split clause 421,372,376] 432. generous(mary) | predk(mary) [resolution 286,256] 438. predk(mary) <- (~16) [subsumption resolution 432,378] 439. $false <- (~16, ~18) [subsumption resolution 438,386] 440. 16 | 18 [avatar contradiction clause 439] 459. $false [avatar sat refutation 411,419,422,440] % SZS output end Proof for 5096967526008555544404086 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.000907
Roberto, Patrick, Wendy, Joyce are the only persons in the room. “Everyone outside the room does not write poetry or enjoys cross-country skiing” if “everyone in the room writes poetry or is not an avid collector of autographed memorabilia from famous musicians” and vice versa. “Roberto is a client of Meta” unless “someone in the room collects historical artifacts related to ancient civilizations, participates in long-distance cycling events across the country and collects comic books”. “Wendy has a pet dog” if “everyone in the room does not collect historical artifacts related to ancient civilizations or does not participate in long-distance cycling events across the country” and vice versa. If “not everyone in the room enjoys cross-country skiing or does not use a Windows laptop” then “only one person in the room has a piercing”. “Everyone in the room reads mystery novels or does not write poetry” only if “everyone in the room who reads mystery novels enjoys cross-country skiing”. “At least one person anywhere collects comic books or reads mystery novels or both” if “Wendy reads mystery novels” and vice versa. “Everyone in the room is not an avid collector of autographed memorabilia from famous musicians or is an avid collector of autographed memorabilia from famous musicians” if “everyone in the room reads mystery novels or is not an avid mountain climber who has scaled several peaks” and vice versa. If “everyone in the room does not write poetry or is not a tea enthusiast” then “Patrick is a coffee connoisseur”. If “Patrick is a coffee connoisseur” then “Joyce does not participate in long-distance cycling events across the country”. “Everyone in the room who is a scotch connoisseur reads mystery novels and collects historical artifacts related to ancient civilizations” unless “everyone in the room is an avid mountain climber who has scaled several peaks or is not a client of Meta”. If “Joyce hosts a popular podcast about emerging technologies” then “everyone in the room participates in long-distance cycling events across the country if they owns a significant collection of rare gemstones and minerals”. Everyone in the room participates in long-distance cycling events across the country if they is an avid collector of autographed memorabilia from famous musicians and vice versa. Everyone in the room collects comic books or does not travel domestically frequently or both if they is an avid collector of autographed memorabilia from famous musicians.
Joyce participates in long-distance cycling events across the country.
contradiction
room(roberto)&room(patrick)&room(wendy)&room(joyce)&(![X]:(room(X)=>(X='roberto'|X='patrick'|X='wendy'|X='joyce')))& ((![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(writes_poetry(X))))))<=>(![X]:(~room(X)=>(((enjoys_cross-country_skiing(X))|(does_not_write_poetry(X)))))))& (~(?[X]:(room(X)&(((collects_historical_artifacts_related_to_ancient_civilizations(X))&(participates_in_long-distance_cycling_events_across_the_country(X))&(collects_comic_books(X))))))=>(is_a_client_of_Meta(roberto)))& ((![X]:(room(X)=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))<=>(has_a_pet_dog(wendy)))& ((~![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(enjoys_cross-country_skiing(X))))))=>(((?[X]:(room(X)&has_a_piercing(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_piercing(X))&(has_a_piercing(Y)))=>(X=Y))))))& ((![X]:(room(X)=>(((does_not_write_poetry(X))|(reads_mystery_novels(X))))))=>(![X]:(room(X)=>(((reads_mystery_novels(X))=>(enjoys_cross-country_skiing(X)))))))& ((reads_mystery_novels(wendy))<=>(((?[X]:(anywhere(X)&((collects_comic_books(X))|(reads_mystery_novels(X))))))))& ((![X]:(room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(reads_mystery_novels(X))))))<=>(![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))))& (((![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(does_not_write_poetry(X))))))=>(is_a_coffee_connoisseur(patrick)))& ((is_a_coffee_connoisseur(patrick))=>(does_not_participate_in_long-distance_cycling_events_across_the_country(joyce))))& (~(![X]:(room(X)=>(((is_not_a_client_of_Meta(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))=>(![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(((reads_mystery_novels(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X)))))))))& ((hosts_a_popular_podcast_about_emerging_technologies(joyce))=>(![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(participates_in_long-distance_cycling_events_across_the_country(X)))))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))<=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(((collects_comic_books(X))|(does_not_travel_domestically_frequently(X))))))))& (((is_a_scotch_connoisseur(joyce))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(joyce))))& (![X]:(~room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(writes_poetry(X))))))& (![X]:(room(X)=>(((travels_domestically_frequently(X))<=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (has_a_piercing(joyce))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))<=>(enjoys_bird_watching(X))))))& ((![X]:((((does_not_travel_domestically_frequently(X))&(participates_in_long-distance_cycling_events_across_the_country(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(is_a_coffee_connoisseur(X)))))& (mentors_a_youth_basketball_team_on_weekends(patrick))& (((?[X]:(room(X)&is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))& (![X]:(room(X)=>(((collects_comic_books(X))=>(((has_a_pet_dog(X))|(uses_a_Windows_laptop(X))))))))& (~(participates_in_long-distance_cycling_events_across_the_country(joyce)))& (![X]:(room(X)=>(((is_not_a_client_of_Meta(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))
room(roberto)&room(patrick)&room(wendy)&room(joyce)&(![X]:(room(X)=>(X='roberto'|X='patrick'|X='wendy'|X='joyce')))& participates_in_long-distance_cycling_events_across_the_country(joyce)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2316347540428465899361064 % SZS output start Proof for 2316347540428465899361064 44. ! [X0] : (room(X0) => (predg(X0) => predn(X0))) & ! [X0] : (room(X0) => (predf(X0) | ~predp(X0))) & ~predm(alice) & ! [X0] : (room(X0) => (predo(X0) => (predu(X0) | predc(X0)))) & ? [X0] : (~predg(X0) & room(X0)) & prede(paul) & ! [X0] : ((predg(X0) & predm(X0) & ~predr(X0)) => predl(X0)) & ! [X0] : (room(X0) => (predh(X0) <=> predi(X0))) & preda(alice) & ! [X0] : (room(X0) => (~predg(X0) | predg(X0))) & ! [X0] : (room(X0) => (predq(X0) => (predf(X0) | predm(X0)))) & ! [X0] : (room(X0) => (predr(X0) <=> predq(X0))) & ! [X0] : (room(X0) => (predt(X0) | ~predg(X0))) & ! [X0] : (~room(X0) => (predq(X0) => predm(X0))) & predq(alice) & predd(alice) & ! [X0] : (room(X0) => (predg(X0) => (~predr(X0) | predo(X0)))) & ! [X0] : (room(X0) => (predm(X0) <=> predg(X0))) & (preds(alice) => ! [X0] : (room(X0) => (predq(X0) => predm(X0)))) & (~! [X0] : (room(X0) => (predf(X0) | ~predp(X0))) => ! [X0] : (room(X0) => (predd(X0) => (predn(X0) & predb(X0))))) & (predl(paul) => ~predm(alice)) & (! [X0] : (room(X0) => (~predt(X0) | ~predh(X0))) => predl(paul)) & (! [X0] : (room(X0) => (predb(X0) | ~predf(X0))) <=> ! [X0] : (room(X0) => (~predg(X0) | predg(X0)))) & (predb(fred) <=> ? [X0] : ((predb(X0) | predo(X0)) & anywhere(X0))) & (! [X0] : (room(X0) => (predb(X0) | ~predt(X0))) => ! [X0] : (room(X0) => (predb(X0) => predk(X0)))) & (~! [X0] : (room(X0) => (predk(X0) | ~predu(X0))) => (! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preda(X0) & room(X0)))) & (! [X0] : (room(X0) => (~predn(X0) | ~predm(X0))) <=> predc(fred)) & (~? [X0] : (predo(X0) & predm(X0) & predn(X0) & room(X0)) => predp(mary)) & (! [X0] : (room(X0) => (predt(X0) | ~predg(X0))) <=> ! [X0] : (~room(X0) => (~predt(X0) | predk(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. predm(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (room(X0) => (predg(X0) => predn(X0))) & ! [X1] : (room(X1) => (predf(X1) | ~predp(X1))) & ~predm(alice) & ! [X2] : (room(X2) => (predo(X2) => (predu(X2) | predc(X2)))) & ? [X3] : (~predg(X3) & room(X3)) & prede(paul) & ! [X4] : ((predg(X4) & predm(X4) & ~predr(X4)) => predl(X4)) & ! [X5] : (room(X5) => (predh(X5) <=> predi(X5))) & preda(alice) & ! [X6] : (room(X6) => (~predg(X6) | predg(X6))) & ! [X7] : (room(X7) => (predq(X7) => (predf(X7) | predm(X7)))) & ! [X8] : (room(X8) => (predr(X8) <=> predq(X8))) & ! [X9] : (room(X9) => (predt(X9) | ~predg(X9))) & ! [X10] : (~room(X10) => (predq(X10) => predm(X10))) & predq(alice) & predd(alice) & ! [X11] : (room(X11) => (predg(X11) => (~predr(X11) | predo(X11)))) & ! [X12] : (room(X12) => (predm(X12) <=> predg(X12))) & (preds(alice) => ! [X13] : (room(X13) => (predq(X13) => predm(X13)))) & (~! [X14] : (room(X14) => (predf(X14) | ~predp(X14))) => ! [X15] : (room(X15) => (predd(X15) => (predn(X15) & predb(X15))))) & (predl(paul) => ~predm(alice)) & (! [X16] : (room(X16) => (~predt(X16) | ~predh(X16))) => predl(paul)) & (! [X17] : (room(X17) => (predb(X17) | ~predf(X17))) <=> ! [X18] : (room(X18) => (~predg(X18) | predg(X18)))) & (predb(fred) <=> ? [X19] : ((predb(X19) | predo(X19)) & anywhere(X19))) & (! [X20] : (room(X20) => (predb(X20) | ~predt(X20))) => ! [X21] : (room(X21) => (predb(X21) => predk(X21)))) & (~! [X22] : (room(X22) => (predk(X22) | ~predu(X22))) => (! [X23,X24] : ((preda(X24) & preda(X23) & room(X24) & room(X23)) => X23 = X24) & ? [X25] : (preda(X25) & room(X25)))) & (! [X26] : (room(X26) => (~predn(X26) | ~predm(X26))) <=> predc(fred)) & (~? [X27] : (predo(X27) & predm(X27) & predn(X27) & room(X27)) => predp(mary)) & (! [X28] : (room(X28) => (predt(X28) | ~predg(X28))) <=> ! [X29] : (~room(X29) => (~predt(X29) | predk(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => (predg(X0) => predn(X0))) & ! [X1] : (room(X1) => (predf(X1) | ~predp(X1))) & ~predm(alice) & ! [X2] : (room(X2) => (predo(X2) => (predu(X2) | predc(X2)))) & ? [X3] : (~predg(X3) & room(X3)) & ! [X4] : ((predg(X4) & predm(X4) & ~predr(X4)) => predl(X4)) & ! [X5] : (room(X5) => (predh(X5) <=> predi(X5))) & preda(alice) & ! [X6] : (room(X6) => (~predg(X6) | predg(X6))) & ! [X7] : (room(X7) => (predq(X7) => (predf(X7) | predm(X7)))) & ! [X8] : (room(X8) => (predr(X8) <=> predq(X8))) & ! [X9] : (room(X9) => (predt(X9) | ~predg(X9))) & ! [X10] : (~room(X10) => (predq(X10) => predm(X10))) & predq(alice) & predd(alice) & ! [X11] : (room(X11) => (predg(X11) => (~predr(X11) | predo(X11)))) & ! [X12] : (room(X12) => (predm(X12) <=> predg(X12))) & (preds(alice) => ! [X13] : (room(X13) => (predq(X13) => predm(X13)))) & (~! [X14] : (room(X14) => (predf(X14) | ~predp(X14))) => ! [X15] : (room(X15) => (predd(X15) => (predn(X15) & predb(X15))))) & (predl(paul) => ~predm(alice)) & (! [X16] : (room(X16) => (~predt(X16) | ~predh(X16))) => predl(paul)) & (! [X17] : (room(X17) => (predb(X17) | ~predf(X17))) <=> ! [X18] : (room(X18) => (~predg(X18) | predg(X18)))) & (predb(fred) <=> ? [X19] : ((predb(X19) | predo(X19)) & anywhere(X19))) & (! [X20] : (room(X20) => (predb(X20) | ~predt(X20))) => ! [X21] : (room(X21) => (predb(X21) => predk(X21)))) & (~! [X22] : (room(X22) => (predk(X22) | ~predu(X22))) => (! [X23,X24] : ((preda(X24) & preda(X23) & room(X24) & room(X23)) => X23 = X24) & ? [X25] : (preda(X25) & room(X25)))) & (! [X26] : (room(X26) => (~predn(X26) | ~predm(X26))) <=> predc(fred)) & (~? [X27] : (predo(X27) & predm(X27) & predn(X27) & room(X27)) => predp(mary)) & (! [X28] : (room(X28) => (predt(X28) | ~predg(X28))) <=> ! [X29] : (~room(X29) => (~predt(X29) | predk(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (room(X0) => (predg(X0) => predn(X0))) & ! [X1] : (room(X1) => (predf(X1) | ~predp(X1))) & ~predm(alice) & ! [X2] : (room(X2) => (predo(X2) => (predu(X2) | predc(X2)))) & ? [X3] : (~predg(X3) & room(X3)) & ! [X4] : ((predg(X4) & predm(X4) & ~predr(X4)) => predl(X4)) & ! [X5] : (room(X5) => (predh(X5) <=> predi(X5))) & preda(alice) & ! [X6] : (room(X6) => (~predg(X6) | predg(X6))) & ! [X7] : (room(X7) => (predq(X7) => (predf(X7) | predm(X7)))) & ! [X8] : (room(X8) => (predr(X8) <=> predq(X8))) & ! [X9] : (room(X9) => (predt(X9) | ~predg(X9))) & ! [X10] : (~room(X10) => (predq(X10) => predm(X10))) & predq(alice) & predd(alice) & ! [X11] : (room(X11) => (predg(X11) => (~predr(X11) | predo(X11)))) & ! [X12] : (room(X12) => (predm(X12) <=> predg(X12))) & (~! [X14] : (room(X14) => (predf(X14) | ~predp(X14))) => ! [X15] : (room(X15) => (predd(X15) => (predn(X15) & predb(X15))))) & (predl(paul) => ~predm(alice)) & (! [X16] : (room(X16) => (~predt(X16) | ~predh(X16))) => predl(paul)) & (! [X17] : (room(X17) => (predb(X17) | ~predf(X17))) <=> ! [X18] : (room(X18) => (~predg(X18) | predg(X18)))) & (predb(fred) <=> ? [X19] : ((predb(X19) | predo(X19)) & anywhere(X19))) & (! [X20] : (room(X20) => (predb(X20) | ~predt(X20))) => ! [X21] : (room(X21) => (predb(X21) => predk(X21)))) & (~! [X22] : (room(X22) => (predk(X22) | ~predu(X22))) => (! [X23,X24] : ((preda(X24) & preda(X23) & room(X24) & room(X23)) => X23 = X24) & ? [X25] : (preda(X25) & room(X25)))) & (! [X26] : (room(X26) => (~predn(X26) | ~predm(X26))) <=> predc(fred)) & (~? [X27] : (predo(X27) & predm(X27) & predn(X27) & room(X27)) => predp(mary)) & (! [X28] : (room(X28) => (predt(X28) | ~predg(X28))) <=> ! [X29] : (~room(X29) => (~predt(X29) | predk(X29)))) & ! [X30] : (room(X30) => (alice = X30 | fred = X30 | paul = X30 | mary = X30)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 120. ! [X0] : ((predn(X0) | ~predg(X0)) | ~room(X0)) & ! [X1] : ((predf(X1) | ~predp(X1)) | ~room(X1)) & ~predm(alice) & ! [X2] : (((predu(X2) | predc(X2)) | ~predo(X2)) | ~room(X2)) & ? [X3] : (~predg(X3) & room(X3)) & ! [X4] : (predl(X4) | (~predg(X4) | ~predm(X4) | predr(X4))) & ! [X5] : ((predh(X5) <=> predi(X5)) | ~room(X5)) & preda(alice) & ! [X6] : ((~predg(X6) | predg(X6)) | ~room(X6)) & ! [X7] : (((predf(X7) | predm(X7)) | ~predq(X7)) | ~room(X7)) & ! [X8] : ((predr(X8) <=> predq(X8)) | ~room(X8)) & ! [X9] : ((predt(X9) | ~predg(X9)) | ~room(X9)) & ! [X10] : ((predm(X10) | ~predq(X10)) | room(X10)) & predq(alice) & predd(alice) & ! [X11] : (((~predr(X11) | predo(X11)) | ~predg(X11)) | ~room(X11)) & ! [X12] : ((predm(X12) <=> predg(X12)) | ~room(X12)) & (! [X15] : (((predn(X15) & predb(X15)) | ~predd(X15)) | ~room(X15)) | ! [X14] : ((predf(X14) | ~predp(X14)) | ~room(X14))) & (~predm(alice) | ~predl(paul)) & (predl(paul) | ? [X16] : ((predt(X16) & predh(X16)) & room(X16))) & (! [X17] : ((predb(X17) | ~predf(X17)) | ~room(X17)) <=> ! [X18] : ((~predg(X18) | predg(X18)) | ~room(X18))) & (predb(fred) <=> ? [X19] : ((predb(X19) | predo(X19)) & anywhere(X19))) & (! [X21] : ((predk(X21) | ~predb(X21)) | ~room(X21)) | ? [X20] : ((~predb(X20) & predt(X20)) & room(X20))) & ((! [X23,X24] : (X23 = X24 | (~preda(X24) | ~preda(X23) | ~room(X24) | ~room(X23))) & ? [X25] : (preda(X25) & room(X25))) | ! [X22] : ((predk(X22) | ~predu(X22)) | ~room(X22))) & (! [X26] : ((~predn(X26) | ~predm(X26)) | ~room(X26)) <=> predc(fred)) & (predp(mary) | ? [X27] : (predo(X27) & predm(X27) & predn(X27) & room(X27))) & (! [X28] : ((predt(X28) | ~predg(X28)) | ~room(X28)) <=> ! [X29] : ((~predt(X29) | predk(X29)) | room(X29))) & ! [X30] : ((alice = X30 | fred = X30 | paul = X30 | mary = X30) | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 48] 121. ! [X0] : (predn(X0) | ~predg(X0) | ~room(X0)) & ! [X1] : (predf(X1) | ~predp(X1) | ~room(X1)) & ~predm(alice) & ! [X2] : (predu(X2) | predc(X2) | ~predo(X2) | ~room(X2)) & ? [X3] : (~predg(X3) & room(X3)) & ! [X4] : (predl(X4) | ~predg(X4) | ~predm(X4) | predr(X4)) & ! [X5] : ((predh(X5) <=> predi(X5)) | ~room(X5)) & preda(alice) & ! [X6] : (~predg(X6) | predg(X6) | ~room(X6)) & ! [X7] : (predf(X7) | predm(X7) | ~predq(X7) | ~room(X7)) & ! [X8] : ((predr(X8) <=> predq(X8)) | ~room(X8)) & ! [X9] : (predt(X9) | ~predg(X9) | ~room(X9)) & ! [X10] : (predm(X10) | ~predq(X10) | room(X10)) & predq(alice) & predd(alice) & ! [X11] : (~predr(X11) | predo(X11) | ~predg(X11) | ~room(X11)) & ! [X12] : ((predm(X12) <=> predg(X12)) | ~room(X12)) & (! [X15] : ((predn(X15) & predb(X15)) | ~predd(X15) | ~room(X15)) | ! [X14] : (predf(X14) | ~predp(X14) | ~room(X14))) & (~predm(alice) | ~predl(paul)) & (predl(paul) | ? [X16] : (predt(X16) & predh(X16) & room(X16))) & (! [X17] : (predb(X17) | ~predf(X17) | ~room(X17)) <=> ! [X18] : (~predg(X18) | predg(X18) | ~room(X18))) & (predb(fred) <=> ? [X19] : ((predb(X19) | predo(X19)) & anywhere(X19))) & (! [X21] : (predk(X21) | ~predb(X21) | ~room(X21)) | ? [X20] : (~predb(X20) & predt(X20) & room(X20))) & ((! [X23,X24] : (X23 = X24 | ~preda(X24) | ~preda(X23) | ~room(X24) | ~room(X23)) & ? [X25] : (preda(X25) & room(X25))) | ! [X22] : (predk(X22) | ~predu(X22) | ~room(X22))) & (! [X26] : (~predn(X26) | ~predm(X26) | ~room(X26)) <=> predc(fred)) & (predp(mary) | ? [X27] : (predo(X27) & predm(X27) & predn(X27) & room(X27))) & (! [X28] : (predt(X28) | ~predg(X28) | ~room(X28)) <=> ! [X29] : (~predt(X29) | predk(X29) | room(X29))) & ! [X30] : (alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 120] 122. predm(alice) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 123. predm(alice) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 122] 125. ! [X0] : (predn(X0) | ~predg(X0) | ~room(X0)) & ! [X1] : (predf(X1) | ~predp(X1) | ~room(X1)) & ~predm(alice) & ! [X2] : (predu(X2) | predc(X2) | ~predo(X2) | ~room(X2)) & ? [X3] : (~predg(X3) & room(X3)) & ! [X4] : (predl(X4) | ~predg(X4) | ~predm(X4) | predr(X4)) & ! [X5] : (((predh(X5) | ~predi(X5)) & (predi(X5) | ~predh(X5))) | ~room(X5)) & preda(alice) & ! [X6] : (~predg(X6) | predg(X6) | ~room(X6)) & ! [X7] : (predf(X7) | predm(X7) | ~predq(X7) | ~room(X7)) & ! [X8] : (((predr(X8) | ~predq(X8)) & (predq(X8) | ~predr(X8))) | ~room(X8)) & ! [X9] : (predt(X9) | ~predg(X9) | ~room(X9)) & ! [X10] : (predm(X10) | ~predq(X10) | room(X10)) & predq(alice) & predd(alice) & ! [X11] : (~predr(X11) | predo(X11) | ~predg(X11) | ~room(X11)) & ! [X12] : (((predm(X12) | ~predg(X12)) & (predg(X12) | ~predm(X12))) | ~room(X12)) & (! [X15] : ((predn(X15) & predb(X15)) | ~predd(X15) | ~room(X15)) | ! [X14] : (predf(X14) | ~predp(X14) | ~room(X14))) & (~predm(alice) | ~predl(paul)) & (predl(paul) | ? [X16] : (predt(X16) & predh(X16) & room(X16))) & ((! [X17] : (predb(X17) | ~predf(X17) | ~room(X17)) | ? [X18] : (predg(X18) & ~predg(X18) & room(X18))) & (! [X18] : (~predg(X18) | predg(X18) | ~room(X18)) | ? [X17] : (~predb(X17) & predf(X17) & room(X17)))) & ((predb(fred) | ! [X19] : ((~predb(X19) & ~predo(X19)) | ~anywhere(X19))) & (? [X19] : ((predb(X19) | predo(X19)) & anywhere(X19)) | ~predb(fred))) & (! [X21] : (predk(X21) | ~predb(X21) | ~room(X21)) | ? [X20] : (~predb(X20) & predt(X20) & room(X20))) & ((! [X23,X24] : (X23 = X24 | ~preda(X24) | ~preda(X23) | ~room(X24) | ~room(X23)) & ? [X25] : (preda(X25) & room(X25))) | ! [X22] : (predk(X22) | ~predu(X22) | ~room(X22))) & ((! [X26] : (~predn(X26) | ~predm(X26) | ~room(X26)) | ~predc(fred)) & (predc(fred) | ? [X26] : (predn(X26) & predm(X26) & room(X26)))) & (predp(mary) | ? [X27] : (predo(X27) & predm(X27) & predn(X27) & room(X27))) & ((! [X28] : (predt(X28) | ~predg(X28) | ~room(X28)) | ? [X29] : (predt(X29) & ~predk(X29) & ~room(X29))) & (! [X29] : (~predt(X29) | predk(X29) | room(X29)) | ? [X28] : (~predt(X28) & predg(X28) & room(X28)))) & ! [X30] : (alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 121] 126. ! [X0] : (predn(X0) | ~predg(X0) | ~room(X0)) & ! [X1] : (predf(X1) | ~predp(X1) | ~room(X1)) & ~predm(alice) & ! [X2] : (predu(X2) | predc(X2) | ~predo(X2) | ~room(X2)) & ? [X3] : (~predg(X3) & room(X3)) & ! [X4] : (predl(X4) | ~predg(X4) | ~predm(X4) | predr(X4)) & ! [X5] : (((predh(X5) | ~predi(X5)) & (predi(X5) | ~predh(X5))) | ~room(X5)) & preda(alice) & ! [X6] : (~predg(X6) | predg(X6) | ~room(X6)) & ! [X7] : (predf(X7) | predm(X7) | ~predq(X7) | ~room(X7)) & ! [X8] : (((predr(X8) | ~predq(X8)) & (predq(X8) | ~predr(X8))) | ~room(X8)) & ! [X9] : (predt(X9) | ~predg(X9) | ~room(X9)) & ! [X10] : (predm(X10) | ~predq(X10) | room(X10)) & predq(alice) & predd(alice) & ! [X11] : (~predr(X11) | predo(X11) | ~predg(X11) | ~room(X11)) & ! [X12] : (((predm(X12) | ~predg(X12)) & (predg(X12) | ~predm(X12))) | ~room(X12)) & (! [X15] : ((predn(X15) & predb(X15)) | ~predd(X15) | ~room(X15)) | ! [X14] : (predf(X14) | ~predp(X14) | ~room(X14))) & (~predm(alice) | ~predl(paul)) & (predl(paul) | ? [X16] : (predt(X16) & predh(X16) & room(X16))) & (! [X17] : (predb(X17) | ~predf(X17) | ~room(X17)) | ? [X18] : (predg(X18) & ~predg(X18) & room(X18))) & (! [X18] : (~predg(X18) | predg(X18) | ~room(X18)) | ? [X17] : (~predb(X17) & predf(X17) & room(X17))) & (predb(fred) | ! [X19] : ((~predb(X19) & ~predo(X19)) | ~anywhere(X19))) & (? [X19] : ((predb(X19) | predo(X19)) & anywhere(X19)) | ~predb(fred)) & (! [X21] : (predk(X21) | ~predb(X21) | ~room(X21)) | ? [X20] : (~predb(X20) & predt(X20) & room(X20))) & ((! [X23,X24] : (X23 = X24 | ~preda(X24) | ~preda(X23) | ~room(X24) | ~room(X23)) & ? [X25] : (preda(X25) & room(X25))) | ! [X22] : (predk(X22) | ~predu(X22) | ~room(X22))) & (! [X26] : (~predn(X26) | ~predm(X26) | ~room(X26)) | ~predc(fred)) & (predc(fred) | ? [X26] : (predn(X26) & predm(X26) & room(X26))) & (predp(mary) | ? [X27] : (predo(X27) & predm(X27) & predn(X27) & room(X27))) & (! [X28] : (predt(X28) | ~predg(X28) | ~room(X28)) | ? [X29] : (predt(X29) & ~predk(X29) & ~room(X29))) & (! [X29] : (~predt(X29) | predk(X29) | room(X29)) | ? [X28] : (~predt(X28) & predg(X28) & room(X28))) & ! [X30] : (alice = X30 | fred = X30 | paul = X30 | mary = X30 | ~room(X30)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 125] 127. ! [X0] : (predn(X0) | ~predg(X0) | ~room(X0)) & ! [X1] : (predf(X1) | ~predp(X1) | ~room(X1)) & ~predm(alice) & ! [X2] : (predu(X2) | predc(X2) | ~predo(X2) | ~room(X2)) & ? [X3] : (~predg(X3) & room(X3)) & ! [X4] : (predl(X4) | ~predg(X4) | ~predm(X4) | predr(X4)) & ! [X5] : (((predh(X5) | ~predi(X5)) & (predi(X5) | ~predh(X5))) | ~room(X5)) & preda(alice) & ! [X6] : (~predg(X6) | predg(X6) | ~room(X6)) & ! [X7] : (predf(X7) | predm(X7) | ~predq(X7) | ~room(X7)) & ! [X8] : (((predr(X8) | ~predq(X8)) & (predq(X8) | ~predr(X8))) | ~room(X8)) & ! [X9] : (predt(X9) | ~predg(X9) | ~room(X9)) & ! [X10] : (predm(X10) | ~predq(X10) | room(X10)) & predq(alice) & predd(alice) & ! [X11] : (~predr(X11) | predo(X11) | ~predg(X11) | ~room(X11)) & ! [X12] : (((predm(X12) | ~predg(X12)) & (predg(X12) | ~predm(X12))) | ~room(X12)) & (! [X13] : ((predn(X13) & predb(X13)) | ~predd(X13) | ~room(X13)) | ! [X14] : (predf(X14) | ~predp(X14) | ~room(X14))) & (~predm(alice) | ~predl(paul)) & (predl(paul) | ? [X15] : (predt(X15) & predh(X15) & room(X15))) & (! [X16] : (predb(X16) | ~predf(X16) | ~room(X16)) | ? [X17] : (predg(X17) & ~predg(X17) & room(X17))) & (! [X18] : (~predg(X18) | predg(X18) | ~room(X18)) | ? [X19] : (~predb(X19) & predf(X19) & room(X19))) & (predb(fred) | ! [X20] : ((~predb(X20) & ~predo(X20)) | ~anywhere(X20))) & (? [X21] : ((predb(X21) | predo(X21)) & anywhere(X21)) | ~predb(fred)) & (! [X22] : (predk(X22) | ~predb(X22) | ~room(X22)) | ? [X23] : (~predb(X23) & predt(X23) & room(X23))) & ((! [X24,X25] : (X24 = X25 | ~preda(X25) | ~preda(X24) | ~room(X25) | ~room(X24)) & ? [X26] : (preda(X26) & room(X26))) | ! [X27] : (predk(X27) | ~predu(X27) | ~room(X27))) & (! [X28] : (~predn(X28) | ~predm(X28) | ~room(X28)) | ~predc(fred)) & (predc(fred) | ? [X29] : (predn(X29) & predm(X29) & room(X29))) & (predp(mary) | ? [X30] : (predo(X30) & predm(X30) & predn(X30) & room(X30))) & (! [X31] : (predt(X31) | ~predg(X31) | ~room(X31)) | ? [X32] : (predt(X32) & ~predk(X32) & ~room(X32))) & (! [X33] : (~predt(X33) | predk(X33) | room(X33)) | ? [X34] : (~predt(X34) & predg(X34) & room(X34))) & ! [X35] : (alice = X35 | fred = X35 | paul = X35 | mary = X35 | ~room(X35)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 126] 128. ? [X3] : (~predg(X3) & room(X3)) => (~predg(sK0) & room(sK0)) [choice axiom] 129. ? [X15] : (predt(X15) & predh(X15) & room(X15)) => (predt(sK1) & predh(sK1) & room(sK1)) [choice axiom] 130. ? [X17] : (predg(X17) & ~predg(X17) & room(X17)) => (predg(sK2) & ~predg(sK2) & room(sK2)) [choice axiom] 131. ? [X19] : (~predb(X19) & predf(X19) & room(X19)) => (~predb(sK3) & predf(sK3) & room(sK3)) [choice axiom] 132. ? [X21] : ((predb(X21) | predo(X21)) & anywhere(X21)) => ((predb(sK4) | predo(sK4)) & anywhere(sK4)) [choice axiom] 133. ? [X23] : (~predb(X23) & predt(X23) & room(X23)) => (~predb(sK5) & predt(sK5) & room(sK5)) [choice axiom] 134. ? [X26] : (preda(X26) & room(X26)) => (preda(sK6) & room(sK6)) [choice axiom] 135. ? [X29] : (predn(X29) & predm(X29) & room(X29)) => (predn(sK7) & predm(sK7) & room(sK7)) [choice axiom] 136. ? [X30] : (predo(X30) & predm(X30) & predn(X30) & room(X30)) => (predo(sK8) & predm(sK8) & predn(sK8) & room(sK8)) [choice axiom] 137. ? [X32] : (predt(X32) & ~predk(X32) & ~room(X32)) => (predt(sK9) & ~predk(sK9) & ~room(sK9)) [choice axiom] 138. ? [X34] : (~predt(X34) & predg(X34) & room(X34)) => (~predt(sK10) & predg(sK10) & room(sK10)) [choice axiom] 139. ! [X0] : (predn(X0) | ~predg(X0) | ~room(X0)) & ! [X1] : (predf(X1) | ~predp(X1) | ~room(X1)) & ~predm(alice) & ! [X2] : (predu(X2) | predc(X2) | ~predo(X2) | ~room(X2)) & (~predg(sK0) & room(sK0)) & ! [X4] : (predl(X4) | ~predg(X4) | ~predm(X4) | predr(X4)) & ! [X5] : (((predh(X5) | ~predi(X5)) & (predi(X5) | ~predh(X5))) | ~room(X5)) & preda(alice) & ! [X6] : (~predg(X6) | predg(X6) | ~room(X6)) & ! [X7] : (predf(X7) | predm(X7) | ~predq(X7) | ~room(X7)) & ! [X8] : (((predr(X8) | ~predq(X8)) & (predq(X8) | ~predr(X8))) | ~room(X8)) & ! [X9] : (predt(X9) | ~predg(X9) | ~room(X9)) & ! [X10] : (predm(X10) | ~predq(X10) | room(X10)) & predq(alice) & predd(alice) & ! [X11] : (~predr(X11) | predo(X11) | ~predg(X11) | ~room(X11)) & ! [X12] : (((predm(X12) | ~predg(X12)) & (predg(X12) | ~predm(X12))) | ~room(X12)) & (! [X13] : ((predn(X13) & predb(X13)) | ~predd(X13) | ~room(X13)) | ! [X14] : (predf(X14) | ~predp(X14) | ~room(X14))) & (~predm(alice) | ~predl(paul)) & (predl(paul) | (predt(sK1) & predh(sK1) & room(sK1))) & (! [X16] : (predb(X16) | ~predf(X16) | ~room(X16)) | (predg(sK2) & ~predg(sK2) & room(sK2))) & (! [X18] : (~predg(X18) | predg(X18) | ~room(X18)) | (~predb(sK3) & predf(sK3) & room(sK3))) & (predb(fred) | ! [X20] : ((~predb(X20) & ~predo(X20)) | ~anywhere(X20))) & (((predb(sK4) | predo(sK4)) & anywhere(sK4)) | ~predb(fred)) & (! [X22] : (predk(X22) | ~predb(X22) | ~room(X22)) | (~predb(sK5) & predt(sK5) & room(sK5))) & ((! [X24,X25] : (X24 = X25 | ~preda(X25) | ~preda(X24) | ~room(X25) | ~room(X24)) & (preda(sK6) & room(sK6))) | ! [X27] : (predk(X27) | ~predu(X27) | ~room(X27))) & (! [X28] : (~predn(X28) | ~predm(X28) | ~room(X28)) | ~predc(fred)) & (predc(fred) | (predn(sK7) & predm(sK7) & room(sK7))) & (predp(mary) | (predo(sK8) & predm(sK8) & predn(sK8) & room(sK8))) & (! [X31] : (predt(X31) | ~predg(X31) | ~room(X31)) | (predt(sK9) & ~predk(sK9) & ~room(sK9))) & (! [X33] : (~predt(X33) | predk(X33) | room(X33)) | (~predt(sK10) & predg(sK10) & room(sK10))) & ! [X35] : (alice = X35 | fred = X35 | paul = X35 | mary = X35 | ~room(X35)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 127,138,137,136,135,134,133,132,131,130,129,128] 280. ~predm(alice) [cnf transformation 139] 288. predm(alice) [cnf transformation 123] 445. $false [subsumption resolution 288,280] % SZS output end Proof for 2316347540428465899361064 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.249379
Kay, Sarah are the only persons in the room. If it is true that someone in the room is not allergic to anything then someone anywhere does not own a microscope. If someone anywhere does not own a microscope then if someone does not collect comic books then he/she does not practice calligraphy and vice versa. If someone in the room does not practice calligraphy then someone in the room does not collect limited-edition art prints from contemporary artists. If someone in the room does not collect limited-edition art prints from contemporary artists then if someone cannot play the guitar then he/she is not a dedicated advocate for digital privacy and encryption and vice versa. If it is true that someone in the room cannot play the guitar then someone in the room does not practice calligraphy. If someone in the room does not practice calligraphy then someone anywhere does not collect limited-edition art prints from contemporary artists. If it is true that someone in the room does not enjoy making ceramics then someone in the room does not own a microscope. If someone in the room does not own a microscope then someone in the room does not practice pilates.
Only one person in the room owns a microscope.
neutral
room(kay)&room(sarah)&(![X]:(room(X)=>(X='kay'|X='sarah')))& (((?[X]:(room(X)&(is_not_allergic_to_anything(X))))=>(?[X]:(anywhere(X)&(does_not_own_a_microscope(X)))))& ((?[X]:(anywhere(X)&(does_not_own_a_microscope(X))))=>((![X]:((does_not_collect_comic_books(X))<=>(does_not_practice_calligraphy(X)))))))& (((?[X]:(room(X)&(does_not_practice_calligraphy(X))))=>(?[X]:(room(X)&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))& ((?[X]:(room(X)&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))=>((![X]:((cannot_play_the_guitar(X))<=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& (((?[X]:(room(X)&(cannot_play_the_guitar(X))))=>(?[X]:(room(X)&(does_not_practice_calligraphy(X)))))& ((?[X]:(room(X)&(does_not_practice_calligraphy(X))))=>(?[X]:(anywhere(X)&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))& (((?[X]:(room(X)&(does_not_enjoy_making_ceramics(X))))=>(?[X]:(room(X)&(does_not_own_a_microscope(X)))))& ((?[X]:(room(X)&(does_not_own_a_microscope(X))))=>(?[X]:(room(X)&(does_not_practice_pilates(X))))))& (((?[X]:(room(X)&(does_not_enjoy_making_ceramics(X))))=>(?[X]:(room(X)&(is_not_a_craft_beer_aficionado(X)))))& ((?[X]:(room(X)&(is_not_a_craft_beer_aficionado(X))))=>(?[X]:(room(X)&(does_not_enjoy_stand-up_paddleboarding(X))))))& (((?[X]:(anywhere(X)&(does_not_own_a_smart_tv(X))))=>(?[X]:(room(X)&(cannot_play_the_guitar(X)))))& ((?[X]:(room(X)&(cannot_play_the_guitar(X))))=>((![X]:((does_not_collect_classic_novels(X))<=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& (((?[X]:(anywhere(X)&(does_not_make_homemade_pastries(X))))=>(?[X]:(room(X)&(does_not_own_a_microscope(X)))))& ((?[X]:(room(X)&(does_not_own_a_microscope(X))))=>(?[X]:(room(X)&(does_not_make_homemade_pastries(X))))))& (?[X]:(room(X)&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))& ((![X]:((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))<=>(is_not_allergic_to_anything(X)))))& ((![X]:((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))& (?[X]:(room(X)&(does_not_enjoy_watercolor_painting(X))))& (?[X]:(room(X)&(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))& ((![X]:((does_not_collect_foreign_coins(X))<=>(does_not_practice_yoga(X)))))& (?[X]:(anywhere(X)&(does_not_make_homemade_pastries(X))))& ((![X]:((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=>(does_not_practice_calligraphy(X)))))& (?[X]:(room(X)&(does_not_collect_foreign_coins(X))))& (?[X]:(room(X)&(does_not_enjoy_stand-up_paddleboarding(X))))& (?[X]:(room(X)&(does_not_enjoy_making_ceramics(X))))& (?[X]:(room(X)&(does_not_own_a_smart_tv(X))))& ((![X]:((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))<=>(does_not_collect_comic_books(X)))))& ((![X]:((does_not_enjoy_making_ceramics(X))<=>(does_not_volunteer_for_local_environmental_conservation_projects(X)))))
room(kay)&room(sarah)&(![X]:(room(X)=>(X='kay'|X='sarah')))& ((?[X]:(room(X)&owns_a_microscope(X)))&(![X,Y]:((room(X)&room(Y)&(owns_a_microscope(X))&(owns_a_microscope(Y)))=>(X=Y))))
[]
null
0.336826
Felicia, Maria, Elaine are the only persons in the room. “At least one person in the room enjoys skydiving” only if “more than one person in the room practices digital art”. If “Felicia plays as a goalkeeper for a local amateur soccer team” then “if someone either enjoys kayaking and exploring remote waterways or is a coffee connoisseur but not both then he/she collects vintage vinyl records and vice versa”. If “everyone anywhere does not build model airplanes or has completed a triathlon” then “Felicia dreamt that “if someone enjoys kayaking and exploring remote waterways then he/she has a piercing””. If “Felicia maintains a personal blog focused on cybersecurity tips” then “Felicia has a piercing”. If “someone in the room either has a piercing or composes and performs experimental electronic music but not both” then “it is not the case that “Felicia enjoys macrame””. Either “Felicia enjoys skydiving” or “it is not the case that “Felicia plays as a goalkeeper for a local amateur soccer team”” but not both. Either “it is not the case that “Felicia builds model airplanes”” or “Felicia enjoys windsurfing” but not both. “Felicia collects vintage vinyl records” only if “everyone in the room who has a piercing is a coffee connoisseur”. If “everyone in the room enjoys macrame or does not enjoy windsurfing” then “if someone practices digital art then he/she enjoys macrame and vice versa”. If “at least one person outside the room enjoys kayaking and exploring remote waterways” then “Felicia dreamt that “if someone enjoys kayaking and exploring remote waterways then he/she neither collects limited-edition art prints from contemporary artists nor plays as a goalkeeper for a local amateur soccer team””. It is not the case that “Felicia composes and performs experimental electronic music”. Someone in the room enjoys macrame. Felicia enjoys macrame. If someone plays as a goalkeeper for a local amateur soccer team then he/she is a coffee connoisseur. At least one person in the room is a coffee connoisseur. It is not the case that “more than one person in the room collects limited-edition art prints from contemporary artists”.
Felicia has a piercing.
contradiction
room(felicia)&room(maria)&room(elaine)&(![X]:(room(X)=>(X='felicia'|X='maria'|X='elaine')))& ((((?[X]:(room(X)&enjoys_skydiving(X)))))=>((?[X,Y]:(room(X)&room(Y)&(practices_digital_art(X)&practices_digital_art(Y))&(X!=Y)))))& ((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(felicia))=>((![X]:((((enjoys_kayaking_and_exploring_remote_waterways(X))<~>(is_a_coffee_connoisseur(X))))<=>(collects_vintage_vinyl_records(X))))))& ((![X]:(anywhere(X)=>(((has_completed_a_triathlon(X))|(does_not_build_model_airplanes(X))))))=>((felicia_dream=>((![X]:((enjoys_kayaking_and_exploring_remote_waterways(X))=>(has_a_piercing(X))))))))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(felicia))=>(has_a_piercing(felicia)))& ((?[X]:(room(X)&(((has_a_piercing(X))<~>(composes_and_performs_experimental_electronic_music(X))))))=>(~(enjoys_macrame(felicia))))& ((enjoys_skydiving(felicia))<~>(~(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(felicia))))& ((~(builds_model_airplanes(felicia)))<~>(enjoys_windsurfing(felicia)))& ((collects_vintage_vinyl_records(felicia))=>(![X]:(room(X)=>(((has_a_piercing(X))=>(is_a_coffee_connoisseur(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(enjoys_macrame(X))))))=>((![X]:((practices_digital_art(X))<=>(enjoys_macrame(X))))))& ((((?[X]:(~room(X)&enjoys_kayaking_and_exploring_remote_waterways(X)))))=>((felicia_dream=>((![X]:((enjoys_kayaking_and_exploring_remote_waterways(X))=>(~((collects_limited-edition_art_prints_from_contemporary_artists(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))))))& (~(composes_and_performs_experimental_electronic_music(felicia)))& (?[X]:(room(X)&(enjoys_macrame(X))))& (enjoys_macrame(felicia))& ((![X]:((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(is_a_coffee_connoisseur(X)))))& (((?[X]:(room(X)&is_a_coffee_connoisseur(X)))))& (~((?[X,Y]:(room(X)&room(Y)&(collects_limited-edition_art_prints_from_contemporary_artists(X)&collects_limited-edition_art_prints_from_contemporary_artists(Y))&(X!=Y)))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=(collects_vintage_vinyl_records(X))))))& (collects_foreign_coins(felicia))& ((?[X,Y]:(room(X)&room(Y)&(composes_and_performs_experimental_electronic_music(X)&composes_and_performs_experimental_electronic_music(Y))&(X!=Y))))& ((?[X,Y]:(~room(X)&~room(Y)&(has_a_piercing(X)&has_a_piercing(Y))&(X!=Y))))
room(felicia)&room(maria)&room(elaine)&(![X]:(room(X)=>(X='felicia'|X='maria'|X='elaine')))& has_a_piercing(felicia)
[ "p0", "p5", "p11", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 1666480435323771368487370 % SZS output start Proof for 1666480435323771368487370 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 49. ? [X0] : ((predf(X0) <~> predb(X0)) & room(X0)) => ~preda(mary) [input p5] 55. ~predb(mary) [input p11] 57. preda(mary) [input p13] 65. predf(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 148. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 148] 152. ~preda(mary) | ! [X0] : ((predf(X0) <=> predb(X0)) | ~room(X0)) [ennf transformation 49] 160. predf(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 161. predf(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 160] 167. ~preda(mary) | ! [X0] : (((predf(X0) | ~predb(X0)) & (predb(X0) | ~predf(X0))) | ~room(X0)) [nnf transformation 152] 262. room(mary) [cnf transformation 149] 275. ~preda(mary) | predb(X0) | ~predf(X0) | ~room(X0) [cnf transformation 167] 288. ~predb(mary) [cnf transformation 55] 291. preda(mary) [cnf transformation 57] 310. predf(mary) [cnf transformation 161] 363. 13 <=> preda(mary) [avatar definition] 368. 14 <=> ! [X0] : (predb(X0) | ~room(X0) | ~predf(X0)) [avatar definition] 369. ~predf(X0) | ~room(X0) | predb(X0) <- (14) [avatar component clause 368] 370. 14 | ~13 [avatar split clause 275,363,368] 419. 13 [avatar split clause 291,363] 424. ~room(mary) | predb(mary) <- (14) [resolution 369,310] 428. predb(mary) <- (14) [subsumption resolution 424,262] 429. $false <- (14) [subsumption resolution 428,288] 430. ~14 [avatar contradiction clause 429] 431. $false [avatar sat refutation 370,419,430] % SZS output end Proof for 1666480435323771368487370 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.040432
Juan, Russell, Lincoln, Lauren are the only persons in the room. Everyone in the room is not quiet or is not old or both if they is not quiet or is not old, not quiet or both and vice versa. Everyone outside the room neither is not old nor is not quiet if they is not quiet and vice versa. More than one person in the room is not old. Russell neither is not quiet, not old nor is not old. Everyone in the room is not quiet if they is not old and is not quiet and vice versa.
Everyone in the room is not quiet.
contradiction
room(juan)&room(russell)&room(lincoln)&room(lauren)&(![X]:(room(X)=>(X='juan'|X='russell'|X='lincoln'|X='lauren')))& (![X]:(room(X)=>(((((~quiet(X))|(~old(X))))<=>(((~quiet(X))|(~old(X)&~quiet(X))))))))& (![X]:(~room(X)=>(((~((~old(X))|(~quiet(X))))<=>(~quiet(X))))))& ((?[X,Y]:(room(X)&room(Y)&(~old(X)&~old(Y))&(X!=Y))))& (~((~quiet(russell)&~old(russell))|(~old(russell))))& (![X]:(room(X)=>(((~quiet(X))<=>(((~old(X))&(~quiet(X))))))))& (![X]:(room(X)=>(((((~old(X))&(~quiet(X))))<=>(((~quiet(X)&~old(X))|(~quiet(X))))))))& (![X]:(room(X)=>(((((~quiet(X)&~old(X))|(~quiet(X))))<=>(((~old(X)&~quiet(X))|(~old(X))))))))
room(juan)&room(russell)&room(lincoln)&room(lauren)&(![X]:(room(X)=>(X='juan'|X='russell'|X='lincoln'|X='lauren')))& ![X]:(room(X)=>(~quiet(X)))
[ "p0", "p2", "p4", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 1555098925989292283682460 % SZS output start Proof for 1555098925989292283682460 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (~room(X0) => (~(~quiet(X0) | ~old(X0)) <=> ~quiet(X0))) [input p2] 48. ~(~old(paul) | (~old(paul) & ~quiet(paul))) [input p4] 49. ! [X0] : (room(X0) => (~quiet(X0) <=> (~quiet(X0) & ~old(X0)))) [input p5] 52. ! [X0] : (room(X0) => ~quiet(X0)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 53. ! [X0] : (room(X0) => ~quiet(X0)) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 52] 126. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 127. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 126] 129. ! [X0] : (((quiet(X0) & old(X0)) <=> ~quiet(X0)) | room(X0)) [ennf transformation 46] 130. old(paul) & (old(paul) | quiet(paul)) [ennf transformation 48] 131. ! [X0] : ((~quiet(X0) <=> (~quiet(X0) & ~old(X0))) | ~room(X0)) [ennf transformation 49] 134. ! [X0] : (~quiet(X0) | ~room(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53] 135. ! [X0] : (~quiet(X0) | ~room(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 134] 139. ! [X0] : ((((quiet(X0) & old(X0)) | quiet(X0)) & (~quiet(X0) | (~quiet(X0) | ~old(X0)))) | room(X0)) [nnf transformation 129] 140. ! [X0] : ((((quiet(X0) & old(X0)) | quiet(X0)) & (~quiet(X0) | ~quiet(X0) | ~old(X0))) | room(X0)) [flattening 139] 143. ! [X0] : (((~quiet(X0) | (quiet(X0) | old(X0))) & ((~quiet(X0) & ~old(X0)) | quiet(X0))) | ~room(X0)) [nnf transformation 131] 144. ! [X0] : (((~quiet(X0) | quiet(X0) | old(X0)) & ((~quiet(X0) & ~old(X0)) | quiet(X0))) | ~room(X0)) [flattening 143] 230. room(paul) [cnf transformation 127] 240. ~quiet(X0) | ~quiet(X0) | ~old(X0) | room(X0) [cnf transformation 140] 242. quiet(X0) | quiet(X0) | room(X0) [cnf transformation 140] 249. old(paul) [cnf transformation 130] 250. ~old(X0) | quiet(X0) | ~room(X0) [cnf transformation 144] 272. ~room(X0) | ~quiet(X0) [cnf transformation 135] 278. ~quiet(X0) | ~old(X0) | room(X0) [duplicate literal removal 240] 279. room(X0) | quiet(X0) [duplicate literal removal 242] 282. ~old(X0) | room(X0) [subsumption resolution 278,279] 283. ~old(X0) | quiet(X0) [subsumption resolution 250,282] 285. ~quiet(paul) [resolution 272,230] 292. quiet(paul) [resolution 283,249] 293. $false [subsumption resolution 292,285] % SZS output end Proof for 1555098925989292283682460 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.628586
Eric, Arlene, Elizabeth, Melanie are the only persons in the room. 'Not everyone in the room mentors a youth basketball team on weekends or does not participate in citizen science projects related to wildlife monitoring' only if 'Eric plays eSports competitively'. 'Arlene does not maintain a personal blog focused on cybersecurity tips' if 'Arlene mentors a youth basketball team on weekends' and vice versa. 'Everyone in the room works as a freelance web developer specializing in e-commerce sites and does not play eSports competitively only if they enjoys virtual reality gaming' unless 'Eric does not participate in citizen science projects related to wildlife monitoring'. 'Arlene practices urban gardening' if 'everyone anywhere does not maintain a large, organic vegetable garden year-round or uses an ios phone'. If 'everyone in the room participates in citizen science projects related to wildlife monitoring or does not practice archery' then 'everyone in the room participates in citizen science projects related to wildlife monitoring if and only if they does not practice archery'. Everyone in the room who does not practice archery maintains a large, organic vegetable garden year-round. Everyone in the room maintains a personal blog focused on cybersecurity tips, uses an ios phone and works as a freelance web developer specializing in e-commerce sites if they maintains a large, organic vegetable garden year-round. If someone either mentors a youth basketball team on weekends or maintains a large, organic vegetable garden year-round but not both then he/she practices urban gardening and vice versa. Someone in the room practices archery. Not everyone in the room participates in citizen science projects related to wildlife monitoring if they maintains a personal blog focused on cybersecurity tips. Everyone in the room who participates in citizen science projects related to wildlife monitoring maintains a personal blog focused on cybersecurity tips. Eric uses an ios phone. Eric practices archery. Everyone in the room maintains a large, organic vegetable garden year-round.
Arlene practices urban gardening.
entailment
room(eric)&room(arlene)&room(elizabeth)&room(melanie)&(![X]:(room(X)=>(X='eric'|X='arlene'|X='elizabeth'|X='melanie')))& ((~![X]:(room(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(mentors_a_youth_basketball_team_on_weekends(X))))))=>(plays_eSports_competitively(eric)))& ((mentors_a_youth_basketball_team_on_weekends(arlene))<=>(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(arlene)))& (~(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(eric))=>(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))<=(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(does_not_play_eSports_competitively(X)))))))))& ((![X]:(anywhere(X)=>(((uses_an_ios_phone(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))=>(practices_urban_gardening(arlene)))& ((![X]:(room(X)=>(((does_not_practice_archery(X))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))=>(![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))<=>(does_not_practice_archery(X)))))))& (![X]:(room(X)=>(((does_not_practice_archery(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))&(uses_an_ios_phone(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))& ((![X]:((((mentors_a_youth_basketball_team_on_weekends(X))<~>(maintains_a_large,_organic_vegetable_garden_year-round(X))))<=>(practices_urban_gardening(X)))))& (?[X]:(room(X)&(practices_archery(X))))& (~![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (uses_an_ios_phone(eric))& (practices_archery(eric))& (![X]:(room(X)=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))
room(eric)&room(arlene)&room(elizabeth)&room(melanie)&(![X]:(room(X)=>(X='eric'|X='arlene'|X='elizabeth'|X='melanie')))& practices_urban_gardening(arlene)
[ "p0", "p2", "p7", "p8", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 5900406099405765556963731 % SZS output start Proof for 5900406099405765556963731 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. predb(paul) <=> ~predi(paul) [input p2] 51. ! [X0] : (room(X0) => (predf(X0) => (preda(X0) & predk(X0) & predi(X0)))) [input p7] 52. ! [X0] : ((predb(X0) <~> predf(X0)) <=> predc(X0)) [input p8] 58. ! [X0] : (room(X0) => predf(X0)) [input p14] 59. ~(predc(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 62. ! [X0] : (room(X0) => (predf(X0) => (predk(X0) & predi(X0)))) [pure predicate removal 51] 137. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 138. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 137] 144. ! [X0] : (((predk(X0) & predi(X0)) | ~predf(X0)) | ~room(X0)) [ennf transformation 62] 145. ! [X0] : ((predk(X0) & predi(X0)) | ~predf(X0) | ~room(X0)) [flattening 144] 150. ! [X0] : (predf(X0) | ~room(X0)) [ennf transformation 58] 151. ~predc(paul) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 59] 152. ~predc(paul) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 151] 154. (predb(paul) | predi(paul)) & (~predi(paul) | ~predb(paul)) [nnf transformation 46] 161. ! [X0] : ((((~predf(X0) | ~predb(X0)) & (predf(X0) | predb(X0))) | ~predc(X0)) & (predc(X0) | ((predb(X0) | ~predf(X0)) & (predf(X0) | ~predb(X0))))) [nnf transformation 52] 166. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 167. ~predc(paul) | (alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 152,166] 248. room(mary) [cnf transformation 138] 249. room(paul) [cnf transformation 138] 250. room(fred) [cnf transformation 138] 251. room(alice) [cnf transformation 138] 252. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 138] 253. ~predi(paul) | ~predb(paul) [cnf transformation 154] 264. ~predf(X0) | predi(X0) | ~room(X0) [cnf transformation 145] 267. ~predf(X0) | predb(X0) | predc(X0) [cnf transformation 161] 278. ~room(X0) | predf(X0) [cnf transformation 150] 279. ~predc(paul) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 280. ~predc(paul) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 281. ~predc(paul) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 282. ~predc(paul) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 283. ~predc(paul) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 167] 285. 1 <=> predi(paul) [avatar definition] 289. 2 <=> predb(paul) [avatar definition] 290. ~predb(paul) <- (~2) [avatar component clause 289] 293. ~2 | ~1 [avatar split clause 253,285,289] 299. 4 <=> predc(paul) [avatar definition] 332. ~predc(paul) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,251] 333. ~predc(paul) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 332,250] 334. ~predc(paul) | alice != sK4 | ~room(mary) [subsumption resolution 333,249] 335. ~predc(paul) | alice != sK4 [subsumption resolution 334,248] 337. 11 <=> alice = sK4 [avatar definition] 339. alice != sK4 <- (~11) [avatar component clause 337] 340. ~11 | ~4 [avatar split clause 335,299,337] 341. ~predc(paul) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,251] 342. ~predc(paul) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 341,250] 343. ~predc(paul) | fred != sK4 | ~room(mary) [subsumption resolution 342,249] 344. ~predc(paul) | fred != sK4 [subsumption resolution 343,248] 346. 12 <=> fred = sK4 [avatar definition] 348. fred != sK4 <- (~12) [avatar component clause 346] 349. ~12 | ~4 [avatar split clause 344,299,346] 350. ~predc(paul) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,251] 351. ~predc(paul) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 350,250] 352. ~predc(paul) | paul != sK4 | ~room(mary) [subsumption resolution 351,249] 353. ~predc(paul) | paul != sK4 [subsumption resolution 352,248] 355. 13 <=> paul = sK4 [avatar definition] 357. paul != sK4 <- (~13) [avatar component clause 355] 358. ~13 | ~4 [avatar split clause 353,299,355] 359. ~predc(paul) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,251] 360. ~predc(paul) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 359,250] 361. ~predc(paul) | mary != sK4 | ~room(mary) [subsumption resolution 360,249] 362. ~predc(paul) | mary != sK4 [subsumption resolution 361,248] 364. 14 <=> mary = sK4 [avatar definition] 366. mary != sK4 <- (~14) [avatar component clause 364] 367. ~14 | ~4 [avatar split clause 362,299,364] 368. ~predc(paul) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,251] 369. ~predc(paul) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 368,250] 370. ~predc(paul) | room(sK4) | ~room(mary) [subsumption resolution 369,249] 371. ~predc(paul) | room(sK4) [subsumption resolution 370,248] 373. 15 <=> room(sK4) [avatar definition] 375. room(sK4) <- (15) [avatar component clause 373] 376. 15 | ~4 [avatar split clause 371,299,373] 378. predf(paul) [resolution 278,249] 393. predi(paul) | ~room(paul) [resolution 264,378] 407. predi(paul) [subsumption resolution 393,249] 408. 1 [avatar split clause 407,285] 426. predb(paul) | predc(paul) [resolution 267,378] 440. predc(paul) <- (~2) [subsumption resolution 426,290] 479. 4 | 2 [avatar split clause 440,289,299] 612. fred = sK4 | paul = sK4 | mary = sK4 | alice = sK4 <- (15) [resolution 252,375] 664. paul = sK4 | mary = sK4 | alice = sK4 <- (~12, 15) [subsumption resolution 612,348] 665. mary = sK4 | alice = sK4 <- (~12, ~13, 15) [subsumption resolution 664,357] 666. alice = sK4 <- (~12, ~13, ~14, 15) [subsumption resolution 665,366] 667. $false <- (~11, ~12, ~13, ~14, 15) [subsumption resolution 666,339] 668. 11 | 12 | 13 | 14 | ~15 [avatar contradiction clause 667] 669. $false [avatar sat refutation 293,340,349,358,367,376,408,479,668] % SZS output end Proof for 5900406099405765556963731 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.07984
Daisy, Delcie are the only persons in the room. If “Delcie either does not host themed dinner parties featuring gourmet home-cooked meals or hosts themed dinner parties featuring gourmet home-cooked meals but not both” then “everyone in the room who collects limited-edition art prints from contemporary artists collects vintage stamps”. Daisy hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room hosts regular workshops on creative writing. Daisy drives a hybrid car. Delcie is not a professional photographer specializing in portrait photography. Everyone in the room does not have a piercing if they uses a Windows laptop. Delcie enjoys virtual reality gaming. Someone in the room bakes bread at home. Delcie has a piercing.
More than one person in the room hosts themed dinner parties featuring gourmet home-cooked meals.
neutral
room(daisy)&room(delcie)&(![X]:(room(X)=>(X='daisy'|X='delcie')))& ((((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(delcie))<~>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(delcie))))=>(![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(collects_vintage_stamps(X)))))))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(daisy))& (![X]:(room(X)=>(hosts_regular_workshops_on_creative_writing(X))))& (drives_a_hybrid_car(daisy))& (is_not_a_professional_photographer_specializing_in_portrait_photography(delcie))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(does_not_have_a_piercing(X))))))& (enjoys_virtual_reality_gaming(delcie))& (?[X]:(room(X)&(bakes_bread_at_home(X))))& (has_a_piercing(delcie))& (practices_archery(delcie))& (((?[X]:(anywhere(X)&uses_a_Windows_laptop(X)))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(is_allergic_to_anything(X))))))& (?[X]:(room(X)&(enjoys_spelunking(X))))& (?[X]:(room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))& (![X]:(room(X)=>(enjoys_virtual_reality_gaming(X))))& (~((practices_archery(daisy))|(does_practice_yoga(daisy))))& ((![X]:((does_not_collect_vintage_stamps(X))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))& (![X]:(room(X)=>(((~((bakes_bread_at_home(X))|(does_not_drive_a_hybrid_car(X))))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (hosts_a_popular_podcast_about_emerging_technologies(delcie))& (does_not_drive_a_hybrid_car(delcie))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(uses_a_Windows_laptop(X))))))
room(daisy)&room(delcie)&(![X]:(room(X)=>(X='daisy'|X='delcie')))& (?[X,Y]:(room(X)&room(Y)&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)&hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(Y))&(X!=Y)))
[]
null
0.329321
Douglas, David, Elizabeth, Timothy are the only persons in the room. 'Douglas is not liked by Julia' unless 'Elizabeth is a client of Troy'. If 'someone in the room is a client of Troy' then 'Julia is a sibling of Douglas'. 'Elizabeth and Timothy are client of Troy' if 'Troy is a client of Elizabeth' and vice versa. 'Timothy is a client of Troy' if 'Julia is a sibling of Elizabeth' and vice versa. If 'someone in the room is not hated by Freddy' then 'all wise persons are creative'. If someone is humble then he/she is a sibling of Freddy and vice versa. If someone is quieter than Freddy then he/she is a client of Julia and vice versa. David is the least rich in the room. Elizabeth and David are respectively creative and strong. Douglas is not liked by Julia. Douglas and Elizabeth are not hated by Troy. Douglas is a client of Freddy. Elizabeth is quiet. David is a client of Julia. Timothy is a client of Troy. If someone is a client of Troy then he/she is a sibling of Julia and vice versa.
Douglas is a client of Troy.
entailment
room(douglas)&room(david)&room(elizabeth)&room(timothy)&(![X]:(room(X)=>(X='douglas'|X='david'|X='elizabeth'|X='timothy')))& (~(client(troy,elizabeth))=>(~like(douglas,julia)))& ((?[X]:(room(X)&(client(troy,X))))=>(sibling(douglas,julia)))& ((client(elizabeth,troy))<=>(client(troy,elizabeth)&client(troy,timothy)))& ((sibling(elizabeth,julia))<=>(client(troy,timothy)))& ((?[X]:(room(X)&(~hate(X,freddy))))=>(![X]:(wise(X)=>creative(X))))& ((![X]:((humble(X))<=>(sibling(freddy,X)))))& ((![X]:((quieter(freddy,X))<=>(client(julia,X)))))& (![X]:((room(X)&(X!=david))=>richer(david,X)))& ((creative(elizabeth))&(strong(david)))& (~like(douglas,julia))& (~hate(douglas,troy)&~hate(elizabeth,troy))& (client(freddy,douglas))& (quiet(elizabeth))& (client(julia,david))& (sibling(david,troy))& (sibling(troy,david))& (~hate(freddy,douglas))& (client(troy,timothy))& ((![X]:((client(troy,X))<=>(sibling(julia,X)))))& ((like(elizabeth,freddy) & like(freddy,elizabeth)))& (client(douglas,freddy))& (client(julia,timothy))
room(douglas)&room(david)&room(elizabeth)&room(timothy)&(![X]:(room(X)=>(X='douglas'|X='david'|X='elizabeth'|X='timothy')))& client(troy,douglas)
[ "b5", "b42", "p0", "p2", "p18", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 5934429038801382108873278 % SZS output start Proof for 5934429038801382108873278 6. ! [X0,X1] : (X0 != X1 => (sibling(X0,X1) <=> sibling(X1,X0))) [input b5] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ? [X0] : (client(susan,X0) & room(X0)) => sibling(mary,john) [input p2] 62. client(susan,alice) [input p18] 63. ! [X0] : (client(susan,X0) <=> sibling(john,X0)) [input p19] 67. ~(client(susan,mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 79. ! [X0,X1] : ((sibling(X0,X1) <=> sibling(X1,X0)) | X0 = X1) [ennf transformation 6] 146. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146] 149. sibling(mary,john) | ! [X0] : (~client(susan,X0) | ~room(X0)) [ennf transformation 46] 152. ~client(susan,mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 153. ~client(susan,mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 152] 154. ! [X0,X1] : (((sibling(X0,X1) | ~sibling(X1,X0)) & (sibling(X1,X0) | ~sibling(X0,X1))) | X0 = X1) [nnf transformation 79] 159. ! [X0] : ((client(susan,X0) | ~sibling(john,X0)) & (sibling(john,X0) | ~client(susan,X0))) [nnf transformation 63] 160. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK0 & fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 161. ~client(susan,mary) | (alice != sK0 & fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 153,160] 163. ~sibling(X1,X0) | sibling(X0,X1) | X0 = X1 [cnf transformation 154] 224. mary != john [cnf transformation 43] 242. room(mary) [cnf transformation 147] 243. room(paul) [cnf transformation 147] 244. room(fred) [cnf transformation 147] 245. room(alice) [cnf transformation 147] 246. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 147] 248. sibling(mary,john) | ~client(susan,X0) | ~room(X0) [cnf transformation 149] 263. client(susan,alice) [cnf transformation 62] 265. ~sibling(john,X0) | client(susan,X0) [cnf transformation 159] 270. ~client(susan,mary) | room(sK0) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 271. ~client(susan,mary) | mary != sK0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 272. ~client(susan,mary) | paul != sK0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 273. ~client(susan,mary) | fred != sK0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 274. ~client(susan,mary) | alice != sK0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 161] 285. 3 <=> ! [X0] : (~client(susan,X0) | ~room(X0)) [avatar definition] 286. ~client(susan,X0) | ~room(X0) <- (3) [avatar component clause 285] 288. 4 <=> sibling(mary,john) [avatar definition] 290. sibling(mary,john) <- (4) [avatar component clause 288] 291. 3 | 4 [avatar split clause 248,288,285] 293. 5 <=> client(susan,alice) [avatar definition] 294. client(susan,alice) <- (5) [avatar component clause 293] 310. 5 [avatar split clause 263,293] 311. ~client(susan,mary) | alice != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,245] 312. ~client(susan,mary) | alice != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 311,244] 313. ~client(susan,mary) | alice != sK0 | ~room(mary) [subsumption resolution 312,243] 314. ~client(susan,mary) | alice != sK0 [subsumption resolution 313,242] 316. 8 <=> alice = sK0 [avatar definition] 318. alice != sK0 <- (~8) [avatar component clause 316] 320. 9 <=> client(susan,mary) [avatar definition] 323. ~8 | ~9 [avatar split clause 314,320,316] 324. ~client(susan,mary) | fred != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 273,245] 325. ~client(susan,mary) | fred != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 324,244] 326. ~client(susan,mary) | fred != sK0 | ~room(mary) [subsumption resolution 325,243] 327. ~client(susan,mary) | fred != sK0 [subsumption resolution 326,242] 329. 10 <=> fred = sK0 [avatar definition] 331. fred != sK0 <- (~10) [avatar component clause 329] 332. ~10 | ~9 [avatar split clause 327,320,329] 333. ~client(susan,mary) | paul != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 272,245] 334. ~client(susan,mary) | paul != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 333,244] 335. ~client(susan,mary) | paul != sK0 | ~room(mary) [subsumption resolution 334,243] 336. ~client(susan,mary) | paul != sK0 [subsumption resolution 335,242] 338. 11 <=> paul = sK0 [avatar definition] 340. paul != sK0 <- (~11) [avatar component clause 338] 341. ~11 | ~9 [avatar split clause 336,320,338] 342. ~client(susan,mary) | mary != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 271,245] 343. ~client(susan,mary) | mary != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 342,244] 344. ~client(susan,mary) | mary != sK0 | ~room(mary) [subsumption resolution 343,243] 345. ~client(susan,mary) | mary != sK0 [subsumption resolution 344,242] 347. 12 <=> mary = sK0 [avatar definition] 349. mary != sK0 <- (~12) [avatar component clause 347] 350. ~12 | ~9 [avatar split clause 345,320,347] 351. ~client(susan,mary) | room(sK0) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 270,245] 352. ~client(susan,mary) | room(sK0) | ~room(paul) | ~room(mary) [subsumption resolution 351,244] 353. ~client(susan,mary) | room(sK0) | ~room(mary) [subsumption resolution 352,243] 354. ~client(susan,mary) | room(sK0) [subsumption resolution 353,242] 356. 13 <=> room(sK0) [avatar definition] 358. room(sK0) <- (13) [avatar component clause 356] 359. 13 | ~9 [avatar split clause 354,320,356] 360. ~room(alice) <- (3, 5) [resolution 286,294] 361. $false <- (3, 5) [subsumption resolution 360,245] 362. ~3 | ~5 [avatar contradiction clause 361] 369. sibling(john,mary) | mary = john <- (4) [resolution 163,290] 374. sibling(john,mary) <- (4) [subsumption resolution 369,224] 377. client(susan,mary) <- (4) [resolution 374,265] 381. 9 | ~4 [avatar split clause 377,288,320] 553. fred = sK0 | paul = sK0 | mary = sK0 | alice = sK0 <- (13) [resolution 246,358] 554. paul = sK0 | mary = sK0 | alice = sK0 <- (~10, 13) [subsumption resolution 553,331] 555. mary = sK0 | alice = sK0 <- (~10, ~11, 13) [subsumption resolution 554,340] 556. alice = sK0 <- (~10, ~11, ~12, 13) [subsumption resolution 555,349] 557. $false <- (~8, ~10, ~11, ~12, 13) [subsumption resolution 556,318] 558. 8 | 10 | 11 | 12 | ~13 [avatar contradiction clause 557] 559. $false [avatar sat refutation 291,310,323,332,341,350,359,362,381,558] % SZS output end Proof for 5934429038801382108873278 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.132778
David, Donna, Christopher are the only persons in the room. If “David develops open-source software projects in their free time, practices digital art or enjoys stargazing” then “everyone in the room who practices archery neither does not practice digital art nor develops open-source software projects in their free time” otherwise “David is an active member of a local robotics club”. “Christopher streams on Twitch” if “David enjoys stargazing” and vice versa. If “everyone in the room is not a wine connoisseur or volunteers for local environmental conservation projects” then “if someone creates large-scale murals for public art installations then he/she collects vintage vinyl records and writes a travel blog” otherwise “only one person in the room creates bespoke furniture pieces from reclaimed wood”. “Someone in the room creates large-scale murals for public art installations, does not enjoy making ceramics or practices archery” unless “everyone in the room does not create augmented reality experiences for mobile applications or practices digital art”. Everyone in the room designs and sews custom cosplay costumes for conventions if they does not stream on Twitch and vice versa. David designs and sews custom cosplay costumes for conventions.
David streams on Twitch.
contradiction
room(david)&room(donna)&room(christopher)&(![X]:(room(X)=>(X='david'|X='donna'|X='christopher')))& (((((develops_open-source_software_projects_in_their_free_time(david))|(practices_digital_art(david))|(enjoys_stargazing(david))))=>(![X]:(room(X)=>(((practices_archery(X))=>(~((does_not_practice_digital_art(X))|(develops_open-source_software_projects_in_their_free_time(X)))))))))&((~(((develops_open-source_software_projects_in_their_free_time(david))|(practices_digital_art(david))|(enjoys_stargazing(david)))))=>(is_an_active_member_of_a_local_robotics_club(david))))& ((enjoys_stargazing(david))<=>(streams_on_Twitch(christopher)))& (((![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))|(is_not_a_wine_connoisseur(X))))))=>((![X]:((creates_large-scale_murals_for_public_art_installations(X))=>(((collects_vintage_vinyl_records(X))&(writes_a_travel_blog(X))))))))&((~(![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))|(is_not_a_wine_connoisseur(X)))))))=>(((?[X]:(room(X)&creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))&(![X,Y]:((room(X)&room(Y)&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(Y)))=>(X=Y)))))))& (~(![X]:(room(X)=>(((practices_digital_art(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))=>(?[X]:(room(X)&(((creates_large-scale_murals_for_public_art_installations(X))|(does_not_enjoy_making_ceramics(X))|(practices_archery(X)))))))& (((![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>(does_not_enjoy_bird_watching(christopher)))&((~(![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X)))))))=>(![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=(((creates_large-scale_murals_for_public_art_installations(X))|(practices_digital_art(X))|(enjoys_making_ceramics(X))))))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(does_not_stream_on_Twitch(X))))))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(christopher))& (~(enjoys_making_ceramics(donna)))& (~(practices_archery(david)))& (designs_and_sews_custom_cosplay_costumes_for_conventions(david))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(enjoys_kayaking(X))))))
room(david)&room(donna)&room(christopher)&(![X]:(room(X)=>(X='david'|X='donna'|X='christopher')))& streams_on_Twitch(david)
[ "p0", "p6", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 2253294486856438766975836 % SZS output start Proof for 2253294486856438766975836 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 50. ! [X0] : (room(X0) => (preds(X0) <=> ~predp(X0))) [input p6] 54. preds(mary) [input p10] 56. predp(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 145. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 146. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 145] 147. ! [X0] : ((preds(X0) <=> ~predp(X0)) | ~room(X0)) [ennf transformation 50] 148. predp(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 149. predp(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 148] 152. ! [X0] : (((preds(X0) | predp(X0)) & (~predp(X0) | ~preds(X0))) | ~room(X0)) [nnf transformation 147] 233. room(mary) [cnf transformation 146] 239. ~preds(X0) | ~predp(X0) | ~room(X0) [cnf transformation 152] 241. preds(mary) [cnf transformation 54] 246. predp(mary) [cnf transformation 149] 257. ~predp(mary) | ~room(mary) [resolution 239,241] 258. ~room(mary) [subsumption resolution 257,246] 259. $false [subsumption resolution 258,233] % SZS output end Proof for 2253294486856438766975836 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0
There is a room. "If someone collects foreign coins then he/she enjoys logic puzzles and vice versa" unless "no one in the room does not practice and performs acrobatic dance routines or collects comic books". Everyone in the room enjoys logic puzzles. If someone enjoys logic puzzles then he/she does not collect rare minerals and vice versa. Everyone in the room does not have a specialized collection of handmade artisan pottery only if they has a specialized collection of handmade artisan pottery or creates bespoke furniture pieces from reclaimed wood or both. Everyone in the room who drives a hybrid car practices and performs acrobatic dance routines, is a culinary enthusiast who experiments with international cuisines and owns an Android phone. Everyone in the room who practices and performs acrobatic dance routines, is a culinary enthusiast who experiments with international cuisines and owns an Android phone collects rare minerals. Everyone outside the room collects rare minerals only if they owns an Android phone. No one in the room does not practice and performs acrobatic dance routines or collects comic books. More than one person in the room either is an avid mountain climber who has scaled several peaks or does not practice digital art but not both.
Everyone in the room does not collect rare minerals.
entailment
(there_is_a_room)& (~(~?[X]:(room(X)=>(((collects_comic_books(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))=>((![X]:((collects_foreign_coins(X))<=>(enjoys_logic_puzzles(X))))))& (![X]:(room(X)=>(enjoys_logic_puzzles(X))))& ((![X]:((enjoys_logic_puzzles(X))<=>(does_not_collect_rare_minerals(X)))))& (![X]:(room(X)=>(((((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))<=(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(((practices_and_performs_acrobatic_dance_routines(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(owns_an_Android_phone(X))))))))& (![X]:(room(X)=>(((((practices_and_performs_acrobatic_dance_routines(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(owns_an_Android_phone(X))))=>(collects_rare_minerals(X))))))& (![X]:(~room(X)=>(((owns_an_Android_phone(X))<=(collects_rare_minerals(X))))))& (~?[X]:(room(X)=>(((collects_comic_books(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))& ((?[X,Y]:(room(X)&room(Y)&(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))<~>(does_not_practice_digital_art(X)))&((is_an_avid_mountain_climber_who_has_scaled_several_peaks(Y))<~>(does_not_practice_digital_art(Y))))&(X!=Y))))& ((![X]:((collects_foreign_coins(X))<=>(enjoys_logic_puzzles(X)))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((((collects_rare_minerals(X))|(uses_an_ios_phone(X))))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(anywhere(X)=>(does_not_own_an_Android_phone(X))))
(there_is_a_room)& ![X]:(room(X)=>(does_not_collect_rare_minerals(X)))
[ "p0", "p2", "p3", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 3210855829924496542266226 % SZS output start Proof for 3210855829924496542266226 44. there_is_a_room [input p0] 46. ! [X0] : (room(X0) => predx(X0)) [input p2] 47. ! [X0] : (predx(X0) <=> ~predm(X0)) [input p3] 52. ~? [X0] : (room(X0) => (~predq(X0) | predh(X0))) [input p8] 58. ~(! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room) [input hypothesis] 65. ~? [X0] : (room(X0) => predh(X0)) [pure predicate removal 52] 68. ~? [X0] : ~room(X0) [pure predicate removal 65] 142. ! [X0] : (predx(X0) | ~room(X0)) [ennf transformation 46] 145. ! [X0] : room(X0) [ennf transformation 68] 147. ? [X0] : (predm(X0) & room(X0)) | ~there_is_a_room [ennf transformation 58] 151. ! [X0] : ((predx(X0) | predm(X0)) & (~predm(X0) | ~predx(X0))) [nnf transformation 47] 157. ? [X0] : (predm(X0) & room(X0)) => (predm(sK2) & room(sK2)) [choice axiom] 158. (predm(sK2) & room(sK2)) | ~there_is_a_room [skolemisation 147,157] 240. there_is_a_room [cnf transformation 44] 243. ~room(X0) | predx(X0) [cnf transformation 142] 244. ~predm(X0) | ~predx(X0) [cnf transformation 151] 247. room(X0) [cnf transformation 145] 259. predm(sK2) | ~there_is_a_room [cnf transformation 158] 261. 1 <=> ! [X1] : room(X1) [avatar definition] 262. room(X1) <- (1) [avatar component clause 261] 271. 1 [avatar split clause 247,261] 295. predm(sK2) [subsumption resolution 259,240] 297. predx(X0) <- (1) [resolution 243,262] 301. ~predx(sK2) [resolution 244,295] 302. $false <- (1) [subsumption resolution 301,297] 303. ~1 [avatar contradiction clause 302] 304. $false [avatar sat refutation 271,303] % SZS output end Proof for 3210855829924496542266226 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.240828
Joseph, Ivan are the only persons in the room. “Everyone in the room does not play eSports competitively or builds model airplanes” only if “Joseph does not enjoy stargazing”. If “at least one person in the room enjoys stargazing” then “it is not the case that “Joseph hosts regular game nights featuring complex strategy games””. It is not the case that “it is true that “at least one person in the room hosts regular game nights featuring complex strategy games””. Everyone in the room does not play eSports competitively or builds model airplanes. It is true that “Joseph collects rare and antique scientific instruments”. If someone enjoys stargazing then he/she mentors a youth basketball team on weekends and vice versa. Ivan does not enjoy rooftop gardening. Ivan mentors a youth basketball team on weekends. Joseph who plays eSports competitively enjoys rooftop gardening. If someone enjoys stargazing then he/she practices pilates and vice versa. If someone neither enjoys rooftop gardening nor hosts regular game nights featuring complex strategy games then he/she practices pilates. Everyone in the room collects historical artifacts related to ancient civilizations if they does not collect rare minerals. If someone enjoys making ceramics then he/she is a tea enthusiast. Ivan who is a certified scuba diver with advanced underwater photography skills is a tea enthusiast. It is not the case that “Joseph hosts regular game nights featuring complex strategy games”. It is true that “if someone does not build model airplanes then he/she practices calligraphy and vice versa”. If someone cannot play the guitar then he/she practices calligraphy. If someone is a certified scuba diver with advanced underwater photography skills and does not enjoy rooftop gardening then he/she is not an avid hiker.
Everyone in the room does not collect rare and antique scientific instruments or mentors a youth basketball team on weekends.
contradiction
room(joseph)&room(ivan)&(![X]:(room(X)=>(X='joseph'|X='ivan')))& ((![X]:(room(X)=>(((builds_model_airplanes(X))|(does_not_play_eSports_competitively(X))))))=>(does_not_enjoy_stargazing(joseph)))& ((((?[X]:(room(X)&enjoys_stargazing(X)))))=>(~(hosts_regular_game_nights_featuring_complex_strategy_games(joseph))))& (~(((?[X]:(room(X)&hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))|(does_not_play_eSports_competitively(X))))))& (collects_rare_and_antique_scientific_instruments(joseph))& ((![X]:((enjoys_stargazing(X))<=>(mentors_a_youth_basketball_team_on_weekends(X)))))& (does_not_enjoy_rooftop_gardening(ivan))& (mentors_a_youth_basketball_team_on_weekends(ivan))& ((plays_eSports_competitively(joseph))&(enjoys_rooftop_gardening(joseph)))& ((![X]:((enjoys_stargazing(X))<=>(practices_pilates(X)))))& ((![X]:((~((enjoys_rooftop_gardening(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))=>(practices_pilates(X)))))& (![X]:(room(X)=>(((does_not_collect_rare_minerals(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& ((![X]:((enjoys_making_ceramics(X))=>(is_a_tea_enthusiast(X)))))& ((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(ivan))&(is_a_tea_enthusiast(ivan)))& (~(hosts_regular_game_nights_featuring_complex_strategy_games(joseph)))& ((![X]:((does_not_build_model_airplanes(X))<=>(practices_calligraphy(X)))))& ((![X]:((cannot_play_the_guitar(X))=>(practices_calligraphy(X)))))& ((![X]:((((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))&(does_not_enjoy_rooftop_gardening(X))))=>(is_not_an_avid_hiker(X)))))
room(joseph)&room(ivan)&(![X]:(room(X)=>(X='joseph'|X='ivan')))& ![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))|(does_not_collect_rare_and_antique_scientific_instruments(X)))))
[ "p0", "p1", "p4", "p5", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 2258075083213167334661109 % SZS output start Proof for 2258075083213167334661109 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (~predb(X0) | prede(X0))) => ~preda(mary) [input p1] 48. ! [X0] : (room(X0) => (~predb(X0) | prede(X0))) [input p4] 49. predg(mary) [input p5] 50. ! [X0] : (preda(X0) <=> predd(X0)) [input p6] 63. ! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 64. ! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 63] 143. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 143] 145. ~preda(mary) | ? [X0] : ((predb(X0) & ~prede(X0)) & room(X0)) [ennf transformation 45] 146. ~preda(mary) | ? [X0] : (predb(X0) & ~prede(X0) & room(X0)) [flattening 145] 149. ! [X0] : ((~predb(X0) | prede(X0)) | ~room(X0)) [ennf transformation 48] 150. ! [X0] : (~predb(X0) | prede(X0) | ~room(X0)) [flattening 149] 153. ! [X0] : ((~predg(X0) | predd(X0)) | ~room(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 64] 154. ! [X0] : (~predg(X0) | predd(X0) | ~room(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 153] 156. ? [X0] : (predb(X0) & ~prede(X0) & room(X0)) => (predb(sK0) & ~prede(sK0) & room(sK0)) [choice axiom] 157. ~preda(mary) | (predb(sK0) & ~prede(sK0) & room(sK0)) [skolemisation 146,156] 158. ! [X0] : ((preda(X0) | ~predd(X0)) & (predd(X0) | ~preda(X0))) [nnf transformation 50] 241. room(mary) [cnf transformation 144] 244. ~preda(mary) | room(sK0) [cnf transformation 157] 245. ~preda(mary) | ~prede(sK0) [cnf transformation 157] 246. ~preda(mary) | predb(sK0) [cnf transformation 157] 249. ~predb(X0) | prede(X0) | ~room(X0) [cnf transformation 150] 250. predg(mary) [cnf transformation 49] 252. ~predd(X0) | preda(X0) [cnf transformation 158] 266. ~predg(X0) | predd(X0) | ~room(X0) [cnf transformation 154] 268. 1 <=> predb(sK0) [avatar definition] 270. predb(sK0) <- (1) [avatar component clause 268] 272. 2 <=> preda(mary) [avatar definition] 275. 1 | ~2 [avatar split clause 246,272,268] 277. 3 <=> prede(sK0) [avatar definition] 279. ~prede(sK0) <- (~3) [avatar component clause 277] 280. ~3 | ~2 [avatar split clause 245,272,277] 282. 4 <=> room(sK0) [avatar definition] 284. room(sK0) <- (4) [avatar component clause 282] 285. 4 | ~2 [avatar split clause 244,272,282] 303. predd(mary) | ~room(mary) [resolution 266,250] 304. predd(mary) [subsumption resolution 303,241] 305. preda(mary) [resolution 304,252] 308. 2 [avatar split clause 305,272] 309. prede(sK0) | ~room(sK0) <- (1) [resolution 270,249] 310. ~room(sK0) <- (1, ~3) [subsumption resolution 309,279] 311. $false <- (1, ~3, 4) [subsumption resolution 310,284] 312. ~1 | 3 | ~4 [avatar contradiction clause 311] 313. $false [avatar sat refutation 275,280,285,308,312] % SZS output end Proof for 2258075083213167334661109 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.081259